Compare commits

..

49 Commits

Author SHA1 Message Date
Zamil Majdy
5efb80d47b fix(backend/chat): Address PR review comments for Claude SDK integration
- Add StreamFinish after ErrorMessage in response adapter
- Fix str.replace to removeprefix in security hooks
- Apply max_context_messages limit as safety guard in history formatting
- Add empty prompt guard before sending to SDK
- Sanitize error messages to avoid exposing internal details
- Fix fire-and-forget asyncio.create_task by storing task reference
- Fix tool_calls population on assistant messages
- Rewrite Anthropic fallback to persist messages and merge consecutive roles
- Only use ANTHROPIC_API_KEY for fallback (not OpenRouter keys)
- Fix IndexError when tool result content list is empty
2026-02-06 13:25:10 +04:00
Zamil Majdy
b49d8e2cba fix lock 2026-02-06 13:19:53 +04:00
Zamil Majdy
452544530d feat(chat/sdk): Enable native SDK context compaction
- Remove manual truncation in conversation history formatting
- SDK's automatic compaction handles context limits intelligently
- Add observability hooks:
  - PreCompact: Log when SDK triggers context compaction
  - PostToolUse: Log successful tool executions
  - PostToolUseFailure: Log and debug failed tool executions
- Update config: increase max_context_messages (SDK handles compaction)
2026-02-06 12:44:48 +04:00
Zamil Majdy
32ee7e6cf8 fix(chat): Remove aggressive stale task detection
The 60-second timeout was too aggressive and could incorrectly mark
legitimate long-running tool calls as stale. Relying on Redis TTL
(1 hour) for cleanup is sufficient and more reliable.
2026-02-06 11:45:54 +04:00
Zamil Majdy
670663c406 Merge dev and resolve poetry.lock conflict 2026-02-06 11:40:41 +04:00
Zamil Majdy
0dbe4cf51e feat(backend/chat): Add Claude Agent SDK integration for CoPilot
This PR adds Claude Agent SDK as the default backend for CoPilot chat completions,
replacing the direct OpenAI API integration.

Key changes:
- Add Claude Agent SDK service layer with MCP tool adapter
- Fix message persistence after tool calls (messages no longer disappear on refresh)
- Add OpenRouter tracing for session title generation
- Add security hooks for user context validation
- Add Anthropic fallback when SDK is not available
- Clean up excessive debug logging
2026-02-06 11:38:17 +04:00
Nicholas Tindle
29ee85c86f fix: add virus scanning to WorkspaceManager.write_file() (#11990)
## Summary

Adds virus scanning at the `WorkspaceManager.write_file()` layer for
defense in depth.

## Problem

Previously, virus scanning was only performed at entry points:
- `store_media_file()` in `backend/util/file.py`
- `WriteWorkspaceFileTool` in
`backend/api/features/chat/tools/workspace_files.py`

This created a trust boundary where any new caller of
`WorkspaceManager.write_file()` would need to remember to scan first.

## Solution

Add `scan_content_safe()` call directly in
`WorkspaceManager.write_file()` before persisting to storage. This
ensures all content is scanned regardless of the caller.

## Changes

- Added import for `scan_content_safe` from `backend.util.virus_scanner`
- Added virus scan call after file size validation, before storage

## Testing

Existing tests should pass. The scan is a no-op in test environments
where ClamAV isn't running.

Closes https://linear.app/autogpt/issue/OPEN-2993

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> **Medium Risk**
> Introduces a new required async scan step in the workspace write path,
which can add latency or cause new failures if the scanner/ClamAV is
misconfigured or unavailable.
> 
> **Overview**
> Adds a **defense-in-depth** virus scan to
`WorkspaceManager.write_file()` by invoking `scan_content_safe()` after
file-size validation and before any storage/database persistence.
> 
> This centralizes scanning so any caller writing workspace files gets
the same malware check without relying on upstream entry points to
remember to scan.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
0f5ac68b92. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->
2026-02-06 04:38:32 +00:00
Nicholas Tindle
85b6520710 feat(blocks): Add video editing blocks (#11796)
<!-- Clearly explain the need for these changes: -->
This PR adds general-purpose video editing blocks for the AutoGPT
Platform, enabling automated video production workflows like documentary
creation, marketing videos, tutorial assembly, and content repurposing.

### Changes 🏗️

<!-- Concisely describe all of the changes made in this pull request:
-->

**New blocks added in `backend/blocks/video/`:**
- `VideoDownloadBlock` - Download videos from URLs (YouTube, Vimeo, news
sites, direct links) using yt-dlp
- `VideoClipBlock` - Extract time segments from videos with start/end
time validation
- `VideoConcatBlock` - Merge multiple video clips with optional
transitions (none, crossfade, fade_black)
- `VideoTextOverlayBlock` - Add text overlays/captions with positioning
and timing options
- `VideoNarrationBlock` - Generate AI narration via ElevenLabs and mix
with video audio (replace, mix, or ducking modes)

**Dependencies required:**
- `yt-dlp` - For video downloading
- `moviepy` - For video editing operations

**Implementation details:**
- All blocks follow the SDK pattern with proper error handling and
exception chaining
- Proper resource cleanup in `finally` blocks to prevent memory leaks
- Input validation (e.g., end_time > start_time)
- Test mocks included for CI

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Blocks follow the SDK pattern with
`BlockSchemaInput`/`BlockSchemaOutput`
  - [x] Resource cleanup is implemented in `finally` blocks
  - [x] Exception chaining is properly implemented
  - [x] Input validation is in place
  - [x] Test mocks are provided for CI environments

#### For configuration changes:
- [ ] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [ ] I have included a list of my configuration changes in the PR
description (under **Changes**)

N/A - No configuration changes required.


<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> **Medium Risk**
> Adds new multimedia blocks that invoke ffmpeg/MoviePy and introduces
new external dependencies (plus container packages), which can impact
runtime stability and resource usage; download/overlay blocks are
present but disabled due to sandbox/policy concerns.
> 
> **Overview**
> Adds a new `backend.blocks.video` module with general-purpose video
workflow blocks (download, clip, concat w/ transitions, loop, add-audio,
text overlay, and ElevenLabs-powered narration), including shared
utilities for codec selection, filename cleanup, and an ffmpeg-based
chapter-strip workaround for MoviePy.
> 
> Extends credentials/config to support ElevenLabs
(`ELEVENLABS_API_KEY`, provider enum, system credentials, and cost
config) and adds new dependencies (`elevenlabs`, `yt-dlp`) plus Docker
runtime packages (`ffmpeg`, `imagemagick`).
> 
> Improves file/reference handling end-to-end by embedding MIME types in
`workspace://...#mime` outputs and updating frontend rendering to detect
video vs image from MIME fragments (and broaden supported audio/video
extensions), with optional enhanced output rendering behind a feature
flag in the legacy builder UI.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
da7a44d794. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
Co-authored-by: Otto <otto@agpt.co>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-02-05 22:22:33 +00:00
Bently
bfa942e032 feat(platform): Add Claude Opus 4.6 model support (#11983)
## Summary
Adds support for Anthropic's newly released Claude Opus 4.6 model.

## Changes
- Added `claude-opus-4-6` to the `LlmModel` enum
- Added model metadata: 200K context window (1M beta), **128K max output
tokens**
- Added block cost config (same pricing tier as Opus 4.5: $5/MTok input,
$25/MTok output)
- Updated chat config default model to Claude Opus 4.6

## Model Details
From [Anthropic's
docs](https://docs.anthropic.com/en/docs/about-claude/models):
- **API ID:** `claude-opus-4-6`
- **Context window:** 200K tokens (1M beta)
- **Max output:** 128K tokens (up from 64K on Opus 4.5)
- **Extended thinking:** Yes
- **Adaptive thinking:** Yes (new, Opus 4.6 exclusive)
- **Knowledge cutoff:** May 2025 (reliable), Aug 2025 (training)
- **Pricing:** $5/MTok input, $25/MTok output (same as Opus 4.5)

---------

Co-authored-by: Toran Bruce Richards <toran.richards@gmail.com>
2026-02-05 19:19:51 +00:00
Otto
11256076d8 fix(frontend): Rename "Tasks" tab to "Agents" in navbar (#11982)
## Summary
Renames the "Tasks" tab in the navbar to "Agents" per the Figma design.

## Changes
- `Navbar.tsx`: Changed label from "Tasks" to "Agents"

<img width="1069" height="153" alt="image"
src="https://github.com/user-attachments/assets/3869d2a2-9bd9-4346-b650-15dabbdb46c4"
/>


## Why
- "Tasks" was incorrectly named and confusing for users trying to find
their agent builds
- Matches the Figma design

## Linear Ticket
Fixes [SECRT-1894](https://linear.app/autogpt/issue/SECRT-1894)

## Related
- [SECRT-1865](https://linear.app/autogpt/issue/SECRT-1865) - Find and
Manage Existing/Unpublished or Recent Agent Builds Is Unintuitive
2026-02-05 17:54:39 +00:00
Bently
3ca2387631 feat(blocks): Implement Text Encode block (#11857)
## Summary
Implements a `TextEncoderBlock` that encodes plain text into escape
sequences (the reverse of `TextDecoderBlock`).

## Changes

### Block Implementation
- Added `encoder_block.py` with `TextEncoderBlock` in
`autogpt_platform/backend/backend/blocks/`
- Uses `codecs.encode(text, "unicode_escape").decode("utf-8")` for
encoding
- Mirrors the structure and patterns of the existing `TextDecoderBlock`
- Categorised as `BlockCategory.TEXT`

### Documentation
- Added Text Encoder section to
`docs/integrations/block-integrations/text.md` (the auto-generated docs
file for TEXT category blocks)
- Expanded "How it works" with technical details on the encoding method,
validation, and edge cases
- Added 3 structured use cases per docs guidelines: JSON payload
preparation, Config/ENV generation, Snapshot fixtures
- Added Text Encoder to the overview table in
`docs/integrations/README.md`
- Removed standalone `encoder_block.md` (TEXT category blocks belong in
`text.md` per `CATEGORY_FILE_MAP` in `generate_block_docs.py`)

### Documentation Formatting (CodeRabbit feedback)
- Added blank lines around markdown tables (MD058)
- Added `text` language tags to fenced code blocks (MD040)
- Restructured use case section with bold headings per coding guidelines

## How Docs Were Synced
The `check-docs-sync` CI job runs `poetry run python
scripts/generate_block_docs.py --check` which expects blocks to be
documented in category-grouped files. Since `TextEncoderBlock` uses
`BlockCategory.TEXT`, the `CATEGORY_FILE_MAP` maps it to `text.md` — not
a standalone file. The block entry was added to `text.md` following the
exact format used by the generator (with `<!-- MANUAL -->` markers for
hand-written sections).

## Related Issue
Fixes #11111

---------

Co-authored-by: Otto <otto@agpt.co>
Co-authored-by: lif <19658300+majiayu000@users.noreply.github.com>
Co-authored-by: Aryan Kaul <134673289+aryancodes1@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: Nick Tindle <nick@ntindle.com>
2026-02-05 17:31:02 +00:00
Otto
ed07f02738 fix(copilot): edit_agent updates existing agent instead of creating duplicate (#11981)
## Summary

When editing an agent via CoPilot's `edit_agent` tool, the code was
always creating a new `LibraryAgent` entry instead of updating the
existing one to point to the new graph version. This caused duplicate
agents to appear in the user's library.

## Changes

In `save_agent_to_library()`:
- When `is_update=True`, now checks if there's an existing library agent
for the graph using `get_library_agent_by_graph_id()`
- If found, uses `update_agent_version_in_library()` to update the
existing library agent to point to the new version
- Falls back to creating a new library agent if no existing one is found
(e.g., if editing a graph that wasn't added to library yet)

## Testing

- Verified lint/format checks pass
- Plan reviewed and approved by Staff Engineer Plan Reviewer agent

## Related

Fixes [SECRT-1857](https://linear.app/autogpt/issue/SECRT-1857)

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
2026-02-05 15:02:26 +00:00
Swifty
b121030c94 feat(frontend): Add progress indicator during agent generation [SECRT-1883] (#11974)
## Summary
- Add asymptotic progress bar that appears during long-running chat
tasks
- Progress bar shows after 10 seconds with "Working on it..." label and
percentage
- Uses half-life formula: ~50% at 30s, ~75% at 60s, ~87.5% at 90s, etc.
- Creates the classic "game loading bar" effect that never reaches 100%



https://github.com/user-attachments/assets/3c59289e-793c-4a08-b3fc-69e1eef28b1f



## Test plan
- [x] Start a chat that triggers agent generation
- [x] Wait 10+ seconds for the progress bar to appear
- [x] Verify progress bar is centered with label and percentage
- [x] Verify progress follows expected timing (~50% at 30s)
- [x] Verify progress bar disappears when task completes

---------

Co-authored-by: Otto <otto@agpt.co>
2026-02-05 15:37:51 +01:00
Swifty
c22c18374d feat(frontend): Add ready-to-test prompt after agent creation [SECRT-1882] (#11975)
## Summary
- Add special UI prompt when agent is successfully created in chat
- Show "Agent Created Successfully" with agent name
- Provide two action buttons:
- **Run with example values**: Sends chat message asking AI to run with
placeholders
- **Run with my inputs**: Opens RunAgentModal for custom input
configuration
- After run/schedule, automatically send chat message with execution
details for AI monitoring



https://github.com/user-attachments/assets/b11e118c-de59-4b79-a629-8bd0d52d9161



## Test plan
- [x] Create an agent through chat
- [x] Verify "Agent Created Successfully" prompt appears
- [x] Click "Run with example values" - verify chat message is sent
- [x] Click "Run with my inputs" - verify RunAgentModal opens
- [x] Fill inputs and run - verify chat message with execution ID is
sent
- [x] Fill inputs and schedule - verify chat message with schedule
details is sent

---------

Co-authored-by: Otto <otto@agpt.co>
2026-02-05 15:37:31 +01:00
Swifty
e40233a3ac fix(backend/chat): Guide find_agent users toward action with CTAs (#11976)
When users search for agents, guide them toward creating custom agents
if no results are found or after showing results. This improves user
engagement by offering a clear next step.

### Changes 🏗️

- Updated `agent_search.py` to add CTAs in search responses
- Added messaging to inform users they can create custom agents based on
their needs
- Applied to both "no results found" and "agents found" scenarios

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Search for agents in marketplace with matching results
  - [x] Search for agents in marketplace with no results
  - [x] Search for agents in library with matching results  
  - [x] Search for agents in library with no results
  - [x] Verify CTA message appears in all cases

---------

Co-authored-by: Otto <otto@agpt.co>
2026-02-05 15:36:55 +01:00
Swifty
3ae5eabf9d fix(backend/chat): Use latest prompt label in non-production environments (#11977)
In non-production environments, the chat service now fetches prompts
with the `latest` label instead of the default production-labeled
prompt. This makes it easier to test and iterate on prompt changes in
dev/staging without needing to promote them to production first.

### Changes 🏗️

- Updated `_get_system_prompt_template()` in chat service to pass
`label="latest"` when `app_env` is not `PRODUCTION`
- Production environments continue using the default behavior
(production-labeled prompts)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified that in non-production environments, prompts with
`latest` label are fetched
- [x] Verified that production environments still use the default
(production) labeled prompts

Co-authored-by: Otto <otto@agpt.co>
2026-02-05 14:54:39 +01:00
Otto
a077ba9f03 fix(platform): YouTube block yields only error on failure (#11980)
## Summary

Fixes [SECRT-1889](https://linear.app/autogpt/issue/SECRT-1889): The
YouTube transcription block was yielding both `video_id` and `error`
when the transcript fetch failed.

## Problem

The block yielded `video_id` immediately upon extracting it from the
URL, before attempting to fetch the transcript. If the transcript fetch
failed, both outputs were present.

```python
# Before
video_id = self.extract_video_id(input_data.youtube_url)
yield "video_id", video_id  # ← Yielded before transcript attempt

transcript = self.get_transcript(video_id, credentials)  # ← Could fail here
```

## Solution

Wrap the entire operation in try/except and only yield outputs after all
operations succeed:

```python
# After
try:
    video_id = self.extract_video_id(input_data.youtube_url)
    transcript = self.get_transcript(video_id, credentials)
    transcript_text = self.format_transcript(transcript=transcript)

    # Only yield after all operations succeed
    yield "video_id", video_id
    yield "transcript", transcript_text
except Exception as e:
    yield "error", str(e)
```

This follows the established pattern in other blocks (e.g.,
`ai_image_generator_block.py`).

## Testing

- All 10 unit tests pass (`test/blocks/test_youtube.py`)
- Lint/format checks pass

Co-authored-by: Toran Bruce Richards <toran.richards@gmail.com>
2026-02-05 11:51:32 +00:00
Bently
5401d54eaa fix(backend): Handle StreamHeartbeat in CoPilot stream handler (#11928)
### Changes 🏗️

Fixes **AUTOGPT-SERVER-7JA** (123 events since Jan 27, 2026).

#### Problem

`StreamHeartbeat` was added to keep SSE connections alive during
long-running tool executions (yielded every 15s while waiting). However,
the main `stream_chat_completion` handler's `elif` chain didn't have a
case for it:

```
StreamTextStart →  handled
StreamTextDelta →  handled
StreamTextEnd →  handled
StreamToolInputStart →  handled
StreamToolInputAvailable →  handled
StreamToolOutputAvailable →  handled
StreamFinish →  handled
StreamError →  handled
StreamUsage →  handled
StreamHeartbeat →  fell through to 'Unknown chunk type' error
```

This meant every heartbeat during tool execution generated a Sentry
error instead of keeping the connection alive.

#### Fix

Add `StreamHeartbeat` to the `elif` chain and yield it through. The
route handler already calls `to_sse()` on all yielded chunks, and
`StreamHeartbeat.to_sse()` correctly returns `: heartbeat\n\n` (SSE
comment format, ignored by clients but keeps proxies/load balancers
happy).

**1 file changed, 3 insertions.**
2026-02-05 12:04:46 +01:00
Otto
5ac89d7c0b fix(test): fix timing bug in test_block_credit_reset (#11978)
## Summary
Fixes the flaky `test_block_credit_reset` test that was failing on
multiple PRs with `assert 0 == 1000`.

## Root Cause
The test calls `disable_test_user_transactions()` which sets `updatedAt`
to 35 days ago from the **actual current time**. It then mocks
`time_now` to January 1st.

**The bug**: If the test runs in early February, 35 days ago is January
— the **same month** as the mocked `time_now`. The credit refill logic
only triggers when the balance snapshot is from a *different* month, so
no refill happens and the balance stays at 0.

## Fix
After calling `disable_test_user_transactions()`, explicitly set
`updatedAt` to December of the previous year. This ensures it's always
in a different month than the mocked `month1` (January), regardless of
when the test runs.

## Testing
CI will verify the fix.
2026-02-05 11:56:26 +01:00
Otto
4f908d5cb3 fix(platform): Improve Linear Search Block [SECRT-1880] (#11967)
## Summary

Implements [SECRT-1880](https://linear.app/autogpt/issue/SECRT-1880) -
Improve Linear Search Block

## Changes

### Models (`models.py`)
- Added `State` model with `id`, `name`, and `type` fields for workflow
state information
- Added `state: State | None` field to `Issue` model

### API Client (`_api.py`)
- Updated `try_search_issues()` to:
- Add `max_results` parameter (default 10, was ~50) to reduce token
usage
  - Add `team_id` parameter for team filtering
- Return `createdAt`, `state`, `project`, and `assignee` fields in
results
- Fixed `try_get_team_by_name()` to return descriptive error message
when team not found instead of crashing with `IndexError`

### Block (`issues.py`)
- Added `max_results` input parameter (1-100, default 10)
- Added `team_name` input parameter for optional team filtering
- Added `error` output field for graceful error handling
- Added categories (`PRODUCTIVITY`, `ISSUE_TRACKING`)
- Updated test fixtures to include new fields

## Breaking Changes

| Change | Before | After | Mitigation |
|--------|--------|-------|------------|
| Default result count | ~50 | 10 | Users can set `max_results` up to
100 if needed |

## Non-Breaking Changes

- `state` field added to `Issue` (optional, defaults to `None`)
- `max_results` param added (has default value)
- `team_name` param added (optional, defaults to `None`)
- `error` output added (follows established pattern from GitHub blocks)

## Testing

- [x] Format/lint checks pass
- [x] Unit test fixtures updated

Resolves SECRT-1880

---------

Co-authored-by: Toran Bruce Richards <toran.richards@gmail.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Toran Bruce Richards <Torantulino@users.noreply.github.com>
2026-02-04 22:54:46 +00:00
Reinier van der Leer
c1aa684743 fix(platform/chat): Filter host-scoped credentials for run_agent tool (#11905)
- Fixes [SECRT-1851: \[Copilot\] `run_agent` tool doesn't filter
host-scoped credentials](https://linear.app/autogpt/issue/SECRT-1851)
- Follow-up to #11881

### Changes 🏗️

- Filter host-scoped credentials for `run_agent` tool
- Tighten validation on host input field in `HostScopedCredentialsModal`
- Use netloc (w/ port) rather than just hostname (w/o port) as host
scope

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - Create graph that requires host-scoped credentials to work
  - Create host-scoped credentials with a *different* host
  - Try to have Copilot run the graph
  - [x] -> no matching credentials available
  - Create new credentials
  - [x] -> works

---------

Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2026-02-04 16:27:14 +00:00
Otto
7e5b84cc5c fix(copilot): update homepage copy to focus on problem discovery (#11956)
## Summary
Update the CoPilot homepage to shift from "what do you want to
automate?" to "tell me about your problems." This lowers the barrier to
engagement by letting users describe their work frustrations instead of
requiring them to identify automations themselves.

## Changes
| Element | Before | After |
|---------|--------|-------|
| Headline | "What do you want to automate?" | "Tell me about your work
— I'll find what to automate." |
| Placeholder | "You can search or just ask - e.g. 'create a blog post
outline'" | "What's your role and what eats up most of your day? e.g.
'I'm a real estate agent and I hate...'" |
| Button 1 | "Show me what I can automate" | "I don't know where to
start, just ask me stuff" |
| Button 2 | "Design a custom workflow" | "I do the same thing every
week and it's killing me" |
| Button 3 | "Help me with content creation" | "Help me find where I'm
wasting my time" |
| Container | max-w-2xl | max-w-3xl |

> **Note on container width:** The `max-w-2xl` → `max-w-3xl` change is
just to keep the longer headline on one line. This works but may not be
the ideal solution — @lluis-xai should advise on the proper approach.

## Why This Matters
The current UX assumes users know what they want to automate. In
reality, most users know what frustrates them but can't identify
automations. The current screen blocks Otto from starting the discovery
conversation that leads to useful recommendations.

## Files Changed
- `autogpt_platform/frontend/src/app/(platform)/copilot/page.tsx` —
headline, placeholder, container width
- `autogpt_platform/frontend/src/app/(platform)/copilot/helpers.ts` —
quick action button text

Resolves: [SECRT-1876](https://linear.app/autogpt/issue/SECRT-1876)

---------

Co-authored-by: Lluis Agusti <hi@llu.lu>
2026-02-04 17:38:58 +07:00
Swifty
09cb313211 fix(frontend): Prevent reflected XSS in OAuth callback route (#11963)
## Summary

Fixes a reflected cross-site scripting (XSS) vulnerability in the OAuth
callback route.

**Security Issue:**
https://github.com/Significant-Gravitas/AutoGPT/security/code-scanning/202

### Vulnerability

The OAuth callback route at
`frontend/src/app/(platform)/auth/integrations/oauth_callback/route.ts`
was writing user-controlled data directly into an HTML response without
proper sanitization. This allowed potential attackers to inject
malicious scripts via OAuth callback parameters.

### Fix

Added a `safeJsonStringify()` function that escapes characters that
could break out of the script context:
- `<` → `\u003c`
- `>` → `\u003e`  
- `&` → `\u0026`

This prevents any user-provided values from being interpreted as
HTML/script content when embedded in the response.

### References

- [OWASP XSS Prevention Cheat
Sheet](https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html)
- [CWE-79: Improper Neutralization of Input During Web Page
Generation](https://cwe.mitre.org/data/definitions/79.html)

## Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified the OAuth callback still functions correctly
- [x] Confirmed special characters in OAuth responses are properly
escaped
2026-02-04 10:53:17 +01:00
Krzysztof Czerwinski
c026485023 feat(frontend): Disable auto-opening wallet (#11961)
<!-- Clearly explain the need for these changes: -->

### Changes 🏗️

- Disable auto-opening Wallet for first time user and on credit increase
- Remove no longer needed `lastSeenCredits` state and storage

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Wallet doesn't open automatically
2026-02-04 06:11:41 +00:00
Nicholas Tindle
1eabc60484 Merge commit from fork
Fixes GHSA-rc89-6g7g-v5v7 / CVE-2026-22038

The logger.info() calls were explicitly logging API keys via
get_secret_value(), exposing credentials in plaintext logs.

Changes:
- Replace info-level credential logging with debug-level provider logging
- Remove all explicit secret value logging from observe/act/extract blocks

Co-authored-by: Otto <otto@agpt.co>
2026-02-03 11:16:57 -06:00
Swifty
f4bf492f24 feat(platform): Add Redis-based SSE reconnection for long-running CoPilot operations (#11877)
## Changes 🏗️

Adds Redis-based SSE reconnection support for long-running CoPilot
operations (like Agent Generator), enabling clients to reconnect and
resume receiving updates after disconnection.

### What this does:
- **Stream Registry** - Redis-backed task tracking with message
persistence via Redis Streams
- **SSE Reconnection** - Clients can reconnect to active tasks using
`task_id` and `last_message_id`
- **Duplicate Message Fix** - Filters out in-progress assistant messages
from session response when active stream exists
- **Completion Consumer** - Handles background task completion
notifications via Redis Streams

### Architecture:
```
1. User sends message → Backend creates task in Redis
2. SSE chunks written to Redis Stream for persistence
3. Client receives chunks via SSE subscription
4. If client disconnects → Task continues in background
5. Client reconnects → GET /sessions/{id} returns active_stream info
6. Client subscribes to /tasks/{task_id}/stream with last_message_id
7. Missed messages replayed from Redis Stream
```

### Key endpoints:
- `GET /sessions/{session_id}` - Returns `active_stream` info if task is
running
- `GET /tasks/{task_id}/stream?last_message_id=X` - SSE endpoint for
reconnection
- `GET /tasks/{task_id}` - Get task status
- `POST /operations/{op_id}/complete` - Webhook for external service
completion

### Duplicate message fix:
When `GET /sessions/{id}` detects an active stream:
1. Filters out the in-progress assistant message from response
2. Returns `last_message_id="0-0"` so client replays stream from
beginning
3. Client receives complete response only through SSE (single source of
truth)

### Frontend changes:
- Task persistence in localStorage for cross-tab reconnection
- Stream event dispatcher handles reconnection flow
- Deduplication logic prevents duplicate messages

### Testing:
- Manual testing of reconnection scenarios
- Verified duplicate message fix works correctly

## Related
- Resolves SSE timeout issues for Agent Generator
- Fixes duplicate message bug on reconnection
2026-02-03 16:52:06 +01:00
Zamil Majdy
81e48c00a4 feat(copilot): add customize_agent tool for marketplace templates (#11943)
## Summary

Adds a new copilot tool that allows users to customize
marketplace/template agents using natural language before adding them to
their library.

This exposes the Agent Generator's `/api/template-modification` endpoint
to the copilot, which was previously not available.

## Changes

- **service.py**: Add `customize_template_external` to call Agent
Generator's template modification endpoint
- **core.py**: 
  - Add `customize_template` wrapper function
- Extract `graph_to_json` as a reusable function (was previously inline
in `get_agent_as_json`)
- **customize_agent.py**: New tool that:
  - Takes marketplace agent ID (format: `creator/slug`)
  - Fetches template from store via `store_db.get_agent()`
  - Calls Agent Generator for customization
  - Handles clarifying questions from the generator
  - Saves customized agent to user's library
- **__init__.py**: Register the tool in `TOOL_REGISTRY` for
auto-discovery

## Usage Flow

1. User searches marketplace: *"Find me a newsletter agent"*
2. Copilot calls `find_agent` → returns `autogpt/newsletter-writer`
3. User: *"Customize that agent to post to Discord instead of email"*
4. Copilot calls:
   ```
   customize_agent(
       agent_id="autogpt/newsletter-writer",
       modifications="Post to Discord instead of sending email"
   )
   ```
5. Agent Generator may ask clarifying questions (e.g., "What Discord
channel?")
6. Customized agent is saved to user's library

## Test plan

- [x] Verified tool imports correctly
- [x] Verified tool is registered in `TOOL_REGISTRY`
- [x] Verified OpenAI function schema is valid
- [x] Ran existing tests (`pytest backend/api/features/chat/tools/`) -
all pass
- [x] Type checker (`pyright`) passes with 0 errors
- [ ] Manual testing with copilot (requires Agent Generator service)
2026-02-03 14:59:25 +00:00
Otto
7dc53071e8 fix(backend): Add retry and error handling to block initialization (#11946)
## Summary
Adds retry logic and graceful error handling to `initialize_blocks()` to
prevent transient DB errors from crashing server startup.

## Problem
When a transient database error occurs during block initialization
(e.g., Prisma P1017 "Server has closed the connection"), the entire
server fails to start. This is overly aggressive since:
1. Blocks are already registered in memory
2. The DB sync is primarily for tracking/schema storage
3. One flaky connection shouldn't prevent the server from starting

**Triggered by:** [Sentry
AUTOGPT-SERVER-7PW](https://significant-gravitas.sentry.io/issues/7238733543/)

## Solution
- Add retry decorator (3 attempts with exponential backoff) for DB
operations
- On failure after retries, log a warning and continue to the next block
- Blocks remain available in memory even if DB sync fails
- Log summary of any failed blocks at the end

## Changes
- `autogpt_platform/backend/backend/data/block.py`: Wrap block DB sync
in retry logic with graceful fallback

## Testing
- Existing block initialization behavior unchanged on success
- On transient DB errors: retries up to 3 times, then continues with
warning
2026-02-03 12:43:30 +00:00
Zamil Majdy
4878665c66 Merge branch 'master' into dev 2026-02-03 16:01:23 +04:00
Zamil Majdy
678ddde751 refactor(backend): unify context compression into compress_context() (#11937)
## Background

This PR consolidates and unifies context window management for the
CoPilot backend.

### Problem
The CoPilot backend had **two separate implementations** of context
window management:

1. **`service.py` → `_manage_context_window()`** - Chat service
streaming/continuation
2. **`prompt.py` → `compress_prompt()`** - Sync LLM blocks

This duplication led to inconsistent behavior, maintenance burden, and
duplicate code.

---

## Solution: Unified `compress_context()`

A single async function that handles both use cases:

| Caller | Usage | Behavior |
|--------|-------|----------|
| **Chat service** | `compress_context(msgs, client=openai_client)` |
Summarization → Truncation |
| **LLM blocks** | `compress_context(msgs, client=None)` | Truncation
only (no API call) |

---

## Strategy Order

| Step | Description | Runs When |
|------|-------------|-----------|
| **1. LLM Summarization** | Summarize old messages into single context
message, keep recent 15 | Only if `client` provided |
| **2. Content Truncation** | Progressively truncate message content
(8192→4096→...→128 tokens) | If still over limit |
| **3. Middle-out Deletion** | Delete messages one at a time from center
outward | If still over limit |
| **4. First/Last Trim** | Truncate system prompt and last message
content | Last resort |

### Why This Order?

1. **Summarization first** (if available) - Preserves semantic meaning
of old messages
2. **Content truncation before deletion** - Keeps all conversation
turns, just shorter
3. **Middle-out deletion** - More granular than dropping all old
messages at once
4. **First/last trim** - Only touch system prompt as last resort

---

## Key Fixes

| Issue | Before | After |
|-------|--------|-------|
| **Socket leak** | `AsyncOpenAI` client never closed | `async with`
context manager |
| **Timeout ignored** | `timeout=30` passed to `create()` (invalid) |
`client.with_options(timeout=30)` |
| **OpenAI tool messages** | Not truncated | Properly truncated |
| **Tool pair integrity** | OpenAI format only | Both OpenAI + Anthropic
formats |

---

## Tool Format Support

`_ensure_tool_pairs_intact()` now supports both formats:

### OpenAI Format
```python
# Assistant with tool_calls
{"role": "assistant", "tool_calls": [{"id": "call_1", ...}]}
# Tool response
{"role": "tool", "tool_call_id": "call_1", "content": "result"}
```

### Anthropic Format
```python
# Assistant with tool_use
{"role": "assistant", "content": [{"type": "tool_use", "id": "toolu_1", ...}]}
# Tool result
{"role": "user", "content": [{"type": "tool_result", "tool_use_id": "toolu_1", ...}]}
```

---

## Files Changed

| File | Change |
|------|--------|
| `backend/util/prompt.py` | +450 lines: Add `CompressResult`,
`compress_context()`, helpers |
| `backend/api/features/chat/service.py` | -380 lines: Remove duplicate,
use thin wrapper |
| `backend/blocks/llm.py` | Migrate `llm_call()` to use
`compress_context(client=None)` |
| `backend/util/prompt_test.py` | +400 lines: Comprehensive tests
(OpenAI + Anthropic) |

### Removed
- `compress_prompt()` - Replaced by `compress_context(client=None)`
- `_manage_context_window()` - Replaced by
`compress_context(client=openai_client)`

---

## API

```python
async def compress_context(
    messages: list[dict],
    target_tokens: int = 120_000,
    *,
    model: str = "gpt-4o",
    client: AsyncOpenAI | None = None,  # None = truncation only
    keep_recent: int = 15,
    reserve: int = 2_048,
    start_cap: int = 8_192,
    floor_cap: int = 128,
) -> CompressResult:
    ...

@dataclass
class CompressResult:
    messages: list[dict]
    token_count: int
    was_compacted: bool
    error: str | None = None
    original_token_count: int = 0
    messages_summarized: int = 0
    messages_dropped: int = 0
```

---

## Tests Added

| Test Class | Coverage |
|------------|----------|
| `TestMsgTokens` | Token counting for regular messages, OpenAI tool
calls, Anthropic tool_use |
| `TestTruncateToolMessageContent` | OpenAI + Anthropic tool message
truncation |
| `TestEnsureToolPairsIntact` | OpenAI format (3 tests), Anthropic
format (3 tests), edge cases (3 tests) |
| `TestCompressContext` | No compression, truncation-only, tool pair
preservation, error handling |

---

## Checklist

- [x] Code follows project conventions
- [x] Linting passes (`poetry run format`)
- [x] Type checking passes (`pyright`)
- [x] Tests added for all new functions
- [x] Both OpenAI and Anthropic tool formats supported
- [x] Backward compatible behavior preserved
- [x] All review comments addressed
2026-02-03 10:36:10 +00:00
Otto
aef6f57cfd fix(scheduler): route db calls through DatabaseManager (#11941)
## Summary

Routes `increment_onboarding_runs` and `cleanup_expired_oauth_tokens`
through the DatabaseManager RPC client instead of calling Prisma
directly.

## Problem

The Scheduler service never connects its Prisma client. While
`add_graph_execution()` in `utils.py` has a fallback that routes through
DatabaseManager when Prisma isn't connected, subsequent calls in the
scheduler were hitting Prisma directly:

- `increment_onboarding_runs()` after successful graph execution
- `cleanup_expired_oauth_tokens()` in the scheduled job

These threw `ClientNotConnectedError`, caught by generic exception
handlers but spamming Sentry (~696K events since December per the
original analysis in #11926).

## Solution

Follow the same pattern as `utils.py`:
1. Add `cleanup_expired_oauth_tokens` to `DatabaseManager` and
`DatabaseManagerAsyncClient`
2. Update scheduler to use `get_database_manager_async_client()` for
both calls

## Changes

- **database.py**: Import and expose `cleanup_expired_oauth_tokens` in
both manager classes
- **scheduler.py**: Use `db.increment_onboarding_runs()` and
`db.cleanup_expired_oauth_tokens()` via the async client

## Impact

- Eliminates Sentry error spam from scheduler
- Onboarding run counters now actually increment for scheduled
executions
- OAuth token cleanup now actually runs

## Testing

Deploy to staging with scheduled graphs and verify:
1. No more `ClientNotConnectedError` in scheduler logs
2. `UserOnboarding.agentRuns` increments on scheduled runs
3. Expired OAuth tokens get cleaned up

Refs: #11926 (original fix that was closed)
2026-02-03 09:54:49 +00:00
Krzysztof Czerwinski
14cee1670a fix(backend): Prevent leaking Redis connections in ws_api (#11869)
Fixing
https://github.com/Significant-Gravitas/AutoGPT/pull/11297#discussion_r2496833421

### Changes 🏗️

1. event_bus.py - Added close method to AsyncRedisEventBus
- Added __init__ method to track the _pubsub instance attribute
- Added async def close() method that closes the PubSub connection
safely
- Modified listen_events() to store the pubsub reference in self._pubsub

2. ws_api.py - Added cleanup in event_broadcaster
- Wrapped the worker coroutines in try/finally block
- The finally block calls close() on both event buses to ensure cleanup
happens on any exit (including exceptions before retry)
2026-02-03 08:07:48 +00:00
Zamil Majdy
d81d1ce024 refactor(backend): extract context window management and fix LLM continuation (#11936)
## Summary

Fixes CoPilot becoming unresponsive after long-running tools complete,
and refactors context window management into a reusable function.

## Problem

After `create_agent` completes, `_generate_llm_continuation()` was
sending ALL messages to OpenRouter without any context compaction. When
conversations exceeded ~50 messages, OpenRouter rejected requests with
`provider_name: 'unknown'` (no provider would accept).

**Evidence:** Langfuse session
[44fbb803-092e-4ebd-b288-852959f4faf5](https://cloud.langfuse.com/project/cmk5qhf210003ad079sd8utjt/sessions/44fbb803-092e-4ebd-b288-852959f4faf5)
showed:
- Successful calls: 32-50 messages, known providers
- Failed calls: 52+ messages, `provider: unknown`, `completion: null`

## Changes

### Refactor: Extract reusable `_manage_context_window()`
- Counts tokens and checks against 120k threshold
- Summarizes old messages while keeping recent 15
- Ensures tool_call/tool_response pairs stay intact
- Progressive truncation if still over limit
- Returns `ContextWindowResult` dataclass with messages, token count,
compaction status, and errors
- Helper `_messages_to_dicts()` reduces code duplication

### Fix: Update `_generate_llm_continuation()`
- Now calls `_manage_context_window()` before making LLM calls
- Adds retry logic with exponential backoff (matching
`_stream_chat_chunks` behavior)

### Cleanup: Update `_stream_chat_chunks()`
- Replaced inline context management with call to
`_manage_context_window()`
- Eliminates code duplication between the two functions

## Testing

- Syntax check: 
- Ruff lint: 
- Import verification: 

## Checklist

- [x] My code follows the style guidelines of this project
- [x] I have performed a self-review of my own code
- [x] My changes generate no new warnings
- [x] I have checked that my changes do not break existing functionality

---------

Co-authored-by: Otto <otto@agpt.co>
2026-02-03 04:41:43 +00:00
Zamil Majdy
2dd341c369 refactor: enrich description with context before calling Agent Generator (#11932)
## Summary
Updates the Agent Generator client to enrich the description with
context before calling, instead of sending `user_instruction` as a
separate parameter.

## Context
Companion PR to Significant-Gravitas/AutoGPT-Agent-Generator#105 which
removes unused parameters from the decompose API.

## Changes
- Enrich `description` with `context` (e.g., clarifying question
answers) before sending
- Remove `user_instruction` from request payload

## How it works
Both input boxes and chat box work the same way - the frontend
constructs a formatted message with answers and sends it as a user
message. The backend then enriches the description with this context
before calling the external Agent Generator service.
2026-02-03 02:31:07 +00:00
Otto
f7350c797a fix(copilot): use messages_dict in fallback context compaction (#11922)
## Summary

Fixes a bug where the fallback path in context compaction passes
`recent_messages` (already sliced) instead of `messages_dict` (full
conversation) to `_ensure_tool_pairs_intact`.

This caused the function to fail to find assistant messages that exist
in the original conversation but were outside the sliced window,
resulting in orphan tool_results being sent to Anthropic and rejected
with:

```
messages.66.content.0: unexpected tool_use_id found in tool_result blocks: toolu_vrtx_019bi1PDvEn7o5ByAxcS3VdA
```

## Changes

- Pass `messages_dict` and `slice_start` (relative to full conversation)
instead of `recent_messages` and `reduced_slice_start` (relative to
already-sliced list)

## Testing

This is a targeted fix for the fallback path. The bug only manifests
when:
1. Token count > 120k (triggers compaction)
2. Initial compaction + summary still exceeds limit (triggers fallback)
3. A tool_result's corresponding assistant is in `messages_dict` but not
in `recent_messages`

## Related

- Fixes SECRT-1861
- Related: SECRT-1839 (original fix that missed this code path)
2026-02-02 13:01:05 +00:00
Guofang.Tang
1081590384 feat(backend): cover webhook ingress URL route (#11747)
### Changes 🏗️

- Add a unit test to verify webhook ingress URL generation matches the
FastAPI route.

  ### Checklist 📋

  #### For code changes:

  - [x] I have clearly listed my changes in the PR description
  - [x] I have made a test plan
  - [x] I have tested my changes according to the test plan:
- [x] poetry run pytest backend/integrations/webhooks/utils_test.py
--confcutdir=backend/integrations/webhooks

  #### For configuration changes:

  - [x] .env.default is updated or already compatible with my changes
- [x] docker-compose.yml is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under Changes)



<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Tests**
* Added a unit test that validates webhook ingress URL generation
matches the application's resolved route (scheme, host, and path) for
provider-specific webhook endpoints, improving confidence in routing
behavior and helping prevent regressions.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2026-02-01 20:29:15 +00:00
Otto
7e37de8e30 fix: Include graph schemas for marketplace agents in Agent Generator (#11920)
## Problem

When marketplace agents are included in the `library_agents` payload
sent to the Agent Generator service, they were missing required fields
(`graph_id`, `graph_version`, `input_schema`, `output_schema`). This
caused Pydantic validation to fail with HTTP 422 Unprocessable Entity.

**Root cause:** The `MarketplaceAgentSummary` TypedDict had a different
shape than `LibraryAgentInfo` expected by the Agent Generator:
- Agent Generator expects: `graph_id`, `graph_version`, `name`,
`description`, `input_schema`, `output_schema`
- MarketplaceAgentSummary had: `name`, `description`, `sub_heading`,
`creator`, `is_marketplace_agent`

## Solution

1. **Add `agent_graph_id` to `StoreAgent` model** - The field was
already in the database view but not exposed
2. **Include `agentGraphId` in hybrid search SQL query** - Carry the
field through the search CTEs
3. **Update `search_marketplace_agents_for_generation()`** - Now fetches
full graph schemas using `get_graph()` and returns `LibraryAgentSummary`
(same type as library agents)
4. **Update deduplication logic** - Use `graph_id` instead of name for
more accurate deduplication

## Changes

- `backend/api/features/store/model.py`: Add optional `agent_graph_id`
field to `StoreAgent`
- `backend/api/features/store/hybrid_search.py`: Include `agentGraphId`
in SQL query columns
- `backend/api/features/store/db.py`: Map `agentGraphId` when creating
`StoreAgent` objects
- `backend/api/features/chat/tools/agent_generator/core.py`: Update
`search_marketplace_agents_for_generation()` to fetch and include full
graph schemas

## Testing

- [ ] Agent creation on dev with marketplace agents in context
- [ ] Verify no 422 errors from Agent Generator
- [ ] Verify marketplace agents can be used as sub-agents

Fixes: SECRT-1817

---------

Co-authored-by: majdyz <majdyz@users.noreply.github.com>
Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
2026-01-31 19:17:36 +00:00
Otto
7ee94d986c docs: add credentials prerequisites to create-basic-agent guide (#11913)
## Summary
Addresses #11785 - users were encountering `openai_api_key_credentials`
errors when following the create-basic-agent guide because it didn't
mention the need to configure API credentials before using AI blocks.

## Changes
Added a **Prerequisites** section to
`docs/platform/create-basic-agent.md` explaining:
- **Cloud users:** Go to Profile → Integrations to add API keys
- **Self-hosted (Docker):** Add keys to `autogpt_platform/backend/.env`
and restart services

Also added a note that the Calculator example doesn't need credentials,
making it a good first test.

## Related
- Issue: #11785
2026-01-31 03:05:31 +00:00
Zamil Majdy
18a1661fa3 feat: add library agent fetching with two-phase search for sub-agent support (#11889)
## Context

When users ask the chat to create agents, they may want to compose
workflows that reuse their existing agents as sub-agents. For this to
work, the Agent Generator service needs to know what agents the user has
available.

**Challenge:** Users can have large libraries with many agents. Fetching
all of them would be slow and provide too much context to the LLM.

## Solution

This PR implements **search-based library agent fetching** with a
**two-phase search** strategy:

1. **Phase 1 (Initial Search):** When the user describes their goal, we
search for relevant library agents using the goal as the search query
2. **Phase 2 (Step-Based Enrichment):** After the goal is decomposed
into steps, we extract keywords from those steps and search for
additional relevant agents

This ensures we find agents that are relevant to both the high-level
goal AND the specific steps identified.

