Compare commits

..

32 Commits

Author SHA1 Message Date
Zamil Majdy
da9c4a4adf fix: wrap generate_agent call in try/except for consistency
Add exception handler for AgentGeneratorNotConfiguredError in generate_agent
call for defensive consistency, even though decompose_goal would typically
catch it first.

Addresses CodeRabbit review suggestion.
2026-01-21 18:48:39 -05:00
Zamil Majdy
0ca73004e5 feat: add clear error when Agent Generator service is not configured
- Add AgentGeneratorNotConfiguredError exception
- Check service configuration before calling external service
- Return helpful error message in create_agent and edit_agent tools
- Update tests to mock is_external_service_configured

Addresses Sentry review comment about unconditional external service calls
2026-01-21 18:38:05 -05:00
Zamil Majdy
9a786ed8d9 refactor: remove redundant local agent generation code
The external Agent Generator service handles fixing and validation
internally, so we no longer need these components in the backend:

- Removed client.py (built-in LLM client)
- Removed prompts.py (built-in prompts)
- Removed fixer.py (local agent fixing)
- Removed validator.py (local agent validation)
- Removed utils.py (utility functions for fixer/validator)

Simplified create_agent.py and edit_agent.py to directly use
the external service results without local post-processing.

Updated tests to match the simplified architecture.

This reduces ~1,800 lines of code that duplicated functionality
already provided by the external Agent Generator service.
2026-01-21 18:13:09 -05:00
Zamil Majdy
0a435e2ffb feat(backend): add external Agent Generator service integration
Add support for delegating agent generation to an external microservice
when AGENTGENERATOR_HOST is configured. Falls back to built-in LLM-based
implementation when not configured.

Changes:
- Add agentgenerator_host, agentgenerator_port, agentgenerator_timeout settings
- Add service.py client for external Agent Generator API
- Update core.py to delegate to external service when configured
- Export is_external_service_configured and check_external_service_health
- Add comprehensive tests for service client and core integration
2026-01-21 17:44:56 -05:00
Zamil Majdy
5d0cd88d98 fix(backend): Use unqualified vector type for pgvector queries (#11818)
## Summary
- Remove explicit schema qualification (`{schema}.vector` and
`OPERATOR({schema}.<=>)`) from pgvector queries in `embeddings.py` and
`hybrid_search.py`
- Use unqualified `::vector` type cast and `<=>` operator which work
because pgvector is in the search_path on all environments

## Problem
The previous approach tried to explicitly qualify the vector type with
schema names, but this failed because:
- **CI environment**: pgvector is in `public` schema → `platform.vector`
doesn't exist
- **Dev (Supabase)**: pgvector is in `platform` schema → `public.vector`
doesn't exist

## Solution
Use unqualified `::vector` and `<=>` operator. PostgreSQL resolves these
via `search_path`, which includes the schema where pgvector is installed
on all environments.

Tested on both local and dev environments with a test script that
verified:
-  Unqualified `::vector` type cast
-  Unqualified `<=>` operator in ORDER BY
-  Unqualified `<=>` in SELECT (similarity calculation)
-  Combined query patterns matching actual usage

## Test plan
- [ ] CI tests pass
- [ ] Marketplace approval works on dev after deployment

Fixes: AUTOGPT-SERVER-763, AUTOGPT-SERVER-764, AUTOGPT-SERVER-76B
2026-01-21 18:11:58 +00:00
Zamil Majdy
033f58c075 fix(backend): Make Redis event bus gracefully handle connection failures (#11817)
## Summary
Adds graceful error handling to AsyncRedisEventBus and RedisEventBus so
that connection failures log exceptions with full traceback while
remaining non-breaking. This allows DatabaseManager to operate without
Redis connectivity.

## Problem
DatabaseManager was failing with "Authentication required" when trying
to publish notifications via AsyncRedisNotificationEventBus. The service
has no Redis credentials configured, causing `increment_onboarding_runs`
to fail.

## Root Cause
When `increment_onboarding_runs` publishes a notification:
1. Calls `AsyncRedisNotificationEventBus().publish()`
2. Attempts to connect to Redis via `get_redis_async()`
3. Connection fails due to missing credentials
4. Exception propagates, failing the entire DB operation

Previous fix (#11775) made the cache module lazy, but didn't address the
notification bus which also requires Redis.

## Solution
Wrap Redis operations in try-except blocks:
- `publish_event`: Logs exception with traceback, continues without
publishing
- `listen_events`: Logs exception with traceback, returns empty
generator
- `wait_for_event`: Returns None on connection failure

Using `logger.exception()` instead of `logger.warning()` ensures full
stack traces are captured for debugging while keeping operations
non-breaking.

This allows services to operate without Redis when only using event bus
for non-critical notifications.

## Changes
- Modified `backend/data/event_bus.py`:
- Added graceful error handling to `RedisEventBus` and
`AsyncRedisEventBus`
- All Redis operations now catch exceptions and log with
`logger.exception()`
- Added `backend/data/event_bus_test.py`:
  - Tests verify graceful degradation when Redis is unavailable
  - Tests verify normal operation when Redis is available

## Test Plan
- [x] New tests verify graceful degradation when Redis unavailable
- [x] Existing notification tests still pass
- [x] DatabaseManager can increment onboarding runs without Redis

## Related Issues
Fixes https://significant-gravitas.sentry.io/issues/7205834440/
(AUTOGPT-SERVER-76D)
2026-01-21 15:51:26 +00:00
Ubbe
40ef2d511f fix(frontend): auto-select credentials correctly in old builder (#11815)
## Changes 🏗️

On the **Old Builder**, when running an agent...

### Before

<img width="800" height="614" alt="Screenshot 2026-01-21 at 21 27 05"
src="https://github.com/user-attachments/assets/a3b2ec17-597f-44d2-9130-9e7931599c38"
/>

Credentials are there, but it is not recognising them, you need to click
on them to be selected

### After

<img width="1029" height="728" alt="Screenshot 2026-01-21 at 21 26 47"
src="https://github.com/user-attachments/assets/c6e83846-6048-439e-919d-6807674f2d5a"
/>

It uses the new credentials UI and correctly auto-selects existing ones.

### Other

Fixed a small timezone display glitch on the new library view.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run agent in old builder
- [x] Credentials are auto-selected and using the new collapsed system
credentials UI
2026-01-21 14:55:49 +00:00
Zamil Majdy
b714c0c221 fix(backend): handle null values in GraphSettings validation (#11812)
## Summary
- Fixes AUTOGPT-SERVER-76H - Error parsing LibraryAgent from database
due to null values in GraphSettings fields
- When parsing LibraryAgent settings from the database, null values for
`human_in_the_loop_safe_mode` and `sensitive_action_safe_mode` were
causing Pydantic validation errors
- Adds `BeforeValidator` annotations to coerce null values to their
defaults (True and False respectively)

## Test plan
- [x] Verified with unit tests that GraphSettings can now handle
None/null values
- [x] Backend tests pass
- [x] Manually tested with all scenarios (None, empty dict, explicit
values)
2026-01-21 08:40:38 -05:00
Krzysztof Czerwinski
ebabc4287e feat(platform): New LLM Picker UI (#11726)
Add new LLM Picker for the new Builder.

### Changes 🏗️

- Enrich `LlmModelMeta` (in `llm.py`) with human readable model, creator
and provider names and price tier (note: this is temporary measure and
all LlmModelMeta will be removed completely once LLM Registry is ready)
- Add provider icons
- Add custom input field `LlmModelField` and its components&helpers

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] LLM model picker works correctly in the new Builder
  - [x] Legacy LLM model picker works in the old Builder
2026-01-21 10:52:55 +00:00
Zamil Majdy
8b25e62959 feat(backend,frontend): add explicit safe mode toggles for HITL and sensitive actions (#11756)
## Summary

This PR introduces two explicit safe mode toggles for controlling agent
execution behavior, providing clearer and more granular control over
when agents should pause for human review.

### Key Changes

**New Safe Mode Settings:**
- **`human_in_the_loop_safe_mode`** (bool, default `true`) - Controls
whether human-in-the-loop (HITL) blocks pause for review
- **`sensitive_action_safe_mode`** (bool, default `false`) - Controls
whether sensitive action blocks pause for review

**New Computed Properties on LibraryAgent:**
- `has_human_in_the_loop` - Indicates if agent contains HITL blocks
- `has_sensitive_action` - Indicates if agent contains sensitive action
blocks

**Block Changes:**
- Renamed `requires_human_review` to `is_sensitive_action` on blocks for
clarity
- Blocks marked as `is_sensitive_action=True` pause only when
`sensitive_action_safe_mode=True`
- HITL blocks pause when `human_in_the_loop_safe_mode=True`

**Frontend Changes:**
- Two separate toggles in Agent Settings based on block types present
- Toggle visibility based on `has_human_in_the_loop` and
`has_sensitive_action` computed properties
- Settings cog hidden if neither toggle applies
- Proper state management for both toggles with defaults

**AI-Generated Agent Behavior:**
- AI-generated agents set `sensitive_action_safe_mode=True` by default
- This ensures sensitive actions are reviewed for AI-generated content

## Changes

**Backend:**
- `backend/data/graph.py` - Updated `GraphSettings` with two boolean
toggles (non-optional with defaults), added `has_sensitive_action`
computed property
- `backend/data/block.py` - Renamed `requires_human_review` to
`is_sensitive_action`, updated review logic
- `backend/data/execution.py` - Updated `ExecutionContext` with both
safe mode fields
- `backend/api/features/library/model.py` - Added
`has_human_in_the_loop` and `has_sensitive_action` to `LibraryAgent`
- `backend/api/features/library/db.py` - Updated to use
`sensitive_action_safe_mode` parameter
- `backend/executor/utils.py` - Simplified execution context creation

**Frontend:**
- `useAgentSafeMode.ts` - Rewritten to support two independent toggles
- `AgentSettingsModal.tsx` - Shows two separate toggles
- `SelectedSettingsView.tsx` - Shows two separate toggles
- Regenerated API types with new schema

## Test Plan

- [x] All backend tests pass (Python 3.11, 3.12, 3.13)
- [x] All frontend tests pass
- [x] Backend format and lint pass
- [x] Frontend format and lint pass
- [x] Pre-commit hooks pass

---------

Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2026-01-21 00:56:02 +00:00
Zamil Majdy
35a13e3df5 fix(backend): Use explicit schema qualification for pgvector types (#11805)
## Summary
- Fix intermittent "type 'vector' does not exist" errors when using
PgBouncer in transaction mode
- The issue was that `SET search_path` and the actual query could run on
different backend connections
- Use explicit schema qualification (`{schema}.vector`,
`OPERATOR({schema}.<=>)`) instead of relying on search_path

## Test plan
- [x] Tested vector type cast on local: `'[1,2,3]'::platform.vector`
works
- [x] Tested OPERATOR syntax on local: `OPERATOR(platform.<=>)` works
- [x] Tested on dev via kubectl exec: both work correctly
- [ ] Deploy to dev and verify backfill_missing_embeddings endpoint no
longer errors

## Related Issues
Fixes: AUTOGPT-SERVER-763, AUTOGPT-SERVER-764

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 22:18:16 +00:00
Mewael Tsegay Desta
2169b433c9 feat(backend/blocks): add ConcatenateListsBlock (#11567)
# feat(backend/blocks): add ConcatenateListsBlock

## Description

This PR implements a new block `ConcatenateListsBlock` that concatenates
multiple lists into a single list. This addresses the "good first issue"
for implementing a list concatenation block in the platform/blocks area.

The block takes a list of lists as input and combines all elements in
order into a single concatenated list. This is useful for workflows that
need to merge data from multiple sources or combine results from
different operations.

### Changes 🏗️

- **Added `ConcatenateListsBlock` class** in
`autogpt_platform/backend/backend/blocks/data_manipulation.py`
- Input: `lists: List[List[Any]]` - accepts a list of lists to
concatenate
- Output: `concatenated_list: List[Any]` - returns a single concatenated
list
- Error output: `error: str` - provides clear error messages for invalid
input types
  - Block ID: `3cf9298b-5817-4141-9d80-7c2cc5199c8e`
- Category: `BlockCategory.BASIC` (consistent with other list
manipulation blocks)
  
- **Added comprehensive test suite** in
`autogpt_platform/backend/test/blocks/test_concatenate_lists.py`
  - Tests using built-in `test_input`/`test_output` validation
- Manual test cases covering edge cases (empty lists, single list, empty
input)
  - Error handling tests for invalid input types
  - Category consistency verification
  - All tests passing

- **Implementation details:**
  - Uses `extend()` method for efficient list concatenation
  - Preserves element order from all input lists
- **Runtime type validation**: Explicitly checks `isinstance(lst, list)`
before calling `extend()` to prevent:
- Strings being iterated character-by-character (e.g., `extend("abc")` →
`['a', 'b', 'c']`)
    - Non-iterable types causing `TypeError` (e.g., `extend(1)`)
  - Clear error messages indicating which index has invalid input
- Handles edge cases: empty lists, empty input, single list, None values
  - Follows existing block patterns and conventions

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Run `poetry run pytest test/blocks/test_concatenate_lists.py -v` -
all tests pass
  - [x] Verified block can be imported and instantiated
  - [x] Tested with built-in test cases (4 test scenarios)
  - [x] Tested manual edge cases (empty lists, single list, empty input)
  - [x] Tested error handling for invalid input types
  - [x] Verified category is `BASIC` for consistency
  - [x] Verified no linting errors
- [x] Confirmed block follows same patterns as other blocks in
`data_manipulation.py`

#### Code Quality:
- [x] Code follows existing patterns and conventions
- [x] Type hints are properly used
- [x] Documentation strings are clear and descriptive
- [x] Runtime type validation implemented
- [x] Error handling with clear error messages
- [x] No linting errors
- [x] Prisma client generated successfully

### Testing

**Test Results:**
```
test/blocks/test_concatenate_lists.py::test_concatenate_lists_block_builtin_tests PASSED
test/blocks/test_concatenate_lists.py::test_concatenate_lists_manual PASSED

============================== 2 passed in 8.35s ==============================
```

**Test Coverage:**
- Basic concatenation: `[[1, 2, 3], [4, 5, 6]]` → `[1, 2, 3, 4, 5, 6]`
- Mixed types: `[["a", "b"], ["c"], ["d", "e", "f"]]` → `["a", "b", "c",
"d", "e", "f"]`
- Empty list handling: `[[1, 2], []]` → `[1, 2]`
- Empty input: `[]` → `[]`
- Single list: `[[1, 2, 3]]` → `[1, 2, 3]`
- Error handling: Invalid input types (strings, non-lists) produce clear
error messages
- Category verification: Confirmed `BlockCategory.BASIC` for consistency

### Review Feedback Addressed

- **Category Consistency**: Changed from `BlockCategory.DATA` to
`BlockCategory.BASIC` to match other list manipulation blocks
(`AddToListBlock`, `FindInListBlock`, etc.)
- **Type Robustness**: Added explicit runtime validation with
`isinstance(lst, list)` check before calling `extend()` to prevent:
  - Strings being iterated character-by-character
  - Non-iterable types causing `TypeError`
- **Error Handling**: Added `error` output field with clear, descriptive
error messages indicating which index has invalid input
- **Test Coverage**: Added test case for error handling with invalid
input types

### Related Issues

- Addresses: "Implement block to concatenate lists" (good first issue,
platform/blocks, hacktoberfest)

### Notes

- This is a straightforward data manipulation block that doesn't require
external dependencies
- The block will be automatically discovered by the block loading system
- No database or configuration changes required
- Compatible with existing workflow system
- All review feedback has been addressed and incorporated


<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Adds a new list utility and updates docs.
> 
> - **New block**: `ConcatenateListsBlock` in
`backend/blocks/data_manipulation.py`
> - Input `lists: List[List[Any]]`; outputs `concatenated_list` or
`error`
> - Skips `None` entries; emits error for non-list items; preserves
order
> - **Docs**: Adds "Concatenate Lists" section to
`docs/integrations/basic.md` and links it in
`docs/integrations/README.md`
> - **Contributor guide**: New `docs/CLAUDE.md` with manual doc section
guidelines
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
4f56dd86c2. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 18:04:12 +00:00
Nicholas Tindle
fa0b7029dd fix(platform): make chat credentials type selection deterministic (#11795)
## Background

When using chat to run blocks/agents that support multiple credential
types (e.g., GitHub blocks support both `api_key` and `oauth2`), users
reported that the credentials setup UI would randomly show either "Add
API key" or "Connect account (OAuth)" - seemingly at random between
requests or server restarts.

## Root Cause

The bug was in how the backend selected which credential type to return
when building the missing credentials response:

```python
cred_type = next(iter(field_info.supported_types), "api_key")
```

The problem is that `supported_types` is a **frozenset**. When you call
`iter()` on a frozenset and take `next()`, the iteration order is
**non-deterministic** due to Python's hash randomization. This means:
- `frozenset({'api_key', 'oauth2'})` could iterate as either
`['api_key', 'oauth2']` or `['oauth2', 'api_key']`
- The order varies between Python process restarts and sometimes between
requests
- This caused the UI to randomly show different credential options

### Changes 🏗️

**Backend (`utils.py`, `run_block.py`, `run_agent.py`):**
- Added `_serialize_missing_credential()` helper that uses `sorted()`
for deterministic ordering
- Added `build_missing_credentials_from_graph()` and
`build_missing_credentials_from_field_info()` utilities
- Now returns both `type` (first sorted type, for backwards compat) and
`types` (full array with ALL supported types)

**Frontend (`helpers.ts`, `ChatCredentialsSetup.tsx`,
`useChatMessage.ts`):**
- Updated to read the `types` array from backend response
- Changed `credentialType` (single) to `credentialTypes` (array)
throughout the chat credentials flow
- Passes all supported types to `CredentialsInput` via
`credentials_types` schema field

### Result

Now `useCredentials.ts` correctly sets both `supportsApiKey=true` AND
`supportsOAuth2=true` when both are supported, ensuring:
1. **Deterministic behavior** - no more random type selection
2. **All saved credentials shown** - credentials of any supported type
appear in the selection list

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified GitHub block shows consistent credential options across
page reloads
- [x] Verified both OAuth and API key credentials appear in selection
when user has both saved
- [x] Verified backend returns `types: ["api_key", "oauth2"]` array
(checked via Python REPL)

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Ensures deterministic credential type selection and surfaces all
supported types end-to-end.
> 
> - Backend: add `_serialize_missing_credential`,
`build_missing_credentials_from_graph/field_info`;
`run_agent`/`run_block` now return missing credentials with stable
ordering and both `type` (first) and `types` (all).
> - Frontend: chat helpers and UI (`helpers.ts`,
`ChatCredentialsSetup.tsx`, `useChatMessage.ts`) now read `types`,
switch from single `credentialType` to `credentialTypes`, and pass all
supported `credentials_types` in schemas.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
7d80f4f0e0. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
2026-01-20 16:19:57 +00:00
Abhimanyu Yadav
c20ca47bb0 feat(frontend): enhance RunGraph and RunInputDialog components with loading states and improved UI (#11808)
### Changes 🏗️

- Enhanced UI for the Run Graph button with improved loading states and
animations
- Added color-coded edges in the flow editor based on output data types
- Improved the layout of the Run Input Dialog with a two-column grid
design
- Refined the styling of flow editor controls with consistent icon sizes
and colors
- Updated tutorial icons with better color and size customization
- Fixed credential field display to show provider name with "credential"
suffix
- Optimized draft saving by excluding node position changes to prevent
excessive saves when dragging nodes

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified that the Run Graph button shows proper loading states
  - [x] Confirmed that edges display correct colors based on data types
- [x] Tested the Run Input Dialog layout with various input
configurations
  - [x] Checked that flow editor controls display consistently
  - [x] Verified that tutorial icons render properly
  - [x] Confirmed credential fields show proper provider names
- [x] Tested that dragging nodes doesn't trigger unnecessary draft saves
2026-01-20 15:50:23 +00:00
Abhimanyu Yadav
7756e2d12d refactor(frontend): refactor credentials input with unified CredentialsGroupedView component (#11801)
### Changes 🏗️

- Refactored the credentials input handling in the RunInputDialog to use
the shared CredentialsGroupedView component
- Moved CredentialsGroupedView from agent library to a shared component
location for reuse
- Fixed source name handling in edge creation to properly handle tool
source names
- Improved node output UI by replacing custom expand/collapse with
Accordion component
- Fixed timing of hardcoded values synchronization with handle IDs to
ensure proper loading
- Enabled NEW_FLOW_EDITOR and BUILDER_VIEW_SWITCH feature flags by
default

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified credentials input works in both agent run dialog and
builder run dialog
  - [x] Confirmed node output accordion works correctly
- [x] Tested flow editor with tools to ensure source name handling works
properly
  - [x] Verified hardcoded values sync correctly with handle IDs

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)
2026-01-20 12:20:25 +00:00
Swifty
bc75d70e7d refactor(backend): Improve Langfuse tracing with v3 SDK patterns and @observe decorators (#11803)
<!-- Clearly explain the need for these changes: -->

This PR improves the Langfuse tracing implementation in the chat feature
by adopting the v3 SDK patterns, resulting in cleaner code and better
observability.

### Changes 🏗️

- **Simplified Langfuse client usage**: Replace manual client
initialization with `langfuse.get_client()` global singleton
- **Use v3 context managers**: Switch to
`start_as_current_observation()` and `propagate_attributes()` for
automatic trace propagation
- **Auto-instrument OpenAI calls**: Use `langfuse.openai` wrapper for
automatic LLM call tracing instead of manual generation tracking
- **Add `@observe` decorators**: All chat tools now have
`@observe(as_type="tool")` decorators for automatic tool execution
tracing:
  - `add_understanding`
  - `view_agent_output` (renamed from `agent_output`)
  - `create_agent`
  - `edit_agent`
  - `find_agent`
  - `find_block`
  - `find_library_agent`
  - `get_doc_page`
  - `run_agent`
  - `run_block`
  - `search_docs`
- **Remove manual trace lifecycle**: Eliminated the verbose `finally`
block that manually ended traces/generations
- **Rename tool**: `agent_output` → `view_agent_output` for clarity

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified chat feature works with Langfuse tracing enabled
- [x] Confirmed traces appear correctly in Langfuse dashboard with tool
spans
  - [x] Tested tool execution flows show up as nested observations

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

No configuration changes required - uses existing Langfuse environment
variables.
2026-01-19 20:56:51 +00:00
Nicholas Tindle
c1a1767034 feat(docs): Add block documentation auto-generation system (#11707)
- Add generate_block_docs.py script that introspects block code to
generate markdown
- Support manual content preservation via <!-- MANUAL: --> markers
- Add migrate_block_docs.py to preserve existing manual content from git
HEAD
- Add CI workflow (docs-block-sync.yml) to fail if docs drift from code
- Add Claude PR review workflow (docs-claude-review.yml) for doc changes
- Add manual LLM enhancement workflow (docs-enhance.yml)
- Add GitBook configuration (.gitbook.yaml, SUMMARY.md)
- Fix non-deterministic category ordering (categories is a set)
- Add comprehensive test suite (32 tests)
- Generate docs for 444 blocks with 66 preserved manual sections

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>

<!-- Clearly explain the need for these changes: -->

### Changes 🏗️

<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] Extensively test code generation for the docs pages



<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Introduces an automated documentation pipeline for blocks and
integrates it into CI.
> 
> - Adds `scripts/generate_block_docs.py` (+ tests) to introspect blocks
and generate `docs/integrations/**`, preserving `<!-- MANUAL: -->`
sections
> - New CI workflows: **docs-block-sync** (fails if docs drift),
**docs-claude-review** (AI review for block/docs PRs), and
**docs-enhance** (optional LLM improvements)
> - Updates existing Claude workflows to use `CLAUDE_CODE_OAUTH_TOKEN`
instead of `ANTHROPIC_API_KEY`
> - Improves numerous block descriptions/typos and links across backend
blocks to standardize docs output
> - Commits initial generated docs including
`docs/integrations/README.md` and many provider/category pages
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
631e53e0f6. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 07:03:19 +00:00
Nicholas Tindle
1b56ff13d9 test 2026-01-18 15:32:10 -06:00
Zamil Majdy
f31c160043 feat(platform): add endedAt field and fix execution analytics timestamps (#11759)
## Summary

This PR adds proper execution end time tracking and fixes timestamp
handling throughout the execution analytics system.

### Key Changes

1. **Added `endedAt` field to database schema** - Executions now have a
dedicated field for tracking when they finish
2. **Fixed timestamp nullable handling** - `started_at` and `ended_at`
are now properly nullable in types
3. **Fixed chart aggregation** - Reduced threshold from ≥3 to ≥1
executions per day
4. **Improved timestamp display** - Moved timestamps to expandable
details section in analytics table
5. **Fixed nullable timestamp bugs** - Updated all frontend code to
handle null timestamps correctly

## Problem Statement

### Issue 1: Missing Execution End Times
Previously, executions used `updatedAt` (last DB update) as a proxy for
"end time". This broke when adding correctness scores retroactively -
the end time would change to whenever the score was added, not when the
execution actually finished.

### Issue 2: Chart Shows Only One Data Point
The accuracy trends chart showed only one data point despite having
executions across multiple days. Root cause: aggregation required ≥3
executions per day.

### Issue 3: Incorrect Type Definitions
Manually maintained types defined `started_at` and `ended_at` as
non-nullable `Date`, contradicting reality where QUEUED executions
haven't started yet.

## Solution

### Database Schema (`schema.prisma`)
```prisma
model AgentGraphExecution {
  // ...
  startedAt DateTime?
  endedAt   DateTime?  // NEW FIELD
  // ...
}
```

### Execution Lifecycle
- **QUEUED**: `startedAt = null`, `endedAt = null` (not started)
- **RUNNING**: `startedAt = set`, `endedAt = null` (in progress)  
- **COMPLETED/FAILED/TERMINATED**: `startedAt = set`, `endedAt = set`
(finished)

### Migration Strategy
```sql
-- Add endedAt column
ALTER TABLE "AgentGraphExecution" ADD COLUMN "endedAt" TIMESTAMP(3);

-- Backfill ONLY terminal executions (prevents marking RUNNING executions as ended)
UPDATE "AgentGraphExecution"
SET "endedAt" = "updatedAt"
WHERE "endedAt" IS NULL
  AND "executionStatus" IN ('COMPLETED', 'FAILED', 'TERMINATED');
```

## Changes by Component

### Backend

**`schema.prisma`**
- Added `endedAt` field to `AgentGraphExecution`

**`execution.py`**
- Made `started_at` and `ended_at` optional with Field descriptions
- Updated `from_db()` to use `endedAt` instead of `updatedAt`
- `update_graph_execution_stats()` sets `endedAt` when status becomes
terminal

**`execution_analytics_routes.py`**
- Removed `created_at`/`updated_at` from `ExecutionAnalyticsResult` (DB
metadata, not execution data)
- Kept only `started_at`/`ended_at` (actual execution runtime)
- Made settings global (avoid recreation)
- Moved OpenAI key validation to `_process_batch` (only check when LLM
actually runs)

**`analytics.py`**
- Fixed aggregation: `COUNT(*) >= 1` (was 3) - include all days with ≥1
execution
- Uses `createdAt` for chart grouping (when execution was queued)

**`late_execution_monitor.py`**
- Handle optional `started_at` with fallback to `datetime.min` for
sorting
- Display "Not started" when `started_at` is null

### Frontend

**Type Definitions**
- Fixed manually maintained `types.ts`: `started_at: Date | null` (was
non-nullable)
- Generated types were already correct

**Analytics Components**
- `AnalyticsResultsTable.tsx`: Show only `started_at`/`ended_at` in
2-column expandable grid
- `ExecutionAnalyticsForm.tsx`: Added filter explanation UI

**Monitoring Components** - Fixed null handling bugs:
- `OldAgentLibraryView.tsx`: Handle null in reduce function
- `agent-runs-selector-list.tsx`: Safe sorting with `?.getTime() ?? 0`
- `AgentFlowList.tsx`: Filter/sort with null checks
- `FlowRunsStatus.tsx`: Filter null timestamps
- `FlowRunsTimeline.tsx`: Filter executions with null timestamps before
rendering
- `monitoring/page.tsx`: Safe sorting
- `ActivityItem.tsx`: Fallback to "recently" for null timestamps

## Benefits

 **Accurate End Times**: `endedAt` is frozen when execution finishes,
not updated later
 **Type Safety**: Nullable types match reality, exposing real bugs  
 **Better UX**: Chart shows all days with data (not just days with ≥3
executions)
 **Bug Fixes**: 7+ frontend components now handle null timestamps
correctly
 **Documentation**: Field descriptions explain when timestamps are null

## Testing

### Backend
```bash
cd autogpt_platform/backend
poetry run format  #  All checks passed
poetry run lint    #  All checks passed
```

### Frontend  
```bash
cd autogpt_platform/frontend
pnpm format        #  All checks passed
pnpm lint          #  All checks passed
pnpm types         #  All type errors fixed
```

### Test Data Generation
Created script to generate 35 test executions across 7 days with
correctness scores:
```bash
poetry run python scripts/generate_test_analytics_data.py
```

## Migration Notes

⚠️ **Important**: The migration only backfills `endedAt` for executions
with terminal status (COMPLETED, FAILED, TERMINATED). Active executions
(QUEUED, RUNNING) correctly keep `endedAt = null`.

## Breaking Changes

None - this is backward compatible:
- `endedAt` is nullable, existing code that doesn't use it is unaffected
- Frontend already used generated types which were correct
- Migration safely backfills historical data

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Introduces explicit execution end-time tracking and normalizes
timestamp handling across backend and frontend.
> 
> - Adds `endedAt` to `AgentGraphExecution` (schema + migration);
backfills terminal executions; sets `endedAt` on terminal status updates
> - Makes `GraphExecutionMeta.started_at/ended_at` optional; updates
`from_db()` to use DB `endedAt`; exposes timestamps in
`ExecutionAnalyticsResult`
> - Moves OpenAI key validation into batch processing; instantiates
`Settings` once
> - Accuracy trends: reduce daily aggregation threshold to `>= 1`;
optional historical series
> - Monitoring/analytics UI: results table shows/export
`started_at`/`ended_at`; adds chart filter explainer
> - Frontend null-safety: update types (`Date | null`) and fix
sorting/filtering/rendering for nullable timestamps across monitoring
and library views
> - Late execution monitor: safe sorting/display when `started_at` is
null
> - OpenAPI specs updated for new/nullable fields
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
1d987ca6e5. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2026-01-16 21:44:24 +00:00
Nicholas Tindle
06550a87eb feat(backend): add missed default credentials (#11760)
### Changes 🏗️

**Fixed missing default credentials and provider name mismatch in the
credentials store:**

1. **Provider name correction** (`credentials_store.py:97-103`)
- Changed `provider="unreal"` → `provider="unreal_speech"` to match the
existing `unreal_speech_api_key` setting and block usage
- Updated title from "Use Credits for Unreal" → "Use Credits for Unreal
Speech" for clarity

2. **Added missing OpenWeatherMap credentials**
(`credentials_store.py:219-226`)
- New `openweathermap_credentials` definition with `APIKeyCredentials`
- Uses existing `settings.secrets.openweathermap_api_key` setting that
was previously defined but had no credential object
   - Added to `DEFAULT_CREDENTIALS` list

3. **Fixed credentials not exposed in `get_all_creds()`**
(`credentials_store.py:343-354`)
- Added `llama_api_credentials` conditional append (was defined but not
returned to users)
- Added `v0_credentials` conditional append (was defined but not
returned to users)
   - Added `openweathermap_credentials` conditional append

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified provider name `unreal_speech` matches block usage in
`text_to_speech_block.py`
  - [x] Confirmed `openweathermap_api_key` setting exists in secrets
- [x] Confirmed `llama_api_key` and `v0_api_key` settings exist in
secrets

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Aligns backend credential definitions and exposes missing system
creds; updates frontend to hide new built-ins.
> 
> - Backend `credentials_store.py`:
>   - Corrects `provider` to `unreal_speech` and updates title
> - Adds `openweathermap_credentials`; includes in `DEFAULT_CREDENTIALS`
and `get_all_creds()` when key present
> - Ensures `llama_api_credentials` and `v0_credentials` are returned by
`get_all_creds()`
> - Frontend `integrations/page.tsx`:
> - Extends `hiddenCredentials` with IDs for `v0`, `webshare_proxy`, and
`openweathermap`
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
e7d46b76c6. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
2026-01-16 21:18:12 +00:00
Nicholas Tindle
088b9998dc fix(frontend): Fix flaky agent-activity tests by targeting correct agent (#11790)
This PR fixes flaky agent-activity Playwright tests that were failing
intermittently in CI.

Closes #11789

### Changes 🏗️

- **Navigate to specific agent by name**: Replace
`LibraryPage.clickFirstAgent(page)` with
`LibraryPage.navigateToAgentByName(page, "Test Agent")` to ensure we're
testing the correct agent rather than relying on the first agent in the
list
- **Add retry mechanism for async data loading**: Replace direct
visibility check with `expect(...).toPass({ timeout: 15000 })` pattern
to properly handle asynchronous agent data fetching
- **Increase timeout**: Extended timeout from 8000ms to 15000ms to
accommodate slower CI environments

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified the test file syntax is correct
- [x] Changes target the correct file
(`autogpt_platform/frontend/src/tests/agent-activity.spec.ts`)
- [x] The retry mechanism follows Playwright best practices using
`toPass()`

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
(N/A - no config changes)
- [x] `docker-compose.yml` is updated or already compatible with my
changes (N/A - no config changes)
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**) (N/A - no config changes)

---------

Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
2026-01-16 20:33:47 +00:00
Nicholas Tindle
05c89fa5c0 feat(claude): add vercel-react-best-practices skill (#11777) 2026-01-16 09:40:58 -07:00
Swifty
8cc8295f14 feat(backend): add agent generator tools for chat copilot (#11781)
This PR adds the ability to create and edit agents from natural language
descriptions in the chat copilot.

### Changes 🏗️

- Added `agent_generator/` module with:
  - LLM client for OpenAI API calls
- Core generation logic for decomposing goals and generating agent JSON
  - Fixer module to correct common LLM generation errors
  - Validator to ensure generated agents are structurally valid
  - Prompts for goal decomposition and agent generation
  - Utility functions for blocks info and agent saving
- Added `CreateAgentTool` - creates new agents from natural language
descriptions
- Added `EditAgentTool` - edits existing agents using natural language
patches
- Added response models: `AgentPreviewResponse`, `AgentSavedResponse`,
`ClarificationNeededResponse`
- Registered new tools in the tools registry

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run `poetry run format` to ensure code passes linting
- [x] Test creating an agent via chat with a natural language
description
  - [x] Test editing an existing agent via chat
2026-01-16 17:11:57 +01:00
Swifty
e55f05c7a8 feat(backend): add chat search tools and BM25 reranking (#11782)
This PR adds new chat tools for searching blocks and documentation,
along with BM25 reranking for improved search relevance.

### Changes 🏗️

**New Chat Tools:**
- `find_block` - Search for available blocks by name/description using
hybrid search
- `run_block` - Execute a block directly with provided inputs and
credentials
- `search_docs` - Search documentation with section-level granularity  
- `get_doc_page` - Retrieve full documentation page content

**Search Improvements:**
- Added BM25 reranking to hybrid search for better lexical relevance
- Documentation handler now chunks markdown by headings (##) for
finer-grained embeddings
- Section-based content IDs (`doc_path::section_index`) for precise doc
retrieval
- Startup embedding backfill in scheduler for immediate searchability

**Other Changes:**
- New response models for block and documentation search results
- Updated orphan cleanup to handle section-based doc embeddings
- Added `rank-bm25` dependency for BM25 scoring
- Removed max message limit check in chat service

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run find_block tool to search for blocks (e.g., "current time")
  - [x] Run run_block tool to execute a found block
  - [x] Run search_docs tool to search documentation
  - [x] Run get_doc_page tool to retrieve full doc content
- [x] Verify BM25 reranking improves search relevance for exact term
matches
  - [x] Verify documentation sections are properly chunked and embedded

#### For configuration changes:
- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

**Dependencies added:** `rank-bm25` for BM25 scoring algorithm
2026-01-16 16:18:10 +01:00
Swifty
4a9b13acb6 feat(frontend): extract frontend changes from hackathon/copilot branch (#11717)
Frontend changes extracted from the hackathon/copilot branch for the
copilot feature development.

### Changes 🏗️

- New Chat system with contextual components (`Chat`, `ChatDrawer`,
`ChatContainer`, `ChatMessage`, etc.)
- Form renderer system with RJSF v6 integration and new input renderers
- Enhanced credentials management with improved OAuth flow and
credential selection
- New output renderers for various content types (Code, Image, JSON,
Markdown, Text, Video)
- Scrollable tabs component for better UI organization
- Marketplace update notifications and publishing workflow improvements
- Draft recovery feature with IndexedDB persistence
- Safe mode toggle functionality
- Various UI/UX improvements across the platform

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [ ] Test new Chat components functionality
  - [ ] Verify form renderer with various input types
  - [ ] Test credential management flows
  - [ ] Verify output renderers display correctly
  - [ ] Test draft recovery feature

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

---------

Co-authored-by: Lluis Agusti <hi@llu.lu>
2026-01-16 22:15:39 +07:00
Zamil Majdy
5ff669e999 fix(backend): Make Redis connection lazy in cache module (#11775)
## Summary
- Makes Redis connection lazy in the cache module - connection is only
established when `shared_cache=True` is actually used
- Fixes DatabaseManager failing to start because it imports
`onboarding.py` which imports `cache.py`, triggering Redis connection at
module load time even though it only uses in-memory caching

## Root Cause
Commit `b01ea3fcb` (merged today) added `increment_onboarding_runs` to
DatabaseManager, which imports from `onboarding.py`. That module imports
`@cached` decorator from `cache.py`, which was creating a Redis
connection at module import time:

```python
# Old code - ran at import time!
redis = Redis(connection_pool=_get_cache_pool())
```

Since `onboarding.py` only uses `@cached(shared_cache=False)` (in-memory
caching), it doesn't actually need Redis. But the import triggered the
connection attempt.

## Changes
- Wrapped Redis connection in a singleton class with lazy initialization
- Connection is only established when `_get_redis()` is first called
(i.e., when `shared_cache=True` is used)
- Services using only in-memory caching can now import `cache.py`
without Redis configuration

## Test plan
- [ ] Services using `shared_cache=False` work without Redis configured
- [ ] Services using `shared_cache=True` still work correctly with Redis
- [ ] Existing cache tests pass

🤖 Generated with [Claude Code](https://claude.com/claude-code)

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-16 14:28:36 +00:00
Abhimanyu Yadav
ec03a13e26 fix(frontend): improve history tracking, error handling (#11786)
### Changes 🏗️

- **Improved Error Handling**: Enhanced error handling in
`useRunInputDialog.ts` to properly handle cases where node errors are
empty or undefined
- **Fixed Node Collision Resolution**: Updated `Flow.tsx` to use the
current state from the store instead of stale props
- **Enhanced History Management**:
    - Added proper state tracking for edge removal operations
    - Improved undo/redo functionality to prevent duplicate states
- Fixed edge case where history wasn't properly tracked during node
dragging
- **UI Improvements**:
- Fixed potential null reference in NodeHeader when accessing agent_name
    - Added placeholder for GoogleDrivePicker in INPUT mode
    - Fixed spacing in ArrayFieldTemplate
- **Bug Fixes**:
    - Added proper state tracking before modifying nodes/edges
    - Fixed history tracking to avoid redundant states
    - Improved collision detection and resolution

### Checklist ���

#### For code changes:

- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Test undo/redo functionality after adding, removing, and moving
nodes
    - [x] Test edge creation and deletion with history tracking
    - [x] Verify error handling when graph validation fails
    - [x] Test Google Drive picker in different UI modes
    - [x] Verify node collision resolution works correctly
2026-01-16 13:34:57 +00:00
Abhimanyu Yadav
b08851f5d7 feat(frontend): improve GoogleDrivePickerField with input mode support and array field spacing (#11780)
### Changes 🏗️

- Added a placeholder UI for Google Drive Picker in INPUT block type
- Improved detection of Google Drive file objects in schema validation
- Extracted `isGoogleDrivePickerSchema` function for better code
organization
- Added spacing between array field elements with a gap-2 class
- Added debug logging for preprocessed schema in FormRenderer

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified Google Drive Picker shows placeholder in INPUT blocks
  - [x] Confirmed array field elements have proper spacing
  - [x] Tested that Google Drive file objects are properly detected
2026-01-16 13:02:36 +00:00
Abhimanyu Yadav
8b1720e61d feat(frontend): improve graph validation error handling and node navigation (#11779)
### Changes 🏗️

- Enhanced error handling for graph validation failures with detailed
user feedback
- Added automatic viewport navigation to the first node with errors when
validation fails
- Improved node title display to prioritize agent_name from hardcoded
values
- Removed console.log debugging statement from OutputHandler
- Added ApiError import and improved error type handling
- Reorganized imports for better code organization

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Create a graph with intentional validation errors and verify error
messages display correctly
- [x] Verify the viewport automatically navigates to the first node with
errors
- [x] Check that node titles correctly display customized names or agent
names
- [x] Test error recovery by fixing validation errors and successfully
running the graph
2026-01-16 11:14:00 +00:00
Abhimanyu Yadav
aa5a039c5e feat(frontend): add special rendering for NOTE UI type in FieldTemplate (#11771)
### Changes 🏗️

Added support for Note blocks in the FieldTemplate component by:
- Importing the BlockUIType enum from the build components types
- Extracting the uiType from the registry.formContext
- Adding a conditional rendering check that returns children directly
when the uiType is BlockUIType.NOTE

This change allows Note blocks to render without the standard field
template wrapper, providing a cleaner display for note-type content.


![Screenshot 2026-01-15 at
1.01.03 PM.png](https://app.graphite.com/user-attachments/assets/7d654eed-abbe-4ec3-9c80-24a77a8373e3.png)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Created a Note block and verified it renders correctly without
field template wrapper
- [x] Confirmed other block types still render with proper field
template
- [x] Verified that Note blocks maintain proper functionality in the
node graph
2026-01-16 11:10:21 +00:00
Zamil Majdy
8b83bb8647 feat(backend): unified hybrid search with embedding backfill for all content types (#11767)
## Summary

This PR extends the embedding system to support **blocks** and
**documentation** content types in addition to store agents, and
introduces **unified hybrid search** across all content types using a
single `UnifiedContentEmbedding` table.

