mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-02-10 23:05:17 -05:00
Compare commits
1 Commits
pwuts/open
...
fix/readme
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7607b93947 |
@@ -29,7 +29,8 @@
|
||||
"postCreateCmd": [
|
||||
"cd autogpt_platform/autogpt_libs && poetry install",
|
||||
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
|
||||
"cd autogpt_platform/frontend && pnpm install"
|
||||
"cd autogpt_platform/frontend && pnpm install",
|
||||
"cd docs && pip install -r requirements.txt"
|
||||
],
|
||||
"terminalCommand": "code .",
|
||||
"deleteBranchWithWorktree": false
|
||||
|
||||
6
.github/copilot-instructions.md
vendored
6
.github/copilot-instructions.md
vendored
@@ -160,7 +160,7 @@ pnpm storybook # Start component development server
|
||||
|
||||
**Backend Entry Points:**
|
||||
|
||||
- `backend/backend/api/rest_api.py` - FastAPI application setup
|
||||
- `backend/backend/server/server.py` - FastAPI application setup
|
||||
- `backend/backend/data/` - Database models and user management
|
||||
- `backend/blocks/` - Agent execution blocks and logic
|
||||
|
||||
@@ -219,7 +219,7 @@ Agents are built using a visual block-based system where each block performs a s
|
||||
|
||||
### API Development
|
||||
|
||||
1. Update routes in `/backend/backend/api/features/`
|
||||
1. Update routes in `/backend/backend/server/routers/`
|
||||
2. Add/update Pydantic models in same directory
|
||||
3. Write tests alongside route files
|
||||
4. For `data/*.py` changes, validate user ID checks
|
||||
@@ -285,7 +285,7 @@ Agents are built using a visual block-based system where each block performs a s
|
||||
|
||||
### Security Guidelines
|
||||
|
||||
**Cache Protection Middleware** (`/backend/backend/api/middleware/security.py`):
|
||||
**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`):
|
||||
|
||||
- Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
|
||||
- Uses allow list approach for cacheable paths (static assets, health checks, public pages)
|
||||
|
||||
2
.github/workflows/classic-frontend-ci.yml
vendored
2
.github/workflows/classic-frontend-ci.yml
vendored
@@ -49,7 +49,7 @@ jobs:
|
||||
|
||||
- name: Create PR ${{ env.BUILD_BRANCH }} -> ${{ github.ref_name }}
|
||||
if: github.event_name == 'push'
|
||||
uses: peter-evans/create-pull-request@v8
|
||||
uses: peter-evans/create-pull-request@v7
|
||||
with:
|
||||
add-paths: classic/frontend/build/web
|
||||
base: ${{ github.ref_name }}
|
||||
|
||||
@@ -42,7 +42,7 @@ jobs:
|
||||
|
||||
- name: Get CI failure details
|
||||
id: failure_details
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
const run = await github.rest.actions.getWorkflowRun({
|
||||
|
||||
9
.github/workflows/claude-dependabot.yml
vendored
9
.github/workflows/claude-dependabot.yml
vendored
@@ -41,7 +41,7 @@ jobs:
|
||||
python-version: "3.11" # Use standard version matching CI
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
@@ -78,7 +78,7 @@ jobs:
|
||||
|
||||
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22"
|
||||
|
||||
@@ -91,7 +91,7 @@ jobs:
|
||||
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
|
||||
|
||||
- name: Cache frontend dependencies
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
|
||||
@@ -124,7 +124,7 @@ jobs:
|
||||
# Phase 1: Cache and load Docker images for faster setup
|
||||
- name: Set up Docker image cache
|
||||
id: docker-cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/docker-cache
|
||||
# Use a versioned key for cache invalidation when image list changes
|
||||
@@ -309,7 +309,6 @@ jobs:
|
||||
uses: anthropics/claude-code-action@v1
|
||||
with:
|
||||
claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
|
||||
allowed_bots: "dependabot[bot]"
|
||||
claude_args: |
|
||||
--allowedTools "Bash(npm:*),Bash(pnpm:*),Bash(poetry:*),Bash(git:*),Edit,Replace,NotebookEditCell,mcp__github_inline_comment__create_inline_comment,Bash(gh pr comment:*), Bash(gh pr diff:*), Bash(gh pr view:*)"
|
||||
prompt: |
|
||||
|
||||
8
.github/workflows/claude.yml
vendored
8
.github/workflows/claude.yml
vendored
@@ -57,7 +57,7 @@ jobs:
|
||||
python-version: "3.11" # Use standard version matching CI
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
@@ -94,7 +94,7 @@ jobs:
|
||||
|
||||
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22"
|
||||
|
||||
@@ -107,7 +107,7 @@ jobs:
|
||||
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
|
||||
|
||||
- name: Cache frontend dependencies
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
|
||||
@@ -140,7 +140,7 @@ jobs:
|
||||
# Phase 1: Cache and load Docker images for faster setup
|
||||
- name: Set up Docker image cache
|
||||
id: docker-cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/docker-cache
|
||||
# Use a versioned key for cache invalidation when image list changes
|
||||
|
||||
8
.github/workflows/copilot-setup-steps.yml
vendored
8
.github/workflows/copilot-setup-steps.yml
vendored
@@ -39,7 +39,7 @@ jobs:
|
||||
python-version: "3.11" # Use standard version matching CI
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
@@ -76,7 +76,7 @@ jobs:
|
||||
|
||||
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22"
|
||||
|
||||
@@ -89,7 +89,7 @@ jobs:
|
||||
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
|
||||
|
||||
- name: Cache frontend dependencies
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
|
||||
@@ -132,7 +132,7 @@ jobs:
|
||||
# Phase 1: Cache and load Docker images for faster setup
|
||||
- name: Set up Docker image cache
|
||||
id: docker-cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/docker-cache
|
||||
# Use a versioned key for cache invalidation when image list changes
|
||||
|
||||
2
.github/workflows/docs-block-sync.yml
vendored
2
.github/workflows/docs-block-sync.yml
vendored
@@ -33,7 +33,7 @@ jobs:
|
||||
python-version: "3.11"
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
|
||||
2
.github/workflows/docs-claude-review.yml
vendored
2
.github/workflows/docs-claude-review.yml
vendored
@@ -33,7 +33,7 @@ jobs:
|
||||
python-version: "3.11"
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
|
||||
2
.github/workflows/docs-enhance.yml
vendored
2
.github/workflows/docs-enhance.yml
vendored
@@ -38,7 +38,7 @@ jobs:
|
||||
python-version: "3.11"
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
|
||||
2
.github/workflows/platform-backend-ci.yml
vendored
2
.github/workflows/platform-backend-ci.yml
vendored
@@ -88,7 +88,7 @@ jobs:
|
||||
run: echo "date=$(date +'%Y-%m-%d')" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
|
||||
@@ -17,7 +17,7 @@ jobs:
|
||||
- name: Check comment permissions and deployment status
|
||||
id: check_status
|
||||
if: github.event_name == 'issue_comment' && github.event.issue.pull_request
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
const commentBody = context.payload.comment.body.trim();
|
||||
@@ -55,7 +55,7 @@ jobs:
|
||||
|
||||
- name: Post permission denied comment
|
||||
if: steps.check_status.outputs.permission_denied == 'true'
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
await github.rest.issues.createComment({
|
||||
@@ -68,7 +68,7 @@ jobs:
|
||||
- name: Get PR details for deployment
|
||||
id: pr_details
|
||||
if: steps.check_status.outputs.should_deploy == 'true' || steps.check_status.outputs.should_undeploy == 'true'
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
const pr = await github.rest.pulls.get({
|
||||
@@ -98,7 +98,7 @@ jobs:
|
||||
|
||||
- name: Post deploy success comment
|
||||
if: steps.check_status.outputs.should_deploy == 'true'
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
await github.rest.issues.createComment({
|
||||
@@ -126,7 +126,7 @@ jobs:
|
||||
|
||||
- name: Post undeploy success comment
|
||||
if: steps.check_status.outputs.should_undeploy == 'true'
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
await github.rest.issues.createComment({
|
||||
@@ -139,7 +139,7 @@ jobs:
|
||||
- name: Check deployment status on PR close
|
||||
id: check_pr_close
|
||||
if: github.event_name == 'pull_request' && github.event.action == 'closed'
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
const comments = await github.rest.issues.listComments({
|
||||
@@ -187,7 +187,7 @@ jobs:
|
||||
github.event_name == 'pull_request' &&
|
||||
github.event.action == 'closed' &&
|
||||
steps.check_pr_close.outputs.should_undeploy == 'true'
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
await github.rest.issues.createComment({
|
||||
|
||||
38
.github/workflows/platform-frontend-ci.yml
vendored
38
.github/workflows/platform-frontend-ci.yml
vendored
@@ -27,22 +27,13 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
cache-key: ${{ steps.cache-key.outputs.key }}
|
||||
components-changed: ${{ steps.filter.outputs.components }}
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Check for component changes
|
||||
uses: dorny/paths-filter@v3
|
||||
id: filter
|
||||
with:
|
||||
filters: |
|
||||
components:
|
||||
- 'autogpt_platform/frontend/src/components/**'
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
@@ -54,7 +45,7 @@ jobs:
|
||||
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Cache dependencies
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ steps.cache-key.outputs.key }}
|
||||
@@ -74,7 +65,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
@@ -82,7 +73,7 @@ jobs:
|
||||
run: corepack enable
|
||||
|
||||
- name: Restore dependencies cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ needs.setup.outputs.cache-key }}
|
||||
@@ -99,11 +90,8 @@ jobs:
|
||||
chromatic:
|
||||
runs-on: ubuntu-latest
|
||||
needs: setup
|
||||
# Disabled: to re-enable, remove 'false &&' from the condition below
|
||||
if: >-
|
||||
false
|
||||
&& (github.ref == 'refs/heads/dev' || github.base_ref == 'dev')
|
||||
&& needs.setup.outputs.components-changed == 'true'
|
||||
# Only run on dev branch pushes or PRs targeting dev
|
||||
if: github.ref == 'refs/heads/dev' || github.base_ref == 'dev'
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
@@ -112,7 +100,7 @@ jobs:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
@@ -120,7 +108,7 @@ jobs:
|
||||
run: corepack enable
|
||||
|
||||
- name: Restore dependencies cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ needs.setup.outputs.cache-key }}
|
||||
@@ -153,7 +141,7 @@ jobs:
|
||||
submodules: recursive
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
@@ -176,7 +164,7 @@ jobs:
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Cache Docker layers
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: /tmp/.buildx-cache
|
||||
key: ${{ runner.os }}-buildx-frontend-test-${{ hashFiles('autogpt_platform/docker-compose.yml', 'autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/pyproject.toml', 'autogpt_platform/backend/poetry.lock') }}
|
||||
@@ -231,7 +219,7 @@ jobs:
|
||||
fi
|
||||
|
||||
- name: Restore dependencies cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ needs.setup.outputs.cache-key }}
|
||||
@@ -282,7 +270,7 @@ jobs:
|
||||
submodules: recursive
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
@@ -290,7 +278,7 @@ jobs:
|
||||
run: corepack enable
|
||||
|
||||
- name: Restore dependencies cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ needs.setup.outputs.cache-key }}
|
||||
|
||||
12
.github/workflows/platform-fullstack-ci.yml
vendored
12
.github/workflows/platform-fullstack-ci.yml
vendored
@@ -32,7 +32,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
@@ -44,7 +44,7 @@ jobs:
|
||||
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Cache dependencies
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ steps.cache-key.outputs.key }}
|
||||
@@ -56,7 +56,7 @@ jobs:
|
||||
run: pnpm install --frozen-lockfile
|
||||
|
||||
types:
|
||||
runs-on: big-boi
|
||||
runs-on: ubuntu-latest
|
||||
needs: setup
|
||||
strategy:
|
||||
fail-fast: false
|
||||
@@ -68,7 +68,7 @@ jobs:
|
||||
submodules: recursive
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
@@ -85,10 +85,10 @@ jobs:
|
||||
|
||||
- name: Run docker compose
|
||||
run: |
|
||||
docker compose -f ../docker-compose.yml --profile local up -d deps_backend
|
||||
docker compose -f ../docker-compose.yml --profile local --profile deps_backend up -d
|
||||
|
||||
- name: Restore dependencies cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ needs.setup.outputs.cache-key }}
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -178,6 +178,5 @@ autogpt_platform/backend/settings.py
|
||||
*.ign.*
|
||||
.test-contents
|
||||
.claude/settings.local.json
|
||||
CLAUDE.local.md
|
||||
/autogpt_platform/backend/logs
|
||||
.next
|
||||
24
AGENTS.md
24
AGENTS.md
@@ -16,6 +16,7 @@ See `docs/content/platform/getting-started.md` for setup instructions.
|
||||
- Format Python code with `poetry run format`.
|
||||
- Format frontend code using `pnpm format`.
|
||||
|
||||
|
||||
## Frontend guidelines:
|
||||
|
||||
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
@@ -32,17 +33,14 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
|
||||
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
|
||||
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
|
||||
|
||||
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
|
||||
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
|
||||
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
|
||||
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
|
||||
- Use function declarations for components, arrow functions only for callbacks
|
||||
- No barrel files or `index.ts` re-exports
|
||||
- Do not use `useCallback` or `useMemo` unless strictly needed
|
||||
- Avoid comments at all times unless the code is very complex
|
||||
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
|
||||
- Do not type hook returns, let Typescript infer as much as possible
|
||||
- Never type with `any`, if not types available use `unknown`
|
||||
|
||||
## Testing
|
||||
|
||||
@@ -51,8 +49,22 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
|
||||
Always run the relevant linters and tests before committing.
|
||||
Use conventional commit messages for all commits (e.g. `feat(backend): add API`).
|
||||
Types: - feat - fix - refactor - ci - dx (developer experience)
|
||||
Scopes: - platform - platform/library - platform/marketplace - backend - backend/executor - frontend - frontend/library - frontend/marketplace - blocks
|
||||
Types:
|
||||
- feat
|
||||
- fix
|
||||
- refactor
|
||||
- ci
|
||||
- dx (developer experience)
|
||||
Scopes:
|
||||
- platform
|
||||
- platform/library
|
||||
- platform/marketplace
|
||||
- backend
|
||||
- backend/executor
|
||||
- frontend
|
||||
- frontend/library
|
||||
- frontend/marketplace
|
||||
- blocks
|
||||
|
||||
## Pull requests
|
||||
|
||||
|
||||
@@ -6,30 +6,152 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
|
||||
|
||||
AutoGPT Platform is a monorepo containing:
|
||||
|
||||
- **Backend** (`backend`): Python FastAPI server with async support
|
||||
- **Frontend** (`frontend`): Next.js React application
|
||||
- **Shared Libraries** (`autogpt_libs`): Common Python utilities
|
||||
- **Backend** (`/backend`): Python FastAPI server with async support
|
||||
- **Frontend** (`/frontend`): Next.js React application
|
||||
- **Shared Libraries** (`/autogpt_libs`): Common Python utilities
|
||||
|
||||
## Component Documentation
|
||||
## Essential Commands
|
||||
|
||||
- **Backend**: See @backend/CLAUDE.md for backend-specific commands, architecture, and development tasks
|
||||
- **Frontend**: See @frontend/CLAUDE.md for frontend-specific commands, architecture, and development patterns
|
||||
### Backend Development
|
||||
|
||||
## Key Concepts
|
||||
```bash
|
||||
# Install dependencies
|
||||
cd backend && poetry install
|
||||
|
||||
# Run database migrations
|
||||
poetry run prisma migrate dev
|
||||
|
||||
# Start all services (database, redis, rabbitmq, clamav)
|
||||
docker compose up -d
|
||||
|
||||
# Run the backend server
|
||||
poetry run serve
|
||||
|
||||
# Run tests
|
||||
poetry run test
|
||||
|
||||
# Run specific test
|
||||
poetry run pytest path/to/test_file.py::test_function_name
|
||||
|
||||
# Run block tests (tests that validate all blocks work correctly)
|
||||
poetry run pytest backend/blocks/test/test_block.py -xvs
|
||||
|
||||
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
|
||||
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
|
||||
|
||||
# Lint and format
|
||||
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
|
||||
poetry run format # Black + isort
|
||||
poetry run lint # ruff
|
||||
```
|
||||
|
||||
More details can be found in TESTING.md
|
||||
|
||||
#### Creating/Updating Snapshots
|
||||
|
||||
When you first write a test or when the expected output changes:
|
||||
|
||||
```bash
|
||||
poetry run pytest path/to/test.py --snapshot-update
|
||||
```
|
||||
|
||||
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
|
||||
|
||||
### Frontend Development
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
cd frontend && pnpm i
|
||||
|
||||
# Generate API client from OpenAPI spec
|
||||
pnpm generate:api
|
||||
|
||||
# Start development server
|
||||
pnpm dev
|
||||
|
||||
# Run E2E tests
|
||||
pnpm test
|
||||
|
||||
# Run Storybook for component development
|
||||
pnpm storybook
|
||||
|
||||
# Build production
|
||||
pnpm build
|
||||
|
||||
# Format and lint
|
||||
pnpm format
|
||||
|
||||
# Type checking
|
||||
pnpm types
|
||||
```
|
||||
|
||||
**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns.
|
||||
|
||||
**Key Frontend Conventions:**
|
||||
|
||||
- Separate render logic from data/behavior in components
|
||||
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
|
||||
- Use function declarations (not arrow functions) for components/handlers
|
||||
- Use design system components from `src/components/` (atoms, molecules, organisms)
|
||||
- Only use Phosphor Icons
|
||||
- Never use `src/components/__legacy__/*` or deprecated `BackendAPI`
|
||||
|
||||
## Architecture Overview
|
||||
|
||||
### Backend Architecture
|
||||
|
||||
- **API Layer**: FastAPI with REST and WebSocket endpoints
|
||||
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
|
||||
- **Queue System**: RabbitMQ for async task processing
|
||||
- **Execution Engine**: Separate executor service processes agent workflows
|
||||
- **Authentication**: JWT-based with Supabase integration
|
||||
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
|
||||
|
||||
### Frontend Architecture
|
||||
|
||||
- **Framework**: Next.js 15 App Router (client-first approach)
|
||||
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
|
||||
- **State Management**: React Query for server state, co-located UI state in components/hooks
|
||||
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
|
||||
- **Workflow Builder**: Visual graph editor using @xyflow/react
|
||||
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
|
||||
- **Icons**: Phosphor Icons only
|
||||
- **Feature Flags**: LaunchDarkly integration
|
||||
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
|
||||
- **Testing**: Playwright for E2E, Storybook for component development
|
||||
|
||||
### Key Concepts
|
||||
|
||||
1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend
|
||||
2. **Blocks**: Reusable components in `backend/backend/blocks/` that perform specific tasks
|
||||
2. **Blocks**: Reusable components in `/backend/blocks/` that perform specific tasks
|
||||
3. **Integrations**: OAuth and API connections stored per user
|
||||
4. **Store**: Marketplace for sharing agent templates
|
||||
5. **Virus Scanning**: ClamAV integration for file upload security
|
||||
|
||||
### Testing Approach
|
||||
|
||||
- Backend uses pytest with snapshot testing for API responses
|
||||
- Test files are colocated with source files (`*_test.py`)
|
||||
- Frontend uses Playwright for E2E tests
|
||||
- Component testing via Storybook
|
||||
|
||||
### Database Schema
|
||||
|
||||
Key models (defined in `/backend/schema.prisma`):
|
||||
|
||||
- `User`: Authentication and profile data
|
||||
- `AgentGraph`: Workflow definitions with version control
|
||||
- `AgentGraphExecution`: Execution history and results
|
||||
- `AgentNode`: Individual nodes in a workflow
|
||||
- `StoreListing`: Marketplace listings for sharing agents
|
||||
|
||||
### Environment Configuration
|
||||
|
||||
#### Configuration Files
|
||||
|
||||
- **Backend**: `backend/.env.default` (defaults) → `backend/.env` (user overrides)
|
||||
- **Frontend**: `frontend/.env.default` (defaults) → `frontend/.env` (user overrides)
|
||||
- **Platform**: `.env.default` (Supabase/shared defaults) → `.env` (user overrides)
|
||||
- **Backend**: `/backend/.env.default` (defaults) → `/backend/.env` (user overrides)
|
||||
- **Frontend**: `/frontend/.env.default` (defaults) → `/frontend/.env` (user overrides)
|
||||
- **Platform**: `/.env.default` (Supabase/shared defaults) → `/.env` (user overrides)
|
||||
|
||||
#### Docker Environment Loading Order
|
||||
|
||||
@@ -45,12 +167,83 @@ AutoGPT Platform is a monorepo containing:
|
||||
- Backend/Frontend services use YAML anchors for consistent configuration
|
||||
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
|
||||
|
||||
### Common Development Tasks
|
||||
|
||||
**Adding a new block:**
|
||||
|
||||
Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers:
|
||||
|
||||
- Provider configuration with `ProviderBuilder`
|
||||
- Block schema definition
|
||||
- Authentication (API keys, OAuth, webhooks)
|
||||
- Testing and validation
|
||||
- File organization
|
||||
|
||||
Quick steps:
|
||||
|
||||
1. Create new file in `/backend/backend/blocks/`
|
||||
2. Configure provider using `ProviderBuilder` in `_config.py`
|
||||
3. Inherit from `Block` base class
|
||||
4. Define input/output schemas using `BlockSchema`
|
||||
5. Implement async `run` method
|
||||
6. Generate unique block ID using `uuid.uuid4()`
|
||||
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
|
||||
|
||||
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph based editor or would they struggle to connect productively?
|
||||
ex: do the inputs and outputs tie well together?
|
||||
|
||||
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
|
||||
|
||||
**Modifying the API:**
|
||||
|
||||
1. Update route in `/backend/backend/server/routers/`
|
||||
2. Add/update Pydantic models in same directory
|
||||
3. Write tests alongside the route file
|
||||
4. Run `poetry run test` to verify
|
||||
|
||||
### Frontend guidelines:
|
||||
|
||||
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
|
||||
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
|
||||
- Add `usePageName.ts` hook for logic
|
||||
- Put sub-components in local `components/` folder
|
||||
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
|
||||
- Use design system components from `src/components/` (atoms, molecules, organisms)
|
||||
- Never use `src/components/__legacy__/*`
|
||||
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
|
||||
- Regenerate with `pnpm generate:api`
|
||||
- Pattern: `use{Method}{Version}{OperationName}`
|
||||
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
|
||||
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
|
||||
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
|
||||
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
|
||||
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
|
||||
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
|
||||
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
|
||||
- Use function declarations for components, arrow functions only for callbacks
|
||||
- No barrel files or `index.ts` re-exports
|
||||
- Do not use `useCallback` or `useMemo` unless strictly needed
|
||||
- Avoid comments at all times unless the code is very complex
|
||||
|
||||
### Security Implementation
|
||||
|
||||
**Cache Protection Middleware:**
|
||||
|
||||
- Located in `/backend/backend/server/middleware/security.py`
|
||||
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
|
||||
- Uses an allow list approach - only explicitly permitted paths can be cached
|
||||
- Cacheable paths include: static assets (`/static/*`, `/_next/static/*`), health checks, public store pages, documentation
|
||||
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
|
||||
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
|
||||
- Applied to both main API server and external API applications
|
||||
|
||||
### Creating Pull Requests
|
||||
|
||||
- Create the PR against the `dev` branch of the repository.
|
||||
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)
|
||||
- Use conventional commit messages (see below)
|
||||
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description
|
||||
- Create the PR aginst the `dev` branch of the repository.
|
||||
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)/
|
||||
- Use conventional commit messages (see below)/
|
||||
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description/
|
||||
- Run the github pre-commit hooks to ensure code quality.
|
||||
|
||||
### Reviewing/Revising Pull Requests
|
||||
|
||||
1854
autogpt_platform/autogpt_libs/poetry.lock
generated
1854
autogpt_platform/autogpt_libs/poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@@ -9,25 +9,25 @@ packages = [{ include = "autogpt_libs" }]
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<4.0"
|
||||
colorama = "^0.4.6"
|
||||
cryptography = "^46.0"
|
||||
cryptography = "^45.0"
|
||||
expiringdict = "^1.2.2"
|
||||
fastapi = "^0.128.0"
|
||||
google-cloud-logging = "^3.13.0"
|
||||
launchdarkly-server-sdk = "^9.14.1"
|
||||
pydantic = "^2.12.5"
|
||||
pydantic-settings = "^2.12.0"
|
||||
pyjwt = { version = "^2.11.0", extras = ["crypto"] }
|
||||
fastapi = "^0.116.1"
|
||||
google-cloud-logging = "^3.12.1"
|
||||
launchdarkly-server-sdk = "^9.12.0"
|
||||
pydantic = "^2.11.7"
|
||||
pydantic-settings = "^2.10.1"
|
||||
pyjwt = { version = "^2.10.1", extras = ["crypto"] }
|
||||
redis = "^6.2.0"
|
||||
supabase = "^2.27.2"
|
||||
uvicorn = "^0.40.0"
|
||||
supabase = "^2.16.0"
|
||||
uvicorn = "^0.35.0"
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
pyright = "^1.1.408"
|
||||
pyright = "^1.1.404"
|
||||
pytest = "^8.4.1"
|
||||
pytest-asyncio = "^1.3.0"
|
||||
pytest-mock = "^3.15.1"
|
||||
pytest-cov = "^7.0.0"
|
||||
ruff = "^0.15.0"
|
||||
pytest-asyncio = "^1.1.0"
|
||||
pytest-mock = "^3.14.1"
|
||||
pytest-cov = "^6.2.1"
|
||||
ruff = "^0.12.11"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
|
||||
@@ -152,7 +152,6 @@ REPLICATE_API_KEY=
|
||||
REVID_API_KEY=
|
||||
SCREENSHOTONE_API_KEY=
|
||||
UNREAL_SPEECH_API_KEY=
|
||||
ELEVENLABS_API_KEY=
|
||||
|
||||
# Data & Search Services
|
||||
E2B_API_KEY=
|
||||
|
||||
3
autogpt_platform/backend/.gitignore
vendored
3
autogpt_platform/backend/.gitignore
vendored
@@ -19,6 +19,3 @@ load-tests/*.json
|
||||
load-tests/*.log
|
||||
load-tests/node_modules/*
|
||||
migrations/*/rollback*.sql
|
||||
|
||||
# Workspace files
|
||||
workspaces/
|
||||
|
||||
@@ -1,170 +0,0 @@
|
||||
# CLAUDE.md - Backend
|
||||
|
||||
This file provides guidance to Claude Code when working with the backend.
|
||||
|
||||
## Essential Commands
|
||||
|
||||
To run something with Python package dependencies you MUST use `poetry run ...`.
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
poetry install
|
||||
|
||||
# Run database migrations
|
||||
poetry run prisma migrate dev
|
||||
|
||||
# Start all services (database, redis, rabbitmq, clamav)
|
||||
docker compose up -d
|
||||
|
||||
# Run the backend as a whole
|
||||
poetry run app
|
||||
|
||||
# Run tests
|
||||
poetry run test
|
||||
|
||||
# Run specific test
|
||||
poetry run pytest path/to/test_file.py::test_function_name
|
||||
|
||||
# Run block tests (tests that validate all blocks work correctly)
|
||||
poetry run pytest backend/blocks/test/test_block.py -xvs
|
||||
|
||||
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
|
||||
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
|
||||
|
||||
# Lint and format
|
||||
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
|
||||
poetry run format # Black + isort
|
||||
poetry run lint # ruff
|
||||
```
|
||||
|
||||
More details can be found in @TESTING.md
|
||||
|
||||
### Creating/Updating Snapshots
|
||||
|
||||
When you first write a test or when the expected output changes:
|
||||
|
||||
```bash
|
||||
poetry run pytest path/to/test.py --snapshot-update
|
||||
```
|
||||
|
||||
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
|
||||
|
||||
## Architecture
|
||||
|
||||
- **API Layer**: FastAPI with REST and WebSocket endpoints
|
||||
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
|
||||
- **Queue System**: RabbitMQ for async task processing
|
||||
- **Execution Engine**: Separate executor service processes agent workflows
|
||||
- **Authentication**: JWT-based with Supabase integration
|
||||
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
|
||||
|
||||
## Testing Approach
|
||||
|
||||
- Uses pytest with snapshot testing for API responses
|
||||
- Test files are colocated with source files (`*_test.py`)
|
||||
|
||||
## Database Schema
|
||||
|
||||
Key models (defined in `schema.prisma`):
|
||||
|
||||
- `User`: Authentication and profile data
|
||||
- `AgentGraph`: Workflow definitions with version control
|
||||
- `AgentGraphExecution`: Execution history and results
|
||||
- `AgentNode`: Individual nodes in a workflow
|
||||
- `StoreListing`: Marketplace listings for sharing agents
|
||||
|
||||
## Environment Configuration
|
||||
|
||||
- **Backend**: `.env.default` (defaults) → `.env` (user overrides)
|
||||
|
||||
## Common Development Tasks
|
||||
|
||||
### Adding a new block
|
||||
|
||||
Follow the comprehensive [Block SDK Guide](@../../docs/content/platform/block-sdk-guide.md) which covers:
|
||||
|
||||
- Provider configuration with `ProviderBuilder`
|
||||
- Block schema definition
|
||||
- Authentication (API keys, OAuth, webhooks)
|
||||
- Testing and validation
|
||||
- File organization
|
||||
|
||||
Quick steps:
|
||||
|
||||
1. Create new file in `backend/blocks/`
|
||||
2. Configure provider using `ProviderBuilder` in `_config.py`
|
||||
3. Inherit from `Block` base class
|
||||
4. Define input/output schemas using `BlockSchema`
|
||||
5. Implement async `run` method
|
||||
6. Generate unique block ID using `uuid.uuid4()`
|
||||
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
|
||||
|
||||
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph-based editor or would they struggle to connect productively?
|
||||
ex: do the inputs and outputs tie well together?
