Compare commits

..

20 Commits

Author SHA1 Message Date
Lluis Agusti
35c236cbe4 chore: fix 2026-01-30 12:20:46 +07:00
Otto
715384eb06 fix(frontend): Refocus ChatInput after voice transcription completes
This allows users to immediately use spacebar+enter to record and send
their prompt after transcription finishes, improving the voice input UX.
2026-01-30 05:04:20 +00:00
Nicholas Tindle
3b822cdaf7 chore(branchlet): Remove docs pip install from postCreateCmd (#11883)
### Changes 🏗️

- Removed `cd docs && pip install -r requirements.txt` from
`postCreateCmd` in `.branchlet.json`
- Docs dependencies will no longer be auto-installed during branchlet
worktree creation

### Rationale

The docs setup step was adding unnecessary overhead to the worktree
creation process. Developers who need to work on documentation can
manually install the docs requirements when needed.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified branchlet worktree creation still works without the docs
pip install step

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)
2026-01-30 00:31:34 +00:00
Zamil Majdy
b2eb4831bd feat(chat): improve agent generator error propagation (#11884)
## Summary
- Add helper functions in `service.py` to create standardized error
responses with `error_type` classification
- Update service functions to return error dicts instead of `None`,
preserving error details from the Agent Generator microservice
- Update `core.py` to pass through error responses properly
- Update `create_agent.py` to handle error responses with user-friendly
messages based on error type

## Error Types Now Propagated
| Error Type | Description | User Message |
|------------|-------------|--------------|
| `llm_parse_error` | LLM returned unparseable response | "The AI had
trouble understanding this request" |
| `llm_timeout` / `timeout` | Request timed out | "The request took too
long" |
| `llm_rate_limit` / `rate_limit` | Rate limited | "The service is
currently busy" |
| `validation_error` | Agent validation failed | "The generated agent
failed validation" |
| `connection_error` | Could not connect to Agent Generator | Generic
error message |
| `http_error` | HTTP error from Agent Generator | Generic error message
|
| `unknown` | Unclassified error | Generic error message |

## Motivation
This enables better debugging for issues like SECRT-1817 where
decomposition failed due to transient LLM errors but the root cause was
unclear in the logs. Now:
1. Error details from the Agent Generator microservice are preserved
2. Users get more helpful error messages based on error type
3. Debugging is easier with `error_type` in response details

## Related PR
- Agent Generator side:
https://github.com/Significant-Gravitas/AutoGPT-Agent-Generator/pull/102

## Test Plan
- [ ] Test decomposition with various error scenarios (timeout, parse
error)
- [ ] Verify user-friendly messages are shown based on error type
- [ ] Check that error details are logged properly
2026-01-29 19:53:40 +00:00
Reinier van der Leer
4cd5da678d refactor(claude): Split autogpt_platform/CLAUDE.md into project-specific files (#11788)
Split `autogpt_platform/CLAUDE.md` into project-specific files, to make
the scope of the instructions clearer.

Also, some minor improvements:

- Change references to other Markdown files to @file/path.md syntax that
Claude recognizes
- Update ambiguous/incorrect/outdated instructions
- Remove trailing slashes
- Fix broken file path references in other docs (including comments)
2026-01-29 17:33:02 +00:00
Ubbe
b94c83aacc feat(frontend): Copilot speech to text via Whisper model (#11871)
## Changes 🏗️


https://github.com/user-attachments/assets/d9c12ac0-625c-4b38-8834-e494b5eda9c0

Add a "speech to text" feature in the Chat input fox of Copilot, similar
as what you have in ChatGPT.

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Run locally and try the speech to text feature as part of the chat
input box

### For configuration changes:

We need to add `OPENAI_API_KEY=` to Vercel ( used in the Front-end )
both in Dev and Prod.

- [x] `.env.default` is updated or already compatible with my changes

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-29 17:46:36 +07:00
Nicholas Tindle
7668c17d9c feat(platform): add User Workspace for persistent CoPilot file storage (#11867)
Implements persistent User Workspace storage for CoPilot, enabling
blocks to save and retrieve files across sessions. Files are stored in
session-scoped virtual paths (`/sessions/{session_id}/`).

Fixes SECRT-1833

### Changes 🏗️

**Database & Storage:**
- Add `UserWorkspace` and `UserWorkspaceFile` Prisma models
- Implement `WorkspaceStorageBackend` abstraction (GCS for cloud, local
filesystem for self-hosted)
- Add `workspace_id` and `session_id` fields to `ExecutionContext`

**Backend API:**
- Add REST endpoints: `GET/POST /api/workspace/files`, `GET/DELETE
/api/workspace/files/{id}`, `GET /api/workspace/files/{id}/download`
- Add CoPilot tools: `list_workspace_files`, `read_workspace_file`,
`write_workspace_file`
- Integrate workspace storage into `store_media_file()` - returns
`workspace://file-id` references

**Block Updates:**
- Refactor all file-handling blocks to use unified `ExecutionContext`
parameter
- Update media-generating blocks to persist outputs to workspace
(AIImageGenerator, AIImageCustomizer, FluxKontext, TalkingHead, FAL
video, Bannerbear, etc.)

**Frontend:**
- Render `workspace://` image references in chat via proxy endpoint
- Add "AI cannot see this image" overlay indicator

**CoPilot Context Mapping:**
- Session = Agent (graph_id) = Run (graph_exec_id)
- Files scoped to `/sessions/{session_id}/`

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [ ] I have tested my changes according to the test plan:
- [ ] Create CoPilot session, generate image with AIImageGeneratorBlock
  - [ ] Verify image returns `workspace://file-id` (not base64)
  - [ ] Verify image renders in chat with visibility indicator
  - [ ] Verify workspace files persist across sessions
  - [ ] Test list/read/write workspace files via CoPilot tools
  - [ ] Test local storage backend for self-hosted deployments

#### For configuration changes:
- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

🤖 Generated with [Claude Code](https://claude.ai/code)

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> **Medium Risk**
> Introduces a new persistent file-storage surface area (DB tables,
storage backends, download API, and chat tools) and rewires
`store_media_file()`/block execution context across many blocks, so
regressions could impact file handling, access control, or storage
costs.
> 
> **Overview**
> Adds a **persistent per-user Workspace** (new
`UserWorkspace`/`UserWorkspaceFile` models plus `WorkspaceManager` +
`WorkspaceStorageBackend` with GCS/local implementations) and wires it
into the API via a new `/api/workspace/files/{file_id}/download` route
(including header-sanitized `Content-Disposition`) and shutdown
lifecycle hooks.
> 
> Extends `ExecutionContext` to carry execution identity +
`workspace_id`/`session_id`, updates executor tooling to clone
node-specific contexts, and updates `run_block` (CoPilot) to create a
session-scoped workspace and synthetic graph/run/node IDs.
> 
> Refactors `store_media_file()` to require `execution_context` +
`return_format` and to support `workspace://` references; migrates many
media/file-handling blocks and related tests to the new API and to
persist generated media as `workspace://...` (or fall back to data URIs
outside CoPilot), and adds CoPilot chat tools for
listing/reading/writing/deleting workspace files with safeguards against
context bloat.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
6abc70f793. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2026-01-29 05:49:47 +00:00
Nicholas Tindle
e0dfae5732 fix(platform): evaluate chat flag after auth for correct redirect (#11873)
Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-28 14:58:02 -06:00
Zamil Majdy
7df867d645 Merge branch 'master' of github.com:Significant-Gravitas/AutoGPT into dev 2026-01-28 12:29:41 -06:00
Zamil Majdy
d855f79874 fix(platform): reduce Sentry alert spam for expected errors (#11872)
## Summary
- Add `InvalidInputError` for validation errors (search term too long,
invalid pagination) - returns 400 instead of 500
- Remove redundant try/catch blocks in library routes - global exception
handlers already handle `ValueError`→400 and `NotFoundError`→404
- Aggregate embedding backfill errors and log once at the end instead of
per content type to prevent Sentry issue spam

## Test plan
- [x] Verify validation errors (search term >100 chars) return 400 Bad
Request
- [x] Verify NotFoundError still returns 404
- [x] Verify embedding errors are logged once at the end with aggregated
counts

Fixes AUTOGPT-SERVER-7K5, BUILDER-6NC

---------

Co-authored-by: Swifty <craigswift13@gmail.com>
2026-01-29 01:28:27 +07:00
Swifty
dac99694fe Merge branch 'release/v0.6.44' 2026-01-28 12:19:13 +01:00
Nicholas Tindle
0953983944 feat(platform): disable onboarding redirects and add $5 signup bonus (#11862)
Disable automatic onboarding redirects on signup/login while keeping the
checklist/wallet functional. Users now receive $5 (500 credits) on their
first visit to /copilot.

### Changes 🏗️

- **Frontend**: `shouldShowOnboarding()` now returns `false`, disabling
auto-redirects to `/onboarding`
- **Backend**: Added `VISIT_COPILOT` onboarding step with 500 credit
($5) reward
- **Frontend**: Copilot page automatically completes `VISIT_COPILOT`
step on mount
- **Database**: Migration to add `VISIT_COPILOT` to `OnboardingStep`
enum

NOTE: /onboarding/1-welcome -> /library now as shouldShowOnboardin is
always false

Users land directly on `/copilot` after signup/login and receive $5
invisibly (not shown in checklist UI).

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] New user signup (email/password) → lands on `/copilot`, wallet
shows 500 credits
- [x] Verified credits are only granted once (idempotent via onboarding
reward mechanism)
- [x] Existing user login (already granted flag set) → lands on
`/copilot`, no duplicate credits
  - [x] Checklist/wallet remains functional

#### For configuration changes:
- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

No configuration changes required.

---

OPEN-2967

🤖 Generated with [Claude Code](https://claude.ai/code)


<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Introduces a new onboarding step and adjusts onboarding flow.
> 
> - Adds `VISIT_COPILOT` onboarding step (+500 credits) with DB enum
migration and API/type updates
> - Copilot page auto-completes `VISIT_COPILOT` on mount to grant the
welcome bonus
> - Changes `/onboarding/enabled` to require user context and return
`false` when `CHAT` feature is enabled (skips legacy onboarding)
> - Wallet now refreshes credits on any onboarding `step_completed`
notification; confetti limited to visible tasks
> - Test flows updated to accept redirects to `copilot`/`library` and
verify authenticated state
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
ec5a5a4dfd. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
2026-01-28 07:22:46 +00:00
Zamil Majdy
0058cd3ba6 fix(frontend): auto-poll for long-running tool completion (#11866)
## Summary
Fixes the issue where the "Creating Agent" spinner doesn't auto-update
when agent generation completes - user had to refresh the browser.

**Changes:**
- **Frontend polling**: Add `onOperationStarted` callback to trigger
polling when `operation_started` is received via SSE
- **Polling backoff**: 2s, 4s, 6s, 8s... up to 30s max
- **Message deduplication**: Use content-based keys (role + content)
instead of timestamps to prevent duplicate messages
- **Message ordering**: Preserve server message order instead of
timestamp-based sorting
- **Debug cleanup**: Remove verbose console.log/console.info statements

## Test plan
- [ ] Start agent generation in copilot
- [ ] Verify "Creating Agent" spinner appears
- [ ] Wait for completion (2-5 min) WITHOUT refreshing
- [ ] Verify agent carousel appears automatically when done
- [ ] Verify no duplicate messages in chat
- [ ] Verify message order is correct (user → assistant → tool_call →
tool_response)
2026-01-28 10:03:21 +07:00
Nicholas Tindle
ea035224bc feat(copilot): Increase max_agent_runs and max_agent_schedules (#11865)
<!-- Clearly explain the need for these changes: -->
Config change to increase the max times an agent can run in the chat and
the max number of scheduels created by copilot in one chat

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Increases per-chat operational limits for Copilot.
> 
> - Bumps `max_agent_runs` default from `3` to `30` in `ChatConfig`
> - Bumps `max_agent_schedules` default from `3` to `30` in `ChatConfig`
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
93cbae6d27. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->
2026-01-28 01:08:02 +00:00
Nicholas Tindle
62813a1ea6 Delete backend/blocks/video/__init__.py (#11864)
<!-- Clearly explain the need for these changes: -->
oops file
### Changes 🏗️

<!-- Concisely describe all of the changes made in this pull request:
-->
removes file that should have not been commited

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Removes erroneous `backend/blocks/video/__init__.py`, eliminating an
unintended `video` package.
> 
> - Deletes a placeholder comment-only file
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
3b84576c33. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->
2026-01-28 00:58:49 +00:00
Bently
67405f7eb9 fix(copilot): ensure tool_call/tool_response pairs stay intact during context compaction (#11863)
## Summary

Fixes context compaction breaking tool_call/tool_response pairs, causing
API validation errors.

## Problem

When context compaction slices messages with `messages[-KEEP_RECENT:]`,
a naive slice can separate an assistant message containing `tool_calls`
from its corresponding tool response messages. This causes API
validation errors like:

```
messages.0.content.1: unexpected 'tool_use_id' found in 'tool_result' blocks: orphan_12345.
Each 'tool_result' block must have a corresponding 'tool_use' block in the previous message.
```

## Solution

Added `_ensure_tool_pairs_intact()` helper function that:
1. Detects orphan tool responses in a slice (tool messages whose
`tool_call_id` has no matching assistant message)
2. Extends the slice backwards to include the missing assistant messages
3. Falls back to removing orphan tool responses if the assistant cannot
be found (edge case)

Applied this safeguard to:
- The initial `KEEP_RECENT` slice (line ~990)
- The progressive fallback slices when still over token limit (line
~1079)

## Testing

- Syntax validated with `python -m py_compile`
- Logic reviewed for correctness

## Linear

Fixes SECRT-1839

---
*Debugged by Toran & Orion in #agpt Discord*
2026-01-28 00:21:54 +00:00
Zamil Majdy
171ff6e776 feat(backend): persist long-running tool results to survive SSE disconnects (#11856)
## Summary

Agent generation (`create_agent`, `edit_agent`) can take 1-5 minutes.
Previously, if the user closed their browser tab during this time:
1. The SSE connection would die
2. The tool execution would be cancelled via `CancelledError`
3. The result would be lost - even if the agent-generator service
completed successfully

This PR ensures long-running tool operations survive SSE disconnections.

### Changes 🏗️

**Backend:**
- **base.py**: Added `is_long_running` property to `BaseTool` for tools
to opt-in to background execution
- **create_agent.py / edit_agent.py**: Set `is_long_running = True`
- **models.py**: Added `OperationStartedResponse`,
`OperationPendingResponse`, `OperationInProgressResponse` types
- **service.py**: Modified `_yield_tool_call()` to:
  - Check if tool is `is_long_running`
  - Save "pending" message to chat history immediately
  - Spawn background task that runs independently of SSE
  - Return `operation_started` immediately (don't wait)
  - Update chat history with result when background task completes
- Track running operations for idempotency (prevents duplicate ops on
refresh)
- **db.py**: Added `update_tool_message_content()` to update pending
messages
- **model.py**: Added `invalidate_session_cache()` to clear Redis after
background completion

**Frontend:**
- **useChatMessage.ts**: Added operation message types
- **helpers.ts**: Handle `operation_started`, `operation_pending`,
`operation_in_progress` response types
- **PendingOperationWidget**: New component to display operation status
with spinner
- **ChatMessage.tsx**: Render `PendingOperationWidget` for operation
messages

### How It Works

```
User Request → Save "pending" message → Spawn background task → Return immediately
                                              ↓
                                     Task runs independently of SSE
                                              ↓
                                     On completion: Update message in chat history
                                              ↓
                                     User refreshes → Loads history → Sees result
```

### User Experience

1. User requests agent creation
2. Sees "Agent creation started. You can close this tab - check your
library in a few minutes."
3. Can close browser tab safely
4. When they return, chat shows the completed result (or error)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] pyright passes (0 errors)
  - [x] TypeScript checks pass
  - [x] Formatters applied

### Test Plan

1. Start agent creation in copilot
2. Close browser tab immediately after seeing "operation_started" 
3. Wait 2-3 minutes
4. Reopen chat
5. Verify: Chat history shows completion message and agent appears in
library

---------

Co-authored-by: Ubbe <hi@ubbe.dev>
2026-01-28 05:09:34 +07:00
Lluis Agusti
349b1f9c79 hotfix(frontend): copilot session handling refinements... 2026-01-28 02:53:45 +07:00
Lluis Agusti
277b0537e9 hotfix(frontend): copilot simplication... 2026-01-28 02:10:18 +07:00
Ubbe
071b3bb5cd fix(frontend): more copilot refinements (#11858)
## Changes 🏗️

On the **Copilot** page:

- prevent unnecessary sidebar repaints 
- show a disclaimer when switching chats on the sidebar to terminate a
current stream
- handle loading better
- save streams better when disconnecting


### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run the app locally and test the above
2026-01-28 00:49:28 +07:00
131 changed files with 6421 additions and 1827 deletions

View File

@@ -29,8 +29,7 @@
"postCreateCmd": [
"cd autogpt_platform/autogpt_libs && poetry install",
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
"cd autogpt_platform/frontend && pnpm install",
"cd docs && pip install -r requirements.txt"
"cd autogpt_platform/frontend && pnpm install"
],
"terminalCommand": "code .",
"deleteBranchWithWorktree": false

View File

@@ -160,7 +160,7 @@ pnpm storybook # Start component development server
**Backend Entry Points:**
- `backend/backend/server/server.py` - FastAPI application setup
- `backend/backend/api/rest_api.py` - FastAPI application setup
- `backend/backend/data/` - Database models and user management
- `backend/blocks/` - Agent execution blocks and logic
@@ -219,7 +219,7 @@ Agents are built using a visual block-based system where each block performs a s
### API Development
1. Update routes in `/backend/backend/server/routers/`
1. Update routes in `/backend/backend/api/features/`
2. Add/update Pydantic models in same directory
3. Write tests alongside route files
4. For `data/*.py` changes, validate user ID checks
@@ -285,7 +285,7 @@ Agents are built using a visual block-based system where each block performs a s
### Security Guidelines
**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`):
**Cache Protection Middleware** (`/backend/backend/api/middleware/security.py`):
- Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses allow list approach for cacheable paths (static assets, health checks, public pages)

1
.gitignore vendored
View File

@@ -178,4 +178,5 @@ autogpt_platform/backend/settings.py
*.ign.*
.test-contents
.claude/settings.local.json
CLAUDE.local.md
/autogpt_platform/backend/logs

View File

@@ -16,7 +16,6 @@ See `docs/content/platform/getting-started.md` for setup instructions.
- Format Python code with `poetry run format`.
- Format frontend code using `pnpm format`.
## Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
@@ -33,14 +32,17 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Do not use `useCallback` or `useMemo` unless strictly needed
- Avoid comments at all times unless the code is very complex
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
- Do not type hook returns, let Typescript infer as much as possible
- Never type with `any`, if not types available use `unknown`
## Testing
@@ -49,22 +51,8 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
Always run the relevant linters and tests before committing.
Use conventional commit messages for all commits (e.g. `feat(backend): add API`).
Types:
- feat
- fix
- refactor
- ci
- dx (developer experience)
Scopes:
- platform
- platform/library
- platform/marketplace
- backend
- backend/executor
- frontend
- frontend/library
- frontend/marketplace
- blocks
Types: - feat - fix - refactor - ci - dx (developer experience)
Scopes: - platform - platform/library - platform/marketplace - backend - backend/executor - frontend - frontend/library - frontend/marketplace - blocks
## Pull requests

View File

@@ -6,152 +6,30 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
AutoGPT Platform is a monorepo containing:
- **Backend** (`/backend`): Python FastAPI server with async support
- **Frontend** (`/frontend`): Next.js React application
- **Shared Libraries** (`/autogpt_libs`): Common Python utilities
- **Backend** (`backend`): Python FastAPI server with async support
- **Frontend** (`frontend`): Next.js React application
- **Shared Libraries** (`autogpt_libs`): Common Python utilities
## Essential Commands
## Component Documentation
### Backend Development
- **Backend**: See @backend/CLAUDE.md for backend-specific commands, architecture, and development tasks
- **Frontend**: See @frontend/CLAUDE.md for frontend-specific commands, architecture, and development patterns
```bash
# Install dependencies
cd backend && poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend server
poetry run serve
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in TESTING.md
#### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
### Frontend Development
```bash
# Install dependencies
cd frontend && pnpm i
# Generate API client from OpenAPI spec
pnpm generate:api
# Start development server
pnpm dev
# Run E2E tests
pnpm test
# Run Storybook for component development
pnpm storybook
# Build production
pnpm build
# Format and lint
pnpm format
# Type checking
pnpm types
```
**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns.
**Key Frontend Conventions:**
- Separate render logic from data/behavior in components
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Use function declarations (not arrow functions) for components/handlers
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Only use Phosphor Icons
- Never use `src/components/__legacy__/*` or deprecated `BackendAPI`
## Architecture Overview
### Backend Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
### Frontend Architecture
- **Framework**: Next.js 15 App Router (client-first approach)
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
- **State Management**: React Query for server state, co-located UI state in components/hooks
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
- **Workflow Builder**: Visual graph editor using @xyflow/react
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
- **Icons**: Phosphor Icons only
- **Feature Flags**: LaunchDarkly integration
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
- **Testing**: Playwright for E2E, Storybook for component development
### Key Concepts
## Key Concepts
1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend
2. **Blocks**: Reusable components in `/backend/blocks/` that perform specific tasks
2. **Blocks**: Reusable components in `backend/backend/blocks/` that perform specific tasks
3. **Integrations**: OAuth and API connections stored per user
4. **Store**: Marketplace for sharing agent templates
5. **Virus Scanning**: ClamAV integration for file upload security
### Testing Approach
- Backend uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
- Frontend uses Playwright for E2E tests
- Component testing via Storybook
### Database Schema
Key models (defined in `/backend/schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
### Environment Configuration
#### Configuration Files
- **Backend**: `/backend/.env.default` (defaults) → `/backend/.env` (user overrides)
- **Frontend**: `/frontend/.env.default` (defaults) → `/frontend/.env` (user overrides)
- **Platform**: `/.env.default` (Supabase/shared defaults) → `/.env` (user overrides)
- **Backend**: `backend/.env.default` (defaults) → `backend/.env` (user overrides)
- **Frontend**: `frontend/.env.default` (defaults) → `frontend/.env` (user overrides)
- **Platform**: `.env.default` (Supabase/shared defaults) → `.env` (user overrides)
#### Docker Environment Loading Order
@@ -167,83 +45,12 @@ Key models (defined in `/backend/schema.prisma`):
- Backend/Frontend services use YAML anchors for consistent configuration
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
### Common Development Tasks
**Adding a new block:**
Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `/backend/backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
**Modifying the API:**
1. Update route in `/backend/backend/server/routers/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
### Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Add `usePageName.ts` hook for logic
- Put sub-components in local `components/` folder
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Do not use `useCallback` or `useMemo` unless strictly needed
- Avoid comments at all times unless the code is very complex
### Security Implementation
**Cache Protection Middleware:**
- Located in `/backend/backend/server/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`/static/*`, `/_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications
### Creating Pull Requests
- Create the PR aginst the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)/
- Use conventional commit messages (see below)/
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description/
- Create the PR against the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)
- Use conventional commit messages (see below)
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description
- Run the github pre-commit hooks to ensure code quality.
### Reviewing/Revising Pull Requests

View File

@@ -0,0 +1,170 @@
# CLAUDE.md - Backend
This file provides guidance to Claude Code when working with the backend.
## Essential Commands
To run something with Python package dependencies you MUST use `poetry run ...`.
```bash
# Install dependencies
poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend as a whole
poetry run app
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in @TESTING.md
### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
## Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
## Testing Approach
- Uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
## Database Schema
Key models (defined in `schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
## Environment Configuration
- **Backend**: `.env.default` (defaults) → `.env` (user overrides)
## Common Development Tasks
### Adding a new block
Follow the comprehensive [Block SDK Guide](@../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph-based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
#### Handling files in blocks with `store_media_file()`
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
| Format | Use When | Returns |
|--------|----------|---------|
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
**Examples:**
```python
# INPUT: Need to process file locally with ffmpeg
local_path = await store_media_file(
file=input_data.video,
execution_context=execution_context,
return_format="for_local_processing",
)
# local_path = "video.mp4" - use with Path/ffmpeg/etc
# INPUT: Need to send to external API like Replicate
image_b64 = await store_media_file(
file=input_data.image,
execution_context=execution_context,
return_format="for_external_api",
)
# image_b64 = "..." - send to API
# OUTPUT: Returning result from block
result_url = await store_media_file(
file=generated_image_url,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", result_url
# In CoPilot: result_url = "workspace://abc123"
# In graphs: result_url = "data:image/png;base64,..."
```
**Key points:**
- `for_block_output` is the ONLY format that auto-adapts to execution context
- Always use `for_block_output` for block outputs unless you have a specific reason not to
- Never hardcode workspace checks - let `for_block_output` handle it
### Modifying the API
1. Update route in `backend/api/features/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
## Security Implementation
### Cache Protection Middleware
- Located in `backend/api/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`static/*`, `_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications

View File

@@ -138,7 +138,7 @@ If the test doesn't need the `user_id` specifically, mocking is not necessary as
#### Using Global Auth Fixtures
Two global auth fixtures are provided by `backend/server/conftest.py`:
Two global auth fixtures are provided by `backend/api/conftest.py`:
- `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id")
- `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id")

View File

@@ -17,7 +17,7 @@ router = fastapi.APIRouter(
)
# Taken from backend/server/v2/store/db.py
# Taken from backend/api/features/store/db.py
def sanitize_query(query: str | None) -> str | None:
if query is None:
return query

View File

@@ -33,9 +33,15 @@ class ChatConfig(BaseSettings):
stream_timeout: int = Field(default=300, description="Stream timeout in seconds")
max_retries: int = Field(default=3, description="Maximum number of retries")
max_agent_runs: int = Field(default=3, description="Maximum number of agent runs")
max_agent_runs: int = Field(default=30, description="Maximum number of agent runs")
max_agent_schedules: int = Field(
default=3, description="Maximum number of agent schedules"
default=30, description="Maximum number of agent schedules"
)
# Long-running operation configuration
long_running_operation_ttl: int = Field(
default=600,
description="TTL in seconds for long-running operation tracking in Redis (safety net if pod dies)",
)
# Langfuse Prompt Management Configuration

View File

@@ -247,3 +247,45 @@ async def get_chat_session_message_count(session_id: str) -> int:
"""Get the number of messages in a chat session."""
count = await PrismaChatMessage.prisma().count(where={"sessionId": session_id})
return count
async def update_tool_message_content(
session_id: str,
tool_call_id: str,
new_content: str,
) -> bool:
"""Update the content of a tool message in chat history.
Used by background tasks to update pending operation messages with final results.
Args:
session_id: The chat session ID.
tool_call_id: The tool call ID to find the message.
new_content: The new content to set.
Returns:
True if a message was updated, False otherwise.
"""
try:
result = await PrismaChatMessage.prisma().update_many(
where={
"sessionId": session_id,
"toolCallId": tool_call_id,
},
data={
"content": new_content,
},
)
if result == 0:
logger.warning(
f"No message found to update for session {session_id}, "
f"tool_call_id {tool_call_id}"
)
return False
return True
except Exception as e:
logger.error(
f"Failed to update tool message for session {session_id}, "
f"tool_call_id {tool_call_id}: {e}"
)
return False

View File

@@ -295,6 +295,21 @@ async def cache_chat_session(session: ChatSession) -> None:
await _cache_session(session)
async def invalidate_session_cache(session_id: str) -> None:
"""Invalidate a chat session from Redis cache.
Used by background tasks to ensure fresh data is loaded on next access.
This is best-effort - Redis failures are logged but don't fail the operation.
"""
try:
redis_key = _get_session_cache_key(session_id)
async_redis = await get_redis_async()
await async_redis.delete(redis_key)
except Exception as e:
# Best-effort: log but don't fail - cache will expire naturally
logger.warning(f"Failed to invalidate session cache for {session_id}: {e}")
async def _get_session_from_db(session_id: str) -> ChatSession | None:
"""Get a chat session from the database."""
prisma_session = await chat_db.get_chat_session(session_id)

