Compare commits

..

10 Commits

Author SHA1 Message Date
Ubbe
5739de04f0 Merge branch 'dev' into refactor/remove-old-agent-library-view 2026-02-13 22:29:49 +08:00
Swifty
5035b69c79 feat(platform): add feature request tools for CoPilot chat (#12102)
Users can now search for existing feature requests and submit new ones
directly through the CoPilot chat interface. Requests are tracked in
Linear with customer need attribution.

### Changes 🏗️

**Backend:**
- Added `SearchFeatureRequestsTool` and `CreateFeatureRequestTool` to
the CoPilot chat tools registry
- Integrated with Linear GraphQL API for searching issues in the feature
requests project, creating new issues, upserting customers, and
attaching customer needs
- Added `linear_api_key` secret to settings for system-level Linear API
access
- Added response models (`FeatureRequestSearchResponse`,
`FeatureRequestCreatedResponse`, `FeatureRequestInfo`) to the tools
models

**Frontend:**
- Added `SearchFeatureRequestsTool` and `CreateFeatureRequestTool` UI
components with full streaming state handling (input-streaming,
input-available, output-available, output-error)
- Added helper utilities for output parsing, type guards, animation
text, and icon rendering
- Wired tools into `ChatMessagesContainer` for rendering in the chat
- Added styleguide examples covering all tool states

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified search returns matching feature requests from Linear
- [x] Verified creating a new feature request creates an issue and
customer need in Linear
- [x] Verified adding a need to an existing issue works via
`existing_issue_id`
  - [x] Verified error states render correctly in the UI
  - [x] Verified styleguide page renders all tool states

#### For configuration changes:
- [x] `.env.default` is updated or already compatible with my changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

New secret: `LINEAR_API_KEY` — required for system-level Linear API
operations (defaults to empty string).

<!-- greptile_comment -->

<h2>Greptile Overview</h2>

<details><summary><h3>Greptile Summary</h3></summary>

Adds feature request search and creation tools to CoPilot chat,
integrating with Linear's GraphQL API to track user feedback. Users can
now search existing feature requests and submit new ones (or add their
need to existing issues) directly through conversation.

**Key changes:**
- Backend: `SearchFeatureRequestsTool` and `CreateFeatureRequestTool`
with Linear API integration via system-level `LINEAR_API_KEY`
- Frontend: React components with streaming state handling and accordion
UI for search results and creation confirmations
- Models: Added `FeatureRequestSearchResponse` and
`FeatureRequestCreatedResponse` to response types
- Customer need tracking: Upserts customers in Linear and attaches needs
to issues for better feedback attribution

**Issues found:**
- Missing `LINEAR_API_KEY` entry in `.env.default` (required per PR
description checklist)
- Hardcoded project/team IDs reduce maintainability
- Global singleton pattern could cause issues in async contexts
- Using `user_id` as customer name reduces readability in Linear
</details>


<details><summary><h3>Confidence Score: 4/5</h3></summary>

- Safe to merge with minor configuration fix required
- The implementation is well-structured with proper error handling, type
safety, and follows existing patterns in the codebase. The missing
`.env.default` entry is a straightforward configuration issue that must
be fixed before deployment but doesn't affect code quality. The other
findings are style improvements that don't impact functionality.
- Verify that `LINEAR_API_KEY` is added to `.env.default` before merging
</details>


<details><summary><h3>Sequence Diagram</h3></summary>

```mermaid
sequenceDiagram
    participant User
    participant CoPilot UI
    participant LLM
    participant FeatureRequestTool
    participant LinearClient
    participant Linear API

    User->>CoPilot UI: Request feature via chat
    CoPilot UI->>LLM: Send user message
    
    LLM->>FeatureRequestTool: search_feature_requests(query)
    FeatureRequestTool->>LinearClient: query(SEARCH_ISSUES_QUERY)
    LinearClient->>Linear API: POST /graphql (search)
    Linear API-->>LinearClient: searchIssues.nodes[]
    LinearClient-->>FeatureRequestTool: Feature request data
    FeatureRequestTool-->>LLM: FeatureRequestSearchResponse
    
    alt No existing requests found
        LLM->>FeatureRequestTool: create_feature_request(title, description)
        FeatureRequestTool->>LinearClient: mutate(CUSTOMER_UPSERT_MUTATION)
        LinearClient->>Linear API: POST /graphql (upsert customer)
        Linear API-->>LinearClient: customer {id, name}
        LinearClient-->>FeatureRequestTool: Customer data
        
        FeatureRequestTool->>LinearClient: mutate(ISSUE_CREATE_MUTATION)
        LinearClient->>Linear API: POST /graphql (create issue)
        Linear API-->>LinearClient: issue {id, identifier, url}
        LinearClient-->>FeatureRequestTool: Issue data
        
        FeatureRequestTool->>LinearClient: mutate(CUSTOMER_NEED_CREATE_MUTATION)
        LinearClient->>Linear API: POST /graphql (attach need)
        Linear API-->>LinearClient: need {id, issue}
        LinearClient-->>FeatureRequestTool: Need data
        FeatureRequestTool-->>LLM: FeatureRequestCreatedResponse
    else Existing request found
        LLM->>FeatureRequestTool: create_feature_request(title, description, existing_issue_id)
        FeatureRequestTool->>LinearClient: mutate(CUSTOMER_UPSERT_MUTATION)
        LinearClient->>Linear API: POST /graphql (upsert customer)
        Linear API-->>LinearClient: customer {id}
        LinearClient-->>FeatureRequestTool: Customer data
        
        FeatureRequestTool->>LinearClient: mutate(CUSTOMER_NEED_CREATE_MUTATION)
        LinearClient->>Linear API: POST /graphql (attach need to existing)
        Linear API-->>LinearClient: need {id, issue}
        LinearClient-->>FeatureRequestTool: Need data
        FeatureRequestTool-->>LLM: FeatureRequestCreatedResponse
    end
    
    LLM-->>CoPilot UI: Tool response + continuation
    CoPilot UI-->>User: Display result with accordion UI
```
</details>


<sub>Last reviewed commit: af2e093</sub>

<!-- greptile_other_comments_section -->

<!-- /greptile_comment -->
2026-02-13 15:27:00 +01:00
Otto
86af8fc856 ci: apply E2E CI optimizations to Claude workflows (#12097)
## Summary

Applies the CI performance optimizations from #12090 to Claude Code
workflows.

## Changes

### `claude.yml` & `claude-dependabot.yml`
- **pnpm caching**: Replaced manual `actions/cache` with `setup-node`
built-in `cache: "pnpm"`
- Removes 4 steps (set pnpm store dir, cache step, manual config) → 1
step

### `claude-ci-failure-auto-fix.yml`
- **Added dev environment setup** with optimized caching
- Now Claude can run lint/tests when fixing CI failures (previously
could only edit files)
- Uses the same optimized caching patterns

## Dependency

This PR is based on #12090 and will merge after it.

