Compare commits

..

1 Commits

Author SHA1 Message Date
Otto
7f7a7067ec refactor(copilot): use Pydantic models and match/case in customize_agent
Addresses review feedback from ntindle:

1. Use typed parameters instead of kwargs.get():
   - Added CustomizeAgentInput Pydantic model with field_validator for stripping strings
   - Tool now uses params = CustomizeAgentInput(**kwargs) pattern

2. Use match/case for cleaner pattern matching:
   - Extracted response handling to _handle_customization_result method
   - Uses match result_type: case 'error' | 'clarifying_questions' | _

3. Improved code organization:
   - Split monolithic _execute into smaller focused methods
   - _handle_customization_result for response type handling
   - _save_or_preview_agent for final save/preview logic
2026-02-04 08:53:02 +00:00
43 changed files with 449 additions and 1096 deletions

View File

@@ -19,6 +19,3 @@ load-tests/*.json
load-tests/*.log
load-tests/node_modules/*
migrations/*/rollback*.sql
# Workspace files
workspaces/

View File

@@ -33,7 +33,7 @@ from backend.data.understanding import (
get_business_understanding,
)
from backend.util.exceptions import NotFoundError
from backend.util.settings import AppEnvironment, Settings
from backend.util.settings import Settings
from . import db as chat_db
from . import stream_registry
@@ -222,18 +222,8 @@ async def _get_system_prompt_template(context: str) -> str:
try:
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
# Use asyncio.to_thread to avoid blocking the event loop
# In non-production environments, fetch the latest prompt version
# instead of the production-labeled version for easier testing
label = (
None
if settings.config.app_env == AppEnvironment.PRODUCTION
else "latest"
)
prompt = await asyncio.to_thread(
langfuse.get_prompt,
config.langfuse_prompt_name,
label=label,
cache_ttl_seconds=0,
langfuse.get_prompt, config.langfuse_prompt_name, cache_ttl_seconds=0
)
return prompt.compile(users_information=context)
except Exception as e:
@@ -628,9 +618,6 @@ async def stream_chat_completion(
total_tokens=chunk.totalTokens,
)
)
elif isinstance(chunk, StreamHeartbeat):
# Pass through heartbeat to keep SSE connection alive
yield chunk
else:
logger.error(f"Unknown chunk type: {type(chunk)}", exc_info=True)

View File

@@ -7,7 +7,15 @@ from typing import Any, NotRequired, TypedDict
from backend.api.features.library import db as library_db
from backend.api.features.store import db as store_db
from backend.data.graph import Graph, Link, Node, get_graph, get_store_listed_graphs
from backend.data.graph import (
Graph,
Link,
Node,
create_graph,
get_graph,
get_graph_all_versions,
get_store_listed_graphs,
)
from backend.util.exceptions import DatabaseError, NotFoundError
from .service import (
@@ -20,6 +28,8 @@ from .service import (
logger = logging.getLogger(__name__)
AGENT_EXECUTOR_BLOCK_ID = "e189baac-8c20-45a1-94a7-55177ea42565"
class ExecutionSummary(TypedDict):
"""Summary of a single execution for quality assessment."""
@@ -659,6 +669,45 @@ def json_to_graph(agent_json: dict[str, Any]) -> Graph:
)
def _reassign_node_ids(graph: Graph) -> None:
"""Reassign all node and link IDs to new UUIDs.
This is needed when creating a new version to avoid unique constraint violations.
"""
id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes}
for node in graph.nodes:
node.id = id_map[node.id]
for link in graph.links:
link.id = str(uuid.uuid4())
if link.source_id in id_map:
link.source_id = id_map[link.source_id]
if link.sink_id in id_map:
link.sink_id = id_map[link.sink_id]
def _populate_agent_executor_user_ids(agent_json: dict[str, Any], user_id: str) -> None:
"""Populate user_id in AgentExecutorBlock nodes.
The external agent generator creates AgentExecutorBlock nodes with empty user_id.
This function fills in the actual user_id so sub-agents run with correct permissions.
Args:
agent_json: Agent JSON dict (modified in place)
user_id: User ID to set
"""
for node in agent_json.get("nodes", []):
if node.get("block_id") == AGENT_EXECUTOR_BLOCK_ID:
input_default = node.get("input_default") or {}
if not input_default.get("user_id"):
input_default["user_id"] = user_id
node["input_default"] = input_default
logger.debug(
f"Set user_id for AgentExecutorBlock node {node.get('id')}"
)
async def save_agent_to_library(
agent_json: dict[str, Any], user_id: str, is_update: bool = False
) -> tuple[Graph, Any]:
@@ -672,10 +721,35 @@ async def save_agent_to_library(
Returns:
Tuple of (created Graph, LibraryAgent)
"""
# Populate user_id in AgentExecutorBlock nodes before conversion
_populate_agent_executor_user_ids(agent_json, user_id)
graph = json_to_graph(agent_json)
if is_update:
return await library_db.update_graph_in_library(graph, user_id)
return await library_db.create_graph_in_library(graph, user_id)
if graph.id:
existing_versions = await get_graph_all_versions(graph.id, user_id)
if existing_versions:
latest_version = max(v.version for v in existing_versions)
graph.version = latest_version + 1
_reassign_node_ids(graph)
logger.info(f"Updating agent {graph.id} to version {graph.version}")
else:
graph.id = str(uuid.uuid4())
graph.version = 1
_reassign_node_ids(graph)
logger.info(f"Creating new agent with ID {graph.id}")
created_graph = await create_graph(graph, user_id)
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
return created_graph, library_agents[0]
def graph_to_json(graph: Graph) -> dict[str, Any]:

View File

@@ -206,9 +206,9 @@ async def search_agents(
]
)
no_results_msg = (
f"No agents found matching '{query}'. Let the user know they can try different keywords or browse the marketplace. Also let them know you can create a custom agent for them based on their needs."
f"No agents found matching '{query}'. Try different keywords or browse the marketplace."
if source == "marketplace"
else f"No agents matching '{query}' found in your library. Let the user know you can create a custom agent for them based on their needs."
else f"No agents matching '{query}' found in your library."
)
return NoResultsResponse(
message=no_results_msg, session_id=session_id, suggestions=suggestions
@@ -224,10 +224,10 @@ async def search_agents(
message = (
"Now you have found some options for the user to choose from. "
"You can add a link to a recommended agent at: /marketplace/agent/agent_id "
"Please ask the user if they would like to use any of these agents. Let the user know we can create a custom agent for them based on their needs."
"Please ask the user if they would like to use any of these agents."
if source == "marketplace"
else "Found agents in the user's library. You can provide a link to view an agent at: "
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute. Let the user know we can create a custom agent for them based on their needs."
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute."
)
return AgentsFoundResponse(