### Example Flow

```
User goal: "Create an agent that fetches weather and sends a summary email"

Phase 1: Search for "weather email summary" → finds "Weather Fetcher" agent
Phase 2: After decomposition identifies steps like "send email notification"
         → searches "send email notification" → finds "Gmail Sender" agent
```

### Changes

**Library Agent Fetching:**
- `get_library_agents_for_generation()` - Search-based fetching from
user's library
- `search_marketplace_agents_for_generation()` - Search public
marketplace
- `get_all_relevant_agents_for_generation()` - Combines both with
deduplication

**Two-Phase Search:**
- `extract_search_terms_from_steps()` - Extracts keywords from
decomposed steps
- `enrich_library_agents_from_steps()` - Searches for additional agents
based on steps
- Integrated into `create_agent.py` as "Step 1.5" after goal
decomposition

**Type Safety:**
- Added `TypedDict` definitions: `LibraryAgentSummary`,
`MarketplaceAgentSummary`, `DecompositionStep`, `DecompositionResult`

### Design Decisions

- **Search-based, not fetch-all:** Scalable for large libraries
- **Library agents prioritized:** They have full schemas; marketplace
agents have basic info only
- **Deduplication by name and graph_id:** Prevents duplicates across
searches
- **Graceful degradation:** Failures don't block agent generation
- **Limited to 3 search terms:** Avoids excessive API calls during
enrichment

## Related PR
- Agent Generator:
https://github.com/Significant-Gravitas/AutoGPT-Agent-Generator/pull/103

## Test plan
- [x] `test_library_agents.py` - 19 tests covering all new functions
- [x] `test_service.py` - 4 tests for library_agents passthrough
- [ ] Integration test: Create agent with library sub-agent composition
2026-01-31 00:18:21 +00:00
Otto
b72521daa9 fix(readme): update broken self-hosting docs link (#11911)
## Summary
The self-hosting guide link in README.md was broken.

**Old link:** `https://docs.agpt.co/platform/getting-started/`
- Redirects to `https://agpt.co/docs/platform/getting-started`
- Returns HTTP 400 

**New link:**
`https://agpt.co/docs/platform/getting-started/getting-started`
- Works correctly 

## Changes
- Updated the self-hosting guide URL in README.md

Fixes #OPEN-2973
2026-01-30 22:59:45 +00:00
Reinier van der Leer
350ad3591b fix(backend/chat): Filter credentials for graph execution by scopes (#11881)
[SECRT-1842: run_agent tool does not correctly use credentials - agents
fail with insufficient auth
scopes](https://linear.app/autogpt/issue/SECRT-1842)

### Changes 🏗️

- Include scopes in credentials filter in
`backend.api.features.chat.tools.utils.match_user_credentials_to_graph`

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - CI must pass
- It's broken now and a simple change so we'll test in the dev
deployment
2026-01-30 11:01:51 +00:00
Bently
de0ec3d388 chore(llm): remove deprecated Claude 3.7 Sonnet model with migration and defensive handling (#11841)
## Summary
Remove `claude-3-7-sonnet-20250219` from LLM model definitions ahead of
Anthropic's API retirement, with comprehensive migration and defensive
error handling.

## Background
Anthropic is retiring Claude 3.7 Sonnet (`claude-3-7-sonnet-20250219`)
on **February 19, 2026 at 9:00 AM PT**. This PR removes the model from
the platform and migrates existing users to prevent service
interruptions.

## Changes

### Code Changes
- Remove `CLAUDE_3_7_SONNET` enum member from `LlmModel` in `llm.py`
- Remove corresponding `ModelMetadata` entry
- Remove `CLAUDE_3_7_SONNET` from `StagehandRecommendedLlmModel` enum
- Remove `CLAUDE_3_7_SONNET` from block cost config
- Add `CLAUDE_4_5_SONNET` to `StagehandRecommendedLlmModel` enum
- Update Stagehand block defaults from `CLAUDE_3_7_SONNET` to
`CLAUDE_4_5_SONNET` (staying in Claude family)
- Add defensive error handling in `CredentialsFieldInfo.discriminate()`
for deprecated model values

### Database Migration
- Adds migration `20260126120000_migrate_claude_3_7_to_4_5_sonnet`
- Migrates `AgentNode.constantInput` model references
- Migrates `AgentNodeExecutionInputOutput.data` preset overrides

### Documentation
- Updated `docs/integrations/block-integrations/llm.md` to remove
deprecated model
- Updated `docs/integrations/block-integrations/stagehand/blocks.md` to
remove deprecated model and add Claude 4.5 Sonnet

## Notes
- Agent JSON files in `autogpt_platform/backend/agents/` still reference
this model in their provider mappings. These are auto-generated and
should be regenerated separately.

## Testing
- [ ] Verify LLM block still functions with remaining models
- [ ] Confirm no import errors in affected files
- [ ] Verify migration runs successfully
- [ ] Verify deprecated model gives helpful error message instead of
KeyError
2026-01-30 08:40:55 +00:00
Otto
7cb1e588b0 fix(frontend): Refocus ChatInput after voice transcription completes (#11893)
## Summary
Refocuses the chat input textarea after voice transcription finishes,
allowing users to immediately use `spacebar+enter` to record and send
their prompt.

## Changes
- Added `inputId` parameter to `useVoiceRecording` hook
- After transcription completes, the input is automatically focused
- This improves the voice input UX flow

## Testing
1. Click mic button or press spacebar to record voice
2. Record a message and stop
3. After transcription completes, the input should be focused
4. User can now press Enter to send or spacebar to record again

---------

Co-authored-by: Lluis Agusti <hi@llu.lu>
2026-01-30 14:49:05 +07:00
Otto
582c6cad36 fix(e2e): Make E2E test data deterministic and fix flaky tests (#11890)
## Summary
Fixes flaky E2E marketplace and library tests that were causing PRs to
be removed from the merge queue.

## Root Cause
1. **Test data was probabilistic** - `e2e_test_data.py` used random
chances (40% approve, then 20-50% feature), which could result in 0
featured agents
2. **Library pagination threshold wrong** - Checked `>= 10`, but page
size is 20
3. **Fixed timeouts** - Used `waitForTimeout(2000)` /
`waitForTimeout(10000)` instead of proper waits

## Changes

### Backend (`e2e_test_data.py`)
- Add guaranteed minimums: 8 featured agents, 5 featured creators, 10
top agents
- First N submissions are deterministically approved and featured
- Increase agents per user from 15 → 25 (for pagination with
page_size=20)
- Fix library agent creation to use constants instead of hardcoded `10`

### Frontend Tests
- `library.spec.ts`: Fix pagination threshold to `PAGE_SIZE` (20)
- `library.page.ts`: Replace 2s timeout with `networkidle` +
`waitForFunction`
- `marketplace.page.ts`: Add `networkidle` wait, 30s waits in
`getFirst*` methods
- `marketplace.spec.ts`: Replace 10s timeout with `waitForFunction`
- `marketplace-creator.spec.ts`: Add `networkidle` + element waits

## Related
- Closes SECRT-1848, SECRT-1849
- Should unblock #11841 and other PRs in merge queue

---------

Co-authored-by: Ubbe <hi@ubbe.dev>
2026-01-30 05:12:35 +00:00
Nicholas Tindle
3b822cdaf7 chore(branchlet): Remove docs pip install from postCreateCmd (#11883)
### Changes 🏗️

- Removed `cd docs && pip install -r requirements.txt` from
`postCreateCmd` in `.branchlet.json`
- Docs dependencies will no longer be auto-installed during branchlet
worktree creation

### Rationale

The docs setup step was adding unnecessary overhead to the worktree
creation process. Developers who need to work on documentation can
manually install the docs requirements when needed.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified branchlet worktree creation still works without the docs
pip install step

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)
2026-01-30 00:31:34 +00:00
Zamil Majdy
b2eb4831bd feat(chat): improve agent generator error propagation (#11884)
## Summary
- Add helper functions in `service.py` to create standardized error
responses with `error_type` classification
- Update service functions to return error dicts instead of `None`,
preserving error details from the Agent Generator microservice
- Update `core.py` to pass through error responses properly
- Update `create_agent.py` to handle error responses with user-friendly
messages based on error type

## Error Types Now Propagated
| Error Type | Description | User Message |
|------------|-------------|--------------|
| `llm_parse_error` | LLM returned unparseable response | "The AI had
trouble understanding this request" |
| `llm_timeout` / `timeout` | Request timed out | "The request took too
long" |
| `llm_rate_limit` / `rate_limit` | Rate limited | "The service is
currently busy" |
| `validation_error` | Agent validation failed | "The generated agent
failed validation" |
| `connection_error` | Could not connect to Agent Generator | Generic
error message |
| `http_error` | HTTP error from Agent Generator | Generic error message
|
| `unknown` | Unclassified error | Generic error message |

## Motivation
This enables better debugging for issues like SECRT-1817 where
decomposition failed due to transient LLM errors but the root cause was
unclear in the logs. Now:
1. Error details from the Agent Generator microservice are preserved
2. Users get more helpful error messages based on error type
3. Debugging is easier with `error_type` in response details

## Related PR
- Agent Generator side:
https://github.com/Significant-Gravitas/AutoGPT-Agent-Generator/pull/102

## Test Plan
- [ ] Test decomposition with various error scenarios (timeout, parse
error)
- [ ] Verify user-friendly messages are shown based on error type
- [ ] Check that error details are logged properly
2026-01-29 19:53:40 +00:00
Reinier van der Leer
4cd5da678d refactor(claude): Split autogpt_platform/CLAUDE.md into project-specific files (#11788)
Split `autogpt_platform/CLAUDE.md` into project-specific files, to make
the scope of the instructions clearer.

Also, some minor improvements:

- Change references to other Markdown files to @file/path.md syntax that
Claude recognizes
- Update ambiguous/incorrect/outdated instructions
- Remove trailing slashes
- Fix broken file path references in other docs (including comments)
2026-01-29 17:33:02 +00:00
Ubbe
b94c83aacc feat(frontend): Copilot speech to text via Whisper model (#11871)
## Changes 🏗️


https://github.com/user-attachments/assets/d9c12ac0-625c-4b38-8834-e494b5eda9c0

Add a "speech to text" feature in the Chat input fox of Copilot, similar
as what you have in ChatGPT.

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Run locally and try the speech to text feature as part of the chat
input box

### For configuration changes:

We need to add `OPENAI_API_KEY=` to Vercel ( used in the Front-end )
both in Dev and Prod.

- [x] `.env.default` is updated or already compatible with my changes

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-29 17:46:36 +07:00
Nicholas Tindle
7668c17d9c feat(platform): add User Workspace for persistent CoPilot file storage (#11867)
Implements persistent User Workspace storage for CoPilot, enabling
blocks to save and retrieve files across sessions. Files are stored in
session-scoped virtual paths (`/sessions/{session_id}/`).

Fixes SECRT-1833

### Changes 🏗️

**Database & Storage:**
- Add `UserWorkspace` and `UserWorkspaceFile` Prisma models
- Implement `WorkspaceStorageBackend` abstraction (GCS for cloud, local
filesystem for self-hosted)
- Add `workspace_id` and `session_id` fields to `ExecutionContext`

**Backend API:**
- Add REST endpoints: `GET/POST /api/workspace/files`, `GET/DELETE
/api/workspace/files/{id}`, `GET /api/workspace/files/{id}/download`
- Add CoPilot tools: `list_workspace_files`, `read_workspace_file`,
`write_workspace_file`
- Integrate workspace storage into `store_media_file()` - returns
`workspace://file-id` references

**Block Updates:**
- Refactor all file-handling blocks to use unified `ExecutionContext`
parameter
- Update media-generating blocks to persist outputs to workspace
(AIImageGenerator, AIImageCustomizer, FluxKontext, TalkingHead, FAL
video, Bannerbear, etc.)

**Frontend:**
- Render `workspace://` image references in chat via proxy endpoint
- Add "AI cannot see this image" overlay indicator

**CoPilot Context Mapping:**
- Session = Agent (graph_id) = Run (graph_exec_id)
- Files scoped to `/sessions/{session_id}/`

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [ ] I have tested my changes according to the test plan:
- [ ] Create CoPilot session, generate image with AIImageGeneratorBlock
  - [ ] Verify image returns `workspace://file-id` (not base64)
  - [ ] Verify image renders in chat with visibility indicator
  - [ ] Verify workspace files persist across sessions
  - [ ] Test list/read/write workspace files via CoPilot tools
  - [ ] Test local storage backend for self-hosted deployments

#### For configuration changes:
- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

🤖 Generated with [Claude Code](https://claude.ai/code)

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> **Medium Risk**
> Introduces a new persistent file-storage surface area (DB tables,
storage backends, download API, and chat tools) and rewires
`store_media_file()`/block execution context across many blocks, so
regressions could impact file handling, access control, or storage
costs.
> 
> **Overview**
> Adds a **persistent per-user Workspace** (new
`UserWorkspace`/`UserWorkspaceFile` models plus `WorkspaceManager` +
`WorkspaceStorageBackend` with GCS/local implementations) and wires it
into the API via a new `/api/workspace/files/{file_id}/download` route
(including header-sanitized `Content-Disposition`) and shutdown
lifecycle hooks.
> 
> Extends `ExecutionContext` to carry execution identity +
`workspace_id`/`session_id`, updates executor tooling to clone
node-specific contexts, and updates `run_block` (CoPilot) to create a
session-scoped workspace and synthetic graph/run/node IDs.
> 
> Refactors `store_media_file()` to require `execution_context` +
`return_format` and to support `workspace://` references; migrates many
media/file-handling blocks and related tests to the new API and to
persist generated media as `workspace://...` (or fall back to data URIs
outside CoPilot), and adds CoPilot chat tools for
listing/reading/writing/deleting workspace files with safeguards against
context bloat.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
6abc70f793. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2026-01-29 05:49:47 +00:00
210 changed files with 17407 additions and 2600 deletions

View File

@@ -29,8 +29,7 @@
"postCreateCmd": [
"cd autogpt_platform/autogpt_libs && poetry install",
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
"cd autogpt_platform/frontend && pnpm install",
"cd docs && pip install -r requirements.txt"
"cd autogpt_platform/frontend && pnpm install"
],
"terminalCommand": "code .",
"deleteBranchWithWorktree": false

View File

@@ -160,7 +160,7 @@ pnpm storybook # Start component development server
**Backend Entry Points:**
- `backend/backend/server/server.py` - FastAPI application setup
- `backend/backend/api/rest_api.py` - FastAPI application setup
- `backend/backend/data/` - Database models and user management
- `backend/blocks/` - Agent execution blocks and logic
@@ -219,7 +219,7 @@ Agents are built using a visual block-based system where each block performs a s
### API Development
1. Update routes in `/backend/backend/server/routers/`
1. Update routes in `/backend/backend/api/features/`
2. Add/update Pydantic models in same directory
3. Write tests alongside route files
4. For `data/*.py` changes, validate user ID checks
@@ -285,7 +285,7 @@ Agents are built using a visual block-based system where each block performs a s
### Security Guidelines
**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`):
**Cache Protection Middleware** (`/backend/backend/api/middleware/security.py`):
- Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses allow list approach for cacheable paths (static assets, health checks, public pages)

1
.gitignore vendored
View File

@@ -178,5 +178,6 @@ autogpt_platform/backend/settings.py
*.ign.*
.test-contents
.claude/settings.local.json
CLAUDE.local.md
/autogpt_platform/backend/logs
.next

View File

@@ -16,7 +16,6 @@ See `docs/content/platform/getting-started.md` for setup instructions.
- Format Python code with `poetry run format`.
- Format frontend code using `pnpm format`.
## Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
@@ -33,14 +32,17 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Do not use `useCallback` or `useMemo` unless strictly needed
- Avoid comments at all times unless the code is very complex
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
- Do not type hook returns, let Typescript infer as much as possible
- Never type with `any`, if not types available use `unknown`
## Testing
@@ -49,22 +51,8 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
Always run the relevant linters and tests before committing.
Use conventional commit messages for all commits (e.g. `feat(backend): add API`).
Types:
- feat
- fix
- refactor
- ci
- dx (developer experience)
Scopes:
- platform
- platform/library
- platform/marketplace
- backend
- backend/executor
- frontend
- frontend/library
- frontend/marketplace
- blocks
Types: - feat - fix - refactor - ci - dx (developer experience)
Scopes: - platform - platform/library - platform/marketplace - backend - backend/executor - frontend - frontend/library - frontend/marketplace - blocks
## Pull requests

View File

@@ -54,7 +54,7 @@ Before proceeding with the installation, ensure your system meets the following
### Updated Setup Instructions:
We've moved to a fully maintained and regularly updated documentation site.
👉 [Follow the official self-hosting guide here](https://docs.agpt.co/platform/getting-started/)
👉 [Follow the official self-hosting guide here](https://agpt.co/docs/platform/getting-started/getting-started)
This tutorial assumes you have Docker, VSCode, git and npm installed.

View File

@@ -6,152 +6,30 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
AutoGPT Platform is a monorepo containing:
- **Backend** (`/backend`): Python FastAPI server with async support
- **Frontend** (`/frontend`): Next.js React application
- **Shared Libraries** (`/autogpt_libs`): Common Python utilities
- **Backend** (`backend`): Python FastAPI server with async support
- **Frontend** (`frontend`): Next.js React application
- **Shared Libraries** (`autogpt_libs`): Common Python utilities
## Essential Commands
## Component Documentation
### Backend Development
- **Backend**: See @backend/CLAUDE.md for backend-specific commands, architecture, and development tasks
- **Frontend**: See @frontend/CLAUDE.md for frontend-specific commands, architecture, and development patterns
```bash
# Install dependencies
cd backend && poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend server
poetry run serve
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in TESTING.md
#### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
### Frontend Development
```bash
# Install dependencies
cd frontend && pnpm i
# Generate API client from OpenAPI spec
pnpm generate:api
# Start development server
pnpm dev
# Run E2E tests
pnpm test
# Run Storybook for component development
pnpm storybook
# Build production
pnpm build
# Format and lint
pnpm format
# Type checking
pnpm types
```
**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns.
**Key Frontend Conventions:**
- Separate render logic from data/behavior in components
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Use function declarations (not arrow functions) for components/handlers
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Only use Phosphor Icons
- Never use `src/components/__legacy__/*` or deprecated `BackendAPI`
## Architecture Overview
### Backend Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
### Frontend Architecture
- **Framework**: Next.js 15 App Router (client-first approach)
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
- **State Management**: React Query for server state, co-located UI state in components/hooks
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
- **Workflow Builder**: Visual graph editor using @xyflow/react
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
- **Icons**: Phosphor Icons only
- **Feature Flags**: LaunchDarkly integration
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
- **Testing**: Playwright for E2E, Storybook for component development
### Key Concepts
## Key Concepts
1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend
2. **Blocks**: Reusable components in `/backend/blocks/` that perform specific tasks
2. **Blocks**: Reusable components in `backend/backend/blocks/` that perform specific tasks
3. **Integrations**: OAuth and API connections stored per user
4. **Store**: Marketplace for sharing agent templates
5. **Virus Scanning**: ClamAV integration for file upload security
### Testing Approach
- Backend uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
- Frontend uses Playwright for E2E tests
- Component testing via Storybook
### Database Schema
Key models (defined in `/backend/schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
### Environment Configuration
#### Configuration Files
- **Backend**: `/backend/.env.default` (defaults) → `/backend/.env` (user overrides)
- **Frontend**: `/frontend/.env.default` (defaults) → `/frontend/.env` (user overrides)
- **Platform**: `/.env.default` (Supabase/shared defaults) → `/.env` (user overrides)
- **Backend**: `backend/.env.default` (defaults) → `backend/.env` (user overrides)
- **Frontend**: `frontend/.env.default` (defaults) → `frontend/.env` (user overrides)
- **Platform**: `.env.default` (Supabase/shared defaults) → `.env` (user overrides)
#### Docker Environment Loading Order
@@ -167,83 +45,12 @@ Key models (defined in `/backend/schema.prisma`):
- Backend/Frontend services use YAML anchors for consistent configuration
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
### Common Development Tasks
**Adding a new block:**
Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `/backend/backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
**Modifying the API:**
1. Update route in `/backend/backend/server/routers/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
### Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Add `usePageName.ts` hook for logic
- Put sub-components in local `components/` folder
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Do not use `useCallback` or `useMemo` unless strictly needed
- Avoid comments at all times unless the code is very complex
### Security Implementation
**Cache Protection Middleware:**
- Located in `/backend/backend/server/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`/static/*`, `/_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications
### Creating Pull Requests
- Create the PR aginst the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)/
- Use conventional commit messages (see below)/
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description/
- Create the PR against the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)
- Use conventional commit messages (see below)
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description
- Run the github pre-commit hooks to ensure code quality.
### Reviewing/Revising Pull Requests

View File

@@ -152,6 +152,7 @@ REPLICATE_API_KEY=
REVID_API_KEY=
SCREENSHOTONE_API_KEY=
UNREAL_SPEECH_API_KEY=
ELEVENLABS_API_KEY=
# Data & Search Services
E2B_API_KEY=

View File

@@ -19,3 +19,6 @@ load-tests/*.json
load-tests/*.log
load-tests/node_modules/*
migrations/*/rollback*.sql
# Workspace files
workspaces/

View File

@@ -0,0 +1,170 @@
# CLAUDE.md - Backend
This file provides guidance to Claude Code when working with the backend.
## Essential Commands
To run something with Python package dependencies you MUST use `poetry run ...`.
```bash
# Install dependencies
poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend as a whole
poetry run app
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in @TESTING.md
### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
## Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
## Testing Approach
- Uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
## Database Schema
Key models (defined in `schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
## Environment Configuration
- **Backend**: `.env.default` (defaults) → `.env` (user overrides)
## Common Development Tasks
### Adding a new block
Follow the comprehensive [Block SDK Guide](@../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph-based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
#### Handling files in blocks with `store_media_file()`
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
| Format | Use When | Returns |
|--------|----------|---------|
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
**Examples:**
```python
# INPUT: Need to process file locally with ffmpeg
local_path = await store_media_file(
file=input_data.video,
execution_context=execution_context,
return_format="for_local_processing",
)
# local_path = "video.mp4" - use with Path/ffmpeg/etc
# INPUT: Need to send to external API like Replicate
image_b64 = await store_media_file(
file=input_data.image,
execution_context=execution_context,
return_format="for_external_api",
)
# image_b64 = "..." - send to API
# OUTPUT: Returning result from block
result_url = await store_media_file(
file=generated_image_url,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", result_url
# In CoPilot: result_url = "workspace://abc123"
# In graphs: result_url = "data:image/png;base64,..."
```
**Key points:**
- `for_block_output` is the ONLY format that auto-adapts to execution context
- Always use `for_block_output` for block outputs unless you have a specific reason not to
- Never hardcode workspace checks - let `for_block_output` handle it
### Modifying the API
1. Update route in `backend/api/features/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
## Security Implementation
### Cache Protection Middleware
- Located in `backend/api/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`static/*`, `_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications

View File

@@ -62,10 +62,12 @@ ENV POETRY_HOME=/opt/poetry \
DEBIAN_FRONTEND=noninteractive
ENV PATH=/opt/poetry/bin:$PATH
# Install Python without upgrading system-managed packages
# Install Python, FFmpeg, and ImageMagick (required for video processing blocks)
RUN apt-get update && apt-get install -y \
python3.13 \
python3-pip \
ffmpeg \
imagemagick \
&& rm -rf /var/lib/apt/lists/*
# Copy only necessary files from builder

View File

@@ -138,7 +138,7 @@ If the test doesn't need the `user_id` specifically, mocking is not necessary as
#### Using Global Auth Fixtures
Two global auth fixtures are provided by `backend/server/conftest.py`:
Two global auth fixtures are provided by `backend/api/conftest.py`:
- `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id")
- `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id")

View File

@@ -17,7 +17,7 @@ router = fastapi.APIRouter(
)
# Taken from backend/server/v2/store/db.py
# Taken from backend/api/features/store/db.py
def sanitize_query(query: str | None) -> str | None:
if query is None:
return query

View File

@@ -0,0 +1,368 @@
"""Redis Streams consumer for operation completion messages.
This module provides a consumer (ChatCompletionConsumer) that listens for
completion notifications (OperationCompleteMessage) from external services
(like Agent Generator) and triggers the appropriate stream registry and
chat service updates via process_operation_success/process_operation_failure.
Why Redis Streams instead of RabbitMQ?
--------------------------------------
While the project typically uses RabbitMQ for async task queues (e.g., execution
queue), Redis Streams was chosen for chat completion notifications because:
1. **Unified Infrastructure**: The SSE reconnection feature already uses Redis
Streams (via stream_registry) for message persistence and replay. Using Redis
Streams for completion notifications keeps all chat streaming infrastructure
in one system, simplifying operations and reducing cross-system coordination.
2. **Message Replay**: Redis Streams support XREAD with arbitrary message IDs,
allowing consumers to replay missed messages after reconnection. This aligns
with the SSE reconnection pattern where clients can resume from last_message_id.
3. **Consumer Groups with XAUTOCLAIM**: Redis consumer groups provide automatic
load balancing across pods with explicit message claiming (XAUTOCLAIM) for
recovering from dead consumers - ideal for the completion callback pattern.
4. **Lower Latency**: For real-time SSE updates, Redis (already in-memory for
stream_registry) provides lower latency than an additional RabbitMQ hop.
5. **Atomicity with Task State**: Completion processing often needs to update
task metadata stored in Redis. Keeping both in Redis enables simpler
transactional semantics without distributed coordination.
The consumer uses Redis Streams with consumer groups for reliable message
processing across multiple platform pods, with XAUTOCLAIM for reclaiming
stale pending messages from dead consumers.
"""
import asyncio
import logging
import os
import uuid
from typing import Any
import orjson
from prisma import Prisma
from pydantic import BaseModel
from redis.exceptions import ResponseError
from backend.data.redis_client import get_redis_async
from . import stream_registry
from .completion_handler import process_operation_failure, process_operation_success
from .config import ChatConfig
logger = logging.getLogger(__name__)
config = ChatConfig()
class OperationCompleteMessage(BaseModel):
"""Message format for operation completion notifications."""
operation_id: str
task_id: str
success: bool
result: dict | str | None = None
error: str | None = None
class ChatCompletionConsumer:
"""Consumer for chat operation completion messages from Redis Streams.
This consumer initializes its own Prisma client in start() to ensure
database operations work correctly within this async context.
Uses Redis consumer groups to allow multiple platform pods to consume
messages reliably with automatic redelivery on failure.
"""
def __init__(self):
self._consumer_task: asyncio.Task | None = None
self._running = False
self._prisma: Prisma | None = None
self._consumer_name = f"consumer-{uuid.uuid4().hex[:8]}"
async def start(self) -> None:
"""Start the completion consumer."""
if self._running:
logger.warning("Completion consumer already running")
return
# Create consumer group if it doesn't exist
try:
redis = await get_redis_async()
await redis.xgroup_create(
config.stream_completion_name,
config.stream_consumer_group,
id="0",
mkstream=True,
)
logger.info(
f"Created consumer group '{config.stream_consumer_group}' "
f"on stream '{config.stream_completion_name}'"
)
except ResponseError as e:
if "BUSYGROUP" in str(e):
logger.debug(
f"Consumer group '{config.stream_consumer_group}' already exists"
)
else:
raise
self._running = True
self._consumer_task = asyncio.create_task(self._consume_messages())
logger.info(
f"Chat completion consumer started (consumer: {self._consumer_name})"
)
async def _ensure_prisma(self) -> Prisma:
"""Lazily initialize Prisma client on first use."""
if self._prisma is None:
database_url = os.getenv("DATABASE_URL", "postgresql://localhost:5432")
self._prisma = Prisma(datasource={"url": database_url})
await self._prisma.connect()
logger.info("[COMPLETION] Consumer Prisma client connected (lazy init)")
return self._prisma
async def stop(self) -> None:
"""Stop the completion consumer."""
self._running = False
if self._consumer_task:
self._consumer_task.cancel()
try:
await self._consumer_task
except asyncio.CancelledError:
pass
self._consumer_task = None
if self._prisma:
await self._prisma.disconnect()
self._prisma = None
logger.info("[COMPLETION] Consumer Prisma client disconnected")
logger.info("Chat completion consumer stopped")
async def _consume_messages(self) -> None:
"""Main message consumption loop with retry logic."""
max_retries = 10
retry_delay = 5 # seconds
retry_count = 0
block_timeout = 5000 # milliseconds
while self._running and retry_count < max_retries:
try:
redis = await get_redis_async()
# Reset retry count on successful connection
retry_count = 0
while self._running:
# First, claim any stale pending messages from dead consumers
# Redis does NOT auto-redeliver pending messages; we must explicitly
# claim them using XAUTOCLAIM
try:
claimed_result = await redis.xautoclaim(
name=config.stream_completion_name,
groupname=config.stream_consumer_group,
consumername=self._consumer_name,
min_idle_time=config.stream_claim_min_idle_ms,
start_id="0-0",
count=10,
)
# xautoclaim returns: (next_start_id, [(id, data), ...], [deleted_ids])
if claimed_result and len(claimed_result) >= 2:
claimed_entries = claimed_result[1]
if claimed_entries:
logger.info(
f"Claimed {len(claimed_entries)} stale pending messages"
)
for entry_id, data in claimed_entries:
if not self._running:
return
await self._process_entry(redis, entry_id, data)
except Exception as e:
logger.warning(f"XAUTOCLAIM failed (non-fatal): {e}")
# Read new messages from the stream
messages = await redis.xreadgroup(
groupname=config.stream_consumer_group,
consumername=self._consumer_name,
streams={config.stream_completion_name: ">"},
block=block_timeout,
count=10,
)
if not messages:
continue
for stream_name, entries in messages:
for entry_id, data in entries:
if not self._running:
return
await self._process_entry(redis, entry_id, data)
except asyncio.CancelledError:
logger.info("Consumer cancelled")
return
except Exception as e:
retry_count += 1
logger.error(
f"Consumer error (retry {retry_count}/{max_retries}): {e}",
exc_info=True,
)
if self._running and retry_count < max_retries:
await asyncio.sleep(retry_delay)
else:
logger.error("Max retries reached, stopping consumer")
return
async def _process_entry(
self, redis: Any, entry_id: str, data: dict[str, Any]
) -> None:
"""Process a single stream entry and acknowledge it on success.
Args:
redis: Redis client connection
entry_id: The stream entry ID
data: The entry data dict
"""
try:
# Handle the message
message_data = data.get("data")
if message_data:
await self._handle_message(
message_data.encode()
if isinstance(message_data, str)
else message_data
)
# Acknowledge the message after successful processing
await redis.xack(
config.stream_completion_name,
config.stream_consumer_group,
entry_id,
)
except Exception as e:
logger.error(
f"Error processing completion message {entry_id}: {e}",
exc_info=True,
)
# Message remains in pending state and will be claimed by
# XAUTOCLAIM after min_idle_time expires
async def _handle_message(self, body: bytes) -> None:
"""Handle a completion message using our own Prisma client."""
try:
data = orjson.loads(body)
message = OperationCompleteMessage(**data)
except Exception as e:
logger.error(f"Failed to parse completion message: {e}")
return
logger.info(
f"[COMPLETION] Received completion for operation {message.operation_id} "
f"(task_id={message.task_id}, success={message.success})"
)
# Find task in registry
task = await stream_registry.find_task_by_operation_id(message.operation_id)
if task is None:
task = await stream_registry.get_task(message.task_id)
if task is None:
logger.warning(
f"[COMPLETION] Task not found for operation {message.operation_id} "
f"(task_id={message.task_id})"
)
return
logger.info(
f"[COMPLETION] Found task: task_id={task.task_id}, "
f"session_id={task.session_id}, tool_call_id={task.tool_call_id}"
)
# Guard against empty task fields
if not task.task_id or not task.session_id or not task.tool_call_id:
logger.error(
f"[COMPLETION] Task has empty critical fields! "
f"task_id={task.task_id!r}, session_id={task.session_id!r}, "
f"tool_call_id={task.tool_call_id!r}"
)
return
if message.success:
await self._handle_success(task, message)
else:
await self._handle_failure(task, message)
async def _handle_success(
self,
task: stream_registry.ActiveTask,
message: OperationCompleteMessage,
) -> None:
"""Handle successful operation completion."""
prisma = await self._ensure_prisma()
await process_operation_success(task, message.result, prisma)
async def _handle_failure(
self,
task: stream_registry.ActiveTask,
message: OperationCompleteMessage,
) -> None:
"""Handle failed operation completion."""
prisma = await self._ensure_prisma()
await process_operation_failure(task, message.error, prisma)
# Module-level consumer instance
_consumer: ChatCompletionConsumer | None = None
async def start_completion_consumer() -> None:
"""Start the global completion consumer."""
global _consumer
if _consumer is None:
_consumer = ChatCompletionConsumer()
await _consumer.start()
async def stop_completion_consumer() -> None:
"""Stop the global completion consumer."""
global _consumer
if _consumer:
await _consumer.stop()
_consumer = None
async def publish_operation_complete(
operation_id: str,
task_id: str,
success: bool,
result: dict | str | None = None,
error: str | None = None,
) -> None:
"""Publish an operation completion message to Redis Streams.
Args:
operation_id: The operation ID that completed.
task_id: The task ID associated with the operation.
success: Whether the operation succeeded.
result: The result data (for success).
error: The error message (for failure).
"""
message = OperationCompleteMessage(
operation_id=operation_id,
task_id=task_id,
success=success,
result=result,
error=error,
)
redis = await get_redis_async()
await redis.xadd(
config.stream_completion_name,
{"data": message.model_dump_json()},
maxlen=config.stream_max_length,
)
logger.info(f"Published completion for operation {operation_id}")

View File

@@ -0,0 +1,344 @@
"""Shared completion handling for operation success and failure.
This module provides common logic for handling operation completion from both:
- The Redis Streams consumer (completion_consumer.py)
- The HTTP webhook endpoint (routes.py)
"""
import logging
from typing import Any
import orjson
from prisma import Prisma
from . import service as chat_service
from . import stream_registry
from .response_model import StreamError, StreamToolOutputAvailable
from .tools.models import ErrorResponse
logger = logging.getLogger(__name__)
# Tools that produce agent_json that needs to be saved to library
AGENT_GENERATION_TOOLS = {"create_agent", "edit_agent"}
# Keys that should be stripped from agent_json when returning in error responses
SENSITIVE_KEYS = frozenset(
{
"api_key",
"apikey",
"api_secret",
"password",
"secret",
"credentials",
"credential",
"token",
"access_token",
"refresh_token",
"private_key",
"privatekey",
"auth",
"authorization",
}
)
def _sanitize_agent_json(obj: Any) -> Any:
"""Recursively sanitize agent_json by removing sensitive keys.
Args:
obj: The object to sanitize (dict, list, or primitive)
Returns:
Sanitized copy with sensitive keys removed/redacted
"""
if isinstance(obj, dict):
return {
k: "[REDACTED]" if k.lower() in SENSITIVE_KEYS else _sanitize_agent_json(v)
for k, v in obj.items()
}
elif isinstance(obj, list):
return [_sanitize_agent_json(item) for item in obj]
else:
return obj
class ToolMessageUpdateError(Exception):
"""Raised when updating a tool message in the database fails."""
pass
async def _update_tool_message(
session_id: str,
tool_call_id: str,
content: str,
prisma_client: Prisma | None,
) -> None:
"""Update tool message in database.
Args:
session_id: The session ID
tool_call_id: The tool call ID to update
content: The new content for the message
prisma_client: Optional Prisma client. If None, uses chat_service.
Raises:
ToolMessageUpdateError: If the database update fails. The caller should
handle this to avoid marking the task as completed with inconsistent state.
"""
try:
if prisma_client:
# Use provided Prisma client (for consumer with its own connection)
updated_count = await prisma_client.chatmessage.update_many(
where={
"sessionId": session_id,
"toolCallId": tool_call_id,
},
data={"content": content},
)
# Check if any rows were updated - 0 means message not found
if updated_count == 0:
raise ToolMessageUpdateError(
f"No message found with tool_call_id={tool_call_id} in session {session_id}"
)
else:
# Use service function (for webhook endpoint)
await chat_service._update_pending_operation(
session_id=session_id,
tool_call_id=tool_call_id,
result=content,
)
except ToolMessageUpdateError:
raise
except Exception as e:
logger.error(f"[COMPLETION] Failed to update tool message: {e}", exc_info=True)
raise ToolMessageUpdateError(
f"Failed to update tool message for tool_call_id={tool_call_id}: {e}"
) from e
def serialize_result(result: dict | list | str | int | float | bool | None) -> str:
"""Serialize result to JSON string with sensible defaults.
Args:
result: The result to serialize. Can be a dict, list, string,
number, boolean, or None.
Returns:
JSON string representation of the result. Returns '{"status": "completed"}'
only when result is explicitly None.
"""
if isinstance(result, str):
return result
if result is None:
return '{"status": "completed"}'
return orjson.dumps(result).decode("utf-8")
async def _save_agent_from_result(
result: dict[str, Any],
user_id: str | None,
tool_name: str,
) -> dict[str, Any]:
"""Save agent to library if result contains agent_json.
Args:
result: The result dict that may contain agent_json
user_id: The user ID to save the agent for
tool_name: The tool name (create_agent or edit_agent)
Returns:
Updated result dict with saved agent details, or original result if no agent_json
"""
if not user_id:
logger.warning("[COMPLETION] Cannot save agent: no user_id in task")
return result
agent_json = result.get("agent_json")
if not agent_json:
logger.warning(
f"[COMPLETION] {tool_name} completed but no agent_json in result"
)
return result
try:
from .tools.agent_generator import save_agent_to_library
is_update = tool_name == "edit_agent"
created_graph, library_agent = await save_agent_to_library(
agent_json, user_id, is_update=is_update
)
logger.info(
f"[COMPLETION] Saved agent '{created_graph.name}' to library "
f"(graph_id={created_graph.id}, library_agent_id={library_agent.id})"
)
# Return a response similar to AgentSavedResponse
return {
"type": "agent_saved",
"message": f"Agent '{created_graph.name}' has been saved to your library!",
"agent_id": created_graph.id,
"agent_name": created_graph.name,
"library_agent_id": library_agent.id,
"library_agent_link": f"/library/agents/{library_agent.id}",
"agent_page_link": f"/build?flowID={created_graph.id}",
}
except Exception as e:
logger.error(
f"[COMPLETION] Failed to save agent to library: {e}",
exc_info=True,
)
# Return error but don't fail the whole operation
# Sanitize agent_json to remove sensitive keys before returning
return {
"type": "error",
"message": f"Agent was generated but failed to save: {str(e)}",
"error": str(e),
"agent_json": _sanitize_agent_json(agent_json),
}
async def process_operation_success(
task: stream_registry.ActiveTask,
result: dict | str | None,
prisma_client: Prisma | None = None,
) -> None:
"""Handle successful operation completion.
Publishes the result to the stream registry, updates the database,
generates LLM continuation, and marks the task as completed.
Args:
task: The active task that completed
result: The result data from the operation
prisma_client: Optional Prisma client for database operations.
If None, uses chat_service._update_pending_operation instead.
Raises:
ToolMessageUpdateError: If the database update fails. The task will be
marked as failed instead of completed to avoid inconsistent state.
"""
# For agent generation tools, save the agent to library
if task.tool_name in AGENT_GENERATION_TOOLS and isinstance(result, dict):
result = await _save_agent_from_result(result, task.user_id, task.tool_name)
# Serialize result for output (only substitute default when result is exactly None)
result_output = result if result is not None else {"status": "completed"}
output_str = (
result_output
if isinstance(result_output, str)
else orjson.dumps(result_output).decode("utf-8")
)
# Publish result to stream registry
await stream_registry.publish_chunk(
task.task_id,
StreamToolOutputAvailable(
toolCallId=task.tool_call_id,
toolName=task.tool_name,
output=output_str,
success=True,
),
)
# Update pending operation in database
# If this fails, we must not continue to mark the task as completed
result_str = serialize_result(result)
try:
await _update_tool_message(
session_id=task.session_id,
tool_call_id=task.tool_call_id,
content=result_str,
prisma_client=prisma_client,
)
except ToolMessageUpdateError:
# DB update failed - mark task as failed to avoid inconsistent state
logger.error(
f"[COMPLETION] DB update failed for task {task.task_id}, "
"marking as failed instead of completed"
)
await stream_registry.publish_chunk(
task.task_id,
StreamError(errorText="Failed to save operation result to database"),
)
await stream_registry.mark_task_completed(task.task_id, status="failed")
raise
# Generate LLM continuation with streaming
try:
await chat_service._generate_llm_continuation_with_streaming(
session_id=task.session_id,
user_id=task.user_id,
task_id=task.task_id,
)
except Exception as e:
logger.error(
f"[COMPLETION] Failed to generate LLM continuation: {e}",
exc_info=True,
)
# Mark task as completed and release Redis lock
await stream_registry.mark_task_completed(task.task_id, status="completed")
try:
await chat_service._mark_operation_completed(task.tool_call_id)
except Exception as e:
logger.error(f"[COMPLETION] Failed to mark operation completed: {e}")
logger.info(
f"[COMPLETION] Successfully processed completion for task {task.task_id}"
)
async def process_operation_failure(
task: stream_registry.ActiveTask,
error: str | None,
prisma_client: Prisma | None = None,
) -> None:
"""Handle failed operation completion.
Publishes the error to the stream registry, updates the database with
the error response, and marks the task as failed.
Args:
task: The active task that failed
error: The error message from the operation
prisma_client: Optional Prisma client for database operations.
If None, uses chat_service._update_pending_operation instead.
"""
error_msg = error or "Operation failed"
# Publish error to stream registry
await stream_registry.publish_chunk(
task.task_id,
StreamError(errorText=error_msg),
)
# Update pending operation with error
# If this fails, we still continue to mark the task as failed
error_response = ErrorResponse(
message=error_msg,
error=error,
)
try:
await _update_tool_message(
session_id=task.session_id,
tool_call_id=task.tool_call_id,
content=error_response.model_dump_json(),
prisma_client=prisma_client,
)
except ToolMessageUpdateError:
# DB update failed - log but continue with cleanup
logger.error(
f"[COMPLETION] DB update failed while processing failure for task {task.task_id}, "
"continuing with cleanup"
)
# Mark task as failed and release Redis lock
await stream_registry.mark_task_completed(task.task_id, status="failed")
try:
await chat_service._mark_operation_completed(task.tool_call_id)
except Exception as e:
logger.error(f"[COMPLETION] Failed to mark operation completed: {e}")
logger.info(f"[COMPLETION] Processed failure for task {task.task_id}: {error_msg}")

View File

@@ -11,7 +11,7 @@ class ChatConfig(BaseSettings):
# OpenAI API Configuration
model: str = Field(
default="anthropic/claude-opus-4.5", description="Default model to use"
default="anthropic/claude-opus-4.6", description="Default model to use"
)
title_model: str = Field(
default="openai/gpt-4o-mini",
@@ -27,12 +27,20 @@ class ChatConfig(BaseSettings):
session_ttl: int = Field(default=43200, description="Session TTL in seconds")
# Streaming Configuration
# Note: When using Claude Agent SDK, context management is handled automatically
# via the SDK's built-in compaction. This is mainly used for the fallback path.
max_context_messages: int = Field(
default=50, ge=1, le=200, description="Maximum context messages"
default=100,
ge=1,
le=500,
description="Max context messages (SDK handles compaction automatically)",
)
stream_timeout: int = Field(default=300, description="Stream timeout in seconds")
max_retries: int = Field(default=3, description="Maximum number of retries")
max_retries: int = Field(
default=3,
description="Max retries for fallback path (SDK handles retries internally)",
)
max_agent_runs: int = Field(default=30, description="Maximum number of agent runs")
max_agent_schedules: int = Field(
default=30, description="Maximum number of agent schedules"
@@ -44,6 +52,48 @@ class ChatConfig(BaseSettings):
description="TTL in seconds for long-running operation tracking in Redis (safety net if pod dies)",
)
# Stream registry configuration for SSE reconnection
stream_ttl: int = Field(
default=3600,
description="TTL in seconds for stream data in Redis (1 hour)",
)
stream_max_length: int = Field(
default=10000,
description="Maximum number of messages to store per stream",
)
# Redis Streams configuration for completion consumer
stream_completion_name: str = Field(
default="chat:completions",
description="Redis Stream name for operation completions",
)
stream_consumer_group: str = Field(
default="chat_consumers",
description="Consumer group name for completion stream",
)
stream_claim_min_idle_ms: int = Field(
default=60000,
description="Minimum idle time in milliseconds before claiming pending messages from dead consumers",
)
# Redis key prefixes for stream registry
task_meta_prefix: str = Field(
default="chat:task:meta:",
description="Prefix for task metadata hash keys",
)
task_stream_prefix: str = Field(
default="chat:stream:",
description="Prefix for task message stream keys",
)
task_op_prefix: str = Field(
default="chat:task:op:",
description="Prefix for operation ID to task ID mapping keys",
)
internal_api_key: str | None = Field(
default=None,
description="API key for internal webhook callbacks (env: CHAT_INTERNAL_API_KEY)",
)
# Langfuse Prompt Management Configuration
# Note: Langfuse credentials are in Settings().secrets (settings.py)
langfuse_prompt_name: str = Field(
@@ -51,6 +101,12 @@ class ChatConfig(BaseSettings):
description="Name of the prompt in Langfuse to fetch",
)
# Claude Agent SDK Configuration
use_claude_agent_sdk: bool = Field(
default=True,
description="Use Claude Agent SDK for chat completions",
)
@field_validator("api_key", mode="before")
@classmethod
def get_api_key(cls, v):
@@ -82,6 +138,25 @@ class ChatConfig(BaseSettings):
v = "https://openrouter.ai/api/v1"
return v
@field_validator("internal_api_key", mode="before")
@classmethod
def get_internal_api_key(cls, v):
"""Get internal API key from environment if not provided."""
if v is None:
v = os.getenv("CHAT_INTERNAL_API_KEY")
return v
@field_validator("use_claude_agent_sdk", mode="before")
@classmethod
def get_use_claude_agent_sdk(cls, v):
"""Get use_claude_agent_sdk from environment if not provided."""
# Check environment variable - default to True if not set
env_val = os.getenv("CHAT_USE_CLAUDE_AGENT_SDK", "").lower()
if env_val:
return env_val in ("true", "1", "yes", "on")
# Default to True (SDK enabled by default)
return True if v is None else v
# Prompt paths for different contexts
PROMPT_PATHS: dict[str, str] = {
"default": "prompts/chat_system.md",