## Testing

- Workflow YAML syntax validated
- Patterns match proven #12090 implementation
- CI caching changes fail gracefully to uncached builds

## Linear

Fixes [SECRT-1950](https://linear.app/autogpt/issue/SECRT-1950)

## Future Enhancements

E2E test data caching could be added to Claude workflows if needed for
running integration tests. Currently Claude workflows set up a dev
environment but don't run E2E tests by default.

<!-- greptile_comment -->

<h2>Greptile Overview</h2>

<details><summary><h3>Greptile Summary</h3></summary>

Applies proven CI performance optimizations to Claude workflows by
simplifying pnpm caching and adding dev environment setup to the
auto-fix workflow.

**Key changes:**
- Replaced manual pnpm cache configuration (4 steps) with built-in
`setup-node` `cache: "pnpm"` support in `claude.yml` and
`claude-dependabot.yml`
- Added complete dev environment setup (Python/Poetry + Node.js/pnpm) to
`claude-ci-failure-auto-fix.yml` so Claude can run linting and tests
when fixing CI failures
- Correctly orders `corepack enable` before `setup-node` to ensure pnpm
is available for caching

The changes mirror the optimizations from PR #12090 and maintain
consistency across all Claude workflows.
</details>


<details><summary><h3>Confidence Score: 5/5</h3></summary>

- This PR is safe to merge with minimal risk
- The changes are CI infrastructure optimizations that mirror proven
patterns from PR #12090. The pnpm caching simplification reduces
complexity without changing functionality (caching failures gracefully
fall back to uncached builds). The dev environment setup in the auto-fix
workflow is additive and enables Claude to run linting/tests. All YAML
syntax is correct and the step ordering follows best practices.
- No files require special attention
</details>


<details><summary><h3>Sequence Diagram</h3></summary>

```mermaid
sequenceDiagram
    participant GHA as GitHub Actions
    participant Corepack as Corepack
    participant SetupNode as setup-node@v6
    participant Cache as GHA Cache
    participant pnpm as pnpm

    Note over GHA,pnpm: Before (Manual Caching)
    GHA->>SetupNode: Set up Node.js 22
    SetupNode-->>GHA: Node.js ready
    GHA->>Corepack: Enable corepack
    Corepack-->>GHA: pnpm available
    GHA->>pnpm: Configure store directory
    pnpm-->>GHA: Store path set
    GHA->>Cache: actions/cache (manual key)
    Cache-->>GHA: Cache restored/missed
    GHA->>pnpm: Install dependencies
    pnpm-->>GHA: Dependencies installed

    Note over GHA,pnpm: After (Built-in Caching)
    GHA->>Corepack: Enable corepack
    Corepack-->>GHA: pnpm available
    GHA->>SetupNode: Set up Node.js 22<br/>cache: "pnpm"<br/>cache-dependency-path: pnpm-lock.yaml
    SetupNode->>Cache: Auto-detect pnpm store
    Cache-->>SetupNode: Cache restored/missed
    SetupNode-->>GHA: Node.js + cache ready
    GHA->>pnpm: Install dependencies
    pnpm-->>GHA: Dependencies installed
```
</details>


<sub>Last reviewed commit: f1681a0</sub>

<!-- greptile_other_comments_section -->

<!-- /greptile_comment -->

---------

Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
Co-authored-by: Ubbe <hi@ubbe.dev>
2026-02-13 13:48:04 +00:00
Otto
dfa517300b debug(copilot): Add detailed API error logging (#11942)
## Summary
Adds comprehensive error logging for OpenRouter/OpenAI API errors to
help diagnose issues like provider routing failures, context length
exceeded, rate limits, etc.

## Background
While investigating
[SECRT-1859](https://linear.app/autogpt/issue/SECRT-1859), we found that
when OpenRouter returns errors, the actual error details weren't being
captured or logged. Langfuse traces showed `provider_name: 'unknown'`
and `completion: null` without any insight into WHY all providers
rejected the request.

## Changes
- Add `_extract_api_error_details()` to extract rich information from
API errors including:
  - Status code and request ID
  - Response body (contains OpenRouter's actual error message)
  - OpenRouter-specific headers (provider, model)
  - Rate limit headers
- Add `_log_api_error()` helper that logs errors with context:
  - Session ID for correlation
  - Message count (helps identify context length issues)
  - Model being used
  - Retry count
- Update error handling in `_stream_chat_chunks()` and
`_generate_llm_continuation()` to use new logging
- Extract provider's error message from response body for better user
feedback

## Example log output
```
API error: {
  'error_type': 'APIStatusError',
  'error_message': 'Provider returned error',
  'status_code': 400,
  'request_id': 'req_xxx',
  'response_body': {'error': {'message': 'context_length_exceeded', 'type': 'invalid_request_error'}},
  'openrouter_provider': 'unknown',
  'session_id': '44fbb803-...',
  'message_count': 52,
  'model': 'anthropic/claude-opus-4.5',
  'retry_count': 0
}
```

## Testing
- [ ] Verified code passes linting (black, isort, ruff)
- [ ] Error details are properly extracted from different error types

## Refs
- Linear: SECRT-1859
- Thread:
https://discord.com/channels/1126875755960336515/1467066151002571034

---------

Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2026-02-13 13:15:17 +00:00
Ubbe
28ad3d0b01 Merge branch 'dev' into refactor/remove-old-agent-library-view 2026-02-13 18:17:54 +08:00
Reinier van der Leer
43b25b5e2f ci(frontend): Speed up E2E test job (#12090)
The frontend `e2e_test` doesn't have a working build cache setup,
causing really slow builds = slow test jobs. These changes reduce total
test runtime from ~12 minutes to ~5 minutes.

### Changes 🏗️

- Inject build cache config into docker compose config; let `buildx
bake` use GHA cache directly
  - Add `docker-ci-fix-compose-build-cache.py` script
- Optimize `backend/Dockerfile` + root `.dockerignore`
- Replace broken DIY pnpm store caching with `actions/setup-node`
built-in cache management
- Add caching for test seed data created in DB

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - CI
2026-02-13 11:09:41 +01:00
Swifty
ab0b537cc7 refactor(backend): optimize find_block response size by removing raw JSON schemas (#12020)
### Changes 🏗️

The `find_block` AutoPilot tool was returning ~90K characters per
response (10 blocks). The bloat came from including full JSON Schema
objects (`input_schema`, `output_schema`) with all nested `$defs`,
`anyOf`, and type definitions for every block.

