mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-02-06 12:55:05 -05:00
Compare commits
10 Commits
pwuts/secr
...
feat/copit
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5efb80d47b | ||
|
|
b49d8e2cba | ||
|
|
452544530d | ||
|
|
32ee7e6cf8 | ||
|
|
670663c406 | ||
|
|
0dbe4cf51e | ||
|
|
29ee85c86f | ||
|
|
85b6520710 | ||
|
|
bfa942e032 | ||
|
|
11256076d8 |
@@ -152,6 +152,7 @@ REPLICATE_API_KEY=
|
||||
REVID_API_KEY=
|
||||
SCREENSHOTONE_API_KEY=
|
||||
UNREAL_SPEECH_API_KEY=
|
||||
ELEVENLABS_API_KEY=
|
||||
|
||||
# Data & Search Services
|
||||
E2B_API_KEY=
|
||||
|
||||
@@ -62,10 +62,12 @@ ENV POETRY_HOME=/opt/poetry \
|
||||
DEBIAN_FRONTEND=noninteractive
|
||||
ENV PATH=/opt/poetry/bin:$PATH
|
||||
|
||||
# Install Python without upgrading system-managed packages
|
||||
# Install Python, FFmpeg, and ImageMagick (required for video processing blocks)
|
||||
RUN apt-get update && apt-get install -y \
|
||||
python3.13 \
|
||||
python3-pip \
|
||||
ffmpeg \
|
||||
imagemagick \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Copy only necessary files from builder
|
||||
|
||||
@@ -11,7 +11,7 @@ class ChatConfig(BaseSettings):
|
||||
|
||||
# OpenAI API Configuration
|
||||
model: str = Field(
|
||||
default="anthropic/claude-opus-4.5", description="Default model to use"
|
||||
default="anthropic/claude-opus-4.6", description="Default model to use"
|
||||
)
|
||||
title_model: str = Field(
|
||||
default="openai/gpt-4o-mini",
|
||||
@@ -27,12 +27,20 @@ class ChatConfig(BaseSettings):
|
||||
session_ttl: int = Field(default=43200, description="Session TTL in seconds")
|
||||
|
||||
# Streaming Configuration
|
||||
# Note: When using Claude Agent SDK, context management is handled automatically
|
||||
# via the SDK's built-in compaction. This is mainly used for the fallback path.
|
||||
max_context_messages: int = Field(
|
||||
default=50, ge=1, le=200, description="Maximum context messages"
|
||||
default=100,
|
||||
ge=1,
|
||||
le=500,
|
||||
description="Max context messages (SDK handles compaction automatically)",
|
||||
)
|
||||
|
||||
stream_timeout: int = Field(default=300, description="Stream timeout in seconds")
|
||||
max_retries: int = Field(default=3, description="Maximum number of retries")
|
||||
max_retries: int = Field(
|
||||
default=3,
|
||||
description="Max retries for fallback path (SDK handles retries internally)",
|
||||
)
|
||||
max_agent_runs: int = Field(default=30, description="Maximum number of agent runs")
|
||||
max_agent_schedules: int = Field(
|
||||
default=30, description="Maximum number of agent schedules"
|
||||
@@ -93,6 +101,12 @@ class ChatConfig(BaseSettings):
|
||||
description="Name of the prompt in Langfuse to fetch",
|
||||
)
|
||||
|
||||
# Claude Agent SDK Configuration
|
||||
use_claude_agent_sdk: bool = Field(
|
||||
default=True,
|
||||
description="Use Claude Agent SDK for chat completions",
|
||||
)
|
||||
|
||||
@field_validator("api_key", mode="before")
|
||||
@classmethod
|
||||
def get_api_key(cls, v):
|
||||
@@ -132,6 +146,17 @@ class ChatConfig(BaseSettings):
|
||||
v = os.getenv("CHAT_INTERNAL_API_KEY")
|
||||
return v
|
||||
|
||||
@field_validator("use_claude_agent_sdk", mode="before")
|
||||
@classmethod
|
||||
def get_use_claude_agent_sdk(cls, v):
|
||||
"""Get use_claude_agent_sdk from environment if not provided."""
|
||||
# Check environment variable - default to True if not set
|
||||
env_val = os.getenv("CHAT_USE_CLAUDE_AGENT_SDK", "").lower()
|
||||
if env_val:
|
||||
return env_val in ("true", "1", "yes", "on")
|
||||
# Default to True (SDK enabled by default)
|
||||
return True if v is None else v
|
||||
|
||||
# Prompt paths for different contexts
|
||||
PROMPT_PATHS: dict[str, str] = {
|
||||
"default": "prompts/chat_system.md",
|
||||
|
||||
@@ -273,9 +273,8 @@ async def _get_session_from_cache(session_id: str) -> ChatSession | None:
|
||||
try:
|
||||
session = ChatSession.model_validate_json(raw_session)
|
||||
logger.info(
|
||||
f"Loading session {session_id} from cache: "
|
||||
f"message_count={len(session.messages)}, "
|
||||
f"roles={[m.role for m in session.messages]}"
|
||||
f"[CACHE] Loaded session {session_id}: {len(session.messages)} messages, "
|
||||
f"last_roles={[m.role for m in session.messages[-3:]]}" # Last 3 roles
|
||||
)
|
||||
return session
|
||||
except Exception as e:
|
||||
@@ -317,11 +316,9 @@ async def _get_session_from_db(session_id: str) -> ChatSession | None:
|
||||
return None
|
||||
|
||||
messages = prisma_session.Messages
|
||||
logger.info(
|
||||
f"Loading session {session_id} from DB: "
|
||||
f"has_messages={messages is not None}, "
|
||||
f"message_count={len(messages) if messages else 0}, "
|
||||
f"roles={[m.role for m in messages] if messages else []}"
|
||||
logger.debug(
|
||||
f"[DB] Loaded session {session_id}: {len(messages) if messages else 0} messages, "
|
||||
f"roles={[m.role for m in messages[-3:]] if messages else []}" # Last 3 roles
|
||||
)
|
||||
|
||||
return ChatSession.from_db(prisma_session, messages)
|
||||
@@ -372,10 +369,9 @@ async def _save_session_to_db(
|
||||
"function_call": msg.function_call,
|
||||
}
|
||||
)
|
||||
logger.info(
|
||||
f"Saving {len(new_messages)} new messages to DB for session {session.session_id}: "
|
||||
f"roles={[m['role'] for m in messages_data]}, "
|
||||
f"start_sequence={existing_message_count}"
|
||||
logger.debug(
|
||||
f"[DB] Saving {len(new_messages)} messages to session {session.session_id}, "
|
||||
f"roles={[m['role'] for m in messages_data]}"
|
||||
)
|
||||
await chat_db.add_chat_messages_batch(
|
||||
session_id=session.session_id,
|
||||
@@ -415,7 +411,7 @@ async def get_chat_session(
|
||||
logger.warning(f"Unexpected cache error for session {session_id}: {e}")
|
||||
|
||||
# Fall back to database
|
||||
logger.info(f"Session {session_id} not in cache, checking database")
|
||||
logger.debug(f"Session {session_id} not in cache, checking database")
|
||||
session = await _get_session_from_db(session_id)
|
||||
|
||||
if session is None:
|
||||
@@ -432,7 +428,6 @@ async def get_chat_session(
|
||||
# Cache the session from DB
|
||||
try:
|
||||
await _cache_session(session)
|
||||
logger.info(f"Cached session {session_id} from database")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to cache session {session_id}: {e}")
|
||||
|
||||
@@ -603,13 +598,19 @@ async def update_session_title(session_id: str, title: str) -> bool:
|
||||
logger.warning(f"Session {session_id} not found for title update")
|
||||
return False
|
||||
|
||||
# Invalidate cache so next fetch gets updated title
|
||||
# Update title in cache if it exists (instead of invalidating).
|
||||
# This prevents race conditions where cache invalidation causes
|
||||
# the frontend to see stale DB data while streaming is still in progress.
|
||||
try:
|
||||
redis_key = _get_session_cache_key(session_id)
|
||||
async_redis = await get_redis_async()
|
||||
await async_redis.delete(redis_key)
|
||||
cached = await _get_session_from_cache(session_id)
|
||||
if cached:
|
||||
cached.title = title
|
||||
await _cache_session(cached)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to invalidate cache for session {session_id}: {e}")
|
||||
# Not critical - title will be correct on next full cache refresh
|
||||
logger.warning(
|
||||
f"Failed to update title in cache for session {session_id}: {e}"
|
||||
)
|
||||
|
||||
return True
|
||||
except Exception as e:
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
"""Chat API routes for chat session management and streaming via SSE."""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import uuid as uuid_module
|
||||
from collections.abc import AsyncGenerator
|
||||
@@ -16,8 +17,17 @@ from . import service as chat_service
|
||||
from . import stream_registry
|
||||
from .completion_handler import process_operation_failure, process_operation_success
|
||||
from .config import ChatConfig
|
||||
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
|
||||
from .model import (
|
||||
ChatMessage,
|
||||
ChatSession,
|
||||
create_chat_session,
|
||||
get_chat_session,
|
||||
get_user_sessions,
|
||||
upsert_chat_session,
|
||||
)
|
||||
from .response_model import StreamFinish, StreamHeartbeat, StreamStart
|
||||
from .sdk import service as sdk_service
|
||||
from .tracking import track_user_message
|
||||
|
||||
config = ChatConfig()
|
||||
|
||||
@@ -209,6 +219,10 @@ async def get_session(
|
||||
active_task, last_message_id = await stream_registry.get_active_task_for_session(
|
||||
session_id, user_id
|
||||
)
|
||||
logger.info(
|
||||
f"[GET_SESSION] session={session_id}, active_task={active_task is not None}, "
|
||||
f"msg_count={len(messages)}, last_role={messages[-1].get('role') if messages else 'none'}"
|
||||
)
|
||||
if active_task:
|
||||
# Filter out the in-progress assistant message from the session response.
|
||||
# The client will receive the complete assistant response through the SSE
|
||||
@@ -265,10 +279,30 @@ async def stream_chat_post(
|
||||
containing the task_id for reconnection.
|
||||
|
||||
"""
|
||||
import asyncio
|
||||
|
||||
session = await _validate_and_get_session(session_id, user_id)
|
||||
|
||||
# Add user message to session BEFORE creating task to avoid race condition
|
||||
# where GET_SESSION sees the task as "running" but the message isn't saved yet
|
||||
if request.message:
|
||||
session.messages.append(
|
||||
ChatMessage(
|
||||
role="user" if request.is_user_message else "assistant",
|
||||
content=request.message,
|
||||
)
|
||||
)
|
||||
if request.is_user_message:
|
||||
track_user_message(
|
||||
user_id=user_id,
|
||||
session_id=session_id,
|
||||
message_length=len(request.message),
|
||||
)
|
||||
logger.info(
|
||||
f"[STREAM] Saving user message to session {session_id}, "
|
||||
f"msg_count={len(session.messages)}"
|
||||
)
|
||||
session = await upsert_chat_session(session)
|
||||
logger.info(f"[STREAM] User message saved for session {session_id}")
|
||||
|
||||
# Create a task in the stream registry for reconnection support
|
||||
task_id = str(uuid_module.uuid4())
|
||||
operation_id = str(uuid_module.uuid4())
|
||||
@@ -283,24 +317,38 @@ async def stream_chat_post(
|
||||
|
||||
# Background task that runs the AI generation independently of SSE connection
|
||||
async def run_ai_generation():
|
||||
chunk_count = 0
|
||||
try:
|
||||
# Emit a start event with task_id for reconnection
|
||||
start_chunk = StreamStart(messageId=task_id, taskId=task_id)
|
||||
await stream_registry.publish_chunk(task_id, start_chunk)
|
||||
|
||||
async for chunk in chat_service.stream_chat_completion(
|
||||
# Choose service based on configuration
|
||||
use_sdk = config.use_claude_agent_sdk
|
||||
stream_fn = (
|
||||
sdk_service.stream_chat_completion_sdk
|
||||
if use_sdk
|
||||
else chat_service.stream_chat_completion
|
||||
)
|
||||
# Pass message=None since we already added it to the session above
|
||||
async for chunk in stream_fn(
|
||||
session_id,
|
||||
request.message,
|
||||
None, # Message already in session
|
||||
is_user_message=request.is_user_message,
|
||||
user_id=user_id,
|
||||
session=session, # Pass pre-fetched session to avoid double-fetch
|
||||
session=session, # Pass session with message already added
|
||||
context=request.context,
|
||||
):
|
||||
chunk_count += 1
|
||||
# Write to Redis (subscribers will receive via XREAD)
|
||||
await stream_registry.publish_chunk(task_id, chunk)
|
||||
|
||||
# Mark task as completed
|
||||
await stream_registry.mark_task_completed(task_id, "completed")
|
||||
logger.info(
|
||||
f"[BG_TASK] AI generation completed for session {session_id}: {chunk_count} chunks, marking task {task_id} as completed"
|
||||
)
|
||||
# Mark task as completed (also publishes StreamFinish)
|
||||
completed = await stream_registry.mark_task_completed(task_id, "completed")
|
||||
logger.info(f"[BG_TASK] mark_task_completed returned: {completed}")
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error in background AI generation for session {session_id}: {e}"
|
||||
@@ -315,7 +363,7 @@ async def stream_chat_post(
|
||||
async def event_generator() -> AsyncGenerator[str, None]:
|
||||
subscriber_queue = None
|
||||
try:
|
||||
# Subscribe to the task stream (this replays existing messages + live updates)
|
||||
# Subscribe to the task stream (replays + live updates)
|
||||
subscriber_queue = await stream_registry.subscribe_to_task(
|
||||
task_id=task_id,
|
||||
user_id=user_id,
|
||||
@@ -323,6 +371,7 @@ async def stream_chat_post(
|
||||
)
|
||||
|
||||
if subscriber_queue is None:
|
||||
logger.warning(f"Failed to subscribe to task {task_id}")
|
||||
yield StreamFinish().to_sse()
|
||||
yield "data: [DONE]\n\n"
|
||||
return
|
||||
@@ -341,11 +390,11 @@ async def stream_chat_post(
|
||||
yield StreamHeartbeat().to_sse()
|
||||
|
||||
except GeneratorExit:
|
||||
pass # Client disconnected - background task continues
|
||||
pass # Client disconnected - normal behavior
|
||||
except Exception as e:
|
||||
logger.error(f"Error in SSE stream for task {task_id}: {e}")
|
||||
finally:
|
||||
# Unsubscribe when client disconnects or stream ends to prevent resource leak
|
||||
# Unsubscribe when client disconnects or stream ends
|
||||
if subscriber_queue is not None:
|
||||
try:
|
||||
await stream_registry.unsubscribe_from_task(
|
||||
@@ -400,35 +449,21 @@ async def stream_chat_get(
|
||||
session = await _validate_and_get_session(session_id, user_id)
|
||||
|
||||
async def event_generator() -> AsyncGenerator[str, None]:
|
||||
chunk_count = 0
|
||||
first_chunk_type: str | None = None
|
||||
async for chunk in chat_service.stream_chat_completion(
|
||||
# Choose service based on configuration
|
||||
use_sdk = config.use_claude_agent_sdk
|
||||
stream_fn = (
|
||||
sdk_service.stream_chat_completion_sdk
|
||||
if use_sdk
|
||||
else chat_service.stream_chat_completion
|
||||
)
|
||||
async for chunk in stream_fn(
|
||||
session_id,
|
||||
message,
|
||||
is_user_message=is_user_message,
|
||||
user_id=user_id,
|
||||
session=session, # Pass pre-fetched session to avoid double-fetch
|
||||
):
|
||||
if chunk_count < 3:
|
||||
logger.info(
|
||||
"Chat stream chunk",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_type": str(chunk.type),
|
||||
},
|
||||
)
|
||||
if not first_chunk_type:
|
||||
first_chunk_type = str(chunk.type)
|
||||
chunk_count += 1
|
||||
yield chunk.to_sse()
|
||||
logger.info(
|
||||
"Chat stream completed",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_count": chunk_count,
|
||||
"first_chunk_type": first_chunk_type,
|
||||
},
|
||||
)
|
||||
# AI SDK protocol termination
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
@@ -550,8 +585,6 @@ async def stream_task(
|
||||
)
|
||||
|
||||
async def event_generator() -> AsyncGenerator[str, None]:
|
||||
import asyncio
|
||||
|
||||
heartbeat_interval = 15.0 # Send heartbeat every 15 seconds
|
||||
try:
|
||||
while True:
|
||||
|
||||
@@ -0,0 +1,14 @@
|
||||
"""Claude Agent SDK integration for CoPilot.
|
||||
|
||||
This module provides the integration layer between the Claude Agent SDK
|
||||
and the existing CoPilot tool system, enabling drop-in replacement of
|
||||
the current LLM orchestration with the battle-tested Claude Agent SDK.
|
||||
"""
|
||||
|
||||
from .service import stream_chat_completion_sdk
|
||||
from .tool_adapter import create_copilot_mcp_server
|
||||
|
||||
__all__ = [
|
||||
"stream_chat_completion_sdk",
|
||||
"create_copilot_mcp_server",
|
||||
]
|
||||
@@ -0,0 +1,348 @@
|
||||
"""Anthropic SDK fallback implementation.
|
||||
|
||||
This module provides the fallback streaming implementation using the Anthropic SDK
|
||||
directly when the Claude Agent SDK is not available.
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import uuid
|
||||
from collections.abc import AsyncGenerator
|
||||
from typing import Any, cast
|
||||
|
||||
from ..model import ChatMessage, ChatSession
|
||||
from ..response_model import (
|
||||
StreamBaseResponse,
|
||||
StreamError,
|
||||
StreamFinish,
|
||||
StreamTextDelta,
|
||||
StreamTextEnd,
|
||||
StreamTextStart,
|
||||
StreamToolInputAvailable,
|
||||
StreamToolInputStart,
|
||||
StreamToolOutputAvailable,
|
||||
StreamUsage,
|
||||
)
|
||||
from .tool_adapter import get_tool_definitions, get_tool_handlers
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def stream_with_anthropic(
|
||||
session: ChatSession,
|
||||
system_prompt: str,
|
||||
text_block_id: str,
|
||||
) -> AsyncGenerator[StreamBaseResponse, None]:
|
||||
"""Stream using Anthropic SDK directly with tool calling support.
|
||||
|
||||
This function accumulates messages into the session for persistence.
|
||||
The caller should NOT yield an additional StreamFinish - this function handles it.
|
||||
"""
|
||||
import anthropic
|
||||
|
||||
# Only use ANTHROPIC_API_KEY - don't fall back to OpenRouter keys
|
||||
api_key = os.getenv("ANTHROPIC_API_KEY")
|
||||
if not api_key:
|
||||
yield StreamError(
|
||||
errorText="ANTHROPIC_API_KEY not configured for fallback",
|
||||
code="config_error",
|
||||
)
|
||||
yield StreamFinish()
|
||||
return
|
||||
|
||||
client = anthropic.AsyncAnthropic(api_key=api_key)
|
||||
tool_definitions = get_tool_definitions()
|
||||
tool_handlers = get_tool_handlers()
|
||||
|
||||
anthropic_tools = [
|
||||
{
|
||||
"name": t["name"],
|
||||
"description": t["description"],
|
||||
"input_schema": t["inputSchema"],
|
||||
}
|
||||
for t in tool_definitions
|
||||
]
|
||||
|
||||
anthropic_messages = _convert_session_to_anthropic(session)
|
||||
|
||||
if not anthropic_messages or anthropic_messages[-1]["role"] != "user":
|
||||
anthropic_messages.append(
|
||||
{"role": "user", "content": "Continue with the task."}
|
||||
)
|
||||
|
||||
has_started_text = False
|
||||
max_iterations = 10
|
||||
accumulated_text = ""
|
||||
accumulated_tool_calls: list[dict[str, Any]] = []
|
||||
|
||||
for _ in range(max_iterations):
|
||||
try:
|
||||
async with client.messages.stream(
|
||||
model="claude-sonnet-4-20250514",
|
||||
max_tokens=4096,
|
||||
system=system_prompt,
|
||||
messages=cast(Any, anthropic_messages),
|
||||
tools=cast(Any, anthropic_tools) if anthropic_tools else [],
|
||||
) as stream:
|
||||
async for event in stream:
|
||||
if event.type == "content_block_start":
|
||||
block = event.content_block
|
||||
if hasattr(block, "type"):
|
||||
if block.type == "text" and not has_started_text:
|
||||
yield StreamTextStart(id=text_block_id)
|
||||
has_started_text = True
|
||||
elif block.type == "tool_use":
|
||||
yield StreamToolInputStart(
|
||||
toolCallId=block.id, toolName=block.name
|
||||
)
|
||||
|
||||
elif event.type == "content_block_delta":
|
||||
delta = event.delta
|
||||
if hasattr(delta, "type") and delta.type == "text_delta":
|
||||
accumulated_text += delta.text
|
||||
yield StreamTextDelta(id=text_block_id, delta=delta.text)
|
||||
|
||||
final_message = await stream.get_final_message()
|
||||
|
||||
if final_message.stop_reason == "tool_use":
|
||||
if has_started_text:
|
||||
yield StreamTextEnd(id=text_block_id)
|
||||
has_started_text = False
|
||||
text_block_id = str(uuid.uuid4())
|
||||
|
||||
tool_results = []
|
||||
assistant_content: list[dict[str, Any]] = []
|
||||
|
||||
for block in final_message.content:
|
||||
if block.type == "text":
|
||||
assistant_content.append(
|
||||
{"type": "text", "text": block.text}
|
||||
)
|
||||
elif block.type == "tool_use":
|
||||
assistant_content.append(
|
||||
{
|
||||
"type": "tool_use",
|
||||
"id": block.id,
|
||||
"name": block.name,
|
||||
"input": block.input,
|
||||
}
|
||||
)
|
||||
|
||||
# Track tool call for session persistence
|
||||
accumulated_tool_calls.append(
|
||||
{
|
||||
"id": block.id,
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": block.name,
|
||||
"arguments": json.dumps(
|
||||
block.input
|
||||
if isinstance(block.input, dict)
|
||||
else {}
|
||||
),
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
yield StreamToolInputAvailable(
|
||||
toolCallId=block.id,
|
||||
toolName=block.name,
|
||||
input=(
|
||||
block.input if isinstance(block.input, dict) else {}
|
||||
),
|
||||
)
|
||||
|
||||
output, is_error = await _execute_tool(
|
||||
block.name, block.input, tool_handlers
|
||||
)
|
||||
|
||||
yield StreamToolOutputAvailable(
|
||||
toolCallId=block.id,
|
||||
toolName=block.name,
|
||||
output=output,
|
||||
success=not is_error,
|
||||
)
|
||||
|
||||
# Save tool result to session
|
||||
session.messages.append(
|
||||
ChatMessage(
|
||||
role="tool",
|
||||
content=output,
|
||||
tool_call_id=block.id,
|
||||
)
|
||||
)
|
||||
|
||||
tool_results.append(
|
||||
{
|
||||
"type": "tool_result",
|
||||
"tool_use_id": block.id,
|
||||
"content": output,
|
||||
"is_error": is_error,
|
||||
}
|
||||
)
|
||||
|
||||
# Save assistant message with tool calls to session
|
||||
session.messages.append(
|
||||
ChatMessage(
|
||||
role="assistant",
|
||||
content=accumulated_text or None,
|
||||
tool_calls=(
|
||||
accumulated_tool_calls
|
||||
if accumulated_tool_calls
|
||||
else None
|
||||
),
|
||||
)
|
||||
)
|
||||
# Reset for next iteration
|
||||
accumulated_text = ""
|
||||
accumulated_tool_calls = []
|
||||
|
||||
anthropic_messages.append(
|
||||
{"role": "assistant", "content": assistant_content}
|
||||
)
|
||||
anthropic_messages.append({"role": "user", "content": tool_results})
|
||||
continue
|
||||
|
||||
else:
|
||||
if has_started_text:
|
||||
yield StreamTextEnd(id=text_block_id)
|
||||
|
||||
# Save final assistant response to session
|
||||
if accumulated_text:
|
||||
session.messages.append(
|
||||
ChatMessage(role="assistant", content=accumulated_text)
|
||||
)
|
||||
|
||||
yield StreamUsage(
|
||||
promptTokens=final_message.usage.input_tokens,
|
||||
completionTokens=final_message.usage.output_tokens,
|
||||
totalTokens=final_message.usage.input_tokens
|
||||
+ final_message.usage.output_tokens,
|
||||
)
|
||||
yield StreamFinish()
|
||||
return
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[Anthropic Fallback] Error: {e}", exc_info=True)
|
||||
yield StreamError(
|
||||
errorText="An error occurred. Please try again.",
|
||||
code="anthropic_error",
|
||||
)
|
||||
yield StreamFinish()
|
||||
return
|
||||
|
||||
yield StreamError(errorText="Max tool iterations reached", code="max_iterations")
|
||||
yield StreamFinish()
|
||||
|
||||
|
||||
def _convert_session_to_anthropic(session: ChatSession) -> list[dict[str, Any]]:
|
||||
"""Convert session messages to Anthropic format.
|
||||
|
||||
Handles merging consecutive same-role messages (Anthropic requires alternating roles).
|
||||
"""
|
||||
messages: list[dict[str, Any]] = []
|
||||
|
||||
for msg in session.messages:
|
||||
if msg.role == "user":
|
||||
new_msg = {"role": "user", "content": msg.content or ""}
|
||||
elif msg.role == "assistant":
|
||||
content: list[dict[str, Any]] = []
|
||||
if msg.content:
|
||||
content.append({"type": "text", "text": msg.content})
|
||||
if msg.tool_calls:
|
||||
for tc in msg.tool_calls:
|
||||
func = tc.get("function", {})
|
||||
args = func.get("arguments", {})
|
||||
if isinstance(args, str):
|
||||
try:
|
||||
args = json.loads(args)
|
||||
except json.JSONDecodeError:
|
||||
args = {}
|
||||
content.append(
|
||||
{
|
||||
"type": "tool_use",
|
||||
"id": tc.get("id", str(uuid.uuid4())),
|
||||
"name": func.get("name", ""),
|
||||
"input": args,
|
||||
}
|
||||
)
|
||||
if content:
|
||||
new_msg = {"role": "assistant", "content": content}
|
||||
else:
|
||||
continue # Skip empty assistant messages
|
||||
elif msg.role == "tool":
|
||||
new_msg = {
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "tool_result",
|
||||
"tool_use_id": msg.tool_call_id or "",
|
||||
"content": msg.content or "",
|
||||
}
|
||||
],
|
||||
}
|
||||
else:
|
||||
continue
|
||||
|
||||
messages.append(new_msg)
|
||||
|
||||
# Merge consecutive same-role messages (Anthropic requires alternating roles)
|
||||
return _merge_consecutive_roles(messages)
|
||||
|
||||
|
||||
def _merge_consecutive_roles(messages: list[dict[str, Any]]) -> list[dict[str, Any]]:
|
||||
"""Merge consecutive messages with the same role.
|
||||
|
||||
Anthropic API requires alternating user/assistant roles.
|
||||
"""
|
||||
if not messages:
|
||||
return []
|
||||
|
||||
merged: list[dict[str, Any]] = []
|
||||
for msg in messages:
|
||||
if merged and merged[-1]["role"] == msg["role"]:
|
||||
# Merge with previous message
|
||||
prev_content = merged[-1]["content"]
|
||||
new_content = msg["content"]
|
||||
|
||||
# Normalize both to list-of-blocks form
|
||||
if isinstance(prev_content, str):
|
||||
prev_content = [{"type": "text", "text": prev_content}]
|
||||
if isinstance(new_content, str):
|
||||
new_content = [{"type": "text", "text": new_content}]
|
||||
|
||||
# Ensure both are lists
|
||||
if not isinstance(prev_content, list):
|
||||
prev_content = [prev_content]
|
||||
if not isinstance(new_content, list):
|
||||
new_content = [new_content]
|
||||
|
||||
merged[-1]["content"] = prev_content + new_content
|
||||
else:
|
||||
merged.append(msg)
|
||||
|
||||
return merged
|
||||
|
||||
|
||||
async def _execute_tool(
|
||||
tool_name: str, tool_input: Any, handlers: dict[str, Any]
|
||||
) -> tuple[str, bool]:
|
||||
"""Execute a tool and return (output, is_error)."""
|
||||
handler = handlers.get(tool_name)
|
||||
if not handler:
|
||||
return f"Unknown tool: {tool_name}", True
|
||||
|
||||
try:
|
||||
result = await handler(tool_input)
|
||||
# Safely extract output - handle empty or missing content
|
||||
content = result.get("content") or []
|
||||
if content and isinstance(content, list) and len(content) > 0:
|
||||
first_item = content[0]
|
||||
output = first_item.get("text", "") if isinstance(first_item, dict) else ""
|
||||
else:
|
||||
output = ""
|
||||
is_error = result.get("isError", False)
|
||||
return output, is_error
|
||||
except Exception as e:
|
||||
return f"Error: {str(e)}", True
|
||||
@@ -0,0 +1,300 @@
|
||||
"""Response adapter for converting Claude Agent SDK messages to Vercel AI SDK format.
|
||||
|
||||
This module provides the adapter layer that converts streaming messages from
|
||||
the Claude Agent SDK into the Vercel AI SDK UI Stream Protocol format that
|
||||
the frontend expects.