View File

@@ -3,6 +3,8 @@
import logging
from typing import Any
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
from backend.api.features.store import db as store_db
from backend.api.features.store.exceptions import AgentNotFoundError
@@ -27,6 +29,23 @@ from .models import (
logger = logging.getLogger(__name__)
class CustomizeAgentInput(BaseModel):
"""Input parameters for the customize_agent tool."""
agent_id: str = ""
modifications: str = ""
context: str = ""
save: bool = True
@field_validator("agent_id", "modifications", "context", mode="before")
@classmethod
def strip_strings(cls, v: Any) -> str:
"""Strip whitespace from string fields."""
if isinstance(v, str):
return v.strip()
return v if v is not None else ""
class CustomizeAgentTool(BaseTool):
"""Tool for customizing marketplace/template agents using natural language."""
@@ -92,7 +111,7 @@ class CustomizeAgentTool(BaseTool):
self,
user_id: str | None,
session: ChatSession,
**kwargs,
**kwargs: Any,
) -> ToolResponseBase:
"""Execute the customize_agent tool.
@@ -102,20 +121,17 @@ class CustomizeAgentTool(BaseTool):
3. Call customize_template with the modification request
4. Preview or save based on the save parameter
"""
agent_id = kwargs.get("agent_id", "").strip()
modifications = kwargs.get("modifications", "").strip()
context = kwargs.get("context", "")
save = kwargs.get("save", True)
params = CustomizeAgentInput(**kwargs)
session_id = session.session_id if session else None
if not agent_id:
if not params.agent_id:
return ErrorResponse(
message="Please provide the marketplace agent ID (e.g., 'creator/agent-name').",
error="missing_agent_id",
session_id=session_id,
)
if not modifications:
if not params.modifications:
return ErrorResponse(
message="Please describe how you want to customize this agent.",
error="missing_modifications",
@@ -123,11 +139,11 @@ class CustomizeAgentTool(BaseTool):
)
# Parse agent_id in format "creator/slug"
parts = [p.strip() for p in agent_id.split("/")]
parts = params.agent_id.split("/")
if len(parts) != 2 or not parts[0] or not parts[1]:
return ErrorResponse(
message=(
f"Invalid agent ID format: '{agent_id}'. "
f"Invalid agent ID format: '{params.agent_id}'. "
"Expected format is 'creator/agent-name' "
"(e.g., 'autogpt/newsletter-writer')."
),
@@ -145,14 +161,14 @@ class CustomizeAgentTool(BaseTool):
except AgentNotFoundError:
return ErrorResponse(
message=(
f"Could not find marketplace agent '{agent_id}'. "
f"Could not find marketplace agent '{params.agent_id}'. "
"Please check the agent ID and try again."
),
error="agent_not_found",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error fetching marketplace agent {agent_id}: {e}")
logger.error(f"Error fetching marketplace agent {params.agent_id}: {e}")
return ErrorResponse(
message="Failed to fetch the marketplace agent. Please try again.",
error="fetch_error",
@@ -162,7 +178,7 @@ class CustomizeAgentTool(BaseTool):
if not agent_details.store_listing_version_id:
return ErrorResponse(
message=(
f"The agent '{agent_id}' does not have an available version. "
f"The agent '{params.agent_id}' does not have an available version. "
"Please try a different agent."
),
error="no_version_available",
@@ -174,7 +190,7 @@ class CustomizeAgentTool(BaseTool):
graph = await store_db.get_agent(agent_details.store_listing_version_id)
template_agent = graph_to_json(graph)
except Exception as e:
logger.error(f"Error fetching agent graph for {agent_id}: {e}")
logger.error(f"Error fetching agent graph for {params.agent_id}: {e}")
return ErrorResponse(
message="Failed to fetch the agent configuration. Please try again.",
error="graph_fetch_error",
@@ -185,8 +201,8 @@ class CustomizeAgentTool(BaseTool):
try:
result = await customize_template(
template_agent=template_agent,
modification_request=modifications,
context=context,
modification_request=params.modifications,
context=params.context,
)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
@@ -198,7 +214,7 @@ class CustomizeAgentTool(BaseTool):
session_id=session_id,
)
except Exception as e:
logger.error(f"Error calling customize_template for {agent_id}: {e}")
logger.error(f"Error calling customize_template for {params.agent_id}: {e}")
return ErrorResponse(
message=(
"Failed to customize the agent due to a service error. "
@@ -219,55 +235,25 @@ class CustomizeAgentTool(BaseTool):
session_id=session_id,
)
# Handle error response
if isinstance(result, dict) and result.get("type") == "error":
error_msg = result.get("error", "Unknown error")
error_type = result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="customize the agent",
llm_parse_message=(
"The AI had trouble customizing the agent. "
"Please try again or simplify your request."
),
validation_message=(
"The customized agent failed validation. "
"Please try rephrasing your request."
),
error_details=error_msg,
)
return ErrorResponse(
message=user_message,
error=f"customization_failed:{error_type}",
session_id=session_id,
)
# Handle response using match/case for cleaner pattern matching
return await self._handle_customization_result(
result=result,
params=params,
agent_details=agent_details,
user_id=user_id,
session_id=session_id,
)
# Handle clarifying questions
if isinstance(result, dict) and result.get("type") == "clarifying_questions":
questions = result.get("questions") or []
if not isinstance(questions, list):
logger.error(
f"Unexpected clarifying questions format: {type(questions)}"
)
questions = []
return ClarificationNeededResponse(
message=(
"I need some more information to customize this agent. "
"Please answer the following questions:"
),
questions=[
ClarifyingQuestion(
question=q.get("question", ""),
keyword=q.get("keyword", ""),
example=q.get("example"),
)
for q in questions
if isinstance(q, dict)
],
session_id=session_id,
)
# Result should be the customized agent JSON
async def _handle_customization_result(
self,
result: dict[str, Any],
params: CustomizeAgentInput,
agent_details: Any,
user_id: str | None,
session_id: str | None,
) -> ToolResponseBase:
"""Handle the result from customize_template using pattern matching."""
# Ensure result is a dict
if not isinstance(result, dict):
logger.error(f"Unexpected customize_template response type: {type(result)}")
return ErrorResponse(
@@ -276,8 +262,77 @@ class CustomizeAgentTool(BaseTool):
session_id=session_id,
)
customized_agent = result
result_type = result.get("type")
match result_type:
case "error":
error_msg = result.get("error", "Unknown error")
error_type = result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="customize the agent",
llm_parse_message=(
"The AI had trouble customizing the agent. "
"Please try again or simplify your request."
),
validation_message=(
"The customized agent failed validation. "
"Please try rephrasing your request."
),
error_details=error_msg,
)
return ErrorResponse(
message=user_message,
error=f"customization_failed:{error_type}",
session_id=session_id,
)
case "clarifying_questions":
questions_data = result.get("questions") or []
if not isinstance(questions_data, list):
logger.error(
f"Unexpected clarifying questions format: {type(questions_data)}"
)
questions_data = []
questions = [
ClarifyingQuestion(
question=q.get("question", "") if isinstance(q, dict) else "",
keyword=q.get("keyword", "") if isinstance(q, dict) else "",
example=q.get("example") if isinstance(q, dict) else None,
)
for q in questions_data
if isinstance(q, dict)
]
return ClarificationNeededResponse(
message=(
"I need some more information to customize this agent. "
"Please answer the following questions:"
),
questions=questions,
session_id=session_id,
)
case _:
# Default case: result is the customized agent JSON
return await self._save_or_preview_agent(
customized_agent=result,
params=params,
agent_details=agent_details,
user_id=user_id,
session_id=session_id,
)
async def _save_or_preview_agent(
self,
customized_agent: dict[str, Any],
params: CustomizeAgentInput,
agent_details: Any,
user_id: str | None,
session_id: str | None,
) -> ToolResponseBase:
"""Save or preview the customized agent based on params.save."""
agent_name = customized_agent.get(
"name", f"Customized {agent_details.agent_name}"
)
@@ -287,7 +342,7 @@ class CustomizeAgentTool(BaseTool):
node_count = len(nodes) if isinstance(nodes, list) else 0
link_count = len(links) if isinstance(links, list) else 0
if not save:
if not params.save:
return AgentPreviewResponse(
message=(
f"I've customized the agent '{agent_details.agent_name}'. "

View File

@@ -8,12 +8,7 @@ from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data import graph as graph_db
from backend.data.graph import GraphModel
from backend.data.model import (
CredentialsFieldInfo,
CredentialsMetaInput,
HostScopedCredentials,
OAuth2Credentials,
)
from backend.data.model import Credentials, CredentialsFieldInfo, CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import NotFoundError
@@ -128,7 +123,7 @@ def build_missing_credentials_from_graph(
return {
field_key: _serialize_missing_credential(field_key, field_info)
for field_key, (field_info, _, _) in aggregated_fields.items()
for field_key, (field_info, _node_fields) in aggregated_fields.items()
if field_key not in matched_keys
}
@@ -269,8 +264,7 @@ async def match_user_credentials_to_graph(
# provider is in the set of acceptable providers.
for credential_field_name, (
credential_requirements,
_,
_,
_node_fields,
) in aggregated_creds.items():
# Find first matching credential by provider, type, and scopes
matching_cred = next(
@@ -279,14 +273,7 @@ async def match_user_credentials_to_graph(
for cred in available_creds
if cred.provider in credential_requirements.provider
and cred.type in credential_requirements.supported_types
and (
cred.type != "oauth2"
or _credential_has_required_scopes(cred, credential_requirements)
)
and (
cred.type != "host_scoped"
or _credential_is_for_host(cred, credential_requirements)
)
and _credential_has_required_scopes(cred, credential_requirements)
),
None,
)
@@ -331,10 +318,19 @@ async def match_user_credentials_to_graph(
def _credential_has_required_scopes(
credential: OAuth2Credentials,
credential: Credentials,
requirements: CredentialsFieldInfo,
) -> bool:
"""Check if an OAuth2 credential has all the scopes required by the input."""
"""
Check if a credential has all the scopes required by the block.
For OAuth2 credentials, verifies that the credential's scopes are a superset
of the required scopes. For other credential types, returns True (no scope check).
"""
# Only OAuth2 credentials have scopes to check
if credential.type != "oauth2":
return True
# If no scopes are required, any credential matches
if not requirements.required_scopes:
return True
@@ -343,22 +339,6 @@ def _credential_has_required_scopes(
return set(credential.scopes).issuperset(requirements.required_scopes)
def _credential_is_for_host(
credential: HostScopedCredentials,
requirements: CredentialsFieldInfo,
) -> bool:
"""Check if a host-scoped credential matches the host required by the input."""
# We need to know the host to match host-scoped credentials to.
# Graph.aggregate_credentials_inputs() adds the node's set URL value (if any)
# to discriminator_values. No discriminator_values -> no host to match against.
if not requirements.discriminator_values:
return True
# Check that credential host matches required host.
# Host-scoped credential inputs are grouped by host, so any item from the set works.
return credential.matches_url(list(requirements.discriminator_values)[0])
async def check_user_has_required_credentials(
user_id: str,
required_credentials: list[CredentialsMetaInput],

View File

@@ -19,10 +19,7 @@ from backend.data.graph import GraphSettings
from backend.data.includes import AGENT_PRESET_INCLUDE, library_agent_include
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks.graph_lifecycle_hooks import (
on_graph_activate,
on_graph_deactivate,
)
from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate
from backend.util.clients import get_scheduler_client
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
from backend.util.json import SafeJson
@@ -540,92 +537,6 @@ async def update_agent_version_in_library(
return library_model.LibraryAgent.from_db(lib)
async def create_graph_in_library(
graph: graph_db.Graph,
user_id: str,
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
"""Create a new graph and add it to the user's library."""
graph.version = 1
graph_model = graph_db.make_graph_model(graph, user_id)
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=True)
created_graph = await graph_db.create_graph(graph_model, user_id)
library_agents = await create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
if created_graph.is_active:
created_graph = await on_graph_activate(created_graph, user_id=user_id)
return created_graph, library_agents[0]
async def update_graph_in_library(
graph: graph_db.Graph,
user_id: str,
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
"""Create a new version of an existing graph and update the library entry."""
existing_versions = await graph_db.get_graph_all_versions(graph.id, user_id)
current_active_version = (
next((v for v in existing_versions if v.is_active), None)
if existing_versions
else None
)
graph.version = (
max(v.version for v in existing_versions) + 1 if existing_versions else 1
)
graph_model = graph_db.make_graph_model(graph, user_id)
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=False)
created_graph = await graph_db.create_graph(graph_model, user_id)
library_agent = await get_library_agent_by_graph_id(user_id, created_graph.id)
if not library_agent:
raise NotFoundError(f"Library agent not found for graph {created_graph.id}")
library_agent = await update_library_agent_version_and_settings(
user_id, created_graph
)
if created_graph.is_active:
created_graph = await on_graph_activate(created_graph, user_id=user_id)
await graph_db.set_graph_active_version(
graph_id=created_graph.id,
version=created_graph.version,
user_id=user_id,
)
if current_active_version:
await on_graph_deactivate(current_active_version, user_id=user_id)
return created_graph, library_agent
async def update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
"""Update library agent to point to new graph version and sync settings."""
library = await update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await update_library_agent(
library_agent_id=library.id,
user_id=user_id,
settings=updated_settings,
)
return library
async def update_library_agent(
library_agent_id: str,
user_id: str,