|
||||
|
||||
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
|
||||
|
||||
#### Handling files in blocks with `store_media_file()`
|
||||
|
||||
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
|
||||
|
||||
| Format | Use When | Returns |
|
||||
|--------|----------|---------|
|
||||
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
|
||||
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
|
||||
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
|
||||
|
||||
**Examples:**
|
||||
|
||||
```python
|
||||
# INPUT: Need to process file locally with ffmpeg
|
||||
local_path = await store_media_file(
|
||||
file=input_data.video,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
# local_path = "video.mp4" - use with Path/ffmpeg/etc
|
||||
|
||||
# INPUT: Need to send to external API like Replicate
|
||||
image_b64 = await store_media_file(
|
||||
file=input_data.image,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api",
|
||||
)
|
||||
# image_b64 = "..." - send to API
|
||||
|
||||
# OUTPUT: Returning result from block
|
||||
result_url = await store_media_file(
|
||||
file=generated_image_url,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", result_url
|
||||
# In CoPilot: result_url = "workspace://abc123"
|
||||
# In graphs: result_url = "data:image/png;base64,..."
|
||||
```
|
||||
|
||||
**Key points:**
|
||||
|
||||
- `for_block_output` is the ONLY format that auto-adapts to execution context
|
||||
- Always use `for_block_output` for block outputs unless you have a specific reason not to
|
||||
- Never hardcode workspace checks - let `for_block_output` handle it
|
||||
|
||||
### Modifying the API
|
||||
|
||||
1. Update route in `backend/api/features/`
|
||||
2. Add/update Pydantic models in same directory
|
||||
3. Write tests alongside the route file
|
||||
4. Run `poetry run test` to verify
|
||||
|
||||
## Security Implementation
|
||||
|
||||
### Cache Protection Middleware
|
||||
|
||||
- Located in `backend/api/middleware/security.py`
|
||||
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
|
||||
- Uses an allow list approach - only explicitly permitted paths can be cached
|
||||
- Cacheable paths include: static assets (`static/*`, `_next/static/*`), health checks, public store pages, documentation
|
||||
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
|
||||
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
|
||||
- Applied to both main API server and external API applications
|
||||
@@ -62,12 +62,10 @@ ENV POETRY_HOME=/opt/poetry \
|
||||
DEBIAN_FRONTEND=noninteractive
|
||||
ENV PATH=/opt/poetry/bin:$PATH
|
||||
|
||||
# Install Python, FFmpeg, and ImageMagick (required for video processing blocks)
|
||||
# Install Python without upgrading system-managed packages
|
||||
RUN apt-get update && apt-get install -y \
|
||||
python3.13 \
|
||||
python3-pip \
|
||||
ffmpeg \
|
||||
imagemagick \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Copy only necessary files from builder
|
||||
|
||||
@@ -138,7 +138,7 @@ If the test doesn't need the `user_id` specifically, mocking is not necessary as
|
||||
|
||||
#### Using Global Auth Fixtures
|
||||
|
||||
Two global auth fixtures are provided by `backend/api/conftest.py`:
|
||||
Two global auth fixtures are provided by `backend/server/conftest.py`:
|
||||
|
||||
- `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id")
|
||||
- `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id")
|
||||
|
||||
@@ -15,9 +15,9 @@ from prisma.enums import APIKeyPermission
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from backend.api.external.middleware import require_permission
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.copilot.tools import find_agent_tool, run_agent_tool
|
||||
from backend.copilot.tools.models import ToolResponseBase
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools import find_agent_tool, run_agent_tool
|
||||
from backend.api.features.chat.tools.models import ToolResponseBase
|
||||
from backend.data.auth.base import APIAuthorizationInfo
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -17,7 +17,7 @@ router = fastapi.APIRouter(
|
||||
)
|
||||
|
||||
|
||||
# Taken from backend/api/features/store/db.py
|
||||
# Taken from backend/server/v2/store/db.py
|
||||
def sanitize_query(query: str | None) -> str | None:
|
||||
if query is None:
|
||||
return query
|
||||
|
||||
@@ -11,7 +11,7 @@ class ChatConfig(BaseSettings):
|
||||
|
||||
# OpenAI API Configuration
|
||||
model: str = Field(
|
||||
default="anthropic/claude-opus-4.6", description="Default model to use"
|
||||
default="anthropic/claude-opus-4.5", description="Default model to use"
|
||||
)
|
||||
title_model: str = Field(
|
||||
default="openai/gpt-4o-mini",
|
||||
@@ -44,48 +44,6 @@ class ChatConfig(BaseSettings):
|
||||
description="TTL in seconds for long-running operation tracking in Redis (safety net if pod dies)",
|
||||
)
|
||||
|
||||
# Stream registry configuration for SSE reconnection
|
||||
stream_ttl: int = Field(
|
||||
default=3600,
|
||||
description="TTL in seconds for stream data in Redis (1 hour)",
|
||||
)
|
||||
stream_max_length: int = Field(
|
||||
default=10000,
|
||||
description="Maximum number of messages to store per stream",
|
||||
)
|
||||
|
||||
# Redis Streams configuration for completion consumer
|
||||
stream_completion_name: str = Field(
|
||||
default="chat:completions",
|
||||
description="Redis Stream name for operation completions",
|
||||
)
|
||||
stream_consumer_group: str = Field(
|
||||
default="chat_consumers",
|
||||
description="Consumer group name for completion stream",
|
||||
)
|
||||
stream_claim_min_idle_ms: int = Field(
|
||||
default=60000,
|
||||
description="Minimum idle time in milliseconds before claiming pending messages from dead consumers",
|
||||
)
|
||||
|
||||
# Redis key prefixes for stream registry
|
||||
task_meta_prefix: str = Field(
|
||||
default="chat:task:meta:",
|
||||
description="Prefix for task metadata hash keys",
|
||||
)
|
||||
task_stream_prefix: str = Field(
|
||||
default="chat:stream:",
|
||||
description="Prefix for task message stream keys",
|
||||
)
|
||||
task_op_prefix: str = Field(
|
||||
default="chat:task:op:",
|
||||
description="Prefix for operation ID to task ID mapping keys",
|
||||
)
|
||||
internal_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for internal webhook callbacks (env: CHAT_INTERNAL_API_KEY)",
|
||||
)
|
||||
|
||||
# Langfuse Prompt Management Configuration
|
||||
# Note: Langfuse credentials are in Settings().secrets (settings.py)
|
||||
langfuse_prompt_name: str = Field(
|
||||
@@ -93,12 +51,6 @@ class ChatConfig(BaseSettings):
|
||||
description="Name of the prompt in Langfuse to fetch",
|
||||
)
|
||||
|
||||
# Extended thinking configuration for Claude models
|
||||
thinking_enabled: bool = Field(
|
||||
default=True,
|
||||
description="Enable adaptive thinking for Claude models via OpenRouter",
|
||||
)
|
||||
|
||||
@field_validator("api_key", mode="before")
|
||||
@classmethod
|
||||
def get_api_key(cls, v):
|
||||
@@ -130,14 +82,6 @@ class ChatConfig(BaseSettings):
|
||||
v = "https://openrouter.ai/api/v1"
|
||||
return v
|
||||
|
||||
@field_validator("internal_api_key", mode="before")
|
||||
@classmethod
|
||||
def get_internal_api_key(cls, v):
|
||||
"""Get internal API key from environment if not provided."""
|
||||
if v is None:
|
||||
v = os.getenv("CHAT_INTERNAL_API_KEY")
|
||||
return v
|
||||
|
||||
# Prompt paths for different contexts
|
||||
PROMPT_PATHS: dict[str, str] = {
|
||||
"default": "prompts/chat_system.md",
|
||||
@@ -45,7 +45,10 @@ async def create_chat_session(
|
||||
successfulAgentRuns=SafeJson({}),
|
||||
successfulAgentSchedules=SafeJson({}),
|
||||
)
|
||||
return await PrismaChatSession.prisma().create(data=data)
|
||||
return await PrismaChatSession.prisma().create(
|
||||
data=data,
|
||||
include={"Messages": True},
|
||||
)
|
||||
|
||||
|
||||
async def update_chat_session(
|
||||
@@ -18,10 +18,6 @@ class ResponseType(str, Enum):
|
||||
START = "start"
|
||||
FINISH = "finish"
|
||||
|
||||
# Step lifecycle (one LLM API call within a message)
|
||||
START_STEP = "start-step"
|
||||
FINISH_STEP = "finish-step"
|
||||
|
||||
# Text streaming
|
||||
TEXT_START = "text-start"
|
||||
TEXT_DELTA = "text-delta"
|
||||
@@ -56,20 +52,6 @@ class StreamStart(StreamBaseResponse):
|
||||
|
||||
type: ResponseType = ResponseType.START
|
||||
messageId: str = Field(..., description="Unique message ID")
|
||||
taskId: str | None = Field(
|
||||
default=None,
|
||||
description="Task ID for SSE reconnection. Clients can reconnect using GET /tasks/{taskId}/stream",
|
||||
)
|
||||
|
||||
def to_sse(self) -> str:
|
||||
"""Convert to SSE format, excluding non-protocol fields like taskId."""
|
||||
import json
|
||||
|
||||
data: dict[str, Any] = {
|
||||
"type": self.type.value,
|
||||
"messageId": self.messageId,
|
||||
}
|
||||
return f"data: {json.dumps(data)}\n\n"
|
||||
|
||||
|
||||
class StreamFinish(StreamBaseResponse):
|
||||
@@ -78,26 +60,6 @@ class StreamFinish(StreamBaseResponse):
|
||||
type: ResponseType = ResponseType.FINISH
|
||||
|
||||
|
||||
class StreamStartStep(StreamBaseResponse):
|
||||
"""Start of a step (one LLM API call within a message).
|
||||
|
||||
The AI SDK uses this to add a step-start boundary to message.parts,
|
||||
enabling visual separation between multiple LLM calls in a single message.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.START_STEP
|
||||
|
||||
|
||||
class StreamFinishStep(StreamBaseResponse):
|
||||
"""End of a step (one LLM API call within a message).
|
||||
|
||||
The AI SDK uses this to reset activeTextParts and activeReasoningParts,
|
||||
so the next LLM call in a tool-call continuation starts with clean state.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.FINISH_STEP
|
||||
|
||||
|
||||
# ========== Text Streaming ==========
|
||||
|
||||
|
||||
@@ -151,7 +113,7 @@ class StreamToolOutputAvailable(StreamBaseResponse):
|
||||
type: ResponseType = ResponseType.TOOL_OUTPUT_AVAILABLE
|
||||
toolCallId: str = Field(..., description="Tool call ID this responds to")
|
||||
output: str | dict[str, Any] = Field(..., description="Tool execution output")
|
||||
# Keep these for internal backend use
|
||||
# Additional fields for internal use (not part of AI SDK spec but useful)
|
||||
toolName: str | None = Field(
|
||||
default=None, description="Name of the tool that was executed"
|
||||
)
|
||||
@@ -159,17 +121,6 @@ class StreamToolOutputAvailable(StreamBaseResponse):
|
||||
default=True, description="Whether the tool execution succeeded"
|
||||
)
|
||||
|
||||
def to_sse(self) -> str:
|
||||
"""Convert to SSE format, excluding non-spec fields."""
|
||||
import json
|
||||
|
||||
data = {
|
||||
"type": self.type.value,
|
||||
"toolCallId": self.toolCallId,
|
||||
"output": self.output,
|
||||
}
|
||||
return f"data: {json.dumps(data)}\n\n"
|
||||
|
||||
|
||||
# ========== Other ==========
|
||||
|
||||
@@ -1,54 +1,20 @@
|
||||
"""Chat API routes for chat session management and streaming via SSE."""
|
||||
|
||||
import logging
|
||||
import uuid as uuid_module
|
||||
from collections.abc import AsyncGenerator
|
||||
from typing import Annotated
|
||||
|
||||
from autogpt_libs import auth
|
||||
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Response, Security
|
||||
from fastapi import APIRouter, Depends, Query, Security
|
||||
from fastapi.responses import StreamingResponse
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.copilot import service as chat_service
|
||||
from backend.copilot import stream_registry
|
||||
from backend.copilot.completion_handler import (
|
||||
process_operation_failure,
|
||||
process_operation_success,
|
||||
)
|
||||
from backend.copilot.config import ChatConfig
|
||||
from backend.copilot.executor.utils import enqueue_copilot_task
|
||||
from backend.copilot.model import (
|
||||
ChatSession,
|
||||
create_chat_session,
|
||||
get_chat_session,
|
||||
get_user_sessions,
|
||||
)
|
||||
from backend.copilot.response_model import StreamFinish, StreamHeartbeat
|
||||
from backend.copilot.tools.models import (
|
||||
AgentDetailsResponse,
|
||||
AgentOutputResponse,
|
||||
AgentPreviewResponse,
|
||||
AgentSavedResponse,
|
||||
AgentsFoundResponse,
|
||||
BlockListResponse,
|
||||
BlockOutputResponse,
|
||||
ClarificationNeededResponse,
|
||||
DocPageResponse,
|
||||
DocSearchResultsResponse,
|
||||
ErrorResponse,
|
||||
ExecutionStartedResponse,
|
||||
InputValidationErrorResponse,
|
||||
NeedLoginResponse,
|
||||
NoResultsResponse,
|
||||
OperationInProgressResponse,
|
||||
OperationPendingResponse,
|
||||
OperationStartedResponse,
|
||||
SetupRequirementsResponse,
|
||||
UnderstandingUpdatedResponse,
|
||||
)
|
||||
from backend.util.exceptions import NotFoundError
|
||||
|
||||
from . import service as chat_service
|
||||
from .config import ChatConfig
|
||||
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
|
||||
|
||||
config = ChatConfig()
|
||||
|
||||
|
||||
@@ -89,15 +55,6 @@ class CreateSessionResponse(BaseModel):
|
||||
user_id: str | None
|
||||
|
||||
|
||||
class ActiveStreamInfo(BaseModel):
|
||||
"""Information about an active stream for reconnection."""
|
||||
|
||||
task_id: str
|
||||
last_message_id: str # Redis Stream message ID for resumption
|
||||
operation_id: str # Operation ID for completion tracking
|
||||
tool_name: str # Name of the tool being executed
|
||||
|
||||
|
||||
class SessionDetailResponse(BaseModel):
|
||||
"""Response model providing complete details for a chat session, including messages."""
|
||||
|
||||
@@ -106,7 +63,6 @@ class SessionDetailResponse(BaseModel):
|
||||
updated_at: str
|
||||
user_id: str | None
|
||||
messages: list[dict]
|
||||
active_stream: ActiveStreamInfo | None = None # Present if stream is still active
|
||||
|
||||
|
||||
class SessionSummaryResponse(BaseModel):
|
||||
@@ -125,14 +81,6 @@ class ListSessionsResponse(BaseModel):
|
||||
total: int
|
||||
|
||||
|
||||
class OperationCompleteRequest(BaseModel):
|
||||
"""Request model for external completion webhook."""
|
||||
|
||||
success: bool
|
||||
result: dict | str | None = None
|
||||
error: str | None = None
|
||||
|
||||
|
||||
# ========== Routes ==========
|
||||
|
||||
|
||||
@@ -218,14 +166,13 @@ async def get_session(
|
||||
Retrieve the details of a specific chat session.
|
||||
|
||||
Looks up a chat session by ID for the given user (if authenticated) and returns all session data including messages.
|
||||
If there's an active stream for this session, returns the task_id for reconnection.
|
||||
|
||||
Args:
|
||||
session_id: The unique identifier for the desired chat session.
|
||||
user_id: The optional authenticated user ID, or None for anonymous access.
|
||||
|
||||
Returns:
|
||||
SessionDetailResponse: Details for the requested session, including active_stream info if applicable.
|
||||
SessionDetailResponse: Details for the requested session, or None if not found.
|
||||
|
||||
"""
|
||||
session = await get_chat_session(session_id, user_id)
|
||||
@@ -233,28 +180,11 @@ async def get_session(
|
||||
raise NotFoundError(f"Session {session_id} not found.")
|
||||
|
||||
messages = [message.model_dump() for message in session.messages]
|
||||
|
||||
# Check if there's an active stream for this session
|
||||
active_stream_info = None
|
||||
active_task, last_message_id = await stream_registry.get_active_task_for_session(
|
||||
session_id, user_id
|
||||
logger.info(
|
||||
f"Returning session {session_id}: "
|
||||
f"message_count={len(messages)}, "
|
||||
f"roles={[m.get('role') for m in messages]}"
|
||||
)
|
||||
if active_task:
|
||||
# Filter out the in-progress assistant message from the session response.
|
||||
# The client will receive the complete assistant response through the SSE
|
||||
# stream replay instead, preventing duplicate content.
|
||||
if messages and messages[-1].get("role") == "assistant":
|
||||
messages = messages[:-1]
|
||||
|
||||
# Use "0-0" as last_message_id to replay the stream from the beginning.
|
||||
# Since we filtered out the cached assistant message, the client needs
|
||||
# the full stream to reconstruct the response.
|
||||
active_stream_info = ActiveStreamInfo(
|
||||
task_id=active_task.task_id,
|
||||
last_message_id="0-0",
|
||||
operation_id=active_task.operation_id,
|
||||
tool_name=active_task.tool_name,
|
||||
)
|
||||
|
||||
return SessionDetailResponse(
|
||||
id=session.session_id,
|
||||
@@ -262,7 +192,6 @@ async def get_session(
|
||||
updated_at=session.updated_at.isoformat(),
|
||||
user_id=session.user_id or None,
|
||||
messages=messages,
|
||||
active_stream=active_stream_info,
|
||||
)
|
||||
|
||||
|
||||
@@ -282,202 +211,49 @@ async def stream_chat_post(
|
||||
- Tool call UI elements (if invoked)
|
||||
- Tool execution results
|
||||
|
||||
The AI generation runs in a background task that continues even if the client disconnects.
|
||||
All chunks are written to Redis for reconnection support. If the client disconnects,
|
||||
they can reconnect using GET /tasks/{task_id}/stream to resume from where they left off.
|
||||
|
||||
Args:
|
||||
session_id: The chat session identifier to associate with the streamed messages.
|
||||
request: Request body containing message, is_user_message, and optional context.
|
||||
user_id: Optional authenticated user ID.
|
||||
Returns:
|
||||
StreamingResponse: SSE-formatted response chunks. First chunk is a "start" event
|
||||
containing the task_id for reconnection.
|
||||
StreamingResponse: SSE-formatted response chunks.
|
||||
|
||||
"""
|
||||
import asyncio
|
||||
import time
|
||||
session = await _validate_and_get_session(session_id, user_id)
|
||||
|
||||
stream_start_time = time.perf_counter()
|
||||
log_meta = {"component": "ChatStream", "session_id": session_id}
|
||||
if user_id:
|
||||
log_meta["user_id"] = user_id
|
||||
|
||||
logger.info(
|
||||
f"[TIMING] stream_chat_post STARTED, session={session_id}, "
|
||||
f"user={user_id}, message_len={len(request.message)}",
|
||||
extra={"json_fields": log_meta},
|
||||
)
|
||||
|
||||
_session = await _validate_and_get_session(session_id, user_id) # noqa: F841
|
||||
logger.info(
|
||||
f"[TIMING] session validated in {(time.perf_counter() - stream_start_time)*1000:.1f}ms",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"duration_ms": (time.perf_counter() - stream_start_time) * 1000,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
# Create a task in the stream registry for reconnection support
|
||||
task_id = str(uuid_module.uuid4())
|
||||
operation_id = str(uuid_module.uuid4())
|
||||
log_meta["task_id"] = task_id
|
||||
|
||||
task_create_start = time.perf_counter()
|
||||
await stream_registry.create_task(
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
user_id=user_id,
|
||||
tool_call_id="chat_stream", # Not a tool call, but needed for the model
|
||||
tool_name="chat",
|
||||
operation_id=operation_id,
|
||||
)
|
||||
logger.info(
|
||||
f"[TIMING] create_task completed in {(time.perf_counter() - task_create_start)*1000:.1f}ms",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"duration_ms": (time.perf_counter() - task_create_start) * 1000,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
# Enqueue the task to RabbitMQ for processing by the CoPilot executor
|
||||
await enqueue_copilot_task(
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
user_id=user_id,
|
||||
operation_id=operation_id,
|
||||
message=request.message,
|
||||
is_user_message=request.is_user_message,
|
||||
context=request.context,
|
||||
)
|
||||
|
||||
setup_time = (time.perf_counter() - stream_start_time) * 1000
|
||||
logger.info(
|
||||
f"[TIMING] Task enqueued to RabbitMQ, setup={setup_time:.1f}ms",
|
||||
extra={"json_fields": {**log_meta, "setup_time_ms": setup_time}},
|
||||
)
|
||||
|
||||
# SSE endpoint that subscribes to the task's stream
|
||||
async def event_generator() -> AsyncGenerator[str, None]:
|
||||
import time as time_module
|
||||
|
||||
event_gen_start = time_module.perf_counter()
|
||||
chunk_count = 0
|
||||
first_chunk_type: str | None = None
|
||||
async for chunk in chat_service.stream_chat_completion(
|
||||
session_id,
|
||||
request.message,
|
||||
is_user_message=request.is_user_message,
|
||||
user_id=user_id,
|
||||
session=session, # Pass pre-fetched session to avoid double-fetch
|
||||
context=request.context,
|
||||
):
|
||||
if chunk_count < 3:
|
||||
logger.info(
|
||||
"Chat stream chunk",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_type": str(chunk.type),
|
||||
},
|
||||
)
|
||||
if not first_chunk_type:
|
||||
first_chunk_type = str(chunk.type)
|
||||
chunk_count += 1
|
||||
yield chunk.to_sse()
|
||||
logger.info(
|
||||
f"[TIMING] event_generator STARTED, task={task_id}, session={session_id}, "
|
||||
f"user={user_id}",
|
||||
extra={"json_fields": log_meta},
|
||||
"Chat stream completed",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_count": chunk_count,
|
||||
"first_chunk_type": first_chunk_type,
|
||||
},
|
||||
)
|
||||
subscriber_queue = None
|
||||
first_chunk_yielded = False
|
||||
chunks_yielded = 0
|
||||
try:
|
||||
# Subscribe to the task stream (this replays existing messages + live updates)
|
||||
subscriber_queue = await stream_registry.subscribe_to_task(
|
||||
task_id=task_id,
|
||||
user_id=user_id,
|
||||
last_message_id="0-0", # Get all messages from the beginning
|
||||
)
|
||||
|
||||
if subscriber_queue is None:
|
||||
yield StreamFinish().to_sse()
|
||||
yield "data: [DONE]\n\n"
|
||||
return
|
||||
|
||||
# Read from the subscriber queue and yield to SSE
|
||||
logger.info(
|
||||
"[TIMING] Starting to read from subscriber_queue",
|
||||
extra={"json_fields": log_meta},
|
||||
)
|
||||
while True:
|
||||
try:
|
||||
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
|
||||
chunks_yielded += 1
|
||||
|
||||
if not first_chunk_yielded:
|
||||
first_chunk_yielded = True
|
||||
elapsed = time_module.perf_counter() - event_gen_start
|
||||
logger.info(
|
||||
f"[TIMING] FIRST CHUNK from queue at {elapsed:.2f}s, "
|
||||
f"type={type(chunk).__name__}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"chunk_type": type(chunk).__name__,
|
||||
"elapsed_ms": elapsed * 1000,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
yield chunk.to_sse()
|
||||
|
||||
# Check for finish signal
|
||||
if isinstance(chunk, StreamFinish):
|
||||
total_time = time_module.perf_counter() - event_gen_start
|
||||
logger.info(
|
||||
f"[TIMING] StreamFinish received in {total_time:.2f}s; "
|
||||
f"n_chunks={chunks_yielded}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"chunks_yielded": chunks_yielded,
|
||||
"total_time_ms": total_time * 1000,
|
||||
}
|
||||
},
|
||||
)
|
||||
break
|
||||
except asyncio.TimeoutError:
|
||||
yield StreamHeartbeat().to_sse()
|
||||
|
||||
except GeneratorExit:
|
||||
logger.info(
|
||||
f"[TIMING] GeneratorExit (client disconnected), chunks={chunks_yielded}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"chunks_yielded": chunks_yielded,
|
||||
"reason": "client_disconnect",
|
||||
}
|
||||
},
|
||||
)
|
||||
pass # Client disconnected - background task continues
|
||||
except Exception as e:
|
||||
elapsed = (time_module.perf_counter() - event_gen_start) * 1000
|
||||
logger.error(
|
||||
f"[TIMING] event_generator ERROR after {elapsed:.1f}ms: {e}",
|
||||
extra={
|
||||
"json_fields": {**log_meta, "elapsed_ms": elapsed, "error": str(e)}
|
||||
},
|
||||
)
|
||||
finally:
|
||||
# Unsubscribe when client disconnects or stream ends to prevent resource leak
|
||||
if subscriber_queue is not None:
|
||||
try:
|
||||
await stream_registry.unsubscribe_from_task(
|
||||
task_id, subscriber_queue
|
||||
)
|
||||
except Exception as unsub_err:
|
||||
logger.error(
|
||||
f"Error unsubscribing from task {task_id}: {unsub_err}",
|
||||
exc_info=True,
|
||||
)
|
||||
# AI SDK protocol termination - always yield even if unsubscribe fails
|
||||
total_time = time_module.perf_counter() - event_gen_start
|
||||
logger.info(
|
||||
f"[TIMING] event_generator FINISHED in {total_time:.2f}s; "
|
||||
f"task={task_id}, session={session_id}, n_chunks={chunks_yielded}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"total_time_ms": total_time * 1000,
|
||||
"chunks_yielded": chunks_yielded,
|
||||
}
|
||||
},
|
||||
)
|
||||
yield "data: [DONE]\n\n"
|
||||
# AI SDK protocol termination
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
return StreamingResponse(
|
||||
event_generator(),
|
||||
@@ -494,90 +270,63 @@ async def stream_chat_post(
|
||||
@router.get(
|
||||
"/sessions/{session_id}/stream",
|
||||
)
|
||||
async def resume_session_stream(
|
||||
async def stream_chat_get(
|
||||
session_id: str,
|
||||
message: Annotated[str, Query(min_length=1, max_length=10000)],
|
||||
user_id: str | None = Depends(auth.get_user_id),
|
||||
is_user_message: bool = Query(default=True),
|
||||
):
|
||||
"""
|
||||
Resume an active stream for a session.
|
||||
Stream chat responses for a session (GET - legacy endpoint).
|
||||
|
||||
Called by the AI SDK's ``useChat(resume: true)`` on page load.
|
||||
Checks for an active (in-progress) task on the session and either replays
|
||||
the full SSE stream or returns 204 No Content if nothing is running.
|
||||
Streams the AI/completion responses in real time over Server-Sent Events (SSE), including:
|
||||
- Text fragments as they are generated
|
||||
- Tool call UI elements (if invoked)
|
||||
- Tool execution results
|
||||
|
||||
Args:
|
||||
session_id: The chat session identifier.
|
||||
session_id: The chat session identifier to associate with the streamed messages.
|
||||
message: The user's new message to process.
|
||||
user_id: Optional authenticated user ID.
|
||||
|
||||
is_user_message: Whether the message is a user message.
|
||||
Returns:
|
||||
StreamingResponse (SSE) when an active stream exists,
|
||||
or 204 No Content when there is nothing to resume.
|
||||
StreamingResponse: SSE-formatted response chunks.
|
||||
|
||||
"""
|
||||
import asyncio
|
||||
|
||||
active_task, _last_id = await stream_registry.get_active_task_for_session(
|
||||
session_id, user_id
|
||||
)
|
||||
|
||||
if not active_task:
|
||||
return Response(status_code=204)
|
||||
|
||||
subscriber_queue = await stream_registry.subscribe_to_task(
|
||||
task_id=active_task.task_id,
|
||||
user_id=user_id,
|
||||
last_message_id="0-0", # Full replay so useChat rebuilds the message
|
||||
)
|
||||
|
||||
if subscriber_queue is None:
|
||||
return Response(status_code=204)
|
||||
session = await _validate_and_get_session(session_id, user_id)
|
||||
|
||||
async def event_generator() -> AsyncGenerator[str, None]:
|
||||
chunk_count = 0
|
||||
first_chunk_type: str | None = None
|
||||
try:
|
||||
while True:
|
||||
try:
|
||||
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
|
||||
if chunk_count < 3:
|
||||
logger.info(
|
||||
"Resume stream chunk",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_type": str(chunk.type),
|
||||
},
|
||||
)
|
||||
if not first_chunk_type:
|
||||
first_chunk_type = str(chunk.type)
|
||||
chunk_count += 1
|
||||
yield chunk.to_sse()
|
||||
|
||||
if isinstance(chunk, StreamFinish):
|
||||
break
|
||||
except asyncio.TimeoutError:
|
||||
yield StreamHeartbeat().to_sse()
|
||||
except GeneratorExit:
|
||||
pass
|
||||
except Exception as e:
|
||||
logger.error(f"Error in resume stream for session {session_id}: {e}")
|
||||
finally:
|
||||
try:
|
||||
await stream_registry.unsubscribe_from_task(
|
||||
active_task.task_id, subscriber_queue
|
||||
async for chunk in chat_service.stream_chat_completion(
|
||||
session_id,
|
||||
message,
|
||||
is_user_message=is_user_message,
|
||||
user_id=user_id,
|
||||
session=session, # Pass pre-fetched session to avoid double-fetch
|
||||
):
|
||||
if chunk_count < 3:
|
||||
logger.info(
|
||||
"Chat stream chunk",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_type": str(chunk.type),
|
||||
},
|
||||
)
|
||||
except Exception as unsub_err:
|
||||
logger.error(
|
||||
f"Error unsubscribing from task {active_task.task_id}: {unsub_err}",
|
||||
exc_info=True,
|
||||
)
|
||||
logger.info(
|
||||
"Resume stream completed",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"n_chunks": chunk_count,
|
||||
"first_chunk_type": first_chunk_type,
|
||||
},
|
||||
)
|
||||
yield "data: [DONE]\n\n"
|
||||
if not first_chunk_type:
|
||||
first_chunk_type = str(chunk.type)
|
||||
chunk_count += 1
|
||||
yield chunk.to_sse()
|
||||
logger.info(
|
||||
"Chat stream completed",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_count": chunk_count,
|
||||
"first_chunk_type": first_chunk_type,
|
||||
},
|
||||
)
|
||||
# AI SDK protocol termination
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
return StreamingResponse(
|
||||
event_generator(),
|
||||
@@ -585,8 +334,8 @@ async def resume_session_stream(
|
||||
headers={
|
||||
"Cache-Control": "no-cache",
|
||||
"Connection": "keep-alive",
|
||||
"X-Accel-Buffering": "no",
|
||||
"x-vercel-ai-ui-message-stream": "v1",
|
||||
"X-Accel-Buffering": "no", # Disable nginx buffering
|
||||
"x-vercel-ai-ui-message-stream": "v1", # AI SDK protocol header
|
||||
},
|
||||
)
|
||||
|
||||
@@ -617,251 +366,6 @@ async def session_assign_user(
|
||||
return {"status": "ok"}
|
||||
|
||||
|
||||
# ========== Task Streaming (SSE Reconnection) ==========
|
||||
|
||||
|
||||
@router.get(
|
||||
"/tasks/{task_id}/stream",
|
||||
)
|
||||
async def stream_task(
|
||||
task_id: str,
|
||||
user_id: str | None = Depends(auth.get_user_id),
|
||||
last_message_id: str = Query(
|
||||
default="0-0",
|
||||
description="Last Redis Stream message ID received (e.g., '1706540123456-0'). Use '0-0' for full replay.",
|
||||
),
|
||||
):
|
||||
"""
|
||||
Reconnect to a long-running task's SSE stream.
|
||||
|
||||
When a long-running operation (like agent generation) starts, the client
|
||||
receives a task_id. If the connection drops, the client can reconnect
|
||||
using this endpoint to resume receiving updates.
|
||||
|
||||
Args:
|
||||
task_id: The task ID from the operation_started response.
|
||||
user_id: Authenticated user ID for ownership validation.
|
||||
last_message_id: Last Redis Stream message ID received ("0-0" for full replay).
|
||||
|
||||
Returns:
|
||||
StreamingResponse: SSE-formatted response chunks starting after last_message_id.
|
||||
|
||||
Raises:
|
||||
HTTPException: 404 if task not found, 410 if task expired, 403 if access denied.
|
||||
"""
|
||||
# Check task existence and expiry before subscribing
|
||||
task, error_code = await stream_registry.get_task_with_expiry_info(task_id)
|
||||
|
||||
if error_code == "TASK_EXPIRED":
|
||||
raise HTTPException(
|
||||
status_code=410,
|
||||
detail={
|
||||
"code": "TASK_EXPIRED",
|
||||
"message": "This operation has expired. Please try again.",
|
||||
},
|
||||
)
|
||||
|
||||
if error_code == "TASK_NOT_FOUND":
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail={
|
||||
"code": "TASK_NOT_FOUND",
|
||||
"message": f"Task {task_id} not found.",
|
||||
},
|
||||
)
|
||||
|
||||
# Validate ownership if task has an owner
|
||||
if task and task.user_id and user_id != task.user_id:
|
||||
raise HTTPException(
|
||||
status_code=403,
|
||||
detail={
|
||||
"code": "ACCESS_DENIED",
|
||||
"message": "You do not have access to this task.",
|
||||
},
|
||||
)
|
||||
|
||||
# Get subscriber queue from stream registry
|
||||
subscriber_queue = await stream_registry.subscribe_to_task(
|
||||
task_id=task_id,
|
||||
user_id=user_id,
|
||||
last_message_id=last_message_id,
|
||||
)
|
||||
|
||||
if subscriber_queue is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail={
|
||||
"code": "TASK_NOT_FOUND",
|
||||
"message": f"Task {task_id} not found or access denied.",
|
||||
},
|
||||
)
|
||||
|
||||
async def event_generator() -> AsyncGenerator[str, None]:
|
||||
import asyncio
|
||||
|
||||
heartbeat_interval = 15.0 # Send heartbeat every 15 seconds
|
||||
try:
|
||||
while True:
|
||||
try:
|
||||
# Wait for next chunk with timeout for heartbeats
|
||||
chunk = await asyncio.wait_for(
|
||||
subscriber_queue.get(), timeout=heartbeat_interval
|
||||
)
|
||||
yield chunk.to_sse()
|
||||
|
||||
# Check for finish signal
|
||||
if isinstance(chunk, StreamFinish):
|
||||
break
|
||||
except asyncio.TimeoutError:
|
||||
# Send heartbeat to keep connection alive
|
||||
yield StreamHeartbeat().to_sse()
|
||||
except Exception as e:
|
||||
logger.error(f"Error in task stream {task_id}: {e}", exc_info=True)
|
||||
finally:
|
||||
# Unsubscribe when client disconnects or stream ends
|
||||
try:
|
||||
await stream_registry.unsubscribe_from_task(task_id, subscriber_queue)
|
||||
except Exception as unsub_err:
|
||||
logger.error(
|
||||
f"Error unsubscribing from task {task_id}: {unsub_err}",
|
||||
exc_info=True,
|
||||
)
|
||||
# AI SDK protocol termination - always yield even if unsubscribe fails
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
return StreamingResponse(
|
||||
event_generator(),
|
||||
media_type="text/event-stream",
|
||||
headers={
|
||||
"Cache-Control": "no-cache",
|
||||
"Connection": "keep-alive",
|
||||
"X-Accel-Buffering": "no",
|
||||
"x-vercel-ai-ui-message-stream": "v1",
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/tasks/{task_id}",
|
||||
)
|
||||
async def get_task_status(
|
||||
task_id: str,
|
||||
user_id: str | None = Depends(auth.get_user_id),
|
||||
) -> dict:
|
||||
"""
|
||||
Get the status of a long-running task.
|
||||
|
||||
Args:
|
||||
task_id: The task ID to check.
|
||||
user_id: Authenticated user ID for ownership validation.