View File

@@ -17,6 +17,7 @@ from openai import (
)
from openai.types.chat import ChatCompletionChunk, ChatCompletionToolParam
from backend.data.redis_client import get_redis_async
from backend.data.understanding import (
format_understanding_for_prompt,
get_business_understanding,
@@ -24,6 +25,7 @@ from backend.data.understanding import (
from backend.util.exceptions import NotFoundError
from backend.util.settings import Settings
from . import db as chat_db
from .config import ChatConfig
from .model import (
ChatMessage,
@@ -31,6 +33,7 @@ from .model import (
Usage,
cache_chat_session,
get_chat_session,
invalidate_session_cache,
update_session_title,
upsert_chat_session,
)
@@ -48,8 +51,13 @@ from .response_model import (
StreamToolOutputAvailable,
StreamUsage,
)
from .tools import execute_tool, tools
from .tools.models import ErrorResponse
from .tools import execute_tool, get_tool, tools
from .tools.models import (
ErrorResponse,
OperationInProgressResponse,
OperationPendingResponse,
OperationStartedResponse,
)
from .tracking import track_user_message
logger = logging.getLogger(__name__)
@@ -61,11 +69,126 @@ client = openai.AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
langfuse = get_client()
# Redis key prefix for tracking running long-running operations
# Used for idempotency across Kubernetes pods - prevents duplicate executions on browser refresh
RUNNING_OPERATION_PREFIX = "chat:running_operation:"
class LangfuseNotConfiguredError(Exception):
"""Raised when Langfuse is required but not configured."""
# Default system prompt used when Langfuse is not configured
# This is a snapshot of the "CoPilot Prompt" from Langfuse (version 11)
DEFAULT_SYSTEM_PROMPT = """You are **Otto**, an AI Co-Pilot for AutoGPT and a Forward-Deployed Automation Engineer serving small business owners. Your mission is to help users automate business tasks with AI by delivering tangible value through working automations—not through documentation or lengthy explanations.
pass
Here is everything you know about the current user from previous interactions:
<users_information>
{users_information}
</users_information>
## YOUR CORE MANDATE
You are action-oriented. Your success is measured by:
- **Value Delivery**: Does the user think "wow, that was amazing" or "what was the point"?
- **Demonstrable Proof**: Show working automations, not descriptions of what's possible
- **Time Saved**: Focus on tangible efficiency gains
- **Quality Output**: Deliver results that meet or exceed expectations
## YOUR WORKFLOW
Adapt flexibly to the conversation context. Not every interaction requires all stages:
1. **Explore & Understand**: Learn about the user's business, tasks, and goals. Use `add_understanding` to capture important context that will improve future conversations.
2. **Assess Automation Potential**: Help the user understand whether and how AI can automate their task.
3. **Prepare for AI**: Provide brief, actionable guidance on prerequisites (data, access, etc.).
4. **Discover or Create Agents**:
- **Always check the user's library first** with `find_library_agent` (these may be customized to their needs)
- Search the marketplace with `find_agent` for pre-built automations
- Find reusable components with `find_block`
- Create custom solutions with `create_agent` if nothing suitable exists
- Modify existing library agents with `edit_agent`
5. **Execute**: Run automations immediately, schedule them, or set up webhooks using `run_agent`. Test specific components with `run_block`.
6. **Show Results**: Display outputs using `agent_output`.
## AVAILABLE TOOLS
**Understanding & Discovery:**
- `add_understanding`: Create a memory about the user's business or use cases for future sessions
- `search_docs`: Search platform documentation for specific technical information
- `get_doc_page`: Retrieve full text of a specific documentation page
**Agent Discovery:**
- `find_library_agent`: Search the user's existing agents (CHECK HERE FIRST—these may be customized)
- `find_agent`: Search the marketplace for pre-built automations
- `find_block`: Find pre-written code units that perform specific tasks (agents are built from blocks)
**Agent Creation & Editing:**
- `create_agent`: Create a new automation agent
- `edit_agent`: Modify an agent in the user's library
**Execution & Output:**
- `run_agent`: Run an agent now, schedule it, or set up a webhook trigger
- `run_block`: Test or run a specific block independently
- `agent_output`: View results from previous agent runs
## BEHAVIORAL GUIDELINES
**Be Concise:**
- Target 2-5 short lines maximum
- Make every word count—no repetition or filler
- Use lightweight structure for scannability (bullets, numbered lists, short prompts)
- Avoid jargon (blocks, slugs, cron) unless the user asks
**Be Proactive:**
- Suggest next steps before being asked
- Anticipate needs based on conversation context and user information
- Look for opportunities to expand scope when relevant
- Reveal capabilities through action, not explanation
**Use Tools Effectively:**
- Select the right tool for each task
- **Always check `find_library_agent` before searching the marketplace**
- Use `add_understanding` to capture valuable business context
- When tool calls fail, try alternative approaches
## CRITICAL REMINDER
You are NOT a chatbot. You are NOT documentation. You are a partner who helps busy business owners get value quickly by showing proof through working automations. Bias toward action over explanation."""
# Module-level set to hold strong references to background tasks.
# This prevents asyncio from garbage collecting tasks before they complete.
# Tasks are automatically removed on completion via done_callback.
_background_tasks: set[asyncio.Task] = set()
async def _mark_operation_started(tool_call_id: str) -> bool:
"""Mark a long-running operation as started (Redis-based).
Returns True if successfully marked (operation was not already running),
False if operation was already running (lost race condition).
Raises exception if Redis is unavailable (fail-closed).
"""
redis = await get_redis_async()
key = f"{RUNNING_OPERATION_PREFIX}{tool_call_id}"
# SETNX with TTL - atomic "set if not exists"
result = await redis.set(key, "1", ex=config.long_running_operation_ttl, nx=True)
return result is not None
async def _mark_operation_completed(tool_call_id: str) -> None:
"""Mark a long-running operation as completed (remove Redis key).
This is best-effort - if Redis fails, the TTL will eventually clean up.
"""
try:
redis = await get_redis_async()
key = f"{RUNNING_OPERATION_PREFIX}{tool_call_id}"
await redis.delete(key)
except Exception as e:
# Non-critical: TTL will clean up eventually
logger.warning(f"Failed to delete running operation key {tool_call_id}: {e}")
def _is_langfuse_configured() -> bool:
@@ -75,6 +198,30 @@ def _is_langfuse_configured() -> bool:
)
async def _get_system_prompt_template(context: str) -> str:
"""Get the system prompt, trying Langfuse first with fallback to default.
Args:
context: The user context/information to compile into the prompt.
Returns:
The compiled system prompt string.
"""
if _is_langfuse_configured():
try:
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
# Use asyncio.to_thread to avoid blocking the event loop
prompt = await asyncio.to_thread(
langfuse.get_prompt, config.langfuse_prompt_name, cache_ttl_seconds=0
)
return prompt.compile(users_information=context)
except Exception as e:
logger.warning(f"Failed to fetch prompt from Langfuse, using default: {e}")
# Fallback to default prompt
return DEFAULT_SYSTEM_PROMPT.format(users_information=context)
async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
"""Build the full system prompt including business understanding if available.
@@ -83,12 +230,8 @@ async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
If "default" and this is the user's first session, will use "onboarding" instead.
Returns:
Tuple of (compiled prompt string, Langfuse prompt object for tracing)
Tuple of (compiled prompt string, business understanding object)
"""
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
prompt = langfuse.get_prompt(config.langfuse_prompt_name, cache_ttl_seconds=0)
# If user is authenticated, try to fetch their business understanding
understanding = None
if user_id:
@@ -97,12 +240,13 @@ async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
except Exception as e:
logger.warning(f"Failed to fetch business understanding: {e}")
understanding = None
if understanding:
context = format_understanding_for_prompt(understanding)
else:
context = "This is the first time you are meeting the user. Greet them and introduce them to the platform"
compiled = prompt.compile(users_information=context)
compiled = await _get_system_prompt_template(context)
return compiled, understanding
@@ -210,16 +354,6 @@ async def stream_chat_completion(
f"Streaming chat completion for session {session_id} for message {message} and user id {user_id}. Message is user message: {is_user_message}"
)
# Check if Langfuse is configured - required for chat functionality
if not _is_langfuse_configured():
logger.error("Chat request failed: Langfuse is not configured")
yield StreamError(
errorText="Chat service is not available. Langfuse must be configured "
"with LANGFUSE_PUBLIC_KEY and LANGFUSE_SECRET_KEY environment variables."
)
yield StreamFinish()
return
# Only fetch from Redis if session not provided (initial call)
if session is None:
session = await get_chat_session(session_id, user_id)
@@ -315,6 +449,7 @@ async def stream_chat_completion(
has_yielded_end = False
has_yielded_error = False
has_done_tool_call = False
has_long_running_tool_call = False # Track if we had a long-running tool call
has_received_text = False
text_streaming_ended = False
tool_response_messages: list[ChatMessage] = []
@@ -336,7 +471,6 @@ async def stream_chat_completion(
system_prompt=system_prompt,
text_block_id=text_block_id,
):
if isinstance(chunk, StreamTextStart):
# Emit text-start before first text delta
if not has_received_text:
@@ -394,13 +528,34 @@ async def stream_chat_completion(
if isinstance(chunk.output, str)
else orjson.dumps(chunk.output).decode("utf-8")
)
tool_response_messages.append(
ChatMessage(
role="tool",
content=result_content,
tool_call_id=chunk.toolCallId,
# Skip saving long-running operation responses - messages already saved in _yield_tool_call
# Use JSON parsing instead of substring matching to avoid false positives
is_long_running_response = False
try:
parsed = orjson.loads(result_content)
if isinstance(parsed, dict) and parsed.get("type") in (
"operation_started",
"operation_in_progress",
):
is_long_running_response = True
except (orjson.JSONDecodeError, TypeError):
pass # Not JSON or not a dict - treat as regular response
if is_long_running_response:
# Remove from accumulated_tool_calls since assistant message was already saved
accumulated_tool_calls[:] = [
tc
for tc in accumulated_tool_calls
if tc["id"] != chunk.toolCallId
]
has_long_running_tool_call = True
else:
tool_response_messages.append(
ChatMessage(
role="tool",
content=result_content,
tool_call_id=chunk.toolCallId,
)
)
)
has_done_tool_call = True
# Track if any tool execution failed
if not chunk.success:
@@ -576,7 +731,14 @@ async def stream_chat_completion(
logger.info(
f"Extended session messages, new message_count={len(session.messages)}"
)
if messages_to_save or has_appended_streaming_message:
# Save if there are regular (non-long-running) tool responses or streaming message.
# Long-running tools save their own state, but we still need to save regular tools
# that may be in the same response.
has_regular_tool_responses = len(tool_response_messages) > 0
if has_regular_tool_responses or (
not has_long_running_tool_call
and (messages_to_save or has_appended_streaming_message)
):
await upsert_chat_session(session)
else:
logger.info(
@@ -585,7 +747,9 @@ async def stream_chat_completion(
)
# If we did a tool call, stream the chat completion again to get the next response
if has_done_tool_call:
# Skip only if ALL tools were long-running (they handle their own completion)
has_regular_tools = len(tool_response_messages) > 0
if has_done_tool_call and (has_regular_tools or not has_long_running_tool_call):
logger.info(
"Tool call executed, streaming chat completion again to get assistant response"
)
@@ -725,6 +889,114 @@ async def _summarize_messages(
return summary or "No summary available."
def _ensure_tool_pairs_intact(
recent_messages: list[dict],
all_messages: list[dict],
start_index: int,
) -> list[dict]:
"""
Ensure tool_call/tool_response pairs stay together after slicing.
When slicing messages for context compaction, a naive slice can separate
an assistant message containing tool_calls from its corresponding tool
response messages. This causes API validation errors (e.g., Anthropic's
"unexpected tool_use_id found in tool_result blocks").
This function checks for orphan tool responses in the slice and extends
backwards to include their corresponding assistant messages.
Args:
recent_messages: The sliced messages to validate
all_messages: The complete message list (for looking up missing assistants)
start_index: The index in all_messages where recent_messages begins
Returns:
A potentially extended list of messages with tool pairs intact
"""
if not recent_messages:
return recent_messages
# Collect all tool_call_ids from assistant messages in the slice
available_tool_call_ids: set[str] = set()
for msg in recent_messages:
if msg.get("role") == "assistant" and msg.get("tool_calls"):
for tc in msg["tool_calls"]:
tc_id = tc.get("id")
if tc_id:
available_tool_call_ids.add(tc_id)
# Find orphan tool responses (tool messages whose tool_call_id is missing)
orphan_tool_call_ids: set[str] = set()
for msg in recent_messages:
if msg.get("role") == "tool":
tc_id = msg.get("tool_call_id")
if tc_id and tc_id not in available_tool_call_ids:
orphan_tool_call_ids.add(tc_id)
if not orphan_tool_call_ids:
# No orphans, slice is valid
return recent_messages
# Find the assistant messages that contain the orphan tool_call_ids
# Search backwards from start_index in all_messages
messages_to_prepend: list[dict] = []
for i in range(start_index - 1, -1, -1):
msg = all_messages[i]
if msg.get("role") == "assistant" and msg.get("tool_calls"):
msg_tool_ids = {tc.get("id") for tc in msg["tool_calls"] if tc.get("id")}
if msg_tool_ids & orphan_tool_call_ids:
# This assistant message has tool_calls we need
# Also collect its contiguous tool responses that follow it
assistant_and_responses: list[dict] = [msg]
# Scan forward from this assistant to collect tool responses
for j in range(i + 1, start_index):
following_msg = all_messages[j]
if following_msg.get("role") == "tool":
tool_id = following_msg.get("tool_call_id")
if tool_id and tool_id in msg_tool_ids:
assistant_and_responses.append(following_msg)
else:
# Stop at first non-tool message
break
# Prepend the assistant and its tool responses (maintain order)
messages_to_prepend = assistant_and_responses + messages_to_prepend
# Mark these as found
orphan_tool_call_ids -= msg_tool_ids
# Also add this assistant's tool_call_ids to available set
available_tool_call_ids |= msg_tool_ids
if not orphan_tool_call_ids:
# Found all missing assistants
break
if orphan_tool_call_ids:
# Some tool_call_ids couldn't be resolved - remove those tool responses
# This shouldn't happen in normal operation but handles edge cases
logger.warning(
f"Could not find assistant messages for tool_call_ids: {orphan_tool_call_ids}. "
"Removing orphan tool responses."
)
recent_messages = [
msg
for msg in recent_messages
if not (
msg.get("role") == "tool"
and msg.get("tool_call_id") in orphan_tool_call_ids
)
]
if messages_to_prepend:
logger.info(
f"Extended recent messages by {len(messages_to_prepend)} to preserve "
f"tool_call/tool_response pairs"
)
return messages_to_prepend + recent_messages
return recent_messages
async def _stream_chat_chunks(
session: ChatSession,
tools: list[ChatCompletionToolParam],
@@ -816,7 +1088,15 @@ async def _stream_chat_chunks(
# Always attempt mitigation when over limit, even with few messages
if messages:
# Split messages based on whether system prompt exists
recent_messages = messages[-KEEP_RECENT:]
# Calculate start index for the slice
slice_start = max(0, len(messages_dict) - KEEP_RECENT)
recent_messages = messages_dict[-KEEP_RECENT:]
# Ensure tool_call/tool_response pairs stay together
# This prevents API errors from orphan tool responses
recent_messages = _ensure_tool_pairs_intact(
recent_messages, messages_dict, slice_start
)
if has_system_prompt:
# Keep system prompt separate, summarize everything between system and recent
@@ -903,6 +1183,13 @@ async def _stream_chat_chunks(
if len(recent_messages) >= keep_count
else recent_messages
)
# Ensure tool pairs stay intact in the reduced slice
reduced_slice_start = max(
0, len(recent_messages) - keep_count
)
reduced_recent = _ensure_tool_pairs_intact(
reduced_recent, recent_messages, reduced_slice_start
)
if has_system_prompt:
messages = [
system_msg,
@@ -961,7 +1248,10 @@ async def _stream_chat_chunks(
# Create a base list excluding system prompt to avoid duplication
# This is the pool of messages we'll slice from in the loop
base_msgs = messages[1:] if has_system_prompt else messages
# Use messages_dict for type consistency with _ensure_tool_pairs_intact
base_msgs = (
messages_dict[1:] if has_system_prompt else messages_dict
)
# Try progressively smaller keep counts
new_token_count = token_count # Initialize with current count
@@ -984,6 +1274,12 @@ async def _stream_chat_chunks(
# Slice from base_msgs to get recent messages (without system prompt)
recent_messages = base_msgs[-keep_count:]
# Ensure tool pairs stay intact in the reduced slice
reduced_slice_start = max(0, len(base_msgs) - keep_count)
recent_messages = _ensure_tool_pairs_intact(
recent_messages, base_msgs, reduced_slice_start
)
if has_system_prompt:
messages = [system_msg] + recent_messages
else:
@@ -1260,17 +1556,19 @@ async def _yield_tool_call(
"""
Yield a tool call and its execution result.
For long-running tools, yields heartbeat events every 15 seconds to keep
the SSE connection alive through proxies and load balancers.
For tools marked with `is_long_running=True` (like agent generation), spawns a
background task so the operation survives SSE disconnections. For other tools,
yields heartbeat events every 15 seconds to keep the SSE connection alive.
Raises:
orjson.JSONDecodeError: If tool call arguments cannot be parsed as JSON
KeyError: If expected tool call fields are missing
TypeError: If tool call structure is invalid
"""
import uuid as uuid_module
tool_name = tool_calls[yield_idx]["function"]["name"]
tool_call_id = tool_calls[yield_idx]["id"]
logger.info(f"Yielding tool call: {tool_calls[yield_idx]}")
# Parse tool call arguments - handle empty arguments gracefully
raw_arguments = tool_calls[yield_idx]["function"]["arguments"]
@@ -1285,7 +1583,151 @@ async def _yield_tool_call(
input=arguments,
)
# Run tool execution in background task with heartbeats to keep connection alive
# Check if this tool is long-running (survives SSE disconnection)
tool = get_tool(tool_name)
if tool and tool.is_long_running:
# Atomic check-and-set: returns False if operation already running (lost race)
if not await _mark_operation_started(tool_call_id):
logger.info(
f"Tool call {tool_call_id} already in progress, returning status"
)
# Build dynamic message based on tool name
if tool_name == "create_agent":
in_progress_msg = "Agent creation already in progress. Please wait..."
elif tool_name == "edit_agent":
in_progress_msg = "Agent edit already in progress. Please wait..."
else:
in_progress_msg = f"{tool_name} already in progress. Please wait..."
yield StreamToolOutputAvailable(
toolCallId=tool_call_id,
toolName=tool_name,
output=OperationInProgressResponse(
message=in_progress_msg,
tool_call_id=tool_call_id,
).model_dump_json(),
success=True,
)
return
# Generate operation ID
operation_id = str(uuid_module.uuid4())
# Build a user-friendly message based on tool and arguments
if tool_name == "create_agent":
agent_desc = arguments.get("description", "")
# Truncate long descriptions for the message
desc_preview = (
(agent_desc[:100] + "...") if len(agent_desc) > 100 else agent_desc
)
pending_msg = (
f"Creating your agent: {desc_preview}"
if desc_preview
else "Creating agent... This may take a few minutes."
)
started_msg = (
"Agent creation started. You can close this tab - "
"check your library in a few minutes."
)
elif tool_name == "edit_agent":
changes = arguments.get("changes", "")
changes_preview = (changes[:100] + "...") if len(changes) > 100 else changes
pending_msg = (
f"Editing agent: {changes_preview}"
if changes_preview
else "Editing agent... This may take a few minutes."
)
started_msg = (
"Agent edit started. You can close this tab - "
"check your library in a few minutes."
)
else:
pending_msg = f"Running {tool_name}... This may take a few minutes."
started_msg = (
f"{tool_name} started. You can close this tab - "
"check back in a few minutes."
)
# Track appended messages for rollback on failure
assistant_message: ChatMessage | None = None
pending_message: ChatMessage | None = None
# Wrap session save and task creation in try-except to release lock on failure
try:
# Save assistant message with tool_call FIRST (required by LLM)
assistant_message = ChatMessage(
role="assistant",
content="",
tool_calls=[tool_calls[yield_idx]],
)
session.messages.append(assistant_message)
# Then save pending tool result
pending_message = ChatMessage(
role="tool",
content=OperationPendingResponse(
message=pending_msg,
operation_id=operation_id,
tool_name=tool_name,
).model_dump_json(),
tool_call_id=tool_call_id,
)
session.messages.append(pending_message)
await upsert_chat_session(session)
logger.info(
f"Saved pending operation {operation_id} for tool {tool_name} "
f"in session {session.session_id}"
)
# Store task reference in module-level set to prevent GC before completion
task = asyncio.create_task(
_execute_long_running_tool(
tool_name=tool_name,
parameters=arguments,
tool_call_id=tool_call_id,
operation_id=operation_id,
session_id=session.session_id,
user_id=session.user_id,
)
)
_background_tasks.add(task)
task.add_done_callback(_background_tasks.discard)
except Exception as e:
# Roll back appended messages to prevent data corruption on subsequent saves
if (
pending_message
and session.messages
and session.messages[-1] == pending_message
):
session.messages.pop()
if (
assistant_message
and session.messages
and session.messages[-1] == assistant_message
):
session.messages.pop()
# Release the Redis lock since the background task won't be spawned
await _mark_operation_completed(tool_call_id)
logger.error(
f"Failed to setup long-running tool {tool_name}: {e}", exc_info=True
)
raise
# Return immediately - don't wait for completion
yield StreamToolOutputAvailable(
toolCallId=tool_call_id,
toolName=tool_name,
output=OperationStartedResponse(
message=started_msg,
operation_id=operation_id,
tool_name=tool_name,
).model_dump_json(),
success=True,
)
return
# Normal flow: Run tool execution in background task with heartbeats
tool_task = asyncio.create_task(
execute_tool(
tool_name=tool_name,
@@ -1335,3 +1777,190 @@ async def _yield_tool_call(
)
yield tool_execution_response
async def _execute_long_running_tool(
tool_name: str,
parameters: dict[str, Any],
tool_call_id: str,
operation_id: str,
session_id: str,
user_id: str | None,
) -> None:
"""Execute a long-running tool in background and update chat history with result.
This function runs independently of the SSE connection, so the operation
survives if the user closes their browser tab.
"""
try:
# Load fresh session (not stale reference)
session = await get_chat_session(session_id, user_id)
if not session:
logger.error(f"Session {session_id} not found for background tool")
return
# Execute the actual tool
result = await execute_tool(
tool_name=tool_name,
parameters=parameters,
tool_call_id=tool_call_id,
user_id=user_id,
session=session,
)
# Update the pending message with result
await _update_pending_operation(
session_id=session_id,
tool_call_id=tool_call_id,
result=(
result.output
if isinstance(result.output, str)
else orjson.dumps(result.output).decode("utf-8")
),
)
logger.info(f"Background tool {tool_name} completed for session {session_id}")
# Generate LLM continuation so user sees response when they poll/refresh
await _generate_llm_continuation(session_id=session_id, user_id=user_id)
except Exception as e:
logger.error(f"Background tool {tool_name} failed: {e}", exc_info=True)
error_response = ErrorResponse(
message=f"Tool {tool_name} failed: {str(e)}",
)
await _update_pending_operation(
session_id=session_id,
tool_call_id=tool_call_id,
result=error_response.model_dump_json(),
)
finally:
await _mark_operation_completed(tool_call_id)
async def _update_pending_operation(
session_id: str,
tool_call_id: str,
result: str,
) -> None:
"""Update the pending tool message with final result.
This is called by background tasks when long-running operations complete.
"""
# Update the message in database
updated = await chat_db.update_tool_message_content(
session_id=session_id,
tool_call_id=tool_call_id,
new_content=result,
)
if updated:
# Invalidate Redis cache so next load gets fresh data
# Wrap in try/except to prevent cache failures from triggering error handling
# that would overwrite our successful DB update
try:
await invalidate_session_cache(session_id)
except Exception as e:
# Non-critical: cache will eventually be refreshed on next load
logger.warning(f"Failed to invalidate cache for session {session_id}: {e}")
logger.info(
f"Updated pending operation for tool_call_id {tool_call_id} "
f"in session {session_id}"
)
else:
logger.warning(
f"Failed to update pending operation for tool_call_id {tool_call_id} "
f"in session {session_id}"
)
async def _generate_llm_continuation(
session_id: str,
user_id: str | None,
) -> None:
"""Generate an LLM response after a long-running tool completes.
This is called by background tasks to continue the conversation
after a tool result is saved. The response is saved to the database
so users see it when they refresh or poll.
"""
try:
# Load fresh session from DB (bypass cache to get the updated tool result)
await invalidate_session_cache(session_id)
session = await get_chat_session(session_id, user_id)
if not session:
logger.error(f"Session {session_id} not found for LLM continuation")
return
# Build system prompt
system_prompt, _ = await _build_system_prompt(user_id)
# Build messages in OpenAI format
messages = session.to_openai_messages()
if system_prompt:
from openai.types.chat import ChatCompletionSystemMessageParam
system_message = ChatCompletionSystemMessageParam(
role="system",
content=system_prompt,
)
messages = [system_message] + messages
# Build extra_body for tracing
extra_body: dict[str, Any] = {
"posthogProperties": {
"environment": settings.config.app_env.value,
},
}
if user_id:
extra_body["user"] = user_id[:128]
extra_body["posthogDistinctId"] = user_id
if session_id:
extra_body["session_id"] = session_id[:128]
# Make non-streaming LLM call (no tools - just text response)
from typing import cast
from openai.types.chat import ChatCompletionMessageParam
# No tools parameter = text-only response (no tool calls)
response = await client.chat.completions.create(
model=config.model,
messages=cast(list[ChatCompletionMessageParam], messages),
extra_body=extra_body,
)
if response.choices and response.choices[0].message.content:
assistant_content = response.choices[0].message.content
# Reload session from DB to avoid race condition with user messages
# that may have been sent while we were generating the LLM response
fresh_session = await get_chat_session(session_id, user_id)
if not fresh_session:
logger.error(
f"Session {session_id} disappeared during LLM continuation"
)
return
# Save assistant message to database
assistant_message = ChatMessage(
role="assistant",
content=assistant_content,
)
fresh_session.messages.append(assistant_message)
# Save to database (not cache) to persist the response
await upsert_chat_session(fresh_session)
# Invalidate cache so next poll/refresh gets fresh data
await invalidate_session_cache(session_id)
logger.info(
f"Generated LLM continuation for session {session_id}, "
f"response length: {len(assistant_content)}"
)
else:
logger.warning(f"LLM continuation returned empty response for {session_id}")
except Exception as e:
logger.error(f"Failed to generate LLM continuation: {e}", exc_info=True)

View File

@@ -0,0 +1,79 @@
# CoPilot Tools - Future Ideas
## Multimodal Image Support for CoPilot
**Problem:** CoPilot uses a vision-capable model but can't "see" workspace images. When a block generates an image and returns `workspace://abc123`, CoPilot can't evaluate it (e.g., checking blog thumbnail quality).
**Backend Solution:**
When preparing messages for the LLM, detect `workspace://` image references and convert them to proper image content blocks:
```python
# Before sending to LLM, scan for workspace image references
# and inject them as image content parts
# Example message transformation:
# FROM: {"role": "assistant", "content": "Generated image: workspace://abc123"}
# TO: {"role": "assistant", "content": [
# {"type": "text", "text": "Generated image: workspace://abc123"},
# {"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}}
# ]}
```
**Where to implement:**
- In the chat stream handler before calling the LLM
- Or in a message preprocessing step
- Need to fetch image from workspace, convert to base64, add as image content
**Considerations:**
- Only do this for image MIME types (image/png, image/jpeg, etc.)
- May want a size limit (don't pass 10MB images)
- Track which images were "shown" to the AI for frontend indicator
- Cost implications - vision API calls are more expensive
**Frontend Solution:**
Show visual indicator on workspace files in chat:
- If AI saw the image: normal display
- If AI didn't see it: overlay icon saying "AI can't see this image"
Requires response metadata indicating which `workspace://` refs were passed to the model.
---
## Output Post-Processing Layer for run_block
**Problem:** Many blocks produce large outputs that:
- Consume massive context (100KB base64 image = ~133KB tokens)
- Can't fit in conversation
- Break things and cause high LLM costs
**Proposed Solution:** Instead of modifying individual blocks or `store_media_file()`, implement a centralized output processor in `run_block.py` that handles outputs before they're returned to CoPilot.
**Benefits:**
1. **Centralized** - one place to handle all output processing
2. **Future-proof** - new blocks automatically get output processing
3. **Keeps blocks pure** - they don't need to know about context constraints
4. **Handles all large outputs** - not just images
**Processing Rules:**
- Detect base64 data URIs → save to workspace, return `workspace://` reference
- Truncate very long strings (>N chars) with truncation note
- Summarize large arrays/lists (e.g., "Array with 1000 items, first 5: [...]")
- Handle nested large outputs in dicts recursively
- Cap total output size
**Implementation Location:** `run_block.py` after block execution, before returning `BlockOutputResponse`
**Example:**
```python
def _process_outputs_for_context(
outputs: dict[str, list[Any]],
workspace_manager: WorkspaceManager,
max_string_length: int = 10000,
max_array_preview: int = 5,
) -> dict[str, list[Any]]:
"""Process block outputs to prevent context bloat."""
processed = {}
for name, values in outputs.items():
processed[name] = [_process_value(v, workspace_manager) for v in values]
return processed
```

View File

@@ -18,6 +18,12 @@ from .get_doc_page import GetDocPageTool
from .run_agent import RunAgentTool
from .run_block import RunBlockTool
from .search_docs import SearchDocsTool
from .workspace_files import (
DeleteWorkspaceFileTool,
ListWorkspaceFilesTool,
ReadWorkspaceFileTool,
WriteWorkspaceFileTool,
)
if TYPE_CHECKING:
from backend.api.features.chat.response_model import StreamToolOutputAvailable
@@ -37,6 +43,11 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
"view_agent_output": AgentOutputTool(),
"search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(),
# Workspace tools for CoPilot file operations
"list_workspace_files": ListWorkspaceFilesTool(),
"read_workspace_file": ReadWorkspaceFileTool(),
"write_workspace_file": WriteWorkspaceFileTool(),
"delete_workspace_file": DeleteWorkspaceFileTool(),
}
# Export individual tool instances for backwards compatibility
@@ -49,6 +60,11 @@ tools: list[ChatCompletionToolParam] = [
]
def get_tool(tool_name: str) -> BaseTool | None:
"""Get a tool instance by name."""
return TOOL_REGISTRY.get(tool_name)
async def execute_tool(
tool_name: str,
parameters: dict[str, Any],
@@ -57,7 +73,7 @@ async def execute_tool(
tool_call_id: str,
) -> "StreamToolOutputAvailable":
"""Execute a tool by name."""
tool = TOOL_REGISTRY.get(tool_name)
tool = get_tool(tool_name)
if not tool:
raise ValueError(f"Tool {tool_name} not found")

View File

@@ -9,6 +9,7 @@ from .core import (
json_to_graph,
save_agent_to_library,
)
from .errors import get_user_message_for_error
from .service import health_check as check_external_service_health
from .service import is_external_service_configured
@@ -25,4 +26,6 @@ __all__ = [
# Service
"is_external_service_configured",
"check_external_service_health",
# Error handling
"get_user_message_for_error",
]

View File

@@ -64,7 +64,7 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
instructions: Structured instructions from decompose_goal
Returns:
Agent JSON dict or None on error
Agent JSON dict, error dict {"type": "error", ...}, or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
@@ -73,7 +73,10 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
logger.info("Calling external Agent Generator service for generate_agent")
result = await generate_agent_external(instructions)
if result:
# Ensure required fields
# Check if it's an error response - pass through as-is
if isinstance(result, dict) and result.get("type") == "error":
return result
# Ensure required fields for successful agent generation
if "id" not in result:
result["id"] = str(uuid.uuid4())
if "version" not in result:
@@ -267,7 +270,8 @@ async def generate_agent_patch(
current_agent: Current agent JSON
Returns:
Updated agent JSON, clarifying questions dict, or None on error
Updated agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
error dict {"type": "error", ...}, or None on unexpected error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.

View File

@@ -0,0 +1,43 @@
"""Error handling utilities for agent generator."""
def get_user_message_for_error(
error_type: str,
operation: str = "process the request",
llm_parse_message: str | None = None,
validation_message: str | None = None,
) -> str:
"""Get a user-friendly error message based on error type.
This function maps internal error types to user-friendly messages,
providing a consistent experience across different agent operations.
Args:
error_type: The error type from the external service
(e.g., "llm_parse_error", "timeout", "rate_limit")
operation: Description of what operation failed, used in the default
message (e.g., "analyze the goal", "generate the agent")
llm_parse_message: Custom message for llm_parse_error type
validation_message: Custom message for validation_error type
Returns:
User-friendly error message suitable for display to the user
"""
if error_type == "llm_parse_error":
return (
llm_parse_message
or "The AI had trouble processing this request. Please try again."
)
elif error_type == "validation_error":
return (
validation_message
or "The request failed validation. Please try rephrasing."
)
elif error_type == "patch_error":
return "Failed to apply the changes. Please try a different approach."
elif error_type in ("timeout", "llm_timeout"):
return "The request took too long. Please try again."
elif error_type in ("rate_limit", "llm_rate_limit"):
return "The service is currently busy. Please try again in a moment."
else:
return f"Failed to {operation}. Please try again."