### Key Changes

1. **Unified Hybrid Search Architecture**
   - Added `search` tsvector column to `UnifiedContentEmbedding` table
- New `unified_hybrid_search()` function searches across all content
types (agents, blocks, docs)
- Updated `hybrid_search()` for store agents to use
`UnifiedContentEmbedding.search`
   - Removed deprecated `search` column from `StoreListingVersion` table

2. **Pluggable Content Handler Architecture**
   - Created abstract `ContentHandler` base class for extensibility
- Implemented handlers: `StoreAgentHandler`, `BlockHandler`,
`DocumentationHandler`
   - Registry pattern for easy addition of new content types

3. **Block Embeddings**
   - Discovers all blocks using `get_blocks()`
- Extracts searchable text from: name, description, categories,
input/output schemas

4. **Documentation Embeddings**
   - Scans `/docs/` directory for `.md` and `.mdx` files
   - Extracts title from first `#` heading or uses filename as fallback

5. **Hybrid Search Graceful Degradation**
- Falls back to lexical-only search if query embedding generation fails
   - Redistributes semantic weight proportionally to other components
   - Logs warning instead of throwing error

6. **Database Migrations**
- `20260115200000_add_unified_search_tsvector`: Adds search column to
UnifiedContentEmbedding with auto-update trigger
- `20260115210000_remove_storelistingversion_search`: Removes deprecated
search column and updates StoreAgent view

7. **Orphan Cleanup**
- `cleanup_orphaned_embeddings()` removes embeddings for deleted content
   - Always runs after backfill, even at 100% coverage

### Review Comments Addressed

-  SQL parameter index bug when user_id provided (embeddings.py)
-  Early return skipping cleanup at 100% coverage (scheduler.py)
-  Inconsistent return structure across code paths (scheduler.py)
-  SQL UNION syntax error - added parentheses for ORDER BY/LIMIT
(hybrid_search.py)
-  Version numeric ordering in aggregations (migration)
-  Embedding dimension uses EMBEDDING_DIM constant

### Files Changed

- `backend/api/features/store/content_handlers.py` (NEW): Handler
architecture
- `backend/api/features/store/embeddings.py`: Refactored to use handlers
- `backend/api/features/store/hybrid_search.py`: Unified search +
graceful degradation
- `backend/executor/scheduler.py`: Process all content types, consistent
returns
- `migrations/20260115200000_add_unified_search_tsvector/`: Add tsvector
to unified table
- `migrations/20260115210000_remove_storelistingversion_search/`: Remove
old search column
- `schema.prisma`: Updated UnifiedContentEmbedding and
StoreListingVersion models
- `*_test.py`: Added tests for unified_hybrid_search

## Test Plan

1.  All tests passing on Python 3.11, 3.12, 3.13
2.  Types check passing
3.  CodeRabbit and Sentry reviews addressed
4. Deploy to staging and verify:
   - Backfill job processes all content types
   - Search results include blocks and docs
   - Search works without OpenAI API (graceful degradation)

🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Swifty <craigswift13@gmail.com>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-16 09:47:19 +01:00
Nicholas Tindle
e80e4d9cbb ci: update dev from gitbook (#11757)
<!-- Clearly explain the need for these changes: -->
gitbook changes via ui

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> **Docs sync from GitBook**
> 
> - Updates `docs/home/README.md` with a new Developer Platform landing
page (cards, links to Platform, Integrations, Contribute, Discord,
GitHub) and metadata/cover settings
> - Adds `docs/home/SUMMARY.md` defining the table of contents linking
to `README.md`
> - No application/runtime code changes
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
446c71fec8. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
2026-01-15 20:02:48 +00:00
476 changed files with 41077 additions and 4978 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,125 @@
---
name: vercel-react-best-practices
description: React and Next.js performance optimization guidelines from Vercel Engineering. This skill should be used when writing, reviewing, or refactoring React/Next.js code to ensure optimal performance patterns. Triggers on tasks involving React components, Next.js pages, data fetching, bundle optimization, or performance improvements.
license: MIT
metadata:
author: vercel
version: "1.0.0"
---
# Vercel React Best Practices
Comprehensive performance optimization guide for React and Next.js applications, maintained by Vercel. Contains 45 rules across 8 categories, prioritized by impact to guide automated refactoring and code generation.
## When to Apply
Reference these guidelines when:
- Writing new React components or Next.js pages
- Implementing data fetching (client or server-side)
- Reviewing code for performance issues
- Refactoring existing React/Next.js code
- Optimizing bundle size or load times
## Rule Categories by Priority
| Priority | Category | Impact | Prefix |
|----------|----------|--------|--------|
| 1 | Eliminating Waterfalls | CRITICAL | `async-` |
| 2 | Bundle Size Optimization | CRITICAL | `bundle-` |
| 3 | Server-Side Performance | HIGH | `server-` |
| 4 | Client-Side Data Fetching | MEDIUM-HIGH | `client-` |
| 5 | Re-render Optimization | MEDIUM | `rerender-` |
| 6 | Rendering Performance | MEDIUM | `rendering-` |
| 7 | JavaScript Performance | LOW-MEDIUM | `js-` |
| 8 | Advanced Patterns | LOW | `advanced-` |
## Quick Reference
### 1. Eliminating Waterfalls (CRITICAL)
- `async-defer-await` - Move await into branches where actually used
- `async-parallel` - Use Promise.all() for independent operations
- `async-dependencies` - Use better-all for partial dependencies
- `async-api-routes` - Start promises early, await late in API routes
- `async-suspense-boundaries` - Use Suspense to stream content
### 2. Bundle Size Optimization (CRITICAL)
- `bundle-barrel-imports` - Import directly, avoid barrel files
- `bundle-dynamic-imports` - Use next/dynamic for heavy components
- `bundle-defer-third-party` - Load analytics/logging after hydration
- `bundle-conditional` - Load modules only when feature is activated
- `bundle-preload` - Preload on hover/focus for perceived speed
### 3. Server-Side Performance (HIGH)
- `server-cache-react` - Use React.cache() for per-request deduplication
- `server-cache-lru` - Use LRU cache for cross-request caching
- `server-serialization` - Minimize data passed to client components
- `server-parallel-fetching` - Restructure components to parallelize fetches
- `server-after-nonblocking` - Use after() for non-blocking operations
### 4. Client-Side Data Fetching (MEDIUM-HIGH)
- `client-swr-dedup` - Use SWR for automatic request deduplication
- `client-event-listeners` - Deduplicate global event listeners
### 5. Re-render Optimization (MEDIUM)
- `rerender-defer-reads` - Don't subscribe to state only used in callbacks
- `rerender-memo` - Extract expensive work into memoized components
- `rerender-dependencies` - Use primitive dependencies in effects
- `rerender-derived-state` - Subscribe to derived booleans, not raw values
- `rerender-functional-setstate` - Use functional setState for stable callbacks
- `rerender-lazy-state-init` - Pass function to useState for expensive values
- `rerender-transitions` - Use startTransition for non-urgent updates
### 6. Rendering Performance (MEDIUM)
- `rendering-animate-svg-wrapper` - Animate div wrapper, not SVG element
- `rendering-content-visibility` - Use content-visibility for long lists
- `rendering-hoist-jsx` - Extract static JSX outside components
- `rendering-svg-precision` - Reduce SVG coordinate precision
- `rendering-hydration-no-flicker` - Use inline script for client-only data
- `rendering-activity` - Use Activity component for show/hide
- `rendering-conditional-render` - Use ternary, not && for conditionals
### 7. JavaScript Performance (LOW-MEDIUM)
- `js-batch-dom-css` - Group CSS changes via classes or cssText
- `js-index-maps` - Build Map for repeated lookups
- `js-cache-property-access` - Cache object properties in loops
- `js-cache-function-results` - Cache function results in module-level Map
- `js-cache-storage` - Cache localStorage/sessionStorage reads
- `js-combine-iterations` - Combine multiple filter/map into one loop
- `js-length-check-first` - Check array length before expensive comparison
- `js-early-exit` - Return early from functions
- `js-hoist-regexp` - Hoist RegExp creation outside loops
- `js-min-max-loop` - Use loop for min/max instead of sort
- `js-set-map-lookups` - Use Set/Map for O(1) lookups
- `js-tosorted-immutable` - Use toSorted() for immutability
### 8. Advanced Patterns (LOW)
- `advanced-event-handler-refs` - Store event handlers in refs
- `advanced-use-latest` - useLatest for stable callback refs
## How to Use
Read individual rule files for detailed explanations and code examples:
```
rules/async-parallel.md
rules/bundle-barrel-imports.md
rules/_sections.md
```
Each rule file contains:
- Brief explanation of why it matters
- Incorrect code example with explanation
- Correct code example with explanation
- Additional context and references
## Full Compiled Document
For the complete guide with all rules expanded: `AGENTS.md`

View File

@@ -0,0 +1,55 @@
---
title: Store Event Handlers in Refs
impact: LOW
impactDescription: stable subscriptions
tags: advanced, hooks, refs, event-handlers, optimization
---
## Store Event Handlers in Refs
Store callbacks in refs when used in effects that shouldn't re-subscribe on callback changes.
**Incorrect (re-subscribes on every render):**
```tsx
function useWindowEvent(event: string, handler: () => void) {
useEffect(() => {
window.addEventListener(event, handler)
return () => window.removeEventListener(event, handler)
}, [event, handler])
}
```
**Correct (stable subscription):**
```tsx
function useWindowEvent(event: string, handler: () => void) {
const handlerRef = useRef(handler)
useEffect(() => {
handlerRef.current = handler
}, [handler])
useEffect(() => {
const listener = () => handlerRef.current()
window.addEventListener(event, listener)
return () => window.removeEventListener(event, listener)
}, [event])
}
```
**Alternative: use `useEffectEvent` if you're on latest React:**
```tsx
import { useEffectEvent } from 'react'
function useWindowEvent(event: string, handler: () => void) {
const onEvent = useEffectEvent(handler)
useEffect(() => {
window.addEventListener(event, onEvent)
return () => window.removeEventListener(event, onEvent)
}, [event])
}
```
`useEffectEvent` provides a cleaner API for the same pattern: it creates a stable function reference that always calls the latest version of the handler.

View File

@@ -0,0 +1,49 @@
---
title: useLatest for Stable Callback Refs
impact: LOW
impactDescription: prevents effect re-runs
tags: advanced, hooks, useLatest, refs, optimization
---
## useLatest for Stable Callback Refs
Access latest values in callbacks without adding them to dependency arrays. Prevents effect re-runs while avoiding stale closures.
**Implementation:**
```typescript
function useLatest<T>(value: T) {
const ref = useRef(value)
useEffect(() => {
ref.current = value
}, [value])
return ref
}
```
**Incorrect (effect re-runs on every callback change):**
```tsx
function SearchInput({ onSearch }: { onSearch: (q: string) => void }) {
const [query, setQuery] = useState('')
useEffect(() => {
const timeout = setTimeout(() => onSearch(query), 300)
return () => clearTimeout(timeout)
}, [query, onSearch])
}
```
**Correct (stable effect, fresh callback):**
```tsx
function SearchInput({ onSearch }: { onSearch: (q: string) => void }) {
const [query, setQuery] = useState('')
const onSearchRef = useLatest(onSearch)
useEffect(() => {
const timeout = setTimeout(() => onSearchRef.current(query), 300)
return () => clearTimeout(timeout)
}, [query])
}
```

View File

@@ -0,0 +1,38 @@
---
title: Prevent Waterfall Chains in API Routes
impact: CRITICAL
impactDescription: 2-10× improvement
tags: api-routes, server-actions, waterfalls, parallelization
---
## Prevent Waterfall Chains in API Routes
In API routes and Server Actions, start independent operations immediately, even if you don't await them yet.
**Incorrect (config waits for auth, data waits for both):**
```typescript
export async function GET(request: Request) {
const session = await auth()
const config = await fetchConfig()
const data = await fetchData(session.user.id)
return Response.json({ data, config })
}
```
**Correct (auth and config start immediately):**
```typescript
export async function GET(request: Request) {
const sessionPromise = auth()
const configPromise = fetchConfig()
const session = await sessionPromise
const [config, data] = await Promise.all([
configPromise,
fetchData(session.user.id)
])
return Response.json({ data, config })
}
```
For operations with more complex dependency chains, use `better-all` to automatically maximize parallelism (see Dependency-Based Parallelization).

View File

@@ -0,0 +1,80 @@
---
title: Defer Await Until Needed
impact: HIGH
impactDescription: avoids blocking unused code paths
tags: async, await, conditional, optimization
---
## Defer Await Until Needed
Move `await` operations into the branches where they're actually used to avoid blocking code paths that don't need them.
**Incorrect (blocks both branches):**
```typescript
async function handleRequest(userId: string, skipProcessing: boolean) {
const userData = await fetchUserData(userId)
if (skipProcessing) {
// Returns immediately but still waited for userData
return { skipped: true }
}
// Only this branch uses userData
return processUserData(userData)
}
```
**Correct (only blocks when needed):**
```typescript
async function handleRequest(userId: string, skipProcessing: boolean) {
if (skipProcessing) {
// Returns immediately without waiting
return { skipped: true }
}
// Fetch only when needed
const userData = await fetchUserData(userId)
return processUserData(userData)
}
```
**Another example (early return optimization):**
```typescript
// Incorrect: always fetches permissions
async function updateResource(resourceId: string, userId: string) {
const permissions = await fetchPermissions(userId)
const resource = await getResource(resourceId)
if (!resource) {
return { error: 'Not found' }
}
if (!permissions.canEdit) {
return { error: 'Forbidden' }
}
return await updateResourceData(resource, permissions)
}
// Correct: fetches only when needed
async function updateResource(resourceId: string, userId: string) {
const resource = await getResource(resourceId)
if (!resource) {
return { error: 'Not found' }
}
const permissions = await fetchPermissions(userId)
if (!permissions.canEdit) {
return { error: 'Forbidden' }
}
return await updateResourceData(resource, permissions)
}
```
This optimization is especially valuable when the skipped branch is frequently taken, or when the deferred operation is expensive.

View File

@@ -0,0 +1,36 @@
---
title: Dependency-Based Parallelization
impact: CRITICAL
impactDescription: 2-10× improvement
tags: async, parallelization, dependencies, better-all
---
## Dependency-Based Parallelization
For operations with partial dependencies, use `better-all` to maximize parallelism. It automatically starts each task at the earliest possible moment.
**Incorrect (profile waits for config unnecessarily):**
```typescript
const [user, config] = await Promise.all([
fetchUser(),
fetchConfig()
])
const profile = await fetchProfile(user.id)
```
**Correct (config and profile run in parallel):**
```typescript
import { all } from 'better-all'
const { user, config, profile } = await all({
async user() { return fetchUser() },
async config() { return fetchConfig() },
async profile() {
return fetchProfile((await this.$.user).id)
}
})
```
Reference: [https://github.com/shuding/better-all](https://github.com/shuding/better-all)

View File

@@ -0,0 +1,28 @@
---
title: Promise.all() for Independent Operations
impact: CRITICAL
impactDescription: 2-10× improvement
tags: async, parallelization, promises, waterfalls
---
## Promise.all() for Independent Operations
When async operations have no interdependencies, execute them concurrently using `Promise.all()`.
**Incorrect (sequential execution, 3 round trips):**
```typescript
const user = await fetchUser()
const posts = await fetchPosts()
const comments = await fetchComments()
```
**Correct (parallel execution, 1 round trip):**
```typescript
const [user, posts, comments] = await Promise.all([
fetchUser(),
fetchPosts(),
fetchComments()
])
```

View File

@@ -0,0 +1,99 @@
---
title: Strategic Suspense Boundaries
impact: HIGH
impactDescription: faster initial paint
tags: async, suspense, streaming, layout-shift
---
## Strategic Suspense Boundaries
Instead of awaiting data in async components before returning JSX, use Suspense boundaries to show the wrapper UI faster while data loads.
**Incorrect (wrapper blocked by data fetching):**
```tsx
async function Page() {
const data = await fetchData() // Blocks entire page
return (
<div>
<div>Sidebar</div>
<div>Header</div>
<div>
<DataDisplay data={data} />
</div>
<div>Footer</div>
</div>
)
}
```
The entire layout waits for data even though only the middle section needs it.
**Correct (wrapper shows immediately, data streams in):**
```tsx
function Page() {
return (
<div>
<div>Sidebar</div>
<div>Header</div>
<div>
<Suspense fallback={<Skeleton />}>
<DataDisplay />
</Suspense>
</div>
<div>Footer</div>
</div>
)
}
async function DataDisplay() {
const data = await fetchData() // Only blocks this component
return <div>{data.content}</div>
}
```
Sidebar, Header, and Footer render immediately. Only DataDisplay waits for data.
**Alternative (share promise across components):**
```tsx
function Page() {
// Start fetch immediately, but don't await
const dataPromise = fetchData()
return (
<div>
<div>Sidebar</div>
<div>Header</div>
<Suspense fallback={<Skeleton />}>
<DataDisplay dataPromise={dataPromise} />
<DataSummary dataPromise={dataPromise} />
</Suspense>
<div>Footer</div>
</div>
)
}
function DataDisplay({ dataPromise }: { dataPromise: Promise<Data> }) {
const data = use(dataPromise) // Unwraps the promise
return <div>{data.content}</div>
}
function DataSummary({ dataPromise }: { dataPromise: Promise<Data> }) {
const data = use(dataPromise) // Reuses the same promise
return <div>{data.summary}</div>
}
```
Both components share the same promise, so only one fetch occurs. Layout renders immediately while both components wait together.
**When NOT to use this pattern:**
- Critical data needed for layout decisions (affects positioning)
- SEO-critical content above the fold
- Small, fast queries where suspense overhead isn't worth it
- When you want to avoid layout shift (loading → content jump)
**Trade-off:** Faster initial paint vs potential layout shift. Choose based on your UX priorities.

View File

@@ -0,0 +1,59 @@
---
title: Avoid Barrel File Imports
impact: CRITICAL
impactDescription: 200-800ms import cost, slow builds
tags: bundle, imports, tree-shaking, barrel-files, performance
---
## Avoid Barrel File Imports
Import directly from source files instead of barrel files to avoid loading thousands of unused modules. **Barrel files** are entry points that re-export multiple modules (e.g., `index.js` that does `export * from './module'`).
Popular icon and component libraries can have **up to 10,000 re-exports** in their entry file. For many React packages, **it takes 200-800ms just to import them**, affecting both development speed and production cold starts.
**Why tree-shaking doesn't help:** When a library is marked as external (not bundled), the bundler can't optimize it. If you bundle it to enable tree-shaking, builds become substantially slower analyzing the entire module graph.
**Incorrect (imports entire library):**
```tsx
import { Check, X, Menu } from 'lucide-react'
// Loads 1,583 modules, takes ~2.8s extra in dev
// Runtime cost: 200-800ms on every cold start
import { Button, TextField } from '@mui/material'
// Loads 2,225 modules, takes ~4.2s extra in dev
```
**Correct (imports only what you need):**
```tsx
import Check from 'lucide-react/dist/esm/icons/check'
import X from 'lucide-react/dist/esm/icons/x'
import Menu from 'lucide-react/dist/esm/icons/menu'
// Loads only 3 modules (~2KB vs ~1MB)
import Button from '@mui/material/Button'
import TextField from '@mui/material/TextField'
// Loads only what you use
```
**Alternative (Next.js 13.5+):**
```js
// next.config.js - use optimizePackageImports
module.exports = {
experimental: {
optimizePackageImports: ['lucide-react', '@mui/material']
}
}
// Then you can keep the ergonomic barrel imports:
import { Check, X, Menu } from 'lucide-react'
// Automatically transformed to direct imports at build time
```
Direct imports provide 15-70% faster dev boot, 28% faster builds, 40% faster cold starts, and significantly faster HMR.
Libraries commonly affected: `lucide-react`, `@mui/material`, `@mui/icons-material`, `@tabler/icons-react`, `react-icons`, `@headlessui/react`, `@radix-ui/react-*`, `lodash`, `ramda`, `date-fns`, `rxjs`, `react-use`.
Reference: [How we optimized package imports in Next.js](https://vercel.com/blog/how-we-optimized-package-imports-in-next-js)

View File

@@ -0,0 +1,31 @@
---
title: Conditional Module Loading
impact: HIGH
impactDescription: loads large data only when needed
tags: bundle, conditional-loading, lazy-loading
---
## Conditional Module Loading
Load large data or modules only when a feature is activated.
**Example (lazy-load animation frames):**
```tsx
function AnimationPlayer({ enabled }: { enabled: boolean }) {
const [frames, setFrames] = useState<Frame[] | null>(null)
useEffect(() => {
if (enabled && !frames && typeof window !== 'undefined') {
import('./animation-frames.js')
.then(mod => setFrames(mod.frames))
.catch(() => setEnabled(false))
}
}, [enabled, frames])
if (!frames) return <Skeleton />
return <Canvas frames={frames} />
}
```
The `typeof window !== 'undefined'` check prevents bundling this module for SSR, optimizing server bundle size and build speed.

View File

@@ -0,0 +1,49 @@
---
title: Defer Non-Critical Third-Party Libraries
impact: MEDIUM
impactDescription: loads after hydration
tags: bundle, third-party, analytics, defer
---
## Defer Non-Critical Third-Party Libraries
Analytics, logging, and error tracking don't block user interaction. Load them after hydration.
**Incorrect (blocks initial bundle):**
```tsx
import { Analytics } from '@vercel/analytics/react'
export default function RootLayout({ children }) {
return (
<html>
<body>
{children}
<Analytics />
</body>
</html>
)
}
```
**Correct (loads after hydration):**
```tsx
import dynamic from 'next/dynamic'
const Analytics = dynamic(
() => import('@vercel/analytics/react').then(m => m.Analytics),
{ ssr: false }
)
export default function RootLayout({ children }) {
return (
<html>
<body>
{children}
<Analytics />
</body>
</html>
)
}
```

View File

@@ -0,0 +1,35 @@
---
title: Dynamic Imports for Heavy Components
impact: CRITICAL
impactDescription: directly affects TTI and LCP
tags: bundle, dynamic-import, code-splitting, next-dynamic
---
## Dynamic Imports for Heavy Components
Use `next/dynamic` to lazy-load large components not needed on initial render.
**Incorrect (Monaco bundles with main chunk ~300KB):**
```tsx
import { MonacoEditor } from './monaco-editor'
function CodePanel({ code }: { code: string }) {
return <MonacoEditor value={code} />
}
```
**Correct (Monaco loads on demand):**
```tsx
import dynamic from 'next/dynamic'
const MonacoEditor = dynamic(
() => import('./monaco-editor').then(m => m.MonacoEditor),
{ ssr: false }
)
function CodePanel({ code }: { code: string }) {
return <MonacoEditor value={code} />
}
```

View File

@@ -0,0 +1,50 @@
---
title: Preload Based on User Intent
impact: MEDIUM
impactDescription: reduces perceived latency
tags: bundle, preload, user-intent, hover
---
## Preload Based on User Intent
Preload heavy bundles before they're needed to reduce perceived latency.
**Example (preload on hover/focus):**
```tsx
function EditorButton({ onClick }: { onClick: () => void }) {
const preload = () => {
if (typeof window !== 'undefined') {
void import('./monaco-editor')
}
}
return (
<button
onMouseEnter={preload}
onFocus={preload}
onClick={onClick}
>
Open Editor
</button>
)
}
```
**Example (preload when feature flag is enabled):**
```tsx
function FlagsProvider({ children, flags }: Props) {
useEffect(() => {
if (flags.editorEnabled && typeof window !== 'undefined') {
void import('./monaco-editor').then(mod => mod.init())
}
}, [flags.editorEnabled])
return <FlagsContext.Provider value={flags}>
{children}
</FlagsContext.Provider>
}
```
The `typeof window !== 'undefined'` check prevents bundling preloaded modules for SSR, optimizing server bundle size and build speed.

View File

@@ -0,0 +1,74 @@
---
title: Deduplicate Global Event Listeners
impact: LOW
impactDescription: single listener for N components
tags: client, swr, event-listeners, subscription
---
## Deduplicate Global Event Listeners
Use `useSWRSubscription()` to share global event listeners across component instances.
**Incorrect (N instances = N listeners):**
```tsx
function useKeyboardShortcut(key: string, callback: () => void) {
useEffect(() => {
const handler = (e: KeyboardEvent) => {
if (e.metaKey && e.key === key) {
callback()
}
}
window.addEventListener('keydown', handler)
return () => window.removeEventListener('keydown', handler)
}, [key, callback])
}
```
When using the `useKeyboardShortcut` hook multiple times, each instance will register a new listener.
**Correct (N instances = 1 listener):**
```tsx
import useSWRSubscription from 'swr/subscription'
// Module-level Map to track callbacks per key
const keyCallbacks = new Map<string, Set<() => void>>()
function useKeyboardShortcut(key: string, callback: () => void) {
// Register this callback in the Map
useEffect(() => {
if (!keyCallbacks.has(key)) {
keyCallbacks.set(key, new Set())
}
keyCallbacks.get(key)!.add(callback)
return () => {
const set = keyCallbacks.get(key)
if (set) {
set.delete(callback)
if (set.size === 0) {
keyCallbacks.delete(key)
}
}
}
}, [key, callback])
useSWRSubscription('global-keydown', () => {
const handler = (e: KeyboardEvent) => {
if (e.metaKey && keyCallbacks.has(e.key)) {
keyCallbacks.get(e.key)!.forEach(cb => cb())
}
}
window.addEventListener('keydown', handler)
return () => window.removeEventListener('keydown', handler)
})
}
function Profile() {
// Multiple shortcuts will share the same listener
useKeyboardShortcut('p', () => { /* ... */ })
useKeyboardShortcut('k', () => { /* ... */ })
// ...
}
```

View File

@@ -0,0 +1,56 @@
---
title: Use SWR for Automatic Deduplication
impact: MEDIUM-HIGH
impactDescription: automatic deduplication
tags: client, swr, deduplication, data-fetching
---
## Use SWR for Automatic Deduplication
SWR enables request deduplication, caching, and revalidation across component instances.
**Incorrect (no deduplication, each instance fetches):**
```tsx
function UserList() {
const [users, setUsers] = useState([])
useEffect(() => {
fetch('/api/users')
.then(r => r.json())
.then(setUsers)
}, [])
}
```
**Correct (multiple instances share one request):**
```tsx
import useSWR from 'swr'
function UserList() {
const { data: users } = useSWR('/api/users', fetcher)
}
```
**For immutable data:**
```tsx
import { useImmutableSWR } from '@/lib/swr'
function StaticContent() {
const { data } = useImmutableSWR('/api/config', fetcher)
}
```
**For mutations:**
```tsx
import { useSWRMutation } from 'swr/mutation'
function UpdateButton() {
const { trigger } = useSWRMutation('/api/user', updateUser)
return <button onClick={() => trigger()}>Update</button>
}
```
Reference: [https://swr.vercel.app](https://swr.vercel.app)

View File

@@ -0,0 +1,82 @@
---
title: Batch DOM CSS Changes
impact: MEDIUM
impactDescription: reduces reflows/repaints
tags: javascript, dom, css, performance, reflow
---
## Batch DOM CSS Changes
Avoid changing styles one property at a time. Group multiple CSS changes together via classes or `cssText` to minimize browser reflows.
**Incorrect (multiple reflows):**
```typescript
function updateElementStyles(element: HTMLElement) {
// Each line triggers a reflow
element.style.width = '100px'
element.style.height = '200px'
element.style.backgroundColor = 'blue'
element.style.border = '1px solid black'
}
```
**Correct (add class - single reflow):**
```typescript
// CSS file
.highlighted-box {
width: 100px;
height: 200px;
background-color: blue;
border: 1px solid black;
}
// JavaScript
function updateElementStyles(element: HTMLElement) {
element.classList.add('highlighted-box')
}
```
**Correct (change cssText - single reflow):**
```typescript
function updateElementStyles(element: HTMLElement) {
element.style.cssText = `
width: 100px;
height: 200px;
background-color: blue;
border: 1px solid black;
`
}
```
**React example:**
```tsx
// Incorrect: changing styles one by one
function Box({ isHighlighted }: { isHighlighted: boolean }) {
const ref = useRef<HTMLDivElement>(null)
useEffect(() => {
if (ref.current && isHighlighted) {
ref.current.style.width = '100px'
ref.current.style.height = '200px'
ref.current.style.backgroundColor = 'blue'
}
}, [isHighlighted])
return <div ref={ref}>Content</div>
}
// Correct: toggle class
function Box({ isHighlighted }: { isHighlighted: boolean }) {
return (
<div className={isHighlighted ? 'highlighted-box' : ''}>
Content
</div>
)
}
```
Prefer CSS classes over inline styles when possible. Classes are cached by the browser and provide better separation of concerns.

View File

@@ -0,0 +1,80 @@
---
title: Cache Repeated Function Calls
impact: MEDIUM
impactDescription: avoid redundant computation
tags: javascript, cache, memoization, performance
---
## Cache Repeated Function Calls
Use a module-level Map to cache function results when the same function is called repeatedly with the same inputs during render.
**Incorrect (redundant computation):**
```typescript
function ProjectList({ projects }: { projects: Project[] }) {
return (
<div>
{projects.map(project => {
// slugify() called 100+ times for same project names
const slug = slugify(project.name)
return <ProjectCard key={project.id} slug={slug} />
})}
</div>
)
}
```
**Correct (cached results):**
```typescript
// Module-level cache
const slugifyCache = new Map<string, string>()
function cachedSlugify(text: string): string {
if (slugifyCache.has(text)) {
return slugifyCache.get(text)!
}
const result = slugify(text)
slugifyCache.set(text, result)
return result
}
function ProjectList({ projects }: { projects: Project[] }) {
return (
<div>
{projects.map(project => {
// Computed only once per unique project name
const slug = cachedSlugify(project.name)
return <ProjectCard key={project.id} slug={slug} />
})}
</div>
)
}
```
**Simpler pattern for single-value functions:**
```typescript
let isLoggedInCache: boolean | null = null
function isLoggedIn(): boolean {
if (isLoggedInCache !== null) {
return isLoggedInCache
}
isLoggedInCache = document.cookie.includes('auth=')
return isLoggedInCache
}
// Clear cache when auth changes
function onAuthChange() {
isLoggedInCache = null
}
```
Use a Map (not a hook) so it works everywhere: utilities, event handlers, not just React components.
Reference: [How we made the Vercel Dashboard twice as fast](https://vercel.com/blog/how-we-made-the-vercel-dashboard-twice-as-fast)

View File

@@ -0,0 +1,28 @@
---
title: Cache Property Access in Loops
impact: LOW-MEDIUM
impactDescription: reduces lookups
tags: javascript, loops, optimization, caching
---
## Cache Property Access in Loops
Cache object property lookups in hot paths.
**Incorrect (3 lookups × N iterations):**
```typescript
for (let i = 0; i < arr.length; i++) {
process(obj.config.settings.value)
}
```
**Correct (1 lookup total):**
```typescript
const value = obj.config.settings.value
const len = arr.length
for (let i = 0; i < len; i++) {
process(value)
}
```

View File

@@ -0,0 +1,70 @@
---
title: Cache Storage API Calls
impact: LOW-MEDIUM
impactDescription: reduces expensive I/O
tags: javascript, localStorage, storage, caching, performance
---
## Cache Storage API Calls
`localStorage`, `sessionStorage`, and `document.cookie` are synchronous and expensive. Cache reads in memory.
**Incorrect (reads storage on every call):**
```typescript
function getTheme() {
return localStorage.getItem('theme') ?? 'light'
}
// Called 10 times = 10 storage reads
```
**Correct (Map cache):**
```typescript
const storageCache = new Map<string, string | null>()
function getLocalStorage(key: string) {
if (!storageCache.has(key)) {
storageCache.set(key, localStorage.getItem(key))
}
return storageCache.get(key)
}
function setLocalStorage(key: string, value: string) {
localStorage.setItem(key, value)
storageCache.set(key, value) // keep cache in sync
}
```
Use a Map (not a hook) so it works everywhere: utilities, event handlers, not just React components.
**Cookie caching:**
```typescript
let cookieCache: Record<string, string> | null = null
function getCookie(name: string) {
if (!cookieCache) {
cookieCache = Object.fromEntries(
document.cookie.split('; ').map(c => c.split('='))
)
}
return cookieCache[name]
}
```
**Important (invalidate on external changes):**
If storage can change externally (another tab, server-set cookies), invalidate cache:
```typescript
window.addEventListener('storage', (e) => {
if (e.key) storageCache.delete(e.key)
})
document.addEventListener('visibilitychange', () => {
if (document.visibilityState === 'visible') {
storageCache.clear()
}
})
```

View File

@@ -0,0 +1,32 @@
---
title: Combine Multiple Array Iterations
impact: LOW-MEDIUM
impactDescription: reduces iterations
tags: javascript, arrays, loops, performance
---
## Combine Multiple Array Iterations
Multiple `.filter()` or `.map()` calls iterate the array multiple times. Combine into one loop.
**Incorrect (3 iterations):**
```typescript
const admins = users.filter(u => u.isAdmin)
const testers = users.filter(u => u.isTester)
const inactive = users.filter(u => !u.isActive)
```
**Correct (1 iteration):**
```typescript
const admins: User[] = []
const testers: User[] = []
const inactive: User[] = []
for (const user of users) {
if (user.isAdmin) admins.push(user)
if (user.isTester) testers.push(user)
if (!user.isActive) inactive.push(user)
}
```

View File

@@ -0,0 +1,50 @@
---
title: Early Return from Functions
impact: LOW-MEDIUM
impactDescription: avoids unnecessary computation
tags: javascript, functions, optimization, early-return
---
## Early Return from Functions
Return early when result is determined to skip unnecessary processing.
**Incorrect (processes all items even after finding answer):**
```typescript
function validateUsers(users: User[]) {
let hasError = false
let errorMessage = ''
for (const user of users) {
if (!user.email) {
hasError = true
errorMessage = 'Email required'
}
if (!user.name) {
hasError = true
errorMessage = 'Name required'
}
// Continues checking all users even after error found
}
return hasError ? { valid: false, error: errorMessage } : { valid: true }
}
```
**Correct (returns immediately on first error):**
```typescript
function validateUsers(users: User[]) {
for (const user of users) {
if (!user.email) {
return { valid: false, error: 'Email required' }
}
if (!user.name) {
return { valid: false, error: 'Name required' }
}
}
return { valid: true }
}
```

View File

@@ -0,0 +1,45 @@
---
title: Hoist RegExp Creation
impact: LOW-MEDIUM
impactDescription: avoids recreation
tags: javascript, regexp, optimization, memoization
---
## Hoist RegExp Creation
Don't create RegExp inside render. Hoist to module scope or memoize with `useMemo()`.
**Incorrect (new RegExp every render):**
```tsx
function Highlighter({ text, query }: Props) {
const regex = new RegExp(`(${query})`, 'gi')
const parts = text.split(regex)
return <>{parts.map((part, i) => ...)}</>
}
```
**Correct (memoize or hoist):**
```tsx
const EMAIL_REGEX = /^[^\s@]+@[^\s@]+\.[^\s@]+$/
function Highlighter({ text, query }: Props) {
const regex = useMemo(
() => new RegExp(`(${escapeRegex(query)})`, 'gi'),
[query]
)
const parts = text.split(regex)
return <>{parts.map((part, i) => ...)}</>
}
```
**Warning (global regex has mutable state):**
Global regex (`/g`) has mutable `lastIndex` state:
```typescript
const regex = /foo/g
regex.test('foo') // true, lastIndex = 3
regex.test('foo') // false, lastIndex = 0
```

View File

@@ -0,0 +1,37 @@
---
title: Build Index Maps for Repeated Lookups
impact: LOW-MEDIUM
impactDescription: 1M ops to 2K ops
tags: javascript, map, indexing, optimization, performance
---
## Build Index Maps for Repeated Lookups
Multiple `.find()` calls by the same key should use a Map.
**Incorrect (O(n) per lookup):**
```typescript
function processOrders(orders: Order[], users: User[]) {
return orders.map(order => ({
...order,
user: users.find(u => u.id === order.userId)
}))
}
```
**Correct (O(1) per lookup):**
```typescript
function processOrders(orders: Order[], users: User[]) {
const userById = new Map(users.map(u => [u.id, u]))
return orders.map(order => ({
...order,
user: userById.get(order.userId)
}))
}
```
Build map once (O(n)), then all lookups are O(1).
For 1000 orders × 1000 users: 1M ops → 2K ops.

View File

@@ -0,0 +1,49 @@
---
title: Early Length Check for Array Comparisons
impact: MEDIUM-HIGH
impactDescription: avoids expensive operations when lengths differ
tags: javascript, arrays, performance, optimization, comparison
---
## Early Length Check for Array Comparisons
When comparing arrays with expensive operations (sorting, deep equality, serialization), check lengths first. If lengths differ, the arrays cannot be equal.
In real-world applications, this optimization is especially valuable when the comparison runs in hot paths (event handlers, render loops).
**Incorrect (always runs expensive comparison):**
```typescript
function hasChanges(current: string[], original: string[]) {
// Always sorts and joins, even when lengths differ
return current.sort().join() !== original.sort().join()
}
```
Two O(n log n) sorts run even when `current.length` is 5 and `original.length` is 100. There is also overhead of joining the arrays and comparing the strings.
**Correct (O(1) length check first):**
```typescript
function hasChanges(current: string[], original: string[]) {
// Early return if lengths differ
if (current.length !== original.length) {
return true
}
// Only sort/join when lengths match
const currentSorted = current.toSorted()
const originalSorted = original.toSorted()
for (let i = 0; i < currentSorted.length; i++) {
if (currentSorted[i] !== originalSorted[i]) {
return true
}
}
return false
}
```
This new approach is more efficient because:
- It avoids the overhead of sorting and joining the arrays when lengths differ
- It avoids consuming memory for the joined strings (especially important for large arrays)
- It avoids mutating the original arrays
- It returns early when a difference is found

View File

@@ -0,0 +1,82 @@
---
title: Use Loop for Min/Max Instead of Sort
impact: LOW
impactDescription: O(n) instead of O(n log n)
tags: javascript, arrays, performance, sorting, algorithms
---
## Use Loop for Min/Max Instead of Sort
Finding the smallest or largest element only requires a single pass through the array. Sorting is wasteful and slower.
**Incorrect (O(n log n) - sort to find latest):**
```typescript
interface Project {
id: string
name: string
updatedAt: number
}
function getLatestProject(projects: Project[]) {
const sorted = [...projects].sort((a, b) => b.updatedAt - a.updatedAt)
return sorted[0]
}
```
Sorts the entire array just to find the maximum value.
**Incorrect (O(n log n) - sort for oldest and newest):**
```typescript
function getOldestAndNewest(projects: Project[]) {
const sorted = [...projects].sort((a, b) => a.updatedAt - b.updatedAt)
return { oldest: sorted[0], newest: sorted[sorted.length - 1] }
}
```
Still sorts unnecessarily when only min/max are needed.
**Correct (O(n) - single loop):**
```typescript
function getLatestProject(projects: Project[]) {
if (projects.length === 0) return null
let latest = projects[0]
for (let i = 1; i < projects.length; i++) {
if (projects[i].updatedAt > latest.updatedAt) {
latest = projects[i]
}
}
return latest
}
function getOldestAndNewest(projects: Project[]) {
if (projects.length === 0) return { oldest: null, newest: null }
let oldest = projects[0]
let newest = projects[0]
for (let i = 1; i < projects.length; i++) {
if (projects[i].updatedAt < oldest.updatedAt) oldest = projects[i]
if (projects[i].updatedAt > newest.updatedAt) newest = projects[i]
}
return { oldest, newest }
}
```
Single pass through the array, no copying, no sorting.
**Alternative (Math.min/Math.max for small arrays):**
```typescript
const numbers = [5, 2, 8, 1, 9]
const min = Math.min(...numbers)
const max = Math.max(...numbers)
```
This works for small arrays but can be slower for very large arrays due to spread operator limitations. Use the loop approach for reliability.

View File

@@ -0,0 +1,24 @@
---
title: Use Set/Map for O(1) Lookups
impact: LOW-MEDIUM
impactDescription: O(n) to O(1)
tags: javascript, set, map, data-structures, performance
---
## Use Set/Map for O(1) Lookups
Convert arrays to Set/Map for repeated membership checks.
**Incorrect (O(n) per check):**
```typescript
const allowedIds = ['a', 'b', 'c', ...]
items.filter(item => allowedIds.includes(item.id))
```
**Correct (O(1) per check):**
```typescript
const allowedIds = new Set(['a', 'b', 'c', ...])
items.filter(item => allowedIds.has(item.id))
```

View File

@@ -0,0 +1,57 @@
---
title: Use toSorted() Instead of sort() for Immutability
impact: MEDIUM-HIGH
impactDescription: prevents mutation bugs in React state
tags: javascript, arrays, immutability, react, state, mutation
---
## Use toSorted() Instead of sort() for Immutability
`.sort()` mutates the array in place, which can cause bugs with React state and props. Use `.toSorted()` to create a new sorted array without mutation.
**Incorrect (mutates original array):**
```typescript
function UserList({ users }: { users: User[] }) {
// Mutates the users prop array!
const sorted = useMemo(
() => users.sort((a, b) => a.name.localeCompare(b.name)),
[users]
)
return <div>{sorted.map(renderUser)}</div>
}
```
**Correct (creates new array):**
```typescript
function UserList({ users }: { users: User[] }) {
// Creates new sorted array, original unchanged
const sorted = useMemo(
() => users.toSorted((a, b) => a.name.localeCompare(b.name)),
[users]
)
return <div>{sorted.map(renderUser)}</div>
}
```
**Why this matters in React:**
1. Props/state mutations break React's immutability model - React expects props and state to be treated as read-only
2. Causes stale closure bugs - Mutating arrays inside closures (callbacks, effects) can lead to unexpected behavior
**Browser support (fallback for older browsers):**
`.toSorted()` is available in all modern browsers (Chrome 110+, Safari 16+, Firefox 115+, Node.js 20+). For older environments, use spread operator:
```typescript
// Fallback for older browsers
const sorted = [...items].sort((a, b) => a.value - b.value)
```
**Other immutable array methods:**
- `.toSorted()` - immutable sort
- `.toReversed()` - immutable reverse
- `.toSpliced()` - immutable splice
- `.with()` - immutable element replacement

View File

@@ -0,0 +1,26 @@
---
title: Use Activity Component for Show/Hide
impact: MEDIUM
impactDescription: preserves state/DOM
tags: rendering, activity, visibility, state-preservation
---
## Use Activity Component for Show/Hide
Use React's `<Activity>` to preserve state/DOM for expensive components that frequently toggle visibility.
**Usage:**
```tsx
import { Activity } from 'react'
function Dropdown({ isOpen }: Props) {
return (
<Activity mode={isOpen ? 'visible' : 'hidden'}>
<ExpensiveMenu />
</Activity>
)
}
```
Avoids expensive re-renders and state loss.

View File

@@ -0,0 +1,47 @@
---
title: Animate SVG Wrapper Instead of SVG Element
impact: LOW
impactDescription: enables hardware acceleration
tags: rendering, svg, css, animation, performance
---
## Animate SVG Wrapper Instead of SVG Element
Many browsers don't have hardware acceleration for CSS3 animations on SVG elements. Wrap SVG in a `<div>` and animate the wrapper instead.
**Incorrect (animating SVG directly - no hardware acceleration):**
```tsx
function LoadingSpinner() {
return (
<svg
className="animate-spin"
width="24"
height="24"
viewBox="0 0 24 24"
>
<circle cx="12" cy="12" r="10" stroke="currentColor" />
</svg>
)
}
```
**Correct (animating wrapper div - hardware accelerated):**
```tsx
function LoadingSpinner() {
return (
<div className="animate-spin">
<svg
width="24"
height="24"
viewBox="0 0 24 24"
>
<circle cx="12" cy="12" r="10" stroke="currentColor" />
</svg>
</div>
)
}
```
This applies to all CSS transforms and transitions (`transform`, `opacity`, `translate`, `scale`, `rotate`). The wrapper div allows browsers to use GPU acceleration for smoother animations.

View File

@@ -0,0 +1,40 @@
---
title: Use Explicit Conditional Rendering
impact: LOW
impactDescription: prevents rendering 0 or NaN
tags: rendering, conditional, jsx, falsy-values
---
## Use Explicit Conditional Rendering
Use explicit ternary operators (`? :`) instead of `&&` for conditional rendering when the condition can be `0`, `NaN`, or other falsy values that render.
**Incorrect (renders "0" when count is 0):**
```tsx
function Badge({ count }: { count: number }) {
return (
<div>
{count && <span className="badge">{count}</span>}
</div>
)
}
// When count = 0, renders: <div>0</div>
// When count = 5, renders: <div><span class="badge">5</span></div>
```
**Correct (renders nothing when count is 0):**
```tsx
function Badge({ count }: { count: number }) {
return (
<div>
{count > 0 ? <span className="badge">{count}</span> : null}
</div>
)
}
// When count = 0, renders: <div></div>
// When count = 5, renders: <div><span class="badge">5</span></div>
```

View File

@@ -0,0 +1,38 @@
---
title: CSS content-visibility for Long Lists
impact: HIGH
impactDescription: faster initial render
tags: rendering, css, content-visibility, long-lists
---
## CSS content-visibility for Long Lists
Apply `content-visibility: auto` to defer off-screen rendering.
**CSS:**
```css
.message-item {
content-visibility: auto;
contain-intrinsic-size: 0 80px;
}
```
**Example:**
```tsx
function MessageList({ messages }: { messages: Message[] }) {
return (
<div className="overflow-y-auto h-screen">
{messages.map(msg => (
<div key={msg.id} className="message-item">
<Avatar user={msg.author} />
<div>{msg.content}</div>
</div>
))}
</div>
)
}
```
For 1000 messages, browser skips layout/paint for ~990 off-screen items (10× faster initial render).