|
||||
|
||||
Returns:
|
||||
dict: Task status including task_id, status, tool_name, and operation_id.
|
||||
|
||||
Raises:
|
||||
NotFoundError: If task_id is not found or user doesn't have access.
|
||||
"""
|
||||
task = await stream_registry.get_task(task_id)
|
||||
|
||||
if task is None:
|
||||
raise NotFoundError(f"Task {task_id} not found.")
|
||||
|
||||
# Validate ownership - if task has an owner, requester must match
|
||||
if task.user_id and user_id != task.user_id:
|
||||
raise NotFoundError(f"Task {task_id} not found.")
|
||||
|
||||
return {
|
||||
"task_id": task.task_id,
|
||||
"session_id": task.session_id,
|
||||
"status": task.status,
|
||||
"tool_name": task.tool_name,
|
||||
"operation_id": task.operation_id,
|
||||
"created_at": task.created_at.isoformat(),
|
||||
}
|
||||
|
||||
|
||||
# ========== External Completion Webhook ==========
|
||||
|
||||
|
||||
@router.post(
|
||||
"/operations/{operation_id}/complete",
|
||||
status_code=200,
|
||||
)
|
||||
async def complete_operation(
|
||||
operation_id: str,
|
||||
request: OperationCompleteRequest,
|
||||
x_api_key: str | None = Header(default=None),
|
||||
) -> dict:
|
||||
"""
|
||||
External completion webhook for long-running operations.
|
||||
|
||||
Called by Agent Generator (or other services) when an operation completes.
|
||||
This triggers the stream registry to publish completion and continue LLM generation.
|
||||
|
||||
Args:
|
||||
operation_id: The operation ID to complete.
|
||||
request: Completion payload with success status and result/error.
|
||||
x_api_key: Internal API key for authentication.
|
||||
|
||||
Returns:
|
||||
dict: Status of the completion.
|
||||
|
||||
Raises:
|
||||
HTTPException: If API key is invalid or operation not found.
|
||||
"""
|
||||
# Validate internal API key - reject if not configured or invalid
|
||||
if not config.internal_api_key:
|
||||
logger.error(
|
||||
"Operation complete webhook rejected: CHAT_INTERNAL_API_KEY not configured"
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=503,
|
||||
detail="Webhook not available: internal API key not configured",
|
||||
)
|
||||
if x_api_key != config.internal_api_key:
|
||||
raise HTTPException(status_code=401, detail="Invalid API key")
|
||||
|
||||
# Find task by operation_id
|
||||
task = await stream_registry.find_task_by_operation_id(operation_id)
|
||||
if task is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail=f"Operation {operation_id} not found",
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Received completion webhook for operation {operation_id} "
|
||||
f"(task_id={task.task_id}, success={request.success})"
|
||||
)
|
||||
|
||||
if request.success:
|
||||
await process_operation_success(task, request.result)
|
||||
else:
|
||||
await process_operation_failure(task, request.error)
|
||||
|
||||
return {"status": "ok", "task_id": task.task_id}
|
||||
|
||||
|
||||
# ========== Configuration ==========
|
||||
|
||||
|
||||
@router.get("/config/ttl", status_code=200)
|
||||
async def get_ttl_config() -> dict:
|
||||
"""
|
||||
Get the stream TTL configuration.
|
||||
|
||||
Returns the Time-To-Live settings for chat streams, which determines
|
||||
how long clients can reconnect to an active stream.
|
||||
|
||||
Returns:
|
||||
dict: TTL configuration with seconds and milliseconds values.
|
||||
"""
|
||||
return {
|
||||
"stream_ttl_seconds": config.stream_ttl,
|
||||
"stream_ttl_ms": config.stream_ttl * 1000,
|
||||
}
|
||||
|
||||
|
||||
# ========== Health Check ==========
|
||||
|
||||
|
||||
@@ -898,42 +402,3 @@ async def health_check() -> dict:
|
||||
"service": "chat",
|
||||
"version": "0.1.0",
|
||||
}
|
||||
|
||||
|
||||
# ========== Schema Export (for OpenAPI / Orval codegen) ==========
|
||||
|
||||
ToolResponseUnion = (
|
||||
AgentsFoundResponse
|
||||
| NoResultsResponse
|
||||
| AgentDetailsResponse
|
||||
| SetupRequirementsResponse
|
||||
| ExecutionStartedResponse
|
||||
| NeedLoginResponse
|
||||
| ErrorResponse
|
||||
| InputValidationErrorResponse
|
||||
| AgentOutputResponse
|
||||
| UnderstandingUpdatedResponse
|
||||
| AgentPreviewResponse
|
||||
| AgentSavedResponse
|
||||
| ClarificationNeededResponse
|
||||
| BlockListResponse
|
||||
| BlockOutputResponse
|
||||
| DocSearchResultsResponse
|
||||
| DocPageResponse
|
||||
| OperationStartedResponse
|
||||
| OperationPendingResponse
|
||||
| OperationInProgressResponse
|
||||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/schema/tool-responses",
|
||||
response_model=ToolResponseUnion,
|
||||
include_in_schema=True,
|
||||
summary="[Dummy] Tool response type export for codegen",
|
||||
description="This endpoint is not meant to be called. It exists solely to "
|
||||
"expose tool response models in the OpenAPI schema for frontend codegen.",
|
||||
)
|
||||
async def _tool_response_schema() -> ToolResponseUnion: # type: ignore[return]
|
||||
"""Never called at runtime. Exists only so Orval generates TS types."""
|
||||
raise HTTPException(status_code=501, detail="Schema-only endpoint")
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -3,14 +3,13 @@ from typing import TYPE_CHECKING, Any
|
||||
|
||||
from openai.types.chat import ChatCompletionToolParam
|
||||
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.copilot.tracking import track_tool_called
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tracking import track_tool_called
|
||||
|
||||
from .add_understanding import AddUnderstandingTool
|
||||
from .agent_output import AgentOutputTool
|
||||
from .base import BaseTool
|
||||
from .create_agent import CreateAgentTool
|
||||
from .customize_agent import CustomizeAgentTool
|
||||
from .edit_agent import EditAgentTool
|
||||
from .find_agent import FindAgentTool
|
||||
from .find_block import FindBlockTool
|
||||
@@ -19,15 +18,9 @@ from .get_doc_page import GetDocPageTool
|
||||
from .run_agent import RunAgentTool
|
||||
from .run_block import RunBlockTool
|
||||
from .search_docs import SearchDocsTool
|
||||
from .workspace_files import (
|
||||
DeleteWorkspaceFileTool,
|
||||
ListWorkspaceFilesTool,
|
||||
ReadWorkspaceFileTool,
|
||||
WriteWorkspaceFileTool,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.copilot.response_model import StreamToolOutputAvailable
|
||||
from backend.api.features.chat.response_model import StreamToolOutputAvailable
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -35,7 +28,6 @@ logger = logging.getLogger(__name__)
|
||||
TOOL_REGISTRY: dict[str, BaseTool] = {
|
||||
"add_understanding": AddUnderstandingTool(),
|
||||
"create_agent": CreateAgentTool(),
|
||||
"customize_agent": CustomizeAgentTool(),
|
||||
"edit_agent": EditAgentTool(),
|
||||
"find_agent": FindAgentTool(),
|
||||
"find_block": FindBlockTool(),
|
||||
@@ -45,11 +37,6 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
|
||||
"view_agent_output": AgentOutputTool(),
|
||||
"search_docs": SearchDocsTool(),
|
||||
"get_doc_page": GetDocPageTool(),
|
||||
# Workspace tools for CoPilot file operations
|
||||
"list_workspace_files": ListWorkspaceFilesTool(),
|
||||
"read_workspace_file": ReadWorkspaceFileTool(),
|
||||
"write_workspace_file": WriteWorkspaceFileTool(),
|
||||
"delete_workspace_file": DeleteWorkspaceFileTool(),
|
||||
}
|
||||
|
||||
# Export individual tool instances for backwards compatibility
|
||||
@@ -6,11 +6,11 @@ import pytest
|
||||
from prisma.types import ProfileCreateInput
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.store import db as store_db
|
||||
from backend.blocks.firecrawl.scrape import FirecrawlScrapeBlock
|
||||
from backend.blocks.io import AgentInputBlock, AgentOutputBlock
|
||||
from backend.blocks.llm import AITextGeneratorBlock
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.data.db import prisma
|
||||
from backend.data.graph import Graph, Link, Node, create_graph
|
||||
from backend.data.model import APIKeyCredentials
|
||||
@@ -3,7 +3,7 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.data.understanding import (
|
||||
BusinessUnderstandingInput,
|
||||
upsert_business_understanding,
|
||||
@@ -0,0 +1,28 @@
|
||||
"""Agent generator package - Creates agents from natural language."""
|
||||
|
||||
from .core import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
decompose_goal,
|
||||
generate_agent,
|
||||
generate_agent_patch,
|
||||
get_agent_as_json,
|
||||
json_to_graph,
|
||||
save_agent_to_library,
|
||||
)
|
||||
from .service import health_check as check_external_service_health
|
||||
from .service import is_external_service_configured
|
||||
|
||||
__all__ = [
|
||||
# Core functions
|
||||
"decompose_goal",
|
||||
"generate_agent",
|
||||
"generate_agent_patch",
|
||||
"save_agent_to_library",
|
||||
"get_agent_as_json",
|
||||
"json_to_graph",
|
||||
# Exceptions
|
||||
"AgentGeneratorNotConfiguredError",
|
||||
# Service
|
||||
"is_external_service_configured",
|
||||
"check_external_service_health",
|
||||
]
|
||||
@@ -0,0 +1,277 @@
|
||||
"""Core agent generation functions."""
|
||||
|
||||
import logging
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
from backend.api.features.library import db as library_db
|
||||
from backend.data.graph import Graph, Link, Node, create_graph
|
||||
|
||||
from .service import (
|
||||
decompose_goal_external,
|
||||
generate_agent_external,
|
||||
generate_agent_patch_external,
|
||||
is_external_service_configured,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AgentGeneratorNotConfiguredError(Exception):
|
||||
"""Raised when the external Agent Generator service is not configured."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
def _check_service_configured() -> None:
|
||||
"""Check if the external Agent Generator service is configured.
|
||||
|
||||
Raises:
|
||||
AgentGeneratorNotConfiguredError: If the service is not configured.
|
||||
"""
|
||||
if not is_external_service_configured():
|
||||
raise AgentGeneratorNotConfiguredError(
|
||||
"Agent Generator service is not configured. "
|
||||
"Set AGENTGENERATOR_HOST environment variable to enable agent generation."
|
||||
)
|
||||
|
||||
|
||||
async def decompose_goal(description: str, context: str = "") -> dict[str, Any] | None:
|
||||
"""Break down a goal into steps or return clarifying questions.
|
||||
|
||||
Args:
|
||||
description: Natural language goal description
|
||||
context: Additional context (e.g., answers to previous questions)
|
||||
|
||||
Returns:
|
||||
Dict with either:
|
||||
- {"type": "clarifying_questions", "questions": [...]}
|
||||
- {"type": "instructions", "steps": [...]}
|
||||
Or None on error
|
||||
|
||||
Raises:
|
||||
AgentGeneratorNotConfiguredError: If the external service is not configured.
|
||||
"""
|
||||
_check_service_configured()
|
||||
logger.info("Calling external Agent Generator service for decompose_goal")
|
||||
return await decompose_goal_external(description, context)
|
||||
|
||||
|
||||
async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
|
||||
"""Generate agent JSON from instructions.
|
||||
|
||||
Args:
|
||||
instructions: Structured instructions from decompose_goal
|
||||
|
||||
Returns:
|
||||
Agent JSON dict or None on error
|
||||
|
||||
Raises:
|
||||
AgentGeneratorNotConfiguredError: If the external service is not configured.
|
||||
"""
|
||||
_check_service_configured()
|
||||
logger.info("Calling external Agent Generator service for generate_agent")
|
||||
result = await generate_agent_external(instructions)
|
||||
if result:
|
||||
# Ensure required fields
|
||||
if "id" not in result:
|
||||
result["id"] = str(uuid.uuid4())
|
||||
if "version" not in result:
|
||||
result["version"] = 1
|
||||
if "is_active" not in result:
|
||||
result["is_active"] = True
|
||||
return result
|
||||
|
||||
|
||||
def json_to_graph(agent_json: dict[str, Any]) -> Graph:
|
||||
"""Convert agent JSON dict to Graph model.
|
||||
|
||||
Args:
|
||||
agent_json: Agent JSON with nodes and links
|
||||
|
||||
Returns:
|
||||
Graph ready for saving
|
||||
"""
|
||||
nodes = []
|
||||
for n in agent_json.get("nodes", []):
|
||||
node = Node(
|
||||
id=n.get("id", str(uuid.uuid4())),
|
||||
block_id=n["block_id"],
|
||||
input_default=n.get("input_default", {}),
|
||||
metadata=n.get("metadata", {}),
|
||||
)
|
||||
nodes.append(node)
|
||||
|
||||
links = []
|
||||
for link_data in agent_json.get("links", []):
|
||||
link = Link(
|
||||
id=link_data.get("id", str(uuid.uuid4())),
|
||||
source_id=link_data["source_id"],
|
||||
sink_id=link_data["sink_id"],
|
||||
source_name=link_data["source_name"],
|
||||
sink_name=link_data["sink_name"],
|
||||
is_static=link_data.get("is_static", False),
|
||||
)
|
||||
links.append(link)
|
||||
|
||||
return Graph(
|
||||
id=agent_json.get("id", str(uuid.uuid4())),
|
||||
version=agent_json.get("version", 1),
|
||||
is_active=agent_json.get("is_active", True),
|
||||
name=agent_json.get("name", "Generated Agent"),
|
||||
description=agent_json.get("description", ""),
|
||||
nodes=nodes,
|
||||
links=links,
|
||||
)
|
||||
|
||||
|
||||
def _reassign_node_ids(graph: Graph) -> None:
|
||||
"""Reassign all node and link IDs to new UUIDs.
|
||||
|
||||
This is needed when creating a new version to avoid unique constraint violations.
|
||||
"""
|
||||
# Create mapping from old node IDs to new UUIDs
|
||||
id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes}
|
||||
|
||||
# Reassign node IDs
|
||||
for node in graph.nodes:
|
||||
node.id = id_map[node.id]
|
||||
|
||||
# Update link references to use new node IDs
|
||||
for link in graph.links:
|
||||
link.id = str(uuid.uuid4()) # Also give links new IDs
|
||||
if link.source_id in id_map:
|
||||
link.source_id = id_map[link.source_id]
|
||||
if link.sink_id in id_map:
|
||||
link.sink_id = id_map[link.sink_id]
|
||||
|
||||
|
||||
async def save_agent_to_library(
|
||||
agent_json: dict[str, Any], user_id: str, is_update: bool = False
|
||||
) -> tuple[Graph, Any]:
|
||||
"""Save agent to database and user's library.
|
||||
|
||||
Args:
|
||||
agent_json: Agent JSON dict
|
||||
user_id: User ID
|
||||
is_update: Whether this is an update to an existing agent
|
||||
|
||||
Returns:
|
||||
Tuple of (created Graph, LibraryAgent)
|
||||
"""
|
||||
from backend.data.graph import get_graph_all_versions
|
||||
|
||||
graph = json_to_graph(agent_json)
|
||||
|
||||
if is_update:
|
||||
# For updates, keep the same graph ID but increment version
|
||||
# and reassign node/link IDs to avoid conflicts
|
||||
if graph.id:
|
||||
existing_versions = await get_graph_all_versions(graph.id, user_id)
|
||||
if existing_versions:
|
||||
latest_version = max(v.version for v in existing_versions)
|
||||
graph.version = latest_version + 1
|
||||
# Reassign node IDs (but keep graph ID the same)
|
||||
_reassign_node_ids(graph)
|
||||
logger.info(f"Updating agent {graph.id} to version {graph.version}")
|
||||
else:
|
||||
# For new agents, always generate a fresh UUID to avoid collisions
|
||||
graph.id = str(uuid.uuid4())
|
||||
graph.version = 1
|
||||
# Reassign all node IDs as well
|
||||
_reassign_node_ids(graph)
|
||||
logger.info(f"Creating new agent with ID {graph.id}")
|
||||
|
||||
# Save to database
|
||||
created_graph = await create_graph(graph, user_id)
|
||||
|
||||
# Add to user's library (or update existing library agent)
|
||||
library_agents = await library_db.create_library_agent(
|
||||
graph=created_graph,
|
||||
user_id=user_id,
|
||||
sensitive_action_safe_mode=True,
|
||||
create_library_agents_for_sub_graphs=False,
|
||||
)
|
||||
|
||||
return created_graph, library_agents[0]
|
||||
|
||||
|
||||
async def get_agent_as_json(
|
||||
graph_id: str, user_id: str | None
|
||||
) -> dict[str, Any] | None:
|
||||
"""Fetch an agent and convert to JSON format for editing.
|
||||
|
||||
Args:
|
||||
graph_id: Graph ID or library agent ID
|
||||
user_id: User ID
|
||||
|
||||
Returns:
|
||||
Agent as JSON dict or None if not found
|
||||
"""
|
||||
from backend.data.graph import get_graph
|
||||
|
||||
# Try to get the graph (version=None gets the active version)
|
||||
graph = await get_graph(graph_id, version=None, user_id=user_id)
|
||||
if not graph:
|
||||
return None
|
||||
|
||||
# Convert to JSON format
|
||||
nodes = []
|
||||
for node in graph.nodes:
|
||||
nodes.append(
|
||||
{
|
||||
"id": node.id,
|
||||
"block_id": node.block_id,
|
||||
"input_default": node.input_default,
|
||||
"metadata": node.metadata,
|
||||
}
|
||||
)
|
||||
|
||||
links = []
|
||||
for node in graph.nodes:
|
||||
for link in node.output_links:
|
||||
links.append(
|
||||
{
|
||||
"id": link.id,
|
||||
"source_id": link.source_id,
|
||||
"sink_id": link.sink_id,
|
||||
"source_name": link.source_name,
|
||||
"sink_name": link.sink_name,
|
||||
"is_static": link.is_static,
|
||||
}
|
||||
)
|
||||
|
||||
return {
|
||||
"id": graph.id,
|
||||
"name": graph.name,
|
||||
"description": graph.description,
|
||||
"version": graph.version,
|
||||
"is_active": graph.is_active,
|
||||
"nodes": nodes,
|
||||
"links": links,
|
||||
}
|
||||
|
||||
|
||||
async def generate_agent_patch(
|
||||
update_request: str, current_agent: dict[str, Any]
|
||||
) -> dict[str, Any] | None:
|
||||
"""Update an existing agent using natural language.
|
||||
|
||||
The external Agent Generator service handles:
|
||||
- Generating the patch
|
||||
- Applying the patch
|
||||
- Fixing and validating the result
|
||||
|
||||
Args:
|
||||
update_request: Natural language description of changes
|
||||
current_agent: Current agent JSON
|
||||
|
||||
Returns:
|
||||
Updated agent JSON, clarifying questions dict, or None on error
|
||||
|
||||
Raises:
|
||||
AgentGeneratorNotConfiguredError: If the external service is not configured.
|
||||
"""
|
||||
_check_service_configured()
|
||||
logger.info("Calling external Agent Generator service for generate_agent_patch")
|
||||
return await generate_agent_patch_external(update_request, current_agent)
|
||||
@@ -0,0 +1,269 @@
|
||||
"""External Agent Generator service client.
|
||||
|
||||
This module provides a client for communicating with the external Agent Generator
|
||||
microservice. When AGENTGENERATOR_HOST is configured, the agent generation functions
|
||||
will delegate to the external service instead of using the built-in LLM-based implementation.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
import httpx
|
||||
|
||||
from backend.util.settings import Settings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_client: httpx.AsyncClient | None = None
|
||||
_settings: Settings | None = None
|
||||
|
||||
|
||||
def _get_settings() -> Settings:
|
||||
"""Get or create settings singleton."""
|
||||
global _settings
|
||||
if _settings is None:
|
||||
_settings = Settings()
|
||||
return _settings
|
||||
|
||||
|
||||
def is_external_service_configured() -> bool:
|
||||
"""Check if external Agent Generator service is configured."""
|
||||
settings = _get_settings()
|
||||
return bool(settings.config.agentgenerator_host)
|
||||
|
||||
|
||||
def _get_base_url() -> str:
|
||||
"""Get the base URL for the external service."""
|
||||
settings = _get_settings()
|
||||
host = settings.config.agentgenerator_host
|
||||
port = settings.config.agentgenerator_port
|
||||
return f"http://{host}:{port}"
|
||||
|
||||
|
||||
def _get_client() -> httpx.AsyncClient:
|
||||
"""Get or create the HTTP client for the external service."""
|
||||
global _client
|
||||
if _client is None:
|
||||
settings = _get_settings()
|
||||
_client = httpx.AsyncClient(
|
||||
base_url=_get_base_url(),
|
||||
timeout=httpx.Timeout(settings.config.agentgenerator_timeout),
|
||||
)
|
||||
return _client
|
||||
|
||||
|
||||
async def decompose_goal_external(
|
||||
description: str, context: str = ""
|
||||
) -> dict[str, Any] | None:
|
||||
"""Call the external service to decompose a goal.
|
||||
|
||||
Args:
|
||||
description: Natural language goal description
|
||||
context: Additional context (e.g., answers to previous questions)
|
||||
|
||||
Returns:
|
||||
Dict with either:
|
||||
- {"type": "clarifying_questions", "questions": [...]}
|
||||
- {"type": "instructions", "steps": [...]}
|
||||
- {"type": "unachievable_goal", ...}
|
||||
- {"type": "vague_goal", ...}
|
||||
Or None on error
|
||||
"""
|
||||
client = _get_client()
|
||||
|
||||
# Build the request payload
|
||||
payload: dict[str, Any] = {"description": description}
|
||||
if context:
|
||||
# The external service uses user_instruction for additional context
|
||||
payload["user_instruction"] = context
|
||||
|
||||
try:
|
||||
response = await client.post("/api/decompose-description", json=payload)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
logger.error(f"External service returned error: {data.get('error')}")
|
||||
return None
|
||||
|
||||
# Map the response to the expected format
|
||||
response_type = data.get("type")
|
||||
if response_type == "instructions":
|
||||
return {"type": "instructions", "steps": data.get("steps", [])}
|
||||
elif response_type == "clarifying_questions":
|
||||
return {
|
||||
"type": "clarifying_questions",
|
||||
"questions": data.get("questions", []),
|
||||
}
|
||||
elif response_type == "unachievable_goal":
|
||||
return {
|
||||
"type": "unachievable_goal",
|
||||
"reason": data.get("reason"),
|
||||
"suggested_goal": data.get("suggested_goal"),
|
||||
}
|
||||
elif response_type == "vague_goal":
|
||||
return {
|
||||
"type": "vague_goal",
|
||||
"suggested_goal": data.get("suggested_goal"),
|
||||
}
|
||||
else:
|
||||
logger.error(
|
||||
f"Unknown response type from external service: {response_type}"
|
||||
)
|
||||
return None
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
logger.error(f"HTTP error calling external agent generator: {e}")
|
||||
return None
|
||||
except httpx.RequestError as e:
|
||||
logger.error(f"Request error calling external agent generator: {e}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error calling external agent generator: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def generate_agent_external(
|
||||
instructions: dict[str, Any]
|
||||
) -> dict[str, Any] | None:
|
||||
"""Call the external service to generate an agent from instructions.
|
||||
|
||||
Args:
|
||||
instructions: Structured instructions from decompose_goal
|
||||
|
||||
Returns:
|
||||
Agent JSON dict or None on error
|
||||
"""
|
||||
client = _get_client()
|
||||
|
||||
try:
|
||||
response = await client.post(
|
||||
"/api/generate-agent", json={"instructions": instructions}
|
||||
)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
logger.error(f"External service returned error: {data.get('error')}")
|
||||
return None
|
||||
|
||||
return data.get("agent_json")
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
logger.error(f"HTTP error calling external agent generator: {e}")
|
||||
return None
|
||||
except httpx.RequestError as e:
|
||||
logger.error(f"Request error calling external agent generator: {e}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error calling external agent generator: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def generate_agent_patch_external(
|
||||
update_request: str, current_agent: dict[str, Any]
|
||||
) -> dict[str, Any] | None:
|
||||
"""Call the external service to generate a patch for an existing agent.
|
||||
|
||||
Args:
|
||||
update_request: Natural language description of changes
|
||||
current_agent: Current agent JSON
|
||||
|
||||
Returns:
|
||||
Updated agent JSON, clarifying questions dict, or None on error
|
||||
"""
|
||||
client = _get_client()
|
||||
|
||||
try:
|
||||
response = await client.post(
|
||||
"/api/update-agent",
|
||||
json={
|
||||
"update_request": update_request,
|
||||
"current_agent_json": current_agent,
|
||||
},
|
||||
)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
logger.error(f"External service returned error: {data.get('error')}")
|
||||
return None
|
||||
|
||||
# Check if it's clarifying questions
|
||||
if data.get("type") == "clarifying_questions":
|
||||
return {
|
||||
"type": "clarifying_questions",
|
||||
"questions": data.get("questions", []),
|
||||
}
|
||||
|
||||
# Otherwise return the updated agent JSON
|
||||
return data.get("agent_json")
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
logger.error(f"HTTP error calling external agent generator: {e}")
|
||||
return None
|
||||
except httpx.RequestError as e:
|
||||
logger.error(f"Request error calling external agent generator: {e}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error calling external agent generator: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def get_blocks_external() -> list[dict[str, Any]] | None:
|
||||
"""Get available blocks from the external service.
|
||||
|
||||
Returns:
|
||||
List of block info dicts or None on error
|
||||
"""
|
||||
client = _get_client()
|
||||
|
||||
try:
|
||||
response = await client.get("/api/blocks")
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
logger.error("External service returned error getting blocks")
|
||||
return None
|
||||
|
||||
return data.get("blocks", [])
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
logger.error(f"HTTP error getting blocks from external service: {e}")
|
||||
return None
|
||||
except httpx.RequestError as e:
|
||||
logger.error(f"Request error getting blocks from external service: {e}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error getting blocks from external service: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def health_check() -> bool:
|
||||
"""Check if the external service is healthy.
|
||||
|
||||
Returns:
|
||||
True if healthy, False otherwise
|
||||
"""
|
||||
if not is_external_service_configured():
|
||||
return False
|
||||
|
||||
client = _get_client()
|
||||
|
||||
try:
|
||||
response = await client.get("/health")
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
return data.get("status") == "healthy" and data.get("blocks_loaded", False)
|
||||
except Exception as e:
|
||||
logger.warning(f"External agent generator health check failed: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def close_client() -> None:
|
||||
"""Close the HTTP client."""
|
||||
global _client
|
||||
if _client is not None:
|
||||
await _client.aclose()
|
||||
_client = None
|
||||
@@ -7,9 +7,9 @@ from typing import Any
|
||||
|
||||
from pydantic import BaseModel, field_validator
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.library import db as library_db
|
||||
from backend.api.features.library.model import LibraryAgent
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.data import execution as execution_db
|
||||
from backend.data.execution import ExecutionStatus, GraphExecution, GraphExecutionMeta
|
||||
|
||||
@@ -0,0 +1,151 @@
|
||||
"""Shared agent search functionality for find_agent and find_library_agent tools."""
|
||||
|
||||
import logging
|
||||
from typing import Literal
|
||||
|
||||
from backend.api.features.library import db as library_db
|
||||
from backend.api.features.store import db as store_db
|
||||
from backend.util.exceptions import DatabaseError, NotFoundError
|
||||
|
||||
from .models import (
|
||||
AgentInfo,
|
||||
AgentsFoundResponse,
|
||||
ErrorResponse,
|
||||
NoResultsResponse,
|
||||
ToolResponseBase,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
SearchSource = Literal["marketplace", "library"]
|
||||
|
||||
|
||||
async def search_agents(
|
||||
query: str,
|
||||
source: SearchSource,
|
||||
session_id: str | None,
|
||||
user_id: str | None = None,
|
||||
) -> ToolResponseBase:
|
||||
"""
|
||||
Search for agents in marketplace or user library.
|
||||
|
||||
Args:
|
||||
query: Search query string
|
||||
source: "marketplace" or "library"
|
||||
session_id: Chat session ID
|
||||
user_id: User ID (required for library search)
|
||||
|
||||
Returns:
|
||||
AgentsFoundResponse, NoResultsResponse, or ErrorResponse
|
||||
"""
|
||||
if not query:
|
||||
return ErrorResponse(
|
||||
message="Please provide a search query", session_id=session_id
|
||||
)
|
||||
|
||||
if source == "library" and not user_id:
|
||||
return ErrorResponse(
|
||||
message="User authentication required to search library",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
agents: list[AgentInfo] = []
|
||||
try:
|
||||
if source == "marketplace":
|
||||
logger.info(f"Searching marketplace for: {query}")
|
||||
results = await store_db.get_store_agents(search_query=query, page_size=5)
|
||||
for agent in results.agents:
|
||||
agents.append(
|
||||
AgentInfo(
|
||||
id=f"{agent.creator}/{agent.slug}",
|
||||
name=agent.agent_name,
|
||||
description=agent.description or "",
|
||||
source="marketplace",
|
||||
in_library=False,
|
||||
creator=agent.creator,
|
||||
category="general",
|
||||
rating=agent.rating,
|
||||
runs=agent.runs,
|
||||
is_featured=False,
|
||||
)
|
||||
)
|
||||
else: # library
|
||||
logger.info(f"Searching user library for: {query}")
|
||||
results = await library_db.list_library_agents(
|
||||
user_id=user_id, # type: ignore[arg-type]
|
||||
search_term=query,
|
||||
page_size=10,
|
||||
)
|
||||
for agent in results.agents:
|
||||
agents.append(
|
||||
AgentInfo(
|
||||
id=agent.id,
|
||||
name=agent.name,
|
||||
description=agent.description or "",
|
||||
source="library",
|
||||
in_library=True,
|
||||
creator=agent.creator_name,
|
||||
status=agent.status.value,
|
||||
can_access_graph=agent.can_access_graph,
|
||||
has_external_trigger=agent.has_external_trigger,
|
||||
new_output=agent.new_output,
|
||||
graph_id=agent.graph_id,
|
||||
)
|
||||
)
|
||||
logger.info(f"Found {len(agents)} agents in {source}")
|
||||
except NotFoundError:
|
||||
pass
|
||||
except DatabaseError as e:
|
||||
logger.error(f"Error searching {source}: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to search {source}. Please try again.",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if not agents:
|
||||
suggestions = (
|
||||
[
|
||||
"Try more general terms",
|
||||
"Browse categories in the marketplace",
|
||||
"Check spelling",
|
||||
]
|
||||
if source == "marketplace"
|
||||
else [
|
||||
"Try different keywords",
|
||||
"Use find_agent to search the marketplace",
|
||||
"Check your library at /library",
|
||||
]
|
||||
)
|
||||
no_results_msg = (
|
||||
f"No agents found matching '{query}'. Try different keywords or browse the marketplace."
|
||||
if source == "marketplace"
|
||||
else f"No agents matching '{query}' found in your library."
|
||||
)
|
||||
return NoResultsResponse(
|
||||
message=no_results_msg, session_id=session_id, suggestions=suggestions
|
||||
)
|
||||
|
||||
title = f"Found {len(agents)} agent{'s' if len(agents) != 1 else ''} "
|
||||
title += (
|
||||
f"for '{query}'"
|
||||
if source == "marketplace"
|
||||
else f"in your library for '{query}'"
|
||||
)
|
||||
|
||||
message = (
|
||||
"Now you have found some options for the user to choose from. "
|
||||
"You can add a link to a recommended agent at: /marketplace/agent/agent_id "
|
||||
"Please ask the user if they would like to use any of these agents."
|
||||
if source == "marketplace"
|
||||
else "Found agents in the user's library. You can provide a link to view an agent at: "
|
||||
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute."