View File

@@ -14,6 +14,70 @@ from backend.util.settings import Settings
logger = logging.getLogger(__name__)
def _create_error_response(
error_message: str,
error_type: str = "unknown",
details: dict[str, Any] | None = None,
) -> dict[str, Any]:
"""Create a standardized error response dict.
Args:
error_message: Human-readable error message
error_type: Machine-readable error type
details: Optional additional error details
Returns:
Error dict with type="error" and error details
"""
response: dict[str, Any] = {
"type": "error",
"error": error_message,
"error_type": error_type,
}
if details:
response["details"] = details
return response
def _classify_http_error(e: httpx.HTTPStatusError) -> tuple[str, str]:
"""Classify an HTTP error into error_type and message.
Args:
e: The HTTP status error
Returns:
Tuple of (error_type, error_message)
"""
status = e.response.status_code
if status == 429:
return "rate_limit", f"Agent Generator rate limited: {e}"
elif status == 503:
return "service_unavailable", f"Agent Generator unavailable: {e}"
elif status == 504 or status == 408:
return "timeout", f"Agent Generator timed out: {e}"
else:
return "http_error", f"HTTP error calling Agent Generator: {e}"
def _classify_request_error(e: httpx.RequestError) -> tuple[str, str]:
"""Classify a request error into error_type and message.
Args:
e: The request error
Returns:
Tuple of (error_type, error_message)
"""
error_str = str(e).lower()
if "timeout" in error_str or "timed out" in error_str:
return "timeout", f"Agent Generator request timed out: {e}"
elif "connect" in error_str:
return "connection_error", f"Could not connect to Agent Generator: {e}"
else:
return "request_error", f"Request error calling Agent Generator: {e}"
_client: httpx.AsyncClient | None = None
_settings: Settings | None = None
@@ -67,7 +131,8 @@ async def decompose_goal_external(
- {"type": "instructions", "steps": [...]}
- {"type": "unachievable_goal", ...}
- {"type": "vague_goal", ...}
Or None on error
- {"type": "error", "error": "...", "error_type": "..."} on error
Or None on unexpected error
"""
client = _get_client()
@@ -83,8 +148,13 @@ async def decompose_goal_external(
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator decomposition failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
# Map the response to the expected format
response_type = data.get("type")
@@ -106,25 +176,37 @@ async def decompose_goal_external(
"type": "vague_goal",
"suggested_goal": data.get("suggested_goal"),
}
elif response_type == "error":
# Pass through error from the service
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
else:
logger.error(
f"Unknown response type from external service: {response_type}"
)
return None
return _create_error_response(
f"Unknown response type from Agent Generator: {response_type}",
"invalid_response",
)
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def generate_agent_external(
instructions: dict[str, Any]
instructions: dict[str, Any],
) -> dict[str, Any] | None:
"""Call the external service to generate an agent from instructions.
@@ -132,7 +214,7 @@ async def generate_agent_external(
instructions: Structured instructions from decompose_goal
Returns:
Agent JSON dict or None on error
Agent JSON dict on success, or error dict {"type": "error", ...} on error
"""
client = _get_client()
@@ -144,20 +226,28 @@ async def generate_agent_external(
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator generation failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
return data.get("agent_json")
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def generate_agent_patch_external(
@@ -170,7 +260,7 @@ async def generate_agent_patch_external(
current_agent: Current agent JSON
Returns:
Updated agent JSON, clarifying questions dict, or None on error
Updated agent JSON, clarifying questions dict, or error dict on error
"""
client = _get_client()
@@ -186,8 +276,13 @@ async def generate_agent_patch_external(
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator patch generation failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
# Check if it's clarifying questions
if data.get("type") == "clarifying_questions":
@@ -196,18 +291,28 @@ async def generate_agent_patch_external(
"questions": data.get("questions", []),
}
# Check if it's an error passed through
if data.get("type") == "error":
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
# Otherwise return the updated agent JSON
return data.get("agent_json")
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def get_blocks_external() -> list[dict[str, Any]] | None:

View File

@@ -36,6 +36,16 @@ class BaseTool:
"""Whether this tool requires authentication."""
return False
@property
def is_long_running(self) -> bool:
"""Whether this tool is long-running and should execute in background.
Long-running tools (like agent generation) are executed via background
tasks to survive SSE disconnections. The result is persisted to chat
history and visible when the user refreshes.
"""
return False
def as_openai_tool(self) -> ChatCompletionToolParam:
"""Convert to OpenAI tool format."""
return ChatCompletionToolParam(

View File

@@ -9,6 +9,7 @@ from .agent_generator import (
AgentGeneratorNotConfiguredError,
decompose_goal,
generate_agent,
get_user_message_for_error,
save_agent_to_library,
)
from .base import BaseTool
@@ -42,6 +43,10 @@ class CreateAgentTool(BaseTool):
def requires_auth(self) -> bool:
return True
@property
def is_long_running(self) -> bool:
return True
@property
def parameters(self) -> dict[str, Any]:
return {
@@ -113,11 +118,29 @@ class CreateAgentTool(BaseTool):
if decomposition_result is None:
return ErrorResponse(
message="Failed to analyze the goal. The agent generation service may be unavailable or timed out. Please try again.",
message="Failed to analyze the goal. The agent generation service may be unavailable. Please try again.",
error="decomposition_failed",
details={"description": description[:100]},
session_id=session_id,
)
# Check if the result is an error from the external service
if decomposition_result.get("type") == "error":
error_msg = decomposition_result.get("error", "Unknown error")
error_type = decomposition_result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="analyze the goal",
llm_parse_message="The AI had trouble understanding this request. Please try rephrasing your goal.",
)
return ErrorResponse(
message=user_message,
error=f"decomposition_failed:{error_type}",
details={
"description": description[:100]
}, # Include context for debugging
"description": description[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)
@@ -182,11 +205,30 @@ class CreateAgentTool(BaseTool):
if agent_json is None:
return ErrorResponse(
message="Failed to generate the agent. The agent generation service may be unavailable or timed out. Please try again.",
message="Failed to generate the agent. The agent generation service may be unavailable. Please try again.",
error="generation_failed",
details={"description": description[:100]},
session_id=session_id,
)
# Check if the result is an error from the external service
if isinstance(agent_json, dict) and agent_json.get("type") == "error":
error_msg = agent_json.get("error", "Unknown error")
error_type = agent_json.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="generate the agent",
llm_parse_message="The AI had trouble generating the agent. Please try again or simplify your goal.",
validation_message="The generated agent failed validation. Please try rephrasing your goal.",
)
return ErrorResponse(
message=user_message,
error=f"generation_failed:{error_type}",
details={
"description": description[:100]
}, # Include context for debugging
"description": description[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)

View File

@@ -9,6 +9,7 @@ from .agent_generator import (
AgentGeneratorNotConfiguredError,
generate_agent_patch,
get_agent_as_json,
get_user_message_for_error,
save_agent_to_library,
)
from .base import BaseTool
@@ -42,6 +43,10 @@ class EditAgentTool(BaseTool):
def requires_auth(self) -> bool:
return True
@property
def is_long_running(self) -> bool:
return True
@property
def parameters(self) -> dict[str, Any]:
return {
@@ -148,6 +153,28 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Check if the result is an error from the external service
if isinstance(result, dict) and result.get("type") == "error":
error_msg = result.get("error", "Unknown error")
error_type = result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="generate the changes",
llm_parse_message="The AI had trouble generating the changes. Please try again or simplify your request.",
validation_message="The generated changes failed validation. Please try rephrasing your request.",
)
return ErrorResponse(
message=user_message,
error=f"update_generation_failed:{error_type}",
details={
"agent_id": agent_id,
"changes": changes[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)
# Check if LLM returned clarifying questions
if result.get("type") == "clarifying_questions":
questions = result.get("questions", [])

View File

@@ -28,6 +28,16 @@ class ResponseType(str, Enum):
BLOCK_OUTPUT = "block_output"
DOC_SEARCH_RESULTS = "doc_search_results"
DOC_PAGE = "doc_page"
# Workspace response types
WORKSPACE_FILE_LIST = "workspace_file_list"
WORKSPACE_FILE_CONTENT = "workspace_file_content"
WORKSPACE_FILE_METADATA = "workspace_file_metadata"
WORKSPACE_FILE_WRITTEN = "workspace_file_written"
WORKSPACE_FILE_DELETED = "workspace_file_deleted"
# Long-running operation types
OPERATION_STARTED = "operation_started"
OPERATION_PENDING = "operation_pending"
OPERATION_IN_PROGRESS = "operation_in_progress"
# Base response model
@@ -334,3 +344,39 @@ class BlockOutputResponse(ToolResponseBase):
block_name: str
outputs: dict[str, list[Any]]
success: bool = True
# Long-running operation models
class OperationStartedResponse(ToolResponseBase):
"""Response when a long-running operation has been started in the background.
This is returned immediately to the client while the operation continues
to execute. The user can close the tab and check back later.
"""
type: ResponseType = ResponseType.OPERATION_STARTED
operation_id: str
tool_name: str
class OperationPendingResponse(ToolResponseBase):
"""Response stored in chat history while a long-running operation is executing.
This is persisted to the database so users see a pending state when they
refresh before the operation completes.
"""
type: ResponseType = ResponseType.OPERATION_PENDING
operation_id: str
tool_name: str
class OperationInProgressResponse(ToolResponseBase):
"""Response when an operation is already in progress.
Returned for idempotency when the same tool_call_id is requested again
while the background task is still running.
"""
type: ResponseType = ResponseType.OPERATION_IN_PROGRESS
tool_call_id: str

View File

@@ -1,6 +1,7 @@
"""Tool for executing blocks directly."""
import logging
import uuid
from collections import defaultdict
from typing import Any
@@ -8,6 +9,7 @@ from backend.api.features.chat.model import ChatSession
from backend.data.block import get_block
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsMetaInput
from backend.data.workspace import get_or_create_workspace
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import BlockError
@@ -223,11 +225,48 @@ class RunBlockTool(BaseTool):
)
try:
# Fetch actual credentials and prepare kwargs for block execution
# Create execution context with defaults (blocks may require it)
# Get or create user's workspace for CoPilot file operations
workspace = await get_or_create_workspace(user_id)
# Generate synthetic IDs for CoPilot context
# Each chat session is treated as its own agent with one continuous run
# This means:
# - graph_id (agent) = session (memories scoped to session when limit_to_agent=True)
# - graph_exec_id (run) = session (memories scoped to session when limit_to_run=True)
# - node_exec_id = unique per block execution
synthetic_graph_id = f"copilot-session-{session.session_id}"
synthetic_graph_exec_id = f"copilot-session-{session.session_id}"
synthetic_node_id = f"copilot-node-{block_id}"
synthetic_node_exec_id = (
f"copilot-{session.session_id}-{uuid.uuid4().hex[:8]}"
)
# Create unified execution context with all required fields
execution_context = ExecutionContext(
# Execution identity
user_id=user_id,
graph_id=synthetic_graph_id,
graph_exec_id=synthetic_graph_exec_id,
graph_version=1, # Versions are 1-indexed
node_id=synthetic_node_id,
node_exec_id=synthetic_node_exec_id,
# Workspace with session scoping
workspace_id=workspace.id,
session_id=session.session_id,
)
# Prepare kwargs for block execution
# Keep individual kwargs for backwards compatibility with existing blocks
exec_kwargs: dict[str, Any] = {
"user_id": user_id,
"execution_context": ExecutionContext(),
"execution_context": execution_context,
# Legacy: individual kwargs for blocks not yet using execution_context
"workspace_id": workspace.id,
"graph_exec_id": synthetic_graph_exec_id,
"node_exec_id": synthetic_node_exec_id,
"node_id": synthetic_node_id,
"graph_version": 1, # Versions are 1-indexed
"graph_id": synthetic_graph_id,
}
for field_name, cred_meta in matched_credentials.items():

View File

@@ -0,0 +1,620 @@
"""CoPilot tools for workspace file operations."""
import base64
import logging
from typing import Any, Optional
from pydantic import BaseModel
from backend.api.features.chat.model import ChatSession
from backend.data.workspace import get_or_create_workspace
from backend.util.settings import Config
from backend.util.virus_scanner import scan_content_safe
from backend.util.workspace import WorkspaceManager
from .base import BaseTool
from .models import ErrorResponse, ResponseType, ToolResponseBase
logger = logging.getLogger(__name__)
class WorkspaceFileInfoData(BaseModel):
"""Data model for workspace file information (not a response itself)."""
file_id: str
name: str
path: str
mime_type: str
size_bytes: int
class WorkspaceFileListResponse(ToolResponseBase):
"""Response containing list of workspace files."""
type: ResponseType = ResponseType.WORKSPACE_FILE_LIST
files: list[WorkspaceFileInfoData]
total_count: int
class WorkspaceFileContentResponse(ToolResponseBase):
"""Response containing workspace file content (legacy, for small text files)."""
type: ResponseType = ResponseType.WORKSPACE_FILE_CONTENT
file_id: str
name: str
path: str
mime_type: str
content_base64: str
class WorkspaceFileMetadataResponse(ToolResponseBase):
"""Response containing workspace file metadata and download URL (prevents context bloat)."""
type: ResponseType = ResponseType.WORKSPACE_FILE_METADATA
file_id: str
name: str
path: str
mime_type: str
size_bytes: int
download_url: str
preview: str | None = None # First 500 chars for text files
class WorkspaceWriteResponse(ToolResponseBase):
"""Response after writing a file to workspace."""
type: ResponseType = ResponseType.WORKSPACE_FILE_WRITTEN
file_id: str
name: str
path: str
size_bytes: int
class WorkspaceDeleteResponse(ToolResponseBase):
"""Response after deleting a file from workspace."""
type: ResponseType = ResponseType.WORKSPACE_FILE_DELETED
file_id: str
success: bool
class ListWorkspaceFilesTool(BaseTool):
"""Tool for listing files in user's workspace."""
@property
def name(self) -> str:
return "list_workspace_files"
@property
def description(self) -> str:
return (
"List files in the user's workspace. "
"Returns file names, paths, sizes, and metadata. "
"Optionally filter by path prefix."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"path_prefix": {
"type": "string",
"description": (
"Optional path prefix to filter files "
"(e.g., '/documents/' to list only files in documents folder). "
"By default, only files from the current session are listed."
),
},
"limit": {
"type": "integer",
"description": "Maximum number of files to return (default 50, max 100)",
"minimum": 1,
"maximum": 100,
},
"include_all_sessions": {
"type": "boolean",
"description": (
"If true, list files from all sessions. "
"Default is false (only current session's files)."
),
},
},
"required": [],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
path_prefix: Optional[str] = kwargs.get("path_prefix")
limit = min(kwargs.get("limit", 50), 100)
include_all_sessions: bool = kwargs.get("include_all_sessions", False)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
files = await manager.list_files(
path=path_prefix,
limit=limit,
include_all_sessions=include_all_sessions,
)
total = await manager.get_file_count(
path=path_prefix,
include_all_sessions=include_all_sessions,
)
file_infos = [
WorkspaceFileInfoData(
file_id=f.id,
name=f.name,
path=f.path,
mime_type=f.mimeType,
size_bytes=f.sizeBytes,
)
for f in files
]
scope_msg = "all sessions" if include_all_sessions else "current session"
return WorkspaceFileListResponse(
files=file_infos,
total_count=total,
message=f"Found {len(files)} files in workspace ({scope_msg})",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error listing workspace files: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to list workspace files: {str(e)}",
error=str(e),
session_id=session_id,
)
class ReadWorkspaceFileTool(BaseTool):
"""Tool for reading file content from workspace."""
# Size threshold for returning full content vs metadata+URL
# Files larger than this return metadata with download URL to prevent context bloat
MAX_INLINE_SIZE_BYTES = 32 * 1024 # 32KB
# Preview size for text files
PREVIEW_SIZE = 500
@property
def name(self) -> str:
return "read_workspace_file"
@property
def description(self) -> str:
return (
"Read a file from the user's workspace. "
"Specify either file_id or path to identify the file. "
"For small text files, returns content directly. "
"For large or binary files, returns metadata and a download URL. "
"Paths are scoped to the current session by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"file_id": {
"type": "string",
"description": "The file's unique ID (from list_workspace_files)",
},
"path": {
"type": "string",
"description": (
"The virtual file path (e.g., '/documents/report.pdf'). "
"Scoped to current session by default."
),
},
"force_download_url": {
"type": "boolean",
"description": (
"If true, always return metadata+URL instead of inline content. "
"Default is false (auto-selects based on file size/type)."
),
},
},
"required": [], # At least one must be provided
}
@property
def requires_auth(self) -> bool:
return True
def _is_text_mime_type(self, mime_type: str) -> bool:
"""Check if the MIME type is a text-based type."""
text_types = [
"text/",
"application/json",
"application/xml",
"application/javascript",
"application/x-python",
"application/x-sh",
]
return any(mime_type.startswith(t) for t in text_types)
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
file_id: Optional[str] = kwargs.get("file_id")
path: Optional[str] = kwargs.get("path")
force_download_url: bool = kwargs.get("force_download_url", False)
if not file_id and not path:
return ErrorResponse(
message="Please provide either file_id or path",
session_id=session_id,
)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
# Get file info
if file_id:
file_info = await manager.get_file_info(file_id)
if file_info is None:
return ErrorResponse(
message=f"File not found: {file_id}",
session_id=session_id,
)
target_file_id = file_id
else:
# path is guaranteed to be non-None here due to the check above
assert path is not None
file_info = await manager.get_file_info_by_path(path)
if file_info is None:
return ErrorResponse(
message=f"File not found at path: {path}",
session_id=session_id,
)
target_file_id = file_info.id
# Decide whether to return inline content or metadata+URL
is_small_file = file_info.sizeBytes <= self.MAX_INLINE_SIZE_BYTES
is_text_file = self._is_text_mime_type(file_info.mimeType)
# Return inline content for small text files (unless force_download_url)
if is_small_file and is_text_file and not force_download_url:
content = await manager.read_file_by_id(target_file_id)
content_b64 = base64.b64encode(content).decode("utf-8")
return WorkspaceFileContentResponse(
file_id=file_info.id,
name=file_info.name,
path=file_info.path,
mime_type=file_info.mimeType,
content_base64=content_b64,
message=f"Successfully read file: {file_info.name}",
session_id=session_id,
)
# Return metadata + workspace:// reference for large or binary files
# This prevents context bloat (100KB file = ~133KB as base64)
# Use workspace:// format so frontend urlTransform can add proxy prefix
download_url = f"workspace://{target_file_id}"
# Generate preview for text files
preview: str | None = None
if is_text_file:
try:
content = await manager.read_file_by_id(target_file_id)
preview_text = content[: self.PREVIEW_SIZE].decode(
"utf-8", errors="replace"
)
if len(content) > self.PREVIEW_SIZE:
preview_text += "..."
preview = preview_text
except Exception:
pass # Preview is optional
return WorkspaceFileMetadataResponse(
file_id=file_info.id,
name=file_info.name,
path=file_info.path,
mime_type=file_info.mimeType,
size_bytes=file_info.sizeBytes,
download_url=download_url,
preview=preview,
message=f"File: {file_info.name} ({file_info.sizeBytes} bytes). Use download_url to retrieve content.",
session_id=session_id,
)
except FileNotFoundError as e:
return ErrorResponse(
message=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Error reading workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to read workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)
class WriteWorkspaceFileTool(BaseTool):
"""Tool for writing files to workspace."""
@property
def name(self) -> str:
return "write_workspace_file"
@property
def description(self) -> str:
return (
"Write or create a file in the user's workspace. "
"Provide the content as a base64-encoded string. "
f"Maximum file size is {Config().max_file_size_mb}MB. "
"Files are saved to the current session's folder by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"filename": {
"type": "string",
"description": "Name for the file (e.g., 'report.pdf')",
},
"content_base64": {
"type": "string",
"description": "Base64-encoded file content",
},
"path": {
"type": "string",
"description": (
"Optional virtual path where to save the file "
"(e.g., '/documents/report.pdf'). "
"Defaults to '/{filename}'. Scoped to current session."
),
},
"mime_type": {
"type": "string",
"description": (
"Optional MIME type of the file. "
"Auto-detected from filename if not provided."
),
},
"overwrite": {
"type": "boolean",
"description": "Whether to overwrite if file exists at path (default: false)",
},
},
"required": ["filename", "content_base64"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
filename: str = kwargs.get("filename", "")
content_b64: str = kwargs.get("content_base64", "")
path: Optional[str] = kwargs.get("path")
mime_type: Optional[str] = kwargs.get("mime_type")
overwrite: bool = kwargs.get("overwrite", False)
if not filename:
return ErrorResponse(
message="Please provide a filename",
session_id=session_id,
)
if not content_b64:
return ErrorResponse(
message="Please provide content_base64",
session_id=session_id,
)
# Decode content
try:
content = base64.b64decode(content_b64)
except Exception:
return ErrorResponse(
message="Invalid base64-encoded content",
session_id=session_id,
)
# Check size
max_file_size = Config().max_file_size_mb * 1024 * 1024
if len(content) > max_file_size:
return ErrorResponse(
message=f"File too large. Maximum size is {Config().max_file_size_mb}MB",
session_id=session_id,
)
try:
# Virus scan
await scan_content_safe(content, filename=filename)
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
file_record = await manager.write_file(
content=content,
filename=filename,
path=path,
mime_type=mime_type,
overwrite=overwrite,
)
return WorkspaceWriteResponse(
file_id=file_record.id,
name=file_record.name,
path=file_record.path,
size_bytes=file_record.sizeBytes,
message=f"Successfully wrote file: {file_record.name}",
session_id=session_id,
)
except ValueError as e:
return ErrorResponse(
message=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Error writing workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to write workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)
class DeleteWorkspaceFileTool(BaseTool):
"""Tool for deleting files from workspace."""
@property
def name(self) -> str:
return "delete_workspace_file"
@property
def description(self) -> str:
return (
"Delete a file from the user's workspace. "
"Specify either file_id or path to identify the file. "
"Paths are scoped to the current session by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"file_id": {
"type": "string",
"description": "The file's unique ID (from list_workspace_files)",
},
"path": {
"type": "string",
"description": (
"The virtual file path (e.g., '/documents/report.pdf'). "
"Scoped to current session by default."
),
},
},
"required": [], # At least one must be provided
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
file_id: Optional[str] = kwargs.get("file_id")
path: Optional[str] = kwargs.get("path")
if not file_id and not path:
return ErrorResponse(
message="Please provide either file_id or path",
session_id=session_id,
)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
# Determine the file_id to delete
target_file_id: str
if file_id:
target_file_id = file_id
else:
# path is guaranteed to be non-None here due to the check above
assert path is not None
file_info = await manager.get_file_info_by_path(path)
if file_info is None:
return ErrorResponse(
message=f"File not found at path: {path}",
session_id=session_id,
)
target_file_id = file_info.id
success = await manager.delete_file(target_file_id)
if not success:
return ErrorResponse(
message=f"File not found: {target_file_id}",
session_id=session_id,
)
return WorkspaceDeleteResponse(
file_id=target_file_id,
success=True,
message="File deleted successfully",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error deleting workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to delete workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)

View File

@@ -21,7 +21,7 @@ from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate
from backend.util.clients import get_scheduler_client
from backend.util.exceptions import DatabaseError, NotFoundError
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
from backend.util.json import SafeJson
from backend.util.models import Pagination
from backend.util.settings import Config
@@ -64,11 +64,11 @@ async def list_library_agents(
if page < 1 or page_size < 1:
logger.warning(f"Invalid pagination: page={page}, page_size={page_size}")
raise DatabaseError("Invalid pagination input")
raise InvalidInputError("Invalid pagination input")
if search_term and len(search_term.strip()) > 100:
logger.warning(f"Search term too long: {repr(search_term)}")
raise DatabaseError("Search term is too long")
raise InvalidInputError("Search term is too long")
where_clause: prisma.types.LibraryAgentWhereInput = {
"userId": user_id,
@@ -175,7 +175,7 @@ async def list_favorite_library_agents(
if page < 1 or page_size < 1:
logger.warning(f"Invalid pagination: page={page}, page_size={page_size}")
raise DatabaseError("Invalid pagination input")
raise InvalidInputError("Invalid pagination input")
where_clause: prisma.types.LibraryAgentWhereInput = {
"userId": user_id,

View File

@@ -1,4 +1,3 @@
import logging
from typing import Literal, Optional
import autogpt_libs.auth as autogpt_auth_lib
@@ -6,15 +5,11 @@ from fastapi import APIRouter, Body, HTTPException, Query, Security, status
from fastapi.responses import Response
from prisma.enums import OnboardingStep
import backend.api.features.store.exceptions as store_exceptions
from backend.data.onboarding import complete_onboarding_step
from backend.util.exceptions import DatabaseError, NotFoundError
from .. import db as library_db
from .. import model as library_model
logger = logging.getLogger(__name__)
router = APIRouter(
prefix="/agents",
tags=["library", "private"],
@@ -26,10 +21,6 @@ router = APIRouter(
"",
summary="List Library Agents",
response_model=library_model.LibraryAgentResponse,
responses={
200: {"description": "List of library agents"},
500: {"description": "Server error", "content": {"application/json": {}}},
},
)
async def list_library_agents(
user_id: str = Security(autogpt_auth_lib.get_user_id),
@@ -53,43 +44,19 @@ async def list_library_agents(
) -> library_model.LibraryAgentResponse:
"""
Get all agents in the user's library (both created and saved).
Args:
user_id: ID of the authenticated user.
search_term: Optional search term to filter agents by name/description.
filter_by: List of filters to apply (favorites, created by user).
sort_by: List of sorting criteria (created date, updated date).
page: Page number to retrieve.
page_size: Number of agents per page.
Returns:
A LibraryAgentResponse containing agents and pagination metadata.
Raises:
HTTPException: If a server/database error occurs.
"""
try:
return await library_db.list_library_agents(
user_id=user_id,
search_term=search_term,
sort_by=sort_by,
page=page,
page_size=page_size,
)
except Exception as e:
logger.error(f"Could not list library agents for user #{user_id}: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e),
) from e
return await library_db.list_library_agents(
user_id=user_id,
search_term=search_term,
sort_by=sort_by,
page=page,
page_size=page_size,
)
@router.get(
"/favorites",
summary="List Favorite Library Agents",
responses={
500: {"description": "Server error", "content": {"application/json": {}}},
},
)
async def list_favorite_library_agents(
user_id: str = Security(autogpt_auth_lib.get_user_id),
@@ -106,30 +73,12 @@ async def list_favorite_library_agents(
) -> library_model.LibraryAgentResponse:
"""
Get all favorite agents in the user's library.
Args:
user_id: ID of the authenticated user.
page: Page number to retrieve.
page_size: Number of agents per page.
Returns:
A LibraryAgentResponse containing favorite agents and pagination metadata.
Raises:
HTTPException: If a server/database error occurs.
"""
try:
return await library_db.list_favorite_library_agents(
user_id=user_id,
page=page,
page_size=page_size,
)
except Exception as e:
logger.error(f"Could not list favorite library agents for user #{user_id}: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e),
) from e
return await library_db.list_favorite_library_agents(
user_id=user_id,
page=page,
page_size=page_size,
)
@router.get("/{library_agent_id}", summary="Get Library Agent")
@@ -162,10 +111,6 @@ async def get_library_agent_by_graph_id(
summary="Get Agent By Store ID",
tags=["store", "library"],
response_model=library_model.LibraryAgent | None,
responses={
200: {"description": "Library agent found"},
404: {"description": "Agent not found"},
},
)
async def get_library_agent_by_store_listing_version_id(
store_listing_version_id: str,
@@ -174,32 +119,15 @@ async def get_library_agent_by_store_listing_version_id(
"""
Get Library Agent from Store Listing Version ID.
"""
try:
return await library_db.get_library_agent_by_store_version_id(
store_listing_version_id, user_id
)
except NotFoundError as e:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=str(e),
)
except Exception as e:
logger.error(f"Could not fetch library agent from store version ID: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e),
) from e
return await library_db.get_library_agent_by_store_version_id(
store_listing_version_id, user_id
)
@router.post(
"",
summary="Add Marketplace Agent",
status_code=status.HTTP_201_CREATED,
responses={
201: {"description": "Agent added successfully"},
404: {"description": "Store listing version not found"},
500: {"description": "Server error"},
},
)
async def add_marketplace_agent_to_library(
store_listing_version_id: str = Body(embed=True),
@@ -210,59 +138,19 @@ async def add_marketplace_agent_to_library(
) -> library_model.LibraryAgent:
"""
Add an agent from the marketplace to the user's library.
Args:
store_listing_version_id: ID of the store listing version to add.
user_id: ID of the authenticated user.
Returns:
library_model.LibraryAgent: Agent added to the library
Raises:
HTTPException(404): If the listing version is not found.
HTTPException(500): If a server/database error occurs.
"""
try:
agent = await library_db.add_store_agent_to_library(
store_listing_version_id=store_listing_version_id,
user_id=user_id,
)
if source != "onboarding":
await complete_onboarding_step(
user_id, OnboardingStep.MARKETPLACE_ADD_AGENT
)
return agent
except store_exceptions.AgentNotFoundError as e:
logger.warning(
f"Could not find store listing version {store_listing_version_id} "
"to add to library"
)
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=str(e))
except DatabaseError as e:
logger.error(f"Database error while adding agent to library: {e}", e)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={"message": str(e), "hint": "Inspect DB logs for details."},
) from e
except Exception as e:
logger.error(f"Unexpected error while adding agent to library: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={
"message": str(e),
"hint": "Check server logs for more information.",
},
) from e
agent = await library_db.add_store_agent_to_library(
store_listing_version_id=store_listing_version_id,
user_id=user_id,
)
if source != "onboarding":
await complete_onboarding_step(user_id, OnboardingStep.MARKETPLACE_ADD_AGENT)
return agent
@router.patch(
"/{library_agent_id}",
summary="Update Library Agent",
responses={
200: {"description": "Agent updated successfully"},
500: {"description": "Server error"},
},
)
async def update_library_agent(
library_agent_id: str,
@@ -271,52 +159,21 @@ async def update_library_agent(
) -> library_model.LibraryAgent:
"""
Update the library agent with the given fields.
Args:
library_agent_id: ID of the library agent to update.
payload: Fields to update (auto_update_version, is_favorite, etc.).
user_id: ID of the authenticated user.
Raises:
HTTPException(500): If a server/database error occurs.
"""
try:
return await library_db.update_library_agent(
library_agent_id=library_agent_id,
user_id=user_id,
auto_update_version=payload.auto_update_version,
graph_version=payload.graph_version,
is_favorite=payload.is_favorite,
is_archived=payload.is_archived,
settings=payload.settings,
)
except NotFoundError as e:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=str(e),
) from e
except DatabaseError as e:
logger.error(f"Database error while updating library agent: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={"message": str(e), "hint": "Verify DB connection."},
) from e
except Exception as e:
logger.error(f"Unexpected error while updating library agent: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={"message": str(e), "hint": "Check server logs."},
) from e
return await library_db.update_library_agent(
library_agent_id=library_agent_id,
user_id=user_id,
auto_update_version=payload.auto_update_version,
graph_version=payload.graph_version,
is_favorite=payload.is_favorite,
is_archived=payload.is_archived,
settings=payload.settings,
)
@router.delete(
"/{library_agent_id}",
summary="Delete Library Agent",
responses={
204: {"description": "Agent deleted successfully"},
404: {"description": "Agent not found"},
500: {"description": "Server error"},
},
)
async def delete_library_agent(
library_agent_id: str,
@@ -324,28 +181,11 @@ async def delete_library_agent(
) -> Response:
"""
Soft-delete the specified library agent.
Args:
library_agent_id: ID of the library agent to delete.
user_id: ID of the authenticated user.
Returns:
204 No Content if successful.
Raises:
HTTPException(404): If the agent does not exist.
HTTPException(500): If a server/database error occurs.
"""
try:
await library_db.delete_library_agent(
library_agent_id=library_agent_id, user_id=user_id
)
return Response(status_code=status.HTTP_204_NO_CONTENT)
except NotFoundError as e:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=str(e),
) from e
await library_db.delete_library_agent(
library_agent_id=library_agent_id, user_id=user_id
)
return Response(status_code=status.HTTP_204_NO_CONTENT)
@router.post("/{library_agent_id}/fork", summary="Fork Library Agent")

View File

@@ -118,21 +118,6 @@ async def test_get_library_agents_success(
)
def test_get_library_agents_error(mocker: pytest_mock.MockFixture, test_user_id: str):
mock_db_call = mocker.patch("backend.api.features.library.db.list_library_agents")
mock_db_call.side_effect = Exception("Test error")
response = client.get("/agents?search_term=test")
assert response.status_code == 500
mock_db_call.assert_called_once_with(
user_id=test_user_id,
search_term="test",
sort_by=library_model.LibraryAgentSort.UPDATED_AT,
page=1,
page_size=15,
)
@pytest.mark.asyncio
async def test_get_favorite_library_agents_success(
mocker: pytest_mock.MockFixture,
@@ -190,23 +175,6 @@ async def test_get_favorite_library_agents_success(
)
def test_get_favorite_library_agents_error(
mocker: pytest_mock.MockFixture, test_user_id: str
):
mock_db_call = mocker.patch(
"backend.api.features.library.db.list_favorite_library_agents"
)
mock_db_call.side_effect = Exception("Test error")
response = client.get("/agents/favorites")
assert response.status_code == 500
mock_db_call.assert_called_once_with(
user_id=test_user_id,
page=1,
page_size=15,
)
def test_add_agent_to_library_success(
mocker: pytest_mock.MockFixture, test_user_id: str
):
@@ -258,19 +226,3 @@ def test_add_agent_to_library_success(
store_listing_version_id="test-version-id", user_id=test_user_id
)
mock_complete_onboarding.assert_awaited_once()
def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture, test_user_id: str):
mock_db_call = mocker.patch(
"backend.api.features.library.db.add_store_agent_to_library"
)
mock_db_call.side_effect = Exception("Test error")
response = client.post(
"/agents", json={"store_listing_version_id": "test-version-id"}
)
assert response.status_code == 500
assert "detail" in response.json() # Verify error response structure
mock_db_call.assert_called_once_with(
store_listing_version_id="test-version-id", user_id=test_user_id
)

View File

@@ -454,6 +454,7 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
total_processed = 0
total_success = 0
total_failed = 0
all_errors: dict[str, int] = {} # Aggregate errors across all content types
# Process content types in explicit order
processing_order = [
@@ -499,23 +500,12 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
success = sum(1 for result in results if result is True)
failed = len(results) - success
# Aggregate unique errors to avoid Sentry spam
# Aggregate errors across all content types
if failed > 0:
# Group errors by type and message
error_summary: dict[str, int] = {}
for result in results:
if isinstance(result, Exception):
error_key = f"{type(result).__name__}: {str(result)}"
error_summary[error_key] = error_summary.get(error_key, 0) + 1
# Log aggregated error summary
error_details = ", ".join(
f"{error} ({count}x)" for error, count in error_summary.items()
)
logger.error(
f"{content_type.value}: {failed}/{len(results)} embeddings failed. "
f"Errors: {error_details}"
)
all_errors[error_key] = all_errors.get(error_key, 0) + 1
results_by_type[content_type.value] = {
"processed": len(missing_items),
@@ -542,6 +532,13 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
"error": str(e),
}
# Log aggregated errors once at the end
if all_errors:
error_details = ", ".join(
f"{error} ({count}x)" for error, count in all_errors.items()
)
logger.error(f"Embedding backfill errors: {error_details}")
return {
"by_type": results_by_type,
"totals": {