View File

@@ -0,0 +1,46 @@
---
title: Hoist Static JSX Elements
impact: LOW
impactDescription: avoids re-creation
tags: rendering, jsx, static, optimization
---
## Hoist Static JSX Elements
Extract static JSX outside components to avoid re-creation.
**Incorrect (recreates element every render):**
```tsx
function LoadingSkeleton() {
return <div className="animate-pulse h-20 bg-gray-200" />
}
function Container() {
return (
<div>
{loading && <LoadingSkeleton />}
</div>
)
}
```
**Correct (reuses same element):**
```tsx
const loadingSkeleton = (
<div className="animate-pulse h-20 bg-gray-200" />
)
function Container() {
return (
<div>
{loading && loadingSkeleton}
</div>
)
}
```
This is especially helpful for large and static SVG nodes, which can be expensive to recreate on every render.
**Note:** If your project has [React Compiler](https://react.dev/learn/react-compiler) enabled, the compiler automatically hoists static JSX elements and optimizes component re-renders, making manual hoisting unnecessary.

View File

@@ -0,0 +1,82 @@
---
title: Prevent Hydration Mismatch Without Flickering
impact: MEDIUM
impactDescription: avoids visual flicker and hydration errors
tags: rendering, ssr, hydration, localStorage, flicker
---
## Prevent Hydration Mismatch Without Flickering
When rendering content that depends on client-side storage (localStorage, cookies), avoid both SSR breakage and post-hydration flickering by injecting a synchronous script that updates the DOM before React hydrates.
**Incorrect (breaks SSR):**
```tsx
function ThemeWrapper({ children }: { children: ReactNode }) {
// localStorage is not available on server - throws error
const theme = localStorage.getItem('theme') || 'light'
return (
<div className={theme}>
{children}
</div>
)
}
```
Server-side rendering will fail because `localStorage` is undefined.
**Incorrect (visual flickering):**
```tsx
function ThemeWrapper({ children }: { children: ReactNode }) {
const [theme, setTheme] = useState('light')
useEffect(() => {
// Runs after hydration - causes visible flash
const stored = localStorage.getItem('theme')
if (stored) {
setTheme(stored)
}
}, [])
return (
<div className={theme}>
{children}
</div>
)
}
```
Component first renders with default value (`light`), then updates after hydration, causing a visible flash of incorrect content.
**Correct (no flicker, no hydration mismatch):**
```tsx
function ThemeWrapper({ children }: { children: ReactNode }) {
return (
<>
<div id="theme-wrapper">
{children}
</div>
<script
dangerouslySetInnerHTML={{
__html: `
(function() {
try {
var theme = localStorage.getItem('theme') || 'light';
var el = document.getElementById('theme-wrapper');
if (el) el.className = theme;
} catch (e) {}
})();
`,
}}
/>
</>
)
}
```
The inline script executes synchronously before showing the element, ensuring the DOM already has the correct value. No flickering, no hydration mismatch.
This pattern is especially useful for theme toggles, user preferences, authentication states, and any client-only data that should render immediately without flashing default values.

View File

@@ -0,0 +1,28 @@
---
title: Optimize SVG Precision
impact: LOW
impactDescription: reduces file size
tags: rendering, svg, optimization, svgo
---
## Optimize SVG Precision
Reduce SVG coordinate precision to decrease file size. The optimal precision depends on the viewBox size, but in general reducing precision should be considered.
**Incorrect (excessive precision):**
```svg
<path d="M 10.293847 20.847362 L 30.938472 40.192837" />
```
**Correct (1 decimal place):**
```svg
<path d="M 10.3 20.8 L 30.9 40.2" />
```
**Automate with SVGO:**
```bash
npx svgo --precision=1 --multipass icon.svg
```

View File

@@ -0,0 +1,39 @@
---
title: Defer State Reads to Usage Point
impact: MEDIUM
impactDescription: avoids unnecessary subscriptions
tags: rerender, searchParams, localStorage, optimization
---
## Defer State Reads to Usage Point
Don't subscribe to dynamic state (searchParams, localStorage) if you only read it inside callbacks.
**Incorrect (subscribes to all searchParams changes):**
```tsx
function ShareButton({ chatId }: { chatId: string }) {
const searchParams = useSearchParams()
const handleShare = () => {
const ref = searchParams.get('ref')
shareChat(chatId, { ref })
}
return <button onClick={handleShare}>Share</button>
}
```
**Correct (reads on demand, no subscription):**
```tsx
function ShareButton({ chatId }: { chatId: string }) {
const handleShare = () => {
const params = new URLSearchParams(window.location.search)
const ref = params.get('ref')
shareChat(chatId, { ref })
}
return <button onClick={handleShare}>Share</button>
}
```

View File

@@ -0,0 +1,45 @@
---
title: Narrow Effect Dependencies
impact: LOW
impactDescription: minimizes effect re-runs
tags: rerender, useEffect, dependencies, optimization
---
## Narrow Effect Dependencies
Specify primitive dependencies instead of objects to minimize effect re-runs.
**Incorrect (re-runs on any user field change):**
```tsx
useEffect(() => {
console.log(user.id)
}, [user])
```
**Correct (re-runs only when id changes):**
```tsx
useEffect(() => {
console.log(user.id)
}, [user.id])
```
**For derived state, compute outside effect:**
```tsx
// Incorrect: runs on width=767, 766, 765...
useEffect(() => {
if (width < 768) {
enableMobileMode()
}
}, [width])
// Correct: runs only on boolean transition
const isMobile = width < 768
useEffect(() => {
if (isMobile) {
enableMobileMode()
}
}, [isMobile])
```

View File

@@ -0,0 +1,29 @@
---
title: Subscribe to Derived State
impact: MEDIUM
impactDescription: reduces re-render frequency
tags: rerender, derived-state, media-query, optimization
---
## Subscribe to Derived State
Subscribe to derived boolean state instead of continuous values to reduce re-render frequency.
**Incorrect (re-renders on every pixel change):**
```tsx
function Sidebar() {
const width = useWindowWidth() // updates continuously
const isMobile = width < 768
return <nav className={isMobile ? 'mobile' : 'desktop'}>
}
```
**Correct (re-renders only when boolean changes):**
```tsx
function Sidebar() {
const isMobile = useMediaQuery('(max-width: 767px)')
return <nav className={isMobile ? 'mobile' : 'desktop'}>
}
```

View File

@@ -0,0 +1,74 @@
---
title: Use Functional setState Updates
impact: MEDIUM
impactDescription: prevents stale closures and unnecessary callback recreations
tags: react, hooks, useState, useCallback, callbacks, closures
---
## Use Functional setState Updates
When updating state based on the current state value, use the functional update form of setState instead of directly referencing the state variable. This prevents stale closures, eliminates unnecessary dependencies, and creates stable callback references.
**Incorrect (requires state as dependency):**
```tsx
function TodoList() {
const [items, setItems] = useState(initialItems)
// Callback must depend on items, recreated on every items change
const addItems = useCallback((newItems: Item[]) => {
setItems([...items, ...newItems])
}, [items]) // ❌ items dependency causes recreations
// Risk of stale closure if dependency is forgotten
const removeItem = useCallback((id: string) => {
setItems(items.filter(item => item.id !== id))
}, []) // ❌ Missing items dependency - will use stale items!
return <ItemsEditor items={items} onAdd={addItems} onRemove={removeItem} />
}
```
The first callback is recreated every time `items` changes, which can cause child components to re-render unnecessarily. The second callback has a stale closure bug—it will always reference the initial `items` value.
**Correct (stable callbacks, no stale closures):**
```tsx
function TodoList() {
const [items, setItems] = useState(initialItems)
// Stable callback, never recreated
const addItems = useCallback((newItems: Item[]) => {
setItems(curr => [...curr, ...newItems])
}, []) // ✅ No dependencies needed
// Always uses latest state, no stale closure risk
const removeItem = useCallback((id: string) => {
setItems(curr => curr.filter(item => item.id !== id))
}, []) // ✅ Safe and stable
return <ItemsEditor items={items} onAdd={addItems} onRemove={removeItem} />
}
```
**Benefits:**
1. **Stable callback references** - Callbacks don't need to be recreated when state changes
2. **No stale closures** - Always operates on the latest state value
3. **Fewer dependencies** - Simplifies dependency arrays and reduces memory leaks
4. **Prevents bugs** - Eliminates the most common source of React closure bugs
**When to use functional updates:**
- Any setState that depends on the current state value
- Inside useCallback/useMemo when state is needed
- Event handlers that reference state
- Async operations that update state
**When direct updates are fine:**
- Setting state to a static value: `setCount(0)`
- Setting state from props/arguments only: `setName(newName)`
- State doesn't depend on previous value
**Note:** If your project has [React Compiler](https://react.dev/learn/react-compiler) enabled, the compiler can automatically optimize some cases, but functional updates are still recommended for correctness and to prevent stale closure bugs.

View File

@@ -0,0 +1,58 @@
---
title: Use Lazy State Initialization
impact: MEDIUM
impactDescription: wasted computation on every render
tags: react, hooks, useState, performance, initialization
---
## Use Lazy State Initialization
Pass a function to `useState` for expensive initial values. Without the function form, the initializer runs on every render even though the value is only used once.
**Incorrect (runs on every render):**
```tsx
function FilteredList({ items }: { items: Item[] }) {
// buildSearchIndex() runs on EVERY render, even after initialization
const [searchIndex, setSearchIndex] = useState(buildSearchIndex(items))
const [query, setQuery] = useState('')
// When query changes, buildSearchIndex runs again unnecessarily
return <SearchResults index={searchIndex} query={query} />
}
function UserProfile() {
// JSON.parse runs on every render
const [settings, setSettings] = useState(
JSON.parse(localStorage.getItem('settings') || '{}')
)
return <SettingsForm settings={settings} onChange={setSettings} />
}
```
**Correct (runs only once):**
```tsx
function FilteredList({ items }: { items: Item[] }) {
// buildSearchIndex() runs ONLY on initial render
const [searchIndex, setSearchIndex] = useState(() => buildSearchIndex(items))
const [query, setQuery] = useState('')
return <SearchResults index={searchIndex} query={query} />
}
function UserProfile() {
// JSON.parse runs only on initial render
const [settings, setSettings] = useState(() => {
const stored = localStorage.getItem('settings')
return stored ? JSON.parse(stored) : {}
})
return <SettingsForm settings={settings} onChange={setSettings} />
}
```
Use lazy initialization when computing initial values from localStorage/sessionStorage, building data structures (indexes, maps), reading from the DOM, or performing heavy transformations.
For simple primitives (`useState(0)`), direct references (`useState(props.value)`), or cheap literals (`useState({})`), the function form is unnecessary.

View File

@@ -0,0 +1,44 @@
---
title: Extract to Memoized Components
impact: MEDIUM
impactDescription: enables early returns
tags: rerender, memo, useMemo, optimization
---
## Extract to Memoized Components
Extract expensive work into memoized components to enable early returns before computation.
**Incorrect (computes avatar even when loading):**
```tsx
function Profile({ user, loading }: Props) {
const avatar = useMemo(() => {
const id = computeAvatarId(user)
return <Avatar id={id} />
}, [user])
if (loading) return <Skeleton />
return <div>{avatar}</div>
}
```
**Correct (skips computation when loading):**
```tsx
const UserAvatar = memo(function UserAvatar({ user }: { user: User }) {
const id = useMemo(() => computeAvatarId(user), [user])
return <Avatar id={id} />
})
function Profile({ user, loading }: Props) {
if (loading) return <Skeleton />
return (
<div>
<UserAvatar user={user} />
</div>
)
}
```
**Note:** If your project has [React Compiler](https://react.dev/learn/react-compiler) enabled, manual memoization with `memo()` and `useMemo()` is not necessary. The compiler automatically optimizes re-renders.

View File

@@ -0,0 +1,40 @@
---
title: Use Transitions for Non-Urgent Updates
impact: MEDIUM
impactDescription: maintains UI responsiveness
tags: rerender, transitions, startTransition, performance
---
## Use Transitions for Non-Urgent Updates
Mark frequent, non-urgent state updates as transitions to maintain UI responsiveness.
**Incorrect (blocks UI on every scroll):**
```tsx
function ScrollTracker() {
const [scrollY, setScrollY] = useState(0)
useEffect(() => {
const handler = () => setScrollY(window.scrollY)
window.addEventListener('scroll', handler, { passive: true })
return () => window.removeEventListener('scroll', handler)
}, [])
}
```
**Correct (non-blocking updates):**
```tsx
import { startTransition } from 'react'
function ScrollTracker() {
const [scrollY, setScrollY] = useState(0)
useEffect(() => {
const handler = () => {
startTransition(() => setScrollY(window.scrollY))
}
window.addEventListener('scroll', handler, { passive: true })
return () => window.removeEventListener('scroll', handler)
}, [])
}
```

View File

@@ -0,0 +1,73 @@
---
title: Use after() for Non-Blocking Operations
impact: MEDIUM
impactDescription: faster response times
tags: server, async, logging, analytics, side-effects
---
## Use after() for Non-Blocking Operations
Use Next.js's `after()` to schedule work that should execute after a response is sent. This prevents logging, analytics, and other side effects from blocking the response.
**Incorrect (blocks response):**
```tsx
import { logUserAction } from '@/app/utils'
export async function POST(request: Request) {
// Perform mutation
await updateDatabase(request)
// Logging blocks the response
const userAgent = request.headers.get('user-agent') || 'unknown'
await logUserAction({ userAgent })
return new Response(JSON.stringify({ status: 'success' }), {
status: 200,
headers: { 'Content-Type': 'application/json' }
})
}
```
**Correct (non-blocking):**
```tsx
import { after } from 'next/server'
import { headers, cookies } from 'next/headers'
import { logUserAction } from '@/app/utils'
export async function POST(request: Request) {
// Perform mutation
await updateDatabase(request)
// Log after response is sent
after(async () => {
const userAgent = (await headers()).get('user-agent') || 'unknown'
const sessionCookie = (await cookies()).get('session-id')?.value || 'anonymous'
logUserAction({ sessionCookie, userAgent })
})
return new Response(JSON.stringify({ status: 'success' }), {
status: 200,
headers: { 'Content-Type': 'application/json' }
})
}
```
The response is sent immediately while logging happens in the background.
**Common use cases:**
- Analytics tracking
- Audit logging
- Sending notifications
- Cache invalidation
- Cleanup tasks
**Important notes:**
- `after()` runs even if the response fails or redirects
- Works in Server Actions, Route Handlers, and Server Components
Reference: [https://nextjs.org/docs/app/api-reference/functions/after](https://nextjs.org/docs/app/api-reference/functions/after)

View File

@@ -0,0 +1,41 @@
---
title: Cross-Request LRU Caching
impact: HIGH
impactDescription: caches across requests
tags: server, cache, lru, cross-request
---
## Cross-Request LRU Caching
`React.cache()` only works within one request. For data shared across sequential requests (user clicks button A then button B), use an LRU cache.
**Implementation:**
```typescript
import { LRUCache } from 'lru-cache'
const cache = new LRUCache<string, any>({
max: 1000,
ttl: 5 * 60 * 1000 // 5 minutes
})
export async function getUser(id: string) {
const cached = cache.get(id)
if (cached) return cached
const user = await db.user.findUnique({ where: { id } })
cache.set(id, user)
return user
}
// Request 1: DB query, result cached
// Request 2: cache hit, no DB query
```
Use when sequential user actions hit multiple endpoints needing the same data within seconds.
**With Vercel's [Fluid Compute](https://vercel.com/docs/fluid-compute):** LRU caching is especially effective because multiple concurrent requests can share the same function instance and cache. This means the cache persists across requests without needing external storage like Redis.
**In traditional serverless:** Each invocation runs in isolation, so consider Redis for cross-process caching.
Reference: [https://github.com/isaacs/node-lru-cache](https://github.com/isaacs/node-lru-cache)

View File

@@ -0,0 +1,26 @@
---
title: Per-Request Deduplication with React.cache()
impact: MEDIUM
impactDescription: deduplicates within request
tags: server, cache, react-cache, deduplication
---
## Per-Request Deduplication with React.cache()
Use `React.cache()` for server-side request deduplication. Authentication and database queries benefit most.
**Usage:**
```typescript
import { cache } from 'react'
export const getCurrentUser = cache(async () => {
const session = await auth()
if (!session?.user?.id) return null
return await db.user.findUnique({
where: { id: session.user.id }
})
})
```
Within a single request, multiple calls to `getCurrentUser()` execute the query only once.

View File

@@ -0,0 +1,79 @@
---
title: Parallel Data Fetching with Component Composition
impact: CRITICAL
impactDescription: eliminates server-side waterfalls
tags: server, rsc, parallel-fetching, composition
---
## Parallel Data Fetching with Component Composition
React Server Components execute sequentially within a tree. Restructure with composition to parallelize data fetching.
**Incorrect (Sidebar waits for Page's fetch to complete):**
```tsx
export default async function Page() {
const header = await fetchHeader()
return (
<div>
<div>{header}</div>
<Sidebar />
</div>
)
}
async function Sidebar() {
const items = await fetchSidebarItems()
return <nav>{items.map(renderItem)}</nav>
}
```
**Correct (both fetch simultaneously):**
```tsx
async function Header() {
const data = await fetchHeader()
return <div>{data}</div>
}
async function Sidebar() {
const items = await fetchSidebarItems()
return <nav>{items.map(renderItem)}</nav>
}
export default function Page() {
return (
<div>
<Header />
<Sidebar />
</div>
)
}
```
**Alternative with children prop:**
```tsx
async function Layout({ children }: { children: ReactNode }) {
const header = await fetchHeader()
return (
<div>
<div>{header}</div>
{children}
</div>
)
}
async function Sidebar() {
const items = await fetchSidebarItems()
return <nav>{items.map(renderItem)}</nav>
}
export default function Page() {
return (
<Layout>
<Sidebar />
</Layout>
)
}
```

View File

@@ -0,0 +1,38 @@
---
title: Minimize Serialization at RSC Boundaries
impact: HIGH
impactDescription: reduces data transfer size
tags: server, rsc, serialization, props
---
## Minimize Serialization at RSC Boundaries
The React Server/Client boundary serializes all object properties into strings and embeds them in the HTML response and subsequent RSC requests. This serialized data directly impacts page weight and load time, so **size matters a lot**. Only pass fields that the client actually uses.
**Incorrect (serializes all 50 fields):**
```tsx
async function Page() {
const user = await fetchUser() // 50 fields
return <Profile user={user} />
}
'use client'
function Profile({ user }: { user: User }) {
return <div>{user.name}</div> // uses 1 field
}
```
**Correct (serializes only 1 field):**
```tsx
async function Page() {
const user = await fetchUser()
return <Profile name={user.name} />
}
'use client'
function Profile({ name }: { name: string }) {
return <div>{name}</div>
}
```

View File

@@ -1,6 +1,9 @@
# Ignore everything by default, selectively add things to context # Ignore everything by default, selectively add things to context
* *
# Documentation (for embeddings/search)
!docs/
# Platform - Libs # Platform - Libs
!autogpt_platform/autogpt_libs/autogpt_libs/ !autogpt_platform/autogpt_libs/autogpt_libs/
!autogpt_platform/autogpt_libs/pyproject.toml !autogpt_platform/autogpt_libs/pyproject.toml

View File

@@ -93,5 +93,5 @@ jobs:
Error logs: Error logs:
${{ toJSON(fromJSON(steps.failure_details.outputs.result).errorLogs) }} ${{ toJSON(fromJSON(steps.failure_details.outputs.result).errorLogs) }}
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }} claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
claude_args: "--allowedTools 'Edit,MultiEdit,Write,Read,Glob,Grep,LS,Bash(git:*),Bash(bun:*),Bash(npm:*),Bash(npx:*),Bash(gh:*)'" claude_args: "--allowedTools 'Edit,MultiEdit,Write,Read,Glob,Grep,LS,Bash(git:*),Bash(bun:*),Bash(npm:*),Bash(npx:*),Bash(gh:*)'"

View File

@@ -7,7 +7,7 @@
# - Provide actionable recommendations for the development team # - Provide actionable recommendations for the development team
# #
# Triggered on: Dependabot PRs (opened, synchronize) # Triggered on: Dependabot PRs (opened, synchronize)
# Requirements: ANTHROPIC_API_KEY secret must be configured # Requirements: CLAUDE_CODE_OAUTH_TOKEN secret must be configured
name: Claude Dependabot PR Review name: Claude Dependabot PR Review
@@ -308,7 +308,7 @@ jobs:
id: claude_review id: claude_review
uses: anthropics/claude-code-action@v1 uses: anthropics/claude-code-action@v1
with: with:
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }} claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
claude_args: | claude_args: |
--allowedTools "Bash(npm:*),Bash(pnpm:*),Bash(poetry:*),Bash(git:*),Edit,Replace,NotebookEditCell,mcp__github_inline_comment__create_inline_comment,Bash(gh pr comment:*), Bash(gh pr diff:*), Bash(gh pr view:*)" --allowedTools "Bash(npm:*),Bash(pnpm:*),Bash(poetry:*),Bash(git:*),Edit,Replace,NotebookEditCell,mcp__github_inline_comment__create_inline_comment,Bash(gh pr comment:*), Bash(gh pr diff:*), Bash(gh pr view:*)"
prompt: | prompt: |

View File

@@ -323,7 +323,7 @@ jobs:
id: claude id: claude
uses: anthropics/claude-code-action@v1 uses: anthropics/claude-code-action@v1
with: with:
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }} claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
claude_args: | claude_args: |
--allowedTools "Bash(npm:*),Bash(pnpm:*),Bash(poetry:*),Bash(git:*),Edit,Replace,NotebookEditCell,mcp__github_inline_comment__create_inline_comment,Bash(gh pr comment:*), Bash(gh pr diff:*), Bash(gh pr view:*), Bash(gh pr edit:*)" --allowedTools "Bash(npm:*),Bash(pnpm:*),Bash(poetry:*),Bash(git:*),Edit,Replace,NotebookEditCell,mcp__github_inline_comment__create_inline_comment,Bash(gh pr comment:*), Bash(gh pr diff:*), Bash(gh pr view:*), Bash(gh pr edit:*)"
--model opus --model opus

78
.github/workflows/docs-block-sync.yml vendored Normal file
View File

@@ -0,0 +1,78 @@
name: Block Documentation Sync Check
on:
push:
branches: [master, dev]
paths:
- "autogpt_platform/backend/backend/blocks/**"
- "docs/integrations/**"
- "autogpt_platform/backend/scripts/generate_block_docs.py"
- ".github/workflows/docs-block-sync.yml"
pull_request:
branches: [master, dev]
paths:
- "autogpt_platform/backend/backend/blocks/**"
- "docs/integrations/**"
- "autogpt_platform/backend/scripts/generate_block_docs.py"
- ".github/workflows/docs-block-sync.yml"
jobs:
check-docs-sync:
runs-on: ubuntu-latest
timeout-minutes: 15
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 1
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
restore-keys: |
poetry-${{ runner.os }}-
- name: Install Poetry
run: |
cd autogpt_platform/backend
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
echo "Found Poetry version ${HEAD_POETRY_VERSION} in backend/poetry.lock"
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
echo "$HOME/.local/bin" >> $GITHUB_PATH
- name: Install dependencies
working-directory: autogpt_platform/backend
run: |
poetry install --only main
poetry run prisma generate
- name: Check block documentation is in sync
working-directory: autogpt_platform/backend
run: |
echo "Checking if block documentation is in sync with code..."
poetry run python scripts/generate_block_docs.py --check
- name: Show diff if out of sync
if: failure()
working-directory: autogpt_platform/backend
run: |
echo "::error::Block documentation is out of sync with code!"
echo ""
echo "To fix this, run the following command locally:"
echo " cd autogpt_platform/backend && poetry run python scripts/generate_block_docs.py"
echo ""
echo "Then commit the updated documentation files."
echo ""
echo "Regenerating docs to show diff..."
poetry run python scripts/generate_block_docs.py
echo ""
echo "Changes detected:"
git diff ../../docs/integrations/ || true

View File

@@ -0,0 +1,95 @@
name: Claude Block Docs Review
on:
pull_request:
types: [opened, synchronize]
paths:
- "docs/integrations/**"
- "autogpt_platform/backend/backend/blocks/**"
jobs:
claude-review:
# Only run for PRs from members/collaborators
if: |
github.event.pull_request.author_association == 'OWNER' ||
github.event.pull_request.author_association == 'MEMBER' ||
github.event.pull_request.author_association == 'COLLABORATOR'
runs-on: ubuntu-latest
timeout-minutes: 15
permissions:
contents: read
pull-requests: write
id-token: write
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
restore-keys: |
poetry-${{ runner.os }}-
- name: Install Poetry
run: |
cd autogpt_platform/backend
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
echo "$HOME/.local/bin" >> $GITHUB_PATH
- name: Install dependencies
working-directory: autogpt_platform/backend
run: |
poetry install --only main
poetry run prisma generate
- name: Run Claude Code Review
uses: anthropics/claude-code-action@v1
with:
claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
claude_args: |
--allowedTools "Read,Glob,Grep,Bash(gh pr comment:*),Bash(gh pr diff:*),Bash(gh pr view:*)"
prompt: |
You are reviewing a PR that modifies block documentation or block code for AutoGPT.
## Your Task
Review the changes in this PR and provide constructive feedback. Focus on:
1. **Documentation Accuracy**: For any block code changes, verify that:
- Input/output tables in docs match the actual block schemas
- Description text accurately reflects what the block does
- Any new blocks have corresponding documentation
2. **Manual Content Quality**: Check manual sections (marked with `<!-- MANUAL: -->` markers):
- "How it works" sections should have clear technical explanations
- "Possible use case" sections should have practical, real-world examples
- Content should be helpful for users trying to understand the blocks
3. **Template Compliance**: Ensure docs follow the standard template:
- What it is (brief intro)
- What it does (description)
- How it works (technical explanation)
- Inputs table
- Outputs table
- Possible use case
4. **Cross-references**: Check that links and anchors are correct
## Review Process
1. First, get the PR diff to see what changed: `gh pr diff ${{ github.event.pull_request.number }}`
2. Read any modified block files to understand the implementation
3. Read corresponding documentation files to verify accuracy
4. Provide your feedback as a PR comment
Be constructive and specific. If everything looks good, say so!
If there are issues, explain what's wrong and suggest how to fix it.

194
.github/workflows/docs-enhance.yml vendored Normal file
View File

@@ -0,0 +1,194 @@
name: Enhance Block Documentation
on:
workflow_dispatch:
inputs:
block_pattern:
description: 'Block file pattern to enhance (e.g., "google/*.md" or "*" for all blocks)'
required: true
default: '*'
type: string
dry_run:
description: 'Dry run mode - show proposed changes without committing'
type: boolean
default: true
max_blocks:
description: 'Maximum number of blocks to process (0 for unlimited)'
type: number
default: 10
jobs:
enhance-docs:
runs-on: ubuntu-latest
timeout-minutes: 45
permissions:
contents: write
pull-requests: write
id-token: write
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 1
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
restore-keys: |
poetry-${{ runner.os }}-
- name: Install Poetry
run: |
cd autogpt_platform/backend
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
echo "$HOME/.local/bin" >> $GITHUB_PATH
- name: Install dependencies
working-directory: autogpt_platform/backend
run: |
poetry install --only main
poetry run prisma generate
- name: Run Claude Enhancement
uses: anthropics/claude-code-action@v1
with:
claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
claude_args: |
--allowedTools "Read,Edit,Glob,Grep,Write,Bash(git:*),Bash(gh:*),Bash(find:*),Bash(ls:*)"
prompt: |
You are enhancing block documentation for AutoGPT. Your task is to improve the MANUAL sections
of block documentation files by reading the actual block implementations and writing helpful content.
## Configuration
- Block pattern: ${{ inputs.block_pattern }}
- Dry run: ${{ inputs.dry_run }}
- Max blocks to process: ${{ inputs.max_blocks }}
## Your Task
1. **Find Documentation Files**
Find block documentation files matching the pattern in `docs/integrations/`
Pattern: ${{ inputs.block_pattern }}
Use: `find docs/integrations -name "*.md" -type f`
2. **For Each Documentation File** (up to ${{ inputs.max_blocks }} files):
a. Read the documentation file
b. Identify which block(s) it documents (look for the block class name)
c. Find and read the corresponding block implementation in `autogpt_platform/backend/backend/blocks/`
d. Improve the MANUAL sections:
**"How it works" section** (within `<!-- MANUAL: how_it_works -->` markers):
- Explain the technical flow of the block
- Describe what APIs or services it connects to
- Note any important configuration or prerequisites
- Keep it concise but informative (2-4 paragraphs)
**"Possible use case" section** (within `<!-- MANUAL: use_case -->` markers):
- Provide 2-3 practical, real-world examples
- Make them specific and actionable
- Show how this block could be used in an automation workflow
3. **Important Rules**
- ONLY modify content within `<!-- MANUAL: -->` and `<!-- END MANUAL -->` markers
- Do NOT modify auto-generated sections (inputs/outputs tables, descriptions)
- Keep content accurate based on the actual block implementation
- Write for users who may not be technical experts
4. **Output**
${{ inputs.dry_run == true && 'DRY RUN MODE: Show proposed changes for each file but do NOT actually edit the files. Describe what you would change.' || 'LIVE MODE: Actually edit the files to improve the documentation.' }}
## Example Improvements
**Before (How it works):**
```
_Add technical explanation here._
```
**After (How it works):**
```
This block connects to the GitHub API to retrieve issue information. When executed,
it authenticates using your GitHub credentials and fetches issue details including
title, body, labels, and assignees.
The block requires a valid GitHub OAuth connection with repository access permissions.
It supports both public and private repositories you have access to.
```
**Before (Possible use case):**
```
_Add practical use case examples here._
```
**After (Possible use case):**
```
**Customer Support Automation**: Monitor a GitHub repository for new issues with
the "bug" label, then automatically create a ticket in your support system and
notify the on-call engineer via Slack.
**Release Notes Generation**: When a new release is published, gather all closed
issues since the last release and generate a summary for your changelog.
```
Begin by finding and listing the documentation files to process.
- name: Create PR with enhanced documentation
if: ${{ inputs.dry_run == false }}
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
# Check if there are changes
if git diff --quiet docs/integrations/; then
echo "No changes to commit"
exit 0
fi
# Configure git
git config user.name "github-actions[bot]"
git config user.email "github-actions[bot]@users.noreply.github.com"
# Create branch and commit
BRANCH_NAME="docs/enhance-blocks-$(date +%Y%m%d-%H%M%S)"
git checkout -b "$BRANCH_NAME"
git add docs/integrations/
git commit -m "docs: enhance block documentation with LLM-generated content
Pattern: ${{ inputs.block_pattern }}
Max blocks: ${{ inputs.max_blocks }}
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>"
# Push and create PR
git push -u origin "$BRANCH_NAME"
gh pr create \
--title "docs: LLM-enhanced block documentation" \
--body "## Summary
This PR contains LLM-enhanced documentation for block files matching pattern: \`${{ inputs.block_pattern }}\`
The following manual sections were improved:
- **How it works**: Technical explanations based on block implementations
- **Possible use case**: Practical, real-world examples
## Review Checklist
- [ ] Content is accurate based on block implementations
- [ ] Examples are practical and helpful
- [ ] No auto-generated sections were modified
---
🤖 Generated with [Claude Code](https://claude.com/claude-code)" \
--base dev

View File

@@ -100,6 +100,7 @@ COPY autogpt_platform/backend/migrations /app/autogpt_platform/backend/migration
FROM server_dependencies AS server FROM server_dependencies AS server
COPY autogpt_platform/backend /app/autogpt_platform/backend COPY autogpt_platform/backend /app/autogpt_platform/backend
COPY docs /app/docs
RUN poetry install --no-ansi --only-root RUN poetry install --no-ansi --only-root
ENV PORT=8000 ENV PORT=8000

View File

@@ -28,6 +28,7 @@ from backend.executor.manager import get_db_async_client
from backend.util.settings import Settings from backend.util.settings import Settings
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
settings = Settings()
class ExecutionAnalyticsRequest(BaseModel): class ExecutionAnalyticsRequest(BaseModel):
@@ -63,6 +64,8 @@ class ExecutionAnalyticsResult(BaseModel):
score: Optional[float] score: Optional[float]
status: str # "success", "failed", "skipped" status: str # "success", "failed", "skipped"
error_message: Optional[str] = None error_message: Optional[str] = None
started_at: Optional[datetime] = None
ended_at: Optional[datetime] = None
class ExecutionAnalyticsResponse(BaseModel): class ExecutionAnalyticsResponse(BaseModel):
@@ -224,11 +227,6 @@ async def generate_execution_analytics(
) )
try: try:
# Validate model configuration
settings = Settings()
if not settings.secrets.openai_internal_api_key:
raise HTTPException(status_code=500, detail="OpenAI API key not configured")
# Get database client # Get database client
db_client = get_db_async_client() db_client = get_db_async_client()
@@ -320,6 +318,8 @@ async def generate_execution_analytics(
), ),
status="skipped", status="skipped",
error_message=None, # Not an error - just already processed error_message=None, # Not an error - just already processed
started_at=execution.started_at,
ended_at=execution.ended_at,
) )
) )
@@ -349,6 +349,9 @@ async def _process_batch(
) -> list[ExecutionAnalyticsResult]: ) -> list[ExecutionAnalyticsResult]:
"""Process a batch of executions concurrently.""" """Process a batch of executions concurrently."""
if not settings.secrets.openai_internal_api_key:
raise HTTPException(status_code=500, detail="OpenAI API key not configured")
async def process_single_execution(execution) -> ExecutionAnalyticsResult: async def process_single_execution(execution) -> ExecutionAnalyticsResult:
try: try:
# Generate activity status and score using the specified model # Generate activity status and score using the specified model
@@ -387,6 +390,8 @@ async def _process_batch(
score=None, score=None,
status="skipped", status="skipped",
error_message="Activity generation returned None", error_message="Activity generation returned None",
started_at=execution.started_at,
ended_at=execution.ended_at,
) )
# Update the execution stats # Update the execution stats
@@ -416,6 +421,8 @@ async def _process_batch(
summary_text=activity_response["activity_status"], summary_text=activity_response["activity_status"],
score=activity_response["correctness_score"], score=activity_response["correctness_score"],
status="success", status="success",
started_at=execution.started_at,
ended_at=execution.ended_at,
) )
except Exception as e: except Exception as e:
@@ -429,6 +436,8 @@ async def _process_batch(
score=None, score=None,
status="failed", status="failed",
error_message=str(e), error_message=str(e),
started_at=execution.started_at,
ended_at=execution.ended_at,
) )
# Process all executions in the batch concurrently # Process all executions in the batch concurrently