View File

@@ -101,6 +101,7 @@ from backend.util.timezone_utils import (
from backend.util.virus_scanner import scan_content_safe
from .library import db as library_db
from .library import model as library_model
from .store.model import StoreAgentDetails
@@ -822,16 +823,18 @@ async def update_graph(
graph: graph_db.Graph,
user_id: Annotated[str, Security(get_user_id)],
) -> graph_db.GraphModel:
# Sanity check
if graph.id and graph.id != graph_id:
raise HTTPException(400, detail="Graph ID does not match ID in URI")
# Determine new version
existing_versions = await graph_db.get_graph_all_versions(graph_id, user_id=user_id)
if not existing_versions:
raise HTTPException(404, detail=f"Graph #{graph_id} not found")
latest_version_number = max(g.version for g in existing_versions)
graph.version = latest_version_number + 1
graph.version = max(g.version for g in existing_versions) + 1
current_active_version = next((v for v in existing_versions if v.is_active), None)
graph = graph_db.make_graph_model(graph, user_id)
graph.reassign_ids(user_id=user_id, reassign_graph_id=False)
graph.validate_graph(for_run=False)
@@ -839,23 +842,27 @@ async def update_graph(
new_graph_version = await graph_db.create_graph(graph, user_id=user_id)
if new_graph_version.is_active:
await library_db.update_library_agent_version_and_settings(
user_id, new_graph_version
)
# Keep the library agent up to date with the new active version
await _update_library_agent_version_and_settings(user_id, new_graph_version)
# Handle activation of the new graph first to ensure continuity
new_graph_version = await on_graph_activate(new_graph_version, user_id=user_id)
# Ensure new version is the only active version
await graph_db.set_graph_active_version(
graph_id=graph_id, version=new_graph_version.version, user_id=user_id
)
if current_active_version:
# Handle deactivation of the previously active version
await on_graph_deactivate(current_active_version, user_id=user_id)
# Fetch new graph version *with sub-graphs* (needed for credentials input schema)
new_graph_version_with_subgraphs = await graph_db.get_graph(
graph_id,
new_graph_version.version,
user_id=user_id,
include_subgraphs=True,
)
assert new_graph_version_with_subgraphs
assert new_graph_version_with_subgraphs # make type checker happy
return new_graph_version_with_subgraphs
@@ -893,15 +900,33 @@ async def set_graph_active_version(
)
# Keep the library agent up to date with the new active version
await library_db.update_library_agent_version_and_settings(
user_id, new_active_graph
)
await _update_library_agent_version_and_settings(user_id, new_active_graph)
if current_active_graph and current_active_graph.version != new_active_version:
# Handle deactivation of the previously active version
await on_graph_deactivate(current_active_graph, user_id=user_id)
async def _update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
library = await library_db.update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await library_db.update_library_agent(
library_agent_id=library.id,
user_id=user_id,
settings=updated_settings,
)
return library
@v1_router.patch(
path="/graphs/{graph_id}/settings",
summary="Update graph settings",

View File

@@ -1,77 +0,0 @@
"""Text encoding block for converting special characters to escape sequences."""
import codecs
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import SchemaField
class TextEncoderBlock(Block):
"""
Encodes a string by converting special characters into escape sequences.
This block is the inverse of TextDecoderBlock. It takes text containing
special characters (like newlines, tabs, etc.) and converts them into
their escape sequence representations (e.g., newline becomes \\n).
"""
class Input(BlockSchemaInput):
"""Input schema for TextEncoderBlock."""
text: str = SchemaField(
description="A string containing special characters to be encoded",
placeholder="Your text with newlines and quotes to encode",
)
class Output(BlockSchemaOutput):
"""Output schema for TextEncoderBlock."""
encoded_text: str = SchemaField(
description="The encoded text with special characters converted to escape sequences"
)
error: str = SchemaField(description="Error message if encoding fails")
def __init__(self):
super().__init__(
id="5185f32e-4b65-4ecf-8fbb-873f003f09d6",
description="Encodes a string by converting special characters into escape sequences",
categories={BlockCategory.TEXT},
input_schema=TextEncoderBlock.Input,
output_schema=TextEncoderBlock.Output,
test_input={
"text": """Hello
World!
This is a "quoted" string."""
},
test_output=[
(
"encoded_text",
"""Hello\\nWorld!\\nThis is a "quoted" string.""",
)
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
"""
Encode the input text by converting special characters to escape sequences.
Args:
input_data: The input containing the text to encode.
**kwargs: Additional keyword arguments (unused).
Yields:
The encoded text with escape sequences, or an error message if encoding fails.
"""
try:
encoded_text = codecs.encode(input_data.text, "unicode_escape").decode(
"utf-8"
)
yield "encoded_text", encoded_text
except Exception as e:
yield "error", f"Encoding error: {str(e)}"

View File

@@ -162,16 +162,8 @@ class LinearClient:
"searchTerm": team_name,
}
result = await self.query(query, variables)
nodes = result["teams"]["nodes"]
if not nodes:
raise LinearAPIException(
f"Team '{team_name}' not found. Check the team name or key and try again.",
status_code=404,
)
return nodes[0]["id"]
team_id = await self.query(query, variables)
return team_id["teams"]["nodes"][0]["id"]
except LinearAPIException as e:
raise e
@@ -248,44 +240,17 @@ class LinearClient:
except LinearAPIException as e:
raise e
async def try_search_issues(
self,
term: str,
max_results: int = 10,
team_id: str | None = None,
) -> list[Issue]:
async def try_search_issues(self, term: str) -> list[Issue]:
try:
query = """
query SearchIssues(
$term: String!,
$first: Int,
$teamId: String
) {
searchIssues(
term: $term,
first: $first,
teamId: $teamId
) {
query SearchIssues($term: String!, $includeComments: Boolean!) {
searchIssues(term: $term, includeComments: $includeComments) {
nodes {
id
identifier
title
description
priority
createdAt
state {
id
name
type
}
project {
id
name
}
assignee {
id
name
}
}
}
}
@@ -293,8 +258,7 @@ class LinearClient:
variables: dict[str, Any] = {
"term": term,
"first": max_results,
"teamId": team_id,
"includeComments": True,
}
issues = await self.query(query, variables)

View File

@@ -17,7 +17,7 @@ from ._config import (
LinearScope,
linear,
)
from .models import CreateIssueResponse, Issue, State
from .models import CreateIssueResponse, Issue
class LinearCreateIssueBlock(Block):
@@ -135,20 +135,9 @@ class LinearSearchIssuesBlock(Block):
description="Linear credentials with read permissions",
required_scopes={LinearScope.READ},
)
max_results: int = SchemaField(
description="Maximum number of results to return",
default=10,
ge=1,
le=100,
)
team_name: str | None = SchemaField(
description="Optional team name to filter results (e.g., 'Internal', 'Open Source')",
default=None,
)
class Output(BlockSchemaOutput):
issues: list[Issue] = SchemaField(description="List of issues")
error: str = SchemaField(description="Error message if the search failed")
def __init__(self):
super().__init__(
@@ -156,11 +145,8 @@ class LinearSearchIssuesBlock(Block):
description="Searches for issues on Linear",
input_schema=self.Input,
output_schema=self.Output,
categories={BlockCategory.PRODUCTIVITY, BlockCategory.ISSUE_TRACKING},
test_input={
"term": "Test issue",
"max_results": 10,
"team_name": None,
"credentials": TEST_CREDENTIALS_INPUT_OAUTH,
},
test_credentials=TEST_CREDENTIALS_OAUTH,
@@ -170,14 +156,10 @@ class LinearSearchIssuesBlock(Block):
[
Issue(
id="abc123",
identifier="TST-123",
identifier="abc123",
title="Test issue",
description="Test description",
priority=1,
state=State(
id="state1", name="In Progress", type="started"
),
createdAt="2026-01-15T10:00:00.000Z",
)
],
)
@@ -186,12 +168,10 @@ class LinearSearchIssuesBlock(Block):
"search_issues": lambda *args, **kwargs: [
Issue(
id="abc123",
identifier="TST-123",
identifier="abc123",
title="Test issue",
description="Test description",
priority=1,
state=State(id="state1", name="In Progress", type="started"),
createdAt="2026-01-15T10:00:00.000Z",
)
]
},
@@ -201,22 +181,10 @@ class LinearSearchIssuesBlock(Block):
async def search_issues(
credentials: OAuth2Credentials | APIKeyCredentials,
term: str,
max_results: int = 10,
team_name: str | None = None,
) -> list[Issue]:
client = LinearClient(credentials=credentials)
# Resolve team name to ID if provided
# Raises LinearAPIException with descriptive message if team not found
team_id: str | None = None
if team_name:
team_id = await client.try_get_team_by_name(team_name=team_name)
return await client.try_search_issues(
term=term,
max_results=max_results,
team_id=team_id,
)
response: list[Issue] = await client.try_search_issues(term=term)
return response
async def run(
self,
@@ -228,10 +196,7 @@ class LinearSearchIssuesBlock(Block):
"""Execute the issue search"""
try:
issues = await self.search_issues(
credentials=credentials,
term=input_data.term,
max_results=input_data.max_results,
team_name=input_data.team_name,
credentials=credentials, term=input_data.term
)
yield "issues", issues
except LinearAPIException as e:

View File

@@ -36,21 +36,12 @@ class Project(BaseModel):
content: str | None = None
class State(BaseModel):
id: str
name: str
type: str | None = (
None # Workflow state type (e.g., "triage", "backlog", "started", "completed", "canceled")
)
class Issue(BaseModel):
id: str
identifier: str
title: str
description: str | None
priority: int
state: State | None = None
project: Project | None = None
createdAt: str | None = None
comments: list[Comment] | None = None

View File

@@ -1,77 +0,0 @@
import pytest
from backend.blocks.encoder_block import TextEncoderBlock
@pytest.mark.asyncio
async def test_text_encoder_basic():
"""Test basic encoding of newlines and special characters."""
block = TextEncoderBlock()
result = []
async for output in block.run(TextEncoderBlock.Input(text="Hello\nWorld")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
assert result[0][1] == "Hello\\nWorld"
@pytest.mark.asyncio
async def test_text_encoder_multiple_escapes():
"""Test encoding of multiple escape sequences."""
block = TextEncoderBlock()
result = []
async for output in block.run(
TextEncoderBlock.Input(text="Line1\nLine2\tTabbed\rCarriage")
):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
assert "\\n" in result[0][1]
assert "\\t" in result[0][1]
assert "\\r" in result[0][1]
@pytest.mark.asyncio
async def test_text_encoder_unicode():
"""Test that unicode characters are handled correctly."""
block = TextEncoderBlock()
result = []
async for output in block.run(TextEncoderBlock.Input(text="Hello 世界\n")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
# Unicode characters should be escaped as \uXXXX sequences
assert "\\n" in result[0][1]
@pytest.mark.asyncio
async def test_text_encoder_empty_string():
"""Test encoding of an empty string."""
block = TextEncoderBlock()
result = []
async for output in block.run(TextEncoderBlock.Input(text="")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
assert result[0][1] == ""
@pytest.mark.asyncio
async def test_text_encoder_error_handling():
"""Test that encoding errors are handled gracefully."""
from unittest.mock import patch
block = TextEncoderBlock()
result = []
with patch("codecs.encode", side_effect=Exception("Mocked encoding error")):
async for output in block.run(TextEncoderBlock.Input(text="test")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "error"
assert "Mocked encoding error" in result[0][1]

View File

@@ -165,13 +165,10 @@ class TranscribeYoutubeVideoBlock(Block):
credentials: WebshareProxyCredentials,
**kwargs,
) -> BlockOutput:
try:
video_id = self.extract_video_id(input_data.youtube_url)
transcript = self.get_transcript(video_id, credentials)
transcript_text = self.format_transcript(transcript=transcript)
video_id = self.extract_video_id(input_data.youtube_url)
yield "video_id", video_id
# Only yield after all operations succeed
yield "video_id", video_id
yield "transcript", transcript_text
except Exception as e:
yield "error", str(e)
transcript = self.get_transcript(video_id, credentials)
transcript_text = self.format_transcript(transcript=transcript)
yield "transcript", transcript_text

View File

@@ -246,9 +246,7 @@ class BlockSchema(BaseModel):
f"is not of type {CredentialsMetaInput.__name__}"
)
CredentialsMetaInput.validate_credentials_field_schema(
cls.get_field_schema(field_name), field_name
)
credentials_fields[field_name].validate_credentials_field_schema(cls)
elif field_name in credentials_fields:
raise KeyError(

View File

@@ -134,16 +134,6 @@ async def test_block_credit_reset(server: SpinTestServer):
month1 = datetime.now(timezone.utc).replace(month=1, day=1)
user_credit.time_now = lambda: month1
# IMPORTANT: Set updatedAt to December of previous year to ensure it's
# in a different month than month1 (January). This fixes a timing bug
# where if the test runs in early February, 35 days ago would be January,
# matching the mocked month1 and preventing the refill from triggering.
dec_previous_year = month1.replace(year=month1.year - 1, month=12, day=15)
await UserBalance.prisma().update(
where={"userId": DEFAULT_USER_ID},
data={"updatedAt": dec_previous_year},
)
# First call in month 1 should trigger refill
balance = await user_credit.get_credits(DEFAULT_USER_ID)
assert balance == REFILL_VALUE # Should get 1000 credits

View File

@@ -20,7 +20,7 @@ from prisma.types import (
AgentNodeLinkCreateInput,
StoreListingVersionWhereInput,
)
from pydantic import BaseModel, BeforeValidator, Field
from pydantic import BaseModel, BeforeValidator, Field, create_model
from pydantic.fields import computed_field
from backend.blocks.agent import AgentExecutorBlock
@@ -30,6 +30,7 @@ from backend.data.db import prisma as db
from backend.data.dynamic_fields import is_tool_pin, sanitize_pin_name
from backend.data.includes import MAX_GRAPH_VERSIONS_FETCH
from backend.data.model import (
CredentialsField,
CredentialsFieldInfo,
CredentialsMetaInput,
is_credentials_field_name,
@@ -44,6 +45,7 @@ from .block import (
AnyBlockSchema,
Block,
BlockInput,
BlockSchema,
BlockType,
EmptySchema,
get_block,
@@ -364,8 +366,39 @@ class Graph(BaseGraph):
@computed_field
@property
def credentials_input_schema(self) -> dict[str, Any]:
graph_credentials_inputs = self.aggregate_credentials_inputs()
schema = self._credentials_input_schema.jsonschema()
# Determine which credential fields are required based on credentials_optional metadata
graph_credentials_inputs = self.aggregate_credentials_inputs()
required_fields = []
# Build a map of node_id -> node for quick lookup
all_nodes = {node.id: node for node in self.nodes}
for sub_graph in self.sub_graphs:
for node in sub_graph.nodes:
all_nodes[node.id] = node
for field_key, (
_field_info,
node_field_pairs,
) in graph_credentials_inputs.items():
# A field is required if ANY node using it has credentials_optional=False
is_required = False
for node_id, _field_name in node_field_pairs:
node = all_nodes.get(node_id)
if node and not node.credentials_optional:
is_required = True
break
if is_required:
required_fields.append(field_key)
schema["required"] = required_fields
return schema
@property
def _credentials_input_schema(self) -> type[BlockSchema]:
graph_credentials_inputs = self.aggregate_credentials_inputs()
logger.debug(
f"Combined credentials input fields for graph #{self.id} ({self.name}): "
f"{graph_credentials_inputs}"
@@ -373,8 +406,8 @@ class Graph(BaseGraph):
# Warn if same-provider credentials inputs can't be combined (= bad UX)
graph_cred_fields = list(graph_credentials_inputs.values())
for i, (field, keys, _) in enumerate(graph_cred_fields):
for other_field, other_keys, _ in list(graph_cred_fields)[i + 1 :]:
for i, (field, keys) in enumerate(graph_cred_fields):
for other_field, other_keys in list(graph_cred_fields)[i + 1 :]:
if field.provider != other_field.provider:
continue
if ProviderName.HTTP in field.provider:
@@ -390,78 +423,31 @@ class Graph(BaseGraph):
f"keys: {keys} <> {other_keys}."
)
# Build JSON schema directly to avoid expensive create_model + validation overhead
properties = {}
required_fields = []
for agg_field_key, (
field_info,
_,
is_required,
) in graph_credentials_inputs.items():
providers = list(field_info.provider)
cred_types = list(field_info.supported_types)
field_schema: dict[str, Any] = {
"credentials_provider": providers,
"credentials_types": cred_types,
"type": "object",
"properties": {
"id": {"title": "Id", "type": "string"},
"title": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"default": None,
"title": "Title",
},
"provider": {
"title": "Provider",
"type": "string",
**(
{"enum": providers}
if len(providers) > 1
else {"const": providers[0]}
),
},
"type": {
"title": "Type",
"type": "string",
**(
{"enum": cred_types}
if len(cred_types) > 1
else {"const": cred_types[0]}
),
},
},
"required": ["id", "provider", "type"],
}
# Add other (optional) field info items
field_schema.update(
field_info.model_dump(
by_alias=True,
exclude_defaults=True,
exclude={"provider", "supported_types"}, # already included above
)
fields: dict[str, tuple[type[CredentialsMetaInput], CredentialsMetaInput]] = {
agg_field_key: (
CredentialsMetaInput[
Literal[tuple(field_info.provider)], # type: ignore
Literal[tuple(field_info.supported_types)], # type: ignore
],
CredentialsField(
required_scopes=set(field_info.required_scopes or []),
discriminator=field_info.discriminator,
discriminator_mapping=field_info.discriminator_mapping,
discriminator_values=field_info.discriminator_values,
),
)
# Ensure field schema is well-formed
CredentialsMetaInput.validate_credentials_field_schema(
field_schema, agg_field_key
)
properties[agg_field_key] = field_schema
if is_required:
required_fields.append(agg_field_key)
return {
"type": "object",
"properties": properties,
"required": required_fields,
for agg_field_key, (field_info, _) in graph_credentials_inputs.items()
}
return create_model(
self.name.replace(" ", "") + "CredentialsInputSchema",
__base__=BlockSchema,
**fields, # type: ignore
)
def aggregate_credentials_inputs(
self,
) -> dict[str, tuple[CredentialsFieldInfo, set[tuple[str, str]], bool]]:
) -> dict[str, tuple[CredentialsFieldInfo, set[tuple[str, str]]]]:
"""
Returns:
dict[aggregated_field_key, tuple(
@@ -469,19 +455,13 @@ class Graph(BaseGraph):
(now includes discriminator_values from matching nodes)
set[(node_id, field_name)]: Node credentials fields that are
compatible with this aggregated field spec
bool: True if the field is required (any node has credentials_optional=False)
)]
"""
# First collect all credential field data with input defaults
# Track (field_info, (node_id, field_name), is_required) for each credential field
node_credential_data: list[tuple[CredentialsFieldInfo, tuple[str, str]]] = []
node_required_map: dict[str, bool] = {} # node_id -> is_required
node_credential_data = []
for graph in [self] + self.sub_graphs:
for node in graph.nodes:
# Track if this node requires credentials (credentials_optional=False means required)
node_required_map[node.id] = not node.credentials_optional
for (
field_name,
field_info,
@@ -505,21 +485,7 @@ class Graph(BaseGraph):
)
# Combine credential field info (this will merge discriminator_values automatically)
combined = CredentialsFieldInfo.combine(*node_credential_data)
# Add is_required flag to each aggregated field
# A field is required if ANY node using it has credentials_optional=False
return {
key: (
field_info,
node_field_pairs,
any(
node_required_map.get(node_id, True)
for node_id, _ in node_field_pairs
),
)
for key, (field_info, node_field_pairs) in combined.items()
}
return CredentialsFieldInfo.combine(*node_credential_data)
class GraphModel(Graph):
@@ -866,55 +832,16 @@ class GraphModel(Graph):
)
class GraphMeta(BaseModel):
"""
Graph metadata without nodes/links, used for list endpoints.
This is a flat, lightweight model (not inheriting from Graph) to avoid recomputing
expensive computed fields. Values are copied from GraphModel.
"""
id: str
version: int = 1
is_active: bool = True
name: str
description: str
instructions: str | None = None
recommended_schedule_cron: str | None = None
forked_from_id: str | None = None
forked_from_version: int | None = None
class GraphMeta(Graph):
user_id: str
input_schema: dict[str, Any]
output_schema: dict[str, Any]
credentials_input_schema: dict[str, Any]
has_external_trigger: bool
has_human_in_the_loop: bool
has_sensitive_action: bool
trigger_setup_info: Optional["GraphTriggerInfo"]
# Easy work-around to prevent exposing nodes and links in the API response
nodes: list[NodeModel] = Field(default=[], exclude=True) # type: ignore
links: list[Link] = Field(default=[], exclude=True)
@staticmethod
def from_graph(graph: "GraphModel") -> "GraphMeta":
return GraphMeta(
id=graph.id,
version=graph.version,
is_active=graph.is_active,
name=graph.name,
description=graph.description,
instructions=graph.instructions,
recommended_schedule_cron=graph.recommended_schedule_cron,
forked_from_id=graph.forked_from_id,
forked_from_version=graph.forked_from_version,
user_id=graph.user_id,
# Pre-computed values (were @computed_field on Graph)
input_schema=graph.input_schema,
output_schema=graph.output_schema,
has_external_trigger=graph.has_external_trigger,
has_human_in_the_loop=graph.has_human_in_the_loop,
has_sensitive_action=graph.has_sensitive_action,
trigger_setup_info=graph.trigger_setup_info,
credentials_input_schema=graph.credentials_input_schema,
)
def from_graph(graph: GraphModel) -> "GraphMeta":
return GraphMeta(**graph.model_dump())
class GraphsPaginated(BaseModel):
@@ -993,9 +920,9 @@ async def list_graphs_paginated(
graph_models: list[GraphMeta] = []
for graph in graphs:
try:
# GraphMeta.from_graph() accesses all computed fields on the GraphModel,
# which validates that the graph is well formed (e.g. no unknown block_ids).
graph_meta = GraphModel.from_db(graph).meta()
# Trigger serialization to validate that the graph is well formed
graph_meta.model_dump()
graph_models.append(graph_meta)
except Exception as e:
logger.error(f"Error processing graph {graph.id}: {e}")