View File

@@ -261,14 +261,36 @@ async def get_onboarding_agents(
return await get_recommended_agents(user_id)
class OnboardingStatusResponse(pydantic.BaseModel):
"""Response for onboarding status check."""
is_onboarding_enabled: bool
is_chat_enabled: bool
@v1_router.get(
"/onboarding/enabled",
summary="Is onboarding enabled",
tags=["onboarding", "public"],
dependencies=[Security(requires_user)],
response_model=OnboardingStatusResponse,
)
async def is_onboarding_enabled() -> bool:
return await onboarding_enabled()
async def is_onboarding_enabled(
user_id: Annotated[str, Security(get_user_id)],
) -> OnboardingStatusResponse:
# Check if chat is enabled for user
is_chat_enabled = await is_feature_enabled(Flag.CHAT, user_id, False)
# If chat is enabled, skip legacy onboarding
if is_chat_enabled:
return OnboardingStatusResponse(
is_onboarding_enabled=False,
is_chat_enabled=True,
)
return OnboardingStatusResponse(
is_onboarding_enabled=await onboarding_enabled(),
is_chat_enabled=False,
)
@v1_router.post(

View File

@@ -0,0 +1 @@
# Workspace API feature module

View File

@@ -0,0 +1,122 @@
"""
Workspace API routes for managing user file storage.
"""
import logging
import re
from typing import Annotated
from urllib.parse import quote
import fastapi
from autogpt_libs.auth.dependencies import get_user_id, requires_user
from fastapi.responses import Response
from backend.data.workspace import get_workspace, get_workspace_file
from backend.util.workspace_storage import get_workspace_storage
def _sanitize_filename_for_header(filename: str) -> str:
"""
Sanitize filename for Content-Disposition header to prevent header injection.
Removes/replaces characters that could break the header or inject new headers.
Uses RFC5987 encoding for non-ASCII characters.
"""
# Remove CR, LF, and null bytes (header injection prevention)
sanitized = re.sub(r"[\r\n\x00]", "", filename)
# Escape quotes
sanitized = sanitized.replace('"', '\\"')
# For non-ASCII, use RFC5987 filename* parameter
# Check if filename has non-ASCII characters
try:
sanitized.encode("ascii")
return f'attachment; filename="{sanitized}"'
except UnicodeEncodeError:
# Use RFC5987 encoding for UTF-8 filenames
encoded = quote(sanitized, safe="")
return f"attachment; filename*=UTF-8''{encoded}"
logger = logging.getLogger(__name__)
router = fastapi.APIRouter(
dependencies=[fastapi.Security(requires_user)],
)
def _create_streaming_response(content: bytes, file) -> Response:
"""Create a streaming response for file content."""
return Response(
content=content,
media_type=file.mimeType,
headers={
"Content-Disposition": _sanitize_filename_for_header(file.name),
"Content-Length": str(len(content)),
},
)
async def _create_file_download_response(file) -> Response:
"""
Create a download response for a workspace file.
Handles both local storage (direct streaming) and GCS (signed URL redirect
with fallback to streaming).
"""
storage = await get_workspace_storage()
# For local storage, stream the file directly
if file.storagePath.startswith("local://"):
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
# For GCS, try to redirect to signed URL, fall back to streaming
try:
url = await storage.get_download_url(file.storagePath, expires_in=300)
# If we got back an API path (fallback), stream directly instead
if url.startswith("/api/"):
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
return fastapi.responses.RedirectResponse(url=url, status_code=302)
except Exception as e:
# Log the signed URL failure with context
logger.error(
f"Failed to get signed URL for file {file.id} "
f"(storagePath={file.storagePath}): {e}",
exc_info=True,
)
# Fall back to streaming directly from GCS
try:
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
except Exception as fallback_error:
logger.error(
f"Fallback streaming also failed for file {file.id} "
f"(storagePath={file.storagePath}): {fallback_error}",
exc_info=True,
)
raise
@router.get(
"/files/{file_id}/download",
summary="Download file by ID",
)
async def download_file(
user_id: Annotated[str, fastapi.Security(get_user_id)],
file_id: str,
) -> Response:
"""
Download a file by its ID.
Returns the file content directly or redirects to a signed URL for GCS.
"""
workspace = await get_workspace(user_id)
if workspace is None:
raise fastapi.HTTPException(status_code=404, detail="Workspace not found")
file = await get_workspace_file(file_id, workspace.id)
if file is None:
raise fastapi.HTTPException(status_code=404, detail="File not found")
return await _create_file_download_response(file)

View File

@@ -32,6 +32,7 @@ import backend.api.features.postmark.postmark
import backend.api.features.store.model
import backend.api.features.store.routes
import backend.api.features.v1
import backend.api.features.workspace.routes as workspace_routes
import backend.data.block
import backend.data.db
import backend.data.graph
@@ -52,6 +53,7 @@ from backend.util.exceptions import (
)
from backend.util.feature_flag import initialize_launchdarkly, shutdown_launchdarkly
from backend.util.service import UnhealthyServiceError
from backend.util.workspace_storage import shutdown_workspace_storage
from .external.fastapi_app import external_api
from .features.analytics import router as analytics_router
@@ -124,6 +126,11 @@ async def lifespan_context(app: fastapi.FastAPI):
except Exception as e:
logger.warning(f"Error shutting down cloud storage handler: {e}")
try:
await shutdown_workspace_storage()
except Exception as e:
logger.warning(f"Error shutting down workspace storage: {e}")
await backend.data.db.disconnect()
@@ -315,6 +322,11 @@ app.include_router(
tags=["v2", "chat"],
prefix="/api/chat",
)
app.include_router(
workspace_routes.router,
tags=["workspace"],
prefix="/api/workspace",
)
app.include_router(
backend.api.features.oauth.router,
tags=["oauth"],

View File

@@ -13,6 +13,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -117,11 +118,13 @@ class AIImageCustomizerBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
("image_url", "https://replicate.delivery/generated-image.jpg"),
# Output will be a workspace ref or data URI depending on context
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
],
test_mock={
# Use data URI to avoid HTTP requests during tests
"run_model": lambda *args, **kwargs: MediaFileType(
"https://replicate.delivery/generated-image.jpg"
""
),
},
test_credentials=TEST_CREDENTIALS,
@@ -132,8 +135,7 @@ class AIImageCustomizerBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
try:
@@ -141,10 +143,9 @@ class AIImageCustomizerBlock(Block):
processed_images = await asyncio.gather(
*(
store_media_file(
graph_exec_id=graph_exec_id,
file=img,
user_id=user_id,
return_content=True,
execution_context=execution_context,
return_format="for_external_api", # Get content for Replicate API
)
for img in input_data.images
)
@@ -158,7 +159,14 @@ class AIImageCustomizerBlock(Block):
aspect_ratio=input_data.aspect_ratio.value,
output_format=input_data.output_format.value,
)
yield "image_url", result
# Store the generated image to the user's workspace for persistence
stored_url = await store_media_file(
file=result,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
except Exception as e:
yield "error", str(e)

View File

@@ -6,6 +6,7 @@ from replicate.client import Client as ReplicateClient
from replicate.helpers import FileOutput
from backend.data.block import Block, BlockCategory, BlockSchemaInput, BlockSchemaOutput
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -13,6 +14,8 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
class ImageSize(str, Enum):
@@ -165,11 +168,13 @@ class AIImageGeneratorBlock(Block):
test_output=[
(
"image_url",
"https://replicate.delivery/generated-image.webp",
# Test output is a data URI since we now store images
lambda x: x.startswith(""
},
)
@@ -318,11 +323,24 @@ class AIImageGeneratorBlock(Block):
style_text = style_map.get(style, "")
return f"{style_text} of" if style_text else ""
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
try:
url = await self.generate_image(input_data, credentials)
if url:
yield "image_url", url
# Store the generated image to the user's workspace/execution folder
stored_url = await store_media_file(
file=MediaFileType(url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
else:
yield "error", "Image generation returned an empty result."
except Exception as e:

View File

@@ -13,6 +13,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -21,7 +22,9 @@ from backend.data.model import (
)
from backend.integrations.providers import ProviderName
from backend.util.exceptions import BlockExecutionError
from backend.util.file import store_media_file
from backend.util.request import Requests
from backend.util.type import MediaFileType
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
@@ -271,7 +274,10 @@ class AIShortformVideoCreatorBlock(Block):
"voice": Voice.LILY,
"video_style": VisualMediaType.STOCK_VIDEOS,
},
test_output=("video_url", "https://example.com/video.mp4"),
test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
@@ -280,15 +286,21 @@ class AIShortformVideoCreatorBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "https://example.com/video.mp4",
"videoUrl": "data:video/mp4;base64,AAAA",
},
"wait_for_video": lambda *args, **kwargs: "https://example.com/video.mp4",
# Use data URI to avoid HTTP requests during tests
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# Create a new Webhook.site URL
webhook_token, webhook_url = await self.create_webhook()
@@ -340,7 +352,13 @@ class AIShortformVideoCreatorBlock(Block):
)
video_url = await self.wait_for_video(credentials.api_key, pid)
logger.debug(f"Video ready: {video_url}")
yield "video_url", video_url
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
class AIAdMakerVideoCreatorBlock(Block):
@@ -447,7 +465,10 @@ class AIAdMakerVideoCreatorBlock(Block):
"https://cdn.revid.ai/uploads/1747076315114-image.png",
],
},
test_output=("video_url", "https://example.com/ad.mp4"),
test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
@@ -456,14 +477,21 @@ class AIAdMakerVideoCreatorBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "https://example.com/ad.mp4",
"videoUrl": "data:video/mp4;base64,AAAA",
},
"wait_for_video": lambda *args, **kwargs: "https://example.com/ad.mp4",
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
webhook_token, webhook_url = await self.create_webhook()
payload = {
@@ -531,7 +559,13 @@ class AIAdMakerVideoCreatorBlock(Block):
raise RuntimeError("Failed to create video: No project ID returned")
video_url = await self.wait_for_video(credentials.api_key, pid)
yield "video_url", video_url
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
class AIScreenshotToVideoAdBlock(Block):
@@ -626,7 +660,10 @@ class AIScreenshotToVideoAdBlock(Block):
"script": "Amazing numbers!",
"screenshot_url": "https://cdn.revid.ai/uploads/1747080376028-image.png",
},
test_output=("video_url", "https://example.com/screenshot.mp4"),
test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
@@ -635,14 +672,21 @@ class AIScreenshotToVideoAdBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "https://example.com/screenshot.mp4",
"videoUrl": "data:video/mp4;base64,AAAA",
},
"wait_for_video": lambda *args, **kwargs: "https://example.com/screenshot.mp4",
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
webhook_token, webhook_url = await self.create_webhook()
payload = {
@@ -710,4 +754,10 @@ class AIScreenshotToVideoAdBlock(Block):
raise RuntimeError("Failed to create video: No project ID returned")
video_url = await self.wait_for_video(credentials.api_key, pid)
yield "video_url", video_url
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url

View File

@@ -6,6 +6,7 @@ if TYPE_CHECKING:
from pydantic import SecretStr
from backend.data.execution import ExecutionContext
from backend.sdk import (
APIKeyCredentials,
Block,
@@ -17,6 +18,8 @@ from backend.sdk import (
Requests,
SchemaField,
)
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
from ._config import bannerbear
@@ -135,15 +138,17 @@ class BannerbearTextOverlayBlock(Block):
},
test_output=[
("success", True),
("image_url", "https://cdn.bannerbear.com/test-image.jpg"),
# Output will be a workspace ref or data URI depending on context
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
("uid", "test-uid-123"),
("status", "completed"),
],
test_mock={
# Use data URI to avoid HTTP requests during tests
"_make_api_request": lambda *args, **kwargs: {
"uid": "test-uid-123",
"status": "completed",
"image_url": "https://cdn.bannerbear.com/test-image.jpg",
"image_url": "",
}
},
test_credentials=TEST_CREDENTIALS,
@@ -177,7 +182,12 @@ class BannerbearTextOverlayBlock(Block):
raise Exception(error_msg)
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# Build the modifications array
modifications = []
@@ -234,6 +244,18 @@ class BannerbearTextOverlayBlock(Block):
# Synchronous request - image should be ready
yield "success", True
yield "image_url", data.get("image_url", "")
# Store the generated image to workspace for persistence
image_url = data.get("image_url", "")
if image_url:
stored_url = await store_media_file(
file=MediaFileType(image_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
else:
yield "image_url", ""
yield "uid", data.get("uid", "")
yield "status", data.get("status", "completed")

View File

@@ -9,6 +9,7 @@ from backend.data.block import (
BlockSchemaOutput,
BlockType,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.type import MediaFileType, convert
@@ -17,10 +18,10 @@ from backend.util.type import MediaFileType, convert
class FileStoreBlock(Block):
class Input(BlockSchemaInput):
file_in: MediaFileType = SchemaField(
description="The file to store in the temporary directory, it can be a URL, data URI, or local path."
description="The file to download and store. Can be a URL (https://...), data URI, or local path."
)
base_64: bool = SchemaField(
description="Whether produce an output in base64 format (not recommended, you can pass the string path just fine accross blocks).",
description="Whether to produce output in base64 format (not recommended, you can pass the file reference across blocks).",
default=False,
advanced=True,
title="Produce Base64 Output",
@@ -28,13 +29,18 @@ class FileStoreBlock(Block):
class Output(BlockSchemaOutput):
file_out: MediaFileType = SchemaField(
description="The relative path to the stored file in the temporary directory."
description="Reference to the stored file. In CoPilot: workspace:// URI (visible in list_workspace_files). In graphs: data URI for passing to other blocks."
)
def __init__(self):
super().__init__(
id="cbb50872-625b-42f0-8203-a2ae78242d8a",
description="Stores the input file in the temporary directory.",
description=(
"Downloads and stores a file from a URL, data URI, or local path. "
"Use this to fetch images, documents, or other files for processing. "
"In CoPilot: saves to workspace (use list_workspace_files to see it). "
"In graphs: outputs a data URI to pass to other blocks."
),
categories={BlockCategory.BASIC, BlockCategory.MULTIMEDIA},
input_schema=FileStoreBlock.Input,
output_schema=FileStoreBlock.Output,
@@ -45,15 +51,18 @@ class FileStoreBlock(Block):
self,
input_data: Input,
*,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# Determine return format based on user preference
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
yield "file_out", await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.file_in,
user_id=user_id,
return_content=input_data.base_64,
execution_context=execution_context,
return_format=return_format,
)

View File

@@ -15,6 +15,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import APIKeyCredentials, SchemaField
from backend.util.file import store_media_file
from backend.util.request import Requests
@@ -666,8 +667,7 @@ class SendDiscordFileBlock(Block):
file: MediaFileType,
filename: str,
message_content: str,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
) -> dict:
intents = discord.Intents.default()
intents.guilds = True
@@ -731,10 +731,9 @@ class SendDiscordFileBlock(Block):
# Local file path - read from stored media file
# This would be a path from a previous block's output
stored_file = await store_media_file(
graph_exec_id=graph_exec_id,
file=file,
user_id=user_id,
return_content=True, # Get as data URI
execution_context=execution_context,
return_format="for_external_api", # Get content to send to Discord
)
# Now process as data URI
header, encoded = stored_file.split(",", 1)
@@ -781,8 +780,7 @@ class SendDiscordFileBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
try:
@@ -793,8 +791,7 @@ class SendDiscordFileBlock(Block):
file=input_data.file,
filename=input_data.filename,
message_content=input_data.message_content,
graph_exec_id=graph_exec_id,
user_id=user_id,
execution_context=execution_context,
)
yield "status", result.get("status", "Unknown error")

View File

@@ -1,71 +0,0 @@
"""Text encoding block for converting special characters to escape sequences."""
import codecs
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import SchemaField
class TextEncoderBlock(Block):
"""
Encodes a string by converting special characters into escape sequences.
This block is the inverse of TextDecoderBlock. It takes text containing
special characters (like newlines, tabs, etc.) and converts them into
their escape sequence representations (e.g., newline becomes \\n).
"""
class Input(BlockSchemaInput):
"""Input schema for TextEncoderBlock."""
text: str = SchemaField(
description="A string containing special characters to be encoded",
placeholder="Your text with newlines and quotes to encode",
)
class Output(BlockSchemaOutput):
"""Output schema for TextEncoderBlock."""
encoded_text: str = SchemaField(
description="The encoded text with special characters converted to escape sequences"
)
def __init__(self):
super().__init__(
id="5185f32e-4b65-4ecf-8fbb-873f003f09d6",
description="Encodes a string by converting special characters into escape sequences",
categories={BlockCategory.TEXT},
input_schema=TextEncoderBlock.Input,
output_schema=TextEncoderBlock.Output,
test_input={
"text": """Hello
World!
This is a "quoted" string."""
},
test_output=[
(
"encoded_text",
"""Hello\\nWorld!\\nThis is a "quoted" string.""",
)
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
"""
Encode the input text by converting special characters to escape sequences.
Args:
input_data: The input containing the text to encode.
**kwargs: Additional keyword arguments (unused).
Yields:
The encoded text with escape sequences.
"""
encoded_text = codecs.encode(input_data.text, "unicode_escape").decode("utf-8")
yield "encoded_text", encoded_text

View File

@@ -17,8 +17,11 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.request import ClientResponseError, Requests
from backend.util.type import MediaFileType
logger = logging.getLogger(__name__)
@@ -64,9 +67,13 @@ class AIVideoGeneratorBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[("video_url", "https://fal.media/files/example/video.mp4")],
test_output=[
# Output will be a workspace ref or data URI depending on context
("video_url", lambda x: x.startswith(("workspace://", "data:"))),
],
test_mock={
"generate_video": lambda *args, **kwargs: "https://fal.media/files/example/video.mp4"
# Use data URI to avoid HTTP requests during tests
"generate_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA"
},
)
@@ -208,11 +215,22 @@ class AIVideoGeneratorBlock(Block):
raise RuntimeError(f"API request failed: {str(e)}")
async def run(
self, input_data: Input, *, credentials: FalCredentials, **kwargs
self,
input_data: Input,
*,
credentials: FalCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
try:
video_url = await self.generate_video(input_data, credentials)
yield "video_url", video_url
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
except Exception as e:
error_message = str(e)
yield "error", error_message

View File

@@ -12,6 +12,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -121,10 +122,12 @@ class AIImageEditorBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
("output_image", "https://replicate.com/output/edited-image.png"),
# Output will be a workspace ref or data URI depending on context
("output_image", lambda x: x.startswith(("workspace://", "data:"))),
],
test_mock={
"run_model": lambda *args, **kwargs: "https://replicate.com/output/edited-image.png",
# Use data URI to avoid HTTP requests during tests
"run_model": lambda *args, **kwargs: "",
},
test_credentials=TEST_CREDENTIALS,
)
@@ -134,8 +137,7 @@ class AIImageEditorBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
result = await self.run_model(
@@ -144,20 +146,25 @@ class AIImageEditorBlock(Block):
prompt=input_data.prompt,
input_image_b64=(
await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.input_image,
user_id=user_id,
return_content=True,
execution_context=execution_context,
return_format="for_external_api", # Get content for Replicate API
)
if input_data.input_image
else None
),
aspect_ratio=input_data.aspect_ratio.value,
seed=input_data.seed,
user_id=user_id,
graph_exec_id=graph_exec_id,
user_id=execution_context.user_id or "",
graph_exec_id=execution_context.graph_exec_id or "",
)
yield "output_image", result
# Store the generated image to the user's workspace for persistence
stored_url = await store_media_file(
file=result,
execution_context=execution_context,
return_format="for_block_output",
)
yield "output_image", stored_url
async def run_model(
self,

View File

@@ -21,6 +21,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
from backend.util.settings import Settings
@@ -95,8 +96,7 @@ def _make_mime_text(
async def create_mime_message(
input_data,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
) -> str:
"""Create a MIME message with attachments and return base64-encoded raw message."""
@@ -117,12 +117,12 @@ async def create_mime_message(
if input_data.attachments:
for attach in input_data.attachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_path = get_exec_file_path(graph_exec_id, local_path)
assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())
@@ -582,27 +582,25 @@ class GmailSendBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
result = await self._send_email(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "result", result
async def _send_email(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
if not input_data.to or not input_data.subject or not input_data.body:
raise ValueError(
"At least one recipient, subject, and body are required for sending an email"
)
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
raw_message = await create_mime_message(input_data, execution_context)
sent_message = await asyncio.to_thread(
lambda: service.users()
.messages()
@@ -692,30 +690,28 @@ class GmailCreateDraftBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
result = await self._create_draft(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "result", GmailDraftResult(
id=result["id"], message_id=result["message"]["id"], status="draft_created"
)
async def _create_draft(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
if not input_data.to or not input_data.subject:
raise ValueError(
"At least one recipient and subject are required for creating a draft"
)
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
raw_message = await create_mime_message(input_data, execution_context)
draft = await asyncio.to_thread(
lambda: service.users()
.drafts()
@@ -1100,7 +1096,7 @@ class GmailGetThreadBlock(GmailBase):
async def _build_reply_message(
service, input_data, graph_exec_id: str, user_id: str
service, input_data, execution_context: ExecutionContext
) -> tuple[str, str]:
"""
Builds a reply MIME message for Gmail threads.
@@ -1190,12 +1186,12 @@ async def _build_reply_message(
# Handle attachments
for attach in input_data.attachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_path = get_exec_file_path(graph_exec_id, local_path)
assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())
@@ -1311,16 +1307,14 @@ class GmailReplyBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
message = await self._reply(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "messageId", message["id"]
yield "threadId", message.get("threadId", input_data.threadId)
@@ -1343,11 +1337,11 @@ class GmailReplyBlock(GmailBase):
yield "email", email
async def _reply(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
# Build the reply message using the shared helper
raw, thread_id = await _build_reply_message(
service, input_data, graph_exec_id, user_id
service, input_data, execution_context
)
# Send the message
@@ -1441,16 +1435,14 @@ class GmailDraftReplyBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
draft = await self._create_draft_reply(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "draftId", draft["id"]
yield "messageId", draft["message"]["id"]
@@ -1458,11 +1450,11 @@ class GmailDraftReplyBlock(GmailBase):
yield "status", "draft_created"
async def _create_draft_reply(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
# Build the reply message using the shared helper
raw, thread_id = await _build_reply_message(
service, input_data, graph_exec_id, user_id
service, input_data, execution_context
)
# Create draft with proper thread association
@@ -1629,23 +1621,21 @@ class GmailForwardBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
result = await self._forward_message(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "messageId", result["id"]
yield "threadId", result.get("threadId", "")
yield "status", "forwarded"
async def _forward_message(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
if not input_data.to:
raise ValueError("At least one recipient is required for forwarding")
@@ -1727,12 +1717,12 @@ To: {original_to}
# Add any additional attachments
for attach in input_data.additionalAttachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_path = get_exec_file_path(graph_exec_id, local_path)
assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())

View File

@@ -15,6 +15,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
CredentialsField,
CredentialsMetaInput,
@@ -116,10 +117,9 @@ class SendWebRequestBlock(Block):
@staticmethod
async def _prepare_files(
graph_exec_id: str,
execution_context: ExecutionContext,
files_name: str,
files: list[MediaFileType],
user_id: str,
) -> list[tuple[str, tuple[str, BytesIO, str]]]:
"""
Prepare files for the request by storing them and reading their content.
@@ -127,11 +127,16 @@ class SendWebRequestBlock(Block):
(files_name, (filename, BytesIO, mime_type))
"""
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
graph_exec_id = execution_context.graph_exec_id
if graph_exec_id is None:
raise ValueError("graph_exec_id is required for file operations")
for media in files:
# Normalise to a list so we can repeat the same key
rel_path = await store_media_file(
graph_exec_id, media, user_id, return_content=False
file=media,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_path = get_exec_file_path(graph_exec_id, rel_path)
async with aiofiles.open(abs_path, "rb") as f:
@@ -143,7 +148,7 @@ class SendWebRequestBlock(Block):
return files_payload
async def run(
self, input_data: Input, *, graph_exec_id: str, user_id: str, **kwargs
self, input_data: Input, *, execution_context: ExecutionContext, **kwargs
) -> BlockOutput:
# ─── Parse/normalise body ────────────────────────────────────
body = input_data.body
@@ -174,7 +179,7 @@ class SendWebRequestBlock(Block):
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
if use_files:
files_payload = await self._prepare_files(
graph_exec_id, input_data.files_name, input_data.files, user_id
execution_context, input_data.files_name, input_data.files
)
# Enforce body format rules
@@ -238,9 +243,8 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
self,
input_data: Input,
*,
graph_exec_id: str,
execution_context: ExecutionContext,
credentials: HostScopedCredentials,
user_id: str,
**kwargs,
) -> BlockOutput:
# Create SendWebRequestBlock.Input from our input (removing credentials field)
@@ -271,6 +275,6 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
# Use parent class run method
async for output_name, output_data in super().run(
base_input, graph_exec_id=graph_exec_id, user_id=user_id, **kwargs
base_input, execution_context=execution_context, **kwargs
):
yield output_name, output_data

View File

@@ -12,6 +12,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockType,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.mock import MockObject
@@ -462,18 +463,21 @@ class AgentFileInputBlock(AgentInputBlock):
self,
input_data: Input,
*,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
if not input_data.value:
return
# Determine return format based on user preference
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
yield "result", await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.value,
user_id=user_id,
return_content=input_data.base_64,
execution_context=execution_context,
return_format=return_format,
)

View File

@@ -1,6 +1,6 @@
import os
import tempfile
from typing import Literal, Optional
from typing import Optional
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.fx.Loop import Loop
@@ -13,6 +13,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
@@ -46,18 +47,19 @@ class MediaDurationBlock(Block):
self,
input_data: Input,
*,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# 1) Store the input media locally
local_media_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.media_in,
user_id=user_id,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
assert execution_context.graph_exec_id is not None
media_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_media_path
)
media_abspath = get_exec_file_path(graph_exec_id, local_media_path)
# 2) Load the clip
if input_data.is_video:
@@ -88,10 +90,6 @@ class LoopVideoBlock(Block):
default=None,
ge=1,
)
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="How to return the output video. Either a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput):
video_out: str = SchemaField(
@@ -111,17 +109,19 @@ class LoopVideoBlock(Block):
self,
input_data: Input,
*,
node_exec_id: str,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the input video locally
local_video_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.video_in,
user_id=user_id,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
@@ -149,12 +149,11 @@ class LoopVideoBlock(Block):
looped_clip = looped_clip.with_audio(clip.audio)
looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# Return as data URI
# Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
graph_exec_id=graph_exec_id,
file=output_filename,
user_id=user_id,
return_content=input_data.output_return_type == "data_uri",
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out
@@ -177,10 +176,6 @@ class AddAudioToVideoBlock(Block):
description="Volume scale for the newly attached audio track (1.0 = original).",
default=1.0,
)
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="Return the final output as a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
@@ -200,23 +195,24 @@ class AddAudioToVideoBlock(Block):
self,
input_data: Input,
*,
node_exec_id: str,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the inputs locally
local_video_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.video_in,
user_id=user_id,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
local_audio_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.audio_in,
user_id=user_id,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id)
@@ -240,12 +236,11 @@ class AddAudioToVideoBlock(Block):
output_abspath = os.path.join(abs_temp_dir, output_filename)
final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# 5) Return either path or data URI
# 5) Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
graph_exec_id=graph_exec_id,
file=output_filename,
user_id=user_id,
return_content=input_data.output_return_type == "data_uri",
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out

View File

@@ -11,6 +11,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -112,8 +113,7 @@ class ScreenshotWebPageBlock(Block):
@staticmethod
async def take_screenshot(
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
url: str,
viewport_width: int,
viewport_height: int,
@@ -155,12 +155,11 @@ class ScreenshotWebPageBlock(Block):
return {
"image": await store_media_file(
graph_exec_id=graph_exec_id,
file=MediaFileType(
f"data:image/{format.value};base64,{b64encode(content).decode('utf-8')}"
),
user_id=user_id,
return_content=True,
execution_context=execution_context,
return_format="for_block_output",
)
}
@@ -169,15 +168,13 @@ class ScreenshotWebPageBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
try:
screenshot_data = await self.take_screenshot(
credentials=credentials,
graph_exec_id=graph_exec_id,
user_id=user_id,
execution_context=execution_context,
url=input_data.url,
viewport_width=input_data.viewport_width,
viewport_height=input_data.viewport_height,

View File

@@ -7,6 +7,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import ContributorDetails, SchemaField
from backend.util.file import get_exec_file_path, store_media_file
from backend.util.type import MediaFileType
@@ -98,7 +99,7 @@ class ReadSpreadsheetBlock(Block):
)
async def run(
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
) -> BlockOutput:
import csv
from io import StringIO
@@ -106,14 +107,16 @@ class ReadSpreadsheetBlock(Block):
# Determine data source - prefer file_input if provided, otherwise use contents
if input_data.file_input:
stored_file_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=input_data.file_input,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
# Get full file path
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
assert execution_context.graph_exec_id # Validated by store_media_file
file_path = get_exec_file_path(
execution_context.graph_exec_id, stored_file_path
)
if not Path(file_path).exists():
raise ValueError(f"File does not exist: {file_path}")

View File

@@ -10,6 +10,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -17,7 +18,9 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.file import store_media_file
from backend.util.request import Requests
from backend.util.type import MediaFileType
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
@@ -102,7 +105,7 @@ class CreateTalkingAvatarVideoBlock(Block):
test_output=[
(
"video_url",
"https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
lambda x: x.startswith(("workspace://", "data:")),
),
],
test_mock={
@@ -110,9 +113,10 @@ class CreateTalkingAvatarVideoBlock(Block):
"id": "abcd1234-5678-efgh-ijkl-mnopqrstuvwx",
"status": "created",
},
# Use data URI to avoid HTTP requests during tests
"get_clip_status": lambda *args, **kwargs: {
"status": "done",
"result_url": "https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
"result_url": "data:video/mp4;base64,AAAA",
},
},
test_credentials=TEST_CREDENTIALS,
@@ -138,7 +142,12 @@ class CreateTalkingAvatarVideoBlock(Block):
return response.json()
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# Create the clip
payload = {
@@ -165,7 +174,14 @@ class CreateTalkingAvatarVideoBlock(Block):
for _ in range(input_data.max_polling_attempts):
status_response = await self.get_clip_status(credentials.api_key, clip_id)
if status_response["status"] == "done":
yield "video_url", status_response["result_url"]
# Store the generated video to the user's workspace for persistence
video_url = status_response["result_url"]
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
return
elif status_response["status"] == "error":
raise RuntimeError(

View File

@@ -12,6 +12,7 @@ from backend.blocks.iteration import StepThroughItemsBlock
from backend.blocks.llm import AITextSummarizerBlock
from backend.blocks.text import ExtractTextInformationBlock
from backend.blocks.xml_parser import XMLParserBlock
from backend.data.execution import ExecutionContext
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
@@ -233,9 +234,12 @@ class TestStoreMediaFileSecurity:
with pytest.raises(ValueError, match="File too large"):
await store_media_file(
graph_exec_id="test",
file=MediaFileType(large_data_uri),
user_id="test_user",
execution_context=ExecutionContext(
user_id="test_user",
graph_exec_id="test",
),
return_format="for_local_processing",
)
@patch("backend.util.file.Path")
@@ -270,9 +274,12 @@ class TestStoreMediaFileSecurity:
# Should raise an error when directory size exceeds limit
with pytest.raises(ValueError, match="Disk usage limit exceeded"):
await store_media_file(
graph_exec_id="test",
file=MediaFileType(
"data:text/plain;base64,dGVzdA=="
), # Small test file
user_id="test_user",
execution_context=ExecutionContext(
user_id="test_user",
graph_exec_id="test",
),
return_format="for_local_processing",
)

View File

@@ -11,10 +11,22 @@ from backend.blocks.http import (
HttpMethod,
SendAuthenticatedWebRequestBlock,
)
from backend.data.execution import ExecutionContext
from backend.data.model import HostScopedCredentials
from backend.util.request import Response
def make_test_context(
graph_exec_id: str = "test-exec-id",
user_id: str = "test-user-id",
) -> ExecutionContext:
"""Helper to create test ExecutionContext."""
return ExecutionContext(
user_id=user_id,
graph_exec_id=graph_exec_id,
)
class TestHttpBlockWithHostScopedCredentials:
"""Test suite for HTTP block integration with HostScopedCredentials."""
@@ -105,8 +117,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=exact_match_credentials,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -161,8 +172,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=wildcard_credentials,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -208,8 +218,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=non_matching_credentials,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -258,8 +267,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=exact_match_credentials,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -318,8 +326,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=auto_discovered_creds, # Execution manager found these
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -382,8 +389,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=multi_header_creds,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -471,8 +477,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=test_creds,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))