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import uuid
|
||||
from typing import Any, AsyncGenerator
|
||||
|
||||
from backend.api.features.chat.response_model import (
|
||||
StreamBaseResponse,
|
||||
StreamError,
|
||||
StreamFinish,
|
||||
StreamHeartbeat,
|
||||
StreamStart,
|
||||
StreamTextDelta,
|
||||
StreamTextEnd,
|
||||
StreamTextStart,
|
||||
StreamToolInputAvailable,
|
||||
StreamToolInputStart,
|
||||
StreamToolOutputAvailable,
|
||||
StreamUsage,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SDKResponseAdapter:
|
||||
"""Adapter for converting Claude Agent SDK messages to Vercel AI SDK format.
|
||||
|
||||
This class maintains state during a streaming session to properly track
|
||||
text blocks, tool calls, and message lifecycle.
|
||||
"""
|
||||
|
||||
def __init__(self, message_id: str | None = None):
|
||||
"""Initialize the adapter.
|
||||
|
||||
Args:
|
||||
message_id: Optional message ID. If not provided, one will be generated.
|
||||
"""
|
||||
self.message_id = message_id or str(uuid.uuid4())
|
||||
self.text_block_id = str(uuid.uuid4())
|
||||
self.has_started_text = False
|
||||
self.has_ended_text = False
|
||||
self.current_tool_calls: dict[str, dict[str, Any]] = {}
|
||||
self.task_id: str | None = None
|
||||
|
||||
def set_task_id(self, task_id: str) -> None:
|
||||
"""Set the task ID for reconnection support."""
|
||||
self.task_id = task_id
|
||||
|
||||
def convert_message(self, sdk_message: Any) -> list[StreamBaseResponse]:
|
||||
"""Convert a single SDK message to Vercel AI SDK format.
|
||||
|
||||
Args:
|
||||
sdk_message: A message from the Claude Agent SDK.
|
||||
|
||||
Returns:
|
||||
List of StreamBaseResponse objects (may be empty or multiple).
|
||||
"""
|
||||
responses: list[StreamBaseResponse] = []
|
||||
|
||||
# Handle different SDK message types - use class name since SDK uses dataclasses
|
||||
class_name = type(sdk_message).__name__
|
||||
msg_subtype = getattr(sdk_message, "subtype", None)
|
||||
|
||||
if class_name == "SystemMessage":
|
||||
if msg_subtype == "init":
|
||||
# Session initialization - emit start
|
||||
responses.append(
|
||||
StreamStart(
|
||||
messageId=self.message_id,
|
||||
taskId=self.task_id,
|
||||
)
|
||||
)
|
||||
|
||||
elif class_name == "AssistantMessage":
|
||||
# Assistant message with content blocks
|
||||
content = getattr(sdk_message, "content", [])
|
||||
for block in content:
|
||||
# Check block type by class name (SDK uses dataclasses) or dict type
|
||||
block_class = type(block).__name__
|
||||
block_type = block.get("type") if isinstance(block, dict) else None
|
||||
|
||||
if block_class == "TextBlock" or block_type == "text":
|
||||
# Text content
|
||||
text = getattr(block, "text", None) or (
|
||||
block.get("text") if isinstance(block, dict) else ""
|
||||
)
|
||||
|
||||
if text:
|
||||
# Start text block if needed (or restart after tool calls)
|
||||
if not self.has_started_text or self.has_ended_text:
|
||||
# Generate new text block ID for text after tools
|
||||
if self.has_ended_text:
|
||||
self.text_block_id = str(uuid.uuid4())
|
||||
self.has_ended_text = False
|
||||
responses.append(StreamTextStart(id=self.text_block_id))
|
||||
self.has_started_text = True
|
||||
|
||||
# Emit text delta
|
||||
responses.append(
|
||||
StreamTextDelta(
|
||||
id=self.text_block_id,
|
||||
delta=text,
|
||||
)
|
||||
)
|
||||
|
||||
elif block_class == "ToolUseBlock" or block_type == "tool_use":
|
||||
# Tool call
|
||||
tool_id_raw = getattr(block, "id", None) or (
|
||||
block.get("id") if isinstance(block, dict) else None
|
||||
)
|
||||
tool_id: str = (
|
||||
str(tool_id_raw) if tool_id_raw else str(uuid.uuid4())
|
||||
)
|
||||
|
||||
tool_name_raw = getattr(block, "name", None) or (
|
||||
block.get("name") if isinstance(block, dict) else None
|
||||
)
|
||||
tool_name: str = str(tool_name_raw) if tool_name_raw else "unknown"
|
||||
|
||||
tool_input = getattr(block, "input", None) or (
|
||||
block.get("input") if isinstance(block, dict) else {}
|
||||
)
|
||||
|
||||
# End text block if we were streaming text
|
||||
if self.has_started_text and not self.has_ended_text:
|
||||
responses.append(StreamTextEnd(id=self.text_block_id))
|
||||
self.has_ended_text = True
|
||||
|
||||
# Emit tool input start
|
||||
responses.append(
|
||||
StreamToolInputStart(
|
||||
toolCallId=tool_id,
|
||||
toolName=tool_name,
|
||||
)
|
||||
)
|
||||
|
||||
# Emit tool input available with full input
|
||||
responses.append(
|
||||
StreamToolInputAvailable(
|
||||
toolCallId=tool_id,
|
||||
toolName=tool_name,
|
||||
input=tool_input if isinstance(tool_input, dict) else {},
|
||||
)
|
||||
)
|
||||
|
||||
# Track the tool call
|
||||
self.current_tool_calls[tool_id] = {
|
||||
"name": tool_name,
|
||||
"input": tool_input,
|
||||
}
|
||||
|
||||
elif class_name in ("ToolResultMessage", "UserMessage"):
|
||||
# Tool result - check for tool_result content
|
||||
content = getattr(sdk_message, "content", [])
|
||||
|
||||
for block in content:
|
||||
block_class = type(block).__name__
|
||||
block_type = block.get("type") if isinstance(block, dict) else None
|
||||
|
||||
if block_class == "ToolResultBlock" or block_type == "tool_result":
|
||||
tool_use_id = getattr(block, "tool_use_id", None) or (
|
||||
block.get("tool_use_id") if isinstance(block, dict) else None
|
||||
)
|
||||
result_content = getattr(block, "content", None) or (
|
||||
block.get("content") if isinstance(block, dict) else ""
|
||||
)
|
||||
is_error = getattr(block, "is_error", False) or (
|
||||
block.get("is_error", False)
|
||||
if isinstance(block, dict)
|
||||
else False
|
||||
)
|
||||
|
||||
if tool_use_id:
|
||||
tool_info = self.current_tool_calls.get(tool_use_id, {})
|
||||
tool_name = tool_info.get("name", "unknown")
|
||||
|
||||
# Format the output
|
||||
if isinstance(result_content, list):
|
||||
# Extract text from content blocks
|
||||
output_text = ""
|
||||
for item in result_content:
|
||||
if (
|
||||
isinstance(item, dict)
|
||||
and item.get("type") == "text"
|
||||
):
|
||||
output_text += item.get("text", "")
|
||||
elif hasattr(item, "text"):
|
||||
output_text += getattr(item, "text", "")
|
||||
output = output_text
|
||||
elif isinstance(result_content, str):
|
||||
output = result_content
|
||||
else:
|
||||
output = json.dumps(result_content)
|
||||
|
||||
responses.append(
|
||||
StreamToolOutputAvailable(
|
||||
toolCallId=tool_use_id,
|
||||
toolName=tool_name,
|
||||
output=output,
|
||||
success=not is_error,
|
||||
)
|
||||
)
|
||||
|
||||
elif class_name == "ResultMessage":
|
||||
# Final result
|
||||
if msg_subtype == "success":
|
||||
# End text block if still open
|
||||
if self.has_started_text and not self.has_ended_text:
|
||||
responses.append(StreamTextEnd(id=self.text_block_id))
|
||||
self.has_ended_text = True
|
||||
|
||||
# Emit finish
|
||||
responses.append(StreamFinish())
|
||||
|
||||
elif msg_subtype in ("error", "error_during_execution"):
|
||||
error_msg = getattr(sdk_message, "error", "Unknown error")
|
||||
responses.append(
|
||||
StreamError(
|
||||
errorText=str(error_msg),
|
||||
code="sdk_error",
|
||||
)
|
||||
)
|
||||
responses.append(StreamFinish())
|
||||
|
||||
elif class_name == "ErrorMessage":
|
||||
# Error message
|
||||
error_msg = getattr(sdk_message, "message", None) or getattr(
|
||||
sdk_message, "error", "Unknown error"
|
||||
)
|
||||
responses.append(
|
||||
StreamError(
|
||||
errorText=str(error_msg),
|
||||
code="sdk_error",
|
||||
)
|
||||
)
|
||||
responses.append(StreamFinish())
|
||||
|
||||
return responses
|
||||
|
||||
def create_heartbeat(self, tool_call_id: str | None = None) -> StreamHeartbeat:
|
||||
"""Create a heartbeat response."""
|
||||
return StreamHeartbeat(toolCallId=tool_call_id)
|
||||
|
||||
def create_usage(
|
||||
self,
|
||||
prompt_tokens: int,
|
||||
completion_tokens: int,
|
||||
) -> StreamUsage:
|
||||
"""Create a usage statistics response."""
|
||||
return StreamUsage(
|
||||
promptTokens=prompt_tokens,
|
||||
completionTokens=completion_tokens,
|
||||
totalTokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
|
||||
|
||||
async def adapt_sdk_stream(
|
||||
sdk_stream: AsyncGenerator[Any, None],
|
||||
message_id: str | None = None,
|
||||
task_id: str | None = None,
|
||||
) -> AsyncGenerator[StreamBaseResponse, None]:
|
||||
"""Adapt a Claude Agent SDK stream to Vercel AI SDK format.
|
||||
|
||||
Args:
|
||||
sdk_stream: The async generator from the Claude Agent SDK.
|
||||
message_id: Optional message ID for the response.
|
||||
task_id: Optional task ID for reconnection support.
|
||||
|
||||
Yields:
|
||||
StreamBaseResponse objects in Vercel AI SDK format.
|
||||
"""
|
||||
adapter = SDKResponseAdapter(message_id=message_id)
|
||||
if task_id:
|
||||
adapter.set_task_id(task_id)
|
||||
|
||||
# Emit start immediately
|
||||
yield StreamStart(messageId=adapter.message_id, taskId=task_id)
|
||||
|
||||
try:
|
||||
async for sdk_message in sdk_stream:
|
||||
responses = adapter.convert_message(sdk_message)
|
||||
for response in responses:
|
||||
# Skip duplicate start messages
|
||||
if isinstance(response, StreamStart):
|
||||
continue
|
||||
yield response
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in SDK stream: {e}", exc_info=True)
|
||||
yield StreamError(
|
||||
errorText=f"Stream error: {str(e)}",
|
||||
code="stream_error",
|
||||
)
|
||||
yield StreamFinish()
|
||||
@@ -0,0 +1,278 @@
|
||||
"""Security hooks for Claude Agent SDK integration.
|
||||
|
||||
This module provides security hooks that validate tool calls before execution,
|
||||
ensuring multi-user isolation and preventing unauthorized operations.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import re
|
||||
from typing import Any, cast
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Tools that are blocked entirely (CLI/system access)
|
||||
BLOCKED_TOOLS = {
|
||||
"Bash",
|
||||
"bash",
|
||||
"shell",
|
||||
"exec",
|
||||
"terminal",
|
||||
"command",
|
||||
"Read", # Block raw file read - use workspace tools instead
|
||||
"Write", # Block raw file write - use workspace tools instead
|
||||
"Edit", # Block raw file edit - use workspace tools instead
|
||||
"Glob", # Block raw file glob - use workspace tools instead
|
||||
"Grep", # Block raw file grep - use workspace tools instead
|
||||
}
|
||||
|
||||
# Dangerous patterns in tool inputs
|
||||
DANGEROUS_PATTERNS = [
|
||||
r"sudo",
|
||||
r"rm\s+-rf",
|
||||
r"dd\s+if=",
|
||||
r"/etc/passwd",
|
||||
r"/etc/shadow",
|
||||
r"chmod\s+777",
|
||||
r"curl\s+.*\|.*sh",
|
||||
r"wget\s+.*\|.*sh",
|
||||
r"eval\s*\(",
|
||||
r"exec\s*\(",
|
||||
r"__import__",
|
||||
r"os\.system",
|
||||
r"subprocess",
|
||||
]
|
||||
|
||||
|
||||
def _validate_tool_access(tool_name: str, tool_input: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Validate that a tool call is allowed.
|
||||
|
||||
Returns:
|
||||
Empty dict to allow, or dict with hookSpecificOutput to deny
|
||||
"""
|
||||
# Block forbidden tools
|
||||
if tool_name in BLOCKED_TOOLS:
|
||||
logger.warning(f"Blocked tool access attempt: {tool_name}")
|
||||
return {
|
||||
"hookSpecificOutput": {
|
||||
"hookEventName": "PreToolUse",
|
||||
"permissionDecision": "deny",
|
||||
"permissionDecisionReason": (
|
||||
f"Tool '{tool_name}' is not available. "
|
||||
"Use the CoPilot-specific tools instead."
|
||||
),
|
||||
}
|
||||
}
|
||||
|
||||
# Check for dangerous patterns in tool input
|
||||
input_str = str(tool_input)
|
||||
|
||||
for pattern in DANGEROUS_PATTERNS:
|
||||
if re.search(pattern, input_str, re.IGNORECASE):
|
||||
logger.warning(
|
||||
f"Blocked dangerous pattern in tool input: {pattern} in {tool_name}"
|
||||
)
|
||||
return {
|
||||
"hookSpecificOutput": {
|
||||
"hookEventName": "PreToolUse",
|
||||
"permissionDecision": "deny",
|
||||
"permissionDecisionReason": "Input contains blocked pattern",
|
||||
}
|
||||
}
|
||||
|
||||
return {}
|
||||
|
||||
|
||||
def _validate_user_isolation(
|
||||
tool_name: str, tool_input: dict[str, Any], user_id: str | None
|
||||
) -> dict[str, Any]:
|
||||
"""Validate that tool calls respect user isolation."""
|
||||
# For workspace file tools, ensure path doesn't escape
|
||||
if "workspace" in tool_name.lower():
|
||||
path = tool_input.get("path", "") or tool_input.get("file_path", "")
|
||||
if path:
|
||||
# Check for path traversal
|
||||
if ".." in path or path.startswith("/"):
|
||||
logger.warning(
|
||||
f"Blocked path traversal attempt: {path} by user {user_id}"
|
||||
)
|
||||
return {
|
||||
"hookSpecificOutput": {
|
||||
"hookEventName": "PreToolUse",
|
||||
"permissionDecision": "deny",
|
||||
"permissionDecisionReason": "Path traversal not allowed",
|
||||
}
|
||||
}
|
||||
|
||||
return {}
|
||||
|
||||
|
||||
def create_security_hooks(user_id: str | None) -> dict[str, Any]:
|
||||
"""Create the security hooks configuration for Claude Agent SDK.
|
||||
|
||||
Includes security validation and observability hooks:
|
||||
- PreToolUse: Security validation before tool execution
|
||||
- PostToolUse: Log successful tool executions
|
||||
- PostToolUseFailure: Log and handle failed tool executions
|
||||
- PreCompact: Log context compaction events (SDK handles compaction automatically)
|
||||
|
||||
Args:
|
||||
user_id: Current user ID for isolation validation
|
||||
|
||||
Returns:
|
||||
Hooks configuration dict for ClaudeAgentOptions
|
||||
"""
|
||||
try:
|
||||
from claude_agent_sdk import HookMatcher
|
||||
from claude_agent_sdk.types import HookContext, HookInput, SyncHookJSONOutput
|
||||
|
||||
async def pre_tool_use_hook(
|
||||
input_data: HookInput,
|
||||
tool_use_id: str | None,
|
||||
context: HookContext,
|
||||
) -> SyncHookJSONOutput:
|
||||
"""Combined pre-tool-use validation hook."""
|
||||
_ = context # unused but required by signature
|
||||
tool_name = cast(str, input_data.get("tool_name", ""))
|
||||
tool_input = cast(dict[str, Any], input_data.get("tool_input", {}))
|
||||
|
||||
# Validate basic tool access
|
||||
result = _validate_tool_access(tool_name, tool_input)
|
||||
if result:
|
||||
return cast(SyncHookJSONOutput, result)
|
||||
|
||||
# Validate user isolation
|
||||
result = _validate_user_isolation(tool_name, tool_input, user_id)
|
||||
if result:
|
||||
return cast(SyncHookJSONOutput, result)
|
||||
|
||||
logger.debug(f"[SDK] Tool start: {tool_name}, user={user_id}")
|
||||
return cast(SyncHookJSONOutput, {})
|
||||
|
||||
async def post_tool_use_hook(
|
||||
input_data: HookInput,
|
||||
tool_use_id: str | None,
|
||||
context: HookContext,
|
||||
) -> SyncHookJSONOutput:
|
||||
"""Log successful tool executions for observability."""
|
||||
_ = context
|
||||
tool_name = cast(str, input_data.get("tool_name", ""))
|
||||
logger.debug(f"[SDK] Tool success: {tool_name}, tool_use_id={tool_use_id}")
|
||||
return cast(SyncHookJSONOutput, {})
|
||||
|
||||
async def post_tool_failure_hook(
|
||||
input_data: HookInput,
|
||||
tool_use_id: str | None,
|
||||
context: HookContext,
|
||||
) -> SyncHookJSONOutput:
|
||||
"""Log failed tool executions for debugging."""
|
||||
_ = context
|
||||
tool_name = cast(str, input_data.get("tool_name", ""))
|
||||
error = input_data.get("error", "Unknown error")
|
||||
logger.warning(
|
||||
f"[SDK] Tool failed: {tool_name}, error={error}, "
|
||||
f"user={user_id}, tool_use_id={tool_use_id}"
|
||||
)
|
||||
return cast(SyncHookJSONOutput, {})
|
||||
|
||||
async def pre_compact_hook(
|
||||
input_data: HookInput,
|
||||
tool_use_id: str | None,
|
||||
context: HookContext,
|
||||
) -> SyncHookJSONOutput:
|
||||
"""Log when SDK triggers context compaction.
|
||||
|
||||
The SDK automatically compacts conversation history when it grows too large.
|
||||
This hook provides visibility into when compaction happens.
|
||||
"""
|
||||
_ = context, tool_use_id
|
||||
trigger = input_data.get("trigger", "auto")
|
||||
logger.info(
|
||||
f"[SDK] Context compaction triggered: {trigger}, user={user_id}"
|
||||
)
|
||||
return cast(SyncHookJSONOutput, {})
|
||||
|
||||
return {
|
||||
"PreToolUse": [HookMatcher(matcher="*", hooks=[pre_tool_use_hook])],
|
||||
"PostToolUse": [HookMatcher(matcher="*", hooks=[post_tool_use_hook])],
|
||||
"PostToolUseFailure": [
|
||||
HookMatcher(matcher="*", hooks=[post_tool_failure_hook])
|
||||
],
|
||||
"PreCompact": [HookMatcher(matcher="*", hooks=[pre_compact_hook])],
|
||||
}
|
||||
except ImportError:
|
||||
# Fallback for when SDK isn't available - return empty hooks
|
||||
return {}
|
||||
|
||||
|
||||
def create_strict_security_hooks(
|
||||
user_id: str | None,
|
||||
allowed_tools: list[str] | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""Create strict security hooks that only allow specific tools.
|
||||
|
||||
Args:
|
||||
user_id: Current user ID
|
||||
allowed_tools: List of allowed tool names (defaults to CoPilot tools)
|
||||
|
||||
Returns:
|
||||
Hooks configuration dict
|
||||
"""
|
||||
try:
|
||||
from claude_agent_sdk import HookMatcher
|
||||
from claude_agent_sdk.types import HookContext, HookInput, SyncHookJSONOutput
|
||||
|
||||
from .tool_adapter import RAW_TOOL_NAMES
|
||||
|
||||
tools_list = allowed_tools if allowed_tools is not None else RAW_TOOL_NAMES
|
||||
allowed_set = set(tools_list)
|
||||
|
||||
async def strict_pre_tool_use(
|
||||
input_data: HookInput,
|
||||
tool_use_id: str | None,
|
||||
context: HookContext,
|
||||
) -> SyncHookJSONOutput:
|
||||
"""Strict validation that only allows whitelisted tools."""
|
||||
_ = context # unused but required by signature
|
||||
tool_name = cast(str, input_data.get("tool_name", ""))
|
||||
tool_input = cast(dict[str, Any], input_data.get("tool_input", {}))
|
||||
|
||||
# Remove MCP prefix if present
|
||||
clean_name = tool_name.removeprefix("mcp__copilot__")
|
||||
|
||||
if clean_name not in allowed_set:
|
||||
logger.warning(f"Blocked non-whitelisted tool: {tool_name}")
|
||||
return cast(
|
||||
SyncHookJSONOutput,
|
||||
{
|
||||
"hookSpecificOutput": {
|
||||
"hookEventName": "PreToolUse",
|
||||
"permissionDecision": "deny",
|
||||
"permissionDecisionReason": (
|
||||
f"Tool '{tool_name}' is not in the allowed list"
|
||||
),
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
# Run standard validations
|
||||
result = _validate_tool_access(tool_name, tool_input)
|
||||
if result:
|
||||
return cast(SyncHookJSONOutput, result)
|
||||
|
||||
result = _validate_user_isolation(tool_name, tool_input, user_id)
|
||||
if result:
|
||||
return cast(SyncHookJSONOutput, result)
|
||||
|
||||
logger.debug(
|
||||
f"[SDK Audit] Tool call: tool={tool_name}, "
|
||||
f"user={user_id}, tool_use_id={tool_use_id}"
|
||||
)
|
||||
return cast(SyncHookJSONOutput, {})
|
||||
|
||||
return {
|
||||
"PreToolUse": [
|
||||
HookMatcher(matcher="*", hooks=[strict_pre_tool_use]),
|
||||
],
|
||||
}
|
||||
except ImportError:
|
||||
return {}
|
||||
@@ -0,0 +1,471 @@
|
||||
"""Claude Agent SDK service layer for CoPilot chat completions."""
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
import uuid
|
||||
from collections.abc import AsyncGenerator
|
||||
from typing import Any
|
||||
|
||||
import openai
|
||||
|
||||
from backend.data.understanding import (
|
||||
format_understanding_for_prompt,
|
||||
get_business_understanding,
|
||||
)
|
||||
from backend.util.exceptions import NotFoundError
|
||||
|
||||
from ..config import ChatConfig
|
||||
from ..model import (
|
||||
ChatMessage,
|
||||
ChatSession,
|
||||
get_chat_session,
|
||||
update_session_title,
|
||||
upsert_chat_session,
|
||||
)
|
||||
from ..response_model import (
|
||||
StreamBaseResponse,
|
||||
StreamError,
|
||||
StreamFinish,
|
||||
StreamStart,
|
||||
StreamTextDelta,
|
||||
StreamToolInputAvailable,
|
||||
StreamToolOutputAvailable,
|
||||
)
|
||||
from ..tracking import track_user_message
|
||||
from .anthropic_fallback import stream_with_anthropic
|
||||
from .response_adapter import SDKResponseAdapter
|
||||
from .security_hooks import create_security_hooks
|
||||
from .tool_adapter import (
|
||||
COPILOT_TOOL_NAMES,
|
||||
create_copilot_mcp_server,
|
||||
set_execution_context,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
config = ChatConfig()
|
||||
|
||||
# Set to hold background tasks to prevent garbage collection
|
||||
_background_tasks: set[asyncio.Task[Any]] = set()
|
||||
|
||||
DEFAULT_SYSTEM_PROMPT = """You are **Otto**, an AI Co-Pilot for AutoGPT and a Forward-Deployed Automation Engineer serving small business owners. Your mission is to help users automate business tasks with AI by delivering tangible value through working automations—not through documentation or lengthy explanations.
|
||||
|
||||
Here is everything you know about the current user from previous interactions:
|
||||
|
||||
<users_information>
|
||||
{users_information}
|
||||
</users_information>
|
||||
|
||||
## YOUR CORE MANDATE
|
||||
|
||||
You are action-oriented. Your success is measured by:
|
||||
- **Value Delivery**: Does the user think "wow, that was amazing" or "what was the point"?
|
||||
- **Demonstrable Proof**: Show working automations, not descriptions of what's possible
|
||||
- **Time Saved**: Focus on tangible efficiency gains
|
||||
- **Quality Output**: Deliver results that meet or exceed expectations
|
||||
|
||||
## YOUR WORKFLOW
|
||||
|
||||
Adapt flexibly to the conversation context. Not every interaction requires all stages:
|
||||
|
||||
1. **Explore & Understand**: Learn about the user's business, tasks, and goals. Use `add_understanding` to capture important context that will improve future conversations.
|
||||
|
||||
2. **Assess Automation Potential**: Help the user understand whether and how AI can automate their task.
|
||||
|
||||
3. **Prepare for AI**: Provide brief, actionable guidance on prerequisites (data, access, etc.).
|
||||
|
||||
4. **Discover or Create Agents**:
|
||||
- **Always check the user's library first** with `find_library_agent` (these may be customized to their needs)
|
||||
- Search the marketplace with `find_agent` for pre-built automations
|
||||
- Find reusable components with `find_block`
|
||||
- Create custom solutions with `create_agent` if nothing suitable exists
|
||||
- Modify existing library agents with `edit_agent`
|
||||
|
||||
5. **Execute**: Run automations immediately, schedule them, or set up webhooks using `run_agent`. Test specific components with `run_block`.
|
||||
|
||||
6. **Show Results**: Display outputs using `agent_output`.
|
||||
|
||||
## BEHAVIORAL GUIDELINES
|
||||
|
||||
**Be Concise:**
|
||||
- Target 2-5 short lines maximum
|
||||
- Make every word count—no repetition or filler
|
||||
- Use lightweight structure for scannability (bullets, numbered lists, short prompts)
|
||||
- Avoid jargon (blocks, slugs, cron) unless the user asks
|
||||
|
||||
**Be Proactive:**
|
||||
- Suggest next steps before being asked
|
||||
- Anticipate needs based on conversation context and user information
|
||||
- Look for opportunities to expand scope when relevant
|
||||
- Reveal capabilities through action, not explanation
|
||||
|
||||
**Use Tools Effectively:**
|
||||
- Select the right tool for each task
|
||||
- **Always check `find_library_agent` before searching the marketplace**
|
||||
- Use `add_understanding` to capture valuable business context
|
||||
- When tool calls fail, try alternative approaches
|
||||
|
||||
## CRITICAL REMINDER
|
||||
|
||||
You are NOT a chatbot. You are NOT documentation. You are a partner who helps busy business owners get value quickly by showing proof through working automations. Bias toward action over explanation."""
|
||||
|
||||
|
||||
async def _build_system_prompt(
|
||||
user_id: str | None, has_conversation_history: bool = False
|
||||
) -> tuple[str, Any]:
|
||||
"""Build the system prompt with user's business understanding context.
|
||||
|
||||
Args:
|
||||
user_id: The user ID to fetch understanding for.
|
||||
has_conversation_history: Whether there's existing conversation history.
|
||||
If True, we don't tell the model to greet/introduce (since they're
|
||||
already in a conversation).
|
||||
"""
|
||||
understanding = None
|
||||
if user_id:
|
||||
try:
|
||||
understanding = await get_business_understanding(user_id)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to fetch business understanding: {e}")
|
||||
|
||||
if understanding:
|
||||
context = format_understanding_for_prompt(understanding)
|
||||
elif has_conversation_history:
|
||||
# Don't tell model to greet if there's conversation history
|
||||
context = "No prior understanding saved yet. Continue the existing conversation naturally."
|
||||
else:
|
||||
context = "This is the first time you are meeting the user. Greet them and introduce them to the platform"
|
||||
|
||||
return DEFAULT_SYSTEM_PROMPT.format(users_information=context), understanding
|
||||
|
||||
|
||||
def _format_conversation_history(session: ChatSession) -> str:
|
||||
"""Format conversation history as a prompt context.
|
||||
|
||||
The SDK handles context compaction automatically, but we apply
|
||||
max_context_messages as a safety guard to limit initial prompt size.
|
||||
"""
|
||||
if not session.messages:
|
||||
return ""
|
||||
|
||||
# Get all messages except the last user message (which will be the prompt)
|
||||
messages = session.messages[:-1] if session.messages else []
|
||||
if not messages:
|
||||
return ""
|
||||
|
||||
# Apply max_context_messages limit as a safety guard
|
||||
# (SDK handles compaction, but this prevents excessively large initial prompts)
|
||||
max_messages = config.max_context_messages
|
||||
if len(messages) > max_messages:
|
||||
messages = messages[-max_messages:]
|
||||
|
||||
history_parts = ["<conversation_history>"]
|
||||
|
||||
for msg in messages:
|
||||
if msg.role == "user":
|
||||
history_parts.append(f"User: {msg.content or ''}")
|
||||
elif msg.role == "assistant":
|
||||
# Pass full content - SDK handles compaction automatically
|
||||
history_parts.append(f"Assistant: {msg.content or ''}")
|
||||
if msg.tool_calls:
|
||||
for tc in msg.tool_calls:
|
||||
func = tc.get("function", {})
|
||||
history_parts.append(
|
||||
f" [Called tool: {func.get('name', 'unknown')}]"
|
||||
)
|
||||
elif msg.role == "tool":
|
||||
# Pass full tool results - SDK handles compaction
|
||||
history_parts.append(f" [Tool result: {msg.content or ''}]")
|
||||
|
||||
history_parts.append("</conversation_history>")
|
||||
history_parts.append("")
|
||||
history_parts.append(
|
||||
"Continue this conversation. Respond to the user's latest message:"
|
||||
)
|
||||
history_parts.append("")
|
||||
|
||||
return "\n".join(history_parts)
|
||||
|
||||
|
||||
async def _generate_session_title(
|
||||
message: str,
|
||||
user_id: str | None = None,
|
||||
session_id: str | None = None,
|
||||
) -> str | None:
|
||||
"""Generate a concise title for a chat session."""
|
||||
from backend.util.settings import Settings
|
||||
|
||||
settings = Settings()
|
||||
try:
|
||||
# Build extra_body for OpenRouter tracing
|
||||
extra_body: dict[str, Any] = {
|
||||
"posthogProperties": {"environment": settings.config.app_env.value},
|
||||
}
|
||||
if user_id:
|
||||
extra_body["user"] = user_id[:128]
|
||||
extra_body["posthogDistinctId"] = user_id
|
||||
if session_id:
|
||||
extra_body["session_id"] = session_id[:128]
|
||||
|
||||
client = openai.AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
|
||||
response = await client.chat.completions.create(
|
||||
model=config.title_model,
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "Generate a very short title (3-6 words) for a chat conversation based on the user's first message. Return ONLY the title, no quotes or punctuation.",
|
||||
},
|
||||
{"role": "user", "content": message[:500]},
|
||||
],
|
||||
max_tokens=20,
|
||||
extra_body=extra_body,
|
||||
)
|
||||
title = response.choices[0].message.content
|
||||
if title:
|
||||
title = title.strip().strip("\"'")
|
||||
return title[:47] + "..." if len(title) > 50 else title
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to generate session title: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def stream_chat_completion_sdk(
|
||||
session_id: str,
|
||||
message: str | None = None,
|
||||
tool_call_response: str | None = None, # noqa: ARG001
|
||||
is_user_message: bool = True,
|
||||
user_id: str | None = None,
|
||||
retry_count: int = 0, # noqa: ARG001
|
||||
session: ChatSession | None = None,
|
||||
context: dict[str, str] | None = None, # noqa: ARG001
|
||||
) -> AsyncGenerator[StreamBaseResponse, None]:
|
||||
"""Stream chat completion using Claude Agent SDK.
|
||||
|
||||
Drop-in replacement for stream_chat_completion with improved reliability.
|
||||
"""
|
||||
|
||||
if session is None:
|
||||
session = await get_chat_session(session_id, user_id)
|
||||
|
||||
if not session:
|
||||
raise NotFoundError(
|
||||
f"Session {session_id} not found. Please create a new session first."
|
||||
)
|
||||
|
||||
if message:
|
||||
session.messages.append(
|
||||
ChatMessage(
|
||||
role="user" if is_user_message else "assistant", content=message
|
||||
)
|
||||
)
|
||||
if is_user_message:
|
||||
track_user_message(
|
||||
user_id=user_id, session_id=session_id, message_length=len(message)
|
||||
)
|
||||
|
||||
session = await upsert_chat_session(session)
|
||||
|
||||
# Generate title for new sessions (first user message)
|
||||
if is_user_message and not session.title:
|
||||
user_messages = [m for m in session.messages if m.role == "user"]
|
||||
if len(user_messages) == 1:
|
||||
first_message = user_messages[0].content or message or ""
|
||||
if first_message:
|
||||
task = asyncio.create_task(
|
||||
_update_title_async(session_id, first_message, user_id)
|
||||
)
|
||||
# Store reference to prevent garbage collection
|
||||
_background_tasks.add(task)
|
||||
task.add_done_callback(_background_tasks.discard)
|
||||
|
||||
# Check if there's conversation history (more than just the current message)
|
||||
has_history = len(session.messages) > 1
|
||||
system_prompt, _ = await _build_system_prompt(
|
||||
user_id, has_conversation_history=has_history
|
||||
)
|
||||
set_execution_context(user_id, session, None)
|
||||
|
||||
message_id = str(uuid.uuid4())
|
||||
text_block_id = str(uuid.uuid4())
|
||||
task_id = str(uuid.uuid4())
|
||||
|
||||
yield StreamStart(messageId=message_id, taskId=task_id)
|
||||
|
||||
# Track whether the stream completed normally via ResultMessage
|
||||
stream_completed = False
|
||||
|
||||
try:
|
||||
try:
|
||||
from claude_agent_sdk import ClaudeAgentOptions, ClaudeSDKClient
|
||||
|
||||
# Create MCP server with CoPilot tools
|
||||
mcp_server = create_copilot_mcp_server()
|
||||
|
||||
options = ClaudeAgentOptions(
|
||||
system_prompt=system_prompt,
|
||||
mcp_servers={"copilot": mcp_server}, # type: ignore[arg-type]
|
||||
allowed_tools=COPILOT_TOOL_NAMES,
|
||||
hooks=create_security_hooks(user_id), # type: ignore[arg-type]
|
||||
continue_conversation=True, # Enable conversation continuation
|
||||
)
|
||||
|
||||
adapter = SDKResponseAdapter(message_id=message_id)
|
||||
adapter.set_task_id(task_id)
|
||||
|
||||
async with ClaudeSDKClient(options=options) as client:
|
||||
# Build prompt with conversation history for context
|
||||
# The SDK doesn't support replaying full conversation history,
|
||||
# so we include it as context in the prompt
|
||||
current_message = message or ""
|
||||
if not current_message and session.messages:
|
||||
last_user = [m for m in session.messages if m.role == "user"]
|
||||
if last_user:
|
||||
current_message = last_user[-1].content or ""
|
||||
|
||||
# Include conversation history if there are prior messages
|
||||
if len(session.messages) > 1:
|
||||
history_context = _format_conversation_history(session)
|
||||
prompt = f"{history_context}{current_message}"
|
||||
else:
|
||||
prompt = current_message
|
||||
|
||||
# Guard against empty prompts
|
||||
if not prompt.strip():
|
||||
yield StreamError(
|
||||
errorText="Message cannot be empty.",
|
||||
code="empty_prompt",
|
||||
)
|
||||
yield StreamFinish()
|
||||
return
|
||||
|
||||
await client.query(prompt, session_id=session_id)
|
||||
|
||||
# Track assistant response to save to session
|
||||
# We may need multiple assistant messages if text comes after tool results
|
||||
assistant_response = ChatMessage(role="assistant", content="")
|
||||
accumulated_tool_calls: list[dict[str, Any]] = []
|
||||
has_appended_assistant = False
|
||||
has_tool_results = False # Track if we've received tool results
|
||||
|
||||
# Receive messages from the SDK
|
||||
async for sdk_msg in client.receive_messages():
|
||||
|
||||
for response in adapter.convert_message(sdk_msg):
|
||||
if isinstance(response, StreamStart):
|
||||
continue
|
||||
yield response
|
||||
|
||||
# Accumulate text deltas into assistant response
|
||||
if isinstance(response, StreamTextDelta):
|
||||
delta = response.delta or ""
|
||||
# After tool results, create new assistant message for post-tool text
|
||||
if has_tool_results and has_appended_assistant:
|
||||
assistant_response = ChatMessage(
|
||||
role="assistant", content=delta
|
||||
)
|
||||
accumulated_tool_calls = [] # Reset for new message
|
||||
session.messages.append(assistant_response)
|
||||
has_tool_results = False
|
||||
else:
|
||||
assistant_response.content = (
|
||||
assistant_response.content or ""
|
||||
) + delta
|
||||
if not has_appended_assistant:
|
||||
session.messages.append(assistant_response)
|
||||
has_appended_assistant = True
|
||||
|
||||
# Track tool calls on the assistant message
|
||||
elif isinstance(response, StreamToolInputAvailable):
|
||||
accumulated_tool_calls.append(
|
||||
{
|
||||
"id": response.toolCallId,
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": response.toolName,
|
||||
"arguments": json.dumps(response.input or {}),
|
||||
},
|
||||
}
|
||||
)
|
||||
# Update assistant message with tool calls
|
||||
assistant_response.tool_calls = accumulated_tool_calls
|
||||
# Append assistant message if not already (tool-only response)
|
||||
if not has_appended_assistant:
|
||||
session.messages.append(assistant_response)
|
||||
has_appended_assistant = True
|
||||
|
||||
elif isinstance(response, StreamToolOutputAvailable):
|
||||
session.messages.append(
|
||||
ChatMessage(
|
||||
role="tool",
|
||||
content=(
|
||||
response.output
|
||||
if isinstance(response.output, str)
|
||||
else str(response.output)
|
||||
),
|
||||
tool_call_id=response.toolCallId,
|
||||
)
|
||||
)
|
||||
has_tool_results = True
|
||||
|
||||
elif isinstance(response, StreamFinish):
|
||||
stream_completed = True
|
||||
|
||||
# Break out of the message loop if we received finish signal
|
||||
if stream_completed:
|
||||
break
|
||||
|
||||
# Ensure assistant response is saved even if no text deltas
|
||||
# (e.g., only tool calls were made)
|
||||
if (
|
||||
assistant_response.content or assistant_response.tool_calls
|
||||
) and not has_appended_assistant:
|
||||
session.messages.append(assistant_response)
|
||||
|
||||
except ImportError:
|
||||
logger.warning(
|
||||
"[SDK] claude-agent-sdk not available, using Anthropic fallback"
|
||||
)
|
||||
async for response in stream_with_anthropic(
|
||||
session, system_prompt, text_block_id
|
||||
):
|
||||
yield response
|
||||
|
||||
# Save the session with accumulated messages
|
||||
await upsert_chat_session(session)
|
||||
logger.debug(
|
||||
f"[SDK] Session {session_id} saved with {len(session.messages)} messages"
|
||||
)
|
||||
# Always yield StreamFinish to signal completion to the caller
|
||||
# The adapter yields StreamFinish for the SSE stream, but we need to
|
||||
# yield it here so the background task in routes.py knows to call mark_task_completed
|
||||
yield StreamFinish()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[SDK] Error: {e}", exc_info=True)
|
||||
# Save session even on error to preserve any partial response
|
||||
try:
|
||||
await upsert_chat_session(session)
|
||||
except Exception as save_err:
|
||||
logger.error(f"[SDK] Failed to save session on error: {save_err}")
|
||||
# Sanitize error message to avoid exposing internal details
|
||||
yield StreamError(
|
||||
errorText="An error occurred. Please try again.",
|
||||
code="sdk_error",
|
||||
)
|
||||
yield StreamFinish()
|
||||
|
||||
|
||||
async def _update_title_async(
|
||||
session_id: str, message: str, user_id: str | None = None
|
||||
) -> None:
|
||||
"""Background task to update session title."""
|
||||
try:
|
||||
title = await _generate_session_title(
|
||||
message, user_id=user_id, session_id=session_id
|
||||
)
|
||||
if title:
|
||||
await update_session_title(session_id, title)
|
||||
logger.debug(f"[SDK] Generated title for {session_id}: {title}")
|
||||
except Exception as e:
|
||||
logger.warning(f"[SDK] Failed to update session title: {e}")
|
||||
@@ -0,0 +1,213 @@
|
||||
"""Tool adapter for wrapping existing CoPilot tools as Claude Agent SDK MCP tools.
|
||||
|
||||
This module provides the adapter layer that converts existing BaseTool implementations
|
||||
into in-process MCP tools that can be used with the Claude Agent SDK.