View File

@@ -4,14 +4,9 @@ from collections.abc import AsyncGenerator
from typing import Any from typing import Any
import orjson import orjson
from langfuse import Langfuse from langfuse import get_client, propagate_attributes
from openai import ( from langfuse.openai import openai # type: ignore
APIConnectionError, from openai import APIConnectionError, APIError, APIStatusError, RateLimitError
APIError,
APIStatusError,
AsyncOpenAI,
RateLimitError,
)
from openai.types.chat import ChatCompletionChunk, ChatCompletionToolParam from openai.types.chat import ChatCompletionChunk, ChatCompletionToolParam
from backend.data.understanding import ( from backend.data.understanding import (
@@ -21,7 +16,6 @@ from backend.data.understanding import (
from backend.util.exceptions import NotFoundError from backend.util.exceptions import NotFoundError
from backend.util.settings import Settings from backend.util.settings import Settings
from . import db as chat_db
from .config import ChatConfig from .config import ChatConfig
from .model import ( from .model import (
ChatMessage, ChatMessage,
@@ -50,10 +44,10 @@ logger = logging.getLogger(__name__)
config = ChatConfig() config = ChatConfig()
settings = Settings() settings = Settings()
client = AsyncOpenAI(api_key=config.api_key, base_url=config.base_url) client = openai.AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
# Langfuse client (lazy initialization)
_langfuse_client: Langfuse | None = None langfuse = get_client()
class LangfuseNotConfiguredError(Exception): class LangfuseNotConfiguredError(Exception):
@@ -69,65 +63,6 @@ def _is_langfuse_configured() -> bool:
) )
def _get_langfuse_client() -> Langfuse:
"""Get or create the Langfuse client for prompt management and tracing."""
global _langfuse_client
if _langfuse_client is None:
if not _is_langfuse_configured():
raise LangfuseNotConfiguredError(
"Langfuse is not configured. The chat feature requires Langfuse for prompt management. "
"Please set the LANGFUSE_PUBLIC_KEY and LANGFUSE_SECRET_KEY environment variables."
)
_langfuse_client = Langfuse(
public_key=settings.secrets.langfuse_public_key,
secret_key=settings.secrets.langfuse_secret_key,
host=settings.secrets.langfuse_host or "https://cloud.langfuse.com",
)
return _langfuse_client
def _get_environment() -> str:
"""Get the current environment name for Langfuse tagging."""
return settings.config.app_env.value
def _get_langfuse_prompt() -> str:
"""Fetch the latest production prompt from Langfuse.
Returns:
The compiled prompt text from Langfuse.
Raises:
Exception: If Langfuse is unavailable or prompt fetch fails.
"""
try:
langfuse = _get_langfuse_client()
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
prompt = langfuse.get_prompt(config.langfuse_prompt_name, cache_ttl_seconds=0)
compiled = prompt.compile()
logger.info(
f"Fetched prompt '{config.langfuse_prompt_name}' from Langfuse "
f"(version: {prompt.version})"
)
return compiled
except Exception as e:
logger.error(f"Failed to fetch prompt from Langfuse: {e}")
raise
async def _is_first_session(user_id: str) -> bool:
"""Check if this is the user's first chat session.
Returns True if the user has 1 or fewer sessions (meaning this is their first).
"""
try:
session_count = await chat_db.get_user_session_count(user_id)
return session_count <= 1
except Exception as e:
logger.warning(f"Failed to check session count for user {user_id}: {e}")
return False # Default to non-onboarding if we can't check
async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]: async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
"""Build the full system prompt including business understanding if available. """Build the full system prompt including business understanding if available.
@@ -139,8 +74,6 @@ async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
Tuple of (compiled prompt string, Langfuse prompt object for tracing) Tuple of (compiled prompt string, Langfuse prompt object for tracing)
""" """
langfuse = _get_langfuse_client()
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt # cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
prompt = langfuse.get_prompt(config.langfuse_prompt_name, cache_ttl_seconds=0) prompt = langfuse.get_prompt(config.langfuse_prompt_name, cache_ttl_seconds=0)
@@ -158,7 +91,7 @@ async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
context = "This is the first time you are meeting the user. Greet them and introduce them to the platform" context = "This is the first time you are meeting the user. Greet them and introduce them to the platform"
compiled = prompt.compile(users_information=context) compiled = prompt.compile(users_information=context)
return compiled, prompt return compiled, understanding
async def _generate_session_title(message: str) -> str | None: async def _generate_session_title(message: str) -> str | None:
@@ -217,6 +150,7 @@ async def assign_user_to_session(
async def stream_chat_completion( async def stream_chat_completion(
session_id: str, session_id: str,
message: str | None = None, message: str | None = None,
tool_call_response: str | None = None,
is_user_message: bool = True, is_user_message: bool = True,
user_id: str | None = None, user_id: str | None = None,
retry_count: int = 0, retry_count: int = 0,
@@ -256,11 +190,6 @@ async def stream_chat_completion(
yield StreamFinish() yield StreamFinish()
return return
# Langfuse observations will be created after session is loaded (need messages for input)
# Initialize to None so finally block can safely check and end them
trace = None
generation = None
# Only fetch from Redis if session not provided (initial call) # Only fetch from Redis if session not provided (initial call)
if session is None: if session is None:
session = await get_chat_session(session_id, user_id) session = await get_chat_session(session_id, user_id)
@@ -299,9 +228,6 @@ async def stream_chat_completion(
f"new message_count={len(session.messages)}" f"new message_count={len(session.messages)}"
) )
if len(session.messages) > config.max_context_messages:
raise ValueError(f"Max messages exceeded: {config.max_context_messages}")
logger.info( logger.info(
f"Upserting session: {session.session_id} with user id {session.user_id}, " f"Upserting session: {session.session_id} with user id {session.user_id}, "
f"message_count={len(session.messages)}" f"message_count={len(session.messages)}"
@@ -339,297 +265,259 @@ async def stream_chat_completion(
asyncio.create_task(_update_title()) asyncio.create_task(_update_title())
# Build system prompt with business understanding # Build system prompt with business understanding
system_prompt, langfuse_prompt = await _build_system_prompt(user_id) system_prompt, understanding = await _build_system_prompt(user_id)
# Build input messages including system prompt for complete Langfuse logging
trace_input_messages = [{"role": "system", "content": system_prompt}] + [
m.model_dump() for m in session.messages
]
# Create Langfuse trace for this LLM call (each call gets its own trace, grouped by session_id) # Create Langfuse trace for this LLM call (each call gets its own trace, grouped by session_id)
# Using v3 SDK: start_observation creates a root span, update_trace sets trace-level attributes # Using v3 SDK: start_observation creates a root span, update_trace sets trace-level attributes
try: input = message
langfuse = _get_langfuse_client() if not message and tool_call_response:
env = _get_environment() input = tool_call_response
trace = langfuse.start_observation(
name="chat_completion", langfuse = get_client()
input={"messages": trace_input_messages}, with langfuse.start_as_current_observation(
metadata={ as_type="span",
"environment": env, name="user-copilot-request",
"model": config.model, input=input,
"message_count": len(session.messages), ) as span:
"prompt_name": langfuse_prompt.name if langfuse_prompt else None, with propagate_attributes(
"prompt_version": langfuse_prompt.version if langfuse_prompt else None,
},
)
# Set trace-level attributes (session_id, user_id, tags)
trace.update_trace(
session_id=session_id, session_id=session_id,
user_id=user_id, user_id=user_id,
tags=[env, "copilot"], tags=["copilot"],
) metadata={
except Exception as e: "users_information": format_understanding_for_prompt(understanding)[
logger.warning(f"Failed to create Langfuse trace: {e}") :200
] # langfuse only accepts upto to 200 chars
},
):
# Initialize variables that will be used in finally block (must be defined before try) # Initialize variables that will be used in finally block (must be defined before try)
assistant_response = ChatMessage( assistant_response = ChatMessage(
role="assistant", role="assistant",
content="", content="",
)
accumulated_tool_calls: list[dict[str, Any]] = []
# Wrap main logic in try/finally to ensure Langfuse observations are always ended
try:
has_yielded_end = False
has_yielded_error = False
has_done_tool_call = False
has_received_text = False
text_streaming_ended = False
tool_response_messages: list[ChatMessage] = []
should_retry = False
# Generate unique IDs for AI SDK protocol
import uuid as uuid_module
message_id = str(uuid_module.uuid4())
text_block_id = str(uuid_module.uuid4())
# Yield message start
yield StreamStart(messageId=message_id)
# Create Langfuse generation for each LLM call, linked to the prompt
# Using v3 SDK: start_observation with as_type="generation"
generation = (
trace.start_observation(
as_type="generation",
name="llm_call",
model=config.model,
input={"messages": trace_input_messages},
prompt=langfuse_prompt,
) )
if trace accumulated_tool_calls: list[dict[str, Any]] = []
else None
)
try: # Wrap main logic in try/finally to ensure Langfuse observations are always ended
async for chunk in _stream_chat_chunks( has_yielded_end = False
session=session, has_yielded_error = False
tools=tools, has_done_tool_call = False
system_prompt=system_prompt, has_received_text = False
text_block_id=text_block_id, text_streaming_ended = False
): tool_response_messages: list[ChatMessage] = []
should_retry = False
if isinstance(chunk, StreamTextStart): # Generate unique IDs for AI SDK protocol
# Emit text-start before first text delta import uuid as uuid_module
if not has_received_text:
message_id = str(uuid_module.uuid4())
text_block_id = str(uuid_module.uuid4())
# Yield message start
yield StreamStart(messageId=message_id)
try:
async for chunk in _stream_chat_chunks(
session=session,
tools=tools,
system_prompt=system_prompt,
text_block_id=text_block_id,
):
if isinstance(chunk, StreamTextStart):
# Emit text-start before first text delta
if not has_received_text:
yield chunk
elif isinstance(chunk, StreamTextDelta):
delta = chunk.delta or ""
assert assistant_response.content is not None
assistant_response.content += delta
has_received_text = True
yield chunk yield chunk
elif isinstance(chunk, StreamTextDelta): elif isinstance(chunk, StreamTextEnd):
delta = chunk.delta or "" # Emit text-end after text completes
assert assistant_response.content is not None if has_received_text and not text_streaming_ended:
assistant_response.content += delta text_streaming_ended = True
has_received_text = True if assistant_response.content:
yield chunk logger.warn(
elif isinstance(chunk, StreamTextEnd): f"StreamTextEnd: Attempting to set output {assistant_response.content}"
# Emit text-end after text completes )
if has_received_text and not text_streaming_ended: span.update_trace(output=assistant_response.content)
text_streaming_ended = True span.update(output=assistant_response.content)
yield chunk yield chunk
elif isinstance(chunk, StreamToolInputStart): elif isinstance(chunk, StreamToolInputStart):
# Emit text-end before first tool call, but only if we've received text # Emit text-end before first tool call, but only if we've received text
if has_received_text and not text_streaming_ended:
yield StreamTextEnd(id=text_block_id)
text_streaming_ended = True
yield chunk
elif isinstance(chunk, StreamToolInputAvailable):
# Accumulate tool calls in OpenAI format
accumulated_tool_calls.append(
{
"id": chunk.toolCallId,
"type": "function",
"function": {
"name": chunk.toolName,
"arguments": orjson.dumps(chunk.input).decode("utf-8"),
},
}
)
elif isinstance(chunk, StreamToolOutputAvailable):
result_content = (
chunk.output
if isinstance(chunk.output, str)
else orjson.dumps(chunk.output).decode("utf-8")
)
tool_response_messages.append(
ChatMessage(
role="tool",
content=result_content,
tool_call_id=chunk.toolCallId,
)
)
has_done_tool_call = True
# Track if any tool execution failed
if not chunk.success:
logger.warning(
f"Tool {chunk.toolName} (ID: {chunk.toolCallId}) execution failed"
)
yield chunk
elif isinstance(chunk, StreamFinish):
if not has_done_tool_call:
# Emit text-end before finish if we received text but haven't closed it
if has_received_text and not text_streaming_ended: if has_received_text and not text_streaming_ended:
yield StreamTextEnd(id=text_block_id) yield StreamTextEnd(id=text_block_id)
text_streaming_ended = True text_streaming_ended = True
has_yielded_end = True
yield chunk yield chunk
elif isinstance(chunk, StreamError): elif isinstance(chunk, StreamToolInputAvailable):
has_yielded_error = True # Accumulate tool calls in OpenAI format
elif isinstance(chunk, StreamUsage): accumulated_tool_calls.append(
session.usage.append( {
Usage( "id": chunk.toolCallId,
prompt_tokens=chunk.promptTokens, "type": "function",
completion_tokens=chunk.completionTokens, "function": {
total_tokens=chunk.totalTokens, "name": chunk.toolName,
"arguments": orjson.dumps(chunk.input).decode(
"utf-8"
),
},
}
) )
elif isinstance(chunk, StreamToolOutputAvailable):
result_content = (
chunk.output
if isinstance(chunk.output, str)
else orjson.dumps(chunk.output).decode("utf-8")
)
tool_response_messages.append(
ChatMessage(
role="tool",
content=result_content,
tool_call_id=chunk.toolCallId,
)
)
has_done_tool_call = True
# Track if any tool execution failed
if not chunk.success:
logger.warning(
f"Tool {chunk.toolName} (ID: {chunk.toolCallId}) execution failed"
)
yield chunk
elif isinstance(chunk, StreamFinish):
if not has_done_tool_call:
# Emit text-end before finish if we received text but haven't closed it
if has_received_text and not text_streaming_ended:
yield StreamTextEnd(id=text_block_id)
text_streaming_ended = True
has_yielded_end = True
yield chunk
elif isinstance(chunk, StreamError):
has_yielded_error = True
elif isinstance(chunk, StreamUsage):
session.usage.append(
Usage(
prompt_tokens=chunk.promptTokens,
completion_tokens=chunk.completionTokens,
total_tokens=chunk.totalTokens,
)
)
else:
logger.error(
f"Unknown chunk type: {type(chunk)}", exc_info=True
)
if assistant_response.content:
langfuse.update_current_trace(output=assistant_response.content)
langfuse.update_current_span(output=assistant_response.content)
elif tool_response_messages:
langfuse.update_current_trace(output=str(tool_response_messages))
langfuse.update_current_span(output=str(tool_response_messages))
except Exception as e:
logger.error(f"Error during stream: {e!s}", exc_info=True)
# Check if this is a retryable error (JSON parsing, incomplete tool calls, etc.)
is_retryable = isinstance(
e, (orjson.JSONDecodeError, KeyError, TypeError)
)
if is_retryable and retry_count < config.max_retries:
logger.info(
f"Retryable error encountered. Attempt {retry_count + 1}/{config.max_retries}"
) )
should_retry = True
else: else:
logger.error(f"Unknown chunk type: {type(chunk)}", exc_info=True) # Non-retryable error or max retries exceeded
except Exception as e: # Save any partial progress before reporting error
logger.error(f"Error during stream: {e!s}", exc_info=True) messages_to_save: list[ChatMessage] = []
# Check if this is a retryable error (JSON parsing, incomplete tool calls, etc.) # Add assistant message if it has content or tool calls
is_retryable = isinstance(e, (orjson.JSONDecodeError, KeyError, TypeError)) if accumulated_tool_calls:
assistant_response.tool_calls = accumulated_tool_calls
if assistant_response.content or assistant_response.tool_calls:
messages_to_save.append(assistant_response)
if is_retryable and retry_count < config.max_retries: # Add tool response messages after assistant message
messages_to_save.extend(tool_response_messages)
session.messages.extend(messages_to_save)
await upsert_chat_session(session)
if not has_yielded_error:
error_message = str(e)
if not is_retryable:
error_message = f"Non-retryable error: {error_message}"
elif retry_count >= config.max_retries:
error_message = f"Max retries ({config.max_retries}) exceeded: {error_message}"
error_response = StreamError(errorText=error_message)
yield error_response
if not has_yielded_end:
yield StreamFinish()
return
# Handle retry outside of exception handler to avoid nesting
if should_retry and retry_count < config.max_retries:
logger.info( logger.info(
f"Retryable error encountered. Attempt {retry_count + 1}/{config.max_retries}" f"Retrying stream_chat_completion for session {session_id}, attempt {retry_count + 1}"
) )
should_retry = True async for chunk in stream_chat_completion(
else: session_id=session.session_id,
# Non-retryable error or max retries exceeded user_id=user_id,
# Save any partial progress before reporting error retry_count=retry_count + 1,
messages_to_save: list[ChatMessage] = [] session=session,
context=context,
):
yield chunk
return # Exit after retry to avoid double-saving in finally block
# Add assistant message if it has content or tool calls # Normal completion path - save session and handle tool call continuation
if accumulated_tool_calls:
assistant_response.tool_calls = accumulated_tool_calls
if assistant_response.content or assistant_response.tool_calls:
messages_to_save.append(assistant_response)
# Add tool response messages after assistant message
messages_to_save.extend(tool_response_messages)
session.messages.extend(messages_to_save)
await upsert_chat_session(session)
if not has_yielded_error:
error_message = str(e)
if not is_retryable:
error_message = f"Non-retryable error: {error_message}"
elif retry_count >= config.max_retries:
error_message = f"Max retries ({config.max_retries}) exceeded: {error_message}"
error_response = StreamError(errorText=error_message)
yield error_response
if not has_yielded_end:
yield StreamFinish()
return
# Handle retry outside of exception handler to avoid nesting
if should_retry and retry_count < config.max_retries:
logger.info( logger.info(
f"Retrying stream_chat_completion for session {session_id}, attempt {retry_count + 1}" f"Normal completion path: session={session.session_id}, "
) f"current message_count={len(session.messages)}"
async for chunk in stream_chat_completion(
session_id=session.session_id,
user_id=user_id,
retry_count=retry_count + 1,
session=session,
context=context,
):
yield chunk
return # Exit after retry to avoid double-saving in finally block
# Normal completion path - save session and handle tool call continuation
logger.info(
f"Normal completion path: session={session.session_id}, "
f"current message_count={len(session.messages)}"
)
# Build the messages list in the correct order
messages_to_save: list[ChatMessage] = []
# Add assistant message with tool_calls if any
if accumulated_tool_calls:
assistant_response.tool_calls = accumulated_tool_calls
logger.info(
f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
)
if assistant_response.content or assistant_response.tool_calls:
messages_to_save.append(assistant_response)
logger.info(
f"Saving assistant message with content_len={len(assistant_response.content or '')}, tool_calls={len(assistant_response.tool_calls or [])}"
) )
# Add tool response messages after assistant message # Build the messages list in the correct order
messages_to_save.extend(tool_response_messages) messages_to_save: list[ChatMessage] = []
logger.info(
f"Saving {len(tool_response_messages)} tool response messages, "
f"total_to_save={len(messages_to_save)}"
)
session.messages.extend(messages_to_save) # Add assistant message with tool_calls if any
logger.info( if accumulated_tool_calls:
f"Extended session messages, new message_count={len(session.messages)}" assistant_response.tool_calls = accumulated_tool_calls
) logger.info(
await upsert_chat_session(session) f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
)
# If we did a tool call, stream the chat completion again to get the next response if assistant_response.content or assistant_response.tool_calls:
if has_done_tool_call: messages_to_save.append(assistant_response)
logger.info( logger.info(
"Tool call executed, streaming chat completion again to get assistant response" f"Saving assistant message with content_len={len(assistant_response.content or '')}, tool_calls={len(assistant_response.tool_calls or [])}"
)
async for chunk in stream_chat_completion(
session_id=session.session_id,
user_id=user_id,
session=session, # Pass session object to avoid Redis refetch
context=context,
):
yield chunk
finally:
# Always end Langfuse observations to prevent resource leaks
# Guard against None and catch errors to avoid masking original exceptions
if generation is not None:
try:
latest_usage = session.usage[-1] if session.usage else None
generation.update(
model=config.model,
output={
"content": assistant_response.content,
"tool_calls": accumulated_tool_calls or None,
},
usage_details=(
{
"input": latest_usage.prompt_tokens,
"output": latest_usage.completion_tokens,
"total": latest_usage.total_tokens,
}
if latest_usage
else None
),
) )
generation.end()
except Exception as e:
logger.warning(f"Failed to end Langfuse generation: {e}")
if trace is not None: # Add tool response messages after assistant message
try: messages_to_save.extend(tool_response_messages)
if accumulated_tool_calls: logger.info(
trace.update_trace(output={"tool_calls": accumulated_tool_calls}) f"Saving {len(tool_response_messages)} tool response messages, "
else: f"total_to_save={len(messages_to_save)}"
trace.update_trace(output={"response": assistant_response.content}) )
trace.end()
except Exception as e: session.messages.extend(messages_to_save)
logger.warning(f"Failed to end Langfuse trace: {e}") logger.info(
f"Extended session messages, new message_count={len(session.messages)}"
)
await upsert_chat_session(session)
# If we did a tool call, stream the chat completion again to get the next response
if has_done_tool_call:
logger.info(
"Tool call executed, streaming chat completion again to get assistant response"
)
async for chunk in stream_chat_completion(
session_id=session.session_id,
user_id=user_id,
session=session, # Pass session object to avoid Redis refetch
context=context,
tool_call_response=str(tool_response_messages),
):
yield chunk
# Retry configuration for OpenAI API calls # Retry configuration for OpenAI API calls
@@ -903,5 +791,4 @@ async def _yield_tool_call(
session=session, session=session,
) )
logger.info(f"Yielding Tool execution response: {tool_execution_response}")
yield tool_execution_response yield tool_execution_response

View File

@@ -7,9 +7,15 @@ from backend.api.features.chat.model import ChatSession
from .add_understanding import AddUnderstandingTool from .add_understanding import AddUnderstandingTool
from .agent_output import AgentOutputTool from .agent_output import AgentOutputTool
from .base import BaseTool from .base import BaseTool
from .create_agent import CreateAgentTool
from .edit_agent import EditAgentTool
from .find_agent import FindAgentTool from .find_agent import FindAgentTool
from .find_block import FindBlockTool
from .find_library_agent import FindLibraryAgentTool from .find_library_agent import FindLibraryAgentTool
from .get_doc_page import GetDocPageTool
from .run_agent import RunAgentTool from .run_agent import RunAgentTool
from .run_block import RunBlockTool
from .search_docs import SearchDocsTool
if TYPE_CHECKING: if TYPE_CHECKING:
from backend.api.features.chat.response_model import StreamToolOutputAvailable from backend.api.features.chat.response_model import StreamToolOutputAvailable
@@ -17,10 +23,16 @@ if TYPE_CHECKING:
# Single source of truth for all tools # Single source of truth for all tools
TOOL_REGISTRY: dict[str, BaseTool] = { TOOL_REGISTRY: dict[str, BaseTool] = {
"add_understanding": AddUnderstandingTool(), "add_understanding": AddUnderstandingTool(),
"create_agent": CreateAgentTool(),
"edit_agent": EditAgentTool(),
"find_agent": FindAgentTool(), "find_agent": FindAgentTool(),
"find_block": FindBlockTool(),
"find_library_agent": FindLibraryAgentTool(), "find_library_agent": FindLibraryAgentTool(),
"run_agent": RunAgentTool(), "run_agent": RunAgentTool(),
"agent_output": AgentOutputTool(), "run_block": RunBlockTool(),
"view_agent_output": AgentOutputTool(),
"search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(),
} }
# Export individual tool instances for backwards compatibility # Export individual tool instances for backwards compatibility

View File

@@ -3,6 +3,8 @@
import logging import logging
from typing import Any from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession from backend.api.features.chat.model import ChatSession
from backend.data.understanding import ( from backend.data.understanding import (
BusinessUnderstandingInput, BusinessUnderstandingInput,
@@ -59,6 +61,7 @@ and automations for the user's specific needs."""
"""Requires authentication to store user-specific data.""" """Requires authentication to store user-specific data."""
return True return True
@observe(as_type="tool", name="add_understanding")
async def _execute( async def _execute(
self, self,
user_id: str | None, user_id: str | None,

View File

@@ -0,0 +1,28 @@
"""Agent generator package - Creates agents from natural language."""
from .core import (
AgentGeneratorNotConfiguredError,
decompose_goal,
generate_agent,
generate_agent_patch,
get_agent_as_json,
json_to_graph,
save_agent_to_library,
)
from .service import health_check as check_external_service_health
from .service import is_external_service_configured
__all__ = [
# Core functions
"decompose_goal",
"generate_agent",
"generate_agent_patch",
"save_agent_to_library",
"get_agent_as_json",
"json_to_graph",
# Exceptions
"AgentGeneratorNotConfiguredError",
# Service
"is_external_service_configured",
"check_external_service_health",
]

View File

@@ -0,0 +1,277 @@
"""Core agent generation functions."""
import logging
import uuid
from typing import Any
from backend.api.features.library import db as library_db
from backend.data.graph import Graph, Link, Node, create_graph
from .service import (
decompose_goal_external,
generate_agent_external,
generate_agent_patch_external,
is_external_service_configured,
)
logger = logging.getLogger(__name__)
class AgentGeneratorNotConfiguredError(Exception):
"""Raised when the external Agent Generator service is not configured."""
pass
def _check_service_configured() -> None:
"""Check if the external Agent Generator service is configured.
Raises:
AgentGeneratorNotConfiguredError: If the service is not configured.
"""
if not is_external_service_configured():
raise AgentGeneratorNotConfiguredError(
"Agent Generator service is not configured. "
"Set AGENTGENERATOR_HOST environment variable to enable agent generation."
)
async def decompose_goal(description: str, context: str = "") -> dict[str, Any] | None:
"""Break down a goal into steps or return clarifying questions.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
Returns:
Dict with either:
- {"type": "clarifying_questions", "questions": [...]}
- {"type": "instructions", "steps": [...]}
Or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for decompose_goal")
return await decompose_goal_external(description, context)
async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
"""Generate agent JSON from instructions.
Args:
instructions: Structured instructions from decompose_goal
Returns:
Agent JSON dict or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent")
result = await generate_agent_external(instructions)
if result:
# Ensure required fields
if "id" not in result:
result["id"] = str(uuid.uuid4())
if "version" not in result:
result["version"] = 1
if "is_active" not in result:
result["is_active"] = True
return result
def json_to_graph(agent_json: dict[str, Any]) -> Graph:
"""Convert agent JSON dict to Graph model.
Args:
agent_json: Agent JSON with nodes and links
Returns:
Graph ready for saving
"""
nodes = []
for n in agent_json.get("nodes", []):
node = Node(
id=n.get("id", str(uuid.uuid4())),
block_id=n["block_id"],
input_default=n.get("input_default", {}),
metadata=n.get("metadata", {}),
)
nodes.append(node)
links = []
for link_data in agent_json.get("links", []):
link = Link(
id=link_data.get("id", str(uuid.uuid4())),
source_id=link_data["source_id"],
sink_id=link_data["sink_id"],
source_name=link_data["source_name"],
sink_name=link_data["sink_name"],
is_static=link_data.get("is_static", False),
)
links.append(link)
return Graph(
id=agent_json.get("id", str(uuid.uuid4())),
version=agent_json.get("version", 1),
is_active=agent_json.get("is_active", True),
name=agent_json.get("name", "Generated Agent"),
description=agent_json.get("description", ""),
nodes=nodes,
links=links,
)
def _reassign_node_ids(graph: Graph) -> None:
"""Reassign all node and link IDs to new UUIDs.
This is needed when creating a new version to avoid unique constraint violations.
"""
# Create mapping from old node IDs to new UUIDs
id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes}
# Reassign node IDs
for node in graph.nodes:
node.id = id_map[node.id]
# Update link references to use new node IDs
for link in graph.links:
link.id = str(uuid.uuid4()) # Also give links new IDs
if link.source_id in id_map:
link.source_id = id_map[link.source_id]
if link.sink_id in id_map:
link.sink_id = id_map[link.sink_id]
async def save_agent_to_library(
agent_json: dict[str, Any], user_id: str, is_update: bool = False
) -> tuple[Graph, Any]:
"""Save agent to database and user's library.
Args:
agent_json: Agent JSON dict
user_id: User ID
is_update: Whether this is an update to an existing agent
Returns:
Tuple of (created Graph, LibraryAgent)
"""
from backend.data.graph import get_graph_all_versions
graph = json_to_graph(agent_json)
if is_update:
# For updates, keep the same graph ID but increment version
# and reassign node/link IDs to avoid conflicts
if graph.id:
existing_versions = await get_graph_all_versions(graph.id, user_id)
if existing_versions:
latest_version = max(v.version for v in existing_versions)
graph.version = latest_version + 1
# Reassign node IDs (but keep graph ID the same)
_reassign_node_ids(graph)
logger.info(f"Updating agent {graph.id} to version {graph.version}")
else:
# For new agents, always generate a fresh UUID to avoid collisions
graph.id = str(uuid.uuid4())
graph.version = 1
# Reassign all node IDs as well
_reassign_node_ids(graph)
logger.info(f"Creating new agent with ID {graph.id}")
# Save to database
created_graph = await create_graph(graph, user_id)
# Add to user's library (or update existing library agent)
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
return created_graph, library_agents[0]
async def get_agent_as_json(
graph_id: str, user_id: str | None
) -> dict[str, Any] | None:
"""Fetch an agent and convert to JSON format for editing.
Args:
graph_id: Graph ID or library agent ID
user_id: User ID
Returns:
Agent as JSON dict or None if not found
"""
from backend.data.graph import get_graph
# Try to get the graph (version=None gets the active version)
graph = await get_graph(graph_id, version=None, user_id=user_id)
if not graph:
return None
# Convert to JSON format
nodes = []
for node in graph.nodes:
nodes.append(
{
"id": node.id,
"block_id": node.block_id,
"input_default": node.input_default,
"metadata": node.metadata,
}
)
links = []
for node in graph.nodes:
for link in node.output_links:
links.append(
{
"id": link.id,
"source_id": link.source_id,
"sink_id": link.sink_id,
"source_name": link.source_name,
"sink_name": link.sink_name,
"is_static": link.is_static,
}
)
return {
"id": graph.id,
"name": graph.name,
"description": graph.description,
"version": graph.version,
"is_active": graph.is_active,
"nodes": nodes,
"links": links,
}
async def generate_agent_patch(
update_request: str, current_agent: dict[str, Any]
) -> dict[str, Any] | None:
"""Update an existing agent using natural language.
The external Agent Generator service handles:
- Generating the patch
- Applying the patch
- Fixing and validating the result
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
Returns:
Updated agent JSON, clarifying questions dict, or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent_patch")
return await generate_agent_patch_external(update_request, current_agent)

View File

@@ -0,0 +1,269 @@
"""External Agent Generator service client.
This module provides a client for communicating with the external Agent Generator
microservice. When AGENTGENERATOR_HOST is configured, the agent generation functions
will delegate to the external service instead of using the built-in LLM-based implementation.
"""
import logging
from typing import Any
import httpx
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
_client: httpx.AsyncClient | None = None
_settings: Settings | None = None
def _get_settings() -> Settings:
"""Get or create settings singleton."""
global _settings
if _settings is None:
_settings = Settings()
return _settings
def is_external_service_configured() -> bool:
"""Check if external Agent Generator service is configured."""
settings = _get_settings()
return bool(settings.config.agentgenerator_host)
def _get_base_url() -> str:
"""Get the base URL for the external service."""
settings = _get_settings()
host = settings.config.agentgenerator_host
port = settings.config.agentgenerator_port
return f"http://{host}:{port}"
def _get_client() -> httpx.AsyncClient:
"""Get or create the HTTP client for the external service."""
global _client
if _client is None:
settings = _get_settings()
_client = httpx.AsyncClient(
base_url=_get_base_url(),
timeout=httpx.Timeout(settings.config.agentgenerator_timeout),
)
return _client
async def decompose_goal_external(
description: str, context: str = ""
) -> dict[str, Any] | None:
"""Call the external service to decompose a goal.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
Returns:
Dict with either:
- {"type": "clarifying_questions", "questions": [...]}
- {"type": "instructions", "steps": [...]}
- {"type": "unachievable_goal", ...}
- {"type": "vague_goal", ...}
Or None on error
"""
client = _get_client()
# Build the request payload
payload: dict[str, Any] = {"description": description}
if context:
# The external service uses user_instruction for additional context
payload["user_instruction"] = context
try:
response = await client.post("/api/decompose-description", json=payload)
response.raise_for_status()
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
# Map the response to the expected format
response_type = data.get("type")
if response_type == "instructions":
return {"type": "instructions", "steps": data.get("steps", [])}
elif response_type == "clarifying_questions":
return {
"type": "clarifying_questions",
"questions": data.get("questions", []),
}
elif response_type == "unachievable_goal":
return {
"type": "unachievable_goal",
"reason": data.get("reason"),
"suggested_goal": data.get("suggested_goal"),
}
elif response_type == "vague_goal":
return {
"type": "vague_goal",
"suggested_goal": data.get("suggested_goal"),
}
else:
logger.error(
f"Unknown response type from external service: {response_type}"
)
return None
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
async def generate_agent_external(
instructions: dict[str, Any]
) -> dict[str, Any] | None:
"""Call the external service to generate an agent from instructions.
Args:
instructions: Structured instructions from decompose_goal
Returns:
Agent JSON dict or None on error
"""
client = _get_client()
try:
response = await client.post(
"/api/generate-agent", json={"instructions": instructions}
)
response.raise_for_status()
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
return data.get("agent_json")
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
async def generate_agent_patch_external(
update_request: str, current_agent: dict[str, Any]
) -> dict[str, Any] | None:
"""Call the external service to generate a patch for an existing agent.
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
Returns:
Updated agent JSON, clarifying questions dict, or None on error
"""
client = _get_client()
try:
response = await client.post(
"/api/update-agent",
json={
"update_request": update_request,
"current_agent_json": current_agent,
},
)
response.raise_for_status()
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
# Check if it's clarifying questions
if data.get("type") == "clarifying_questions":
return {
"type": "clarifying_questions",
"questions": data.get("questions", []),
}
# Otherwise return the updated agent JSON
return data.get("agent_json")
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
async def get_blocks_external() -> list[dict[str, Any]] | None:
"""Get available blocks from the external service.
Returns:
List of block info dicts or None on error
"""
client = _get_client()
try:
response = await client.get("/api/blocks")
response.raise_for_status()
data = response.json()
if not data.get("success"):
logger.error("External service returned error getting blocks")
return None
return data.get("blocks", [])
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error getting blocks from external service: {e}")
return None
except httpx.RequestError as e:
logger.error(f"Request error getting blocks from external service: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error getting blocks from external service: {e}")
return None
async def health_check() -> bool:
"""Check if the external service is healthy.
Returns:
True if healthy, False otherwise
"""
if not is_external_service_configured():
return False
client = _get_client()
try:
response = await client.get("/health")
response.raise_for_status()
data = response.json()
return data.get("status") == "healthy" and data.get("blocks_loaded", False)
except Exception as e:
logger.warning(f"External agent generator health check failed: {e}")
return False
async def close_client() -> None:
"""Close the HTTP client."""
global _client
if _client is not None:
await _client.aclose()
_client = None

View File

@@ -5,6 +5,7 @@ import re
from datetime import datetime, timedelta, timezone from datetime import datetime, timedelta, timezone
from typing import Any from typing import Any
from langfuse import observe
from pydantic import BaseModel, field_validator from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession from backend.api.features.chat.model import ChatSession
@@ -103,7 +104,7 @@ class AgentOutputTool(BaseTool):
@property @property
def name(self) -> str: def name(self) -> str:
return "agent_output" return "view_agent_output"
@property @property
def description(self) -> str: def description(self) -> str:
@@ -328,6 +329,7 @@ class AgentOutputTool(BaseTool):
total_executions=len(available_executions) if available_executions else 1, total_executions=len(available_executions) if available_executions else 1,
) )
@observe(as_type="tool", name="view_agent_output")
async def _execute( async def _execute(
self, self,
user_id: str | None, user_id: str | None,

View File

@@ -0,0 +1,238 @@
"""CreateAgentTool - Creates agents from natural language descriptions."""
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
AgentGeneratorNotConfiguredError,
decompose_goal,
generate_agent,
save_agent_to_library,
)
from .base import BaseTool
from .models import (
AgentPreviewResponse,
AgentSavedResponse,
ClarificationNeededResponse,
ClarifyingQuestion,
ErrorResponse,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
class CreateAgentTool(BaseTool):
"""Tool for creating agents from natural language descriptions."""
@property
def name(self) -> str:
return "create_agent"
@property
def description(self) -> str:
return (
"Create a new agent workflow from a natural language description. "
"First generates a preview, then saves to library if save=true."
)
@property
def requires_auth(self) -> bool:
return True
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"description": {
"type": "string",
"description": (
"Natural language description of what the agent should do. "
"Be specific about inputs, outputs, and the workflow steps."
),
},
"context": {
"type": "string",
"description": (
"Additional context or answers to previous clarifying questions. "
"Include any preferences or constraints mentioned by the user."
),
},
"save": {
"type": "boolean",
"description": (
"Whether to save the agent to the user's library. "
"Default is true. Set to false for preview only."
),
"default": True,
},
},
"required": ["description"],
}
@observe(as_type="tool", name="create_agent")
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Execute the create_agent tool.
Flow:
1. Decompose the description into steps (may return clarifying questions)
2. Generate agent JSON (external service handles fixing and validation)
3. Preview or save based on the save parameter
"""
description = kwargs.get("description", "").strip()
context = kwargs.get("context", "")
save = kwargs.get("save", True)
session_id = session.session_id if session else None
if not description:
return ErrorResponse(
message="Please provide a description of what the agent should do.",
error="Missing description parameter",
session_id=session_id,
)
# Step 1: Decompose goal into steps
try:
decomposition_result = await decompose_goal(description, context)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
"Agent generation is not available. "
"The Agent Generator service is not configured."
),
error="service_not_configured",
session_id=session_id,
)
if decomposition_result is None:
return ErrorResponse(
message="Failed to analyze the goal. Please try rephrasing.",
error="Decomposition failed",
session_id=session_id,
)
# Check if LLM returned clarifying questions
if decomposition_result.get("type") == "clarifying_questions":
questions = decomposition_result.get("questions", [])
return ClarificationNeededResponse(
message=(
"I need some more information to create this agent. "
"Please answer the following questions:"
),
questions=[
ClarifyingQuestion(
question=q.get("question", ""),
keyword=q.get("keyword", ""),
example=q.get("example"),
)
for q in questions
],
session_id=session_id,
)
# Check for unachievable/vague goals
if decomposition_result.get("type") == "unachievable_goal":
suggested = decomposition_result.get("suggested_goal", "")
reason = decomposition_result.get("reason", "")
return ErrorResponse(
message=(
f"This goal cannot be accomplished with the available blocks. "
f"{reason} "
f"Suggestion: {suggested}"
),
error="unachievable_goal",
details={"suggested_goal": suggested, "reason": reason},
session_id=session_id,
)
if decomposition_result.get("type") == "vague_goal":
suggested = decomposition_result.get("suggested_goal", "")
return ErrorResponse(
message=(
f"The goal is too vague to create a specific workflow. "
f"Suggestion: {suggested}"
),
error="vague_goal",
details={"suggested_goal": suggested},
session_id=session_id,
)
# Step 2: Generate agent JSON (external service handles fixing and validation)
try:
agent_json = await generate_agent(decomposition_result)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
"Agent generation is not available. "
"The Agent Generator service is not configured."
),
error="service_not_configured",
session_id=session_id,
)
if agent_json is None:
return ErrorResponse(
message="Failed to generate the agent. Please try again.",
error="Generation failed",
session_id=session_id,
)
agent_name = agent_json.get("name", "Generated Agent")
agent_description = agent_json.get("description", "")
node_count = len(agent_json.get("nodes", []))
link_count = len(agent_json.get("links", []))
# Step 3: Preview or save
if not save:
return AgentPreviewResponse(
message=(
f"I've generated an agent called '{agent_name}' with {node_count} blocks. "
f"Review it and call create_agent with save=true to save it to your library."
),
agent_json=agent_json,
agent_name=agent_name,
description=agent_description,
node_count=node_count,
link_count=link_count,
session_id=session_id,
)
# Save to library
if not user_id:
return ErrorResponse(
message="You must be logged in to save agents.",
error="auth_required",
session_id=session_id,
)
try:
created_graph, library_agent = await save_agent_to_library(
agent_json, user_id
)
return AgentSavedResponse(
message=f"Agent '{created_graph.name}' has been saved to your library!",
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)
except Exception as e:
return ErrorResponse(
message=f"Failed to save the agent: {str(e)}",
error="save_failed",
details={"exception": str(e)},
session_id=session_id,
)

View File

@@ -0,0 +1,224 @@
"""EditAgentTool - Edits existing agents using natural language."""
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
AgentGeneratorNotConfiguredError,
generate_agent_patch,
get_agent_as_json,
save_agent_to_library,
)
from .base import BaseTool
from .models import (
AgentPreviewResponse,
AgentSavedResponse,
ClarificationNeededResponse,
ClarifyingQuestion,
ErrorResponse,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
class EditAgentTool(BaseTool):
"""Tool for editing existing agents using natural language."""
@property
def name(self) -> str:
return "edit_agent"
@property
def description(self) -> str:
return (
"Edit an existing agent from the user's library using natural language. "
"Generates updates to the agent while preserving unchanged parts."
)
@property
def requires_auth(self) -> bool:
return True
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"agent_id": {
"type": "string",
"description": (
"The ID of the agent to edit. "
"Can be a graph ID or library agent ID."
),
},
"changes": {
"type": "string",
"description": (
"Natural language description of what changes to make. "
"Be specific about what to add, remove, or modify."
),
},
"context": {
"type": "string",
"description": (
"Additional context or answers to previous clarifying questions."
),
},
"save": {
"type": "boolean",
"description": (
"Whether to save the changes. "
"Default is true. Set to false for preview only."
),
"default": True,
},
},
"required": ["agent_id", "changes"],
}
@observe(as_type="tool", name="edit_agent")
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Execute the edit_agent tool.
Flow:
1. Fetch the current agent
2. Generate updated agent (external service handles fixing and validation)
3. Preview or save based on the save parameter
"""
agent_id = kwargs.get("agent_id", "").strip()
changes = kwargs.get("changes", "").strip()
context = kwargs.get("context", "")
save = kwargs.get("save", True)
session_id = session.session_id if session else None
if not agent_id:
return ErrorResponse(
message="Please provide the agent ID to edit.",
error="Missing agent_id parameter",
session_id=session_id,
)
if not changes:
return ErrorResponse(
message="Please describe what changes you want to make.",
error="Missing changes parameter",
session_id=session_id,
)
# Step 1: Fetch current agent
current_agent = await get_agent_as_json(agent_id, user_id)
if current_agent is None:
return ErrorResponse(
message=f"Could not find agent with ID '{agent_id}' in your library.",
error="agent_not_found",
session_id=session_id,
)
# Build the update request with context
update_request = changes
if context:
update_request = f"{changes}\n\nAdditional context:\n{context}"
# Step 2: Generate updated agent (external service handles fixing and validation)
try:
result = await generate_agent_patch(update_request, current_agent)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
"Agent editing is not available. "
"The Agent Generator service is not configured."
),
error="service_not_configured",
session_id=session_id,
)
if result is None:
return ErrorResponse(
message="Failed to generate changes. Please try rephrasing.",
error="Update generation failed",
session_id=session_id,
)
# Check if LLM returned clarifying questions
if result.get("type") == "clarifying_questions":
questions = result.get("questions", [])
return ClarificationNeededResponse(
message=(
"I need some more information about the changes. "
"Please answer the following questions:"
),
questions=[
ClarifyingQuestion(
question=q.get("question", ""),
keyword=q.get("keyword", ""),
example=q.get("example"),
)
for q in questions
],
session_id=session_id,
)
# Result is the updated agent JSON
updated_agent = result
agent_name = updated_agent.get("name", "Updated Agent")
agent_description = updated_agent.get("description", "")
node_count = len(updated_agent.get("nodes", []))
link_count = len(updated_agent.get("links", []))
# Step 3: Preview or save
if not save:
return AgentPreviewResponse(
message=(
f"I've updated the agent. "
f"The agent now has {node_count} blocks. "
f"Review it and call edit_agent with save=true to save the changes."
),
agent_json=updated_agent,
agent_name=agent_name,
description=agent_description,
node_count=node_count,
link_count=link_count,
session_id=session_id,
)
# Save to library (creates a new version)
if not user_id:
return ErrorResponse(
message="You must be logged in to save agents.",
error="auth_required",
session_id=session_id,
)
try:
created_graph, library_agent = await save_agent_to_library(
updated_agent, user_id, is_update=True
)
return AgentSavedResponse(
message=f"Updated agent '{created_graph.name}' has been saved to your library!",
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)
except Exception as e:
return ErrorResponse(
message=f"Failed to save the updated agent: {str(e)}",
error="save_failed",
details={"exception": str(e)},
session_id=session_id,
)

View File

@@ -2,6 +2,8 @@
from typing import Any from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession from backend.api.features.chat.model import ChatSession
from .agent_search import search_agents from .agent_search import search_agents
@@ -35,6 +37,7 @@ class FindAgentTool(BaseTool):
"required": ["query"], "required": ["query"],
} }
@observe(as_type="tool", name="find_agent")
async def _execute( async def _execute(
self, user_id: str | None, session: ChatSession, **kwargs self, user_id: str | None, session: ChatSession, **kwargs
) -> ToolResponseBase: ) -> ToolResponseBase:

View File

@@ -0,0 +1,194 @@
import logging
from typing import Any
from langfuse import observe
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool, ToolResponseBase
from backend.api.features.chat.tools.models import (
BlockInfoSummary,
BlockInputFieldInfo,
BlockListResponse,
ErrorResponse,
NoResultsResponse,
)
from backend.api.features.store.hybrid_search import unified_hybrid_search
from backend.data.block import get_block
logger = logging.getLogger(__name__)
class FindBlockTool(BaseTool):
"""Tool for searching available blocks."""
@property
def name(self) -> str:
return "find_block"
@property
def description(self) -> str:
return (
"Search for available blocks by name or description. "
"Blocks are reusable components that perform specific tasks like "
"sending emails, making API calls, processing text, etc. "
"IMPORTANT: Use this tool FIRST to get the block's 'id' before calling run_block. "
"The response includes each block's id, required_inputs, and input_schema."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": (
"Search query to find blocks by name or description. "
"Use keywords like 'email', 'http', 'text', 'ai', etc."
),
},
},
"required": ["query"],
}
@property
def requires_auth(self) -> bool:
return True
@observe(as_type="tool", name="find_block")
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Search for blocks matching the query.
Args:
user_id: User ID (required)
session: Chat session
query: Search query
Returns:
BlockListResponse: List of matching blocks
NoResultsResponse: No blocks found
ErrorResponse: Error message
"""
query = kwargs.get("query", "").strip()
session_id = session.session_id
if not query:
return ErrorResponse(
message="Please provide a search query",
session_id=session_id,
)
try:
# Search for blocks using hybrid search
results, total = await unified_hybrid_search(
query=query,
content_types=[ContentType.BLOCK],
page=1,
page_size=10,
)
if not results:
return NoResultsResponse(
message=f"No blocks found for '{query}'",
suggestions=[
"Try broader keywords like 'email', 'http', 'text', 'ai'",
"Check spelling of technical terms",
],
session_id=session_id,
)
# Enrich results with full block information
blocks: list[BlockInfoSummary] = []
for result in results:
block_id = result["content_id"]
block = get_block(block_id)
if block:
# Get input/output schemas
input_schema = {}
output_schema = {}
try:
input_schema = block.input_schema.jsonschema()
except Exception:
pass
try:
output_schema = block.output_schema.jsonschema()
except Exception:
pass
# Get categories from block instance
categories = []
if hasattr(block, "categories") and block.categories:
categories = [cat.value for cat in block.categories]
# Extract required inputs for easier use
required_inputs: list[BlockInputFieldInfo] = []
if input_schema:
properties = input_schema.get("properties", {})
required_fields = set(input_schema.get("required", []))
# Get credential field names to exclude from required inputs
credentials_fields = set(
block.input_schema.get_credentials_fields().keys()
)
for field_name, field_schema in properties.items():
# Skip credential fields - they're handled separately
if field_name in credentials_fields:
continue
required_inputs.append(
BlockInputFieldInfo(
name=field_name,
type=field_schema.get("type", "string"),
description=field_schema.get("description", ""),
required=field_name in required_fields,
default=field_schema.get("default"),
)
)
blocks.append(
BlockInfoSummary(
id=block_id,
name=block.name,
description=block.description or "",
categories=categories,
input_schema=input_schema,
output_schema=output_schema,
required_inputs=required_inputs,
)
)
if not blocks:
return NoResultsResponse(
message=f"No blocks found for '{query}'",
suggestions=[
"Try broader keywords like 'email', 'http', 'text', 'ai'",
],
session_id=session_id,
)
return BlockListResponse(
message=(
f"Found {len(blocks)} block(s) matching '{query}'. "
"To execute a block, use run_block with the block's 'id' field "
"and provide 'input_data' matching the block's input_schema."
),
blocks=blocks,
count=len(blocks),
query=query,
session_id=session_id,
)
except Exception as e:
logger.error(f"Error searching blocks: {e}", exc_info=True)
return ErrorResponse(
message="Failed to search blocks",
error=str(e),
session_id=session_id,
)

View File

@@ -2,6 +2,8 @@
from typing import Any from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession from backend.api.features.chat.model import ChatSession
from .agent_search import search_agents from .agent_search import search_agents
@@ -41,6 +43,7 @@ class FindLibraryAgentTool(BaseTool):
def requires_auth(self) -> bool: def requires_auth(self) -> bool:
return True return True
@observe(as_type="tool", name="find_library_agent")
async def _execute( async def _execute(
self, user_id: str | None, session: ChatSession, **kwargs self, user_id: str | None, session: ChatSession, **kwargs
) -> ToolResponseBase: ) -> ToolResponseBase:

View File

@@ -0,0 +1,151 @@
"""GetDocPageTool - Fetch full content of a documentation page."""
import logging
from pathlib import Path
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
DocPageResponse,
ErrorResponse,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
# Base URL for documentation (can be configured)
DOCS_BASE_URL = "https://docs.agpt.co"
class GetDocPageTool(BaseTool):
"""Tool for fetching full content of a documentation page."""
@property
def name(self) -> str:
return "get_doc_page"
@property
def description(self) -> str:
return (
"Get the full content of a documentation page by its path. "
"Use this after search_docs to read the complete content of a relevant page."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": (
"The path to the documentation file, as returned by search_docs. "
"Example: 'platform/block-sdk-guide.md'"
),
},
},
"required": ["path"],
}
@property
def requires_auth(self) -> bool:
return False # Documentation is public
def _get_docs_root(self) -> Path:
"""Get the documentation root directory."""
this_file = Path(__file__)
project_root = this_file.parent.parent.parent.parent.parent.parent.parent.parent
return project_root / "docs"
def _extract_title(self, content: str, fallback: str) -> str:
"""Extract title from markdown content."""
lines = content.split("\n")
for line in lines:
if line.startswith("# "):
return line[2:].strip()
return fallback
def _make_doc_url(self, path: str) -> str:
"""Create a URL for a documentation page."""
url_path = path.rsplit(".", 1)[0] if "." in path else path
return f"{DOCS_BASE_URL}/{url_path}"
@observe(as_type="tool", name="get_doc_page")
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Fetch full content of a documentation page.
Args:
user_id: User ID (not required for docs)
session: Chat session
path: Path to the documentation file
Returns:
DocPageResponse: Full document content
ErrorResponse: Error message
"""
path = kwargs.get("path", "").strip()
session_id = session.session_id if session else None
if not path:
return ErrorResponse(
message="Please provide a documentation path.",
error="Missing path parameter",
session_id=session_id,
)
# Sanitize path to prevent directory traversal
if ".." in path or path.startswith("/"):
return ErrorResponse(
message="Invalid documentation path.",
error="invalid_path",
session_id=session_id,
)
docs_root = self._get_docs_root()
full_path = docs_root / path
if not full_path.exists():
return ErrorResponse(
message=f"Documentation page not found: {path}",
error="not_found",
session_id=session_id,
)
# Ensure the path is within docs root
try:
full_path.resolve().relative_to(docs_root.resolve())
except ValueError:
return ErrorResponse(
message="Invalid documentation path.",
error="invalid_path",
session_id=session_id,
)
try:
content = full_path.read_text(encoding="utf-8")
title = self._extract_title(content, path)
return DocPageResponse(
message=f"Retrieved documentation page: {title}",
title=title,
path=path,
content=content,
doc_url=self._make_doc_url(path),
session_id=session_id,
)
except Exception as e:
logger.error(f"Failed to read documentation page {path}: {e}")
return ErrorResponse(
message=f"Failed to read documentation page: {str(e)}",
error="read_failed",
session_id=session_id,
)