View File

@@ -11,6 +11,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util import json, text
from backend.util.file import get_exec_file_path, store_media_file
@@ -444,18 +445,21 @@ class FileReadBlock(Block):
)
async def run(
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
) -> BlockOutput:
# Store the media file properly (handles URLs, data URIs, etc.)
stored_file_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=input_data.file_input,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
# Get full file path
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
# Get full file path (graph_exec_id validated by store_media_file above)
if not execution_context.graph_exec_id:
raise ValueError("execution_context.graph_exec_id is required")
file_path = get_exec_file_path(
execution_context.graph_exec_id, stored_file_path
)
if not Path(file_path).exists():
raise ValueError(f"File does not exist: {file_path}")

View File

@@ -83,12 +83,29 @@ class ExecutionContext(BaseModel):
model_config = {"extra": "ignore"}
# Execution identity
user_id: Optional[str] = None
graph_id: Optional[str] = None
graph_exec_id: Optional[str] = None
graph_version: Optional[int] = None
node_id: Optional[str] = None
node_exec_id: Optional[str] = None
# Safety settings
human_in_the_loop_safe_mode: bool = True
sensitive_action_safe_mode: bool = False
# User settings
user_timezone: str = "UTC"
# Execution hierarchy
root_execution_id: Optional[str] = None
parent_execution_id: Optional[str] = None
# Workspace
workspace_id: Optional[str] = None
session_id: Optional[str] = None
# -------------------------- Models -------------------------- #

View File

@@ -41,6 +41,7 @@ FrontendOnboardingStep = Literal[
OnboardingStep.AGENT_NEW_RUN,
OnboardingStep.AGENT_INPUT,
OnboardingStep.CONGRATS,
OnboardingStep.VISIT_COPILOT,
OnboardingStep.MARKETPLACE_VISIT,
OnboardingStep.BUILDER_OPEN,
]
@@ -122,6 +123,9 @@ async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
async def _reward_user(user_id: str, onboarding: UserOnboarding, step: OnboardingStep):
reward = 0
match step:
# Welcome bonus for visiting copilot ($5 = 500 credits)
case OnboardingStep.VISIT_COPILOT:
reward = 500
# Reward user when they clicked New Run during onboarding
# This is because they need credits before scheduling a run (next step)
# This is seen as a reward for the GET_RESULTS step in the wallet

View File

@@ -0,0 +1,276 @@
"""
Database CRUD operations for User Workspace.
This module provides functions for managing user workspaces and workspace files.
"""
import logging
from datetime import datetime, timezone
from typing import Optional
from prisma.models import UserWorkspace, UserWorkspaceFile
from prisma.types import UserWorkspaceFileWhereInput
from backend.util.json import SafeJson
logger = logging.getLogger(__name__)
async def get_or_create_workspace(user_id: str) -> UserWorkspace:
"""
Get user's workspace, creating one if it doesn't exist.
Uses upsert to handle race conditions when multiple concurrent requests
attempt to create a workspace for the same user.
Args:
user_id: The user's ID
Returns:
UserWorkspace instance
"""
workspace = await UserWorkspace.prisma().upsert(
where={"userId": user_id},
data={
"create": {"userId": user_id},
"update": {}, # No updates needed if exists
},
)
return workspace
async def get_workspace(user_id: str) -> Optional[UserWorkspace]:
"""
Get user's workspace if it exists.
Args:
user_id: The user's ID
Returns:
UserWorkspace instance or None
"""
return await UserWorkspace.prisma().find_unique(where={"userId": user_id})
async def create_workspace_file(
workspace_id: str,
file_id: str,
name: str,
path: str,
storage_path: str,
mime_type: str,
size_bytes: int,
checksum: Optional[str] = None,
metadata: Optional[dict] = None,
) -> UserWorkspaceFile:
"""
Create a new workspace file record.
Args:
workspace_id: The workspace ID
file_id: The file ID (same as used in storage path for consistency)
name: User-visible filename
path: Virtual path (e.g., "/documents/report.pdf")
storage_path: Actual storage path (GCS or local)
mime_type: MIME type of the file
size_bytes: File size in bytes
checksum: Optional SHA256 checksum
metadata: Optional additional metadata
Returns:
Created UserWorkspaceFile instance
"""
# Normalize path to start with /
if not path.startswith("/"):
path = f"/{path}"
file = await UserWorkspaceFile.prisma().create(
data={
"id": file_id,
"workspaceId": workspace_id,
"name": name,
"path": path,
"storagePath": storage_path,
"mimeType": mime_type,
"sizeBytes": size_bytes,
"checksum": checksum,
"metadata": SafeJson(metadata or {}),
}
)
logger.info(
f"Created workspace file {file.id} at path {path} "
f"in workspace {workspace_id}"
)
return file
async def get_workspace_file(
file_id: str,
workspace_id: Optional[str] = None,
) -> Optional[UserWorkspaceFile]:
"""
Get a workspace file by ID.
Args:
file_id: The file ID
workspace_id: Optional workspace ID for validation
Returns:
UserWorkspaceFile instance or None
"""
where_clause: dict = {"id": file_id, "isDeleted": False}
if workspace_id:
where_clause["workspaceId"] = workspace_id
return await UserWorkspaceFile.prisma().find_first(where=where_clause)
async def get_workspace_file_by_path(
workspace_id: str,
path: str,
) -> Optional[UserWorkspaceFile]:
"""
Get a workspace file by its virtual path.
Args:
workspace_id: The workspace ID
path: Virtual path
Returns:
UserWorkspaceFile instance or None
"""
# Normalize path
if not path.startswith("/"):
path = f"/{path}"
return await UserWorkspaceFile.prisma().find_first(
where={
"workspaceId": workspace_id,
"path": path,
"isDeleted": False,
}
)
async def list_workspace_files(
workspace_id: str,
path_prefix: Optional[str] = None,
include_deleted: bool = False,
limit: Optional[int] = None,
offset: int = 0,
) -> list[UserWorkspaceFile]:
"""
List files in a workspace.
Args:
workspace_id: The workspace ID
path_prefix: Optional path prefix to filter (e.g., "/documents/")
include_deleted: Whether to include soft-deleted files
limit: Maximum number of files to return
offset: Number of files to skip
Returns:
List of UserWorkspaceFile instances
"""
where_clause: UserWorkspaceFileWhereInput = {"workspaceId": workspace_id}
if not include_deleted:
where_clause["isDeleted"] = False
if path_prefix:
# Normalize prefix
if not path_prefix.startswith("/"):
path_prefix = f"/{path_prefix}"
where_clause["path"] = {"startswith": path_prefix}
return await UserWorkspaceFile.prisma().find_many(
where=where_clause,
order={"createdAt": "desc"},
take=limit,
skip=offset,
)
async def count_workspace_files(
workspace_id: str,
path_prefix: Optional[str] = None,
include_deleted: bool = False,
) -> int:
"""
Count files in a workspace.
Args:
workspace_id: The workspace ID
path_prefix: Optional path prefix to filter (e.g., "/sessions/abc123/")
include_deleted: Whether to include soft-deleted files
Returns:
Number of files
"""
where_clause: dict = {"workspaceId": workspace_id}
if not include_deleted:
where_clause["isDeleted"] = False
if path_prefix:
# Normalize prefix
if not path_prefix.startswith("/"):
path_prefix = f"/{path_prefix}"
where_clause["path"] = {"startswith": path_prefix}
return await UserWorkspaceFile.prisma().count(where=where_clause)
async def soft_delete_workspace_file(
file_id: str,
workspace_id: Optional[str] = None,
) -> Optional[UserWorkspaceFile]:
"""
Soft-delete a workspace file.
The path is modified to include a deletion timestamp to free up the original
path for new files while preserving the record for potential recovery.
Args:
file_id: The file ID
workspace_id: Optional workspace ID for validation
Returns:
Updated UserWorkspaceFile instance or None if not found
"""
# First verify the file exists and belongs to workspace
file = await get_workspace_file(file_id, workspace_id)
if file is None:
return None
deleted_at = datetime.now(timezone.utc)
# Modify path to free up the unique constraint for new files at original path
# Format: {original_path}__deleted__{timestamp}
deleted_path = f"{file.path}__deleted__{int(deleted_at.timestamp())}"
updated = await UserWorkspaceFile.prisma().update(
where={"id": file_id},
data={
"isDeleted": True,
"deletedAt": deleted_at,
"path": deleted_path,
},
)
logger.info(f"Soft-deleted workspace file {file_id}")
return updated
async def get_workspace_total_size(workspace_id: str) -> int:
"""
Get the total size of all files in a workspace.
Args:
workspace_id: The workspace ID
Returns:
Total size in bytes
"""
files = await list_workspace_files(workspace_id)
return sum(file.sizeBytes for file in files)

View File

@@ -236,7 +236,14 @@ async def execute_node(
input_size = len(input_data_str)
log_metadata.debug("Executed node with input", input=input_data_str)
# Create node-specific execution context to avoid race conditions
# (multiple nodes can execute concurrently and would otherwise mutate shared state)
execution_context = execution_context.model_copy(
update={"node_id": node_id, "node_exec_id": node_exec_id}
)
# Inject extra execution arguments for the blocks via kwargs
# Keep individual kwargs for backwards compatibility with existing blocks
extra_exec_kwargs: dict = {
"graph_id": graph_id,
"graph_version": graph_version,

View File

@@ -892,11 +892,19 @@ async def add_graph_execution(
settings = await gdb.get_graph_settings(user_id=user_id, graph_id=graph_id)
execution_context = ExecutionContext(
# Execution identity
user_id=user_id,
graph_id=graph_id,
graph_exec_id=graph_exec.id,
graph_version=graph_exec.graph_version,
# Safety settings
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
# User settings
user_timezone=(
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
),
# Execution hierarchy
root_execution_id=graph_exec.id,
)

View File

@@ -348,6 +348,7 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
mock_graph_exec.id = "execution-id-123"
mock_graph_exec.node_executions = [] # Add this to avoid AttributeError
mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check
mock_graph_exec.graph_version = graph_version
mock_graph_exec.to_graph_execution_entry.return_value = mocker.MagicMock()
# Mock the queue and event bus
@@ -434,6 +435,9 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
# Create a second mock execution for the sanity check
mock_graph_exec_2 = mocker.MagicMock(spec=GraphExecutionWithNodes)
mock_graph_exec_2.id = "execution-id-456"
mock_graph_exec_2.node_executions = []
mock_graph_exec_2.status = ExecutionStatus.QUEUED
mock_graph_exec_2.graph_version = graph_version
mock_graph_exec_2.to_graph_execution_entry.return_value = mocker.MagicMock()
# Reset mocks and set up for second call
@@ -614,6 +618,7 @@ async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
mock_graph_exec.id = "execution-id-123"
mock_graph_exec.node_executions = []
mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check
mock_graph_exec.graph_version = graph_version
# Track what's passed to to_graph_execution_entry
captured_kwargs = {}

View File

@@ -13,6 +13,7 @@ import aiohttp
from gcloud.aio import storage as async_gcs_storage
from google.cloud import storage as gcs_storage
from backend.util.gcs_utils import download_with_fresh_session, generate_signed_url
from backend.util.settings import Config
logger = logging.getLogger(__name__)
@@ -251,7 +252,7 @@ class CloudStorageHandler:
f"in_task: {current_task is not None}"
)
# Parse bucket and blob name from path
# Parse bucket and blob name from path (path already has gcs:// prefix removed)
parts = path.split("/", 1)
if len(parts) != 2:
raise ValueError(f"Invalid GCS path: {path}")
@@ -261,50 +262,19 @@ class CloudStorageHandler:
# Authorization check
self._validate_file_access(blob_name, user_id, graph_exec_id)
# Use a fresh client for each download to avoid session issues
# This is less efficient but more reliable with the executor's event loop
logger.info("[CloudStorage] Creating fresh GCS client for download")
# Create a new session specifically for this download
session = aiohttp.ClientSession(
connector=aiohttp.TCPConnector(limit=10, force_close=True)
logger.info(
f"[CloudStorage] About to download from GCS - bucket: {bucket_name}, blob: {blob_name}"
)
async_client = None
try:
# Create a new GCS client with the fresh session
async_client = async_gcs_storage.Storage(session=session)
logger.info(
f"[CloudStorage] About to download from GCS - bucket: {bucket_name}, blob: {blob_name}"
)
# Download content using the fresh client
content = await async_client.download(bucket_name, blob_name)
content = await download_with_fresh_session(bucket_name, blob_name)
logger.info(
f"[CloudStorage] GCS download successful - size: {len(content)} bytes"
)
# Clean up
await async_client.close()
await session.close()
return content
except FileNotFoundError:
raise
except Exception as e:
# Always try to clean up
if async_client is not None:
try:
await async_client.close()
except Exception as cleanup_error:
logger.warning(
f"[CloudStorage] Error closing GCS client: {cleanup_error}"
)
try:
await session.close()
except Exception as cleanup_error:
logger.warning(f"[CloudStorage] Error closing session: {cleanup_error}")
# Log the specific error for debugging
logger.error(
f"[CloudStorage] GCS download failed - error: {str(e)}, "
@@ -319,10 +289,6 @@ class CloudStorageHandler:
f"current_task: {current_task}, "
f"bucket: {bucket_name}, blob: redacted for privacy"
)
# Convert gcloud-aio exceptions to standard ones
if "404" in str(e) or "Not Found" in str(e):
raise FileNotFoundError(f"File not found: gcs://{path}")
raise
def _validate_file_access(
@@ -445,8 +411,7 @@ class CloudStorageHandler:
graph_exec_id: str | None = None,
) -> str:
"""Generate signed URL for GCS with authorization."""
# Parse bucket and blob name from path
# Parse bucket and blob name from path (path already has gcs:// prefix removed)
parts = path.split("/", 1)
if len(parts) != 2:
raise ValueError(f"Invalid GCS path: {path}")
@@ -456,21 +421,11 @@ class CloudStorageHandler:
# Authorization check
self._validate_file_access(blob_name, user_id, graph_exec_id)
# Use sync client for signed URLs since gcloud-aio doesn't support them
sync_client = self._get_sync_gcs_client()
bucket = sync_client.bucket(bucket_name)
blob = bucket.blob(blob_name)
# Generate signed URL asynchronously using sync client
url = await asyncio.to_thread(
blob.generate_signed_url,
version="v4",
expiration=datetime.now(timezone.utc) + timedelta(hours=expiration_hours),
method="GET",
return await generate_signed_url(
sync_client, bucket_name, blob_name, expiration_hours * 3600
)
return url
async def delete_expired_files(self, provider: str = "gcs") -> int:
"""
Delete files that have passed their expiration time.

View File

@@ -135,6 +135,12 @@ class GraphValidationError(ValueError):
)
class InvalidInputError(ValueError):
"""Raised when user input validation fails (e.g., search term too long)"""
pass
class DatabaseError(Exception):
"""Raised when there is an error interacting with the database"""

View File

@@ -5,13 +5,26 @@ import shutil
import tempfile
import uuid
from pathlib import Path
from typing import TYPE_CHECKING, Literal
from urllib.parse import urlparse
from backend.util.cloud_storage import get_cloud_storage_handler
from backend.util.request import Requests
from backend.util.settings import Config
from backend.util.type import MediaFileType
from backend.util.virus_scanner import scan_content_safe
if TYPE_CHECKING:
from backend.data.execution import ExecutionContext
# Return format options for store_media_file
# - "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
# - "for_external_api": Returns data URI (base64) - use when sending content to external APIs
# - "for_block_output": Returns best format for output - workspace:// in CoPilot, data URI in graphs
MediaReturnFormat = Literal[
"for_local_processing", "for_external_api", "for_block_output"
]
TEMP_DIR = Path(tempfile.gettempdir()).resolve()
# Maximum filename length (conservative limit for most filesystems)
@@ -67,42 +80,56 @@ def clean_exec_files(graph_exec_id: str, file: str = "") -> None:
async def store_media_file(
graph_exec_id: str,
file: MediaFileType,
user_id: str,
return_content: bool = False,
execution_context: "ExecutionContext",
*,
return_format: MediaReturnFormat,
) -> MediaFileType:
"""
Safely handle 'file' (a data URI, a URL, or a local path relative to {temp}/exec_file/{exec_id}),
placing or verifying it under:
Safely handle 'file' (a data URI, a URL, a workspace:// reference, or a local path
relative to {temp}/exec_file/{exec_id}), placing or verifying it under:
{tempdir}/exec_file/{exec_id}/...
If 'return_content=True', return a data URI (data:<mime>;base64,<content>).
Otherwise, returns the file media path relative to the exec_id folder.
For each MediaFileType input:
- Data URI: decode and store locally
- URL: download and store locally
- workspace:// reference: read from workspace, store locally
- Local path: verify it exists in exec_file directory
For each MediaFileType type:
- Data URI:
-> decode and store in a new random file in that folder
- URL:
-> download and store in that folder
- Local path:
-> interpret as relative to that folder; verify it exists
(no copying, as it's presumably already there).
We realpath-check so no symlink or '..' can escape the folder.
Return format options:
- "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
- "for_external_api": Returns data URI (base64) - use when sending to external APIs
- "for_block_output": Returns best format for output - workspace:// in CoPilot, data URI in graphs
:param graph_exec_id: The unique ID of the graph execution.
:param file: Data URI, URL, or local (relative) path.
:param return_content: If True, return a data URI of the file content.
If False, return the *relative* path inside the exec_id folder.
:return: The requested result: data URI or relative path of the media.
:param file: Data URI, URL, workspace://, or local (relative) path.
:param execution_context: ExecutionContext with user_id, graph_exec_id, workspace_id.
:param return_format: What to return: "for_local_processing", "for_external_api", or "for_block_output".
:return: The requested result based on return_format.
"""
# Extract values from execution_context
graph_exec_id = execution_context.graph_exec_id
user_id = execution_context.user_id
if not graph_exec_id:
raise ValueError("execution_context.graph_exec_id is required")
if not user_id:
raise ValueError("execution_context.user_id is required")
# Create workspace_manager if we have workspace_id (with session scoping)
# Import here to avoid circular import (file.py → workspace.py → data → blocks → file.py)
from backend.util.workspace import WorkspaceManager
workspace_manager: WorkspaceManager | None = None
if execution_context.workspace_id:
workspace_manager = WorkspaceManager(
user_id, execution_context.workspace_id, execution_context.session_id
)
# Build base path
base_path = Path(get_exec_file_path(graph_exec_id, ""))
base_path.mkdir(parents=True, exist_ok=True)
# Security fix: Add disk space limits to prevent DoS
MAX_FILE_SIZE = 100 * 1024 * 1024 # 100MB per file
MAX_FILE_SIZE_BYTES = Config().max_file_size_mb * 1024 * 1024
MAX_TOTAL_DISK_USAGE = 1024 * 1024 * 1024 # 1GB total per execution directory
# Check total disk usage in base_path
@@ -142,9 +169,57 @@ async def store_media_file(
"""
return str(absolute_path.relative_to(base))
# Check if this is a cloud storage path
# Get cloud storage handler for checking cloud paths
cloud_storage = await get_cloud_storage_handler()
if cloud_storage.is_cloud_path(file):
# Track if the input came from workspace (don't re-save it)
is_from_workspace = file.startswith("workspace://")
# Check if this is a workspace file reference
if is_from_workspace:
if workspace_manager is None:
raise ValueError(
"Workspace file reference requires workspace context. "
"This file type is only available in CoPilot sessions."
)
# Parse workspace reference
# workspace://abc123 - by file ID
# workspace:///path/to/file.txt - by virtual path
file_ref = file[12:] # Remove "workspace://"
if file_ref.startswith("/"):
# Path reference
workspace_content = await workspace_manager.read_file(file_ref)
file_info = await workspace_manager.get_file_info_by_path(file_ref)
filename = sanitize_filename(
file_info.name if file_info else f"{uuid.uuid4()}.bin"
)
else:
# ID reference
workspace_content = await workspace_manager.read_file_by_id(file_ref)
file_info = await workspace_manager.get_file_info(file_ref)
filename = sanitize_filename(
file_info.name if file_info else f"{uuid.uuid4()}.bin"
)
try:
target_path = _ensure_inside_base(base_path / filename, base_path)
except OSError as e:
raise ValueError(f"Invalid file path '{filename}': {e}") from e
# Check file size limit
if len(workspace_content) > MAX_FILE_SIZE_BYTES:
raise ValueError(
f"File too large: {len(workspace_content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
)
# Virus scan the workspace content before writing locally
await scan_content_safe(workspace_content, filename=filename)
target_path.write_bytes(workspace_content)
# Check if this is a cloud storage path
elif cloud_storage.is_cloud_path(file):
# Download from cloud storage and store locally
cloud_content = await cloud_storage.retrieve_file(
file, user_id=user_id, graph_exec_id=graph_exec_id
@@ -159,9 +234,9 @@ async def store_media_file(
raise ValueError(f"Invalid file path '{filename}': {e}") from e
# Check file size limit
if len(cloud_content) > MAX_FILE_SIZE:
if len(cloud_content) > MAX_FILE_SIZE_BYTES:
raise ValueError(
f"File too large: {len(cloud_content)} bytes > {MAX_FILE_SIZE} bytes"
f"File too large: {len(cloud_content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
)
# Virus scan the cloud content before writing locally
@@ -189,9 +264,9 @@ async def store_media_file(
content = base64.b64decode(b64_content)
# Check file size limit
if len(content) > MAX_FILE_SIZE:
if len(content) > MAX_FILE_SIZE_BYTES:
raise ValueError(
f"File too large: {len(content)} bytes > {MAX_FILE_SIZE} bytes"
f"File too large: {len(content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
)
# Virus scan the base64 content before writing
@@ -199,23 +274,31 @@ async def store_media_file(
target_path.write_bytes(content)
elif file.startswith(("http://", "https://")):
# URL
# URL - download first to get Content-Type header
resp = await Requests().get(file)
# Check file size limit
if len(resp.content) > MAX_FILE_SIZE_BYTES:
raise ValueError(
f"File too large: {len(resp.content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
)
# Extract filename from URL path
parsed_url = urlparse(file)
filename = sanitize_filename(Path(parsed_url.path).name or f"{uuid.uuid4()}")
# If filename lacks extension, add one from Content-Type header
if "." not in filename:
content_type = resp.headers.get("Content-Type", "").split(";")[0].strip()
if content_type:
ext = _extension_from_mime(content_type)
filename = f"{filename}{ext}"
try:
target_path = _ensure_inside_base(base_path / filename, base_path)
except OSError as e:
raise ValueError(f"Invalid file path '{filename}': {e}") from e
# Download and save
resp = await Requests().get(file)
# Check file size limit
if len(resp.content) > MAX_FILE_SIZE:
raise ValueError(
f"File too large: {len(resp.content)} bytes > {MAX_FILE_SIZE} bytes"
)
# Virus scan the downloaded content before writing
await scan_content_safe(resp.content, filename=filename)
target_path.write_bytes(resp.content)
@@ -230,12 +313,44 @@ async def store_media_file(
if not target_path.is_file():
raise ValueError(f"Local file does not exist: {target_path}")
# Return result
if return_content:
return MediaFileType(_file_to_data_uri(target_path))
else:
# Return based on requested format
if return_format == "for_local_processing":
# Use when processing files locally with tools like ffmpeg, MoviePy, PIL
# Returns: relative path in exec_file directory (e.g., "image.png")
return MediaFileType(_strip_base_prefix(target_path, base_path))
elif return_format == "for_external_api":
# Use when sending content to external APIs that need base64
# Returns: data URI (e.g., "...")
return MediaFileType(_file_to_data_uri(target_path))
elif return_format == "for_block_output":
# Use when returning output from a block to user/next block
# Returns: workspace:// ref (CoPilot) or data URI (graph execution)
if workspace_manager is None:
# No workspace available (graph execution without CoPilot)
# Fallback to data URI so the content can still be used/displayed
return MediaFileType(_file_to_data_uri(target_path))
# Don't re-save if input was already from workspace
if is_from_workspace:
# Return original workspace reference
return MediaFileType(file)
# Save new content to workspace
content = target_path.read_bytes()
filename = target_path.name
file_record = await workspace_manager.write_file(
content=content,
filename=filename,
overwrite=True,
)
return MediaFileType(f"workspace://{file_record.id}")
else:
raise ValueError(f"Invalid return_format: {return_format}")
def get_dir_size(path: Path) -> int:
"""Get total size of directory."""

View File

@@ -7,10 +7,22 @@ from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.data.execution import ExecutionContext
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
def make_test_context(
graph_exec_id: str = "test-exec-123",
user_id: str = "test-user-123",
) -> ExecutionContext:
"""Helper to create test ExecutionContext."""
return ExecutionContext(
user_id=user_id,
graph_exec_id=graph_exec_id,
)
class TestFileCloudIntegration:
"""Test cases for cloud storage integration in file utilities."""
@@ -70,10 +82,9 @@ class TestFileCloudIntegration:
mock_path_class.side_effect = path_constructor
result = await store_media_file(
graph_exec_id,
MediaFileType(cloud_path),
"test-user-123",
return_content=False,
file=MediaFileType(cloud_path),
execution_context=make_test_context(graph_exec_id=graph_exec_id),
return_format="for_local_processing",
)
# Verify cloud storage operations
@@ -144,10 +155,9 @@ class TestFileCloudIntegration:
mock_path_obj.name = "image.png"
with patch("backend.util.file.Path", return_value=mock_path_obj):
result = await store_media_file(
graph_exec_id,
MediaFileType(cloud_path),
"test-user-123",
return_content=True,
file=MediaFileType(cloud_path),
execution_context=make_test_context(graph_exec_id=graph_exec_id),
return_format="for_external_api",
)
# Verify result is a data URI
@@ -198,10 +208,9 @@ class TestFileCloudIntegration:
mock_resolved_path.relative_to.return_value = Path("test-uuid-789.txt")
await store_media_file(
graph_exec_id,
MediaFileType(data_uri),
"test-user-123",
return_content=False,
file=MediaFileType(data_uri),
execution_context=make_test_context(graph_exec_id=graph_exec_id),
return_format="for_local_processing",
)
# Verify cloud handler was checked but not used for retrieval
@@ -234,5 +243,7 @@ class TestFileCloudIntegration:
FileNotFoundError, match="File not found in cloud storage"
):
await store_media_file(
graph_exec_id, MediaFileType(cloud_path), "test-user-123"
file=MediaFileType(cloud_path),
execution_context=make_test_context(graph_exec_id=graph_exec_id),
return_format="for_local_processing",
)

View File

@@ -0,0 +1,108 @@
"""
Shared GCS utilities for workspace and cloud storage backends.
This module provides common functionality for working with Google Cloud Storage,
including path parsing, client management, and signed URL generation.
"""
import asyncio
import logging
from datetime import datetime, timedelta, timezone
import aiohttp
from gcloud.aio import storage as async_gcs_storage
from google.cloud import storage as gcs_storage
logger = logging.getLogger(__name__)
def parse_gcs_path(path: str) -> tuple[str, str]:
"""
Parse a GCS path in the format 'gcs://bucket/blob' to (bucket, blob).
Args:
path: GCS path string (e.g., "gcs://my-bucket/path/to/file")
Returns:
Tuple of (bucket_name, blob_name)
Raises:
ValueError: If the path format is invalid
"""
if not path.startswith("gcs://"):
raise ValueError(f"Invalid GCS path: {path}")
path_without_prefix = path[6:] # Remove "gcs://"
parts = path_without_prefix.split("/", 1)
if len(parts) != 2:
raise ValueError(f"Invalid GCS path format: {path}")
return parts[0], parts[1]
async def download_with_fresh_session(bucket: str, blob: str) -> bytes:
"""
Download file content using a fresh session.
This approach avoids event loop issues that can occur when reusing
sessions across different async contexts (e.g., in executors).
Args:
bucket: GCS bucket name
blob: Blob path within the bucket
Returns:
File content as bytes
Raises:
FileNotFoundError: If the file doesn't exist
"""
session = aiohttp.ClientSession(
connector=aiohttp.TCPConnector(limit=10, force_close=True)
)
client: async_gcs_storage.Storage | None = None
try:
client = async_gcs_storage.Storage(session=session)
content = await client.download(bucket, blob)
return content
except Exception as e:
if "404" in str(e) or "Not Found" in str(e):
raise FileNotFoundError(f"File not found: gcs://{bucket}/{blob}")
raise
finally:
if client:
try:
await client.close()
except Exception:
pass # Best-effort cleanup
await session.close()
async def generate_signed_url(
sync_client: gcs_storage.Client,
bucket_name: str,
blob_name: str,
expires_in: int,
) -> str:
"""
Generate a signed URL for temporary access to a GCS file.
Uses asyncio.to_thread() to run the sync operation without blocking.
Args:
sync_client: Sync GCS client with service account credentials
bucket_name: GCS bucket name
blob_name: Blob path within the bucket
expires_in: URL expiration time in seconds
Returns:
Signed URL string
"""
bucket = sync_client.bucket(bucket_name)
blob = bucket.blob(blob_name)
return await asyncio.to_thread(
blob.generate_signed_url,
version="v4",
expiration=datetime.now(timezone.utc) + timedelta(seconds=expires_in),
method="GET",
)

View File

@@ -263,6 +263,12 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
description="The name of the Google Cloud Storage bucket for media files",
)
workspace_storage_dir: str = Field(
default="",
description="Local directory for workspace file storage when GCS is not configured. "
"If empty, defaults to {app_data}/workspaces. Used for self-hosted deployments.",
)
reddit_user_agent: str = Field(
default="web:AutoGPT:v0.6.0 (by /u/autogpt)",
description="The user agent for the Reddit API",
@@ -359,8 +365,8 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
description="The port for the Agent Generator service",
)
agentgenerator_timeout: int = Field(
default=120,
description="The timeout in seconds for Agent Generator service requests",
default=600,
description="The timeout in seconds for Agent Generator service requests (includes retries for rate limits)",
)
enable_example_blocks: bool = Field(
@@ -389,6 +395,13 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
description="Maximum file size in MB for file uploads (1-1024 MB)",
)
max_file_size_mb: int = Field(
default=100,
ge=1,
le=1024,
description="Maximum file size in MB for workspace files (1-1024 MB)",
)
# AutoMod configuration
automod_enabled: bool = Field(
default=False,

View File

@@ -140,14 +140,29 @@ async def execute_block_test(block: Block):
setattr(block, mock_name, mock_obj)
# Populate credentials argument(s)
# Generate IDs for execution context
graph_id = str(uuid.uuid4())
node_id = str(uuid.uuid4())
graph_exec_id = str(uuid.uuid4())
node_exec_id = str(uuid.uuid4())
user_id = str(uuid.uuid4())
graph_version = 1 # Default version for tests
extra_exec_kwargs: dict = {
"graph_id": str(uuid.uuid4()),
"node_id": str(uuid.uuid4()),
"graph_exec_id": str(uuid.uuid4()),
"node_exec_id": str(uuid.uuid4()),
"user_id": str(uuid.uuid4()),
"graph_version": 1, # Default version for tests
"execution_context": ExecutionContext(),
"graph_id": graph_id,
"node_id": node_id,
"graph_exec_id": graph_exec_id,
"node_exec_id": node_exec_id,
"user_id": user_id,
"graph_version": graph_version,
"execution_context": ExecutionContext(
user_id=user_id,
graph_id=graph_id,
graph_exec_id=graph_exec_id,
graph_version=graph_version,
node_id=node_id,
node_exec_id=node_exec_id,
),
}
input_model = cast(type[BlockSchema], block.input_schema)