View File

@@ -19,6 +19,7 @@ from typing import (
cast,
get_args,
)
from urllib.parse import urlparse
from uuid import uuid4
from prisma.enums import CreditTransactionType, OnboardingStep
@@ -41,7 +42,6 @@ from typing_extensions import TypedDict
from backend.integrations.providers import ProviderName
from backend.util.json import loads as json_loads
from backend.util.request import parse_url
from backend.util.settings import Secrets
# Type alias for any provider name (including custom ones)
@@ -163,6 +163,7 @@ class User(BaseModel):
if TYPE_CHECKING:
from prisma.models import User as PrismaUser
from backend.data.block import BlockSchema
T = TypeVar("T")
logger = logging.getLogger(__name__)
@@ -396,25 +397,19 @@ class HostScopedCredentials(_BaseCredentials):
def matches_url(self, url: str) -> bool:
"""Check if this credential should be applied to the given URL."""
request_host, request_port = _extract_host_from_url(url)
cred_scope_host, cred_scope_port = _extract_host_from_url(self.host)
parsed_url = urlparse(url)
# Extract hostname without port
request_host = parsed_url.hostname
if not request_host:
return False
# If a port is specified in credential host, the request host port must match
if cred_scope_port is not None and request_port != cred_scope_port:
return False
# Non-standard ports are only allowed if explicitly specified in credential host
elif cred_scope_port is None and request_port not in (80, 443, None):
return False
# Simple host matching
if cred_scope_host == request_host:
# Simple host matching - exact match or wildcard subdomain match
if self.host == request_host:
return True
# Support wildcard matching (e.g., "*.example.com" matches "api.example.com")
if cred_scope_host.startswith("*."):
domain = cred_scope_host[2:] # Remove "*."
if self.host.startswith("*."):
domain = self.host[2:] # Remove "*."
return request_host.endswith(f".{domain}") or request_host == domain
return False
@@ -507,13 +502,15 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
def allowed_cred_types(cls) -> tuple[CredentialsType, ...]:
return get_args(cls.model_fields["type"].annotation)
@staticmethod
def validate_credentials_field_schema(
field_schema: dict[str, Any], field_name: str
):
@classmethod
def validate_credentials_field_schema(cls, model: type["BlockSchema"]):
"""Validates the schema of a credentials input field"""
field_name = next(
name for name, type in model.get_credentials_fields().items() if type is cls
)
field_schema = model.jsonschema()["properties"][field_name]
try:
field_info = CredentialsFieldInfo[CP, CT].model_validate(field_schema)
schema_extra = CredentialsFieldInfo[CP, CT].model_validate(field_schema)
except ValidationError as e:
if "Field required [type=missing" not in str(e):
raise
@@ -523,11 +520,11 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
f"{field_schema}"
) from e
providers = field_info.provider
providers = cls.allowed_providers()
if (
providers is not None
and len(providers) > 1
and not field_info.discriminator
and not schema_extra.discriminator
):
raise TypeError(
f"Multi-provider CredentialsField '{field_name}' "
@@ -554,13 +551,13 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
)
def _extract_host_from_url(url: str) -> tuple[str, int | None]:
"""Extract host and port from URL for grouping host-scoped credentials."""
def _extract_host_from_url(url: str) -> str:
"""Extract host from URL for grouping host-scoped credentials."""
try:
parsed = parse_url(url)
return parsed.hostname or url, parsed.port
parsed = urlparse(url)
return parsed.hostname or url
except Exception:
return "", None
return ""
class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
@@ -609,7 +606,7 @@ class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
providers = frozenset(
[cast(CP, "http")]
+ [
cast(CP, parse_url(str(value)).netloc)
cast(CP, _extract_host_from_url(str(value)))
for value in field.discriminator_values
]
)

View File

@@ -79,23 +79,10 @@ class TestHostScopedCredentials:
headers={"Authorization": SecretStr("Bearer token")},
)
# Non-standard ports require explicit port in credential host
assert not creds.matches_url("http://localhost:8080/api/v1")
assert creds.matches_url("http://localhost:8080/api/v1")
assert creds.matches_url("https://localhost:443/secure/endpoint")
assert creds.matches_url("http://localhost/simple")
def test_matches_url_with_explicit_port(self):
"""Test URL matching with explicit port in credential host."""
creds = HostScopedCredentials(
provider="custom",
host="localhost:8080",
headers={"Authorization": SecretStr("Bearer token")},
)
assert creds.matches_url("http://localhost:8080/api/v1")
assert not creds.matches_url("http://localhost:3000/api/v1")
assert not creds.matches_url("http://localhost/simple")
def test_empty_headers_dict(self):
"""Test HostScopedCredentials with empty headers."""
creds = HostScopedCredentials(
@@ -141,20 +128,8 @@ class TestHostScopedCredentials:
("*.example.com", "https://sub.api.example.com/test", True),
("*.example.com", "https://example.com/test", True),
("*.example.com", "https://example.org/test", False),
# Non-standard ports require explicit port in credential host
("localhost", "http://localhost:3000/test", False),
("localhost:3000", "http://localhost:3000/test", True),
("localhost", "http://localhost:3000/test", True),
("localhost", "http://127.0.0.1:3000/test", False),
# IPv6 addresses (frontend stores with brackets via URL.hostname)
("[::1]", "http://[::1]/test", True),
("[::1]", "http://[::1]:80/test", True),
("[::1]", "https://[::1]:443/test", True),
("[::1]", "http://[::1]:8080/test", False), # Non-standard port
("[::1]:8080", "http://[::1]:8080/test", True),
("[::1]:8080", "http://[::1]:9090/test", False),
("[2001:db8::1]", "http://[2001:db8::1]/path", True),
("[2001:db8::1]", "https://[2001:db8::1]:443/path", True),
("[2001:db8::1]", "http://[2001:db8::ff]/path", False),
],
)
def test_url_matching_parametrized(self, host: str, test_url: str, expected: bool):

View File

@@ -373,7 +373,7 @@ def make_node_credentials_input_map(
# Get aggregated credentials fields for the graph
graph_cred_inputs = graph.aggregate_credentials_inputs()
for graph_input_name, (_, compatible_node_fields, _) in graph_cred_inputs.items():
for graph_input_name, (_, compatible_node_fields) in graph_cred_inputs.items():
# Best-effort map: skip missing items
if graph_input_name not in graph_credentials_input:
continue

View File

@@ -157,7 +157,12 @@ async def validate_url(
is_trusted: Boolean indicating if the hostname is in trusted_origins
ip_addresses: List of IP addresses for the host; empty if the host is trusted
"""
parsed = parse_url(url)
# Canonicalize URL
url = url.strip("/ ").replace("\\", "/")
parsed = urlparse(url)
if not parsed.scheme:
url = f"http://{url}"
parsed = urlparse(url)
# Check scheme
if parsed.scheme not in ALLOWED_SCHEMES:
@@ -215,17 +220,6 @@ async def validate_url(
)
def parse_url(url: str) -> URL:
"""Canonicalizes and parses a URL string."""
url = url.strip("/ ").replace("\\", "/")
# Ensure scheme is present for proper parsing
if not re.match(r"[a-z0-9+.\-]+://", url):
url = f"http://{url}"
return urlparse(url)
def pin_url(url: URL, ip_addresses: Optional[list[str]] = None) -> URL:
"""
Pins a URL to a specific IP address to prevent DNS rebinding attacks.