View File

@@ -21,6 +21,13 @@ class ResponseType(str, Enum):
NO_RESULTS = "no_results" NO_RESULTS = "no_results"
AGENT_OUTPUT = "agent_output" AGENT_OUTPUT = "agent_output"
UNDERSTANDING_UPDATED = "understanding_updated" UNDERSTANDING_UPDATED = "understanding_updated"
AGENT_PREVIEW = "agent_preview"
AGENT_SAVED = "agent_saved"
CLARIFICATION_NEEDED = "clarification_needed"
BLOCK_LIST = "block_list"
BLOCK_OUTPUT = "block_output"
DOC_SEARCH_RESULTS = "doc_search_results"
DOC_PAGE = "doc_page"
# Base response model # Base response model
@@ -209,3 +216,121 @@ class UnderstandingUpdatedResponse(ToolResponseBase):
type: ResponseType = ResponseType.UNDERSTANDING_UPDATED type: ResponseType = ResponseType.UNDERSTANDING_UPDATED
updated_fields: list[str] = Field(default_factory=list) updated_fields: list[str] = Field(default_factory=list)
current_understanding: dict[str, Any] = Field(default_factory=dict) current_understanding: dict[str, Any] = Field(default_factory=dict)
# Agent generation models
class ClarifyingQuestion(BaseModel):
"""A question that needs user clarification."""
question: str
keyword: str
example: str | None = None
class AgentPreviewResponse(ToolResponseBase):
"""Response for previewing a generated agent before saving."""
type: ResponseType = ResponseType.AGENT_PREVIEW
agent_json: dict[str, Any]
agent_name: str
description: str
node_count: int
link_count: int = 0
class AgentSavedResponse(ToolResponseBase):
"""Response when an agent is saved to the library."""
type: ResponseType = ResponseType.AGENT_SAVED
agent_id: str
agent_name: str
library_agent_id: str
library_agent_link: str
agent_page_link: str # Link to the agent builder/editor page
class ClarificationNeededResponse(ToolResponseBase):
"""Response when the LLM needs more information from the user."""
type: ResponseType = ResponseType.CLARIFICATION_NEEDED
questions: list[ClarifyingQuestion] = Field(default_factory=list)
# Documentation search models
class DocSearchResult(BaseModel):
"""A single documentation search result."""
title: str
path: str
section: str
snippet: str # Short excerpt for UI display
score: float
doc_url: str | None = None
class DocSearchResultsResponse(ToolResponseBase):
"""Response for search_docs tool."""
type: ResponseType = ResponseType.DOC_SEARCH_RESULTS
results: list[DocSearchResult]
count: int
query: str
class DocPageResponse(ToolResponseBase):
"""Response for get_doc_page tool."""
type: ResponseType = ResponseType.DOC_PAGE
title: str
path: str
content: str # Full document content
doc_url: str | None = None
# Block models
class BlockInputFieldInfo(BaseModel):
"""Information about a block input field."""
name: str
type: str
description: str = ""
required: bool = False
default: Any | None = None
class BlockInfoSummary(BaseModel):
"""Summary of a block for search results."""
id: str
name: str
description: str
categories: list[str]
input_schema: dict[str, Any]
output_schema: dict[str, Any]
required_inputs: list[BlockInputFieldInfo] = Field(
default_factory=list,
description="List of required input fields for this block",
)
class BlockListResponse(ToolResponseBase):
"""Response for find_block tool."""
type: ResponseType = ResponseType.BLOCK_LIST
blocks: list[BlockInfoSummary]
count: int
query: str
usage_hint: str = Field(
default="To execute a block, call run_block with block_id set to the block's "
"'id' field and input_data containing the required fields from input_schema."
)
class BlockOutputResponse(ToolResponseBase):
"""Response for run_block tool."""
type: ResponseType = ResponseType.BLOCK_OUTPUT
block_id: str
block_name: str
outputs: dict[str, list[Any]]
success: bool = True

View File

@@ -3,6 +3,7 @@
import logging import logging
from typing import Any from typing import Any
from langfuse import observe
from pydantic import BaseModel, Field, field_validator from pydantic import BaseModel, Field, field_validator
from backend.api.features.chat.config import ChatConfig from backend.api.features.chat.config import ChatConfig
@@ -32,7 +33,7 @@ from .models import (
UserReadiness, UserReadiness,
) )
from .utils import ( from .utils import (
check_user_has_required_credentials, build_missing_credentials_from_graph,
extract_credentials_from_schema, extract_credentials_from_schema,
fetch_graph_from_store_slug, fetch_graph_from_store_slug,
get_or_create_library_agent, get_or_create_library_agent,
@@ -154,6 +155,7 @@ class RunAgentTool(BaseTool):
"""All operations require authentication.""" """All operations require authentication."""
return True return True
@observe(as_type="tool", name="run_agent")
async def _execute( async def _execute(
self, self,
user_id: str | None, user_id: str | None,
@@ -235,15 +237,13 @@ class RunAgentTool(BaseTool):
# Return credentials needed response with input data info # Return credentials needed response with input data info
# The UI handles credential setup automatically, so the message # The UI handles credential setup automatically, so the message
# focuses on asking about input data # focuses on asking about input data
credentials = extract_credentials_from_schema( requirements_creds_dict = build_missing_credentials_from_graph(
graph.credentials_input_schema graph, None
) )
missing_creds_check = await check_user_has_required_credentials( missing_credentials_dict = build_missing_credentials_from_graph(
user_id, credentials graph, graph_credentials
) )
missing_credentials_dict = { requirements_creds_list = list(requirements_creds_dict.values())
c.id: c.model_dump() for c in missing_creds_check
}
return SetupRequirementsResponse( return SetupRequirementsResponse(
message=self._build_inputs_message(graph, MSG_WHAT_VALUES_TO_USE), message=self._build_inputs_message(graph, MSG_WHAT_VALUES_TO_USE),
@@ -257,7 +257,7 @@ class RunAgentTool(BaseTool):
ready_to_run=False, ready_to_run=False,
), ),
requirements={ requirements={
"credentials": [c.model_dump() for c in credentials], "credentials": requirements_creds_list,
"inputs": self._get_inputs_list(graph.input_schema), "inputs": self._get_inputs_list(graph.input_schema),
"execution_modes": self._get_execution_modes(graph), "execution_modes": self._get_execution_modes(graph),
}, },

View File

@@ -0,0 +1,305 @@
"""Tool for executing blocks directly."""
import logging
from collections import defaultdict
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.data.block import get_block
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import BlockError
from .base import BaseTool
from .models import (
BlockOutputResponse,
ErrorResponse,
SetupInfo,
SetupRequirementsResponse,
ToolResponseBase,
UserReadiness,
)
from .utils import build_missing_credentials_from_field_info
logger = logging.getLogger(__name__)
class RunBlockTool(BaseTool):
"""Tool for executing a block and returning its outputs."""
@property
def name(self) -> str:
return "run_block"
@property
def description(self) -> str:
return (
"Execute a specific block with the provided input data. "
"IMPORTANT: You MUST call find_block first to get the block's 'id' - "
"do NOT guess or make up block IDs. "
"Use the 'id' from find_block results and provide input_data "
"matching the block's required_inputs."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"block_id": {
"type": "string",
"description": (
"The block's 'id' field from find_block results. "
"NEVER guess this - always get it from find_block first."
),
},
"input_data": {
"type": "object",
"description": (
"Input values for the block. Use the 'required_inputs' field "
"from find_block to see what fields are needed."
),
},
},
"required": ["block_id", "input_data"],
}
@property
def requires_auth(self) -> bool:
return True
async def _check_block_credentials(
self,
user_id: str,
block: Any,
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Check if user has required credentials for a block.
Returns:
tuple[matched_credentials, missing_credentials]
"""
matched_credentials: dict[str, CredentialsMetaInput] = {}
missing_credentials: list[CredentialsMetaInput] = []
# Get credential field info from block's input schema
credentials_fields_info = block.input_schema.get_credentials_fields_info()
if not credentials_fields_info:
return matched_credentials, missing_credentials
# Get user's available credentials
creds_manager = IntegrationCredentialsManager()
available_creds = await creds_manager.store.get_all_creds(user_id)
for field_name, field_info in credentials_fields_info.items():
# field_info.provider is a frozenset of acceptable providers
# field_info.supported_types is a frozenset of acceptable types
matching_cred = next(
(
cred
for cred in available_creds
if cred.provider in field_info.provider
and cred.type in field_info.supported_types
),
None,
)
if matching_cred:
matched_credentials[field_name] = CredentialsMetaInput(
id=matching_cred.id,
provider=matching_cred.provider, # type: ignore
type=matching_cred.type,
title=matching_cred.title,
)
else:
# Create a placeholder for the missing credential
provider = next(iter(field_info.provider), "unknown")
cred_type = next(iter(field_info.supported_types), "api_key")
missing_credentials.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=field_name.replace("_", " ").title(),
)
)
return matched_credentials, missing_credentials
@observe(as_type="tool", name="run_block")
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Execute a block with the given input data.
Args:
user_id: User ID (required)
session: Chat session
block_id: Block UUID to execute
input_data: Input values for the block
Returns:
BlockOutputResponse: Block execution outputs
SetupRequirementsResponse: Missing credentials
ErrorResponse: Error message
"""
block_id = kwargs.get("block_id", "").strip()
input_data = kwargs.get("input_data", {})
session_id = session.session_id
if not block_id:
return ErrorResponse(
message="Please provide a block_id",
session_id=session_id,
)
if not isinstance(input_data, dict):
return ErrorResponse(
message="input_data must be an object",
session_id=session_id,
)
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
# Get the block
block = get_block(block_id)
if not block:
return ErrorResponse(
message=f"Block '{block_id}' not found",
session_id=session_id,
)
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
# Check credentials
creds_manager = IntegrationCredentialsManager()
matched_credentials, missing_credentials = await self._check_block_credentials(
user_id, block
)
if missing_credentials:
# Return setup requirements response with missing credentials
credentials_fields_info = block.input_schema.get_credentials_fields_info()
missing_creds_dict = build_missing_credentials_from_field_info(
credentials_fields_info, set(matched_credentials.keys())
)
missing_creds_list = list(missing_creds_dict.values())
return SetupRequirementsResponse(
message=(
f"Block '{block.name}' requires credentials that are not configured. "
"Please set up the required credentials before running this block."
),
session_id=session_id,
setup_info=SetupInfo(
agent_id=block_id,
agent_name=block.name,
user_readiness=UserReadiness(
has_all_credentials=False,
missing_credentials=missing_creds_dict,
ready_to_run=False,
),
requirements={
"credentials": missing_creds_list,
"inputs": self._get_inputs_list(block),
"execution_modes": ["immediate"],
},
),
graph_id=None,
graph_version=None,
)
try:
# Fetch actual credentials and prepare kwargs for block execution
# Create execution context with defaults (blocks may require it)
exec_kwargs: dict[str, Any] = {
"user_id": user_id,
"execution_context": ExecutionContext(),
}
for field_name, cred_meta in matched_credentials.items():
# Inject metadata into input_data (for validation)
if field_name not in input_data:
input_data[field_name] = cred_meta.model_dump()
# Fetch actual credentials and pass as kwargs (for execution)
actual_credentials = await creds_manager.get(
user_id, cred_meta.id, lock=False
)
if actual_credentials:
exec_kwargs[field_name] = actual_credentials
else:
return ErrorResponse(
message=f"Failed to retrieve credentials for {field_name}",
session_id=session_id,
)
# Execute the block and collect outputs
outputs: dict[str, list[Any]] = defaultdict(list)
async for output_name, output_data in block.execute(
input_data,
**exec_kwargs,
):
outputs[output_name].append(output_data)
return BlockOutputResponse(
message=f"Block '{block.name}' executed successfully",
block_id=block_id,
block_name=block.name,
outputs=dict(outputs),
success=True,
session_id=session_id,
)
except BlockError as e:
logger.warning(f"Block execution failed: {e}")
return ErrorResponse(
message=f"Block execution failed: {e}",
error=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Unexpected error executing block: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to execute block: {str(e)}",
error=str(e),
session_id=session_id,
)
def _get_inputs_list(self, block: Any) -> list[dict[str, Any]]:
"""Extract non-credential inputs from block schema."""
inputs_list = []
schema = block.input_schema.jsonschema()
properties = schema.get("properties", {})
required_fields = set(schema.get("required", []))
# Get credential field names to exclude
credentials_fields = set(block.input_schema.get_credentials_fields().keys())
for field_name, field_schema in properties.items():
# Skip credential fields
if field_name in credentials_fields:
continue
inputs_list.append(
{
"name": field_name,
"title": field_schema.get("title", field_name),
"type": field_schema.get("type", "string"),
"description": field_schema.get("description", ""),
"required": field_name in required_fields,
}
)
return inputs_list

View File

@@ -0,0 +1,210 @@
"""SearchDocsTool - Search documentation using hybrid search."""
import logging
from typing import Any
from langfuse import observe
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
DocSearchResult,
DocSearchResultsResponse,
ErrorResponse,
NoResultsResponse,
ToolResponseBase,
)
from backend.api.features.store.hybrid_search import unified_hybrid_search
logger = logging.getLogger(__name__)
# Base URL for documentation (can be configured)
DOCS_BASE_URL = "https://docs.agpt.co"
# Maximum number of results to return
MAX_RESULTS = 5
# Snippet length for preview
SNIPPET_LENGTH = 200
class SearchDocsTool(BaseTool):
"""Tool for searching AutoGPT platform documentation."""
@property
def name(self) -> str:
return "search_docs"
@property
def description(self) -> str:
return (
"Search the AutoGPT platform documentation for information about "
"how to use the platform, build agents, configure blocks, and more. "
"Returns relevant documentation sections. Use get_doc_page to read full content."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": (
"Search query to find relevant documentation. "
"Use natural language to describe what you're looking for."
),
},
},
"required": ["query"],
}
@property
def requires_auth(self) -> bool:
return False # Documentation is public
def _create_snippet(self, content: str, max_length: int = SNIPPET_LENGTH) -> str:
"""Create a short snippet from content for preview."""
# Remove markdown formatting for cleaner snippet
clean_content = content.replace("#", "").replace("*", "").replace("`", "")
# Remove extra whitespace
clean_content = " ".join(clean_content.split())
if len(clean_content) <= max_length:
return clean_content
# Truncate at word boundary
truncated = clean_content[:max_length]
last_space = truncated.rfind(" ")
if last_space > max_length // 2:
truncated = truncated[:last_space]
return truncated + "..."
def _make_doc_url(self, path: str) -> str:
"""Create a URL for a documentation page."""
# Remove file extension for URL
url_path = path.rsplit(".", 1)[0] if "." in path else path
return f"{DOCS_BASE_URL}/{url_path}"
@observe(as_type="tool", name="search_docs")
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Search documentation and return relevant sections.
Args:
user_id: User ID (not required for docs)
session: Chat session
query: Search query
Returns:
DocSearchResultsResponse: List of matching documentation sections
NoResultsResponse: No results found
ErrorResponse: Error message
"""
query = kwargs.get("query", "").strip()
session_id = session.session_id if session else None
if not query:
return ErrorResponse(
message="Please provide a search query.",
error="Missing query parameter",
session_id=session_id,
)
try:
# Search using hybrid search for DOCUMENTATION content type only
results, total = await unified_hybrid_search(
query=query,
content_types=[ContentType.DOCUMENTATION],
page=1,
page_size=MAX_RESULTS * 2, # Fetch extra for deduplication
min_score=0.1, # Lower threshold for docs
)
if not results:
return NoResultsResponse(
message=f"No documentation found for '{query}'.",
suggestions=[
"Try different keywords",
"Use more general terms",
"Check for typos in your query",
],
session_id=session_id,
)
# Deduplicate by document path (keep highest scoring section per doc)
seen_docs: dict[str, dict[str, Any]] = {}
for result in results:
metadata = result.get("metadata", {})
doc_path = metadata.get("path", "")
if not doc_path:
continue
# Keep the highest scoring result for each document
if doc_path not in seen_docs:
seen_docs[doc_path] = result
elif result.get("combined_score", 0) > seen_docs[doc_path].get(
"combined_score", 0
):
seen_docs[doc_path] = result
# Sort by score and take top MAX_RESULTS
deduplicated = sorted(
seen_docs.values(),
key=lambda x: x.get("combined_score", 0),
reverse=True,
)[:MAX_RESULTS]
if not deduplicated:
return NoResultsResponse(
message=f"No documentation found for '{query}'.",
suggestions=[
"Try different keywords",
"Use more general terms",
],
session_id=session_id,
)
# Build response
doc_results: list[DocSearchResult] = []
for result in deduplicated:
metadata = result.get("metadata", {})
doc_path = metadata.get("path", "")
doc_title = metadata.get("doc_title", "")
section_title = metadata.get("section_title", "")
searchable_text = result.get("searchable_text", "")
score = result.get("combined_score", 0)
doc_results.append(
DocSearchResult(
title=doc_title or section_title or doc_path,
path=doc_path,
section=section_title,
snippet=self._create_snippet(searchable_text),
score=round(score, 3),
doc_url=self._make_doc_url(doc_path),
)
)
return DocSearchResultsResponse(
message=f"Found {len(doc_results)} relevant documentation sections.",
results=doc_results,
count=len(doc_results),
query=query,
session_id=session_id,
)
except Exception as e:
logger.error(f"Documentation search failed: {e}")
return ErrorResponse(
message=f"Failed to search documentation: {str(e)}",
error="search_failed",
session_id=session_id,
)

View File

@@ -8,7 +8,7 @@ from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db from backend.api.features.store import db as store_db
from backend.data import graph as graph_db from backend.data import graph as graph_db
from backend.data.graph import GraphModel from backend.data.graph import GraphModel
from backend.data.model import CredentialsMetaInput from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import NotFoundError from backend.util.exceptions import NotFoundError
@@ -89,6 +89,59 @@ def extract_credentials_from_schema(
return credentials return credentials
def _serialize_missing_credential(
field_key: str, field_info: CredentialsFieldInfo
) -> dict[str, Any]:
"""
Convert credential field info into a serializable dict that preserves all supported
credential types (e.g., api_key + oauth2) so the UI can offer multiple options.
"""
supported_types = sorted(field_info.supported_types)
provider = next(iter(field_info.provider), "unknown")
scopes = sorted(field_info.required_scopes or [])
return {
"id": field_key,
"title": field_key.replace("_", " ").title(),
"provider": provider,
"provider_name": provider.replace("_", " ").title(),
"type": supported_types[0] if supported_types else "api_key",
"types": supported_types,
"scopes": scopes,
}
def build_missing_credentials_from_graph(
graph: GraphModel, matched_credentials: dict[str, CredentialsMetaInput] | None
) -> dict[str, Any]:
"""
Build a missing_credentials mapping from a graph's aggregated credentials inputs,
preserving all supported credential types for each field.
"""
matched_keys = set(matched_credentials.keys()) if matched_credentials else set()
aggregated_fields = graph.aggregate_credentials_inputs()
return {
field_key: _serialize_missing_credential(field_key, field_info)
for field_key, (field_info, _node_fields) in aggregated_fields.items()
if field_key not in matched_keys
}
def build_missing_credentials_from_field_info(
credential_fields: dict[str, CredentialsFieldInfo],
matched_keys: set[str],
) -> dict[str, Any]:
"""
Build missing_credentials mapping from a simple credentials field info dictionary.
"""
return {
field_key: _serialize_missing_credential(field_key, field_info)
for field_key, field_info in credential_fields.items()
if field_key not in matched_keys
}
def extract_credentials_as_dict( def extract_credentials_as_dict(
credentials_input_schema: dict[str, Any] | None, credentials_input_schema: dict[str, Any] | None,
) -> dict[str, CredentialsMetaInput]: ) -> dict[str, CredentialsMetaInput]:

View File

@@ -401,27 +401,11 @@ async def add_generated_agent_image(
) )
def _initialize_graph_settings(graph: graph_db.GraphModel) -> GraphSettings:
"""
Initialize GraphSettings based on graph content.
Args:
graph: The graph to analyze
Returns:
GraphSettings with appropriate human_in_the_loop_safe_mode value
"""
if graph.has_human_in_the_loop:
# Graph has HITL blocks - set safe mode to True by default
return GraphSettings(human_in_the_loop_safe_mode=True)
else:
# Graph has no HITL blocks - keep None
return GraphSettings(human_in_the_loop_safe_mode=None)
async def create_library_agent( async def create_library_agent(
graph: graph_db.GraphModel, graph: graph_db.GraphModel,
user_id: str, user_id: str,
hitl_safe_mode: bool = True,
sensitive_action_safe_mode: bool = False,
create_library_agents_for_sub_graphs: bool = True, create_library_agents_for_sub_graphs: bool = True,
) -> list[library_model.LibraryAgent]: ) -> list[library_model.LibraryAgent]:
""" """
@@ -430,6 +414,8 @@ async def create_library_agent(
Args: Args:
agent: The agent/Graph to add to the library. agent: The agent/Graph to add to the library.
user_id: The user to whom the agent will be added. user_id: The user to whom the agent will be added.
hitl_safe_mode: Whether HITL blocks require manual review (default True).
sensitive_action_safe_mode: Whether sensitive action blocks require review.
create_library_agents_for_sub_graphs: If True, creates LibraryAgent records for sub-graphs as well. create_library_agents_for_sub_graphs: If True, creates LibraryAgent records for sub-graphs as well.
Returns: Returns:
@@ -465,7 +451,11 @@ async def create_library_agent(
} }
}, },
settings=SafeJson( settings=SafeJson(
_initialize_graph_settings(graph_entry).model_dump() GraphSettings.from_graph(
graph_entry,
hitl_safe_mode=hitl_safe_mode,
sensitive_action_safe_mode=sensitive_action_safe_mode,
).model_dump()
), ),
), ),
include=library_agent_include( include=library_agent_include(
@@ -627,33 +617,6 @@ async def update_library_agent(
raise DatabaseError("Failed to update library agent") from e raise DatabaseError("Failed to update library agent") from e
async def update_library_agent_settings(
user_id: str,
agent_id: str,
settings: GraphSettings,
) -> library_model.LibraryAgent:
"""
Updates the settings for a specific LibraryAgent.
Args:
user_id: The owner of the LibraryAgent.
agent_id: The ID of the LibraryAgent to update.
settings: New GraphSettings to apply.
Returns:
The updated LibraryAgent.
Raises:
NotFoundError: If the specified LibraryAgent does not exist.
DatabaseError: If there's an error in the update operation.
"""
return await update_library_agent(
library_agent_id=agent_id,
user_id=user_id,
settings=settings,
)
async def delete_library_agent( async def delete_library_agent(
library_agent_id: str, user_id: str, soft_delete: bool = True library_agent_id: str, user_id: str, soft_delete: bool = True
) -> None: ) -> None:
@@ -838,7 +801,7 @@ async def add_store_agent_to_library(
"isCreatedByUser": False, "isCreatedByUser": False,
"useGraphIsActiveVersion": False, "useGraphIsActiveVersion": False,
"settings": SafeJson( "settings": SafeJson(
_initialize_graph_settings(graph_model).model_dump() GraphSettings.from_graph(graph_model).model_dump()
), ),
}, },
include=library_agent_include( include=library_agent_include(
@@ -1228,8 +1191,15 @@ async def fork_library_agent(
) )
new_graph = await on_graph_activate(new_graph, user_id=user_id) new_graph = await on_graph_activate(new_graph, user_id=user_id)
# Create a library agent for the new graph # Create a library agent for the new graph, preserving safe mode settings
return (await create_library_agent(new_graph, user_id))[0] return (
await create_library_agent(
new_graph,
user_id,
hitl_safe_mode=original_agent.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=original_agent.settings.sensitive_action_safe_mode,
)
)[0]
except prisma.errors.PrismaError as e: except prisma.errors.PrismaError as e:
logger.error(f"Database error cloning library agent: {e}") logger.error(f"Database error cloning library agent: {e}")
raise DatabaseError("Failed to fork library agent") from e raise DatabaseError("Failed to fork library agent") from e

View File

@@ -73,6 +73,12 @@ class LibraryAgent(pydantic.BaseModel):
has_external_trigger: bool = pydantic.Field( has_external_trigger: bool = pydantic.Field(
description="Whether the agent has an external trigger (e.g. webhook) node" description="Whether the agent has an external trigger (e.g. webhook) node"
) )
has_human_in_the_loop: bool = pydantic.Field(
description="Whether the agent has human-in-the-loop blocks"
)
has_sensitive_action: bool = pydantic.Field(
description="Whether the agent has sensitive action blocks"
)
trigger_setup_info: Optional[GraphTriggerInfo] = None trigger_setup_info: Optional[GraphTriggerInfo] = None
# Indicates whether there's a new output (based on recent runs) # Indicates whether there's a new output (based on recent runs)
@@ -180,6 +186,8 @@ class LibraryAgent(pydantic.BaseModel):
graph.credentials_input_schema if sub_graphs is not None else None graph.credentials_input_schema if sub_graphs is not None else None
), ),
has_external_trigger=graph.has_external_trigger, has_external_trigger=graph.has_external_trigger,
has_human_in_the_loop=graph.has_human_in_the_loop,
has_sensitive_action=graph.has_sensitive_action,
trigger_setup_info=graph.trigger_setup_info, trigger_setup_info=graph.trigger_setup_info,
new_output=new_output, new_output=new_output,
can_access_graph=can_access_graph, can_access_graph=can_access_graph,

View File

@@ -52,6 +52,8 @@ async def test_get_library_agents_success(
output_schema={"type": "object", "properties": {}}, output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}}, credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False, has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED, status=library_model.LibraryAgentStatus.COMPLETED,
recommended_schedule_cron=None, recommended_schedule_cron=None,
new_output=False, new_output=False,
@@ -75,6 +77,8 @@ async def test_get_library_agents_success(
output_schema={"type": "object", "properties": {}}, output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}}, credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False, has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED, status=library_model.LibraryAgentStatus.COMPLETED,
recommended_schedule_cron=None, recommended_schedule_cron=None,
new_output=False, new_output=False,
@@ -150,6 +154,8 @@ async def test_get_favorite_library_agents_success(
output_schema={"type": "object", "properties": {}}, output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}}, credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False, has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED, status=library_model.LibraryAgentStatus.COMPLETED,
recommended_schedule_cron=None, recommended_schedule_cron=None,
new_output=False, new_output=False,
@@ -218,6 +224,8 @@ def test_add_agent_to_library_success(
output_schema={"type": "object", "properties": {}}, output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}}, credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False, has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED, status=library_model.LibraryAgentStatus.COMPLETED,
new_output=False, new_output=False,
can_access_graph=True, can_access_graph=True,

View File

@@ -0,0 +1,610 @@
"""
Content Type Handlers for Unified Embeddings
Pluggable system for different content sources (store agents, blocks, docs).
Each handler knows how to fetch and process its content type for embedding.
"""
import logging
from abc import ABC, abstractmethod
from dataclasses import dataclass
from pathlib import Path
from typing import Any
from prisma.enums import ContentType
from backend.data.db import query_raw_with_schema
logger = logging.getLogger(__name__)
@dataclass
class ContentItem:
"""Represents a piece of content to be embedded."""
content_id: str # Unique identifier (DB ID or file path)
content_type: ContentType
searchable_text: str # Combined text for embedding
metadata: dict[str, Any] # Content-specific metadata
user_id: str | None = None # For user-scoped content
class ContentHandler(ABC):
"""Base handler for fetching and processing content for embeddings."""
@property
@abstractmethod
def content_type(self) -> ContentType:
"""The ContentType this handler manages."""
pass
@abstractmethod
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""
Fetch items that don't have embeddings yet.
Args:
batch_size: Maximum number of items to return
Returns:
List of ContentItem objects ready for embedding
"""
pass
@abstractmethod
async def get_stats(self) -> dict[str, int]:
"""
Get statistics about embedding coverage.
Returns:
Dict with keys: total, with_embeddings, without_embeddings
"""
pass
class StoreAgentHandler(ContentHandler):
"""Handler for marketplace store agent listings."""
@property
def content_type(self) -> ContentType:
return ContentType.STORE_AGENT
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch approved store listings without embeddings."""
from backend.api.features.store.embeddings import build_searchable_text
missing = await query_raw_with_schema(
"""
SELECT
slv.id,
slv.name,
slv.description,
slv."subHeading",
slv.categories
FROM {schema_prefix}"StoreListingVersion" slv
LEFT JOIN {schema_prefix}"UnifiedContentEmbedding" uce
ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
AND uce."contentId" IS NULL
LIMIT $1
""",
batch_size,
)
return [
ContentItem(
content_id=row["id"],
content_type=ContentType.STORE_AGENT,
searchable_text=build_searchable_text(
name=row["name"],
description=row["description"],
sub_heading=row["subHeading"],
categories=row["categories"] or [],
),
metadata={
"name": row["name"],
"categories": row["categories"] or [],
},
user_id=None, # Store agents are public
)
for row in missing
]
async def get_stats(self) -> dict[str, int]:
"""Get statistics about store agent embedding coverage."""
# Count approved versions
approved_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
AND "isDeleted" = false
"""
)
total_approved = approved_result[0]["count"] if approved_result else 0
# Count versions with embeddings
embedded_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"StoreListingVersion" slv
JOIN {schema_prefix}"UnifiedContentEmbedding" uce ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
"""
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total": total_approved,
"with_embeddings": with_embeddings,
"without_embeddings": total_approved - with_embeddings,
}
class BlockHandler(ContentHandler):
"""Handler for block definitions (Python classes)."""
@property
def content_type(self) -> ContentType:
return ContentType.BLOCK
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch blocks without embeddings."""
from backend.data.block import get_blocks
# Get all available blocks
all_blocks = get_blocks()
# Check which ones have embeddings
if not all_blocks:
return []
block_ids = list(all_blocks.keys())
# Query for existing embeddings
placeholders = ",".join([f"${i+1}" for i in range(len(block_ids))])
existing_result = await query_raw_with_schema(
f"""
SELECT "contentId"
FROM {{schema_prefix}}"UnifiedContentEmbedding"
WHERE "contentType" = 'BLOCK'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*block_ids,
)
existing_ids = {row["contentId"] for row in existing_result}
missing_blocks = [
(block_id, block_cls)
for block_id, block_cls in all_blocks.items()
if block_id not in existing_ids
]
# Convert to ContentItem
items = []
for block_id, block_cls in missing_blocks[:batch_size]:
try:
block_instance = block_cls()
# Build searchable text from block metadata
parts = []
if hasattr(block_instance, "name") and block_instance.name:
parts.append(block_instance.name)
if (
hasattr(block_instance, "description")
and block_instance.description
):
parts.append(block_instance.description)
if hasattr(block_instance, "categories") and block_instance.categories:
# Convert BlockCategory enum to strings
parts.append(
" ".join(str(cat.value) for cat in block_instance.categories)
)
# Add input/output schema info
if hasattr(block_instance, "input_schema"):
schema = block_instance.input_schema
if hasattr(schema, "model_json_schema"):
schema_dict = schema.model_json_schema()
if "properties" in schema_dict:
for prop_name, prop_info in schema_dict[
"properties"
].items():
if "description" in prop_info:
parts.append(
f"{prop_name}: {prop_info['description']}"
)
searchable_text = " ".join(parts)
# Convert categories set of enums to list of strings for JSON serialization
categories = getattr(block_instance, "categories", set())
categories_list = (
[cat.value for cat in categories] if categories else []
)
items.append(
ContentItem(
content_id=block_id,
content_type=ContentType.BLOCK,
searchable_text=searchable_text,
metadata={
"name": getattr(block_instance, "name", ""),
"categories": categories_list,
},
user_id=None, # Blocks are public
)
)
except Exception as e:
logger.warning(f"Failed to process block {block_id}: {e}")
continue
return items
async def get_stats(self) -> dict[str, int]:
"""Get statistics about block embedding coverage."""
from backend.data.block import get_blocks
all_blocks = get_blocks()
total_blocks = len(all_blocks)
if total_blocks == 0:
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
block_ids = list(all_blocks.keys())
placeholders = ",".join([f"${i+1}" for i in range(len(block_ids))])
embedded_result = await query_raw_with_schema(
f"""
SELECT COUNT(*) as count
FROM {{schema_prefix}}"UnifiedContentEmbedding"
WHERE "contentType" = 'BLOCK'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*block_ids,
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total": total_blocks,
"with_embeddings": with_embeddings,
"without_embeddings": total_blocks - with_embeddings,
}
@dataclass
class MarkdownSection:
"""Represents a section of a markdown document."""
title: str # Section heading text
content: str # Section content (including the heading line)
level: int # Heading level (1 for #, 2 for ##, etc.)
index: int # Section index within the document
class DocumentationHandler(ContentHandler):
"""Handler for documentation files (.md/.mdx).
Chunks documents by markdown headings to create multiple embeddings per file.
Each section (## heading) becomes a separate embedding for better retrieval.
"""
@property
def content_type(self) -> ContentType:
return ContentType.DOCUMENTATION
def _get_docs_root(self) -> Path:
"""Get the documentation root directory."""
# content_handlers.py is at: backend/backend/api/features/store/content_handlers.py
# Need to go up to project root then into docs/
# In container: /app/autogpt_platform/backend/backend/api/features/store -> /app/docs
# In development: /repo/autogpt_platform/backend/backend/api/features/store -> /repo/docs
this_file = Path(
__file__
) # .../backend/backend/api/features/store/content_handlers.py
project_root = (
this_file.parent.parent.parent.parent.parent.parent.parent
) # -> /app or /repo
docs_root = project_root / "docs"
return docs_root
def _extract_doc_title(self, file_path: Path) -> str:
"""Extract the document title from a markdown file."""
try:
content = file_path.read_text(encoding="utf-8")
lines = content.split("\n")
# Try to extract title from first # heading
for line in lines:
if line.startswith("# "):
return line[2:].strip()
# If no title found, use filename
return file_path.stem.replace("-", " ").replace("_", " ").title()
except Exception as e:
logger.warning(f"Failed to read title from {file_path}: {e}")
return file_path.stem.replace("-", " ").replace("_", " ").title()
def _chunk_markdown_by_headings(
self, file_path: Path, min_heading_level: int = 2
) -> list[MarkdownSection]:
"""
Split a markdown file into sections based on headings.
Args:
file_path: Path to the markdown file
min_heading_level: Minimum heading level to split on (default: 2 for ##)
Returns:
List of MarkdownSection objects, one per section.
If no headings found, returns a single section with all content.
"""
try:
content = file_path.read_text(encoding="utf-8")
except Exception as e:
logger.warning(f"Failed to read {file_path}: {e}")
return []
lines = content.split("\n")
sections: list[MarkdownSection] = []
current_section_lines: list[str] = []
current_title = ""
current_level = 0
section_index = 0
doc_title = ""
for line in lines:
# Check if line is a heading
if line.startswith("#"):
# Count heading level
level = 0
for char in line:
if char == "#":
level += 1
else:
break
heading_text = line[level:].strip()
# Track document title (level 1 heading)
if level == 1 and not doc_title:
doc_title = heading_text
# Don't create a section for just the title - add it to first section
current_section_lines.append(line)
continue
# Check if this heading should start a new section
if level >= min_heading_level:
# Save previous section if it has content
if current_section_lines:
section_content = "\n".join(current_section_lines).strip()
if section_content:
# Use doc title for first section if no specific title
title = current_title if current_title else doc_title
if not title:
title = file_path.stem.replace("-", " ").replace(
"_", " "
)
sections.append(
MarkdownSection(
title=title,
content=section_content,
level=current_level if current_level else 1,
index=section_index,
)
)
section_index += 1
# Start new section
current_section_lines = [line]
current_title = heading_text
current_level = level
else:
# Lower level heading (e.g., # when splitting on ##)
current_section_lines.append(line)
else:
current_section_lines.append(line)
# Don't forget the last section
if current_section_lines:
section_content = "\n".join(current_section_lines).strip()
if section_content:
title = current_title if current_title else doc_title
if not title:
title = file_path.stem.replace("-", " ").replace("_", " ")
sections.append(
MarkdownSection(
title=title,
content=section_content,
level=current_level if current_level else 1,
index=section_index,
)
)
# If no sections were created (no headings found), create one section with all content
if not sections and content.strip():
title = (
doc_title
if doc_title
else file_path.stem.replace("-", " ").replace("_", " ")
)
sections.append(
MarkdownSection(
title=title,
content=content.strip(),
level=1,
index=0,
)
)
return sections
def _make_section_content_id(self, doc_path: str, section_index: int) -> str:
"""Create a unique content ID for a document section.
Format: doc_path::section_index
Example: 'platform/getting-started.md::0'
"""
return f"{doc_path}::{section_index}"
def _parse_section_content_id(self, content_id: str) -> tuple[str, int]:
"""Parse a section content ID back into doc_path and section_index.
Returns: (doc_path, section_index)
"""
if "::" in content_id:
parts = content_id.rsplit("::", 1)
return parts[0], int(parts[1])
# Legacy format (whole document)
return content_id, 0
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch documentation sections without embeddings.
Chunks each document by markdown headings and creates embeddings for each section.
Content IDs use the format: 'path/to/doc.md::section_index'
"""
docs_root = self._get_docs_root()
if not docs_root.exists():
logger.warning(f"Documentation root not found: {docs_root}")
return []
# Find all .md and .mdx files
all_docs = list(docs_root.rglob("*.md")) + list(docs_root.rglob("*.mdx"))
if not all_docs:
return []
# Build list of all sections from all documents
all_sections: list[tuple[str, Path, MarkdownSection]] = []
for doc_file in all_docs:
doc_path = str(doc_file.relative_to(docs_root))
sections = self._chunk_markdown_by_headings(doc_file)
for section in sections:
all_sections.append((doc_path, doc_file, section))
if not all_sections:
return []
# Generate content IDs for all sections
section_content_ids = [
self._make_section_content_id(doc_path, section.index)
for doc_path, _, section in all_sections
]
# Check which ones have embeddings
placeholders = ",".join([f"${i+1}" for i in range(len(section_content_ids))])
existing_result = await query_raw_with_schema(
f"""
SELECT "contentId"
FROM {{schema_prefix}}"UnifiedContentEmbedding"
WHERE "contentType" = 'DOCUMENTATION'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*section_content_ids,
)
existing_ids = {row["contentId"] for row in existing_result}
# Filter to missing sections
missing_sections = [
(doc_path, doc_file, section, content_id)
for (doc_path, doc_file, section), content_id in zip(
all_sections, section_content_ids
)
if content_id not in existing_ids
]
# Convert to ContentItem (up to batch_size)
items = []
for doc_path, doc_file, section, content_id in missing_sections[:batch_size]:
try:
# Get document title for context
doc_title = self._extract_doc_title(doc_file)
# Build searchable text with context
# Include doc title and section title for better search relevance
searchable_text = f"{doc_title} - {section.title}\n\n{section.content}"
items.append(
ContentItem(
content_id=content_id,
content_type=ContentType.DOCUMENTATION,
searchable_text=searchable_text,
metadata={
"doc_title": doc_title,
"section_title": section.title,
"section_index": section.index,
"heading_level": section.level,
"path": doc_path,
},
user_id=None, # Documentation is public
)
)
except Exception as e:
logger.warning(f"Failed to process section {content_id}: {e}")
continue
return items
def _get_all_section_content_ids(self, docs_root: Path) -> set[str]:
"""Get all current section content IDs from the docs directory.
Used for stats and cleanup to know what sections should exist.
"""
all_docs = list(docs_root.rglob("*.md")) + list(docs_root.rglob("*.mdx"))
content_ids = set()
for doc_file in all_docs:
doc_path = str(doc_file.relative_to(docs_root))
sections = self._chunk_markdown_by_headings(doc_file)
for section in sections:
content_ids.add(self._make_section_content_id(doc_path, section.index))
return content_ids
async def get_stats(self) -> dict[str, int]:
"""Get statistics about documentation embedding coverage.
Counts sections (not documents) since each section gets its own embedding.
"""
docs_root = self._get_docs_root()
if not docs_root.exists():
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
# Get all section content IDs
all_section_ids = self._get_all_section_content_ids(docs_root)
total_sections = len(all_section_ids)
if total_sections == 0:
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
# Count embeddings in database for DOCUMENTATION type
embedded_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = 'DOCUMENTATION'::{schema_prefix}"ContentType"
"""
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total": total_sections,
"with_embeddings": with_embeddings,
"without_embeddings": total_sections - with_embeddings,
}
# Content handler registry
CONTENT_HANDLERS: dict[ContentType, ContentHandler] = {
ContentType.STORE_AGENT: StoreAgentHandler(),
ContentType.BLOCK: BlockHandler(),
ContentType.DOCUMENTATION: DocumentationHandler(),
}

View File

@@ -0,0 +1,215 @@
"""
Integration tests for content handlers using real DB.
Run with: poetry run pytest backend/api/features/store/content_handlers_integration_test.py -xvs
These tests use the real database but mock OpenAI calls.
"""
from unittest.mock import patch
import pytest
from backend.api.features.store.content_handlers import (
CONTENT_HANDLERS,
BlockHandler,
DocumentationHandler,
StoreAgentHandler,
)
from backend.api.features.store.embeddings import (
EMBEDDING_DIM,
backfill_all_content_types,
ensure_content_embedding,
get_embedding_stats,
)
@pytest.mark.asyncio(loop_scope="session")
async def test_store_agent_handler_real_db():
"""Test StoreAgentHandler with real database queries."""
handler = StoreAgentHandler()
# Get stats from real DB
stats = await handler.get_stats()
# Stats should have correct structure
assert "total" in stats
assert "with_embeddings" in stats
assert "without_embeddings" in stats
assert stats["total"] >= 0
assert stats["with_embeddings"] >= 0
assert stats["without_embeddings"] >= 0
# Get missing items (max 1 to keep test fast)
items = await handler.get_missing_items(batch_size=1)
# Items should be list (may be empty if all have embeddings)
assert isinstance(items, list)
if items:
item = items[0]
assert item.content_id is not None
assert item.content_type.value == "STORE_AGENT"
assert item.searchable_text != ""
assert item.user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_real_db():
"""Test BlockHandler with real database queries."""
handler = BlockHandler()
# Get stats from real DB
stats = await handler.get_stats()
# Stats should have correct structure
assert "total" in stats
assert "with_embeddings" in stats
assert "without_embeddings" in stats
assert stats["total"] >= 0 # Should have at least some blocks
assert stats["with_embeddings"] >= 0
assert stats["without_embeddings"] >= 0
# Get missing items (max 1 to keep test fast)
items = await handler.get_missing_items(batch_size=1)
# Items should be list
assert isinstance(items, list)
if items:
item = items[0]
assert item.content_id is not None # Should be block UUID
assert item.content_type.value == "BLOCK"
assert item.searchable_text != ""
assert item.user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_real_fs():
"""Test DocumentationHandler with real filesystem."""
handler = DocumentationHandler()
# Get stats from real filesystem
stats = await handler.get_stats()
# Stats should have correct structure
assert "total" in stats
assert "with_embeddings" in stats
assert "without_embeddings" in stats
assert stats["total"] >= 0
assert stats["with_embeddings"] >= 0
assert stats["without_embeddings"] >= 0
# Get missing items (max 1 to keep test fast)
items = await handler.get_missing_items(batch_size=1)
# Items should be list
assert isinstance(items, list)
if items:
item = items[0]
assert item.content_id is not None # Should be relative path
assert item.content_type.value == "DOCUMENTATION"
assert item.searchable_text != ""
assert item.user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_stats_all_types():
"""Test get_embedding_stats aggregates all content types."""
stats = await get_embedding_stats()
# Should have structure with by_type and totals
assert "by_type" in stats
assert "totals" in stats
# Check each content type is present
by_type = stats["by_type"]
assert "STORE_AGENT" in by_type
assert "BLOCK" in by_type
assert "DOCUMENTATION" in by_type
# Check totals are aggregated
totals = stats["totals"]
assert totals["total"] >= 0
assert totals["with_embeddings"] >= 0
assert totals["without_embeddings"] >= 0
assert "coverage_percent" in totals
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
async def test_ensure_content_embedding_blocks(mock_generate):
"""Test creating embeddings for blocks (mocked OpenAI)."""
# Mock OpenAI to return fake embedding
mock_generate.return_value = [0.1] * EMBEDDING_DIM
# Get one block without embedding
handler = BlockHandler()
items = await handler.get_missing_items(batch_size=1)
if not items:
pytest.skip("No blocks without embeddings")
item = items[0]
# Try to create embedding (OpenAI mocked)
result = await ensure_content_embedding(
content_type=item.content_type,
content_id=item.content_id,
searchable_text=item.searchable_text,
metadata=item.metadata,
user_id=item.user_id,
)
# Should succeed with mocked OpenAI
assert result is True
mock_generate.assert_called_once()
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
async def test_backfill_all_content_types_dry_run(mock_generate):
"""Test backfill_all_content_types processes all handlers in order."""
# Mock OpenAI to return fake embedding
mock_generate.return_value = [0.1] * EMBEDDING_DIM
# Run backfill with batch_size=1 to process max 1 per type
result = await backfill_all_content_types(batch_size=1)
# Should have results for all content types
assert "by_type" in result
assert "totals" in result
by_type = result["by_type"]
assert "BLOCK" in by_type
assert "STORE_AGENT" in by_type
assert "DOCUMENTATION" in by_type
# Each type should have correct structure
for content_type, type_result in by_type.items():
assert "processed" in type_result
assert "success" in type_result
assert "failed" in type_result
# Totals should aggregate
totals = result["totals"]
assert totals["processed"] >= 0
assert totals["success"] >= 0
assert totals["failed"] >= 0
@pytest.mark.asyncio(loop_scope="session")
async def test_content_handler_registry():
"""Test all handlers are registered in correct order."""
from prisma.enums import ContentType
# All three types should be registered
assert ContentType.STORE_AGENT in CONTENT_HANDLERS
assert ContentType.BLOCK in CONTENT_HANDLERS
assert ContentType.DOCUMENTATION in CONTENT_HANDLERS
# Check handler types
assert isinstance(CONTENT_HANDLERS[ContentType.STORE_AGENT], StoreAgentHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.BLOCK], BlockHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.DOCUMENTATION], DocumentationHandler)