View File

@@ -0,0 +1,419 @@
"""
WorkspaceManager for managing user workspace file operations.
This module provides a high-level interface for workspace file operations,
combining the storage backend and database layer.
"""
import logging
import mimetypes
import uuid
from typing import Optional
from prisma.errors import UniqueViolationError
from prisma.models import UserWorkspaceFile
from backend.data.workspace import (
count_workspace_files,
create_workspace_file,
get_workspace_file,
get_workspace_file_by_path,
list_workspace_files,
soft_delete_workspace_file,
)
from backend.util.settings import Config
from backend.util.workspace_storage import compute_file_checksum, get_workspace_storage
logger = logging.getLogger(__name__)
class WorkspaceManager:
"""
Manages workspace file operations.
Combines storage backend operations with database record management.
Supports session-scoped file segmentation where files are stored in
session-specific virtual paths: /sessions/{session_id}/{filename}
"""
def __init__(
self, user_id: str, workspace_id: str, session_id: Optional[str] = None
):
"""
Initialize WorkspaceManager.
Args:
user_id: The user's ID
workspace_id: The workspace ID
session_id: Optional session ID for session-scoped file access
"""
self.user_id = user_id
self.workspace_id = workspace_id
self.session_id = session_id
# Session path prefix for file isolation
self.session_path = f"/sessions/{session_id}" if session_id else ""
def _resolve_path(self, path: str) -> str:
"""
Resolve a path, defaulting to session folder if session_id is set.
Cross-session access is allowed by explicitly using /sessions/other-session-id/...
Args:
path: Virtual path (e.g., "/file.txt" or "/sessions/abc123/file.txt")
Returns:
Resolved path with session prefix if applicable
"""
# If path explicitly references a session folder, use it as-is
if path.startswith("/sessions/"):
return path
# If we have a session context, prepend session path
if self.session_path:
# Normalize the path
if not path.startswith("/"):
path = f"/{path}"
return f"{self.session_path}{path}"
# No session context, use path as-is
return path if path.startswith("/") else f"/{path}"
def _get_effective_path(
self, path: Optional[str], include_all_sessions: bool
) -> Optional[str]:
"""
Get effective path for list/count operations based on session context.
Args:
path: Optional path prefix to filter
include_all_sessions: If True, don't apply session scoping
Returns:
Effective path prefix for database query
"""
if include_all_sessions:
# Normalize path to ensure leading slash (stored paths are normalized)
if path is not None and not path.startswith("/"):
return f"/{path}"
return path
elif path is not None:
# Resolve the provided path with session scoping
return self._resolve_path(path)
elif self.session_path:
# Default to session folder with trailing slash to prevent prefix collisions
# e.g., "/sessions/abc" should not match "/sessions/abc123"
return self.session_path.rstrip("/") + "/"
else:
# No session context, use path as-is
return path
async def read_file(self, path: str) -> bytes:
"""
Read file from workspace by virtual path.
When session_id is set, paths are resolved relative to the session folder
unless they explicitly reference /sessions/...
Args:
path: Virtual path (e.g., "/documents/report.pdf")
Returns:
File content as bytes
Raises:
FileNotFoundError: If file doesn't exist
"""
resolved_path = self._resolve_path(path)
file = await get_workspace_file_by_path(self.workspace_id, resolved_path)
if file is None:
raise FileNotFoundError(f"File not found at path: {resolved_path}")
storage = await get_workspace_storage()
return await storage.retrieve(file.storagePath)
async def read_file_by_id(self, file_id: str) -> bytes:
"""
Read file from workspace by file ID.
Args:
file_id: The file's ID
Returns:
File content as bytes
Raises:
FileNotFoundError: If file doesn't exist
"""
file = await get_workspace_file(file_id, self.workspace_id)
if file is None:
raise FileNotFoundError(f"File not found: {file_id}")
storage = await get_workspace_storage()
return await storage.retrieve(file.storagePath)
async def write_file(
self,
content: bytes,
filename: str,
path: Optional[str] = None,
mime_type: Optional[str] = None,
overwrite: bool = False,
) -> UserWorkspaceFile:
"""
Write file to workspace.
When session_id is set, files are written to /sessions/{session_id}/...
by default. Use explicit /sessions/... paths for cross-session access.
Args:
content: File content as bytes
filename: Filename for the file
path: Virtual path (defaults to "/{filename}", session-scoped if session_id set)
mime_type: MIME type (auto-detected if not provided)
overwrite: Whether to overwrite existing file at path
Returns:
Created UserWorkspaceFile instance
Raises:
ValueError: If file exceeds size limit or path already exists
"""
# Enforce file size limit
max_file_size = Config().max_file_size_mb * 1024 * 1024
if len(content) > max_file_size:
raise ValueError(
f"File too large: {len(content)} bytes exceeds "
f"{Config().max_file_size_mb}MB limit"
)
# Determine path with session scoping
if path is None:
path = f"/{filename}"
elif not path.startswith("/"):
path = f"/{path}"
# Resolve path with session prefix
path = self._resolve_path(path)
# Check if file exists at path (only error for non-overwrite case)
# For overwrite=True, we let the write proceed and handle via UniqueViolationError
# This ensures the new file is written to storage BEFORE the old one is deleted,
# preventing data loss if the new write fails
if not overwrite:
existing = await get_workspace_file_by_path(self.workspace_id, path)
if existing is not None:
raise ValueError(f"File already exists at path: {path}")
# Auto-detect MIME type if not provided
if mime_type is None:
mime_type, _ = mimetypes.guess_type(filename)
mime_type = mime_type or "application/octet-stream"
# Compute checksum
checksum = compute_file_checksum(content)
# Generate unique file ID for storage
file_id = str(uuid.uuid4())
# Store file in storage backend
storage = await get_workspace_storage()
storage_path = await storage.store(
workspace_id=self.workspace_id,
file_id=file_id,
filename=filename,
content=content,
)
# Create database record - handle race condition where another request
# created a file at the same path between our check and create
try:
file = await create_workspace_file(
workspace_id=self.workspace_id,
file_id=file_id,
name=filename,
path=path,
storage_path=storage_path,
mime_type=mime_type,
size_bytes=len(content),
checksum=checksum,
)
except UniqueViolationError:
# Race condition: another request created a file at this path
if overwrite:
# Re-fetch and delete the conflicting file, then retry
existing = await get_workspace_file_by_path(self.workspace_id, path)
if existing:
await self.delete_file(existing.id)
# Retry the create - if this also fails, clean up storage file
try:
file = await create_workspace_file(
workspace_id=self.workspace_id,
file_id=file_id,
name=filename,
path=path,
storage_path=storage_path,
mime_type=mime_type,
size_bytes=len(content),
checksum=checksum,
)
except Exception:
# Clean up orphaned storage file on retry failure
try:
await storage.delete(storage_path)
except Exception as e:
logger.warning(f"Failed to clean up orphaned storage file: {e}")
raise
else:
# Clean up the orphaned storage file before raising
try:
await storage.delete(storage_path)
except Exception as e:
logger.warning(f"Failed to clean up orphaned storage file: {e}")
raise ValueError(f"File already exists at path: {path}")
except Exception:
# Any other database error (connection, validation, etc.) - clean up storage
try:
await storage.delete(storage_path)
except Exception as e:
logger.warning(f"Failed to clean up orphaned storage file: {e}")
raise
logger.info(
f"Wrote file {file.id} ({filename}) to workspace {self.workspace_id} "
f"at path {path}, size={len(content)} bytes"
)
return file
async def list_files(
self,
path: Optional[str] = None,
limit: Optional[int] = None,
offset: int = 0,
include_all_sessions: bool = False,
) -> list[UserWorkspaceFile]:
"""
List files in workspace.
When session_id is set and include_all_sessions is False (default),
only files in the current session's folder are listed.
Args:
path: Optional path prefix to filter (e.g., "/documents/")
limit: Maximum number of files to return
offset: Number of files to skip
include_all_sessions: If True, list files from all sessions.
If False (default), only list current session's files.
Returns:
List of UserWorkspaceFile instances
"""
effective_path = self._get_effective_path(path, include_all_sessions)
return await list_workspace_files(
workspace_id=self.workspace_id,
path_prefix=effective_path,
limit=limit,
offset=offset,
)
async def delete_file(self, file_id: str) -> bool:
"""
Delete a file (soft-delete).
Args:
file_id: The file's ID
Returns:
True if deleted, False if not found
"""
file = await get_workspace_file(file_id, self.workspace_id)
if file is None:
return False
# Delete from storage
storage = await get_workspace_storage()
try:
await storage.delete(file.storagePath)
except Exception as e:
logger.warning(f"Failed to delete file from storage: {e}")
# Continue with database soft-delete even if storage delete fails
# Soft-delete database record
result = await soft_delete_workspace_file(file_id, self.workspace_id)
return result is not None
async def get_download_url(self, file_id: str, expires_in: int = 3600) -> str:
"""
Get download URL for a file.
Args:
file_id: The file's ID
expires_in: URL expiration in seconds (default 1 hour)
Returns:
Download URL (signed URL for GCS, API endpoint for local)
Raises:
FileNotFoundError: If file doesn't exist
"""
file = await get_workspace_file(file_id, self.workspace_id)
if file is None:
raise FileNotFoundError(f"File not found: {file_id}")
storage = await get_workspace_storage()
return await storage.get_download_url(file.storagePath, expires_in)
async def get_file_info(self, file_id: str) -> Optional[UserWorkspaceFile]:
"""
Get file metadata.
Args:
file_id: The file's ID
Returns:
UserWorkspaceFile instance or None
"""
return await get_workspace_file(file_id, self.workspace_id)
async def get_file_info_by_path(self, path: str) -> Optional[UserWorkspaceFile]:
"""
Get file metadata by path.
When session_id is set, paths are resolved relative to the session folder
unless they explicitly reference /sessions/...
Args:
path: Virtual path
Returns:
UserWorkspaceFile instance or None
"""
resolved_path = self._resolve_path(path)
return await get_workspace_file_by_path(self.workspace_id, resolved_path)
async def get_file_count(
self,
path: Optional[str] = None,
include_all_sessions: bool = False,
) -> int:
"""
Get number of files in workspace.
When session_id is set and include_all_sessions is False (default),
only counts files in the current session's folder.
Args:
path: Optional path prefix to filter (e.g., "/documents/")
include_all_sessions: If True, count all files in workspace.
If False (default), only count current session's files.
Returns:
Number of files
"""
effective_path = self._get_effective_path(path, include_all_sessions)
return await count_workspace_files(
self.workspace_id, path_prefix=effective_path
)

View File

@@ -0,0 +1,398 @@
"""
Workspace storage backend abstraction for supporting both cloud and local deployments.
This module provides a unified interface for storing workspace files, with implementations
for Google Cloud Storage (cloud deployments) and local filesystem (self-hosted deployments).
"""
import asyncio
import hashlib
import logging
from abc import ABC, abstractmethod
from datetime import datetime, timezone
from pathlib import Path
from typing import Optional
import aiofiles
import aiohttp
from gcloud.aio import storage as async_gcs_storage
from google.cloud import storage as gcs_storage
from backend.util.data import get_data_path
from backend.util.gcs_utils import (
download_with_fresh_session,
generate_signed_url,
parse_gcs_path,
)
from backend.util.settings import Config
logger = logging.getLogger(__name__)
class WorkspaceStorageBackend(ABC):
"""Abstract interface for workspace file storage."""
@abstractmethod
async def store(
self,
workspace_id: str,
file_id: str,
filename: str,
content: bytes,
) -> str:
"""
Store file content, return storage path.
Args:
workspace_id: The workspace ID
file_id: Unique file ID for storage
filename: Original filename
content: File content as bytes
Returns:
Storage path string (cloud path or local path)
"""
pass
@abstractmethod
async def retrieve(self, storage_path: str) -> bytes:
"""
Retrieve file content from storage.
Args:
storage_path: The storage path returned from store()
Returns:
File content as bytes
"""
pass
@abstractmethod
async def delete(self, storage_path: str) -> None:
"""
Delete file from storage.
Args:
storage_path: The storage path to delete
"""
pass
@abstractmethod
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
"""
Get URL for downloading the file.
Args:
storage_path: The storage path
expires_in: URL expiration time in seconds (default 1 hour)
Returns:
Download URL (signed URL for GCS, direct API path for local)
"""
pass
class GCSWorkspaceStorage(WorkspaceStorageBackend):
"""Google Cloud Storage implementation for workspace storage."""
def __init__(self, bucket_name: str):
self.bucket_name = bucket_name
self._async_client: Optional[async_gcs_storage.Storage] = None
self._sync_client: Optional[gcs_storage.Client] = None
self._session: Optional[aiohttp.ClientSession] = None
async def _get_async_client(self) -> async_gcs_storage.Storage:
"""Get or create async GCS client."""
if self._async_client is None:
self._session = aiohttp.ClientSession(
connector=aiohttp.TCPConnector(limit=100, force_close=False)
)
self._async_client = async_gcs_storage.Storage(session=self._session)
return self._async_client
def _get_sync_client(self) -> gcs_storage.Client:
"""Get or create sync GCS client (for signed URLs)."""
if self._sync_client is None:
self._sync_client = gcs_storage.Client()
return self._sync_client
async def close(self) -> None:
"""Close all client connections."""
if self._async_client is not None:
try:
await self._async_client.close()
except Exception as e:
logger.warning(f"Error closing GCS client: {e}")
self._async_client = None
if self._session is not None:
try:
await self._session.close()
except Exception as e:
logger.warning(f"Error closing session: {e}")
self._session = None
def _build_blob_name(self, workspace_id: str, file_id: str, filename: str) -> str:
"""Build the blob path for workspace files."""
return f"workspaces/{workspace_id}/{file_id}/{filename}"
async def store(
self,
workspace_id: str,
file_id: str,
filename: str,
content: bytes,
) -> str:
"""Store file in GCS."""
client = await self._get_async_client()
blob_name = self._build_blob_name(workspace_id, file_id, filename)
# Upload with metadata
upload_time = datetime.now(timezone.utc)
await client.upload(
self.bucket_name,
blob_name,
content,
metadata={
"uploaded_at": upload_time.isoformat(),
"workspace_id": workspace_id,
"file_id": file_id,
},
)
return f"gcs://{self.bucket_name}/{blob_name}"
async def retrieve(self, storage_path: str) -> bytes:
"""Retrieve file from GCS."""
bucket_name, blob_name = parse_gcs_path(storage_path)
return await download_with_fresh_session(bucket_name, blob_name)
async def delete(self, storage_path: str) -> None:
"""Delete file from GCS."""
bucket_name, blob_name = parse_gcs_path(storage_path)
client = await self._get_async_client()
try:
await client.delete(bucket_name, blob_name)
except Exception as e:
if "404" not in str(e) and "Not Found" not in str(e):
raise
# File already deleted, that's fine
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
"""
Generate download URL for GCS file.
Attempts to generate a signed URL if running with service account credentials.
Falls back to an API proxy endpoint if signed URL generation fails
(e.g., when running locally with user OAuth credentials).
"""
bucket_name, blob_name = parse_gcs_path(storage_path)
# Extract file_id from blob_name for fallback: workspaces/{workspace_id}/{file_id}/{filename}
blob_parts = blob_name.split("/")
file_id = blob_parts[2] if len(blob_parts) >= 3 else None
# Try to generate signed URL (requires service account credentials)
try:
sync_client = self._get_sync_client()
return await generate_signed_url(
sync_client, bucket_name, blob_name, expires_in
)
except AttributeError as e:
# Signed URL generation requires service account with private key.
# When running with user OAuth credentials, fall back to API proxy.
if "private key" in str(e) and file_id:
logger.debug(
"Cannot generate signed URL (no service account credentials), "
"falling back to API proxy endpoint"
)
return f"/api/workspace/files/{file_id}/download"
raise
class LocalWorkspaceStorage(WorkspaceStorageBackend):
"""Local filesystem implementation for workspace storage (self-hosted deployments)."""
def __init__(self, base_dir: Optional[str] = None):
"""
Initialize local storage backend.
Args:
base_dir: Base directory for workspace storage.
If None, defaults to {app_data}/workspaces
"""
if base_dir:
self.base_dir = Path(base_dir)
else:
self.base_dir = Path(get_data_path()) / "workspaces"
# Ensure base directory exists
self.base_dir.mkdir(parents=True, exist_ok=True)
def _build_file_path(self, workspace_id: str, file_id: str, filename: str) -> Path:
"""Build the local file path with path traversal protection."""
# Import here to avoid circular import
# (file.py imports workspace.py which imports workspace_storage.py)
from backend.util.file import sanitize_filename
# Sanitize filename to prevent path traversal (removes / and \ among others)
safe_filename = sanitize_filename(filename)
file_path = (self.base_dir / workspace_id / file_id / safe_filename).resolve()
# Verify the resolved path is still under base_dir
if not file_path.is_relative_to(self.base_dir.resolve()):
raise ValueError("Invalid filename: path traversal detected")
return file_path
def _parse_storage_path(self, storage_path: str) -> Path:
"""Parse local storage path to filesystem path."""
if storage_path.startswith("local://"):
relative_path = storage_path[8:] # Remove "local://"
else:
relative_path = storage_path
full_path = (self.base_dir / relative_path).resolve()
# Security check: ensure path is under base_dir
# Use is_relative_to() for robust path containment check
# (handles case-insensitive filesystems and edge cases)
if not full_path.is_relative_to(self.base_dir.resolve()):
raise ValueError("Invalid storage path: path traversal detected")
return full_path
async def store(
self,
workspace_id: str,
file_id: str,
filename: str,
content: bytes,
) -> str:
"""Store file locally."""
file_path = self._build_file_path(workspace_id, file_id, filename)
# Create parent directories
file_path.parent.mkdir(parents=True, exist_ok=True)
# Write file asynchronously
async with aiofiles.open(file_path, "wb") as f:
await f.write(content)
# Return relative path as storage path
relative_path = file_path.relative_to(self.base_dir)
return f"local://{relative_path}"
async def retrieve(self, storage_path: str) -> bytes:
"""Retrieve file from local storage."""
file_path = self._parse_storage_path(storage_path)
if not file_path.exists():
raise FileNotFoundError(f"File not found: {storage_path}")
async with aiofiles.open(file_path, "rb") as f:
return await f.read()
async def delete(self, storage_path: str) -> None:
"""Delete file from local storage."""
file_path = self._parse_storage_path(storage_path)
if file_path.exists():
# Remove file
file_path.unlink()
# Clean up empty parent directories
parent = file_path.parent
while parent != self.base_dir:
try:
if parent.exists() and not any(parent.iterdir()):
parent.rmdir()
else:
break
except OSError:
break
parent = parent.parent
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
"""
Get download URL for local file.
For local storage, this returns an API endpoint path.
The actual serving is handled by the API layer.
"""
# Parse the storage path to get the components
if storage_path.startswith("local://"):
relative_path = storage_path[8:]
else:
relative_path = storage_path
# Return the API endpoint for downloading
# The file_id is extracted from the path: {workspace_id}/{file_id}/{filename}
parts = relative_path.split("/")
if len(parts) >= 2:
file_id = parts[1] # Second component is file_id
return f"/api/workspace/files/{file_id}/download"
else:
raise ValueError(f"Invalid storage path format: {storage_path}")
# Global storage backend instance
_workspace_storage: Optional[WorkspaceStorageBackend] = None
_storage_lock = asyncio.Lock()
async def get_workspace_storage() -> WorkspaceStorageBackend:
"""
Get the workspace storage backend instance.
Uses GCS if media_gcs_bucket_name is configured, otherwise uses local storage.
"""
global _workspace_storage
if _workspace_storage is None:
async with _storage_lock:
if _workspace_storage is None:
config = Config()
if config.media_gcs_bucket_name:
logger.info(
f"Using GCS workspace storage: {config.media_gcs_bucket_name}"
)
_workspace_storage = GCSWorkspaceStorage(
config.media_gcs_bucket_name
)
else:
storage_dir = (
config.workspace_storage_dir
if config.workspace_storage_dir
else None
)
logger.info(
f"Using local workspace storage: {storage_dir or 'default'}"
)
_workspace_storage = LocalWorkspaceStorage(storage_dir)
return _workspace_storage
async def shutdown_workspace_storage() -> None:
"""
Properly shutdown the global workspace storage backend.
Closes aiohttp sessions and other resources for GCS backend.
Should be called during application shutdown.
"""
global _workspace_storage
if _workspace_storage is not None:
async with _storage_lock:
if _workspace_storage is not None:
if isinstance(_workspace_storage, GCSWorkspaceStorage):
await _workspace_storage.close()
_workspace_storage = None
def compute_file_checksum(content: bytes) -> str:
"""Compute SHA256 checksum of file content."""
return hashlib.sha256(content).hexdigest()

View File

@@ -0,0 +1,2 @@
-- AlterEnum
ALTER TYPE "OnboardingStep" ADD VALUE 'VISIT_COPILOT';

View File

@@ -0,0 +1,52 @@
-- CreateEnum
CREATE TYPE "WorkspaceFileSource" AS ENUM ('UPLOAD', 'EXECUTION', 'COPILOT', 'IMPORT');
-- CreateTable
CREATE TABLE "UserWorkspace" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"userId" TEXT NOT NULL,
CONSTRAINT "UserWorkspace_pkey" PRIMARY KEY ("id")
);
-- CreateTable
CREATE TABLE "UserWorkspaceFile" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"workspaceId" TEXT NOT NULL,
"name" TEXT NOT NULL,
"path" TEXT NOT NULL,
"storagePath" TEXT NOT NULL,
"mimeType" TEXT NOT NULL,
"sizeBytes" BIGINT NOT NULL,
"checksum" TEXT,
"isDeleted" BOOLEAN NOT NULL DEFAULT false,
"deletedAt" TIMESTAMP(3),
"source" "WorkspaceFileSource" NOT NULL DEFAULT 'UPLOAD',
"sourceExecId" TEXT,
"sourceSessionId" TEXT,
"metadata" JSONB NOT NULL DEFAULT '{}',
CONSTRAINT "UserWorkspaceFile_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE UNIQUE INDEX "UserWorkspace_userId_key" ON "UserWorkspace"("userId");
-- CreateIndex
CREATE INDEX "UserWorkspace_userId_idx" ON "UserWorkspace"("userId");
-- CreateIndex
CREATE INDEX "UserWorkspaceFile_workspaceId_isDeleted_idx" ON "UserWorkspaceFile"("workspaceId", "isDeleted");
-- CreateIndex
CREATE UNIQUE INDEX "UserWorkspaceFile_workspaceId_path_key" ON "UserWorkspaceFile"("workspaceId", "path");
-- AddForeignKey
ALTER TABLE "UserWorkspace" ADD CONSTRAINT "UserWorkspace_userId_fkey" FOREIGN KEY ("userId") REFERENCES "User"("id") ON DELETE CASCADE ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "UserWorkspaceFile" ADD CONSTRAINT "UserWorkspaceFile_workspaceId_fkey" FOREIGN KEY ("workspaceId") REFERENCES "UserWorkspace"("id") ON DELETE CASCADE ON UPDATE CASCADE;

View File

@@ -0,0 +1,16 @@
/*
Warnings:
- You are about to drop the column `source` on the `UserWorkspaceFile` table. All the data in the column will be lost.
- You are about to drop the column `sourceExecId` on the `UserWorkspaceFile` table. All the data in the column will be lost.
- You are about to drop the column `sourceSessionId` on the `UserWorkspaceFile` table. All the data in the column will be lost.
*/
-- AlterTable
ALTER TABLE "UserWorkspaceFile" DROP COLUMN "source",
DROP COLUMN "sourceExecId",
DROP COLUMN "sourceSessionId";
-- DropEnum
DROP TYPE "WorkspaceFileSource";

View File

@@ -63,6 +63,7 @@ model User {
IntegrationWebhooks IntegrationWebhook[]
NotificationBatches UserNotificationBatch[]
PendingHumanReviews PendingHumanReview[]
Workspace UserWorkspace?
// OAuth Provider relations
OAuthApplications OAuthApplication[]
@@ -81,6 +82,7 @@ enum OnboardingStep {
AGENT_INPUT
CONGRATS
// First Wins
VISIT_COPILOT
GET_RESULTS
MARKETPLACE_VISIT
MARKETPLACE_ADD_AGENT
@@ -136,6 +138,53 @@ model CoPilotUnderstanding {
@@index([userId])
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
//////////////// USER WORKSPACE TABLES /////////////////
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// User's persistent file storage workspace
model UserWorkspace {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
userId String @unique
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
Files UserWorkspaceFile[]
@@index([userId])
}
// Individual files in a user's workspace
model UserWorkspaceFile {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
workspaceId String
Workspace UserWorkspace @relation(fields: [workspaceId], references: [id], onDelete: Cascade)
// File metadata
name String // User-visible filename
path String // Virtual path (e.g., "/documents/report.pdf")
storagePath String // Actual GCS or local storage path
mimeType String
sizeBytes BigInt
checksum String? // SHA256 for integrity
// File state
isDeleted Boolean @default(false)
deletedAt DateTime?
metadata Json @default("{}")
@@unique([workspaceId, path])
@@index([workspaceId, isDeleted])
}
model BuilderSearchHistory {
id String @id @default(uuid())
createdAt DateTime @default(now())

View File

@@ -151,15 +151,20 @@ class TestDecomposeGoalExternal:
@pytest.mark.asyncio
async def test_decompose_goal_handles_http_error(self):
"""Test decomposition handles HTTP errors gracefully."""
mock_response = MagicMock()
mock_response.status_code = 500
mock_client = AsyncMock()
mock_client.post.side_effect = httpx.HTTPStatusError(
"Server error", request=MagicMock(), response=MagicMock()
"Server error", request=MagicMock(), response=mock_response
)
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot")
assert result is None
assert result is not None
assert result.get("type") == "error"
assert result.get("error_type") == "http_error"
assert "Server error" in result.get("error", "")
@pytest.mark.asyncio
async def test_decompose_goal_handles_request_error(self):
@@ -170,7 +175,10 @@ class TestDecomposeGoalExternal:
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot")
assert result is None
assert result is not None
assert result.get("type") == "error"
assert result.get("error_type") == "connection_error"
assert "Connection failed" in result.get("error", "")
@pytest.mark.asyncio
async def test_decompose_goal_handles_service_error(self):
@@ -179,6 +187,7 @@ class TestDecomposeGoalExternal:
mock_response.json.return_value = {
"success": False,
"error": "Internal error",
"error_type": "internal_error",
}
mock_response.raise_for_status = MagicMock()
@@ -188,7 +197,10 @@ class TestDecomposeGoalExternal:
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot")
assert result is None
assert result is not None
assert result.get("type") == "error"
assert result.get("error") == "Internal error"
assert result.get("error_type") == "internal_error"
class TestGenerateAgentExternal:
@@ -236,7 +248,10 @@ class TestGenerateAgentExternal:
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.generate_agent_external({"steps": []})
assert result is None
assert result is not None
assert result.get("type") == "error"
assert result.get("error_type") == "connection_error"
assert "Connection failed" in result.get("error", "")
class TestGenerateAgentPatchExternal:

View File

@@ -34,3 +34,6 @@ NEXT_PUBLIC_PREVIEW_STEALING_DEV=
# PostHog Analytics
NEXT_PUBLIC_POSTHOG_KEY=
NEXT_PUBLIC_POSTHOG_HOST=https://eu.i.posthog.com
# OpenAI (for voice transcription)
OPENAI_API_KEY=

View File

@@ -0,0 +1,76 @@
# CLAUDE.md - Frontend
This file provides guidance to Claude Code when working with the frontend.
## Essential Commands
```bash
# Install dependencies
pnpm i
# Generate API client from OpenAPI spec
pnpm generate:api
# Start development server
pnpm dev
# Run E2E tests
pnpm test
# Run Storybook for component development
pnpm storybook
# Build production
pnpm build
# Format and lint
pnpm format
# Type checking
pnpm types
```
### Code Style
- Fully capitalize acronyms in symbols, e.g. `graphID`, `useBackendAPI`
- Use function declarations (not arrow functions) for components/handlers
## Architecture
- **Framework**: Next.js 15 App Router (client-first approach)
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
- **State Management**: React Query for server state, co-located UI state in components/hooks
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
- **Workflow Builder**: Visual graph editor using @xyflow/react
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
- **Icons**: Phosphor Icons only
- **Feature Flags**: LaunchDarkly integration
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
- **Testing**: Playwright for E2E, Storybook for component development
## Environment Configuration
`.env.default` (defaults) → `.env` (user overrides)
## Feature Development
See @CONTRIBUTING.md for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Extract component logic into custom hooks grouped by concern, not by component. Each hook should represent a cohesive domain of functionality (e.g., useSearch, useFilters, usePagination) rather than bundling all state into one useComponentState hook.
- Put each hook in its own `.ts` file
- Put sub-components in local `components/` folder
- Component props should be `type Props = { ... }` (not exported) unless it needs to be used outside the component
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**:
- Use function declarations (not arrow functions) for components/handlers
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
- Do not type hook returns, let Typescript infer as much as possible
- Never type with `any` unless a variable/attribute can ACTUALLY be of any type

View File

@@ -2,8 +2,9 @@
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { useRouter } from "next/navigation";
import { useEffect } from "react";
import { resolveResponse, shouldShowOnboarding } from "@/app/api/helpers";
import { resolveResponse, getOnboardingStatus } from "@/app/api/helpers";
import { getV1OnboardingState } from "@/app/api/__generated__/endpoints/onboarding/onboarding";
import { getHomepageRoute } from "@/lib/constants";
export default function OnboardingPage() {
const router = useRouter();
@@ -11,10 +12,13 @@ export default function OnboardingPage() {
useEffect(() => {
async function redirectToStep() {
try {
// Check if onboarding is enabled
const isEnabled = await shouldShowOnboarding();
if (!isEnabled) {
router.replace("/");
// Check if onboarding is enabled (also gets chat flag for redirect)
const { shouldShowOnboarding, isChatEnabled } =
await getOnboardingStatus();
const homepageRoute = getHomepageRoute(isChatEnabled);
if (!shouldShowOnboarding) {
router.replace(homepageRoute);
return;
}
@@ -22,7 +26,7 @@ export default function OnboardingPage() {
// Handle completed onboarding
if (onboarding.completedSteps.includes("GET_RESULTS")) {
router.replace("/");
router.replace(homepageRoute);
return;
}

View File

@@ -1,8 +1,9 @@
import { getServerSupabase } from "@/lib/supabase/server/getServerSupabase";
import { getHomepageRoute } from "@/lib/constants";
import BackendAPI from "@/lib/autogpt-server-api";
import { NextResponse } from "next/server";
import { revalidatePath } from "next/cache";
import { shouldShowOnboarding } from "@/app/api/helpers";
import { getOnboardingStatus } from "@/app/api/helpers";
// Handle the callback to complete the user session login
export async function GET(request: Request) {
@@ -25,11 +26,15 @@ export async function GET(request: Request) {
const api = new BackendAPI();
await api.createUser();
if (await shouldShowOnboarding()) {
// Get onboarding status from backend (includes chat flag evaluated for this user)
const { shouldShowOnboarding, isChatEnabled } =
await getOnboardingStatus();
if (shouldShowOnboarding) {
next = "/onboarding";
revalidatePath("/onboarding", "layout");
} else {
revalidatePath("/", "layout");
next = getHomepageRoute(isChatEnabled);
revalidatePath(next, "layout");
}
} catch (createUserError) {
console.error("Error creating user:", createUserError);

View File

@@ -1,12 +1,10 @@
"use client";
import { ChatLoader } from "@/components/contextual/Chat/components/ChatLoader/ChatLoader";
import { Text } from "@/components/atoms/Text/Text";
import { NAVBAR_HEIGHT_PX } from "@/lib/constants";
import type { ReactNode } from "react";
import { useEffect } from "react";
import { useCopilotStore } from "../../copilot-page-store";
import { DesktopSidebar } from "./components/DesktopSidebar/DesktopSidebar";
import { LoadingState } from "./components/LoadingState/LoadingState";
import { MobileDrawer } from "./components/MobileDrawer/MobileDrawer";
import { MobileHeader } from "./components/MobileHeader/MobileHeader";
import { useCopilotShell } from "./useCopilotShell";
@@ -20,38 +18,21 @@ export function CopilotShell({ children }: Props) {
isMobile,
isDrawerOpen,
isLoading,
isCreatingSession,
isLoggedIn,
hasActiveSession,
sessions,
currentSessionId,
handleSelectSession,
handleOpenDrawer,
handleCloseDrawer,
handleDrawerOpenChange,
handleNewChat,
handleNewChatClick,
handleSessionClick,
hasNextPage,
isFetchingNextPage,
fetchNextPage,
isReadyToShowContent,
} = useCopilotShell();
const setNewChatHandler = useCopilotStore((s) => s.setNewChatHandler);
const requestNewChat = useCopilotStore((s) => s.requestNewChat);
useEffect(
function registerNewChatHandler() {
setNewChatHandler(handleNewChat);
return function cleanup() {
setNewChatHandler(null);
};
},
[handleNewChat],
);
function handleNewChatClick() {
requestNewChat();
}
if (!isLoggedIn) {
return (
<div className="flex h-full items-center justify-center">
@@ -72,7 +53,7 @@ export function CopilotShell({ children }: Props) {
isLoading={isLoading}
hasNextPage={hasNextPage}
isFetchingNextPage={isFetchingNextPage}
onSelectSession={handleSelectSession}
onSelectSession={handleSessionClick}
onFetchNextPage={fetchNextPage}
onNewChat={handleNewChatClick}
hasActiveSession={Boolean(hasActiveSession)}
@@ -82,7 +63,18 @@ export function CopilotShell({ children }: Props) {
<div className="relative flex min-h-0 flex-1 flex-col">
{isMobile && <MobileHeader onOpenDrawer={handleOpenDrawer} />}
<div className="flex min-h-0 flex-1 flex-col">
{isReadyToShowContent ? children : <LoadingState />}
{isCreatingSession ? (
<div className="flex h-full flex-1 flex-col items-center justify-center bg-[#f8f8f9]">
<div className="flex flex-col items-center gap-4">
<ChatLoader />
<Text variant="body" className="text-zinc-500">
Creating your chat...
</Text>
</div>
</div>
) : (
children
)}
</div>
</div>
@@ -94,7 +86,7 @@ export function CopilotShell({ children }: Props) {
isLoading={isLoading}
hasNextPage={hasNextPage}
isFetchingNextPage={isFetchingNextPage}
onSelectSession={handleSelectSession}
onSelectSession={handleSessionClick}
onFetchNextPage={fetchNextPage}
onNewChat={handleNewChatClick}
onClose={handleCloseDrawer}