|
||||
)
|
||||
|
||||
return AgentsFoundResponse(
|
||||
message=message,
|
||||
title=title,
|
||||
agents=agents,
|
||||
count=len(agents),
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -5,8 +5,8 @@ from typing import Any
|
||||
|
||||
from openai.types.chat import ChatCompletionToolParam
|
||||
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.copilot.response_model import StreamToolOutputAvailable
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.response_model import StreamToolOutputAvailable
|
||||
|
||||
from .models import ErrorResponse, NeedLoginResponse, ToolResponseBase
|
||||
|
||||
@@ -3,22 +3,18 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
|
||||
from .agent_generator import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
decompose_goal,
|
||||
enrich_library_agents_from_steps,
|
||||
generate_agent,
|
||||
get_all_relevant_agents_for_generation,
|
||||
get_user_message_for_error,
|
||||
save_agent_to_library,
|
||||
)
|
||||
from .base import BaseTool
|
||||
from .models import (
|
||||
AgentPreviewResponse,
|
||||
AgentSavedResponse,
|
||||
AsyncProcessingResponse,
|
||||
ClarificationNeededResponse,
|
||||
ClarifyingQuestion,
|
||||
ErrorResponse,
|
||||
@@ -99,10 +95,6 @@ class CreateAgentTool(BaseTool):
|
||||
save = kwargs.get("save", True)
|
||||
session_id = session.session_id if session else None
|
||||
|
||||
# Extract async processing params (passed by long-running tool handler)
|
||||
operation_id = kwargs.get("_operation_id")
|
||||
task_id = kwargs.get("_task_id")
|
||||
|
||||
if not description:
|
||||
return ErrorResponse(
|
||||
message="Please provide a description of what the agent should do.",
|
||||
@@ -110,24 +102,9 @@ class CreateAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
library_agents = None
|
||||
if user_id:
|
||||
try:
|
||||
library_agents = await get_all_relevant_agents_for_generation(
|
||||
user_id=user_id,
|
||||
search_query=description,
|
||||
include_marketplace=True,
|
||||
)
|
||||
logger.debug(
|
||||
f"Found {len(library_agents)} relevant agents for sub-agent composition"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to fetch library agents: {e}")
|
||||
|
||||
# Step 1: Decompose goal into steps
|
||||
try:
|
||||
decomposition_result = await decompose_goal(
|
||||
description, context, library_agents
|
||||
)
|
||||
decomposition_result = await decompose_goal(description, context)
|
||||
except AgentGeneratorNotConfiguredError:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
@@ -140,31 +117,15 @@ class CreateAgentTool(BaseTool):
|
||||
|
||||
if decomposition_result is None:
|
||||
return ErrorResponse(
|
||||
message="Failed to analyze the goal. The agent generation service may be unavailable. Please try again.",
|
||||
message="Failed to analyze the goal. The agent generation service may be unavailable or timed out. Please try again.",
|
||||
error="decomposition_failed",
|
||||
details={"description": description[:100]},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if decomposition_result.get("type") == "error":
|
||||
error_msg = decomposition_result.get("error", "Unknown error")
|
||||
error_type = decomposition_result.get("error_type", "unknown")
|
||||
user_message = get_user_message_for_error(
|
||||
error_type,
|
||||
operation="analyze the goal",
|
||||
llm_parse_message="The AI had trouble understanding this request. Please try rephrasing your goal.",
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=user_message,
|
||||
error=f"decomposition_failed:{error_type}",
|
||||
details={
|
||||
"description": description[:100],
|
||||
"service_error": error_msg,
|
||||
"error_type": error_type,
|
||||
},
|
||||
"description": description[:100]
|
||||
}, # Include context for debugging
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if LLM returned clarifying questions
|
||||
if decomposition_result.get("type") == "clarifying_questions":
|
||||
questions = decomposition_result.get("questions", [])
|
||||
return ClarificationNeededResponse(
|
||||
@@ -183,6 +144,7 @@ class CreateAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check for unachievable/vague goals
|
||||
if decomposition_result.get("type") == "unachievable_goal":
|
||||
suggested = decomposition_result.get("suggested_goal", "")
|
||||
reason = decomposition_result.get("reason", "")
|
||||
@@ -209,27 +171,9 @@ class CreateAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if user_id and library_agents is not None:
|
||||
try:
|
||||
library_agents = await enrich_library_agents_from_steps(
|
||||
user_id=user_id,
|
||||
decomposition_result=decomposition_result,
|
||||
existing_agents=library_agents,
|
||||
include_marketplace=True,
|
||||
)
|
||||
logger.debug(
|
||||
f"After enrichment: {len(library_agents)} total agents for sub-agent composition"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to enrich library agents from steps: {e}")
|
||||
|
||||
# Step 2: Generate agent JSON (external service handles fixing and validation)
|
||||
try:
|
||||
agent_json = await generate_agent(
|
||||
decomposition_result,
|
||||
library_agents,
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
)
|
||||
agent_json = await generate_agent(decomposition_result)
|
||||
except AgentGeneratorNotConfiguredError:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
@@ -242,47 +186,11 @@ class CreateAgentTool(BaseTool):
|
||||
|
||||
if agent_json is None:
|
||||
return ErrorResponse(
|
||||
message="Failed to generate the agent. The agent generation service may be unavailable. Please try again.",
|
||||
message="Failed to generate the agent. The agent generation service may be unavailable or timed out. Please try again.",
|
||||
error="generation_failed",
|
||||
details={"description": description[:100]},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if isinstance(agent_json, dict) and agent_json.get("type") == "error":
|
||||
error_msg = agent_json.get("error", "Unknown error")
|
||||
error_type = agent_json.get("error_type", "unknown")
|
||||
user_message = get_user_message_for_error(
|
||||
error_type,
|
||||
operation="generate the agent",
|
||||
llm_parse_message="The AI had trouble generating the agent. Please try again or simplify your goal.",
|
||||
validation_message=(
|
||||
"I wasn't able to create a valid agent for this request. "
|
||||
"The generated workflow had some structural issues. "
|
||||
"Please try simplifying your goal or breaking it into smaller steps."
|
||||
),
|
||||
error_details=error_msg,
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=user_message,
|
||||
error=f"generation_failed:{error_type}",
|
||||
details={
|
||||
"description": description[:100],
|
||||
"service_error": error_msg,
|
||||
"error_type": error_type,
|
||||
},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if Agent Generator accepted for async processing
|
||||
if agent_json.get("status") == "accepted":
|
||||
logger.info(
|
||||
f"Agent generation delegated to async processing "
|
||||
f"(operation_id={operation_id}, task_id={task_id})"
|
||||
)
|
||||
return AsyncProcessingResponse(
|
||||
message="Agent generation started. You'll be notified when it's complete.",
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
"description": description[:100]
|
||||
}, # Include context for debugging
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
@@ -291,6 +199,7 @@ class CreateAgentTool(BaseTool):
|
||||
node_count = len(agent_json.get("nodes", []))
|
||||
link_count = len(agent_json.get("links", []))
|
||||
|
||||
# Step 3: Preview or save
|
||||
if not save:
|
||||
return AgentPreviewResponse(
|
||||
message=(
|
||||
@@ -305,6 +214,7 @@ class CreateAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Save to library
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="You must be logged in to save agents.",
|
||||
@@ -322,7 +232,7 @@ class CreateAgentTool(BaseTool):
|
||||
agent_id=created_graph.id,
|
||||
agent_name=created_graph.name,
|
||||
library_agent_id=library_agent.id,
|
||||
library_agent_link=f"/library/agents/{library_agent.id}",
|
||||
library_agent_link=f"/library/{library_agent.id}",
|
||||
agent_page_link=f"/build?flowID={created_graph.id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -3,21 +3,18 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
|
||||
from .agent_generator import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
generate_agent_patch,
|
||||
get_agent_as_json,
|
||||
get_all_relevant_agents_for_generation,
|
||||
get_user_message_for_error,
|
||||
save_agent_to_library,
|
||||
)
|
||||
from .base import BaseTool
|
||||
from .models import (
|
||||
AgentPreviewResponse,
|
||||
AgentSavedResponse,
|
||||
AsyncProcessingResponse,
|
||||
ClarificationNeededResponse,
|
||||
ClarifyingQuestion,
|
||||
ErrorResponse,
|
||||
@@ -105,10 +102,6 @@ class EditAgentTool(BaseTool):
|
||||
save = kwargs.get("save", True)
|
||||
session_id = session.session_id if session else None
|
||||
|
||||
# Extract async processing params (passed by long-running tool handler)
|
||||
operation_id = kwargs.get("_operation_id")
|
||||
task_id = kwargs.get("_task_id")
|
||||
|
||||
if not agent_id:
|
||||
return ErrorResponse(
|
||||
message="Please provide the agent ID to edit.",
|
||||
@@ -123,6 +116,7 @@ class EditAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Step 1: Fetch current agent
|
||||
current_agent = await get_agent_as_json(agent_id, user_id)
|
||||
|
||||
if current_agent is None:
|
||||
@@ -132,34 +126,14 @@ class EditAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
library_agents = None
|
||||
if user_id:
|
||||
try:
|
||||
graph_id = current_agent.get("id")
|
||||
library_agents = await get_all_relevant_agents_for_generation(
|
||||
user_id=user_id,
|
||||
search_query=changes,
|
||||
exclude_graph_id=graph_id,
|
||||
include_marketplace=True,
|
||||
)
|
||||
logger.debug(
|
||||
f"Found {len(library_agents)} relevant agents for sub-agent composition"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to fetch library agents: {e}")
|
||||
|
||||
# Build the update request with context
|
||||
update_request = changes
|
||||
if context:
|
||||
update_request = f"{changes}\n\nAdditional context:\n{context}"
|
||||
|
||||
# Step 2: Generate updated agent (external service handles fixing and validation)
|
||||
try:
|
||||
result = await generate_agent_patch(
|
||||
update_request,
|
||||
current_agent,
|
||||
library_agents,
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
)
|
||||
result = await generate_agent_patch(update_request, current_agent)
|
||||
except AgentGeneratorNotConfiguredError:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
@@ -178,42 +152,7 @@ class EditAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if Agent Generator accepted for async processing
|
||||
if result.get("status") == "accepted":
|
||||
logger.info(
|
||||
f"Agent edit delegated to async processing "
|
||||
f"(operation_id={operation_id}, task_id={task_id})"
|
||||
)
|
||||
return AsyncProcessingResponse(
|
||||
message="Agent edit started. You'll be notified when it's complete.",
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if the result is an error from the external service
|
||||
if isinstance(result, dict) and result.get("type") == "error":
|
||||
error_msg = result.get("error", "Unknown error")
|
||||
error_type = result.get("error_type", "unknown")
|
||||
user_message = get_user_message_for_error(
|
||||
error_type,
|
||||
operation="generate the changes",
|
||||
llm_parse_message="The AI had trouble generating the changes. Please try again or simplify your request.",
|
||||
validation_message="The generated changes failed validation. Please try rephrasing your request.",
|
||||
error_details=error_msg,
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=user_message,
|
||||
error=f"update_generation_failed:{error_type}",
|
||||
details={
|
||||
"agent_id": agent_id,
|
||||
"changes": changes[:100],
|
||||
"service_error": error_msg,
|
||||
"error_type": error_type,
|
||||
},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if LLM returned clarifying questions
|
||||
if result.get("type") == "clarifying_questions":
|
||||
questions = result.get("questions", [])
|
||||
return ClarificationNeededResponse(
|
||||
@@ -232,6 +171,7 @@ class EditAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Result is the updated agent JSON
|
||||
updated_agent = result
|
||||
|
||||
agent_name = updated_agent.get("name", "Updated Agent")
|
||||
@@ -239,6 +179,7 @@ class EditAgentTool(BaseTool):
|
||||
node_count = len(updated_agent.get("nodes", []))
|
||||
link_count = len(updated_agent.get("links", []))
|
||||
|
||||
# Step 3: Preview or save
|
||||
if not save:
|
||||
return AgentPreviewResponse(
|
||||
message=(
|
||||
@@ -254,6 +195,7 @@ class EditAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Save to library (creates a new version)
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="You must be logged in to save agents.",
|
||||
@@ -271,7 +213,7 @@ class EditAgentTool(BaseTool):
|
||||
agent_id=created_graph.id,
|
||||
agent_name=created_graph.name,
|
||||
library_agent_id=library_agent.id,
|
||||
library_agent_link=f"/library/agents/{library_agent.id}",
|
||||
library_agent_link=f"/library/{library_agent.id}",
|
||||
agent_page_link=f"/build?flowID={created_graph.id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
from typing import Any
|
||||
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
|
||||
from .agent_search import search_agents
|
||||
from .base import BaseTool
|
||||
@@ -0,0 +1,193 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from prisma.enums import ContentType
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools.base import BaseTool, ToolResponseBase
|
||||
from backend.api.features.chat.tools.models import (
|
||||
BlockInfoSummary,
|
||||
BlockInputFieldInfo,
|
||||
BlockListResponse,
|
||||
ErrorResponse,
|
||||
NoResultsResponse,
|
||||
)
|
||||
from backend.api.features.store.hybrid_search import unified_hybrid_search
|
||||
from backend.data.block import get_block
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class FindBlockTool(BaseTool):
|
||||
"""Tool for searching available blocks."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "find_block"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Search for available blocks by name or description. "
|
||||
"Blocks are reusable components that perform specific tasks like "
|
||||
"sending emails, making API calls, processing text, etc. "
|
||||
"IMPORTANT: Use this tool FIRST to get the block's 'id' before calling run_block. "
|
||||
"The response includes each block's id, required_inputs, and input_schema."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"query": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Search query to find blocks by name or description. "
|
||||
"Use keywords like 'email', 'http', 'text', 'ai', etc."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": ["query"],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
"""Search for blocks matching the query.
|
||||
|
||||
Args:
|
||||
user_id: User ID (required)
|
||||
session: Chat session
|
||||
query: Search query
|
||||
|
||||
Returns:
|
||||
BlockListResponse: List of matching blocks
|
||||
NoResultsResponse: No blocks found
|
||||
ErrorResponse: Error message
|
||||
"""
|
||||
query = kwargs.get("query", "").strip()
|
||||
session_id = session.session_id
|
||||
|
||||
if not query:
|
||||
return ErrorResponse(
|
||||
message="Please provide a search query",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
# Search for blocks using hybrid search
|
||||
results, total = await unified_hybrid_search(
|
||||
query=query,
|
||||
content_types=[ContentType.BLOCK],
|
||||
page=1,
|
||||
page_size=10,
|
||||
)
|
||||
|
||||
if not results:
|
||||
return NoResultsResponse(
|
||||
message=f"No blocks found for '{query}'",
|
||||
suggestions=[
|
||||
"Try broader keywords like 'email', 'http', 'text', 'ai'",
|
||||
"Check spelling of technical terms",
|
||||
],
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Enrich results with full block information
|
||||
blocks: list[BlockInfoSummary] = []
|
||||
for result in results:
|
||||
block_id = result["content_id"]
|
||||
block = get_block(block_id)
|
||||
|
||||
# Skip disabled blocks
|
||||
if block and not block.disabled:
|
||||
# Get input/output schemas
|
||||
input_schema = {}
|
||||
output_schema = {}
|
||||
try:
|
||||
input_schema = block.input_schema.jsonschema()
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
output_schema = block.output_schema.jsonschema()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Get categories from block instance
|
||||
categories = []
|
||||
if hasattr(block, "categories") and block.categories:
|
||||
categories = [cat.value for cat in block.categories]
|
||||
|
||||
# Extract required inputs for easier use
|
||||
required_inputs: list[BlockInputFieldInfo] = []
|
||||
if input_schema:
|
||||
properties = input_schema.get("properties", {})
|
||||
required_fields = set(input_schema.get("required", []))
|
||||
# Get credential field names to exclude from required inputs
|
||||
credentials_fields = set(
|
||||
block.input_schema.get_credentials_fields().keys()
|
||||
)
|
||||
|
||||
for field_name, field_schema in properties.items():
|
||||
# Skip credential fields - they're handled separately
|
||||
if field_name in credentials_fields:
|
||||
continue
|
||||
|
||||
required_inputs.append(
|
||||
BlockInputFieldInfo(
|
||||
name=field_name,
|
||||
type=field_schema.get("type", "string"),
|
||||
description=field_schema.get("description", ""),
|
||||
required=field_name in required_fields,
|
||||
default=field_schema.get("default"),
|
||||
)
|
||||
)
|
||||
|
||||
blocks.append(
|
||||
BlockInfoSummary(
|
||||
id=block_id,
|
||||
name=block.name,
|
||||
description=block.description or "",
|
||||
categories=categories,
|
||||
input_schema=input_schema,
|
||||
output_schema=output_schema,
|
||||
required_inputs=required_inputs,
|
||||
)
|
||||
)
|
||||
|
||||
if not blocks:
|
||||
return NoResultsResponse(
|
||||
message=f"No blocks found for '{query}'",
|
||||
suggestions=[
|
||||
"Try broader keywords like 'email', 'http', 'text', 'ai'",
|
||||
],
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
return BlockListResponse(
|
||||
message=(
|
||||
f"Found {len(blocks)} block(s) matching '{query}'. "
|
||||
"To execute a block, use run_block with the block's 'id' field "
|
||||
"and provide 'input_data' matching the block's input_schema."
|
||||
),
|
||||
blocks=blocks,
|
||||
count=len(blocks),
|
||||
query=query,
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error searching blocks: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message="Failed to search blocks",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
from typing import Any
|
||||
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
|
||||
from .agent_search import search_agents
|
||||
from .base import BaseTool
|
||||
@@ -4,9 +4,9 @@ import logging
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.copilot.tools.base import BaseTool
|
||||
from backend.copilot.tools.models import (
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools.base import BaseTool
|
||||
from backend.api.features.chat.tools.models import (
|
||||
DocPageResponse,
|
||||
ErrorResponse,
|
||||
ToolResponseBase,
|
||||
@@ -28,18 +28,10 @@ class ResponseType(str, Enum):
|
||||
BLOCK_OUTPUT = "block_output"
|
||||
DOC_SEARCH_RESULTS = "doc_search_results"
|
||||
DOC_PAGE = "doc_page"
|
||||
# Workspace response types
|
||||
WORKSPACE_FILE_LIST = "workspace_file_list"
|
||||
WORKSPACE_FILE_CONTENT = "workspace_file_content"
|
||||
WORKSPACE_FILE_METADATA = "workspace_file_metadata"
|
||||
WORKSPACE_FILE_WRITTEN = "workspace_file_written"
|
||||
WORKSPACE_FILE_DELETED = "workspace_file_deleted"
|
||||
# Long-running operation types
|
||||
OPERATION_STARTED = "operation_started"
|
||||
OPERATION_PENDING = "operation_pending"
|
||||
OPERATION_IN_PROGRESS = "operation_in_progress"
|
||||
# Input validation
|
||||
INPUT_VALIDATION_ERROR = "input_validation_error"
|
||||
|
||||
|
||||
# Base response model
|
||||
@@ -70,10 +62,6 @@ class AgentInfo(BaseModel):
|
||||
has_external_trigger: bool | None = None
|
||||
new_output: bool | None = None
|
||||
graph_id: str | None = None
|
||||
inputs: dict[str, Any] | None = Field(
|
||||
default=None,
|
||||
description="Input schema for the agent, including field names, types, and defaults",
|
||||
)
|
||||
|
||||
|
||||
class AgentsFoundResponse(ToolResponseBase):
|
||||
@@ -200,20 +188,6 @@ class ErrorResponse(ToolResponseBase):
|
||||
details: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class InputValidationErrorResponse(ToolResponseBase):
|
||||
"""Response when run_agent receives unknown input fields."""
|
||||
|
||||
type: ResponseType = ResponseType.INPUT_VALIDATION_ERROR
|
||||
unrecognized_fields: list[str] = Field(
|
||||
description="List of input field names that were not recognized"
|
||||
)
|
||||
inputs: dict[str, Any] = Field(
|
||||
description="The agent's valid input schema for reference"
|
||||
)
|
||||
graph_id: str | None = None
|
||||
graph_version: int | None = None
|
||||
|
||||
|
||||
# Agent output models
|
||||
class ExecutionOutputInfo(BaseModel):
|
||||
"""Summary of a single execution's outputs."""
|
||||
@@ -372,15 +346,11 @@ class OperationStartedResponse(ToolResponseBase):
|
||||
|
||||
This is returned immediately to the client while the operation continues
|
||||
to execute. The user can close the tab and check back later.
|
||||
|
||||
The task_id can be used to reconnect to the SSE stream via
|
||||
GET /chat/tasks/{task_id}/stream?last_idx=0
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_STARTED
|
||||
operation_id: str
|
||||
tool_name: str
|
||||
task_id: str | None = None # For SSE reconnection
|
||||
|
||||
|
||||
class OperationPendingResponse(ToolResponseBase):
|
||||
@@ -404,20 +374,3 @@ class OperationInProgressResponse(ToolResponseBase):
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_IN_PROGRESS
|
||||
tool_call_id: str
|
||||
|
||||
|
||||
class AsyncProcessingResponse(ToolResponseBase):
|
||||
"""Response when an operation has been delegated to async processing.
|
||||
|
||||
This is returned by tools when the external service accepts the request
|
||||
for async processing (HTTP 202 Accepted). The Redis Streams completion
|
||||
consumer will handle the result when the external service completes.
|
||||
|
||||
The status field is specifically "accepted" to allow the long-running tool
|
||||
handler to detect this response and skip LLM continuation.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_STARTED
|
||||
status: str = "accepted" # Must be "accepted" for detection
|
||||
operation_id: str | None = None
|
||||
task_id: str | None = None
|
||||
@@ -5,10 +5,13 @@ from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
from backend.api.features.chat.config import ChatConfig
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tracking import (
|
||||
track_agent_run_success,
|
||||
track_agent_scheduled,
|
||||
)
|
||||
from backend.api.features.library import db as library_db
|
||||
from backend.copilot.config import ChatConfig
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.copilot.tracking import track_agent_run_success, track_agent_scheduled
|
||||
from backend.data.graph import GraphModel
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.data.user import get_user_by_id
|
||||
@@ -21,14 +24,12 @@ from backend.util.timezone_utils import (
|
||||
)
|
||||
|
||||
from .base import BaseTool
|
||||
from .helpers import get_inputs_from_schema
|
||||
from .models import (
|
||||
AgentDetails,
|
||||
AgentDetailsResponse,
|
||||
ErrorResponse,
|
||||
ExecutionOptions,
|
||||
ExecutionStartedResponse,
|
||||
InputValidationErrorResponse,
|
||||
SetupInfo,
|
||||
SetupRequirementsResponse,
|
||||
ToolResponseBase,
|
||||
@@ -259,7 +260,7 @@ class RunAgentTool(BaseTool):
|
||||
),
|
||||
requirements={
|
||||
"credentials": requirements_creds_list,
|
||||
"inputs": get_inputs_from_schema(graph.input_schema),
|
||||
"inputs": self._get_inputs_list(graph.input_schema),
|
||||
"execution_modes": self._get_execution_modes(graph),
|
||||
},
|
||||
),
|
||||
@@ -272,22 +273,6 @@ class RunAgentTool(BaseTool):
|
||||
input_properties = graph.input_schema.get("properties", {})
|
||||
required_fields = set(graph.input_schema.get("required", []))
|
||||
provided_inputs = set(params.inputs.keys())
|
||||
valid_fields = set(input_properties.keys())
|
||||
|
||||
# Check for unknown input fields
|
||||
unrecognized_fields = provided_inputs - valid_fields
|
||||
if unrecognized_fields:
|
||||
return InputValidationErrorResponse(
|
||||
message=(
|
||||
f"Unknown input field(s) provided: {', '.join(sorted(unrecognized_fields))}. "
|
||||
f"Agent was not executed. Please use the correct field names from the schema."
|
||||
),
|
||||
session_id=session_id,
|
||||
unrecognized_fields=sorted(unrecognized_fields),
|
||||
inputs=graph.input_schema,
|
||||
graph_id=graph.id,
|
||||
graph_version=graph.version,
|
||||
)
|
||||
|
||||
# If agent has inputs but none were provided AND use_defaults is not set,
|
||||
# always show what's available first so user can decide
|
||||
@@ -367,6 +352,22 @@ class RunAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
def _get_inputs_list(self, input_schema: dict[str, Any]) -> list[dict[str, Any]]:
|
||||
"""Extract inputs list from schema."""
|
||||
inputs_list = []
|
||||
if isinstance(input_schema, dict) and "properties" in input_schema:
|
||||
for field_name, field_schema in input_schema["properties"].items():
|
||||
inputs_list.append(
|
||||
{
|
||||
"name": field_name,
|
||||
"title": field_schema.get("title", field_name),
|
||||
"type": field_schema.get("type", "string"),
|
||||
"description": field_schema.get("description", ""),
|
||||
"required": field_name in input_schema.get("required", []),
|
||||
}
|
||||
)
|
||||
return inputs_list
|
||||
|
||||
def _get_execution_modes(self, graph: GraphModel) -> list[str]:
|
||||
"""Get available execution modes for the graph."""
|
||||
trigger_info = graph.trigger_setup_info
|
||||
@@ -380,7 +381,7 @@ class RunAgentTool(BaseTool):
|
||||
suffix: str,
|
||||
) -> str:
|
||||
"""Build a message describing available inputs for an agent."""
|
||||
inputs_list = get_inputs_from_schema(graph.input_schema)
|
||||
inputs_list = self._get_inputs_list(graph.input_schema)
|
||||
required_names = [i["name"] for i in inputs_list if i["required"]]
|
||||
optional_names = [i["name"] for i in inputs_list if not i["required"]]
|
||||
|
||||
@@ -402,42 +402,3 @@ async def test_run_agent_schedule_without_name(setup_test_data):
|
||||
# Should return error about missing schedule_name
|
||||
assert result_data.get("type") == "error"
|
||||
assert "schedule_name" in result_data["message"].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_run_agent_rejects_unknown_input_fields(setup_test_data):
|
||||
"""Test that run_agent returns input_validation_error for unknown input fields."""
|
||||
user = setup_test_data["user"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
tool = RunAgentTool()
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Execute with unknown input field names
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
inputs={
|
||||
"unknown_field": "some value",
|
||||
"another_unknown": "another value",
|
||||
},
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "output")
|
||||
assert isinstance(response.output, str)
|
||||
result_data = orjson.loads(response.output)
|
||||
|
||||
# Should return input_validation_error type with unrecognized fields
|
||||
assert result_data.get("type") == "input_validation_error"
|
||||
assert "unrecognized_fields" in result_data
|
||||
assert set(result_data["unrecognized_fields"]) == {
|
||||
"another_unknown",
|
||||
"unknown_field",
|
||||
}
|
||||
assert "inputs" in result_data # Contains the valid schema
|
||||
assert "Agent was not executed" in result_data["message"]
|
||||
@@ -1,26 +1,17 @@
|
||||
"""Tool for executing blocks directly."""
|
||||
|
||||
import logging
|
||||
import uuid
|
||||
from collections import defaultdict
|
||||
from typing import Any
|
||||
|
||||
from pydantic_core import PydanticUndefined
|
||||
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.copilot.tools.find_block import (
|
||||
COPILOT_EXCLUDED_BLOCK_IDS,
|
||||
COPILOT_EXCLUDED_BLOCK_TYPES,
|
||||
)
|
||||
from backend.data.block import AnyBlockSchema, get_block
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.data.block import get_block
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
|
||||
from backend.data.workspace import get_or_create_workspace
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.util.exceptions import BlockError
|
||||
|
||||
from .base import BaseTool
|
||||
from .helpers import get_inputs_from_schema
|
||||
from .models import (
|
||||
BlockOutputResponse,
|
||||
ErrorResponse,
|
||||
@@ -29,10 +20,7 @@ from .models import (
|
||||
ToolResponseBase,
|
||||
UserReadiness,
|
||||
)
|
||||
from .utils import (
|
||||
build_missing_credentials_from_field_info,
|
||||
match_credentials_to_requirements,
|
||||
)
|
||||
from .utils import build_missing_credentials_from_field_info
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -81,6 +69,65 @@ class RunBlockTool(BaseTool):
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _check_block_credentials(
|
||||
self,
|
||||
user_id: str,
|
||||
block: Any,
|
||||
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
|
||||
"""
|
||||
Check if user has required credentials for a block.
|
||||
|
||||
Returns:
|
||||
tuple[matched_credentials, missing_credentials]
|
||||
"""
|
||||
matched_credentials: dict[str, CredentialsMetaInput] = {}
|
||||
missing_credentials: list[CredentialsMetaInput] = []
|
||||
|
||||
# Get credential field info from block's input schema
|
||||
credentials_fields_info = block.input_schema.get_credentials_fields_info()
|
||||
|
||||
if not credentials_fields_info:
|
||||
return matched_credentials, missing_credentials
|
||||
|
||||
# Get user's available credentials
|
||||
creds_manager = IntegrationCredentialsManager()
|
||||
available_creds = await creds_manager.store.get_all_creds(user_id)
|
||||
|
||||
for field_name, field_info in credentials_fields_info.items():
|
||||
# field_info.provider is a frozenset of acceptable providers
|
||||
# field_info.supported_types is a frozenset of acceptable types
|
||||
matching_cred = next(
|
||||
(
|
||||
cred
|
||||
for cred in available_creds
|
||||
if cred.provider in field_info.provider
|
||||
and cred.type in field_info.supported_types
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
||||
if matching_cred:
|
||||
matched_credentials[field_name] = CredentialsMetaInput(
|
||||
id=matching_cred.id,
|
||||
provider=matching_cred.provider, # type: ignore
|
||||
type=matching_cred.type,
|
||||
title=matching_cred.title,
|
||||
)
|
||||
else:
|
||||
# Create a placeholder for the missing credential
|
||||
provider = next(iter(field_info.provider), "unknown")
|
||||
cred_type = next(iter(field_info.supported_types), "api_key")
|
||||
missing_credentials.append(
|
||||
CredentialsMetaInput(
|
||||
id=field_name,
|
||||
provider=provider, # type: ignore
|
||||
type=cred_type, # type: ignore
|
||||
title=field_name.replace("_", " ").title(),
|
||||
)
|
||||
)
|
||||
|
||||
return matched_credentials, missing_credentials
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
@@ -135,24 +182,12 @@ class RunBlockTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if block is excluded from CoPilot (graph-only blocks)
|
||||
if (
|
||||
block.block_type in COPILOT_EXCLUDED_BLOCK_TYPES
|
||||
or block.id in COPILOT_EXCLUDED_BLOCK_IDS
|
||||
):
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
f"Block '{block.name}' cannot be run directly in CoPilot. "
|
||||
"This block is designed for use within graphs only."
|
||||
),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
|
||||
|
||||
# Check credentials
|
||||
creds_manager = IntegrationCredentialsManager()
|
||||
matched_credentials, missing_credentials = (
|
||||
await self._resolve_block_credentials(user_id, block, input_data)
|
||||
matched_credentials, missing_credentials = await self._check_block_credentials(
|
||||
user_id, block
|
||||
)
|
||||
|
||||
if missing_credentials:
|
||||
@@ -188,48 +223,11 @@ class RunBlockTool(BaseTool):
|
||||
)
|
||||
|
||||
try:
|
||||
# Get or create user's workspace for CoPilot file operations
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
|
||||
# Generate synthetic IDs for CoPilot context
|
||||
# Each chat session is treated as its own agent with one continuous run
|
||||
# This means:
|
||||
# - graph_id (agent) = session (memories scoped to session when limit_to_agent=True)
|
||||
# - graph_exec_id (run) = session (memories scoped to session when limit_to_run=True)
|
||||
# - node_exec_id = unique per block execution
|
||||
synthetic_graph_id = f"copilot-session-{session.session_id}"
|
||||
synthetic_graph_exec_id = f"copilot-session-{session.session_id}"
|
||||
synthetic_node_id = f"copilot-node-{block_id}"
|
||||
synthetic_node_exec_id = (
|
||||
f"copilot-{session.session_id}-{uuid.uuid4().hex[:8]}"
|
||||
)
|
||||
|
||||
# Create unified execution context with all required fields
|
||||
execution_context = ExecutionContext(
|
||||
# Execution identity
|
||||
user_id=user_id,
|
||||
graph_id=synthetic_graph_id,
|
||||
graph_exec_id=synthetic_graph_exec_id,
|
||||
graph_version=1, # Versions are 1-indexed
|
||||
node_id=synthetic_node_id,
|
||||
node_exec_id=synthetic_node_exec_id,
|
||||
# Workspace with session scoping
|
||||
workspace_id=workspace.id,
|
||||
session_id=session.session_id,
|
||||
)
|
||||
|
||||
# Prepare kwargs for block execution
|
||||
# Keep individual kwargs for backwards compatibility with existing blocks
|
||||
# Fetch actual credentials and prepare kwargs for block execution
|
||||
# Create execution context with defaults (blocks may require it)
|
||||
exec_kwargs: dict[str, Any] = {
|
||||
"user_id": user_id,
|
||||
"execution_context": execution_context,
|
||||
# Legacy: individual kwargs for blocks not yet using execution_context
|
||||
"workspace_id": workspace.id,
|
||||
"graph_exec_id": synthetic_graph_exec_id,
|
||||
"node_exec_id": synthetic_node_exec_id,
|
||||
"node_id": synthetic_node_id,
|
||||
"graph_version": 1, # Versions are 1-indexed
|
||||
"graph_id": synthetic_graph_id,
|
||||
"execution_context": ExecutionContext(),
|
||||
}
|
||||
|
||||
for field_name, cred_meta in matched_credentials.items():
|
||||
@@ -281,75 +279,29 @@ class RunBlockTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
async def _resolve_block_credentials(
|
||||
self,
|
||||
user_id: str,
|
||||
block: AnyBlockSchema,
|
||||
input_data: dict[str, Any] | None = None,
|
||||
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
|
||||
"""
|
||||
Resolve credentials for a block by matching user's available credentials.