**What changed:**

- **`BlockInfoSummary` model**: Removed `input_schema` (raw JSON
Schema), `output_schema` (raw JSON Schema), and `categories`. Added
`output_fields` (compact field-level summaries matching the existing
`required_inputs` format).
- **`BlockListResponse` model**: Removed `usage_hint` (info now in
`message`).
- **`FindBlockTool._execute()`**: Now extracts compact `output_fields`
from output schema properties instead of including the entire raw
schema. Credentials handling is unchanged.
- **Test**: Added `test_response_size_average_chars_per_block` with
realistic block schemas (HTTP, Email, Claude Code) to measure and assert
response size stays under 2K chars/block.
- **`CLAUDE.md`**: Clarified `dev` vs `master` branching strategy.

**Result:** Average response size reduced from ~9,000 to ~1,300 chars
per block (~85% reduction). This directly reduces LLM token consumption,
latency, and API costs for AutoPilot interactions.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified models import and serialize correctly
- [x] Verified response size: 3,970 chars for 3 realistic blocks (avg
1,323/block)
- [x] Lint (`ruff check`) and type check (`pyright`) pass on changed
files
- [x] Frontend compatibility preserved: `blocks[].name` and `count`
fields retained for `block_list` handler

---------

Co-authored-by: Claude Opus 4.6 <noreply@anthropic.com>
Co-authored-by: Toran Bruce Richards <toran.richards@gmail.com>
2026-02-13 11:08:51 +01:00
dependabot[bot]
9a8c6ad609 chore(libs/deps): bump the production-dependencies group across 1 directory with 4 updates (#12056)
Bumps the production-dependencies group with 4 updates in the
/autogpt_platform/autogpt_libs directory:
[cryptography](https://github.com/pyca/cryptography),
[fastapi](https://github.com/fastapi/fastapi),
[launchdarkly-server-sdk](https://github.com/launchdarkly/python-server-sdk)
and [supabase](https://github.com/supabase/supabase-py).

Updates `cryptography` from 46.0.4 to 46.0.5
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst">cryptography's
changelog</a>.</em></p>
<blockquote>
<p>46.0.5 - 2026-02-10</p>
<pre><code>
* An attacker could create a malicious public key that reveals portions
of your
private key when using certain uncommon elliptic curves (binary curves).
This version now includes additional security checks to prevent this
attack.
This issue only affects binary elliptic curves, which are rarely used in
real-world applications. Credit to **XlabAI Team of Tencent Xuanwu Lab
and
Atuin Automated Vulnerability Discovery Engine** for reporting the
issue.
  **CVE-2026-26007**
* Support for ``SECT*`` binary elliptic curves is deprecated and will be
  removed in the next release.
<p>.. v46-0-4:<br />
</code></pre></p>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="06e120e682"><code>06e120e</code></a>
bump version for 46.0.5 release (<a
href="https://redirect.github.com/pyca/cryptography/issues/14289">#14289</a>)</li>
<li><a
href="0eebb9dbb6"><code>0eebb9d</code></a>
EC check key on cofactor &gt; 1 (<a
href="https://redirect.github.com/pyca/cryptography/issues/14287">#14287</a>)</li>
<li><a
href="bedf6e186b"><code>bedf6e1</code></a>
fix openssl version on 46 branch (<a
href="https://redirect.github.com/pyca/cryptography/issues/14220">#14220</a>)</li>
<li>See full diff in <a
href="https://github.com/pyca/cryptography/compare/46.0.4...46.0.5">compare
view</a></li>
</ul>
</details>
<br />