View File

@@ -1,15 +0,0 @@
import { Text } from "@/components/atoms/Text/Text";
import { ChatLoader } from "@/components/contextual/Chat/components/ChatLoader/ChatLoader";
export function LoadingState() {
return (
<div className="flex flex-1 items-center justify-center">
<div className="flex flex-col items-center gap-4">
<ChatLoader />
<Text variant="body" className="text-zinc-500">
Loading your chats...
</Text>
</div>
</div>
);
}

View File

@@ -3,17 +3,17 @@ import { useState } from "react";
export function useMobileDrawer() {
const [isDrawerOpen, setIsDrawerOpen] = useState(false);
function handleOpenDrawer() {
const handleOpenDrawer = () => {
setIsDrawerOpen(true);
}
};
function handleCloseDrawer() {
const handleCloseDrawer = () => {
setIsDrawerOpen(false);
}
};
function handleDrawerOpenChange(open: boolean) {
const handleDrawerOpenChange = (open: boolean) => {
setIsDrawerOpen(open);
}
};
return {
isDrawerOpen,

View File

@@ -1,11 +1,6 @@
import {
getGetV2ListSessionsQueryKey,
useGetV2ListSessions,
} from "@/app/api/__generated__/endpoints/chat/chat";
import { useGetV2ListSessions } from "@/app/api/__generated__/endpoints/chat/chat";
import type { SessionSummaryResponse } from "@/app/api/__generated__/models/sessionSummaryResponse";
import { okData } from "@/app/api/helpers";
import { useChatStore } from "@/components/contextual/Chat/chat-store";
import { useQueryClient } from "@tanstack/react-query";
import { useEffect, useState } from "react";
const PAGE_SIZE = 50;
@@ -16,12 +11,12 @@ export interface UseSessionsPaginationArgs {
export function useSessionsPagination({ enabled }: UseSessionsPaginationArgs) {
const [offset, setOffset] = useState(0);
const [accumulatedSessions, setAccumulatedSessions] = useState<
SessionSummaryResponse[]
>([]);
const [totalCount, setTotalCount] = useState<number | null>(null);
const queryClient = useQueryClient();
const onStreamComplete = useChatStore((state) => state.onStreamComplete);
const { data, isLoading, isFetching, isError } = useGetV2ListSessions(
{ limit: PAGE_SIZE, offset },
@@ -32,38 +27,23 @@ export function useSessionsPagination({ enabled }: UseSessionsPaginationArgs) {
},
);
useEffect(function refreshOnStreamComplete() {
const unsubscribe = onStreamComplete(function handleStreamComplete() {
setOffset(0);
useEffect(() => {
const responseData = okData(data);
if (responseData) {
const newSessions = responseData.sessions;
const total = responseData.total;
setTotalCount(total);
if (offset === 0) {
setAccumulatedSessions(newSessions);
} else {
setAccumulatedSessions((prev) => [...prev, ...newSessions]);
}
} else if (!enabled) {
setAccumulatedSessions([]);
setTotalCount(null);
queryClient.invalidateQueries({
queryKey: getGetV2ListSessionsQueryKey(),
});
});
return unsubscribe;
}, []);
useEffect(
function updateSessionsFromResponse() {
const responseData = okData(data);
if (responseData) {
const newSessions = responseData.sessions;
const total = responseData.total;
setTotalCount(total);
if (offset === 0) {
setAccumulatedSessions(newSessions);
} else {
setAccumulatedSessions((prev) => [...prev, ...newSessions]);
}
} else if (!enabled) {
setAccumulatedSessions([]);
setTotalCount(null);
}
},
[data, offset, enabled],
);
}
}, [data, offset, enabled]);
const hasNextPage =
totalCount !== null && accumulatedSessions.length < totalCount;
@@ -86,17 +66,17 @@ export function useSessionsPagination({ enabled }: UseSessionsPaginationArgs) {
}
}, [hasNextPage, isFetching, isLoading, isError, totalCount]);
function fetchNextPage() {
const fetchNextPage = () => {
if (hasNextPage && !isFetching) {
setOffset((prev) => prev + PAGE_SIZE);
}
}
};
function reset() {
const reset = () => {
// Only reset the offset - keep existing sessions visible during refetch
// The effect will replace sessions when new data arrives at offset 0
setOffset(0);
setAccumulatedSessions([]);
setTotalCount(null);
}
};
return {
sessions: accumulatedSessions,

View File

@@ -104,76 +104,3 @@ export function mergeCurrentSessionIntoList(
export function getCurrentSessionId(searchParams: URLSearchParams) {
return searchParams.get("sessionId");
}
export function shouldAutoSelectSession(
areAllSessionsLoaded: boolean,
hasAutoSelectedSession: boolean,
paramSessionId: string | null,
visibleSessions: SessionSummaryResponse[],
accumulatedSessions: SessionSummaryResponse[],
isLoading: boolean,
totalCount: number | null,
) {
if (!areAllSessionsLoaded || hasAutoSelectedSession) {
return {
shouldSelect: false,
sessionIdToSelect: null,
shouldCreate: false,
};
}
if (paramSessionId) {
return {
shouldSelect: false,
sessionIdToSelect: null,
shouldCreate: false,
};
}
if (visibleSessions.length > 0) {
return {
shouldSelect: true,
sessionIdToSelect: visibleSessions[0].id,
shouldCreate: false,
};
}
if (accumulatedSessions.length === 0 && !isLoading && totalCount === 0) {
return { shouldSelect: false, sessionIdToSelect: null, shouldCreate: true };
}
if (totalCount === 0) {
return {
shouldSelect: false,
sessionIdToSelect: null,
shouldCreate: false,
};
}
return { shouldSelect: false, sessionIdToSelect: null, shouldCreate: false };
}
export function checkReadyToShowContent(
areAllSessionsLoaded: boolean,
paramSessionId: string | null,
accumulatedSessions: SessionSummaryResponse[],
isCurrentSessionLoading: boolean,
currentSessionData: SessionDetailResponse | null | undefined,
hasAutoSelectedSession: boolean,
) {
if (!areAllSessionsLoaded) return false;
if (paramSessionId) {
const sessionFound = accumulatedSessions.some(
(s) => s.id === paramSessionId,
);
return (
sessionFound ||
(!isCurrentSessionLoading &&
currentSessionData !== undefined &&
currentSessionData !== null)
);
}
return hasAutoSelectedSession;
}

View File

@@ -1,26 +1,22 @@
"use client";
import {
getGetV2GetSessionQueryKey,
getGetV2ListSessionsQueryKey,
useGetV2GetSession,
} from "@/app/api/__generated__/endpoints/chat/chat";
import type { SessionSummaryResponse } from "@/app/api/__generated__/models/sessionSummaryResponse";
import { okData } from "@/app/api/helpers";
import { useChatStore } from "@/components/contextual/Chat/chat-store";
import { useBreakpoint } from "@/lib/hooks/useBreakpoint";
import { useSupabase } from "@/lib/supabase/hooks/useSupabase";
import { useQueryClient } from "@tanstack/react-query";
import { parseAsString, useQueryState } from "nuqs";
import { usePathname, useSearchParams } from "next/navigation";
import { useEffect, useRef, useState } from "react";
import { useRef } from "react";
import { useCopilotStore } from "../../copilot-page-store";
import { useCopilotSessionId } from "../../useCopilotSessionId";
import { useMobileDrawer } from "./components/MobileDrawer/useMobileDrawer";
import { useSessionsPagination } from "./components/SessionsList/useSessionsPagination";
import {
checkReadyToShowContent,
convertSessionDetailToSummary,
filterVisibleSessions,
getCurrentSessionId,
mergeCurrentSessionIntoList,
} from "./helpers";
import { getCurrentSessionId } from "./helpers";
import { useShellSessionList } from "./useShellSessionList";
export function useCopilotShell() {
const pathname = usePathname();
@@ -31,7 +27,7 @@ export function useCopilotShell() {
const isMobile =
breakpoint === "base" || breakpoint === "sm" || breakpoint === "md";
const [, setUrlSessionId] = useQueryState("sessionId", parseAsString);
const { urlSessionId, setUrlSessionId } = useCopilotSessionId();
const isOnHomepage = pathname === "/copilot";
const paramSessionId = searchParams.get("sessionId");
@@ -45,123 +41,80 @@ export function useCopilotShell() {
const paginationEnabled = !isMobile || isDrawerOpen || !!paramSessionId;
const {
sessions: accumulatedSessions,
isLoading: isSessionsLoading,
isFetching: isSessionsFetching,
hasNextPage,
areAllSessionsLoaded,
fetchNextPage,
reset: resetPagination,
} = useSessionsPagination({
enabled: paginationEnabled,
});
const currentSessionId = getCurrentSessionId(searchParams);
const { data: currentSessionData, isLoading: isCurrentSessionLoading } =
useGetV2GetSession(currentSessionId || "", {
const { data: currentSessionData } = useGetV2GetSession(
currentSessionId || "",
{
query: {
enabled: !!currentSessionId,
select: okData,
},
});
const [hasAutoSelectedSession, setHasAutoSelectedSession] = useState(false);
const hasAutoSelectedRef = useRef(false);
const recentlyCreatedSessionsRef = useRef<
Map<string, SessionSummaryResponse>
>(new Map());
// Mark as auto-selected when sessionId is in URL
useEffect(() => {
if (paramSessionId && !hasAutoSelectedRef.current) {
hasAutoSelectedRef.current = true;
setHasAutoSelectedSession(true);
}
}, [paramSessionId]);
// On homepage without sessionId, mark as ready immediately
useEffect(() => {
if (isOnHomepage && !paramSessionId && !hasAutoSelectedRef.current) {
hasAutoSelectedRef.current = true;
setHasAutoSelectedSession(true);
}
}, [isOnHomepage, paramSessionId]);
// Invalidate sessions list when navigating to homepage (to show newly created sessions)
useEffect(() => {
if (isOnHomepage && !paramSessionId) {
queryClient.invalidateQueries({
queryKey: getGetV2ListSessionsQueryKey(),
});
}
}, [isOnHomepage, paramSessionId, queryClient]);
// Track newly created sessions to ensure they stay visible even when switching away
useEffect(() => {
if (currentSessionId && currentSessionData) {
const isNewSession =
currentSessionData.updated_at === currentSessionData.created_at;
const isNotInAccumulated = !accumulatedSessions.some(
(s) => s.id === currentSessionId,
);
if (isNewSession || isNotInAccumulated) {
const summary = convertSessionDetailToSummary(currentSessionData);
recentlyCreatedSessionsRef.current.set(currentSessionId, summary);
}
}
}, [currentSessionId, currentSessionData, accumulatedSessions]);
// Clean up recently created sessions that are now in the accumulated list
useEffect(() => {
for (const sessionId of recentlyCreatedSessionsRef.current.keys()) {
if (accumulatedSessions.some((s) => s.id === sessionId)) {
recentlyCreatedSessionsRef.current.delete(sessionId);
}
}
}, [accumulatedSessions]);
// Reset pagination when query becomes disabled
const prevPaginationEnabledRef = useRef(paginationEnabled);
useEffect(() => {
if (prevPaginationEnabledRef.current && !paginationEnabled) {
resetPagination();
resetAutoSelect();
}
prevPaginationEnabledRef.current = paginationEnabled;
}, [paginationEnabled, resetPagination]);
const sessions = mergeCurrentSessionIntoList(
accumulatedSessions,
currentSessionId,
currentSessionData,
recentlyCreatedSessionsRef.current,
},
);
const visibleSessions = filterVisibleSessions(sessions);
const {
sessions,
isLoading,
isSessionsFetching,
hasNextPage,
fetchNextPage,
resetPagination,
recentlyCreatedSessionsRef,
} = useShellSessionList({
paginationEnabled,
currentSessionId,
currentSessionData,
isOnHomepage,
paramSessionId,
});
const sidebarSelectedSessionId =
isOnHomepage && !paramSessionId ? null : currentSessionId;
const stopStream = useChatStore((s) => s.stopStream);
const onStreamComplete = useChatStore((s) => s.onStreamComplete);
const isStreaming = useCopilotStore((s) => s.isStreaming);
const isCreatingSession = useCopilotStore((s) => s.isCreatingSession);
const setIsSwitchingSession = useCopilotStore((s) => s.setIsSwitchingSession);
const openInterruptModal = useCopilotStore((s) => s.openInterruptModal);
const isReadyToShowContent = isOnHomepage
? true
: checkReadyToShowContent(
areAllSessionsLoaded,
paramSessionId,
accumulatedSessions,
isCurrentSessionLoading,
currentSessionData,
hasAutoSelectedSession,
);
const pendingActionRef = useRef<(() => void) | null>(null);
function handleSelectSession(sessionId: string) {
async function stopCurrentStream() {
if (!currentSessionId) return;
setIsSwitchingSession(true);
await new Promise<void>((resolve) => {
const unsubscribe = onStreamComplete((completedId) => {
if (completedId === currentSessionId) {
clearTimeout(timeout);
unsubscribe();
resolve();
}
});
const timeout = setTimeout(() => {
unsubscribe();
resolve();
}, 3000);
stopStream(currentSessionId);
});
queryClient.invalidateQueries({
queryKey: getGetV2GetSessionQueryKey(currentSessionId),
});
setIsSwitchingSession(false);
}
function selectSession(sessionId: string) {
if (sessionId === currentSessionId) return;
if (recentlyCreatedSessionsRef.current.has(sessionId)) {
queryClient.invalidateQueries({
queryKey: getGetV2GetSessionQueryKey(sessionId),
});
}
setUrlSessionId(sessionId, { shallow: false });
if (isMobile) handleCloseDrawer();
}
function handleNewChat() {
resetAutoSelect();
function startNewChat() {
resetPagination();
queryClient.invalidateQueries({
queryKey: getGetV2ListSessionsQueryKey(),
@@ -170,12 +123,31 @@ export function useCopilotShell() {
if (isMobile) handleCloseDrawer();
}
function resetAutoSelect() {
hasAutoSelectedRef.current = false;
setHasAutoSelectedSession(false);
function handleSessionClick(sessionId: string) {
if (sessionId === currentSessionId) return;
if (isStreaming) {
pendingActionRef.current = async () => {
await stopCurrentStream();
selectSession(sessionId);
};
openInterruptModal(pendingActionRef.current);
} else {
selectSession(sessionId);
}
}
const isLoading = isSessionsLoading && accumulatedSessions.length === 0;
function handleNewChatClick() {
if (isStreaming) {
pendingActionRef.current = async () => {
await stopCurrentStream();
startNewChat();
};
openInterruptModal(pendingActionRef.current);
} else {
startNewChat();
}
}
return {
isMobile,
@@ -183,17 +155,17 @@ export function useCopilotShell() {
isLoggedIn,
hasActiveSession:
Boolean(currentSessionId) && (!isOnHomepage || Boolean(paramSessionId)),
isLoading,
sessions: visibleSessions,
currentSessionId: sidebarSelectedSessionId,
handleSelectSession,
isLoading: isLoading || isCreatingSession,
isCreatingSession,
sessions,
currentSessionId: urlSessionId,
handleOpenDrawer,
handleCloseDrawer,
handleDrawerOpenChange,
handleNewChat,
handleNewChatClick,
handleSessionClick,
hasNextPage,
isFetchingNextPage: isSessionsFetching,
fetchNextPage,
isReadyToShowContent,
};
}

View File

@@ -0,0 +1,113 @@
import { getGetV2ListSessionsQueryKey } from "@/app/api/__generated__/endpoints/chat/chat";
import type { SessionDetailResponse } from "@/app/api/__generated__/models/sessionDetailResponse";
import type { SessionSummaryResponse } from "@/app/api/__generated__/models/sessionSummaryResponse";
import { useChatStore } from "@/components/contextual/Chat/chat-store";
import { useQueryClient } from "@tanstack/react-query";
import { useEffect, useMemo, useRef } from "react";
import { useSessionsPagination } from "./components/SessionsList/useSessionsPagination";
import {
convertSessionDetailToSummary,
filterVisibleSessions,
mergeCurrentSessionIntoList,
} from "./helpers";
interface UseShellSessionListArgs {
paginationEnabled: boolean;
currentSessionId: string | null;
currentSessionData: SessionDetailResponse | null | undefined;
isOnHomepage: boolean;
paramSessionId: string | null;
}
export function useShellSessionList({
paginationEnabled,
currentSessionId,
currentSessionData,
isOnHomepage,
paramSessionId,
}: UseShellSessionListArgs) {
const queryClient = useQueryClient();
const onStreamComplete = useChatStore((s) => s.onStreamComplete);
const {
sessions: accumulatedSessions,
isLoading: isSessionsLoading,
isFetching: isSessionsFetching,
hasNextPage,
fetchNextPage,
reset: resetPagination,
} = useSessionsPagination({
enabled: paginationEnabled,
});
const recentlyCreatedSessionsRef = useRef<
Map<string, SessionSummaryResponse>
>(new Map());
useEffect(() => {
if (isOnHomepage && !paramSessionId) {
queryClient.invalidateQueries({
queryKey: getGetV2ListSessionsQueryKey(),
});
}
}, [isOnHomepage, paramSessionId, queryClient]);
useEffect(() => {
if (currentSessionId && currentSessionData) {
const isNewSession =
currentSessionData.updated_at === currentSessionData.created_at;
const isNotInAccumulated = !accumulatedSessions.some(
(s) => s.id === currentSessionId,
);
if (isNewSession || isNotInAccumulated) {
const summary = convertSessionDetailToSummary(currentSessionData);
recentlyCreatedSessionsRef.current.set(currentSessionId, summary);
}
}
}, [currentSessionId, currentSessionData, accumulatedSessions]);
useEffect(() => {
for (const sessionId of recentlyCreatedSessionsRef.current.keys()) {
if (accumulatedSessions.some((s) => s.id === sessionId)) {
recentlyCreatedSessionsRef.current.delete(sessionId);
}
}
}, [accumulatedSessions]);
useEffect(() => {
const unsubscribe = onStreamComplete(() => {
queryClient.invalidateQueries({
queryKey: getGetV2ListSessionsQueryKey(),
});
});
return unsubscribe;
}, [onStreamComplete, queryClient]);
const sessions = useMemo(
() =>
mergeCurrentSessionIntoList(
accumulatedSessions,
currentSessionId,
currentSessionData,
recentlyCreatedSessionsRef.current,
),
[accumulatedSessions, currentSessionId, currentSessionData],
);
const visibleSessions = useMemo(
() => filterVisibleSessions(sessions),
[sessions],
);
const isLoading = isSessionsLoading && accumulatedSessions.length === 0;
return {
sessions: visibleSessions,
isLoading,
isSessionsFetching,
hasNextPage,
fetchNextPage,
resetPagination,
recentlyCreatedSessionsRef,
};
}

View File

@@ -4,51 +4,53 @@ import { create } from "zustand";
interface CopilotStoreState {
isStreaming: boolean;
isNewChatModalOpen: boolean;
newChatHandler: (() => void) | null;
isSwitchingSession: boolean;
isCreatingSession: boolean;
isInterruptModalOpen: boolean;
pendingAction: (() => void) | null;
}
interface CopilotStoreActions {
setIsStreaming: (isStreaming: boolean) => void;
setNewChatHandler: (handler: (() => void) | null) => void;
requestNewChat: () => void;
confirmNewChat: () => void;
cancelNewChat: () => void;
setIsSwitchingSession: (isSwitchingSession: boolean) => void;
setIsCreatingSession: (isCreating: boolean) => void;
openInterruptModal: (onConfirm: () => void) => void;
confirmInterrupt: () => void;
cancelInterrupt: () => void;
}
type CopilotStore = CopilotStoreState & CopilotStoreActions;
export const useCopilotStore = create<CopilotStore>((set, get) => ({
isStreaming: false,
isNewChatModalOpen: false,
newChatHandler: null,
isSwitchingSession: false,
isCreatingSession: false,
isInterruptModalOpen: false,
pendingAction: null,
setIsStreaming(isStreaming) {
set({ isStreaming });
},
setNewChatHandler(handler) {
set({ newChatHandler: handler });
setIsSwitchingSession(isSwitchingSession) {
set({ isSwitchingSession });
},
requestNewChat() {
const { isStreaming, newChatHandler } = get();
if (isStreaming) {
set({ isNewChatModalOpen: true });
} else if (newChatHandler) {
newChatHandler();
}
setIsCreatingSession(isCreatingSession) {
set({ isCreatingSession });
},
confirmNewChat() {
const { newChatHandler } = get();
set({ isNewChatModalOpen: false });
if (newChatHandler) {
newChatHandler();
}
openInterruptModal(onConfirm) {
set({ isInterruptModalOpen: true, pendingAction: onConfirm });
},
cancelNewChat() {
set({ isNewChatModalOpen: false });
confirmInterrupt() {
const { pendingAction } = get();
set({ isInterruptModalOpen: false, pendingAction: null });
if (pendingAction) pendingAction();
},
cancelInterrupt() {
set({ isInterruptModalOpen: false, pendingAction: null });
},
}));

View File

@@ -1,28 +1,5 @@
import type { User } from "@supabase/supabase-js";
export type PageState =
| { type: "welcome" }
| { type: "newChat" }
| { type: "creating"; prompt: string }
| { type: "chat"; sessionId: string; initialPrompt?: string };
export function getInitialPromptFromState(
pageState: PageState,
storedInitialPrompt: string | undefined,
) {
if (storedInitialPrompt) return storedInitialPrompt;
if (pageState.type === "creating") return pageState.prompt;
if (pageState.type === "chat") return pageState.initialPrompt;
}
export function shouldResetToWelcome(pageState: PageState) {
return (
pageState.type !== "newChat" &&
pageState.type !== "creating" &&
pageState.type !== "welcome"
);
}
export function getGreetingName(user?: User | null): string {
if (!user) return "there";
const metadata = user.user_metadata as Record<string, unknown> | undefined;

View File

@@ -1,25 +1,25 @@
"use client";
import { Button } from "@/components/atoms/Button/Button";
import { Skeleton } from "@/components/atoms/Skeleton/Skeleton";
import { Text } from "@/components/atoms/Text/Text";
import { Chat } from "@/components/contextual/Chat/Chat";
import { ChatInput } from "@/components/contextual/Chat/components/ChatInput/ChatInput";
import { ChatLoader } from "@/components/contextual/Chat/components/ChatLoader/ChatLoader";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { useCopilotStore } from "./copilot-page-store";
import { useCopilotPage } from "./useCopilotPage";
export default function CopilotPage() {
const { state, handlers } = useCopilotPage();
const confirmNewChat = useCopilotStore((s) => s.confirmNewChat);
const isInterruptModalOpen = useCopilotStore((s) => s.isInterruptModalOpen);
const confirmInterrupt = useCopilotStore((s) => s.confirmInterrupt);
const cancelInterrupt = useCopilotStore((s) => s.cancelInterrupt);
const {
greetingName,
quickActions,
isLoading,
pageState,
isNewChatModalOpen,
hasSession,
initialPrompt,
isReady,
} = state;
const {
@@ -27,20 +27,16 @@ export default function CopilotPage() {
startChatWithPrompt,
handleSessionNotFound,
handleStreamingChange,
handleCancelNewChat,
handleNewChatModalOpen,
} = handlers;
if (!isReady) return null;
if (pageState.type === "chat") {
if (hasSession) {
return (
<div className="flex h-full flex-col">
<Chat
key={pageState.sessionId ?? "welcome"}
className="flex-1"
urlSessionId={pageState.sessionId}
initialPrompt={pageState.initialPrompt}
initialPrompt={initialPrompt}
onSessionNotFound={handleSessionNotFound}
onStreamingChange={handleStreamingChange}
/>
@@ -48,31 +44,33 @@ export default function CopilotPage() {
title="Interrupt current chat?"
styling={{ maxWidth: 300, width: "100%" }}
controlled={{
isOpen: isNewChatModalOpen,
set: handleNewChatModalOpen,
isOpen: isInterruptModalOpen,
set: (open) => {
if (!open) cancelInterrupt();
},
}}
onClose={handleCancelNewChat}
onClose={cancelInterrupt}
>
<Dialog.Content>
<div className="flex flex-col gap-4">
<Text variant="body">
The current chat response will be interrupted. Are you sure you
want to start a new chat?
want to continue?
</Text>
<Dialog.Footer>
<Button
type="button"
variant="outline"
onClick={handleCancelNewChat}
onClick={cancelInterrupt}
>
Cancel
</Button>
<Button
type="button"
variant="primary"
onClick={confirmNewChat}
onClick={confirmInterrupt}
>
Start new chat
Continue
</Button>
</Dialog.Footer>
</div>
@@ -82,19 +80,6 @@ export default function CopilotPage() {
);
}
if (pageState.type === "newChat" || pageState.type === "creating") {
return (
<div className="flex h-full flex-1 flex-col items-center justify-center bg-[#f8f8f9]">
<div className="flex flex-col items-center gap-4">
<ChatLoader />
<Text variant="body" className="text-zinc-500">
Loading your chats...
</Text>
</div>
</div>
);
}
return (
<div className="flex h-full flex-1 items-center justify-center overflow-y-auto bg-[#f8f8f9] px-6 py-10">
<div className="w-full text-center">

View File

@@ -5,79 +5,40 @@ import {
import { useToast } from "@/components/molecules/Toast/use-toast";
import { getHomepageRoute } from "@/lib/constants";
import { useSupabase } from "@/lib/supabase/hooks/useSupabase";
import { useOnboarding } from "@/providers/onboarding/onboarding-provider";
import {
Flag,
type FlagValues,
useGetFlag,
} from "@/services/feature-flags/use-get-flag";
import { SessionKey, sessionStorage } from "@/services/storage/session-storage";
import * as Sentry from "@sentry/nextjs";
import { useQueryClient } from "@tanstack/react-query";
import { useFlags } from "launchdarkly-react-client-sdk";
import { useRouter } from "next/navigation";
import { useEffect, useReducer } from "react";
import { useEffect } from "react";
import { useCopilotStore } from "./copilot-page-store";
import { getGreetingName, getQuickActions, type PageState } from "./helpers";
import { useCopilotURLState } from "./useCopilotURLState";
type CopilotState = {
pageState: PageState;
initialPrompts: Record<string, string>;
previousSessionId: string | null;
};
type CopilotAction =
| { type: "setPageState"; pageState: PageState }
| { type: "setInitialPrompt"; sessionId: string; prompt: string }
| { type: "setPreviousSessionId"; sessionId: string | null };
function isSamePageState(next: PageState, current: PageState) {
if (next.type !== current.type) return false;
if (next.type === "creating" && current.type === "creating") {
return next.prompt === current.prompt;
}
if (next.type === "chat" && current.type === "chat") {
return (
next.sessionId === current.sessionId &&
next.initialPrompt === current.initialPrompt
);
}
return true;
}
function copilotReducer(
state: CopilotState,
action: CopilotAction,
): CopilotState {
if (action.type === "setPageState") {
if (isSamePageState(action.pageState, state.pageState)) return state;
return { ...state, pageState: action.pageState };
}
if (action.type === "setInitialPrompt") {
if (state.initialPrompts[action.sessionId] === action.prompt) return state;
return {
...state,
initialPrompts: {
...state.initialPrompts,
[action.sessionId]: action.prompt,
},
};
}
if (action.type === "setPreviousSessionId") {
if (state.previousSessionId === action.sessionId) return state;
return { ...state, previousSessionId: action.sessionId };
}
return state;
}
import { getGreetingName, getQuickActions } from "./helpers";
import { useCopilotSessionId } from "./useCopilotSessionId";
export function useCopilotPage() {
const router = useRouter();
const queryClient = useQueryClient();
const { user, isLoggedIn, isUserLoading } = useSupabase();
const { toast } = useToast();
const { completeStep } = useOnboarding();
const isNewChatModalOpen = useCopilotStore((s) => s.isNewChatModalOpen);
const { urlSessionId, setUrlSessionId } = useCopilotSessionId();
const setIsStreaming = useCopilotStore((s) => s.setIsStreaming);
const cancelNewChat = useCopilotStore((s) => s.cancelNewChat);
const isCreating = useCopilotStore((s) => s.isCreatingSession);
const setIsCreating = useCopilotStore((s) => s.setIsCreatingSession);
// Complete VISIT_COPILOT onboarding step to grant $5 welcome bonus
useEffect(() => {
if (isLoggedIn) {
completeStep("VISIT_COPILOT");
}
}, [completeStep, isLoggedIn]);
const isChatEnabled = useGetFlag(Flag.CHAT);
const flags = useFlags<FlagValues>();
@@ -88,72 +49,27 @@ export function useCopilotPage() {
const isFlagReady =
!isLaunchDarklyConfigured || flags[Flag.CHAT] !== undefined;
const [state, dispatch] = useReducer(copilotReducer, {
pageState: { type: "welcome" },
initialPrompts: {},
previousSessionId: null,
});
const greetingName = getGreetingName(user);
const quickActions = getQuickActions();
function setPageState(pageState: PageState) {
dispatch({ type: "setPageState", pageState });
}
const hasSession = Boolean(urlSessionId);
const initialPrompt = urlSessionId
? getInitialPrompt(urlSessionId)
: undefined;
function setInitialPrompt(sessionId: string, prompt: string) {
dispatch({ type: "setInitialPrompt", sessionId, prompt });
}
function setPreviousSessionId(sessionId: string | null) {
dispatch({ type: "setPreviousSessionId", sessionId });
}
const { setUrlSessionId } = useCopilotURLState({
pageState: state.pageState,
initialPrompts: state.initialPrompts,
previousSessionId: state.previousSessionId,
setPageState,
setInitialPrompt,
setPreviousSessionId,
});
useEffect(
function transitionNewChatToWelcome() {
if (state.pageState.type === "newChat") {
function setWelcomeState() {
dispatch({ type: "setPageState", pageState: { type: "welcome" } });
}
const timer = setTimeout(setWelcomeState, 300);
return function cleanup() {
clearTimeout(timer);
};
}
},
[state.pageState.type],
);
useEffect(
function ensureAccess() {
if (!isFlagReady) return;
if (isChatEnabled === false) {
router.replace(homepageRoute);
}
},
[homepageRoute, isChatEnabled, isFlagReady, router],
);
useEffect(() => {
if (!isFlagReady) return;
if (isChatEnabled === false) {
router.replace(homepageRoute);
}
}, [homepageRoute, isChatEnabled, isFlagReady, router]);
async function startChatWithPrompt(prompt: string) {
if (!prompt?.trim()) return;
if (state.pageState.type === "creating") return;
if (isCreating) return;
const trimmedPrompt = prompt.trim();
dispatch({
type: "setPageState",
pageState: { type: "creating", prompt: trimmedPrompt },
});
setIsCreating(true);
try {
const sessionResponse = await postV2CreateSession({
@@ -165,27 +81,19 @@ export function useCopilotPage() {
}
const sessionId = sessionResponse.data.id;
dispatch({
type: "setInitialPrompt",
sessionId,
prompt: trimmedPrompt,
});
setInitialPrompt(sessionId, trimmedPrompt);
await queryClient.invalidateQueries({
queryKey: getGetV2ListSessionsQueryKey(),
});
await setUrlSessionId(sessionId, { shallow: false });
dispatch({
type: "setPageState",
pageState: { type: "chat", sessionId, initialPrompt: trimmedPrompt },
});
await setUrlSessionId(sessionId, { shallow: true });
} catch (error) {
console.error("[CopilotPage] Failed to start chat:", error);
toast({ title: "Failed to start chat", variant: "destructive" });
Sentry.captureException(error);
dispatch({ type: "setPageState", pageState: { type: "welcome" } });
} finally {
setIsCreating(false);
}
}
@@ -201,21 +109,13 @@ export function useCopilotPage() {
setIsStreaming(isStreamingValue);
}
function handleCancelNewChat() {
cancelNewChat();
}
function handleNewChatModalOpen(isOpen: boolean) {
if (!isOpen) cancelNewChat();
}
return {
state: {
greetingName,
quickActions,
isLoading: isUserLoading,
pageState: state.pageState,
isNewChatModalOpen,
hasSession,
initialPrompt,
isReady: isFlagReady && isChatEnabled !== false && isLoggedIn,
},
handlers: {
@@ -223,8 +123,32 @@ export function useCopilotPage() {
startChatWithPrompt,
handleSessionNotFound,
handleStreamingChange,
handleCancelNewChat,
handleNewChatModalOpen,
},
};
}
function getInitialPrompt(sessionId: string): string | undefined {
try {
const prompts = JSON.parse(
sessionStorage.get(SessionKey.CHAT_INITIAL_PROMPTS) || "{}",
);
return prompts[sessionId];
} catch {
return undefined;
}
}
function setInitialPrompt(sessionId: string, prompt: string): void {
try {
const prompts = JSON.parse(
sessionStorage.get(SessionKey.CHAT_INITIAL_PROMPTS) || "{}",
);
prompts[sessionId] = prompt;
sessionStorage.set(
SessionKey.CHAT_INITIAL_PROMPTS,
JSON.stringify(prompts),
);
} catch {
// Ignore storage errors
}
}