|
||||
|
||||
Args:
|
||||
user_id: User ID
|
||||
block: Block to resolve credentials for
|
||||
input_data: Input data for the block (used to determine provider via discriminator)
|
||||
|
||||
Returns:
|
||||
tuple of (matched_credentials, missing_credentials) - matched credentials
|
||||
are used for block execution, missing ones indicate setup requirements.
|
||||
"""
|
||||
input_data = input_data or {}
|
||||
requirements = self._resolve_discriminated_credentials(block, input_data)
|
||||
|
||||
if not requirements:
|
||||
return {}, []
|
||||
|
||||
return await match_credentials_to_requirements(user_id, requirements)
|
||||
|
||||
def _get_inputs_list(self, block: AnyBlockSchema) -> list[dict[str, Any]]:
|
||||
def _get_inputs_list(self, block: Any) -> list[dict[str, Any]]:
|
||||
"""Extract non-credential inputs from block schema."""
|
||||
inputs_list = []
|
||||
schema = block.input_schema.jsonschema()
|
||||
properties = schema.get("properties", {})
|
||||
required_fields = set(schema.get("required", []))
|
||||
|
||||
# Get credential field names to exclude
|
||||
credentials_fields = set(block.input_schema.get_credentials_fields().keys())
|
||||
return get_inputs_from_schema(schema, exclude_fields=credentials_fields)
|
||||
|
||||
def _resolve_discriminated_credentials(
|
||||
self,
|
||||
block: AnyBlockSchema,
|
||||
input_data: dict[str, Any],
|
||||
) -> dict[str, CredentialsFieldInfo]:
|
||||
"""Resolve credential requirements, applying discriminator logic where needed."""
|
||||
credentials_fields_info = block.input_schema.get_credentials_fields_info()
|
||||
if not credentials_fields_info:
|
||||
return {}
|
||||
for field_name, field_schema in properties.items():
|
||||
# Skip credential fields
|
||||
if field_name in credentials_fields:
|
||||
continue
|
||||
|
||||
resolved: dict[str, CredentialsFieldInfo] = {}
|
||||
inputs_list.append(
|
||||
{
|
||||
"name": field_name,
|
||||
"title": field_schema.get("title", field_name),
|
||||
"type": field_schema.get("type", "string"),
|
||||
"description": field_schema.get("description", ""),
|
||||
"required": field_name in required_fields,
|
||||
}
|
||||
)
|
||||
|
||||
for field_name, field_info in credentials_fields_info.items():
|
||||
effective_field_info = field_info
|
||||
|
||||
if field_info.discriminator and field_info.discriminator_mapping:
|
||||
discriminator_value = input_data.get(field_info.discriminator)
|
||||
if discriminator_value is None:
|
||||
field = block.input_schema.model_fields.get(
|
||||
field_info.discriminator
|
||||
)
|
||||
if field and field.default is not PydanticUndefined:
|
||||
discriminator_value = field.default
|
||||
|
||||
if (
|
||||
discriminator_value
|
||||
and discriminator_value in field_info.discriminator_mapping
|
||||
):
|
||||
effective_field_info = field_info.discriminate(discriminator_value)
|
||||
# For host-scoped credentials, add the discriminator value
|
||||
# (e.g., URL) so _credential_is_for_host can match it
|
||||
effective_field_info.discriminator_values.add(discriminator_value)
|
||||
logger.debug(
|
||||
f"Discriminated provider for {field_name}: "
|
||||
f"{discriminator_value} -> {effective_field_info.provider}"
|
||||
)
|
||||
|
||||
resolved[field_name] = effective_field_info
|
||||
|
||||
return resolved
|
||||
return inputs_list
|
||||
@@ -5,16 +5,16 @@ from typing import Any
|
||||
|
||||
from prisma.enums import ContentType
|
||||
|
||||
from backend.api.features.store.hybrid_search import unified_hybrid_search
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.copilot.tools.base import BaseTool
|
||||
from backend.copilot.tools.models import (
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools.base import BaseTool
|
||||
from backend.api.features.chat.tools.models import (
|
||||
DocSearchResult,
|
||||
DocSearchResultsResponse,
|
||||
ErrorResponse,
|
||||
NoResultsResponse,
|
||||
ToolResponseBase,
|
||||
)
|
||||
from backend.api.features.store.hybrid_search import unified_hybrid_search
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -6,14 +6,9 @@ from typing import Any
|
||||
from backend.api.features.library import db as library_db
|
||||
from backend.api.features.library import model as library_model
|
||||
from backend.api.features.store import db as store_db
|
||||
from backend.data import graph as graph_db
|
||||
from backend.data.graph import GraphModel
|
||||
from backend.data.model import (
|
||||
Credentials,
|
||||
CredentialsFieldInfo,
|
||||
CredentialsMetaInput,
|
||||
HostScopedCredentials,
|
||||
OAuth2Credentials,
|
||||
)
|
||||
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.util.exceptions import NotFoundError
|
||||
|
||||
@@ -44,8 +39,14 @@ async def fetch_graph_from_store_slug(
|
||||
return None, None
|
||||
|
||||
# Get the graph from store listing version
|
||||
graph = await store_db.get_available_graph(
|
||||
store_agent.store_listing_version_id, hide_nodes=False
|
||||
graph_meta = await store_db.get_available_graph(
|
||||
store_agent.store_listing_version_id
|
||||
)
|
||||
graph = await graph_db.get_graph(
|
||||
graph_id=graph_meta.id,
|
||||
version=graph_meta.version,
|
||||
user_id=None, # Public access
|
||||
include_subgraphs=True,
|
||||
)
|
||||
return graph, store_agent
|
||||
|
||||
@@ -122,7 +123,7 @@ def build_missing_credentials_from_graph(
|
||||
|
||||
return {
|
||||
field_key: _serialize_missing_credential(field_key, field_info)
|
||||
for field_key, (field_info, _, _) in aggregated_fields.items()
|
||||
for field_key, (field_info, _node_fields) in aggregated_fields.items()
|
||||
if field_key not in matched_keys
|
||||
}
|
||||
|
||||
@@ -224,99 +225,6 @@ async def get_or_create_library_agent(
|
||||
return library_agents[0]
|
||||
|
||||
|
||||
async def match_credentials_to_requirements(
|
||||
user_id: str,
|
||||
requirements: dict[str, CredentialsFieldInfo],
|
||||
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
|
||||
"""
|
||||
Match user's credentials against a dictionary of credential requirements.
|
||||
|
||||
This is the core matching logic shared by both graph and block credential matching.
|
||||
"""
|
||||
matched: dict[str, CredentialsMetaInput] = {}
|
||||
missing: list[CredentialsMetaInput] = []
|
||||
|
||||
if not requirements:
|
||||
return matched, missing
|
||||
|
||||
available_creds = await get_user_credentials(user_id)
|
||||
|
||||
for field_name, field_info in requirements.items():
|
||||
matching_cred = find_matching_credential(available_creds, field_info)
|
||||
|
||||
if matching_cred:
|
||||
try:
|
||||
matched[field_name] = create_credential_meta_from_match(matching_cred)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to create CredentialsMetaInput for field '{field_name}': "
|
||||
f"provider={matching_cred.provider}, type={matching_cred.type}, "
|
||||
f"credential_id={matching_cred.id}",
|
||||
exc_info=True,
|
||||
)
|
||||
provider = next(iter(field_info.provider), "unknown")
|
||||
cred_type = next(iter(field_info.supported_types), "api_key")
|
||||
missing.append(
|
||||
CredentialsMetaInput(
|
||||
id=field_name,
|
||||
provider=provider, # type: ignore
|
||||
type=cred_type, # type: ignore
|
||||
title=f"{field_name} (validation failed: {e})",
|
||||
)
|
||||
)
|
||||
else:
|
||||
provider = next(iter(field_info.provider), "unknown")
|
||||
cred_type = next(iter(field_info.supported_types), "api_key")
|
||||
missing.append(
|
||||
CredentialsMetaInput(
|
||||
id=field_name,
|
||||
provider=provider, # type: ignore
|
||||
type=cred_type, # type: ignore
|
||||
title=field_name.replace("_", " ").title(),
|
||||
)
|
||||
)
|
||||
|
||||
return matched, missing
|
||||
|
||||
|
||||
async def get_user_credentials(user_id: str) -> list[Credentials]:
|
||||
"""Get all available credentials for a user."""
|
||||
creds_manager = IntegrationCredentialsManager()
|
||||
return await creds_manager.store.get_all_creds(user_id)
|
||||
|
||||
|
||||
def find_matching_credential(
|
||||
available_creds: list[Credentials],
|
||||
field_info: CredentialsFieldInfo,
|
||||
) -> Credentials | None:
|
||||
"""Find a credential that matches the required provider, type, scopes, and host."""
|
||||
for cred in available_creds:
|
||||
if cred.provider not in field_info.provider:
|
||||
continue
|
||||
if cred.type not in field_info.supported_types:
|
||||
continue
|
||||
if cred.type == "oauth2" and not _credential_has_required_scopes(
|
||||
cred, field_info
|
||||
):
|
||||
continue
|
||||
if cred.type == "host_scoped" and not _credential_is_for_host(cred, field_info):
|
||||
continue
|
||||
return cred
|
||||
return None
|
||||
|
||||
|
||||
def create_credential_meta_from_match(
|
||||
matching_cred: Credentials,
|
||||
) -> CredentialsMetaInput:
|
||||
"""Create a CredentialsMetaInput from a matched credential."""
|
||||
return CredentialsMetaInput(
|
||||
id=matching_cred.id,
|
||||
provider=matching_cred.provider, # type: ignore
|
||||
type=matching_cred.type,
|
||||
title=matching_cred.title,
|
||||
)
|
||||
|
||||
|
||||
async def match_user_credentials_to_graph(
|
||||
user_id: str,
|
||||
graph: GraphModel,
|
||||
@@ -356,24 +264,15 @@ async def match_user_credentials_to_graph(
|
||||
# provider is in the set of acceptable providers.
|
||||
for credential_field_name, (
|
||||
credential_requirements,
|
||||
_,
|
||||
_,
|
||||
_node_fields,
|
||||
) in aggregated_creds.items():
|
||||
# Find first matching credential by provider, type, and scopes
|
||||
# Find first matching credential by provider and type
|
||||
matching_cred = next(
|
||||
(
|
||||
cred
|
||||
for cred in available_creds
|
||||
if cred.provider in credential_requirements.provider
|
||||
and cred.type in credential_requirements.supported_types
|
||||
and (
|
||||
cred.type != "oauth2"
|
||||
or _credential_has_required_scopes(cred, credential_requirements)
|
||||
)
|
||||
and (
|
||||
cred.type != "host_scoped"
|
||||
or _credential_is_for_host(cred, credential_requirements)
|
||||
)
|
||||
),
|
||||
None,
|
||||
)
|
||||
@@ -397,17 +296,10 @@ async def match_user_credentials_to_graph(
|
||||
f"{credential_field_name} (validation failed: {e})"
|
||||
)
|
||||
else:
|
||||
# Build a helpful error message including scope requirements
|
||||
error_parts = [
|
||||
f"provider in {list(credential_requirements.provider)}",
|
||||
f"type in {list(credential_requirements.supported_types)}",
|
||||
]
|
||||
if credential_requirements.required_scopes:
|
||||
error_parts.append(
|
||||
f"scopes including {list(credential_requirements.required_scopes)}"
|
||||
)
|
||||
missing_creds.append(
|
||||
f"{credential_field_name} (requires {', '.join(error_parts)})"
|
||||
f"{credential_field_name} "
|
||||
f"(requires provider in {list(credential_requirements.provider)}, "
|
||||
f"type in {list(credential_requirements.supported_types)})"
|
||||
)
|
||||
|
||||
logger.info(
|
||||
@@ -417,33 +309,6 @@ async def match_user_credentials_to_graph(
|
||||
return graph_credentials_inputs, missing_creds
|
||||
|
||||
|
||||
def _credential_has_required_scopes(
|
||||
credential: OAuth2Credentials,
|
||||
requirements: CredentialsFieldInfo,
|
||||
) -> bool:
|
||||
"""Check if an OAuth2 credential has all the scopes required by the input."""
|
||||
# If no scopes are required, any credential matches
|
||||
if not requirements.required_scopes:
|
||||
return True
|
||||
return set(credential.scopes).issuperset(requirements.required_scopes)
|
||||
|
||||
|
||||
def _credential_is_for_host(
|
||||
credential: HostScopedCredentials,
|
||||
requirements: CredentialsFieldInfo,
|
||||
) -> bool:
|
||||
"""Check if a host-scoped credential matches the host required by the input."""
|
||||
# We need to know the host to match host-scoped credentials to.
|
||||
# Graph.aggregate_credentials_inputs() adds the node's set URL value (if any)
|
||||
# to discriminator_values. No discriminator_values -> no host to match against.
|
||||
if not requirements.discriminator_values:
|
||||
return True
|
||||
|
||||
# Check that credential host matches required host.
|
||||
# Host-scoped credential inputs are grouped by host, so any item from the set works.
|
||||
return credential.matches_url(list(requirements.discriminator_values)[0])
|
||||
|
||||
|
||||
async def check_user_has_required_credentials(
|
||||
user_id: str,
|
||||
required_credentials: list[CredentialsMetaInput],
|
||||
@@ -19,10 +19,7 @@ from backend.data.graph import GraphSettings
|
||||
from backend.data.includes import AGENT_PRESET_INCLUDE, library_agent_include
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.integrations.webhooks.graph_lifecycle_hooks import (
|
||||
on_graph_activate,
|
||||
on_graph_deactivate,
|
||||
)
|
||||
from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate
|
||||
from backend.util.clients import get_scheduler_client
|
||||
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
|
||||
from backend.util.json import SafeJson
|
||||
@@ -42,7 +39,6 @@ async def list_library_agents(
|
||||
sort_by: library_model.LibraryAgentSort = library_model.LibraryAgentSort.UPDATED_AT,
|
||||
page: int = 1,
|
||||
page_size: int = 50,
|
||||
include_executions: bool = False,
|
||||
) -> library_model.LibraryAgentResponse:
|
||||
"""
|
||||
Retrieves a paginated list of LibraryAgent records for a given user.
|
||||
@@ -53,9 +49,6 @@ async def list_library_agents(
|
||||
sort_by: Sorting field (createdAt, updatedAt, isFavorite, isCreatedByUser).
|
||||
page: Current page (1-indexed).
|
||||
page_size: Number of items per page.
|
||||
include_executions: Whether to include execution data for status calculation.
|
||||
Defaults to False for performance (UI fetches status separately).
|
||||
Set to True when accurate status/metrics are needed (e.g., agent generator).
|
||||
|
||||
Returns:
|
||||
A LibraryAgentResponse containing the list of agents and pagination details.
|
||||
@@ -83,6 +76,7 @@ async def list_library_agents(
|
||||
"isArchived": False,
|
||||
}
|
||||
|
||||
# Build search filter if applicable
|
||||
if search_term:
|
||||
where_clause["OR"] = [
|
||||
{
|
||||
@@ -99,6 +93,7 @@ async def list_library_agents(
|
||||
},
|
||||
]
|
||||
|
||||
# Determine sorting
|
||||
order_by: prisma.types.LibraryAgentOrderByInput | None = None
|
||||
|
||||
if sort_by == library_model.LibraryAgentSort.CREATED_AT:
|
||||
@@ -110,7 +105,7 @@ async def list_library_agents(
|
||||
library_agents = await prisma.models.LibraryAgent.prisma().find_many(
|
||||
where=where_clause,
|
||||
include=library_agent_include(
|
||||
user_id, include_nodes=False, include_executions=include_executions
|
||||
user_id, include_nodes=False, include_executions=False
|
||||
),
|
||||
order=order_by,
|
||||
skip=(page - 1) * page_size,
|
||||
@@ -374,7 +369,7 @@ async def get_library_agent_by_graph_id(
|
||||
|
||||
|
||||
async def add_generated_agent_image(
|
||||
graph: graph_db.GraphBaseMeta,
|
||||
graph: graph_db.BaseGraph,
|
||||
user_id: str,
|
||||
library_agent_id: str,
|
||||
) -> Optional[prisma.models.LibraryAgent]:
|
||||
@@ -540,92 +535,6 @@ async def update_agent_version_in_library(
|
||||
return library_model.LibraryAgent.from_db(lib)
|
||||
|
||||
|
||||
async def create_graph_in_library(
|
||||
graph: graph_db.Graph,
|
||||
user_id: str,
|
||||
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
|
||||
"""Create a new graph and add it to the user's library."""
|
||||
graph.version = 1
|
||||
graph_model = graph_db.make_graph_model(graph, user_id)
|
||||
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=True)
|
||||
|
||||
created_graph = await graph_db.create_graph(graph_model, user_id)
|
||||
|
||||
library_agents = await create_library_agent(
|
||||
graph=created_graph,
|
||||
user_id=user_id,
|
||||
sensitive_action_safe_mode=True,
|
||||
create_library_agents_for_sub_graphs=False,
|
||||
)
|
||||
|
||||
if created_graph.is_active:
|
||||
created_graph = await on_graph_activate(created_graph, user_id=user_id)
|
||||
|
||||
return created_graph, library_agents[0]
|
||||
|
||||
|
||||
async def update_graph_in_library(
|
||||
graph: graph_db.Graph,
|
||||
user_id: str,
|
||||
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
|
||||
"""Create a new version of an existing graph and update the library entry."""
|
||||
existing_versions = await graph_db.get_graph_all_versions(graph.id, user_id)
|
||||
current_active_version = (
|
||||
next((v for v in existing_versions if v.is_active), None)
|
||||
if existing_versions
|
||||
else None
|
||||
)
|
||||
graph.version = (
|
||||
max(v.version for v in existing_versions) + 1 if existing_versions else 1
|
||||
)
|
||||
|
||||
graph_model = graph_db.make_graph_model(graph, user_id)
|
||||
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=False)
|
||||
|
||||
created_graph = await graph_db.create_graph(graph_model, user_id)
|
||||
|
||||
library_agent = await get_library_agent_by_graph_id(user_id, created_graph.id)
|
||||
if not library_agent:
|
||||
raise NotFoundError(f"Library agent not found for graph {created_graph.id}")
|
||||
|
||||
library_agent = await update_library_agent_version_and_settings(
|
||||
user_id, created_graph
|
||||
)
|
||||
|
||||
if created_graph.is_active:
|
||||
created_graph = await on_graph_activate(created_graph, user_id=user_id)
|
||||
await graph_db.set_graph_active_version(
|
||||
graph_id=created_graph.id,
|
||||
version=created_graph.version,
|
||||
user_id=user_id,
|
||||
)
|
||||
if current_active_version:
|
||||
await on_graph_deactivate(current_active_version, user_id=user_id)
|
||||
|
||||
return created_graph, library_agent
|
||||
|
||||
|
||||
async def update_library_agent_version_and_settings(
|
||||
user_id: str, agent_graph: graph_db.GraphModel
|
||||
) -> library_model.LibraryAgent:
|
||||
"""Update library agent to point to new graph version and sync settings."""
|
||||
library = await update_agent_version_in_library(
|
||||
user_id, agent_graph.id, agent_graph.version
|
||||
)
|
||||
updated_settings = GraphSettings.from_graph(
|
||||
graph=agent_graph,
|
||||
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
|
||||
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
|
||||
)
|
||||
if updated_settings != library.settings:
|
||||
library = await update_library_agent(
|
||||
library_agent_id=library.id,
|
||||
user_id=user_id,
|
||||
settings=updated_settings,
|
||||
)
|
||||
return library
|
||||
|
||||
|
||||
async def update_library_agent(
|
||||
library_agent_id: str,
|
||||
user_id: str,
|
||||
|
||||
@@ -9,7 +9,6 @@ import pydantic
|
||||
from backend.data.block import BlockInput
|
||||
from backend.data.graph import GraphModel, GraphSettings, GraphTriggerInfo
|
||||
from backend.data.model import CredentialsMetaInput, is_credentials_field_name
|
||||
from backend.util.json import loads as json_loads
|
||||
from backend.util.models import Pagination
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -17,10 +16,10 @@ if TYPE_CHECKING:
|
||||
|
||||
|
||||
class LibraryAgentStatus(str, Enum):
|
||||
COMPLETED = "COMPLETED"
|
||||
HEALTHY = "HEALTHY"
|
||||
WAITING = "WAITING"
|
||||
ERROR = "ERROR"
|
||||
COMPLETED = "COMPLETED" # All runs completed
|
||||
HEALTHY = "HEALTHY" # Agent is running (not all runs have completed)
|
||||
WAITING = "WAITING" # Agent is queued or waiting to start
|
||||
ERROR = "ERROR" # Agent is in an error state
|
||||
|
||||
|
||||
class MarketplaceListingCreator(pydantic.BaseModel):
|
||||
@@ -40,30 +39,6 @@ class MarketplaceListing(pydantic.BaseModel):
|
||||
creator: MarketplaceListingCreator
|
||||
|
||||
|
||||
class RecentExecution(pydantic.BaseModel):
|
||||
"""Summary of a recent execution for quality assessment.
|
||||
|
||||
Used by the LLM to understand the agent's recent performance with specific examples
|
||||
rather than just aggregate statistics.
|
||||
"""
|
||||
|
||||
status: str
|
||||
correctness_score: float | None = None
|
||||
activity_summary: str | None = None
|
||||
|
||||
|
||||
def _parse_settings(settings: dict | str | None) -> GraphSettings:
|
||||
"""Parse settings from database, handling both dict and string formats."""
|
||||
if settings is None:
|
||||
return GraphSettings()
|
||||
try:
|
||||
if isinstance(settings, str):
|
||||
settings = json_loads(settings)
|
||||
return GraphSettings.model_validate(settings)
|
||||
except Exception:
|
||||
return GraphSettings()
|
||||
|
||||
|
||||
class LibraryAgent(pydantic.BaseModel):
|
||||
"""
|
||||
Represents an agent in the library, including metadata for display and
|
||||
@@ -73,7 +48,7 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
id: str
|
||||
graph_id: str
|
||||
graph_version: int
|
||||
owner_user_id: str
|
||||
owner_user_id: str # ID of user who owns/created this agent graph
|
||||
|
||||
image_url: str | None
|
||||
|
||||
@@ -89,7 +64,7 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
description: str
|
||||
instructions: str | None = None
|
||||
|
||||
input_schema: dict[str, Any]
|
||||
input_schema: dict[str, Any] # Should be BlockIOObjectSubSchema in frontend
|
||||
output_schema: dict[str, Any]
|
||||
credentials_input_schema: dict[str, Any] | None = pydantic.Field(
|
||||
description="Input schema for credentials required by the agent",
|
||||
@@ -106,19 +81,25 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
)
|
||||
trigger_setup_info: Optional[GraphTriggerInfo] = None
|
||||
|
||||
# Indicates whether there's a new output (based on recent runs)
|
||||
new_output: bool
|
||||
execution_count: int = 0
|
||||
success_rate: float | None = None
|
||||
avg_correctness_score: float | None = None
|
||||
recent_executions: list[RecentExecution] = pydantic.Field(
|
||||
default_factory=list,
|
||||
description="List of recent executions with status, score, and summary",
|
||||
)
|
||||
|
||||
# Whether the user can access the underlying graph
|
||||
can_access_graph: bool
|
||||
|
||||
# Indicates if this agent is the latest version
|
||||
is_latest_version: bool
|
||||
|
||||
# Whether the agent is marked as favorite by the user
|
||||
is_favorite: bool
|
||||
|
||||
# Recommended schedule cron (from marketplace agents)
|
||||
recommended_schedule_cron: str | None = None
|
||||
|
||||
# User-specific settings for this library agent
|
||||
settings: GraphSettings = pydantic.Field(default_factory=GraphSettings)
|
||||
|
||||
# Marketplace listing information if the agent has been published
|
||||
marketplace_listing: Optional["MarketplaceListing"] = None
|
||||
|
||||
@staticmethod
|
||||
@@ -142,6 +123,7 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
agent_updated_at = agent.AgentGraph.updatedAt
|
||||
lib_agent_updated_at = agent.updatedAt
|
||||
|
||||
# Compute updated_at as the latest between library agent and graph
|
||||
updated_at = (
|
||||
max(agent_updated_at, lib_agent_updated_at)
|
||||
if agent_updated_at
|
||||
@@ -154,6 +136,7 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
creator_name = agent.Creator.name or "Unknown"
|
||||
creator_image_url = agent.Creator.avatarUrl or ""
|
||||
|
||||
# Logic to calculate status and new_output
|
||||
week_ago = datetime.datetime.now(datetime.timezone.utc) - datetime.timedelta(
|
||||
days=7
|
||||
)
|
||||
@@ -162,55 +145,13 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
status = status_result.status
|
||||
new_output = status_result.new_output
|
||||
|
||||
execution_count = len(executions)
|
||||
success_rate: float | None = None
|
||||
avg_correctness_score: float | None = None
|
||||
if execution_count > 0:
|
||||
success_count = sum(
|
||||
1
|
||||
for e in executions
|
||||
if e.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED
|
||||
)
|
||||
success_rate = (success_count / execution_count) * 100
|
||||
|
||||
correctness_scores = []
|
||||
for e in executions:
|
||||
if e.stats and isinstance(e.stats, dict):
|
||||
score = e.stats.get("correctness_score")
|
||||
if score is not None and isinstance(score, (int, float)):
|
||||
correctness_scores.append(float(score))
|
||||
if correctness_scores:
|
||||
avg_correctness_score = sum(correctness_scores) / len(
|
||||
correctness_scores
|
||||
)
|
||||
|
||||
recent_executions: list[RecentExecution] = []
|
||||
for e in executions:
|
||||
exec_score: float | None = None
|
||||
exec_summary: str | None = None
|
||||
if e.stats and isinstance(e.stats, dict):
|
||||
score = e.stats.get("correctness_score")
|
||||
if score is not None and isinstance(score, (int, float)):
|
||||
exec_score = float(score)
|
||||
summary = e.stats.get("activity_status")
|
||||
if summary is not None and isinstance(summary, str):
|
||||
exec_summary = summary
|
||||
exec_status = (
|
||||
e.executionStatus.value
|
||||
if hasattr(e.executionStatus, "value")
|
||||
else str(e.executionStatus)
|
||||
)
|
||||
recent_executions.append(
|
||||
RecentExecution(
|
||||
status=exec_status,
|
||||
correctness_score=exec_score,
|
||||
activity_summary=exec_summary,
|
||||
)
|
||||
)
|
||||
|
||||
# Check if user can access the graph
|
||||
can_access_graph = agent.AgentGraph.userId == agent.userId
|
||||
|
||||
# Hard-coded to True until a method to check is implemented
|
||||
is_latest_version = True
|
||||
|
||||
# Build marketplace_listing if available
|
||||
marketplace_listing_data = None
|
||||
if store_listing and store_listing.ActiveVersion and profile:
|
||||
creator_data = MarketplaceListingCreator(
|
||||
@@ -249,15 +190,11 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
has_sensitive_action=graph.has_sensitive_action,
|
||||
trigger_setup_info=graph.trigger_setup_info,
|
||||
new_output=new_output,
|
||||
execution_count=execution_count,
|
||||
success_rate=success_rate,
|
||||
avg_correctness_score=avg_correctness_score,
|
||||
recent_executions=recent_executions,
|
||||
can_access_graph=can_access_graph,
|
||||
is_latest_version=is_latest_version,
|
||||
is_favorite=agent.isFavorite,
|
||||
recommended_schedule_cron=agent.AgentGraph.recommendedScheduleCron,
|
||||
settings=_parse_settings(agent.settings),
|
||||
settings=GraphSettings.model_validate(agent.settings),
|
||||
marketplace_listing=marketplace_listing_data,
|
||||
)
|
||||
|
||||
@@ -283,15 +220,18 @@ def _calculate_agent_status(
|
||||
if not executions:
|
||||
return AgentStatusResult(status=LibraryAgentStatus.COMPLETED, new_output=False)
|
||||
|
||||
# Track how many times each execution status appears
|
||||
status_counts = {status: 0 for status in prisma.enums.AgentExecutionStatus}
|
||||
new_output = False
|
||||
|
||||
for execution in executions:
|
||||
# Check if there's a completed run more recent than `recent_threshold`
|
||||
if execution.createdAt >= recent_threshold:
|
||||
if execution.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED:
|
||||
new_output = True
|
||||
status_counts[execution.executionStatus] += 1
|
||||
|
||||
# Determine the final status based on counts
|
||||
if status_counts[prisma.enums.AgentExecutionStatus.FAILED] > 0:
|
||||
return AgentStatusResult(status=LibraryAgentStatus.ERROR, new_output=new_output)
|
||||
elif status_counts[prisma.enums.AgentExecutionStatus.QUEUED] > 0:
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import asyncio
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Literal, overload
|
||||
from typing import Any, Literal
|
||||
|
||||
import fastapi
|
||||
import prisma.enums
|
||||
@@ -11,8 +11,8 @@ import prisma.types
|
||||
|
||||
from backend.data.db import transaction
|
||||
from backend.data.graph import (
|
||||
GraphMeta,
|
||||
GraphModel,
|
||||
GraphModelWithoutNodes,
|
||||
get_graph,
|
||||
get_graph_as_admin,
|
||||
get_sub_graphs,
|
||||
@@ -112,7 +112,6 @@ async def get_store_agents(
|
||||
description=agent["description"],
|
||||
runs=agent["runs"],
|
||||
rating=agent["rating"],
|
||||
agent_graph_id=agent.get("agentGraphId", ""),
|
||||
)
|
||||
store_agents.append(store_agent)
|
||||
except Exception as e:
|
||||
@@ -171,7 +170,6 @@ async def get_store_agents(
|
||||
description=agent.description,
|
||||
runs=agent.runs,
|
||||
rating=agent.rating,
|
||||
agent_graph_id=agent.agentGraphId,
|
||||
)
|
||||
# Add to the list only if creation was successful
|
||||
store_agents.append(store_agent)
|
||||
@@ -334,22 +332,7 @@ async def get_store_agent_details(
|
||||
raise DatabaseError("Failed to fetch agent details") from e
|
||||
|
||||
|
||||
@overload
|
||||
async def get_available_graph(
|
||||
store_listing_version_id: str, hide_nodes: Literal[False]
|
||||
) -> GraphModel: ...
|
||||
|
||||
|
||||
@overload
|
||||
async def get_available_graph(
|
||||
store_listing_version_id: str, hide_nodes: Literal[True] = True
|
||||
) -> GraphModelWithoutNodes: ...
|
||||
|
||||
|
||||
async def get_available_graph(
|
||||
store_listing_version_id: str,
|
||||
hide_nodes: bool = True,
|
||||
) -> GraphModelWithoutNodes | GraphModel:
|
||||
async def get_available_graph(store_listing_version_id: str) -> GraphMeta:
|
||||
try:
|
||||
# Get avaialble, non-deleted store listing version
|
||||
store_listing_version = (
|
||||
@@ -359,7 +342,7 @@ async def get_available_graph(
|
||||
"isAvailable": True,
|
||||
"isDeleted": False,
|
||||
},
|
||||
include={"AgentGraph": {"include": AGENT_GRAPH_INCLUDE}},
|
||||
include={"AgentGraph": {"include": {"Nodes": True}}},
|
||||
)
|
||||
)
|
||||
|
||||
@@ -369,9 +352,7 @@ async def get_available_graph(
|
||||
detail=f"Store listing version {store_listing_version_id} not found",
|
||||
)
|
||||
|
||||
return (GraphModelWithoutNodes if hide_nodes else GraphModel).from_db(
|
||||
store_listing_version.AgentGraph
|
||||
)
|
||||
return GraphModel.from_db(store_listing_version.AgentGraph).meta()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting agent: {e}")
|
||||
|
||||
@@ -454,9 +454,6 @@ async def test_unified_hybrid_search_pagination(
|
||||
cleanup_embeddings: list,
|
||||
):
|
||||
"""Test unified search pagination works correctly."""
|
||||
# Use a unique search term to avoid matching other test data
|
||||
unique_term = f"xyzpagtest{uuid.uuid4().hex[:8]}"
|
||||
|
||||
# Create multiple items
|
||||
content_ids = []
|
||||
for i in range(5):
|
||||
@@ -468,14 +465,14 @@ async def test_unified_hybrid_search_pagination(
|
||||
content_type=ContentType.BLOCK,
|
||||
content_id=content_id,
|
||||
embedding=mock_embedding,
|
||||
searchable_text=f"{unique_term} item number {i}",
|
||||
searchable_text=f"pagination test item number {i}",
|
||||
metadata={"index": i},
|
||||
user_id=None,
|
||||
)
|
||||
|
||||
# Get first page
|
||||
page1_results, total1 = await unified_hybrid_search(
|
||||
query=unique_term,
|
||||
query="pagination test",
|
||||
content_types=[ContentType.BLOCK],
|
||||
page=1,
|
||||
page_size=2,
|
||||
@@ -483,7 +480,7 @@ async def test_unified_hybrid_search_pagination(
|
||||
|
||||
# Get second page
|
||||
page2_results, total2 = await unified_hybrid_search(
|
||||
query=unique_term,
|
||||
query="pagination test",
|
||||
content_types=[ContentType.BLOCK],
|
||||
page=2,
|
||||
page_size=2,
|
||||
|
||||
@@ -8,7 +8,6 @@ Includes BM25 reranking for improved lexical relevance.