Updates `fastapi` from 0.128.0 to 0.128.7
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/fastapi/fastapi/releases">fastapi's
releases</a>.</em></p>
<blockquote>
<h2>0.128.7</h2>
<h3>Features</h3>
<ul>
<li> Show a clear error on attempt to include router into itself. PR <a
href="https://redirect.github.com/fastapi/fastapi/pull/14258">#14258</a>
by <a
href="https://github.com/JavierSanchezCastro"><code>@​JavierSanchezCastro</code></a>.</li>
<li> Replace <code>dict</code> by <code>Mapping</code> on
<code>HTTPException.headers</code>. PR <a
href="https://redirect.github.com/fastapi/fastapi/pull/12997">#12997</a>
by <a
href="https://github.com/rijenkii"><code>@​rijenkii</code></a>.</li>
</ul>
<h3>Refactors</h3>
<ul>
<li>♻️ Simplify reading files in memory, do it sequentially instead of
(fake) parallel. PR <a
href="https://redirect.github.com/fastapi/fastapi/pull/14884">#14884</a>
by <a
href="https://github.com/tiangolo"><code>@​tiangolo</code></a>.</li>
</ul>
<h3>Docs</h3>
<ul>
<li>📝 Use <code>dfn</code> tag for definitions instead of
<code>abbr</code> in docs. PR <a
href="https://redirect.github.com/fastapi/fastapi/pull/14744">#14744</a>
by <a
href="https://github.com/YuriiMotov"><code>@​YuriiMotov</code></a>.</li>
</ul>
<h3>Internal</h3>
<ul>
<li> Tweak comment in test to reference PR. PR <a
href="https://redirect.github.com/fastapi/fastapi/pull/14885">#14885</a>
by <a
href="https://github.com/tiangolo"><code>@​tiangolo</code></a>.</li>
<li>🔧 Update LLM-prompt for <code>abbr</code> and <code>dfn</code> tags.
PR <a
href="https://redirect.github.com/fastapi/fastapi/pull/14747">#14747</a>
by <a
href="https://github.com/YuriiMotov"><code>@​YuriiMotov</code></a>.</li>
<li> Test order for the submitted byte Files. PR <a
href="https://redirect.github.com/fastapi/fastapi/pull/14828">#14828</a>
by <a
href="https://github.com/valentinDruzhinin"><code>@​valentinDruzhinin</code></a>.</li>
<li>🔧 Configure <code>test</code> workflow to run tests with
<code>inline-snapshot=review</code>. PR <a
href="https://redirect.github.com/fastapi/fastapi/pull/14876">#14876</a>
by <a
href="https://github.com/YuriiMotov"><code>@​YuriiMotov</code></a>.</li>
</ul>
<h2>0.128.6</h2>
<h3>Fixes</h3>
<ul>
<li>🐛 Fix <code>on_startup</code> and <code>on_shutdown</code>
parameters of <code>APIRouter</code>. PR <a
href="https://redirect.github.com/fastapi/fastapi/pull/14873">#14873</a>
by <a
href="https://github.com/YuriiMotov"><code>@​YuriiMotov</code></a>.</li>
</ul>
<h3>Translations</h3>
<ul>
<li>🌐 Update translations for zh (update-outdated). PR <a
href="https://redirect.github.com/fastapi/fastapi/pull/14843">#14843</a>
by <a
href="https://github.com/tiangolo"><code>@​tiangolo</code></a>.</li>
</ul>
<h3>Internal</h3>
<ul>
<li> Fix parameterized tests with snapshots. PR <a
href="https://redirect.github.com/fastapi/fastapi/pull/14875">#14875</a>
by <a
href="https://github.com/YuriiMotov"><code>@​YuriiMotov</code></a>.</li>
</ul>
<h2>0.128.5</h2>
<h3>Refactors</h3>
<ul>
<li>♻️ Refactor and simplify Pydantic v2 (and v1) compatibility internal
utils. PR <a
href="https://redirect.github.com/fastapi/fastapi/pull/14862">#14862</a>
by <a
href="https://github.com/tiangolo"><code>@​tiangolo</code></a>.</li>
</ul>
<h3>Internal</h3>
<ul>
<li> Add inline snapshot tests for OpenAPI before changes from Pydantic
v2. PR <a
href="https://redirect.github.com/fastapi/fastapi/pull/14864">#14864</a>
by <a
href="https://github.com/tiangolo"><code>@​tiangolo</code></a>.</li>
</ul>
<h2>0.128.4</h2>
<h3>Refactors</h3>
<ul>
<li>♻️ Refactor internals, simplify Pydantic v2/v1 utils,
<code>create_model_field</code>, better types for
<code>lenient_issubclass</code>. PR <a
href="https://redirect.github.com/fastapi/fastapi/pull/14860">#14860</a>
by <a
href="https://github.com/tiangolo"><code>@​tiangolo</code></a>.</li>
<li>♻️ Simplify internals, remove Pydantic v1 only logic, no longer
needed. PR <a
href="https://redirect.github.com/fastapi/fastapi/pull/14857">#14857</a>
by <a
href="https://github.com/tiangolo"><code>@​tiangolo</code></a>.</li>
<li>♻️ Refactor internals, cleanup unneeded Pydantic v1 specific logic.
PR <a
href="https://redirect.github.com/fastapi/fastapi/pull/14856">#14856</a>
by <a
href="https://github.com/tiangolo"><code>@​tiangolo</code></a>.</li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="8f82c94de0"><code>8f82c94</code></a>
🔖 Release version 0.128.7</li>
<li><a
href="5bb3423205"><code>5bb3423</code></a>
📝 Update release notes</li>
<li><a
href="6ce5e3e961"><code>6ce5e3e</code></a>
 Tweak comment in test to reference PR (<a
href="https://redirect.github.com/fastapi/fastapi/issues/14885">#14885</a>)</li>
<li><a
href="65da3dde12"><code>65da3dd</code></a>
📝 Update release notes</li>
<li><a
href="81f82fd955"><code>81f82fd</code></a>
🔧 Update LLM-prompt for <code>abbr</code> and <code>dfn</code> tags (<a
href="https://redirect.github.com/fastapi/fastapi/issues/14747">#14747</a>)</li>
<li><a
href="ff721017df"><code>ff72101</code></a>
📝 Update release notes</li>
<li><a
href="ca76a4eba9"><code>ca76a4e</code></a>
📝 Use <code>dfn</code> tag for definitions instead of <code>abbr</code>
in docs (<a
href="https://redirect.github.com/fastapi/fastapi/issues/14744">#14744</a>)</li>
<li><a
href="1133a4594d"><code>1133a45</code></a>
📝 Update release notes</li>
<li><a
href="38f965985e"><code>38f9659</code></a>
 Test order for the submitted byte Files (<a
href="https://redirect.github.com/fastapi/fastapi/issues/14828">#14828</a>)</li>
<li><a
href="3f1cc8f8f5"><code>3f1cc8f</code></a>
📝 Update release notes</li>
<li>Additional commits viewable in <a
href="https://github.com/fastapi/fastapi/compare/0.128.0...0.128.7">compare
view</a></li>
</ul>
</details>
<br />