View File

@@ -273,9 +273,8 @@ async def _get_session_from_cache(session_id: str) -> ChatSession | None:
try:
session = ChatSession.model_validate_json(raw_session)
logger.info(
f"Loading session {session_id} from cache: "
f"message_count={len(session.messages)}, "
f"roles={[m.role for m in session.messages]}"
f"[CACHE] Loaded session {session_id}: {len(session.messages)} messages, "
f"last_roles={[m.role for m in session.messages[-3:]]}" # Last 3 roles
)
return session
except Exception as e:
@@ -317,11 +316,9 @@ async def _get_session_from_db(session_id: str) -> ChatSession | None:
return None
messages = prisma_session.Messages
logger.info(
f"Loading session {session_id} from DB: "
f"has_messages={messages is not None}, "
f"message_count={len(messages) if messages else 0}, "
f"roles={[m.role for m in messages] if messages else []}"
logger.debug(
f"[DB] Loaded session {session_id}: {len(messages) if messages else 0} messages, "
f"roles={[m.role for m in messages[-3:]] if messages else []}" # Last 3 roles
)
return ChatSession.from_db(prisma_session, messages)
@@ -372,10 +369,9 @@ async def _save_session_to_db(
"function_call": msg.function_call,
}
)
logger.info(
f"Saving {len(new_messages)} new messages to DB for session {session.session_id}: "
f"roles={[m['role'] for m in messages_data]}, "
f"start_sequence={existing_message_count}"
logger.debug(
f"[DB] Saving {len(new_messages)} messages to session {session.session_id}, "
f"roles={[m['role'] for m in messages_data]}"
)
await chat_db.add_chat_messages_batch(
session_id=session.session_id,
@@ -415,7 +411,7 @@ async def get_chat_session(
logger.warning(f"Unexpected cache error for session {session_id}: {e}")
# Fall back to database
logger.info(f"Session {session_id} not in cache, checking database")
logger.debug(f"Session {session_id} not in cache, checking database")
session = await _get_session_from_db(session_id)
if session is None:
@@ -432,7 +428,6 @@ async def get_chat_session(
# Cache the session from DB
try:
await _cache_session(session)
logger.info(f"Cached session {session_id} from database")
except Exception as e:
logger.warning(f"Failed to cache session {session_id}: {e}")
@@ -603,13 +598,19 @@ async def update_session_title(session_id: str, title: str) -> bool:
logger.warning(f"Session {session_id} not found for title update")
return False
# Invalidate cache so next fetch gets updated title
# Update title in cache if it exists (instead of invalidating).
# This prevents race conditions where cache invalidation causes
# the frontend to see stale DB data while streaming is still in progress.
try:
redis_key = _get_session_cache_key(session_id)
async_redis = await get_redis_async()
await async_redis.delete(redis_key)
cached = await _get_session_from_cache(session_id)
if cached:
cached.title = title
await _cache_session(cached)
except Exception as e:
logger.warning(f"Failed to invalidate cache for session {session_id}: {e}")
# Not critical - title will be correct on next full cache refresh
logger.warning(
f"Failed to update title in cache for session {session_id}: {e}"
)
return True
except Exception as e:

View File

@@ -52,6 +52,10 @@ class StreamStart(StreamBaseResponse):
type: ResponseType = ResponseType.START
messageId: str = Field(..., description="Unique message ID")
taskId: str | None = Field(
default=None,
description="Task ID for SSE reconnection. Clients can reconnect using GET /tasks/{taskId}/stream",
)
class StreamFinish(StreamBaseResponse):

View File

@@ -1,19 +1,33 @@
"""Chat API routes for chat session management and streaming via SSE."""
import asyncio
import logging
import uuid as uuid_module
from collections.abc import AsyncGenerator
from typing import Annotated
from autogpt_libs import auth
from fastapi import APIRouter, Depends, Query, Security
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Security
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from backend.util.exceptions import NotFoundError
from . import service as chat_service
from . import stream_registry
from .completion_handler import process_operation_failure, process_operation_success
from .config import ChatConfig
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
from .model import (
ChatMessage,
ChatSession,
create_chat_session,
get_chat_session,
get_user_sessions,
upsert_chat_session,
)
from .response_model import StreamFinish, StreamHeartbeat, StreamStart
from .sdk import service as sdk_service
from .tracking import track_user_message
config = ChatConfig()
@@ -55,6 +69,15 @@ class CreateSessionResponse(BaseModel):
user_id: str | None
class ActiveStreamInfo(BaseModel):
"""Information about an active stream for reconnection."""
task_id: str
last_message_id: str # Redis Stream message ID for resumption
operation_id: str # Operation ID for completion tracking
tool_name: str # Name of the tool being executed
class SessionDetailResponse(BaseModel):
"""Response model providing complete details for a chat session, including messages."""
@@ -63,6 +86,7 @@ class SessionDetailResponse(BaseModel):
updated_at: str
user_id: str | None
messages: list[dict]
active_stream: ActiveStreamInfo | None = None # Present if stream is still active
class SessionSummaryResponse(BaseModel):
@@ -81,6 +105,14 @@ class ListSessionsResponse(BaseModel):
total: int
class OperationCompleteRequest(BaseModel):
"""Request model for external completion webhook."""
success: bool
result: dict | str | None = None
error: str | None = None
# ========== Routes ==========
@@ -166,13 +198,14 @@ async def get_session(
Retrieve the details of a specific chat session.
Looks up a chat session by ID for the given user (if authenticated) and returns all session data including messages.
If there's an active stream for this session, returns the task_id for reconnection.
Args:
session_id: The unique identifier for the desired chat session.
user_id: The optional authenticated user ID, or None for anonymous access.
Returns:
SessionDetailResponse: Details for the requested session, or None if not found.
SessionDetailResponse: Details for the requested session, including active_stream info if applicable.
"""
session = await get_chat_session(session_id, user_id)
@@ -180,11 +213,32 @@ async def get_session(
raise NotFoundError(f"Session {session_id} not found.")
messages = [message.model_dump() for message in session.messages]
logger.info(
f"Returning session {session_id}: "
f"message_count={len(messages)}, "
f"roles={[m.get('role') for m in messages]}"
# Check if there's an active stream for this session
active_stream_info = None
active_task, last_message_id = await stream_registry.get_active_task_for_session(
session_id, user_id
)
logger.info(
f"[GET_SESSION] session={session_id}, active_task={active_task is not None}, "
f"msg_count={len(messages)}, last_role={messages[-1].get('role') if messages else 'none'}"
)
if active_task:
# Filter out the in-progress assistant message from the session response.
# The client will receive the complete assistant response through the SSE
# stream replay instead, preventing duplicate content.
if messages and messages[-1].get("role") == "assistant":
messages = messages[:-1]
# Use "0-0" as last_message_id to replay the stream from the beginning.
# Since we filtered out the cached assistant message, the client needs
# the full stream to reconstruct the response.
active_stream_info = ActiveStreamInfo(
task_id=active_task.task_id,
last_message_id="0-0",
operation_id=active_task.operation_id,
tool_name=active_task.tool_name,
)
return SessionDetailResponse(
id=session.session_id,
@@ -192,6 +246,7 @@ async def get_session(
updated_at=session.updated_at.isoformat(),
user_id=session.user_id or None,
messages=messages,
active_stream=active_stream_info,
)
@@ -211,49 +266,147 @@ async def stream_chat_post(
- Tool call UI elements (if invoked)
- Tool execution results
The AI generation runs in a background task that continues even if the client disconnects.
All chunks are written to Redis for reconnection support. If the client disconnects,
they can reconnect using GET /tasks/{task_id}/stream to resume from where they left off.
Args:
session_id: The chat session identifier to associate with the streamed messages.
request: Request body containing message, is_user_message, and optional context.
user_id: Optional authenticated user ID.
Returns:
StreamingResponse: SSE-formatted response chunks.
StreamingResponse: SSE-formatted response chunks. First chunk is a "start" event
containing the task_id for reconnection.
"""
session = await _validate_and_get_session(session_id, user_id)
async def event_generator() -> AsyncGenerator[str, None]:
chunk_count = 0
first_chunk_type: str | None = None
async for chunk in chat_service.stream_chat_completion(
session_id,
request.message,
is_user_message=request.is_user_message,
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
context=request.context,
):
if chunk_count < 3:
logger.info(
"Chat stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
logger.info(
"Chat stream completed",
extra={
"session_id": session_id,
"chunk_count": chunk_count,
"first_chunk_type": first_chunk_type,
},
# Add user message to session BEFORE creating task to avoid race condition
# where GET_SESSION sees the task as "running" but the message isn't saved yet
if request.message:
session.messages.append(
ChatMessage(
role="user" if request.is_user_message else "assistant",
content=request.message,
)
)
# AI SDK protocol termination
yield "data: [DONE]\n\n"
if request.is_user_message:
track_user_message(
user_id=user_id,
session_id=session_id,
message_length=len(request.message),
)
logger.info(
f"[STREAM] Saving user message to session {session_id}, "
f"msg_count={len(session.messages)}"
)
session = await upsert_chat_session(session)
logger.info(f"[STREAM] User message saved for session {session_id}")
# Create a task in the stream registry for reconnection support
task_id = str(uuid_module.uuid4())
operation_id = str(uuid_module.uuid4())
await stream_registry.create_task(
task_id=task_id,
session_id=session_id,
user_id=user_id,
tool_call_id="chat_stream", # Not a tool call, but needed for the model
tool_name="chat",
operation_id=operation_id,
)
# Background task that runs the AI generation independently of SSE connection
async def run_ai_generation():
chunk_count = 0
try:
# Emit a start event with task_id for reconnection
start_chunk = StreamStart(messageId=task_id, taskId=task_id)
await stream_registry.publish_chunk(task_id, start_chunk)
# Choose service based on configuration
use_sdk = config.use_claude_agent_sdk
stream_fn = (
sdk_service.stream_chat_completion_sdk
if use_sdk
else chat_service.stream_chat_completion
)
# Pass message=None since we already added it to the session above
async for chunk in stream_fn(
session_id,
None, # Message already in session
is_user_message=request.is_user_message,
user_id=user_id,
session=session, # Pass session with message already added
context=request.context,
):
chunk_count += 1
# Write to Redis (subscribers will receive via XREAD)
await stream_registry.publish_chunk(task_id, chunk)
logger.info(
f"[BG_TASK] AI generation completed for session {session_id}: {chunk_count} chunks, marking task {task_id} as completed"
)
# Mark task as completed (also publishes StreamFinish)
completed = await stream_registry.mark_task_completed(task_id, "completed")
logger.info(f"[BG_TASK] mark_task_completed returned: {completed}")
except Exception as e:
logger.error(
f"Error in background AI generation for session {session_id}: {e}"
)
await stream_registry.mark_task_completed(task_id, "failed")
# Start the AI generation in a background task
bg_task = asyncio.create_task(run_ai_generation())
await stream_registry.set_task_asyncio_task(task_id, bg_task)
# SSE endpoint that subscribes to the task's stream
async def event_generator() -> AsyncGenerator[str, None]:
subscriber_queue = None
try:
# Subscribe to the task stream (replays + live updates)
subscriber_queue = await stream_registry.subscribe_to_task(
task_id=task_id,
user_id=user_id,
last_message_id="0-0", # Get all messages from the beginning
)
if subscriber_queue is None:
logger.warning(f"Failed to subscribe to task {task_id}")
yield StreamFinish().to_sse()
yield "data: [DONE]\n\n"
return
# Read from the subscriber queue and yield to SSE
while True:
try:
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
yield chunk.to_sse()
# Check for finish signal
if isinstance(chunk, StreamFinish):
break
except asyncio.TimeoutError:
# Send heartbeat to keep connection alive
yield StreamHeartbeat().to_sse()
except GeneratorExit:
pass # Client disconnected - normal behavior
except Exception as e:
logger.error(f"Error in SSE stream for task {task_id}: {e}")
finally:
# Unsubscribe when client disconnects or stream ends
if subscriber_queue is not None:
try:
await stream_registry.unsubscribe_from_task(
task_id, subscriber_queue
)
except Exception as unsub_err:
logger.error(
f"Error unsubscribing from task {task_id}: {unsub_err}",
exc_info=True,
)
# AI SDK protocol termination - always yield even if unsubscribe fails
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
@@ -296,35 +449,21 @@ async def stream_chat_get(
session = await _validate_and_get_session(session_id, user_id)
async def event_generator() -> AsyncGenerator[str, None]:
chunk_count = 0
first_chunk_type: str | None = None
async for chunk in chat_service.stream_chat_completion(
# Choose service based on configuration
use_sdk = config.use_claude_agent_sdk
stream_fn = (
sdk_service.stream_chat_completion_sdk
if use_sdk
else chat_service.stream_chat_completion
)
async for chunk in stream_fn(
session_id,
message,
is_user_message=is_user_message,
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
):
if chunk_count < 3:
logger.info(
"Chat stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
logger.info(
"Chat stream completed",
extra={
"session_id": session_id,
"chunk_count": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
# AI SDK protocol termination
yield "data: [DONE]\n\n"
@@ -366,6 +505,249 @@ async def session_assign_user(
return {"status": "ok"}
# ========== Task Streaming (SSE Reconnection) ==========
@router.get(
"/tasks/{task_id}/stream",
)
async def stream_task(
task_id: str,
user_id: str | None = Depends(auth.get_user_id),
last_message_id: str = Query(
default="0-0",
description="Last Redis Stream message ID received (e.g., '1706540123456-0'). Use '0-0' for full replay.",
),
):
"""
Reconnect to a long-running task's SSE stream.
When a long-running operation (like agent generation) starts, the client
receives a task_id. If the connection drops, the client can reconnect
using this endpoint to resume receiving updates.
Args:
task_id: The task ID from the operation_started response.
user_id: Authenticated user ID for ownership validation.
last_message_id: Last Redis Stream message ID received ("0-0" for full replay).
Returns:
StreamingResponse: SSE-formatted response chunks starting after last_message_id.
Raises:
HTTPException: 404 if task not found, 410 if task expired, 403 if access denied.
"""
# Check task existence and expiry before subscribing
task, error_code = await stream_registry.get_task_with_expiry_info(task_id)
if error_code == "TASK_EXPIRED":
raise HTTPException(
status_code=410,
detail={
"code": "TASK_EXPIRED",
"message": "This operation has expired. Please try again.",
},
)
if error_code == "TASK_NOT_FOUND":
raise HTTPException(
status_code=404,
detail={
"code": "TASK_NOT_FOUND",
"message": f"Task {task_id} not found.",
},
)
# Validate ownership if task has an owner
if task and task.user_id and user_id != task.user_id:
raise HTTPException(
status_code=403,
detail={
"code": "ACCESS_DENIED",
"message": "You do not have access to this task.",
},
)
# Get subscriber queue from stream registry
subscriber_queue = await stream_registry.subscribe_to_task(
task_id=task_id,
user_id=user_id,
last_message_id=last_message_id,
)
if subscriber_queue is None:
raise HTTPException(
status_code=404,
detail={
"code": "TASK_NOT_FOUND",
"message": f"Task {task_id} not found or access denied.",
},
)
async def event_generator() -> AsyncGenerator[str, None]:
heartbeat_interval = 15.0 # Send heartbeat every 15 seconds
try:
while True:
try:
# Wait for next chunk with timeout for heartbeats
chunk = await asyncio.wait_for(
subscriber_queue.get(), timeout=heartbeat_interval
)
yield chunk.to_sse()
# Check for finish signal
if isinstance(chunk, StreamFinish):
break
except asyncio.TimeoutError:
# Send heartbeat to keep connection alive
yield StreamHeartbeat().to_sse()
except Exception as e:
logger.error(f"Error in task stream {task_id}: {e}", exc_info=True)
finally:
# Unsubscribe when client disconnects or stream ends
try:
await stream_registry.unsubscribe_from_task(task_id, subscriber_queue)
except Exception as unsub_err:
logger.error(
f"Error unsubscribing from task {task_id}: {unsub_err}",
exc_info=True,
)
# AI SDK protocol termination - always yield even if unsubscribe fails
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"x-vercel-ai-ui-message-stream": "v1",
},
)
@router.get(
"/tasks/{task_id}",
)
async def get_task_status(
task_id: str,
user_id: str | None = Depends(auth.get_user_id),
) -> dict:
"""
Get the status of a long-running task.
Args:
task_id: The task ID to check.
user_id: Authenticated user ID for ownership validation.
Returns:
dict: Task status including task_id, status, tool_name, and operation_id.
Raises:
NotFoundError: If task_id is not found or user doesn't have access.
"""
task = await stream_registry.get_task(task_id)
if task is None:
raise NotFoundError(f"Task {task_id} not found.")
# Validate ownership - if task has an owner, requester must match
if task.user_id and user_id != task.user_id:
raise NotFoundError(f"Task {task_id} not found.")
return {
"task_id": task.task_id,
"session_id": task.session_id,
"status": task.status,
"tool_name": task.tool_name,
"operation_id": task.operation_id,
"created_at": task.created_at.isoformat(),
}
# ========== External Completion Webhook ==========
@router.post(
"/operations/{operation_id}/complete",
status_code=200,
)
async def complete_operation(
operation_id: str,
request: OperationCompleteRequest,
x_api_key: str | None = Header(default=None),
) -> dict:
"""
External completion webhook for long-running operations.
Called by Agent Generator (or other services) when an operation completes.
This triggers the stream registry to publish completion and continue LLM generation.
Args:
operation_id: The operation ID to complete.
request: Completion payload with success status and result/error.
x_api_key: Internal API key for authentication.
Returns:
dict: Status of the completion.
Raises:
HTTPException: If API key is invalid or operation not found.
"""
# Validate internal API key - reject if not configured or invalid
if not config.internal_api_key:
logger.error(
"Operation complete webhook rejected: CHAT_INTERNAL_API_KEY not configured"
)
raise HTTPException(
status_code=503,
detail="Webhook not available: internal API key not configured",
)
if x_api_key != config.internal_api_key:
raise HTTPException(status_code=401, detail="Invalid API key")
# Find task by operation_id
task = await stream_registry.find_task_by_operation_id(operation_id)
if task is None:
raise HTTPException(
status_code=404,
detail=f"Operation {operation_id} not found",
)
logger.info(
f"Received completion webhook for operation {operation_id} "
f"(task_id={task.task_id}, success={request.success})"
)
if request.success:
await process_operation_success(task, request.result)
else:
await process_operation_failure(task, request.error)
return {"status": "ok", "task_id": task.task_id}
# ========== Configuration ==========
@router.get("/config/ttl", status_code=200)
async def get_ttl_config() -> dict:
"""
Get the stream TTL configuration.
Returns the Time-To-Live settings for chat streams, which determines
how long clients can reconnect to an active stream.
Returns:
dict: TTL configuration with seconds and milliseconds values.
"""
return {
"stream_ttl_seconds": config.stream_ttl,
"stream_ttl_ms": config.stream_ttl * 1000,
}
# ========== Health Check ==========

View File

@@ -0,0 +1,14 @@
"""Claude Agent SDK integration for CoPilot.
This module provides the integration layer between the Claude Agent SDK
and the existing CoPilot tool system, enabling drop-in replacement of
the current LLM orchestration with the battle-tested Claude Agent SDK.
"""
from .service import stream_chat_completion_sdk
from .tool_adapter import create_copilot_mcp_server
__all__ = [
"stream_chat_completion_sdk",
"create_copilot_mcp_server",
]

View File

@@ -0,0 +1,348 @@
"""Anthropic SDK fallback implementation.
This module provides the fallback streaming implementation using the Anthropic SDK
directly when the Claude Agent SDK is not available.
"""
import json
import logging
import os
import uuid
from collections.abc import AsyncGenerator
from typing import Any, cast
from ..model import ChatMessage, ChatSession
from ..response_model import (
StreamBaseResponse,
StreamError,
StreamFinish,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
StreamToolInputAvailable,
StreamToolInputStart,
StreamToolOutputAvailable,
StreamUsage,
)
from .tool_adapter import get_tool_definitions, get_tool_handlers
logger = logging.getLogger(__name__)
async def stream_with_anthropic(
session: ChatSession,
system_prompt: str,
text_block_id: str,
) -> AsyncGenerator[StreamBaseResponse, None]:
"""Stream using Anthropic SDK directly with tool calling support.
This function accumulates messages into the session for persistence.
The caller should NOT yield an additional StreamFinish - this function handles it.
"""
import anthropic
# Only use ANTHROPIC_API_KEY - don't fall back to OpenRouter keys
api_key = os.getenv("ANTHROPIC_API_KEY")
if not api_key:
yield StreamError(
errorText="ANTHROPIC_API_KEY not configured for fallback",
code="config_error",
)
yield StreamFinish()
return
client = anthropic.AsyncAnthropic(api_key=api_key)
tool_definitions = get_tool_definitions()
tool_handlers = get_tool_handlers()
anthropic_tools = [
{
"name": t["name"],
"description": t["description"],
"input_schema": t["inputSchema"],
}
for t in tool_definitions
]
anthropic_messages = _convert_session_to_anthropic(session)
if not anthropic_messages or anthropic_messages[-1]["role"] != "user":
anthropic_messages.append(
{"role": "user", "content": "Continue with the task."}
)
has_started_text = False
max_iterations = 10
accumulated_text = ""
accumulated_tool_calls: list[dict[str, Any]] = []
for _ in range(max_iterations):
try:
async with client.messages.stream(
model="claude-sonnet-4-20250514",
max_tokens=4096,
system=system_prompt,
messages=cast(Any, anthropic_messages),
tools=cast(Any, anthropic_tools) if anthropic_tools else [],
) as stream:
async for event in stream:
if event.type == "content_block_start":
block = event.content_block
if hasattr(block, "type"):
if block.type == "text" and not has_started_text:
yield StreamTextStart(id=text_block_id)
has_started_text = True
elif block.type == "tool_use":
yield StreamToolInputStart(
toolCallId=block.id, toolName=block.name
)
elif event.type == "content_block_delta":
delta = event.delta
if hasattr(delta, "type") and delta.type == "text_delta":
accumulated_text += delta.text
yield StreamTextDelta(id=text_block_id, delta=delta.text)
final_message = await stream.get_final_message()
if final_message.stop_reason == "tool_use":
if has_started_text:
yield StreamTextEnd(id=text_block_id)
has_started_text = False
text_block_id = str(uuid.uuid4())
tool_results = []
assistant_content: list[dict[str, Any]] = []
for block in final_message.content:
if block.type == "text":
assistant_content.append(
{"type": "text", "text": block.text}
)
elif block.type == "tool_use":
assistant_content.append(
{
"type": "tool_use",
"id": block.id,
"name": block.name,
"input": block.input,
}
)
# Track tool call for session persistence
accumulated_tool_calls.append(
{
"id": block.id,
"type": "function",
"function": {
"name": block.name,
"arguments": json.dumps(
block.input
if isinstance(block.input, dict)
else {}
),
},
}
)
yield StreamToolInputAvailable(
toolCallId=block.id,
toolName=block.name,
input=(
block.input if isinstance(block.input, dict) else {}
),
)
output, is_error = await _execute_tool(
block.name, block.input, tool_handlers
)
yield StreamToolOutputAvailable(
toolCallId=block.id,
toolName=block.name,
output=output,
success=not is_error,
)
# Save tool result to session
session.messages.append(
ChatMessage(
role="tool",
content=output,
tool_call_id=block.id,
)
)
tool_results.append(
{
"type": "tool_result",
"tool_use_id": block.id,
"content": output,
"is_error": is_error,
}
)
# Save assistant message with tool calls to session
session.messages.append(
ChatMessage(
role="assistant",
content=accumulated_text or None,
tool_calls=(
accumulated_tool_calls
if accumulated_tool_calls
else None
),
)
)
# Reset for next iteration
accumulated_text = ""
accumulated_tool_calls = []
anthropic_messages.append(
{"role": "assistant", "content": assistant_content}
)
anthropic_messages.append({"role": "user", "content": tool_results})
continue
else:
if has_started_text:
yield StreamTextEnd(id=text_block_id)
# Save final assistant response to session
if accumulated_text:
session.messages.append(
ChatMessage(role="assistant", content=accumulated_text)
)
yield StreamUsage(
promptTokens=final_message.usage.input_tokens,
completionTokens=final_message.usage.output_tokens,
totalTokens=final_message.usage.input_tokens
+ final_message.usage.output_tokens,
)
yield StreamFinish()
return
except Exception as e:
logger.error(f"[Anthropic Fallback] Error: {e}", exc_info=True)
yield StreamError(
errorText="An error occurred. Please try again.",
code="anthropic_error",
)
yield StreamFinish()
return
yield StreamError(errorText="Max tool iterations reached", code="max_iterations")
yield StreamFinish()
def _convert_session_to_anthropic(session: ChatSession) -> list[dict[str, Any]]:
"""Convert session messages to Anthropic format.
Handles merging consecutive same-role messages (Anthropic requires alternating roles).
"""
messages: list[dict[str, Any]] = []
for msg in session.messages:
if msg.role == "user":
new_msg = {"role": "user", "content": msg.content or ""}
elif msg.role == "assistant":
content: list[dict[str, Any]] = []
if msg.content:
content.append({"type": "text", "text": msg.content})
if msg.tool_calls:
for tc in msg.tool_calls:
func = tc.get("function", {})
args = func.get("arguments", {})
if isinstance(args, str):
try:
args = json.loads(args)
except json.JSONDecodeError:
args = {}
content.append(
{
"type": "tool_use",
"id": tc.get("id", str(uuid.uuid4())),
"name": func.get("name", ""),
"input": args,
}
)
if content:
new_msg = {"role": "assistant", "content": content}
else:
continue # Skip empty assistant messages
elif msg.role == "tool":
new_msg = {
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": msg.tool_call_id or "",
"content": msg.content or "",
}
],
}
else:
continue
messages.append(new_msg)
# Merge consecutive same-role messages (Anthropic requires alternating roles)
return _merge_consecutive_roles(messages)
def _merge_consecutive_roles(messages: list[dict[str, Any]]) -> list[dict[str, Any]]:
"""Merge consecutive messages with the same role.
Anthropic API requires alternating user/assistant roles.
"""
if not messages:
return []
merged: list[dict[str, Any]] = []
for msg in messages:
if merged and merged[-1]["role"] == msg["role"]:
# Merge with previous message
prev_content = merged[-1]["content"]
new_content = msg["content"]
# Normalize both to list-of-blocks form
if isinstance(prev_content, str):
prev_content = [{"type": "text", "text": prev_content}]
if isinstance(new_content, str):
new_content = [{"type": "text", "text": new_content}]
# Ensure both are lists
if not isinstance(prev_content, list):
prev_content = [prev_content]
if not isinstance(new_content, list):
new_content = [new_content]
merged[-1]["content"] = prev_content + new_content
else:
merged.append(msg)
return merged
async def _execute_tool(
tool_name: str, tool_input: Any, handlers: dict[str, Any]
) -> tuple[str, bool]:
"""Execute a tool and return (output, is_error)."""
handler = handlers.get(tool_name)
if not handler:
return f"Unknown tool: {tool_name}", True
try:
result = await handler(tool_input)
# Safely extract output - handle empty or missing content
content = result.get("content") or []
if content and isinstance(content, list) and len(content) > 0:
first_item = content[0]
output = first_item.get("text", "") if isinstance(first_item, dict) else ""
else:
output = ""
is_error = result.get("isError", False)
return output, is_error
except Exception as e:
return f"Error: {str(e)}", True

View File

@@ -0,0 +1,300 @@
"""Response adapter for converting Claude Agent SDK messages to Vercel AI SDK format.
This module provides the adapter layer that converts streaming messages from
the Claude Agent SDK into the Vercel AI SDK UI Stream Protocol format that
the frontend expects.
"""
import json
import logging
import uuid
from typing import Any, AsyncGenerator
from backend.api.features.chat.response_model import (
StreamBaseResponse,
StreamError,
StreamFinish,
StreamHeartbeat,
StreamStart,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
StreamToolInputAvailable,
StreamToolInputStart,
StreamToolOutputAvailable,
StreamUsage,
)
logger = logging.getLogger(__name__)
class SDKResponseAdapter:
"""Adapter for converting Claude Agent SDK messages to Vercel AI SDK format.
This class maintains state during a streaming session to properly track
text blocks, tool calls, and message lifecycle.
"""
def __init__(self, message_id: str | None = None):
"""Initialize the adapter.
Args:
message_id: Optional message ID. If not provided, one will be generated.
"""
self.message_id = message_id or str(uuid.uuid4())
self.text_block_id = str(uuid.uuid4())
self.has_started_text = False
self.has_ended_text = False
self.current_tool_calls: dict[str, dict[str, Any]] = {}
self.task_id: str | None = None
def set_task_id(self, task_id: str) -> None:
"""Set the task ID for reconnection support."""
self.task_id = task_id
def convert_message(self, sdk_message: Any) -> list[StreamBaseResponse]:
"""Convert a single SDK message to Vercel AI SDK format.
Args:
sdk_message: A message from the Claude Agent SDK.
Returns:
List of StreamBaseResponse objects (may be empty or multiple).
"""
responses: list[StreamBaseResponse] = []
# Handle different SDK message types - use class name since SDK uses dataclasses
class_name = type(sdk_message).__name__
msg_subtype = getattr(sdk_message, "subtype", None)
if class_name == "SystemMessage":
if msg_subtype == "init":
# Session initialization - emit start
responses.append(
StreamStart(
messageId=self.message_id,
taskId=self.task_id,
)
)
elif class_name == "AssistantMessage":
# Assistant message with content blocks
content = getattr(sdk_message, "content", [])
for block in content:
# Check block type by class name (SDK uses dataclasses) or dict type
block_class = type(block).__name__
block_type = block.get("type") if isinstance(block, dict) else None
if block_class == "TextBlock" or block_type == "text":
# Text content
text = getattr(block, "text", None) or (
block.get("text") if isinstance(block, dict) else ""
)
if text:
# Start text block if needed (or restart after tool calls)
if not self.has_started_text or self.has_ended_text:
# Generate new text block ID for text after tools
if self.has_ended_text:
self.text_block_id = str(uuid.uuid4())
self.has_ended_text = False
responses.append(StreamTextStart(id=self.text_block_id))
self.has_started_text = True
# Emit text delta
responses.append(
StreamTextDelta(
id=self.text_block_id,
delta=text,
)
)
elif block_class == "ToolUseBlock" or block_type == "tool_use":
# Tool call
tool_id_raw = getattr(block, "id", None) or (
block.get("id") if isinstance(block, dict) else None
)
tool_id: str = (
str(tool_id_raw) if tool_id_raw else str(uuid.uuid4())
)
tool_name_raw = getattr(block, "name", None) or (
block.get("name") if isinstance(block, dict) else None
)
tool_name: str = str(tool_name_raw) if tool_name_raw else "unknown"
tool_input = getattr(block, "input", None) or (
block.get("input") if isinstance(block, dict) else {}
)
# End text block if we were streaming text
if self.has_started_text and not self.has_ended_text:
responses.append(StreamTextEnd(id=self.text_block_id))
self.has_ended_text = True
# Emit tool input start
responses.append(
StreamToolInputStart(
toolCallId=tool_id,
toolName=tool_name,
)
)
# Emit tool input available with full input
responses.append(
StreamToolInputAvailable(
toolCallId=tool_id,
toolName=tool_name,
input=tool_input if isinstance(tool_input, dict) else {},
)
)
# Track the tool call
self.current_tool_calls[tool_id] = {
"name": tool_name,
"input": tool_input,
}
elif class_name in ("ToolResultMessage", "UserMessage"):
# Tool result - check for tool_result content
content = getattr(sdk_message, "content", [])
for block in content:
block_class = type(block).__name__
block_type = block.get("type") if isinstance(block, dict) else None
if block_class == "ToolResultBlock" or block_type == "tool_result":
tool_use_id = getattr(block, "tool_use_id", None) or (
block.get("tool_use_id") if isinstance(block, dict) else None
)
result_content = getattr(block, "content", None) or (
block.get("content") if isinstance(block, dict) else ""
)
is_error = getattr(block, "is_error", False) or (
block.get("is_error", False)
if isinstance(block, dict)
else False
)
if tool_use_id:
tool_info = self.current_tool_calls.get(tool_use_id, {})
tool_name = tool_info.get("name", "unknown")
# Format the output
if isinstance(result_content, list):
# Extract text from content blocks
output_text = ""
for item in result_content:
if (
isinstance(item, dict)
and item.get("type") == "text"
):
output_text += item.get("text", "")
elif hasattr(item, "text"):
output_text += getattr(item, "text", "")
output = output_text
elif isinstance(result_content, str):
output = result_content
else:
output = json.dumps(result_content)
responses.append(
StreamToolOutputAvailable(
toolCallId=tool_use_id,
toolName=tool_name,
output=output,
success=not is_error,
)
)
elif class_name == "ResultMessage":
# Final result
if msg_subtype == "success":
# End text block if still open
if self.has_started_text and not self.has_ended_text:
responses.append(StreamTextEnd(id=self.text_block_id))
self.has_ended_text = True
# Emit finish
responses.append(StreamFinish())
elif msg_subtype in ("error", "error_during_execution"):
error_msg = getattr(sdk_message, "error", "Unknown error")
responses.append(
StreamError(
errorText=str(error_msg),
code="sdk_error",
)
)
responses.append(StreamFinish())
elif class_name == "ErrorMessage":
# Error message
error_msg = getattr(sdk_message, "message", None) or getattr(
sdk_message, "error", "Unknown error"
)
responses.append(
StreamError(
errorText=str(error_msg),
code="sdk_error",
)
)
responses.append(StreamFinish())
return responses
def create_heartbeat(self, tool_call_id: str | None = None) -> StreamHeartbeat:
"""Create a heartbeat response."""
return StreamHeartbeat(toolCallId=tool_call_id)
def create_usage(
self,
prompt_tokens: int,
completion_tokens: int,
) -> StreamUsage:
"""Create a usage statistics response."""
return StreamUsage(
promptTokens=prompt_tokens,
completionTokens=completion_tokens,
totalTokens=prompt_tokens + completion_tokens,
)
async def adapt_sdk_stream(
sdk_stream: AsyncGenerator[Any, None],
message_id: str | None = None,
task_id: str | None = None,
) -> AsyncGenerator[StreamBaseResponse, None]:
"""Adapt a Claude Agent SDK stream to Vercel AI SDK format.
Args:
sdk_stream: The async generator from the Claude Agent SDK.
message_id: Optional message ID for the response.
task_id: Optional task ID for reconnection support.
Yields:
StreamBaseResponse objects in Vercel AI SDK format.
"""
adapter = SDKResponseAdapter(message_id=message_id)
if task_id:
adapter.set_task_id(task_id)
# Emit start immediately
yield StreamStart(messageId=adapter.message_id, taskId=task_id)
try:
async for sdk_message in sdk_stream:
responses = adapter.convert_message(sdk_message)
for response in responses:
# Skip duplicate start messages
if isinstance(response, StreamStart):
continue
yield response
except Exception as e:
logger.error(f"Error in SDK stream: {e}", exc_info=True)
yield StreamError(
errorText=f"Stream error: {str(e)}",
code="stream_error",
)
yield StreamFinish()

View File

@@ -0,0 +1,278 @@
"""Security hooks for Claude Agent SDK integration.
This module provides security hooks that validate tool calls before execution,
ensuring multi-user isolation and preventing unauthorized operations.
"""
import logging
import re
from typing import Any, cast
logger = logging.getLogger(__name__)
# Tools that are blocked entirely (CLI/system access)
BLOCKED_TOOLS = {
"Bash",
"bash",
"shell",
"exec",
"terminal",
"command",
"Read", # Block raw file read - use workspace tools instead
"Write", # Block raw file write - use workspace tools instead
"Edit", # Block raw file edit - use workspace tools instead
"Glob", # Block raw file glob - use workspace tools instead
"Grep", # Block raw file grep - use workspace tools instead
}
# Dangerous patterns in tool inputs
DANGEROUS_PATTERNS = [
r"sudo",
r"rm\s+-rf",
r"dd\s+if=",
r"/etc/passwd",
r"/etc/shadow",
r"chmod\s+777",
r"curl\s+.*\|.*sh",
r"wget\s+.*\|.*sh",
r"eval\s*\(",
r"exec\s*\(",
r"__import__",
r"os\.system",
r"subprocess",
]
def _validate_tool_access(tool_name: str, tool_input: dict[str, Any]) -> dict[str, Any]:
"""Validate that a tool call is allowed.
Returns:
Empty dict to allow, or dict with hookSpecificOutput to deny
"""
# Block forbidden tools
if tool_name in BLOCKED_TOOLS:
logger.warning(f"Blocked tool access attempt: {tool_name}")
return {
"hookSpecificOutput": {
"hookEventName": "PreToolUse",
"permissionDecision": "deny",
"permissionDecisionReason": (
f"Tool '{tool_name}' is not available. "
"Use the CoPilot-specific tools instead."
),
}
}
# Check for dangerous patterns in tool input
input_str = str(tool_input)
for pattern in DANGEROUS_PATTERNS:
if re.search(pattern, input_str, re.IGNORECASE):
logger.warning(
f"Blocked dangerous pattern in tool input: {pattern} in {tool_name}"
)
return {
"hookSpecificOutput": {
"hookEventName": "PreToolUse",
"permissionDecision": "deny",
"permissionDecisionReason": "Input contains blocked pattern",
}
}
return {}
def _validate_user_isolation(
tool_name: str, tool_input: dict[str, Any], user_id: str | None
) -> dict[str, Any]:
"""Validate that tool calls respect user isolation."""
# For workspace file tools, ensure path doesn't escape
if "workspace" in tool_name.lower():
path = tool_input.get("path", "") or tool_input.get("file_path", "")
if path:
# Check for path traversal
if ".." in path or path.startswith("/"):
logger.warning(
f"Blocked path traversal attempt: {path} by user {user_id}"
)
return {
"hookSpecificOutput": {
"hookEventName": "PreToolUse",
"permissionDecision": "deny",
"permissionDecisionReason": "Path traversal not allowed",
}
}
return {}
def create_security_hooks(user_id: str | None) -> dict[str, Any]:
"""Create the security hooks configuration for Claude Agent SDK.
Includes security validation and observability hooks:
- PreToolUse: Security validation before tool execution
- PostToolUse: Log successful tool executions
- PostToolUseFailure: Log and handle failed tool executions
- PreCompact: Log context compaction events (SDK handles compaction automatically)
Args:
user_id: Current user ID for isolation validation
Returns:
Hooks configuration dict for ClaudeAgentOptions
"""
try:
from claude_agent_sdk import HookMatcher
from claude_agent_sdk.types import HookContext, HookInput, SyncHookJSONOutput
async def pre_tool_use_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Combined pre-tool-use validation hook."""
_ = context # unused but required by signature
tool_name = cast(str, input_data.get("tool_name", ""))
tool_input = cast(dict[str, Any], input_data.get("tool_input", {}))
# Validate basic tool access
result = _validate_tool_access(tool_name, tool_input)
if result:
return cast(SyncHookJSONOutput, result)
# Validate user isolation
result = _validate_user_isolation(tool_name, tool_input, user_id)
if result:
return cast(SyncHookJSONOutput, result)
logger.debug(f"[SDK] Tool start: {tool_name}, user={user_id}")
return cast(SyncHookJSONOutput, {})
async def post_tool_use_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Log successful tool executions for observability."""
_ = context
tool_name = cast(str, input_data.get("tool_name", ""))
logger.debug(f"[SDK] Tool success: {tool_name}, tool_use_id={tool_use_id}")
return cast(SyncHookJSONOutput, {})
async def post_tool_failure_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Log failed tool executions for debugging."""
_ = context
tool_name = cast(str, input_data.get("tool_name", ""))
error = input_data.get("error", "Unknown error")
logger.warning(
f"[SDK] Tool failed: {tool_name}, error={error}, "
f"user={user_id}, tool_use_id={tool_use_id}"
)
return cast(SyncHookJSONOutput, {})
async def pre_compact_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Log when SDK triggers context compaction.
The SDK automatically compacts conversation history when it grows too large.
This hook provides visibility into when compaction happens.
"""
_ = context, tool_use_id
trigger = input_data.get("trigger", "auto")
logger.info(
f"[SDK] Context compaction triggered: {trigger}, user={user_id}"
)
return cast(SyncHookJSONOutput, {})
return {
"PreToolUse": [HookMatcher(matcher="*", hooks=[pre_tool_use_hook])],
"PostToolUse": [HookMatcher(matcher="*", hooks=[post_tool_use_hook])],
"PostToolUseFailure": [
HookMatcher(matcher="*", hooks=[post_tool_failure_hook])
],
"PreCompact": [HookMatcher(matcher="*", hooks=[pre_compact_hook])],
}
except ImportError:
# Fallback for when SDK isn't available - return empty hooks
return {}
def create_strict_security_hooks(
user_id: str | None,
allowed_tools: list[str] | None = None,
) -> dict[str, Any]:
"""Create strict security hooks that only allow specific tools.
Args:
user_id: Current user ID
allowed_tools: List of allowed tool names (defaults to CoPilot tools)
Returns:
Hooks configuration dict
"""
try:
from claude_agent_sdk import HookMatcher
from claude_agent_sdk.types import HookContext, HookInput, SyncHookJSONOutput
from .tool_adapter import RAW_TOOL_NAMES
tools_list = allowed_tools if allowed_tools is not None else RAW_TOOL_NAMES
allowed_set = set(tools_list)
async def strict_pre_tool_use(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Strict validation that only allows whitelisted tools."""
_ = context # unused but required by signature
tool_name = cast(str, input_data.get("tool_name", ""))
tool_input = cast(dict[str, Any], input_data.get("tool_input", {}))
# Remove MCP prefix if present
clean_name = tool_name.removeprefix("mcp__copilot__")
if clean_name not in allowed_set:
logger.warning(f"Blocked non-whitelisted tool: {tool_name}")
return cast(
SyncHookJSONOutput,
{
"hookSpecificOutput": {
"hookEventName": "PreToolUse",
"permissionDecision": "deny",
"permissionDecisionReason": (
f"Tool '{tool_name}' is not in the allowed list"
),
}
},
)
# Run standard validations
result = _validate_tool_access(tool_name, tool_input)
if result:
return cast(SyncHookJSONOutput, result)
result = _validate_user_isolation(tool_name, tool_input, user_id)
if result:
return cast(SyncHookJSONOutput, result)
logger.debug(
f"[SDK Audit] Tool call: tool={tool_name}, "
f"user={user_id}, tool_use_id={tool_use_id}"
)
return cast(SyncHookJSONOutput, {})
return {
"PreToolUse": [
HookMatcher(matcher="*", hooks=[strict_pre_tool_use]),
],
}
except ImportError:
return {}