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
from contextvars import ContextVar
|
||||
from typing import Any
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools import TOOL_REGISTRY
|
||||
from backend.api.features.chat.tools.base import BaseTool
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Context variables to pass user/session info to tool execution
|
||||
_current_user_id: ContextVar[str | None] = ContextVar("current_user_id", default=None)
|
||||
_current_session: ContextVar[ChatSession | None] = ContextVar(
|
||||
"current_session", default=None
|
||||
)
|
||||
_current_tool_call_id: ContextVar[str | None] = ContextVar(
|
||||
"current_tool_call_id", default=None
|
||||
)
|
||||
|
||||
|
||||
def set_execution_context(
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
tool_call_id: str | None = None,
|
||||
) -> None:
|
||||
"""Set the execution context for tool calls.
|
||||
|
||||
This must be called before streaming begins to ensure tools have access
|
||||
to user_id and session information.
|
||||
"""
|
||||
_current_user_id.set(user_id)
|
||||
_current_session.set(session)
|
||||
_current_tool_call_id.set(tool_call_id)
|
||||
|
||||
|
||||
def get_execution_context() -> tuple[str | None, ChatSession | None, str | None]:
|
||||
"""Get the current execution context."""
|
||||
return (
|
||||
_current_user_id.get(),
|
||||
_current_session.get(),
|
||||
_current_tool_call_id.get(),
|
||||
)
|
||||
|
||||
|
||||
def create_tool_handler(base_tool: BaseTool):
|
||||
"""Create an async handler function for a BaseTool.
|
||||
|
||||
This wraps the existing BaseTool._execute method to be compatible
|
||||
with the Claude Agent SDK MCP tool format.
|
||||
"""
|
||||
|
||||
async def tool_handler(args: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Execute the wrapped tool and return MCP-formatted response."""
|
||||
user_id, session, tool_call_id = get_execution_context()
|
||||
|
||||
if session is None:
|
||||
return {
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": json.dumps(
|
||||
{
|
||||
"error": "No session context available",
|
||||
"type": "error",
|
||||
}
|
||||
),
|
||||
}
|
||||
],
|
||||
"isError": True,
|
||||
}
|
||||
|
||||
try:
|
||||
# Call the existing tool's execute method
|
||||
result = await base_tool.execute(
|
||||
user_id=user_id,
|
||||
session=session,
|
||||
tool_call_id=tool_call_id or "sdk-call",
|
||||
**args,
|
||||
)
|
||||
|
||||
# The result is a StreamToolOutputAvailable, extract the output
|
||||
return {
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": (
|
||||
result.output
|
||||
if isinstance(result.output, str)
|
||||
else json.dumps(result.output)
|
||||
),
|
||||
}
|
||||
],
|
||||
"isError": not result.success,
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error executing tool {base_tool.name}: {e}", exc_info=True)
|
||||
return {
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": json.dumps(
|
||||
{
|
||||
"error": str(e),
|
||||
"type": "error",
|
||||
"message": f"Failed to execute {base_tool.name}",
|
||||
}
|
||||
),
|
||||
}
|
||||
],
|
||||
"isError": True,
|
||||
}
|
||||
|
||||
return tool_handler
|
||||
|
||||
|
||||
def get_tool_definitions() -> list[dict[str, Any]]:
|
||||
"""Get all tool definitions in MCP format.
|
||||
|
||||
Returns a list of tool definitions that can be used with
|
||||
create_sdk_mcp_server or as raw tool definitions.
|
||||
"""
|
||||
tool_definitions = []
|
||||
|
||||
for tool_name, base_tool in TOOL_REGISTRY.items():
|
||||
tool_def = {
|
||||
"name": tool_name,
|
||||
"description": base_tool.description,
|
||||
"inputSchema": {
|
||||
"type": "object",
|
||||
"properties": base_tool.parameters.get("properties", {}),
|
||||
"required": base_tool.parameters.get("required", []),
|
||||
},
|
||||
}
|
||||
tool_definitions.append(tool_def)
|
||||
|
||||
return tool_definitions
|
||||
|
||||
|
||||
def get_tool_handlers() -> dict[str, Any]:
|
||||
"""Get all tool handlers mapped by name.
|
||||
|
||||
Returns a dictionary mapping tool names to their handler functions.
|
||||
"""
|
||||
handlers = {}
|
||||
|
||||
for tool_name, base_tool in TOOL_REGISTRY.items():
|
||||
handlers[tool_name] = create_tool_handler(base_tool)
|
||||
|
||||
return handlers
|
||||
|
||||
|
||||
# Create the MCP server configuration
|
||||
def create_copilot_mcp_server():
|
||||
"""Create an in-process MCP server configuration for CoPilot tools.
|
||||
|
||||
This can be passed to ClaudeAgentOptions.mcp_servers.
|
||||
|
||||
Note: The actual SDK MCP server creation depends on the claude-agent-sdk
|
||||
package being available. This function returns the configuration that
|
||||
can be used with the SDK.
|
||||
"""
|
||||
try:
|
||||
from claude_agent_sdk import create_sdk_mcp_server, tool
|
||||
|
||||
# Create decorated tool functions
|
||||
sdk_tools = []
|
||||
|
||||
for tool_name, base_tool in TOOL_REGISTRY.items():
|
||||
# Get the handler
|
||||
handler = create_tool_handler(base_tool)
|
||||
|
||||
# Create the decorated tool
|
||||
# The @tool decorator expects (name, description, schema)
|
||||
decorated = tool(
|
||||
tool_name,
|
||||
base_tool.description,
|
||||
base_tool.parameters.get("properties", {}),
|
||||
)(handler)
|
||||
|
||||
sdk_tools.append(decorated)
|
||||
|
||||
# Create the MCP server
|
||||
server = create_sdk_mcp_server(
|
||||
name="copilot",
|
||||
version="1.0.0",
|
||||
tools=sdk_tools,
|
||||
)
|
||||
|
||||
return server
|
||||
|
||||
except ImportError:
|
||||
logger.warning(
|
||||
"claude-agent-sdk not available, returning tool definitions only"
|
||||
)
|
||||
return {
|
||||
"tools": get_tool_definitions(),
|
||||
"handlers": get_tool_handlers(),
|
||||
}
|
||||
|
||||
|
||||
# List of tool names for allowed_tools configuration
|
||||
COPILOT_TOOL_NAMES = [f"mcp__copilot__{name}" for name in TOOL_REGISTRY.keys()]
|
||||
|
||||
# Also export the raw tool names for flexibility
|
||||
RAW_TOOL_NAMES = list(TOOL_REGISTRY.keys())
|
||||
@@ -555,6 +555,10 @@ async def get_active_task_for_session(
|
||||
if task_user_id and user_id != task_user_id:
|
||||
continue
|
||||
|
||||
logger.info(
|
||||
f"[TASK_LOOKUP] Found running task {task_id[:8]}... for session {session_id[:8]}..."
|
||||
)
|
||||
|
||||
# Get the last message ID from Redis Stream
|
||||
stream_key = _get_task_stream_key(task_id)
|
||||
last_id = "0-0"
|
||||
|
||||
@@ -6,6 +6,7 @@ from typing import Any
|
||||
from backend.api.features.library import db as library_db
|
||||
from backend.api.features.library import model as library_model
|
||||
from backend.api.features.store import db as store_db
|
||||
from backend.data import graph as graph_db
|
||||
from backend.data.graph import GraphModel
|
||||
from backend.data.model import (
|
||||
CredentialsFieldInfo,
|
||||
@@ -43,8 +44,14 @@ async def fetch_graph_from_store_slug(
|
||||
return None, None
|
||||
|
||||
# Get the graph from store listing version
|
||||
graph = await store_db.get_available_graph(
|
||||
store_agent.store_listing_version_id, hide_nodes=False
|
||||
graph_meta = await store_db.get_available_graph(
|
||||
store_agent.store_listing_version_id
|
||||
)
|
||||
graph = await graph_db.get_graph(
|
||||
graph_id=graph_meta.id,
|
||||
version=graph_meta.version,
|
||||
user_id=None, # Public access
|
||||
include_subgraphs=True,
|
||||
)
|
||||
return graph, store_agent
|
||||
|
||||
@@ -121,7 +128,7 @@ def build_missing_credentials_from_graph(
|
||||
|
||||
return {
|
||||
field_key: _serialize_missing_credential(field_key, field_info)
|
||||
for field_key, (field_info, _, _) in aggregated_fields.items()
|
||||
for field_key, (field_info, _node_fields) in aggregated_fields.items()
|
||||
if field_key not in matched_keys
|
||||
}
|
||||
|
||||
@@ -262,8 +269,7 @@ async def match_user_credentials_to_graph(
|
||||
# provider is in the set of acceptable providers.
|
||||
for credential_field_name, (
|
||||
credential_requirements,
|
||||
_,
|
||||
_,
|
||||
_node_fields,
|
||||
) in aggregated_creds.items():
|
||||
# Find first matching credential by provider, type, and scopes
|
||||
matching_cred = next(
|
||||
|
||||
@@ -374,7 +374,7 @@ async def get_library_agent_by_graph_id(
|
||||
|
||||
|
||||
async def add_generated_agent_image(
|
||||
graph: graph_db.GraphBaseMeta,
|
||||
graph: graph_db.BaseGraph,
|
||||
user_id: str,
|
||||
library_agent_id: str,
|
||||
) -> Optional[prisma.models.LibraryAgent]:
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import asyncio
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Literal, overload
|
||||
from typing import Any, Literal
|
||||
|
||||
import fastapi
|
||||
import prisma.enums
|
||||
@@ -11,8 +11,8 @@ import prisma.types
|
||||
|
||||
from backend.data.db import transaction
|
||||
from backend.data.graph import (
|
||||
GraphMeta,
|
||||
GraphModel,
|
||||
GraphModelWithoutNodes,
|
||||
get_graph,
|
||||
get_graph_as_admin,
|
||||
get_sub_graphs,
|
||||
@@ -334,22 +334,7 @@ async def get_store_agent_details(
|
||||
raise DatabaseError("Failed to fetch agent details") from e
|
||||
|
||||
|
||||
@overload
|
||||
async def get_available_graph(
|
||||
store_listing_version_id: str, hide_nodes: Literal[False]
|
||||
) -> GraphModel: ...
|
||||
|
||||
|
||||
@overload
|
||||
async def get_available_graph(
|
||||
store_listing_version_id: str, hide_nodes: Literal[True] = True
|
||||
) -> GraphModelWithoutNodes: ...
|
||||
|
||||
|
||||
async def get_available_graph(
|
||||
store_listing_version_id: str,
|
||||
hide_nodes: bool = True,
|
||||
) -> GraphModelWithoutNodes | GraphModel:
|
||||
async def get_available_graph(store_listing_version_id: str) -> GraphMeta:
|
||||
try:
|
||||
# Get avaialble, non-deleted store listing version
|
||||
store_listing_version = (
|
||||
@@ -359,7 +344,7 @@ async def get_available_graph(
|
||||
"isAvailable": True,
|
||||
"isDeleted": False,
|
||||
},
|
||||
include={"AgentGraph": {"include": AGENT_GRAPH_INCLUDE}},
|
||||
include={"AgentGraph": {"include": {"Nodes": True}}},
|
||||
)
|
||||
)
|
||||
|
||||
@@ -369,9 +354,7 @@ async def get_available_graph(
|
||||
detail=f"Store listing version {store_listing_version_id} not found",
|
||||
)
|
||||
|
||||
return (GraphModelWithoutNodes if hide_nodes else GraphModel).from_db(
|
||||
store_listing_version.AgentGraph
|
||||
)
|
||||
return GraphModel.from_db(store_listing_version.AgentGraph).meta()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting agent: {e}")
|
||||
|
||||
@@ -16,7 +16,7 @@ from backend.blocks.ideogram import (
|
||||
StyleType,
|
||||
UpscaleOption,
|
||||
)
|
||||
from backend.data.graph import GraphBaseMeta
|
||||
from backend.data.graph import BaseGraph
|
||||
from backend.data.model import CredentialsMetaInput, ProviderName
|
||||
from backend.integrations.credentials_store import ideogram_credentials
|
||||
from backend.util.request import Requests
|
||||
@@ -34,14 +34,14 @@ class ImageStyle(str, Enum):
|
||||
DIGITAL_ART = "digital art"
|
||||
|
||||
|
||||
async def generate_agent_image(agent: GraphBaseMeta | AgentGraph) -> io.BytesIO:
|
||||
async def generate_agent_image(agent: BaseGraph | AgentGraph) -> io.BytesIO:
|
||||
if settings.config.use_agent_image_generation_v2:
|
||||
return await generate_agent_image_v2(graph=agent)
|
||||
else:
|
||||
return await generate_agent_image_v1(agent=agent)
|
||||
|
||||
|
||||
async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.BytesIO:
|
||||
async def generate_agent_image_v2(graph: BaseGraph | AgentGraph) -> io.BytesIO:
|
||||
"""
|
||||
Generate an image for an agent using Ideogram model.
|
||||
Returns:
|
||||
@@ -54,17 +54,14 @@ async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.Bytes
|
||||
description = f"{name} ({graph.description})" if graph.description else name
|
||||
|
||||
prompt = (
|
||||
"Create a visually striking retro-futuristic vector pop art illustration "
|
||||
f'prominently featuring "{name}" in bold typography. The image clearly and '
|
||||
f"literally depicts a {description}, along with recognizable objects directly "
|
||||
f"associated with the primary function of a {name}. "
|
||||
f"Ensure the imagery is concrete, intuitive, and immediately understandable, "
|
||||
f"clearly conveying the purpose of a {name}. "
|
||||
"Maintain vibrant, limited-palette colors, sharp vector lines, "
|
||||
"geometric shapes, flat illustration techniques, and solid colors "
|
||||
"without gradients or shading. Preserve a retro-futuristic aesthetic "
|
||||
"influenced by mid-century futurism and 1960s psychedelia, "
|
||||
"prioritizing clear visual storytelling and thematic clarity above all else."
|
||||
f"Create a visually striking retro-futuristic vector pop art illustration prominently featuring "
|
||||
f'"{name}" in bold typography. The image clearly and literally depicts a {description}, '
|
||||
f"along with recognizable objects directly associated with the primary function of a {name}. "
|
||||
f"Ensure the imagery is concrete, intuitive, and immediately understandable, clearly conveying the "
|
||||
f"purpose of a {name}. Maintain vibrant, limited-palette colors, sharp vector lines, geometric "
|
||||
f"shapes, flat illustration techniques, and solid colors without gradients or shading. Preserve a "
|
||||
f"retro-futuristic aesthetic influenced by mid-century futurism and 1960s psychedelia, "
|
||||
f"prioritizing clear visual storytelling and thematic clarity above all else."
|
||||
)
|
||||
|
||||
custom_colors = [
|
||||
@@ -102,12 +99,12 @@ async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.Bytes
|
||||
return io.BytesIO(response.content)
|
||||
|
||||
|
||||
async def generate_agent_image_v1(agent: GraphBaseMeta | AgentGraph) -> io.BytesIO:
|
||||
async def generate_agent_image_v1(agent: BaseGraph | AgentGraph) -> io.BytesIO:
|
||||
"""
|
||||
Generate an image for an agent using Flux model via Replicate API.
|
||||
|
||||
Args:
|
||||
agent (_GraphBaseMeta | AgentGraph): The agent to generate an image for
|
||||
agent (Graph): The agent to generate an image for
|
||||
|
||||
Returns:
|
||||
io.BytesIO: The generated image as bytes
|
||||
@@ -117,13 +114,7 @@ async def generate_agent_image_v1(agent: GraphBaseMeta | AgentGraph) -> io.Bytes
|
||||
raise ValueError("Missing Replicate API key in settings")
|
||||
|
||||
# Construct prompt from agent details
|
||||
prompt = (
|
||||
"Create a visually engaging app store thumbnail for the AI agent "
|
||||
"that highlights what it does in a clear and captivating way:\n"
|
||||
f"- **Name**: {agent.name}\n"
|
||||
f"- **Description**: {agent.description}\n"
|
||||
f"Focus on showcasing its core functionality with an appealing design."
|
||||
)
|
||||
prompt = f"Create a visually engaging app store thumbnail for the AI agent that highlights what it does in a clear and captivating way:\n- **Name**: {agent.name}\n- **Description**: {agent.description}\nFocus on showcasing its core functionality with an appealing design."
|
||||
|
||||
# Set up Replicate client
|
||||
client = ReplicateClient(api_token=settings.secrets.replicate_api_key)
|
||||
|
||||
@@ -278,7 +278,7 @@ async def get_agent(
|
||||
)
|
||||
async def get_graph_meta_by_store_listing_version_id(
|
||||
store_listing_version_id: str,
|
||||
) -> backend.data.graph.GraphModelWithoutNodes:
|
||||
) -> backend.data.graph.GraphMeta:
|
||||
"""
|
||||
Get Agent Graph from Store Listing Version ID.
|
||||
"""
|
||||
|
||||
28
autogpt_platform/backend/backend/blocks/elevenlabs/_auth.py
Normal file
28
autogpt_platform/backend/backend/blocks/elevenlabs/_auth.py
Normal file
@@ -0,0 +1,28 @@
|
||||
"""ElevenLabs integration blocks - test credentials and shared utilities."""
|
||||
|
||||
from typing import Literal
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.model import APIKeyCredentials, CredentialsMetaInput
|
||||
from backend.integrations.providers import ProviderName
|
||||
|
||||
TEST_CREDENTIALS = APIKeyCredentials(
|
||||
id="01234567-89ab-cdef-0123-456789abcdef",
|
||||
provider="elevenlabs",
|
||||
api_key=SecretStr("mock-elevenlabs-api-key"),
|
||||
title="Mock ElevenLabs API key",
|
||||
expires_at=None,
|
||||
)
|
||||
|
||||
TEST_CREDENTIALS_INPUT = {
|
||||
"provider": TEST_CREDENTIALS.provider,
|
||||
"id": TEST_CREDENTIALS.id,
|
||||
"type": TEST_CREDENTIALS.type,
|
||||
"title": TEST_CREDENTIALS.title,
|
||||
}
|
||||
|
||||
ElevenLabsCredentials = APIKeyCredentials
|
||||
ElevenLabsCredentialsInput = CredentialsMetaInput[
|
||||
Literal[ProviderName.ELEVENLABS], Literal["api_key"]
|
||||
]
|
||||
@@ -115,6 +115,7 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
|
||||
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
|
||||
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
|
||||
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
|
||||
CLAUDE_4_6_OPUS = "claude-opus-4-6"
|
||||
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
|
||||
# AI/ML API models
|
||||
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
|
||||
@@ -270,6 +271,9 @@ MODEL_METADATA = {
|
||||
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
|
||||
), # claude-4-sonnet-20250514
|
||||
LlmModel.CLAUDE_4_6_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 128000, "Claude Opus 4.6", "Anthropic", "Anthropic", 3
|
||||
), # claude-opus-4-6
|
||||
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
|
||||
), # claude-opus-4-5-20251101
|
||||
|
||||
@@ -1,246 +0,0 @@
|
||||
import os
|
||||
import tempfile
|
||||
from typing import Optional
|
||||
|
||||
from moviepy.audio.io.AudioFileClip import AudioFileClip
|
||||
from moviepy.video.fx.Loop import Loop
|
||||
from moviepy.video.io.VideoFileClip import VideoFileClip
|
||||
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
BlockOutput,
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
|
||||
|
||||
class MediaDurationBlock(Block):
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
media_in: MediaFileType = SchemaField(
|
||||
description="Media input (URL, data URI, or local path)."
|
||||
)
|
||||
is_video: bool = SchemaField(
|
||||
description="Whether the media is a video (True) or audio (False).",
|
||||
default=True,
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
duration: float = SchemaField(
|
||||
description="Duration of the media file (in seconds)."
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="d8b91fd4-da26-42d4-8ecb-8b196c6d84b6",
|
||||
description="Block to get the duration of a media file.",
|
||||
categories={BlockCategory.MULTIMEDIA},
|
||||
input_schema=MediaDurationBlock.Input,
|
||||
output_schema=MediaDurationBlock.Output,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# 1) Store the input media locally
|
||||
local_media_path = await store_media_file(
|
||||
file=input_data.media_in,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
assert execution_context.graph_exec_id is not None
|
||||
media_abspath = get_exec_file_path(
|
||||
execution_context.graph_exec_id, local_media_path
|
||||
)
|
||||
|
||||
# 2) Load the clip
|
||||
if input_data.is_video:
|
||||
clip = VideoFileClip(media_abspath)
|
||||
else:
|
||||
clip = AudioFileClip(media_abspath)
|
||||
|
||||
yield "duration", clip.duration
|
||||
|
||||
|
||||
class LoopVideoBlock(Block):
|
||||
"""
|
||||
Block for looping (repeating) a video clip until a given duration or number of loops.
|
||||
"""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
video_in: MediaFileType = SchemaField(
|
||||
description="The input video (can be a URL, data URI, or local path)."
|
||||
)
|
||||
# Provide EITHER a `duration` or `n_loops` or both. We'll demonstrate `duration`.
|
||||
duration: Optional[float] = SchemaField(
|
||||
description="Target duration (in seconds) to loop the video to. If omitted, defaults to no looping.",
|
||||
default=None,
|
||||
ge=0.0,
|
||||
)
|
||||
n_loops: Optional[int] = SchemaField(
|
||||
description="Number of times to repeat the video. If omitted, defaults to 1 (no repeat).",
|
||||
default=None,
|
||||
ge=1,
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_out: str = SchemaField(
|
||||
description="Looped video returned either as a relative path or a data URI."
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="8bf9eef6-5451-4213-b265-25306446e94b",
|
||||
description="Block to loop a video to a given duration or number of repeats.",
|
||||
categories={BlockCategory.MULTIMEDIA},
|
||||
input_schema=LoopVideoBlock.Input,
|
||||
output_schema=LoopVideoBlock.Output,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
assert execution_context.graph_exec_id is not None
|
||||
assert execution_context.node_exec_id is not None
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
node_exec_id = execution_context.node_exec_id
|
||||
|
||||
# 1) Store the input video locally
|
||||
local_video_path = await store_media_file(
|
||||
file=input_data.video_in,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
|
||||
|
||||
# 2) Load the clip
|
||||
clip = VideoFileClip(input_abspath)
|
||||
|
||||
# 3) Apply the loop effect
|
||||
looped_clip = clip
|
||||
if input_data.duration:
|
||||
# Loop until we reach the specified duration
|
||||
looped_clip = looped_clip.with_effects([Loop(duration=input_data.duration)])
|
||||
elif input_data.n_loops:
|
||||
looped_clip = looped_clip.with_effects([Loop(n=input_data.n_loops)])
|
||||
else:
|
||||
raise ValueError("Either 'duration' or 'n_loops' must be provided.")
|
||||
|
||||
assert isinstance(looped_clip, VideoFileClip)
|
||||
|
||||
# 4) Save the looped output
|
||||
output_filename = MediaFileType(
|
||||
f"{node_exec_id}_looped_{os.path.basename(local_video_path)}"
|
||||
)
|
||||
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
|
||||
|
||||
looped_clip = looped_clip.with_audio(clip.audio)
|
||||
looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
|
||||
|
||||
# Return output - for_block_output returns workspace:// if available, else data URI
|
||||
video_out = await store_media_file(
|
||||
file=output_filename,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
|
||||
yield "video_out", video_out
|
||||
|
||||
|
||||
class AddAudioToVideoBlock(Block):
|
||||
"""
|
||||
Block that adds (attaches) an audio track to an existing video.
|
||||
Optionally scale the volume of the new track.
|
||||
"""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
video_in: MediaFileType = SchemaField(
|
||||
description="Video input (URL, data URI, or local path)."
|
||||
)
|
||||
audio_in: MediaFileType = SchemaField(
|
||||
description="Audio input (URL, data URI, or local path)."
|
||||
)
|
||||
volume: float = SchemaField(
|
||||
description="Volume scale for the newly attached audio track (1.0 = original).",
|
||||
default=1.0,
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_out: MediaFileType = SchemaField(
|
||||
description="Final video (with attached audio), as a path or data URI."
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="3503748d-62b6-4425-91d6-725b064af509",
|
||||
description="Block to attach an audio file to a video file using moviepy.",
|
||||
categories={BlockCategory.MULTIMEDIA},
|
||||
input_schema=AddAudioToVideoBlock.Input,
|
||||
output_schema=AddAudioToVideoBlock.Output,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
assert execution_context.graph_exec_id is not None
|
||||
assert execution_context.node_exec_id is not None
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
node_exec_id = execution_context.node_exec_id
|
||||
|
||||
# 1) Store the inputs locally
|
||||
local_video_path = await store_media_file(
|
||||
file=input_data.video_in,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
local_audio_path = await store_media_file(
|
||||
file=input_data.audio_in,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id)
|
||||
video_abspath = os.path.join(abs_temp_dir, local_video_path)
|
||||
audio_abspath = os.path.join(abs_temp_dir, local_audio_path)
|
||||
|
||||
# 2) Load video + audio with moviepy
|
||||
video_clip = VideoFileClip(video_abspath)
|
||||
audio_clip = AudioFileClip(audio_abspath)
|
||||
# Optionally scale volume
|
||||
if input_data.volume != 1.0:
|
||||
audio_clip = audio_clip.with_volume_scaled(input_data.volume)
|
||||
|
||||
# 3) Attach the new audio track
|
||||
final_clip = video_clip.with_audio(audio_clip)
|
||||
|
||||
# 4) Write to output file
|
||||
output_filename = MediaFileType(
|
||||
f"{node_exec_id}_audio_attached_{os.path.basename(local_video_path)}"
|
||||
)
|
||||
output_abspath = os.path.join(abs_temp_dir, output_filename)
|
||||
final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
|
||||
|
||||
# 5) Return output - for_block_output returns workspace:// if available, else data URI
|
||||
video_out = await store_media_file(
|
||||
file=output_filename,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
|
||||
yield "video_out", video_out
|
||||
37
autogpt_platform/backend/backend/blocks/video/__init__.py
Normal file
37
autogpt_platform/backend/backend/blocks/video/__init__.py
Normal file
@@ -0,0 +1,37 @@
|
||||
"""Video editing blocks for AutoGPT Platform.
|
||||
|
||||
This module provides blocks for:
|
||||
- Downloading videos from URLs (YouTube, Vimeo, news sites, direct links)
|
||||
- Clipping/trimming video segments
|
||||
- Concatenating multiple videos
|
||||
- Adding text overlays
|
||||
- Adding AI-generated narration
|
||||
- Getting media duration
|
||||
- Looping videos
|
||||
- Adding audio to videos
|
||||
|
||||
Dependencies:
|
||||
- yt-dlp: For video downloading
|
||||
- moviepy: For video editing operations
|
||||
- elevenlabs: For AI narration (optional)
|
||||
"""
|
||||
|
||||
from backend.blocks.video.add_audio import AddAudioToVideoBlock
|
||||
from backend.blocks.video.clip import VideoClipBlock
|
||||
from backend.blocks.video.concat import VideoConcatBlock
|
||||
from backend.blocks.video.download import VideoDownloadBlock
|
||||
from backend.blocks.video.duration import MediaDurationBlock
|
||||
from backend.blocks.video.loop import LoopVideoBlock
|
||||
from backend.blocks.video.narration import VideoNarrationBlock
|
||||
from backend.blocks.video.text_overlay import VideoTextOverlayBlock
|
||||
|
||||
__all__ = [
|
||||
"AddAudioToVideoBlock",
|
||||
"LoopVideoBlock",
|
||||
"MediaDurationBlock",
|
||||
"VideoClipBlock",
|
||||
"VideoConcatBlock",
|
||||
"VideoDownloadBlock",
|
||||
"VideoNarrationBlock",
|
||||
"VideoTextOverlayBlock",
|
||||
]
|
||||
131
autogpt_platform/backend/backend/blocks/video/_utils.py
Normal file
131
autogpt_platform/backend/backend/blocks/video/_utils.py
Normal file
@@ -0,0 +1,131 @@
|
||||
"""Shared utilities for video blocks."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Known operation tags added by video blocks
|
||||
_VIDEO_OPS = (
|
||||
r"(?:clip|overlay|narrated|looped|concat|audio_attached|with_audio|narration)"
|
||||
)
|
||||
|
||||
# Matches: {node_exec_id}_{operation}_ where node_exec_id contains a UUID
|
||||
_BLOCK_PREFIX_RE = re.compile(
|
||||
r"^[a-zA-Z0-9_-]*"
|
||||
r"[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}"
|
||||
r"[a-zA-Z0-9_-]*"
|
||||
r"_" + _VIDEO_OPS + r"_"
|
||||
)
|
||||
|
||||
# Matches: a lone {node_exec_id}_ prefix (no operation keyword, e.g. download output)
|
||||
_UUID_PREFIX_RE = re.compile(
|
||||
r"^[a-zA-Z0-9_-]*"
|
||||
r"[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}"
|
||||
r"[a-zA-Z0-9_-]*_"
|
||||
)
|
||||
|
||||
|
||||
def extract_source_name(input_path: str, max_length: int = 50) -> str:
|
||||
"""Extract the original source filename by stripping block-generated prefixes.
|
||||
|
||||
Iteratively removes {node_exec_id}_{operation}_ prefixes that accumulate
|
||||
when chaining video blocks, recovering the original human-readable name.
|
||||
|
||||
Safe for plain filenames (no UUID -> no stripping).
|
||||
Falls back to "video" if everything is stripped.
|
||||
"""
|
||||
stem = Path(input_path).stem
|
||||
|
||||
# Pass 1: strip {node_exec_id}_{operation}_ prefixes iteratively
|
||||
while _BLOCK_PREFIX_RE.match(stem):
|
||||
stem = _BLOCK_PREFIX_RE.sub("", stem, count=1)
|
||||
|
||||
# Pass 2: strip a lone {node_exec_id}_ prefix (e.g. from download block)
|
||||
if _UUID_PREFIX_RE.match(stem):
|
||||
stem = _UUID_PREFIX_RE.sub("", stem, count=1)
|
||||
|
||||
if not stem:
|
||||
return "video"
|
||||
|
||||
return stem[:max_length]
|
||||
|
||||
|
||||
def get_video_codecs(output_path: str) -> tuple[str, str]:
|
||||
"""Get appropriate video and audio codecs based on output file extension.
|
||||
|
||||
Args:
|
||||
output_path: Path to the output file (used to determine extension)
|
||||
|
||||
Returns:
|
||||
Tuple of (video_codec, audio_codec)
|
||||
|
||||
Codec mappings:
|
||||
- .mp4: H.264 + AAC (universal compatibility)
|
||||
- .webm: VP8 + Vorbis (web streaming)
|
||||
- .mkv: H.264 + AAC (container supports many codecs)
|
||||
- .mov: H.264 + AAC (Apple QuickTime, widely compatible)
|
||||
- .m4v: H.264 + AAC (Apple iTunes/devices)
|
||||
- .avi: MPEG-4 + MP3 (legacy Windows)
|
||||
"""
|
||||
ext = os.path.splitext(output_path)[1].lower()
|
||||
|
||||
codec_map: dict[str, tuple[str, str]] = {
|
||||
".mp4": ("libx264", "aac"),
|
||||
".webm": ("libvpx", "libvorbis"),
|
||||
".mkv": ("libx264", "aac"),
|
||||
".mov": ("libx264", "aac"),
|
||||
".m4v": ("libx264", "aac"),
|
||||
".avi": ("mpeg4", "libmp3lame"),
|
||||
}
|
||||
|
||||
return codec_map.get(ext, ("libx264", "aac"))
|
||||
|
||||
|
||||
def strip_chapters_inplace(video_path: str) -> None:
|
||||
"""Strip chapter metadata from a media file in-place using ffmpeg.
|
||||
|
||||
MoviePy 2.x crashes with IndexError when parsing files with embedded
|
||||
chapter metadata (https://github.com/Zulko/moviepy/issues/2419).
|
||||
This strips chapters without re-encoding.
|
||||
|
||||
Args:
|
||||
video_path: Absolute path to the media file to strip chapters from.
|
||||
"""
|
||||
base, ext = os.path.splitext(video_path)
|
||||
tmp_path = base + ".tmp" + ext
|
||||
try:
|
||||
result = subprocess.run(
|
||||
[
|
||||
"ffmpeg",
|
||||
"-y",
|
||||
"-i",
|
||||
video_path,
|
||||
"-map_chapters",
|
||||
"-1",
|
||||
"-codec",
|
||||
"copy",
|
||||
tmp_path,
|
||||
],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=300,
|
||||
)
|
||||
if result.returncode != 0:
|
||||
logger.warning(
|
||||
"ffmpeg chapter strip failed (rc=%d): %s",
|
||||
result.returncode,
|
||||
result.stderr,
|
||||
)
|
||||
return
|
||||
os.replace(tmp_path, video_path)
|
||||
except FileNotFoundError:
|
||||
logger.warning("ffmpeg not found; skipping chapter strip")
|
||||
finally:
|
||||
if os.path.exists(tmp_path):
|
||||
os.unlink(tmp_path)
|
||||
113
autogpt_platform/backend/backend/blocks/video/add_audio.py
Normal file
113
autogpt_platform/backend/backend/blocks/video/add_audio.py
Normal file
@@ -0,0 +1,113 @@
|
||||
"""AddAudioToVideoBlock - Attach an audio track to a video file."""
|
||||
|
||||
from moviepy.audio.io.AudioFileClip import AudioFileClip
|
||||
from moviepy.video.io.VideoFileClip import VideoFileClip
|
||||
|
||||
from backend.blocks.video._utils import extract_source_name, strip_chapters_inplace
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
BlockOutput,
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
|
||||
|
||||
class AddAudioToVideoBlock(Block):
|
||||
"""Add (attach) an audio track to an existing video."""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
video_in: MediaFileType = SchemaField(
|
||||
description="Video input (URL, data URI, or local path)."
|
||||
)
|
||||
audio_in: MediaFileType = SchemaField(
|
||||
description="Audio input (URL, data URI, or local path)."
|
||||
)
|
||||
volume: float = SchemaField(
|
||||
description="Volume scale for the newly attached audio track (1.0 = original).",
|
||||
default=1.0,
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_out: MediaFileType = SchemaField(
|
||||
description="Final video (with attached audio), as a path or data URI."