Updates `launchdarkly-server-sdk` from 9.14.1 to 9.15.0
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/launchdarkly/python-server-sdk/releases">launchdarkly-server-sdk's
releases</a>.</em></p>
<blockquote>
<h2>v9.15.0</h2>
<h2><a
href="https://github.com/launchdarkly/python-server-sdk/compare/9.14.1...9.15.0">9.15.0</a>
(2026-02-10)</h2>
<h3>Features</h3>
<ul>
<li>Drop support for python 3.9 (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/393">#393</a>)
(<a
href="5b761bd306">5b761bd</a>)</li>
<li>Update ChangeSet to always require a Selector (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/405">#405</a>)
(<a
href="5dc4f81688">5dc4f81</a>)</li>
</ul>
<h3>Bug Fixes</h3>
<ul>
<li>Add context manager for clearer, safer locks (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/396">#396</a>)
(<a
href="beca0fa498">beca0fa</a>)</li>
<li>Address potential race condition in FeatureStore update_availability
(<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/391">#391</a>)
(<a
href="31cf4875c3">31cf487</a>)</li>
<li>Allow modifying fdv2 data source options independent of main config
(<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/403">#403</a>)
(<a
href="d78079e7f3">d78079e</a>)</li>
<li>Mark copy_with_new_sdk_key method as deprecated (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/353">#353</a>)
(<a
href="e471ccc3d5">e471ccc</a>)</li>
<li>Prevent immediate polling on recoverable error (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/399">#399</a>)
(<a
href="da565a2dce">da565a2</a>)</li>
<li>Redis store is considered initialized when <code>$inited</code> key
is written (<a
href="e99a27d48f">e99a27d</a>)</li>
<li>Stop FeatureStoreClientWrapper poller on close (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/397">#397</a>)
(<a
href="468afdfef3">468afdf</a>)</li>
<li>Update DataSystemConfig to accept list of synchronizers (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/404">#404</a>)
(<a
href="c73ad14090">c73ad14</a>)</li>
<li>Update reason documentation with inExperiment value (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/401">#401</a>)
(<a
href="cbfc3dd887">cbfc3dd</a>)</li>
<li>Update Redis to write missing <code>$inited</code> key (<a
href="e99a27d48f">e99a27d</a>)</li>
</ul>
<hr />
<p>This PR was generated with <a
href="https://github.com/googleapis/release-please">Release Please</a>.
See <a
href="https://github.com/googleapis/release-please#release-please">documentation</a>.</p>
<!-- raw HTML omitted -->
</blockquote>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/launchdarkly/python-server-sdk/blob/main/CHANGELOG.md">launchdarkly-server-sdk's
changelog</a>.</em></p>
<blockquote>
<h2><a
href="https://github.com/launchdarkly/python-server-sdk/compare/9.14.1...9.15.0">9.15.0</a>
(2026-02-10)</h2>
<h3>⚠ BREAKING CHANGES</h3>
<p><strong>Note:</strong> The following breaking changes apply only to
FDv2 (Flag Delivery v2) early access features, which are not subject to
semantic versioning and may change without a major version bump.</p>
<ul>
<li>Update ChangeSet to always require a Selector (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/405">#405</a>)
(<a
href="5dc4f81688">5dc4f81</a>)
<ul>
<li>The <code>ChangeSetBuilder.finish()</code> method now requires a
<code>Selector</code> parameter.</li>
</ul>
</li>
<li>Update DataSystemConfig to accept list of synchronizers (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/404">#404</a>)
(<a
href="c73ad14090">c73ad14</a>)
<ul>
<li>The <code>DataSystemConfig.synchronizers</code> field now accepts a
list of synchronizers, and the
<code>ConfigBuilder.synchronizers()</code> method accepts variadic
arguments.</li>
</ul>
</li>
</ul>
<h3>Features</h3>
<ul>
<li>Drop support for python 3.9 (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/393">#393</a>)
(<a
href="5b761bd306">5b761bd</a>)</li>
</ul>
<h3>Bug Fixes</h3>
<ul>
<li>Add context manager for clearer, safer locks (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/396">#396</a>)
(<a
href="beca0fa498">beca0fa</a>)</li>
<li>Address potential race condition in FeatureStore update_availability
(<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/391">#391</a>)
(<a
href="31cf4875c3">31cf487</a>)</li>
<li>Allow modifying fdv2 data source options independent of main config
(<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/403">#403</a>)
(<a
href="d78079e7f3">d78079e</a>)</li>
<li>Mark copy_with_new_sdk_key method as deprecated (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/353">#353</a>)
(<a
href="e471ccc3d5">e471ccc</a>)</li>
<li>Prevent immediate polling on recoverable error (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/399">#399</a>)
(<a
href="da565a2dce">da565a2</a>)</li>
<li>Redis store is considered initialized when <code>$inited</code> key
is written (<a
href="e99a27d48f">e99a27d</a>)</li>
<li>Stop FeatureStoreClientWrapper poller on close (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/397">#397</a>)
(<a
href="468afdfef3">468afdf</a>)</li>
<li>Update reason documentation with inExperiment value (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/401">#401</a>)
(<a
href="cbfc3dd887">cbfc3dd</a>)</li>
<li>Update Redis to write missing <code>$inited</code> key (<a
href="e99a27d48f">e99a27d</a>)</li>
</ul>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="e542f737a6"><code>e542f73</code></a>
chore(main): release 9.15.0 (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/394">#394</a>)</li>
<li><a
href="e471ccc3d5"><code>e471ccc</code></a>
fix: Mark copy_with_new_sdk_key method as deprecated (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/353">#353</a>)</li>
<li><a
href="5dc4f81688"><code>5dc4f81</code></a>
feat: Update ChangeSet to always require a Selector (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/405">#405</a>)</li>
<li><a
href="f20fffeb1e"><code>f20fffe</code></a>
chore: Remove dead code, clarify names, other cleanup (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/398">#398</a>)</li>
<li><a
href="c73ad14090"><code>c73ad14</code></a>
fix: Update DataSystemConfig to accept list of synchronizers (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/404">#404</a>)</li>
<li><a
href="d78079e7f3"><code>d78079e</code></a>
fix: Allow modifying fdv2 data source options independent of main config
(<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/403">#403</a>)</li>
<li><a
href="e99a27d48f"><code>e99a27d</code></a>
chore: Support persistent data store verification in contract tests (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/402">#402</a>)</li>
<li><a
href="cbfc3dd887"><code>cbfc3dd</code></a>
fix: Update reason documentation with inExperiment value (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/401">#401</a>)</li>
<li><a
href="5a1adbb2de"><code>5a1adbb</code></a>
chore: Update sdk_metadata features (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/400">#400</a>)</li>
<li><a
href="da565a2dce"><code>da565a2</code></a>
fix: Prevent immediate polling on recoverable error (<a
href="https://redirect.github.com/launchdarkly/python-server-sdk/issues/399">#399</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/launchdarkly/python-server-sdk/compare/9.14.1...9.15.0">compare
view</a></li>
</ul>
</details>
<br />