View File

@@ -3,6 +3,7 @@
"credentials_input_schema": {
"properties": {},
"required": [],
"title": "TestGraphCredentialsInputSchema",
"type": "object"
},
"description": "A test graph",

View File

@@ -3,6 +3,7 @@
"credentials_input_schema": {
"properties": {},
"required": [],
"title": "TestGraphCredentialsInputSchema",
"type": "object"
},
"description": "A test graph",
@@ -26,6 +27,7 @@
"type": "object"
},
"recommended_schedule_cron": null,
"sub_graphs": [],
"trigger_setup_info": null,
"user_id": "3e53486c-cf57-477e-ba2a-cb02dc828e1a",
"version": 1

View File

@@ -1,17 +1,6 @@
import { OAuthPopupResultMessage } from "./types";
import { NextResponse } from "next/server";
/**
* Safely encode a value as JSON for embedding in a script tag.
* Escapes characters that could break out of the script context to prevent XSS.
*/
function safeJsonStringify(value: unknown): string {
return JSON.stringify(value)
.replace(/</g, "\\u003c")
.replace(/>/g, "\\u003e")
.replace(/&/g, "\\u0026");
}
// This route is intended to be used as the callback for integration OAuth flows,
// controlled by the CredentialsInput component. The CredentialsInput opens the login
// page in a pop-up window, which then redirects to this route to close the loop.
@@ -34,13 +23,12 @@ export async function GET(request: Request) {
console.debug("Sending message to opener:", message);
// Return a response with the message as JSON and a script to close the window
// Use safeJsonStringify to prevent XSS by escaping <, >, and & characters
return new NextResponse(
`
<html>
<body>
<script>
window.opener.postMessage(${safeJsonStringify(message)});
window.opener.postMessage(${JSON.stringify(message)});
window.close();
</script>
</body>

View File

@@ -26,20 +26,8 @@ export function buildCopilotChatUrl(prompt: string): string {
export function getQuickActions(): string[] {
return [
"I don't know where to start, just ask me stuff",
"I do the same thing every week and it's killing me",
"Help me find where I'm wasting my time",
"Show me what I can automate",
"Design a custom workflow",
"Help me with content creation",
];
}
export function getInputPlaceholder(width?: number) {
if (!width) return "What's your role and what eats up most of your day?";
if (width < 500) {
return "I'm a chef and I hate...";
}
if (width <= 1080) {
return "What's your role and what eats up most of your day?";
}
return "What's your role and what eats up most of your day? e.g. 'I'm a recruiter and I hate...'";
}

View File

@@ -6,9 +6,7 @@ import { Text } from "@/components/atoms/Text/Text";
import { Chat } from "@/components/contextual/Chat/Chat";
import { ChatInput } from "@/components/contextual/Chat/components/ChatInput/ChatInput";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { useEffect, useState } from "react";
import { useCopilotStore } from "./copilot-page-store";
import { getInputPlaceholder } from "./helpers";
import { useCopilotPage } from "./useCopilotPage";
export default function CopilotPage() {
@@ -16,25 +14,8 @@ export default function CopilotPage() {
const isInterruptModalOpen = useCopilotStore((s) => s.isInterruptModalOpen);
const confirmInterrupt = useCopilotStore((s) => s.confirmInterrupt);
const cancelInterrupt = useCopilotStore((s) => s.cancelInterrupt);
const [inputPlaceholder, setInputPlaceholder] = useState(
getInputPlaceholder(),
);
useEffect(() => {
const handleResize = () => {
setInputPlaceholder(getInputPlaceholder(window.innerWidth));
};
handleResize();
window.addEventListener("resize", handleResize);
return () => window.removeEventListener("resize", handleResize);
}, []);
const { greetingName, quickActions, isLoading, hasSession, initialPrompt } =
state;
const {
handleQuickAction,
startChatWithPrompt,
@@ -92,7 +73,7 @@ export default function CopilotPage() {
}
return (
<div className="flex h-full flex-1 items-center justify-center overflow-y-auto bg-[#f8f8f9] px-3 py-5 md:px-6 md:py-10">
<div className="flex h-full flex-1 items-center justify-center overflow-y-auto bg-[#f8f8f9] px-6 py-10">
<div className="w-full text-center">
{isLoading ? (
<div className="mx-auto max-w-2xl">
@@ -109,25 +90,25 @@ export default function CopilotPage() {
</div>
) : (
<>
<div className="mx-auto max-w-3xl">
<div className="mx-auto max-w-2xl">
<Text
variant="h3"
className="mb-1 !text-[1.375rem] text-zinc-700"
className="mb-3 !text-[1.375rem] text-zinc-700"
>
Hey, <span className="text-violet-600">{greetingName}</span>
</Text>
<Text variant="h3" className="mb-8 !font-normal">
Tell me about your work I&apos;ll find what to automate.
What do you want to automate?
</Text>
<div className="mb-6">
<ChatInput
onSend={startChatWithPrompt}
placeholder={inputPlaceholder}
placeholder='You can search or just ask - e.g. "create a blog post outline"'
/>
</div>
</div>
<div className="flex flex-wrap items-center justify-center gap-3 overflow-x-auto [-ms-overflow-style:none] [scrollbar-width:none] [&::-webkit-scrollbar]:hidden">
<div className="flex flex-nowrap items-center justify-center gap-3 overflow-x-auto [-ms-overflow-style:none] [scrollbar-width:none] [&::-webkit-scrollbar]:hidden">
{quickActions.map((action) => (
<Button
key={action}
@@ -135,7 +116,7 @@ export default function CopilotPage() {
variant="outline"
size="small"
onClick={() => handleQuickAction(action)}
className="h-auto shrink-0 border-zinc-300 px-3 py-2 text-[.9rem] text-zinc-600"
className="h-auto shrink-0 border-zinc-600 !px-4 !py-2 text-[1rem] text-zinc-600"
>
{action}
</Button>

View File

@@ -7804,57 +7804,68 @@
"anyOf": [{ "type": "integer" }, { "type": "null" }],
"title": "Forked From Version"
},
"sub_graphs": {
"items": { "$ref": "#/components/schemas/BaseGraph-Output" },
"type": "array",
"title": "Sub Graphs",
"default": []
},
"user_id": { "type": "string", "title": "User Id" },
"input_schema": {
"additionalProperties": true,
"type": "object",
"title": "Input Schema"
"title": "Input Schema",
"readOnly": true
},
"output_schema": {
"additionalProperties": true,
"type": "object",
"title": "Output Schema"
},
"credentials_input_schema": {
"additionalProperties": true,
"type": "object",
"title": "Credentials Input Schema"
"title": "Output Schema",
"readOnly": true
},
"has_external_trigger": {
"type": "boolean",
"title": "Has External Trigger"
"title": "Has External Trigger",
"readOnly": true
},
"has_human_in_the_loop": {
"type": "boolean",
"title": "Has Human In The Loop"
"title": "Has Human In The Loop",
"readOnly": true
},
"has_sensitive_action": {
"type": "boolean",
"title": "Has Sensitive Action"
"title": "Has Sensitive Action",
"readOnly": true
},
"trigger_setup_info": {
"anyOf": [
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
{ "type": "null" }
]
],
"readOnly": true
},
"credentials_input_schema": {
"additionalProperties": true,
"type": "object",
"title": "Credentials Input Schema",
"readOnly": true
}
},
"type": "object",
"required": [
"id",
"name",
"description",
"user_id",
"input_schema",
"output_schema",
"credentials_input_schema",
"has_external_trigger",
"has_human_in_the_loop",
"has_sensitive_action",
"trigger_setup_info"
"trigger_setup_info",
"credentials_input_schema"
],
"title": "GraphMeta",
"description": "Graph metadata without nodes/links, used for list endpoints.\n\nThis is a flat, lightweight model (not inheriting from Graph) to avoid recomputing\nexpensive computed fields. Values are copied from GraphModel."
"title": "GraphMeta"
},
"GraphModel": {
"properties": {

View File

@@ -2,6 +2,7 @@ import type { SessionDetailResponse } from "@/app/api/__generated__/models/sessi
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { useBreakpoint } from "@/lib/hooks/useBreakpoint";
import { cn } from "@/lib/utils";
import { GlobeHemisphereEastIcon } from "@phosphor-icons/react";
import { useEffect } from "react";
@@ -55,6 +56,10 @@ export function ChatContainer({
onStreamingChange?.(isStreaming);
}, [isStreaming, onStreamingChange]);
const breakpoint = useBreakpoint();
const isMobile =
breakpoint === "base" || breakpoint === "sm" || breakpoint === "md";
return (
<div
className={cn(
@@ -122,7 +127,11 @@ export function ChatContainer({
disabled={isStreaming || !sessionId}
isStreaming={isStreaming}
onStop={stopStreaming}
placeholder="What else can I help with?"
placeholder={
isMobile
? "You can search or just ask"
: 'You can search or just ask — e.g. "create a blog post outline"'
}
/>
</div>
</div>