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="3503748d-62b6-4425-91d6-725b064af509",
|
||||
description="Block to attach an audio file to a video file using moviepy.",
|
||||
categories={BlockCategory.MULTIMEDIA},
|
||||
input_schema=AddAudioToVideoBlock.Input,
|
||||
output_schema=AddAudioToVideoBlock.Output,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
assert execution_context.graph_exec_id is not None
|
||||
assert execution_context.node_exec_id is not None
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
node_exec_id = execution_context.node_exec_id
|
||||
|
||||
# 1) Store the inputs locally
|
||||
local_video_path = await store_media_file(
|
||||
file=input_data.video_in,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
local_audio_path = await store_media_file(
|
||||
file=input_data.audio_in,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
video_abspath = get_exec_file_path(graph_exec_id, local_video_path)
|
||||
audio_abspath = get_exec_file_path(graph_exec_id, local_audio_path)
|
||||
|
||||
# 2) Load video + audio with moviepy
|
||||
strip_chapters_inplace(video_abspath)
|
||||
strip_chapters_inplace(audio_abspath)
|
||||
video_clip = None
|
||||
audio_clip = None
|
||||
final_clip = None
|
||||
try:
|
||||
video_clip = VideoFileClip(video_abspath)
|
||||
audio_clip = AudioFileClip(audio_abspath)
|
||||
# Optionally scale volume
|
||||
if input_data.volume != 1.0:
|
||||
audio_clip = audio_clip.with_volume_scaled(input_data.volume)
|
||||
|
||||
# 3) Attach the new audio track
|
||||
final_clip = video_clip.with_audio(audio_clip)
|
||||
|
||||
# 4) Write to output file
|
||||
source = extract_source_name(local_video_path)
|
||||
output_filename = MediaFileType(f"{node_exec_id}_with_audio_{source}.mp4")
|
||||
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
|
||||
final_clip.write_videofile(
|
||||
output_abspath, codec="libx264", audio_codec="aac"
|
||||
)
|
||||
finally:
|
||||
if final_clip:
|
||||
final_clip.close()
|
||||
if audio_clip:
|
||||
audio_clip.close()
|
||||
if video_clip:
|
||||
video_clip.close()
|
||||
|
||||
# 5) Return output - for_block_output returns workspace:// if available, else data URI
|
||||
video_out = await store_media_file(
|
||||
file=output_filename,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
|
||||
yield "video_out", video_out
|
||||
167
autogpt_platform/backend/backend/blocks/video/clip.py
Normal file
167
autogpt_platform/backend/backend/blocks/video/clip.py
Normal file
@@ -0,0 +1,167 @@
|
||||
"""VideoClipBlock - Extract a segment from a video file."""
|
||||
|
||||
from typing import Literal
|
||||
|
||||
from moviepy.video.io.VideoFileClip import VideoFileClip
|
||||
|
||||
from backend.blocks.video._utils import (
|
||||
extract_source_name,
|
||||
get_video_codecs,
|
||||
strip_chapters_inplace,
|
||||
)
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
BlockOutput,
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.exceptions import BlockExecutionError
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
|
||||
|
||||
class VideoClipBlock(Block):
|
||||
"""Extract a time segment from a video."""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
video_in: MediaFileType = SchemaField(
|
||||
description="Input video (URL, data URI, or local path)"
|
||||
)
|
||||
start_time: float = SchemaField(description="Start time in seconds", ge=0.0)
|
||||
end_time: float = SchemaField(description="End time in seconds", ge=0.0)
|
||||
output_format: Literal["mp4", "webm", "mkv", "mov"] = SchemaField(
|
||||
description="Output format", default="mp4", advanced=True
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_out: MediaFileType = SchemaField(
|
||||
description="Clipped video file (path or data URI)"
|
||||
)
|
||||
duration: float = SchemaField(description="Clip duration in seconds")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="8f539119-e580-4d86-ad41-86fbcb22abb1",
|
||||
description="Extract a time segment from a video",
|
||||
categories={BlockCategory.MULTIMEDIA},
|
||||
input_schema=self.Input,
|
||||
output_schema=self.Output,
|
||||
test_input={
|
||||
"video_in": "/tmp/test.mp4",
|
||||
"start_time": 0.0,
|
||||
"end_time": 10.0,
|
||||
},
|
||||
test_output=[("video_out", str), ("duration", float)],
|
||||
test_mock={
|
||||
"_clip_video": lambda *args: 10.0,
|
||||
"_store_input_video": lambda *args, **kwargs: "test.mp4",
|
||||
"_store_output_video": lambda *args, **kwargs: "clip_test.mp4",
|
||||
},
|
||||
)
|
||||
|
||||
async def _store_input_video(
|
||||
self, execution_context: ExecutionContext, file: MediaFileType
|
||||
) -> MediaFileType:
|
||||
"""Store input video. Extracted for testability."""
|
||||
return await store_media_file(
|
||||
file=file,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
async def _store_output_video(
|
||||
self, execution_context: ExecutionContext, file: MediaFileType
|
||||
) -> MediaFileType:
|
||||
"""Store output video. Extracted for testability."""
|
||||
return await store_media_file(
|
||||
file=file,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
|
||||
def _clip_video(
|
||||
self,
|
||||
video_abspath: str,
|
||||
output_abspath: str,
|
||||
start_time: float,
|
||||
end_time: float,
|
||||
) -> float:
|
||||
"""Extract a clip from a video. Extracted for testability."""
|
||||
clip = None
|
||||
subclip = None
|
||||
try:
|
||||
strip_chapters_inplace(video_abspath)
|
||||
clip = VideoFileClip(video_abspath)
|
||||
subclip = clip.subclipped(start_time, end_time)
|
||||
video_codec, audio_codec = get_video_codecs(output_abspath)
|
||||
subclip.write_videofile(
|
||||
output_abspath, codec=video_codec, audio_codec=audio_codec
|
||||
)
|
||||
return subclip.duration
|
||||
finally:
|
||||
if subclip:
|
||||
subclip.close()
|
||||
if clip:
|
||||
clip.close()
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
execution_context: ExecutionContext,
|
||||
node_exec_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Validate time range
|
||||
if input_data.end_time <= input_data.start_time:
|
||||
raise BlockExecutionError(
|
||||
message=f"end_time ({input_data.end_time}) must be greater than start_time ({input_data.start_time})",
|
||||
block_name=self.name,
|
||||
block_id=str(self.id),
|
||||
)
|
||||
|
||||
try:
|
||||
assert execution_context.graph_exec_id is not None
|
||||
|
||||
# Store the input video locally
|
||||
local_video_path = await self._store_input_video(
|
||||
execution_context, input_data.video_in
|
||||
)
|
||||
video_abspath = get_exec_file_path(
|
||||
execution_context.graph_exec_id, local_video_path
|
||||
)
|
||||
|
||||
# Build output path
|
||||
source = extract_source_name(local_video_path)
|
||||
output_filename = MediaFileType(
|
||||
f"{node_exec_id}_clip_{source}.{input_data.output_format}"
|
||||
)
|
||||
output_abspath = get_exec_file_path(
|
||||
execution_context.graph_exec_id, output_filename
|
||||
)
|
||||
|
||||
duration = self._clip_video(
|
||||
video_abspath,
|
||||
output_abspath,
|
||||
input_data.start_time,
|
||||
input_data.end_time,
|
||||
)
|
||||
|
||||
# Return as workspace path or data URI based on context
|
||||
video_out = await self._store_output_video(
|
||||
execution_context, output_filename
|
||||
)
|
||||
|
||||
yield "video_out", video_out
|
||||
yield "duration", duration
|
||||
|
||||
except BlockExecutionError:
|
||||
raise
|
||||
except Exception as e:
|
||||
raise BlockExecutionError(
|
||||
message=f"Failed to clip video: {e}",
|
||||
block_name=self.name,
|
||||
block_id=str(self.id),
|
||||
) from e
|
||||
227
autogpt_platform/backend/backend/blocks/video/concat.py
Normal file
227
autogpt_platform/backend/backend/blocks/video/concat.py
Normal file
@@ -0,0 +1,227 @@
|
||||
"""VideoConcatBlock - Concatenate multiple video clips into one."""
|
||||
|
||||
from typing import Literal
|
||||
|
||||
from moviepy import concatenate_videoclips
|
||||
from moviepy.video.fx import CrossFadeIn, CrossFadeOut, FadeIn, FadeOut
|
||||
from moviepy.video.io.VideoFileClip import VideoFileClip
|
||||
|
||||
from backend.blocks.video._utils import (
|
||||
extract_source_name,
|
||||
get_video_codecs,
|
||||
strip_chapters_inplace,
|
||||
)
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
BlockOutput,
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.exceptions import BlockExecutionError
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
|
||||
|
||||
class VideoConcatBlock(Block):
|
||||
"""Merge multiple video clips into one continuous video."""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
videos: list[MediaFileType] = SchemaField(
|
||||
description="List of video files to concatenate (in order)"
|
||||
)
|
||||
transition: Literal["none", "crossfade", "fade_black"] = SchemaField(
|
||||
description="Transition between clips", default="none"
|
||||
)
|
||||
transition_duration: int = SchemaField(
|
||||
description="Transition duration in seconds",
|
||||
default=1,
|
||||
ge=0,
|
||||
advanced=True,
|
||||
)
|
||||
output_format: Literal["mp4", "webm", "mkv", "mov"] = SchemaField(
|
||||
description="Output format", default="mp4", advanced=True
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_out: MediaFileType = SchemaField(
|
||||
description="Concatenated video file (path or data URI)"
|
||||
)
|
||||
total_duration: float = SchemaField(description="Total duration in seconds")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="9b0f531a-1118-487f-aeec-3fa63ea8900a",
|
||||
description="Merge multiple video clips into one continuous video",
|
||||
categories={BlockCategory.MULTIMEDIA},
|
||||
input_schema=self.Input,
|
||||
output_schema=self.Output,
|
||||
test_input={
|
||||
"videos": ["/tmp/a.mp4", "/tmp/b.mp4"],
|
||||
},
|
||||
test_output=[
|
||||
("video_out", str),
|
||||
("total_duration", float),
|
||||
],
|
||||
test_mock={
|
||||
"_concat_videos": lambda *args: 20.0,
|
||||
"_store_input_video": lambda *args, **kwargs: "test.mp4",
|
||||
"_store_output_video": lambda *args, **kwargs: "concat_test.mp4",
|
||||
},
|
||||
)
|
||||
|
||||
async def _store_input_video(
|
||||
self, execution_context: ExecutionContext, file: MediaFileType
|
||||
) -> MediaFileType:
|
||||
"""Store input video. Extracted for testability."""
|
||||
return await store_media_file(
|
||||
file=file,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
async def _store_output_video(
|
||||
self, execution_context: ExecutionContext, file: MediaFileType
|
||||
) -> MediaFileType:
|
||||
"""Store output video. Extracted for testability."""
|
||||
return await store_media_file(
|
||||
file=file,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
|
||||
def _concat_videos(
|
||||
self,
|
||||
video_abspaths: list[str],
|
||||
output_abspath: str,
|
||||
transition: str,
|
||||
transition_duration: int,
|
||||
) -> float:
|
||||
"""Concatenate videos. Extracted for testability.
|
||||
|
||||
Returns:
|
||||
Total duration of the concatenated video.
|
||||
"""
|
||||
clips = []
|
||||
faded_clips = []
|
||||
final = None
|
||||
try:
|
||||
# Load clips
|
||||
for v in video_abspaths:
|
||||
strip_chapters_inplace(v)
|
||||
clips.append(VideoFileClip(v))
|
||||
|
||||
# Validate transition_duration against shortest clip
|
||||
if transition in {"crossfade", "fade_black"} and transition_duration > 0:
|
||||
min_duration = min(c.duration for c in clips)
|
||||
if transition_duration >= min_duration:
|
||||
raise BlockExecutionError(
|
||||
message=(
|
||||
f"transition_duration ({transition_duration}s) must be "
|
||||
f"shorter than the shortest clip ({min_duration:.2f}s)"
|
||||
),
|
||||
block_name=self.name,
|
||||
block_id=str(self.id),
|
||||
)
|
||||
|
||||
if transition == "crossfade":
|
||||
for i, clip in enumerate(clips):
|
||||
effects = []
|
||||
if i > 0:
|
||||
effects.append(CrossFadeIn(transition_duration))
|
||||
if i < len(clips) - 1:
|
||||
effects.append(CrossFadeOut(transition_duration))
|
||||
if effects:
|
||||
clip = clip.with_effects(effects)
|
||||
faded_clips.append(clip)
|
||||
final = concatenate_videoclips(
|
||||
faded_clips,
|
||||
method="compose",
|
||||
padding=-transition_duration,
|
||||
)
|
||||
elif transition == "fade_black":
|
||||
for clip in clips:
|
||||
faded = clip.with_effects(
|
||||
[FadeIn(transition_duration), FadeOut(transition_duration)]
|
||||
)
|
||||
faded_clips.append(faded)
|
||||
final = concatenate_videoclips(faded_clips)
|
||||
else:
|
||||
final = concatenate_videoclips(clips)
|
||||
|
||||
video_codec, audio_codec = get_video_codecs(output_abspath)
|
||||
final.write_videofile(
|
||||
output_abspath, codec=video_codec, audio_codec=audio_codec
|
||||
)
|
||||
|
||||
return final.duration
|
||||
finally:
|
||||
if final:
|
||||
final.close()
|
||||
for clip in faded_clips:
|
||||
clip.close()
|
||||
for clip in clips:
|
||||
clip.close()
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
execution_context: ExecutionContext,
|
||||
node_exec_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Validate minimum clips
|
||||
if len(input_data.videos) < 2:
|
||||
raise BlockExecutionError(
|
||||
message="At least 2 videos are required for concatenation",
|
||||
block_name=self.name,
|
||||
block_id=str(self.id),
|
||||
)
|
||||
|
||||
try:
|
||||
assert execution_context.graph_exec_id is not None
|
||||
|
||||
# Store all input videos locally
|
||||
video_abspaths = []
|
||||
for video in input_data.videos:
|
||||
local_path = await self._store_input_video(execution_context, video)
|
||||
video_abspaths.append(
|
||||
get_exec_file_path(execution_context.graph_exec_id, local_path)
|
||||
)
|
||||
|
||||
# Build output path
|
||||
source = (
|
||||
extract_source_name(video_abspaths[0]) if video_abspaths else "video"
|
||||
)
|
||||
output_filename = MediaFileType(
|
||||
f"{node_exec_id}_concat_{source}.{input_data.output_format}"
|
||||
)
|
||||
output_abspath = get_exec_file_path(
|
||||
execution_context.graph_exec_id, output_filename
|
||||
)
|
||||
|
||||
total_duration = self._concat_videos(
|
||||
video_abspaths,
|
||||
output_abspath,
|
||||
input_data.transition,
|
||||
input_data.transition_duration,
|
||||
)
|
||||
|
||||
# Return as workspace path or data URI based on context
|
||||
video_out = await self._store_output_video(
|
||||
execution_context, output_filename
|
||||
)
|
||||
|
||||
yield "video_out", video_out
|
||||
yield "total_duration", total_duration
|
||||
|
||||
except BlockExecutionError:
|
||||
raise
|
||||
except Exception as e:
|
||||
raise BlockExecutionError(
|
||||
message=f"Failed to concatenate videos: {e}",
|
||||
block_name=self.name,
|
||||
block_id=str(self.id),
|
||||
) from e
|
||||
172
autogpt_platform/backend/backend/blocks/video/download.py
Normal file
172
autogpt_platform/backend/backend/blocks/video/download.py
Normal file
@@ -0,0 +1,172 @@
|
||||
"""VideoDownloadBlock - Download video from URL (YouTube, Vimeo, news sites, direct links)."""
|
||||
|
||||
import os
|
||||
import typing
|
||||
from typing import Literal
|
||||
|
||||
import yt_dlp
|
||||
|
||||
if typing.TYPE_CHECKING:
|
||||
from yt_dlp import _Params
|
||||
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
BlockOutput,
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.exceptions import BlockExecutionError
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
|
||||
|
||||
class VideoDownloadBlock(Block):
|
||||
"""Download video from URL using yt-dlp."""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
url: str = SchemaField(
|
||||
description="URL of the video to download (YouTube, Vimeo, direct link, etc.)",
|
||||
placeholder="https://www.youtube.com/watch?v=...",
|
||||
)
|
||||
quality: Literal["best", "1080p", "720p", "480p", "audio_only"] = SchemaField(
|
||||
description="Video quality preference", default="720p"
|
||||
)
|
||||
output_format: Literal["mp4", "webm", "mkv"] = SchemaField(
|
||||
description="Output video format", default="mp4", advanced=True
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_file: MediaFileType = SchemaField(
|
||||
description="Downloaded video (path or data URI)"
|
||||
)
|
||||
duration: float = SchemaField(description="Video duration in seconds")
|
||||
title: str = SchemaField(description="Video title from source")
|
||||
source_url: str = SchemaField(description="Original source URL")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="c35daabb-cd60-493b-b9ad-51f1fe4b50c4",
|
||||
description="Download video from URL (YouTube, Vimeo, news sites, direct links)",
|
||||
categories={BlockCategory.MULTIMEDIA},
|
||||
input_schema=self.Input,
|
||||
output_schema=self.Output,
|
||||
disabled=True, # Disable until we can sandbox yt-dlp and handle security implications
|
||||
test_input={
|
||||
"url": "https://www.youtube.com/watch?v=dQw4w9WgXcQ",
|
||||
"quality": "480p",
|
||||
},
|
||||
test_output=[
|
||||
("video_file", str),
|
||||
("duration", float),
|
||||
("title", str),
|
||||
("source_url", str),
|
||||
],
|
||||
test_mock={
|
||||
"_download_video": lambda *args: (
|
||||
"video.mp4",
|
||||
212.0,
|
||||
"Test Video",
|
||||
),
|
||||
"_store_output_video": lambda *args, **kwargs: "video.mp4",
|
||||
},
|
||||
)
|
||||
|
||||
async def _store_output_video(
|
||||
self, execution_context: ExecutionContext, file: MediaFileType
|
||||
) -> MediaFileType:
|
||||
"""Store output video. Extracted for testability."""
|
||||
return await store_media_file(
|
||||
file=file,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
|
||||
def _get_format_string(self, quality: str) -> str:
|
||||
formats = {
|
||||
"best": "bestvideo+bestaudio/best",
|
||||
"1080p": "bestvideo[height<=1080]+bestaudio/best[height<=1080]",
|
||||
"720p": "bestvideo[height<=720]+bestaudio/best[height<=720]",
|
||||
"480p": "bestvideo[height<=480]+bestaudio/best[height<=480]",
|
||||
"audio_only": "bestaudio/best",
|
||||
}
|
||||
return formats.get(quality, formats["720p"])
|
||||
|
||||
def _download_video(
|
||||
self,
|
||||
url: str,
|
||||
quality: str,
|
||||
output_format: str,
|
||||
output_dir: str,
|
||||
node_exec_id: str,
|
||||
) -> tuple[str, float, str]:
|
||||
"""Download video. Extracted for testability."""
|
||||
output_template = os.path.join(
|
||||
output_dir, f"{node_exec_id}_%(title).50s.%(ext)s"
|
||||
)
|
||||
|
||||
ydl_opts: "_Params" = {
|
||||
"format": f"{self._get_format_string(quality)}/best",
|
||||
"outtmpl": output_template,
|
||||
"merge_output_format": output_format,
|
||||
"quiet": True,
|
||||
"no_warnings": True,
|
||||
}
|
||||
|
||||
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
||||
info = ydl.extract_info(url, download=True)
|
||||
video_path = ydl.prepare_filename(info)
|
||||
|
||||
# Handle format conversion in filename
|
||||
if not video_path.endswith(f".{output_format}"):
|
||||
video_path = video_path.rsplit(".", 1)[0] + f".{output_format}"
|
||||
|
||||
# Return just the filename, not the full path
|
||||
filename = os.path.basename(video_path)
|
||||
|
||||
return (
|
||||
filename,
|
||||
info.get("duration") or 0.0,
|
||||
info.get("title") or "Unknown",
|
||||
)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
execution_context: ExecutionContext,
|
||||
node_exec_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
assert execution_context.graph_exec_id is not None
|
||||
|
||||
# Get the exec file directory
|
||||
output_dir = get_exec_file_path(execution_context.graph_exec_id, "")
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
filename, duration, title = self._download_video(
|
||||
input_data.url,
|
||||
input_data.quality,
|
||||
input_data.output_format,
|
||||
output_dir,
|
||||
node_exec_id,
|
||||
)
|
||||
|
||||
# Return as workspace path or data URI based on context
|
||||
video_out = await self._store_output_video(
|
||||
execution_context, MediaFileType(filename)
|
||||
)
|
||||
|
||||
yield "video_file", video_out
|
||||
yield "duration", duration
|
||||
yield "title", title
|
||||
yield "source_url", input_data.url
|
||||
|
||||
except Exception as e:
|
||||
raise BlockExecutionError(
|
||||
message=f"Failed to download video: {e}",
|
||||
block_name=self.name,
|
||||
block_id=str(self.id),
|
||||
) from e
|
||||
77
autogpt_platform/backend/backend/blocks/video/duration.py
Normal file
77
autogpt_platform/backend/backend/blocks/video/duration.py
Normal file
@@ -0,0 +1,77 @@
|
||||
"""MediaDurationBlock - Get the duration of a media file."""
|
||||
|
||||
from moviepy.audio.io.AudioFileClip import AudioFileClip
|
||||
from moviepy.video.io.VideoFileClip import VideoFileClip
|
||||
|
||||
from backend.blocks.video._utils import strip_chapters_inplace
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
BlockOutput,
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
|
||||
|
||||
class MediaDurationBlock(Block):
|
||||
"""Get the duration of a media file (video or audio)."""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
media_in: MediaFileType = SchemaField(
|
||||
description="Media input (URL, data URI, or local path)."
|
||||
)
|
||||
is_video: bool = SchemaField(
|
||||
description="Whether the media is a video (True) or audio (False).",
|
||||
default=True,
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
duration: float = SchemaField(
|
||||
description="Duration of the media file (in seconds)."
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="d8b91fd4-da26-42d4-8ecb-8b196c6d84b6",
|
||||
description="Block to get the duration of a media file.",
|
||||
categories={BlockCategory.MULTIMEDIA},
|
||||
input_schema=MediaDurationBlock.Input,
|
||||
output_schema=MediaDurationBlock.Output,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# 1) Store the input media locally
|
||||
local_media_path = await store_media_file(
|
||||
file=input_data.media_in,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
assert execution_context.graph_exec_id is not None
|
||||
media_abspath = get_exec_file_path(
|
||||
execution_context.graph_exec_id, local_media_path
|
||||
)
|
||||
|
||||
# 2) Strip chapters to avoid MoviePy crash, then load the clip
|
||||
strip_chapters_inplace(media_abspath)
|
||||
clip = None
|
||||
try:
|
||||
if input_data.is_video:
|
||||
clip = VideoFileClip(media_abspath)
|
||||
else:
|
||||
clip = AudioFileClip(media_abspath)
|
||||
|
||||
duration = clip.duration
|
||||
finally:
|
||||
if clip:
|
||||
clip.close()
|
||||
|
||||
yield "duration", duration
|
||||
115
autogpt_platform/backend/backend/blocks/video/loop.py
Normal file
115
autogpt_platform/backend/backend/blocks/video/loop.py
Normal file
@@ -0,0 +1,115 @@
|
||||
"""LoopVideoBlock - Loop a video to a given duration or number of repeats."""
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from moviepy.video.fx.Loop import Loop
|
||||
from moviepy.video.io.VideoFileClip import VideoFileClip
|
||||
|
||||
from backend.blocks.video._utils import extract_source_name, strip_chapters_inplace
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
BlockOutput,
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
|
||||
|
||||
class LoopVideoBlock(Block):
|
||||
"""Loop (repeat) a video clip until a given duration or number of loops."""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
video_in: MediaFileType = SchemaField(
|
||||
description="The input video (can be a URL, data URI, or local path)."
|
||||
)
|
||||
duration: Optional[float] = SchemaField(
|
||||
description="Target duration (in seconds) to loop the video to. Either duration or n_loops must be provided.",
|
||||
default=None,
|
||||
ge=0.0,
|
||||
le=3600.0, # Max 1 hour to prevent disk exhaustion
|
||||
)
|
||||
n_loops: Optional[int] = SchemaField(
|
||||
description="Number of times to repeat the video. Either n_loops or duration must be provided.",
|
||||
default=None,
|
||||
ge=1,
|
||||
le=10, # Max 10 loops to prevent disk exhaustion
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_out: MediaFileType = SchemaField(
|
||||
description="Looped video returned either as a relative path or a data URI."
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="8bf9eef6-5451-4213-b265-25306446e94b",
|
||||
description="Block to loop a video to a given duration or number of repeats.",
|
||||
categories={BlockCategory.MULTIMEDIA},
|
||||
input_schema=LoopVideoBlock.Input,
|
||||
output_schema=LoopVideoBlock.Output,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
assert execution_context.graph_exec_id is not None
|
||||
assert execution_context.node_exec_id is not None
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
node_exec_id = execution_context.node_exec_id
|
||||
|
||||
# 1) Store the input video locally
|
||||
local_video_path = await store_media_file(
|
||||
file=input_data.video_in,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
|
||||
|
||||
# 2) Load the clip
|
||||
strip_chapters_inplace(input_abspath)
|
||||
clip = None
|
||||
looped_clip = None
|
||||
try:
|
||||
clip = VideoFileClip(input_abspath)
|
||||
|
||||
# 3) Apply the loop effect
|
||||
if input_data.duration:
|
||||
# Loop until we reach the specified duration
|
||||
looped_clip = clip.with_effects([Loop(duration=input_data.duration)])
|
||||
elif input_data.n_loops:
|
||||
looped_clip = clip.with_effects([Loop(n=input_data.n_loops)])
|
||||
else:
|
||||
raise ValueError("Either 'duration' or 'n_loops' must be provided.")
|
||||
|
||||
assert isinstance(looped_clip, VideoFileClip)
|
||||
|
||||
# 4) Save the looped output
|
||||
source = extract_source_name(local_video_path)
|
||||
output_filename = MediaFileType(f"{node_exec_id}_looped_{source}.mp4")
|
||||
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
|
||||
|
||||
looped_clip = looped_clip.with_audio(clip.audio)
|
||||
looped_clip.write_videofile(
|
||||
output_abspath, codec="libx264", audio_codec="aac"
|
||||
)
|
||||
finally:
|
||||
if looped_clip:
|
||||
looped_clip.close()
|
||||
if clip:
|
||||
clip.close()
|
||||
|
||||
# Return output - for_block_output returns workspace:// if available, else data URI
|
||||
video_out = await store_media_file(
|
||||
file=output_filename,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
|
||||
yield "video_out", video_out
|
||||
267
autogpt_platform/backend/backend/blocks/video/narration.py
Normal file
267
autogpt_platform/backend/backend/blocks/video/narration.py
Normal file
@@ -0,0 +1,267 @@
|
||||
"""VideoNarrationBlock - Generate AI voice narration and add to video."""
|
||||
|
||||
import os
|
||||
from typing import Literal
|
||||
|
||||
from elevenlabs import ElevenLabs
|
||||
from moviepy import CompositeAudioClip
|
||||
from moviepy.audio.io.AudioFileClip import AudioFileClip
|
||||
from moviepy.video.io.VideoFileClip import VideoFileClip
|
||||
|
||||
from backend.blocks.elevenlabs._auth import (
|
||||
TEST_CREDENTIALS,
|
||||
TEST_CREDENTIALS_INPUT,
|
||||
ElevenLabsCredentials,
|
||||
ElevenLabsCredentialsInput,
|
||||
)
|
||||
from backend.blocks.video._utils import (
|
||||
extract_source_name,
|
||||
get_video_codecs,
|
||||
strip_chapters_inplace,
|
||||
)
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
BlockOutput,
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import CredentialsField, SchemaField
|
||||
from backend.util.exceptions import BlockExecutionError
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
|
||||
|
||||
class VideoNarrationBlock(Block):
|
||||
"""Generate AI narration and add to video."""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
credentials: ElevenLabsCredentialsInput = CredentialsField(
|
||||
description="ElevenLabs API key for voice synthesis"
|
||||
)
|
||||
video_in: MediaFileType = SchemaField(
|
||||
description="Input video (URL, data URI, or local path)"
|
||||
)
|
||||
script: str = SchemaField(description="Narration script text")
|
||||
voice_id: str = SchemaField(
|
||||
description="ElevenLabs voice ID", default="21m00Tcm4TlvDq8ikWAM" # Rachel
|
||||
)
|
||||
model_id: Literal[
|
||||
"eleven_multilingual_v2",
|
||||
"eleven_flash_v2_5",
|
||||
"eleven_turbo_v2_5",
|
||||
"eleven_turbo_v2",
|
||||
] = SchemaField(
|
||||
description="ElevenLabs TTS model",
|
||||
default="eleven_multilingual_v2",
|
||||
)
|
||||
mix_mode: Literal["replace", "mix", "ducking"] = SchemaField(
|
||||
description="How to combine with original audio. 'ducking' applies stronger attenuation than 'mix'.",
|
||||
default="ducking",
|
||||
)
|
||||
narration_volume: float = SchemaField(
|
||||
description="Narration volume (0.0 to 2.0)",
|
||||
default=1.0,
|
||||
ge=0.0,
|
||||
le=2.0,
|
||||
advanced=True,
|
||||
)
|
||||
original_volume: float = SchemaField(
|
||||
description="Original audio volume when mixing (0.0 to 1.0)",
|
||||
default=0.3,
|
||||
ge=0.0,
|
||||
le=1.0,
|
||||
advanced=True,
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_out: MediaFileType = SchemaField(
|
||||
description="Video with narration (path or data URI)"
|
||||
)
|
||||
audio_file: MediaFileType = SchemaField(
|
||||
description="Generated audio file (path or data URI)"
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="3d036b53-859c-4b17-9826-ca340f736e0e",
|
||||
description="Generate AI narration and add to video",
|
||||
categories={BlockCategory.MULTIMEDIA, BlockCategory.AI},
|
||||
input_schema=self.Input,
|
||||
output_schema=self.Output,
|
||||
test_input={
|
||||
"video_in": "/tmp/test.mp4",
|
||||
"script": "Hello world",
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_output=[("video_out", str), ("audio_file", str)],
|
||||
test_mock={
|
||||
"_generate_narration_audio": lambda *args: b"mock audio content",
|
||||
"_add_narration_to_video": lambda *args: None,
|
||||
"_store_input_video": lambda *args, **kwargs: "test.mp4",
|
||||
"_store_output_video": lambda *args, **kwargs: "narrated_test.mp4",
|
||||
},
|
||||
)
|
||||
|
||||
async def _store_input_video(
|
||||
self, execution_context: ExecutionContext, file: MediaFileType
|
||||
) -> MediaFileType:
|
||||
"""Store input video. Extracted for testability."""
|
||||
return await store_media_file(
|
||||
file=file,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
async def _store_output_video(
|
||||
self, execution_context: ExecutionContext, file: MediaFileType
|
||||
) -> MediaFileType:
|
||||
"""Store output video. Extracted for testability."""
|
||||
return await store_media_file(
|
||||
file=file,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
|
||||
def _generate_narration_audio(
|
||||
self, api_key: str, script: str, voice_id: str, model_id: str
|
||||
) -> bytes:
|
||||
"""Generate narration audio via ElevenLabs API."""
|
||||
client = ElevenLabs(api_key=api_key)
|
||||
audio_generator = client.text_to_speech.convert(
|
||||
voice_id=voice_id,
|
||||
text=script,
|
||||
model_id=model_id,
|
||||
)
|
||||
# The SDK returns a generator, collect all chunks
|
||||
return b"".join(audio_generator)
|
||||
|
||||
def _add_narration_to_video(
|
||||
self,
|
||||
video_abspath: str,
|
||||
audio_abspath: str,
|
||||
output_abspath: str,
|
||||
mix_mode: str,
|
||||
narration_volume: float,
|
||||
original_volume: float,
|
||||
) -> None:
|
||||
"""Add narration audio to video. Extracted for testability."""