View File

@@ -0,0 +1,381 @@
"""
E2E tests for content handlers (blocks, store agents, documentation).
Tests the full flow: discovering content → generating embeddings → storing.
"""
from pathlib import Path
from unittest.mock import MagicMock, patch
import pytest
from prisma.enums import ContentType
from backend.api.features.store.content_handlers import (
CONTENT_HANDLERS,
BlockHandler,
DocumentationHandler,
StoreAgentHandler,
)
@pytest.mark.asyncio(loop_scope="session")
async def test_store_agent_handler_get_missing_items(mocker):
"""Test StoreAgentHandler fetches approved agents without embeddings."""
handler = StoreAgentHandler()
# Mock database query
mock_missing = [
{
"id": "agent-1",
"name": "Test Agent",
"description": "A test agent",
"subHeading": "Test heading",
"categories": ["AI", "Testing"],
}
]
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_missing,
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 1
assert items[0].content_id == "agent-1"
assert items[0].content_type == ContentType.STORE_AGENT
assert "Test Agent" in items[0].searchable_text
assert "A test agent" in items[0].searchable_text
assert items[0].metadata["name"] == "Test Agent"
assert items[0].user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_store_agent_handler_get_stats(mocker):
"""Test StoreAgentHandler returns correct stats."""
handler = StoreAgentHandler()
# Mock approved count query
mock_approved = [{"count": 50}]
# Mock embedded count query
mock_embedded = [{"count": 30}]
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
side_effect=[mock_approved, mock_embedded],
):
stats = await handler.get_stats()
assert stats["total"] == 50
assert stats["with_embeddings"] == 30
assert stats["without_embeddings"] == 20
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_get_missing_items(mocker):
"""Test BlockHandler discovers blocks without embeddings."""
handler = BlockHandler()
# Mock get_blocks to return test blocks
mock_block_class = MagicMock()
mock_block_instance = MagicMock()
mock_block_instance.name = "Calculator Block"
mock_block_instance.description = "Performs calculations"
mock_block_instance.categories = [MagicMock(value="MATH")]
mock_block_instance.input_schema.model_json_schema.return_value = {
"properties": {"expression": {"description": "Math expression to evaluate"}}
}
mock_block_class.return_value = mock_block_instance
mock_blocks = {"block-uuid-1": mock_block_class}
# Mock existing embeddings query (no embeddings exist)
mock_existing = []
with patch(
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_existing,
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 1
assert items[0].content_id == "block-uuid-1"
assert items[0].content_type == ContentType.BLOCK
assert "Calculator Block" in items[0].searchable_text
assert "Performs calculations" in items[0].searchable_text
assert "MATH" in items[0].searchable_text
assert "expression: Math expression" in items[0].searchable_text
assert items[0].user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_get_stats(mocker):
"""Test BlockHandler returns correct stats."""
handler = BlockHandler()
# Mock get_blocks
mock_blocks = {
"block-1": MagicMock(),
"block-2": MagicMock(),
"block-3": MagicMock(),
}
# Mock embedded count query (2 blocks have embeddings)
mock_embedded = [{"count": 2}]
with patch(
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_embedded,
):
stats = await handler.get_stats()
assert stats["total"] == 3
assert stats["with_embeddings"] == 2
assert stats["without_embeddings"] == 1
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_get_missing_items(tmp_path, mocker):
"""Test DocumentationHandler discovers docs without embeddings."""
handler = DocumentationHandler()
# Create temporary docs directory with test files
docs_root = tmp_path / "docs"
docs_root.mkdir()
(docs_root / "guide.md").write_text("# Getting Started\n\nThis is a guide.")
(docs_root / "api.mdx").write_text("# API Reference\n\nAPI documentation.")
# Mock _get_docs_root to return temp dir
with patch.object(handler, "_get_docs_root", return_value=docs_root):
# Mock existing embeddings query (no embeddings exist)
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=[],
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 2
# Check guide.md (content_id format: doc_path::section_index)
guide_item = next(
(item for item in items if item.content_id == "guide.md::0"), None
)
assert guide_item is not None
assert guide_item.content_type == ContentType.DOCUMENTATION
assert "Getting Started" in guide_item.searchable_text
assert "This is a guide" in guide_item.searchable_text
assert guide_item.metadata["doc_title"] == "Getting Started"
assert guide_item.user_id is None
# Check api.mdx (content_id format: doc_path::section_index)
api_item = next(
(item for item in items if item.content_id == "api.mdx::0"), None
)
assert api_item is not None
assert "API Reference" in api_item.searchable_text
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_get_stats(tmp_path, mocker):
"""Test DocumentationHandler returns correct stats."""
handler = DocumentationHandler()
# Create temporary docs directory
docs_root = tmp_path / "docs"
docs_root.mkdir()
(docs_root / "doc1.md").write_text("# Doc 1")
(docs_root / "doc2.md").write_text("# Doc 2")
(docs_root / "doc3.mdx").write_text("# Doc 3")
# Mock embedded count query (1 doc has embedding)
mock_embedded = [{"count": 1}]
with patch.object(handler, "_get_docs_root", return_value=docs_root):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_embedded,
):
stats = await handler.get_stats()
assert stats["total"] == 3
assert stats["with_embeddings"] == 1
assert stats["without_embeddings"] == 2
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_title_extraction(tmp_path):
"""Test DocumentationHandler extracts title from markdown heading."""
handler = DocumentationHandler()
# Test with heading
doc_with_heading = tmp_path / "with_heading.md"
doc_with_heading.write_text("# My Title\n\nContent here")
title = handler._extract_doc_title(doc_with_heading)
assert title == "My Title"
# Test without heading
doc_without_heading = tmp_path / "no-heading.md"
doc_without_heading.write_text("Just content, no heading")
title = handler._extract_doc_title(doc_without_heading)
assert title == "No Heading" # Uses filename
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_markdown_chunking(tmp_path):
"""Test DocumentationHandler chunks markdown by headings."""
handler = DocumentationHandler()
# Test document with multiple sections
doc_with_sections = tmp_path / "sections.md"
doc_with_sections.write_text(
"# Document Title\n\n"
"Intro paragraph.\n\n"
"## Section One\n\n"
"Content for section one.\n\n"
"## Section Two\n\n"
"Content for section two.\n"
)
sections = handler._chunk_markdown_by_headings(doc_with_sections)
# Should have 3 sections: intro (with doc title), section one, section two
assert len(sections) == 3
assert sections[0].title == "Document Title"
assert sections[0].index == 0
assert "Intro paragraph" in sections[0].content
assert sections[1].title == "Section One"
assert sections[1].index == 1
assert "Content for section one" in sections[1].content
assert sections[2].title == "Section Two"
assert sections[2].index == 2
assert "Content for section two" in sections[2].content
# Test document without headings
doc_no_sections = tmp_path / "no-sections.md"
doc_no_sections.write_text("Just plain content without any headings.")
sections = handler._chunk_markdown_by_headings(doc_no_sections)
assert len(sections) == 1
assert sections[0].index == 0
assert "Just plain content" in sections[0].content
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_section_content_ids():
"""Test DocumentationHandler creates and parses section content IDs."""
handler = DocumentationHandler()
# Test making content ID
content_id = handler._make_section_content_id("docs/guide.md", 2)
assert content_id == "docs/guide.md::2"
# Test parsing content ID
doc_path, section_index = handler._parse_section_content_id("docs/guide.md::2")
assert doc_path == "docs/guide.md"
assert section_index == 2
# Test parsing legacy format (no section index)
doc_path, section_index = handler._parse_section_content_id("docs/old-format.md")
assert doc_path == "docs/old-format.md"
assert section_index == 0
@pytest.mark.asyncio(loop_scope="session")
async def test_content_handlers_registry():
"""Test all content types are registered."""
assert ContentType.STORE_AGENT in CONTENT_HANDLERS
assert ContentType.BLOCK in CONTENT_HANDLERS
assert ContentType.DOCUMENTATION in CONTENT_HANDLERS
assert isinstance(CONTENT_HANDLERS[ContentType.STORE_AGENT], StoreAgentHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.BLOCK], BlockHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.DOCUMENTATION], DocumentationHandler)
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_handles_missing_attributes():
"""Test BlockHandler gracefully handles blocks with missing attributes."""
handler = BlockHandler()
# Mock block with minimal attributes
mock_block_class = MagicMock()
mock_block_instance = MagicMock()
mock_block_instance.name = "Minimal Block"
# No description, categories, or schema
del mock_block_instance.description
del mock_block_instance.categories
del mock_block_instance.input_schema
mock_block_class.return_value = mock_block_instance
mock_blocks = {"block-minimal": mock_block_class}
with patch(
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=[],
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 1
assert items[0].searchable_text == "Minimal Block"
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_skips_failed_blocks():
"""Test BlockHandler skips blocks that fail to instantiate."""
handler = BlockHandler()
# Mock one good block and one bad block
good_block = MagicMock()
good_instance = MagicMock()
good_instance.name = "Good Block"
good_instance.description = "Works fine"
good_instance.categories = []
good_block.return_value = good_instance
bad_block = MagicMock()
bad_block.side_effect = Exception("Instantiation failed")
mock_blocks = {"good-block": good_block, "bad-block": bad_block}
with patch(
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=[],
):
items = await handler.get_missing_items(batch_size=10)
# Should only get the good block
assert len(items) == 1
assert items[0].content_id == "good-block"
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_missing_docs_directory():
"""Test DocumentationHandler handles missing docs directory gracefully."""
handler = DocumentationHandler()
# Mock _get_docs_root to return non-existent path
fake_path = Path("/nonexistent/docs")
with patch.object(handler, "_get_docs_root", return_value=fake_path):
items = await handler.get_missing_items(batch_size=10)
assert items == []
stats = await handler.get_stats()
assert stats["total"] == 0
assert stats["with_embeddings"] == 0
assert stats["without_embeddings"] == 0

View File

@@ -14,6 +14,7 @@ import prisma
from prisma.enums import ContentType from prisma.enums import ContentType
from tiktoken import encoding_for_model from tiktoken import encoding_for_model
from backend.api.features.store.content_handlers import CONTENT_HANDLERS
from backend.data.db import execute_raw_with_schema, query_raw_with_schema from backend.data.db import execute_raw_with_schema, query_raw_with_schema
from backend.util.clients import get_openai_client from backend.util.clients import get_openai_client
from backend.util.json import dumps from backend.util.json import dumps
@@ -23,6 +24,9 @@ logger = logging.getLogger(__name__)
# OpenAI embedding model configuration # OpenAI embedding model configuration
EMBEDDING_MODEL = "text-embedding-3-small" EMBEDDING_MODEL = "text-embedding-3-small"
# Embedding dimension for the model above
# text-embedding-3-small: 1536, text-embedding-3-large: 3072
EMBEDDING_DIM = 1536
# OpenAI embedding token limit (8,191 with 1 token buffer for safety) # OpenAI embedding token limit (8,191 with 1 token buffer for safety)
EMBEDDING_MAX_TOKENS = 8191 EMBEDDING_MAX_TOKENS = 8191
@@ -150,6 +154,7 @@ async def store_content_embedding(
# Upsert the embedding # Upsert the embedding
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT # WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
# Use unqualified ::vector - pgvector is in search_path on all environments
await execute_raw_with_schema( await execute_raw_with_schema(
""" """
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" ( INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
@@ -173,7 +178,6 @@ async def store_content_embedding(
searchable_text, searchable_text,
metadata_json, metadata_json,
client=client, client=client,
set_public_search_path=True,
) )
logger.info(f"Stored embedding for {content_type}:{content_id}") logger.info(f"Stored embedding for {content_type}:{content_id}")
@@ -232,7 +236,6 @@ async def get_content_embedding(
content_type, content_type,
content_id, content_id,
user_id, user_id,
set_public_search_path=True,
) )
if result and len(result) > 0: if result and len(result) > 0:
@@ -369,55 +372,69 @@ async def delete_content_embedding(
async def get_embedding_stats() -> dict[str, Any]: async def get_embedding_stats() -> dict[str, Any]:
""" """
Get statistics about embedding coverage. Get statistics about embedding coverage for all content types.
Returns counts of: Returns stats per content type and overall totals.
- Total approved listing versions
- Versions with embeddings
- Versions without embeddings
""" """
try: try:
# Count approved versions stats_by_type = {}
approved_result = await query_raw_with_schema( total_items = 0
""" total_with_embeddings = 0
SELECT COUNT(*) as count total_without_embeddings = 0
FROM {schema_prefix}"StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
AND "isDeleted" = false
"""
)
total_approved = approved_result[0]["count"] if approved_result else 0
# Count versions with embeddings # Aggregate stats from all handlers
embedded_result = await query_raw_with_schema( for content_type, handler in CONTENT_HANDLERS.items():
""" try:
SELECT COUNT(*) as count stats = await handler.get_stats()
FROM {schema_prefix}"StoreListingVersion" slv stats_by_type[content_type.value] = {
JOIN {schema_prefix}"UnifiedContentEmbedding" uce ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType" "total": stats["total"],
WHERE slv."submissionStatus" = 'APPROVED' "with_embeddings": stats["with_embeddings"],
AND slv."isDeleted" = false "without_embeddings": stats["without_embeddings"],
""" "coverage_percent": (
) round(stats["with_embeddings"] / stats["total"] * 100, 1)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0 if stats["total"] > 0
else 0
),
}
total_items += stats["total"]
total_with_embeddings += stats["with_embeddings"]
total_without_embeddings += stats["without_embeddings"]
except Exception as e:
logger.error(f"Failed to get stats for {content_type.value}: {e}")
stats_by_type[content_type.value] = {
"total": 0,
"with_embeddings": 0,
"without_embeddings": 0,
"coverage_percent": 0,
"error": str(e),
}
return { return {
"total_approved": total_approved, "by_type": stats_by_type,
"with_embeddings": with_embeddings, "totals": {
"without_embeddings": total_approved - with_embeddings, "total": total_items,
"coverage_percent": ( "with_embeddings": total_with_embeddings,
round(with_embeddings / total_approved * 100, 1) "without_embeddings": total_without_embeddings,
if total_approved > 0 "coverage_percent": (
else 0 round(total_with_embeddings / total_items * 100, 1)
), if total_items > 0
else 0
),
},
} }
except Exception as e: except Exception as e:
logger.error(f"Failed to get embedding stats: {e}") logger.error(f"Failed to get embedding stats: {e}")
return { return {
"total_approved": 0, "by_type": {},
"with_embeddings": 0, "totals": {
"without_embeddings": 0, "total": 0,
"coverage_percent": 0, "with_embeddings": 0,
"without_embeddings": 0,
"coverage_percent": 0,
},
"error": str(e), "error": str(e),
} }
@@ -426,73 +443,118 @@ async def backfill_missing_embeddings(batch_size: int = 10) -> dict[str, Any]:
""" """
Generate embeddings for approved listings that don't have them. Generate embeddings for approved listings that don't have them.
BACKWARD COMPATIBILITY: Maintained for existing usage.
This now delegates to backfill_all_content_types() to process all content types.
Args: Args:
batch_size: Number of embeddings to generate in one call batch_size: Number of embeddings to generate per content type
Returns: Returns:
Dict with success/failure counts Dict with success/failure counts aggregated across all content types
""" """
try: # Delegate to the new generic backfill system
# Find approved versions without embeddings result = await backfill_all_content_types(batch_size)
missing = await query_raw_with_schema(
"""
SELECT
slv.id,
slv.name,
slv.description,
slv."subHeading",
slv.categories
FROM {schema_prefix}"StoreListingVersion" slv
LEFT JOIN {schema_prefix}"UnifiedContentEmbedding" uce
ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
AND uce."contentId" IS NULL
LIMIT $1
""",
batch_size,
)
if not missing: # Return in the old format for backward compatibility
return { return result["totals"]
async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
"""
Generate embeddings for all content types using registered handlers.
Processes content types in order: BLOCK → STORE_AGENT → DOCUMENTATION.
This ensures foundational content (blocks) are searchable first.
Args:
batch_size: Number of embeddings to generate per content type
Returns:
Dict with stats per content type and overall totals
"""
results_by_type = {}
total_processed = 0
total_success = 0
total_failed = 0
# Process content types in explicit order
processing_order = [
ContentType.BLOCK,
ContentType.STORE_AGENT,
ContentType.DOCUMENTATION,
]
for content_type in processing_order:
handler = CONTENT_HANDLERS.get(content_type)
if not handler:
logger.warning(f"No handler registered for {content_type.value}")
continue
try:
logger.info(f"Processing {content_type.value} content type...")
# Get missing items from handler
missing_items = await handler.get_missing_items(batch_size)
if not missing_items:
results_by_type[content_type.value] = {
"processed": 0,
"success": 0,
"failed": 0,
"message": "No missing embeddings",
}
continue
# Process embeddings concurrently for better performance
embedding_tasks = [
ensure_content_embedding(
content_type=item.content_type,
content_id=item.content_id,
searchable_text=item.searchable_text,
metadata=item.metadata,
user_id=item.user_id,
)
for item in missing_items
]
results = await asyncio.gather(*embedding_tasks, return_exceptions=True)
success = sum(1 for result in results if result is True)
failed = len(results) - success
results_by_type[content_type.value] = {
"processed": len(missing_items),
"success": success,
"failed": failed,
"message": f"Backfilled {success} embeddings, {failed} failed",
}
total_processed += len(missing_items)
total_success += success
total_failed += failed
logger.info(
f"{content_type.value}: processed {len(missing_items)}, "
f"success {success}, failed {failed}"
)
except Exception as e:
logger.error(f"Failed to process {content_type.value}: {e}")
results_by_type[content_type.value] = {
"processed": 0, "processed": 0,
"success": 0, "success": 0,
"failed": 0, "failed": 0,
"message": "No missing embeddings", "error": str(e),
} }
# Process embeddings concurrently for better performance return {
embedding_tasks = [ "by_type": results_by_type,
ensure_embedding( "totals": {
version_id=row["id"], "processed": total_processed,
name=row["name"], "success": total_success,
description=row["description"], "failed": total_failed,
sub_heading=row["subHeading"], "message": f"Overall: {total_success} succeeded, {total_failed} failed",
categories=row["categories"] or [], },
) }
for row in missing
]
results = await asyncio.gather(*embedding_tasks, return_exceptions=True)
success = sum(1 for result in results if result is True)
failed = len(results) - success
return {
"processed": len(missing),
"success": success,
"failed": failed,
"message": f"Backfilled {success} embeddings, {failed} failed",
}
except Exception as e:
logger.error(f"Failed to backfill embeddings: {e}")
return {
"processed": 0,
"success": 0,
"failed": 0,
"error": str(e),
}
async def embed_query(query: str) -> list[float] | None: async def embed_query(query: str) -> list[float] | None:
@@ -566,3 +628,358 @@ async def ensure_content_embedding(
except Exception as e: except Exception as e:
logger.error(f"Failed to ensure embedding for {content_type}:{content_id}: {e}") logger.error(f"Failed to ensure embedding for {content_type}:{content_id}: {e}")
return False return False
async def cleanup_orphaned_embeddings() -> dict[str, Any]:
"""
Clean up embeddings for content that no longer exists or is no longer valid.
Compares current content with embeddings in database and removes orphaned records:
- STORE_AGENT: Removes embeddings for rejected/deleted store listings
- BLOCK: Removes embeddings for blocks no longer registered
- DOCUMENTATION: Removes embeddings for deleted doc files
Returns:
Dict with cleanup statistics per content type
"""
results_by_type = {}
total_deleted = 0
# Cleanup orphaned embeddings for all content types
cleanup_types = [
ContentType.STORE_AGENT,
ContentType.BLOCK,
ContentType.DOCUMENTATION,
]
for content_type in cleanup_types:
try:
handler = CONTENT_HANDLERS.get(content_type)
if not handler:
logger.warning(f"No handler registered for {content_type}")
results_by_type[content_type.value] = {
"deleted": 0,
"error": "No handler registered",
}
continue
# Get all current content IDs from handler
if content_type == ContentType.STORE_AGENT:
# Get IDs of approved store listing versions from non-deleted listings
valid_agents = await query_raw_with_schema(
"""
SELECT slv.id
FROM {schema_prefix}"StoreListingVersion" slv
JOIN {schema_prefix}"StoreListing" sl ON slv."storeListingId" = sl.id
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
AND sl."isDeleted" = false
""",
)
current_ids = {row["id"] for row in valid_agents}
elif content_type == ContentType.BLOCK:
from backend.data.block import get_blocks
current_ids = set(get_blocks().keys())
elif content_type == ContentType.DOCUMENTATION:
# Use DocumentationHandler to get section-based content IDs
from backend.api.features.store.content_handlers import (
DocumentationHandler,
)
doc_handler = CONTENT_HANDLERS.get(ContentType.DOCUMENTATION)
if isinstance(doc_handler, DocumentationHandler):
docs_root = doc_handler._get_docs_root()
if docs_root.exists():
current_ids = doc_handler._get_all_section_content_ids(
docs_root
)
else:
current_ids = set()
else:
current_ids = set()
else:
# Skip unknown content types to avoid accidental deletion
logger.warning(
f"Skipping cleanup for unknown content type: {content_type}"
)
results_by_type[content_type.value] = {
"deleted": 0,
"error": "Unknown content type - skipped for safety",
}
continue
# Get all embedding IDs from database
db_embeddings = await query_raw_with_schema(
"""
SELECT "contentId"
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType"
""",
content_type,
)
db_ids = {row["contentId"] for row in db_embeddings}
# Find orphaned embeddings (in DB but not in current content)
orphaned_ids = db_ids - current_ids
if not orphaned_ids:
logger.info(f"{content_type.value}: No orphaned embeddings found")
results_by_type[content_type.value] = {
"deleted": 0,
"message": "No orphaned embeddings",
}
continue
# Delete orphaned embeddings in batch for better performance
orphaned_list = list(orphaned_ids)
try:
await execute_raw_with_schema(
"""
DELETE FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType"
AND "contentId" = ANY($2::text[])
""",
content_type,
orphaned_list,
)
deleted = len(orphaned_list)
except Exception as e:
logger.error(f"Failed to batch delete orphaned embeddings: {e}")
deleted = 0
logger.info(
f"{content_type.value}: Deleted {deleted}/{len(orphaned_ids)} orphaned embeddings"
)
results_by_type[content_type.value] = {
"deleted": deleted,
"orphaned": len(orphaned_ids),
"message": f"Deleted {deleted} orphaned embeddings",
}
total_deleted += deleted
except Exception as e:
logger.error(f"Failed to cleanup {content_type.value}: {e}")
results_by_type[content_type.value] = {
"deleted": 0,
"error": str(e),
}
return {
"by_type": results_by_type,
"totals": {
"deleted": total_deleted,
"message": f"Deleted {total_deleted} orphaned embeddings",
},
}
async def semantic_search(
query: str,
content_types: list[ContentType] | None = None,
user_id: str | None = None,
limit: int = 20,
min_similarity: float = 0.5,
) -> list[dict[str, Any]]:
"""
Semantic search across content types using embeddings.
Performs vector similarity search on UnifiedContentEmbedding table.
Used directly for blocks/docs/library agents, or as the semantic component
within hybrid_search for store agents.
If embedding generation fails, falls back to lexical search on searchableText.
Args:
query: Search query string
content_types: List of ContentType to search. Defaults to [BLOCK, STORE_AGENT, DOCUMENTATION]
user_id: Optional user ID for searching private content (library agents)
limit: Maximum number of results to return (default: 20)
min_similarity: Minimum cosine similarity threshold (0-1, default: 0.5)
Returns:
List of search results with the following structure:
[
{
"content_id": str,
"content_type": str, # "BLOCK", "STORE_AGENT", "DOCUMENTATION", or "LIBRARY_AGENT"
"searchable_text": str,
"metadata": dict,
"similarity": float, # Cosine similarity score (0-1)
},
...
]
Examples:
# Search blocks only
results = await semantic_search("calculate", content_types=[ContentType.BLOCK])
# Search blocks and documentation
results = await semantic_search(
"how to use API",
content_types=[ContentType.BLOCK, ContentType.DOCUMENTATION]
)
# Search all public content (default)
results = await semantic_search("AI agent")
# Search user's library agents
results = await semantic_search(
"my custom agent",
content_types=[ContentType.LIBRARY_AGENT],
user_id="user123"
)
"""
# Default to searching all public content types
if content_types is None:
content_types = [
ContentType.BLOCK,
ContentType.STORE_AGENT,
ContentType.DOCUMENTATION,
]
# Validate inputs
if not content_types:
return [] # Empty content_types would cause invalid SQL (IN ())
query = query.strip()
if not query:
return []
if limit < 1:
limit = 1
if limit > 100:
limit = 100
# Generate query embedding
query_embedding = await embed_query(query)
if query_embedding is not None:
# Semantic search with embeddings
embedding_str = embedding_to_vector_string(query_embedding)
# Build params in order: limit, then user_id (if provided), then content types
params: list[Any] = [limit]
user_filter = ""
if user_id is not None:
user_filter = 'AND "userId" = ${}'.format(len(params) + 1)
params.append(user_id)
# Add content type parameters and build placeholders dynamically
content_type_start_idx = len(params) + 1
content_type_placeholders = ", ".join(
"$" + str(content_type_start_idx + i) + '::{schema_prefix}"ContentType"'
for i in range(len(content_types))
)
params.extend([ct.value for ct in content_types])
# Build min_similarity param index before appending
min_similarity_idx = len(params) + 1
params.append(min_similarity)
# Use unqualified ::vector and <=> operator - pgvector is in search_path on all environments
sql = (
"""
SELECT
"contentId" as content_id,
"contentType" as content_type,
"searchableText" as searchable_text,
metadata,
1 - (embedding <=> '"""
+ embedding_str
+ """'::vector) as similarity
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" IN ("""
+ content_type_placeholders
+ """)
"""
+ user_filter
+ """
AND 1 - (embedding <=> '"""
+ embedding_str
+ """'::vector) >= $"""
+ str(min_similarity_idx)
+ """
ORDER BY similarity DESC
LIMIT $1
"""
)
try:
results = await query_raw_with_schema(sql, *params)
return [
{
"content_id": row["content_id"],
"content_type": row["content_type"],
"searchable_text": row["searchable_text"],
"metadata": row["metadata"],
"similarity": float(row["similarity"]),
}
for row in results
]
except Exception as e:
logger.error(f"Semantic search failed: {e}")
# Fall through to lexical search below
# Fallback to lexical search if embeddings unavailable
logger.warning("Falling back to lexical search (embeddings unavailable)")
params_lexical: list[Any] = [limit]
user_filter = ""
if user_id is not None:
user_filter = 'AND "userId" = ${}'.format(len(params_lexical) + 1)
params_lexical.append(user_id)
# Add content type parameters and build placeholders dynamically
content_type_start_idx = len(params_lexical) + 1
content_type_placeholders_lexical = ", ".join(
"$" + str(content_type_start_idx + i) + '::{schema_prefix}"ContentType"'
for i in range(len(content_types))
)
params_lexical.extend([ct.value for ct in content_types])
# Build query param index before appending
query_param_idx = len(params_lexical) + 1
params_lexical.append(f"%{query}%")
# Use regular string (not f-string) for template to preserve {schema_prefix} placeholders
sql_lexical = (
"""
SELECT
"contentId" as content_id,
"contentType" as content_type,
"searchableText" as searchable_text,
metadata,
0.0 as similarity
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" IN ("""
+ content_type_placeholders_lexical
+ """)
"""
+ user_filter
+ """
AND "searchableText" ILIKE $"""
+ str(query_param_idx)
+ """
ORDER BY "updatedAt" DESC
LIMIT $1
"""
)
try:
results = await query_raw_with_schema(sql_lexical, *params_lexical)
return [
{
"content_id": row["content_id"],
"content_type": row["content_type"],
"searchable_text": row["searchable_text"],
"metadata": row["metadata"],
"similarity": 0.0, # Lexical search doesn't provide similarity
}
for row in results
]
except Exception as e:
logger.error(f"Lexical search failed: {e}")
return []

View File

@@ -0,0 +1,666 @@
"""
End-to-end database tests for embeddings and hybrid search.
These tests hit the actual database to verify SQL queries work correctly.
Tests cover:
1. Embedding storage (store_content_embedding)
2. Embedding retrieval (get_content_embedding)
3. Embedding deletion (delete_content_embedding)
4. Unified hybrid search across content types
5. Store agent hybrid search
"""
import uuid
from typing import AsyncGenerator
import pytest
from prisma.enums import ContentType
from backend.api.features.store import embeddings
from backend.api.features.store.embeddings import EMBEDDING_DIM
from backend.api.features.store.hybrid_search import (
hybrid_search,
unified_hybrid_search,
)
# ============================================================================
# Test Fixtures
# ============================================================================
@pytest.fixture
def test_content_id() -> str:
"""Generate unique content ID for test isolation."""
return f"test-content-{uuid.uuid4()}"
@pytest.fixture
def test_user_id() -> str:
"""Generate unique user ID for test isolation."""
return f"test-user-{uuid.uuid4()}"
@pytest.fixture
def mock_embedding() -> list[float]:
"""Generate a mock embedding vector."""
# Create a normalized embedding vector
import math
raw = [float(i % 10) / 10.0 for i in range(EMBEDDING_DIM)]
# Normalize to unit length (required for cosine similarity)
magnitude = math.sqrt(sum(x * x for x in raw))
return [x / magnitude for x in raw]
@pytest.fixture
def similar_embedding() -> list[float]:
"""Generate an embedding similar to mock_embedding."""
import math
# Similar but slightly different values
raw = [float(i % 10) / 10.0 + 0.01 for i in range(EMBEDDING_DIM)]
magnitude = math.sqrt(sum(x * x for x in raw))
return [x / magnitude for x in raw]
@pytest.fixture
def different_embedding() -> list[float]:
"""Generate an embedding very different from mock_embedding."""
import math
# Reversed pattern to be maximally different
raw = [float((EMBEDDING_DIM - i) % 10) / 10.0 for i in range(EMBEDDING_DIM)]
magnitude = math.sqrt(sum(x * x for x in raw))
return [x / magnitude for x in raw]
@pytest.fixture
async def cleanup_embeddings(
server,
) -> AsyncGenerator[list[tuple[ContentType, str, str | None]], None]:
"""
Fixture that tracks created embeddings and cleans them up after tests.
Yields a list to which tests can append (content_type, content_id, user_id) tuples.
"""
created_embeddings: list[tuple[ContentType, str, str | None]] = []
yield created_embeddings
# Cleanup all created embeddings
for content_type, content_id, user_id in created_embeddings:
try:
await embeddings.delete_content_embedding(content_type, content_id, user_id)
except Exception:
pass # Ignore cleanup errors
# ============================================================================
# store_content_embedding Tests
# ============================================================================
@pytest.mark.asyncio(loop_scope="session")
async def test_store_content_embedding_store_agent(
server,
test_content_id: str,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test storing embedding for STORE_AGENT content type."""
# Track for cleanup
cleanup_embeddings.append((ContentType.STORE_AGENT, test_content_id, None))
result = await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="AI assistant for productivity tasks",
metadata={"name": "Test Agent", "categories": ["productivity"]},
user_id=None, # Store agents are public
)
assert result is True
# Verify it was stored
stored = await embeddings.get_content_embedding(
ContentType.STORE_AGENT, test_content_id, user_id=None
)
assert stored is not None
assert stored["contentId"] == test_content_id
assert stored["contentType"] == "STORE_AGENT"
assert stored["searchableText"] == "AI assistant for productivity tasks"
@pytest.mark.asyncio(loop_scope="session")
async def test_store_content_embedding_block(
server,
test_content_id: str,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test storing embedding for BLOCK content type."""
cleanup_embeddings.append((ContentType.BLOCK, test_content_id, None))
result = await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="HTTP request block for API calls",
metadata={"name": "HTTP Request Block"},
user_id=None, # Blocks are public
)
assert result is True
stored = await embeddings.get_content_embedding(
ContentType.BLOCK, test_content_id, user_id=None
)
assert stored is not None
assert stored["contentType"] == "BLOCK"
@pytest.mark.asyncio(loop_scope="session")
async def test_store_content_embedding_documentation(
server,
test_content_id: str,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test storing embedding for DOCUMENTATION content type."""
cleanup_embeddings.append((ContentType.DOCUMENTATION, test_content_id, None))
result = await embeddings.store_content_embedding(
content_type=ContentType.DOCUMENTATION,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="Getting started guide for AutoGPT platform",
metadata={"title": "Getting Started", "url": "/docs/getting-started"},
user_id=None, # Docs are public
)
assert result is True
stored = await embeddings.get_content_embedding(
ContentType.DOCUMENTATION, test_content_id, user_id=None
)
assert stored is not None
assert stored["contentType"] == "DOCUMENTATION"
@pytest.mark.asyncio(loop_scope="session")
async def test_store_content_embedding_upsert(
server,
test_content_id: str,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test that storing embedding twice updates instead of duplicates."""
cleanup_embeddings.append((ContentType.BLOCK, test_content_id, None))
# Store first time
result1 = await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="Original text",
metadata={"version": 1},
user_id=None,
)
assert result1 is True
# Store again with different text (upsert)
result2 = await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="Updated text",
metadata={"version": 2},
user_id=None,
)
assert result2 is True
# Verify only one record with updated text
stored = await embeddings.get_content_embedding(
ContentType.BLOCK, test_content_id, user_id=None
)
assert stored is not None
assert stored["searchableText"] == "Updated text"
# ============================================================================
# get_content_embedding Tests
# ============================================================================
@pytest.mark.asyncio(loop_scope="session")
async def test_get_content_embedding_not_found(server):
"""Test retrieving non-existent embedding returns None."""
result = await embeddings.get_content_embedding(
ContentType.STORE_AGENT, "non-existent-id", user_id=None
)
assert result is None
@pytest.mark.asyncio(loop_scope="session")
async def test_get_content_embedding_with_metadata(
server,
test_content_id: str,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test that metadata is correctly stored and retrieved."""
cleanup_embeddings.append((ContentType.STORE_AGENT, test_content_id, None))
metadata = {
"name": "Test Agent",
"subHeading": "A test agent",
"categories": ["ai", "productivity"],
"customField": 123,
}
await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="test",
metadata=metadata,
user_id=None,
)
stored = await embeddings.get_content_embedding(
ContentType.STORE_AGENT, test_content_id, user_id=None
)
assert stored is not None
assert stored["metadata"]["name"] == "Test Agent"
assert stored["metadata"]["categories"] == ["ai", "productivity"]
assert stored["metadata"]["customField"] == 123
# ============================================================================
# delete_content_embedding Tests
# ============================================================================
@pytest.mark.asyncio(loop_scope="session")
async def test_delete_content_embedding(
server,
test_content_id: str,
mock_embedding: list[float],
):
"""Test deleting embedding removes it from database."""
# Store embedding
await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="To be deleted",
metadata=None,
user_id=None,
)
# Verify it exists
stored = await embeddings.get_content_embedding(
ContentType.BLOCK, test_content_id, user_id=None
)
assert stored is not None
# Delete it
result = await embeddings.delete_content_embedding(
ContentType.BLOCK, test_content_id, user_id=None
)
assert result is True
# Verify it's gone
stored = await embeddings.get_content_embedding(
ContentType.BLOCK, test_content_id, user_id=None
)
assert stored is None
@pytest.mark.asyncio(loop_scope="session")
async def test_delete_content_embedding_not_found(server):
"""Test deleting non-existent embedding doesn't error."""
result = await embeddings.delete_content_embedding(
ContentType.BLOCK, "non-existent-id", user_id=None
)
# Should succeed even if nothing to delete
assert result is True
# ============================================================================
# unified_hybrid_search Tests
# ============================================================================
@pytest.mark.asyncio(loop_scope="session")
async def test_unified_hybrid_search_finds_matching_content(
server,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test unified search finds content matching the query."""
# Create unique content IDs
agent_id = f"test-agent-{uuid.uuid4()}"
block_id = f"test-block-{uuid.uuid4()}"
doc_id = f"test-doc-{uuid.uuid4()}"
cleanup_embeddings.append((ContentType.STORE_AGENT, agent_id, None))
cleanup_embeddings.append((ContentType.BLOCK, block_id, None))
cleanup_embeddings.append((ContentType.DOCUMENTATION, doc_id, None))
# Store embeddings for different content types
await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=agent_id,
embedding=mock_embedding,
searchable_text="AI writing assistant for blog posts",
metadata={"name": "Writing Assistant"},
user_id=None,
)
await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=block_id,
embedding=mock_embedding,
searchable_text="Text generation block for creative writing",
metadata={"name": "Text Generator"},
user_id=None,
)
await embeddings.store_content_embedding(
content_type=ContentType.DOCUMENTATION,
content_id=doc_id,
embedding=mock_embedding,
searchable_text="How to use writing blocks in AutoGPT",
metadata={"title": "Writing Guide"},
user_id=None,
)
# Search for "writing" - should find all three
results, total = await unified_hybrid_search(
query="writing",
page=1,
page_size=20,
)
# Should find at least our test content (may find others too)
content_ids = [r["content_id"] for r in results]
assert agent_id in content_ids or total >= 1 # Lexical search should find it
@pytest.mark.asyncio(loop_scope="session")
async def test_unified_hybrid_search_filter_by_content_type(
server,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test unified search can filter by content type."""
agent_id = f"test-agent-{uuid.uuid4()}"
block_id = f"test-block-{uuid.uuid4()}"
cleanup_embeddings.append((ContentType.STORE_AGENT, agent_id, None))
cleanup_embeddings.append((ContentType.BLOCK, block_id, None))
# Store both types with same searchable text
await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=agent_id,
embedding=mock_embedding,
searchable_text="unique_search_term_xyz123",
metadata={},
user_id=None,
)
await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=block_id,
embedding=mock_embedding,
searchable_text="unique_search_term_xyz123",
metadata={},
user_id=None,
)
# Search only for BLOCK type
results, total = await unified_hybrid_search(
query="unique_search_term_xyz123",
content_types=[ContentType.BLOCK],
page=1,
page_size=20,
)
# All results should be BLOCK type
for r in results:
assert r["content_type"] == "BLOCK"
@pytest.mark.asyncio(loop_scope="session")
async def test_unified_hybrid_search_empty_query(server):
"""Test unified search with empty query returns empty results."""
results, total = await unified_hybrid_search(
query="",
page=1,
page_size=20,
)
assert results == []
assert total == 0
@pytest.mark.asyncio(loop_scope="session")
async def test_unified_hybrid_search_pagination(
server,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test unified search pagination works correctly."""
# Create multiple items
content_ids = []
for i in range(5):
content_id = f"test-pagination-{uuid.uuid4()}"
content_ids.append(content_id)
cleanup_embeddings.append((ContentType.BLOCK, content_id, None))
await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=content_id,
embedding=mock_embedding,
searchable_text=f"pagination test item number {i}",
metadata={"index": i},
user_id=None,
)
# Get first page
page1_results, total1 = await unified_hybrid_search(
query="pagination test",
content_types=[ContentType.BLOCK],
page=1,
page_size=2,
)
# Get second page
page2_results, total2 = await unified_hybrid_search(
query="pagination test",
content_types=[ContentType.BLOCK],
page=2,
page_size=2,
)
# Total should be consistent
assert total1 == total2
# Pages should have different content (if we have enough results)
if len(page1_results) > 0 and len(page2_results) > 0:
page1_ids = {r["content_id"] for r in page1_results}
page2_ids = {r["content_id"] for r in page2_results}
# No overlap between pages
assert page1_ids.isdisjoint(page2_ids)
@pytest.mark.asyncio(loop_scope="session")
async def test_unified_hybrid_search_min_score_filtering(
server,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test unified search respects min_score threshold."""
content_id = f"test-minscore-{uuid.uuid4()}"
cleanup_embeddings.append((ContentType.BLOCK, content_id, None))
await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=content_id,
embedding=mock_embedding,
searchable_text="completely unrelated content about bananas",
metadata={},
user_id=None,
)
# Search with very high min_score - should filter out low relevance
results_high, _ = await unified_hybrid_search(
query="quantum computing algorithms",
content_types=[ContentType.BLOCK],
min_score=0.9, # Very high threshold
page=1,
page_size=20,
)
# Search with low min_score
results_low, _ = await unified_hybrid_search(
query="quantum computing algorithms",
content_types=[ContentType.BLOCK],
min_score=0.01, # Very low threshold
page=1,
page_size=20,
)
# High threshold should have fewer or equal results
assert len(results_high) <= len(results_low)
# ============================================================================
# hybrid_search (Store Agents) Tests
# ============================================================================
@pytest.mark.asyncio(loop_scope="session")
async def test_hybrid_search_store_agents_sql_valid(server):
"""Test that hybrid_search SQL executes without errors."""
# This test verifies the SQL is syntactically correct
# even if no results are found
results, total = await hybrid_search(
query="test agent",
page=1,
page_size=20,
)
# Should not raise - verifies SQL is valid
assert isinstance(results, list)
assert isinstance(total, int)
assert total >= 0
@pytest.mark.asyncio(loop_scope="session")
async def test_hybrid_search_with_filters(server):
"""Test hybrid_search with various filter options."""
# Test with all filter types
results, total = await hybrid_search(
query="productivity",
featured=True,
creators=["test-creator"],
category="productivity",
page=1,
page_size=10,
)
# Should not raise - verifies filter SQL is valid
assert isinstance(results, list)
assert isinstance(total, int)
@pytest.mark.asyncio(loop_scope="session")
async def test_hybrid_search_pagination(server):
"""Test hybrid_search pagination."""
# Page 1
results1, total1 = await hybrid_search(
query="agent",
page=1,
page_size=5,
)
# Page 2
results2, total2 = await hybrid_search(
query="agent",
page=2,
page_size=5,
)
# Verify SQL executes without error
assert isinstance(results1, list)
assert isinstance(results2, list)
assert isinstance(total1, int)
assert isinstance(total2, int)
# If page 1 has results, total should be > 0
# Note: total from page 2 may be 0 if no results on that page (COUNT(*) OVER limitation)
if results1:
assert total1 > 0
# ============================================================================
# SQL Validity Tests (verify queries don't break)
# ============================================================================
@pytest.mark.asyncio(loop_scope="session")
async def test_all_content_types_searchable(server):
"""Test that all content types can be searched without SQL errors."""
for content_type in [
ContentType.STORE_AGENT,
ContentType.BLOCK,
ContentType.DOCUMENTATION,
]:
results, total = await unified_hybrid_search(
query="test",
content_types=[content_type],
page=1,
page_size=10,
)
# Should not raise
assert isinstance(results, list)
assert isinstance(total, int)
@pytest.mark.asyncio(loop_scope="session")
async def test_multiple_content_types_searchable(server):
"""Test searching multiple content types at once."""
results, total = await unified_hybrid_search(
query="test",
content_types=[ContentType.BLOCK, ContentType.DOCUMENTATION],
page=1,
page_size=20,
)
# Should not raise
assert isinstance(results, list)
assert isinstance(total, int)
@pytest.mark.asyncio(loop_scope="session")
async def test_search_all_content_types_default(server):
"""Test searching all content types (default behavior)."""
results, total = await unified_hybrid_search(
query="test",
content_types=None, # Should search all
page=1,
page_size=20,
)
# Should not raise
assert isinstance(results, list)
assert isinstance(total, int)
if __name__ == "__main__":
pytest.main([__file__, "-v", "-s"])