View File

@@ -0,0 +1,471 @@
"""Claude Agent SDK service layer for CoPilot chat completions."""
import asyncio
import json
import logging
import uuid
from collections.abc import AsyncGenerator
from typing import Any
import openai
from backend.data.understanding import (
format_understanding_for_prompt,
get_business_understanding,
)
from backend.util.exceptions import NotFoundError
from ..config import ChatConfig
from ..model import (
ChatMessage,
ChatSession,
get_chat_session,
update_session_title,
upsert_chat_session,
)
from ..response_model import (
StreamBaseResponse,
StreamError,
StreamFinish,
StreamStart,
StreamTextDelta,
StreamToolInputAvailable,
StreamToolOutputAvailable,
)
from ..tracking import track_user_message
from .anthropic_fallback import stream_with_anthropic
from .response_adapter import SDKResponseAdapter
from .security_hooks import create_security_hooks
from .tool_adapter import (
COPILOT_TOOL_NAMES,
create_copilot_mcp_server,
set_execution_context,
)
logger = logging.getLogger(__name__)
config = ChatConfig()
# Set to hold background tasks to prevent garbage collection
_background_tasks: set[asyncio.Task[Any]] = set()
DEFAULT_SYSTEM_PROMPT = """You are **Otto**, an AI Co-Pilot for AutoGPT and a Forward-Deployed Automation Engineer serving small business owners. Your mission is to help users automate business tasks with AI by delivering tangible value through working automations—not through documentation or lengthy explanations.
Here is everything you know about the current user from previous interactions:
<users_information>
{users_information}
</users_information>
## YOUR CORE MANDATE
You are action-oriented. Your success is measured by:
- **Value Delivery**: Does the user think "wow, that was amazing" or "what was the point"?
- **Demonstrable Proof**: Show working automations, not descriptions of what's possible
- **Time Saved**: Focus on tangible efficiency gains
- **Quality Output**: Deliver results that meet or exceed expectations
## YOUR WORKFLOW
Adapt flexibly to the conversation context. Not every interaction requires all stages:
1. **Explore & Understand**: Learn about the user's business, tasks, and goals. Use `add_understanding` to capture important context that will improve future conversations.
2. **Assess Automation Potential**: Help the user understand whether and how AI can automate their task.
3. **Prepare for AI**: Provide brief, actionable guidance on prerequisites (data, access, etc.).
4. **Discover or Create Agents**:
- **Always check the user's library first** with `find_library_agent` (these may be customized to their needs)
- Search the marketplace with `find_agent` for pre-built automations
- Find reusable components with `find_block`
- Create custom solutions with `create_agent` if nothing suitable exists
- Modify existing library agents with `edit_agent`
5. **Execute**: Run automations immediately, schedule them, or set up webhooks using `run_agent`. Test specific components with `run_block`.
6. **Show Results**: Display outputs using `agent_output`.
## BEHAVIORAL GUIDELINES
**Be Concise:**
- Target 2-5 short lines maximum
- Make every word count—no repetition or filler
- Use lightweight structure for scannability (bullets, numbered lists, short prompts)
- Avoid jargon (blocks, slugs, cron) unless the user asks
**Be Proactive:**
- Suggest next steps before being asked
- Anticipate needs based on conversation context and user information
- Look for opportunities to expand scope when relevant
- Reveal capabilities through action, not explanation
**Use Tools Effectively:**
- Select the right tool for each task
- **Always check `find_library_agent` before searching the marketplace**
- Use `add_understanding` to capture valuable business context
- When tool calls fail, try alternative approaches
## CRITICAL REMINDER
You are NOT a chatbot. You are NOT documentation. You are a partner who helps busy business owners get value quickly by showing proof through working automations. Bias toward action over explanation."""
async def _build_system_prompt(
user_id: str | None, has_conversation_history: bool = False
) -> tuple[str, Any]:
"""Build the system prompt with user's business understanding context.
Args:
user_id: The user ID to fetch understanding for.
has_conversation_history: Whether there's existing conversation history.
If True, we don't tell the model to greet/introduce (since they're
already in a conversation).
"""
understanding = None
if user_id:
try:
understanding = await get_business_understanding(user_id)
except Exception as e:
logger.warning(f"Failed to fetch business understanding: {e}")
if understanding:
context = format_understanding_for_prompt(understanding)
elif has_conversation_history:
# Don't tell model to greet if there's conversation history
context = "No prior understanding saved yet. Continue the existing conversation naturally."
else:
context = "This is the first time you are meeting the user. Greet them and introduce them to the platform"
return DEFAULT_SYSTEM_PROMPT.format(users_information=context), understanding
def _format_conversation_history(session: ChatSession) -> str:
"""Format conversation history as a prompt context.
The SDK handles context compaction automatically, but we apply
max_context_messages as a safety guard to limit initial prompt size.
"""
if not session.messages:
return ""
# Get all messages except the last user message (which will be the prompt)
messages = session.messages[:-1] if session.messages else []
if not messages:
return ""
# Apply max_context_messages limit as a safety guard
# (SDK handles compaction, but this prevents excessively large initial prompts)
max_messages = config.max_context_messages
if len(messages) > max_messages:
messages = messages[-max_messages:]
history_parts = ["<conversation_history>"]
for msg in messages:
if msg.role == "user":
history_parts.append(f"User: {msg.content or ''}")
elif msg.role == "assistant":
# Pass full content - SDK handles compaction automatically
history_parts.append(f"Assistant: {msg.content or ''}")
if msg.tool_calls:
for tc in msg.tool_calls:
func = tc.get("function", {})
history_parts.append(
f" [Called tool: {func.get('name', 'unknown')}]"
)
elif msg.role == "tool":
# Pass full tool results - SDK handles compaction
history_parts.append(f" [Tool result: {msg.content or ''}]")
history_parts.append("</conversation_history>")
history_parts.append("")
history_parts.append(
"Continue this conversation. Respond to the user's latest message:"
)
history_parts.append("")
return "\n".join(history_parts)
async def _generate_session_title(
message: str,
user_id: str | None = None,
session_id: str | None = None,
) -> str | None:
"""Generate a concise title for a chat session."""
from backend.util.settings import Settings
settings = Settings()
try:
# Build extra_body for OpenRouter tracing
extra_body: dict[str, Any] = {
"posthogProperties": {"environment": settings.config.app_env.value},
}
if user_id:
extra_body["user"] = user_id[:128]
extra_body["posthogDistinctId"] = user_id
if session_id:
extra_body["session_id"] = session_id[:128]
client = openai.AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
response = await client.chat.completions.create(
model=config.title_model,
messages=[
{
"role": "system",
"content": "Generate a very short title (3-6 words) for a chat conversation based on the user's first message. Return ONLY the title, no quotes or punctuation.",
},
{"role": "user", "content": message[:500]},
],
max_tokens=20,
extra_body=extra_body,
)
title = response.choices[0].message.content
if title:
title = title.strip().strip("\"'")
return title[:47] + "..." if len(title) > 50 else title
return None
except Exception as e:
logger.warning(f"Failed to generate session title: {e}")
return None
async def stream_chat_completion_sdk(
session_id: str,
message: str | None = None,
tool_call_response: str | None = None, # noqa: ARG001
is_user_message: bool = True,
user_id: str | None = None,
retry_count: int = 0, # noqa: ARG001
session: ChatSession | None = None,
context: dict[str, str] | None = None, # noqa: ARG001
) -> AsyncGenerator[StreamBaseResponse, None]:
"""Stream chat completion using Claude Agent SDK.
Drop-in replacement for stream_chat_completion with improved reliability.
"""
if session is None:
session = await get_chat_session(session_id, user_id)
if not session:
raise NotFoundError(
f"Session {session_id} not found. Please create a new session first."
)
if message:
session.messages.append(
ChatMessage(
role="user" if is_user_message else "assistant", content=message
)
)
if is_user_message:
track_user_message(
user_id=user_id, session_id=session_id, message_length=len(message)
)
session = await upsert_chat_session(session)
# Generate title for new sessions (first user message)
if is_user_message and not session.title:
user_messages = [m for m in session.messages if m.role == "user"]
if len(user_messages) == 1:
first_message = user_messages[0].content or message or ""
if first_message:
task = asyncio.create_task(
_update_title_async(session_id, first_message, user_id)
)
# Store reference to prevent garbage collection
_background_tasks.add(task)
task.add_done_callback(_background_tasks.discard)
# Check if there's conversation history (more than just the current message)
has_history = len(session.messages) > 1
system_prompt, _ = await _build_system_prompt(
user_id, has_conversation_history=has_history
)
set_execution_context(user_id, session, None)
message_id = str(uuid.uuid4())
text_block_id = str(uuid.uuid4())
task_id = str(uuid.uuid4())
yield StreamStart(messageId=message_id, taskId=task_id)
# Track whether the stream completed normally via ResultMessage
stream_completed = False
try:
try:
from claude_agent_sdk import ClaudeAgentOptions, ClaudeSDKClient
# Create MCP server with CoPilot tools
mcp_server = create_copilot_mcp_server()
options = ClaudeAgentOptions(
system_prompt=system_prompt,
mcp_servers={"copilot": mcp_server}, # type: ignore[arg-type]
allowed_tools=COPILOT_TOOL_NAMES,
hooks=create_security_hooks(user_id), # type: ignore[arg-type]
continue_conversation=True, # Enable conversation continuation
)
adapter = SDKResponseAdapter(message_id=message_id)
adapter.set_task_id(task_id)
async with ClaudeSDKClient(options=options) as client:
# Build prompt with conversation history for context
# The SDK doesn't support replaying full conversation history,
# so we include it as context in the prompt
current_message = message or ""
if not current_message and session.messages:
last_user = [m for m in session.messages if m.role == "user"]
if last_user:
current_message = last_user[-1].content or ""
# Include conversation history if there are prior messages
if len(session.messages) > 1:
history_context = _format_conversation_history(session)
prompt = f"{history_context}{current_message}"
else:
prompt = current_message
# Guard against empty prompts
if not prompt.strip():
yield StreamError(
errorText="Message cannot be empty.",
code="empty_prompt",
)
yield StreamFinish()
return
await client.query(prompt, session_id=session_id)
# Track assistant response to save to session
# We may need multiple assistant messages if text comes after tool results
assistant_response = ChatMessage(role="assistant", content="")
accumulated_tool_calls: list[dict[str, Any]] = []
has_appended_assistant = False
has_tool_results = False # Track if we've received tool results
# Receive messages from the SDK
async for sdk_msg in client.receive_messages():
for response in adapter.convert_message(sdk_msg):
if isinstance(response, StreamStart):
continue
yield response
# Accumulate text deltas into assistant response
if isinstance(response, StreamTextDelta):
delta = response.delta or ""
# After tool results, create new assistant message for post-tool text
if has_tool_results and has_appended_assistant:
assistant_response = ChatMessage(
role="assistant", content=delta
)
accumulated_tool_calls = [] # Reset for new message
session.messages.append(assistant_response)
has_tool_results = False
else:
assistant_response.content = (
assistant_response.content or ""
) + delta
if not has_appended_assistant:
session.messages.append(assistant_response)
has_appended_assistant = True
# Track tool calls on the assistant message
elif isinstance(response, StreamToolInputAvailable):
accumulated_tool_calls.append(
{
"id": response.toolCallId,
"type": "function",
"function": {
"name": response.toolName,
"arguments": json.dumps(response.input or {}),
},
}
)
# Update assistant message with tool calls
assistant_response.tool_calls = accumulated_tool_calls
# Append assistant message if not already (tool-only response)
if not has_appended_assistant:
session.messages.append(assistant_response)
has_appended_assistant = True
elif isinstance(response, StreamToolOutputAvailable):
session.messages.append(
ChatMessage(
role="tool",
content=(
response.output
if isinstance(response.output, str)
else str(response.output)
),
tool_call_id=response.toolCallId,
)
)
has_tool_results = True
elif isinstance(response, StreamFinish):
stream_completed = True
# Break out of the message loop if we received finish signal
if stream_completed:
break
# Ensure assistant response is saved even if no text deltas
# (e.g., only tool calls were made)
if (
assistant_response.content or assistant_response.tool_calls
) and not has_appended_assistant:
session.messages.append(assistant_response)
except ImportError:
logger.warning(
"[SDK] claude-agent-sdk not available, using Anthropic fallback"
)
async for response in stream_with_anthropic(
session, system_prompt, text_block_id
):
yield response
# Save the session with accumulated messages
await upsert_chat_session(session)
logger.debug(
f"[SDK] Session {session_id} saved with {len(session.messages)} messages"
)
# Always yield StreamFinish to signal completion to the caller
# The adapter yields StreamFinish for the SSE stream, but we need to
# yield it here so the background task in routes.py knows to call mark_task_completed
yield StreamFinish()
except Exception as e:
logger.error(f"[SDK] Error: {e}", exc_info=True)
# Save session even on error to preserve any partial response
try:
await upsert_chat_session(session)
except Exception as save_err:
logger.error(f"[SDK] Failed to save session on error: {save_err}")
# Sanitize error message to avoid exposing internal details
yield StreamError(
errorText="An error occurred. Please try again.",
code="sdk_error",
)
yield StreamFinish()
async def _update_title_async(
session_id: str, message: str, user_id: str | None = None
) -> None:
"""Background task to update session title."""
try:
title = await _generate_session_title(
message, user_id=user_id, session_id=session_id
)
if title:
await update_session_title(session_id, title)
logger.debug(f"[SDK] Generated title for {session_id}: {title}")
except Exception as e:
logger.warning(f"[SDK] Failed to update session title: {e}")

View File

@@ -0,0 +1,213 @@
"""Tool adapter for wrapping existing CoPilot tools as Claude Agent SDK MCP tools.
This module provides the adapter layer that converts existing BaseTool implementations
into in-process MCP tools that can be used with the Claude Agent SDK.
"""
import json
import logging
from contextvars import ContextVar
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools import TOOL_REGISTRY
from backend.api.features.chat.tools.base import BaseTool
logger = logging.getLogger(__name__)
# Context variables to pass user/session info to tool execution
_current_user_id: ContextVar[str | None] = ContextVar("current_user_id", default=None)
_current_session: ContextVar[ChatSession | None] = ContextVar(
"current_session", default=None
)
_current_tool_call_id: ContextVar[str | None] = ContextVar(
"current_tool_call_id", default=None
)
def set_execution_context(
user_id: str | None,
session: ChatSession,
tool_call_id: str | None = None,
) -> None:
"""Set the execution context for tool calls.
This must be called before streaming begins to ensure tools have access
to user_id and session information.
"""
_current_user_id.set(user_id)
_current_session.set(session)
_current_tool_call_id.set(tool_call_id)
def get_execution_context() -> tuple[str | None, ChatSession | None, str | None]:
"""Get the current execution context."""
return (
_current_user_id.get(),
_current_session.get(),
_current_tool_call_id.get(),
)
def create_tool_handler(base_tool: BaseTool):
"""Create an async handler function for a BaseTool.
This wraps the existing BaseTool._execute method to be compatible
with the Claude Agent SDK MCP tool format.
"""
async def tool_handler(args: dict[str, Any]) -> dict[str, Any]:
"""Execute the wrapped tool and return MCP-formatted response."""
user_id, session, tool_call_id = get_execution_context()
if session is None:
return {
"content": [
{
"type": "text",
"text": json.dumps(
{
"error": "No session context available",
"type": "error",
}
),
}
],
"isError": True,
}
try:
# Call the existing tool's execute method
result = await base_tool.execute(
user_id=user_id,
session=session,
tool_call_id=tool_call_id or "sdk-call",
**args,
)
# The result is a StreamToolOutputAvailable, extract the output
return {
"content": [
{
"type": "text",
"text": (
result.output
if isinstance(result.output, str)
else json.dumps(result.output)
),
}
],
"isError": not result.success,
}
except Exception as e:
logger.error(f"Error executing tool {base_tool.name}: {e}", exc_info=True)
return {
"content": [
{
"type": "text",
"text": json.dumps(
{
"error": str(e),
"type": "error",
"message": f"Failed to execute {base_tool.name}",
}
),
}
],
"isError": True,
}
return tool_handler
def get_tool_definitions() -> list[dict[str, Any]]:
"""Get all tool definitions in MCP format.
Returns a list of tool definitions that can be used with
create_sdk_mcp_server or as raw tool definitions.
"""
tool_definitions = []
for tool_name, base_tool in TOOL_REGISTRY.items():
tool_def = {
"name": tool_name,
"description": base_tool.description,
"inputSchema": {
"type": "object",
"properties": base_tool.parameters.get("properties", {}),
"required": base_tool.parameters.get("required", []),
},
}
tool_definitions.append(tool_def)
return tool_definitions
def get_tool_handlers() -> dict[str, Any]:
"""Get all tool handlers mapped by name.
Returns a dictionary mapping tool names to their handler functions.
"""
handlers = {}
for tool_name, base_tool in TOOL_REGISTRY.items():
handlers[tool_name] = create_tool_handler(base_tool)
return handlers
# Create the MCP server configuration
def create_copilot_mcp_server():
"""Create an in-process MCP server configuration for CoPilot tools.
This can be passed to ClaudeAgentOptions.mcp_servers.
Note: The actual SDK MCP server creation depends on the claude-agent-sdk
package being available. This function returns the configuration that
can be used with the SDK.
"""
try:
from claude_agent_sdk import create_sdk_mcp_server, tool
# Create decorated tool functions
sdk_tools = []
for tool_name, base_tool in TOOL_REGISTRY.items():
# Get the handler
handler = create_tool_handler(base_tool)
# Create the decorated tool
# The @tool decorator expects (name, description, schema)
decorated = tool(
tool_name,
base_tool.description,
base_tool.parameters.get("properties", {}),
)(handler)
sdk_tools.append(decorated)
# Create the MCP server
server = create_sdk_mcp_server(
name="copilot",
version="1.0.0",
tools=sdk_tools,
)
return server
except ImportError:
logger.warning(
"claude-agent-sdk not available, returning tool definitions only"
)
return {
"tools": get_tool_definitions(),
"handlers": get_tool_handlers(),
}
# List of tool names for allowed_tools configuration
COPILOT_TOOL_NAMES = [f"mcp__copilot__{name}" for name in TOOL_REGISTRY.keys()]
# Also export the raw tool names for flexibility
RAW_TOOL_NAMES = list(TOOL_REGISTRY.keys())

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,708 @@
"""Stream registry for managing reconnectable SSE streams.
This module provides a registry for tracking active streaming tasks and their
messages. It uses Redis for all state management (no in-memory state), making
pods stateless and horizontally scalable.
Architecture:
- Redis Stream: Persists all messages for replay and real-time delivery
- Redis Hash: Task metadata (status, session_id, etc.)
Subscribers:
1. Replay missed messages from Redis Stream (XREAD)
2. Listen for live updates via blocking XREAD
3. No in-memory state required on the subscribing pod
"""
import asyncio
import logging
from dataclasses import dataclass, field
from datetime import datetime, timezone
from typing import Any, Literal
import orjson
from backend.data.redis_client import get_redis_async
from .config import ChatConfig
from .response_model import StreamBaseResponse, StreamError, StreamFinish
logger = logging.getLogger(__name__)
config = ChatConfig()
# Track background tasks for this pod (just the asyncio.Task reference, not subscribers)
_local_tasks: dict[str, asyncio.Task] = {}
# Track listener tasks per subscriber queue for cleanup
# Maps queue id() to (task_id, asyncio.Task) for proper cleanup on unsubscribe
_listener_tasks: dict[int, tuple[str, asyncio.Task]] = {}
# Timeout for putting chunks into subscriber queues (seconds)
# If the queue is full and doesn't drain within this time, send an overflow error
QUEUE_PUT_TIMEOUT = 5.0
# Lua script for atomic compare-and-swap status update (idempotent completion)
# Returns 1 if status was updated, 0 if already completed/failed
COMPLETE_TASK_SCRIPT = """
local current = redis.call("HGET", KEYS[1], "status")
if current == "running" then
redis.call("HSET", KEYS[1], "status", ARGV[1])
return 1
end
return 0
"""
@dataclass
class ActiveTask:
"""Represents an active streaming task (metadata only, no in-memory queues)."""
task_id: str
session_id: str
user_id: str | None
tool_call_id: str
tool_name: str
operation_id: str
status: Literal["running", "completed", "failed"] = "running"
created_at: datetime = field(default_factory=lambda: datetime.now(timezone.utc))
asyncio_task: asyncio.Task | None = None
def _get_task_meta_key(task_id: str) -> str:
"""Get Redis key for task metadata."""
return f"{config.task_meta_prefix}{task_id}"
def _get_task_stream_key(task_id: str) -> str:
"""Get Redis key for task message stream."""
return f"{config.task_stream_prefix}{task_id}"
def _get_operation_mapping_key(operation_id: str) -> str:
"""Get Redis key for operation_id to task_id mapping."""
return f"{config.task_op_prefix}{operation_id}"
async def create_task(
task_id: str,
session_id: str,
user_id: str | None,
tool_call_id: str,
tool_name: str,
operation_id: str,
) -> ActiveTask:
"""Create a new streaming task in Redis.
Args:
task_id: Unique identifier for the task
session_id: Chat session ID
user_id: User ID (may be None for anonymous)
tool_call_id: Tool call ID from the LLM
tool_name: Name of the tool being executed
operation_id: Operation ID for webhook callbacks
Returns:
The created ActiveTask instance (metadata only)
"""
task = ActiveTask(
task_id=task_id,
session_id=session_id,
user_id=user_id,
tool_call_id=tool_call_id,
tool_name=tool_name,
operation_id=operation_id,
)
# Store metadata in Redis
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
op_key = _get_operation_mapping_key(operation_id)
await redis.hset( # type: ignore[misc]
meta_key,
mapping={
"task_id": task_id,
"session_id": session_id,
"user_id": user_id or "",
"tool_call_id": tool_call_id,
"tool_name": tool_name,
"operation_id": operation_id,
"status": task.status,
"created_at": task.created_at.isoformat(),
},
)
await redis.expire(meta_key, config.stream_ttl)
# Create operation_id -> task_id mapping for webhook lookups
await redis.set(op_key, task_id, ex=config.stream_ttl)
logger.debug(f"Created task {task_id} for session {session_id}")
return task
async def publish_chunk(
task_id: str,
chunk: StreamBaseResponse,
) -> str:
"""Publish a chunk to Redis Stream.
All delivery is via Redis Streams - no in-memory state.
Args:
task_id: Task ID to publish to
chunk: The stream response chunk to publish
Returns:
The Redis Stream message ID
"""
chunk_json = chunk.model_dump_json()
message_id = "0-0"
try:
redis = await get_redis_async()
stream_key = _get_task_stream_key(task_id)
# Write to Redis Stream for persistence and real-time delivery
raw_id = await redis.xadd(
stream_key,
{"data": chunk_json},
maxlen=config.stream_max_length,
)
message_id = raw_id if isinstance(raw_id, str) else raw_id.decode()
# Set TTL on stream to match task metadata TTL
await redis.expire(stream_key, config.stream_ttl)
except Exception as e:
logger.error(
f"Failed to publish chunk for task {task_id}: {e}",
exc_info=True,
)
return message_id
async def subscribe_to_task(
task_id: str,
user_id: str | None,
last_message_id: str = "0-0",
) -> asyncio.Queue[StreamBaseResponse] | None:
"""Subscribe to a task's stream with replay of missed messages.
This is fully stateless - uses Redis Stream for replay and pub/sub for live updates.
Args:
task_id: Task ID to subscribe to
user_id: User ID for ownership validation
last_message_id: Last Redis Stream message ID received ("0-0" for full replay)
Returns:
An asyncio Queue that will receive stream chunks, or None if task not found
or user doesn't have access
"""
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
if not meta:
logger.debug(f"Task {task_id} not found in Redis")
return None
# Note: Redis client uses decode_responses=True, so keys are strings
task_status = meta.get("status", "")
task_user_id = meta.get("user_id", "") or None
# Validate ownership - if task has an owner, requester must match
if task_user_id:
if user_id != task_user_id:
logger.warning(
f"User {user_id} denied access to task {task_id} "
f"owned by {task_user_id}"
)
return None
subscriber_queue: asyncio.Queue[StreamBaseResponse] = asyncio.Queue()
stream_key = _get_task_stream_key(task_id)
# Step 1: Replay messages from Redis Stream
messages = await redis.xread({stream_key: last_message_id}, block=0, count=1000)
replayed_count = 0
replay_last_id = last_message_id
if messages:
for _stream_name, stream_messages in messages:
for msg_id, msg_data in stream_messages:
replay_last_id = msg_id if isinstance(msg_id, str) else msg_id.decode()
# Note: Redis client uses decode_responses=True, so keys are strings
if "data" in msg_data:
try:
chunk_data = orjson.loads(msg_data["data"])
chunk = _reconstruct_chunk(chunk_data)
if chunk:
await subscriber_queue.put(chunk)
replayed_count += 1
except Exception as e:
logger.warning(f"Failed to replay message: {e}")
logger.debug(f"Task {task_id}: replayed {replayed_count} messages")
# Step 2: If task is still running, start stream listener for live updates
if task_status == "running":
listener_task = asyncio.create_task(
_stream_listener(task_id, subscriber_queue, replay_last_id)
)
# Track listener task for cleanup on unsubscribe
_listener_tasks[id(subscriber_queue)] = (task_id, listener_task)
else:
# Task is completed/failed - add finish marker
await subscriber_queue.put(StreamFinish())
return subscriber_queue
async def _stream_listener(
task_id: str,
subscriber_queue: asyncio.Queue[StreamBaseResponse],
last_replayed_id: str,
) -> None:
"""Listen to Redis Stream for new messages using blocking XREAD.
This approach avoids the duplicate message issue that can occur with pub/sub
when messages are published during the gap between replay and subscription.
Args:
task_id: Task ID to listen for
subscriber_queue: Queue to deliver messages to
last_replayed_id: Last message ID from replay (continue from here)
"""
queue_id = id(subscriber_queue)
# Track the last successfully delivered message ID for recovery hints
last_delivered_id = last_replayed_id
try:
redis = await get_redis_async()
stream_key = _get_task_stream_key(task_id)
current_id = last_replayed_id
while True:
# Block for up to 30 seconds waiting for new messages
# This allows periodic checking if task is still running
messages = await redis.xread(
{stream_key: current_id}, block=30000, count=100
)
if not messages:
# Timeout - check if task is still running
meta_key = _get_task_meta_key(task_id)
status = await redis.hget(meta_key, "status") # type: ignore[misc]
if status and status != "running":
try:
await asyncio.wait_for(
subscriber_queue.put(StreamFinish()),
timeout=QUEUE_PUT_TIMEOUT,
)
except asyncio.TimeoutError:
logger.warning(
f"Timeout delivering finish event for task {task_id}"
)
break
continue
for _stream_name, stream_messages in messages:
for msg_id, msg_data in stream_messages:
current_id = msg_id if isinstance(msg_id, str) else msg_id.decode()
if "data" not in msg_data:
continue
try:
chunk_data = orjson.loads(msg_data["data"])
chunk = _reconstruct_chunk(chunk_data)
if chunk:
try:
await asyncio.wait_for(
subscriber_queue.put(chunk),
timeout=QUEUE_PUT_TIMEOUT,
)
# Update last delivered ID on successful delivery
last_delivered_id = current_id
except asyncio.TimeoutError:
logger.warning(
f"Subscriber queue full for task {task_id}, "
f"message delivery timed out after {QUEUE_PUT_TIMEOUT}s"
)
# Send overflow error with recovery info
try:
overflow_error = StreamError(
errorText="Message delivery timeout - some messages may have been missed",
code="QUEUE_OVERFLOW",
details={
"last_delivered_id": last_delivered_id,
"recovery_hint": f"Reconnect with last_message_id={last_delivered_id}",
},
)
subscriber_queue.put_nowait(overflow_error)
except asyncio.QueueFull:
# Queue is completely stuck, nothing more we can do
logger.error(
f"Cannot deliver overflow error for task {task_id}, "
"queue completely blocked"
)
# Stop listening on finish
if isinstance(chunk, StreamFinish):
return
except Exception as e:
logger.warning(f"Error processing stream message: {e}")
except asyncio.CancelledError:
logger.debug(f"Stream listener cancelled for task {task_id}")
raise # Re-raise to propagate cancellation
except Exception as e:
logger.error(f"Stream listener error for task {task_id}: {e}")
# On error, send finish to unblock subscriber
try:
await asyncio.wait_for(
subscriber_queue.put(StreamFinish()),
timeout=QUEUE_PUT_TIMEOUT,
)
except (asyncio.TimeoutError, asyncio.QueueFull):
logger.warning(
f"Could not deliver finish event for task {task_id} after error"
)
finally:
# Clean up listener task mapping on exit
_listener_tasks.pop(queue_id, None)
async def mark_task_completed(
task_id: str,
status: Literal["completed", "failed"] = "completed",
) -> bool:
"""Mark a task as completed and publish finish event.
This is idempotent - calling multiple times with the same task_id is safe.
Uses atomic compare-and-swap via Lua script to prevent race conditions.
Status is updated first (source of truth), then finish event is published (best-effort).
Args:
task_id: Task ID to mark as completed
status: Final status ("completed" or "failed")
Returns:
True if task was newly marked completed, False if already completed/failed
"""
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
# Atomic compare-and-swap: only update if status is "running"
# This prevents race conditions when multiple callers try to complete simultaneously
result = await redis.eval(COMPLETE_TASK_SCRIPT, 1, meta_key, status) # type: ignore[misc]
if result == 0:
logger.debug(f"Task {task_id} already completed/failed, skipping")
return False
# THEN publish finish event (best-effort - listeners can detect via status polling)
try:
await publish_chunk(task_id, StreamFinish())
except Exception as e:
logger.error(
f"Failed to publish finish event for task {task_id}: {e}. "
"Listeners will detect completion via status polling."
)
# Clean up local task reference if exists
_local_tasks.pop(task_id, None)
return True
async def find_task_by_operation_id(operation_id: str) -> ActiveTask | None:
"""Find a task by its operation ID.
Used by webhook callbacks to locate the task to update.
Args:
operation_id: Operation ID to search for
Returns:
ActiveTask if found, None otherwise
"""
redis = await get_redis_async()
op_key = _get_operation_mapping_key(operation_id)
task_id = await redis.get(op_key)
if not task_id:
return None
task_id_str = task_id.decode() if isinstance(task_id, bytes) else task_id
return await get_task(task_id_str)
async def get_task(task_id: str) -> ActiveTask | None:
"""Get a task by its ID from Redis.
Args:
task_id: Task ID to look up
Returns:
ActiveTask if found, None otherwise
"""
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
if not meta:
return None
# Note: Redis client uses decode_responses=True, so keys/values are strings
return ActiveTask(
task_id=meta.get("task_id", ""),
session_id=meta.get("session_id", ""),
user_id=meta.get("user_id", "") or None,
tool_call_id=meta.get("tool_call_id", ""),
tool_name=meta.get("tool_name", ""),
operation_id=meta.get("operation_id", ""),
status=meta.get("status", "running"), # type: ignore[arg-type]
)
async def get_task_with_expiry_info(
task_id: str,
) -> tuple[ActiveTask | None, str | None]:
"""Get a task by its ID with expiration detection.
Returns (task, error_code) where error_code is:
- None if task found
- "TASK_EXPIRED" if stream exists but metadata is gone (TTL expired)
- "TASK_NOT_FOUND" if neither exists
Args:
task_id: Task ID to look up
Returns:
Tuple of (ActiveTask or None, error_code or None)
"""
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
stream_key = _get_task_stream_key(task_id)
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
if not meta:
# Check if stream still has data (metadata expired but stream hasn't)
stream_len = await redis.xlen(stream_key)
if stream_len > 0:
return None, "TASK_EXPIRED"
return None, "TASK_NOT_FOUND"
# Note: Redis client uses decode_responses=True, so keys/values are strings
return (
ActiveTask(
task_id=meta.get("task_id", ""),
session_id=meta.get("session_id", ""),
user_id=meta.get("user_id", "") or None,
tool_call_id=meta.get("tool_call_id", ""),
tool_name=meta.get("tool_name", ""),
operation_id=meta.get("operation_id", ""),
status=meta.get("status", "running"), # type: ignore[arg-type]
),
None,
)
async def get_active_task_for_session(
session_id: str,
user_id: str | None = None,
) -> tuple[ActiveTask | None, str]:
"""Get the active (running) task for a session, if any.
Scans Redis for tasks matching the session_id with status="running".
Args:
session_id: Session ID to look up
user_id: User ID for ownership validation (optional)
Returns:
Tuple of (ActiveTask if found and running, last_message_id from Redis Stream)
"""
redis = await get_redis_async()
# Scan Redis for task metadata keys
cursor = 0
tasks_checked = 0
while True:
cursor, keys = await redis.scan(
cursor, match=f"{config.task_meta_prefix}*", count=100
)
for key in keys:
tasks_checked += 1
meta: dict[Any, Any] = await redis.hgetall(key) # type: ignore[misc]
if not meta:
continue
# Note: Redis client uses decode_responses=True, so keys/values are strings
task_session_id = meta.get("session_id", "")
task_status = meta.get("status", "")
task_user_id = meta.get("user_id", "") or None
task_id = meta.get("task_id", "")
if task_session_id == session_id and task_status == "running":
# Validate ownership - if task has an owner, requester must match
if task_user_id and user_id != task_user_id:
continue
logger.info(
f"[TASK_LOOKUP] Found running task {task_id[:8]}... for session {session_id[:8]}..."
)
# Get the last message ID from Redis Stream
stream_key = _get_task_stream_key(task_id)
last_id = "0-0"
try:
messages = await redis.xrevrange(stream_key, count=1)
if messages:
msg_id = messages[0][0]
last_id = msg_id if isinstance(msg_id, str) else msg_id.decode()
except Exception as e:
logger.warning(f"Failed to get last message ID: {e}")
return (
ActiveTask(
task_id=task_id,
session_id=task_session_id,
user_id=task_user_id,
tool_call_id=meta.get("tool_call_id", ""),
tool_name=meta.get("tool_name", ""),
operation_id=meta.get("operation_id", ""),
status="running",
),
last_id,
)
if cursor == 0:
break
return None, "0-0"
def _reconstruct_chunk(chunk_data: dict) -> StreamBaseResponse | None:
"""Reconstruct a StreamBaseResponse from JSON data.
Args:
chunk_data: Parsed JSON data from Redis
Returns:
Reconstructed response object, or None if unknown type
"""
from .response_model import (
ResponseType,
StreamError,
StreamFinish,
StreamHeartbeat,
StreamStart,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
StreamToolInputAvailable,
StreamToolInputStart,
StreamToolOutputAvailable,
StreamUsage,
)
# Map response types to their corresponding classes
type_to_class: dict[str, type[StreamBaseResponse]] = {
ResponseType.START.value: StreamStart,
ResponseType.FINISH.value: StreamFinish,
ResponseType.TEXT_START.value: StreamTextStart,
ResponseType.TEXT_DELTA.value: StreamTextDelta,
ResponseType.TEXT_END.value: StreamTextEnd,
ResponseType.TOOL_INPUT_START.value: StreamToolInputStart,
ResponseType.TOOL_INPUT_AVAILABLE.value: StreamToolInputAvailable,
ResponseType.TOOL_OUTPUT_AVAILABLE.value: StreamToolOutputAvailable,
ResponseType.ERROR.value: StreamError,
ResponseType.USAGE.value: StreamUsage,
ResponseType.HEARTBEAT.value: StreamHeartbeat,
}
chunk_type = chunk_data.get("type")
chunk_class = type_to_class.get(chunk_type) # type: ignore[arg-type]
if chunk_class is None:
logger.warning(f"Unknown chunk type: {chunk_type}")
return None
try:
return chunk_class(**chunk_data)
except Exception as e:
logger.warning(f"Failed to reconstruct chunk of type {chunk_type}: {e}")
return None
async def set_task_asyncio_task(task_id: str, asyncio_task: asyncio.Task) -> None:
"""Track the asyncio.Task for a task (local reference only).
This is just for cleanup purposes - the task state is in Redis.
Args:
task_id: Task ID
asyncio_task: The asyncio Task to track
"""
_local_tasks[task_id] = asyncio_task
async def unsubscribe_from_task(
task_id: str,
subscriber_queue: asyncio.Queue[StreamBaseResponse],
) -> None:
"""Clean up when a subscriber disconnects.
Cancels the XREAD-based listener task associated with this subscriber queue
to prevent resource leaks.
Args:
task_id: Task ID
subscriber_queue: The subscriber's queue used to look up the listener task
"""
queue_id = id(subscriber_queue)
listener_entry = _listener_tasks.pop(queue_id, None)
if listener_entry is None:
logger.debug(
f"No listener task found for task {task_id} queue {queue_id} "
"(may have already completed)"
)
return
stored_task_id, listener_task = listener_entry
if stored_task_id != task_id:
logger.warning(
f"Task ID mismatch in unsubscribe: expected {task_id}, "
f"found {stored_task_id}"
)
if listener_task.done():
logger.debug(f"Listener task for task {task_id} already completed")
return
# Cancel the listener task
listener_task.cancel()
try:
# Wait for the task to be cancelled with a timeout
await asyncio.wait_for(listener_task, timeout=5.0)
except asyncio.CancelledError:
# Expected - the task was successfully cancelled
pass
except asyncio.TimeoutError:
logger.warning(
f"Timeout waiting for listener task cancellation for task {task_id}"
)
except Exception as e:
logger.error(f"Error during listener task cancellation for task {task_id}: {e}")
logger.debug(f"Successfully unsubscribed from task {task_id}")

View File

@@ -0,0 +1,79 @@
# CoPilot Tools - Future Ideas
## Multimodal Image Support for CoPilot
**Problem:** CoPilot uses a vision-capable model but can't "see" workspace images. When a block generates an image and returns `workspace://abc123`, CoPilot can't evaluate it (e.g., checking blog thumbnail quality).
**Backend Solution:**
When preparing messages for the LLM, detect `workspace://` image references and convert them to proper image content blocks:
```python
# Before sending to LLM, scan for workspace image references
# and inject them as image content parts
# Example message transformation:
# FROM: {"role": "assistant", "content": "Generated image: workspace://abc123"}
# TO: {"role": "assistant", "content": [
# {"type": "text", "text": "Generated image: workspace://abc123"},
# {"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}}
# ]}
```
**Where to implement:**
- In the chat stream handler before calling the LLM
- Or in a message preprocessing step
- Need to fetch image from workspace, convert to base64, add as image content
**Considerations:**
- Only do this for image MIME types (image/png, image/jpeg, etc.)
- May want a size limit (don't pass 10MB images)
- Track which images were "shown" to the AI for frontend indicator
- Cost implications - vision API calls are more expensive
**Frontend Solution:**
Show visual indicator on workspace files in chat:
- If AI saw the image: normal display
- If AI didn't see it: overlay icon saying "AI can't see this image"
Requires response metadata indicating which `workspace://` refs were passed to the model.
---
## Output Post-Processing Layer for run_block
**Problem:** Many blocks produce large outputs that:
- Consume massive context (100KB base64 image = ~133KB tokens)
- Can't fit in conversation
- Break things and cause high LLM costs
**Proposed Solution:** Instead of modifying individual blocks or `store_media_file()`, implement a centralized output processor in `run_block.py` that handles outputs before they're returned to CoPilot.
**Benefits:**
1. **Centralized** - one place to handle all output processing
2. **Future-proof** - new blocks automatically get output processing
3. **Keeps blocks pure** - they don't need to know about context constraints
4. **Handles all large outputs** - not just images
**Processing Rules:**
- Detect base64 data URIs → save to workspace, return `workspace://` reference
- Truncate very long strings (>N chars) with truncation note
- Summarize large arrays/lists (e.g., "Array with 1000 items, first 5: [...]")
- Handle nested large outputs in dicts recursively
- Cap total output size
**Implementation Location:** `run_block.py` after block execution, before returning `BlockOutputResponse`
**Example:**
```python
def _process_outputs_for_context(
outputs: dict[str, list[Any]],
workspace_manager: WorkspaceManager,
max_string_length: int = 10000,
max_array_preview: int = 5,
) -> dict[str, list[Any]]:
"""Process block outputs to prevent context bloat."""
processed = {}
for name, values in outputs.items():
processed[name] = [_process_value(v, workspace_manager) for v in values]
return processed
```

View File

@@ -10,6 +10,7 @@ from .add_understanding import AddUnderstandingTool
from .agent_output import AgentOutputTool
from .base import BaseTool
from .create_agent import CreateAgentTool
from .customize_agent import CustomizeAgentTool
from .edit_agent import EditAgentTool
from .find_agent import FindAgentTool
from .find_block import FindBlockTool
@@ -18,6 +19,12 @@ from .get_doc_page import GetDocPageTool
from .run_agent import RunAgentTool
from .run_block import RunBlockTool
from .search_docs import SearchDocsTool
from .workspace_files import (
DeleteWorkspaceFileTool,
ListWorkspaceFilesTool,
ReadWorkspaceFileTool,
WriteWorkspaceFileTool,
)
if TYPE_CHECKING:
from backend.api.features.chat.response_model import StreamToolOutputAvailable
@@ -28,6 +35,7 @@ logger = logging.getLogger(__name__)
TOOL_REGISTRY: dict[str, BaseTool] = {
"add_understanding": AddUnderstandingTool(),
"create_agent": CreateAgentTool(),
"customize_agent": CustomizeAgentTool(),
"edit_agent": EditAgentTool(),
"find_agent": FindAgentTool(),
"find_block": FindBlockTool(),
@@ -37,6 +45,11 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
"view_agent_output": AgentOutputTool(),
"search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(),
# Workspace tools for CoPilot file operations
"list_workspace_files": ListWorkspaceFilesTool(),
"read_workspace_file": ReadWorkspaceFileTool(),
"write_workspace_file": WriteWorkspaceFileTool(),
"delete_workspace_file": DeleteWorkspaceFileTool(),
}
# Export individual tool instances for backwards compatibility

View File

@@ -2,27 +2,58 @@
from .core import (
AgentGeneratorNotConfiguredError,
AgentJsonValidationError,
AgentSummary,
DecompositionResult,
DecompositionStep,
LibraryAgentSummary,
MarketplaceAgentSummary,
customize_template,
decompose_goal,
enrich_library_agents_from_steps,
extract_search_terms_from_steps,
extract_uuids_from_text,
generate_agent,
generate_agent_patch,
get_agent_as_json,
get_all_relevant_agents_for_generation,
get_library_agent_by_graph_id,
get_library_agent_by_id,
get_library_agents_for_generation,
graph_to_json,
json_to_graph,
save_agent_to_library,
search_marketplace_agents_for_generation,
)
from .errors import get_user_message_for_error
from .service import health_check as check_external_service_health
from .service import is_external_service_configured
__all__ = [
# Core functions
"AgentGeneratorNotConfiguredError",
"AgentJsonValidationError",
"AgentSummary",
"DecompositionResult",
"DecompositionStep",
"LibraryAgentSummary",
"MarketplaceAgentSummary",
"check_external_service_health",
"customize_template",
"decompose_goal",
"enrich_library_agents_from_steps",
"extract_search_terms_from_steps",
"extract_uuids_from_text",
"generate_agent",
"generate_agent_patch",
"save_agent_to_library",
"get_agent_as_json",
"json_to_graph",
# Exceptions
"AgentGeneratorNotConfiguredError",
# Service
"get_all_relevant_agents_for_generation",
"get_library_agent_by_graph_id",
"get_library_agent_by_id",
"get_library_agents_for_generation",
"get_user_message_for_error",
"graph_to_json",
"is_external_service_configured",
"check_external_service_health",
"json_to_graph",
"save_agent_to_library",
"search_marketplace_agents_for_generation",
]