|
||||
video = None
|
||||
final = None
|
||||
narration_original = None
|
||||
narration_scaled = None
|
||||
original = None
|
||||
|
||||
try:
|
||||
strip_chapters_inplace(video_abspath)
|
||||
video = VideoFileClip(video_abspath)
|
||||
narration_original = AudioFileClip(audio_abspath)
|
||||
narration_scaled = narration_original.with_volume_scaled(narration_volume)
|
||||
narration = narration_scaled
|
||||
|
||||
if mix_mode == "replace":
|
||||
final_audio = narration
|
||||
elif mix_mode == "mix":
|
||||
if video.audio:
|
||||
original = video.audio.with_volume_scaled(original_volume)
|
||||
final_audio = CompositeAudioClip([original, narration])
|
||||
else:
|
||||
final_audio = narration
|
||||
else: # ducking - apply stronger attenuation
|
||||
if video.audio:
|
||||
# Ducking uses a much lower volume for original audio
|
||||
ducking_volume = original_volume * 0.3
|
||||
original = video.audio.with_volume_scaled(ducking_volume)
|
||||
final_audio = CompositeAudioClip([original, narration])
|
||||
else:
|
||||
final_audio = narration
|
||||
|
||||
final = video.with_audio(final_audio)
|
||||
video_codec, audio_codec = get_video_codecs(output_abspath)
|
||||
final.write_videofile(
|
||||
output_abspath, codec=video_codec, audio_codec=audio_codec
|
||||
)
|
||||
|
||||
finally:
|
||||
if original:
|
||||
original.close()
|
||||
if narration_scaled:
|
||||
narration_scaled.close()
|
||||
if narration_original:
|
||||
narration_original.close()
|
||||
if final:
|
||||
final.close()
|
||||
if video:
|
||||
video.close()
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: ElevenLabsCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
node_exec_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
assert execution_context.graph_exec_id is not None
|
||||
|
||||
# Store the input video locally
|
||||
local_video_path = await self._store_input_video(
|
||||
execution_context, input_data.video_in
|
||||
)
|
||||
video_abspath = get_exec_file_path(
|
||||
execution_context.graph_exec_id, local_video_path
|
||||
)
|
||||
|
||||
# Generate narration audio via ElevenLabs
|
||||
audio_content = self._generate_narration_audio(
|
||||
credentials.api_key.get_secret_value(),
|
||||
input_data.script,
|
||||
input_data.voice_id,
|
||||
input_data.model_id,
|
||||
)
|
||||
|
||||
# Save audio to exec file path
|
||||
audio_filename = MediaFileType(f"{node_exec_id}_narration.mp3")
|
||||
audio_abspath = get_exec_file_path(
|
||||
execution_context.graph_exec_id, audio_filename
|
||||
)
|
||||
os.makedirs(os.path.dirname(audio_abspath), exist_ok=True)
|
||||
with open(audio_abspath, "wb") as f:
|
||||
f.write(audio_content)
|
||||
|
||||
# Add narration to video
|
||||
source = extract_source_name(local_video_path)
|
||||
output_filename = MediaFileType(f"{node_exec_id}_narrated_{source}.mp4")
|
||||
output_abspath = get_exec_file_path(
|
||||
execution_context.graph_exec_id, output_filename
|
||||
)
|
||||
|
||||
self._add_narration_to_video(
|
||||
video_abspath,
|
||||
audio_abspath,
|
||||
output_abspath,
|
||||
input_data.mix_mode,
|
||||
input_data.narration_volume,
|
||||
input_data.original_volume,
|
||||
)
|
||||
|
||||
# Return as workspace path or data URI based on context
|
||||
video_out = await self._store_output_video(
|
||||
execution_context, output_filename
|
||||
)
|
||||
audio_out = await self._store_output_video(
|
||||
execution_context, audio_filename
|
||||
)
|
||||
|
||||
yield "video_out", video_out
|
||||
yield "audio_file", audio_out
|
||||
|
||||
except Exception as e:
|
||||
raise BlockExecutionError(
|
||||
message=f"Failed to add narration: {e}",
|
||||
block_name=self.name,
|
||||
block_id=str(self.id),
|
||||
) from e
|
||||
231
autogpt_platform/backend/backend/blocks/video/text_overlay.py
Normal file
231
autogpt_platform/backend/backend/blocks/video/text_overlay.py
Normal file
@@ -0,0 +1,231 @@
|
||||
"""VideoTextOverlayBlock - Add text overlay to video."""
|
||||
|
||||
from typing import Literal
|
||||
|
||||
from moviepy import CompositeVideoClip, TextClip
|
||||
from moviepy.video.io.VideoFileClip import VideoFileClip
|
||||
|
||||
from backend.blocks.video._utils import (
|
||||
extract_source_name,
|
||||
get_video_codecs,
|
||||
strip_chapters_inplace,
|
||||
)
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
BlockOutput,
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.exceptions import BlockExecutionError
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
|
||||
|
||||
class VideoTextOverlayBlock(Block):
|
||||
"""Add text overlay/caption to video."""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
video_in: MediaFileType = SchemaField(
|
||||
description="Input video (URL, data URI, or local path)"
|
||||
)
|
||||
text: str = SchemaField(description="Text to overlay on video")
|
||||
position: Literal[
|
||||
"top",
|
||||
"center",
|
||||
"bottom",
|
||||
"top-left",
|
||||
"top-right",
|
||||
"bottom-left",
|
||||
"bottom-right",
|
||||
] = SchemaField(description="Position of text on screen", default="bottom")
|
||||
start_time: float | None = SchemaField(
|
||||
description="When to show text (seconds). None = entire video",
|
||||
default=None,
|
||||
advanced=True,
|
||||
)
|
||||
end_time: float | None = SchemaField(
|
||||
description="When to hide text (seconds). None = until end",
|
||||
default=None,
|
||||
advanced=True,
|
||||
)
|
||||
font_size: int = SchemaField(
|
||||
description="Font size", default=48, ge=12, le=200, advanced=True
|
||||
)
|
||||
font_color: str = SchemaField(
|
||||
description="Font color (hex or name)", default="white", advanced=True
|
||||
)
|
||||
bg_color: str | None = SchemaField(
|
||||
description="Background color behind text (None for transparent)",
|
||||
default=None,
|
||||
advanced=True,
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_out: MediaFileType = SchemaField(
|
||||
description="Video with text overlay (path or data URI)"
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="8ef14de6-cc90-430a-8cfa-3a003be92454",
|
||||
description="Add text overlay/caption to video",
|
||||
categories={BlockCategory.MULTIMEDIA},
|
||||
input_schema=self.Input,
|
||||
output_schema=self.Output,
|
||||
disabled=True, # Disable until we can lockdown imagemagick security policy
|
||||
test_input={"video_in": "/tmp/test.mp4", "text": "Hello World"},
|
||||
test_output=[("video_out", str)],
|
||||
test_mock={
|
||||
"_add_text_overlay": lambda *args: None,
|
||||
"_store_input_video": lambda *args, **kwargs: "test.mp4",
|
||||
"_store_output_video": lambda *args, **kwargs: "overlay_test.mp4",
|
||||
},
|
||||
)
|
||||
|
||||
async def _store_input_video(
|
||||
self, execution_context: ExecutionContext, file: MediaFileType
|
||||
) -> MediaFileType:
|
||||
"""Store input video. Extracted for testability."""
|
||||
return await store_media_file(
|
||||
file=file,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
async def _store_output_video(
|
||||
self, execution_context: ExecutionContext, file: MediaFileType
|
||||
) -> MediaFileType:
|
||||
"""Store output video. Extracted for testability."""
|
||||
return await store_media_file(
|
||||
file=file,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
|
||||
def _add_text_overlay(
|
||||
self,
|
||||
video_abspath: str,
|
||||
output_abspath: str,
|
||||
text: str,
|
||||
position: str,
|
||||
start_time: float | None,
|
||||
end_time: float | None,
|
||||
font_size: int,
|
||||
font_color: str,
|
||||
bg_color: str | None,
|
||||
) -> None:
|
||||
"""Add text overlay to video. Extracted for testability."""
|
||||
video = None
|
||||
final = None
|
||||
txt_clip = None
|
||||
try:
|
||||
strip_chapters_inplace(video_abspath)
|
||||
video = VideoFileClip(video_abspath)
|
||||
|
||||
txt_clip = TextClip(
|
||||
text=text,
|
||||
font_size=font_size,
|
||||
color=font_color,
|
||||
bg_color=bg_color,
|
||||
)
|
||||
|
||||
# Position mapping
|
||||
pos_map = {
|
||||
"top": ("center", "top"),
|
||||
"center": ("center", "center"),
|
||||
"bottom": ("center", "bottom"),
|
||||
"top-left": ("left", "top"),
|
||||
"top-right": ("right", "top"),
|
||||
"bottom-left": ("left", "bottom"),
|
||||
"bottom-right": ("right", "bottom"),
|
||||
}
|
||||
|
||||
txt_clip = txt_clip.with_position(pos_map[position])
|
||||
|
||||
# Set timing
|
||||
start = start_time or 0
|
||||
end = end_time or video.duration
|
||||
duration = max(0, end - start)
|
||||
txt_clip = txt_clip.with_start(start).with_end(end).with_duration(duration)
|
||||
|
||||
final = CompositeVideoClip([video, txt_clip])
|
||||
video_codec, audio_codec = get_video_codecs(output_abspath)
|
||||
final.write_videofile(
|
||||
output_abspath, codec=video_codec, audio_codec=audio_codec
|
||||
)
|
||||
|
||||
finally:
|
||||
if txt_clip:
|
||||
txt_clip.close()
|
||||
if final:
|
||||
final.close()
|
||||
if video:
|
||||
video.close()
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
execution_context: ExecutionContext,
|
||||
node_exec_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Validate time range if both are provided
|
||||
if (
|
||||
input_data.start_time is not None
|
||||
and input_data.end_time is not None
|
||||
and input_data.end_time <= input_data.start_time
|
||||
):
|
||||
raise BlockExecutionError(
|
||||
message=f"end_time ({input_data.end_time}) must be greater than start_time ({input_data.start_time})",
|
||||
block_name=self.name,
|
||||
block_id=str(self.id),
|
||||
)
|
||||
|
||||
try:
|
||||
assert execution_context.graph_exec_id is not None
|
||||
|
||||
# Store the input video locally
|
||||
local_video_path = await self._store_input_video(
|
||||
execution_context, input_data.video_in
|
||||
)
|
||||
video_abspath = get_exec_file_path(
|
||||
execution_context.graph_exec_id, local_video_path
|
||||
)
|
||||
|
||||
# Build output path
|
||||
source = extract_source_name(local_video_path)
|
||||
output_filename = MediaFileType(f"{node_exec_id}_overlay_{source}.mp4")
|
||||
output_abspath = get_exec_file_path(
|
||||
execution_context.graph_exec_id, output_filename
|
||||
)
|
||||
|
||||
self._add_text_overlay(
|
||||
video_abspath,
|
||||
output_abspath,
|
||||
input_data.text,
|
||||
input_data.position,
|
||||
input_data.start_time,
|
||||
input_data.end_time,
|
||||
input_data.font_size,
|
||||
input_data.font_color,
|
||||
input_data.bg_color,
|
||||
)
|
||||
|
||||
# Return as workspace path or data URI based on context
|
||||
video_out = await self._store_output_video(
|
||||
execution_context, output_filename
|
||||
)
|
||||
|
||||
yield "video_out", video_out
|
||||
|
||||
except BlockExecutionError:
|
||||
raise
|
||||
except Exception as e:
|
||||
raise BlockExecutionError(
|
||||
message=f"Failed to add text overlay: {e}",
|
||||
block_name=self.name,
|
||||
block_id=str(self.id),
|
||||
) from e
|
||||
@@ -246,9 +246,7 @@ class BlockSchema(BaseModel):
|
||||
f"is not of type {CredentialsMetaInput.__name__}"
|
||||
)
|
||||
|
||||
CredentialsMetaInput.validate_credentials_field_schema(
|
||||
cls.get_field_schema(field_name), field_name
|
||||
)
|
||||
credentials_fields[field_name].validate_credentials_field_schema(cls)
|
||||
|
||||
elif field_name in credentials_fields:
|
||||
raise KeyError(
|
||||
|
||||
@@ -36,12 +36,14 @@ from backend.blocks.replicate.replicate_block import ReplicateModelBlock
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
|
||||
from backend.blocks.text_to_speech_block import UnrealTextToSpeechBlock
|
||||
from backend.blocks.video.narration import VideoNarrationBlock
|
||||
from backend.data.block import Block, BlockCost, BlockCostType
|
||||
from backend.integrations.credentials_store import (
|
||||
aiml_api_credentials,
|
||||
anthropic_credentials,
|
||||
apollo_credentials,
|
||||
did_credentials,
|
||||
elevenlabs_credentials,
|
||||
enrichlayer_credentials,
|
||||
groq_credentials,
|
||||
ideogram_credentials,
|
||||
@@ -78,6 +80,7 @@ MODEL_COST: dict[LlmModel, int] = {
|
||||
LlmModel.CLAUDE_4_1_OPUS: 21,
|
||||
LlmModel.CLAUDE_4_OPUS: 21,
|
||||
LlmModel.CLAUDE_4_SONNET: 5,
|
||||
LlmModel.CLAUDE_4_6_OPUS: 14,
|
||||
LlmModel.CLAUDE_4_5_HAIKU: 4,
|
||||
LlmModel.CLAUDE_4_5_OPUS: 14,
|
||||
LlmModel.CLAUDE_4_5_SONNET: 9,
|
||||
@@ -639,4 +642,16 @@ BLOCK_COSTS: dict[Type[Block], list[BlockCost]] = {
|
||||
},
|
||||
),
|
||||
],
|
||||
VideoNarrationBlock: [
|
||||
BlockCost(
|
||||
cost_amount=5, # ElevenLabs TTS cost
|
||||
cost_filter={
|
||||
"credentials": {
|
||||
"id": elevenlabs_credentials.id,
|
||||
"provider": elevenlabs_credentials.provider,
|
||||
"type": elevenlabs_credentials.type,
|
||||
}
|
||||
},
|
||||
)
|
||||
],
|
||||
}
|
||||
|
||||
@@ -20,7 +20,7 @@ from prisma.types import (
|
||||
AgentNodeLinkCreateInput,
|
||||
StoreListingVersionWhereInput,
|
||||
)
|
||||
from pydantic import BaseModel, BeforeValidator, Field
|
||||
from pydantic import BaseModel, BeforeValidator, Field, create_model
|
||||
from pydantic.fields import computed_field
|
||||
|
||||
from backend.blocks.agent import AgentExecutorBlock
|
||||
@@ -30,6 +30,7 @@ from backend.data.db import prisma as db
|
||||
from backend.data.dynamic_fields import is_tool_pin, sanitize_pin_name
|
||||
from backend.data.includes import MAX_GRAPH_VERSIONS_FETCH
|
||||
from backend.data.model import (
|
||||
CredentialsField,
|
||||
CredentialsFieldInfo,
|
||||
CredentialsMetaInput,
|
||||
is_credentials_field_name,
|
||||
@@ -44,6 +45,7 @@ from .block import (
|
||||
AnyBlockSchema,
|
||||
Block,
|
||||
BlockInput,
|
||||
BlockSchema,
|
||||
BlockType,
|
||||
EmptySchema,
|
||||
get_block,
|
||||
@@ -111,12 +113,10 @@ class Link(BaseDbModel):
|
||||
|
||||
class Node(BaseDbModel):
|
||||
block_id: str
|
||||
input_default: BlockInput = Field( # dict[input_name, default_value]
|
||||
default_factory=dict
|
||||
)
|
||||
metadata: dict[str, Any] = Field(default_factory=dict)
|
||||
input_links: list[Link] = Field(default_factory=list)
|
||||
output_links: list[Link] = Field(default_factory=list)
|
||||
input_default: BlockInput = {} # dict[input_name, default_value]
|
||||
metadata: dict[str, Any] = {}
|
||||
input_links: list[Link] = []
|
||||
output_links: list[Link] = []
|
||||
|
||||
@property
|
||||
def credentials_optional(self) -> bool:
|
||||
@@ -221,33 +221,18 @@ class NodeModel(Node):
|
||||
return result
|
||||
|
||||
|
||||
class GraphBaseMeta(BaseDbModel):
|
||||
"""
|
||||
Shared base for `GraphModelMeta` and `BaseGraph`, with core graph metadata fields.
|
||||
"""
|
||||
|
||||
class BaseGraph(BaseDbModel):
|
||||
version: int = 1
|
||||
is_active: bool = True
|
||||
name: str
|
||||
description: str
|
||||
instructions: str | None = None
|
||||
recommended_schedule_cron: str | None = None
|
||||
nodes: list[Node] = []
|
||||
links: list[Link] = []
|
||||
forked_from_id: str | None = None
|
||||
forked_from_version: int | None = None
|
||||
|
||||
|
||||
class BaseGraph(GraphBaseMeta):
|
||||
"""
|
||||
Graph with nodes, links, and computed I/O schema fields.
|
||||
|
||||
Used to represent sub-graphs within a `Graph`. Contains the full graph
|
||||
structure including nodes and links, plus computed fields for schemas
|
||||
and trigger info. Does NOT include user_id or created_at (see GraphModel).
|
||||
"""
|
||||
|
||||
nodes: list[Node] = Field(default_factory=list)
|
||||
links: list[Link] = Field(default_factory=list)
|
||||
|
||||
@computed_field
|
||||
@property
|
||||
def input_schema(self) -> dict[str, Any]:
|
||||
@@ -376,79 +361,44 @@ class GraphTriggerInfo(BaseModel):
|
||||
|
||||
|
||||
class Graph(BaseGraph):
|
||||
"""Creatable graph model used in API create/update endpoints."""
|
||||
|
||||
sub_graphs: list[BaseGraph] = Field(default_factory=list) # Flattened sub-graphs
|
||||
|
||||
|
||||
class GraphMeta(GraphBaseMeta):
|
||||
"""
|
||||
Lightweight graph metadata model representing an existing graph from the database,
|
||||
for use in listings and summaries.
|
||||
|
||||
Lacks `GraphModel`'s nodes, links, and expensive computed fields.
|
||||
Use for list endpoints where full graph data is not needed and performance matters.
|
||||
"""
|
||||
|
||||
id: str # type: ignore
|
||||
version: int # type: ignore
|
||||
user_id: str
|
||||
created_at: datetime
|
||||
|
||||
@staticmethod
|
||||
def from_db(graph: "AgentGraph") -> "GraphMeta":
|
||||
return GraphMeta(
|
||||
id=graph.id,
|
||||
version=graph.version,
|
||||
is_active=graph.isActive,
|
||||
name=graph.name or "",
|
||||
description=graph.description or "",
|
||||
instructions=graph.instructions,
|
||||
recommended_schedule_cron=graph.recommendedScheduleCron,
|
||||
forked_from_id=graph.forkedFromId,
|
||||
forked_from_version=graph.forkedFromVersion,
|
||||
user_id=graph.userId,
|
||||
created_at=graph.createdAt,
|
||||
)
|
||||
|
||||
|
||||
class GraphModel(Graph, GraphMeta):
|
||||
"""
|
||||
Full graph model representing an existing graph from the database.
|
||||
|
||||
This is the primary model for working with persisted graphs. Includes all
|
||||
graph data (nodes, links, sub_graphs) plus user ownership and timestamps.
|
||||
Provides computed fields (input_schema, output_schema, etc.) used during
|
||||
set-up (frontend) and execution (backend).
|
||||
|
||||
Inherits from:
|
||||
- `Graph`: provides structure (nodes, links, sub_graphs) and computed schemas
|
||||
- `GraphMeta`: provides user_id, created_at for database records
|
||||
"""
|
||||
|
||||
nodes: list[NodeModel] = Field(default_factory=list) # type: ignore
|
||||
|
||||
@property
|
||||
def starting_nodes(self) -> list[NodeModel]:
|
||||
outbound_nodes = {link.sink_id for link in self.links}
|
||||
input_nodes = {
|
||||
node.id for node in self.nodes if node.block.block_type == BlockType.INPUT
|
||||
}
|
||||
return [
|
||||
node
|
||||
for node in self.nodes
|
||||
if node.id not in outbound_nodes or node.id in input_nodes
|
||||
]
|
||||
|
||||
@property
|
||||
def webhook_input_node(self) -> NodeModel | None: # type: ignore
|
||||
return cast(NodeModel, super().webhook_input_node)
|
||||
sub_graphs: list[BaseGraph] = [] # Flattened sub-graphs
|
||||
|
||||
@computed_field
|
||||
@property
|
||||
def credentials_input_schema(self) -> dict[str, Any]:
|
||||
graph_credentials_inputs = self.aggregate_credentials_inputs()
|
||||
schema = self._credentials_input_schema.jsonschema()
|
||||
|
||||
# Determine which credential fields are required based on credentials_optional metadata
|
||||
graph_credentials_inputs = self.aggregate_credentials_inputs()
|
||||
required_fields = []
|
||||
|
||||
# Build a map of node_id -> node for quick lookup
|
||||
all_nodes = {node.id: node for node in self.nodes}
|
||||
for sub_graph in self.sub_graphs:
|
||||
for node in sub_graph.nodes:
|
||||
all_nodes[node.id] = node
|
||||
|
||||
for field_key, (
|
||||
_field_info,
|
||||
node_field_pairs,
|
||||
) in graph_credentials_inputs.items():
|
||||
# A field is required if ANY node using it has credentials_optional=False
|
||||
is_required = False
|
||||
for node_id, _field_name in node_field_pairs:
|
||||
node = all_nodes.get(node_id)
|
||||
if node and not node.credentials_optional:
|
||||
is_required = True
|
||||
break
|
||||
|
||||
if is_required:
|
||||
required_fields.append(field_key)
|
||||
|
||||
schema["required"] = required_fields
|
||||
return schema
|
||||
|
||||
@property
|
||||
def _credentials_input_schema(self) -> type[BlockSchema]:
|
||||
graph_credentials_inputs = self.aggregate_credentials_inputs()
|
||||
logger.debug(
|
||||
f"Combined credentials input fields for graph #{self.id} ({self.name}): "
|
||||
f"{graph_credentials_inputs}"
|
||||
@@ -456,8 +406,8 @@ class GraphModel(Graph, GraphMeta):
|
||||
|
||||
# Warn if same-provider credentials inputs can't be combined (= bad UX)
|
||||
graph_cred_fields = list(graph_credentials_inputs.values())
|
||||
for i, (field, keys, _) in enumerate(graph_cred_fields):
|
||||
for other_field, other_keys, _ in list(graph_cred_fields)[i + 1 :]:
|
||||
for i, (field, keys) in enumerate(graph_cred_fields):
|
||||
for other_field, other_keys in list(graph_cred_fields)[i + 1 :]:
|
||||
if field.provider != other_field.provider:
|
||||
continue
|
||||
if ProviderName.HTTP in field.provider:
|
||||
@@ -473,78 +423,31 @@ class GraphModel(Graph, GraphMeta):
|
||||
f"keys: {keys} <> {other_keys}."
|
||||
)
|
||||
|
||||
# Build JSON schema directly to avoid expensive create_model + validation overhead
|
||||
properties = {}
|
||||
required_fields = []
|
||||
|
||||
for agg_field_key, (
|
||||
field_info,
|
||||
_,
|
||||
is_required,
|
||||
) in graph_credentials_inputs.items():
|
||||
providers = list(field_info.provider)
|
||||
cred_types = list(field_info.supported_types)
|
||||
|
||||
field_schema: dict[str, Any] = {
|
||||
"credentials_provider": providers,
|
||||
"credentials_types": cred_types,
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"id": {"title": "Id", "type": "string"},
|
||||
"title": {
|
||||
"anyOf": [{"type": "string"}, {"type": "null"}],
|
||||
"default": None,
|
||||
"title": "Title",
|
||||
},
|
||||
"provider": {
|
||||
"title": "Provider",
|
||||
"type": "string",
|
||||
**(
|
||||
{"enum": providers}
|
||||
if len(providers) > 1
|
||||
else {"const": providers[0]}
|
||||
),
|
||||
},
|
||||
"type": {
|
||||
"title": "Type",
|
||||
"type": "string",
|
||||
**(
|
||||
{"enum": cred_types}
|
||||
if len(cred_types) > 1
|
||||
else {"const": cred_types[0]}
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": ["id", "provider", "type"],
|
||||
}
|
||||
|
||||
# Add other (optional) field info items
|
||||
field_schema.update(
|
||||
field_info.model_dump(
|
||||
by_alias=True,
|
||||
exclude_defaults=True,
|
||||
exclude={"provider", "supported_types"}, # already included above
|
||||
)
|
||||
fields: dict[str, tuple[type[CredentialsMetaInput], CredentialsMetaInput]] = {
|
||||
agg_field_key: (
|
||||
CredentialsMetaInput[
|
||||
Literal[tuple(field_info.provider)], # type: ignore
|
||||
Literal[tuple(field_info.supported_types)], # type: ignore
|
||||
],
|
||||
CredentialsField(
|
||||
required_scopes=set(field_info.required_scopes or []),
|
||||
discriminator=field_info.discriminator,
|
||||
discriminator_mapping=field_info.discriminator_mapping,
|
||||
discriminator_values=field_info.discriminator_values,
|
||||
),
|
||||
)
|
||||
|
||||
# Ensure field schema is well-formed
|
||||
CredentialsMetaInput.validate_credentials_field_schema(
|
||||
field_schema, agg_field_key
|
||||
)
|
||||
|
||||
properties[agg_field_key] = field_schema
|
||||
if is_required:
|
||||
required_fields.append(agg_field_key)
|
||||
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": properties,
|
||||
"required": required_fields,
|
||||
for agg_field_key, (field_info, _) in graph_credentials_inputs.items()
|
||||
}
|
||||
|
||||
return create_model(
|
||||
self.name.replace(" ", "") + "CredentialsInputSchema",
|
||||
__base__=BlockSchema,
|
||||
**fields, # type: ignore
|
||||
)
|
||||
|
||||
def aggregate_credentials_inputs(
|
||||
self,
|
||||
) -> dict[str, tuple[CredentialsFieldInfo, set[tuple[str, str]], bool]]:
|
||||
) -> dict[str, tuple[CredentialsFieldInfo, set[tuple[str, str]]]]:
|
||||
"""
|
||||
Returns:
|
||||
dict[aggregated_field_key, tuple(
|
||||
@@ -552,19 +455,13 @@ class GraphModel(Graph, GraphMeta):
|
||||
(now includes discriminator_values from matching nodes)
|
||||
set[(node_id, field_name)]: Node credentials fields that are
|
||||
compatible with this aggregated field spec
|
||||
bool: True if the field is required (any node has credentials_optional=False)
|
||||
)]
|
||||
"""
|
||||
# First collect all credential field data with input defaults
|
||||
# Track (field_info, (node_id, field_name), is_required) for each credential field
|
||||
node_credential_data: list[tuple[CredentialsFieldInfo, tuple[str, str]]] = []
|
||||
node_required_map: dict[str, bool] = {} # node_id -> is_required
|
||||
node_credential_data = []
|
||||
|
||||
for graph in [self] + self.sub_graphs:
|
||||
for node in graph.nodes:
|
||||
# Track if this node requires credentials (credentials_optional=False means required)
|
||||
node_required_map[node.id] = not node.credentials_optional
|
||||
|
||||
for (
|
||||
field_name,
|
||||
field_info,
|
||||
@@ -588,21 +485,37 @@ class GraphModel(Graph, GraphMeta):
|
||||
)
|
||||
|
||||
# Combine credential field info (this will merge discriminator_values automatically)
|
||||
combined = CredentialsFieldInfo.combine(*node_credential_data)
|
||||
return CredentialsFieldInfo.combine(*node_credential_data)
|
||||
|
||||
# Add is_required flag to each aggregated field
|
||||
# A field is required if ANY node using it has credentials_optional=False
|
||||
return {
|
||||
key: (
|
||||
field_info,
|
||||
node_field_pairs,
|
||||
any(
|
||||
node_required_map.get(node_id, True)
|
||||
for node_id, _ in node_field_pairs
|
||||
),
|
||||
)
|
||||
for key, (field_info, node_field_pairs) in combined.items()
|
||||
|
||||
class GraphModel(Graph):
|
||||
user_id: str
|
||||
nodes: list[NodeModel] = [] # type: ignore
|
||||
|
||||
created_at: datetime
|
||||
|
||||
@property
|
||||
def starting_nodes(self) -> list[NodeModel]:
|
||||
outbound_nodes = {link.sink_id for link in self.links}
|
||||
input_nodes = {
|
||||
node.id for node in self.nodes if node.block.block_type == BlockType.INPUT
|
||||
}
|
||||
return [
|
||||
node
|
||||
for node in self.nodes
|
||||
if node.id not in outbound_nodes or node.id in input_nodes
|
||||
]
|
||||
|
||||
@property
|
||||
def webhook_input_node(self) -> NodeModel | None: # type: ignore
|
||||
return cast(NodeModel, super().webhook_input_node)
|
||||
|
||||
def meta(self) -> "GraphMeta":
|
||||
"""
|
||||
Returns a GraphMeta object with metadata about the graph.
|
||||
This is used to return metadata about the graph without exposing nodes and links.
|
||||
"""
|
||||
return GraphMeta.from_graph(self)
|
||||
|
||||
def reassign_ids(self, user_id: str, reassign_graph_id: bool = False):
|
||||
"""
|
||||
@@ -918,28 +831,17 @@ class GraphModel(Graph, GraphMeta):
|
||||
],
|
||||
)
|
||||
|
||||
def hide_nodes(self) -> "GraphModelWithoutNodes":
|
||||
"""
|
||||
Returns a copy of the `GraphModel` with nodes, links, and sub-graphs hidden
|
||||
(excluded from serialization). They are still present in the model instance
|
||||
so all computed fields (e.g. `credentials_input_schema`) still work.
|
||||
"""
|
||||
return GraphModelWithoutNodes.model_validate(self, from_attributes=True)
|
||||
|
||||
class GraphMeta(Graph):
|
||||
user_id: str
|
||||
|
||||
class GraphModelWithoutNodes(GraphModel):
|
||||
"""
|
||||
GraphModel variant that excludes nodes, links, and sub-graphs from serialization.
|
||||
# Easy work-around to prevent exposing nodes and links in the API response
|
||||
nodes: list[NodeModel] = Field(default=[], exclude=True) # type: ignore
|
||||
links: list[Link] = Field(default=[], exclude=True)
|
||||
|
||||
Used in contexts like the store where exposing internal graph structure
|
||||
is not desired. Inherits all computed fields from GraphModel but marks
|
||||
nodes and links as excluded from JSON output.
|
||||
"""
|
||||
|
||||
nodes: list[NodeModel] = Field(default_factory=list, exclude=True)
|
||||
links: list[Link] = Field(default_factory=list, exclude=True)
|
||||
|
||||
sub_graphs: list[BaseGraph] = Field(default_factory=list, exclude=True)
|
||||
@staticmethod
|
||||
def from_graph(graph: GraphModel) -> "GraphMeta":
|
||||
return GraphMeta(**graph.model_dump())
|
||||
|
||||
|
||||
class GraphsPaginated(BaseModel):
|
||||
@@ -1010,11 +912,21 @@ async def list_graphs_paginated(
|
||||
where=where_clause,
|
||||
distinct=["id"],
|
||||
order={"version": "desc"},
|
||||
include=AGENT_GRAPH_INCLUDE,
|
||||
skip=offset,
|
||||
take=page_size,
|
||||
)
|
||||
|
||||
graph_models = [GraphMeta.from_db(graph) for graph in graphs]
|
||||
graph_models: list[GraphMeta] = []
|
||||
for graph in graphs:
|
||||
try:
|
||||
graph_meta = GraphModel.from_db(graph).meta()
|
||||
# Trigger serialization to validate that the graph is well formed
|
||||
graph_meta.model_dump()
|
||||
graph_models.append(graph_meta)
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing graph {graph.id}: {e}")
|
||||
continue
|
||||
|
||||
return GraphsPaginated(
|
||||
graphs=graph_models,
|
||||
|
||||
@@ -163,6 +163,7 @@ class User(BaseModel):
|
||||
if TYPE_CHECKING:
|
||||
from prisma.models import User as PrismaUser
|
||||
|
||||
from backend.data.block import BlockSchema
|
||||
|
||||
T = TypeVar("T")
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -507,13 +508,15 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
|
||||
def allowed_cred_types(cls) -> tuple[CredentialsType, ...]:
|
||||
return get_args(cls.model_fields["type"].annotation)
|
||||
|
||||
@staticmethod
|
||||
def validate_credentials_field_schema(
|
||||
field_schema: dict[str, Any], field_name: str
|
||||
):
|
||||
@classmethod
|
||||
def validate_credentials_field_schema(cls, model: type["BlockSchema"]):
|
||||
"""Validates the schema of a credentials input field"""
|
||||
field_name = next(
|
||||
name for name, type in model.get_credentials_fields().items() if type is cls
|
||||
)
|
||||
field_schema = model.jsonschema()["properties"][field_name]
|
||||
try:
|
||||
field_info = CredentialsFieldInfo[CP, CT].model_validate(field_schema)
|
||||
schema_extra = CredentialsFieldInfo[CP, CT].model_validate(field_schema)
|
||||
except ValidationError as e:
|
||||
if "Field required [type=missing" not in str(e):
|
||||
raise
|
||||
@@ -523,11 +526,11 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
|
||||
f"{field_schema}"
|
||||
) from e
|
||||
|
||||
providers = field_info.provider
|
||||
providers = cls.allowed_providers()
|
||||
if (
|
||||
providers is not None
|
||||
and len(providers) > 1
|
||||
and not field_info.discriminator
|
||||
and not schema_extra.discriminator
|
||||
):
|
||||
raise TypeError(
|
||||
f"Multi-provider CredentialsField '{field_name}' "
|
||||
|
||||
@@ -373,7 +373,7 @@ def make_node_credentials_input_map(
|
||||
# Get aggregated credentials fields for the graph
|
||||
graph_cred_inputs = graph.aggregate_credentials_inputs()
|
||||
|
||||
for graph_input_name, (_, compatible_node_fields, _) in graph_cred_inputs.items():
|
||||
for graph_input_name, (_, compatible_node_fields) in graph_cred_inputs.items():
|
||||
# Best-effort map: skip missing items
|
||||
if graph_input_name not in graph_credentials_input:
|
||||
continue
|
||||
|
||||
@@ -224,6 +224,14 @@ openweathermap_credentials = APIKeyCredentials(
|
||||
expires_at=None,
|
||||
)
|
||||
|
||||
elevenlabs_credentials = APIKeyCredentials(
|
||||
id="f4a8b6c2-3d1e-4f5a-9b8c-7d6e5f4a3b2c",
|
||||
provider="elevenlabs",
|
||||
api_key=SecretStr(settings.secrets.elevenlabs_api_key),
|
||||
title="Use Credits for ElevenLabs",
|
||||
expires_at=None,
|
||||
)
|
||||
|
||||
DEFAULT_CREDENTIALS = [
|
||||
ollama_credentials,
|
||||
revid_credentials,
|
||||
@@ -252,6 +260,7 @@ DEFAULT_CREDENTIALS = [
|
||||
v0_credentials,
|
||||
webshare_proxy_credentials,
|
||||
openweathermap_credentials,
|
||||
elevenlabs_credentials,
|
||||
]
|
||||
|
||||
SYSTEM_CREDENTIAL_IDS = {cred.id for cred in DEFAULT_CREDENTIALS}
|
||||
@@ -366,6 +375,8 @@ class IntegrationCredentialsStore:
|
||||
all_credentials.append(webshare_proxy_credentials)
|
||||
if settings.secrets.openweathermap_api_key:
|
||||
all_credentials.append(openweathermap_credentials)
|
||||
if settings.secrets.elevenlabs_api_key:
|
||||
all_credentials.append(elevenlabs_credentials)
|
||||
return all_credentials
|
||||
|
||||
async def get_creds_by_id(
|
||||
|
||||
@@ -18,6 +18,7 @@ class ProviderName(str, Enum):
|
||||
DISCORD = "discord"
|
||||
D_ID = "d_id"
|
||||
E2B = "e2b"
|
||||
ELEVENLABS = "elevenlabs"
|
||||
FAL = "fal"
|
||||
GITHUB = "github"
|
||||
GOOGLE = "google"
|
||||
|
||||
@@ -8,6 +8,8 @@ from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Literal
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.util.cloud_storage import get_cloud_storage_handler
|
||||
from backend.util.request import Requests
|
||||
from backend.util.settings import Config
|
||||
@@ -17,6 +19,35 @@ from backend.util.virus_scanner import scan_content_safe
|
||||
if TYPE_CHECKING:
|
||||
from backend.data.execution import ExecutionContext
|
||||
|
||||
|
||||
class WorkspaceUri(BaseModel):
|
||||
"""Parsed workspace:// URI."""