Updates `supabase` from 2.27.2 to 2.28.0
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/supabase/supabase-py/releases">supabase's
releases</a>.</em></p>
<blockquote>
<h2>v2.28.0</h2>
<h2><a
href="https://github.com/supabase/supabase-py/compare/v2.27.3...v2.28.0">2.28.0</a>
(2026-02-10)</h2>
<h3>Features</h3>
<ul>
<li><strong>storage:</strong> add list_v2 method to file_api client (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1377">#1377</a>)
(<a
href="259f4ad42d">259f4ad</a>)</li>
</ul>
<h3>Bug Fixes</h3>
<ul>
<li><strong>auth:</strong> add missing is_sso_user, deleted_at,
banned_until to User model (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1375">#1375</a>)
(<a
href="7f84a62996">7f84a62</a>)</li>
<li><strong>realtime:</strong> ensure remove_channel removes channel
from channels dict (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1373">#1373</a>)
(<a
href="0923314039">0923314</a>)</li>
<li><strong>realtime:</strong> use pop with default in _handle_message
to prevent KeyError (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1388">#1388</a>)
(<a
href="baea26f7ce">baea26f</a>)</li>
<li><strong>storage3:</strong> replace print() with warnings.warn() for
trailing slash notice (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1380">#1380</a>)
(<a
href="50b099fa06">50b099f</a>)</li>
</ul>
<h2>v2.27.3</h2>
<h2><a
href="https://github.com/supabase/supabase-py/compare/v2.27.2...v2.27.3">2.27.3</a>
(2026-02-03)</h2>
<h3>Bug Fixes</h3>
<ul>
<li>deprecate python 3.9 in all packages (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1365">#1365</a>)
(<a
href="cc72ed75d4">cc72ed7</a>)</li>
<li>ensure storage_url has trailing slash to prevent warning (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1367">#1367</a>)
(<a
href="4267ff1345">4267ff1</a>)</li>
</ul>
</blockquote>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/supabase/supabase-py/blob/main/CHANGELOG.md">supabase's
changelog</a>.</em></p>
<blockquote>
<h2><a
href="https://github.com/supabase/supabase-py/compare/v2.27.3...v2.28.0">2.28.0</a>
(2026-02-10)</h2>
<h3>Features</h3>
<ul>
<li><strong>storage:</strong> add list_v2 method to file_api client (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1377">#1377</a>)
(<a
href="259f4ad42d">259f4ad</a>)</li>
</ul>
<h3>Bug Fixes</h3>
<ul>
<li><strong>auth:</strong> add missing is_sso_user, deleted_at,
banned_until to User model (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1375">#1375</a>)
(<a
href="7f84a62996">7f84a62</a>)</li>
<li><strong>realtime:</strong> ensure remove_channel removes channel
from channels dict (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1373">#1373</a>)
(<a
href="0923314039">0923314</a>)</li>
<li><strong>realtime:</strong> use pop with default in _handle_message
to prevent KeyError (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1388">#1388</a>)
(<a
href="baea26f7ce">baea26f</a>)</li>
<li><strong>storage3:</strong> replace print() with warnings.warn() for
trailing slash notice (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1380">#1380</a>)
(<a
href="50b099fa06">50b099f</a>)</li>
</ul>
<h2><a
href="https://github.com/supabase/supabase-py/compare/v2.27.2...v2.27.3">2.27.3</a>
(2026-02-03)</h2>
<h3>Bug Fixes</h3>
<ul>
<li>deprecate python 3.9 in all packages (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1365">#1365</a>)
(<a
href="cc72ed75d4">cc72ed7</a>)</li>
<li>ensure storage_url has trailing slash to prevent warning (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1367">#1367</a>)
(<a
href="4267ff1345">4267ff1</a>)</li>
</ul>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="59e338400b"><code>59e3384</code></a>
chore(main): release 2.28.0 (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1378">#1378</a>)</li>
<li><a
href="baea26f7ce"><code>baea26f</code></a>
fix(realtime): use pop with default in _handle_message to prevent
KeyError (#...</li>
<li><a
href="259f4ad42d"><code>259f4ad</code></a>
feat(storage): add list_v2 method to file_api client (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1377">#1377</a>)</li>
<li><a
href="50b099fa06"><code>50b099f</code></a>
fix(storage3): replace print() with warnings.warn() for trailing slash
notice...</li>
<li><a
href="0923314039"><code>0923314</code></a>
fix(realtime): ensure remove_channel removes channel from channels dict
(<a
href="https://redirect.github.com/supabase/supabase-py/issues/1373">#1373</a>)</li>
<li><a
href="7f84a62996"><code>7f84a62</code></a>
fix(auth): add missing is_sso_user, deleted_at, banned_until to User
model (#...</li>
<li><a
href="57dd6e2195"><code>57dd6e2</code></a>
chore(deps): bump the uv group across 1 directory with 3 updates (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1369">#1369</a>)</li>
<li><a
href="c357def670"><code>c357def</code></a>
chore(main): release 2.27.3 (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1368">#1368</a>)</li>
<li><a
href="4267ff1345"><code>4267ff1</code></a>
fix: ensure storage_url has trailing slash to prevent warning (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1367">#1367</a>)</li>
<li><a
href="cc72ed75d4"><code>cc72ed7</code></a>
fix: deprecate python 3.9 in all packages (<a
href="https://redirect.github.com/supabase/supabase-py/issues/1365">#1365</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/supabase/supabase-py/compare/v2.27.2...v2.28.0">compare
view</a></li>
</ul>
</details>
<br />


Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore <dependency name> major version` will close this
group update PR and stop Dependabot creating any more for the specific
dependency's major version (unless you unignore this specific
dependency's major version or upgrade to it yourself)
- `@dependabot ignore <dependency name> minor version` will close this
group update PR and stop Dependabot creating any more for the specific
dependency's minor version (unless you unignore this specific
dependency's minor version or upgrade to it yourself)
- `@dependabot ignore <dependency name>` will close this group update PR
and stop Dependabot creating any more for the specific dependency
(unless you unignore this specific dependency or upgrade to it yourself)
- `@dependabot unignore <dependency name>` will remove all of the ignore
conditions of the specified dependency
- `@dependabot unignore <dependency name> <ignore condition>` will
remove the ignore condition of the specified dependency and ignore
conditions


</details>

<!-- greptile_comment -->

<h2>Greptile Overview</h2>

<details><summary><h3>Greptile Summary</h3></summary>

Dependency update bumps 4 packages in the production-dependencies group,
including a **critical security patch for `cryptography`**
(CVE-2026-26007) that prevents malicious public key attacks on binary
elliptic curves. The update also includes bug fixes for `fastapi`,
`launchdarkly-server-sdk`, and `supabase`.

- **cryptography** 46.0.4 → 46.0.5: patches CVE-2026-26007, deprecates
SECT* binary curves
- **fastapi** 0.128.0 → 0.128.7: bug fixes, improved error handling,
relaxed Starlette constraint
- **launchdarkly-server-sdk** 9.14.1 → 9.15.0: drops Python 3.9 support
(requires >=3.10), fixes race conditions
- **supabase** 2.27.2/2.27.3 → 2.28.0: realtime fixes, new User model
fields

The lock files correctly resolve all dependencies. Python 3.10+
requirement is already enforced in both packages. However, backend's
`pyproject.toml` still specifies `launchdarkly-server-sdk = "^9.14.1"`
while the lock file uses 9.15.0 (pulled from autogpt_libs dependency),
creating a minor version constraint inconsistency.
</details>


<details><summary><h3>Confidence Score: 4/5</h3></summary>

- This PR is safe to merge with one minor style suggestion
- Automated dependency update with critical security patch for
cryptography. All updates are backwards-compatible within semver
constraints. Lock files correctly resolve all dependencies. Python 3.10+
is already enforced. Only minor issue is version constraint
inconsistency in backend's pyproject.toml for launchdarkly-server-sdk,
which doesn't affect functionality but should be aligned for clarity.
- autogpt_platform/backend/pyproject.toml needs launchdarkly-server-sdk
version constraint updated to ^9.15.0
</details>


<!-- greptile_other_comments_section -->

<!-- /greptile_comment -->

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Otto <otto@agpt.co>
2026-02-13 09:10:11 +00:00
Ubbe
361d6ff6fc Merge branch 'dev' into refactor/remove-old-agent-library-view 2026-02-13 09:39:20 +08:00
Lluis Agusti
0fe6cc8dc7 refactor(frontend): remove OldAgentLibraryView and NEW_AGENT_RUNS flag
- Delete the entire OldAgentLibraryView directory (13 files, ~2200 lines)
- Remove the legacy agent library page at library/legacy/[id]
- Remove the NEW_AGENT_RUNS feature flag from the Flag enum and defaults
- Move cron-scheduler components to shared CronScheduler directory
- Move agent-run-draft-view and agent-status-chip to legacy-builder
- Update all import paths in consuming files

Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-12 19:52:48 +08:00
2309 changed files with 822360 additions and 42542 deletions

View File

@@ -1,10 +0,0 @@
{
"permissions": {
"allowedTools": [
"Read", "Grep", "Glob",
"Bash(ls:*)", "Bash(cat:*)", "Bash(grep:*)", "Bash(find:*)",
"Bash(git status:*)", "Bash(git diff:*)", "Bash(git log:*)", "Bash(git worktree:*)",
"Bash(tmux:*)", "Bash(sleep:*)", "Bash(branchlet:*)"
]
}
}