View File

@@ -1,13 +1,17 @@
"""Core agent generation functions."""
import logging
import re
import uuid
from typing import Any
from typing import Any, NotRequired, TypedDict
from backend.api.features.library import db as library_db
from backend.data.graph import Graph, Link, Node, create_graph
from backend.api.features.store import db as store_db
from backend.data.graph import Graph, Link, Node, get_graph, get_store_listed_graphs
from backend.util.exceptions import DatabaseError, NotFoundError
from .service import (
customize_template_external,
decompose_goal_external,
generate_agent_external,
generate_agent_patch_external,
@@ -17,6 +21,72 @@ from .service import (
logger = logging.getLogger(__name__)
class ExecutionSummary(TypedDict):
"""Summary of a single execution for quality assessment."""
status: str
correctness_score: NotRequired[float]
activity_summary: NotRequired[str]
class LibraryAgentSummary(TypedDict):
"""Summary of a library agent for sub-agent composition.
Includes recent executions to help the LLM decide whether to use this agent.
Each execution shows status, correctness_score (0-1), and activity_summary.
"""
graph_id: str
graph_version: int
name: str
description: str
input_schema: dict[str, Any]
output_schema: dict[str, Any]
recent_executions: NotRequired[list[ExecutionSummary]]
class MarketplaceAgentSummary(TypedDict):
"""Summary of a marketplace agent for sub-agent composition."""
name: str
description: str
sub_heading: str
creator: str
is_marketplace_agent: bool
class DecompositionStep(TypedDict, total=False):
"""A single step in decomposed instructions."""
description: str
action: str
block_name: str
tool: str
name: str
class DecompositionResult(TypedDict, total=False):
"""Result from decompose_goal - can be instructions, questions, or error."""
type: str
steps: list[DecompositionStep]
questions: list[dict[str, Any]]
error: str
error_type: str
AgentSummary = LibraryAgentSummary | MarketplaceAgentSummary | dict[str, Any]
def _to_dict_list(
agents: list[AgentSummary] | list[dict[str, Any]] | None,
) -> list[dict[str, Any]] | None:
"""Convert typed agent summaries to plain dicts for external service calls."""
if agents is None:
return None
return [dict(a) for a in agents]
class AgentGeneratorNotConfiguredError(Exception):
"""Raised when the external Agent Generator service is not configured."""
@@ -36,15 +106,422 @@ def _check_service_configured() -> None:
)
async def decompose_goal(description: str, context: str = "") -> dict[str, Any] | None:
_UUID_PATTERN = re.compile(
r"[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}",
re.IGNORECASE,
)
def extract_uuids_from_text(text: str) -> list[str]:
"""Extract all UUID v4 strings from text.
Args:
text: Text that may contain UUIDs (e.g., user's goal description)
Returns:
List of unique UUIDs found in the text (lowercase)
"""
matches = _UUID_PATTERN.findall(text)
return list({m.lower() for m in matches})
async def get_library_agent_by_id(
user_id: str, agent_id: str
) -> LibraryAgentSummary | None:
"""Fetch a specific library agent by its ID (library agent ID or graph_id).
This function tries multiple lookup strategies:
1. First tries to find by graph_id (AgentGraph primary key)
2. If not found, tries to find by library agent ID (LibraryAgent primary key)
This handles both cases:
- User provides graph_id (e.g., from AgentExecutorBlock)
- User provides library agent ID (e.g., from library URL)
Args:
user_id: The user ID
agent_id: The ID to look up (can be graph_id or library agent ID)
Returns:
LibraryAgentSummary if found, None otherwise
"""
try:
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
if agent:
logger.debug(f"Found library agent by graph_id: {agent.name}")
return LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
except DatabaseError:
raise
except Exception as e:
logger.debug(f"Could not fetch library agent by graph_id {agent_id}: {e}")
try:
agent = await library_db.get_library_agent(agent_id, user_id)
if agent:
logger.debug(f"Found library agent by library_id: {agent.name}")
return LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
except NotFoundError:
logger.debug(f"Library agent not found by library_id: {agent_id}")
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by library_id {agent_id}: {e}",
exc_info=True,
)
return None
get_library_agent_by_graph_id = get_library_agent_by_id
async def get_library_agents_for_generation(
user_id: str,
search_query: str | None = None,
exclude_graph_id: str | None = None,
max_results: int = 15,
) -> list[LibraryAgentSummary]:
"""Fetch user's library agents formatted for Agent Generator.
Uses search-based fetching to return relevant agents instead of all agents.
This is more scalable for users with large libraries.
Includes recent_executions list to help the LLM assess agent quality:
- Each execution has status, correctness_score (0-1), and activity_summary
- This gives the LLM concrete examples of recent performance
Args:
user_id: The user ID
search_query: Optional search term to find relevant agents (user's goal/description)
exclude_graph_id: Optional graph ID to exclude (prevents circular references)
max_results: Maximum number of agents to return (default 15)
Returns:
List of LibraryAgentSummary with schemas and recent executions for sub-agent composition
"""
try:
response = await library_db.list_library_agents(
user_id=user_id,
search_term=search_query,
page=1,
page_size=max_results,
include_executions=True,
)
results: list[LibraryAgentSummary] = []
for agent in response.agents:
if exclude_graph_id is not None and agent.graph_id == exclude_graph_id:
continue
summary = LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
if agent.recent_executions:
exec_summaries: list[ExecutionSummary] = []
for ex in agent.recent_executions:
exec_sum = ExecutionSummary(status=ex.status)
if ex.correctness_score is not None:
exec_sum["correctness_score"] = ex.correctness_score
if ex.activity_summary:
exec_sum["activity_summary"] = ex.activity_summary
exec_summaries.append(exec_sum)
summary["recent_executions"] = exec_summaries
results.append(summary)
return results
except DatabaseError:
raise
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
return []
async def search_marketplace_agents_for_generation(
search_query: str,
max_results: int = 10,
) -> list[LibraryAgentSummary]:
"""Search marketplace agents formatted for Agent Generator.
Fetches marketplace agents and their full schemas so they can be used
as sub-agents in generated workflows.
Args:
search_query: Search term to find relevant public agents
max_results: Maximum number of agents to return (default 10)
Returns:
List of LibraryAgentSummary with full input/output schemas
"""
try:
response = await store_db.get_store_agents(
search_query=search_query,
page=1,
page_size=max_results,
)
agents_with_graphs = [
agent for agent in response.agents if agent.agent_graph_id
]
if not agents_with_graphs:
return []
graph_ids = [agent.agent_graph_id for agent in agents_with_graphs]
graphs = await get_store_listed_graphs(*graph_ids)
results: list[LibraryAgentSummary] = []
for agent in agents_with_graphs:
graph_id = agent.agent_graph_id
if graph_id and graph_id in graphs:
graph = graphs[graph_id]
results.append(
LibraryAgentSummary(
graph_id=graph.id,
graph_version=graph.version,
name=agent.agent_name,
description=agent.description,
input_schema=graph.input_schema,
output_schema=graph.output_schema,
)
)
return results
except Exception as e:
logger.warning(f"Failed to search marketplace agents: {e}")
return []
async def get_all_relevant_agents_for_generation(
user_id: str,
search_query: str | None = None,
exclude_graph_id: str | None = None,
include_library: bool = True,
include_marketplace: bool = True,
max_library_results: int = 15,
max_marketplace_results: int = 10,
) -> list[AgentSummary]:
"""Fetch relevant agents from library and/or marketplace.
Searches both user's library and marketplace by default.
Explicitly mentioned UUIDs in the search query are always looked up.
Args:
user_id: The user ID
search_query: Search term to find relevant agents (user's goal/description)
exclude_graph_id: Optional graph ID to exclude (prevents circular references)
include_library: Whether to search user's library (default True)
include_marketplace: Whether to also search marketplace (default True)
max_library_results: Max library agents to return (default 15)
max_marketplace_results: Max marketplace agents to return (default 10)
Returns:
List of AgentSummary with full schemas (both library and marketplace agents)
"""
agents: list[AgentSummary] = []
seen_graph_ids: set[str] = set()
if search_query:
mentioned_uuids = extract_uuids_from_text(search_query)
for graph_id in mentioned_uuids:
if graph_id == exclude_graph_id:
continue
agent = await get_library_agent_by_graph_id(user_id, graph_id)
agent_graph_id = agent.get("graph_id") if agent else None
if agent and agent_graph_id and agent_graph_id not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(agent_graph_id)
logger.debug(
f"Found explicitly mentioned agent: {agent.get('name') or 'Unknown'}"
)
if include_library:
library_agents = await get_library_agents_for_generation(
user_id=user_id,
search_query=search_query,
exclude_graph_id=exclude_graph_id,
max_results=max_library_results,
)
for agent in library_agents:
graph_id = agent.get("graph_id")
if graph_id and graph_id not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(graph_id)
if include_marketplace and search_query:
marketplace_agents = await search_marketplace_agents_for_generation(
search_query=search_query,
max_results=max_marketplace_results,
)
for agent in marketplace_agents:
graph_id = agent.get("graph_id")
if graph_id and graph_id not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(graph_id)
return agents
def extract_search_terms_from_steps(
decomposition_result: DecompositionResult | dict[str, Any],
) -> list[str]:
"""Extract search terms from decomposed instruction steps.
Analyzes the decomposition result to extract relevant keywords
for additional library agent searches.
Args:
decomposition_result: Result from decompose_goal containing steps
Returns:
List of unique search terms extracted from steps
"""
search_terms: list[str] = []
if decomposition_result.get("type") != "instructions":
return search_terms
steps = decomposition_result.get("steps", [])
if not steps:
return search_terms
step_keys: list[str] = ["description", "action", "block_name", "tool", "name"]
for step in steps:
for key in step_keys:
value = step.get(key) # type: ignore[union-attr]
if isinstance(value, str) and len(value) > 3:
search_terms.append(value)
seen: set[str] = set()
unique_terms: list[str] = []
for term in search_terms:
term_lower = term.lower()
if term_lower not in seen:
seen.add(term_lower)
unique_terms.append(term)
return unique_terms
async def enrich_library_agents_from_steps(
user_id: str,
decomposition_result: DecompositionResult | dict[str, Any],
existing_agents: list[AgentSummary] | list[dict[str, Any]],
exclude_graph_id: str | None = None,
include_marketplace: bool = True,
max_additional_results: int = 10,
) -> list[AgentSummary] | list[dict[str, Any]]:
"""Enrich library agents list with additional searches based on decomposed steps.
This implements two-phase search: after decomposition, we search for additional
relevant agents based on the specific steps identified.
Args:
user_id: The user ID
decomposition_result: Result from decompose_goal containing steps
existing_agents: Already fetched library agents from initial search
exclude_graph_id: Optional graph ID to exclude
include_marketplace: Whether to also search marketplace
max_additional_results: Max additional agents per search term (default 10)
Returns:
Combined list of library agents (existing + newly discovered)
"""
search_terms = extract_search_terms_from_steps(decomposition_result)
if not search_terms:
return existing_agents
existing_ids: set[str] = set()
existing_names: set[str] = set()
for agent in existing_agents:
agent_name = agent.get("name")
if agent_name and isinstance(agent_name, str):
existing_names.add(agent_name.lower())
graph_id = agent.get("graph_id") # type: ignore[call-overload]
if graph_id and isinstance(graph_id, str):
existing_ids.add(graph_id)
all_agents: list[AgentSummary] | list[dict[str, Any]] = list(existing_agents)
for term in search_terms[:3]:
try:
additional_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=term,
exclude_graph_id=exclude_graph_id,
include_marketplace=include_marketplace,
max_library_results=max_additional_results,
max_marketplace_results=5,
)
for agent in additional_agents:
agent_name = agent.get("name")
if not agent_name or not isinstance(agent_name, str):
continue
agent_name_lower = agent_name.lower()
if agent_name_lower in existing_names:
continue
graph_id = agent.get("graph_id") # type: ignore[call-overload]
if graph_id and graph_id in existing_ids:
continue
all_agents.append(agent)
existing_names.add(agent_name_lower)
if graph_id and isinstance(graph_id, str):
existing_ids.add(graph_id)
except DatabaseError:
logger.error(f"Database error searching for agents with term '{term}'")
raise
except Exception as e:
logger.warning(
f"Failed to search for additional agents with term '{term}': {e}"
)
logger.debug(
f"Enriched library agents: {len(existing_agents)} initial + "
f"{len(all_agents) - len(existing_agents)} additional = {len(all_agents)} total"
)
return all_agents
async def decompose_goal(
description: str,
context: str = "",
library_agents: list[AgentSummary] | None = None,
) -> DecompositionResult | None:
"""Break down a goal into steps or return clarifying questions.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
library_agents: User's library agents available for sub-agent composition
Returns:
Dict with either:
DecompositionResult with either:
- {"type": "clarifying_questions", "questions": [...]}
- {"type": "instructions", "steps": [...]}
Or None on error
@@ -54,26 +531,47 @@ async def decompose_goal(description: str, context: str = "") -> dict[str, Any]
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for decompose_goal")
return await decompose_goal_external(description, context)
result = await decompose_goal_external(
description, context, _to_dict_list(library_agents)
)
return result # type: ignore[return-value]
async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
async def generate_agent(
instructions: DecompositionResult | dict[str, Any],
library_agents: list[AgentSummary] | list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any] | None:
"""Generate agent JSON from instructions.
Args:
instructions: Structured instructions from decompose_goal
library_agents: User's library agents available for sub-agent composition
operation_id: Operation ID for async processing (enables Redis Streams
completion notification)
task_id: Task ID for async processing (enables Redis Streams persistence
and SSE delivery)
Returns:
Agent JSON dict or None on error
Agent JSON dict, {"status": "accepted"} for async, error dict {"type": "error", ...}, or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent")
result = await generate_agent_external(instructions)
result = await generate_agent_external(
dict(instructions), _to_dict_list(library_agents), operation_id, task_id
)
# Don't modify async response
if result and result.get("status") == "accepted":
return result
if result:
# Ensure required fields
if isinstance(result, dict) and result.get("type") == "error":
return result
if "id" not in result:
result["id"] = str(uuid.uuid4())
if "version" not in result:
@@ -83,6 +581,12 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
return result
class AgentJsonValidationError(Exception):
"""Raised when agent JSON is invalid or missing required fields."""
pass
def json_to_graph(agent_json: dict[str, Any]) -> Graph:
"""Convert agent JSON dict to Graph model.
@@ -91,25 +595,55 @@ def json_to_graph(agent_json: dict[str, Any]) -> Graph:
Returns:
Graph ready for saving
Raises:
AgentJsonValidationError: If required fields are missing from nodes or links
"""
nodes = []
for n in agent_json.get("nodes", []):
for idx, n in enumerate(agent_json.get("nodes", [])):
block_id = n.get("block_id")
if not block_id:
node_id = n.get("id", f"index_{idx}")
raise AgentJsonValidationError(
f"Node '{node_id}' is missing required field 'block_id'"
)
node = Node(
id=n.get("id", str(uuid.uuid4())),
block_id=n["block_id"],
block_id=block_id,
input_default=n.get("input_default", {}),
metadata=n.get("metadata", {}),
)
nodes.append(node)
links = []
for link_data in agent_json.get("links", []):
for idx, link_data in enumerate(agent_json.get("links", [])):
source_id = link_data.get("source_id")
sink_id = link_data.get("sink_id")
source_name = link_data.get("source_name")
sink_name = link_data.get("sink_name")
missing_fields = []
if not source_id:
missing_fields.append("source_id")
if not sink_id:
missing_fields.append("sink_id")
if not source_name:
missing_fields.append("source_name")
if not sink_name:
missing_fields.append("sink_name")
if missing_fields:
link_id = link_data.get("id", f"index_{idx}")
raise AgentJsonValidationError(
f"Link '{link_id}' is missing required fields: {', '.join(missing_fields)}"
)
link = Link(
id=link_data.get("id", str(uuid.uuid4())),
source_id=link_data["source_id"],
sink_id=link_data["sink_id"],
source_name=link_data["source_name"],
sink_name=link_data["sink_name"],
source_id=source_id,
sink_id=sink_id,
source_name=source_name,
sink_name=sink_name,
is_static=link_data.get("is_static", False),
)
links.append(link)
@@ -125,27 +659,6 @@ def json_to_graph(agent_json: dict[str, Any]) -> Graph:
)
def _reassign_node_ids(graph: Graph) -> None:
"""Reassign all node and link IDs to new UUIDs.
This is needed when creating a new version to avoid unique constraint violations.
"""
# Create mapping from old node IDs to new UUIDs
id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes}
# Reassign node IDs
for node in graph.nodes:
node.id = id_map[node.id]
# Update link references to use new node IDs
for link in graph.links:
link.id = str(uuid.uuid4()) # Also give links new IDs
if link.source_id in id_map:
link.source_id = id_map[link.source_id]
if link.sink_id in id_map:
link.sink_id = id_map[link.sink_id]
async def save_agent_to_library(
agent_json: dict[str, Any], user_id: str, is_update: bool = False
) -> tuple[Graph, Any]:
@@ -159,63 +672,21 @@ async def save_agent_to_library(
Returns:
Tuple of (created Graph, LibraryAgent)
"""
from backend.data.graph import get_graph_all_versions
graph = json_to_graph(agent_json)
if is_update:
# For updates, keep the same graph ID but increment version
# and reassign node/link IDs to avoid conflicts
if graph.id:
existing_versions = await get_graph_all_versions(graph.id, user_id)
if existing_versions:
latest_version = max(v.version for v in existing_versions)
graph.version = latest_version + 1
# Reassign node IDs (but keep graph ID the same)
_reassign_node_ids(graph)
logger.info(f"Updating agent {graph.id} to version {graph.version}")
else:
# For new agents, always generate a fresh UUID to avoid collisions
graph.id = str(uuid.uuid4())
graph.version = 1
# Reassign all node IDs as well
_reassign_node_ids(graph)
logger.info(f"Creating new agent with ID {graph.id}")
# Save to database
created_graph = await create_graph(graph, user_id)
# Add to user's library (or update existing library agent)
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
return created_graph, library_agents[0]
return await library_db.update_graph_in_library(graph, user_id)
return await library_db.create_graph_in_library(graph, user_id)
async def get_agent_as_json(
graph_id: str, user_id: str | None
) -> dict[str, Any] | None:
"""Fetch an agent and convert to JSON format for editing.
def graph_to_json(graph: Graph) -> dict[str, Any]:
"""Convert a Graph object to JSON format for the agent generator.
Args:
graph_id: Graph ID or library agent ID
user_id: User ID
graph: Graph object to convert
Returns:
Agent as JSON dict or None if not found
Agent as JSON dict
"""
from backend.data.graph import get_graph
# Try to get the graph (version=None gets the active version)
graph = await get_graph(graph_id, version=None, user_id=user_id)
if not graph:
return None
# Convert to JSON format
nodes = []
for node in graph.nodes:
nodes.append(
@@ -252,8 +723,41 @@ async def get_agent_as_json(
}
async def get_agent_as_json(
agent_id: str, user_id: str | None
) -> dict[str, Any] | None:
"""Fetch an agent and convert to JSON format for editing.
Args:
agent_id: Graph ID or library agent ID
user_id: User ID
Returns:
Agent as JSON dict or None if not found
"""
graph = await get_graph(agent_id, version=None, user_id=user_id)
if not graph and user_id:
try:
library_agent = await library_db.get_library_agent(agent_id, user_id)
graph = await get_graph(
library_agent.graph_id, version=None, user_id=user_id
)
except NotFoundError:
pass
if not graph:
return None
return graph_to_json(graph)
async def generate_agent_patch(
update_request: str, current_agent: dict[str, Any]
update_request: str,
current_agent: dict[str, Any],
library_agents: list[AgentSummary] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any] | None:
"""Update an existing agent using natural language.
@@ -265,13 +769,57 @@ async def generate_agent_patch(
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
library_agents: User's library agents available for sub-agent composition
operation_id: Operation ID for async processing (enables Redis Streams callback)
task_id: Task ID for async processing (enables Redis Streams callback)
Returns:
Updated agent JSON, clarifying questions dict, or None on error
Updated agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
{"status": "accepted"} for async, error dict {"type": "error", ...}, or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent_patch")
return await generate_agent_patch_external(update_request, current_agent)
return await generate_agent_patch_external(
update_request,
current_agent,
_to_dict_list(library_agents),
operation_id,
task_id,
)
async def customize_template(
template_agent: dict[str, Any],
modification_request: str,
context: str = "",
) -> dict[str, Any] | None:
"""Customize a template/marketplace agent using natural language.
This is used when users want to modify a template or marketplace agent
to fit their specific needs before adding it to their library.
The external Agent Generator service handles:
- Understanding the modification request
- Applying changes to the template
- Fixing and validating the result
Args:
template_agent: The template agent JSON to customize
modification_request: Natural language description of customizations
context: Additional context (e.g., answers to previous questions)
Returns:
Customized agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
error dict {"type": "error", ...}, or None on unexpected error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for customize_template")
return await customize_template_external(
template_agent, modification_request, context
)

View File

@@ -0,0 +1,95 @@
"""Error handling utilities for agent generator."""
import re
def _sanitize_error_details(details: str) -> str:
"""Sanitize error details to remove sensitive information.
Strips common patterns that could expose internal system info:
- File paths (Unix and Windows)
- Database connection strings
- URLs with credentials
- Stack trace internals
Args:
details: Raw error details string
Returns:
Sanitized error details safe for user display
"""
sanitized = re.sub(
r"/[a-zA-Z0-9_./\-]+\.(py|js|ts|json|yaml|yml)", "[path]", details
)
sanitized = re.sub(r"[A-Z]:\\[a-zA-Z0-9_\\.\\-]+", "[path]", sanitized)
sanitized = re.sub(
r"(postgres|mysql|mongodb|redis)://[^\s]+", "[database_url]", sanitized
)
sanitized = re.sub(r"https?://[^:]+:[^@]+@[^\s]+", "[url]", sanitized)
sanitized = re.sub(r", line \d+", "", sanitized)
sanitized = re.sub(r'File "[^"]+",?', "", sanitized)
return sanitized.strip()
def get_user_message_for_error(
error_type: str,
operation: str = "process the request",
llm_parse_message: str | None = None,
validation_message: str | None = None,
error_details: str | None = None,
) -> str:
"""Get a user-friendly error message based on error type.
This function maps internal error types to user-friendly messages,
providing a consistent experience across different agent operations.
Args:
error_type: The error type from the external service
(e.g., "llm_parse_error", "timeout", "rate_limit")
operation: Description of what operation failed, used in the default
message (e.g., "analyze the goal", "generate the agent")
llm_parse_message: Custom message for llm_parse_error type
validation_message: Custom message for validation_error type
error_details: Optional additional details about the error
Returns:
User-friendly error message suitable for display to the user
"""
base_message = ""
if error_type == "llm_parse_error":
base_message = (
llm_parse_message
or "The AI had trouble processing this request. Please try again."
)
elif error_type == "validation_error":
base_message = (
validation_message
or "The generated agent failed validation. "
"This usually happens when the agent structure doesn't match "
"what the platform expects. Please try simplifying your goal "
"or breaking it into smaller parts."
)
elif error_type == "patch_error":
base_message = (
"Failed to apply the changes. The modification couldn't be "
"validated. Please try a different approach or simplify the change."
)
elif error_type in ("timeout", "llm_timeout"):
base_message = (
"The request took too long to process. This can happen with "
"complex agents. Please try again or simplify your goal."
)
elif error_type in ("rate_limit", "llm_rate_limit"):
base_message = "The service is currently busy. Please try again in a moment."
else:
base_message = f"Failed to {operation}. Please try again."
if error_details:
details = _sanitize_error_details(error_details)
if len(details) > 200:
details = details[:200] + "..."
base_message += f"\n\nTechnical details: {details}"
return base_message

View File

@@ -14,6 +14,70 @@ from backend.util.settings import Settings
logger = logging.getLogger(__name__)
def _create_error_response(
error_message: str,
error_type: str = "unknown",
details: dict[str, Any] | None = None,
) -> dict[str, Any]:
"""Create a standardized error response dict.
Args:
error_message: Human-readable error message
error_type: Machine-readable error type
details: Optional additional error details
Returns:
Error dict with type="error" and error details
"""
response: dict[str, Any] = {
"type": "error",
"error": error_message,
"error_type": error_type,
}
if details:
response["details"] = details
return response
def _classify_http_error(e: httpx.HTTPStatusError) -> tuple[str, str]:
"""Classify an HTTP error into error_type and message.
Args:
e: The HTTP status error
Returns:
Tuple of (error_type, error_message)
"""
status = e.response.status_code
if status == 429:
return "rate_limit", f"Agent Generator rate limited: {e}"
elif status == 503:
return "service_unavailable", f"Agent Generator unavailable: {e}"
elif status == 504 or status == 408:
return "timeout", f"Agent Generator timed out: {e}"
else:
return "http_error", f"HTTP error calling Agent Generator: {e}"
def _classify_request_error(e: httpx.RequestError) -> tuple[str, str]:
"""Classify a request error into error_type and message.
Args:
e: The request error
Returns:
Tuple of (error_type, error_message)
"""
error_str = str(e).lower()
if "timeout" in error_str or "timed out" in error_str:
return "timeout", f"Agent Generator request timed out: {e}"
elif "connect" in error_str:
return "connection_error", f"Could not connect to Agent Generator: {e}"
else:
return "request_error", f"Request error calling Agent Generator: {e}"
_client: httpx.AsyncClient | None = None
_settings: Settings | None = None
@@ -53,13 +117,16 @@ def _get_client() -> httpx.AsyncClient:
async def decompose_goal_external(
description: str, context: str = ""
description: str,
context: str = "",
library_agents: list[dict[str, Any]] | None = None,
) -> dict[str, Any] | None:
"""Call the external service to decompose a goal.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
library_agents: User's library agents available for sub-agent composition
Returns:
Dict with either:
@@ -67,15 +134,17 @@ async def decompose_goal_external(
- {"type": "instructions", "steps": [...]}
- {"type": "unachievable_goal", ...}
- {"type": "vague_goal", ...}
Or None on error
- {"type": "error", "error": "...", "error_type": "..."} on error
Or None on unexpected error
"""
client = _get_client()
# Build the request payload
payload: dict[str, Any] = {"description": description}
if context:
# The external service uses user_instruction for additional context
payload["user_instruction"] = context
description = f"{description}\n\nAdditional context from user:\n{context}"
payload: dict[str, Any] = {"description": description}
if library_agents:
payload["library_agents"] = library_agents
try:
response = await client.post("/api/decompose-description", json=payload)
@@ -83,8 +152,13 @@ async def decompose_goal_external(
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator decomposition failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
# Map the response to the expected format
response_type = data.get("type")
@@ -106,88 +180,162 @@ async def decompose_goal_external(
"type": "vague_goal",
"suggested_goal": data.get("suggested_goal"),
}
elif response_type == "error":
# Pass through error from the service
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
else:
logger.error(
f"Unknown response type from external service: {response_type}"
)
return None
return _create_error_response(
f"Unknown response type from Agent Generator: {response_type}",
"invalid_response",
)
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def generate_agent_external(
instructions: dict[str, Any]
instructions: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any] | None:
"""Call the external service to generate an agent from instructions.
Args:
instructions: Structured instructions from decompose_goal
library_agents: User's library agents available for sub-agent composition
operation_id: Operation ID for async processing (enables Redis Streams callback)
task_id: Task ID for async processing (enables Redis Streams callback)
Returns:
Agent JSON dict or None on error
Agent JSON dict, {"status": "accepted"} for async, or error dict {"type": "error", ...} on error
"""
client = _get_client()
# Build request payload
payload: dict[str, Any] = {"instructions": instructions}
if library_agents:
payload["library_agents"] = library_agents
if operation_id and task_id:
payload["operation_id"] = operation_id
payload["task_id"] = task_id
try:
response = await client.post(
"/api/generate-agent", json={"instructions": instructions}
)
response = await client.post("/api/generate-agent", json=payload)
# Handle 202 Accepted for async processing
if response.status_code == 202:
logger.info(
f"Agent Generator accepted async request "
f"(operation_id={operation_id}, task_id={task_id})"
)
return {
"status": "accepted",
"operation_id": operation_id,
"task_id": task_id,
}
response.raise_for_status()
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator generation failed: {error_msg} (type: {error_type})"
)
return _create_error_response(error_msg, error_type)
return data.get("agent_json")
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def generate_agent_patch_external(
update_request: str, current_agent: dict[str, Any]
update_request: str,
current_agent: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any] | None:
"""Call the external service to generate a patch for an existing agent.
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
library_agents: User's library agents available for sub-agent composition
operation_id: Operation ID for async processing (enables Redis Streams callback)
task_id: Task ID for async processing (enables Redis Streams callback)
Returns:
Updated agent JSON, clarifying questions dict, or None on error
Updated agent JSON, clarifying questions dict, {"status": "accepted"} for async, or error dict on error
"""
client = _get_client()
# Build request payload
payload: dict[str, Any] = {
"update_request": update_request,
"current_agent_json": current_agent,
}
if library_agents:
payload["library_agents"] = library_agents
if operation_id and task_id:
payload["operation_id"] = operation_id
payload["task_id"] = task_id
try:
response = await client.post(
"/api/update-agent",
json={
"update_request": update_request,
"current_agent_json": current_agent,
},
)
response = await client.post("/api/update-agent", json=payload)
# Handle 202 Accepted for async processing
if response.status_code == 202:
logger.info(
f"Agent Generator accepted async update request "
f"(operation_id={operation_id}, task_id={task_id})"
)
return {
"status": "accepted",
"operation_id": operation_id,
"task_id": task_id,
}
response.raise_for_status()
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator patch generation failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
# Check if it's clarifying questions
if data.get("type") == "clarifying_questions":
@@ -196,18 +344,99 @@ async def generate_agent_patch_external(
"questions": data.get("questions", []),
}
# Check if it's an error passed through
if data.get("type") == "error":
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
# Otherwise return the updated agent JSON
return data.get("agent_json")
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def customize_template_external(
template_agent: dict[str, Any],
modification_request: str,
context: str = "",
) -> dict[str, Any] | None:
"""Call the external service to customize a template/marketplace agent.
Args:
template_agent: The template agent JSON to customize
modification_request: Natural language description of customizations
context: Additional context (e.g., answers to previous questions)
Returns:
Customized agent JSON, clarifying questions dict, or error dict on error
"""
client = _get_client()
request = modification_request
if context:
request = f"{modification_request}\n\nAdditional context from user:\n{context}"
payload: dict[str, Any] = {
"template_agent_json": template_agent,
"modification_request": request,
}
try:
response = await client.post("/api/template-modification", json=payload)
response.raise_for_status()
data = response.json()
if not data.get("success"):
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator template customization failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
# Check if it's clarifying questions
if data.get("type") == "clarifying_questions":
return {
"type": "clarifying_questions",
"questions": data.get("questions", []),
}
# Check if it's an error passed through
if data.get("type") == "error":
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
# Otherwise return the customized agent JSON
return data.get("agent_json")
except httpx.HTTPStatusError as e:
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e:
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e:
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def get_blocks_external() -> list[dict[str, Any]] | None:

View File

@@ -1,13 +1,11 @@
"""Shared agent search functionality for find_agent and find_library_agent tools."""
import asyncio
import logging
import re
from typing import Literal
from backend.api.features.library import db as library_db
from backend.api.features.store import db as store_db
from backend.data import graph as graph_db
from backend.data.graph import GraphModel
from backend.util.exceptions import DatabaseError, NotFoundError
from .models import (
@@ -17,12 +15,90 @@ from .models import (
NoResultsResponse,
ToolResponseBase,
)
from .utils import fetch_graph_from_store_slug
logger = logging.getLogger(__name__)
SearchSource = Literal["marketplace", "library"]
_UUID_PATTERN = re.compile(
r"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$",
re.IGNORECASE,
)
def _is_uuid(text: str) -> bool:
"""Check if text is a valid UUID v4."""
return bool(_UUID_PATTERN.match(text.strip()))
async def _get_library_agent_by_id(user_id: str, agent_id: str) -> AgentInfo | None:
"""Fetch a library agent by ID (library agent ID or graph_id).
Tries multiple lookup strategies:
1. First by graph_id (AgentGraph primary key)
2. Then by library agent ID (LibraryAgent primary key)
Args:
user_id: The user ID
agent_id: The ID to look up (can be graph_id or library agent ID)
Returns:
AgentInfo if found, None otherwise
"""
try:
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
if agent:
logger.debug(f"Found library agent by graph_id: {agent.name}")
return AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by graph_id {agent_id}: {e}",
exc_info=True,
)
try:
agent = await library_db.get_library_agent(agent_id, user_id)
if agent:
logger.debug(f"Found library agent by library_id: {agent.name}")
return AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
except NotFoundError:
logger.debug(f"Library agent not found by library_id: {agent_id}")
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by library_id {agent_id}: {e}",
exc_info=True,
)
return None
async def search_agents(
query: str,
@@ -58,28 +134,7 @@ async def search_agents(
if source == "marketplace":
logger.info(f"Searching marketplace for: {query}")
results = await store_db.get_store_agents(search_query=query, page_size=5)
# Fetch all graphs in parallel for better performance
async def fetch_marketplace_graph(
creator: str, slug: str
) -> GraphModel | None:
try:
graph, _ = await fetch_graph_from_store_slug(creator, slug)
return graph
except Exception as e:
logger.warning(
f"Failed to fetch input schema for {creator}/{slug}: {e}"
)
return None
graphs = await asyncio.gather(
*(
fetch_marketplace_graph(agent.creator, agent.slug)
for agent in results.agents
)
)
for agent, graph in zip(results.agents, graphs):
for agent in results.agents:
agents.append(
AgentInfo(
id=f"{agent.creator}/{agent.slug}",
@@ -92,58 +147,39 @@ async def search_agents(
rating=agent.rating,
runs=agent.runs,
is_featured=False,
inputs=graph.input_schema if graph else None,
)
)
else: # library
logger.info(f"Searching user library for: {query}")
results = await library_db.list_library_agents(
user_id=user_id, # type: ignore[arg-type]
search_term=query,
page_size=10,
)
else:
if _is_uuid(query):
logger.info(f"Query looks like UUID, trying direct lookup: {query}")
agent = await _get_library_agent_by_id(user_id, query) # type: ignore[arg-type]
if agent:
agents.append(agent)
logger.info(f"Found agent by direct ID lookup: {agent.name}")
# Fetch all graphs in parallel for better performance
# (list_library_agents doesn't include nodes for performance)
async def fetch_library_graph(
graph_id: str, graph_version: int
) -> GraphModel | None:
try:
return await graph_db.get_graph(
graph_id=graph_id,
version=graph_version,
user_id=user_id,
)
except Exception as e:
logger.warning(
f"Failed to fetch input schema for graph {graph_id}: {e}"
)
return None
graphs = await asyncio.gather(
*(
fetch_library_graph(agent.graph_id, agent.graph_version)
for agent in results.agents
if not agents:
logger.info(f"Searching user library for: {query}")
results = await library_db.list_library_agents(
user_id=user_id, # type: ignore[arg-type]
search_term=query,
page_size=10,
)
)
for agent, graph in zip(results.agents, graphs):
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
inputs=graph.input_schema if graph else None,
for agent in results.agents:
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
)
)
logger.info(f"Found {len(agents)} agents in {source}")
except NotFoundError:
pass
@@ -170,9 +206,9 @@ async def search_agents(
]
)
no_results_msg = (
f"No agents found matching '{query}'. Try different keywords or browse the marketplace."
f"No agents found matching '{query}'. Let the user know they can try different keywords or browse the marketplace. Also let them know you can create a custom agent for them based on their needs."
if source == "marketplace"
else f"No agents matching '{query}' found in your library."
else f"No agents matching '{query}' found in your library. Let the user know you can create a custom agent for them based on their needs."
)
return NoResultsResponse(
message=no_results_msg, session_id=session_id, suggestions=suggestions
@@ -188,10 +224,10 @@ async def search_agents(
message = (
"Now you have found some options for the user to choose from. "
"You can add a link to a recommended agent at: /marketplace/agent/agent_id "
"Please ask the user if they would like to use any of these agents."
"Please ask the user if they would like to use any of these agents. Let the user know we can create a custom agent for them based on their needs."
if source == "marketplace"
else "Found agents in the user's library. You can provide a link to view an agent at: "
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute."
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute. Let the user know we can create a custom agent for them based on their needs."
)
return AgentsFoundResponse(

View File

@@ -8,13 +8,17 @@ from backend.api.features.chat.model import ChatSession
from .agent_generator import (
AgentGeneratorNotConfiguredError,
decompose_goal,
enrich_library_agents_from_steps,
generate_agent,
get_all_relevant_agents_for_generation,
get_user_message_for_error,
save_agent_to_library,
)
from .base import BaseTool
from .models import (
AgentPreviewResponse,
AgentSavedResponse,
AsyncProcessingResponse,
ClarificationNeededResponse,
ClarifyingQuestion,
ErrorResponse,
@@ -95,6 +99,10 @@ class CreateAgentTool(BaseTool):
save = kwargs.get("save", True)
session_id = session.session_id if session else None
# Extract async processing params (passed by long-running tool handler)
operation_id = kwargs.get("_operation_id")
task_id = kwargs.get("_task_id")
if not description:
return ErrorResponse(
message="Please provide a description of what the agent should do.",
@@ -102,9 +110,24 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Step 1: Decompose goal into steps
library_agents = None
if user_id:
try:
library_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=description,
include_marketplace=True,
)
logger.debug(
f"Found {len(library_agents)} relevant agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
try:
decomposition_result = await decompose_goal(description, context)
decomposition_result = await decompose_goal(
description, context, library_agents
)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -117,15 +140,31 @@ class CreateAgentTool(BaseTool):
if decomposition_result is None:
return ErrorResponse(
message="Failed to analyze the goal. The agent generation service may be unavailable or timed out. Please try again.",
message="Failed to analyze the goal. The agent generation service may be unavailable. Please try again.",
error="decomposition_failed",
details={
"description": description[:100]
}, # Include context for debugging
details={"description": description[:100]},
session_id=session_id,
)
if decomposition_result.get("type") == "error":
error_msg = decomposition_result.get("error", "Unknown error")
error_type = decomposition_result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="analyze the goal",
llm_parse_message="The AI had trouble understanding this request. Please try rephrasing your goal.",
)
return ErrorResponse(
message=user_message,
error=f"decomposition_failed:{error_type}",
details={
"description": description[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)
# Check if LLM returned clarifying questions
if decomposition_result.get("type") == "clarifying_questions":
questions = decomposition_result.get("questions", [])
return ClarificationNeededResponse(
@@ -144,7 +183,6 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Check for unachievable/vague goals
if decomposition_result.get("type") == "unachievable_goal":
suggested = decomposition_result.get("suggested_goal", "")
reason = decomposition_result.get("reason", "")
@@ -171,9 +209,27 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Step 2: Generate agent JSON (external service handles fixing and validation)
if user_id and library_agents is not None:
try:
library_agents = await enrich_library_agents_from_steps(
user_id=user_id,
decomposition_result=decomposition_result,
existing_agents=library_agents,
include_marketplace=True,
)
logger.debug(
f"After enrichment: {len(library_agents)} total agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to enrich library agents from steps: {e}")
try:
agent_json = await generate_agent(decomposition_result)
agent_json = await generate_agent(
decomposition_result,
library_agents,
operation_id=operation_id,
task_id=task_id,
)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -186,11 +242,47 @@ class CreateAgentTool(BaseTool):
if agent_json is None:
return ErrorResponse(
message="Failed to generate the agent. The agent generation service may be unavailable or timed out. Please try again.",
message="Failed to generate the agent. The agent generation service may be unavailable. Please try again.",
error="generation_failed",
details={"description": description[:100]},
session_id=session_id,
)
if isinstance(agent_json, dict) and agent_json.get("type") == "error":
error_msg = agent_json.get("error", "Unknown error")
error_type = agent_json.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="generate the agent",
llm_parse_message="The AI had trouble generating the agent. Please try again or simplify your goal.",
validation_message=(
"I wasn't able to create a valid agent for this request. "
"The generated workflow had some structural issues. "
"Please try simplifying your goal or breaking it into smaller steps."
),
error_details=error_msg,
)
return ErrorResponse(
message=user_message,
error=f"generation_failed:{error_type}",
details={
"description": description[:100]
}, # Include context for debugging
"description": description[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)
# Check if Agent Generator accepted for async processing
if agent_json.get("status") == "accepted":
logger.info(
f"Agent generation delegated to async processing "
f"(operation_id={operation_id}, task_id={task_id})"
)
return AsyncProcessingResponse(
message="Agent generation started. You'll be notified when it's complete.",
operation_id=operation_id,
task_id=task_id,
session_id=session_id,
)
@@ -199,7 +291,6 @@ class CreateAgentTool(BaseTool):
node_count = len(agent_json.get("nodes", []))
link_count = len(agent_json.get("links", []))
# Step 3: Preview or save
if not save:
return AgentPreviewResponse(
message=(
@@ -214,7 +305,6 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Save to library
if not user_id:
return ErrorResponse(
message="You must be logged in to save agents.",
@@ -232,7 +322,7 @@ class CreateAgentTool(BaseTool):
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/{library_agent.id}",
library_agent_link=f"/library/agents/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)

View File

@@ -0,0 +1,337 @@
"""CustomizeAgentTool - Customizes marketplace/template agents using natural language."""
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.store import db as store_db
from backend.api.features.store.exceptions import AgentNotFoundError
from .agent_generator import (
AgentGeneratorNotConfiguredError,
customize_template,
get_user_message_for_error,
graph_to_json,
save_agent_to_library,
)
from .base import BaseTool
from .models import (
AgentPreviewResponse,
AgentSavedResponse,
ClarificationNeededResponse,
ClarifyingQuestion,
ErrorResponse,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
class CustomizeAgentTool(BaseTool):
"""Tool for customizing marketplace/template agents using natural language."""
@property
def name(self) -> str:
return "customize_agent"
@property
def description(self) -> str:
return (
"Customize a marketplace or template agent using natural language. "
"Takes an existing agent from the marketplace and modifies it based on "
"the user's requirements before adding to their library."
)
@property
def requires_auth(self) -> bool:
return True
@property
def is_long_running(self) -> bool:
return True
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"agent_id": {
"type": "string",
"description": (
"The marketplace agent ID in format 'creator/slug' "
"(e.g., 'autogpt/newsletter-writer'). "
"Get this from find_agent results."
),
},
"modifications": {
"type": "string",
"description": (
"Natural language description of how to customize the agent. "
"Be specific about what changes you want to make."
),
},
"context": {
"type": "string",
"description": (
"Additional context or answers to previous clarifying questions."
),
},
"save": {
"type": "boolean",
"description": (
"Whether to save the customized agent to the user's library. "
"Default is true. Set to false for preview only."
),
"default": True,
},
},
"required": ["agent_id", "modifications"],
}
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Execute the customize_agent tool.
Flow:
1. Parse the agent ID to get creator/slug
2. Fetch the template agent from the marketplace
3. Call customize_template with the modification request
4. Preview or save based on the save parameter
"""
agent_id = kwargs.get("agent_id", "").strip()
modifications = kwargs.get("modifications", "").strip()
context = kwargs.get("context", "")
save = kwargs.get("save", True)
session_id = session.session_id if session else None
if not agent_id:
return ErrorResponse(
message="Please provide the marketplace agent ID (e.g., 'creator/agent-name').",
error="missing_agent_id",
session_id=session_id,
)
if not modifications:
return ErrorResponse(
message="Please describe how you want to customize this agent.",
error="missing_modifications",
session_id=session_id,
)
# Parse agent_id in format "creator/slug"
parts = [p.strip() for p in agent_id.split("/")]
if len(parts) != 2 or not parts[0] or not parts[1]:
return ErrorResponse(
message=(
f"Invalid agent ID format: '{agent_id}'. "
"Expected format is 'creator/agent-name' "
"(e.g., 'autogpt/newsletter-writer')."
),
error="invalid_agent_id_format",
session_id=session_id,
)
creator_username, agent_slug = parts
# Fetch the marketplace agent details
try:
agent_details = await store_db.get_store_agent_details(
username=creator_username, agent_name=agent_slug
)
except AgentNotFoundError:
return ErrorResponse(
message=(
f"Could not find marketplace agent '{agent_id}'. "
"Please check the agent ID and try again."
),
error="agent_not_found",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error fetching marketplace agent {agent_id}: {e}")
return ErrorResponse(
message="Failed to fetch the marketplace agent. Please try again.",
error="fetch_error",
session_id=session_id,
)
if not agent_details.store_listing_version_id:
return ErrorResponse(
message=(
f"The agent '{agent_id}' does not have an available version. "
"Please try a different agent."
),
error="no_version_available",
session_id=session_id,
)
# Get the full agent graph
try:
graph = await store_db.get_agent(agent_details.store_listing_version_id)
template_agent = graph_to_json(graph)
except Exception as e:
logger.error(f"Error fetching agent graph for {agent_id}: {e}")
return ErrorResponse(
message="Failed to fetch the agent configuration. Please try again.",
error="graph_fetch_error",
session_id=session_id,
)
# Call customize_template
try:
result = await customize_template(
template_agent=template_agent,
modification_request=modifications,
context=context,
)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
"Agent customization is not available. "
"The Agent Generator service is not configured."
),
error="service_not_configured",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error calling customize_template for {agent_id}: {e}")
return ErrorResponse(
message=(
"Failed to customize the agent due to a service error. "
"Please try again."
),
error="customization_service_error",
session_id=session_id,
)
if result is None:
return ErrorResponse(
message=(
"Failed to customize the agent. "
"The agent generation service may be unavailable or timed out. "
"Please try again."
),
error="customization_failed",
session_id=session_id,
)
# Handle error response
if isinstance(result, dict) and result.get("type") == "error":
error_msg = result.get("error", "Unknown error")
error_type = result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="customize the agent",
llm_parse_message=(
"The AI had trouble customizing the agent. "
"Please try again or simplify your request."
),
validation_message=(
"The customized agent failed validation. "
"Please try rephrasing your request."
),
error_details=error_msg,
)
return ErrorResponse(
message=user_message,
error=f"customization_failed:{error_type}",
session_id=session_id,
)
# Handle clarifying questions
if isinstance(result, dict) and result.get("type") == "clarifying_questions":
questions = result.get("questions") or []
if not isinstance(questions, list):
logger.error(
f"Unexpected clarifying questions format: {type(questions)}"
)
questions = []
return ClarificationNeededResponse(
message=(
"I need some more information to customize this agent. "
"Please answer the following questions:"
),
questions=[
ClarifyingQuestion(
question=q.get("question", ""),
keyword=q.get("keyword", ""),
example=q.get("example"),
)
for q in questions
if isinstance(q, dict)
],
session_id=session_id,
)
# Result should be the customized agent JSON
if not isinstance(result, dict):
logger.error(f"Unexpected customize_template response type: {type(result)}")
return ErrorResponse(
message="Failed to customize the agent due to an unexpected response.",
error="unexpected_response_type",
session_id=session_id,
)
customized_agent = result
agent_name = customized_agent.get(
"name", f"Customized {agent_details.agent_name}"
)
agent_description = customized_agent.get("description", "")
nodes = customized_agent.get("nodes")
links = customized_agent.get("links")
node_count = len(nodes) if isinstance(nodes, list) else 0
link_count = len(links) if isinstance(links, list) else 0
if not save:
return AgentPreviewResponse(
message=(
f"I've customized the agent '{agent_details.agent_name}'. "
f"The customized agent has {node_count} blocks. "
f"Review it and call customize_agent with save=true to save it."
),
agent_json=customized_agent,
agent_name=agent_name,
description=agent_description,
node_count=node_count,
link_count=link_count,
session_id=session_id,
)
if not user_id:
return ErrorResponse(
message="You must be logged in to save agents.",
error="auth_required",
session_id=session_id,
)
# Save to user's library
try:
created_graph, library_agent = await save_agent_to_library(
customized_agent, user_id, is_update=False
)
return AgentSavedResponse(
message=(
f"Customized agent '{created_graph.name}' "
f"(based on '{agent_details.agent_name}') "
f"has been saved to your library!"
),
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/agents/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error saving customized agent: {e}")
return ErrorResponse(
message="Failed to save the customized agent. Please try again.",
error="save_failed",
session_id=session_id,
)