|
||||
|
||||
import logging
|
||||
import re
|
||||
import time
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Literal
|
||||
|
||||
@@ -363,11 +362,7 @@ async def unified_hybrid_search(
|
||||
LIMIT {limit_param} OFFSET {offset_param}
|
||||
"""
|
||||
|
||||
try:
|
||||
results = await query_raw_with_schema(sql_query, *params)
|
||||
except Exception as e:
|
||||
await _log_vector_error_diagnostics(e)
|
||||
raise
|
||||
results = await query_raw_with_schema(sql_query, *params)
|
||||
|
||||
total = results[0]["total_count"] if results else 0
|
||||
# Apply BM25 reranking
|
||||
@@ -605,7 +600,6 @@ async def hybrid_search(
|
||||
sa.featured,
|
||||
sa.is_available,
|
||||
sa.updated_at,
|
||||
sa."agentGraphId",
|
||||
-- Searchable text for BM25 reranking
|
||||
COALESCE(sa.agent_name, '') || ' ' || COALESCE(sa.sub_heading, '') || ' ' || COALESCE(sa.description, '') as searchable_text,
|
||||
-- Semantic score
|
||||
@@ -665,7 +659,6 @@ async def hybrid_search(
|
||||
featured,
|
||||
is_available,
|
||||
updated_at,
|
||||
"agentGraphId",
|
||||
searchable_text,
|
||||
semantic_score,
|
||||
lexical_score,
|
||||
@@ -691,11 +684,7 @@ async def hybrid_search(
|
||||
LIMIT {limit_param} OFFSET {offset_param}
|
||||
"""
|
||||
|
||||
try:
|
||||
results = await query_raw_with_schema(sql_query, *params)
|
||||
except Exception as e:
|
||||
await _log_vector_error_diagnostics(e)
|
||||
raise
|
||||
results = await query_raw_with_schema(sql_query, *params)
|
||||
|
||||
total = results[0]["total_count"] if results else 0
|
||||
|
||||
@@ -727,87 +716,6 @@ async def hybrid_search_simple(
|
||||
return await hybrid_search(query=query, page=page, page_size=page_size)
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Diagnostics
|
||||
# ============================================================================
|
||||
|
||||
# Rate limit: only log vector error diagnostics once per this interval
|
||||
_VECTOR_DIAG_INTERVAL_SECONDS = 60
|
||||
_last_vector_diag_time: float = 0
|
||||
|
||||
|
||||
async def _log_vector_error_diagnostics(error: Exception) -> None:
|
||||
"""Log diagnostic info when 'type vector does not exist' error occurs.
|
||||
|
||||
Note: Diagnostic queries use query_raw_with_schema which may run on a different
|
||||
pooled connection than the one that failed. Session-level search_path can differ,
|
||||
so these diagnostics show cluster-wide state, not necessarily the failed session.
|
||||
|
||||
Includes rate limiting to avoid log spam - only logs once per minute.
|
||||
Caller should re-raise the error after calling this function.
|
||||
"""
|
||||
global _last_vector_diag_time
|
||||
|
||||
# Check if this is the vector type error
|
||||
error_str = str(error).lower()
|
||||
if not (
|
||||
"type" in error_str and "vector" in error_str and "does not exist" in error_str
|
||||
):
|
||||
return
|
||||
|
||||
# Rate limit: only log once per interval
|
||||
now = time.time()
|
||||
if now - _last_vector_diag_time < _VECTOR_DIAG_INTERVAL_SECONDS:
|
||||
return
|
||||
_last_vector_diag_time = now
|
||||
|
||||
try:
|
||||
diagnostics: dict[str, object] = {}
|
||||
|
||||
try:
|
||||
search_path_result = await query_raw_with_schema("SHOW search_path")
|
||||
diagnostics["search_path"] = search_path_result
|
||||
except Exception as e:
|
||||
diagnostics["search_path"] = f"Error: {e}"
|
||||
|
||||
try:
|
||||
schema_result = await query_raw_with_schema("SELECT current_schema()")
|
||||
diagnostics["current_schema"] = schema_result
|
||||
except Exception as e:
|
||||
diagnostics["current_schema"] = f"Error: {e}"
|
||||
|
||||
try:
|
||||
user_result = await query_raw_with_schema(
|
||||
"SELECT current_user, session_user, current_database()"
|
||||
)
|
||||
diagnostics["user_info"] = user_result
|
||||
except Exception as e:
|
||||
diagnostics["user_info"] = f"Error: {e}"
|
||||
|
||||
try:
|
||||
# Check pgvector extension installation (cluster-wide, stable info)
|
||||
ext_result = await query_raw_with_schema(
|
||||
"SELECT extname, extversion, nspname as schema "
|
||||
"FROM pg_extension e "
|
||||
"JOIN pg_namespace n ON e.extnamespace = n.oid "
|
||||
"WHERE extname = 'vector'"
|
||||
)
|
||||
diagnostics["pgvector_extension"] = ext_result
|
||||
except Exception as e:
|
||||
diagnostics["pgvector_extension"] = f"Error: {e}"
|
||||
|
||||
logger.error(
|
||||
f"Vector type error diagnostics:\n"
|
||||
f" Error: {error}\n"
|
||||
f" search_path: {diagnostics.get('search_path')}\n"
|
||||
f" current_schema: {diagnostics.get('current_schema')}\n"
|
||||
f" user_info: {diagnostics.get('user_info')}\n"
|
||||
f" pgvector_extension: {diagnostics.get('pgvector_extension')}"
|
||||
)
|
||||
except Exception as diag_error:
|
||||
logger.error(f"Failed to collect vector error diagnostics: {diag_error}")
|
||||
|
||||
|
||||
# Backward compatibility alias - HybridSearchWeights maps to StoreAgentSearchWeights
|
||||
# for existing code that expects the popularity parameter
|
||||
HybridSearchWeights = StoreAgentSearchWeights
|
||||
|
||||
@@ -16,7 +16,7 @@ from backend.blocks.ideogram import (
|
||||
StyleType,
|
||||
UpscaleOption,
|
||||
)
|
||||
from backend.data.graph import GraphBaseMeta
|
||||
from backend.data.graph import BaseGraph
|
||||
from backend.data.model import CredentialsMetaInput, ProviderName
|
||||
from backend.integrations.credentials_store import ideogram_credentials
|
||||
from backend.util.request import Requests
|
||||
@@ -34,14 +34,14 @@ class ImageStyle(str, Enum):
|
||||
DIGITAL_ART = "digital art"
|
||||
|
||||
|
||||
async def generate_agent_image(agent: GraphBaseMeta | AgentGraph) -> io.BytesIO:
|
||||
async def generate_agent_image(agent: BaseGraph | AgentGraph) -> io.BytesIO:
|
||||
if settings.config.use_agent_image_generation_v2:
|
||||
return await generate_agent_image_v2(graph=agent)
|
||||
else:
|
||||
return await generate_agent_image_v1(agent=agent)
|
||||
|
||||
|
||||
async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.BytesIO:
|
||||
async def generate_agent_image_v2(graph: BaseGraph | AgentGraph) -> io.BytesIO:
|
||||
"""
|
||||
Generate an image for an agent using Ideogram model.
|
||||
Returns:
|
||||
@@ -54,17 +54,14 @@ async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.Bytes
|
||||
description = f"{name} ({graph.description})" if graph.description else name
|
||||
|
||||
prompt = (
|
||||
"Create a visually striking retro-futuristic vector pop art illustration "
|
||||
f'prominently featuring "{name}" in bold typography. The image clearly and '
|
||||
f"literally depicts a {description}, along with recognizable objects directly "
|
||||
f"associated with the primary function of a {name}. "
|
||||
f"Ensure the imagery is concrete, intuitive, and immediately understandable, "
|
||||
f"clearly conveying the purpose of a {name}. "
|
||||
"Maintain vibrant, limited-palette colors, sharp vector lines, "
|
||||
"geometric shapes, flat illustration techniques, and solid colors "
|
||||
"without gradients or shading. Preserve a retro-futuristic aesthetic "
|
||||
"influenced by mid-century futurism and 1960s psychedelia, "
|
||||
"prioritizing clear visual storytelling and thematic clarity above all else."
|
||||
f"Create a visually striking retro-futuristic vector pop art illustration prominently featuring "
|
||||
f'"{name}" in bold typography. The image clearly and literally depicts a {description}, '
|
||||
f"along with recognizable objects directly associated with the primary function of a {name}. "
|
||||
f"Ensure the imagery is concrete, intuitive, and immediately understandable, clearly conveying the "
|
||||
f"purpose of a {name}. Maintain vibrant, limited-palette colors, sharp vector lines, geometric "
|
||||
f"shapes, flat illustration techniques, and solid colors without gradients or shading. Preserve a "
|
||||
f"retro-futuristic aesthetic influenced by mid-century futurism and 1960s psychedelia, "
|
||||
f"prioritizing clear visual storytelling and thematic clarity above all else."
|
||||
)
|
||||
|
||||
custom_colors = [
|
||||
@@ -102,12 +99,12 @@ async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.Bytes
|
||||
return io.BytesIO(response.content)
|
||||
|
||||
|
||||
async def generate_agent_image_v1(agent: GraphBaseMeta | AgentGraph) -> io.BytesIO:
|
||||
async def generate_agent_image_v1(agent: BaseGraph | AgentGraph) -> io.BytesIO:
|
||||
"""
|
||||
Generate an image for an agent using Flux model via Replicate API.
|
||||
|
||||
Args:
|
||||
agent (GraphBaseMeta | AgentGraph): The agent to generate an image for
|
||||
agent (Graph): The agent to generate an image for
|
||||
|
||||
Returns:
|
||||
io.BytesIO: The generated image as bytes
|
||||
@@ -117,13 +114,7 @@ async def generate_agent_image_v1(agent: GraphBaseMeta | AgentGraph) -> io.Bytes
|
||||
raise ValueError("Missing Replicate API key in settings")
|
||||
|
||||
# Construct prompt from agent details
|
||||
prompt = (
|
||||
"Create a visually engaging app store thumbnail for the AI agent "
|
||||
"that highlights what it does in a clear and captivating way:\n"
|
||||
f"- **Name**: {agent.name}\n"
|
||||
f"- **Description**: {agent.description}\n"
|
||||
f"Focus on showcasing its core functionality with an appealing design."
|
||||
)
|
||||
prompt = f"Create a visually engaging app store thumbnail for the AI agent that highlights what it does in a clear and captivating way:\n- **Name**: {agent.name}\n- **Description**: {agent.description}\nFocus on showcasing its core functionality with an appealing design."
|
||||
|
||||
# Set up Replicate client
|
||||
client = ReplicateClient(api_token=settings.secrets.replicate_api_key)
|
||||
|
||||
@@ -38,7 +38,6 @@ class StoreAgent(pydantic.BaseModel):
|
||||
description: str
|
||||
runs: int
|
||||
rating: float
|
||||
agent_graph_id: str
|
||||
|
||||
|
||||
class StoreAgentsResponse(pydantic.BaseModel):
|
||||
|
||||
@@ -26,13 +26,11 @@ def test_store_agent():
|
||||
description="Test description",
|
||||
runs=50,
|
||||
rating=4.5,
|
||||
agent_graph_id="test-graph-id",
|
||||
)
|
||||
assert agent.slug == "test-agent"
|
||||
assert agent.agent_name == "Test Agent"
|
||||
assert agent.runs == 50
|
||||
assert agent.rating == 4.5
|
||||
assert agent.agent_graph_id == "test-graph-id"
|
||||
|
||||
|
||||
def test_store_agents_response():
|
||||
@@ -48,7 +46,6 @@ def test_store_agents_response():
|
||||
description="Test description",
|
||||
runs=50,
|
||||
rating=4.5,
|
||||
agent_graph_id="test-graph-id",
|
||||
)
|
||||
],
|
||||
pagination=store_model.Pagination(
|
||||
|
||||
@@ -278,7 +278,7 @@ async def get_agent(
|
||||
)
|
||||
async def get_graph_meta_by_store_listing_version_id(
|
||||
store_listing_version_id: str,
|
||||
) -> backend.data.graph.GraphModelWithoutNodes:
|
||||
) -> backend.data.graph.GraphMeta:
|
||||
"""
|
||||
Get Agent Graph from Store Listing Version ID.
|
||||
"""
|
||||
|
||||
@@ -82,7 +82,6 @@ def test_get_agents_featured(
|
||||
description="Featured agent description",
|
||||
runs=100,
|
||||
rating=4.5,
|
||||
agent_graph_id="test-graph-1",
|
||||
)
|
||||
],
|
||||
pagination=store_model.Pagination(
|
||||
@@ -128,7 +127,6 @@ def test_get_agents_by_creator(
|
||||
description="Creator agent description",
|
||||
runs=50,
|
||||
rating=4.0,
|
||||
agent_graph_id="test-graph-2",
|
||||
)
|
||||
],
|
||||
pagination=store_model.Pagination(
|
||||
@@ -174,7 +172,6 @@ def test_get_agents_sorted(
|
||||
description="Top agent description",
|
||||
runs=1000,
|
||||
rating=5.0,
|
||||
agent_graph_id="test-graph-3",
|
||||
)
|
||||
],
|
||||
pagination=store_model.Pagination(
|
||||
@@ -220,7 +217,6 @@ def test_get_agents_search(
|
||||
description="Specific search term description",
|
||||
runs=75,
|
||||
rating=4.2,
|
||||
agent_graph_id="test-graph-search",
|
||||
)
|
||||
],
|
||||
pagination=store_model.Pagination(
|
||||
@@ -266,7 +262,6 @@ def test_get_agents_category(
|
||||
description="Category agent description",
|
||||
runs=60,
|
||||
rating=4.1,
|
||||
agent_graph_id="test-graph-category",
|
||||
)
|
||||
],
|
||||
pagination=store_model.Pagination(
|
||||
@@ -311,7 +306,6 @@ def test_get_agents_pagination(
|
||||
description=f"Agent {i} description",
|
||||
runs=i * 10,
|
||||
rating=4.0,
|
||||
agent_graph_id="test-graph-2",
|
||||
)
|
||||
for i in range(5)
|
||||
],
|
||||
|
||||
@@ -33,7 +33,6 @@ class TestCacheDeletion:
|
||||
description="Test description",
|
||||
runs=100,
|
||||
rating=4.5,
|
||||
agent_graph_id="test-graph-id",
|
||||
)
|
||||
],
|
||||
pagination=Pagination(
|
||||
|
||||
@@ -101,6 +101,7 @@ from backend.util.timezone_utils import (
|
||||
from backend.util.virus_scanner import scan_content_safe
|
||||
|
||||
from .library import db as library_db
|
||||
from .library import model as library_model
|
||||
from .store.model import StoreAgentDetails
|
||||
|
||||
|
||||
@@ -822,16 +823,18 @@ async def update_graph(
|
||||
graph: graph_db.Graph,
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> graph_db.GraphModel:
|
||||
# Sanity check
|
||||
if graph.id and graph.id != graph_id:
|
||||
raise HTTPException(400, detail="Graph ID does not match ID in URI")
|
||||
|
||||
# Determine new version
|
||||
existing_versions = await graph_db.get_graph_all_versions(graph_id, user_id=user_id)
|
||||
if not existing_versions:
|
||||
raise HTTPException(404, detail=f"Graph #{graph_id} not found")
|
||||
latest_version_number = max(g.version for g in existing_versions)
|
||||
graph.version = latest_version_number + 1
|
||||
|
||||
graph.version = max(g.version for g in existing_versions) + 1
|
||||
current_active_version = next((v for v in existing_versions if v.is_active), None)
|
||||
|
||||
graph = graph_db.make_graph_model(graph, user_id)
|
||||
graph.reassign_ids(user_id=user_id, reassign_graph_id=False)
|
||||
graph.validate_graph(for_run=False)
|
||||
@@ -839,23 +842,27 @@ async def update_graph(
|
||||
new_graph_version = await graph_db.create_graph(graph, user_id=user_id)
|
||||
|
||||
if new_graph_version.is_active:
|
||||
await library_db.update_library_agent_version_and_settings(
|
||||
user_id, new_graph_version
|
||||
)
|
||||
# Keep the library agent up to date with the new active version
|
||||
await _update_library_agent_version_and_settings(user_id, new_graph_version)
|
||||
|
||||
# Handle activation of the new graph first to ensure continuity
|
||||
new_graph_version = await on_graph_activate(new_graph_version, user_id=user_id)
|
||||
# Ensure new version is the only active version
|
||||
await graph_db.set_graph_active_version(
|
||||
graph_id=graph_id, version=new_graph_version.version, user_id=user_id
|
||||
)
|
||||
if current_active_version:
|
||||
# Handle deactivation of the previously active version
|
||||
await on_graph_deactivate(current_active_version, user_id=user_id)
|
||||
|
||||
# Fetch new graph version *with sub-graphs* (needed for credentials input schema)
|
||||
new_graph_version_with_subgraphs = await graph_db.get_graph(
|
||||
graph_id,
|
||||
new_graph_version.version,
|
||||
user_id=user_id,
|
||||
include_subgraphs=True,
|
||||
)
|
||||
assert new_graph_version_with_subgraphs
|
||||
assert new_graph_version_with_subgraphs # make type checker happy
|
||||
return new_graph_version_with_subgraphs
|
||||
|
||||
|
||||
@@ -893,15 +900,33 @@ async def set_graph_active_version(
|
||||
)
|
||||
|
||||
# Keep the library agent up to date with the new active version
|
||||
await library_db.update_library_agent_version_and_settings(
|
||||
user_id, new_active_graph
|
||||
)
|
||||
await _update_library_agent_version_and_settings(user_id, new_active_graph)
|
||||
|
||||
if current_active_graph and current_active_graph.version != new_active_version:
|
||||
# Handle deactivation of the previously active version
|
||||
await on_graph_deactivate(current_active_graph, user_id=user_id)
|
||||
|
||||
|
||||
async def _update_library_agent_version_and_settings(
|
||||
user_id: str, agent_graph: graph_db.GraphModel
|
||||
) -> library_model.LibraryAgent:
|
||||
library = await library_db.update_agent_version_in_library(
|
||||
user_id, agent_graph.id, agent_graph.version
|
||||
)
|
||||
updated_settings = GraphSettings.from_graph(
|
||||
graph=agent_graph,
|
||||
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
|
||||
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
|
||||
)
|
||||
if updated_settings != library.settings:
|
||||
library = await library_db.update_library_agent(
|
||||
library_agent_id=library.id,
|
||||
user_id=user_id,
|
||||
settings=updated_settings,
|
||||
)
|
||||
return library
|
||||
|
||||
|
||||
@v1_router.patch(
|
||||
path="/graphs/{graph_id}/settings",
|
||||
summary="Update graph settings",
|
||||
|
||||
@@ -1 +0,0 @@
|
||||
# Workspace API feature module
|
||||
@@ -1,122 +0,0 @@
|
||||
"""
|
||||
Workspace API routes for managing user file storage.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import re
|
||||
from typing import Annotated
|
||||
from urllib.parse import quote
|
||||
|
||||
import fastapi
|
||||
from autogpt_libs.auth.dependencies import get_user_id, requires_user
|
||||
from fastapi.responses import Response
|
||||
|
||||
from backend.data.workspace import get_workspace, get_workspace_file
|
||||
from backend.util.workspace_storage import get_workspace_storage
|
||||
|
||||
|
||||
def _sanitize_filename_for_header(filename: str) -> str:
|
||||
"""
|
||||
Sanitize filename for Content-Disposition header to prevent header injection.
|
||||
|
||||
Removes/replaces characters that could break the header or inject new headers.
|
||||
Uses RFC5987 encoding for non-ASCII characters.
|
||||
"""
|
||||
# Remove CR, LF, and null bytes (header injection prevention)
|
||||
sanitized = re.sub(r"[\r\n\x00]", "", filename)
|
||||
# Escape quotes
|
||||
sanitized = sanitized.replace('"', '\\"')
|
||||
# For non-ASCII, use RFC5987 filename* parameter
|
||||
# Check if filename has non-ASCII characters
|
||||
try:
|
||||
sanitized.encode("ascii")
|
||||
return f'attachment; filename="{sanitized}"'
|
||||
except UnicodeEncodeError:
|
||||
# Use RFC5987 encoding for UTF-8 filenames
|
||||
encoded = quote(sanitized, safe="")
|
||||
return f"attachment; filename*=UTF-8''{encoded}"
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = fastapi.APIRouter(
|
||||
dependencies=[fastapi.Security(requires_user)],
|
||||
)
|
||||
|
||||
|
||||
def _create_streaming_response(content: bytes, file) -> Response:
|
||||
"""Create a streaming response for file content."""
|
||||
return Response(
|
||||
content=content,
|
||||
media_type=file.mimeType,
|
||||
headers={
|
||||
"Content-Disposition": _sanitize_filename_for_header(file.name),
|
||||
"Content-Length": str(len(content)),
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
async def _create_file_download_response(file) -> Response:
|
||||
"""
|
||||
Create a download response for a workspace file.
|
||||
|
||||
Handles both local storage (direct streaming) and GCS (signed URL redirect
|
||||
with fallback to streaming).
|
||||
"""
|
||||
storage = await get_workspace_storage()
|
||||
|
||||
# For local storage, stream the file directly
|
||||
if file.storagePath.startswith("local://"):
|
||||
content = await storage.retrieve(file.storagePath)
|
||||
return _create_streaming_response(content, file)
|
||||
|
||||
# For GCS, try to redirect to signed URL, fall back to streaming
|
||||
try:
|
||||
url = await storage.get_download_url(file.storagePath, expires_in=300)
|
||||
# If we got back an API path (fallback), stream directly instead
|
||||
if url.startswith("/api/"):
|
||||
content = await storage.retrieve(file.storagePath)
|
||||
return _create_streaming_response(content, file)
|
||||
return fastapi.responses.RedirectResponse(url=url, status_code=302)
|
||||
except Exception as e:
|
||||
# Log the signed URL failure with context
|
||||
logger.error(
|
||||
f"Failed to get signed URL for file {file.id} "
|
||||
f"(storagePath={file.storagePath}): {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
# Fall back to streaming directly from GCS
|
||||
try:
|
||||
content = await storage.retrieve(file.storagePath)
|
||||
return _create_streaming_response(content, file)
|
||||
except Exception as fallback_error:
|
||||
logger.error(
|
||||
f"Fallback streaming also failed for file {file.id} "
|
||||
f"(storagePath={file.storagePath}): {fallback_error}",
|
||||
exc_info=True,
|
||||
)
|
||||
raise
|
||||
|
||||
|
||||
@router.get(
|
||||
"/files/{file_id}/download",
|
||||
summary="Download file by ID",
|
||||
)
|
||||
async def download_file(
|
||||
user_id: Annotated[str, fastapi.Security(get_user_id)],
|
||||
file_id: str,
|
||||
) -> Response:
|
||||
"""
|
||||
Download a file by its ID.
|
||||
|
||||
Returns the file content directly or redirects to a signed URL for GCS.
|
||||
"""
|
||||
workspace = await get_workspace(user_id)
|
||||
if workspace is None:
|
||||
raise fastapi.HTTPException(status_code=404, detail="Workspace not found")
|
||||
|
||||
file = await get_workspace_file(file_id, workspace.id)
|
||||
if file is None:
|
||||
raise fastapi.HTTPException(status_code=404, detail="File not found")
|
||||
|
||||
return await _create_file_download_response(file)
|
||||
@@ -32,7 +32,6 @@ import backend.api.features.postmark.postmark
|
||||
import backend.api.features.store.model
|
||||
import backend.api.features.store.routes
|
||||
import backend.api.features.v1
|
||||
import backend.api.features.workspace.routes as workspace_routes
|
||||
import backend.data.block
|
||||
import backend.data.db
|
||||
import backend.data.graph
|
||||
@@ -41,10 +40,6 @@ import backend.integrations.webhooks.utils
|
||||
import backend.util.service
|
||||
import backend.util.settings
|
||||
from backend.blocks.llm import DEFAULT_LLM_MODEL
|
||||
from backend.copilot.completion_consumer import (
|
||||
start_completion_consumer,
|
||||
stop_completion_consumer,
|
||||
)
|
||||
from backend.data.model import Credentials
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.monitoring.instrumentation import instrument_fastapi
|
||||
@@ -57,7 +52,6 @@ from backend.util.exceptions import (
|
||||
)
|
||||
from backend.util.feature_flag import initialize_launchdarkly, shutdown_launchdarkly
|
||||
from backend.util.service import UnhealthyServiceError
|
||||
from backend.util.workspace_storage import shutdown_workspace_storage
|
||||
|
||||
from .external.fastapi_app import external_api
|
||||
from .features.analytics import router as analytics_router
|
||||
@@ -122,31 +116,14 @@ async def lifespan_context(app: fastapi.FastAPI):
|
||||
await backend.data.graph.migrate_llm_models(DEFAULT_LLM_MODEL)
|
||||
await backend.integrations.webhooks.utils.migrate_legacy_triggered_graphs()
|
||||
|
||||
# Start chat completion consumer for Redis Streams notifications
|
||||
try:
|
||||
await start_completion_consumer()
|
||||
except Exception as e:
|
||||
logger.warning(f"Could not start chat completion consumer: {e}")
|
||||
|
||||
with launch_darkly_context():
|
||||
yield
|
||||
|
||||
# Stop chat completion consumer
|
||||
try:
|
||||
await stop_completion_consumer()
|
||||
except Exception as e:
|
||||
logger.warning(f"Error stopping chat completion consumer: {e}")
|
||||
|
||||
try:
|
||||
await shutdown_cloud_storage_handler()
|
||||
except Exception as e:
|
||||
logger.warning(f"Error shutting down cloud storage handler: {e}")
|
||||
|
||||
try:
|
||||
await shutdown_workspace_storage()
|
||||
except Exception as e:
|
||||
logger.warning(f"Error shutting down workspace storage: {e}")
|
||||
|
||||
await backend.data.db.disconnect()
|
||||
|
||||
|
||||
@@ -338,11 +315,6 @@ app.include_router(
|
||||
tags=["v2", "chat"],
|
||||
prefix="/api/chat",
|
||||
)
|
||||
app.include_router(
|
||||
workspace_routes.router,
|
||||
tags=["workspace"],
|
||||
prefix="/api/workspace",
|
||||
)
|
||||
app.include_router(
|
||||
backend.api.features.oauth.router,
|
||||
tags=["oauth"],
|
||||
|
||||
@@ -66,24 +66,18 @@ async def event_broadcaster(manager: ConnectionManager):
|
||||
execution_bus = AsyncRedisExecutionEventBus()
|
||||
notification_bus = AsyncRedisNotificationEventBus()
|
||||
|
||||
try:
|
||||
async def execution_worker():
|
||||
async for event in execution_bus.listen("*"):
|
||||
await manager.send_execution_update(event)
|
||||
|
||||
async def execution_worker():
|
||||
async for event in execution_bus.listen("*"):
|
||||
await manager.send_execution_update(event)
|
||||
async def notification_worker():
|
||||
async for notification in notification_bus.listen("*"):
|
||||
await manager.send_notification(
|
||||
user_id=notification.user_id,
|
||||
payload=notification.payload,
|
||||
)
|
||||
|
||||
async def notification_worker():
|
||||
async for notification in notification_bus.listen("*"):
|
||||
await manager.send_notification(
|
||||
user_id=notification.user_id,
|
||||
payload=notification.payload,
|
||||
)
|
||||
|
||||
await asyncio.gather(execution_worker(), notification_worker())
|
||||
finally:
|
||||
# Ensure PubSub connections are closed on any exit to prevent leaks
|
||||
await execution_bus.close()
|
||||
await notification_bus.close()
|
||||
await asyncio.gather(execution_worker(), notification_worker())
|
||||
|
||||
|
||||
async def authenticate_websocket(websocket: WebSocket) -> str:
|
||||
|
||||
@@ -38,7 +38,6 @@ def main(**kwargs):
|
||||
|
||||
from backend.api.rest_api import AgentServer
|
||||
from backend.api.ws_api import WebsocketServer
|
||||
from backend.copilot.executor.manager import CoPilotExecutor
|
||||
from backend.executor import DatabaseManager, ExecutionManager, Scheduler
|
||||
from backend.notifications import NotificationManager
|
||||
|
||||
@@ -49,7 +48,6 @@ def main(**kwargs):
|
||||
WebsocketServer(),
|
||||
AgentServer(),
|
||||
ExecutionManager(),
|
||||
CoPilotExecutor(),
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
@@ -13,7 +13,6 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -118,13 +117,11 @@ class AIImageCustomizerBlock(Block):
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_output=[
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
("image_url", "https://replicate.delivery/generated-image.jpg"),
|
||||
],
|
||||
test_mock={
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"run_model": lambda *args, **kwargs: MediaFileType(
|
||||
""
|
||||
"https://replicate.delivery/generated-image.jpg"
|
||||
),
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
@@ -135,7 +132,8 @@ class AIImageCustomizerBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
@@ -143,9 +141,10 @@ class AIImageCustomizerBlock(Block):
|
||||
processed_images = await asyncio.gather(
|
||||
*(
|
||||
store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=img,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api", # Get content for Replicate API
|
||||
user_id=user_id,
|
||||
return_content=True,
|
||||
)
|
||||
for img in input_data.images
|
||||
)
|
||||
@@ -159,14 +158,7 @@ class AIImageCustomizerBlock(Block):
|
||||
aspect_ratio=input_data.aspect_ratio.value,
|
||||
output_format=input_data.output_format.value,
|
||||
)
|
||||
|
||||
# Store the generated image to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=result,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", stored_url
|
||||
yield "image_url", result
|
||||
except Exception as e:
|
||||
yield "error", str(e)
|
||||
|
||||
|
||||
@@ -6,7 +6,6 @@ from replicate.client import Client as ReplicateClient
|
||||
from replicate.helpers import FileOutput
|
||||
|
||||
from backend.data.block import Block, BlockCategory, BlockSchemaInput, BlockSchemaOutput
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -14,8 +13,6 @@ from backend.data.model import (
|
||||
SchemaField,
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
|
||||
class ImageSize(str, Enum):
|
||||
@@ -168,13 +165,11 @@ class AIImageGeneratorBlock(Block):
|
||||
test_output=[
|
||||
(
|
||||
"image_url",
|
||||
# Test output is a data URI since we now store images
|
||||
lambda x: x.startswith(""
|
||||
"_run_client": lambda *args, **kwargs: "https://replicate.delivery/generated-image.webp"
|
||||
},
|
||||
)
|
||||
|
||||
@@ -323,24 +318,11 @@ class AIImageGeneratorBlock(Block):
|
||||
style_text = style_map.get(style, "")
|
||||
return f"{style_text} of" if style_text else ""
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
):
|
||||
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
|
||||
try:
|
||||
url = await self.generate_image(input_data, credentials)
|
||||
if url:
|
||||
# Store the generated image to the user's workspace/execution folder
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", stored_url
|
||||
yield "image_url", url
|
||||
else:
|
||||
yield "error", "Image generation returned an empty result."