View File

@@ -74,20 +74,19 @@ export function ChatInput({
hasMultipleLines ? "rounded-xlarge" : "rounded-full",
)}
>
{!value && !isRecording && (
<div
className="pointer-events-none absolute inset-0 top-0.5 flex items-center justify-start pl-14 text-[1rem] text-zinc-400"
aria-hidden="true"
>
{isTranscribing ? "Transcribing..." : placeholder}
</div>
)}
<textarea
id={inputId}
aria-label="Chat message input"
value={value}
onChange={handleChange}
onKeyDown={handleKeyDown}
placeholder={
isTranscribing
? "Transcribing..."
: isRecording
? ""
: placeholder
}
disabled={isInputDisabled}
rows={1}
className={cn(
@@ -123,14 +122,13 @@ export function ChatInput({
size="icon"
aria-label={isRecording ? "Stop recording" : "Start recording"}
onClick={toggleRecording}
disabled={disabled || isTranscribing || isStreaming}
disabled={disabled || isTranscribing}
className={cn(
isRecording
? "animate-pulse border-red-500 bg-red-500 text-white hover:border-red-600 hover:bg-red-600"
: isTranscribing
? "border-zinc-300 bg-zinc-100 text-zinc-400"
: "border-zinc-300 bg-white text-zinc-500 hover:border-zinc-400 hover:bg-zinc-50 hover:text-zinc-700",
isStreaming && "opacity-40",
)}
>
{isTranscribing ? (

View File

@@ -38,8 +38,8 @@ export function AudioWaveform({
// Create audio context and analyser
const audioContext = new AudioContext();
const analyser = audioContext.createAnalyser();
analyser.fftSize = 256;
analyser.smoothingTimeConstant = 0.3;
analyser.fftSize = 512;
analyser.smoothingTimeConstant = 0.8;
// Connect the stream to the analyser
const source = audioContext.createMediaStreamSource(stream);
@@ -73,11 +73,10 @@ export function AudioWaveform({
maxAmplitude = Math.max(maxAmplitude, amplitude);
}
// Normalize amplitude (0-128 range) to 0-1
const normalized = maxAmplitude / 128;
// Apply sensitivity boost (multiply by 4) and use sqrt curve to amplify quiet sounds
const boosted = Math.min(1, Math.sqrt(normalized) * 4);
const height = minBarHeight + boosted * (maxBarHeight - minBarHeight);
// Map amplitude (0-128) to bar height
const normalized = (maxAmplitude / 128) * 255;
const height =
minBarHeight + (normalized / 255) * (maxBarHeight - minBarHeight);
newBars.push(height);
}

View File

@@ -224,7 +224,7 @@ export function useVoiceRecording({
[value, isTranscribing, toggleRecording, baseHandleKeyDown],
);
const showMicButton = isSupported;
const showMicButton = isSupported && !isStreaming;
const isInputDisabled = disabled || isStreaming || isTranscribing;
// Cleanup on unmount

View File

@@ -346,7 +346,6 @@ export function ChatMessage({
toolId={message.toolId}
toolName={message.toolName}
result={message.result}
onSendMessage={onSendMessage}
/>
</div>
);

View File

@@ -73,7 +73,6 @@ export function MessageList({
key={index}
message={message}
prevMessage={messages[index - 1]}
onSendMessage={onSendMessage}
/>
);
}

View File

@@ -5,13 +5,11 @@ import { shouldSkipAgentOutput } from "../../helpers";
export interface LastToolResponseProps {
message: ChatMessageData;
prevMessage: ChatMessageData | undefined;
onSendMessage?: (content: string) => void;
}
export function LastToolResponse({
message,
prevMessage,
onSendMessage,
}: LastToolResponseProps) {
if (message.type !== "tool_response") return null;
@@ -23,7 +21,6 @@ export function LastToolResponse({
toolId={message.toolId}
toolName={message.toolName}
result={message.result}
onSendMessage={onSendMessage}
/>
</div>
);

View File

@@ -1,8 +1,6 @@
import { Progress } from "@/components/atoms/Progress/Progress";
import { cn } from "@/lib/utils";
import { useEffect, useRef, useState } from "react";
import { AIChatBubble } from "../AIChatBubble/AIChatBubble";
import { useAsymptoticProgress } from "../ToolCallMessage/useAsymptoticProgress";
export interface ThinkingMessageProps {
className?: string;
@@ -13,19 +11,18 @@ export function ThinkingMessage({ className }: ThinkingMessageProps) {
const [showCoffeeMessage, setShowCoffeeMessage] = useState(false);
const timerRef = useRef<NodeJS.Timeout | null>(null);
const coffeeTimerRef = useRef<NodeJS.Timeout | null>(null);
const progress = useAsymptoticProgress(showCoffeeMessage);
useEffect(() => {
if (timerRef.current === null) {
timerRef.current = setTimeout(() => {
setShowSlowLoader(true);
}, 3000);
}, 8000);
}
if (coffeeTimerRef.current === null) {
coffeeTimerRef.current = setTimeout(() => {
setShowCoffeeMessage(true);
}, 8000);
}, 10000);
}
return () => {
@@ -52,18 +49,9 @@ export function ThinkingMessage({ className }: ThinkingMessageProps) {
<AIChatBubble>
<div className="transition-all duration-500 ease-in-out">
{showCoffeeMessage ? (
<div className="flex flex-col items-center gap-3">
<div className="flex w-full max-w-[280px] flex-col gap-1.5">
<div className="flex items-center justify-between text-xs text-neutral-500">
<span>Working on it...</span>
<span>{Math.round(progress)}%</span>
</div>
<Progress value={progress} className="h-2 w-full" />
</div>
<span className="inline-block animate-shimmer bg-gradient-to-r from-neutral-400 via-neutral-600 to-neutral-400 bg-[length:200%_100%] bg-clip-text text-transparent">
This could take a few minutes, grab a coffee
</span>
</div>
<span className="inline-block animate-shimmer bg-gradient-to-r from-neutral-400 via-neutral-600 to-neutral-400 bg-[length:200%_100%] bg-clip-text text-transparent">
This could take a few minutes, grab a coffee
</span>
) : showSlowLoader ? (
<span className="inline-block animate-shimmer bg-gradient-to-r from-neutral-400 via-neutral-600 to-neutral-400 bg-[length:200%_100%] bg-clip-text text-transparent">
Taking a bit more time...

View File

@@ -1,50 +0,0 @@
import { useEffect, useRef, useState } from "react";
/**
* Hook that returns a progress value that starts fast and slows down,
* asymptotically approaching but never reaching the max value.
*
* Uses a half-life formula: progress = max * (1 - 0.5^(time/halfLife))
* This creates the "game loading bar" effect where:
* - 50% is reached at halfLifeSeconds
* - 75% is reached at 2 * halfLifeSeconds
* - 87.5% is reached at 3 * halfLifeSeconds
* - and so on...
*
* @param isActive - Whether the progress should be animating
* @param halfLifeSeconds - Time in seconds to reach 50% progress (default: 30)
* @param maxProgress - Maximum progress value to approach (default: 100)
* @param intervalMs - Update interval in milliseconds (default: 100)
* @returns Current progress value (0-maxProgress)
*/
export function useAsymptoticProgress(
isActive: boolean,
halfLifeSeconds = 30,
maxProgress = 100,
intervalMs = 100,
) {
const [progress, setProgress] = useState(0);
const elapsedTimeRef = useRef(0);
useEffect(() => {
if (!isActive) {
setProgress(0);
elapsedTimeRef.current = 0;
return;
}
const interval = setInterval(() => {
elapsedTimeRef.current += intervalMs / 1000;
// Half-life approach: progress = max * (1 - 0.5^(time/halfLife))
// At t=halfLife: 50%, at t=2*halfLife: 75%, at t=3*halfLife: 87.5%, etc.
const newProgress =
maxProgress *
(1 - Math.pow(0.5, elapsedTimeRef.current / halfLifeSeconds));
setProgress(newProgress);
}, intervalMs);
return () => clearInterval(interval);
}, [isActive, halfLifeSeconds, maxProgress, intervalMs]);
return progress;
}

View File

@@ -1,128 +0,0 @@
"use client";
import { useGetV2GetLibraryAgent } from "@/app/api/__generated__/endpoints/library/library";
import { GraphExecutionJobInfo } from "@/app/api/__generated__/models/graphExecutionJobInfo";
import { GraphExecutionMeta } from "@/app/api/__generated__/models/graphExecutionMeta";
import { RunAgentModal } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/RunAgentModal/RunAgentModal";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import {
CheckCircleIcon,
PencilLineIcon,
PlayIcon,
} from "@phosphor-icons/react";
import { AIChatBubble } from "../AIChatBubble/AIChatBubble";
interface Props {
agentName: string;
libraryAgentId: string;
onSendMessage?: (content: string) => void;
}
export function AgentCreatedPrompt({
agentName,
libraryAgentId,
onSendMessage,
}: Props) {
// Fetch library agent eagerly so modal is ready when user clicks
const { data: libraryAgentResponse, isLoading } = useGetV2GetLibraryAgent(
libraryAgentId,
{
query: {
enabled: !!libraryAgentId,
},
},
);
const libraryAgent =
libraryAgentResponse?.status === 200 ? libraryAgentResponse.data : null;
function handleRunWithPlaceholders() {
onSendMessage?.(
`Run the agent "${agentName}" with placeholder/example values so I can test it.`,
);
}
function handleRunCreated(execution: GraphExecutionMeta) {
onSendMessage?.(
`I've started the agent "${agentName}". The execution ID is ${execution.id}. Please monitor its progress and let me know when it completes.`,
);
}
function handleScheduleCreated(schedule: GraphExecutionJobInfo) {
const scheduleInfo = schedule.cron
? `with cron schedule "${schedule.cron}"`
: "to run on the specified schedule";
onSendMessage?.(
`I've scheduled the agent "${agentName}" ${scheduleInfo}. The schedule ID is ${schedule.id}.`,
);
}
return (
<AIChatBubble>
<div className="flex flex-col gap-4">
<div className="flex items-center gap-2">
<div className="flex h-8 w-8 items-center justify-center rounded-full bg-green-100">
<CheckCircleIcon
size={18}
weight="fill"
className="text-green-600"
/>
</div>
<div>
<Text variant="body-medium" className="text-neutral-900">
Agent Created Successfully
</Text>
<Text variant="small" className="text-neutral-500">
&quot;{agentName}&quot; is ready to test
</Text>
</div>
</div>
<div className="flex flex-col gap-2">
<Text variant="small-medium" className="text-neutral-700">
Ready to test?
</Text>
<div className="flex flex-wrap gap-2">
<Button
variant="outline"
size="small"
onClick={handleRunWithPlaceholders}
className="gap-2"
>
<PlayIcon size={16} />
Run with example values
</Button>
{libraryAgent ? (
<RunAgentModal
triggerSlot={
<Button variant="outline" size="small" className="gap-2">
<PencilLineIcon size={16} />
Run with my inputs
</Button>
}
agent={libraryAgent}
onRunCreated={handleRunCreated}
onScheduleCreated={handleScheduleCreated}
/>
) : (
<Button
variant="outline"
size="small"
loading={isLoading}
disabled
className="gap-2"
>
<PencilLineIcon size={16} />
Run with my inputs
</Button>
)}
</div>
<Text variant="small" className="text-neutral-500">
or just ask me
</Text>
</div>
</div>
</AIChatBubble>
);
}