View File

@@ -9,12 +9,15 @@ from .agent_generator import (
AgentGeneratorNotConfiguredError,
generate_agent_patch,
get_agent_as_json,
get_all_relevant_agents_for_generation,
get_user_message_for_error,
save_agent_to_library,
)
from .base import BaseTool
from .models import (
AgentPreviewResponse,
AgentSavedResponse,
AsyncProcessingResponse,
ClarificationNeededResponse,
ClarifyingQuestion,
ErrorResponse,
@@ -102,6 +105,10 @@ class EditAgentTool(BaseTool):
save = kwargs.get("save", True)
session_id = session.session_id if session else None
# Extract async processing params (passed by long-running tool handler)
operation_id = kwargs.get("_operation_id")
task_id = kwargs.get("_task_id")
if not agent_id:
return ErrorResponse(
message="Please provide the agent ID to edit.",
@@ -116,7 +123,6 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Step 1: Fetch current agent
current_agent = await get_agent_as_json(agent_id, user_id)
if current_agent is None:
@@ -126,14 +132,34 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Build the update request with context
library_agents = None
if user_id:
try:
graph_id = current_agent.get("id")
library_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=changes,
exclude_graph_id=graph_id,
include_marketplace=True,
)
logger.debug(
f"Found {len(library_agents)} relevant agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
update_request = changes
if context:
update_request = f"{changes}\n\nAdditional context:\n{context}"
# Step 2: Generate updated agent (external service handles fixing and validation)
try:
result = await generate_agent_patch(update_request, current_agent)
result = await generate_agent_patch(
update_request,
current_agent,
library_agents,
operation_id=operation_id,
task_id=task_id,
)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -152,7 +178,42 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Check if LLM returned clarifying questions
# Check if Agent Generator accepted for async processing
if result.get("status") == "accepted":
logger.info(
f"Agent edit delegated to async processing "
f"(operation_id={operation_id}, task_id={task_id})"
)
return AsyncProcessingResponse(
message="Agent edit started. You'll be notified when it's complete.",
operation_id=operation_id,
task_id=task_id,
session_id=session_id,
)
# Check if the result is an error from the external service
if isinstance(result, dict) and result.get("type") == "error":
error_msg = result.get("error", "Unknown error")
error_type = result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="generate the changes",
llm_parse_message="The AI had trouble generating the changes. Please try again or simplify your request.",
validation_message="The generated changes failed validation. Please try rephrasing your request.",
error_details=error_msg,
)
return ErrorResponse(
message=user_message,
error=f"update_generation_failed:{error_type}",
details={
"agent_id": agent_id,
"changes": changes[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)
if result.get("type") == "clarifying_questions":
questions = result.get("questions", [])
return ClarificationNeededResponse(
@@ -171,7 +232,6 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Result is the updated agent JSON
updated_agent = result
agent_name = updated_agent.get("name", "Updated Agent")
@@ -179,7 +239,6 @@ class EditAgentTool(BaseTool):
node_count = len(updated_agent.get("nodes", []))
link_count = len(updated_agent.get("links", []))
# Step 3: Preview or save
if not save:
return AgentPreviewResponse(
message=(
@@ -195,7 +254,6 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Save to library (creates a new version)
if not user_id:
return ErrorResponse(
message="You must be logged in to save agents.",
@@ -213,7 +271,7 @@ class EditAgentTool(BaseTool):
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/{library_agent.id}",
library_agent_link=f"/library/agents/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)

View File

@@ -28,6 +28,12 @@ class ResponseType(str, Enum):
BLOCK_OUTPUT = "block_output"
DOC_SEARCH_RESULTS = "doc_search_results"
DOC_PAGE = "doc_page"
# Workspace response types
WORKSPACE_FILE_LIST = "workspace_file_list"
WORKSPACE_FILE_CONTENT = "workspace_file_content"
WORKSPACE_FILE_METADATA = "workspace_file_metadata"
WORKSPACE_FILE_WRITTEN = "workspace_file_written"
WORKSPACE_FILE_DELETED = "workspace_file_deleted"
# Long-running operation types
OPERATION_STARTED = "operation_started"
OPERATION_PENDING = "operation_pending"
@@ -366,11 +372,15 @@ class OperationStartedResponse(ToolResponseBase):
This is returned immediately to the client while the operation continues
to execute. The user can close the tab and check back later.
The task_id can be used to reconnect to the SSE stream via
GET /chat/tasks/{task_id}/stream?last_idx=0
"""
type: ResponseType = ResponseType.OPERATION_STARTED
operation_id: str
tool_name: str
task_id: str | None = None # For SSE reconnection
class OperationPendingResponse(ToolResponseBase):
@@ -394,3 +404,20 @@ class OperationInProgressResponse(ToolResponseBase):
type: ResponseType = ResponseType.OPERATION_IN_PROGRESS
tool_call_id: str
class AsyncProcessingResponse(ToolResponseBase):
"""Response when an operation has been delegated to async processing.
This is returned by tools when the external service accepts the request
for async processing (HTTP 202 Accepted). The Redis Streams completion
consumer will handle the result when the external service completes.
The status field is specifically "accepted" to allow the long-running tool
handler to detect this response and skip LLM continuation.
"""
type: ResponseType = ResponseType.OPERATION_STARTED
status: str = "accepted" # Must be "accepted" for detection
operation_id: str | None = None
task_id: str | None = None

View File

@@ -1,6 +1,7 @@
"""Tool for executing blocks directly."""
import logging
import uuid
from collections import defaultdict
from typing import Any
@@ -10,6 +11,7 @@ from backend.api.features.chat.model import ChatSession
from backend.data.block import get_block
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsMetaInput
from backend.data.workspace import get_or_create_workspace
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import BlockError
@@ -250,11 +252,48 @@ class RunBlockTool(BaseTool):
)
try:
# Fetch actual credentials and prepare kwargs for block execution
# Create execution context with defaults (blocks may require it)
# Get or create user's workspace for CoPilot file operations
workspace = await get_or_create_workspace(user_id)
# Generate synthetic IDs for CoPilot context
# Each chat session is treated as its own agent with one continuous run
# This means:
# - graph_id (agent) = session (memories scoped to session when limit_to_agent=True)
# - graph_exec_id (run) = session (memories scoped to session when limit_to_run=True)
# - node_exec_id = unique per block execution
synthetic_graph_id = f"copilot-session-{session.session_id}"
synthetic_graph_exec_id = f"copilot-session-{session.session_id}"
synthetic_node_id = f"copilot-node-{block_id}"
synthetic_node_exec_id = (
f"copilot-{session.session_id}-{uuid.uuid4().hex[:8]}"
)
# Create unified execution context with all required fields
execution_context = ExecutionContext(
# Execution identity
user_id=user_id,
graph_id=synthetic_graph_id,
graph_exec_id=synthetic_graph_exec_id,
graph_version=1, # Versions are 1-indexed
node_id=synthetic_node_id,
node_exec_id=synthetic_node_exec_id,
# Workspace with session scoping
workspace_id=workspace.id,
session_id=session.session_id,
)
# Prepare kwargs for block execution
# Keep individual kwargs for backwards compatibility with existing blocks
exec_kwargs: dict[str, Any] = {
"user_id": user_id,
"execution_context": ExecutionContext(),
"execution_context": execution_context,
# Legacy: individual kwargs for blocks not yet using execution_context
"workspace_id": workspace.id,
"graph_exec_id": synthetic_graph_exec_id,
"node_exec_id": synthetic_node_exec_id,
"node_id": synthetic_node_id,
"graph_version": 1, # Versions are 1-indexed
"graph_id": synthetic_graph_id,
}
for field_name, cred_meta in matched_credentials.items():

View File

@@ -8,7 +8,12 @@ from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data import graph as graph_db
from backend.data.graph import GraphModel
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.data.model import (
CredentialsFieldInfo,
CredentialsMetaInput,
HostScopedCredentials,
OAuth2Credentials,
)
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import NotFoundError
@@ -266,13 +271,21 @@ async def match_user_credentials_to_graph(
credential_requirements,
_node_fields,
) in aggregated_creds.items():
# Find first matching credential by provider and type
# Find first matching credential by provider, type, and scopes
matching_cred = next(
(
cred
for cred in available_creds
if cred.provider in credential_requirements.provider
and cred.type in credential_requirements.supported_types
and (
cred.type != "oauth2"
or _credential_has_required_scopes(cred, credential_requirements)
)
and (
cred.type != "host_scoped"
or _credential_is_for_host(cred, credential_requirements)
)
),
None,
)
@@ -296,10 +309,17 @@ async def match_user_credentials_to_graph(
f"{credential_field_name} (validation failed: {e})"
)
else:
# Build a helpful error message including scope requirements
error_parts = [
f"provider in {list(credential_requirements.provider)}",
f"type in {list(credential_requirements.supported_types)}",
]
if credential_requirements.required_scopes:
error_parts.append(
f"scopes including {list(credential_requirements.required_scopes)}"
)
missing_creds.append(
f"{credential_field_name} "
f"(requires provider in {list(credential_requirements.provider)}, "
f"type in {list(credential_requirements.supported_types)})"
f"{credential_field_name} (requires {', '.join(error_parts)})"
)
logger.info(
@@ -309,6 +329,35 @@ async def match_user_credentials_to_graph(
return graph_credentials_inputs, missing_creds
def _credential_has_required_scopes(
credential: OAuth2Credentials,
requirements: CredentialsFieldInfo,
) -> bool:
"""Check if an OAuth2 credential has all the scopes required by the input."""
# If no scopes are required, any credential matches
if not requirements.required_scopes:
return True
# Check that credential scopes are a superset of required scopes
return set(credential.scopes).issuperset(requirements.required_scopes)
def _credential_is_for_host(
credential: HostScopedCredentials,
requirements: CredentialsFieldInfo,
) -> bool:
"""Check if a host-scoped credential matches the host required by the input."""
# We need to know the host to match host-scoped credentials to.
# Graph.aggregate_credentials_inputs() adds the node's set URL value (if any)
# to discriminator_values. No discriminator_values -> no host to match against.
if not requirements.discriminator_values:
return True
# Check that credential host matches required host.
# Host-scoped credential inputs are grouped by host, so any item from the set works.
return credential.matches_url(list(requirements.discriminator_values)[0])
async def check_user_has_required_credentials(
user_id: str,
required_credentials: list[CredentialsMetaInput],

View File

@@ -0,0 +1,620 @@
"""CoPilot tools for workspace file operations."""
import base64
import logging
from typing import Any, Optional
from pydantic import BaseModel
from backend.api.features.chat.model import ChatSession
from backend.data.workspace import get_or_create_workspace
from backend.util.settings import Config
from backend.util.virus_scanner import scan_content_safe
from backend.util.workspace import WorkspaceManager
from .base import BaseTool
from .models import ErrorResponse, ResponseType, ToolResponseBase
logger = logging.getLogger(__name__)
class WorkspaceFileInfoData(BaseModel):
"""Data model for workspace file information (not a response itself)."""
file_id: str
name: str
path: str
mime_type: str
size_bytes: int
class WorkspaceFileListResponse(ToolResponseBase):
"""Response containing list of workspace files."""
type: ResponseType = ResponseType.WORKSPACE_FILE_LIST
files: list[WorkspaceFileInfoData]
total_count: int
class WorkspaceFileContentResponse(ToolResponseBase):
"""Response containing workspace file content (legacy, for small text files)."""
type: ResponseType = ResponseType.WORKSPACE_FILE_CONTENT
file_id: str
name: str
path: str
mime_type: str
content_base64: str
class WorkspaceFileMetadataResponse(ToolResponseBase):
"""Response containing workspace file metadata and download URL (prevents context bloat)."""
type: ResponseType = ResponseType.WORKSPACE_FILE_METADATA
file_id: str
name: str
path: str
mime_type: str
size_bytes: int
download_url: str
preview: str | None = None # First 500 chars for text files
class WorkspaceWriteResponse(ToolResponseBase):
"""Response after writing a file to workspace."""
type: ResponseType = ResponseType.WORKSPACE_FILE_WRITTEN
file_id: str
name: str
path: str
size_bytes: int
class WorkspaceDeleteResponse(ToolResponseBase):
"""Response after deleting a file from workspace."""
type: ResponseType = ResponseType.WORKSPACE_FILE_DELETED
file_id: str
success: bool
class ListWorkspaceFilesTool(BaseTool):
"""Tool for listing files in user's workspace."""
@property
def name(self) -> str:
return "list_workspace_files"
@property
def description(self) -> str:
return (
"List files in the user's workspace. "
"Returns file names, paths, sizes, and metadata. "
"Optionally filter by path prefix."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"path_prefix": {
"type": "string",
"description": (
"Optional path prefix to filter files "
"(e.g., '/documents/' to list only files in documents folder). "
"By default, only files from the current session are listed."
),
},
"limit": {
"type": "integer",
"description": "Maximum number of files to return (default 50, max 100)",
"minimum": 1,
"maximum": 100,
},
"include_all_sessions": {
"type": "boolean",
"description": (
"If true, list files from all sessions. "
"Default is false (only current session's files)."
),
},
},
"required": [],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
path_prefix: Optional[str] = kwargs.get("path_prefix")
limit = min(kwargs.get("limit", 50), 100)
include_all_sessions: bool = kwargs.get("include_all_sessions", False)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
files = await manager.list_files(
path=path_prefix,
limit=limit,
include_all_sessions=include_all_sessions,
)
total = await manager.get_file_count(
path=path_prefix,
include_all_sessions=include_all_sessions,
)
file_infos = [
WorkspaceFileInfoData(
file_id=f.id,
name=f.name,
path=f.path,
mime_type=f.mimeType,
size_bytes=f.sizeBytes,
)
for f in files
]
scope_msg = "all sessions" if include_all_sessions else "current session"
return WorkspaceFileListResponse(
files=file_infos,
total_count=total,
message=f"Found {len(files)} files in workspace ({scope_msg})",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error listing workspace files: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to list workspace files: {str(e)}",
error=str(e),
session_id=session_id,
)
class ReadWorkspaceFileTool(BaseTool):
"""Tool for reading file content from workspace."""
# Size threshold for returning full content vs metadata+URL
# Files larger than this return metadata with download URL to prevent context bloat
MAX_INLINE_SIZE_BYTES = 32 * 1024 # 32KB
# Preview size for text files
PREVIEW_SIZE = 500
@property
def name(self) -> str:
return "read_workspace_file"
@property
def description(self) -> str:
return (
"Read a file from the user's workspace. "
"Specify either file_id or path to identify the file. "
"For small text files, returns content directly. "
"For large or binary files, returns metadata and a download URL. "
"Paths are scoped to the current session by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"file_id": {
"type": "string",
"description": "The file's unique ID (from list_workspace_files)",
},
"path": {
"type": "string",
"description": (
"The virtual file path (e.g., '/documents/report.pdf'). "
"Scoped to current session by default."
),
},
"force_download_url": {
"type": "boolean",
"description": (
"If true, always return metadata+URL instead of inline content. "
"Default is false (auto-selects based on file size/type)."
),
},
},
"required": [], # At least one must be provided
}
@property
def requires_auth(self) -> bool:
return True
def _is_text_mime_type(self, mime_type: str) -> bool:
"""Check if the MIME type is a text-based type."""
text_types = [
"text/",
"application/json",
"application/xml",
"application/javascript",
"application/x-python",
"application/x-sh",
]
return any(mime_type.startswith(t) for t in text_types)
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
file_id: Optional[str] = kwargs.get("file_id")
path: Optional[str] = kwargs.get("path")
force_download_url: bool = kwargs.get("force_download_url", False)
if not file_id and not path:
return ErrorResponse(
message="Please provide either file_id or path",
session_id=session_id,
)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
# Get file info
if file_id:
file_info = await manager.get_file_info(file_id)
if file_info is None:
return ErrorResponse(
message=f"File not found: {file_id}",
session_id=session_id,
)
target_file_id = file_id
else:
# path is guaranteed to be non-None here due to the check above
assert path is not None
file_info = await manager.get_file_info_by_path(path)
if file_info is None:
return ErrorResponse(
message=f"File not found at path: {path}",
session_id=session_id,
)
target_file_id = file_info.id
# Decide whether to return inline content or metadata+URL
is_small_file = file_info.sizeBytes <= self.MAX_INLINE_SIZE_BYTES
is_text_file = self._is_text_mime_type(file_info.mimeType)
# Return inline content for small text files (unless force_download_url)
if is_small_file and is_text_file and not force_download_url:
content = await manager.read_file_by_id(target_file_id)
content_b64 = base64.b64encode(content).decode("utf-8")
return WorkspaceFileContentResponse(
file_id=file_info.id,
name=file_info.name,
path=file_info.path,
mime_type=file_info.mimeType,
content_base64=content_b64,
message=f"Successfully read file: {file_info.name}",
session_id=session_id,
)
# Return metadata + workspace:// reference for large or binary files
# This prevents context bloat (100KB file = ~133KB as base64)
# Use workspace:// format so frontend urlTransform can add proxy prefix
download_url = f"workspace://{target_file_id}"
# Generate preview for text files
preview: str | None = None
if is_text_file:
try:
content = await manager.read_file_by_id(target_file_id)
preview_text = content[: self.PREVIEW_SIZE].decode(
"utf-8", errors="replace"
)
if len(content) > self.PREVIEW_SIZE:
preview_text += "..."
preview = preview_text
except Exception:
pass # Preview is optional
return WorkspaceFileMetadataResponse(
file_id=file_info.id,
name=file_info.name,
path=file_info.path,
mime_type=file_info.mimeType,
size_bytes=file_info.sizeBytes,
download_url=download_url,
preview=preview,
message=f"File: {file_info.name} ({file_info.sizeBytes} bytes). Use download_url to retrieve content.",
session_id=session_id,
)
except FileNotFoundError as e:
return ErrorResponse(
message=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Error reading workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to read workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)
class WriteWorkspaceFileTool(BaseTool):
"""Tool for writing files to workspace."""
@property
def name(self) -> str:
return "write_workspace_file"
@property
def description(self) -> str:
return (
"Write or create a file in the user's workspace. "
"Provide the content as a base64-encoded string. "
f"Maximum file size is {Config().max_file_size_mb}MB. "
"Files are saved to the current session's folder by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"filename": {
"type": "string",
"description": "Name for the file (e.g., 'report.pdf')",
},
"content_base64": {
"type": "string",
"description": "Base64-encoded file content",
},
"path": {
"type": "string",
"description": (
"Optional virtual path where to save the file "
"(e.g., '/documents/report.pdf'). "
"Defaults to '/{filename}'. Scoped to current session."
),
},
"mime_type": {
"type": "string",
"description": (
"Optional MIME type of the file. "
"Auto-detected from filename if not provided."
),
},
"overwrite": {
"type": "boolean",
"description": "Whether to overwrite if file exists at path (default: false)",
},
},
"required": ["filename", "content_base64"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
filename: str = kwargs.get("filename", "")
content_b64: str = kwargs.get("content_base64", "")
path: Optional[str] = kwargs.get("path")
mime_type: Optional[str] = kwargs.get("mime_type")
overwrite: bool = kwargs.get("overwrite", False)
if not filename:
return ErrorResponse(
message="Please provide a filename",
session_id=session_id,
)
if not content_b64:
return ErrorResponse(
message="Please provide content_base64",
session_id=session_id,
)
# Decode content
try:
content = base64.b64decode(content_b64)
except Exception:
return ErrorResponse(
message="Invalid base64-encoded content",
session_id=session_id,
)
# Check size
max_file_size = Config().max_file_size_mb * 1024 * 1024
if len(content) > max_file_size:
return ErrorResponse(
message=f"File too large. Maximum size is {Config().max_file_size_mb}MB",
session_id=session_id,
)
try:
# Virus scan
await scan_content_safe(content, filename=filename)
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
file_record = await manager.write_file(
content=content,
filename=filename,
path=path,
mime_type=mime_type,
overwrite=overwrite,
)
return WorkspaceWriteResponse(
file_id=file_record.id,
name=file_record.name,
path=file_record.path,
size_bytes=file_record.sizeBytes,
message=f"Successfully wrote file: {file_record.name}",
session_id=session_id,
)
except ValueError as e:
return ErrorResponse(
message=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Error writing workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to write workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)
class DeleteWorkspaceFileTool(BaseTool):
"""Tool for deleting files from workspace."""
@property
def name(self) -> str:
return "delete_workspace_file"
@property
def description(self) -> str:
return (
"Delete a file from the user's workspace. "
"Specify either file_id or path to identify the file. "
"Paths are scoped to the current session by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"file_id": {
"type": "string",
"description": "The file's unique ID (from list_workspace_files)",
},
"path": {
"type": "string",
"description": (
"The virtual file path (e.g., '/documents/report.pdf'). "
"Scoped to current session by default."
),
},
},
"required": [], # At least one must be provided
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
file_id: Optional[str] = kwargs.get("file_id")
path: Optional[str] = kwargs.get("path")
if not file_id and not path:
return ErrorResponse(
message="Please provide either file_id or path",
session_id=session_id,
)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
# Determine the file_id to delete
target_file_id: str
if file_id:
target_file_id = file_id
else:
# path is guaranteed to be non-None here due to the check above
assert path is not None
file_info = await manager.get_file_info_by_path(path)
if file_info is None:
return ErrorResponse(
message=f"File not found at path: {path}",
session_id=session_id,
)
target_file_id = file_info.id
success = await manager.delete_file(target_file_id)
if not success:
return ErrorResponse(
message=f"File not found: {target_file_id}",
session_id=session_id,
)
return WorkspaceDeleteResponse(
file_id=target_file_id,
success=True,
message="File deleted successfully",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error deleting workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to delete workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)

View File

@@ -19,7 +19,10 @@ from backend.data.graph import GraphSettings
from backend.data.includes import AGENT_PRESET_INCLUDE, library_agent_include
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate
from backend.integrations.webhooks.graph_lifecycle_hooks import (
on_graph_activate,
on_graph_deactivate,
)
from backend.util.clients import get_scheduler_client
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
from backend.util.json import SafeJson
@@ -39,6 +42,7 @@ async def list_library_agents(
sort_by: library_model.LibraryAgentSort = library_model.LibraryAgentSort.UPDATED_AT,
page: int = 1,
page_size: int = 50,
include_executions: bool = False,
) -> library_model.LibraryAgentResponse:
"""
Retrieves a paginated list of LibraryAgent records for a given user.
@@ -49,6 +53,9 @@ async def list_library_agents(
sort_by: Sorting field (createdAt, updatedAt, isFavorite, isCreatedByUser).
page: Current page (1-indexed).
page_size: Number of items per page.
include_executions: Whether to include execution data for status calculation.
Defaults to False for performance (UI fetches status separately).
Set to True when accurate status/metrics are needed (e.g., agent generator).
Returns:
A LibraryAgentResponse containing the list of agents and pagination details.
@@ -76,7 +83,6 @@ async def list_library_agents(
"isArchived": False,
}
# Build search filter if applicable
if search_term:
where_clause["OR"] = [
{
@@ -93,7 +99,6 @@ async def list_library_agents(
},
]
# Determine sorting
order_by: prisma.types.LibraryAgentOrderByInput | None = None
if sort_by == library_model.LibraryAgentSort.CREATED_AT:
@@ -105,7 +110,7 @@ async def list_library_agents(
library_agents = await prisma.models.LibraryAgent.prisma().find_many(
where=where_clause,
include=library_agent_include(
user_id, include_nodes=False, include_executions=False
user_id, include_nodes=False, include_executions=include_executions
),
order=order_by,
skip=(page - 1) * page_size,
@@ -535,6 +540,92 @@ async def update_agent_version_in_library(
return library_model.LibraryAgent.from_db(lib)
async def create_graph_in_library(
graph: graph_db.Graph,
user_id: str,
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
"""Create a new graph and add it to the user's library."""
graph.version = 1
graph_model = graph_db.make_graph_model(graph, user_id)
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=True)
created_graph = await graph_db.create_graph(graph_model, user_id)
library_agents = await create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
if created_graph.is_active:
created_graph = await on_graph_activate(created_graph, user_id=user_id)
return created_graph, library_agents[0]
async def update_graph_in_library(
graph: graph_db.Graph,
user_id: str,
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
"""Create a new version of an existing graph and update the library entry."""
existing_versions = await graph_db.get_graph_all_versions(graph.id, user_id)
current_active_version = (
next((v for v in existing_versions if v.is_active), None)
if existing_versions
else None
)
graph.version = (
max(v.version for v in existing_versions) + 1 if existing_versions else 1
)
graph_model = graph_db.make_graph_model(graph, user_id)
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=False)
created_graph = await graph_db.create_graph(graph_model, user_id)
library_agent = await get_library_agent_by_graph_id(user_id, created_graph.id)
if not library_agent:
raise NotFoundError(f"Library agent not found for graph {created_graph.id}")
library_agent = await update_library_agent_version_and_settings(
user_id, created_graph
)
if created_graph.is_active:
created_graph = await on_graph_activate(created_graph, user_id=user_id)
await graph_db.set_graph_active_version(
graph_id=created_graph.id,
version=created_graph.version,
user_id=user_id,
)
if current_active_version:
await on_graph_deactivate(current_active_version, user_id=user_id)
return created_graph, library_agent
async def update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
"""Update library agent to point to new graph version and sync settings."""
library = await update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await update_library_agent(
library_agent_id=library.id,
user_id=user_id,
settings=updated_settings,
)
return library
async def update_library_agent(
library_agent_id: str,
user_id: str,

View File

@@ -9,6 +9,7 @@ import pydantic
from backend.data.block import BlockInput
from backend.data.graph import GraphModel, GraphSettings, GraphTriggerInfo
from backend.data.model import CredentialsMetaInput, is_credentials_field_name
from backend.util.json import loads as json_loads
from backend.util.models import Pagination
if TYPE_CHECKING:
@@ -16,10 +17,10 @@ if TYPE_CHECKING:
class LibraryAgentStatus(str, Enum):
COMPLETED = "COMPLETED" # All runs completed
HEALTHY = "HEALTHY" # Agent is running (not all runs have completed)
WAITING = "WAITING" # Agent is queued or waiting to start
ERROR = "ERROR" # Agent is in an error state
COMPLETED = "COMPLETED"
HEALTHY = "HEALTHY"
WAITING = "WAITING"
ERROR = "ERROR"
class MarketplaceListingCreator(pydantic.BaseModel):
@@ -39,6 +40,30 @@ class MarketplaceListing(pydantic.BaseModel):
creator: MarketplaceListingCreator
class RecentExecution(pydantic.BaseModel):
"""Summary of a recent execution for quality assessment.
Used by the LLM to understand the agent's recent performance with specific examples
rather than just aggregate statistics.
"""
status: str
correctness_score: float | None = None
activity_summary: str | None = None
def _parse_settings(settings: dict | str | None) -> GraphSettings:
"""Parse settings from database, handling both dict and string formats."""
if settings is None:
return GraphSettings()
try:
if isinstance(settings, str):
settings = json_loads(settings)
return GraphSettings.model_validate(settings)
except Exception:
return GraphSettings()
class LibraryAgent(pydantic.BaseModel):
"""
Represents an agent in the library, including metadata for display and
@@ -48,7 +73,7 @@ class LibraryAgent(pydantic.BaseModel):
id: str
graph_id: str
graph_version: int
owner_user_id: str # ID of user who owns/created this agent graph
owner_user_id: str
image_url: str | None
@@ -64,7 +89,7 @@ class LibraryAgent(pydantic.BaseModel):
description: str
instructions: str | None = None
input_schema: dict[str, Any] # Should be BlockIOObjectSubSchema in frontend
input_schema: dict[str, Any]
output_schema: dict[str, Any]
credentials_input_schema: dict[str, Any] | None = pydantic.Field(
description="Input schema for credentials required by the agent",
@@ -81,25 +106,19 @@ class LibraryAgent(pydantic.BaseModel):
)
trigger_setup_info: Optional[GraphTriggerInfo] = None
# Indicates whether there's a new output (based on recent runs)
new_output: bool
# Whether the user can access the underlying graph
execution_count: int = 0
success_rate: float | None = None
avg_correctness_score: float | None = None
recent_executions: list[RecentExecution] = pydantic.Field(
default_factory=list,
description="List of recent executions with status, score, and summary",
)
can_access_graph: bool
# Indicates if this agent is the latest version
is_latest_version: bool
# Whether the agent is marked as favorite by the user
is_favorite: bool
# Recommended schedule cron (from marketplace agents)
recommended_schedule_cron: str | None = None
# User-specific settings for this library agent
settings: GraphSettings = pydantic.Field(default_factory=GraphSettings)
# Marketplace listing information if the agent has been published
marketplace_listing: Optional["MarketplaceListing"] = None
@staticmethod
@@ -123,7 +142,6 @@ class LibraryAgent(pydantic.BaseModel):
agent_updated_at = agent.AgentGraph.updatedAt
lib_agent_updated_at = agent.updatedAt
# Compute updated_at as the latest between library agent and graph
updated_at = (
max(agent_updated_at, lib_agent_updated_at)
if agent_updated_at
@@ -136,7 +154,6 @@ class LibraryAgent(pydantic.BaseModel):
creator_name = agent.Creator.name or "Unknown"
creator_image_url = agent.Creator.avatarUrl or ""
# Logic to calculate status and new_output
week_ago = datetime.datetime.now(datetime.timezone.utc) - datetime.timedelta(
days=7
)
@@ -145,13 +162,55 @@ class LibraryAgent(pydantic.BaseModel):
status = status_result.status
new_output = status_result.new_output
# Check if user can access the graph
can_access_graph = agent.AgentGraph.userId == agent.userId
execution_count = len(executions)
success_rate: float | None = None
avg_correctness_score: float | None = None
if execution_count > 0:
success_count = sum(
1
for e in executions
if e.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED
)
success_rate = (success_count / execution_count) * 100
# Hard-coded to True until a method to check is implemented
correctness_scores = []
for e in executions:
if e.stats and isinstance(e.stats, dict):
score = e.stats.get("correctness_score")
if score is not None and isinstance(score, (int, float)):
correctness_scores.append(float(score))
if correctness_scores:
avg_correctness_score = sum(correctness_scores) / len(
correctness_scores
)
recent_executions: list[RecentExecution] = []
for e in executions:
exec_score: float | None = None
exec_summary: str | None = None
if e.stats and isinstance(e.stats, dict):
score = e.stats.get("correctness_score")
if score is not None and isinstance(score, (int, float)):
exec_score = float(score)
summary = e.stats.get("activity_status")
if summary is not None and isinstance(summary, str):
exec_summary = summary
exec_status = (
e.executionStatus.value
if hasattr(e.executionStatus, "value")
else str(e.executionStatus)
)
recent_executions.append(
RecentExecution(
status=exec_status,
correctness_score=exec_score,
activity_summary=exec_summary,
)
)
can_access_graph = agent.AgentGraph.userId == agent.userId
is_latest_version = True
# Build marketplace_listing if available
marketplace_listing_data = None
if store_listing and store_listing.ActiveVersion and profile:
creator_data = MarketplaceListingCreator(
@@ -190,11 +249,15 @@ class LibraryAgent(pydantic.BaseModel):
has_sensitive_action=graph.has_sensitive_action,
trigger_setup_info=graph.trigger_setup_info,
new_output=new_output,
execution_count=execution_count,
success_rate=success_rate,
avg_correctness_score=avg_correctness_score,
recent_executions=recent_executions,
can_access_graph=can_access_graph,
is_latest_version=is_latest_version,
is_favorite=agent.isFavorite,
recommended_schedule_cron=agent.AgentGraph.recommendedScheduleCron,
settings=GraphSettings.model_validate(agent.settings),
settings=_parse_settings(agent.settings),
marketplace_listing=marketplace_listing_data,
)
@@ -220,18 +283,15 @@ def _calculate_agent_status(
if not executions:
return AgentStatusResult(status=LibraryAgentStatus.COMPLETED, new_output=False)
# Track how many times each execution status appears
status_counts = {status: 0 for status in prisma.enums.AgentExecutionStatus}
new_output = False
for execution in executions:
# Check if there's a completed run more recent than `recent_threshold`
if execution.createdAt >= recent_threshold:
if execution.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED:
new_output = True
status_counts[execution.executionStatus] += 1
# Determine the final status based on counts
if status_counts[prisma.enums.AgentExecutionStatus.FAILED] > 0:
return AgentStatusResult(status=LibraryAgentStatus.ERROR, new_output=new_output)
elif status_counts[prisma.enums.AgentExecutionStatus.QUEUED] > 0:

View File

@@ -112,6 +112,7 @@ async def get_store_agents(
description=agent["description"],
runs=agent["runs"],
rating=agent["rating"],
agent_graph_id=agent.get("agentGraphId", ""),
)
store_agents.append(store_agent)
except Exception as e:
@@ -170,6 +171,7 @@ async def get_store_agents(
description=agent.description,
runs=agent.runs,
rating=agent.rating,
agent_graph_id=agent.agentGraphId,
)
# Add to the list only if creation was successful
store_agents.append(store_agent)

View File

@@ -454,6 +454,9 @@ async def test_unified_hybrid_search_pagination(
cleanup_embeddings: list,
):
"""Test unified search pagination works correctly."""
# Use a unique search term to avoid matching other test data
unique_term = f"xyzpagtest{uuid.uuid4().hex[:8]}"
# Create multiple items
content_ids = []
for i in range(5):
@@ -465,14 +468,14 @@ async def test_unified_hybrid_search_pagination(
content_type=ContentType.BLOCK,
content_id=content_id,
embedding=mock_embedding,
searchable_text=f"pagination test item number {i}",
searchable_text=f"{unique_term} item number {i}",
metadata={"index": i},
user_id=None,
)
# Get first page
page1_results, total1 = await unified_hybrid_search(
query="pagination test",
query=unique_term,
content_types=[ContentType.BLOCK],
page=1,
page_size=2,
@@ -480,7 +483,7 @@ async def test_unified_hybrid_search_pagination(
# Get second page
page2_results, total2 = await unified_hybrid_search(
query="pagination test",
query=unique_term,
content_types=[ContentType.BLOCK],
page=2,
page_size=2,

View File

@@ -600,6 +600,7 @@ async def hybrid_search(
sa.featured,
sa.is_available,
sa.updated_at,
sa."agentGraphId",
-- Searchable text for BM25 reranking
COALESCE(sa.agent_name, '') || ' ' || COALESCE(sa.sub_heading, '') || ' ' || COALESCE(sa.description, '') as searchable_text,
-- Semantic score
@@ -659,6 +660,7 @@ async def hybrid_search(
featured,
is_available,
updated_at,
"agentGraphId",
searchable_text,
semantic_score,
lexical_score,

View File

@@ -38,6 +38,7 @@ class StoreAgent(pydantic.BaseModel):
description: str
runs: int
rating: float
agent_graph_id: str
class StoreAgentsResponse(pydantic.BaseModel):

View File

@@ -26,11 +26,13 @@ def test_store_agent():
description="Test description",
runs=50,
rating=4.5,
agent_graph_id="test-graph-id",
)
assert agent.slug == "test-agent"
assert agent.agent_name == "Test Agent"
assert agent.runs == 50
assert agent.rating == 4.5
assert agent.agent_graph_id == "test-graph-id"
def test_store_agents_response():
@@ -46,6 +48,7 @@ def test_store_agents_response():
description="Test description",
runs=50,
rating=4.5,
agent_graph_id="test-graph-id",
)
],
pagination=store_model.Pagination(

View File

@@ -82,6 +82,7 @@ def test_get_agents_featured(
description="Featured agent description",
runs=100,
rating=4.5,
agent_graph_id="test-graph-1",
)
],
pagination=store_model.Pagination(
@@ -127,6 +128,7 @@ def test_get_agents_by_creator(
description="Creator agent description",
runs=50,
rating=4.0,
agent_graph_id="test-graph-2",
)
],
pagination=store_model.Pagination(
@@ -172,6 +174,7 @@ def test_get_agents_sorted(
description="Top agent description",
runs=1000,
rating=5.0,
agent_graph_id="test-graph-3",
)
],
pagination=store_model.Pagination(
@@ -217,6 +220,7 @@ def test_get_agents_search(
description="Specific search term description",
runs=75,
rating=4.2,
agent_graph_id="test-graph-search",
)
],
pagination=store_model.Pagination(
@@ -262,6 +266,7 @@ def test_get_agents_category(
description="Category agent description",
runs=60,
rating=4.1,
agent_graph_id="test-graph-category",
)
],
pagination=store_model.Pagination(
@@ -306,6 +311,7 @@ def test_get_agents_pagination(
description=f"Agent {i} description",
runs=i * 10,
rating=4.0,
agent_graph_id="test-graph-2",
)
for i in range(5)
],

View File

@@ -33,6 +33,7 @@ class TestCacheDeletion:
description="Test description",
runs=100,
rating=4.5,
agent_graph_id="test-graph-id",
)
],
pagination=Pagination(

View File

@@ -101,7 +101,6 @@ from backend.util.timezone_utils import (
from backend.util.virus_scanner import scan_content_safe
from .library import db as library_db
from .library import model as library_model
from .store.model import StoreAgentDetails
@@ -823,18 +822,16 @@ async def update_graph(
graph: graph_db.Graph,
user_id: Annotated[str, Security(get_user_id)],
) -> graph_db.GraphModel:
# Sanity check
if graph.id and graph.id != graph_id:
raise HTTPException(400, detail="Graph ID does not match ID in URI")
# Determine new version
existing_versions = await graph_db.get_graph_all_versions(graph_id, user_id=user_id)
if not existing_versions:
raise HTTPException(404, detail=f"Graph #{graph_id} not found")
latest_version_number = max(g.version for g in existing_versions)
graph.version = latest_version_number + 1
graph.version = max(g.version for g in existing_versions) + 1
current_active_version = next((v for v in existing_versions if v.is_active), None)
graph = graph_db.make_graph_model(graph, user_id)
graph.reassign_ids(user_id=user_id, reassign_graph_id=False)
graph.validate_graph(for_run=False)
@@ -842,27 +839,23 @@ async def update_graph(
new_graph_version = await graph_db.create_graph(graph, user_id=user_id)
if new_graph_version.is_active:
# Keep the library agent up to date with the new active version
await _update_library_agent_version_and_settings(user_id, new_graph_version)
# Handle activation of the new graph first to ensure continuity
await library_db.update_library_agent_version_and_settings(
user_id, new_graph_version
)
new_graph_version = await on_graph_activate(new_graph_version, user_id=user_id)
# Ensure new version is the only active version
await graph_db.set_graph_active_version(
graph_id=graph_id, version=new_graph_version.version, user_id=user_id
)
if current_active_version:
# Handle deactivation of the previously active version
await on_graph_deactivate(current_active_version, user_id=user_id)
# Fetch new graph version *with sub-graphs* (needed for credentials input schema)
new_graph_version_with_subgraphs = await graph_db.get_graph(
graph_id,
new_graph_version.version,
user_id=user_id,
include_subgraphs=True,
)
assert new_graph_version_with_subgraphs # make type checker happy
assert new_graph_version_with_subgraphs
return new_graph_version_with_subgraphs
@@ -900,33 +893,15 @@ async def set_graph_active_version(
)
# Keep the library agent up to date with the new active version
await _update_library_agent_version_and_settings(user_id, new_active_graph)
await library_db.update_library_agent_version_and_settings(
user_id, new_active_graph
)
if current_active_graph and current_active_graph.version != new_active_version:
# Handle deactivation of the previously active version
await on_graph_deactivate(current_active_graph, user_id=user_id)
async def _update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
library = await library_db.update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await library_db.update_library_agent(
library_agent_id=library.id,
user_id=user_id,
settings=updated_settings,
)
return library
@v1_router.patch(
path="/graphs/{graph_id}/settings",
summary="Update graph settings",

View File

@@ -0,0 +1 @@
# Workspace API feature module

View File

@@ -0,0 +1,122 @@
"""
Workspace API routes for managing user file storage.
"""
import logging
import re
from typing import Annotated
from urllib.parse import quote
import fastapi
from autogpt_libs.auth.dependencies import get_user_id, requires_user
from fastapi.responses import Response
from backend.data.workspace import get_workspace, get_workspace_file
from backend.util.workspace_storage import get_workspace_storage
def _sanitize_filename_for_header(filename: str) -> str:
"""
Sanitize filename for Content-Disposition header to prevent header injection.
Removes/replaces characters that could break the header or inject new headers.
Uses RFC5987 encoding for non-ASCII characters.
"""
# Remove CR, LF, and null bytes (header injection prevention)
sanitized = re.sub(r"[\r\n\x00]", "", filename)
# Escape quotes
sanitized = sanitized.replace('"', '\\"')
# For non-ASCII, use RFC5987 filename* parameter
# Check if filename has non-ASCII characters
try:
sanitized.encode("ascii")
return f'attachment; filename="{sanitized}"'
except UnicodeEncodeError:
# Use RFC5987 encoding for UTF-8 filenames
encoded = quote(sanitized, safe="")
return f"attachment; filename*=UTF-8''{encoded}"
logger = logging.getLogger(__name__)
router = fastapi.APIRouter(
dependencies=[fastapi.Security(requires_user)],
)
def _create_streaming_response(content: bytes, file) -> Response:
"""Create a streaming response for file content."""
return Response(
content=content,
media_type=file.mimeType,
headers={
"Content-Disposition": _sanitize_filename_for_header(file.name),
"Content-Length": str(len(content)),
},
)
async def _create_file_download_response(file) -> Response:
"""
Create a download response for a workspace file.
Handles both local storage (direct streaming) and GCS (signed URL redirect
with fallback to streaming).
"""
storage = await get_workspace_storage()
# For local storage, stream the file directly
if file.storagePath.startswith("local://"):
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
# For GCS, try to redirect to signed URL, fall back to streaming
try:
url = await storage.get_download_url(file.storagePath, expires_in=300)
# If we got back an API path (fallback), stream directly instead
if url.startswith("/api/"):
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
return fastapi.responses.RedirectResponse(url=url, status_code=302)
except Exception as e:
# Log the signed URL failure with context
logger.error(
f"Failed to get signed URL for file {file.id} "
f"(storagePath={file.storagePath}): {e}",
exc_info=True,
)
# Fall back to streaming directly from GCS
try:
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
except Exception as fallback_error:
logger.error(
f"Fallback streaming also failed for file {file.id} "
f"(storagePath={file.storagePath}): {fallback_error}",
exc_info=True,
)
raise
@router.get(
"/files/{file_id}/download",
summary="Download file by ID",
)
async def download_file(
user_id: Annotated[str, fastapi.Security(get_user_id)],
file_id: str,
) -> Response:
"""
Download a file by its ID.
Returns the file content directly or redirects to a signed URL for GCS.
"""
workspace = await get_workspace(user_id)
if workspace is None:
raise fastapi.HTTPException(status_code=404, detail="Workspace not found")
file = await get_workspace_file(file_id, workspace.id)
if file is None:
raise fastapi.HTTPException(status_code=404, detail="File not found")
return await _create_file_download_response(file)

View File

@@ -32,6 +32,7 @@ import backend.api.features.postmark.postmark
import backend.api.features.store.model
import backend.api.features.store.routes
import backend.api.features.v1
import backend.api.features.workspace.routes as workspace_routes
import backend.data.block
import backend.data.db
import backend.data.graph
@@ -39,6 +40,10 @@ import backend.data.user
import backend.integrations.webhooks.utils
import backend.util.service
import backend.util.settings
from backend.api.features.chat.completion_consumer import (
start_completion_consumer,
stop_completion_consumer,
)
from backend.blocks.llm import DEFAULT_LLM_MODEL
from backend.data.model import Credentials
from backend.integrations.providers import ProviderName
@@ -52,6 +57,7 @@ from backend.util.exceptions import (
)
from backend.util.feature_flag import initialize_launchdarkly, shutdown_launchdarkly
from backend.util.service import UnhealthyServiceError
from backend.util.workspace_storage import shutdown_workspace_storage
from .external.fastapi_app import external_api
from .features.analytics import router as analytics_router
@@ -116,14 +122,31 @@ async def lifespan_context(app: fastapi.FastAPI):
await backend.data.graph.migrate_llm_models(DEFAULT_LLM_MODEL)
await backend.integrations.webhooks.utils.migrate_legacy_triggered_graphs()
# Start chat completion consumer for Redis Streams notifications
try:
await start_completion_consumer()
except Exception as e:
logger.warning(f"Could not start chat completion consumer: {e}")
with launch_darkly_context():
yield
# Stop chat completion consumer
try:
await stop_completion_consumer()
except Exception as e:
logger.warning(f"Error stopping chat completion consumer: {e}")
try:
await shutdown_cloud_storage_handler()
except Exception as e:
logger.warning(f"Error shutting down cloud storage handler: {e}")
try:
await shutdown_workspace_storage()
except Exception as e:
logger.warning(f"Error shutting down workspace storage: {e}")
await backend.data.db.disconnect()
@@ -315,6 +338,11 @@ app.include_router(
tags=["v2", "chat"],
prefix="/api/chat",
)
app.include_router(
workspace_routes.router,
tags=["workspace"],
prefix="/api/workspace",
)
app.include_router(
backend.api.features.oauth.router,
tags=["oauth"],

View File

@@ -66,18 +66,24 @@ async def event_broadcaster(manager: ConnectionManager):
execution_bus = AsyncRedisExecutionEventBus()
notification_bus = AsyncRedisNotificationEventBus()
async def execution_worker():
async for event in execution_bus.listen("*"):
await manager.send_execution_update(event)
try:
async def notification_worker():
async for notification in notification_bus.listen("*"):
await manager.send_notification(
user_id=notification.user_id,
payload=notification.payload,
)
async def execution_worker():
async for event in execution_bus.listen("*"):
await manager.send_execution_update(event)
await asyncio.gather(execution_worker(), notification_worker())
async def notification_worker():
async for notification in notification_bus.listen("*"):
await manager.send_notification(
user_id=notification.user_id,
payload=notification.payload,
)
await asyncio.gather(execution_worker(), notification_worker())
finally:
# Ensure PubSub connections are closed on any exit to prevent leaks
await execution_bus.close()
await notification_bus.close()
async def authenticate_websocket(websocket: WebSocket) -> str:

View File

@@ -13,6 +13,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -117,11 +118,13 @@ class AIImageCustomizerBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
("image_url", "https://replicate.delivery/generated-image.jpg"),
# Output will be a workspace ref or data URI depending on context
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
],
test_mock={
# Use data URI to avoid HTTP requests during tests
"run_model": lambda *args, **kwargs: MediaFileType(
"https://replicate.delivery/generated-image.jpg"
""
),
},
test_credentials=TEST_CREDENTIALS,
@@ -132,8 +135,7 @@ class AIImageCustomizerBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
try:
@@ -141,10 +143,9 @@ class AIImageCustomizerBlock(Block):
processed_images = await asyncio.gather(
*(
store_media_file(
graph_exec_id=graph_exec_id,
file=img,
user_id=user_id,
return_content=True,
execution_context=execution_context,
return_format="for_external_api", # Get content for Replicate API
)
for img in input_data.images
)
@@ -158,7 +159,14 @@ class AIImageCustomizerBlock(Block):
aspect_ratio=input_data.aspect_ratio.value,
output_format=input_data.output_format.value,
)
yield "image_url", result
# Store the generated image to the user's workspace for persistence
stored_url = await store_media_file(
file=result,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
except Exception as e:
yield "error", str(e)

View File

@@ -6,6 +6,7 @@ from replicate.client import Client as ReplicateClient
from replicate.helpers import FileOutput
from backend.data.block import Block, BlockCategory, BlockSchemaInput, BlockSchemaOutput
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -13,6 +14,8 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
class ImageSize(str, Enum):
@@ -165,11 +168,13 @@ class AIImageGeneratorBlock(Block):
test_output=[
(
"image_url",
"https://replicate.delivery/generated-image.webp",
# Test output is a data URI since we now store images
lambda x: x.startswith(""
},
)
@@ -318,11 +323,24 @@ class AIImageGeneratorBlock(Block):
style_text = style_map.get(style, "")
return f"{style_text} of" if style_text else ""
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
try:
url = await self.generate_image(input_data, credentials)
if url:
yield "image_url", url
# Store the generated image to the user's workspace/execution folder
stored_url = await store_media_file(
file=MediaFileType(url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
else:
yield "error", "Image generation returned an empty result."
except Exception as e:

View File

@@ -13,6 +13,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -21,7 +22,9 @@ from backend.data.model import (
)
from backend.integrations.providers import ProviderName
from backend.util.exceptions import BlockExecutionError
from backend.util.file import store_media_file
from backend.util.request import Requests
from backend.util.type import MediaFileType
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
@@ -271,7 +274,10 @@ class AIShortformVideoCreatorBlock(Block):
"voice": Voice.LILY,
"video_style": VisualMediaType.STOCK_VIDEOS,
},
test_output=("video_url", "https://example.com/video.mp4"),
test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
@@ -280,15 +286,21 @@ class AIShortformVideoCreatorBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "https://example.com/video.mp4",
"videoUrl": "data:video/mp4;base64,AAAA",
},
"wait_for_video": lambda *args, **kwargs: "https://example.com/video.mp4",
# Use data URI to avoid HTTP requests during tests
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# Create a new Webhook.site URL
webhook_token, webhook_url = await self.create_webhook()
@@ -340,7 +352,13 @@ class AIShortformVideoCreatorBlock(Block):
)
video_url = await self.wait_for_video(credentials.api_key, pid)
logger.debug(f"Video ready: {video_url}")
yield "video_url", video_url
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
class AIAdMakerVideoCreatorBlock(Block):
@@ -447,7 +465,10 @@ class AIAdMakerVideoCreatorBlock(Block):
"https://cdn.revid.ai/uploads/1747076315114-image.png",
],
},
test_output=("video_url", "https://example.com/ad.mp4"),
test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
@@ -456,14 +477,21 @@ class AIAdMakerVideoCreatorBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "https://example.com/ad.mp4",
"videoUrl": "data:video/mp4;base64,AAAA",
},
"wait_for_video": lambda *args, **kwargs: "https://example.com/ad.mp4",
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
webhook_token, webhook_url = await self.create_webhook()
payload = {
@@ -531,7 +559,13 @@ class AIAdMakerVideoCreatorBlock(Block):
raise RuntimeError("Failed to create video: No project ID returned")
video_url = await self.wait_for_video(credentials.api_key, pid)
yield "video_url", video_url
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
class AIScreenshotToVideoAdBlock(Block):
@@ -626,7 +660,10 @@ class AIScreenshotToVideoAdBlock(Block):
"script": "Amazing numbers!",
"screenshot_url": "https://cdn.revid.ai/uploads/1747080376028-image.png",
},
test_output=("video_url", "https://example.com/screenshot.mp4"),
test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
@@ -635,14 +672,21 @@ class AIScreenshotToVideoAdBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "https://example.com/screenshot.mp4",
"videoUrl": "data:video/mp4;base64,AAAA",
},
"wait_for_video": lambda *args, **kwargs: "https://example.com/screenshot.mp4",
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
webhook_token, webhook_url = await self.create_webhook()
payload = {
@@ -710,4 +754,10 @@ class AIScreenshotToVideoAdBlock(Block):
raise RuntimeError("Failed to create video: No project ID returned")
video_url = await self.wait_for_video(credentials.api_key, pid)
yield "video_url", video_url
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url

View File

@@ -6,6 +6,7 @@ if TYPE_CHECKING:
from pydantic import SecretStr
from backend.data.execution import ExecutionContext
from backend.sdk import (
APIKeyCredentials,
Block,
@@ -17,6 +18,8 @@ from backend.sdk import (
Requests,
SchemaField,
)
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
from ._config import bannerbear
@@ -135,15 +138,17 @@ class BannerbearTextOverlayBlock(Block):
},
test_output=[
("success", True),
("image_url", "https://cdn.bannerbear.com/test-image.jpg"),
# Output will be a workspace ref or data URI depending on context
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
("uid", "test-uid-123"),
("status", "completed"),
],
test_mock={
# Use data URI to avoid HTTP requests during tests
"_make_api_request": lambda *args, **kwargs: {
"uid": "test-uid-123",
"status": "completed",
"image_url": "https://cdn.bannerbear.com/test-image.jpg",
"image_url": "",
}
},
test_credentials=TEST_CREDENTIALS,
@@ -177,7 +182,12 @@ class BannerbearTextOverlayBlock(Block):
raise Exception(error_msg)
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# Build the modifications array
modifications = []
@@ -234,6 +244,18 @@ class BannerbearTextOverlayBlock(Block):
# Synchronous request - image should be ready
yield "success", True
yield "image_url", data.get("image_url", "")
# Store the generated image to workspace for persistence
image_url = data.get("image_url", "")
if image_url:
stored_url = await store_media_file(
file=MediaFileType(image_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
else:
yield "image_url", ""
yield "uid", data.get("uid", "")
yield "status", data.get("status", "completed")

View File

@@ -9,6 +9,7 @@ from backend.data.block import (
BlockSchemaOutput,
BlockType,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.type import MediaFileType, convert
@@ -17,10 +18,10 @@ from backend.util.type import MediaFileType, convert
class FileStoreBlock(Block):
class Input(BlockSchemaInput):
file_in: MediaFileType = SchemaField(
description="The file to store in the temporary directory, it can be a URL, data URI, or local path."
description="The file to download and store. Can be a URL (https://...), data URI, or local path."
)
base_64: bool = SchemaField(
description="Whether produce an output in base64 format (not recommended, you can pass the string path just fine accross blocks).",
description="Whether to produce output in base64 format (not recommended, you can pass the file reference across blocks).",
default=False,
advanced=True,
title="Produce Base64 Output",
@@ -28,13 +29,18 @@ class FileStoreBlock(Block):
class Output(BlockSchemaOutput):
file_out: MediaFileType = SchemaField(
description="The relative path to the stored file in the temporary directory."
description="Reference to the stored file. In CoPilot: workspace:// URI (visible in list_workspace_files). In graphs: data URI for passing to other blocks."
)
def __init__(self):
super().__init__(
id="cbb50872-625b-42f0-8203-a2ae78242d8a",
description="Stores the input file in the temporary directory.",
description=(
"Downloads and stores a file from a URL, data URI, or local path. "
"Use this to fetch images, documents, or other files for processing. "
"In CoPilot: saves to workspace (use list_workspace_files to see it). "
"In graphs: outputs a data URI to pass to other blocks."
),
categories={BlockCategory.BASIC, BlockCategory.MULTIMEDIA},
input_schema=FileStoreBlock.Input,
output_schema=FileStoreBlock.Output,
@@ -45,15 +51,18 @@ class FileStoreBlock(Block):
self,
input_data: Input,
*,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# Determine return format based on user preference
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
yield "file_out", await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.file_in,
user_id=user_id,
return_content=input_data.base_64,
execution_context=execution_context,
return_format=return_format,
)

View File

@@ -15,6 +15,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import APIKeyCredentials, SchemaField
from backend.util.file import store_media_file
from backend.util.request import Requests
@@ -666,8 +667,7 @@ class SendDiscordFileBlock(Block):
file: MediaFileType,
filename: str,
message_content: str,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
) -> dict:
intents = discord.Intents.default()
intents.guilds = True
@@ -731,10 +731,9 @@ class SendDiscordFileBlock(Block):
# Local file path - read from stored media file
# This would be a path from a previous block's output
stored_file = await store_media_file(
graph_exec_id=graph_exec_id,
file=file,
user_id=user_id,
return_content=True, # Get as data URI
execution_context=execution_context,
return_format="for_external_api", # Get content to send to Discord
)
# Now process as data URI
header, encoded = stored_file.split(",", 1)
@@ -781,8 +780,7 @@ class SendDiscordFileBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
try:
@@ -793,8 +791,7 @@ class SendDiscordFileBlock(Block):
file=input_data.file,
filename=input_data.filename,
message_content=input_data.message_content,
graph_exec_id=graph_exec_id,
user_id=user_id,
execution_context=execution_context,
)
yield "status", result.get("status", "Unknown error")

View File

@@ -0,0 +1,28 @@
"""ElevenLabs integration blocks - test credentials and shared utilities."""
from typing import Literal
from pydantic import SecretStr
from backend.data.model import APIKeyCredentials, CredentialsMetaInput
from backend.integrations.providers import ProviderName
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="elevenlabs",
api_key=SecretStr("mock-elevenlabs-api-key"),
title="Mock ElevenLabs API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}
ElevenLabsCredentials = APIKeyCredentials
ElevenLabsCredentialsInput = CredentialsMetaInput[
Literal[ProviderName.ELEVENLABS], Literal["api_key"]
]

View File

@@ -0,0 +1,77 @@
"""Text encoding block for converting special characters to escape sequences."""
import codecs
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import SchemaField
class TextEncoderBlock(Block):
"""
Encodes a string by converting special characters into escape sequences.
This block is the inverse of TextDecoderBlock. It takes text containing
special characters (like newlines, tabs, etc.) and converts them into
their escape sequence representations (e.g., newline becomes \\n).
"""
class Input(BlockSchemaInput):
"""Input schema for TextEncoderBlock."""
text: str = SchemaField(
description="A string containing special characters to be encoded",
placeholder="Your text with newlines and quotes to encode",
)
class Output(BlockSchemaOutput):
"""Output schema for TextEncoderBlock."""
encoded_text: str = SchemaField(
description="The encoded text with special characters converted to escape sequences"
)
error: str = SchemaField(description="Error message if encoding fails")
def __init__(self):
super().__init__(
id="5185f32e-4b65-4ecf-8fbb-873f003f09d6",
description="Encodes a string by converting special characters into escape sequences",
categories={BlockCategory.TEXT},
input_schema=TextEncoderBlock.Input,
output_schema=TextEncoderBlock.Output,
test_input={
"text": """Hello
World!
This is a "quoted" string."""
},
test_output=[
(
"encoded_text",
"""Hello\\nWorld!\\nThis is a "quoted" string.""",
)
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
"""
Encode the input text by converting special characters to escape sequences.
Args:
input_data: The input containing the text to encode.
**kwargs: Additional keyword arguments (unused).
Yields:
The encoded text with escape sequences, or an error message if encoding fails.
"""
try:
encoded_text = codecs.encode(input_data.text, "unicode_escape").decode(
"utf-8"
)
yield "encoded_text", encoded_text
except Exception as e:
yield "error", f"Encoding error: {str(e)}"

View File

@@ -17,8 +17,11 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.request import ClientResponseError, Requests
from backend.util.type import MediaFileType
logger = logging.getLogger(__name__)
@@ -64,9 +67,13 @@ class AIVideoGeneratorBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[("video_url", "https://fal.media/files/example/video.mp4")],
test_output=[
# Output will be a workspace ref or data URI depending on context
("video_url", lambda x: x.startswith(("workspace://", "data:"))),
],
test_mock={
"generate_video": lambda *args, **kwargs: "https://fal.media/files/example/video.mp4"
# Use data URI to avoid HTTP requests during tests
"generate_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA"
},
)
@@ -208,11 +215,22 @@ class AIVideoGeneratorBlock(Block):
raise RuntimeError(f"API request failed: {str(e)}")
async def run(
self, input_data: Input, *, credentials: FalCredentials, **kwargs
self,
input_data: Input,
*,
credentials: FalCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
try:
video_url = await self.generate_video(input_data, credentials)
yield "video_url", video_url
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
except Exception as e:
error_message = str(e)
yield "error", error_message

View File

@@ -12,6 +12,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -121,10 +122,12 @@ class AIImageEditorBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
("output_image", "https://replicate.com/output/edited-image.png"),
# Output will be a workspace ref or data URI depending on context
("output_image", lambda x: x.startswith(("workspace://", "data:"))),
],
test_mock={
"run_model": lambda *args, **kwargs: "https://replicate.com/output/edited-image.png",
# Use data URI to avoid HTTP requests during tests
"run_model": lambda *args, **kwargs: "",
},
test_credentials=TEST_CREDENTIALS,
)
@@ -134,8 +137,7 @@ class AIImageEditorBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
result = await self.run_model(
@@ -144,20 +146,25 @@ class AIImageEditorBlock(Block):
prompt=input_data.prompt,
input_image_b64=(
await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.input_image,
user_id=user_id,
return_content=True,
execution_context=execution_context,
return_format="for_external_api", # Get content for Replicate API
)
if input_data.input_image
else None
),
aspect_ratio=input_data.aspect_ratio.value,
seed=input_data.seed,
user_id=user_id,
graph_exec_id=graph_exec_id,
user_id=execution_context.user_id or "",
graph_exec_id=execution_context.graph_exec_id or "",
)
yield "output_image", result
# Store the generated image to the user's workspace for persistence
stored_url = await store_media_file(
file=result,
execution_context=execution_context,
return_format="for_block_output",
)
yield "output_image", stored_url
async def run_model(
self,

View File

@@ -21,6 +21,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
from backend.util.settings import Settings
@@ -95,8 +96,7 @@ def _make_mime_text(
async def create_mime_message(
input_data,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
) -> str:
"""Create a MIME message with attachments and return base64-encoded raw message."""
@@ -117,12 +117,12 @@ async def create_mime_message(
if input_data.attachments:
for attach in input_data.attachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_path = get_exec_file_path(graph_exec_id, local_path)
assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())
@@ -582,27 +582,25 @@ class GmailSendBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
result = await self._send_email(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "result", result
async def _send_email(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
if not input_data.to or not input_data.subject or not input_data.body:
raise ValueError(
"At least one recipient, subject, and body are required for sending an email"
)
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
raw_message = await create_mime_message(input_data, execution_context)
sent_message = await asyncio.to_thread(
lambda: service.users()
.messages()
@@ -692,30 +690,28 @@ class GmailCreateDraftBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
result = await self._create_draft(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "result", GmailDraftResult(
id=result["id"], message_id=result["message"]["id"], status="draft_created"
)
async def _create_draft(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
if not input_data.to or not input_data.subject:
raise ValueError(
"At least one recipient and subject are required for creating a draft"
)
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
raw_message = await create_mime_message(input_data, execution_context)
draft = await asyncio.to_thread(
lambda: service.users()
.drafts()
@@ -1100,7 +1096,7 @@ class GmailGetThreadBlock(GmailBase):
async def _build_reply_message(
service, input_data, graph_exec_id: str, user_id: str
service, input_data, execution_context: ExecutionContext
) -> tuple[str, str]:
"""
Builds a reply MIME message for Gmail threads.
@@ -1190,12 +1186,12 @@ async def _build_reply_message(
# Handle attachments
for attach in input_data.attachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_path = get_exec_file_path(graph_exec_id, local_path)
assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())
@@ -1311,16 +1307,14 @@ class GmailReplyBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
message = await self._reply(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "messageId", message["id"]
yield "threadId", message.get("threadId", input_data.threadId)
@@ -1343,11 +1337,11 @@ class GmailReplyBlock(GmailBase):
yield "email", email
async def _reply(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
# Build the reply message using the shared helper
raw, thread_id = await _build_reply_message(
service, input_data, graph_exec_id, user_id
service, input_data, execution_context
)
# Send the message
@@ -1441,16 +1435,14 @@ class GmailDraftReplyBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
draft = await self._create_draft_reply(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "draftId", draft["id"]
yield "messageId", draft["message"]["id"]
@@ -1458,11 +1450,11 @@ class GmailDraftReplyBlock(GmailBase):
yield "status", "draft_created"
async def _create_draft_reply(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
# Build the reply message using the shared helper
raw, thread_id = await _build_reply_message(
service, input_data, graph_exec_id, user_id
service, input_data, execution_context
)
# Create draft with proper thread association
@@ -1629,23 +1621,21 @@ class GmailForwardBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
result = await self._forward_message(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "messageId", result["id"]
yield "threadId", result.get("threadId", "")
yield "status", "forwarded"
async def _forward_message(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
if not input_data.to:
raise ValueError("At least one recipient is required for forwarding")
@@ -1727,12 +1717,12 @@ To: {original_to}
# Add any additional attachments
for attach in input_data.additionalAttachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_path = get_exec_file_path(graph_exec_id, local_path)
assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())

View File

@@ -15,6 +15,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
CredentialsField,
CredentialsMetaInput,
@@ -116,10 +117,9 @@ class SendWebRequestBlock(Block):
@staticmethod
async def _prepare_files(
graph_exec_id: str,
execution_context: ExecutionContext,
files_name: str,
files: list[MediaFileType],
user_id: str,
) -> list[tuple[str, tuple[str, BytesIO, str]]]:
"""
Prepare files for the request by storing them and reading their content.
@@ -127,11 +127,16 @@ class SendWebRequestBlock(Block):
(files_name, (filename, BytesIO, mime_type))
"""
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
graph_exec_id = execution_context.graph_exec_id
if graph_exec_id is None:
raise ValueError("graph_exec_id is required for file operations")
for media in files:
# Normalise to a list so we can repeat the same key
rel_path = await store_media_file(
graph_exec_id, media, user_id, return_content=False
file=media,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_path = get_exec_file_path(graph_exec_id, rel_path)
async with aiofiles.open(abs_path, "rb") as f:
@@ -143,7 +148,7 @@ class SendWebRequestBlock(Block):
return files_payload
async def run(
self, input_data: Input, *, graph_exec_id: str, user_id: str, **kwargs
self, input_data: Input, *, execution_context: ExecutionContext, **kwargs
) -> BlockOutput:
# ─── Parse/normalise body ────────────────────────────────────
body = input_data.body
@@ -174,7 +179,7 @@ class SendWebRequestBlock(Block):
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
if use_files:
files_payload = await self._prepare_files(
graph_exec_id, input_data.files_name, input_data.files, user_id
execution_context, input_data.files_name, input_data.files
)
# Enforce body format rules
@@ -238,9 +243,8 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
self,
input_data: Input,
*,
graph_exec_id: str,
execution_context: ExecutionContext,
credentials: HostScopedCredentials,
user_id: str,
**kwargs,
) -> BlockOutput:
# Create SendWebRequestBlock.Input from our input (removing credentials field)
@@ -271,6 +275,6 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
# Use parent class run method
async for output_name, output_data in super().run(
base_input, graph_exec_id=graph_exec_id, user_id=user_id, **kwargs
base_input, execution_context=execution_context, **kwargs
):
yield output_name, output_data

View File

@@ -12,6 +12,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockType,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.mock import MockObject
@@ -462,18 +463,21 @@ class AgentFileInputBlock(AgentInputBlock):
self,
input_data: Input,
*,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
if not input_data.value:
return
# Determine return format based on user preference
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
yield "result", await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.value,
user_id=user_id,
return_content=input_data.base_64,
execution_context=execution_context,
return_format=return_format,
)

View File

@@ -162,8 +162,16 @@ class LinearClient:
"searchTerm": team_name,
}
team_id = await self.query(query, variables)
return team_id["teams"]["nodes"][0]["id"]
result = await self.query(query, variables)
nodes = result["teams"]["nodes"]
if not nodes:
raise LinearAPIException(
f"Team '{team_name}' not found. Check the team name or key and try again.",
status_code=404,
)
return nodes[0]["id"]
except LinearAPIException as e:
raise e
@@ -240,17 +248,44 @@ class LinearClient:
except LinearAPIException as e:
raise e
async def try_search_issues(self, term: str) -> list[Issue]:
async def try_search_issues(
self,
term: str,
max_results: int = 10,
team_id: str | None = None,
) -> list[Issue]:
try:
query = """
query SearchIssues($term: String!, $includeComments: Boolean!) {
searchIssues(term: $term, includeComments: $includeComments) {
query SearchIssues(
$term: String!,
$first: Int,
$teamId: String
) {
searchIssues(
term: $term,
first: $first,
teamId: $teamId
) {
nodes {
id
identifier
title
description
priority
createdAt
state {
id
name
type
}
project {
id
name
}
assignee {
id
name
}
}
}
}
@@ -258,7 +293,8 @@ class LinearClient:
variables: dict[str, Any] = {
"term": term,
"includeComments": True,
"first": max_results,
"teamId": team_id,
}
issues = await self.query(query, variables)

View File

@@ -17,7 +17,7 @@ from ._config import (
LinearScope,
linear,
)
from .models import CreateIssueResponse, Issue
from .models import CreateIssueResponse, Issue, State
class LinearCreateIssueBlock(Block):
@@ -135,9 +135,20 @@ class LinearSearchIssuesBlock(Block):
description="Linear credentials with read permissions",
required_scopes={LinearScope.READ},
)
max_results: int = SchemaField(
description="Maximum number of results to return",
default=10,
ge=1,
le=100,
)
team_name: str | None = SchemaField(
description="Optional team name to filter results (e.g., 'Internal', 'Open Source')",
default=None,
)
class Output(BlockSchemaOutput):
issues: list[Issue] = SchemaField(description="List of issues")
error: str = SchemaField(description="Error message if the search failed")
def __init__(self):
super().__init__(
@@ -145,8 +156,11 @@ class LinearSearchIssuesBlock(Block):
description="Searches for issues on Linear",
input_schema=self.Input,
output_schema=self.Output,
categories={BlockCategory.PRODUCTIVITY, BlockCategory.ISSUE_TRACKING},
test_input={
"term": "Test issue",
"max_results": 10,
"team_name": None,
"credentials": TEST_CREDENTIALS_INPUT_OAUTH,
},
test_credentials=TEST_CREDENTIALS_OAUTH,
@@ -156,10 +170,14 @@ class LinearSearchIssuesBlock(Block):
[
Issue(
id="abc123",
identifier="abc123",
identifier="TST-123",
title="Test issue",
description="Test description",
priority=1,
state=State(
id="state1", name="In Progress", type="started"
),
createdAt="2026-01-15T10:00:00.000Z",
)
],
)
@@ -168,10 +186,12 @@ class LinearSearchIssuesBlock(Block):
"search_issues": lambda *args, **kwargs: [
Issue(
id="abc123",
identifier="abc123",
identifier="TST-123",
title="Test issue",
description="Test description",
priority=1,
state=State(id="state1", name="In Progress", type="started"),
createdAt="2026-01-15T10:00:00.000Z",
)
]
},
@@ -181,10 +201,22 @@ class LinearSearchIssuesBlock(Block):
async def search_issues(
credentials: OAuth2Credentials | APIKeyCredentials,
term: str,
max_results: int = 10,
team_name: str | None = None,
) -> list[Issue]:
client = LinearClient(credentials=credentials)
response: list[Issue] = await client.try_search_issues(term=term)
return response
# Resolve team name to ID if provided
# Raises LinearAPIException with descriptive message if team not found
team_id: str | None = None
if team_name:
team_id = await client.try_get_team_by_name(team_name=team_name)
return await client.try_search_issues(
term=term,
max_results=max_results,
team_id=team_id,
)
async def run(
self,
@@ -196,7 +228,10 @@ class LinearSearchIssuesBlock(Block):
"""Execute the issue search"""
try:
issues = await self.search_issues(
credentials=credentials, term=input_data.term
credentials=credentials,
term=input_data.term,
max_results=input_data.max_results,
team_name=input_data.team_name,
)
yield "issues", issues
except LinearAPIException as e:

View File

@@ -36,12 +36,21 @@ class Project(BaseModel):
content: str | None = None
class State(BaseModel):
id: str
name: str
type: str | None = (
None # Workflow state type (e.g., "triage", "backlog", "started", "completed", "canceled")
)
class Issue(BaseModel):
id: str
identifier: str
title: str
description: str | None
priority: int
state: State | None = None
project: Project | None = None
createdAt: str | None = None
comments: list[Comment] | None = None

View File

@@ -32,7 +32,7 @@ from backend.data.model import (
from backend.integrations.providers import ProviderName
from backend.util import json
from backend.util.logging import TruncatedLogger
from backend.util.prompt import compress_prompt, estimate_token_count
from backend.util.prompt import compress_context, estimate_token_count
from backend.util.text import TextFormatter
logger = TruncatedLogger(logging.getLogger(__name__), "[LLM-Block]")
@@ -115,7 +115,7 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
CLAUDE_4_6_OPUS = "claude-opus-4-6"
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
# AI/ML API models
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
@@ -271,6 +271,9 @@ MODEL_METADATA = {
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_6_OPUS: ModelMetadata(
"anthropic", 200000, 128000, "Claude Opus 4.6", "Anthropic", "Anthropic", 3
), # claude-opus-4-6
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
), # claude-opus-4-5-20251101
@@ -280,9 +283,6 @@ MODEL_METADATA = {
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
), # claude-haiku-4-5-20251001
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude 3.7 Sonnet", "Anthropic", "Anthropic", 2
), # claude-3-7-sonnet-20250219
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
), # claude-3-haiku-20240307
@@ -638,11 +638,18 @@ async def llm_call(
context_window = llm_model.context_window
if compress_prompt_to_fit:
prompt = compress_prompt(
result = await compress_context(
messages=prompt,
target_tokens=llm_model.context_window // 2,
lossy_ok=True,
client=None, # Truncation-only, no LLM summarization
reserve=0, # Caller handles response token budget separately
)
if result.error:
logger.warning(
f"Prompt compression did not meet target: {result.error}. "
f"Proceeding with {result.token_count} tokens."
)
prompt = result.messages
# Calculate available tokens based on context window and input length
estimated_input_tokens = estimate_token_count(prompt)

View File

@@ -1,251 +0,0 @@
import os
import tempfile
from typing import Literal, Optional
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.fx.Loop import Loop
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class MediaDurationBlock(Block):
class Input(BlockSchemaInput):
media_in: MediaFileType = SchemaField(
description="Media input (URL, data URI, or local path)."
)
is_video: bool = SchemaField(
description="Whether the media is a video (True) or audio (False).",
default=True,
)
class Output(BlockSchemaOutput):
duration: float = SchemaField(
description="Duration of the media file (in seconds)."
)
def __init__(self):
super().__init__(
id="d8b91fd4-da26-42d4-8ecb-8b196c6d84b6",
description="Block to get the duration of a media file.",
categories={BlockCategory.MULTIMEDIA},
input_schema=MediaDurationBlock.Input,
output_schema=MediaDurationBlock.Output,
)
async def run(
self,
input_data: Input,
*,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
# 1) Store the input media locally
local_media_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.media_in,
user_id=user_id,
return_content=False,
)
media_abspath = get_exec_file_path(graph_exec_id, local_media_path)
# 2) Load the clip
if input_data.is_video:
clip = VideoFileClip(media_abspath)
else:
clip = AudioFileClip(media_abspath)
yield "duration", clip.duration
class LoopVideoBlock(Block):
"""
Block for looping (repeating) a video clip until a given duration or number of loops.
"""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="The input video (can be a URL, data URI, or local path)."
)
# Provide EITHER a `duration` or `n_loops` or both. We'll demonstrate `duration`.
duration: Optional[float] = SchemaField(
description="Target duration (in seconds) to loop the video to. If omitted, defaults to no looping.",
default=None,
ge=0.0,
)
n_loops: Optional[int] = SchemaField(
description="Number of times to repeat the video. If omitted, defaults to 1 (no repeat).",
default=None,
ge=1,
)
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="How to return the output video. Either a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput):
video_out: str = SchemaField(
description="Looped video returned either as a relative path or a data URI."
)
def __init__(self):
super().__init__(
id="8bf9eef6-5451-4213-b265-25306446e94b",
description="Block to loop a video to a given duration or number of repeats.",
categories={BlockCategory.MULTIMEDIA},
input_schema=LoopVideoBlock.Input,
output_schema=LoopVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
node_exec_id: str,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
# 1) Store the input video locally
local_video_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.video_in,
user_id=user_id,
return_content=False,
)
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
# 2) Load the clip
clip = VideoFileClip(input_abspath)
# 3) Apply the loop effect
looped_clip = clip
if input_data.duration:
# Loop until we reach the specified duration
looped_clip = looped_clip.with_effects([Loop(duration=input_data.duration)])
elif input_data.n_loops:
looped_clip = looped_clip.with_effects([Loop(n=input_data.n_loops)])
else:
raise ValueError("Either 'duration' or 'n_loops' must be provided.")
assert isinstance(looped_clip, VideoFileClip)
# 4) Save the looped output
output_filename = MediaFileType(
f"{node_exec_id}_looped_{os.path.basename(local_video_path)}"
)
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
looped_clip = looped_clip.with_audio(clip.audio)
looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# Return as data URI
video_out = await store_media_file(
graph_exec_id=graph_exec_id,
file=output_filename,
user_id=user_id,
return_content=input_data.output_return_type == "data_uri",
)
yield "video_out", video_out
class AddAudioToVideoBlock(Block):
"""
Block that adds (attaches) an audio track to an existing video.
Optionally scale the volume of the new track.
"""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Video input (URL, data URI, or local path)."
)
audio_in: MediaFileType = SchemaField(
description="Audio input (URL, data URI, or local path)."
)
volume: float = SchemaField(
description="Volume scale for the newly attached audio track (1.0 = original).",
default=1.0,
)
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="Return the final output as a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Final video (with attached audio), as a path or data URI."
)
def __init__(self):
super().__init__(
id="3503748d-62b6-4425-91d6-725b064af509",
description="Block to attach an audio file to a video file using moviepy.",
categories={BlockCategory.MULTIMEDIA},
input_schema=AddAudioToVideoBlock.Input,
output_schema=AddAudioToVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
node_exec_id: str,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
# 1) Store the inputs locally
local_video_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.video_in,
user_id=user_id,
return_content=False,
)
local_audio_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.audio_in,
user_id=user_id,
return_content=False,
)
abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id)
video_abspath = os.path.join(abs_temp_dir, local_video_path)
audio_abspath = os.path.join(abs_temp_dir, local_audio_path)
# 2) Load video + audio with moviepy
video_clip = VideoFileClip(video_abspath)
audio_clip = AudioFileClip(audio_abspath)
# Optionally scale volume
if input_data.volume != 1.0:
audio_clip = audio_clip.with_volume_scaled(input_data.volume)
# 3) Attach the new audio track
final_clip = video_clip.with_audio(audio_clip)
# 4) Write to output file
output_filename = MediaFileType(
f"{node_exec_id}_audio_attached_{os.path.basename(local_video_path)}"
)
output_abspath = os.path.join(abs_temp_dir, output_filename)
final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# 5) Return either path or data URI
video_out = await store_media_file(
graph_exec_id=graph_exec_id,
file=output_filename,
user_id=user_id,
return_content=input_data.output_return_type == "data_uri",
)
yield "video_out", video_out

View File

@@ -11,6 +11,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -112,8 +113,7 @@ class ScreenshotWebPageBlock(Block):
@staticmethod
async def take_screenshot(
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
url: str,
viewport_width: int,
viewport_height: int,
@@ -155,12 +155,11 @@ class ScreenshotWebPageBlock(Block):
return {
"image": await store_media_file(
graph_exec_id=graph_exec_id,
file=MediaFileType(
f"data:image/{format.value};base64,{b64encode(content).decode('utf-8')}"
),
user_id=user_id,
return_content=True,
execution_context=execution_context,
return_format="for_block_output",
)
}
@@ -169,15 +168,13 @@ class ScreenshotWebPageBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
try:
screenshot_data = await self.take_screenshot(
credentials=credentials,
graph_exec_id=graph_exec_id,
user_id=user_id,
execution_context=execution_context,
url=input_data.url,
viewport_width=input_data.viewport_width,
viewport_height=input_data.viewport_height,

View File

@@ -7,6 +7,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import ContributorDetails, SchemaField
from backend.util.file import get_exec_file_path, store_media_file
from backend.util.type import MediaFileType
@@ -98,7 +99,7 @@ class ReadSpreadsheetBlock(Block):
)
async def run(
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
) -> BlockOutput:
import csv
from io import StringIO
@@ -106,14 +107,16 @@ class ReadSpreadsheetBlock(Block):
# Determine data source - prefer file_input if provided, otherwise use contents
if input_data.file_input:
stored_file_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=input_data.file_input,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
# Get full file path
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
assert execution_context.graph_exec_id # Validated by store_media_file
file_path = get_exec_file_path(
execution_context.graph_exec_id, stored_file_path
)
if not Path(file_path).exists():
raise ValueError(f"File does not exist: {file_path}")

View File

@@ -83,7 +83,7 @@ class StagehandRecommendedLlmModel(str, Enum):
GPT41_MINI = "gpt-4.1-mini-2025-04-14"
# Anthropic
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
@property
def provider_name(self) -> str:
@@ -137,7 +137,7 @@ class StagehandObserveBlock(Block):
model: StagehandRecommendedLlmModel = SchemaField(
title="LLM Model",
description="LLM to use for Stagehand (provider is inferred)",
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
advanced=False,
)
model_credentials: AICredentials = AICredentialsField()
@@ -182,10 +182,7 @@ class StagehandObserveBlock(Block):
**kwargs,
) -> BlockOutput:
logger.info(f"OBSERVE: Stagehand credentials: {stagehand_credentials}")
logger.info(
f"OBSERVE: Model credentials: {model_credentials} for provider {model_credentials.provider} secret: {model_credentials.api_key.get_secret_value()}"
)
logger.debug(f"OBSERVE: Using model provider {model_credentials.provider}")
with disable_signal_handling():
stagehand = Stagehand(
@@ -230,7 +227,7 @@ class StagehandActBlock(Block):
model: StagehandRecommendedLlmModel = SchemaField(
title="LLM Model",
description="LLM to use for Stagehand (provider is inferred)",
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
advanced=False,
)
model_credentials: AICredentials = AICredentialsField()
@@ -282,10 +279,7 @@ class StagehandActBlock(Block):
**kwargs,
) -> BlockOutput:
logger.info(f"ACT: Stagehand credentials: {stagehand_credentials}")
logger.info(
f"ACT: Model credentials: {model_credentials} for provider {model_credentials.provider} secret: {model_credentials.api_key.get_secret_value()}"
)
logger.debug(f"ACT: Using model provider {model_credentials.provider}")
with disable_signal_handling():
stagehand = Stagehand(
@@ -330,7 +324,7 @@ class StagehandExtractBlock(Block):
model: StagehandRecommendedLlmModel = SchemaField(
title="LLM Model",
description="LLM to use for Stagehand (provider is inferred)",
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
advanced=False,
)
model_credentials: AICredentials = AICredentialsField()
@@ -370,10 +364,7 @@ class StagehandExtractBlock(Block):
**kwargs,
) -> BlockOutput:
logger.info(f"EXTRACT: Stagehand credentials: {stagehand_credentials}")
logger.info(
f"EXTRACT: Model credentials: {model_credentials} for provider {model_credentials.provider} secret: {model_credentials.api_key.get_secret_value()}"
)
logger.debug(f"EXTRACT: Using model provider {model_credentials.provider}")
with disable_signal_handling():
stagehand = Stagehand(

View File

@@ -10,6 +10,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -17,7 +18,9 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.file import store_media_file
from backend.util.request import Requests
from backend.util.type import MediaFileType
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
@@ -102,7 +105,7 @@ class CreateTalkingAvatarVideoBlock(Block):
test_output=[
(
"video_url",
"https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
lambda x: x.startswith(("workspace://", "data:")),
),
],
test_mock={
@@ -110,9 +113,10 @@ class CreateTalkingAvatarVideoBlock(Block):
"id": "abcd1234-5678-efgh-ijkl-mnopqrstuvwx",
"status": "created",
},
# Use data URI to avoid HTTP requests during tests
"get_clip_status": lambda *args, **kwargs: {
"status": "done",
"result_url": "https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
"result_url": "data:video/mp4;base64,AAAA",
},
},
test_credentials=TEST_CREDENTIALS,
@@ -138,7 +142,12 @@ class CreateTalkingAvatarVideoBlock(Block):
return response.json()
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# Create the clip
payload = {
@@ -165,7 +174,14 @@ class CreateTalkingAvatarVideoBlock(Block):
for _ in range(input_data.max_polling_attempts):
status_response = await self.get_clip_status(credentials.api_key, clip_id)
if status_response["status"] == "done":
yield "video_url", status_response["result_url"]
# Store the generated video to the user's workspace for persistence
video_url = status_response["result_url"]
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
return
elif status_response["status"] == "error":
raise RuntimeError(

View File

@@ -12,6 +12,7 @@ from backend.blocks.iteration import StepThroughItemsBlock
from backend.blocks.llm import AITextSummarizerBlock
from backend.blocks.text import ExtractTextInformationBlock
from backend.blocks.xml_parser import XMLParserBlock
from backend.data.execution import ExecutionContext
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
@@ -233,9 +234,12 @@ class TestStoreMediaFileSecurity:
with pytest.raises(ValueError, match="File too large"):
await store_media_file(
graph_exec_id="test",
file=MediaFileType(large_data_uri),
user_id="test_user",
execution_context=ExecutionContext(
user_id="test_user",
graph_exec_id="test",
),
return_format="for_local_processing",
)
@patch("backend.util.file.Path")
@@ -270,9 +274,12 @@ class TestStoreMediaFileSecurity:
# Should raise an error when directory size exceeds limit
with pytest.raises(ValueError, match="Disk usage limit exceeded"):
await store_media_file(
graph_exec_id="test",
file=MediaFileType(
"data:text/plain;base64,dGVzdA=="
), # Small test file
user_id="test_user",
execution_context=ExecutionContext(
user_id="test_user",
graph_exec_id="test",
),
return_format="for_local_processing",
)

View File

@@ -11,10 +11,22 @@ from backend.blocks.http import (
HttpMethod,
SendAuthenticatedWebRequestBlock,
)
from backend.data.execution import ExecutionContext
from backend.data.model import HostScopedCredentials
from backend.util.request import Response
def make_test_context(
graph_exec_id: str = "test-exec-id",
user_id: str = "test-user-id",
) -> ExecutionContext:
"""Helper to create test ExecutionContext."""
return ExecutionContext(
user_id=user_id,
graph_exec_id=graph_exec_id,
)
class TestHttpBlockWithHostScopedCredentials:
"""Test suite for HTTP block integration with HostScopedCredentials."""
@@ -105,8 +117,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=exact_match_credentials,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -161,8 +172,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=wildcard_credentials,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -208,8 +218,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=non_matching_credentials,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -258,8 +267,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=exact_match_credentials,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -318,8 +326,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=auto_discovered_creds, # Execution manager found these
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -382,8 +389,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=multi_header_creds,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -471,8 +477,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=test_creds,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))

View File

@@ -0,0 +1,77 @@
import pytest
from backend.blocks.encoder_block import TextEncoderBlock
@pytest.mark.asyncio
async def test_text_encoder_basic():
"""Test basic encoding of newlines and special characters."""
block = TextEncoderBlock()
result = []
async for output in block.run(TextEncoderBlock.Input(text="Hello\nWorld")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
assert result[0][1] == "Hello\\nWorld"
@pytest.mark.asyncio
async def test_text_encoder_multiple_escapes():
"""Test encoding of multiple escape sequences."""
block = TextEncoderBlock()
result = []
async for output in block.run(
TextEncoderBlock.Input(text="Line1\nLine2\tTabbed\rCarriage")
):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
assert "\\n" in result[0][1]
assert "\\t" in result[0][1]
assert "\\r" in result[0][1]
@pytest.mark.asyncio
async def test_text_encoder_unicode():
"""Test that unicode characters are handled correctly."""
block = TextEncoderBlock()
result = []
async for output in block.run(TextEncoderBlock.Input(text="Hello 世界\n")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
# Unicode characters should be escaped as \uXXXX sequences
assert "\\n" in result[0][1]
@pytest.mark.asyncio
async def test_text_encoder_empty_string():
"""Test encoding of an empty string."""
block = TextEncoderBlock()
result = []
async for output in block.run(TextEncoderBlock.Input(text="")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
assert result[0][1] == ""
@pytest.mark.asyncio
async def test_text_encoder_error_handling():
"""Test that encoding errors are handled gracefully."""
from unittest.mock import patch
block = TextEncoderBlock()
result = []
with patch("codecs.encode", side_effect=Exception("Mocked encoding error")):
async for output in block.run(TextEncoderBlock.Input(text="test")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "error"
assert "Mocked encoding error" in result[0][1]

View File

@@ -11,6 +11,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util import json, text
from backend.util.file import get_exec_file_path, store_media_file
@@ -444,18 +445,21 @@ class FileReadBlock(Block):
)
async def run(
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
) -> BlockOutput:
# Store the media file properly (handles URLs, data URIs, etc.)
stored_file_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=input_data.file_input,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
# Get full file path
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
# Get full file path (graph_exec_id validated by store_media_file above)
if not execution_context.graph_exec_id:
raise ValueError("execution_context.graph_exec_id is required")
file_path = get_exec_file_path(
execution_context.graph_exec_id, stored_file_path
)
if not Path(file_path).exists():
raise ValueError(f"File does not exist: {file_path}")

View File

@@ -0,0 +1,37 @@
"""Video editing blocks for AutoGPT Platform.
This module provides blocks for:
- Downloading videos from URLs (YouTube, Vimeo, news sites, direct links)
- Clipping/trimming video segments
- Concatenating multiple videos
- Adding text overlays
- Adding AI-generated narration
- Getting media duration
- Looping videos
- Adding audio to videos
Dependencies:
- yt-dlp: For video downloading
- moviepy: For video editing operations
- elevenlabs: For AI narration (optional)
"""
from backend.blocks.video.add_audio import AddAudioToVideoBlock
from backend.blocks.video.clip import VideoClipBlock
from backend.blocks.video.concat import VideoConcatBlock
from backend.blocks.video.download import VideoDownloadBlock
from backend.blocks.video.duration import MediaDurationBlock
from backend.blocks.video.loop import LoopVideoBlock
from backend.blocks.video.narration import VideoNarrationBlock
from backend.blocks.video.text_overlay import VideoTextOverlayBlock
__all__ = [
"AddAudioToVideoBlock",
"LoopVideoBlock",
"MediaDurationBlock",
"VideoClipBlock",
"VideoConcatBlock",
"VideoDownloadBlock",
"VideoNarrationBlock",
"VideoTextOverlayBlock",
]