|
||||
except Exception as e:
|
||||
|
||||
@@ -13,7 +13,6 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -22,9 +21,7 @@ from backend.data.model import (
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.exceptions import BlockExecutionError
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import Requests
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
TEST_CREDENTIALS = APIKeyCredentials(
|
||||
id="01234567-89ab-cdef-0123-456789abcdef",
|
||||
@@ -274,10 +271,7 @@ class AIShortformVideoCreatorBlock(Block):
|
||||
"voice": Voice.LILY,
|
||||
"video_style": VisualMediaType.STOCK_VIDEOS,
|
||||
},
|
||||
test_output=(
|
||||
"video_url",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
test_output=("video_url", "https://example.com/video.mp4"),
|
||||
test_mock={
|
||||
"create_webhook": lambda *args, **kwargs: (
|
||||
"test_uuid",
|
||||
@@ -286,21 +280,15 @@ class AIShortformVideoCreatorBlock(Block):
|
||||
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
|
||||
"check_video_status": lambda *args, **kwargs: {
|
||||
"status": "ready",
|
||||
"videoUrl": "data:video/mp4;base64,AAAA",
|
||||
"videoUrl": "https://example.com/video.mp4",
|
||||
},
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
|
||||
"wait_for_video": lambda *args, **kwargs: "https://example.com/video.mp4",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
) -> BlockOutput:
|
||||
# Create a new Webhook.site URL
|
||||
webhook_token, webhook_url = await self.create_webhook()
|
||||
@@ -352,13 +340,7 @@ class AIShortformVideoCreatorBlock(Block):
|
||||
)
|
||||
video_url = await self.wait_for_video(credentials.api_key, pid)
|
||||
logger.debug(f"Video ready: {video_url}")
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
yield "video_url", video_url
|
||||
|
||||
|
||||
class AIAdMakerVideoCreatorBlock(Block):
|
||||
@@ -465,10 +447,7 @@ class AIAdMakerVideoCreatorBlock(Block):
|
||||
"https://cdn.revid.ai/uploads/1747076315114-image.png",
|
||||
],
|
||||
},
|
||||
test_output=(
|
||||
"video_url",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
test_output=("video_url", "https://example.com/ad.mp4"),
|
||||
test_mock={
|
||||
"create_webhook": lambda *args, **kwargs: (
|
||||
"test_uuid",
|
||||
@@ -477,21 +456,14 @@ class AIAdMakerVideoCreatorBlock(Block):
|
||||
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
|
||||
"check_video_status": lambda *args, **kwargs: {
|
||||
"status": "ready",
|
||||
"videoUrl": "data:video/mp4;base64,AAAA",
|
||||
"videoUrl": "https://example.com/ad.mp4",
|
||||
},
|
||||
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
|
||||
"wait_for_video": lambda *args, **kwargs: "https://example.com/ad.mp4",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
):
|
||||
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
|
||||
webhook_token, webhook_url = await self.create_webhook()
|
||||
|
||||
payload = {
|
||||
@@ -559,13 +531,7 @@ class AIAdMakerVideoCreatorBlock(Block):
|
||||
raise RuntimeError("Failed to create video: No project ID returned")
|
||||
|
||||
video_url = await self.wait_for_video(credentials.api_key, pid)
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
yield "video_url", video_url
|
||||
|
||||
|
||||
class AIScreenshotToVideoAdBlock(Block):
|
||||
@@ -660,10 +626,7 @@ class AIScreenshotToVideoAdBlock(Block):
|
||||
"script": "Amazing numbers!",
|
||||
"screenshot_url": "https://cdn.revid.ai/uploads/1747080376028-image.png",
|
||||
},
|
||||
test_output=(
|
||||
"video_url",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
test_output=("video_url", "https://example.com/screenshot.mp4"),
|
||||
test_mock={
|
||||
"create_webhook": lambda *args, **kwargs: (
|
||||
"test_uuid",
|
||||
@@ -672,21 +635,14 @@ class AIScreenshotToVideoAdBlock(Block):
|
||||
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
|
||||
"check_video_status": lambda *args, **kwargs: {
|
||||
"status": "ready",
|
||||
"videoUrl": "data:video/mp4;base64,AAAA",
|
||||
"videoUrl": "https://example.com/screenshot.mp4",
|
||||
},
|
||||
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
|
||||
"wait_for_video": lambda *args, **kwargs: "https://example.com/screenshot.mp4",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
):
|
||||
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
|
||||
webhook_token, webhook_url = await self.create_webhook()
|
||||
|
||||
payload = {
|
||||
@@ -754,10 +710,4 @@ class AIScreenshotToVideoAdBlock(Block):
|
||||
raise RuntimeError("Failed to create video: No project ID returned")
|
||||
|
||||
video_url = await self.wait_for_video(credentials.api_key, pid)
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
yield "video_url", video_url
|
||||
|
||||
@@ -6,7 +6,6 @@ if TYPE_CHECKING:
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.sdk import (
|
||||
APIKeyCredentials,
|
||||
Block,
|
||||
@@ -18,8 +17,6 @@ from backend.sdk import (
|
||||
Requests,
|
||||
SchemaField,
|
||||
)
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
from ._config import bannerbear
|
||||
|
||||
@@ -138,17 +135,15 @@ class BannerbearTextOverlayBlock(Block):
|
||||
},
|
||||
test_output=[
|
||||
("success", True),
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
("image_url", "https://cdn.bannerbear.com/test-image.jpg"),
|
||||
("uid", "test-uid-123"),
|
||||
("status", "completed"),
|
||||
],
|
||||
test_mock={
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"_make_api_request": lambda *args, **kwargs: {
|
||||
"uid": "test-uid-123",
|
||||
"status": "completed",
|
||||
"image_url": "",
|
||||
"image_url": "https://cdn.bannerbear.com/test-image.jpg",
|
||||
}
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
@@ -182,12 +177,7 @@ class BannerbearTextOverlayBlock(Block):
|
||||
raise Exception(error_msg)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
) -> BlockOutput:
|
||||
# Build the modifications array
|
||||
modifications = []
|
||||
@@ -244,18 +234,6 @@ class BannerbearTextOverlayBlock(Block):
|
||||
|
||||
# Synchronous request - image should be ready
|
||||
yield "success", True
|
||||
|
||||
# Store the generated image to workspace for persistence
|
||||
image_url = data.get("image_url", "")
|
||||
if image_url:
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(image_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", stored_url
|
||||
else:
|
||||
yield "image_url", ""
|
||||
|
||||
yield "image_url", data.get("image_url", "")
|
||||
yield "uid", data.get("uid", "")
|
||||
yield "status", data.get("status", "completed")
|
||||
|
||||
@@ -9,7 +9,6 @@ from backend.data.block import (
|
||||
BlockSchemaOutput,
|
||||
BlockType,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType, convert
|
||||
@@ -18,10 +17,10 @@ from backend.util.type import MediaFileType, convert
|
||||
class FileStoreBlock(Block):
|
||||
class Input(BlockSchemaInput):
|
||||
file_in: MediaFileType = SchemaField(
|
||||
description="The file to download and store. Can be a URL (https://...), data URI, or local path."
|
||||
description="The file to store in the temporary directory, it can be a URL, data URI, or local path."
|
||||
)
|
||||
base_64: bool = SchemaField(
|
||||
description="Whether to produce output in base64 format (not recommended, you can pass the file reference across blocks).",
|
||||
description="Whether produce an output in base64 format (not recommended, you can pass the string path just fine accross blocks).",
|
||||
default=False,
|
||||
advanced=True,
|
||||
title="Produce Base64 Output",
|
||||
@@ -29,18 +28,13 @@ class FileStoreBlock(Block):
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
file_out: MediaFileType = SchemaField(
|
||||
description="Reference to the stored file. In CoPilot: workspace:// URI (visible in list_workspace_files). In graphs: data URI for passing to other blocks."
|
||||
description="The relative path to the stored file in the temporary directory."
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="cbb50872-625b-42f0-8203-a2ae78242d8a",
|
||||
description=(
|
||||
"Downloads and stores a file from a URL, data URI, or local path. "
|
||||
"Use this to fetch images, documents, or other files for processing. "
|
||||
"In CoPilot: saves to workspace (use list_workspace_files to see it). "
|
||||
"In graphs: outputs a data URI to pass to other blocks."
|
||||
),
|
||||
description="Stores the input file in the temporary directory.",
|
||||
categories={BlockCategory.BASIC, BlockCategory.MULTIMEDIA},
|
||||
input_schema=FileStoreBlock.Input,
|
||||
output_schema=FileStoreBlock.Output,
|
||||
@@ -51,18 +45,15 @@ class FileStoreBlock(Block):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
execution_context: ExecutionContext,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Determine return format based on user preference
|
||||
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
|
||||
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
|
||||
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
|
||||
|
||||
yield "file_out", await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.file_in,
|
||||
execution_context=execution_context,
|
||||
return_format=return_format,
|
||||
user_id=user_id,
|
||||
return_content=input_data.base_64,
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -15,7 +15,6 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import APIKeyCredentials, SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import Requests
|
||||
@@ -667,7 +666,8 @@ class SendDiscordFileBlock(Block):
|
||||
file: MediaFileType,
|
||||
filename: str,
|
||||
message_content: str,
|
||||
execution_context: ExecutionContext,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
) -> dict:
|
||||
intents = discord.Intents.default()
|
||||
intents.guilds = True
|
||||
@@ -731,9 +731,10 @@ class SendDiscordFileBlock(Block):
|
||||
# Local file path - read from stored media file
|
||||
# This would be a path from a previous block's output
|
||||
stored_file = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=file,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api", # Get content to send to Discord
|
||||
user_id=user_id,
|
||||
return_content=True, # Get as data URI
|
||||
)
|
||||
# Now process as data URI
|
||||
header, encoded = stored_file.split(",", 1)
|
||||
@@ -780,7 +781,8 @@ class SendDiscordFileBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
@@ -791,7 +793,8 @@ class SendDiscordFileBlock(Block):
|
||||
file=input_data.file,
|
||||
filename=input_data.filename,
|
||||
message_content=input_data.message_content,
|
||||
execution_context=execution_context,
|
||||
graph_exec_id=graph_exec_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
|
||||
yield "status", result.get("status", "Unknown error")
|
||||
|
||||
@@ -1,28 +0,0 @@
|
||||
"""ElevenLabs integration blocks - test credentials and shared utilities."""
|
||||
|
||||
from typing import Literal
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.model import APIKeyCredentials, CredentialsMetaInput
|
||||
from backend.integrations.providers import ProviderName
|
||||
|
||||
TEST_CREDENTIALS = APIKeyCredentials(
|
||||
id="01234567-89ab-cdef-0123-456789abcdef",
|
||||
provider="elevenlabs",
|
||||
api_key=SecretStr("mock-elevenlabs-api-key"),
|
||||
title="Mock ElevenLabs API key",
|
||||
expires_at=None,
|
||||
)
|
||||
|
||||
TEST_CREDENTIALS_INPUT = {
|
||||
"provider": TEST_CREDENTIALS.provider,
|
||||
"id": TEST_CREDENTIALS.id,
|
||||
"type": TEST_CREDENTIALS.type,
|
||||
"title": TEST_CREDENTIALS.title,
|
||||
}
|
||||
|
||||
ElevenLabsCredentials = APIKeyCredentials
|
||||
ElevenLabsCredentialsInput = CredentialsMetaInput[
|
||||
Literal[ProviderName.ELEVENLABS], Literal["api_key"]
|
||||
]
|
||||
@@ -1,77 +0,0 @@
|
||||
"""Text encoding block for converting special characters to escape sequences."""
|
||||
|
||||
import codecs
|
||||
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
BlockOutput,
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.model import SchemaField
|
||||
|
||||
|
||||
class TextEncoderBlock(Block):
|
||||
"""
|
||||
Encodes a string by converting special characters into escape sequences.
|
||||
|
||||
This block is the inverse of TextDecoderBlock. It takes text containing
|
||||
special characters (like newlines, tabs, etc.) and converts them into
|
||||
their escape sequence representations (e.g., newline becomes \\n).
|
||||
"""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
"""Input schema for TextEncoderBlock."""
|
||||
|
||||
text: str = SchemaField(
|
||||
description="A string containing special characters to be encoded",
|
||||
placeholder="Your text with newlines and quotes to encode",
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
"""Output schema for TextEncoderBlock."""
|
||||
|
||||
encoded_text: str = SchemaField(
|
||||
description="The encoded text with special characters converted to escape sequences"
|
||||
)
|
||||
error: str = SchemaField(description="Error message if encoding fails")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="5185f32e-4b65-4ecf-8fbb-873f003f09d6",
|
||||
description="Encodes a string by converting special characters into escape sequences",
|
||||
categories={BlockCategory.TEXT},
|
||||
input_schema=TextEncoderBlock.Input,
|
||||
output_schema=TextEncoderBlock.Output,
|
||||
test_input={
|
||||
"text": """Hello
|
||||
World!
|
||||
This is a "quoted" string."""
|
||||
},
|
||||
test_output=[
|
||||
(
|
||||
"encoded_text",
|
||||
"""Hello\\nWorld!\\nThis is a "quoted" string.""",
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
|
||||
"""
|
||||
Encode the input text by converting special characters to escape sequences.
|
||||
|
||||
Args:
|
||||
input_data: The input containing the text to encode.
|
||||
**kwargs: Additional keyword arguments (unused).
|
||||
|
||||
Yields:
|
||||
The encoded text with escape sequences, or an error message if encoding fails.
|
||||
"""
|
||||
try:
|
||||
encoded_text = codecs.encode(input_data.text, "unicode_escape").decode(
|
||||
"utf-8"
|
||||
)
|
||||
yield "encoded_text", encoded_text
|
||||
except Exception as e:
|
||||
yield "error", f"Encoding error: {str(e)}"
|
||||
@@ -478,7 +478,7 @@ class ExaCreateOrFindWebsetBlock(Block):
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
try:
|
||||
webset = await aexa.websets.get(id=input_data.external_id)
|
||||
webset = aexa.websets.get(id=input_data.external_id)
|
||||
webset_result = Webset.model_validate(webset.model_dump(by_alias=True))
|
||||
|
||||
yield "webset", webset_result
|
||||
@@ -494,7 +494,7 @@ class ExaCreateOrFindWebsetBlock(Block):
|
||||
count=input_data.search_count,
|
||||
)
|
||||
|
||||
webset = await aexa.websets.create(
|
||||
webset = aexa.websets.create(
|
||||
params=CreateWebsetParameters(
|
||||
search=search_params,
|
||||
external_id=input_data.external_id,
|
||||
@@ -554,7 +554,7 @@ class ExaUpdateWebsetBlock(Block):
|
||||
if input_data.metadata is not None:
|
||||
payload["metadata"] = input_data.metadata
|
||||
|
||||
sdk_webset = await aexa.websets.update(id=input_data.webset_id, params=payload)
|
||||
sdk_webset = aexa.websets.update(id=input_data.webset_id, params=payload)
|
||||
|
||||
status_str = (
|
||||
sdk_webset.status.value
|
||||
@@ -617,7 +617,7 @@ class ExaListWebsetsBlock(Block):
|
||||
) -> BlockOutput:
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
response = await aexa.websets.list(
|
||||
response = aexa.websets.list(
|
||||
cursor=input_data.cursor,
|
||||
limit=input_data.limit,
|
||||
)
|
||||
@@ -678,7 +678,7 @@ class ExaGetWebsetBlock(Block):
|
||||
) -> BlockOutput:
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
sdk_webset = await aexa.websets.get(id=input_data.webset_id)
|
||||
sdk_webset = aexa.websets.get(id=input_data.webset_id)
|
||||
|
||||
status_str = (
|
||||
sdk_webset.status.value
|
||||
@@ -748,7 +748,7 @@ class ExaDeleteWebsetBlock(Block):
|
||||
) -> BlockOutput:
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
deleted_webset = await aexa.websets.delete(id=input_data.webset_id)
|
||||
deleted_webset = aexa.websets.delete(id=input_data.webset_id)
|
||||
|
||||
status_str = (
|
||||
deleted_webset.status.value
|
||||
@@ -798,7 +798,7 @@ class ExaCancelWebsetBlock(Block):
|
||||
) -> BlockOutput:
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
canceled_webset = await aexa.websets.cancel(id=input_data.webset_id)
|
||||
canceled_webset = aexa.websets.cancel(id=input_data.webset_id)
|
||||
|
||||
status_str = (
|
||||
canceled_webset.status.value
|
||||
@@ -968,7 +968,7 @@ class ExaPreviewWebsetBlock(Block):
|
||||
entity["description"] = input_data.entity_description
|
||||
payload["entity"] = entity
|
||||
|
||||
sdk_preview = await aexa.websets.preview(params=payload)
|
||||
sdk_preview = aexa.websets.preview(params=payload)
|
||||
|
||||
preview = PreviewWebsetModel.from_sdk(sdk_preview)
|
||||
|
||||
@@ -1051,7 +1051,7 @@ class ExaWebsetStatusBlock(Block):
|
||||
) -> BlockOutput:
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
webset = await aexa.websets.get(id=input_data.webset_id)
|
||||
webset = aexa.websets.get(id=input_data.webset_id)
|
||||
|
||||
status = (
|
||||
webset.status.value
|
||||
@@ -1185,7 +1185,7 @@ class ExaWebsetSummaryBlock(Block):
|
||||
) -> BlockOutput:
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
webset = await aexa.websets.get(id=input_data.webset_id)
|
||||
webset = aexa.websets.get(id=input_data.webset_id)
|
||||
|
||||
# Extract basic info
|
||||
webset_id = webset.id
|
||||
@@ -1211,7 +1211,7 @@ class ExaWebsetSummaryBlock(Block):
|
||||
total_items = 0
|
||||
|
||||
if input_data.include_sample_items and input_data.sample_size > 0:
|
||||
items_response = await aexa.websets.items.list(
|
||||
items_response = aexa.websets.items.list(
|
||||
webset_id=input_data.webset_id, limit=input_data.sample_size
|
||||
)
|
||||
sample_items_data = [
|
||||
@@ -1362,7 +1362,7 @@ class ExaWebsetReadyCheckBlock(Block):
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
# Get webset details
|
||||
webset = await aexa.websets.get(id=input_data.webset_id)
|
||||
webset = aexa.websets.get(id=input_data.webset_id)
|
||||
|
||||
status = (
|
||||
webset.status.value
|
||||
|
||||
@@ -202,7 +202,7 @@ class ExaCreateEnrichmentBlock(Block):
|
||||
# Use AsyncExa SDK
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
sdk_enrichment = await aexa.websets.enrichments.create(
|
||||
sdk_enrichment = aexa.websets.enrichments.create(
|
||||
webset_id=input_data.webset_id, params=payload
|
||||
)
|
||||
|
||||
@@ -223,7 +223,7 @@ class ExaCreateEnrichmentBlock(Block):
|
||||
items_enriched = 0
|
||||
|
||||
while time.time() - poll_start < input_data.polling_timeout:
|
||||
current_enrich = await aexa.websets.enrichments.get(
|
||||
current_enrich = aexa.websets.enrichments.get(
|
||||
webset_id=input_data.webset_id, id=enrichment_id
|
||||
)
|
||||
current_status = (
|
||||
@@ -234,7 +234,7 @@ class ExaCreateEnrichmentBlock(Block):
|
||||
|
||||
if current_status in ["completed", "failed", "cancelled"]:
|
||||
# Estimate items from webset searches
|
||||
webset = await aexa.websets.get(id=input_data.webset_id)
|
||||
webset = aexa.websets.get(id=input_data.webset_id)
|
||||
if webset.searches:
|
||||
for search in webset.searches:
|
||||
if search.progress:
|
||||
@@ -329,7 +329,7 @@ class ExaGetEnrichmentBlock(Block):
|
||||
# Use AsyncExa SDK
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
sdk_enrichment = await aexa.websets.enrichments.get(
|
||||
sdk_enrichment = aexa.websets.enrichments.get(
|
||||
webset_id=input_data.webset_id, id=input_data.enrichment_id
|
||||
)
|
||||
|
||||
@@ -474,7 +474,7 @@ class ExaDeleteEnrichmentBlock(Block):
|
||||
# Use AsyncExa SDK
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
deleted_enrichment = await aexa.websets.enrichments.delete(
|
||||
deleted_enrichment = aexa.websets.enrichments.delete(
|
||||
webset_id=input_data.webset_id, id=input_data.enrichment_id
|
||||
)
|
||||
|
||||
@@ -525,13 +525,13 @@ class ExaCancelEnrichmentBlock(Block):
|
||||
# Use AsyncExa SDK
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
canceled_enrichment = await aexa.websets.enrichments.cancel(
|
||||
canceled_enrichment = aexa.websets.enrichments.cancel(
|
||||
webset_id=input_data.webset_id, id=input_data.enrichment_id
|
||||
)
|
||||
|
||||
# Try to estimate how many items were enriched before cancellation
|
||||
items_enriched = 0
|
||||
items_response = await aexa.websets.items.list(
|
||||
items_response = aexa.websets.items.list(
|
||||
webset_id=input_data.webset_id, limit=100
|
||||
)
|
||||
|
||||
|
||||
@@ -222,7 +222,7 @@ class ExaCreateImportBlock(Block):
|
||||
def _create_test_mock():
|
||||
"""Create test mocks for the AsyncExa SDK."""
|
||||
from datetime import datetime
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
# Create mock SDK import object
|
||||
mock_import = MagicMock()
|
||||
@@ -247,7 +247,7 @@ class ExaCreateImportBlock(Block):
|
||||
return {
|
||||
"_get_client": lambda *args, **kwargs: MagicMock(
|
||||
websets=MagicMock(
|
||||
imports=MagicMock(create=AsyncMock(return_value=mock_import))
|
||||
imports=MagicMock(create=lambda *args, **kwargs: mock_import)
|
||||
)
|
||||
)
|
||||
}
|
||||
@@ -294,7 +294,7 @@ class ExaCreateImportBlock(Block):
|
||||
if input_data.metadata:
|
||||
payload["metadata"] = input_data.metadata
|
||||
|
||||
sdk_import = await aexa.websets.imports.create(
|
||||
sdk_import = aexa.websets.imports.create(
|
||||
params=payload, csv_data=input_data.csv_data
|
||||
)
|
||||
|
||||
@@ -360,7 +360,7 @@ class ExaGetImportBlock(Block):
|
||||
# Use AsyncExa SDK
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
sdk_import = await aexa.websets.imports.get(import_id=input_data.import_id)
|
||||
sdk_import = aexa.websets.imports.get(import_id=input_data.import_id)
|
||||
|
||||
import_obj = ImportModel.from_sdk(sdk_import)
|
||||
|
||||
@@ -426,7 +426,7 @@ class ExaListImportsBlock(Block):
|
||||
# Use AsyncExa SDK
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
response = await aexa.websets.imports.list(
|
||||
response = aexa.websets.imports.list(
|
||||
cursor=input_data.cursor,
|
||||
limit=input_data.limit,
|
||||
)
|
||||
@@ -474,9 +474,7 @@ class ExaDeleteImportBlock(Block):
|
||||
# Use AsyncExa SDK
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
deleted_import = await aexa.websets.imports.delete(
|
||||
import_id=input_data.import_id
|
||||
)
|
||||
deleted_import = aexa.websets.imports.delete(import_id=input_data.import_id)
|
||||
|
||||
yield "import_id", deleted_import.id
|
||||
yield "success", "true"
|
||||
@@ -575,14 +573,14 @@ class ExaExportWebsetBlock(Block):
|
||||
}
|
||||
)
|
||||
|
||||
# Create async iterator for list_all
|
||||
async def async_item_iterator(*args, **kwargs):
|
||||
for item in [mock_item1, mock_item2]:
|
||||
yield item
|
||||
# Create mock iterator
|
||||
mock_items = [mock_item1, mock_item2]
|
||||
|
||||
return {
|
||||
"_get_client": lambda *args, **kwargs: MagicMock(
|
||||
websets=MagicMock(items=MagicMock(list_all=async_item_iterator))
|
||||
websets=MagicMock(
|
||||
items=MagicMock(list_all=lambda *args, **kwargs: iter(mock_items))
|
||||
)
|
||||
)
|
||||
}
|
||||
|
||||
@@ -604,7 +602,7 @@ class ExaExportWebsetBlock(Block):
|
||||
webset_id=input_data.webset_id, limit=input_data.max_items
|
||||
)
|
||||
|
||||
async for sdk_item in item_iterator:
|
||||
for sdk_item in item_iterator:
|
||||
if len(all_items) >= input_data.max_items:
|
||||
break
|
||||
|
||||
|
||||
@@ -178,7 +178,7 @@ class ExaGetWebsetItemBlock(Block):
|
||||
) -> BlockOutput:
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
sdk_item = await aexa.websets.items.get(
|
||||
sdk_item = aexa.websets.items.get(
|
||||
webset_id=input_data.webset_id, id=input_data.item_id
|
||||
)
|
||||
|
||||
@@ -269,7 +269,7 @@ class ExaListWebsetItemsBlock(Block):
|
||||
response = None
|
||||
|
||||
while time.time() - start_time < input_data.wait_timeout:
|
||||
response = await aexa.websets.items.list(
|
||||
response = aexa.websets.items.list(
|
||||
webset_id=input_data.webset_id,
|
||||
cursor=input_data.cursor,
|
||||
limit=input_data.limit,
|
||||
@@ -282,13 +282,13 @@ class ExaListWebsetItemsBlock(Block):
|
||||
interval = min(interval * 1.2, 10)
|
||||
|
||||
if not response:
|
||||
response = await aexa.websets.items.list(
|
||||
response = aexa.websets.items.list(
|
||||
webset_id=input_data.webset_id,
|
||||
cursor=input_data.cursor,
|
||||
limit=input_data.limit,
|
||||
)
|
||||
else:
|
||||
response = await aexa.websets.items.list(
|
||||
response = aexa.websets.items.list(
|
||||
webset_id=input_data.webset_id,
|
||||
cursor=input_data.cursor,
|
||||
limit=input_data.limit,
|
||||
@@ -340,7 +340,7 @@ class ExaDeleteWebsetItemBlock(Block):
|
||||
) -> BlockOutput:
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
deleted_item = await aexa.websets.items.delete(
|
||||
deleted_item = aexa.websets.items.delete(
|
||||
webset_id=input_data.webset_id, id=input_data.item_id
|
||||
)
|
||||
|
||||
@@ -408,7 +408,7 @@ class ExaBulkWebsetItemsBlock(Block):
|
||||
webset_id=input_data.webset_id, limit=input_data.max_items
|
||||
)
|
||||
|
||||
async for sdk_item in item_iterator:
|
||||
for sdk_item in item_iterator:
|
||||
if len(all_items) >= input_data.max_items:
|
||||
break
|
||||
|
||||
@@ -475,7 +475,7 @@ class ExaWebsetItemsSummaryBlock(Block):
|
||||
# Use AsyncExa SDK
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
webset = await aexa.websets.get(id=input_data.webset_id)
|
||||
webset = aexa.websets.get(id=input_data.webset_id)
|
||||
|
||||
entity_type = "unknown"
|
||||
if webset.searches:
|
||||
@@ -495,7 +495,7 @@ class ExaWebsetItemsSummaryBlock(Block):
|
||||
# Get sample items if requested
|
||||
sample_items: List[WebsetItemModel] = []
|
||||
if input_data.sample_size > 0:
|
||||
items_response = await aexa.websets.items.list(
|
||||
items_response = aexa.websets.items.list(
|
||||
webset_id=input_data.webset_id, limit=input_data.sample_size
|
||||
)
|
||||
# Convert to our stable models
|
||||
@@ -569,7 +569,7 @@ class ExaGetNewItemsBlock(Block):
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
# Get items starting from cursor
|
||||
response = await aexa.websets.items.list(
|
||||
response = aexa.websets.items.list(
|
||||
webset_id=input_data.webset_id,
|
||||
cursor=input_data.since_cursor,
|
||||
limit=input_data.max_items,
|
||||
|
||||
@@ -233,7 +233,7 @@ class ExaCreateMonitorBlock(Block):
|
||||
def _create_test_mock():
|
||||
"""Create test mocks for the AsyncExa SDK."""
|
||||
from datetime import datetime
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
# Create mock SDK monitor object
|
||||
mock_monitor = MagicMock()
|
||||
@@ -263,7 +263,7 @@ class ExaCreateMonitorBlock(Block):
|
||||
return {
|
||||
"_get_client": lambda *args, **kwargs: MagicMock(
|
||||
websets=MagicMock(
|
||||
monitors=MagicMock(create=AsyncMock(return_value=mock_monitor))
|
||||
monitors=MagicMock(create=lambda *args, **kwargs: mock_monitor)
|
||||
)
|
||||
)
|
||||
}
|
||||
@@ -320,7 +320,7 @@ class ExaCreateMonitorBlock(Block):
|
||||
if input_data.metadata:
|
||||
payload["metadata"] = input_data.metadata
|
||||
|
||||
sdk_monitor = await aexa.websets.monitors.create(params=payload)
|
||||
sdk_monitor = aexa.websets.monitors.create(params=payload)
|
||||
|
||||
monitor = MonitorModel.from_sdk(sdk_monitor)
|
||||
|
||||
@@ -384,7 +384,7 @@ class ExaGetMonitorBlock(Block):
|
||||
# Use AsyncExa SDK
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
sdk_monitor = await aexa.websets.monitors.get(monitor_id=input_data.monitor_id)
|
||||
sdk_monitor = aexa.websets.monitors.get(monitor_id=input_data.monitor_id)
|
||||
|
||||
monitor = MonitorModel.from_sdk(sdk_monitor)
|
||||
|
||||
@@ -476,7 +476,7 @@ class ExaUpdateMonitorBlock(Block):
|
||||
if input_data.metadata is not None:
|
||||
payload["metadata"] = input_data.metadata
|
||||
|
||||
sdk_monitor = await aexa.websets.monitors.update(
|
||||
sdk_monitor = aexa.websets.monitors.update(
|
||||
monitor_id=input_data.monitor_id, params=payload
|
||||
)
|
||||
|
||||
@@ -522,9 +522,7 @@ class ExaDeleteMonitorBlock(Block):
|
||||
# Use AsyncExa SDK
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
deleted_monitor = await aexa.websets.monitors.delete(
|
||||
monitor_id=input_data.monitor_id
|
||||
)
|
||||
deleted_monitor = aexa.websets.monitors.delete(monitor_id=input_data.monitor_id)
|
||||
|
||||
yield "monitor_id", deleted_monitor.id
|
||||
yield "success", "true"
|
||||
@@ -581,7 +579,7 @@ class ExaListMonitorsBlock(Block):
|
||||
# Use AsyncExa SDK
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
response = await aexa.websets.monitors.list(
|
||||
response = aexa.websets.monitors.list(
|
||||
cursor=input_data.cursor,
|
||||
limit=input_data.limit,
|
||||
webset_id=input_data.webset_id,
|
||||
|
||||
@@ -121,7 +121,7 @@ class ExaWaitForWebsetBlock(Block):
|
||||
WebsetTargetStatus.IDLE,
|
||||
WebsetTargetStatus.ANY_COMPLETE,
|
||||
]:
|
||||
final_webset = await aexa.websets.wait_until_idle(
|
||||
final_webset = aexa.websets.wait_until_idle(
|
||||
id=input_data.webset_id,
|
||||
timeout=input_data.timeout,
|
||||
poll_interval=input_data.check_interval,
|
||||
@@ -164,7 +164,7 @@ class ExaWaitForWebsetBlock(Block):
|
||||
interval = input_data.check_interval
|
||||
while time.time() - start_time < input_data.timeout:
|
||||
# Get current webset status
|
||||
webset = await aexa.websets.get(id=input_data.webset_id)
|
||||
webset = aexa.websets.get(id=input_data.webset_id)
|
||||
current_status = (
|
||||
webset.status.value
|
||||
if hasattr(webset.status, "value")
|
||||
@@ -209,7 +209,7 @@ class ExaWaitForWebsetBlock(Block):
|
||||
|
||||
# Timeout reached
|
||||
elapsed = time.time() - start_time
|
||||
webset = await aexa.websets.get(id=input_data.webset_id)
|
||||
webset = aexa.websets.get(id=input_data.webset_id)
|
||||
final_status = (
|
||||
webset.status.value
|
||||
if hasattr(webset.status, "value")
|
||||
@@ -345,7 +345,7 @@ class ExaWaitForSearchBlock(Block):
|
||||
try:
|
||||
while time.time() - start_time < input_data.timeout:
|
||||
# Get current search status using SDK
|
||||
search = await aexa.websets.searches.get(
|
||||
search = aexa.websets.searches.get(
|
||||
webset_id=input_data.webset_id, id=input_data.search_id
|
||||
)
|
||||
|
||||
@@ -401,7 +401,7 @@ class ExaWaitForSearchBlock(Block):
|
||||
elapsed = time.time() - start_time
|
||||
|
||||
# Get last known status
|
||||
search = await aexa.websets.searches.get(
|
||||
search = aexa.websets.searches.get(
|
||||
webset_id=input_data.webset_id, id=input_data.search_id
|
||||
)
|
||||
final_status = (
|
||||
@@ -503,7 +503,7 @@ class ExaWaitForEnrichmentBlock(Block):
|
||||
try:
|
||||
while time.time() - start_time < input_data.timeout:
|
||||
# Get current enrichment status using SDK
|
||||
enrichment = await aexa.websets.enrichments.get(
|
||||
enrichment = aexa.websets.enrichments.get(
|
||||
webset_id=input_data.webset_id, id=input_data.enrichment_id
|
||||
)
|
||||
|
||||
@@ -548,7 +548,7 @@ class ExaWaitForEnrichmentBlock(Block):
|
||||
elapsed = time.time() - start_time
|
||||
|
||||
# Get last known status
|
||||
enrichment = await aexa.websets.enrichments.get(
|
||||
enrichment = aexa.websets.enrichments.get(
|
||||
webset_id=input_data.webset_id, id=input_data.enrichment_id
|
||||
)
|
||||
final_status = (
|
||||
@@ -575,7 +575,7 @@ class ExaWaitForEnrichmentBlock(Block):
|
||||
) -> tuple[list[SampleEnrichmentModel], int]:
|
||||
"""Get sample enriched data and count."""