View File

@@ -4,12 +4,13 @@ Integration tests for embeddings with schema handling.
These tests verify that embeddings operations work correctly across different database schemas. These tests verify that embeddings operations work correctly across different database schemas.
""" """
from unittest.mock import AsyncMock, patch from unittest.mock import AsyncMock, MagicMock, patch
import pytest import pytest
from prisma.enums import ContentType from prisma.enums import ContentType
from backend.api.features.store import embeddings from backend.api.features.store import embeddings
from backend.api.features.store.embeddings import EMBEDDING_DIM
# Schema prefix tests removed - functionality moved to db.raw_with_schema() helper # Schema prefix tests removed - functionality moved to db.raw_with_schema() helper
@@ -28,7 +29,7 @@ async def test_store_content_embedding_with_schema():
result = await embeddings.store_content_embedding( result = await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT, content_type=ContentType.STORE_AGENT,
content_id="test-id", content_id="test-id",
embedding=[0.1] * 1536, embedding=[0.1] * EMBEDDING_DIM,
searchable_text="test text", searchable_text="test text",
metadata={"test": "data"}, metadata={"test": "data"},
user_id=None, user_id=None,
@@ -125,84 +126,69 @@ async def test_delete_content_embedding_with_schema():
@pytest.mark.asyncio(loop_scope="session") @pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration @pytest.mark.integration
async def test_get_embedding_stats_with_schema(): async def test_get_embedding_stats_with_schema():
"""Test embedding statistics with proper schema handling.""" """Test embedding statistics with proper schema handling via content handlers."""
with patch("backend.data.db.get_database_schema") as mock_schema: # Mock handler to return stats
mock_schema.return_value = "platform" mock_handler = MagicMock()
mock_handler.get_stats = AsyncMock(
return_value={
"total": 100,
"with_embeddings": 80,
"without_embeddings": 20,
}
)
with patch("prisma.get_client") as mock_get_client: with patch(
mock_client = AsyncMock() "backend.api.features.store.embeddings.CONTENT_HANDLERS",
# Mock both query results {ContentType.STORE_AGENT: mock_handler},
mock_client.query_raw.side_effect = [ ):
[{"count": 100}], # total_approved result = await embeddings.get_embedding_stats()
[{"count": 80}], # with_embeddings
]
mock_get_client.return_value = mock_client
result = await embeddings.get_embedding_stats() # Verify handler was called
mock_handler.get_stats.assert_called_once()
# Verify both queries were called # Verify new result structure
assert mock_client.query_raw.call_count == 2 assert "by_type" in result
assert "totals" in result
# Get both SQL queries assert result["totals"]["total"] == 100
first_call = mock_client.query_raw.call_args_list[0] assert result["totals"]["with_embeddings"] == 80
second_call = mock_client.query_raw.call_args_list[1] assert result["totals"]["without_embeddings"] == 20
assert result["totals"]["coverage_percent"] == 80.0
first_sql = first_call[0][0]
second_sql = second_call[0][0]
# Verify schema prefix in both queries
assert '"platform"."StoreListingVersion"' in first_sql
assert '"platform"."StoreListingVersion"' in second_sql
assert '"platform"."UnifiedContentEmbedding"' in second_sql
# Verify results
assert result["total_approved"] == 100
assert result["with_embeddings"] == 80
assert result["without_embeddings"] == 20
assert result["coverage_percent"] == 80.0
@pytest.mark.asyncio(loop_scope="session") @pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration @pytest.mark.integration
async def test_backfill_missing_embeddings_with_schema(): async def test_backfill_missing_embeddings_with_schema():
"""Test backfilling embeddings with proper schema handling.""" """Test backfilling embeddings via content handlers."""
with patch("backend.data.db.get_database_schema") as mock_schema: from backend.api.features.store.content_handlers import ContentItem
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client: # Create mock content item
mock_client = AsyncMock() mock_item = ContentItem(
# Mock missing embeddings query content_id="version-1",
mock_client.query_raw.return_value = [ content_type=ContentType.STORE_AGENT,
{ searchable_text="Test Agent Test description",
"id": "version-1", metadata={"name": "Test Agent"},
"name": "Test Agent", )
"description": "Test description",
"subHeading": "Test heading",
"categories": ["test"],
}
]
mock_get_client.return_value = mock_client
# Mock handler
mock_handler = MagicMock()
mock_handler.get_missing_items = AsyncMock(return_value=[mock_item])
with patch(
"backend.api.features.store.embeddings.CONTENT_HANDLERS",
{ContentType.STORE_AGENT: mock_handler},
):
with patch(
"backend.api.features.store.embeddings.generate_embedding",
return_value=[0.1] * EMBEDDING_DIM,
):
with patch( with patch(
"backend.api.features.store.embeddings.ensure_embedding" "backend.api.features.store.embeddings.store_content_embedding",
) as mock_ensure: return_value=True,
mock_ensure.return_value = True ):
result = await embeddings.backfill_missing_embeddings(batch_size=10) result = await embeddings.backfill_missing_embeddings(batch_size=10)
# Verify the query was called # Verify handler was called
assert mock_client.query_raw.called mock_handler.get_missing_items.assert_called_once_with(10)
# Get the SQL query
call_args = mock_client.query_raw.call_args
sql_query = call_args[0][0]
# Verify schema prefix in query
assert '"platform"."StoreListingVersion"' in sql_query
assert '"platform"."UnifiedContentEmbedding"' in sql_query
# Verify ensure_embedding was called
assert mock_ensure.called
# Verify results # Verify results
assert result["processed"] == 1 assert result["processed"] == 1
@@ -226,7 +212,7 @@ async def test_ensure_content_embedding_with_schema():
with patch( with patch(
"backend.api.features.store.embeddings.generate_embedding" "backend.api.features.store.embeddings.generate_embedding"
) as mock_generate: ) as mock_generate:
mock_generate.return_value = [0.1] * 1536 mock_generate.return_value = [0.1] * EMBEDDING_DIM
with patch( with patch(
"backend.api.features.store.embeddings.store_content_embedding" "backend.api.features.store.embeddings.store_content_embedding"
@@ -260,7 +246,7 @@ async def test_backward_compatibility_store_embedding():
result = await embeddings.store_embedding( result = await embeddings.store_embedding(
version_id="test-version-id", version_id="test-version-id",
embedding=[0.1] * 1536, embedding=[0.1] * EMBEDDING_DIM,
tx=None, tx=None,
) )
@@ -315,7 +301,7 @@ async def test_schema_handling_error_cases():
result = await embeddings.store_content_embedding( result = await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT, content_type=ContentType.STORE_AGENT,
content_id="test-id", content_id="test-id",
embedding=[0.1] * 1536, embedding=[0.1] * EMBEDDING_DIM,
searchable_text="test", searchable_text="test",
metadata=None, metadata=None,
user_id=None, user_id=None,

View File

@@ -63,7 +63,7 @@ async def test_generate_embedding_success():
result = await embeddings.generate_embedding("test text") result = await embeddings.generate_embedding("test text")
assert result is not None assert result is not None
assert len(result) == 1536 assert len(result) == embeddings.EMBEDDING_DIM
assert result[0] == 0.1 assert result[0] == 0.1
mock_client.embeddings.create.assert_called_once_with( mock_client.embeddings.create.assert_called_once_with(
@@ -110,7 +110,7 @@ async def test_generate_embedding_text_truncation():
mock_client = MagicMock() mock_client = MagicMock()
mock_response = MagicMock() mock_response = MagicMock()
mock_response.data = [MagicMock()] mock_response.data = [MagicMock()]
mock_response.data[0].embedding = [0.1] * 1536 mock_response.data[0].embedding = [0.1] * embeddings.EMBEDDING_DIM
# Use AsyncMock for async embeddings.create method # Use AsyncMock for async embeddings.create method
mock_client.embeddings.create = AsyncMock(return_value=mock_response) mock_client.embeddings.create = AsyncMock(return_value=mock_response)
@@ -155,18 +155,14 @@ async def test_store_embedding_success(mocker):
) )
assert result is True assert result is True
# execute_raw is called twice: once for SET search_path, once for INSERT # execute_raw is called once for INSERT (no separate SET search_path needed)
assert mock_client.execute_raw.call_count == 2 assert mock_client.execute_raw.call_count == 1
# First call: SET search_path # Verify the INSERT query with the actual data
first_call_args = mock_client.execute_raw.call_args_list[0][0] call_args = mock_client.execute_raw.call_args_list[0][0]
assert "SET search_path" in first_call_args[0] assert "test-version-id" in call_args
assert "[0.1,0.2,0.3]" in call_args
# Second call: INSERT query with the actual data assert None in call_args # userId should be None for store agents
second_call_args = mock_client.execute_raw.call_args_list[1][0]
assert "test-version-id" in second_call_args
assert "[0.1,0.2,0.3]" in second_call_args
assert None in second_call_args # userId should be None for store agents
@pytest.mark.asyncio(loop_scope="session") @pytest.mark.asyncio(loop_scope="session")
@@ -297,72 +293,92 @@ async def test_ensure_embedding_generation_fails(mock_get, mock_generate):
@pytest.mark.asyncio(loop_scope="session") @pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_stats(): async def test_get_embedding_stats():
"""Test embedding statistics retrieval.""" """Test embedding statistics retrieval."""
# Mock approved count query and embedded count query # Mock handler stats for each content type
mock_approved_result = [{"count": 100}] mock_handler = MagicMock()
mock_embedded_result = [{"count": 75}] mock_handler.get_stats = AsyncMock(
return_value={
"total": 100,
"with_embeddings": 75,
"without_embeddings": 25,
}
)
# Patch the CONTENT_HANDLERS where it's used (in embeddings module)
with patch( with patch(
"backend.api.features.store.embeddings.query_raw_with_schema", "backend.api.features.store.embeddings.CONTENT_HANDLERS",
side_effect=[mock_approved_result, mock_embedded_result], {ContentType.STORE_AGENT: mock_handler},
): ):
result = await embeddings.get_embedding_stats() result = await embeddings.get_embedding_stats()
assert result["total_approved"] == 100 assert "by_type" in result
assert result["with_embeddings"] == 75 assert "totals" in result
assert result["without_embeddings"] == 25 assert result["totals"]["total"] == 100
assert result["coverage_percent"] == 75.0 assert result["totals"]["with_embeddings"] == 75
assert result["totals"]["without_embeddings"] == 25
assert result["totals"]["coverage_percent"] == 75.0
@pytest.mark.asyncio(loop_scope="session") @pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.ensure_embedding") @patch("backend.api.features.store.embeddings.store_content_embedding")
async def test_backfill_missing_embeddings_success(mock_ensure): async def test_backfill_missing_embeddings_success(mock_store):
"""Test backfill with successful embedding generation.""" """Test backfill with successful embedding generation."""
# Mock missing embeddings query # Mock ContentItem from handlers
mock_missing = [ from backend.api.features.store.content_handlers import ContentItem
{
"id": "version-1", mock_items = [
"name": "Agent 1", ContentItem(
"description": "Description 1", content_id="version-1",
"subHeading": "Heading 1", content_type=ContentType.STORE_AGENT,
"categories": ["AI"], searchable_text="Agent 1 Description 1",
}, metadata={"name": "Agent 1"},
{ ),
"id": "version-2", ContentItem(
"name": "Agent 2", content_id="version-2",
"description": "Description 2", content_type=ContentType.STORE_AGENT,
"subHeading": "Heading 2", searchable_text="Agent 2 Description 2",
"categories": ["Productivity"], metadata={"name": "Agent 2"},
}, ),
] ]
# Mock ensure_embedding to succeed for first, fail for second # Mock handler to return missing items
mock_ensure.side_effect = [True, False] mock_handler = MagicMock()
mock_handler.get_missing_items = AsyncMock(return_value=mock_items)
# Mock store_content_embedding to succeed for first, fail for second
mock_store.side_effect = [True, False]
with patch( with patch(
"backend.api.features.store.embeddings.query_raw_with_schema", "backend.api.features.store.embeddings.CONTENT_HANDLERS",
return_value=mock_missing, {ContentType.STORE_AGENT: mock_handler},
): ):
result = await embeddings.backfill_missing_embeddings(batch_size=5) with patch(
"backend.api.features.store.embeddings.generate_embedding",
return_value=[0.1] * embeddings.EMBEDDING_DIM,
):
result = await embeddings.backfill_missing_embeddings(batch_size=5)
assert result["processed"] == 2 assert result["processed"] == 2
assert result["success"] == 1 assert result["success"] == 1
assert result["failed"] == 1 assert result["failed"] == 1
assert mock_ensure.call_count == 2 assert mock_store.call_count == 2
@pytest.mark.asyncio(loop_scope="session") @pytest.mark.asyncio(loop_scope="session")
async def test_backfill_missing_embeddings_no_missing(): async def test_backfill_missing_embeddings_no_missing():
"""Test backfill when no embeddings are missing.""" """Test backfill when no embeddings are missing."""
# Mock handler to return no missing items
mock_handler = MagicMock()
mock_handler.get_missing_items = AsyncMock(return_value=[])
with patch( with patch(
"backend.api.features.store.embeddings.query_raw_with_schema", "backend.api.features.store.embeddings.CONTENT_HANDLERS",
return_value=[], {ContentType.STORE_AGENT: mock_handler},
): ):
result = await embeddings.backfill_missing_embeddings(batch_size=5) result = await embeddings.backfill_missing_embeddings(batch_size=5)
assert result["processed"] == 0 assert result["processed"] == 0
assert result["success"] == 0 assert result["success"] == 0
assert result["failed"] == 0 assert result["failed"] == 0
assert result["message"] == "No missing embeddings"
@pytest.mark.asyncio(loop_scope="session") @pytest.mark.asyncio(loop_scope="session")

View File

@@ -1,16 +1,21 @@
""" """
Hybrid Search for Store Agents Unified Hybrid Search
Combines semantic (embedding) search with lexical (tsvector) search Combines semantic (embedding) search with lexical (tsvector) search
for improved relevance in marketplace agent discovery. for improved relevance across all content types (agents, blocks, docs).
Includes BM25 reranking for improved lexical relevance.
""" """
import logging import logging
import re
from dataclasses import dataclass from dataclasses import dataclass
from datetime import datetime
from typing import Any, Literal from typing import Any, Literal
from prisma.enums import ContentType
from rank_bm25 import BM25Okapi # type: ignore[import-untyped]
from backend.api.features.store.embeddings import ( from backend.api.features.store.embeddings import (
EMBEDDING_DIM,
embed_query, embed_query,
embedding_to_vector_string, embedding_to_vector_string,
) )
@@ -19,18 +24,383 @@ from backend.data.db import query_raw_with_schema
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@dataclass # ============================================================================
class HybridSearchWeights: # BM25 Reranking
"""Weights for combining search signals.""" # ============================================================================
semantic: float = 0.30 # Embedding cosine similarity
lexical: float = 0.30 # tsvector ts_rank_cd score def tokenize(text: str) -> list[str]:
category: float = 0.20 # Category match boost """Simple tokenizer for BM25 - lowercase and split on non-alphanumeric."""
recency: float = 0.10 # Newer agents ranked higher if not text:
popularity: float = 0.10 # Agent usage/runs (PageRank-like) return []
# Lowercase and split on non-alphanumeric characters
tokens = re.findall(r"\b\w+\b", text.lower())
return tokens
def bm25_rerank(
query: str,
results: list[dict[str, Any]],
text_field: str = "searchable_text",
bm25_weight: float = 0.3,
original_score_field: str = "combined_score",
) -> list[dict[str, Any]]:
"""
Rerank search results using BM25.
Combines the original combined_score with BM25 score for improved
lexical relevance, especially for exact term matches.
Args:
query: The search query
results: List of result dicts with text_field and original_score_field
text_field: Field name containing the text to score
bm25_weight: Weight for BM25 score (0-1). Original score gets (1 - bm25_weight)
original_score_field: Field name containing the original score
Returns:
Results list sorted by combined score (BM25 + original)
"""
if not results or not query:
return results
# Extract texts and tokenize
corpus = [tokenize(r.get(text_field, "") or "") for r in results]
# Handle edge case where all documents are empty
if all(len(doc) == 0 for doc in corpus):
return results
# Build BM25 index
bm25 = BM25Okapi(corpus)
# Score query against corpus
query_tokens = tokenize(query)
if not query_tokens:
return results
bm25_scores = bm25.get_scores(query_tokens)
# Normalize BM25 scores to 0-1 range
max_bm25 = max(bm25_scores) if max(bm25_scores) > 0 else 1.0
normalized_bm25 = [s / max_bm25 for s in bm25_scores]
# Combine scores
original_weight = 1.0 - bm25_weight
for i, result in enumerate(results):
original_score = result.get(original_score_field, 0) or 0
result["bm25_score"] = normalized_bm25[i]
final_score = (
original_weight * original_score + bm25_weight * normalized_bm25[i]
)
result["final_score"] = final_score
result["relevance"] = final_score
# Sort by relevance descending
results.sort(key=lambda x: x.get("relevance", 0), reverse=True)
return results
@dataclass
class UnifiedSearchWeights:
"""Weights for unified search (no popularity signal)."""
semantic: float = 0.40 # Embedding cosine similarity
lexical: float = 0.40 # tsvector ts_rank_cd score
category: float = 0.10 # Category match boost (for types that have categories)
recency: float = 0.10 # Newer content ranked higher
def __post_init__(self): def __post_init__(self):
"""Validate weights are non-negative and sum to approximately 1.0.""" """Validate weights are non-negative and sum to approximately 1.0."""
total = self.semantic + self.lexical + self.category + self.recency
if any(
w < 0 for w in [self.semantic, self.lexical, self.category, self.recency]
):
raise ValueError("All weights must be non-negative")
if not (0.99 <= total <= 1.01):
raise ValueError(f"Weights must sum to ~1.0, got {total:.3f}")
# Default weights for unified search
DEFAULT_UNIFIED_WEIGHTS = UnifiedSearchWeights()
# Minimum relevance score thresholds
DEFAULT_MIN_SCORE = 0.15 # For unified search (more permissive)
DEFAULT_STORE_AGENT_MIN_SCORE = 0.20 # For store agent search (original threshold)
async def unified_hybrid_search(
query: str,
content_types: list[ContentType] | None = None,
category: str | None = None,
page: int = 1,
page_size: int = 20,
weights: UnifiedSearchWeights | None = None,
min_score: float | None = None,
user_id: str | None = None,
) -> tuple[list[dict[str, Any]], int]:
"""
Unified hybrid search across all content types.
Searches UnifiedContentEmbedding using both semantic (vector) and lexical (tsvector) signals.
Args:
query: Search query string
content_types: List of content types to search. Defaults to all public types.
category: Filter by category (for content types that support it)
page: Page number (1-indexed)
page_size: Results per page
weights: Custom weights for search signals
min_score: Minimum relevance score threshold (0-1)
user_id: User ID for searching private content (library agents)
Returns:
Tuple of (results list, total count)
"""
# Validate inputs
query = query.strip()
if not query:
return [], 0
if page < 1:
page = 1
if page_size < 1:
page_size = 1
if page_size > 100:
page_size = 100
if content_types is None:
content_types = [
ContentType.STORE_AGENT,
ContentType.BLOCK,
ContentType.DOCUMENTATION,
]
if weights is None:
weights = DEFAULT_UNIFIED_WEIGHTS
if min_score is None:
min_score = DEFAULT_MIN_SCORE
offset = (page - 1) * page_size
# Generate query embedding
query_embedding = await embed_query(query)
# Graceful degradation if embedding unavailable
if query_embedding is None or not query_embedding:
logger.warning(
"Failed to generate query embedding - falling back to lexical-only search. "
"Check that openai_internal_api_key is configured and OpenAI API is accessible."
)
query_embedding = [0.0] * EMBEDDING_DIM
# Redistribute semantic weight to lexical
total_non_semantic = weights.lexical + weights.category + weights.recency
if total_non_semantic > 0:
factor = 1.0 / total_non_semantic
weights = UnifiedSearchWeights(
semantic=0.0,
lexical=weights.lexical * factor,
category=weights.category * factor,
recency=weights.recency * factor,
)
else:
weights = UnifiedSearchWeights(
semantic=0.0, lexical=1.0, category=0.0, recency=0.0
)
# Build parameters
params: list[Any] = []
param_idx = 1
# Query for lexical search
params.append(query)
query_param = f"${param_idx}"
param_idx += 1
# Query lowercase for category matching
params.append(query.lower())
query_lower_param = f"${param_idx}"
param_idx += 1
# Embedding
embedding_str = embedding_to_vector_string(query_embedding)
params.append(embedding_str)
embedding_param = f"${param_idx}"
param_idx += 1
# Content types
content_type_values = [ct.value for ct in content_types]
params.append(content_type_values)
content_types_param = f"${param_idx}"
param_idx += 1
# User ID filter (for private content)
user_filter = ""
if user_id is not None:
params.append(user_id)
user_filter = f'AND (uce."userId" = ${param_idx} OR uce."userId" IS NULL)'
param_idx += 1
else:
user_filter = 'AND uce."userId" IS NULL'
# Weights
params.append(weights.semantic)
w_semantic = f"${param_idx}"
param_idx += 1
params.append(weights.lexical)
w_lexical = f"${param_idx}"
param_idx += 1
params.append(weights.category)
w_category = f"${param_idx}"
param_idx += 1
params.append(weights.recency)
w_recency = f"${param_idx}"
param_idx += 1
# Min score
params.append(min_score)
min_score_param = f"${param_idx}"
param_idx += 1
# Pagination
params.append(page_size)
limit_param = f"${param_idx}"
param_idx += 1
params.append(offset)
offset_param = f"${param_idx}"
param_idx += 1
# Unified search query on UnifiedContentEmbedding
sql_query = f"""
WITH candidates AS (
-- Lexical matches (uses GIN index on search column)
SELECT uce.id, uce."contentType", uce."contentId"
FROM {{schema_prefix}}"UnifiedContentEmbedding" uce
WHERE uce."contentType" = ANY({content_types_param}::{{schema_prefix}}"ContentType"[])
{user_filter}
AND uce.search @@ plainto_tsquery('english', {query_param})
UNION
-- Semantic matches (uses HNSW index on embedding)
(
SELECT uce.id, uce."contentType", uce."contentId"
FROM {{schema_prefix}}"UnifiedContentEmbedding" uce
WHERE uce."contentType" = ANY({content_types_param}::{{schema_prefix}}"ContentType"[])
{user_filter}
ORDER BY uce.embedding <=> {embedding_param}::vector
LIMIT 200
)
),
search_scores AS (
SELECT
uce."contentType" as content_type,
uce."contentId" as content_id,
uce."searchableText" as searchable_text,
uce.metadata,
uce."updatedAt" as updated_at,
-- Semantic score: cosine similarity (1 - distance)
COALESCE(1 - (uce.embedding <=> {embedding_param}::vector), 0) as semantic_score,
-- Lexical score: ts_rank_cd
COALESCE(ts_rank_cd(uce.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
-- Category match from metadata
CASE
WHEN uce.metadata ? 'categories' AND EXISTS (
SELECT 1 FROM jsonb_array_elements_text(uce.metadata->'categories') cat
WHERE LOWER(cat) LIKE '%' || {query_lower_param} || '%'
)
THEN 1.0
ELSE 0.0
END as category_score,
-- Recency score: linear decay over 90 days
GREATEST(0, 1 - EXTRACT(EPOCH FROM (NOW() - uce."updatedAt")) / (90 * 24 * 3600)) as recency_score
FROM candidates c
INNER JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce ON c.id = uce.id
),
max_lexical AS (
SELECT GREATEST(MAX(lexical_raw), 0.001) as max_val FROM search_scores
),
normalized AS (
SELECT
ss.*,
ss.lexical_raw / ml.max_val as lexical_score
FROM search_scores ss
CROSS JOIN max_lexical ml
),
scored AS (
SELECT
content_type,
content_id,
searchable_text,
metadata,
updated_at,
semantic_score,
lexical_score,
category_score,
recency_score,
(
{w_semantic} * semantic_score +
{w_lexical} * lexical_score +
{w_category} * category_score +
{w_recency} * recency_score
) as combined_score
FROM normalized
),
filtered AS (
SELECT *, COUNT(*) OVER () as total_count
FROM scored
WHERE combined_score >= {min_score_param}
)
SELECT * FROM filtered
ORDER BY combined_score DESC
LIMIT {limit_param} OFFSET {offset_param}
"""
results = await query_raw_with_schema(sql_query, *params)
total = results[0]["total_count"] if results else 0
# Apply BM25 reranking
if results:
results = bm25_rerank(
query=query,
results=results,
text_field="searchable_text",
bm25_weight=0.3,
original_score_field="combined_score",
)
# Clean up results
for result in results:
result.pop("total_count", None)
logger.info(f"Unified hybrid search: {len(results)} results, {total} total")
return results, total
# ============================================================================
# Store Agent specific search (with full metadata)
# ============================================================================
@dataclass
class StoreAgentSearchWeights:
"""Weights for store agent search including popularity."""
semantic: float = 0.30
lexical: float = 0.30
category: float = 0.20
recency: float = 0.10
popularity: float = 0.10
def __post_init__(self):
total = ( total = (
self.semantic self.semantic
+ self.lexical + self.lexical
@@ -38,7 +408,6 @@ class HybridSearchWeights:
+ self.recency + self.recency
+ self.popularity + self.popularity
) )
if any( if any(
w < 0 w < 0
for w in [ for w in [
@@ -50,46 +419,11 @@ class HybridSearchWeights:
] ]
): ):
raise ValueError("All weights must be non-negative") raise ValueError("All weights must be non-negative")
if not (0.99 <= total <= 1.01): if not (0.99 <= total <= 1.01):
raise ValueError(f"Weights must sum to ~1.0, got {total:.3f}") raise ValueError(f"Weights must sum to ~1.0, got {total:.3f}")
DEFAULT_WEIGHTS = HybridSearchWeights() DEFAULT_STORE_AGENT_WEIGHTS = StoreAgentSearchWeights()
# Minimum relevance score threshold - agents below this are filtered out
# With weights (0.30 semantic + 0.30 lexical + 0.20 category + 0.10 recency + 0.10 popularity):
# - 0.20 means at least ~60% semantic match OR strong lexical match required
# - Ensures only genuinely relevant results are returned
# - Recency/popularity alone (0.10 each) won't pass the threshold
DEFAULT_MIN_SCORE = 0.20
@dataclass
class HybridSearchResult:
"""A single search result with score breakdown."""
slug: str
agent_name: str
agent_image: str
creator_username: str
creator_avatar: str
sub_heading: str
description: str
runs: int
rating: float
categories: list[str]
featured: bool
is_available: bool
updated_at: datetime
# Score breakdown (for debugging/tuning)
combined_score: float
semantic_score: float = 0.0
lexical_score: float = 0.0
category_score: float = 0.0
recency_score: float = 0.0
popularity_score: float = 0.0
async def hybrid_search( async def hybrid_search(
@@ -102,276 +436,275 @@ async def hybrid_search(
) = None, ) = None,
page: int = 1, page: int = 1,
page_size: int = 20, page_size: int = 20,
weights: HybridSearchWeights | None = None, weights: StoreAgentSearchWeights | None = None,
min_score: float | None = None, min_score: float | None = None,
) -> tuple[list[dict[str, Any]], int]: ) -> tuple[list[dict[str, Any]], int]:
""" """
Perform hybrid search combining semantic and lexical signals. Hybrid search for store agents with full metadata.
Args: Uses UnifiedContentEmbedding for search, joins to StoreAgent for metadata.
query: Search query string
featured: Filter for featured agents only
creators: Filter by creator usernames
category: Filter by category
sorted_by: Sort order (relevance uses hybrid scoring)
page: Page number (1-indexed)
page_size: Results per page
weights: Custom weights for search signals
min_score: Minimum relevance score threshold (0-1). Results below
this score are filtered out. Defaults to DEFAULT_MIN_SCORE.
Returns:
Tuple of (results list, total count). Returns empty list if no
results meet the minimum relevance threshold.
""" """
# Validate inputs
query = query.strip() query = query.strip()
if not query: if not query:
return [], 0 # Empty query returns no results return [], 0
if page < 1: if page < 1:
page = 1 page = 1
if page_size < 1: if page_size < 1:
page_size = 1 page_size = 1
if page_size > 100: # Cap at reasonable limit to prevent performance issues if page_size > 100:
page_size = 100 page_size = 100
if weights is None: if weights is None:
weights = DEFAULT_WEIGHTS weights = DEFAULT_STORE_AGENT_WEIGHTS
if min_score is None: if min_score is None:
min_score = DEFAULT_MIN_SCORE min_score = (
DEFAULT_STORE_AGENT_MIN_SCORE # Use original threshold for store agents
)
offset = (page - 1) * page_size offset = (page - 1) * page_size
# Generate query embedding # Generate query embedding
query_embedding = await embed_query(query) query_embedding = await embed_query(query)
# Build WHERE clause conditions # Graceful degradation
where_parts: list[str] = ["sa.is_available = true"] if query_embedding is None or not query_embedding:
logger.warning(
"Failed to generate query embedding - falling back to lexical-only search."
)
query_embedding = [0.0] * EMBEDDING_DIM
total_non_semantic = (
weights.lexical + weights.category + weights.recency + weights.popularity
)
if total_non_semantic > 0:
factor = 1.0 / total_non_semantic
weights = StoreAgentSearchWeights(
semantic=0.0,
lexical=weights.lexical * factor,
category=weights.category * factor,
recency=weights.recency * factor,
popularity=weights.popularity * factor,
)
else:
weights = StoreAgentSearchWeights(
semantic=0.0, lexical=1.0, category=0.0, recency=0.0, popularity=0.0
)
# Build parameters
params: list[Any] = [] params: list[Any] = []
param_index = 1 param_idx = 1
# Add search query for lexical matching
params.append(query) params.append(query)
query_param = f"${param_index}" query_param = f"${param_idx}"
param_index += 1 param_idx += 1
# Add lowercased query for category matching
params.append(query.lower()) params.append(query.lower())
query_lower_param = f"${param_index}" query_lower_param = f"${param_idx}"
param_index += 1 param_idx += 1
embedding_str = embedding_to_vector_string(query_embedding)
params.append(embedding_str)
embedding_param = f"${param_idx}"
param_idx += 1
# Build WHERE clause for StoreAgent filters
where_parts = ["sa.is_available = true"]
if featured: if featured:
where_parts.append("sa.featured = true") where_parts.append("sa.featured = true")
if creators: if creators:
where_parts.append(f"sa.creator_username = ANY(${param_index})")
params.append(creators) params.append(creators)
param_index += 1 where_parts.append(f"sa.creator_username = ANY(${param_idx})")
param_idx += 1
if category: if category:
where_parts.append(f"${param_index} = ANY(sa.categories)")
params.append(category) params.append(category)
param_index += 1 where_parts.append(f"${param_idx} = ANY(sa.categories)")
param_idx += 1
# Safe: where_parts only contains hardcoded strings with $N parameter placeholders
# No user input is concatenated directly into the SQL string
where_clause = " AND ".join(where_parts) where_clause = " AND ".join(where_parts)
# Embedding is required for hybrid search - fail fast if unavailable # Weights
if query_embedding is None or not query_embedding:
# Log detailed error server-side
logger.error(
"Failed to generate query embedding. "
"Check that openai_internal_api_key is configured and OpenAI API is accessible."
)
# Raise generic error to client
raise ValueError("Search service temporarily unavailable")
# Add embedding parameter
embedding_str = embedding_to_vector_string(query_embedding)
params.append(embedding_str)
embedding_param = f"${param_index}"
param_index += 1
# Add weight parameters for SQL calculation
params.append(weights.semantic) params.append(weights.semantic)
weight_semantic_param = f"${param_index}" w_semantic = f"${param_idx}"
param_index += 1 param_idx += 1
params.append(weights.lexical) params.append(weights.lexical)
weight_lexical_param = f"${param_index}" w_lexical = f"${param_idx}"
param_index += 1 param_idx += 1
params.append(weights.category) params.append(weights.category)
weight_category_param = f"${param_index}" w_category = f"${param_idx}"
param_index += 1 param_idx += 1
params.append(weights.recency) params.append(weights.recency)
weight_recency_param = f"${param_index}" w_recency = f"${param_idx}"
param_index += 1 param_idx += 1
params.append(weights.popularity) params.append(weights.popularity)
weight_popularity_param = f"${param_index}" w_popularity = f"${param_idx}"
param_index += 1 param_idx += 1
# Add min_score parameter
params.append(min_score) params.append(min_score)
min_score_param = f"${param_index}" min_score_param = f"${param_idx}"
param_index += 1 param_idx += 1
# Optimized hybrid search query: params.append(page_size)
# 1. Direct join to UnifiedContentEmbedding via contentId=storeListingVersionId (no redundant JOINs) limit_param = f"${param_idx}"
# 2. UNION approach (deduplicates agents matching both branches) param_idx += 1
# 3. COUNT(*) OVER() to get total count in single query
# 4. Optimized category matching with EXISTS + unnest params.append(offset)
# 5. Pre-calculated max values for lexical and popularity normalization offset_param = f"${param_idx}"
# 6. Simplified recency calculation with linear decay param_idx += 1
# 7. Logarithmic popularity scaling to prevent viral agents from dominating
# Query using UnifiedContentEmbedding for search, StoreAgent for metadata
sql_query = f""" sql_query = f"""
WITH candidates AS ( WITH candidates AS (
-- Lexical matches (uses GIN index on search column) -- Lexical matches via UnifiedContentEmbedding.search
SELECT sa."storeListingVersionId" SELECT uce."contentId" as "storeListingVersionId"
FROM {{schema_prefix}}"StoreAgent" sa FROM {{schema_prefix}}"UnifiedContentEmbedding" uce
WHERE {where_clause} INNER JOIN {{schema_prefix}}"StoreAgent" sa
AND sa.search @@ plainto_tsquery('english', {query_param}) ON uce."contentId" = sa."storeListingVersionId"
WHERE uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
AND uce."userId" IS NULL
AND uce.search @@ plainto_tsquery('english', {query_param})
AND {where_clause}
UNION UNION
-- Semantic matches (uses HNSW index on embedding with KNN) -- Semantic matches via UnifiedContentEmbedding.embedding
SELECT "storeListingVersionId" SELECT uce."contentId" as "storeListingVersionId"
FROM ( FROM (
SELECT sa."storeListingVersionId", uce.embedding SELECT uce."contentId", uce.embedding
FROM {{schema_prefix}}"StoreAgent" sa FROM {{schema_prefix}}"UnifiedContentEmbedding" uce
INNER JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
ON sa."storeListingVersionId" = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
WHERE {where_clause}
ORDER BY uce.embedding <=> {embedding_param}::vector
LIMIT 200
) semantic_results
),
search_scores AS (
SELECT
sa.slug,
sa.agent_name,
sa.agent_image,
sa.creator_username,
sa.creator_avatar,
sa.sub_heading,
sa.description,
sa.runs,
sa.rating,
sa.categories,
sa.featured,
sa.is_available,
sa.updated_at,
-- Semantic score: cosine similarity (1 - distance)
COALESCE(1 - (uce.embedding <=> {embedding_param}::vector), 0) as semantic_score,
-- Lexical score: ts_rank_cd (will be normalized later)
COALESCE(ts_rank_cd(sa.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
-- Category match: optimized with unnest for better performance
CASE
WHEN EXISTS (
SELECT 1 FROM unnest(sa.categories) cat
WHERE LOWER(cat) LIKE '%' || {query_lower_param} || '%'
)
THEN 1.0
ELSE 0.0
END as category_score,
-- Recency score: linear decay over 90 days (simpler than exponential)
GREATEST(0, 1 - EXTRACT(EPOCH FROM (NOW() - sa.updated_at)) / (90 * 24 * 3600)) as recency_score,
-- Popularity raw: agent runs count (will be normalized with log scaling)
sa.runs as popularity_raw
FROM candidates c
INNER JOIN {{schema_prefix}}"StoreAgent" sa INNER JOIN {{schema_prefix}}"StoreAgent" sa
ON c."storeListingVersionId" = sa."storeListingVersionId" ON uce."contentId" = sa."storeListingVersionId"
LEFT JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce WHERE uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
ON sa."storeListingVersionId" = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType" AND uce."userId" IS NULL
), AND {where_clause}
max_lexical AS ( ORDER BY uce.embedding <=> {embedding_param}::vector
SELECT MAX(lexical_raw) as max_val FROM search_scores LIMIT 200
), ) uce
max_popularity AS ( ),
SELECT MAX(popularity_raw) as max_val FROM search_scores search_scores AS (
), SELECT
normalized AS ( sa.slug,
SELECT sa.agent_name,
ss.*, sa.agent_image,
-- Normalize lexical score by pre-calculated max sa.creator_username,
CASE sa.creator_avatar,
WHEN ml.max_val > 0 sa.sub_heading,
THEN ss.lexical_raw / ml.max_val sa.description,
ELSE 0 sa.runs,
END as lexical_score, sa.rating,
-- Normalize popularity with logarithmic scaling to prevent viral agents from dominating sa.categories,
-- LOG(1 + runs) / LOG(1 + max_runs) ensures score is 0-1 range sa.featured,
CASE sa.is_available,
WHEN mp.max_val > 0 AND ss.popularity_raw > 0 sa.updated_at,
THEN LN(1 + ss.popularity_raw) / LN(1 + mp.max_val) -- Searchable text for BM25 reranking
ELSE 0 COALESCE(sa.agent_name, '') || ' ' || COALESCE(sa.sub_heading, '') || ' ' || COALESCE(sa.description, '') as searchable_text,
END as popularity_score -- Semantic score
FROM search_scores ss COALESCE(1 - (uce.embedding <=> {embedding_param}::vector), 0) as semantic_score,
CROSS JOIN max_lexical ml -- Lexical score (raw, will normalize)
CROSS JOIN max_popularity mp COALESCE(ts_rank_cd(uce.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
), -- Category match
scored AS ( CASE
SELECT WHEN EXISTS (
slug, SELECT 1 FROM unnest(sa.categories) cat
agent_name, WHERE LOWER(cat) LIKE '%' || {query_lower_param} || '%'
agent_image, )
creator_username, THEN 1.0
creator_avatar, ELSE 0.0
sub_heading, END as category_score,
description, -- Recency
runs, GREATEST(0, 1 - EXTRACT(EPOCH FROM (NOW() - sa.updated_at)) / (90 * 24 * 3600)) as recency_score,
rating, -- Popularity (raw)
categories, sa.runs as popularity_raw
featured, FROM candidates c
is_available, INNER JOIN {{schema_prefix}}"StoreAgent" sa
updated_at, ON c."storeListingVersionId" = sa."storeListingVersionId"
semantic_score, INNER JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
lexical_score, ON sa."storeListingVersionId" = uce."contentId"
category_score, AND uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
recency_score, ),
popularity_score, max_vals AS (
( SELECT
{weight_semantic_param} * semantic_score + GREATEST(MAX(lexical_raw), 0.001) as max_lexical,
{weight_lexical_param} * lexical_score + GREATEST(MAX(popularity_raw), 1) as max_popularity
{weight_category_param} * category_score + FROM search_scores
{weight_recency_param} * recency_score + ),
{weight_popularity_param} * popularity_score normalized AS (
) as combined_score SELECT
FROM normalized ss.*,
), ss.lexical_raw / mv.max_lexical as lexical_score,
filtered AS ( CASE
SELECT WHEN ss.popularity_raw > 0
*, THEN LN(1 + ss.popularity_raw) / LN(1 + mv.max_popularity)
COUNT(*) OVER () as total_count ELSE 0
FROM scored END as popularity_score
WHERE combined_score >= {min_score_param} FROM search_scores ss
) CROSS JOIN max_vals mv
SELECT * FROM filtered ),
ORDER BY combined_score DESC scored AS (
LIMIT ${param_index} OFFSET ${param_index + 1} SELECT
slug,
agent_name,
agent_image,
creator_username,
creator_avatar,
sub_heading,
description,
runs,
rating,
categories,
featured,
is_available,
updated_at,
searchable_text,
semantic_score,
lexical_score,
category_score,
recency_score,
popularity_score,
(
{w_semantic} * semantic_score +
{w_lexical} * lexical_score +
{w_category} * category_score +
{w_recency} * recency_score +
{w_popularity} * popularity_score
) as combined_score
FROM normalized
),
filtered AS (
SELECT *, COUNT(*) OVER () as total_count
FROM scored
WHERE combined_score >= {min_score_param}
)
SELECT * FROM filtered
ORDER BY combined_score DESC
LIMIT {limit_param} OFFSET {offset_param}
""" """
# Add pagination params results = await query_raw_with_schema(sql_query, *params)
params.extend([page_size, offset])
# Execute search query - includes total_count via window function
results = await query_raw_with_schema(
sql_query, *params, set_public_search_path=True
)
# Extract total count from first result (all rows have same count)
total = results[0]["total_count"] if results else 0 total = results[0]["total_count"] if results else 0
# Remove total_count from results before returning # Apply BM25 reranking
if results:
results = bm25_rerank(
query=query,
results=results,
text_field="searchable_text",
bm25_weight=0.3,
original_score_field="combined_score",
)
for result in results: for result in results:
result.pop("total_count", None) result.pop("total_count", None)
result.pop("searchable_text", None)
# Log without sensitive query content logger.info(f"Hybrid search (store agents): {len(results)} results, {total} total")
logger.info(f"Hybrid search: {len(results)} results, {total} total")
return results, total return results, total
@@ -381,13 +714,10 @@ async def hybrid_search_simple(
page: int = 1, page: int = 1,
page_size: int = 20, page_size: int = 20,
) -> tuple[list[dict[str, Any]], int]: ) -> tuple[list[dict[str, Any]], int]:
""" """Simplified hybrid search for store agents."""
Simplified hybrid search for common use cases. return await hybrid_search(query=query, page=page, page_size=page_size)
Uses default weights and no filters.
""" # Backward compatibility alias - HybridSearchWeights maps to StoreAgentSearchWeights
return await hybrid_search( # for existing code that expects the popularity parameter
query=query, HybridSearchWeights = StoreAgentSearchWeights
page=page,
page_size=page_size,
)