View File

@@ -5,42 +5,13 @@
!docs/
# Platform - Libs
!autogpt_platform/autogpt_libs/autogpt_libs/
!autogpt_platform/autogpt_libs/pyproject.toml
!autogpt_platform/autogpt_libs/poetry.lock
!autogpt_platform/autogpt_libs/README.md
!autogpt_platform/autogpt_libs/
# Platform - Backend
!autogpt_platform/backend/backend/
!autogpt_platform/backend/test/e2e_test_data.py
!autogpt_platform/backend/migrations/
!autogpt_platform/backend/schema.prisma
!autogpt_platform/backend/pyproject.toml
!autogpt_platform/backend/poetry.lock
!autogpt_platform/backend/README.md
!autogpt_platform/backend/.env
!autogpt_platform/backend/gen_prisma_types_stub.py
# Platform - Market
!autogpt_platform/market/market/
!autogpt_platform/market/scripts.py
!autogpt_platform/market/schema.prisma
!autogpt_platform/market/pyproject.toml
!autogpt_platform/market/poetry.lock
!autogpt_platform/market/README.md
!autogpt_platform/backend/
# Platform - Frontend
!autogpt_platform/frontend/src/
!autogpt_platform/frontend/public/
!autogpt_platform/frontend/scripts/
!autogpt_platform/frontend/package.json
!autogpt_platform/frontend/pnpm-lock.yaml
!autogpt_platform/frontend/tsconfig.json
!autogpt_platform/frontend/README.md
## config
!autogpt_platform/frontend/*.config.*
!autogpt_platform/frontend/.env.*
!autogpt_platform/frontend/.env
!autogpt_platform/frontend/
# Classic - AutoGPT
!classic/original_autogpt/autogpt/
@@ -64,6 +35,38 @@
# Classic - Frontend
!classic/frontend/build/web/
# Explicitly re-ignore some folders
.*
**/__pycache__
# Explicitly re-ignore unwanted files from whitelisted directories
# Note: These patterns MUST come after the whitelist rules to take effect
# Hidden files and directories (but keep frontend .env files needed for build)
**/.*
!autogpt_platform/frontend/.env
!autogpt_platform/frontend/.env.default
!autogpt_platform/frontend/.env.production
# Python artifacts
**/__pycache__/
**/*.pyc
**/*.pyo
**/.venv/
**/.ruff_cache/
**/.pytest_cache/
**/.coverage
**/htmlcov/
# Node artifacts
**/node_modules/
**/.next/
**/storybook-static/
**/playwright-report/
**/test-results/
# Build artifacts
**/dist/
**/build/
!autogpt_platform/frontend/src/**/build/
**/target/
# Logs and temp files
**/*.log
**/*.tmp

View File

@@ -6,15 +6,11 @@ on:
paths:
- '.github/workflows/classic-autogpt-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/direct_benchmark/**'
- 'classic/forge/**'
pull_request:
branches: [ master, dev, release-* ]
paths:
- '.github/workflows/classic-autogpt-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/direct_benchmark/**'
- 'classic/forge/**'
concurrency:
group: ${{ format('classic-autogpt-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
@@ -23,22 +19,47 @@ concurrency:
defaults:
run:
shell: bash
working-directory: classic
working-directory: classic/original_autogpt
jobs:
test:
permissions:
contents: read
timeout-minutes: 30
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
python-version: ["3.10"]
platform-os: [ubuntu, macos, macos-arm64, windows]
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}
steps:
- name: Start MinIO service
# Quite slow on macOS (2~4 minutes to set up Docker)
# - name: Set up Docker (macOS)
# if: runner.os == 'macOS'
# uses: crazy-max/ghaction-setup-docker@v3
- name: Start MinIO service (Linux)
if: runner.os == 'Linux'
working-directory: '.'
run: |
docker pull minio/minio:edge-cicd
docker run -d -p 9000:9000 minio/minio:edge-cicd
- name: Start MinIO service (macOS)
if: runner.os == 'macOS'
working-directory: ${{ runner.temp }}
run: |
brew install minio/stable/minio
mkdir data
minio server ./data &
# No MinIO on Windows:
# - Windows doesn't support running Linux Docker containers
# - It doesn't seem possible to start background processes on Windows. They are
# killed after the step returns.
# See: https://github.com/actions/runner/issues/598#issuecomment-2011890429
- name: Checkout repository
uses: actions/checkout@v4
with:
@@ -50,23 +71,41 @@ jobs:
git config --global user.name "Auto-GPT-Bot"
git config --global user.email "github-bot@agpt.co"
- name: Set up Python 3.12
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: "3.12"
python-version: ${{ matrix.python-version }}
- id: get_date
name: Get date
run: echo "date=$(date +'%Y-%m-%d')" >> $GITHUB_OUTPUT
- name: Set up Python dependency cache
# On Windows, unpacking cached dependencies takes longer than just installing them
if: runner.os != 'Windows'
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('classic/poetry.lock') }}
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('classic/original_autogpt/poetry.lock') }}
- name: Install Poetry
run: curl -sSL https://install.python-poetry.org | python3 -
- name: Install Poetry (Unix)
if: runner.os != 'Windows'
run: |
curl -sSL https://install.python-poetry.org | python3 -
if [ "${{ runner.os }}" = "macOS" ]; then
PATH="$HOME/.local/bin:$PATH"
echo "$HOME/.local/bin" >> $GITHUB_PATH
fi
- name: Install Poetry (Windows)
if: runner.os == 'Windows'
shell: pwsh
run: |
(Invoke-WebRequest -Uri https://install.python-poetry.org -UseBasicParsing).Content | python -
$env:PATH += ";$env:APPDATA\Python\Scripts"
echo "$env:APPDATA\Python\Scripts" >> $env:GITHUB_PATH
- name: Install Python dependencies
run: poetry install
@@ -77,13 +116,12 @@ jobs:
--cov=autogpt --cov-branch --cov-report term-missing --cov-report xml \
--numprocesses=logical --durations=10 \
--junitxml=junit.xml -o junit_family=legacy \
original_autogpt/tests/unit original_autogpt/tests/integration
tests/unit tests/integration
env:
CI: true
PLAIN_OUTPUT: True
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
S3_ENDPOINT_URL: http://127.0.0.1:9000
S3_ENDPOINT_URL: ${{ runner.os != 'Windows' && 'http://127.0.0.1:9000' || '' }}
AWS_ACCESS_KEY_ID: minioadmin
AWS_SECRET_ACCESS_KEY: minioadmin
@@ -97,11 +135,11 @@ jobs:
uses: codecov/codecov-action@v5
with:
token: ${{ secrets.CODECOV_TOKEN }}
flags: autogpt-agent
flags: autogpt-agent,${{ runner.os }}
- name: Upload logs to artifact
if: always()
uses: actions/upload-artifact@v4
with:
name: test-logs
path: classic/logs/
path: classic/original_autogpt/logs/