View File

@@ -0,0 +1,10 @@
import { parseAsString, useQueryState } from "nuqs";
export function useCopilotSessionId() {
const [urlSessionId, setUrlSessionId] = useQueryState(
"sessionId",
parseAsString,
);
return { urlSessionId, setUrlSessionId };
}

View File

@@ -1,80 +0,0 @@
import { parseAsString, useQueryState } from "nuqs";
import { useLayoutEffect } from "react";
import {
getInitialPromptFromState,
type PageState,
shouldResetToWelcome,
} from "./helpers";
interface UseCopilotUrlStateArgs {
pageState: PageState;
initialPrompts: Record<string, string>;
previousSessionId: string | null;
setPageState: (pageState: PageState) => void;
setInitialPrompt: (sessionId: string, prompt: string) => void;
setPreviousSessionId: (sessionId: string | null) => void;
}
export function useCopilotURLState({
pageState,
initialPrompts,
previousSessionId,
setPageState,
setInitialPrompt,
setPreviousSessionId,
}: UseCopilotUrlStateArgs) {
const [urlSessionId, setUrlSessionId] = useQueryState(
"sessionId",
parseAsString,
);
function syncSessionFromUrl() {
if (urlSessionId) {
if (pageState.type === "chat" && pageState.sessionId === urlSessionId) {
setPreviousSessionId(urlSessionId);
return;
}
const storedInitialPrompt = initialPrompts[urlSessionId];
const currentInitialPrompt = getInitialPromptFromState(
pageState,
storedInitialPrompt,
);
if (currentInitialPrompt) {
setInitialPrompt(urlSessionId, currentInitialPrompt);
}
setPageState({
type: "chat",
sessionId: urlSessionId,
initialPrompt: currentInitialPrompt,
});
setPreviousSessionId(urlSessionId);
return;
}
const wasInChat = previousSessionId !== null && pageState.type === "chat";
setPreviousSessionId(null);
if (wasInChat) {
setPageState({ type: "newChat" });
return;
}
if (shouldResetToWelcome(pageState)) {
setPageState({ type: "welcome" });
}
}
useLayoutEffect(syncSessionFromUrl, [
urlSessionId,
pageState.type,
previousSessionId,
initialPrompts,
]);
return {
urlSessionId,
setUrlSessionId,
};
}

View File

@@ -1,10 +1,11 @@
"use server";
import { getHomepageRoute } from "@/lib/constants";
import BackendAPI from "@/lib/autogpt-server-api";
import { getServerSupabase } from "@/lib/supabase/server/getServerSupabase";
import { loginFormSchema } from "@/types/auth";
import * as Sentry from "@sentry/nextjs";
import { shouldShowOnboarding } from "../../api/helpers";
import { getOnboardingStatus } from "../../api/helpers";
export async function login(email: string, password: string) {
try {
@@ -36,11 +37,15 @@ export async function login(email: string, password: string) {
const api = new BackendAPI();
await api.createUser();
const onboarding = await shouldShowOnboarding();
// Get onboarding status from backend (includes chat flag evaluated for this user)
const { shouldShowOnboarding, isChatEnabled } = await getOnboardingStatus();
const next = shouldShowOnboarding
? "/onboarding"
: getHomepageRoute(isChatEnabled);
return {
success: true,
onboarding,
next,
};
} catch (err) {
Sentry.captureException(err);

View File

@@ -97,13 +97,8 @@ export function useLoginPage() {
throw new Error(result.error || "Login failed");
}
if (nextUrl) {
router.replace(nextUrl);
} else if (result.onboarding) {
router.replace("/onboarding");
} else {
router.replace(homepageRoute);
}
// Prefer URL's next parameter, then use backend-determined route
router.replace(nextUrl || result.next || homepageRoute);
} catch (error) {
toast({
title:

View File

@@ -5,14 +5,13 @@ import { getServerSupabase } from "@/lib/supabase/server/getServerSupabase";
import { signupFormSchema } from "@/types/auth";
import * as Sentry from "@sentry/nextjs";
import { isWaitlistError, logWaitlistError } from "../../api/auth/utils";
import { shouldShowOnboarding } from "../../api/helpers";
import { getOnboardingStatus } from "../../api/helpers";
export async function signup(
email: string,
password: string,
confirmPassword: string,
agreeToTerms: boolean,
isChatEnabled: boolean,
) {
try {
const parsed = signupFormSchema.safeParse({
@@ -59,8 +58,9 @@ export async function signup(
await supabase.auth.setSession(data.session);
}
const isOnboardingEnabled = await shouldShowOnboarding();
const next = isOnboardingEnabled
// Get onboarding status from backend (includes chat flag evaluated for this user)
const { shouldShowOnboarding, isChatEnabled } = await getOnboardingStatus();
const next = shouldShowOnboarding
? "/onboarding"
: getHomepageRoute(isChatEnabled);

View File

@@ -108,7 +108,6 @@ export function useSignupPage() {
data.password,
data.confirmPassword,
data.agreeToTerms,
isChatEnabled === true,
);
setIsLoading(false);

View File

@@ -175,9 +175,12 @@ export async function resolveResponse<
return res.data;
}
export async function shouldShowOnboarding() {
const isEnabled = await resolveResponse(getV1IsOnboardingEnabled());
export async function getOnboardingStatus() {
const status = await resolveResponse(getV1IsOnboardingEnabled());
const onboarding = await resolveResponse(getV1OnboardingState());
const isCompleted = onboarding.completedSteps.includes("CONGRATS");
return isEnabled && !isCompleted;
return {
shouldShowOnboarding: status.is_onboarding_enabled && !isCompleted,
isChatEnabled: status.is_chat_enabled,
};
}

View File

@@ -3339,7 +3339,7 @@
"get": {
"tags": ["v2", "library", "private"],
"summary": "List Library Agents",
"description": "Get all agents in the user's library (both created and saved).\n\nArgs:\n user_id: ID of the authenticated user.\n search_term: Optional search term to filter agents by name/description.\n filter_by: List of filters to apply (favorites, created by user).\n sort_by: List of sorting criteria (created date, updated date).\n page: Page number to retrieve.\n page_size: Number of agents per page.\n\nReturns:\n A LibraryAgentResponse containing agents and pagination metadata.\n\nRaises:\n HTTPException: If a server/database error occurs.",
"description": "Get all agents in the user's library (both created and saved).",
"operationId": "getV2List library agents",
"security": [{ "HTTPBearerJWT": [] }],
"parameters": [
@@ -3394,7 +3394,7 @@
],
"responses": {
"200": {
"description": "List of library agents",
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
@@ -3413,17 +3413,13 @@
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
}
}
},
"500": {
"description": "Server error",
"content": { "application/json": {} }
}
}
},
"post": {
"tags": ["v2", "library", "private"],
"summary": "Add Marketplace Agent",
"description": "Add an agent from the marketplace to the user's library.\n\nArgs:\n store_listing_version_id: ID of the store listing version to add.\n user_id: ID of the authenticated user.\n\nReturns:\n library_model.LibraryAgent: Agent added to the library\n\nRaises:\n HTTPException(404): If the listing version is not found.\n HTTPException(500): If a server/database error occurs.",
"description": "Add an agent from the marketplace to the user's library.",
"operationId": "postV2Add marketplace agent",
"security": [{ "HTTPBearerJWT": [] }],
"requestBody": {
@@ -3438,7 +3434,7 @@
},
"responses": {
"201": {
"description": "Agent added successfully",
"description": "Successful Response",
"content": {
"application/json": {
"schema": { "$ref": "#/components/schemas/LibraryAgent" }
@@ -3448,7 +3444,6 @@
"401": {
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
},
"404": { "description": "Store listing version not found" },
"422": {
"description": "Validation Error",
"content": {
@@ -3456,8 +3451,7 @@
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
}
}
},
"500": { "description": "Server error" }
}
}
}
},
@@ -3511,7 +3505,7 @@
"get": {
"tags": ["v2", "library", "private"],
"summary": "List Favorite Library Agents",
"description": "Get all favorite agents in the user's library.\n\nArgs:\n user_id: ID of the authenticated user.\n page: Page number to retrieve.\n page_size: Number of agents per page.\n\nReturns:\n A LibraryAgentResponse containing favorite agents and pagination metadata.\n\nRaises:\n HTTPException: If a server/database error occurs.",
"description": "Get all favorite agents in the user's library.",
"operationId": "getV2List favorite library agents",
"security": [{ "HTTPBearerJWT": [] }],
"parameters": [
@@ -3563,10 +3557,6 @@
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
}
}
},
"500": {
"description": "Server error",
"content": { "application/json": {} }
}
}
}
@@ -3588,7 +3578,7 @@
],
"responses": {
"200": {
"description": "Library agent found",
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
@@ -3604,7 +3594,6 @@
"401": {
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
},
"404": { "description": "Agent not found" },
"422": {
"description": "Validation Error",
"content": {
@@ -3620,7 +3609,7 @@
"delete": {
"tags": ["v2", "library", "private"],
"summary": "Delete Library Agent",
"description": "Soft-delete the specified library agent.\n\nArgs:\n library_agent_id: ID of the library agent to delete.\n user_id: ID of the authenticated user.\n\nReturns:\n 204 No Content if successful.\n\nRaises:\n HTTPException(404): If the agent does not exist.\n HTTPException(500): If a server/database error occurs.",
"description": "Soft-delete the specified library agent.",
"operationId": "deleteV2Delete library agent",
"security": [{ "HTTPBearerJWT": [] }],
"parameters": [
@@ -3636,11 +3625,9 @@
"description": "Successful Response",
"content": { "application/json": { "schema": {} } }
},
"204": { "description": "Agent deleted successfully" },
"401": {
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
},
"404": { "description": "Agent not found" },
"422": {
"description": "Validation Error",
"content": {
@@ -3648,8 +3635,7 @@
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
}
}
},
"500": { "description": "Server error" }
}
}
},
"get": {
@@ -3690,7 +3676,7 @@
"patch": {
"tags": ["v2", "library", "private"],
"summary": "Update Library Agent",
"description": "Update the library agent with the given fields.\n\nArgs:\n library_agent_id: ID of the library agent to update.\n payload: Fields to update (auto_update_version, is_favorite, etc.).\n user_id: ID of the authenticated user.\n\nRaises:\n HTTPException(500): If a server/database error occurs.",
"description": "Update the library agent with the given fields.",
"operationId": "patchV2Update library agent",
"security": [{ "HTTPBearerJWT": [] }],
"parameters": [
@@ -3713,7 +3699,7 @@
},
"responses": {
"200": {
"description": "Agent updated successfully",
"description": "Successful Response",
"content": {
"application/json": {
"schema": { "$ref": "#/components/schemas/LibraryAgent" }
@@ -3730,8 +3716,7 @@
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
}
}
},
"500": { "description": "Server error" }
}
}
}
},
@@ -4540,8 +4525,7 @@
"content": {
"application/json": {
"schema": {
"type": "boolean",
"title": "Response Getv1Is Onboarding Enabled"
"$ref": "#/components/schemas/OnboardingStatusResponse"
}
}
}
@@ -4594,6 +4578,7 @@
"AGENT_NEW_RUN",
"AGENT_INPUT",
"CONGRATS",
"VISIT_COPILOT",
"MARKETPLACE_VISIT",
"BUILDER_OPEN"
],
@@ -5927,6 +5912,40 @@
}
}
},
"/api/workspace/files/{file_id}/download": {
"get": {
"tags": ["workspace"],
"summary": "Download file by ID",
"description": "Download a file by its ID.\n\nReturns the file content directly or redirects to a signed URL for GCS.",
"operationId": "getWorkspaceDownload file by id",
"security": [{ "HTTPBearerJWT": [] }],
"parameters": [
{
"name": "file_id",
"in": "path",
"required": true,
"schema": { "type": "string", "title": "File Id" }
}
],
"responses": {
"200": {
"description": "Successful Response",
"content": { "application/json": { "schema": {} } }
},
"401": {
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
}
}
}
}
}
},
"/health": {
"get": {
"tags": ["health"],
@@ -8744,6 +8763,19 @@
"title": "OAuthApplicationPublicInfo",
"description": "Public information about an OAuth application (for consent screen)"
},
"OnboardingStatusResponse": {
"properties": {
"is_onboarding_enabled": {
"type": "boolean",
"title": "Is Onboarding Enabled"
},
"is_chat_enabled": { "type": "boolean", "title": "Is Chat Enabled" }
},
"type": "object",
"required": ["is_onboarding_enabled", "is_chat_enabled"],
"title": "OnboardingStatusResponse",
"description": "Response for onboarding status check."
},
"OnboardingStep": {
"type": "string",
"enum": [
@@ -8754,6 +8786,7 @@
"AGENT_NEW_RUN",
"AGENT_INPUT",
"CONGRATS",
"VISIT_COPILOT",
"GET_RESULTS",
"MARKETPLACE_VISIT",
"MARKETPLACE_ADD_AGENT",

View File

@@ -1,5 +1,6 @@
import {
ApiError,
getServerAuthToken,
makeAuthenticatedFileUpload,
makeAuthenticatedRequest,
} from "@/lib/autogpt-server-api/helpers";
@@ -15,6 +16,69 @@ function buildBackendUrl(path: string[], queryString: string): string {
return `${environment.getAGPTServerBaseUrl()}/${backendPath}${queryString}`;
}
/**
* Check if this is a workspace file download request that needs binary response handling.
*/
function isWorkspaceDownloadRequest(path: string[]): boolean {
// Match pattern: api/workspace/files/{id}/download (5 segments)
return (
path.length == 5 &&
path[0] === "api" &&
path[1] === "workspace" &&
path[2] === "files" &&
path[path.length - 1] === "download"
);
}
/**
* Handle workspace file download requests with proper binary response streaming.
*/
async function handleWorkspaceDownload(
req: NextRequest,
backendUrl: string,
): Promise<NextResponse> {
const token = await getServerAuthToken();
const headers: Record<string, string> = {};
if (token && token !== "no-token-found") {
headers["Authorization"] = `Bearer ${token}`;
}
const response = await fetch(backendUrl, {
method: "GET",
headers,
redirect: "follow", // Follow redirects to signed URLs
});
if (!response.ok) {
return NextResponse.json(
{ error: `Failed to download file: ${response.statusText}` },
{ status: response.status },
);
}
// Get the content type from the backend response
const contentType =
response.headers.get("Content-Type") || "application/octet-stream";
const contentDisposition = response.headers.get("Content-Disposition");
// Stream the response body
const responseHeaders: Record<string, string> = {
"Content-Type": contentType,
};
if (contentDisposition) {
responseHeaders["Content-Disposition"] = contentDisposition;
}
// Return the binary content
const arrayBuffer = await response.arrayBuffer();
return new NextResponse(arrayBuffer, {
status: 200,
headers: responseHeaders,
});
}
async function handleJsonRequest(
req: NextRequest,
method: string,
@@ -180,6 +244,11 @@ async function handler(
};
try {
// Handle workspace file downloads separately (binary response)
if (method === "GET" && isWorkspaceDownloadRequest(path)) {
return await handleWorkspaceDownload(req, backendUrl);
}
if (method === "GET" || method === "DELETE") {
responseBody = await handleGetDeleteRequest(method, backendUrl, req);
} else if (contentType?.includes("application/json")) {

View File

@@ -0,0 +1,77 @@
import { getServerAuthToken } from "@/lib/autogpt-server-api/helpers";
import { NextRequest, NextResponse } from "next/server";
const WHISPER_API_URL = "https://api.openai.com/v1/audio/transcriptions";
const MAX_FILE_SIZE = 25 * 1024 * 1024; // 25MB - Whisper's limit
function getExtensionFromMimeType(mimeType: string): string {
const subtype = mimeType.split("/")[1]?.split(";")[0];
return subtype || "webm";
}
export async function POST(request: NextRequest) {
const token = await getServerAuthToken();
if (!token || token === "no-token-found") {
return NextResponse.json({ error: "Unauthorized" }, { status: 401 });
}
const apiKey = process.env.OPENAI_API_KEY;
if (!apiKey) {
return NextResponse.json(
{ error: "OpenAI API key not configured" },
{ status: 401 },
);
}
try {
const formData = await request.formData();
const audioFile = formData.get("audio");
if (!audioFile || !(audioFile instanceof Blob)) {
return NextResponse.json(
{ error: "No audio file provided" },
{ status: 400 },
);
}
if (audioFile.size > MAX_FILE_SIZE) {
return NextResponse.json(
{ error: "File too large. Maximum size is 25MB." },
{ status: 413 },
);
}
const ext = getExtensionFromMimeType(audioFile.type);
const whisperFormData = new FormData();
whisperFormData.append("file", audioFile, `recording.${ext}`);
whisperFormData.append("model", "whisper-1");
const response = await fetch(WHISPER_API_URL, {
method: "POST",
headers: {
Authorization: `Bearer ${apiKey}`,
},
body: whisperFormData,
});
if (!response.ok) {
const errorData = await response.json().catch(() => ({}));
console.error("Whisper API error:", errorData);
return NextResponse.json(
{ error: errorData.error?.message || "Transcription failed" },
{ status: response.status },
);
}
const result = await response.json();
return NextResponse.json({ text: result.text });
} catch (error) {
console.error("Transcription error:", error);
return NextResponse.json(
{ error: "Failed to process audio" },
{ status: 500 },
);
}
}

View File

@@ -1,16 +1,17 @@
"use client";
import { useCopilotSessionId } from "@/app/(platform)/copilot/useCopilotSessionId";
import { useCopilotStore } from "@/app/(platform)/copilot/copilot-page-store";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
import { useEffect, useRef } from "react";
import { ChatContainer } from "./components/ChatContainer/ChatContainer";
import { ChatErrorState } from "./components/ChatErrorState/ChatErrorState";
import { ChatLoader } from "./components/ChatLoader/ChatLoader";
import { useChat } from "./useChat";
export interface ChatProps {
className?: string;
urlSessionId?: string | null;
initialPrompt?: string;
onSessionNotFound?: () => void;
onStreamingChange?: (isStreaming: boolean) => void;
@@ -18,12 +19,13 @@ export interface ChatProps {
export function Chat({
className,
urlSessionId,
initialPrompt,
onSessionNotFound,
onStreamingChange,
}: ChatProps) {
const { urlSessionId } = useCopilotSessionId();
const hasHandledNotFoundRef = useRef(false);
const isSwitchingSession = useCopilotStore((s) => s.isSwitchingSession);
const {
messages,
isLoading,
@@ -33,49 +35,59 @@ export function Chat({
sessionId,
createSession,
showLoader,
startPollingForOperation,
} = useChat({ urlSessionId });
useEffect(
function handleMissingSession() {
if (!onSessionNotFound) return;
if (!urlSessionId) return;
if (!isSessionNotFound || isLoading || isCreating) return;
if (hasHandledNotFoundRef.current) return;
hasHandledNotFoundRef.current = true;
onSessionNotFound();
},
[onSessionNotFound, urlSessionId, isSessionNotFound, isLoading, isCreating],
);
useEffect(() => {
if (!onSessionNotFound) return;
if (!urlSessionId) return;
if (!isSessionNotFound || isLoading || isCreating) return;
if (hasHandledNotFoundRef.current) return;
hasHandledNotFoundRef.current = true;
onSessionNotFound();
}, [
onSessionNotFound,
urlSessionId,
isSessionNotFound,
isLoading,
isCreating,
]);
const shouldShowLoader =
(showLoader && (isLoading || isCreating)) || isSwitchingSession;
return (
<div className={cn("flex h-full flex-col", className)}>
{/* Main Content */}
<main className="flex min-h-0 w-full flex-1 flex-col overflow-hidden bg-[#f8f8f9]">
{/* Loading State */}
{showLoader && (isLoading || isCreating) && (
{shouldShowLoader && (
<div className="flex flex-1 items-center justify-center">
<div className="flex flex-col items-center gap-4">
<ChatLoader />
<div className="flex flex-col items-center gap-3">
<LoadingSpinner size="large" className="text-neutral-400" />
<Text variant="body" className="text-zinc-500">
Loading your chats...
{isSwitchingSession
? "Switching chat..."
: "Loading your chat..."}
</Text>
</div>
</div>
)}
{/* Error State */}
{error && !isLoading && (
{error && !isLoading && !isSwitchingSession && (
<ChatErrorState error={error} onRetry={createSession} />
)}
{/* Session Content */}
{sessionId && !isLoading && !error && (
{sessionId && !isLoading && !error && !isSwitchingSession && (
<ChatContainer
sessionId={sessionId}
initialMessages={messages}
initialPrompt={initialPrompt}
className="flex-1"
onStreamingChange={onStreamingChange}
onOperationStarted={startPollingForOperation}
/>
)}
</main>

View File

@@ -58,39 +58,17 @@ function notifyStreamComplete(
}
}
function cleanupCompletedStreams(completedStreams: Map<string, StreamResult>) {
function cleanupExpiredStreams(
completedStreams: Map<string, StreamResult>,
): Map<string, StreamResult> {
const now = Date.now();
for (const [sessionId, result] of completedStreams) {
const cleaned = new Map(completedStreams);
for (const [sessionId, result] of cleaned) {
if (now - result.completedAt > COMPLETED_STREAM_TTL) {
completedStreams.delete(sessionId);
cleaned.delete(sessionId);
}
}
}
function moveToCompleted(
activeStreams: Map<string, ActiveStream>,
completedStreams: Map<string, StreamResult>,
streamCompleteCallbacks: Set<StreamCompleteCallback>,
sessionId: string,
) {
const stream = activeStreams.get(sessionId);
if (!stream) return;
const result: StreamResult = {
sessionId,
status: stream.status,
chunks: stream.chunks,
completedAt: Date.now(),
error: stream.error,
};
completedStreams.set(sessionId, result);
activeStreams.delete(sessionId);
cleanupCompletedStreams(completedStreams);
if (stream.status === "completed" || stream.status === "error") {
notifyStreamComplete(streamCompleteCallbacks, sessionId);
}
return cleaned;
}
export const useChatStore = create<ChatStore>((set, get) => ({
@@ -106,17 +84,31 @@ export const useChatStore = create<ChatStore>((set, get) => ({
context,
onChunk,
) {
const { activeStreams, completedStreams, streamCompleteCallbacks } = get();
const state = get();
const newActiveStreams = new Map(state.activeStreams);
let newCompletedStreams = new Map(state.completedStreams);
const callbacks = state.streamCompleteCallbacks;
const existingStream = activeStreams.get(sessionId);
const existingStream = newActiveStreams.get(sessionId);
if (existingStream) {
existingStream.abortController.abort();
moveToCompleted(
activeStreams,
completedStreams,
streamCompleteCallbacks,
const normalizedStatus =
existingStream.status === "streaming"
? "completed"
: existingStream.status;
const result: StreamResult = {
sessionId,
);
status: normalizedStatus,
chunks: existingStream.chunks,
completedAt: Date.now(),
error: existingStream.error,
};
newCompletedStreams.set(sessionId, result);
newActiveStreams.delete(sessionId);
newCompletedStreams = cleanupExpiredStreams(newCompletedStreams);
if (normalizedStatus === "completed" || normalizedStatus === "error") {
notifyStreamComplete(callbacks, sessionId);
}
}
const abortController = new AbortController();
@@ -132,36 +124,76 @@ export const useChatStore = create<ChatStore>((set, get) => ({
onChunkCallbacks: initialCallbacks,
};
activeStreams.set(sessionId, stream);
newActiveStreams.set(sessionId, stream);
set({
activeStreams: newActiveStreams,
completedStreams: newCompletedStreams,
});
try {
await executeStream(stream, message, isUserMessage, context);
} finally {
if (onChunk) stream.onChunkCallbacks.delete(onChunk);
if (stream.status !== "streaming") {
moveToCompleted(
activeStreams,
completedStreams,
streamCompleteCallbacks,
sessionId,
);
const currentState = get();
const finalActiveStreams = new Map(currentState.activeStreams);
let finalCompletedStreams = new Map(currentState.completedStreams);
const storedStream = finalActiveStreams.get(sessionId);
if (storedStream === stream) {
const result: StreamResult = {
sessionId,
status: stream.status,
chunks: stream.chunks,
completedAt: Date.now(),
error: stream.error,
};
finalCompletedStreams.set(sessionId, result);
finalActiveStreams.delete(sessionId);
finalCompletedStreams = cleanupExpiredStreams(finalCompletedStreams);
set({
activeStreams: finalActiveStreams,
completedStreams: finalCompletedStreams,
});
if (stream.status === "completed" || stream.status === "error") {
notifyStreamComplete(
currentState.streamCompleteCallbacks,
sessionId,
);
}
}
}
}
},
stopStream: function stopStream(sessionId) {
const { activeStreams, completedStreams, streamCompleteCallbacks } = get();
const stream = activeStreams.get(sessionId);
if (stream) {
stream.abortController.abort();
stream.status = "completed";
moveToCompleted(
activeStreams,
completedStreams,
streamCompleteCallbacks,
sessionId,
);
}
const state = get();
const stream = state.activeStreams.get(sessionId);
if (!stream) return;
stream.abortController.abort();
stream.status = "completed";
const newActiveStreams = new Map(state.activeStreams);
let newCompletedStreams = new Map(state.completedStreams);
const result: StreamResult = {
sessionId,
status: stream.status,
chunks: stream.chunks,
completedAt: Date.now(),
error: stream.error,
};
newCompletedStreams.set(sessionId, result);
newActiveStreams.delete(sessionId);
newCompletedStreams = cleanupExpiredStreams(newCompletedStreams);
set({
activeStreams: newActiveStreams,
completedStreams: newCompletedStreams,
});
notifyStreamComplete(state.streamCompleteCallbacks, sessionId);
},
subscribeToStream: function subscribeToStream(
@@ -169,16 +201,18 @@ export const useChatStore = create<ChatStore>((set, get) => ({
onChunk,
skipReplay = false,
) {
const { activeStreams } = get();
const state = get();
const stream = state.activeStreams.get(sessionId);
const stream = activeStreams.get(sessionId);
if (stream) {
if (!skipReplay) {
for (const chunk of stream.chunks) {
onChunk(chunk);
}
}
stream.onChunkCallbacks.add(onChunk);
return function unsubscribe() {
stream.onChunkCallbacks.delete(onChunk);
};
@@ -204,7 +238,12 @@ export const useChatStore = create<ChatStore>((set, get) => ({
},
clearCompletedStream: function clearCompletedStream(sessionId) {
get().completedStreams.delete(sessionId);
const state = get();
if (!state.completedStreams.has(sessionId)) return;
const newCompletedStreams = new Map(state.completedStreams);
newCompletedStreams.delete(sessionId);
set({ completedStreams: newCompletedStreams });
},
isStreaming: function isStreaming(sessionId) {
@@ -213,11 +252,21 @@ export const useChatStore = create<ChatStore>((set, get) => ({
},
registerActiveSession: function registerActiveSession(sessionId) {
get().activeSessions.add(sessionId);
const state = get();
if (state.activeSessions.has(sessionId)) return;
const newActiveSessions = new Set(state.activeSessions);
newActiveSessions.add(sessionId);
set({ activeSessions: newActiveSessions });
},
unregisterActiveSession: function unregisterActiveSession(sessionId) {
get().activeSessions.delete(sessionId);
const state = get();
if (!state.activeSessions.has(sessionId)) return;
const newActiveSessions = new Set(state.activeSessions);
newActiveSessions.delete(sessionId);
set({ activeSessions: newActiveSessions });
},
isSessionActive: function isSessionActive(sessionId) {
@@ -225,10 +274,16 @@ export const useChatStore = create<ChatStore>((set, get) => ({
},
onStreamComplete: function onStreamComplete(callback) {
const { streamCompleteCallbacks } = get();
streamCompleteCallbacks.add(callback);
const state = get();
const newCallbacks = new Set(state.streamCompleteCallbacks);
newCallbacks.add(callback);
set({ streamCompleteCallbacks: newCallbacks });
return function unsubscribe() {
streamCompleteCallbacks.delete(callback);
const currentState = get();
const cleanedCallbacks = new Set(currentState.streamCompleteCallbacks);
cleanedCallbacks.delete(callback);
set({ streamCompleteCallbacks: cleanedCallbacks });
};
},
}));

View File

@@ -16,6 +16,7 @@ export interface ChatContainerProps {
initialPrompt?: string;
className?: string;
onStreamingChange?: (isStreaming: boolean) => void;
onOperationStarted?: () => void;
}
export function ChatContainer({
@@ -24,6 +25,7 @@ export function ChatContainer({
initialPrompt,
className,
onStreamingChange,
onOperationStarted,
}: ChatContainerProps) {
const {
messages,
@@ -38,6 +40,7 @@ export function ChatContainer({
sessionId,
initialMessages,
initialPrompt,
onOperationStarted,
});
useEffect(() => {

View File

@@ -22,6 +22,7 @@ export interface HandlerDependencies {
setIsStreamingInitiated: Dispatch<SetStateAction<boolean>>;
setIsRegionBlockedModalOpen: Dispatch<SetStateAction<boolean>>;
sessionId: string;
onOperationStarted?: () => void;
}
export function isRegionBlockedError(chunk: StreamChunk): boolean {
@@ -48,6 +49,15 @@ export function handleTextEnded(
const completedText = deps.streamingChunksRef.current.join("");
if (completedText.trim()) {
deps.setMessages((prev) => {
// Check if this exact message already exists to prevent duplicates
const exists = prev.some(
(msg) =>
msg.type === "message" &&
msg.role === "assistant" &&
msg.content === completedText,
);
if (exists) return prev;
const assistantMessage: ChatMessageData = {
type: "message",
role: "assistant",
@@ -154,6 +164,11 @@ export function handleToolResponse(
}
return;
}
// Trigger polling when operation_started is received
if (responseMessage.type === "operation_started") {
deps.onOperationStarted?.();
}
deps.setMessages((prev) => {
const toolCallIndex = prev.findIndex(
(msg) => msg.type === "tool_call" && msg.toolId === chunk.tool_id,
@@ -203,13 +218,24 @@ export function handleStreamEnd(
]);
}
if (completedContent.trim()) {
const assistantMessage: ChatMessageData = {
type: "message",
role: "assistant",
content: completedContent,
timestamp: new Date(),
};
deps.setMessages((prev) => [...prev, assistantMessage]);
deps.setMessages((prev) => {
// Check if this exact message already exists to prevent duplicates
const exists = prev.some(
(msg) =>
msg.type === "message" &&
msg.role === "assistant" &&
msg.content === completedContent,
);
if (exists) return prev;
const assistantMessage: ChatMessageData = {
type: "message",
role: "assistant",
content: completedContent,
timestamp: new Date(),
};
return [...prev, assistantMessage];
});
}
deps.setStreamingChunks([]);
deps.streamingChunksRef.current = [];

Some files were not shown because too many files have changed in this diff Show More