|
||||
|
||||
file_ref: str # File ID or path (e.g. "abc123" or "/path/to/file.txt")
|
||||
mime_type: str | None = None # MIME type from fragment (e.g. "video/mp4")
|
||||
is_path: bool = False # True if file_ref is a path (starts with "/")
|
||||
|
||||
|
||||
def parse_workspace_uri(uri: str) -> WorkspaceUri:
|
||||
"""Parse a workspace:// URI into its components.
|
||||
|
||||
Examples:
|
||||
"workspace://abc123" → WorkspaceUri(file_ref="abc123", mime_type=None, is_path=False)
|
||||
"workspace://abc123#video/mp4" → WorkspaceUri(file_ref="abc123", mime_type="video/mp4", is_path=False)
|
||||
"workspace:///path/to/file.txt" → WorkspaceUri(file_ref="/path/to/file.txt", mime_type=None, is_path=True)
|
||||
"""
|
||||
raw = uri.removeprefix("workspace://")
|
||||
mime_type: str | None = None
|
||||
if "#" in raw:
|
||||
raw, fragment = raw.split("#", 1)
|
||||
mime_type = fragment or None
|
||||
return WorkspaceUri(
|
||||
file_ref=raw,
|
||||
mime_type=mime_type,
|
||||
is_path=raw.startswith("/"),
|
||||
)
|
||||
|
||||
|
||||
# Return format options for store_media_file
|
||||
# - "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
|
||||
# - "for_external_api": Returns data URI (base64) - use when sending content to external APIs
|
||||
@@ -183,22 +214,20 @@ async def store_media_file(
|
||||
"This file type is only available in CoPilot sessions."
|
||||
)
|
||||
|
||||
# Parse workspace reference
|
||||
# workspace://abc123 - by file ID
|
||||
# workspace:///path/to/file.txt - by virtual path
|
||||
file_ref = file[12:] # Remove "workspace://"
|
||||
# Parse workspace reference (strips #mimeType fragment from file ID)
|
||||
ws = parse_workspace_uri(file)
|
||||
|
||||
if file_ref.startswith("/"):
|
||||
# Path reference
|
||||
workspace_content = await workspace_manager.read_file(file_ref)
|
||||
file_info = await workspace_manager.get_file_info_by_path(file_ref)
|
||||
if ws.is_path:
|
||||
# Path reference: workspace:///path/to/file.txt
|
||||
workspace_content = await workspace_manager.read_file(ws.file_ref)
|
||||
file_info = await workspace_manager.get_file_info_by_path(ws.file_ref)
|
||||
filename = sanitize_filename(
|
||||
file_info.name if file_info else f"{uuid.uuid4()}.bin"
|
||||
)
|
||||
else:
|
||||
# ID reference
|
||||
workspace_content = await workspace_manager.read_file_by_id(file_ref)
|
||||
file_info = await workspace_manager.get_file_info(file_ref)
|
||||
# ID reference: workspace://abc123 or workspace://abc123#video/mp4
|
||||
workspace_content = await workspace_manager.read_file_by_id(ws.file_ref)
|
||||
file_info = await workspace_manager.get_file_info(ws.file_ref)
|
||||
filename = sanitize_filename(
|
||||
file_info.name if file_info else f"{uuid.uuid4()}.bin"
|
||||
)
|
||||
@@ -334,7 +363,21 @@ async def store_media_file(
|
||||
|
||||
# Don't re-save if input was already from workspace
|
||||
if is_from_workspace:
|
||||
# Return original workspace reference
|
||||
# Return original workspace reference, ensuring MIME type fragment
|
||||
ws = parse_workspace_uri(file)
|
||||
if not ws.mime_type:
|
||||
# Add MIME type fragment if missing (older refs without it)
|
||||
try:
|
||||
if ws.is_path:
|
||||
info = await workspace_manager.get_file_info_by_path(
|
||||
ws.file_ref
|
||||
)
|
||||
else:
|
||||
info = await workspace_manager.get_file_info(ws.file_ref)
|
||||
if info:
|
||||
return MediaFileType(f"{file}#{info.mimeType}")
|
||||
except Exception:
|
||||
pass
|
||||
return MediaFileType(file)
|
||||
|
||||
# Save new content to workspace
|
||||
@@ -346,7 +389,7 @@ async def store_media_file(
|
||||
filename=filename,
|
||||
overwrite=True,
|
||||
)
|
||||
return MediaFileType(f"workspace://{file_record.id}")
|
||||
return MediaFileType(f"workspace://{file_record.id}#{file_record.mimeType}")
|
||||
|
||||
else:
|
||||
raise ValueError(f"Invalid return_format: {return_format}")
|
||||
|
||||
@@ -656,6 +656,7 @@ class Secrets(UpdateTrackingModel["Secrets"], BaseSettings):
|
||||
e2b_api_key: str = Field(default="", description="E2B API key")
|
||||
nvidia_api_key: str = Field(default="", description="Nvidia API key")
|
||||
mem0_api_key: str = Field(default="", description="Mem0 API key")
|
||||
elevenlabs_api_key: str = Field(default="", description="ElevenLabs API key")
|
||||
|
||||
linear_client_id: str = Field(default="", description="Linear client ID")
|
||||
linear_client_secret: str = Field(default="", description="Linear client secret")
|
||||
|
||||
@@ -22,6 +22,7 @@ from backend.data.workspace import (
|
||||
soft_delete_workspace_file,
|
||||
)
|
||||
from backend.util.settings import Config
|
||||
from backend.util.virus_scanner import scan_content_safe
|
||||
from backend.util.workspace_storage import compute_file_checksum, get_workspace_storage
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -187,6 +188,9 @@ class WorkspaceManager:
|
||||
f"{Config().max_file_size_mb}MB limit"
|
||||
)
|
||||
|
||||
# Virus scan content before persisting (defense in depth)
|
||||
await scan_content_safe(content, filename=filename)
|
||||
|
||||
# Determine path with session scoping
|
||||
if path is None:
|
||||
path = f"/{filename}"
|
||||
|
||||
138
autogpt_platform/backend/poetry.lock
generated
138
autogpt_platform/backend/poetry.lock
generated
@@ -825,6 +825,29 @@ files = [
|
||||
{file = "charset_normalizer-3.4.2.tar.gz", hash = "sha256:5baececa9ecba31eff645232d59845c07aa030f0c81ee70184a90d35099a0e63"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "claude-agent-sdk"
|
||||
version = "0.1.31"
|
||||
description = "Python SDK for Claude Code"
|
||||
optional = false
|
||||
python-versions = ">=3.10"
|
||||
groups = ["main"]
|
||||
files = [
|
||||
{file = "claude_agent_sdk-0.1.31-py3-none-macosx_11_0_arm64.whl", hash = "sha256:801bacfe4192782a7cc7b61b0d23a57f061c069993dd3dfa8109aa2e7050a530"},
|
||||
{file = "claude_agent_sdk-0.1.31-py3-none-manylinux_2_17_aarch64.whl", hash = "sha256:0b608e0cbfcedcb827427e6d16a73fe573d58e7f93e15f95435066feacbe6511"},
|
||||
{file = "claude_agent_sdk-0.1.31-py3-none-manylinux_2_17_x86_64.whl", hash = "sha256:d0cb30e026a22246e84d9237d23bb4df20be5146913a04d2802ddd37d4f8b8c9"},
|
||||
{file = "claude_agent_sdk-0.1.31-py3-none-win_amd64.whl", hash = "sha256:8ceca675c2770ad739bd1208362059a830e91c74efcf128045b5a7af14d36f2b"},
|
||||
{file = "claude_agent_sdk-0.1.31.tar.gz", hash = "sha256:b68c681083d7cc985dd3e48f73aabf459f056c1a7e1c5b9c47033c6af94da1a1"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
anyio = ">=4.0.0"
|
||||
mcp = ">=0.1.0"
|
||||
typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.11\""}
|
||||
|
||||
[package.extras]
|
||||
dev = ["anyio[trio] (>=4.0.0)", "mypy (>=1.0.0)", "pytest (>=7.0.0)", "pytest-asyncio (>=0.20.0)", "pytest-cov (>=4.0.0)", "ruff (>=0.1.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "cleo"
|
||||
version = "2.1.0"
|
||||
@@ -1169,6 +1192,29 @@ attrs = ">=21.3.0"
|
||||
e2b = ">=1.5.4,<2.0.0"
|
||||
httpx = ">=0.20.0,<1.0.0"
|
||||
|
||||
[[package]]
|
||||
name = "elevenlabs"
|
||||
version = "1.59.0"
|
||||
description = ""
|
||||
optional = false
|
||||
python-versions = "<4.0,>=3.8"
|
||||
groups = ["main"]
|
||||
files = [
|
||||
{file = "elevenlabs-1.59.0-py3-none-any.whl", hash = "sha256:468145db81a0bc867708b4a8619699f75583e9481b395ec1339d0b443da771ed"},
|
||||
{file = "elevenlabs-1.59.0.tar.gz", hash = "sha256:16e735bd594e86d415dd445d249c8cc28b09996cfd627fbc10102c0a84698859"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
httpx = ">=0.21.2"
|
||||
pydantic = ">=1.9.2"
|
||||
pydantic-core = ">=2.18.2,<3.0.0"
|
||||
requests = ">=2.20"
|
||||
typing_extensions = ">=4.0.0"
|
||||
websockets = ">=11.0"
|
||||
|
||||
[package.extras]
|
||||
pyaudio = ["pyaudio (>=0.2.14)"]
|
||||
|
||||
[[package]]
|
||||
name = "email-validator"
|
||||
version = "2.2.0"
|
||||
@@ -2320,6 +2366,18 @@ http2 = ["h2 (>=3,<5)"]
|
||||
socks = ["socksio (==1.*)"]
|
||||
zstd = ["zstandard (>=0.18.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "httpx-sse"
|
||||
version = "0.4.3"
|
||||
description = "Consume Server-Sent Event (SSE) messages with HTTPX."
|
||||
optional = false
|
||||
python-versions = ">=3.9"
|
||||
groups = ["main"]
|
||||
files = [
|
||||
{file = "httpx_sse-0.4.3-py3-none-any.whl", hash = "sha256:0ac1c9fe3c0afad2e0ebb25a934a59f4c7823b60792691f779fad2c5568830fc"},
|
||||
{file = "httpx_sse-0.4.3.tar.gz", hash = "sha256:9b1ed0127459a66014aec3c56bebd93da3c1bc8bb6618c8082039a44889a755d"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "huggingface-hub"
|
||||
version = "0.34.4"
|
||||
@@ -2981,6 +3039,39 @@ files = [
|
||||
{file = "mccabe-0.7.0.tar.gz", hash = "sha256:348e0240c33b60bbdf4e523192ef919f28cb2c3d7d5c7794f74009290f236325"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "mcp"
|
||||
version = "1.26.0"
|
||||
description = "Model Context Protocol SDK"
|
||||
optional = false
|
||||
python-versions = ">=3.10"
|
||||
groups = ["main"]
|
||||
files = [
|
||||
{file = "mcp-1.26.0-py3-none-any.whl", hash = "sha256:904a21c33c25aa98ddbeb47273033c435e595bbacfdb177f4bd87f6dceebe1ca"},
|
||||
{file = "mcp-1.26.0.tar.gz", hash = "sha256:db6e2ef491eecc1a0d93711a76f28dec2e05999f93afd48795da1c1137142c66"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
anyio = ">=4.5"
|
||||
httpx = ">=0.27.1"
|
||||
httpx-sse = ">=0.4"
|
||||
jsonschema = ">=4.20.0"
|
||||
pydantic = ">=2.11.0,<3.0.0"
|
||||
pydantic-settings = ">=2.5.2"
|
||||
pyjwt = {version = ">=2.10.1", extras = ["crypto"]}
|
||||
python-multipart = ">=0.0.9"
|
||||
pywin32 = {version = ">=310", markers = "sys_platform == \"win32\""}
|
||||
sse-starlette = ">=1.6.1"
|
||||
starlette = ">=0.27"
|
||||
typing-extensions = ">=4.9.0"
|
||||
typing-inspection = ">=0.4.1"
|
||||
uvicorn = {version = ">=0.31.1", markers = "sys_platform != \"emscripten\""}
|
||||
|
||||
[package.extras]
|
||||
cli = ["python-dotenv (>=1.0.0)", "typer (>=0.16.0)"]
|
||||
rich = ["rich (>=13.9.4)"]
|
||||
ws = ["websockets (>=15.0.1)"]
|
||||
|
||||
[[package]]
|
||||
name = "mdurl"
|
||||
version = "0.1.2"
|
||||
@@ -5210,7 +5301,7 @@ description = "Python for Window Extensions"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
groups = ["main"]
|
||||
markers = "platform_system == \"Windows\""
|
||||
markers = "sys_platform == \"win32\" or platform_system == \"Windows\""
|
||||
files = [
|
||||
{file = "pywin32-311-cp310-cp310-win32.whl", hash = "sha256:d03ff496d2a0cd4a5893504789d4a15399133fe82517455e78bad62efbb7f0a3"},
|
||||
{file = "pywin32-311-cp310-cp310-win_amd64.whl", hash = "sha256:797c2772017851984b97180b0bebe4b620bb86328e8a884bb626156295a63b3b"},
|
||||
@@ -6195,6 +6286,27 @@ postgresql-psycopgbinary = ["psycopg[binary] (>=3.0.7)"]
|
||||
pymysql = ["pymysql"]
|
||||
sqlcipher = ["sqlcipher3_binary"]
|
||||
|
||||
[[package]]
|
||||
name = "sse-starlette"
|
||||
version = "3.0.3"
|
||||
description = "SSE plugin for Starlette"
|
||||
optional = false
|
||||
python-versions = ">=3.9"
|
||||
groups = ["main"]
|
||||
files = [
|
||||
{file = "sse_starlette-3.0.3-py3-none-any.whl", hash = "sha256:af5bf5a6f3933df1d9c7f8539633dc8444ca6a97ab2e2a7cd3b6e431ac03a431"},
|
||||
{file = "sse_starlette-3.0.3.tar.gz", hash = "sha256:88cfb08747e16200ea990c8ca876b03910a23b547ab3bd764c0d8eb81019b971"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
anyio = ">=4.7.0"
|
||||
|
||||
[package.extras]
|
||||
daphne = ["daphne (>=4.2.0)"]
|
||||
examples = ["aiosqlite (>=0.21.0)", "fastapi (>=0.115.12)", "sqlalchemy[asyncio] (>=2.0.41)", "starlette (>=0.49.1)", "uvicorn (>=0.34.0)"]
|
||||
granian = ["granian (>=2.3.1)"]
|
||||
uvicorn = ["uvicorn (>=0.34.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "stagehand"
|
||||
version = "0.5.1"
|
||||
@@ -7361,6 +7473,28 @@ files = [
|
||||
defusedxml = ">=0.7.1,<0.8.0"
|
||||
requests = "*"
|
||||
|
||||
[[package]]
|
||||
name = "yt-dlp"
|
||||
version = "2025.12.8"
|
||||
description = "A feature-rich command-line audio/video downloader"
|
||||
optional = false
|
||||
python-versions = ">=3.10"
|
||||
groups = ["main"]
|
||||
files = [
|
||||
{file = "yt_dlp-2025.12.8-py3-none-any.whl", hash = "sha256:36e2584342e409cfbfa0b5e61448a1c5189e345cf4564294456ee509e7d3e065"},
|
||||
{file = "yt_dlp-2025.12.8.tar.gz", hash = "sha256:b773c81bb6b71cb2c111cfb859f453c7a71cf2ef44eff234ff155877184c3e4f"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
build = ["build", "hatchling (>=1.27.0)", "pip", "setuptools (>=71.0.2)", "wheel"]
|
||||
curl-cffi = ["curl-cffi (>=0.5.10,<0.6.dev0 || >=0.10.dev0,<0.14) ; implementation_name == \"cpython\""]
|
||||
default = ["brotli ; implementation_name == \"cpython\"", "brotlicffi ; implementation_name != \"cpython\"", "certifi", "mutagen", "pycryptodomex", "requests (>=2.32.2,<3)", "urllib3 (>=2.0.2,<3)", "websockets (>=13.0)", "yt-dlp-ejs (==0.3.2)"]
|
||||
dev = ["autopep8 (>=2.0,<3.0)", "pre-commit", "pytest (>=8.1,<9.0)", "pytest-rerunfailures (>=14.0,<15.0)", "ruff (>=0.14.0,<0.15.0)"]
|
||||
pyinstaller = ["pyinstaller (>=6.17.0)"]
|
||||
secretstorage = ["cffi", "secretstorage"]
|
||||
static-analysis = ["autopep8 (>=2.0,<3.0)", "ruff (>=0.14.0,<0.15.0)"]
|
||||
test = ["pytest (>=8.1,<9.0)", "pytest-rerunfailures (>=14.0,<15.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "zerobouncesdk"
|
||||
version = "1.1.2"
|
||||
@@ -7512,4 +7646,4 @@ cffi = ["cffi (>=1.11)"]
|
||||
[metadata]
|
||||
lock-version = "2.1"
|
||||
python-versions = ">=3.10,<3.14"
|
||||
content-hash = "ee5742dc1a9df50dfc06d4b26a1682cbb2b25cab6b79ce5625ec272f93e4f4bf"
|
||||
content-hash = "f79a5f01baf459195d6fd06be2515b83c60cf2aef11a16530842b47febb98a23"
|
||||
|
||||
@@ -13,6 +13,7 @@ aio-pika = "^9.5.5"
|
||||
aiohttp = "^3.10.0"
|
||||
aiodns = "^3.5.0"
|
||||
anthropic = "^0.59.0"
|
||||
claude-agent-sdk = "^0.1.0"
|
||||
apscheduler = "^3.11.1"
|
||||
autogpt-libs = { path = "../autogpt_libs", develop = true }
|
||||
bleach = { extras = ["css"], version = "^6.2.0" }
|
||||
@@ -20,6 +21,7 @@ click = "^8.2.0"
|
||||
cryptography = "^45.0"
|
||||
discord-py = "^2.5.2"
|
||||
e2b-code-interpreter = "^1.5.2"
|
||||
elevenlabs = "^1.50.0"
|
||||
fastapi = "^0.116.1"
|
||||
feedparser = "^6.0.11"
|
||||
flake8 = "^7.3.0"
|
||||
@@ -71,6 +73,7 @@ tweepy = "^4.16.0"
|
||||
uvicorn = { extras = ["standard"], version = "^0.35.0" }
|
||||
websockets = "^15.0"
|
||||
youtube-transcript-api = "^1.2.1"
|
||||
yt-dlp = "2025.12.08"
|
||||
zerobouncesdk = "^1.1.2"
|
||||
# NOTE: please insert new dependencies in their alphabetical location
|
||||
pytest-snapshot = "^0.9.0"
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
"credentials_input_schema": {
|
||||
"properties": {},
|
||||
"required": [],
|
||||
"title": "TestGraphCredentialsInputSchema",
|
||||
"type": "object"
|
||||
},
|
||||
"description": "A test graph",
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
"credentials_input_schema": {
|
||||
"properties": {},
|
||||
"required": [],
|
||||
"title": "TestGraphCredentialsInputSchema",
|
||||
"type": "object"
|
||||
},
|
||||
"description": "A test graph",
|
||||
@@ -26,6 +27,7 @@
|
||||
"type": "object"
|
||||
},
|
||||
"recommended_schedule_cron": null,
|
||||
"sub_graphs": [],
|
||||
"trigger_setup_info": null,
|
||||
"user_id": "3e53486c-cf57-477e-ba2a-cb02dc828e1a",
|
||||
"version": 1
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import { CredentialsMetaInput } from "@/app/api/__generated__/models/credentialsMetaInput";
|
||||
import { GraphModel } from "@/app/api/__generated__/models/graphModel";
|
||||
import { GraphMeta } from "@/app/api/__generated__/models/graphMeta";
|
||||
import { CredentialsInput } from "@/components/contextual/CredentialsInput/CredentialsInput";
|
||||
import { useState } from "react";
|
||||
import { getSchemaDefaultCredentials } from "../../helpers";
|
||||
@@ -9,7 +9,7 @@ type Credential = CredentialsMetaInput | undefined;
|
||||
type Credentials = Record<string, Credential>;
|
||||
|
||||
type Props = {
|
||||
agent: GraphModel | null;
|
||||
agent: GraphMeta | null;
|
||||
siblingInputs?: Record<string, any>;
|
||||
onCredentialsChange: (
|
||||
credentials: Record<string, CredentialsMetaInput>,
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
import { CredentialsMetaInput } from "@/app/api/__generated__/models/credentialsMetaInput";
|
||||
import { GraphModel } from "@/app/api/__generated__/models/graphModel";
|
||||
import { GraphMeta } from "@/app/api/__generated__/models/graphMeta";
|
||||
import { BlockIOCredentialsSubSchema } from "@/lib/autogpt-server-api/types";
|
||||
|
||||
export function getCredentialFields(
|
||||
agent: GraphModel | null,
|
||||
agent: GraphMeta | null,
|
||||
): AgentCredentialsFields {
|
||||
if (!agent) return {};
|
||||
|
||||
|
||||
@@ -3,10 +3,10 @@ import type {
|
||||
CredentialsMetaInput,
|
||||
} from "@/lib/autogpt-server-api/types";
|
||||
import type { InputValues } from "./types";
|
||||
import { GraphModel } from "@/app/api/__generated__/models/graphModel";
|
||||
import { GraphMeta } from "@/app/api/__generated__/models/graphMeta";
|
||||
|
||||
export function computeInitialAgentInputs(
|
||||
agent: GraphModel | null,
|
||||
agent: GraphMeta | null,
|
||||
existingInputs?: InputValues | null,
|
||||
): InputValues {
|
||||
const properties = agent?.input_schema?.properties || {};
|
||||
@@ -29,7 +29,7 @@ export function computeInitialAgentInputs(
|
||||
}
|
||||
|
||||
type IsRunDisabledParams = {
|
||||
agent: GraphModel | null;
|
||||
agent: GraphMeta | null;
|
||||
isRunning: boolean;
|
||||
agentInputs: InputValues | null | undefined;
|
||||
};
|
||||
|
||||
@@ -30,8 +30,6 @@ import {
|
||||
} from "@/components/atoms/Tooltip/BaseTooltip";
|
||||
import { GraphMeta } from "@/lib/autogpt-server-api";
|
||||
import jaro from "jaro-winkler";
|
||||
import { getV1GetSpecificGraph } from "@/app/api/__generated__/endpoints/graphs/graphs";
|
||||
import { okData } from "@/app/api/helpers";
|
||||
|
||||
type _Block = Omit<Block, "inputSchema" | "outputSchema"> & {
|
||||
uiKey?: string;
|
||||
@@ -109,8 +107,6 @@ export function BlocksControl({
|
||||
.filter((b) => b.uiType !== BlockUIType.AGENT)
|
||||
.sort((a, b) => a.name.localeCompare(b.name));
|
||||
|
||||
// Agent blocks are created from GraphMeta which doesn't include schemas.
|
||||
// Schemas will be fetched on-demand when the block is actually added.