|
||||
# Get a few items to see enrichment results using SDK
|
||||
response = await aexa.websets.items.list(webset_id=webset_id, limit=5)
|
||||
response = aexa.websets.items.list(webset_id=webset_id, limit=5)
|
||||
|
||||
sample_data: list[SampleEnrichmentModel] = []
|
||||
enriched_count = 0
|
||||
|
||||
@@ -317,7 +317,7 @@ class ExaCreateWebsetSearchBlock(Block):
|
||||
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
sdk_search = await aexa.websets.searches.create(
|
||||
sdk_search = aexa.websets.searches.create(
|
||||
webset_id=input_data.webset_id, params=payload
|
||||
)
|
||||
|
||||
@@ -350,7 +350,7 @@ class ExaCreateWebsetSearchBlock(Block):
|
||||
poll_start = time.time()
|
||||
|
||||
while time.time() - poll_start < input_data.polling_timeout:
|
||||
current_search = await aexa.websets.searches.get(
|
||||
current_search = aexa.websets.searches.get(
|
||||
webset_id=input_data.webset_id, id=search_id
|
||||
)
|
||||
current_status = (
|
||||
@@ -442,7 +442,7 @@ class ExaGetWebsetSearchBlock(Block):
|
||||
# Use AsyncExa SDK
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
sdk_search = await aexa.websets.searches.get(
|
||||
sdk_search = aexa.websets.searches.get(
|
||||
webset_id=input_data.webset_id, id=input_data.search_id
|
||||
)
|
||||
|
||||
@@ -523,7 +523,7 @@ class ExaCancelWebsetSearchBlock(Block):
|
||||
# Use AsyncExa SDK
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
canceled_search = await aexa.websets.searches.cancel(
|
||||
canceled_search = aexa.websets.searches.cancel(
|
||||
webset_id=input_data.webset_id, id=input_data.search_id
|
||||
)
|
||||
|
||||
@@ -604,7 +604,7 @@ class ExaFindOrCreateSearchBlock(Block):
|
||||
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
# Get webset to check existing searches
|
||||
webset = await aexa.websets.get(id=input_data.webset_id)
|
||||
webset = aexa.websets.get(id=input_data.webset_id)
|
||||
|
||||
# Look for existing search with same query
|
||||
existing_search = None
|
||||
@@ -636,7 +636,7 @@ class ExaFindOrCreateSearchBlock(Block):
|
||||
if input_data.entity_type != SearchEntityType.AUTO:
|
||||
payload["entity"] = {"type": input_data.entity_type.value}
|
||||
|
||||
sdk_search = await aexa.websets.searches.create(
|
||||
sdk_search = aexa.websets.searches.create(
|
||||
webset_id=input_data.webset_id, params=payload
|
||||
)
|
||||
|
||||
|
||||
@@ -17,11 +17,8 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import ClientResponseError, Requests
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -67,13 +64,9 @@ class AIVideoGeneratorBlock(Block):
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_output=[
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("video_url", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
],
|
||||
test_output=[("video_url", "https://fal.media/files/example/video.mp4")],
|
||||
test_mock={
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"generate_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA"
|
||||
"generate_video": lambda *args, **kwargs: "https://fal.media/files/example/video.mp4"
|
||||
},
|
||||
)
|
||||
|
||||
@@ -215,22 +208,11 @@ class AIVideoGeneratorBlock(Block):
|
||||
raise RuntimeError(f"API request failed: {str(e)}")
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: FalCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
self, input_data: Input, *, credentials: FalCredentials, **kwargs
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
video_url = await self.generate_video(input_data, credentials)
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
yield "video_url", video_url
|
||||
except Exception as e:
|
||||
error_message = str(e)
|
||||
yield "error", error_message
|
||||
|
||||
@@ -12,7 +12,6 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -122,12 +121,10 @@ class AIImageEditorBlock(Block):
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_output=[
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("output_image", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
("output_image", "https://replicate.com/output/edited-image.png"),
|
||||
],
|
||||
test_mock={
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"run_model": lambda *args, **kwargs: "",
|
||||
"run_model": lambda *args, **kwargs: "https://replicate.com/output/edited-image.png",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
@@ -137,7 +134,8 @@ class AIImageEditorBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
result = await self.run_model(
|
||||
@@ -146,25 +144,20 @@ class AIImageEditorBlock(Block):
|
||||
prompt=input_data.prompt,
|
||||
input_image_b64=(
|
||||
await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.input_image,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api", # Get content for Replicate API
|
||||
user_id=user_id,
|
||||
return_content=True,
|
||||
)
|
||||
if input_data.input_image
|
||||
else None
|
||||
),
|
||||
aspect_ratio=input_data.aspect_ratio.value,
|
||||
seed=input_data.seed,
|
||||
user_id=execution_context.user_id or "",
|
||||
graph_exec_id=execution_context.graph_exec_id or "",
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
)
|
||||
# Store the generated image to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=result,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "output_image", stored_url
|
||||
yield "output_image", result
|
||||
|
||||
async def run_model(
|
||||
self,
|
||||
|
||||
@@ -21,7 +21,6 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
from backend.util.settings import Settings
|
||||
@@ -96,7 +95,8 @@ def _make_mime_text(
|
||||
|
||||
async def create_mime_message(
|
||||
input_data,
|
||||
execution_context: ExecutionContext,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
) -> str:
|
||||
"""Create a MIME message with attachments and return base64-encoded raw message."""
|
||||
|
||||
@@ -117,12 +117,12 @@ async def create_mime_message(
|
||||
if input_data.attachments:
|
||||
for attach in input_data.attachments:
|
||||
local_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=attach,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
return_content=False,
|
||||
)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
|
||||
abs_path = get_exec_file_path(graph_exec_id, local_path)
|
||||
part = MIMEBase("application", "octet-stream")
|
||||
with open(abs_path, "rb") as f:
|
||||
part.set_payload(f.read())
|
||||
@@ -582,25 +582,27 @@ class GmailSendBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
result = await self._send_email(
|
||||
service,
|
||||
input_data,
|
||||
execution_context,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
)
|
||||
yield "result", result
|
||||
|
||||
async def _send_email(
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
) -> dict:
|
||||
if not input_data.to or not input_data.subject or not input_data.body:
|
||||
raise ValueError(
|
||||
"At least one recipient, subject, and body are required for sending an email"
|
||||
)
|
||||
raw_message = await create_mime_message(input_data, execution_context)
|
||||
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
|
||||
sent_message = await asyncio.to_thread(
|
||||
lambda: service.users()
|
||||
.messages()
|
||||
@@ -690,28 +692,30 @@ class GmailCreateDraftBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
result = await self._create_draft(
|
||||
service,
|
||||
input_data,
|
||||
execution_context,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
)
|
||||
yield "result", GmailDraftResult(
|
||||
id=result["id"], message_id=result["message"]["id"], status="draft_created"
|
||||
)
|
||||
|
||||
async def _create_draft(
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
) -> dict:
|
||||
if not input_data.to or not input_data.subject:
|
||||
raise ValueError(
|
||||
"At least one recipient and subject are required for creating a draft"
|
||||
)
|
||||
|
||||
raw_message = await create_mime_message(input_data, execution_context)
|
||||
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
|
||||
draft = await asyncio.to_thread(
|
||||
lambda: service.users()
|
||||
.drafts()
|
||||
@@ -1096,7 +1100,7 @@ class GmailGetThreadBlock(GmailBase):
|
||||
|
||||
|
||||
async def _build_reply_message(
|
||||
service, input_data, execution_context: ExecutionContext
|
||||
service, input_data, graph_exec_id: str, user_id: str
|
||||
) -> tuple[str, str]:
|
||||
"""
|
||||
Builds a reply MIME message for Gmail threads.
|
||||
@@ -1186,12 +1190,12 @@ async def _build_reply_message(
|
||||
# Handle attachments
|
||||
for attach in input_data.attachments:
|
||||
local_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=attach,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
return_content=False,
|
||||
)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
|
||||
abs_path = get_exec_file_path(graph_exec_id, local_path)
|
||||
part = MIMEBase("application", "octet-stream")
|
||||
with open(abs_path, "rb") as f:
|
||||
part.set_payload(f.read())
|
||||
@@ -1307,14 +1311,16 @@ class GmailReplyBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
message = await self._reply(
|
||||
service,
|
||||
input_data,
|
||||
execution_context,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
)
|
||||
yield "messageId", message["id"]
|
||||
yield "threadId", message.get("threadId", input_data.threadId)
|
||||
@@ -1337,11 +1343,11 @@ class GmailReplyBlock(GmailBase):
|
||||
yield "email", email
|
||||
|
||||
async def _reply(
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
) -> dict:
|
||||
# Build the reply message using the shared helper
|
||||
raw, thread_id = await _build_reply_message(
|
||||
service, input_data, execution_context
|
||||
service, input_data, graph_exec_id, user_id
|
||||
)
|
||||
|
||||
# Send the message
|
||||
@@ -1435,14 +1441,16 @@ class GmailDraftReplyBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
draft = await self._create_draft_reply(
|
||||
service,
|
||||
input_data,
|
||||
execution_context,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
)
|
||||
yield "draftId", draft["id"]
|
||||
yield "messageId", draft["message"]["id"]
|
||||
@@ -1450,11 +1458,11 @@ class GmailDraftReplyBlock(GmailBase):
|
||||
yield "status", "draft_created"
|
||||
|
||||
async def _create_draft_reply(
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
) -> dict:
|
||||
# Build the reply message using the shared helper
|
||||
raw, thread_id = await _build_reply_message(
|
||||
service, input_data, execution_context
|
||||
service, input_data, graph_exec_id, user_id
|
||||
)
|
||||
|
||||
# Create draft with proper thread association
|
||||
@@ -1621,21 +1629,23 @@ class GmailForwardBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
result = await self._forward_message(
|
||||
service,
|
||||
input_data,
|
||||
execution_context,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
)
|
||||
yield "messageId", result["id"]
|
||||
yield "threadId", result.get("threadId", "")
|
||||
yield "status", "forwarded"
|
||||
|
||||
async def _forward_message(
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
) -> dict:
|
||||
if not input_data.to:
|
||||
raise ValueError("At least one recipient is required for forwarding")
|
||||
@@ -1717,12 +1727,12 @@ To: {original_to}
|
||||
# Add any additional attachments
|
||||
for attach in input_data.additionalAttachments:
|
||||
local_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=attach,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
return_content=False,
|
||||
)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
|
||||
abs_path = get_exec_file_path(graph_exec_id, local_path)
|
||||
part = MIMEBase("application", "octet-stream")
|
||||
with open(abs_path, "rb") as f:
|
||||
part.set_payload(f.read())
|
||||
|
||||
@@ -15,7 +15,6 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
CredentialsField,
|
||||
CredentialsMetaInput,
|
||||
@@ -117,9 +116,10 @@ class SendWebRequestBlock(Block):
|
||||
|
||||
@staticmethod
|
||||
async def _prepare_files(
|
||||
execution_context: ExecutionContext,
|
||||
graph_exec_id: str,
|
||||
files_name: str,
|
||||
files: list[MediaFileType],
|
||||
user_id: str,
|
||||
) -> list[tuple[str, tuple[str, BytesIO, str]]]:
|
||||
"""
|
||||
Prepare files for the request by storing them and reading their content.
|
||||
@@ -127,16 +127,11 @@ class SendWebRequestBlock(Block):
|
||||
(files_name, (filename, BytesIO, mime_type))
|
||||
"""
|
||||
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
if graph_exec_id is None:
|
||||
raise ValueError("graph_exec_id is required for file operations")
|
||||
|
||||
for media in files:
|
||||
# Normalise to a list so we can repeat the same key
|
||||
rel_path = await store_media_file(
|
||||
file=media,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
graph_exec_id, media, user_id, return_content=False
|
||||
)
|
||||
abs_path = get_exec_file_path(graph_exec_id, rel_path)
|
||||
async with aiofiles.open(abs_path, "rb") as f:
|
||||
@@ -148,7 +143,7 @@ class SendWebRequestBlock(Block):
|
||||
return files_payload
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, execution_context: ExecutionContext, **kwargs
|
||||
self, input_data: Input, *, graph_exec_id: str, user_id: str, **kwargs
|
||||
) -> BlockOutput:
|
||||
# ─── Parse/normalise body ────────────────────────────────────
|
||||
body = input_data.body
|
||||
@@ -179,7 +174,7 @@ class SendWebRequestBlock(Block):
|
||||
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
|
||||
if use_files:
|
||||
files_payload = await self._prepare_files(
|
||||
execution_context, input_data.files_name, input_data.files
|
||||
graph_exec_id, input_data.files_name, input_data.files, user_id
|
||||
)
|
||||
|
||||
# Enforce body format rules
|
||||
@@ -243,8 +238,9 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
execution_context: ExecutionContext,
|
||||
graph_exec_id: str,
|
||||
credentials: HostScopedCredentials,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Create SendWebRequestBlock.Input from our input (removing credentials field)
|
||||
@@ -275,6 +271,6 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
|
||||
|
||||
# Use parent class run method
|
||||
async for output_name, output_data in super().run(
|
||||
base_input, execution_context=execution_context, **kwargs
|
||||
base_input, graph_exec_id=graph_exec_id, user_id=user_id, **kwargs
|
||||
):
|
||||
yield output_name, output_data
|
||||
|
||||
@@ -12,7 +12,6 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockType,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.mock import MockObject
|
||||
@@ -463,21 +462,18 @@ class AgentFileInputBlock(AgentInputBlock):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
execution_context: ExecutionContext,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
if not input_data.value:
|
||||
return
|
||||
|
||||
# Determine return format based on user preference
|
||||
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
|
||||
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
|
||||
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
|
||||
|
||||
yield "result", await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.value,
|
||||
execution_context=execution_context,
|
||||
return_format=return_format,
|
||||
user_id=user_id,
|
||||
return_content=input_data.base_64,
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -162,16 +162,8 @@ class LinearClient:
|
||||
"searchTerm": team_name,
|
||||
}
|
||||
|
||||
result = await self.query(query, variables)
|
||||
nodes = result["teams"]["nodes"]
|
||||
|
||||
if not nodes:
|
||||
raise LinearAPIException(
|
||||
f"Team '{team_name}' not found. Check the team name or key and try again.",
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
return nodes[0]["id"]
|
||||
team_id = await self.query(query, variables)
|
||||
return team_id["teams"]["nodes"][0]["id"]
|
||||
except LinearAPIException as e:
|
||||
raise e
|
||||
|
||||
@@ -248,44 +240,17 @@ class LinearClient:
|
||||
except LinearAPIException as e:
|
||||
raise e
|
||||
|
||||
async def try_search_issues(
|
||||
self,
|
||||
term: str,
|
||||
max_results: int = 10,
|
||||
team_id: str | None = None,
|
||||
) -> list[Issue]:
|
||||
async def try_search_issues(self, term: str) -> list[Issue]:
|
||||
try:
|
||||
query = """
|
||||
query SearchIssues(
|
||||
$term: String!,
|
||||
$first: Int,
|
||||
$teamId: String
|
||||
) {
|
||||
searchIssues(
|
||||
term: $term,
|
||||
first: $first,
|
||||
teamId: $teamId
|
||||
) {
|
||||
query SearchIssues($term: String!, $includeComments: Boolean!) {
|
||||
searchIssues(term: $term, includeComments: $includeComments) {
|
||||
nodes {
|
||||
id
|
||||
identifier
|
||||
title
|
||||
description
|
||||
priority
|
||||
createdAt
|
||||
state {
|
||||
id
|
||||
name
|
||||
type
|
||||
}
|
||||
project {
|
||||
id
|
||||
name
|
||||
}
|
||||
assignee {
|
||||
id
|
||||
name
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -293,8 +258,7 @@ class LinearClient:
|
||||
|
||||
variables: dict[str, Any] = {
|
||||
"term": term,
|
||||
"first": max_results,
|
||||
"teamId": team_id,
|
||||
"includeComments": True,
|
||||
}
|
||||
|
||||
issues = await self.query(query, variables)
|
||||
|
||||
@@ -17,7 +17,7 @@ from ._config import (
|
||||
LinearScope,
|
||||
linear,
|
||||
)
|
||||
from .models import CreateIssueResponse, Issue, State
|
||||
from .models import CreateIssueResponse, Issue
|
||||
|
||||
|
||||
class LinearCreateIssueBlock(Block):
|
||||
@@ -135,20 +135,9 @@ class LinearSearchIssuesBlock(Block):
|
||||
description="Linear credentials with read permissions",
|
||||
required_scopes={LinearScope.READ},
|
||||
)
|
||||
max_results: int = SchemaField(
|
||||
description="Maximum number of results to return",
|
||||
default=10,
|
||||
ge=1,
|
||||
le=100,
|
||||
)
|
||||
team_name: str | None = SchemaField(
|
||||
description="Optional team name to filter results (e.g., 'Internal', 'Open Source')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
issues: list[Issue] = SchemaField(description="List of issues")
|
||||
error: str = SchemaField(description="Error message if the search failed")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
@@ -156,11 +145,8 @@ class LinearSearchIssuesBlock(Block):
|
||||
description="Searches for issues on Linear",
|
||||
input_schema=self.Input,
|
||||
output_schema=self.Output,
|
||||
categories={BlockCategory.PRODUCTIVITY, BlockCategory.ISSUE_TRACKING},
|
||||
test_input={
|
||||
"term": "Test issue",
|
||||
"max_results": 10,
|
||||
"team_name": None,
|
||||
"credentials": TEST_CREDENTIALS_INPUT_OAUTH,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS_OAUTH,
|
||||
@@ -170,14 +156,10 @@ class LinearSearchIssuesBlock(Block):
|
||||
[
|
||||
Issue(
|
||||
id="abc123",
|
||||
identifier="TST-123",
|
||||
identifier="abc123",
|
||||
title="Test issue",
|
||||
description="Test description",
|
||||
priority=1,
|
||||
state=State(
|
||||
id="state1", name="In Progress", type="started"
|
||||
),
|
||||
createdAt="2026-01-15T10:00:00.000Z",
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -186,12 +168,10 @@ class LinearSearchIssuesBlock(Block):
|
||||
"search_issues": lambda *args, **kwargs: [
|
||||
Issue(
|
||||
id="abc123",
|
||||
identifier="TST-123",
|
||||
identifier="abc123",
|
||||
title="Test issue",
|
||||
description="Test description",
|
||||
priority=1,
|
||||
state=State(id="state1", name="In Progress", type="started"),
|
||||
createdAt="2026-01-15T10:00:00.000Z",
|
||||
)
|
||||
]
|
||||
},
|
||||
@@ -201,22 +181,10 @@ class LinearSearchIssuesBlock(Block):
|
||||
async def search_issues(
|
||||
credentials: OAuth2Credentials | APIKeyCredentials,
|
||||
term: str,
|
||||
max_results: int = 10,
|
||||
team_name: str | None = None,
|
||||
) -> list[Issue]:
|
||||
client = LinearClient(credentials=credentials)
|
||||
|
||||
# Resolve team name to ID if provided
|
||||
# Raises LinearAPIException with descriptive message if team not found
|
||||
team_id: str | None = None
|
||||
if team_name:
|
||||
team_id = await client.try_get_team_by_name(team_name=team_name)
|
||||
|
||||
return await client.try_search_issues(
|
||||
term=term,
|
||||
max_results=max_results,
|
||||
team_id=team_id,
|
||||
)
|
||||
response: list[Issue] = await client.try_search_issues(term=term)
|
||||
return response
|
||||
|
||||
async def run(
|
||||
self,
|
||||
@@ -228,10 +196,7 @@ class LinearSearchIssuesBlock(Block):
|
||||
"""Execute the issue search"""
|
||||
try:
|
||||
issues = await self.search_issues(
|
||||
credentials=credentials,
|
||||
term=input_data.term,
|
||||
max_results=input_data.max_results,
|
||||
team_name=input_data.team_name,
|
||||
credentials=credentials, term=input_data.term
|
||||
)
|
||||
yield "issues", issues
|
||||
except LinearAPIException as e:
|
||||
|
||||
@@ -36,21 +36,12 @@ class Project(BaseModel):
|
||||
content: str | None = None
|
||||
|
||||
|
||||
class State(BaseModel):
|
||||
id: str
|
||||
name: str
|
||||
type: str | None = (
|
||||
None # Workflow state type (e.g., "triage", "backlog", "started", "completed", "canceled")
|
||||
)
|
||||
|
||||
|
||||
class Issue(BaseModel):
|
||||
id: str
|
||||
identifier: str
|
||||
title: str
|
||||
description: str | None
|
||||
priority: int
|
||||
state: State | None = None
|
||||
project: Project | None = None
|
||||
createdAt: str | None = None
|
||||
comments: list[Comment] | None = None
|
||||
|
||||
@@ -32,7 +32,7 @@ from backend.data.model import (
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util import json
|
||||
from backend.util.logging import TruncatedLogger
|
||||
from backend.util.prompt import compress_context, estimate_token_count
|
||||
from backend.util.prompt import compress_prompt, estimate_token_count
|
||||
from backend.util.text import TextFormatter
|
||||
|
||||
logger = TruncatedLogger(logging.getLogger(__name__), "[LLM-Block]")
|
||||
@@ -115,7 +115,7 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
|
||||
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
|
||||
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
|
||||
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
|
||||
CLAUDE_4_6_OPUS = "claude-opus-4-6"
|
||||
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
|
||||
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
|
||||
# AI/ML API models
|
||||
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
|
||||
@@ -271,9 +271,6 @@ MODEL_METADATA = {
|
||||
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
|
||||
), # claude-4-sonnet-20250514
|
||||
LlmModel.CLAUDE_4_6_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 128000, "Claude Opus 4.6", "Anthropic", "Anthropic", 3
|
||||
), # claude-opus-4-6
|
||||
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
|
||||
), # claude-opus-4-5-20251101
|
||||
@@ -283,6 +280,9 @@ MODEL_METADATA = {
|
||||
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
|
||||
), # claude-haiku-4-5-20251001
|
||||
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude 3.7 Sonnet", "Anthropic", "Anthropic", 2
|
||||
), # claude-3-7-sonnet-20250219
|
||||
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
|
||||
), # claude-3-haiku-20240307
|
||||
@@ -531,12 +531,12 @@ class LLMResponse(BaseModel):
|
||||
|
||||
def convert_openai_tool_fmt_to_anthropic(
|
||||
openai_tools: list[dict] | None = None,
|
||||
) -> Iterable[ToolParam] | anthropic.Omit:
|
||||
) -> Iterable[ToolParam] | anthropic.NotGiven:
|
||||
"""
|
||||
Convert OpenAI tool format to Anthropic tool format.
|
||||
"""
|
||||
if not openai_tools or len(openai_tools) == 0:
|
||||
return anthropic.omit
|
||||
return anthropic.NOT_GIVEN
|
||||
|
||||
anthropic_tools = []
|
||||
for tool in openai_tools:
|
||||
@@ -596,10 +596,10 @@ def extract_openai_tool_calls(response) -> list[ToolContentBlock] | None:
|
||||
|
||||
def get_parallel_tool_calls_param(
|
||||
llm_model: LlmModel, parallel_tool_calls: bool | None
|
||||
) -> bool | openai.Omit:
|
||||
):
|
||||
"""Get the appropriate parallel_tool_calls parameter for OpenAI-compatible APIs."""
|
||||
if llm_model.startswith("o") or parallel_tool_calls is None:
|
||||
return openai.omit
|
||||
return openai.NOT_GIVEN
|
||||
return parallel_tool_calls
|
||||
|
||||
|
||||
@@ -638,18 +638,11 @@ async def llm_call(
|
||||
context_window = llm_model.context_window
|
||||
|
||||
if compress_prompt_to_fit:
|
||||
result = await compress_context(
|
||||
prompt = compress_prompt(
|
||||
messages=prompt,
|
||||
target_tokens=llm_model.context_window // 2,
|
||||
client=None, # Truncation-only, no LLM summarization
|
||||
reserve=0, # Caller handles response token budget separately
|
||||
lossy_ok=True,
|
||||
)
|
||||
if result.error:
|
||||
logger.warning(
|
||||
f"Prompt compression did not meet target: {result.error}. "
|
||||
f"Proceeding with {result.token_count} tokens."
|
||||
)
|
||||
prompt = result.messages
|
||||
|
||||
# Calculate available tokens based on context window and input length
|
||||
estimated_input_tokens = estimate_token_count(prompt)
|
||||
|
||||
251
autogpt_platform/backend/backend/blocks/media.py
Normal file
251
autogpt_platform/backend/backend/blocks/media.py
Normal file
@@ -0,0 +1,251 @@
|
||||
import os
|
||||
import tempfile
|
||||
from typing import Literal, Optional
|
||||
|
||||
from moviepy.audio.io.AudioFileClip import AudioFileClip
|
||||
from moviepy.video.fx.Loop import Loop
|
||||
from moviepy.video.io.VideoFileClip import VideoFileClip
|
||||
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
BlockOutput,
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
|
||||
|
||||
class MediaDurationBlock(Block):
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
media_in: MediaFileType = SchemaField(
|
||||
description="Media input (URL, data URI, or local path)."
|
||||
)
|
||||
is_video: bool = SchemaField(
|
||||
description="Whether the media is a video (True) or audio (False).",
|
||||
default=True,
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
duration: float = SchemaField(
|
||||
description="Duration of the media file (in seconds)."
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="d8b91fd4-da26-42d4-8ecb-8b196c6d84b6",
|
||||
description="Block to get the duration of a media file.",
|
||||
categories={BlockCategory.MULTIMEDIA},
|
||||
input_schema=MediaDurationBlock.Input,
|
||||
output_schema=MediaDurationBlock.Output,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# 1) Store the input media locally
|
||||
local_media_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.media_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
)
|
||||
media_abspath = get_exec_file_path(graph_exec_id, local_media_path)
|
||||
|
||||
# 2) Load the clip
|
||||
if input_data.is_video:
|
||||
clip = VideoFileClip(media_abspath)
|
||||
else:
|
||||
clip = AudioFileClip(media_abspath)
|
||||
|
||||
yield "duration", clip.duration
|
||||
|
||||
|
||||
class LoopVideoBlock(Block):
|
||||
"""
|
||||
Block for looping (repeating) a video clip until a given duration or number of loops.
|
||||
"""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
video_in: MediaFileType = SchemaField(
|
||||
description="The input video (can be a URL, data URI, or local path)."
|
||||
)
|
||||
# Provide EITHER a `duration` or `n_loops` or both. We'll demonstrate `duration`.
|
||||
duration: Optional[float] = SchemaField(
|
||||
description="Target duration (in seconds) to loop the video to. If omitted, defaults to no looping.",
|
||||
default=None,
|
||||
ge=0.0,
|
||||
)
|
||||
n_loops: Optional[int] = SchemaField(
|
||||
description="Number of times to repeat the video. If omitted, defaults to 1 (no repeat).",
|
||||
default=None,
|
||||
ge=1,
|
||||
)
|
||||
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
|
||||
description="How to return the output video. Either a relative path or base64 data URI.",
|
||||
default="file_path",
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_out: str = SchemaField(
|
||||
description="Looped video returned either as a relative path or a data URI."
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="8bf9eef6-5451-4213-b265-25306446e94b",
|
||||
description="Block to loop a video to a given duration or number of repeats.",
|
||||
categories={BlockCategory.MULTIMEDIA},
|
||||
input_schema=LoopVideoBlock.Input,
|
||||
output_schema=LoopVideoBlock.Output,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# 1) Store the input video locally
|
||||
local_video_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.video_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
)
|
||||
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
|
||||
|
||||
# 2) Load the clip
|
||||
clip = VideoFileClip(input_abspath)
|
||||
|
||||
# 3) Apply the loop effect
|
||||
looped_clip = clip
|
||||
if input_data.duration:
|
||||
# Loop until we reach the specified duration
|
||||
looped_clip = looped_clip.with_effects([Loop(duration=input_data.duration)])
|
||||
elif input_data.n_loops:
|
||||
looped_clip = looped_clip.with_effects([Loop(n=input_data.n_loops)])
|
||||
else:
|
||||
raise ValueError("Either 'duration' or 'n_loops' must be provided.")
|
||||
|
||||
assert isinstance(looped_clip, VideoFileClip)
|
||||
|
||||
# 4) Save the looped output
|
||||
output_filename = MediaFileType(
|
||||
f"{node_exec_id}_looped_{os.path.basename(local_video_path)}"
|
||||
)
|
||||
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
|
||||
|
||||
looped_clip = looped_clip.with_audio(clip.audio)
|
||||
looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
|
||||
|
||||
# Return as data URI
|
||||
video_out = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=output_filename,
|
||||
user_id=user_id,
|
||||
return_content=input_data.output_return_type == "data_uri",
|
||||
)
|
||||
|
||||
yield "video_out", video_out
|
||||
|
||||
|
||||
class AddAudioToVideoBlock(Block):
|
||||
"""
|
||||
Block that adds (attaches) an audio track to an existing video.
|
||||
Optionally scale the volume of the new track.
|
||||
"""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
video_in: MediaFileType = SchemaField(
|
||||
description="Video input (URL, data URI, or local path)."
|
||||
)
|
||||
audio_in: MediaFileType = SchemaField(
|
||||
description="Audio input (URL, data URI, or local path)."
|
||||
)
|
||||
volume: float = SchemaField(
|
||||
description="Volume scale for the newly attached audio track (1.0 = original).",
|
||||
default=1.0,
|
||||
)
|
||||
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
|
||||
description="Return the final output as a relative path or base64 data URI.",
|
||||
default="file_path",
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_out: MediaFileType = SchemaField(
|
||||
description="Final video (with attached audio), as a path or data URI."
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="3503748d-62b6-4425-91d6-725b064af509",
|
||||
description="Block to attach an audio file to a video file using moviepy.",
|
||||
categories={BlockCategory.MULTIMEDIA},
|
||||
input_schema=AddAudioToVideoBlock.Input,
|
||||
output_schema=AddAudioToVideoBlock.Output,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# 1) Store the inputs locally
|
||||
local_video_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.video_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
)
|
||||
local_audio_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.audio_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
)
|
||||
|
||||
abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id)
|
||||
video_abspath = os.path.join(abs_temp_dir, local_video_path)
|
||||
audio_abspath = os.path.join(abs_temp_dir, local_audio_path)
|
||||
|
||||
# 2) Load video + audio with moviepy
|
||||
video_clip = VideoFileClip(video_abspath)
|
||||
audio_clip = AudioFileClip(audio_abspath)
|
||||
# Optionally scale volume
|
||||
if input_data.volume != 1.0:
|
||||
audio_clip = audio_clip.with_volume_scaled(input_data.volume)
|
||||
|
||||
# 3) Attach the new audio track
|
||||
final_clip = video_clip.with_audio(audio_clip)
|
||||
|
||||
# 4) Write to output file
|
||||
output_filename = MediaFileType(
|
||||
f"{node_exec_id}_audio_attached_{os.path.basename(local_video_path)}"
|
||||
)
|
||||
output_abspath = os.path.join(abs_temp_dir, output_filename)
|
||||
final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
|
||||
|
||||
# 5) Return either path or data URI
|
||||
video_out = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=output_filename,
|
||||
user_id=user_id,
|
||||
return_content=input_data.output_return_type == "data_uri",
|
||||
)
|
||||
|
||||
yield "video_out", video_out
|
||||
@@ -11,7 +11,6 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -113,7 +112,8 @@ class ScreenshotWebPageBlock(Block):
|
||||
@staticmethod
|
||||
async def take_screenshot(
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
url: str,
|
||||
viewport_width: int,
|
||||
viewport_height: int,
|
||||
@@ -155,11 +155,12 @@ class ScreenshotWebPageBlock(Block):
|
||||
|
||||
return {
|
||||
"image": await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=MediaFileType(
|
||||
f"data:image/{format.value};base64,{b64encode(content).decode('utf-8')}"
|
||||
),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
user_id=user_id,
|
||||
return_content=True,
|
||||
)
|
||||
}
|
||||
|
||||
@@ -168,13 +169,15 @@ class ScreenshotWebPageBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
screenshot_data = await self.take_screenshot(
|
||||
credentials=credentials,
|
||||
execution_context=execution_context,
|
||||
graph_exec_id=graph_exec_id,
|
||||
user_id=user_id,
|
||||
url=input_data.url,
|
||||
viewport_width=input_data.viewport_width,
|
||||
viewport_height=input_data.viewport_height,
|
||||
|
||||
@@ -7,7 +7,6 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import ContributorDetails, SchemaField
|
||||
from backend.util.file import get_exec_file_path, store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
@@ -99,7 +98,7 @@ class ReadSpreadsheetBlock(Block):
|
||||
)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
|
||||
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
|
||||
) -> BlockOutput:
|
||||
import csv
|
||||
from io import StringIO
|
||||
@@ -107,16 +106,14 @@ class ReadSpreadsheetBlock(Block):
|
||||
# Determine data source - prefer file_input if provided, otherwise use contents
|
||||
if input_data.file_input:
|
||||
stored_file_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.file_input,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
return_content=False,
|
||||
)
|
||||
|
||||
# Get full file path
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
file_path = get_exec_file_path(
|
||||
execution_context.graph_exec_id, stored_file_path
|
||||
)
|
||||
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
|
||||
if not Path(file_path).exists():
|
||||
raise ValueError(f"File does not exist: {file_path}")
|
||||
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user