View File

@@ -2,13 +2,11 @@ import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
import type { ToolResult } from "@/types/chat";
import { WarningCircleIcon } from "@phosphor-icons/react";
import { AgentCreatedPrompt } from "./AgentCreatedPrompt";
import { AIChatBubble } from "../AIChatBubble/AIChatBubble";
import { MarkdownContent } from "../MarkdownContent/MarkdownContent";
import {
formatToolResponse,
getErrorMessage,
isAgentSavedResponse,
isErrorResponse,
} from "./helpers";
@@ -18,7 +16,6 @@ export interface ToolResponseMessageProps {
result?: ToolResult;
success?: boolean;
className?: string;
onSendMessage?: (content: string) => void;
}
export function ToolResponseMessage({
@@ -27,7 +24,6 @@ export function ToolResponseMessage({
result,
success: _success,
className,
onSendMessage,
}: ToolResponseMessageProps) {
if (isErrorResponse(result)) {
const errorMessage = getErrorMessage(result);
@@ -47,18 +43,6 @@ export function ToolResponseMessage({
);
}
// Check for agent_saved response - show special prompt
const agentSavedData = isAgentSavedResponse(result);
if (agentSavedData.isSaved) {
return (
<AgentCreatedPrompt
agentName={agentSavedData.agentName}
libraryAgentId={agentSavedData.libraryAgentId}
onSendMessage={onSendMessage}
/>
);
}
const formattedText = formatToolResponse(result, toolName);
return (

View File

@@ -6,43 +6,6 @@ function stripInternalReasoning(content: string): string {
.trim();
}
export interface AgentSavedData {
isSaved: boolean;
agentName: string;
agentId: string;
libraryAgentId: string;
libraryAgentLink: string;
}
export function isAgentSavedResponse(result: unknown): AgentSavedData {
if (typeof result !== "object" || result === null) {
return {
isSaved: false,
agentName: "",
agentId: "",
libraryAgentId: "",
libraryAgentLink: "",
};
}
const response = result as Record<string, unknown>;
if (response.type === "agent_saved") {
return {
isSaved: true,
agentName: (response.agent_name as string) || "Agent",
agentId: (response.agent_id as string) || "",
libraryAgentId: (response.library_agent_id as string) || "",
libraryAgentLink: (response.library_agent_link as string) || "",
};
}
return {
isSaved: false,
agentName: "",
agentId: "",
libraryAgentId: "",
libraryAgentLink: "",
};
}
export function isErrorResponse(result: unknown): boolean {
if (typeof result === "string") {
const lower = result.toLowerCase();

View File

@@ -41,17 +41,7 @@ export function HostScopedCredentialsModal({
const currentHost = currentUrl ? getHostFromUrl(currentUrl) : "";
const formSchema = z.object({
host: z
.string()
.min(1, "Host is required")
.refine((val) => !/^[a-zA-Z][a-zA-Z\d+\-.]*:\/\//.test(val), {
message: "Enter only the host (e.g. api.example.com), not a full URL",
})
.refine((val) => !val.includes("/"), {
message:
"Enter only the host (e.g. api.example.com), without a trailing path. " +
"You may specify a port (e.g. api.example.com:8080) if needed.",
}),
host: z.string().min(1, "Host is required"),
title: z.string().optional(),
headers: z.record(z.string()).optional(),
});

View File

@@ -62,6 +62,7 @@ Below is a comprehensive list of all available blocks, categorized by their prim
| [Get Store Agent Details](block-integrations/system/store_operations.md#get-store-agent-details) | Get detailed information about an agent from the store |
| [Get Weather Information](block-integrations/basic.md#get-weather-information) | Retrieves weather information for a specified location using OpenWeatherMap API |
| [Human In The Loop](block-integrations/basic.md#human-in-the-loop) | Pause execution and wait for human approval or modification of data |
| [Linear Search Issues](block-integrations/linear/issues.md#linear-search-issues) | Searches for issues on Linear |
| [List Is Empty](block-integrations/basic.md#list-is-empty) | Checks if a list is empty |
| [List Library Agents](block-integrations/system/library_operations.md#list-library-agents) | List all agents in your personal library |
| [Note](block-integrations/basic.md#note) | A visual annotation block that displays a sticky note in the workflow editor for documentation and organization purposes |
@@ -192,7 +193,6 @@ Below is a comprehensive list of all available blocks, categorized by their prim
| [Get Current Time](block-integrations/text.md#get-current-time) | This block outputs the current time |
| [Match Text Pattern](block-integrations/text.md#match-text-pattern) | Matches text against a regex pattern and forwards data to positive or negative output based on the match |
| [Text Decoder](block-integrations/text.md#text-decoder) | Decodes a string containing escape sequences into actual text |
| [Text Encoder](block-integrations/text.md#text-encoder) | Encodes a string by converting special characters into escape sequences |
| [Text Replace](block-integrations/text.md#text-replace) | This block is used to replace a text with a new text |
| [Text Split](block-integrations/text.md#text-split) | This block is used to split a text into a list of strings |
| [Word Character Count](block-integrations/text.md#word-character-count) | Counts the number of words and characters in a given text |
@@ -571,7 +571,6 @@ Below is a comprehensive list of all available blocks, categorized by their prim
| [Linear Create Comment](block-integrations/linear/comment.md#linear-create-comment) | Creates a new comment on a Linear issue |
| [Linear Create Issue](block-integrations/linear/issues.md#linear-create-issue) | Creates a new issue on Linear |
| [Linear Get Project Issues](block-integrations/linear/issues.md#linear-get-project-issues) | Gets issues from a Linear project filtered by status and assignee |
| [Linear Search Issues](block-integrations/linear/issues.md#linear-search-issues) | Searches for issues on Linear |
| [Linear Search Projects](block-integrations/linear/projects.md#linear-search-projects) | Searches for projects on Linear |
## Hardware

View File

@@ -90,9 +90,9 @@ Searches for issues on Linear
### How it works
<!-- MANUAL: how_it_works -->
This block searches for issues in Linear using a text query. It searches across issue titles, descriptions, and other fields to find matching issues. You can limit the number of results returned using the `max_results` parameter (default: 10, max: 100) to control token consumption and response size.
This block searches for issues in Linear using a text query. It searches across issue titles, descriptions, and other fields to find matching issues.
Optionally filter results by team name to narrow searches to specific workspaces. If a team name is provided, the block resolves it to a team ID before searching. Returns matching issues with their state, creation date, project, and assignee information. If the search or team resolution fails, an error message is returned.
Returns a list of issues matching the search term.
<!-- END MANUAL -->
### Inputs
@@ -100,14 +100,12 @@ Optionally filter results by team name to narrow searches to specific workspaces
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| term | Term to search for issues | str | Yes |
| max_results | Maximum number of results to return | int | No |
| team_name | Optional team name to filter results (e.g., 'Internal', 'Open Source') | str | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the search failed | str |
| error | Error message if the operation failed | str |
| issues | List of issues | List[Issue] |
### Possible use case

View File

@@ -380,42 +380,6 @@ This is useful when working with data from APIs or files where escape sequences
---
## Text Encoder
### What it is
Encodes a string by converting special characters into escape sequences
### How it works
<!-- MANUAL: how_it_works -->
The Text Encoder takes the input string and applies Python's `unicode_escape` encoding (equivalent to `codecs.encode(text, "unicode_escape").decode("utf-8")`) to transform special characters like newlines, tabs, and backslashes into their escaped forms.
The block relies on the input schema to ensure the value is a string; non-string inputs are rejected by validation, and any encoding failures surface as block errors. Non-ASCII characters are emitted as `\uXXXX` sequences, which is useful for ASCII-only payloads.
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| text | A string containing special characters to be encoded | str | Yes |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if encoding fails | str |
| encoded_text | The encoded text with special characters converted to escape sequences | str |
### Possible use case
<!-- MANUAL: use_case -->
**JSON Payload Preparation**: Encode multiline or quoted text before embedding it in JSON string fields to ensure proper escaping.
**Config/ENV Generation**: Convert template text into escaped strings for `.env` or YAML values that require special character handling.
**Snapshot Fixtures**: Produce stable escaped strings for golden files or API tests where consistent text representation is needed.
<!-- END MANUAL -->
---
## Text Replace
### What it is