|
||||
const agentBlockList = flows
|
||||
.map((flow): _Block => {
|
||||
return {
|
||||
@@ -120,9 +116,8 @@ export function BlocksControl({
|
||||
`Ver.${flow.version}` +
|
||||
(flow.description ? ` | ${flow.description}` : ""),
|
||||
categories: [{ category: "AGENT", description: "" }],
|
||||
// Empty schemas - will be populated when block is added
|
||||
inputSchema: { type: "object", properties: {} },
|
||||
outputSchema: { type: "object", properties: {} },
|
||||
inputSchema: flow.input_schema,
|
||||
outputSchema: flow.output_schema,
|
||||
staticOutput: false,
|
||||
uiType: BlockUIType.AGENT,
|
||||
costs: [],
|
||||
@@ -130,7 +125,8 @@ export function BlocksControl({
|
||||
hardcodedValues: {
|
||||
graph_id: flow.id,
|
||||
graph_version: flow.version,
|
||||
// Schemas will be fetched on-demand when block is added
|
||||
input_schema: flow.input_schema,
|
||||
output_schema: flow.output_schema,
|
||||
},
|
||||
};
|
||||
})
|
||||
@@ -186,37 +182,6 @@ export function BlocksControl({
|
||||
setSelectedCategory(null);
|
||||
}, []);
|
||||
|
||||
// Handler to add a block, fetching graph data on-demand for agent blocks
|
||||
const handleAddBlock = useCallback(
|
||||
async (block: _Block & { notAvailable: string | null }) => {
|
||||
if (block.notAvailable) return;
|
||||
|
||||
// For agent blocks, fetch the full graph to get schemas
|
||||
if (block.uiType === BlockUIType.AGENT && block.hardcodedValues) {
|
||||
const graphID = block.hardcodedValues.graph_id as string;
|
||||
const graphVersion = block.hardcodedValues.graph_version as number;
|
||||
const graphData = okData(
|
||||
await getV1GetSpecificGraph(graphID, { version: graphVersion }),
|
||||
);
|
||||
|
||||
if (graphData) {
|
||||
addBlock(block.id, block.name, {
|
||||
...block.hardcodedValues,
|
||||
input_schema: graphData.input_schema,
|
||||
output_schema: graphData.output_schema,
|
||||
});
|
||||
} else {
|
||||
// Fallback: add without schemas (will be incomplete)
|
||||
console.error("Failed to fetch graph data for agent block");
|
||||
addBlock(block.id, block.name, block.hardcodedValues || {});
|
||||
}
|
||||
} else {
|
||||
addBlock(block.id, block.name, block.hardcodedValues || {});
|
||||
}
|
||||
},
|
||||
[addBlock],
|
||||
);
|
||||
|
||||
// Extract unique categories from blocks
|
||||
const categories = useMemo(() => {
|
||||
return Array.from(
|
||||
@@ -338,7 +303,10 @@ export function BlocksControl({
|
||||
}),
|
||||
);
|
||||
}}
|
||||
onClick={() => handleAddBlock(block)}
|
||||
onClick={() =>
|
||||
!block.notAvailable &&
|
||||
addBlock(block.id, block.name, block?.hardcodedValues || {})
|
||||
}
|
||||
title={block.notAvailable ?? undefined}
|
||||
>
|
||||
<div
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import { beautifyString } from "@/lib/utils";
|
||||
import { Clipboard, Maximize2 } from "lucide-react";
|
||||
import React, { useState } from "react";
|
||||
import React, { useMemo, useState } from "react";
|
||||
import { Button } from "../../../../../components/__legacy__/ui/button";
|
||||
import { ContentRenderer } from "../../../../../components/__legacy__/ui/render";
|
||||
import {
|
||||
@@ -11,6 +11,12 @@ import {
|
||||
TableHeader,
|
||||
TableRow,
|
||||
} from "../../../../../components/__legacy__/ui/table";
|
||||
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
|
||||
import {
|
||||
globalRegistry,
|
||||
OutputItem,
|
||||
} from "@/components/contextual/OutputRenderers";
|
||||
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
|
||||
import { useToast } from "../../../../../components/molecules/Toast/use-toast";
|
||||
import ExpandableOutputDialog from "./ExpandableOutputDialog";
|
||||
|
||||
@@ -26,6 +32,9 @@ export default function DataTable({
|
||||
data,
|
||||
}: DataTableProps) {
|
||||
const { toast } = useToast();
|
||||
const enableEnhancedOutputHandling = useGetFlag(
|
||||
Flag.ENABLE_ENHANCED_OUTPUT_HANDLING,
|
||||
);
|
||||
const [expandedDialog, setExpandedDialog] = useState<{
|
||||
isOpen: boolean;
|
||||
execId: string;
|
||||
@@ -33,6 +42,15 @@ export default function DataTable({
|
||||
data: any[];
|
||||
} | null>(null);
|
||||
|
||||
// Prepare renderers for each item when enhanced mode is enabled
|
||||
const getItemRenderer = useMemo(() => {
|
||||
if (!enableEnhancedOutputHandling) return null;
|
||||
return (item: unknown) => {
|
||||
const metadata: OutputMetadata = {};
|
||||
return globalRegistry.getRenderer(item, metadata);
|
||||
};
|
||||
}, [enableEnhancedOutputHandling]);
|
||||
|
||||
const copyData = (pin: string, data: string) => {
|
||||
navigator.clipboard.writeText(data).then(() => {
|
||||
toast({
|
||||
@@ -102,15 +120,31 @@ export default function DataTable({
|
||||
<Clipboard size={18} />
|
||||
</Button>
|
||||
</div>
|
||||
{value.map((item, index) => (
|
||||
<React.Fragment key={index}>
|
||||
<ContentRenderer
|
||||
value={item}
|
||||
truncateLongData={truncateLongData}
|
||||
/>
|
||||
{index < value.length - 1 && ", "}
|
||||
</React.Fragment>
|
||||
))}
|
||||
{value.map((item, index) => {
|
||||
const renderer = getItemRenderer?.(item);
|
||||
if (enableEnhancedOutputHandling && renderer) {
|
||||
const metadata: OutputMetadata = {};
|
||||
return (
|
||||
<React.Fragment key={index}>
|
||||
<OutputItem
|
||||
value={item}
|
||||
metadata={metadata}
|
||||
renderer={renderer}
|
||||
/>
|
||||
{index < value.length - 1 && ", "}
|
||||
</React.Fragment>
|
||||
);
|
||||
}
|
||||
return (
|
||||
<React.Fragment key={index}>
|
||||
<ContentRenderer
|
||||
value={item}
|
||||
truncateLongData={truncateLongData}
|
||||
/>
|
||||
{index < value.length - 1 && ", "}
|
||||
</React.Fragment>
|
||||
);
|
||||
})}
|
||||
</div>
|
||||
</TableCell>
|
||||
</TableRow>
|
||||
|
||||
@@ -1,8 +1,14 @@
|
||||
import React, { useContext, useState } from "react";
|
||||
import React, { useContext, useMemo, useState } from "react";
|
||||
import { Button } from "@/components/__legacy__/ui/button";
|
||||
import { Maximize2 } from "lucide-react";
|
||||
import * as Separator from "@radix-ui/react-separator";
|
||||
import { ContentRenderer } from "@/components/__legacy__/ui/render";
|
||||
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
|
||||
import {
|
||||
globalRegistry,
|
||||
OutputItem,
|
||||
} from "@/components/contextual/OutputRenderers";
|
||||
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
|
||||
|
||||
import { beautifyString } from "@/lib/utils";
|
||||
|
||||
@@ -21,6 +27,9 @@ export default function NodeOutputs({
|
||||
data,
|
||||
}: NodeOutputsProps) {
|
||||
const builderContext = useContext(BuilderContext);
|
||||
const enableEnhancedOutputHandling = useGetFlag(
|
||||
Flag.ENABLE_ENHANCED_OUTPUT_HANDLING,
|
||||
);
|
||||
|
||||
const [expandedDialog, setExpandedDialog] = useState<{
|
||||
isOpen: boolean;
|
||||
@@ -37,6 +46,15 @@ export default function NodeOutputs({
|
||||
|
||||
const { getNodeTitle } = builderContext;
|
||||
|
||||
// Prepare renderers for each item when enhanced mode is enabled
|
||||
const getItemRenderer = useMemo(() => {
|
||||
if (!enableEnhancedOutputHandling) return null;
|
||||
return (item: unknown) => {
|
||||
const metadata: OutputMetadata = {};
|
||||
return globalRegistry.getRenderer(item, metadata);
|
||||
};
|
||||
}, [enableEnhancedOutputHandling]);
|
||||
|
||||
const getBeautifiedPinName = (pin: string) => {
|
||||
if (!pin.startsWith("tools_^_")) {
|
||||
return beautifyString(pin);
|
||||
@@ -87,15 +105,31 @@ export default function NodeOutputs({
|
||||
<div className="mt-2">
|
||||
<strong className="mr-2">Data:</strong>
|
||||
<div className="mt-1">
|
||||
{dataArray.slice(0, 10).map((item, index) => (
|
||||
<React.Fragment key={index}>
|
||||
<ContentRenderer
|
||||
value={item}
|
||||
truncateLongData={truncateLongData}
|
||||
/>
|
||||
{index < Math.min(dataArray.length, 10) - 1 && ", "}
|
||||
</React.Fragment>
|
||||
))}
|
||||
{dataArray.slice(0, 10).map((item, index) => {
|
||||
const renderer = getItemRenderer?.(item);
|
||||
if (enableEnhancedOutputHandling && renderer) {
|
||||
const metadata: OutputMetadata = {};
|
||||
return (
|
||||
<React.Fragment key={index}>
|
||||
<OutputItem
|
||||
value={item}
|
||||
metadata={metadata}
|
||||
renderer={renderer}
|
||||
/>
|
||||
{index < Math.min(dataArray.length, 10) - 1 && ", "}
|
||||
</React.Fragment>
|
||||
);
|
||||
}
|
||||
return (
|
||||
<React.Fragment key={index}>
|
||||
<ContentRenderer
|
||||
value={item}
|
||||
truncateLongData={truncateLongData}
|
||||
/>
|
||||
{index < Math.min(dataArray.length, 10) - 1 && ", "}
|
||||
</React.Fragment>
|
||||
);
|
||||
})}
|
||||
{dataArray.length > 10 && (
|
||||
<span style={{ color: "#888" }}>
|
||||
<br />
|
||||
|
||||
@@ -4,13 +4,13 @@ import { AgentRunDraftView } from "@/app/(platform)/library/agents/[id]/componen
|
||||
import { Dialog } from "@/components/molecules/Dialog/Dialog";
|
||||
import type {
|
||||
CredentialsMetaInput,
|
||||
Graph,
|
||||
GraphMeta,
|
||||
} from "@/lib/autogpt-server-api/types";
|
||||
|
||||
interface RunInputDialogProps {
|
||||
isOpen: boolean;
|
||||
doClose: () => void;
|
||||
graph: Graph;
|
||||
graph: GraphMeta;
|
||||
doRun?: (
|
||||
inputs: Record<string, any>,
|
||||
credentialsInputs: Record<string, CredentialsMetaInput>,
|
||||
|
||||
@@ -9,13 +9,13 @@ import { CustomNodeData } from "@/app/(platform)/build/components/legacy-builder
|
||||
import {
|
||||
BlockUIType,
|
||||
CredentialsMetaInput,
|
||||
Graph,
|
||||
GraphMeta,
|
||||
} from "@/lib/autogpt-server-api/types";
|
||||
import RunnerOutputUI, { OutputNodeInfo } from "./RunnerOutputUI";
|
||||
import { RunnerInputDialog } from "./RunnerInputUI";
|
||||
|
||||
interface RunnerUIWrapperProps {
|
||||
graph: Graph;
|
||||
graph: GraphMeta;
|
||||
nodes: Node<CustomNodeData>[];
|
||||
graphExecutionError?: string | null;
|
||||
saveAndRun: (
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import { GraphInputSchema } from "@/lib/autogpt-server-api";
|
||||
import { GraphLike, IncompatibilityInfo } from "./types";
|
||||
import { GraphMetaLike, IncompatibilityInfo } from "./types";
|
||||
|
||||
// Helper type for schema properties - the generated types are too loose
|
||||
type SchemaProperties = Record<string, GraphInputSchema["properties"][string]>;
|
||||
@@ -36,7 +36,7 @@ export function getSchemaRequired(schema: unknown): SchemaRequired {
|
||||
*/
|
||||
export function createUpdatedAgentNodeInputs(
|
||||
currentInputs: Record<string, unknown>,
|
||||
latestSubGraphVersion: GraphLike,
|
||||
latestSubGraphVersion: GraphMetaLike,
|
||||
): Record<string, unknown> {
|
||||
return {
|
||||
...currentInputs,
|
||||
|
||||
@@ -1,11 +1,7 @@
|
||||
import type {
|
||||
Graph as LegacyGraph,
|
||||
GraphMeta as LegacyGraphMeta,
|
||||
} from "@/lib/autogpt-server-api";
|
||||
import type { GraphModel as GeneratedGraph } from "@/app/api/__generated__/models/graphModel";
|
||||
import type { GraphMeta as LegacyGraphMeta } from "@/lib/autogpt-server-api";
|
||||
import type { GraphMeta as GeneratedGraphMeta } from "@/app/api/__generated__/models/graphMeta";
|
||||
|
||||
export type SubAgentUpdateInfo<T extends GraphLike = GraphLike> = {
|
||||
export type SubAgentUpdateInfo<T extends GraphMetaLike = GraphMetaLike> = {
|
||||
hasUpdate: boolean;
|
||||
currentVersion: number;
|
||||
latestVersion: number;
|
||||
@@ -14,10 +10,7 @@ export type SubAgentUpdateInfo<T extends GraphLike = GraphLike> = {
|
||||
incompatibilities: IncompatibilityInfo | null;
|
||||
};
|
||||
|
||||
// Union type for Graph (with schemas) that works with both legacy and new builder
|
||||
export type GraphLike = LegacyGraph | GeneratedGraph;
|
||||
|
||||
// Union type for GraphMeta (without schemas) for version detection
|
||||
// Union type for GraphMeta that works with both legacy and new builder
|
||||
export type GraphMetaLike = LegacyGraphMeta | GeneratedGraphMeta;
|
||||
|
||||
export type IncompatibilityInfo = {
|
||||
|
||||
@@ -1,11 +1,5 @@
|
||||
import { useMemo } from "react";
|
||||
import type {
|
||||
GraphInputSchema,
|
||||
GraphOutputSchema,
|
||||
} from "@/lib/autogpt-server-api";
|
||||
import type { GraphModel } from "@/app/api/__generated__/models/graphModel";
|
||||
import { useGetV1GetSpecificGraph } from "@/app/api/__generated__/endpoints/graphs/graphs";
|
||||
import { okData } from "@/app/api/helpers";
|
||||
import { GraphInputSchema, GraphOutputSchema } from "@/lib/autogpt-server-api";
|
||||
import { getEffectiveType } from "@/lib/utils";
|
||||
import { EdgeLike, getSchemaProperties, getSchemaRequired } from "./helpers";
|
||||
import {
|
||||
@@ -17,38 +11,26 @@ import {
|
||||
/**
|
||||
* Checks if a newer version of a sub-agent is available and determines compatibility
|
||||
*/
|
||||
export function useSubAgentUpdate(
|
||||
export function useSubAgentUpdate<T extends GraphMetaLike>(
|
||||
nodeID: string,
|
||||
graphID: string | undefined,
|
||||
graphVersion: number | undefined,
|
||||
currentInputSchema: GraphInputSchema | undefined,
|
||||
currentOutputSchema: GraphOutputSchema | undefined,
|
||||
connections: EdgeLike[],
|
||||
availableGraphs: GraphMetaLike[],
|
||||
): SubAgentUpdateInfo<GraphModel> {
|
||||
availableGraphs: T[],
|
||||
): SubAgentUpdateInfo<T> {
|
||||
// Find the latest version of the same graph
|
||||
const latestGraphInfo = useMemo(() => {
|
||||
const latestGraph = useMemo(() => {
|
||||
if (!graphID) return null;
|
||||
return availableGraphs.find((graph) => graph.id === graphID) || null;
|
||||
}, [graphID, availableGraphs]);
|
||||
|
||||
// Check if there's a newer version available
|
||||
// Check if there's an update available
|
||||
const hasUpdate = useMemo(() => {
|
||||
if (!latestGraphInfo || graphVersion === undefined) return false;
|
||||
return latestGraphInfo.version! > graphVersion;
|
||||
}, [latestGraphInfo, graphVersion]);
|
||||
|
||||
// Fetch full graph IF an update is detected
|
||||
const { data: latestGraph } = useGetV1GetSpecificGraph(
|
||||
graphID ?? "",
|
||||
{ version: latestGraphInfo?.version },
|
||||
{
|
||||
query: {
|
||||
enabled: hasUpdate && !!graphID && !!latestGraphInfo?.version,
|
||||
select: okData,
|
||||
},
|
||||
},
|
||||
);
|
||||
if (!latestGraph || graphVersion === undefined) return false;
|
||||
return latestGraph.version! > graphVersion;
|
||||
}, [latestGraph, graphVersion]);
|
||||
|
||||
// Get connected input and output handles for this specific node
|
||||
const connectedHandles = useMemo(() => {
|
||||
@@ -170,8 +152,8 @@ export function useSubAgentUpdate(
|
||||
return {
|
||||
hasUpdate,
|
||||
currentVersion: graphVersion || 0,
|
||||
latestVersion: latestGraphInfo?.version || 0,
|
||||
latestGraph: latestGraph || null,
|
||||
latestVersion: latestGraph?.version || 0,
|
||||
latestGraph,
|
||||
isCompatible: compatibilityResult.isCompatible,
|
||||
incompatibilities: compatibilityResult.incompatibilities,
|
||||
};
|
||||
|
||||
@@ -18,7 +18,7 @@ interface GraphStore {
|
||||
outputSchema: Record<string, any> | null,
|
||||
) => void;
|
||||
|
||||
// Available graphs; used for sub-graph updated version detection
|
||||
// Available graphs; used for sub-graph updates
|
||||
availableSubGraphs: GraphMeta[];
|
||||
setAvailableSubGraphs: (graphs: GraphMeta[]) => void;
|
||||
|
||||
|
||||
@@ -10,8 +10,8 @@ import React, {
|
||||
import {
|
||||
CredentialsMetaInput,
|
||||
CredentialsType,
|
||||
Graph,
|
||||
GraphExecutionID,
|
||||
GraphMeta,
|
||||
LibraryAgentPreset,
|
||||
LibraryAgentPresetID,
|
||||
LibraryAgentPresetUpdatable,
|
||||
@@ -69,7 +69,7 @@ export function AgentRunDraftView({
|
||||
className,
|
||||
recommendedScheduleCron,
|
||||
}: {
|
||||
graph: Graph;
|
||||
graph: GraphMeta;
|
||||
agentActions?: ButtonAction[];
|
||||
recommendedScheduleCron?: string | null;
|
||||
doRun?: (
|
||||
|
||||
@@ -2,8 +2,8 @@
|
||||
import React, { useCallback, useMemo } from "react";
|
||||
|
||||
import {
|
||||
Graph,
|
||||
GraphExecutionID,
|
||||
GraphMeta,
|
||||
Schedule,
|
||||
ScheduleID,
|
||||
} from "@/lib/autogpt-server-api";
|
||||
@@ -35,7 +35,7 @@ export function AgentScheduleDetailsView({
|
||||
onForcedRun,
|
||||
doDeleteSchedule,
|
||||
}: {
|
||||
graph: Graph;
|
||||
graph: GraphMeta;
|
||||
schedule: Schedule;
|
||||
agentActions: ButtonAction[];
|
||||
onForcedRun: (runID: GraphExecutionID) => void;
|
||||
|
||||
@@ -5629,9 +5629,7 @@
|
||||
"description": "Successful Response",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/GraphModelWithoutNodes"
|
||||
}
|
||||
"schema": { "$ref": "#/components/schemas/GraphMeta" }
|
||||
}
|
||||
}
|
||||
},
|
||||
@@ -6497,6 +6495,18 @@
|
||||
"anyOf": [{ "type": "string" }, { "type": "null" }],
|
||||
"title": "Recommended Schedule Cron"
|
||||
},
|
||||
"nodes": {
|
||||
"items": { "$ref": "#/components/schemas/Node" },
|
||||
"type": "array",
|
||||
"title": "Nodes",
|
||||
"default": []
|
||||
},
|
||||
"links": {
|
||||
"items": { "$ref": "#/components/schemas/Link" },
|
||||
"type": "array",
|
||||
"title": "Links",
|
||||
"default": []
|
||||
},
|
||||
"forked_from_id": {
|
||||
"anyOf": [{ "type": "string" }, { "type": "null" }],
|
||||
"title": "Forked From Id"
|
||||
@@ -6504,22 +6514,11 @@
|
||||
"forked_from_version": {
|
||||
"anyOf": [{ "type": "integer" }, { "type": "null" }],
|
||||
"title": "Forked From Version"
|
||||
},
|
||||
"nodes": {
|
||||
"items": { "$ref": "#/components/schemas/Node" },
|
||||
"type": "array",
|
||||
"title": "Nodes"
|
||||
},
|
||||
"links": {
|
||||
"items": { "$ref": "#/components/schemas/Link" },
|
||||
"type": "array",
|
||||
"title": "Links"
|
||||
}
|
||||
},
|
||||
"type": "object",
|
||||
"required": ["name", "description"],
|
||||
"title": "BaseGraph",
|
||||
"description": "Graph with nodes, links, and computed I/O schema fields.\n\nUsed to represent sub-graphs within a `Graph`. Contains the full graph\nstructure including nodes and links, plus computed fields for schemas\nand trigger info. Does NOT include user_id or created_at (see GraphModel)."
|
||||
"title": "BaseGraph"
|
||||
},
|
||||
"BaseGraph-Output": {
|
||||
"properties": {
|
||||
@@ -6540,6 +6539,18 @@
|
||||
"anyOf": [{ "type": "string" }, { "type": "null" }],
|
||||
"title": "Recommended Schedule Cron"
|
||||
},
|
||||
"nodes": {
|
||||
"items": { "$ref": "#/components/schemas/Node" },
|
||||
"type": "array",
|
||||
"title": "Nodes",
|
||||
"default": []
|
||||
},
|
||||
"links": {
|
||||
"items": { "$ref": "#/components/schemas/Link" },
|
||||
"type": "array",
|
||||
"title": "Links",
|
||||
"default": []
|
||||
},
|
||||
"forked_from_id": {
|
||||
"anyOf": [{ "type": "string" }, { "type": "null" }],
|
||||
"title": "Forked From Id"
|
||||
@@ -6548,16 +6559,6 @@
|
||||
"anyOf": [{ "type": "integer" }, { "type": "null" }],
|
||||
"title": "Forked From Version"
|
||||
},
|
||||
"nodes": {
|
||||
"items": { "$ref": "#/components/schemas/Node" },
|
||||
"type": "array",
|
||||
"title": "Nodes"
|
||||
},
|
||||
"links": {
|
||||
"items": { "$ref": "#/components/schemas/Link" },
|
||||
"type": "array",
|
||||
"title": "Links"
|
||||
},
|
||||
"input_schema": {
|
||||
"additionalProperties": true,
|
||||
"type": "object",
|
||||
@@ -6604,8 +6605,7 @@
|
||||
"has_sensitive_action",
|
||||
"trigger_setup_info"
|
||||
],
|
||||
"title": "BaseGraph",
|
||||
"description": "Graph with nodes, links, and computed I/O schema fields.\n\nUsed to represent sub-graphs within a `Graph`. Contains the full graph\nstructure including nodes and links, plus computed fields for schemas\nand trigger info. Does NOT include user_id or created_at (see GraphModel)."
|
||||
"title": "BaseGraph"
|
||||
},
|
||||
"BlockCategoryResponse": {
|
||||
"properties": {
|
||||
@@ -7399,6 +7399,18 @@
|
||||
"anyOf": [{ "type": "string" }, { "type": "null" }],
|
||||
"title": "Recommended Schedule Cron"
|
||||
},
|
||||
"nodes": {
|
||||
"items": { "$ref": "#/components/schemas/Node" },
|
||||
"type": "array",
|
||||
"title": "Nodes",
|
||||
"default": []
|
||||
},
|
||||
"links": {
|
||||
"items": { "$ref": "#/components/schemas/Link" },
|
||||
"type": "array",
|
||||
"title": "Links",
|
||||
"default": []
|
||||
},
|
||||
"forked_from_id": {
|
||||
"anyOf": [{ "type": "string" }, { "type": "null" }],
|
||||
"title": "Forked From Id"
|
||||
@@ -7407,26 +7419,16 @@
|
||||
"anyOf": [{ "type": "integer" }, { "type": "null" }],
|
||||
"title": "Forked From Version"
|
||||
},
|
||||
"nodes": {
|
||||
"items": { "$ref": "#/components/schemas/Node" },
|
||||
"type": "array",
|
||||
"title": "Nodes"
|
||||
},
|
||||
"links": {
|
||||
"items": { "$ref": "#/components/schemas/Link" },
|
||||
"type": "array",
|
||||
"title": "Links"
|
||||
},
|
||||
"sub_graphs": {
|
||||
"items": { "$ref": "#/components/schemas/BaseGraph-Input" },
|
||||
"type": "array",
|
||||
"title": "Sub Graphs"
|
||||
"title": "Sub Graphs",
|
||||
"default": []
|
||||
}
|
||||
},
|
||||
"type": "object",
|
||||
"required": ["name", "description"],
|
||||
"title": "Graph",
|
||||
"description": "Creatable graph model used in API create/update endpoints."
|
||||
"title": "Graph"
|
||||
},
|
||||
"GraphExecution": {
|
||||
"properties": {
|
||||
@@ -7778,7 +7780,7 @@
|
||||
"GraphMeta": {
|
||||
"properties": {
|
||||
"id": { "type": "string", "title": "Id" },
|
||||
"version": { "type": "integer", "title": "Version" },
|
||||
"version": { "type": "integer", "title": "Version", "default": 1 },
|
||||
"is_active": {
|
||||
"type": "boolean",
|
||||
"title": "Is Active",
|
||||
@@ -7802,24 +7804,68 @@
|
||||
"anyOf": [{ "type": "integer" }, { "type": "null" }],
|
||||
"title": "Forked From Version"
|
||||
},
|
||||
"sub_graphs": {
|
||||
"items": { "$ref": "#/components/schemas/BaseGraph-Output" },
|
||||
"type": "array",
|
||||
"title": "Sub Graphs",
|
||||
"default": []
|
||||
},
|
||||
"user_id": { "type": "string", "title": "User Id" },
|
||||
"created_at": {
|
||||
"type": "string",
|
||||
"format": "date-time",
|
||||
"title": "Created At"
|
||||
"input_schema": {
|
||||
"additionalProperties": true,
|
||||
"type": "object",
|
||||
"title": "Input Schema",
|
||||
"readOnly": true
|
||||
},
|
||||
"output_schema": {
|
||||
"additionalProperties": true,
|
||||
"type": "object",
|
||||
"title": "Output Schema",
|
||||
"readOnly": true
|
||||
},
|
||||
"has_external_trigger": {
|
||||
"type": "boolean",
|
||||
"title": "Has External Trigger",
|
||||
"readOnly": true
|
||||
},
|
||||
"has_human_in_the_loop": {
|
||||
"type": "boolean",
|
||||
"title": "Has Human In The Loop",
|
||||
"readOnly": true
|
||||
},
|
||||
"has_sensitive_action": {
|
||||
"type": "boolean",
|
||||
"title": "Has Sensitive Action",
|
||||
"readOnly": true
|
||||
},
|
||||
"trigger_setup_info": {
|
||||
"anyOf": [
|
||||
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
|
||||
{ "type": "null" }
|
||||
],
|
||||
"readOnly": true
|
||||
},
|
||||
"credentials_input_schema": {
|
||||
"additionalProperties": true,
|
||||
"type": "object",
|
||||
"title": "Credentials Input Schema",
|
||||
"readOnly": true
|
||||
}
|
||||
},
|
||||
"type": "object",
|
||||
"required": [
|
||||
"id",
|
||||
"version",
|
||||
"name",
|
||||
"description",
|
||||
"user_id",
|
||||
"created_at"
|
||||
"input_schema",
|
||||
"output_schema",
|
||||
"has_external_trigger",
|
||||
"has_human_in_the_loop",
|
||||
"has_sensitive_action",
|
||||
"trigger_setup_info",
|
||||
"credentials_input_schema"
|
||||
],
|
||||
"title": "GraphMeta",
|
||||
"description": "Lightweight graph metadata model representing an existing graph from the database,\nfor use in listings and summaries.\n\nLacks `GraphModel`'s nodes, links, and expensive computed fields.\nUse for list endpoints where full graph data is not needed and performance matters."
|
||||
"title": "GraphMeta"
|
||||
},
|
||||
"GraphModel": {
|
||||
"properties": {
|
||||
@@ -7840,111 +7886,17 @@
|
||||
"anyOf": [{ "type": "string" }, { "type": "null" }],
|
||||
"title": "Recommended Schedule Cron"
|
||||
},
|
||||
"forked_from_id": {
|
||||
"anyOf": [{ "type": "string" }, { "type": "null" }],
|
||||
"title": "Forked From Id"
|
||||
},
|
||||
"forked_from_version": {
|
||||
"anyOf": [{ "type": "integer" }, { "type": "null" }],
|
||||
"title": "Forked From Version"
|
||||
},
|
||||
"user_id": { "type": "string", "title": "User Id" },
|
||||
"created_at": {
|
||||
"type": "string",
|
||||
"format": "date-time",
|
||||
"title": "Created At"
|
||||
},
|
||||
"nodes": {
|
||||
"items": { "$ref": "#/components/schemas/NodeModel" },
|
||||
"type": "array",
|
||||
"title": "Nodes"
|
||||
"title": "Nodes",
|
||||
"default": []
|
||||
},
|
||||
"links": {
|
||||
"items": { "$ref": "#/components/schemas/Link" },
|
||||
"type": "array",
|
||||
"title": "Links"
|
||||
},
|
||||
"sub_graphs": {
|
||||
"items": { "$ref": "#/components/schemas/BaseGraph-Output" },
|
||||
"type": "array",
|
||||
"title": "Sub Graphs"
|
||||
},
|
||||
"input_schema": {
|
||||
"additionalProperties": true,
|
||||
"type": "object",
|
||||
"title": "Input Schema",
|
||||
"readOnly": true
|
||||
},
|
||||
"output_schema": {
|
||||
"additionalProperties": true,
|
||||
"type": "object",
|
||||
"title": "Output Schema",
|
||||
"readOnly": true
|
||||
},
|
||||
"has_external_trigger": {
|
||||
"type": "boolean",
|
||||
"title": "Has External Trigger",
|
||||
"readOnly": true
|
||||
},
|
||||
"has_human_in_the_loop": {
|
||||
"type": "boolean",
|
||||
"title": "Has Human In The Loop",
|
||||
"readOnly": true
|
||||
},
|
||||
"has_sensitive_action": {
|
||||
"type": "boolean",
|
||||
"title": "Has Sensitive Action",
|
||||
"readOnly": true
|
||||
},
|
||||
"trigger_setup_info": {
|
||||
"anyOf": [
|
||||
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
|
||||
{ "type": "null" }
|
||||
],
|
||||
"readOnly": true
|
||||
},
|
||||
"credentials_input_schema": {
|
||||
"additionalProperties": true,
|
||||
"type": "object",
|
||||
"title": "Credentials Input Schema",
|
||||
"readOnly": true
|
||||
}
|
||||
},
|
||||
"type": "object",
|
||||
"required": [
|
||||
"name",
|
||||
"description",
|
||||
"user_id",
|
||||
"created_at",
|
||||
"input_schema",
|
||||
"output_schema",
|
||||
"has_external_trigger",
|
||||
"has_human_in_the_loop",
|
||||
"has_sensitive_action",
|
||||
"trigger_setup_info",
|
||||
"credentials_input_schema"
|
||||
],
|
||||
"title": "GraphModel",
|
||||
"description": "Full graph model representing an existing graph from the database.\n\nThis is the primary model for working with persisted graphs. Includes all\ngraph data (nodes, links, sub_graphs) plus user ownership and timestamps.\nProvides computed fields (input_schema, output_schema, etc.) used during\nset-up (frontend) and execution (backend).\n\nInherits from:\n- `Graph`: provides structure (nodes, links, sub_graphs) and computed schemas\n- `GraphMeta`: provides user_id, created_at for database records"
|
||||
},
|
||||
"GraphModelWithoutNodes": {
|
||||
"properties": {
|
||||
"id": { "type": "string", "title": "Id" },
|
||||
"version": { "type": "integer", "title": "Version", "default": 1 },
|
||||
"is_active": {
|
||||
"type": "boolean",
|
||||
"title": "Is Active",
|
||||
"default": true
|
||||
},
|
||||
"name": { "type": "string", "title": "Name" },
|
||||
"description": { "type": "string", "title": "Description" },
|
||||
"instructions": {
|
||||
"anyOf": [{ "type": "string" }, { "type": "null" }],
|
||||
"title": "Instructions"
|
||||
},
|
||||
"recommended_schedule_cron": {
|
||||
"anyOf": [{ "type": "string" }, { "type": "null" }],
|
||||
"title": "Recommended Schedule Cron"
|
||||
"title": "Links",
|
||||
"default": []
|
||||
},
|
||||
"forked_from_id": {
|
||||
"anyOf": [{ "type": "string" }, { "type": "null" }],
|
||||
@@ -7954,6 +7906,12 @@
|
||||
"anyOf": [{ "type": "integer" }, { "type": "null" }],
|
||||
"title": "Forked From Version"
|
||||
},
|
||||
"sub_graphs": {
|
||||
"items": { "$ref": "#/components/schemas/BaseGraph-Output" },
|
||||
"type": "array",
|
||||
"title": "Sub Graphs",
|
||||
"default": []
|
||||
},
|
||||
"user_id": { "type": "string", "title": "User Id" },
|
||||
"created_at": {
|
||||
"type": "string",
|
||||
@@ -8015,8 +7973,7 @@
|
||||
"trigger_setup_info",
|
||||
"credentials_input_schema"
|
||||
],
|
||||
"title": "GraphModelWithoutNodes",
|
||||
"description": "GraphModel variant that excludes nodes, links, and sub-graphs from serialization.\n\nUsed in contexts like the store where exposing internal graph structure\nis not desired. Inherits all computed fields from GraphModel but marks\nnodes and links as excluded from JSON output."
|
||||
"title": "GraphModel"
|
||||
},
|
||||
"GraphSettings": {
|
||||
"properties": {
|
||||
@@ -8656,22 +8613,26 @@
|
||||
"input_default": {
|
||||
"additionalProperties": true,
|
||||
"type": "object",
|
||||
"title": "Input Default"
|
||||
"title": "Input Default",
|
||||
"default": {}
|
||||
},
|
||||
"metadata": {
|
||||
"additionalProperties": true,
|
||||
"type": "object",
|
||||
"title": "Metadata"
|
||||
"title": "Metadata",
|
||||
"default": {}
|
||||
},
|
||||
"input_links": {
|
||||
"items": { "$ref": "#/components/schemas/Link" },
|
||||
"type": "array",
|
||||
"title": "Input Links"
|
||||
"title": "Input Links",
|
||||
"default": []
|
||||
},
|
||||
"output_links": {
|
||||
"items": { "$ref": "#/components/schemas/Link" },
|
||||
"type": "array",
|
||||
"title": "Output Links"
|
||||
"title": "Output Links",
|
||||
"default": []
|
||||
}
|
||||
},
|
||||
"type": "object",
|
||||
@@ -8751,22 +8712,26 @@
|
||||
"input_default": {
|
||||
"additionalProperties": true,
|
||||
"type": "object",
|
||||
"title": "Input Default"
|
||||
"title": "Input Default",
|
||||
"default": {}
|
||||
},
|
||||
"metadata": {
|
||||
"additionalProperties": true,
|
||||
"type": "object",
|
||||
"title": "Metadata"
|
||||
"title": "Metadata",
|
||||
"default": {}
|
||||
},
|
||||
"input_links": {
|
||||
"items": { "$ref": "#/components/schemas/Link" },
|
||||
"type": "array",
|
||||
"title": "Input Links"
|
||||
"title": "Input Links",
|
||||
"default": []
|
||||
},
|
||||
"output_links": {
|
||||
"items": { "$ref": "#/components/schemas/Link" },
|
||||
"type": "array",
|
||||
"title": "Output Links"
|
||||
"title": "Output Links",
|
||||
"default": []
|
||||
},
|
||||
"graph_id": { "type": "string", "title": "Graph Id" },
|
||||
"graph_version": { "type": "integer", "title": "Graph Version" },
|
||||
|
||||
@@ -22,7 +22,7 @@ const isValidVideoUrl = (url: string): boolean => {
|
||||
if (url.startsWith("data:video")) {
|
||||
return true;
|
||||
}
|
||||
const videoExtensions = /\.(mp4|webm|ogg)$/i;
|
||||
const videoExtensions = /\.(mp4|webm|ogg|mov|avi|mkv|m4v)$/i;
|
||||
const youtubeRegex = /^(https?:\/\/)?(www\.)?(youtube\.com|youtu\.?be)\/.+$/;
|
||||
const cleanedUrl = url.split("?")[0];
|
||||
return (
|
||||
@@ -44,11 +44,29 @@ const isValidAudioUrl = (url: string): boolean => {
|
||||
if (url.startsWith("data:audio")) {
|
||||
return true;
|
||||
}
|
||||
const audioExtensions = /\.(mp3|wav)$/i;
|
||||
const audioExtensions = /\.(mp3|wav|ogg|m4a|aac|flac)$/i;
|
||||
const cleanedUrl = url.split("?")[0];
|
||||
return isValidMediaUri(url) && audioExtensions.test(cleanedUrl);
|
||||
};
|
||||
|
||||
const getVideoMimeType = (url: string): string => {
|
||||
if (url.startsWith("data:video/")) {
|
||||
const match = url.match(/^data:(video\/[^;]+)/);
|
||||
return match?.[1] || "video/mp4";
|
||||
}
|
||||
const extension = url.split("?")[0].split(".").pop()?.toLowerCase();
|
||||
const mimeMap: Record<string, string> = {
|
||||
mp4: "video/mp4",
|
||||
webm: "video/webm",
|
||||
ogg: "video/ogg",
|
||||
mov: "video/quicktime",
|
||||
avi: "video/x-msvideo",
|
||||
mkv: "video/x-matroska",
|
||||
m4v: "video/mp4",
|
||||
};
|
||||
return mimeMap[extension || ""] || "video/mp4";
|
||||
};
|
||||
|
||||
const VideoRenderer: React.FC<{ videoUrl: string }> = ({ videoUrl }) => {
|
||||
const videoId = getYouTubeVideoId(videoUrl);
|
||||
return (
|
||||
@@ -63,7 +81,7 @@ const VideoRenderer: React.FC<{ videoUrl: string }> = ({ videoUrl }) => {
|
||||
></iframe>
|
||||
) : (
|
||||
<video controls width="100%" height="315">
|
||||
<source src={videoUrl} type="video/mp4" />
|
||||
<source src={videoUrl} type={getVideoMimeType(videoUrl)} />
|
||||
Your browser does not support the video tag.
|
||||
</video>
|
||||
)}
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
import { getGetWorkspaceDownloadFileByIdUrl } from "@/app/api/__generated__/endpoints/workspace/workspace";
|
||||
import { cn } from "@/lib/utils";
|
||||
import { EyeSlash } from "@phosphor-icons/react";
|
||||
import React from "react";
|
||||
import React, { useState } from "react";
|
||||
import ReactMarkdown from "react-markdown";
|
||||
import remarkGfm from "remark-gfm";
|
||||
|
||||
@@ -48,7 +48,9 @@ interface InputProps extends React.InputHTMLAttributes<HTMLInputElement> {
|
||||
*/
|
||||
function resolveWorkspaceUrl(src: string): string {
|
||||
if (src.startsWith("workspace://")) {
|
||||
const fileId = src.replace("workspace://", "");
|
||||
// Strip MIME type fragment if present (e.g., workspace://abc123#video/mp4 → abc123)
|
||||
const withoutPrefix = src.replace("workspace://", "");
|
||||
const fileId = withoutPrefix.split("#")[0];
|
||||
// Use the generated API URL helper to get the correct path
|
||||
const apiPath = getGetWorkspaceDownloadFileByIdUrl(fileId);
|
||||
// Route through the Next.js proxy (same pattern as customMutator for client-side)
|
||||
@@ -65,13 +67,49 @@ function isWorkspaceImage(src: string | undefined): boolean {
|
||||
return src?.includes("/workspace/files/") ?? false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Renders a workspace video with controls and an optional "AI cannot see" badge.
|
||||
*/
|
||||
function WorkspaceVideo({
|
||||
src,
|
||||
aiCannotSee,
|
||||
}: {
|
||||
src: string;
|
||||
aiCannotSee: boolean;
|
||||
}) {
|
||||
return (
|
||||
<span className="relative my-2 inline-block">
|
||||
<video
|
||||
controls
|
||||
className="h-auto max-w-full rounded-md border border-zinc-200"
|
||||
preload="metadata"
|
||||
>
|
||||
<source src={src} />
|
||||
Your browser does not support the video tag.
|
||||
</video>
|
||||
{aiCannotSee && (
|
||||
<span
|
||||
className="absolute bottom-2 right-2 flex items-center gap-1 rounded bg-black/70 px-2 py-1 text-xs text-white"
|
||||
title="The AI cannot see this video"
|
||||
>
|
||||
<EyeSlash size={14} />
|
||||
<span>AI cannot see this video</span>
|
||||
</span>
|
||||
)}
|
||||
</span>
|
||||
);
|
||||
}
|
||||
|
||||
/**
|
||||
* Custom image component that shows an indicator when the AI cannot see the image.
|
||||
* Also handles the "video:" alt-text prefix convention to render <video> elements.
|
||||
* For workspace files with unknown types, falls back to <video> if <img> fails.