View File

@@ -7,8 +7,15 @@ These tests verify that hybrid search works correctly across different database
from unittest.mock import patch from unittest.mock import patch
import pytest import pytest
from prisma.enums import ContentType
from backend.api.features.store.hybrid_search import HybridSearchWeights, hybrid_search from backend.api.features.store import embeddings
from backend.api.features.store.hybrid_search import (
HybridSearchWeights,
UnifiedSearchWeights,
hybrid_search,
unified_hybrid_search,
)
@pytest.mark.asyncio(loop_scope="session") @pytest.mark.asyncio(loop_scope="session")
@@ -49,7 +56,7 @@ async def test_hybrid_search_with_schema_handling():
with patch( with patch(
"backend.api.features.store.hybrid_search.embed_query" "backend.api.features.store.hybrid_search.embed_query"
) as mock_embed: ) as mock_embed:
mock_embed.return_value = [0.1] * 1536 # Mock embedding mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM # Mock embedding
results, total = await hybrid_search( results, total = await hybrid_search(
query=query, query=query,
@@ -85,7 +92,7 @@ async def test_hybrid_search_with_public_schema():
with patch( with patch(
"backend.api.features.store.hybrid_search.embed_query" "backend.api.features.store.hybrid_search.embed_query"
) as mock_embed: ) as mock_embed:
mock_embed.return_value = [0.1] * 1536 mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
results, total = await hybrid_search( results, total = await hybrid_search(
query="test", query="test",
@@ -116,7 +123,7 @@ async def test_hybrid_search_with_custom_schema():
with patch( with patch(
"backend.api.features.store.hybrid_search.embed_query" "backend.api.features.store.hybrid_search.embed_query"
) as mock_embed: ) as mock_embed:
mock_embed.return_value = [0.1] * 1536 mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
results, total = await hybrid_search( results, total = await hybrid_search(
query="test", query="test",
@@ -134,22 +141,52 @@ async def test_hybrid_search_with_custom_schema():
@pytest.mark.asyncio(loop_scope="session") @pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration @pytest.mark.integration
async def test_hybrid_search_without_embeddings(): async def test_hybrid_search_without_embeddings():
"""Test hybrid search fails fast when embeddings are unavailable.""" """Test hybrid search gracefully degrades when embeddings are unavailable."""
# Patch where the function is used, not where it's defined # Mock database to return some results
with patch("backend.api.features.store.hybrid_search.embed_query") as mock_embed: mock_results = [
# Simulate embedding failure {
mock_embed.return_value = None "slug": "test-agent",
"agent_name": "Test Agent",
"agent_image": "test.png",
"creator_username": "creator",
"creator_avatar": "avatar.png",
"sub_heading": "Test heading",
"description": "Test description",
"runs": 100,
"rating": 4.5,
"categories": ["AI"],
"featured": False,
"is_available": True,
"updated_at": "2025-01-01T00:00:00Z",
"semantic_score": 0.0, # Zero because no embedding
"lexical_score": 0.5,
"category_score": 0.0,
"recency_score": 0.1,
"popularity_score": 0.2,
"combined_score": 0.3,
"total_count": 1,
}
]
# Should raise ValueError with helpful message with patch("backend.api.features.store.hybrid_search.embed_query") as mock_embed:
with pytest.raises(ValueError) as exc_info: with patch(
await hybrid_search( "backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
# Simulate embedding failure
mock_embed.return_value = None
mock_query.return_value = mock_results
# Should NOT raise - graceful degradation
results, total = await hybrid_search(
query="test", query="test",
page=1, page=1,
page_size=20, page_size=20,
) )
# Verify error message is generic (doesn't leak implementation details) # Verify it returns results even without embeddings
assert "Search service temporarily unavailable" in str(exc_info.value) assert len(results) == 1
assert results[0]["slug"] == "test-agent"
assert total == 1
@pytest.mark.asyncio(loop_scope="session") @pytest.mark.asyncio(loop_scope="session")
@@ -164,7 +201,7 @@ async def test_hybrid_search_with_filters():
with patch( with patch(
"backend.api.features.store.hybrid_search.embed_query" "backend.api.features.store.hybrid_search.embed_query"
) as mock_embed: ) as mock_embed:
mock_embed.return_value = [0.1] * 1536 mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
# Test with featured filter # Test with featured filter
results, total = await hybrid_search( results, total = await hybrid_search(
@@ -204,7 +241,7 @@ async def test_hybrid_search_weights():
with patch( with patch(
"backend.api.features.store.hybrid_search.embed_query" "backend.api.features.store.hybrid_search.embed_query"
) as mock_embed: ) as mock_embed:
mock_embed.return_value = [0.1] * 1536 mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
results, total = await hybrid_search( results, total = await hybrid_search(
query="test", query="test",
@@ -248,7 +285,7 @@ async def test_hybrid_search_min_score_filtering():
with patch( with patch(
"backend.api.features.store.hybrid_search.embed_query" "backend.api.features.store.hybrid_search.embed_query"
) as mock_embed: ) as mock_embed:
mock_embed.return_value = [0.1] * 1536 mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
# Test with custom min_score # Test with custom min_score
results, total = await hybrid_search( results, total = await hybrid_search(
@@ -274,16 +311,48 @@ async def test_hybrid_search_min_score_filtering():
@pytest.mark.asyncio(loop_scope="session") @pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration @pytest.mark.integration
async def test_hybrid_search_pagination(): async def test_hybrid_search_pagination():
"""Test hybrid search pagination.""" """Test hybrid search pagination.
Pagination happens in SQL (LIMIT/OFFSET), then BM25 reranking is applied
to the paginated results.
"""
# Create mock results that SQL would return for a page
mock_results = [
{
"slug": f"agent-{i}",
"agent_name": f"Agent {i}",
"agent_image": "test.png",
"creator_username": "test",
"creator_avatar": "avatar.png",
"sub_heading": "Test",
"description": "Test description",
"runs": 100 - i,
"rating": 4.5,
"categories": ["test"],
"featured": False,
"is_available": True,
"updated_at": "2024-01-01T00:00:00Z",
"searchable_text": f"Agent {i} test description",
"combined_score": 0.9 - (i * 0.01),
"semantic_score": 0.7,
"lexical_score": 0.6,
"category_score": 0.5,
"recency_score": 0.4,
"popularity_score": 0.3,
"total_count": 25,
}
for i in range(10) # SQL returns page_size results
]
with patch( with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema" "backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query: ) as mock_query:
mock_query.return_value = [] mock_query.return_value = mock_results
with patch( with patch(
"backend.api.features.store.hybrid_search.embed_query" "backend.api.features.store.hybrid_search.embed_query"
) as mock_embed: ) as mock_embed:
mock_embed.return_value = [0.1] * 1536 mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
# Test page 2 with page_size 10 # Test page 2 with page_size 10
results, total = await hybrid_search( results, total = await hybrid_search(
@@ -292,16 +361,18 @@ async def test_hybrid_search_pagination():
page_size=10, page_size=10,
) )
# Verify pagination parameters # Verify results returned
assert len(results) == 10
assert total == 25 # Total from SQL COUNT(*) OVER()
# Verify the SQL query uses page_size and offset
call_args = mock_query.call_args call_args = mock_query.call_args
params = call_args[0] params = call_args[0]
# Last two params are page_size and offset
# Last two params should be LIMIT and OFFSET page_size_param = params[-2]
limit = params[-2] offset_param = params[-1]
offset = params[-1] assert page_size_param == 10
assert offset_param == 10 # (page 2 - 1) * 10
assert limit == 10 # page_size
assert offset == 10 # (page - 1) * page_size = (2 - 1) * 10
@pytest.mark.asyncio(loop_scope="session") @pytest.mark.asyncio(loop_scope="session")
@@ -317,7 +388,7 @@ async def test_hybrid_search_error_handling():
with patch( with patch(
"backend.api.features.store.hybrid_search.embed_query" "backend.api.features.store.hybrid_search.embed_query"
) as mock_embed: ) as mock_embed:
mock_embed.return_value = [0.1] * 1536 mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
# Should raise exception # Should raise exception
with pytest.raises(Exception) as exc_info: with pytest.raises(Exception) as exc_info:
@@ -330,5 +401,326 @@ async def test_hybrid_search_error_handling():
assert "Database connection error" in str(exc_info.value) assert "Database connection error" in str(exc_info.value)
# =============================================================================
# Unified Hybrid Search Tests
# =============================================================================
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_unified_hybrid_search_basic():
"""Test basic unified hybrid search across all content types."""
mock_results = [
{
"content_type": "STORE_AGENT",
"content_id": "agent-1",
"searchable_text": "Test Agent Description",
"metadata": {"name": "Test Agent"},
"updated_at": "2025-01-01T00:00:00Z",
"semantic_score": 0.7,
"lexical_score": 0.8,
"category_score": 0.5,
"recency_score": 0.3,
"combined_score": 0.6,
"total_count": 2,
},
{
"content_type": "BLOCK",
"content_id": "block-1",
"searchable_text": "Test Block Description",
"metadata": {"name": "Test Block"},
"updated_at": "2025-01-01T00:00:00Z",
"semantic_score": 0.6,
"lexical_score": 0.7,
"category_score": 0.4,
"recency_score": 0.2,
"combined_score": 0.5,
"total_count": 2,
},
]
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_query.return_value = mock_results
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
results, total = await unified_hybrid_search(
query="test",
page=1,
page_size=20,
)
assert len(results) == 2
assert total == 2
assert results[0]["content_type"] == "STORE_AGENT"
assert results[1]["content_type"] == "BLOCK"
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_unified_hybrid_search_filter_by_content_type():
"""Test unified search filtering by specific content types."""
mock_results = [
{
"content_type": "BLOCK",
"content_id": "block-1",
"searchable_text": "Test Block",
"metadata": {},
"updated_at": "2025-01-01T00:00:00Z",
"semantic_score": 0.7,
"lexical_score": 0.8,
"category_score": 0.0,
"recency_score": 0.3,
"combined_score": 0.5,
"total_count": 1,
},
]
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_query.return_value = mock_results
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
results, total = await unified_hybrid_search(
query="test",
content_types=[ContentType.BLOCK],
page=1,
page_size=20,
)
# Verify content_types parameter was passed correctly
call_args = mock_query.call_args
params = call_args[0][1:]
# The content types should be in the params as a list
assert ["BLOCK"] in params
assert len(results) == 1
assert total == 1
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_unified_hybrid_search_with_user_id():
"""Test unified search with user_id for private content."""
mock_results = [
{
"content_type": "STORE_AGENT",
"content_id": "agent-1",
"searchable_text": "My Private Agent",
"metadata": {},
"updated_at": "2025-01-01T00:00:00Z",
"semantic_score": 0.7,
"lexical_score": 0.8,
"category_score": 0.0,
"recency_score": 0.3,
"combined_score": 0.6,
"total_count": 1,
},
]
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_query.return_value = mock_results
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
results, total = await unified_hybrid_search(
query="test",
user_id="user-123",
page=1,
page_size=20,
)
# Verify SQL contains user_id filter
call_args = mock_query.call_args
sql_template = call_args[0][0]
params = call_args[0][1:]
assert 'uce."userId"' in sql_template
assert "user-123" in params
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_unified_hybrid_search_custom_weights():
"""Test unified search with custom weights."""
custom_weights = UnifiedSearchWeights(
semantic=0.6,
lexical=0.2,
category=0.1,
recency=0.1,
)
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_query.return_value = []
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
results, total = await unified_hybrid_search(
query="test",
weights=custom_weights,
page=1,
page_size=20,
)
# Verify custom weights are in parameters
call_args = mock_query.call_args
params = call_args[0][1:]
assert 0.6 in params # semantic weight
assert 0.2 in params # lexical weight
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_unified_hybrid_search_graceful_degradation():
"""Test unified search gracefully degrades when embeddings unavailable."""
mock_results = [
{
"content_type": "DOCUMENTATION",
"content_id": "doc-1",
"searchable_text": "API Documentation",
"metadata": {},
"updated_at": "2025-01-01T00:00:00Z",
"semantic_score": 0.0, # Zero because no embedding
"lexical_score": 0.8,
"category_score": 0.0,
"recency_score": 0.2,
"combined_score": 0.5,
"total_count": 1,
},
]
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_query.return_value = mock_results
mock_embed.return_value = None # Embedding failure
# Should NOT raise - graceful degradation
results, total = await unified_hybrid_search(
query="test",
page=1,
page_size=20,
)
assert len(results) == 1
assert total == 1
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_unified_hybrid_search_empty_query():
"""Test unified search with empty query returns empty results."""
results, total = await unified_hybrid_search(
query="",
page=1,
page_size=20,
)
assert results == []
assert total == 0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_unified_hybrid_search_pagination():
"""Test unified search pagination with BM25 reranking.
Pagination happens in SQL (LIMIT/OFFSET), then BM25 reranking is applied
to the paginated results.
"""
# Create mock results that SQL would return for a page
mock_results = [
{
"content_type": "STORE_AGENT",
"content_id": f"agent-{i}",
"searchable_text": f"Agent {i} description",
"metadata": {"name": f"Agent {i}"},
"updated_at": "2025-01-01T00:00:00Z",
"semantic_score": 0.7,
"lexical_score": 0.8 - (i * 0.01),
"category_score": 0.5,
"recency_score": 0.3,
"combined_score": 0.6 - (i * 0.01),
"total_count": 50,
}
for i in range(15) # SQL returns page_size results
]
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_query.return_value = mock_results
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
results, total = await unified_hybrid_search(
query="test",
page=3,
page_size=15,
)
# Verify results returned
assert len(results) == 15
assert total == 50 # Total from SQL COUNT(*) OVER()
# Verify the SQL query uses page_size and offset
call_args = mock_query.call_args
params = call_args[0]
# Last two params are page_size and offset
page_size_param = params[-2]
offset_param = params[-1]
assert page_size_param == 15
assert offset_param == 30 # (page 3 - 1) * 15
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_unified_hybrid_search_schema_prefix():
"""Test unified search uses schema_prefix placeholder."""
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_query.return_value = []
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
await unified_hybrid_search(
query="test",
page=1,
page_size=20,
)
call_args = mock_query.call_args
sql_template = call_args[0][0]
# Verify schema_prefix placeholder is used for table references
assert "{schema_prefix}" in sql_template
assert '"UnifiedContentEmbedding"' in sql_template
if __name__ == "__main__": if __name__ == "__main__":
pytest.main([__file__, "-v", "-s"]) pytest.main([__file__, "-v", "-s"])

View File

@@ -221,3 +221,23 @@ class ReviewSubmissionRequest(pydantic.BaseModel):
is_approved: bool is_approved: bool
comments: str # External comments visible to creator comments: str # External comments visible to creator
internal_comments: str | None = None # Private admin notes internal_comments: str | None = None # Private admin notes
class UnifiedSearchResult(pydantic.BaseModel):
"""A single result from unified hybrid search across all content types."""
content_type: str # STORE_AGENT, BLOCK, DOCUMENTATION
content_id: str
searchable_text: str
metadata: dict | None = None
updated_at: datetime.datetime | None = None
combined_score: float | None = None
semantic_score: float | None = None
lexical_score: float | None = None
class UnifiedSearchResponse(pydantic.BaseModel):
"""Response model for unified search across all content types."""
results: list[UnifiedSearchResult]
pagination: Pagination

View File

@@ -7,12 +7,15 @@ from typing import Literal
import autogpt_libs.auth import autogpt_libs.auth
import fastapi import fastapi
import fastapi.responses import fastapi.responses
import prisma.enums
import backend.data.graph import backend.data.graph
import backend.util.json import backend.util.json
from backend.util.models import Pagination
from . import cache as store_cache from . import cache as store_cache
from . import db as store_db from . import db as store_db
from . import hybrid_search as store_hybrid_search
from . import image_gen as store_image_gen from . import image_gen as store_image_gen
from . import media as store_media from . import media as store_media
from . import model as store_model from . import model as store_model
@@ -146,6 +149,102 @@ async def get_agents(
return agents return agents
##############################################
############### Search Endpoints #############
##############################################
@router.get(
"/search",
summary="Unified search across all content types",
tags=["store", "public"],
response_model=store_model.UnifiedSearchResponse,
)
async def unified_search(
query: str,
content_types: list[str] | None = fastapi.Query(
default=None,
description="Content types to search: STORE_AGENT, BLOCK, DOCUMENTATION. If not specified, searches all.",
),
page: int = 1,
page_size: int = 20,
user_id: str | None = fastapi.Security(
autogpt_libs.auth.get_optional_user_id, use_cache=False
),
):
"""
Search across all content types (store agents, blocks, documentation) using hybrid search.
Combines semantic (embedding-based) and lexical (text-based) search for best results.
Args:
query: The search query string
content_types: Optional list of content types to filter by (STORE_AGENT, BLOCK, DOCUMENTATION)
page: Page number for pagination (default 1)
page_size: Number of results per page (default 20)
user_id: Optional authenticated user ID (for user-scoped content in future)
Returns:
UnifiedSearchResponse: Paginated list of search results with relevance scores
"""
if page < 1:
raise fastapi.HTTPException(
status_code=422, detail="Page must be greater than 0"
)
if page_size < 1:
raise fastapi.HTTPException(
status_code=422, detail="Page size must be greater than 0"
)
# Convert string content types to enum
content_type_enums: list[prisma.enums.ContentType] | None = None
if content_types:
try:
content_type_enums = [prisma.enums.ContentType(ct) for ct in content_types]
except ValueError as e:
raise fastapi.HTTPException(
status_code=422,
detail=f"Invalid content type. Valid values: STORE_AGENT, BLOCK, DOCUMENTATION. Error: {e}",
)
# Perform unified hybrid search
results, total = await store_hybrid_search.unified_hybrid_search(
query=query,
content_types=content_type_enums,
user_id=user_id,
page=page,
page_size=page_size,
)
# Convert results to response model
search_results = [
store_model.UnifiedSearchResult(
content_type=r["content_type"],
content_id=r["content_id"],
searchable_text=r.get("searchable_text", ""),
metadata=r.get("metadata"),
updated_at=r.get("updated_at"),
combined_score=r.get("combined_score"),
semantic_score=r.get("semantic_score"),
lexical_score=r.get("lexical_score"),
)
for r in results
]
total_pages = (total + page_size - 1) // page_size if total > 0 else 0
return store_model.UnifiedSearchResponse(
results=search_results,
pagination=Pagination(
total_items=total,
total_pages=total_pages,
current_page=page,
page_size=page_size,
),
)
@router.get( @router.get(
"/agents/{username}/{agent_name}", "/agents/{username}/{agent_name}",
summary="Get specific agent", summary="Get specific agent",

View File

@@ -0,0 +1,272 @@
"""Tests for the semantic_search function."""
import pytest
from prisma.enums import ContentType
from backend.api.features.store.embeddings import EMBEDDING_DIM, semantic_search
@pytest.mark.asyncio
async def test_search_blocks_only(mocker):
"""Test searching only BLOCK content type."""
# Mock embed_query to return a test embedding
mock_embedding = [0.1] * EMBEDDING_DIM
mocker.patch(
"backend.api.features.store.embeddings.embed_query",
return_value=mock_embedding,
)
# Mock query_raw_with_schema to return test results
mock_results = [
{
"content_id": "block-123",
"content_type": "BLOCK",
"searchable_text": "Calculator Block - Performs arithmetic operations",
"metadata": {"name": "Calculator", "categories": ["Math"]},
"similarity": 0.85,
}
]
mocker.patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_results,
)
results = await semantic_search(
query="calculate numbers",
content_types=[ContentType.BLOCK],
)
assert len(results) == 1
assert results[0]["content_type"] == "BLOCK"
assert results[0]["content_id"] == "block-123"
assert results[0]["similarity"] == 0.85
@pytest.mark.asyncio
async def test_search_multiple_content_types(mocker):
"""Test searching multiple content types simultaneously."""
mock_embedding = [0.1] * EMBEDDING_DIM
mocker.patch(
"backend.api.features.store.embeddings.embed_query",
return_value=mock_embedding,
)
mock_results = [
{
"content_id": "block-123",
"content_type": "BLOCK",
"searchable_text": "Calculator Block",
"metadata": {},
"similarity": 0.85,
},
{
"content_id": "doc-456",
"content_type": "DOCUMENTATION",
"searchable_text": "How to use Calculator",
"metadata": {},
"similarity": 0.75,
},
]
mocker.patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_results,
)
results = await semantic_search(
query="calculator",
content_types=[ContentType.BLOCK, ContentType.DOCUMENTATION],
)
assert len(results) == 2
assert results[0]["content_type"] == "BLOCK"
assert results[1]["content_type"] == "DOCUMENTATION"
@pytest.mark.asyncio
async def test_search_with_min_similarity_threshold(mocker):
"""Test that results below min_similarity are filtered out."""
mock_embedding = [0.1] * EMBEDDING_DIM
mocker.patch(
"backend.api.features.store.embeddings.embed_query",
return_value=mock_embedding,
)
# Only return results above 0.7 similarity
mock_results = [
{
"content_id": "block-123",
"content_type": "BLOCK",
"searchable_text": "Calculator Block",
"metadata": {},
"similarity": 0.85,
}
]
mocker.patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_results,
)
results = await semantic_search(
query="calculate",
content_types=[ContentType.BLOCK],
min_similarity=0.7,
)
assert len(results) == 1
assert results[0]["similarity"] >= 0.7
@pytest.mark.asyncio
async def test_search_fallback_to_lexical(mocker):
"""Test fallback to lexical search when embeddings fail."""
# Mock embed_query to return None (embeddings unavailable)
mocker.patch(
"backend.api.features.store.embeddings.embed_query",
return_value=None,
)
mock_lexical_results = [
{
"content_id": "block-123",
"content_type": "BLOCK",
"searchable_text": "Calculator Block performs calculations",
"metadata": {},
"similarity": 0.0,
}
]
mocker.patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_lexical_results,
)
results = await semantic_search(
query="calculator",
content_types=[ContentType.BLOCK],
)
assert len(results) == 1
assert results[0]["similarity"] == 0.0 # Lexical search returns 0 similarity
@pytest.mark.asyncio
async def test_search_empty_query():
"""Test that empty query returns no results."""
results = await semantic_search(query="")
assert results == []
results = await semantic_search(query=" ")
assert results == []
@pytest.mark.asyncio
async def test_search_with_user_id_filter(mocker):
"""Test searching with user_id filter for private content."""
mock_embedding = [0.1] * EMBEDDING_DIM
mocker.patch(
"backend.api.features.store.embeddings.embed_query",
return_value=mock_embedding,
)
mock_results = [
{
"content_id": "agent-789",
"content_type": "LIBRARY_AGENT",
"searchable_text": "My Custom Agent",
"metadata": {},
"similarity": 0.9,
}
]
mocker.patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_results,
)
results = await semantic_search(
query="custom agent",
content_types=[ContentType.LIBRARY_AGENT],
user_id="user-123",
)
assert len(results) == 1
assert results[0]["content_type"] == "LIBRARY_AGENT"
@pytest.mark.asyncio
async def test_search_limit_parameter(mocker):
"""Test that limit parameter correctly limits results."""
mock_embedding = [0.1] * EMBEDDING_DIM
mocker.patch(
"backend.api.features.store.embeddings.embed_query",
return_value=mock_embedding,
)
# Return 5 results
mock_results = [
{
"content_id": f"block-{i}",
"content_type": "BLOCK",
"searchable_text": f"Block {i}",
"metadata": {},
"similarity": 0.8,
}
for i in range(5)
]
mocker.patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_results,
)
results = await semantic_search(
query="block",
content_types=[ContentType.BLOCK],
limit=5,
)
assert len(results) == 5
@pytest.mark.asyncio
async def test_search_default_content_types(mocker):
"""Test that default content_types includes BLOCK, STORE_AGENT, and DOCUMENTATION."""
mock_embedding = [0.1] * EMBEDDING_DIM
mocker.patch(
"backend.api.features.store.embeddings.embed_query",
return_value=mock_embedding,
)
mock_query_raw = mocker.patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=[],
)
await semantic_search(query="test")
# Check that the SQL query includes all three default content types
call_args = mock_query_raw.call_args
assert "BLOCK" in str(call_args)
assert "STORE_AGENT" in str(call_args)
assert "DOCUMENTATION" in str(call_args)
@pytest.mark.asyncio
async def test_search_handles_database_error(mocker):
"""Test that database errors are handled gracefully."""
mock_embedding = [0.1] * EMBEDDING_DIM
mocker.patch(
"backend.api.features.store.embeddings.embed_query",
return_value=mock_embedding,
)
# Simulate database error
mocker.patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
side_effect=Exception("Database connection failed"),
)
results = await semantic_search(
query="test",
content_types=[ContentType.BLOCK],
)
# Should return empty list on error
assert results == []

View File

@@ -761,10 +761,8 @@ async def create_new_graph(
graph.reassign_ids(user_id=user_id, reassign_graph_id=True) graph.reassign_ids(user_id=user_id, reassign_graph_id=True)
graph.validate_graph(for_run=False) graph.validate_graph(for_run=False)
# The return value of the create graph & library function is intentionally not used here,
# as the graph already valid and no sub-graphs are returned back.
await graph_db.create_graph(graph, user_id=user_id) await graph_db.create_graph(graph, user_id=user_id)
await library_db.create_library_agent(graph, user_id=user_id) await library_db.create_library_agent(graph, user_id)
activated_graph = await on_graph_activate(graph, user_id=user_id) activated_graph = await on_graph_activate(graph, user_id=user_id)
if create_graph.source == "builder": if create_graph.source == "builder":
@@ -888,21 +886,19 @@ async def set_graph_active_version(
async def _update_library_agent_version_and_settings( async def _update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent: ) -> library_model.LibraryAgent:
# Keep the library agent up to date with the new active version
library = await library_db.update_agent_version_in_library( library = await library_db.update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version user_id, agent_graph.id, agent_graph.version
) )
# If the graph has HITL node, initialize the setting if it's not already set. updated_settings = GraphSettings.from_graph(
if ( graph=agent_graph,
agent_graph.has_human_in_the_loop hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
and library.settings.human_in_the_loop_safe_mode is None sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
): )
await library_db.update_library_agent_settings( if updated_settings != library.settings:
library = await library_db.update_library_agent(
library_agent_id=library.id,
user_id=user_id, user_id=user_id,
agent_id=library.id, settings=updated_settings,
settings=library.settings.model_copy(
update={"human_in_the_loop_safe_mode": True}
),
) )
return library return library
@@ -919,21 +915,18 @@ async def update_graph_settings(
user_id: Annotated[str, Security(get_user_id)], user_id: Annotated[str, Security(get_user_id)],
) -> GraphSettings: ) -> GraphSettings:
"""Update graph settings for the user's library agent.""" """Update graph settings for the user's library agent."""
# Get the library agent for this graph
library_agent = await library_db.get_library_agent_by_graph_id( library_agent = await library_db.get_library_agent_by_graph_id(
graph_id=graph_id, user_id=user_id graph_id=graph_id, user_id=user_id
) )
if not library_agent: if not library_agent:
raise HTTPException(404, f"Graph #{graph_id} not found in user's library") raise HTTPException(404, f"Graph #{graph_id} not found in user's library")
# Update the library agent settings updated_agent = await library_db.update_library_agent(
updated_agent = await library_db.update_library_agent_settings( library_agent_id=library_agent.id,
user_id=user_id, user_id=user_id,
agent_id=library_agent.id,
settings=settings, settings=settings,
) )
# Return the updated settings
return GraphSettings.model_validate(updated_agent.settings) return GraphSettings.model_validate(updated_agent.settings)

View File

@@ -174,7 +174,7 @@ class AIShortformVideoCreatorBlock(Block):
) )
frame_rate: int = SchemaField(description="Frame rate of the video", default=60) frame_rate: int = SchemaField(description="Frame rate of the video", default=60)
generation_preset: GenerationPreset = SchemaField( generation_preset: GenerationPreset = SchemaField(
description="Generation preset for visual style - only effects AI generated visuals", description="Generation preset for visual style - only affects AI-generated visuals",
default=GenerationPreset.LEONARDO, default=GenerationPreset.LEONARDO,
placeholder=GenerationPreset.LEONARDO, placeholder=GenerationPreset.LEONARDO,
) )

View File

@@ -381,7 +381,7 @@ Each range you add needs to be a string, with the upper and lower numbers of the
organization_locations: Optional[list[str]] = SchemaField( organization_locations: Optional[list[str]] = SchemaField(
description="""The location of the company headquarters. You can search across cities, US states, and countries. description="""The location of the company headquarters. You can search across cities, US states, and countries.
If a company has several office locations, results are still based on the headquarters location. For example, if you search chicago but a company's HQ location is in boston, any Boston-based companies will not appearch in your search results, even if they match other parameters. If a company has several office locations, results are still based on the headquarters location. For example, if you search chicago but a company's HQ location is in boston, any Boston-based companies will not appear in your search results, even if they match other parameters.
To exclude companies based on location, use the organization_not_locations parameter. To exclude companies based on location, use the organization_not_locations parameter.
""", """,

View File

@@ -34,7 +34,7 @@ Each range you add needs to be a string, with the upper and lower numbers of the
organization_locations: list[str] = SchemaField( organization_locations: list[str] = SchemaField(
description="""The location of the company headquarters. You can search across cities, US states, and countries. description="""The location of the company headquarters. You can search across cities, US states, and countries.
If a company has several office locations, results are still based on the headquarters location. For example, if you search chicago but a company's HQ location is in boston, any Boston-based companies will not appearch in your search results, even if they match other parameters. If a company has several office locations, results are still based on the headquarters location. For example, if you search chicago but a company's HQ location is in boston, any Boston-based companies will not appear in your search results, even if they match other parameters.
To exclude companies based on location, use the organization_not_locations parameter. To exclude companies based on location, use the organization_not_locations parameter.
""", """,

View File

@@ -81,7 +81,7 @@ class StoreValueBlock(Block):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="1ff065e9-88e8-4358-9d82-8dc91f622ba9", id="1ff065e9-88e8-4358-9d82-8dc91f622ba9",
description="This block forwards an input value as output, allowing reuse without change.", description="A basic block that stores and forwards a value throughout workflows, allowing it to be reused without changes across multiple blocks.",
categories={BlockCategory.BASIC}, categories={BlockCategory.BASIC},
input_schema=StoreValueBlock.Input, input_schema=StoreValueBlock.Input,
output_schema=StoreValueBlock.Output, output_schema=StoreValueBlock.Output,
@@ -111,7 +111,7 @@ class PrintToConsoleBlock(Block):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="f3b1c1b2-4c4f-4f0d-8d2f-4c4f0d8d2f4c", id="f3b1c1b2-4c4f-4f0d-8d2f-4c4f0d8d2f4c",
description="Print the given text to the console, this is used for a debugging purpose.", description="A debugging block that outputs text to the console for monitoring and troubleshooting workflow execution.",
categories={BlockCategory.BASIC}, categories={BlockCategory.BASIC},
input_schema=PrintToConsoleBlock.Input, input_schema=PrintToConsoleBlock.Input,
output_schema=PrintToConsoleBlock.Output, output_schema=PrintToConsoleBlock.Output,
@@ -137,7 +137,7 @@ class NoteBlock(Block):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="cc10ff7b-7753-4ff2-9af6-9399b1a7eddc", id="cc10ff7b-7753-4ff2-9af6-9399b1a7eddc",
description="This block is used to display a sticky note with the given text.", description="A visual annotation block that displays a sticky note in the workflow editor for documentation and organization purposes.",
categories={BlockCategory.BASIC}, categories={BlockCategory.BASIC},
input_schema=NoteBlock.Input, input_schema=NoteBlock.Input,
output_schema=NoteBlock.Output, output_schema=NoteBlock.Output,

View File

@@ -159,7 +159,7 @@ class FindInDictionaryBlock(Block):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="0e50422c-6dee-4145-83d6-3a5a392f65de", id="0e50422c-6dee-4145-83d6-3a5a392f65de",
description="Lookup the given key in the input dictionary/object/list and return the value.", description="A block that looks up a value in a dictionary, list, or object by key or index and returns the corresponding value.",
input_schema=FindInDictionaryBlock.Input, input_schema=FindInDictionaryBlock.Input,
output_schema=FindInDictionaryBlock.Output, output_schema=FindInDictionaryBlock.Output,
test_input=[ test_input=[
@@ -680,3 +680,58 @@ class ListIsEmptyBlock(Block):
async def run(self, input_data: Input, **kwargs) -> BlockOutput: async def run(self, input_data: Input, **kwargs) -> BlockOutput:
yield "is_empty", len(input_data.list) == 0 yield "is_empty", len(input_data.list) == 0
class ConcatenateListsBlock(Block):
class Input(BlockSchemaInput):
lists: List[List[Any]] = SchemaField(
description="A list of lists to concatenate together. All lists will be combined in order into a single list.",
placeholder="e.g., [[1, 2], [3, 4], [5, 6]]",
)
class Output(BlockSchemaOutput):
concatenated_list: List[Any] = SchemaField(
description="The concatenated list containing all elements from all input lists in order."
)
error: str = SchemaField(
description="Error message if concatenation failed due to invalid input types."
)
def __init__(self):
super().__init__(
id="3cf9298b-5817-4141-9d80-7c2cc5199c8e",
description="Concatenates multiple lists into a single list. All elements from all input lists are combined in order.",
categories={BlockCategory.BASIC},
input_schema=ConcatenateListsBlock.Input,
output_schema=ConcatenateListsBlock.Output,
test_input=[
{"lists": [[1, 2, 3], [4, 5, 6]]},
{"lists": [["a", "b"], ["c"], ["d", "e", "f"]]},
{"lists": [[1, 2], []]},
{"lists": []},
],
test_output=[
("concatenated_list", [1, 2, 3, 4, 5, 6]),
("concatenated_list", ["a", "b", "c", "d", "e", "f"]),
("concatenated_list", [1, 2]),
("concatenated_list", []),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
concatenated = []
for idx, lst in enumerate(input_data.lists):
if lst is None:
# Skip None values to avoid errors
continue
if not isinstance(lst, list):
# Type validation: each item must be a list
# Strings are iterable and would cause extend() to iterate character-by-character
# Non-iterable types would raise TypeError
yield "error", (
f"Invalid input at index {idx}: expected a list, got {type(lst).__name__}. "
f"All items in 'lists' must be lists (e.g., [[1, 2], [3, 4]])."
)
return
concatenated.extend(lst)
yield "concatenated_list", concatenated

View File

@@ -51,7 +51,7 @@ class GithubCommentBlock(Block):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="a8db4d8d-db1c-4a25-a1b0-416a8c33602b", id="a8db4d8d-db1c-4a25-a1b0-416a8c33602b",
description="This block posts a comment on a specified GitHub issue or pull request.", description="A block that posts comments on GitHub issues or pull requests using the GitHub API.",
categories={BlockCategory.DEVELOPER_TOOLS}, categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=GithubCommentBlock.Input, input_schema=GithubCommentBlock.Input,
output_schema=GithubCommentBlock.Output, output_schema=GithubCommentBlock.Output,
@@ -151,7 +151,7 @@ class GithubUpdateCommentBlock(Block):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="b3f4d747-10e3-4e69-8c51-f2be1d99c9a7", id="b3f4d747-10e3-4e69-8c51-f2be1d99c9a7",
description="This block updates a comment on a specified GitHub issue or pull request.", description="A block that updates an existing comment on a GitHub issue or pull request.",
categories={BlockCategory.DEVELOPER_TOOLS}, categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=GithubUpdateCommentBlock.Input, input_schema=GithubUpdateCommentBlock.Input,
output_schema=GithubUpdateCommentBlock.Output, output_schema=GithubUpdateCommentBlock.Output,
@@ -249,7 +249,7 @@ class GithubListCommentsBlock(Block):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="c4b5fb63-0005-4a11-b35a-0c2467bd6b59", id="c4b5fb63-0005-4a11-b35a-0c2467bd6b59",
description="This block lists all comments for a specified GitHub issue or pull request.", description="A block that retrieves all comments from a GitHub issue or pull request, including comment metadata and content.",
categories={BlockCategory.DEVELOPER_TOOLS}, categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=GithubListCommentsBlock.Input, input_schema=GithubListCommentsBlock.Input,
output_schema=GithubListCommentsBlock.Output, output_schema=GithubListCommentsBlock.Output,
@@ -363,7 +363,7 @@ class GithubMakeIssueBlock(Block):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="691dad47-f494-44c3-a1e8-05b7990f2dab", id="691dad47-f494-44c3-a1e8-05b7990f2dab",
description="This block creates a new issue on a specified GitHub repository.", description="A block that creates new issues on GitHub repositories with a title and body content.",
categories={BlockCategory.DEVELOPER_TOOLS}, categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=GithubMakeIssueBlock.Input, input_schema=GithubMakeIssueBlock.Input,
output_schema=GithubMakeIssueBlock.Output, output_schema=GithubMakeIssueBlock.Output,
@@ -433,7 +433,7 @@ class GithubReadIssueBlock(Block):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="6443c75d-032a-4772-9c08-230c707c8acc", id="6443c75d-032a-4772-9c08-230c707c8acc",
description="This block reads the body, title, and user of a specified GitHub issue.", description="A block that retrieves information about a specific GitHub issue, including its title, body content, and creator.",
categories={BlockCategory.DEVELOPER_TOOLS}, categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=GithubReadIssueBlock.Input, input_schema=GithubReadIssueBlock.Input,
output_schema=GithubReadIssueBlock.Output, output_schema=GithubReadIssueBlock.Output,
@@ -510,7 +510,7 @@ class GithubListIssuesBlock(Block):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="c215bfd7-0e57-4573-8f8c-f7d4963dcd74", id="c215bfd7-0e57-4573-8f8c-f7d4963dcd74",
description="This block lists all issues for a specified GitHub repository.", description="A block that retrieves a list of issues from a GitHub repository with their titles and URLs.",
categories={BlockCategory.DEVELOPER_TOOLS}, categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=GithubListIssuesBlock.Input, input_schema=GithubListIssuesBlock.Input,
output_schema=GithubListIssuesBlock.Output, output_schema=GithubListIssuesBlock.Output,
@@ -597,7 +597,7 @@ class GithubAddLabelBlock(Block):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="98bd6b77-9506-43d5-b669-6b9733c4b1f1", id="98bd6b77-9506-43d5-b669-6b9733c4b1f1",
description="This block adds a label to a specified GitHub issue or pull request.", description="A block that adds a label to a GitHub issue or pull request for categorization and organization.",
categories={BlockCategory.DEVELOPER_TOOLS}, categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=GithubAddLabelBlock.Input, input_schema=GithubAddLabelBlock.Input,
output_schema=GithubAddLabelBlock.Output, output_schema=GithubAddLabelBlock.Output,
@@ -657,7 +657,7 @@ class GithubRemoveLabelBlock(Block):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="78f050c5-3e3a-48c0-9e5b-ef1ceca5589c", id="78f050c5-3e3a-48c0-9e5b-ef1ceca5589c",
description="This block removes a label from a specified GitHub issue or pull request.", description="A block that removes a label from a GitHub issue or pull request.",
categories={BlockCategory.DEVELOPER_TOOLS}, categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=GithubRemoveLabelBlock.Input, input_schema=GithubRemoveLabelBlock.Input,
output_schema=GithubRemoveLabelBlock.Output, output_schema=GithubRemoveLabelBlock.Output,
@@ -720,7 +720,7 @@ class GithubAssignIssueBlock(Block):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="90507c72-b0ff-413a-886a-23bbbd66f542", id="90507c72-b0ff-413a-886a-23bbbd66f542",
description="This block assigns a user to a specified GitHub issue.", description="A block that assigns a GitHub user to an issue for task ownership and tracking.",
categories={BlockCategory.DEVELOPER_TOOLS}, categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=GithubAssignIssueBlock.Input, input_schema=GithubAssignIssueBlock.Input,
output_schema=GithubAssignIssueBlock.Output, output_schema=GithubAssignIssueBlock.Output,
@@ -786,7 +786,7 @@ class GithubUnassignIssueBlock(Block):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="d154002a-38f4-46c2-962d-2488f2b05ece", id="d154002a-38f4-46c2-962d-2488f2b05ece",
description="This block unassigns a user from a specified GitHub issue.", description="A block that removes a user's assignment from a GitHub issue.",
categories={BlockCategory.DEVELOPER_TOOLS}, categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=GithubUnassignIssueBlock.Input, input_schema=GithubUnassignIssueBlock.Input,
output_schema=GithubUnassignIssueBlock.Output, output_schema=GithubUnassignIssueBlock.Output,

View File

@@ -353,7 +353,7 @@ class GmailReadBlock(GmailBase):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="25310c70-b89b-43ba-b25c-4dfa7e2a481c", id="25310c70-b89b-43ba-b25c-4dfa7e2a481c",
description="This block reads emails from Gmail.", description="A block that retrieves and reads emails from a Gmail account based on search criteria, returning detailed message information including subject, sender, body, and attachments.",
categories={BlockCategory.COMMUNICATION}, categories={BlockCategory.COMMUNICATION},
disabled=not GOOGLE_OAUTH_IS_CONFIGURED, disabled=not GOOGLE_OAUTH_IS_CONFIGURED,
input_schema=GmailReadBlock.Input, input_schema=GmailReadBlock.Input,
@@ -743,7 +743,7 @@ class GmailListLabelsBlock(GmailBase):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="3e1c2c1c-c689-4520-b956-1f3bf4e02bb7", id="3e1c2c1c-c689-4520-b956-1f3bf4e02bb7",
description="This block lists all labels in Gmail.", description="A block that retrieves all labels (categories) from a Gmail account for organizing and categorizing emails.",
categories={BlockCategory.COMMUNICATION}, categories={BlockCategory.COMMUNICATION},
input_schema=GmailListLabelsBlock.Input, input_schema=GmailListLabelsBlock.Input,
output_schema=GmailListLabelsBlock.Output, output_schema=GmailListLabelsBlock.Output,
@@ -807,7 +807,7 @@ class GmailAddLabelBlock(GmailBase):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="f884b2fb-04f4-4265-9658-14f433926ac9", id="f884b2fb-04f4-4265-9658-14f433926ac9",
description="This block adds a label to a Gmail message.", description="A block that adds a label to a specific email message in Gmail, creating the label if it doesn't exist.",
categories={BlockCategory.COMMUNICATION}, categories={BlockCategory.COMMUNICATION},
input_schema=GmailAddLabelBlock.Input, input_schema=GmailAddLabelBlock.Input,
output_schema=GmailAddLabelBlock.Output, output_schema=GmailAddLabelBlock.Output,
@@ -893,7 +893,7 @@ class GmailRemoveLabelBlock(GmailBase):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="0afc0526-aba1-4b2b-888e-a22b7c3f359d", id="0afc0526-aba1-4b2b-888e-a22b7c3f359d",
description="This block removes a label from a Gmail message.", description="A block that removes a label from a specific email message in a Gmail account.",
categories={BlockCategory.COMMUNICATION}, categories={BlockCategory.COMMUNICATION},
input_schema=GmailRemoveLabelBlock.Input, input_schema=GmailRemoveLabelBlock.Input,
output_schema=GmailRemoveLabelBlock.Output, output_schema=GmailRemoveLabelBlock.Output,
@@ -961,7 +961,7 @@ class GmailGetThreadBlock(GmailBase):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="21a79166-9df7-4b5f-9f36-96f639d86112", id="21a79166-9df7-4b5f-9f36-96f639d86112",
description="Get a full Gmail thread by ID", description="A block that retrieves an entire Gmail thread (email conversation) by ID, returning all messages with decoded bodies for reading complete conversations.",
categories={BlockCategory.COMMUNICATION}, categories={BlockCategory.COMMUNICATION},
input_schema=GmailGetThreadBlock.Input, input_schema=GmailGetThreadBlock.Input,
output_schema=GmailGetThreadBlock.Output, output_schema=GmailGetThreadBlock.Output,

View File

@@ -282,7 +282,7 @@ class GoogleSheetsReadBlock(Block):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="5724e902-3635-47e9-a108-aaa0263a4988", id="5724e902-3635-47e9-a108-aaa0263a4988",
description="This block reads data from a Google Sheets spreadsheet.", description="A block that reads data from a Google Sheets spreadsheet using A1 notation range selection.",
categories={BlockCategory.DATA}, categories={BlockCategory.DATA},
input_schema=GoogleSheetsReadBlock.Input, input_schema=GoogleSheetsReadBlock.Input,
output_schema=GoogleSheetsReadBlock.Output, output_schema=GoogleSheetsReadBlock.Output,
@@ -409,7 +409,7 @@ class GoogleSheetsWriteBlock(Block):
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="d9291e87-301d-47a8-91fe-907fb55460e5", id="d9291e87-301d-47a8-91fe-907fb55460e5",
description="This block writes data to a Google Sheets spreadsheet.", description="A block that writes data to a Google Sheets spreadsheet at a specified A1 notation range.",
categories={BlockCategory.DATA}, categories={BlockCategory.DATA},
input_schema=GoogleSheetsWriteBlock.Input, input_schema=GoogleSheetsWriteBlock.Input,
output_schema=GoogleSheetsWriteBlock.Output, output_schema=GoogleSheetsWriteBlock.Output,

View File

@@ -84,7 +84,7 @@ class HITLReviewHelper:
Exception: If review creation or status update fails Exception: If review creation or status update fails
""" """
# Skip review if safe mode is disabled - return auto-approved result # Skip review if safe mode is disabled - return auto-approved result
if not execution_context.safe_mode: if not execution_context.human_in_the_loop_safe_mode:
logger.info( logger.info(
f"Block {block_name} skipping review for node {node_exec_id} - safe mode disabled" f"Block {block_name} skipping review for node {node_exec_id} - safe mode disabled"
) )

View File

@@ -104,7 +104,7 @@ class HumanInTheLoopBlock(Block):
execution_context: ExecutionContext, execution_context: ExecutionContext,
**_kwargs, **_kwargs,
) -> BlockOutput: ) -> BlockOutput:
if not execution_context.safe_mode: if not execution_context.human_in_the_loop_safe_mode:
logger.info( logger.info(
f"HITL block skipping review for node {node_exec_id} - safe mode disabled" f"HITL block skipping review for node {node_exec_id} - safe mode disabled"
) )

Some files were not shown because too many files have changed in this diff Show More