View File

@@ -0,0 +1,131 @@
"""Shared utilities for video blocks."""
from __future__ import annotations
import logging
import os
import re
import subprocess
from pathlib import Path
logger = logging.getLogger(__name__)
# Known operation tags added by video blocks
_VIDEO_OPS = (
r"(?:clip|overlay|narrated|looped|concat|audio_attached|with_audio|narration)"
)
# Matches: {node_exec_id}_{operation}_ where node_exec_id contains a UUID
_BLOCK_PREFIX_RE = re.compile(
r"^[a-zA-Z0-9_-]*"
r"[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}"
r"[a-zA-Z0-9_-]*"
r"_" + _VIDEO_OPS + r"_"
)
# Matches: a lone {node_exec_id}_ prefix (no operation keyword, e.g. download output)
_UUID_PREFIX_RE = re.compile(
r"^[a-zA-Z0-9_-]*"
r"[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}"
r"[a-zA-Z0-9_-]*_"
)
def extract_source_name(input_path: str, max_length: int = 50) -> str:
"""Extract the original source filename by stripping block-generated prefixes.
Iteratively removes {node_exec_id}_{operation}_ prefixes that accumulate
when chaining video blocks, recovering the original human-readable name.
Safe for plain filenames (no UUID -> no stripping).
Falls back to "video" if everything is stripped.
"""
stem = Path(input_path).stem
# Pass 1: strip {node_exec_id}_{operation}_ prefixes iteratively
while _BLOCK_PREFIX_RE.match(stem):
stem = _BLOCK_PREFIX_RE.sub("", stem, count=1)
# Pass 2: strip a lone {node_exec_id}_ prefix (e.g. from download block)
if _UUID_PREFIX_RE.match(stem):
stem = _UUID_PREFIX_RE.sub("", stem, count=1)
if not stem:
return "video"
return stem[:max_length]
def get_video_codecs(output_path: str) -> tuple[str, str]:
"""Get appropriate video and audio codecs based on output file extension.
Args:
output_path: Path to the output file (used to determine extension)
Returns:
Tuple of (video_codec, audio_codec)
Codec mappings:
- .mp4: H.264 + AAC (universal compatibility)
- .webm: VP8 + Vorbis (web streaming)
- .mkv: H.264 + AAC (container supports many codecs)
- .mov: H.264 + AAC (Apple QuickTime, widely compatible)
- .m4v: H.264 + AAC (Apple iTunes/devices)
- .avi: MPEG-4 + MP3 (legacy Windows)
"""
ext = os.path.splitext(output_path)[1].lower()
codec_map: dict[str, tuple[str, str]] = {
".mp4": ("libx264", "aac"),
".webm": ("libvpx", "libvorbis"),
".mkv": ("libx264", "aac"),
".mov": ("libx264", "aac"),
".m4v": ("libx264", "aac"),
".avi": ("mpeg4", "libmp3lame"),
}
return codec_map.get(ext, ("libx264", "aac"))
def strip_chapters_inplace(video_path: str) -> None:
"""Strip chapter metadata from a media file in-place using ffmpeg.
MoviePy 2.x crashes with IndexError when parsing files with embedded
chapter metadata (https://github.com/Zulko/moviepy/issues/2419).
This strips chapters without re-encoding.
Args:
video_path: Absolute path to the media file to strip chapters from.
"""
base, ext = os.path.splitext(video_path)
tmp_path = base + ".tmp" + ext
try:
result = subprocess.run(
[
"ffmpeg",
"-y",
"-i",
video_path,
"-map_chapters",
"-1",
"-codec",
"copy",
tmp_path,
],
capture_output=True,
text=True,
timeout=300,
)
if result.returncode != 0:
logger.warning(
"ffmpeg chapter strip failed (rc=%d): %s",
result.returncode,
result.stderr,
)
return
os.replace(tmp_path, video_path)
except FileNotFoundError:
logger.warning("ffmpeg not found; skipping chapter strip")
finally:
if os.path.exists(tmp_path):
os.unlink(tmp_path)

View File

@@ -0,0 +1,113 @@
"""AddAudioToVideoBlock - Attach an audio track to a video file."""
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import extract_source_name, strip_chapters_inplace
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class AddAudioToVideoBlock(Block):
"""Add (attach) an audio track to an existing video."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Video input (URL, data URI, or local path)."
)
audio_in: MediaFileType = SchemaField(
description="Audio input (URL, data URI, or local path)."
)
volume: float = SchemaField(
description="Volume scale for the newly attached audio track (1.0 = original).",
default=1.0,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Final video (with attached audio), as a path or data URI."
)
def __init__(self):
super().__init__(
id="3503748d-62b6-4425-91d6-725b064af509",
description="Block to attach an audio file to a video file using moviepy.",
categories={BlockCategory.MULTIMEDIA},
input_schema=AddAudioToVideoBlock.Input,
output_schema=AddAudioToVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the inputs locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
local_audio_path = await store_media_file(
file=input_data.audio_in,
execution_context=execution_context,
return_format="for_local_processing",
)
video_abspath = get_exec_file_path(graph_exec_id, local_video_path)
audio_abspath = get_exec_file_path(graph_exec_id, local_audio_path)
# 2) Load video + audio with moviepy
strip_chapters_inplace(video_abspath)
strip_chapters_inplace(audio_abspath)
video_clip = None
audio_clip = None
final_clip = None
try:
video_clip = VideoFileClip(video_abspath)
audio_clip = AudioFileClip(audio_abspath)
# Optionally scale volume
if input_data.volume != 1.0:
audio_clip = audio_clip.with_volume_scaled(input_data.volume)
# 3) Attach the new audio track
final_clip = video_clip.with_audio(audio_clip)
# 4) Write to output file
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_with_audio_{source}.mp4")
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
final_clip.write_videofile(
output_abspath, codec="libx264", audio_codec="aac"
)
finally:
if final_clip:
final_clip.close()
if audio_clip:
audio_clip.close()
if video_clip:
video_clip.close()
# 5) Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out

View File

@@ -0,0 +1,167 @@
"""VideoClipBlock - Extract a segment from a video file."""
from typing import Literal
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoClipBlock(Block):
"""Extract a time segment from a video."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Input video (URL, data URI, or local path)"
)
start_time: float = SchemaField(description="Start time in seconds", ge=0.0)
end_time: float = SchemaField(description="End time in seconds", ge=0.0)
output_format: Literal["mp4", "webm", "mkv", "mov"] = SchemaField(
description="Output format", default="mp4", advanced=True
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Clipped video file (path or data URI)"
)
duration: float = SchemaField(description="Clip duration in seconds")
def __init__(self):
super().__init__(
id="8f539119-e580-4d86-ad41-86fbcb22abb1",
description="Extract a time segment from a video",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"video_in": "/tmp/test.mp4",
"start_time": 0.0,
"end_time": 10.0,
},
test_output=[("video_out", str), ("duration", float)],
test_mock={
"_clip_video": lambda *args: 10.0,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "clip_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _clip_video(
self,
video_abspath: str,
output_abspath: str,
start_time: float,
end_time: float,
) -> float:
"""Extract a clip from a video. Extracted for testability."""
clip = None
subclip = None
try:
strip_chapters_inplace(video_abspath)
clip = VideoFileClip(video_abspath)
subclip = clip.subclipped(start_time, end_time)
video_codec, audio_codec = get_video_codecs(output_abspath)
subclip.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
return subclip.duration
finally:
if subclip:
subclip.close()
if clip:
clip.close()
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
# Validate time range
if input_data.end_time <= input_data.start_time:
raise BlockExecutionError(
message=f"end_time ({input_data.end_time}) must be greater than start_time ({input_data.start_time})",
block_name=self.name,
block_id=str(self.id),
)
try:
assert execution_context.graph_exec_id is not None
# Store the input video locally
local_video_path = await self._store_input_video(
execution_context, input_data.video_in
)
video_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_video_path
)
# Build output path
source = extract_source_name(local_video_path)
output_filename = MediaFileType(
f"{node_exec_id}_clip_{source}.{input_data.output_format}"
)
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
duration = self._clip_video(
video_abspath,
output_abspath,
input_data.start_time,
input_data.end_time,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
yield "video_out", video_out
yield "duration", duration
except BlockExecutionError:
raise
except Exception as e:
raise BlockExecutionError(
message=f"Failed to clip video: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -0,0 +1,227 @@
"""VideoConcatBlock - Concatenate multiple video clips into one."""
from typing import Literal
from moviepy import concatenate_videoclips
from moviepy.video.fx import CrossFadeIn, CrossFadeOut, FadeIn, FadeOut
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoConcatBlock(Block):
"""Merge multiple video clips into one continuous video."""
class Input(BlockSchemaInput):
videos: list[MediaFileType] = SchemaField(
description="List of video files to concatenate (in order)"
)
transition: Literal["none", "crossfade", "fade_black"] = SchemaField(
description="Transition between clips", default="none"
)
transition_duration: int = SchemaField(
description="Transition duration in seconds",
default=1,
ge=0,
advanced=True,
)
output_format: Literal["mp4", "webm", "mkv", "mov"] = SchemaField(
description="Output format", default="mp4", advanced=True
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Concatenated video file (path or data URI)"
)
total_duration: float = SchemaField(description="Total duration in seconds")
def __init__(self):
super().__init__(
id="9b0f531a-1118-487f-aeec-3fa63ea8900a",
description="Merge multiple video clips into one continuous video",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"videos": ["/tmp/a.mp4", "/tmp/b.mp4"],
},
test_output=[
("video_out", str),
("total_duration", float),
],
test_mock={
"_concat_videos": lambda *args: 20.0,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "concat_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _concat_videos(
self,
video_abspaths: list[str],
output_abspath: str,
transition: str,
transition_duration: int,
) -> float:
"""Concatenate videos. Extracted for testability.
Returns:
Total duration of the concatenated video.
"""
clips = []
faded_clips = []
final = None
try:
# Load clips
for v in video_abspaths:
strip_chapters_inplace(v)
clips.append(VideoFileClip(v))
# Validate transition_duration against shortest clip
if transition in {"crossfade", "fade_black"} and transition_duration > 0:
min_duration = min(c.duration for c in clips)
if transition_duration >= min_duration:
raise BlockExecutionError(
message=(
f"transition_duration ({transition_duration}s) must be "
f"shorter than the shortest clip ({min_duration:.2f}s)"
),
block_name=self.name,
block_id=str(self.id),
)
if transition == "crossfade":
for i, clip in enumerate(clips):
effects = []
if i > 0:
effects.append(CrossFadeIn(transition_duration))
if i < len(clips) - 1:
effects.append(CrossFadeOut(transition_duration))
if effects:
clip = clip.with_effects(effects)
faded_clips.append(clip)
final = concatenate_videoclips(
faded_clips,
method="compose",
padding=-transition_duration,
)
elif transition == "fade_black":
for clip in clips:
faded = clip.with_effects(
[FadeIn(transition_duration), FadeOut(transition_duration)]
)
faded_clips.append(faded)
final = concatenate_videoclips(faded_clips)
else:
final = concatenate_videoclips(clips)
video_codec, audio_codec = get_video_codecs(output_abspath)
final.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
return final.duration
finally:
if final:
final.close()
for clip in faded_clips:
clip.close()
for clip in clips:
clip.close()
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
# Validate minimum clips
if len(input_data.videos) < 2:
raise BlockExecutionError(
message="At least 2 videos are required for concatenation",
block_name=self.name,
block_id=str(self.id),
)
try:
assert execution_context.graph_exec_id is not None
# Store all input videos locally
video_abspaths = []
for video in input_data.videos:
local_path = await self._store_input_video(execution_context, video)
video_abspaths.append(
get_exec_file_path(execution_context.graph_exec_id, local_path)
)
# Build output path
source = (
extract_source_name(video_abspaths[0]) if video_abspaths else "video"
)
output_filename = MediaFileType(
f"{node_exec_id}_concat_{source}.{input_data.output_format}"
)
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
total_duration = self._concat_videos(
video_abspaths,
output_abspath,
input_data.transition,
input_data.transition_duration,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
yield "video_out", video_out
yield "total_duration", total_duration
except BlockExecutionError:
raise
except Exception as e:
raise BlockExecutionError(
message=f"Failed to concatenate videos: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -0,0 +1,172 @@
"""VideoDownloadBlock - Download video from URL (YouTube, Vimeo, news sites, direct links)."""
import os
import typing
from typing import Literal
import yt_dlp
if typing.TYPE_CHECKING:
from yt_dlp import _Params
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoDownloadBlock(Block):
"""Download video from URL using yt-dlp."""
class Input(BlockSchemaInput):
url: str = SchemaField(
description="URL of the video to download (YouTube, Vimeo, direct link, etc.)",
placeholder="https://www.youtube.com/watch?v=...",
)
quality: Literal["best", "1080p", "720p", "480p", "audio_only"] = SchemaField(
description="Video quality preference", default="720p"
)
output_format: Literal["mp4", "webm", "mkv"] = SchemaField(
description="Output video format", default="mp4", advanced=True
)
class Output(BlockSchemaOutput):
video_file: MediaFileType = SchemaField(
description="Downloaded video (path or data URI)"
)
duration: float = SchemaField(description="Video duration in seconds")
title: str = SchemaField(description="Video title from source")
source_url: str = SchemaField(description="Original source URL")
def __init__(self):
super().__init__(
id="c35daabb-cd60-493b-b9ad-51f1fe4b50c4",
description="Download video from URL (YouTube, Vimeo, news sites, direct links)",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
disabled=True, # Disable until we can sandbox yt-dlp and handle security implications
test_input={
"url": "https://www.youtube.com/watch?v=dQw4w9WgXcQ",
"quality": "480p",
},
test_output=[
("video_file", str),
("duration", float),
("title", str),
("source_url", str),
],
test_mock={
"_download_video": lambda *args: (
"video.mp4",
212.0,
"Test Video",
),
"_store_output_video": lambda *args, **kwargs: "video.mp4",
},
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _get_format_string(self, quality: str) -> str:
formats = {
"best": "bestvideo+bestaudio/best",
"1080p": "bestvideo[height<=1080]+bestaudio/best[height<=1080]",
"720p": "bestvideo[height<=720]+bestaudio/best[height<=720]",
"480p": "bestvideo[height<=480]+bestaudio/best[height<=480]",
"audio_only": "bestaudio/best",
}
return formats.get(quality, formats["720p"])
def _download_video(
self,
url: str,
quality: str,
output_format: str,
output_dir: str,
node_exec_id: str,
) -> tuple[str, float, str]:
"""Download video. Extracted for testability."""
output_template = os.path.join(
output_dir, f"{node_exec_id}_%(title).50s.%(ext)s"
)
ydl_opts: "_Params" = {
"format": f"{self._get_format_string(quality)}/best",
"outtmpl": output_template,
"merge_output_format": output_format,
"quiet": True,
"no_warnings": True,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
video_path = ydl.prepare_filename(info)
# Handle format conversion in filename
if not video_path.endswith(f".{output_format}"):
video_path = video_path.rsplit(".", 1)[0] + f".{output_format}"
# Return just the filename, not the full path
filename = os.path.basename(video_path)
return (
filename,
info.get("duration") or 0.0,
info.get("title") or "Unknown",
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
try:
assert execution_context.graph_exec_id is not None
# Get the exec file directory
output_dir = get_exec_file_path(execution_context.graph_exec_id, "")
os.makedirs(output_dir, exist_ok=True)
filename, duration, title = self._download_video(
input_data.url,
input_data.quality,
input_data.output_format,
output_dir,
node_exec_id,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, MediaFileType(filename)
)
yield "video_file", video_out
yield "duration", duration
yield "title", title
yield "source_url", input_data.url
except Exception as e:
raise BlockExecutionError(
message=f"Failed to download video: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -0,0 +1,77 @@
"""MediaDurationBlock - Get the duration of a media file."""
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import strip_chapters_inplace
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class MediaDurationBlock(Block):
"""Get the duration of a media file (video or audio)."""
class Input(BlockSchemaInput):
media_in: MediaFileType = SchemaField(
description="Media input (URL, data URI, or local path)."
)
is_video: bool = SchemaField(
description="Whether the media is a video (True) or audio (False).",
default=True,
)
class Output(BlockSchemaOutput):
duration: float = SchemaField(
description="Duration of the media file (in seconds)."
)
def __init__(self):
super().__init__(
id="d8b91fd4-da26-42d4-8ecb-8b196c6d84b6",
description="Block to get the duration of a media file.",
categories={BlockCategory.MULTIMEDIA},
input_schema=MediaDurationBlock.Input,
output_schema=MediaDurationBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# 1) Store the input media locally
local_media_path = await store_media_file(
file=input_data.media_in,
execution_context=execution_context,
return_format="for_local_processing",
)
assert execution_context.graph_exec_id is not None
media_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_media_path
)
# 2) Strip chapters to avoid MoviePy crash, then load the clip
strip_chapters_inplace(media_abspath)
clip = None
try:
if input_data.is_video:
clip = VideoFileClip(media_abspath)
else:
clip = AudioFileClip(media_abspath)
duration = clip.duration
finally:
if clip:
clip.close()
yield "duration", duration

View File

@@ -0,0 +1,115 @@
"""LoopVideoBlock - Loop a video to a given duration or number of repeats."""
from typing import Optional
from moviepy.video.fx.Loop import Loop
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import extract_source_name, strip_chapters_inplace
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class LoopVideoBlock(Block):
"""Loop (repeat) a video clip until a given duration or number of loops."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="The input video (can be a URL, data URI, or local path)."
)
duration: Optional[float] = SchemaField(
description="Target duration (in seconds) to loop the video to. Either duration or n_loops must be provided.",
default=None,
ge=0.0,
le=3600.0, # Max 1 hour to prevent disk exhaustion
)
n_loops: Optional[int] = SchemaField(
description="Number of times to repeat the video. Either n_loops or duration must be provided.",
default=None,
ge=1,
le=10, # Max 10 loops to prevent disk exhaustion
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Looped video returned either as a relative path or a data URI."
)
def __init__(self):
super().__init__(
id="8bf9eef6-5451-4213-b265-25306446e94b",
description="Block to loop a video to a given duration or number of repeats.",
categories={BlockCategory.MULTIMEDIA},
input_schema=LoopVideoBlock.Input,
output_schema=LoopVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the input video locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
# 2) Load the clip
strip_chapters_inplace(input_abspath)
clip = None
looped_clip = None
try:
clip = VideoFileClip(input_abspath)
# 3) Apply the loop effect
if input_data.duration:
# Loop until we reach the specified duration
looped_clip = clip.with_effects([Loop(duration=input_data.duration)])
elif input_data.n_loops:
looped_clip = clip.with_effects([Loop(n=input_data.n_loops)])
else:
raise ValueError("Either 'duration' or 'n_loops' must be provided.")
assert isinstance(looped_clip, VideoFileClip)
# 4) Save the looped output
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_looped_{source}.mp4")
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
looped_clip = looped_clip.with_audio(clip.audio)
looped_clip.write_videofile(
output_abspath, codec="libx264", audio_codec="aac"
)
finally:
if looped_clip:
looped_clip.close()
if clip:
clip.close()
# Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out

View File

@@ -0,0 +1,267 @@
"""VideoNarrationBlock - Generate AI voice narration and add to video."""
import os
from typing import Literal
from elevenlabs import ElevenLabs
from moviepy import CompositeAudioClip
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.elevenlabs._auth import (
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
ElevenLabsCredentials,
ElevenLabsCredentialsInput,
)
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsField, SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoNarrationBlock(Block):
"""Generate AI narration and add to video."""
class Input(BlockSchemaInput):
credentials: ElevenLabsCredentialsInput = CredentialsField(
description="ElevenLabs API key for voice synthesis"
)
video_in: MediaFileType = SchemaField(
description="Input video (URL, data URI, or local path)"
)
script: str = SchemaField(description="Narration script text")
voice_id: str = SchemaField(
description="ElevenLabs voice ID", default="21m00Tcm4TlvDq8ikWAM" # Rachel
)
model_id: Literal[
"eleven_multilingual_v2",
"eleven_flash_v2_5",
"eleven_turbo_v2_5",
"eleven_turbo_v2",
] = SchemaField(
description="ElevenLabs TTS model",
default="eleven_multilingual_v2",
)
mix_mode: Literal["replace", "mix", "ducking"] = SchemaField(
description="How to combine with original audio. 'ducking' applies stronger attenuation than 'mix'.",
default="ducking",
)
narration_volume: float = SchemaField(
description="Narration volume (0.0 to 2.0)",
default=1.0,
ge=0.0,
le=2.0,
advanced=True,
)
original_volume: float = SchemaField(
description="Original audio volume when mixing (0.0 to 1.0)",
default=0.3,
ge=0.0,
le=1.0,
advanced=True,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Video with narration (path or data URI)"
)
audio_file: MediaFileType = SchemaField(
description="Generated audio file (path or data URI)"
)
def __init__(self):
super().__init__(
id="3d036b53-859c-4b17-9826-ca340f736e0e",
description="Generate AI narration and add to video",
categories={BlockCategory.MULTIMEDIA, BlockCategory.AI},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"video_in": "/tmp/test.mp4",
"script": "Hello world",
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[("video_out", str), ("audio_file", str)],
test_mock={
"_generate_narration_audio": lambda *args: b"mock audio content",
"_add_narration_to_video": lambda *args: None,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "narrated_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _generate_narration_audio(
self, api_key: str, script: str, voice_id: str, model_id: str
) -> bytes:
"""Generate narration audio via ElevenLabs API."""
client = ElevenLabs(api_key=api_key)
audio_generator = client.text_to_speech.convert(
voice_id=voice_id,
text=script,
model_id=model_id,
)
# The SDK returns a generator, collect all chunks
return b"".join(audio_generator)
def _add_narration_to_video(
self,
video_abspath: str,
audio_abspath: str,
output_abspath: str,
mix_mode: str,
narration_volume: float,
original_volume: float,
) -> None:
"""Add narration audio to video. Extracted for testability."""
video = None
final = None
narration_original = None
narration_scaled = None
original = None
try:
strip_chapters_inplace(video_abspath)
video = VideoFileClip(video_abspath)
narration_original = AudioFileClip(audio_abspath)
narration_scaled = narration_original.with_volume_scaled(narration_volume)
narration = narration_scaled
if mix_mode == "replace":
final_audio = narration
elif mix_mode == "mix":
if video.audio:
original = video.audio.with_volume_scaled(original_volume)
final_audio = CompositeAudioClip([original, narration])
else:
final_audio = narration
else: # ducking - apply stronger attenuation
if video.audio:
# Ducking uses a much lower volume for original audio
ducking_volume = original_volume * 0.3
original = video.audio.with_volume_scaled(ducking_volume)
final_audio = CompositeAudioClip([original, narration])
else:
final_audio = narration
final = video.with_audio(final_audio)
video_codec, audio_codec = get_video_codecs(output_abspath)
final.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
finally:
if original:
original.close()
if narration_scaled:
narration_scaled.close()
if narration_original:
narration_original.close()
if final:
final.close()
if video:
video.close()
async def run(
self,
input_data: Input,
*,
credentials: ElevenLabsCredentials,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
try:
assert execution_context.graph_exec_id is not None
# Store the input video locally
local_video_path = await self._store_input_video(
execution_context, input_data.video_in
)
video_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_video_path
)
# Generate narration audio via ElevenLabs
audio_content = self._generate_narration_audio(
credentials.api_key.get_secret_value(),
input_data.script,
input_data.voice_id,
input_data.model_id,
)
# Save audio to exec file path
audio_filename = MediaFileType(f"{node_exec_id}_narration.mp3")
audio_abspath = get_exec_file_path(
execution_context.graph_exec_id, audio_filename
)
os.makedirs(os.path.dirname(audio_abspath), exist_ok=True)
with open(audio_abspath, "wb") as f:
f.write(audio_content)
# Add narration to video
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_narrated_{source}.mp4")
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
self._add_narration_to_video(
video_abspath,
audio_abspath,
output_abspath,
input_data.mix_mode,
input_data.narration_volume,
input_data.original_volume,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
audio_out = await self._store_output_video(
execution_context, audio_filename
)
yield "video_out", video_out
yield "audio_file", audio_out
except Exception as e:
raise BlockExecutionError(
message=f"Failed to add narration: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -0,0 +1,231 @@
"""VideoTextOverlayBlock - Add text overlay to video."""
from typing import Literal
from moviepy import CompositeVideoClip, TextClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoTextOverlayBlock(Block):
"""Add text overlay/caption to video."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Input video (URL, data URI, or local path)"
)
text: str = SchemaField(description="Text to overlay on video")
position: Literal[
"top",
"center",
"bottom",
"top-left",
"top-right",
"bottom-left",
"bottom-right",
] = SchemaField(description="Position of text on screen", default="bottom")
start_time: float | None = SchemaField(
description="When to show text (seconds). None = entire video",
default=None,
advanced=True,
)
end_time: float | None = SchemaField(
description="When to hide text (seconds). None = until end",
default=None,
advanced=True,
)
font_size: int = SchemaField(
description="Font size", default=48, ge=12, le=200, advanced=True
)
font_color: str = SchemaField(
description="Font color (hex or name)", default="white", advanced=True
)
bg_color: str | None = SchemaField(
description="Background color behind text (None for transparent)",
default=None,
advanced=True,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Video with text overlay (path or data URI)"
)
def __init__(self):
super().__init__(
id="8ef14de6-cc90-430a-8cfa-3a003be92454",
description="Add text overlay/caption to video",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
disabled=True, # Disable until we can lockdown imagemagick security policy
test_input={"video_in": "/tmp/test.mp4", "text": "Hello World"},
test_output=[("video_out", str)],
test_mock={
"_add_text_overlay": lambda *args: None,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "overlay_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _add_text_overlay(
self,
video_abspath: str,
output_abspath: str,
text: str,
position: str,
start_time: float | None,
end_time: float | None,
font_size: int,
font_color: str,
bg_color: str | None,
) -> None:
"""Add text overlay to video. Extracted for testability."""
video = None
final = None
txt_clip = None
try:
strip_chapters_inplace(video_abspath)
video = VideoFileClip(video_abspath)
txt_clip = TextClip(
text=text,
font_size=font_size,
color=font_color,
bg_color=bg_color,
)
# Position mapping
pos_map = {
"top": ("center", "top"),
"center": ("center", "center"),
"bottom": ("center", "bottom"),
"top-left": ("left", "top"),
"top-right": ("right", "top"),
"bottom-left": ("left", "bottom"),
"bottom-right": ("right", "bottom"),
}
txt_clip = txt_clip.with_position(pos_map[position])
# Set timing
start = start_time or 0
end = end_time or video.duration
duration = max(0, end - start)
txt_clip = txt_clip.with_start(start).with_end(end).with_duration(duration)
final = CompositeVideoClip([video, txt_clip])
video_codec, audio_codec = get_video_codecs(output_abspath)
final.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
finally:
if txt_clip:
txt_clip.close()
if final:
final.close()
if video:
video.close()
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
# Validate time range if both are provided
if (
input_data.start_time is not None
and input_data.end_time is not None
and input_data.end_time <= input_data.start_time
):
raise BlockExecutionError(
message=f"end_time ({input_data.end_time}) must be greater than start_time ({input_data.start_time})",
block_name=self.name,
block_id=str(self.id),
)
try:
assert execution_context.graph_exec_id is not None
# Store the input video locally
local_video_path = await self._store_input_video(
execution_context, input_data.video_in
)
video_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_video_path
)
# Build output path
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_overlay_{source}.mp4")
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
self._add_text_overlay(
video_abspath,
output_abspath,
input_data.text,
input_data.position,
input_data.start_time,
input_data.end_time,
input_data.font_size,
input_data.font_color,
input_data.bg_color,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
yield "video_out", video_out
except BlockExecutionError:
raise
except Exception as e:
raise BlockExecutionError(
message=f"Failed to add text overlay: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -165,10 +165,13 @@ class TranscribeYoutubeVideoBlock(Block):
credentials: WebshareProxyCredentials,
**kwargs,
) -> BlockOutput:
video_id = self.extract_video_id(input_data.youtube_url)
yield "video_id", video_id
try:
video_id = self.extract_video_id(input_data.youtube_url)
transcript = self.get_transcript(video_id, credentials)
transcript_text = self.format_transcript(transcript=transcript)
transcript = self.get_transcript(video_id, credentials)
transcript_text = self.format_transcript(transcript=transcript)
yield "transcript", transcript_text
# Only yield after all operations succeed
yield "video_id", video_id
yield "transcript", transcript_text
except Exception as e:
yield "error", str(e)

View File

@@ -873,14 +873,13 @@ def is_block_auth_configured(
async def initialize_blocks() -> None:
# First, sync all provider costs to blocks
# Imported here to avoid circular import
from backend.sdk.cost_integration import sync_all_provider_costs
from backend.util.retry import func_retry
sync_all_provider_costs()
for cls in get_blocks().values():
block = cls()
@func_retry
async def sync_block_to_db(block: Block) -> None:
existing_block = await AgentBlock.prisma().find_first(
where={"OR": [{"id": block.id}, {"name": block.name}]}
)
@@ -893,7 +892,7 @@ async def initialize_blocks() -> None:
outputSchema=json.dumps(block.output_schema.jsonschema()),
)
)
continue
return
input_schema = json.dumps(block.input_schema.jsonschema())
output_schema = json.dumps(block.output_schema.jsonschema())
@@ -913,6 +912,25 @@ async def initialize_blocks() -> None:
},
)
failed_blocks: list[str] = []
for cls in get_blocks().values():
block = cls()
try:
await sync_block_to_db(block)
except Exception as e:
logger.warning(
f"Failed to sync block {block.name} to database: {e}. "
"Block is still available in memory.",
exc_info=True,
)
failed_blocks.append(block.name)
if failed_blocks:
logger.error(
f"Failed to sync {len(failed_blocks)} block(s) to database: "
f"{', '.join(failed_blocks)}. These blocks are still available in memory."
)
# Note on the return type annotation: https://github.com/microsoft/pyright/issues/10281
def get_block(block_id: str) -> AnyBlockSchema | None:

View File

@@ -36,12 +36,14 @@ from backend.blocks.replicate.replicate_block import ReplicateModelBlock
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
from backend.blocks.text_to_speech_block import UnrealTextToSpeechBlock
from backend.blocks.video.narration import VideoNarrationBlock
from backend.data.block import Block, BlockCost, BlockCostType
from backend.integrations.credentials_store import (
aiml_api_credentials,
anthropic_credentials,
apollo_credentials,
did_credentials,
elevenlabs_credentials,
enrichlayer_credentials,
groq_credentials,
ideogram_credentials,
@@ -78,10 +80,10 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.CLAUDE_4_1_OPUS: 21,
LlmModel.CLAUDE_4_OPUS: 21,
LlmModel.CLAUDE_4_SONNET: 5,
LlmModel.CLAUDE_4_6_OPUS: 14,
LlmModel.CLAUDE_4_5_HAIKU: 4,
LlmModel.CLAUDE_4_5_OPUS: 14,
LlmModel.CLAUDE_4_5_SONNET: 9,
LlmModel.CLAUDE_3_7_SONNET: 5,
LlmModel.CLAUDE_3_HAIKU: 1,
LlmModel.AIML_API_QWEN2_5_72B: 1,
LlmModel.AIML_API_LLAMA3_1_70B: 1,
@@ -640,4 +642,16 @@ BLOCK_COSTS: dict[Type[Block], list[BlockCost]] = {
},
),
],
VideoNarrationBlock: [
BlockCost(
cost_amount=5, # ElevenLabs TTS cost
cost_filter={
"credentials": {
"id": elevenlabs_credentials.id,
"provider": elevenlabs_credentials.provider,
"type": elevenlabs_credentials.type,
}
},
)
],
}

View File

@@ -134,6 +134,16 @@ async def test_block_credit_reset(server: SpinTestServer):
month1 = datetime.now(timezone.utc).replace(month=1, day=1)
user_credit.time_now = lambda: month1
# IMPORTANT: Set updatedAt to December of previous year to ensure it's
# in a different month than month1 (January). This fixes a timing bug
# where if the test runs in early February, 35 days ago would be January,
# matching the mocked month1 and preventing the refill from triggering.
dec_previous_year = month1.replace(year=month1.year - 1, month=12, day=15)
await UserBalance.prisma().update(
where={"userId": DEFAULT_USER_ID},
data={"updatedAt": dec_previous_year},
)
# First call in month 1 should trigger refill
balance = await user_credit.get_credits(DEFAULT_USER_ID)
assert balance == REFILL_VALUE # Should get 1000 credits

View File

@@ -133,10 +133,23 @@ class RedisEventBus(BaseRedisEventBus[M], ABC):
class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
def __init__(self):
self._pubsub: AsyncPubSub | None = None
@property
async def connection(self) -> redis.AsyncRedis:
return await redis.get_redis_async()
async def close(self) -> None:
"""Close the PubSub connection if it exists."""
if self._pubsub is not None:
try:
await self._pubsub.close()
except Exception:
logger.warning("Failed to close PubSub connection", exc_info=True)
finally:
self._pubsub = None
async def publish_event(self, event: M, channel_key: str):
"""
Publish an event to Redis. Gracefully handles connection failures
@@ -157,6 +170,7 @@ class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
await self.connection, channel_key
)
assert isinstance(pubsub, AsyncPubSub)
self._pubsub = pubsub
if "*" in channel_key:
await pubsub.psubscribe(full_channel_name)

View File

@@ -83,12 +83,29 @@ class ExecutionContext(BaseModel):
model_config = {"extra": "ignore"}
# Execution identity
user_id: Optional[str] = None
graph_id: Optional[str] = None
graph_exec_id: Optional[str] = None
graph_version: Optional[int] = None
node_id: Optional[str] = None
node_exec_id: Optional[str] = None
# Safety settings
human_in_the_loop_safe_mode: bool = True
sensitive_action_safe_mode: bool = False
# User settings
user_timezone: str = "UTC"
# Execution hierarchy
root_execution_id: Optional[str] = None
parent_execution_id: Optional[str] = None
# Workspace
workspace_id: Optional[str] = None
session_id: Optional[str] = None
# -------------------------- Models -------------------------- #

View File

@@ -1028,6 +1028,39 @@ async def get_graph(
return GraphModel.from_db(graph, for_export)
async def get_store_listed_graphs(*graph_ids: str) -> dict[str, GraphModel]:
"""Batch-fetch multiple store-listed graphs by their IDs.
Only returns graphs that have approved store listings (publicly available).
Does not require permission checks since store-listed graphs are public.
Args:
*graph_ids: Variable number of graph IDs to fetch
Returns:
Dict mapping graph_id to GraphModel for graphs with approved store listings
"""
if not graph_ids:
return {}
store_listings = await StoreListingVersion.prisma().find_many(
where={
"agentGraphId": {"in": list(graph_ids)},
"submissionStatus": SubmissionStatus.APPROVED,
"isDeleted": False,
},
include={"AgentGraph": {"include": AGENT_GRAPH_INCLUDE}},
distinct=["agentGraphId"],
order={"agentGraphVersion": "desc"},
)
return {
listing.agentGraphId: GraphModel.from_db(listing.AgentGraph)
for listing in store_listings
if listing.AgentGraph
}
async def get_graph_as_admin(
graph_id: str,
version: int | None = None,

View File

@@ -19,7 +19,6 @@ from typing import (
cast,
get_args,
)
from urllib.parse import urlparse
from uuid import uuid4
from prisma.enums import CreditTransactionType, OnboardingStep
@@ -42,6 +41,7 @@ from typing_extensions import TypedDict
from backend.integrations.providers import ProviderName
from backend.util.json import loads as json_loads
from backend.util.request import parse_url
from backend.util.settings import Secrets
# Type alias for any provider name (including custom ones)
@@ -397,19 +397,25 @@ class HostScopedCredentials(_BaseCredentials):
def matches_url(self, url: str) -> bool:
"""Check if this credential should be applied to the given URL."""
parsed_url = urlparse(url)
# Extract hostname without port
request_host = parsed_url.hostname
request_host, request_port = _extract_host_from_url(url)
cred_scope_host, cred_scope_port = _extract_host_from_url(self.host)
if not request_host:
return False
# Simple host matching - exact match or wildcard subdomain match
if self.host == request_host:
# If a port is specified in credential host, the request host port must match
if cred_scope_port is not None and request_port != cred_scope_port:
return False
# Non-standard ports are only allowed if explicitly specified in credential host
elif cred_scope_port is None and request_port not in (80, 443, None):
return False
# Simple host matching
if cred_scope_host == request_host:
return True
# Support wildcard matching (e.g., "*.example.com" matches "api.example.com")
if self.host.startswith("*."):
domain = self.host[2:] # Remove "*."
if cred_scope_host.startswith("*."):
domain = cred_scope_host[2:] # Remove "*."
return request_host.endswith(f".{domain}") or request_host == domain
return False
@@ -551,13 +557,13 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
)
def _extract_host_from_url(url: str) -> str:
"""Extract host from URL for grouping host-scoped credentials."""
def _extract_host_from_url(url: str) -> tuple[str, int | None]:
"""Extract host and port from URL for grouping host-scoped credentials."""
try:
parsed = urlparse(url)
return parsed.hostname or url
parsed = parse_url(url)
return parsed.hostname or url, parsed.port
except Exception:
return ""
return "", None
class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
@@ -606,7 +612,7 @@ class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
providers = frozenset(
[cast(CP, "http")]
+ [
cast(CP, _extract_host_from_url(str(value)))
cast(CP, parse_url(str(value)).netloc)
for value in field.discriminator_values
]
)
@@ -666,10 +672,16 @@ class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
if not (self.discriminator and self.discriminator_mapping):
return self
try:
provider = self.discriminator_mapping[discriminator_value]
except KeyError:
raise ValueError(
f"Model '{discriminator_value}' is not supported. "
"It may have been deprecated. Please update your agent configuration."
)
return CredentialsFieldInfo(
credentials_provider=frozenset(
[self.discriminator_mapping[discriminator_value]]
),
credentials_provider=frozenset([provider]),
credentials_types=self.supported_types,
credentials_scopes=self.required_scopes,
discriminator=self.discriminator,

View File

@@ -79,10 +79,23 @@ class TestHostScopedCredentials:
headers={"Authorization": SecretStr("Bearer token")},
)
assert creds.matches_url("http://localhost:8080/api/v1")
# Non-standard ports require explicit port in credential host
assert not creds.matches_url("http://localhost:8080/api/v1")
assert creds.matches_url("https://localhost:443/secure/endpoint")
assert creds.matches_url("http://localhost/simple")
def test_matches_url_with_explicit_port(self):
"""Test URL matching with explicit port in credential host."""
creds = HostScopedCredentials(
provider="custom",
host="localhost:8080",
headers={"Authorization": SecretStr("Bearer token")},
)
assert creds.matches_url("http://localhost:8080/api/v1")
assert not creds.matches_url("http://localhost:3000/api/v1")
assert not creds.matches_url("http://localhost/simple")
def test_empty_headers_dict(self):
"""Test HostScopedCredentials with empty headers."""
creds = HostScopedCredentials(
@@ -128,8 +141,20 @@ class TestHostScopedCredentials:
("*.example.com", "https://sub.api.example.com/test", True),
("*.example.com", "https://example.com/test", True),
("*.example.com", "https://example.org/test", False),
("localhost", "http://localhost:3000/test", True),
# Non-standard ports require explicit port in credential host
("localhost", "http://localhost:3000/test", False),
("localhost:3000", "http://localhost:3000/test", True),
("localhost", "http://127.0.0.1:3000/test", False),
# IPv6 addresses (frontend stores with brackets via URL.hostname)
("[::1]", "http://[::1]/test", True),
("[::1]", "http://[::1]:80/test", True),
("[::1]", "https://[::1]:443/test", True),
("[::1]", "http://[::1]:8080/test", False), # Non-standard port
("[::1]:8080", "http://[::1]:8080/test", True),
("[::1]:8080", "http://[::1]:9090/test", False),
("[2001:db8::1]", "http://[2001:db8::1]/path", True),
("[2001:db8::1]", "https://[2001:db8::1]:443/path", True),
("[2001:db8::1]", "http://[2001:db8::ff]/path", False),
],
)
def test_url_matching_parametrized(self, host: str, test_url: str, expected: bool):

View File

@@ -0,0 +1,276 @@
"""
Database CRUD operations for User Workspace.
This module provides functions for managing user workspaces and workspace files.
"""
import logging
from datetime import datetime, timezone
from typing import Optional
from prisma.models import UserWorkspace, UserWorkspaceFile
from prisma.types import UserWorkspaceFileWhereInput
from backend.util.json import SafeJson
logger = logging.getLogger(__name__)
async def get_or_create_workspace(user_id: str) -> UserWorkspace:
"""
Get user's workspace, creating one if it doesn't exist.
Uses upsert to handle race conditions when multiple concurrent requests
attempt to create a workspace for the same user.
Args:
user_id: The user's ID
Returns:
UserWorkspace instance
"""
workspace = await UserWorkspace.prisma().upsert(
where={"userId": user_id},
data={
"create": {"userId": user_id},
"update": {}, # No updates needed if exists
},
)
return workspace
async def get_workspace(user_id: str) -> Optional[UserWorkspace]:
"""
Get user's workspace if it exists.
Args:
user_id: The user's ID
Returns:
UserWorkspace instance or None
"""
return await UserWorkspace.prisma().find_unique(where={"userId": user_id})
async def create_workspace_file(
workspace_id: str,
file_id: str,
name: str,
path: str,
storage_path: str,
mime_type: str,
size_bytes: int,
checksum: Optional[str] = None,
metadata: Optional[dict] = None,
) -> UserWorkspaceFile:
"""
Create a new workspace file record.
Args:
workspace_id: The workspace ID
file_id: The file ID (same as used in storage path for consistency)
name: User-visible filename
path: Virtual path (e.g., "/documents/report.pdf")
storage_path: Actual storage path (GCS or local)
mime_type: MIME type of the file
size_bytes: File size in bytes
checksum: Optional SHA256 checksum
metadata: Optional additional metadata
Returns:
Created UserWorkspaceFile instance
"""
# Normalize path to start with /
if not path.startswith("/"):
path = f"/{path}"
file = await UserWorkspaceFile.prisma().create(
data={
"id": file_id,
"workspaceId": workspace_id,
"name": name,
"path": path,
"storagePath": storage_path,
"mimeType": mime_type,
"sizeBytes": size_bytes,
"checksum": checksum,
"metadata": SafeJson(metadata or {}),
}
)
logger.info(
f"Created workspace file {file.id} at path {path} "
f"in workspace {workspace_id}"
)
return file
async def get_workspace_file(
file_id: str,
workspace_id: Optional[str] = None,
) -> Optional[UserWorkspaceFile]:
"""
Get a workspace file by ID.
Args:
file_id: The file ID
workspace_id: Optional workspace ID for validation
Returns:
UserWorkspaceFile instance or None
"""
where_clause: dict = {"id": file_id, "isDeleted": False}
if workspace_id:
where_clause["workspaceId"] = workspace_id
return await UserWorkspaceFile.prisma().find_first(where=where_clause)
async def get_workspace_file_by_path(
workspace_id: str,
path: str,
) -> Optional[UserWorkspaceFile]:
"""
Get a workspace file by its virtual path.
Args:
workspace_id: The workspace ID
path: Virtual path
Returns:
UserWorkspaceFile instance or None
"""
# Normalize path
if not path.startswith("/"):
path = f"/{path}"
return await UserWorkspaceFile.prisma().find_first(
where={
"workspaceId": workspace_id,
"path": path,
"isDeleted": False,
}
)
async def list_workspace_files(
workspace_id: str,
path_prefix: Optional[str] = None,
include_deleted: bool = False,
limit: Optional[int] = None,
offset: int = 0,
) -> list[UserWorkspaceFile]:
"""
List files in a workspace.
Args:
workspace_id: The workspace ID
path_prefix: Optional path prefix to filter (e.g., "/documents/")
include_deleted: Whether to include soft-deleted files
limit: Maximum number of files to return
offset: Number of files to skip
Returns:
List of UserWorkspaceFile instances
"""
where_clause: UserWorkspaceFileWhereInput = {"workspaceId": workspace_id}
if not include_deleted:
where_clause["isDeleted"] = False
if path_prefix:
# Normalize prefix
if not path_prefix.startswith("/"):
path_prefix = f"/{path_prefix}"
where_clause["path"] = {"startswith": path_prefix}
return await UserWorkspaceFile.prisma().find_many(
where=where_clause,
order={"createdAt": "desc"},
take=limit,
skip=offset,
)
async def count_workspace_files(
workspace_id: str,
path_prefix: Optional[str] = None,
include_deleted: bool = False,
) -> int:
"""
Count files in a workspace.
Args:
workspace_id: The workspace ID
path_prefix: Optional path prefix to filter (e.g., "/sessions/abc123/")
include_deleted: Whether to include soft-deleted files
Returns:
Number of files
"""
where_clause: dict = {"workspaceId": workspace_id}
if not include_deleted:
where_clause["isDeleted"] = False
if path_prefix:
# Normalize prefix
if not path_prefix.startswith("/"):
path_prefix = f"/{path_prefix}"
where_clause["path"] = {"startswith": path_prefix}
return await UserWorkspaceFile.prisma().count(where=where_clause)
async def soft_delete_workspace_file(
file_id: str,
workspace_id: Optional[str] = None,
) -> Optional[UserWorkspaceFile]:
"""
Soft-delete a workspace file.
The path is modified to include a deletion timestamp to free up the original
path for new files while preserving the record for potential recovery.
Args:
file_id: The file ID
workspace_id: Optional workspace ID for validation
Returns:
Updated UserWorkspaceFile instance or None if not found
"""
# First verify the file exists and belongs to workspace
file = await get_workspace_file(file_id, workspace_id)
if file is None:
return None
deleted_at = datetime.now(timezone.utc)
# Modify path to free up the unique constraint for new files at original path
# Format: {original_path}__deleted__{timestamp}
deleted_path = f"{file.path}__deleted__{int(deleted_at.timestamp())}"
updated = await UserWorkspaceFile.prisma().update(
where={"id": file_id},
data={
"isDeleted": True,
"deletedAt": deleted_at,
"path": deleted_path,
},
)
logger.info(f"Soft-deleted workspace file {file_id}")
return updated
async def get_workspace_total_size(workspace_id: str) -> int:
"""
Get the total size of all files in a workspace.
Args:
workspace_id: The workspace ID
Returns:
Total size in bytes
"""
files = await list_workspace_files(workspace_id)
return sum(file.sizeBytes for file in files)

Some files were not shown because too many files have changed in this diff Show More