|
||||
* Note: src is already transformed by urlTransform, so workspace:// is now /api/workspace/...
|
||||
*/
|
||||
function MarkdownImage(props: Record<string, unknown>) {
|
||||
const src = props.src as string | undefined;
|
||||
const alt = props.alt as string | undefined;
|
||||
const [imgFailed, setImgFailed] = useState(false);
|
||||
|
||||
const aiCannotSee = isWorkspaceImage(src);
|
||||
|
||||
@@ -84,6 +122,18 @@ function MarkdownImage(props: Record<string, unknown>) {
|
||||
);
|
||||
}
|
||||
|
||||
// Detect video: prefix in alt text (set by formatOutputValue in helpers.ts)
|
||||
if (alt?.startsWith("video:")) {
|
||||
return <WorkspaceVideo src={src} aiCannotSee={aiCannotSee} />;
|
||||
}
|
||||
|
||||
// If the <img> failed to load and this is a workspace file, try as video.
|
||||
// This handles generic output keys like "file_out" where the MIME type
|
||||
// isn't known from the key name alone.
|
||||
if (imgFailed && aiCannotSee) {
|
||||
return <WorkspaceVideo src={src} aiCannotSee={aiCannotSee} />;
|
||||
}
|
||||
|
||||
return (
|
||||
<span className="relative my-2 inline-block">
|
||||
{/* eslint-disable-next-line @next/next/no-img-element */}
|
||||
@@ -92,6 +142,9 @@ function MarkdownImage(props: Record<string, unknown>) {
|
||||
alt={alt || "Image"}
|
||||
className="h-auto max-w-full rounded-md border border-zinc-200"
|
||||
loading="lazy"
|
||||
onError={() => {
|
||||
if (aiCannotSee) setImgFailed(true);
|
||||
}}
|
||||
/>
|
||||
{aiCannotSee && (
|
||||
<span
|
||||
|
||||
@@ -76,69 +76,101 @@ export function getErrorMessage(result: unknown): string {
|
||||
|
||||
/**
|
||||
* Check if a value is a workspace file reference.
|
||||
* Format: workspace://{fileId} or workspace://{fileId}#{mimeType}
|
||||
*/
|
||||
function isWorkspaceRef(value: unknown): value is string {
|
||||
return typeof value === "string" && value.startsWith("workspace://");
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if a workspace reference appears to be an image based on common patterns.
|
||||
* Since workspace refs don't have extensions, we check the context or assume image
|
||||
* for certain block types.
|
||||
*
|
||||
* TODO: Replace keyword matching with MIME type encoded in workspace ref.
|
||||
* e.g., workspace://abc123#image/png or workspace://abc123#video/mp4
|
||||
* This would let frontend render correctly without fragile keyword matching.
|
||||
* Extract MIME type from a workspace reference fragment.
|
||||
* e.g., "workspace://abc123#video/mp4" → "video/mp4"
|
||||
* Returns undefined if no fragment is present.
|
||||
*/
|
||||
function isLikelyImageRef(value: string, outputKey?: string): boolean {
|
||||
if (!isWorkspaceRef(value)) return false;
|
||||
|
||||
// Check output key name for video-related hints (these are NOT images)
|
||||
const videoKeywords = ["video", "mp4", "mov", "avi", "webm", "movie", "clip"];
|
||||
if (outputKey) {
|
||||
const lowerKey = outputKey.toLowerCase();
|
||||
if (videoKeywords.some((kw) => lowerKey.includes(kw))) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Check output key name for image-related hints
|
||||
const imageKeywords = [
|
||||
"image",
|
||||
"img",
|
||||
"photo",
|
||||
"picture",
|
||||
"thumbnail",
|
||||
"avatar",
|
||||
"icon",
|
||||
"screenshot",
|
||||
];
|
||||
if (outputKey) {
|
||||
const lowerKey = outputKey.toLowerCase();
|
||||
if (imageKeywords.some((kw) => lowerKey.includes(kw))) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// Default to treating workspace refs as potential images
|
||||
// since that's the most common case for generated content
|
||||
return true;
|
||||
function getWorkspaceMimeType(value: string): string | undefined {
|
||||
const hashIndex = value.indexOf("#");
|
||||
if (hashIndex === -1) return undefined;
|
||||
return value.slice(hashIndex + 1) || undefined;
|
||||
}
|
||||
|
||||
/**
|
||||
* Format a single output value, converting workspace refs to markdown images.
|
||||
* Determine the media category of a workspace ref or data URI.
|
||||
* Uses the MIME type fragment on workspace refs when available,
|
||||
* falls back to output key keyword matching for older refs without it.
|
||||
*/
|
||||
function formatOutputValue(value: unknown, outputKey?: string): string {
|
||||
if (isWorkspaceRef(value) && isLikelyImageRef(value, outputKey)) {
|
||||
// Format as markdown image
|
||||
return ``;
|
||||
function getMediaCategory(
|
||||
value: string,
|
||||
outputKey?: string,
|
||||
): "video" | "image" | "audio" | "unknown" {
|
||||
// Data URIs carry their own MIME type
|
||||
if (value.startsWith("data:video/")) return "video";
|
||||
if (value.startsWith("data:image/")) return "image";
|
||||
if (value.startsWith("data:audio/")) return "audio";
|
||||
|
||||
// Workspace refs: prefer MIME type fragment
|
||||
if (isWorkspaceRef(value)) {
|
||||
const mime = getWorkspaceMimeType(value);
|
||||
if (mime) {
|
||||
if (mime.startsWith("video/")) return "video";
|
||||
if (mime.startsWith("image/")) return "image";
|
||||
if (mime.startsWith("audio/")) return "audio";
|
||||
return "unknown";
|
||||
}
|
||||
|
||||
// Fallback: keyword matching on output key for older refs without fragment
|
||||
if (outputKey) {
|
||||
const lowerKey = outputKey.toLowerCase();
|
||||
|
||||
const videoKeywords = [
|
||||
"video",
|
||||
"mp4",
|
||||
"mov",
|
||||
"avi",
|
||||
"webm",
|
||||
"movie",
|
||||
"clip",
|
||||
];
|
||||
if (videoKeywords.some((kw) => lowerKey.includes(kw))) return "video";
|
||||
|
||||
const imageKeywords = [
|
||||
"image",
|
||||
"img",
|
||||
"photo",
|
||||
"picture",
|
||||
"thumbnail",
|
||||
"avatar",
|
||||
"icon",
|
||||
"screenshot",
|
||||
];
|
||||
if (imageKeywords.some((kw) => lowerKey.includes(kw))) return "image";
|
||||
}
|
||||
|
||||
// Default to image for backward compatibility
|
||||
return "image";
|
||||
}
|
||||
|
||||
return "unknown";
|
||||
}
|
||||
|
||||
/**
|
||||
* Format a single output value, converting workspace refs to markdown images/videos.
|
||||
* Videos use a "video:" alt-text prefix so the MarkdownContent renderer can
|
||||
* distinguish them from images and render a <video> element.
|
||||
*/
|
||||
function formatOutputValue(value: unknown, outputKey?: string): string {
|
||||
if (typeof value === "string") {
|
||||
// Check for data URIs (images)
|
||||
if (value.startsWith("data:image/")) {
|
||||
const category = getMediaCategory(value, outputKey);
|
||||
|
||||
if (category === "video") {
|
||||
// Format with "video:" prefix so MarkdownContent renders <video>
|
||||
return ``;
|
||||
}
|
||||
|
||||
if (category === "image") {
|
||||
return ``;
|
||||
}
|
||||
|
||||
// For audio, unknown workspace refs, data URIs, etc. - return as-is
|
||||
return value;
|
||||
}
|
||||
|
||||
|
||||
@@ -26,6 +26,7 @@ export const providerIcons: Partial<
|
||||
nvidia: fallbackIcon,
|
||||
discord: FaDiscord,
|
||||
d_id: fallbackIcon,
|
||||
elevenlabs: fallbackIcon,
|
||||
google_maps: FaGoogle,
|
||||
jina: fallbackIcon,
|
||||
ideogram: fallbackIcon,
|
||||
|
||||
@@ -47,7 +47,7 @@ export function Navbar() {
|
||||
|
||||
const actualLoggedInLinks = [
|
||||
{ name: "Home", href: homeHref },
|
||||
...(isChatEnabled === true ? [{ name: "Tasks", href: "/library" }] : []),
|
||||
...(isChatEnabled === true ? [{ name: "Agents", href: "/library" }] : []),
|
||||
...loggedInLinks,
|
||||
];
|
||||
|
||||
|
||||
@@ -362,14 +362,25 @@ export type GraphMeta = {
|
||||
user_id: UserID;
|
||||
version: number;
|
||||
is_active: boolean;
|
||||
created_at: Date;
|
||||
name: string;
|
||||
description: string;
|
||||
instructions?: string | null;
|
||||
recommended_schedule_cron: string | null;
|
||||
forked_from_id?: GraphID | null;
|
||||
forked_from_version?: number | null;
|
||||
};
|
||||
input_schema: GraphInputSchema;
|
||||
output_schema: GraphOutputSchema;
|
||||
credentials_input_schema: CredentialsInputSchema;
|
||||
} & (
|
||||
| {
|
||||
has_external_trigger: true;
|
||||
trigger_setup_info: GraphTriggerInfo;
|
||||
}
|
||||
| {
|
||||
has_external_trigger: false;
|
||||
trigger_setup_info: null;
|
||||
}
|
||||
);
|
||||
|
||||
export type GraphID = Brand<string, "GraphID">;
|
||||
|
||||
@@ -436,22 +447,11 @@ export type GraphTriggerInfo = {
|
||||
|
||||
/* Mirror of backend/data/graph.py:Graph */
|
||||
export type Graph = GraphMeta & {
|
||||
created_at: Date;
|
||||
nodes: Node[];
|
||||
links: Link[];
|
||||
sub_graphs: Omit<Graph, "sub_graphs">[]; // Flattened sub-graphs
|
||||
input_schema: GraphInputSchema;
|
||||
output_schema: GraphOutputSchema;
|
||||
credentials_input_schema: CredentialsInputSchema;
|
||||
} & (
|
||||
| {
|
||||
has_external_trigger: true;
|
||||
trigger_setup_info: GraphTriggerInfo;
|
||||
}
|
||||
| {
|
||||
has_external_trigger: false;
|
||||
trigger_setup_info: null;
|
||||
}
|
||||
);
|
||||
};
|
||||
|
||||
export type GraphUpdateable = Omit<
|
||||
Graph,
|
||||
|
||||
@@ -233,6 +233,7 @@ Below is a comprehensive list of all available blocks, categorized by their prim
|
||||
| [Stagehand Extract](block-integrations/stagehand/blocks.md#stagehand-extract) | Extract structured data from a webpage |
|
||||
| [Stagehand Observe](block-integrations/stagehand/blocks.md#stagehand-observe) | Find suggested actions for your workflows |
|
||||
| [Unreal Text To Speech](block-integrations/llm.md#unreal-text-to-speech) | Converts text to speech using the Unreal Speech API |
|
||||
| [Video Narration](block-integrations/video/narration.md#video-narration) | Generate AI narration and add to video |
|
||||
|
||||
## Search and Information Retrieval
|
||||
|
||||
@@ -472,9 +473,13 @@ Below is a comprehensive list of all available blocks, categorized by their prim
|
||||
|
||||
| Block Name | Description |
|
||||
|------------|-------------|
|
||||
| [Add Audio To Video](block-integrations/multimedia.md#add-audio-to-video) | Block to attach an audio file to a video file using moviepy |
|
||||
| [Loop Video](block-integrations/multimedia.md#loop-video) | Block to loop a video to a given duration or number of repeats |
|
||||
| [Media Duration](block-integrations/multimedia.md#media-duration) | Block to get the duration of a media file |
|
||||
| [Add Audio To Video](block-integrations/video/add_audio.md#add-audio-to-video) | Block to attach an audio file to a video file using moviepy |
|
||||
| [Loop Video](block-integrations/video/loop.md#loop-video) | Block to loop a video to a given duration or number of repeats |
|
||||
| [Media Duration](block-integrations/video/duration.md#media-duration) | Block to get the duration of a media file |
|
||||
| [Video Clip](block-integrations/video/clip.md#video-clip) | Extract a time segment from a video |
|
||||
| [Video Concat](block-integrations/video/concat.md#video-concat) | Merge multiple video clips into one continuous video |
|
||||
| [Video Download](block-integrations/video/download.md#video-download) | Download video from URL (YouTube, Vimeo, news sites, direct links) |
|
||||
| [Video Text Overlay](block-integrations/video/text_overlay.md#video-text-overlay) | Add text overlay/caption to video |
|
||||
|
||||
## Productivity
|
||||
|
||||
|
||||
@@ -85,7 +85,6 @@
|
||||
* [LLM](block-integrations/llm.md)
|
||||
* [Logic](block-integrations/logic.md)
|
||||
* [Misc](block-integrations/misc.md)
|
||||
* [Multimedia](block-integrations/multimedia.md)
|
||||
* [Notion Create Page](block-integrations/notion/create_page.md)
|
||||
* [Notion Read Database](block-integrations/notion/read_database.md)
|
||||
* [Notion Read Page](block-integrations/notion/read_page.md)
|
||||
@@ -129,5 +128,13 @@
|
||||
* [Twitter Timeline](block-integrations/twitter/timeline.md)
|
||||
* [Twitter Tweet Lookup](block-integrations/twitter/tweet_lookup.md)
|
||||
* [Twitter User Lookup](block-integrations/twitter/user_lookup.md)
|
||||
* [Video Add Audio](block-integrations/video/add_audio.md)
|
||||
* [Video Clip](block-integrations/video/clip.md)
|
||||
* [Video Concat](block-integrations/video/concat.md)
|
||||
* [Video Download](block-integrations/video/download.md)
|
||||
* [Video Duration](block-integrations/video/duration.md)
|
||||
* [Video Loop](block-integrations/video/loop.md)
|
||||
* [Video Narration](block-integrations/video/narration.md)
|
||||
* [Video Text Overlay](block-integrations/video/text_overlay.md)
|
||||
* [Wolfram LLM API](block-integrations/wolfram/llm_api.md)
|
||||
* [Zerobounce Validate Emails](block-integrations/zerobounce/validate_emails.md)
|
||||
|
||||
@@ -65,7 +65,7 @@ The result routes data to yes_output or no_output, enabling intelligent branchin
|
||||
| condition | A plaintext English description of the condition to evaluate | str | Yes |
|
||||
| yes_value | (Optional) Value to output if the condition is true. If not provided, input_value will be used. | Yes Value | No |
|
||||
| no_value | (Optional) Value to output if the condition is false. If not provided, input_value will be used. | No Value | No |
|
||||
| model | The language model to use for evaluating the condition. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for evaluating the condition. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
|
||||
### Outputs
|
||||
|
||||
@@ -103,7 +103,7 @@ The block sends the entire conversation history to the chosen LLM, including sys
|
||||
|-------|-------------|------|----------|
|
||||
| prompt | The prompt to send to the language model. | str | No |
|
||||
| messages | List of messages in the conversation. | List[Any] | Yes |
|
||||
| model | The language model to use for the conversation. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for the conversation. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
|
||||
| ollama_host | Ollama host for local models | str | No |
|
||||
|
||||
@@ -257,7 +257,7 @@ The block formulates a prompt based on the given focus or source data, sends it
|
||||
|-------|-------------|------|----------|
|
||||
| focus | The focus of the list to generate. | str | No |
|
||||
| source_data | The data to generate the list from. | str | No |
|
||||
| model | The language model to use for generating the list. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for generating the list. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| max_retries | Maximum number of retries for generating a valid list. | int | No |
|
||||
| force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No |
|
||||
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
|
||||
@@ -424,7 +424,7 @@ The block sends the input prompt to a chosen LLM, along with any system prompts
|
||||
| prompt | The prompt to send to the language model. | str | Yes |
|
||||
| expected_format | Expected format of the response. If provided, the response will be validated against this format. The keys should be the expected fields in the response, and the values should be the description of the field. | Dict[str, str] | Yes |
|
||||
| list_result | Whether the response should be a list of objects in the expected format. | bool | No |
|
||||
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No |
|
||||
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
|
||||
| conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No |
|
||||
@@ -464,7 +464,7 @@ The block sends the input prompt to a chosen LLM, processes the response, and re
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| prompt | The prompt to send to the language model. You can use any of the {keys} from Prompt Values to fill in the prompt with values from the prompt values dictionary by putting them in curly braces. | str | Yes |
|
||||
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
|
||||
| retry | Number of times to retry the LLM call if the response does not match the expected format. | int | No |
|
||||
| prompt_values | Values used to fill in the prompt. The values can be used in the prompt by putting them in a double curly braces, e.g. {{variable_name}}. | Dict[str, str] | No |
|
||||
@@ -501,7 +501,7 @@ The block splits the input text into smaller chunks, sends each chunk to an LLM
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| text | The text to summarize. | str | Yes |
|
||||
| model | The language model to use for summarizing the text. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for summarizing the text. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| focus | The topic to focus on in the summary | str | No |
|
||||
| style | The style of the summary to generate. | "concise" \| "detailed" \| "bullet points" \| "numbered list" | No |
|
||||
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
|
||||
@@ -763,7 +763,7 @@ Configure agent_mode_max_iterations to control loop behavior: 0 for single decis
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| prompt | The prompt to send to the language model. | str | Yes |
|
||||
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| multiple_tool_calls | Whether to allow multiple tool calls in a single response. | bool | No |
|
||||
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
|
||||
| conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No |
|
||||
|
||||
39
docs/integrations/block-integrations/video/add_audio.md
Normal file
39
docs/integrations/block-integrations/video/add_audio.md
Normal file
@@ -0,0 +1,39 @@
|
||||
# Video Add Audio
|
||||
<!-- MANUAL: file_description -->
|
||||
This block allows you to attach a separate audio track to a video file, replacing or combining with the original audio.
|
||||
<!-- END MANUAL -->
|
||||
|
||||
## Add Audio To Video
|
||||
|
||||
### What it is
|
||||
Block to attach an audio file to a video file using moviepy.
|
||||
|
||||
### How it works
|
||||
<!-- MANUAL: how_it_works -->
|
||||
The block uses MoviePy to combine video and audio files. It loads the video and audio inputs (which can be URLs, data URIs, or local paths), optionally scales the audio volume, then writes the combined result to a new video file using H.264 video codec and AAC audio codec.
|
||||
<!-- END MANUAL -->
|
||||
|
||||
### Inputs
|
||||
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| video_in | Video input (URL, data URI, or local path). | str (file) | Yes |
|
||||
| audio_in | Audio input (URL, data URI, or local path). | str (file) | Yes |
|
||||
| volume | Volume scale for the newly attached audio track (1.0 = original). | float | No |
|
||||
|
||||
### Outputs
|
||||
|
||||
| Output | Description | Type |
|
||||
|--------|-------------|------|
|
||||
| error | Error message if the operation failed | str |
|
||||
| video_out | Final video (with attached audio), as a path or data URI. | str (file) |
|
||||
|
||||
### Possible use case
|
||||
<!-- MANUAL: use_case -->
|
||||
- Adding background music to a silent screen recording
|
||||
- Replacing original audio with a voiceover or translated audio track
|
||||
- Combining AI-generated speech with stock footage
|
||||
- Adding sound effects to video content
|
||||
<!-- END MANUAL -->
|
||||
|
||||
---
|
||||
41
docs/integrations/block-integrations/video/clip.md
Normal file
41
docs/integrations/block-integrations/video/clip.md
Normal file
@@ -0,0 +1,41 @@
|
||||
# Video Clip
|
||||
<!-- MANUAL: file_description -->
|
||||
This block extracts a specific time segment from a video file, allowing you to trim videos to precise start and end times.
|
||||
<!-- END MANUAL -->
|
||||
|
||||
## Video Clip
|
||||
|
||||
### What it is
|
||||
Extract a time segment from a video
|
||||
|
||||
### How it works
|
||||
<!-- MANUAL: how_it_works -->
|
||||
The block uses MoviePy's `subclipped` function to extract a portion of the video between specified start and end times. It validates that end time is greater than start time, then creates a new video file containing only the selected segment. The output is encoded with H.264 video codec and AAC audio codec, preserving both video and audio from the original clip.
|
||||
<!-- END MANUAL -->
|
||||
|
||||
### Inputs
|
||||
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| video_in | Input video (URL, data URI, or local path) | str (file) | Yes |
|
||||
| start_time | Start time in seconds | float | Yes |
|
||||
| end_time | End time in seconds | float | Yes |
|
||||
| output_format | Output format | "mp4" \| "webm" \| "mkv" \| "mov" | No |
|
||||
|
||||
### Outputs
|
||||
|
||||
| Output | Description | Type |
|
||||
|--------|-------------|------|
|
||||
| error | Error message if the operation failed | str |
|
||||
| video_out | Clipped video file (path or data URI) | str (file) |
|
||||
| duration | Clip duration in seconds | float |
|
||||
|
||||
### Possible use case
|
||||
<!-- MANUAL: use_case -->
|
||||
- Extracting highlights from a longer video
|
||||
- Trimming intro/outro from recorded content
|
||||
- Creating short clips for social media from longer videos
|
||||
- Isolating specific segments for further processing in a workflow
|
||||
<!-- END MANUAL -->
|
||||
|
||||
---
|
||||
41
docs/integrations/block-integrations/video/concat.md
Normal file
41
docs/integrations/block-integrations/video/concat.md
Normal file
@@ -0,0 +1,41 @@
|
||||
# Video Concat
|
||||
<!-- MANUAL: file_description -->
|
||||
This block merges multiple video clips into a single continuous video, with optional transitions between clips.
|
||||
<!-- END MANUAL -->
|
||||
|
||||
## Video Concat
|
||||
|
||||
### What it is
|
||||
Merge multiple video clips into one continuous video
|
||||
|
||||
### How it works
|
||||
<!-- MANUAL: how_it_works -->
|
||||
The block uses MoviePy's `concatenate_videoclips` function to join multiple videos in sequence. It supports three transition modes: **none** (direct concatenation), **crossfade** (smooth blending where clips overlap), and **fade_black** (each clip fades out to black and the next fades in). At least 2 videos are required. The output is encoded with H.264 video codec and AAC audio codec.
|
||||
<!-- END MANUAL -->
|
||||
|
||||
### Inputs
|
||||
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| videos | List of video files to concatenate (in order) | List[str (file)] | Yes |
|
||||
| transition | Transition between clips | "none" \| "crossfade" \| "fade_black" | No |
|
||||
| transition_duration | Transition duration in seconds | int | No |
|
||||
| output_format | Output format | "mp4" \| "webm" \| "mkv" \| "mov" | No |
|
||||
|
||||
### Outputs
|
||||
|
||||
| Output | Description | Type |
|
||||
|--------|-------------|------|
|
||||
| error | Error message if the operation failed | str |
|
||||
| video_out | Concatenated video file (path or data URI) | str (file) |
|
||||
| total_duration | Total duration in seconds | float |
|
||||
|
||||
### Possible use case
|
||||
<!-- MANUAL: use_case -->
|
||||
- Combining multiple clips into a compilation video
|
||||
- Assembling intro, main content, and outro segments
|
||||
- Creating montages from multiple source videos
|
||||
- Building video playlists or slideshows with transitions
|
||||
<!-- END MANUAL -->
|
||||
|
||||
---
|
||||
42
docs/integrations/block-integrations/video/download.md
Normal file
42
docs/integrations/block-integrations/video/download.md
Normal file
@@ -0,0 +1,42 @@
|
||||
# Video Download
|
||||
<!-- MANUAL: file_description -->
|
||||
This block downloads videos from URLs, supporting a wide range of video platforms and direct links.
|
||||
<!-- END MANUAL -->
|
||||
|
||||
## Video Download
|
||||
|
||||
### What it is
|
||||
Download video from URL (YouTube, Vimeo, news sites, direct links)
|
||||
|
||||
### How it works
|
||||
<!-- MANUAL: how_it_works -->
|
||||
The block uses yt-dlp, a powerful video downloading library that supports over 1000 websites. It accepts a URL, quality preference, and output format, then downloads the video while merging the best available video and audio streams for the selected quality. Quality options: **best** (highest available), **1080p/720p/480p** (maximum resolution at that height), **audio_only** (extracts just the audio track).
|
||||
<!-- END MANUAL -->
|
||||
|
||||
### Inputs
|
||||
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| url | URL of the video to download (YouTube, Vimeo, direct link, etc.) | str | Yes |
|
||||
| quality | Video quality preference | "best" \| "1080p" \| "720p" \| "480p" \| "audio_only" | No |
|
||||
| output_format | Output video format | "mp4" \| "webm" \| "mkv" | No |
|
||||
|
||||
### Outputs
|
||||
|
||||
| Output | Description | Type |
|
||||
|--------|-------------|------|
|
||||
| error | Error message if the operation failed | str |
|
||||
| video_file | Downloaded video (path or data URI) | str (file) |
|
||||
| duration | Video duration in seconds | float |
|
||||
| title | Video title from source | str |
|
||||
| source_url | Original source URL | str |
|
||||
|
||||
### Possible use case
|
||||
<!-- MANUAL: use_case -->
|
||||
- Downloading source videos for editing or remixing
|
||||
- Archiving video content for offline processing
|
||||
- Extracting audio from videos for transcription or podcast creation
|
||||
- Gathering video content for automated content pipelines
|
||||
<!-- END MANUAL -->
|
||||
|
||||
---
|
||||
38
docs/integrations/block-integrations/video/duration.md
Normal file
38
docs/integrations/block-integrations/video/duration.md
Normal file
@@ -0,0 +1,38 @@
|
||||
# Video Duration
|
||||
<!-- MANUAL: file_description -->
|
||||
This block retrieves the duration of video or audio files, useful for planning and conditional logic in media workflows.
|
||||
<!-- END MANUAL -->
|
||||
|
||||
## Media Duration
|
||||
|
||||
### What it is
|
||||
Block to get the duration of a media file.
|
||||
|
||||
### How it works
|
||||
<!-- MANUAL: how_it_works -->
|
||||
The block uses MoviePy to load the media file and extract its duration property. It supports both video files (using VideoFileClip) and audio files (using AudioFileClip), determined by the `is_video` flag. The media can be provided as a URL, data URI, or local file path. The duration is returned in seconds as a floating-point number.
|
||||
<!-- END MANUAL -->
|
||||
|
||||
### Inputs
|
||||
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| media_in | Media input (URL, data URI, or local path). | str (file) | Yes |
|
||||
| is_video | Whether the media is a video (True) or audio (False). | bool | No |
|
||||
|
||||
### Outputs
|
||||
|
||||
| Output | Description | Type |
|
||||
|--------|-------------|------|
|
||||
| error | Error message if the operation failed | str |
|
||||
| duration | Duration of the media file (in seconds). | float |
|
||||
|
||||
### Possible use case
|
||||
<!-- MANUAL: use_case -->
|
||||
- Checking video length before processing to avoid timeout issues
|
||||
- Calculating how many times to loop a video to reach a target duration
|
||||
- Validating that uploaded content meets length requirements
|
||||
- Building conditional workflows based on media duration
|
||||
<!-- END MANUAL -->
|
||||
|
||||
---
|
||||
39
docs/integrations/block-integrations/video/loop.md
Normal file
39
docs/integrations/block-integrations/video/loop.md
Normal file
@@ -0,0 +1,39 @@
|
||||
# Video Loop
|
||||
<!-- MANUAL: file_description -->
|
||||
This block repeats a video to extend its duration, either to a specific length or a set number of repetitions.
|
||||
<!-- END MANUAL -->
|
||||
|
||||
## Loop Video
|
||||
|
||||
### What it is
|
||||
Block to loop a video to a given duration or number of repeats.
|
||||
|
||||
### How it works
|
||||
<!-- MANUAL: how_it_works -->
|
||||
The block uses MoviePy's Loop effect to repeat a video clip. You can specify either a target duration (the video will repeat until reaching that length) or a number of loops (the video will repeat that many times). The Loop effect handles both video and audio looping automatically, maintaining sync. Either `duration` or `n_loops` must be provided. The output is encoded with H.264 video codec and AAC audio codec.
|
||||
<!-- END MANUAL -->
|
||||
|
||||
### Inputs
|
||||
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| video_in | The input video (can be a URL, data URI, or local path). | str (file) | Yes |
|
||||
| duration | Target duration (in seconds) to loop the video to. Either duration or n_loops must be provided. | float | No |
|
||||
| n_loops | Number of times to repeat the video. Either n_loops or duration must be provided. | int | No |
|
||||
|
||||
### Outputs
|
||||
|
||||
| Output | Description | Type |
|
||||
|--------|-------------|------|
|
||||
| error | Error message if the operation failed | str |
|
||||
| video_out | Looped video returned either as a relative path or a data URI. | str (file) |
|
||||
|
||||
### Possible use case
|
||||
<!-- MANUAL: use_case -->
|
||||
- Extending a short background video to match the length of narration audio
|
||||
- Creating seamless looping content for digital signage
|
||||
- Repeating a product demo video multiple times for emphasis
|
||||
- Extending short clips to meet minimum duration requirements for platforms
|
||||
<!-- END MANUAL -->
|
||||
|
||||
---
|
||||
44
docs/integrations/block-integrations/video/narration.md
Normal file
44
docs/integrations/block-integrations/video/narration.md
Normal file
@@ -0,0 +1,44 @@
|
||||
# Video Narration
|
||||
<!-- MANUAL: file_description -->
|
||||
This block generates AI voiceover narration using ElevenLabs and adds it to a video, with flexible audio mixing options.
|
||||
<!-- END MANUAL -->
|
||||
|
||||
## Video Narration
|
||||
|
||||
### What it is
|
||||
Generate AI narration and add to video
|
||||
|
||||
### How it works
|
||||
<!-- MANUAL: how_it_works -->
|
||||
The block uses ElevenLabs text-to-speech API to generate natural-sounding narration from your script. It then combines the narration with the video using MoviePy. Three audio mixing modes are available: **replace** (completely replaces original audio), **mix** (blends narration with original audio at configurable volumes), and **ducking** (similar to mix but applies stronger attenuation to original audio, making narration more prominent). The block outputs both the final video and the generated audio file separately.
|
||||
<!-- END MANUAL -->
|
||||
|
||||
### Inputs
|
||||
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| video_in | Input video (URL, data URI, or local path) | str (file) | Yes |
|
||||
| script | Narration script text | str | Yes |
|
||||
| voice_id | ElevenLabs voice ID | str | No |
|
||||
| model_id | ElevenLabs TTS model | "eleven_multilingual_v2" \| "eleven_flash_v2_5" \| "eleven_turbo_v2_5" \| "eleven_turbo_v2" | No |
|
||||
| mix_mode | How to combine with original audio. 'ducking' applies stronger attenuation than 'mix'. | "replace" \| "mix" \| "ducking" | No |
|
||||
| narration_volume | Narration volume (0.0 to 2.0) | float | No |
|
||||
| original_volume | Original audio volume when mixing (0.0 to 1.0) | float | No |
|
||||
|
||||
### Outputs
|
||||
|
||||
| Output | Description | Type |
|
||||
|--------|-------------|------|
|
||||
| error | Error message if the operation failed | str |
|
||||
| video_out | Video with narration (path or data URI) | str (file) |
|
||||
| audio_file | Generated audio file (path or data URI) | str (file) |
|
||||
|
||||
### Possible use case
|
||||
<!-- MANUAL: use_case -->
|
||||
- Adding professional voiceover to product demos or tutorials
|
||||
- Creating narrated explainer videos from screen recordings
|
||||
- Generating multi-language versions of video content
|
||||
- Adding commentary to gameplay or walkthrough videos
|
||||
<!-- END MANUAL -->
|
||||
|
||||
---
|
||||
44
docs/integrations/block-integrations/video/text_overlay.md
Normal file
44
docs/integrations/block-integrations/video/text_overlay.md
Normal file
@@ -0,0 +1,44 @@
|
||||
# Video Text Overlay
|
||||
<!-- MANUAL: file_description -->
|
||||
This block adds customizable text captions or titles to videos, with control over positioning, timing, and styling.
|
||||
<!-- END MANUAL -->
|
||||
|
||||
## Video Text Overlay
|
||||
|
||||
### What it is
|
||||
Add text overlay/caption to video
|
||||
|
||||
### How it works
|
||||
<!-- MANUAL: how_it_works -->
|
||||
The block uses MoviePy's TextClip and CompositeVideoClip to render text onto video frames. The text is created as a separate clip with configurable font size, color, and optional background color, then composited over the video at the specified position. Timing can be controlled to show text only during specific portions of the video. Position options include center alignments (top, center, bottom) and corner positions (top-left, top-right, bottom-left, bottom-right). The output is encoded with H.264 video codec and AAC audio codec.
|
||||
<!-- END MANUAL -->
|
||||
|
||||
### Inputs
|
||||
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| video_in | Input video (URL, data URI, or local path) | str (file) | Yes |
|
||||
| text | Text to overlay on video | str | Yes |
|
||||
| position | Position of text on screen | "top" \| "center" \| "bottom" \| "top-left" \| "top-right" \| "bottom-left" \| "bottom-right" | No |
|
||||
| start_time | When to show text (seconds). None = entire video | float | No |
|
||||
| end_time | When to hide text (seconds). None = until end | float | No |
|
||||
| font_size | Font size | int | No |
|
||||
| font_color | Font color (hex or name) | str | No |
|
||||
| bg_color | Background color behind text (None for transparent) | str | No |
|
||||
|
||||
### Outputs
|
||||
|
||||
| Output | Description | Type |
|
||||
|--------|-------------|------|
|
||||
| error | Error message if the operation failed | str |
|
||||
| video_out | Video with text overlay (path or data URI) | str (file) |
|
||||
|
||||
### Possible use case
|
||||
<!-- MANUAL: use_case -->
|
||||
- Adding titles or chapter headings to video content
|
||||
- Creating lower-thirds with speaker names or captions
|
||||
- Watermarking videos with branding text
|
||||
- Adding call-to-action text at specific moments in a video
|
||||
<!-- END MANUAL -->
|
||||
|
||||
---
|
||||
Reference in New Issue
Block a user