View File

@@ -11,6 +11,9 @@ on:
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- 'classic/run'
- 'classic/cli.py'
- 'classic/setup.py'
- '!**/*.md'
pull_request:
branches: [ master, dev, release-* ]
@@ -19,6 +22,9 @@ on:
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- 'classic/run'
- 'classic/cli.py'
- 'classic/setup.py'
- '!**/*.md'
defaults:
@@ -29,9 +35,13 @@ defaults:
jobs:
serve-agent-protocol:
runs-on: ubuntu-latest
strategy:
matrix:
agent-name: [ original_autogpt ]
fail-fast: false
timeout-minutes: 20
env:
min-python-version: '3.12'
min-python-version: '3.10'
steps:
- name: Checkout repository
uses: actions/checkout@v4
@@ -45,22 +55,22 @@ jobs:
python-version: ${{ env.min-python-version }}
- name: Install Poetry
working-directory: ./classic/${{ matrix.agent-name }}/
run: |
curl -sSL https://install.python-poetry.org | python -
- name: Install dependencies
run: poetry install
- name: Run smoke tests with direct-benchmark
- name: Run regression tests
run: |
poetry run direct-benchmark run \
--strategies one_shot \
--models claude \
--tests ReadFile,WriteFile \
--json
./run agent start ${{ matrix.agent-name }}
cd ${{ matrix.agent-name }}
poetry run agbenchmark --mock --test=BasicRetrieval --test=Battleship --test=WebArenaTask_0
poetry run agbenchmark --test=WriteFile
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
AGENT_NAME: ${{ matrix.agent-name }}
REQUESTS_CA_BUNDLE: /etc/ssl/certs/ca-certificates.crt
NONINTERACTIVE_MODE: "true"
CI: true
HELICONE_CACHE_ENABLED: false
HELICONE_PROPERTY_AGENT: ${{ matrix.agent-name }}
REPORTS_FOLDER: ${{ format('../../reports/{0}', matrix.agent-name) }}
TELEMETRY_ENVIRONMENT: autogpt-ci
TELEMETRY_OPT_IN: ${{ github.ref_name == 'master' }}

View File

@@ -1,21 +1,17 @@
name: Classic - Direct Benchmark CI
name: Classic - AGBenchmark CI
on:
push:
branches: [ master, dev, ci-test* ]
paths:
- 'classic/direct_benchmark/**'
- 'classic/benchmark/agbenchmark/challenges/**'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- '!classic/benchmark/reports/**'
- .github/workflows/classic-benchmark-ci.yml
pull_request:
branches: [ master, dev, release-* ]
paths:
- 'classic/direct_benchmark/**'
- 'classic/benchmark/agbenchmark/challenges/**'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- '!classic/benchmark/reports/**'
- .github/workflows/classic-benchmark-ci.yml
concurrency:
@@ -27,16 +23,23 @@ defaults:
shell: bash
env:
min-python-version: '3.12'
min-python-version: '3.10'
jobs:
benchmark-tests:
runs-on: ubuntu-latest
test:
permissions:
contents: read
timeout-minutes: 30
strategy:
fail-fast: false
matrix:
python-version: ["3.10"]
platform-os: [ubuntu, macos, macos-arm64, windows]
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}
defaults:
run:
shell: bash
working-directory: classic
working-directory: classic/benchmark
steps:
- name: Checkout repository
uses: actions/checkout@v4
@@ -44,88 +47,71 @@ jobs:
fetch-depth: 0
submodules: true
- name: Set up Python ${{ env.min-python-version }}
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ env.min-python-version }}
python-version: ${{ matrix.python-version }}
- name: Set up Python dependency cache
# On Windows, unpacking cached dependencies takes longer than just installing them
if: runner.os != 'Windows'
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('classic/poetry.lock') }}
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('classic/benchmark/poetry.lock') }}
- name: Install Poetry
- name: Install Poetry (Unix)
if: runner.os != 'Windows'
run: |
curl -sSL https://install.python-poetry.org | python3 -
- name: Install dependencies
if [ "${{ runner.os }}" = "macOS" ]; then
PATH="$HOME/.local/bin:$PATH"
echo "$HOME/.local/bin" >> $GITHUB_PATH
fi
- name: Install Poetry (Windows)
if: runner.os == 'Windows'
shell: pwsh
run: |
(Invoke-WebRequest -Uri https://install.python-poetry.org -UseBasicParsing).Content | python -
$env:PATH += ";$env:APPDATA\Python\Scripts"
echo "$env:APPDATA\Python\Scripts" >> $env:GITHUB_PATH
- name: Install Python dependencies
run: poetry install
- name: Run basic benchmark tests
- name: Run pytest with coverage
run: |
echo "Testing ReadFile challenge with one_shot strategy..."
poetry run direct-benchmark run \
--fresh \
--strategies one_shot \
--models claude \
--tests ReadFile \
--json
echo "Testing WriteFile challenge..."
poetry run direct-benchmark run \
--fresh \
--strategies one_shot \
--models claude \
--tests WriteFile \
--json
poetry run pytest -vv \
--cov=agbenchmark --cov-branch --cov-report term-missing --cov-report xml \
--durations=10 \
--junitxml=junit.xml -o junit_family=legacy \
tests
env:
CI: true
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
NONINTERACTIVE_MODE: "true"
- name: Test category filtering
run: |
echo "Testing coding category..."
poetry run direct-benchmark run \
--fresh \
--strategies one_shot \
--models claude \
--categories coding \
--tests ReadFile,WriteFile \
--json
env:
CI: true
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
NONINTERACTIVE_MODE: "true"
- name: Upload test results to Codecov
if: ${{ !cancelled() }} # Run even if tests fail
uses: codecov/test-results-action@v1
with:
token: ${{ secrets.CODECOV_TOKEN }}
- name: Test multiple strategies
run: |
echo "Testing multiple strategies..."
poetry run direct-benchmark run \
--fresh \
--strategies one_shot,plan_execute \
--models claude \
--tests ReadFile \
--parallel 2 \
--json
env:
CI: true
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
NONINTERACTIVE_MODE: "true"
- name: Upload coverage reports to Codecov
uses: codecov/codecov-action@v5
with:
token: ${{ secrets.CODECOV_TOKEN }}
flags: agbenchmark,${{ runner.os }}
# Run regression tests on maintain challenges
regression-tests:
self-test-with-agent:
runs-on: ubuntu-latest
timeout-minutes: 45
if: github.ref == 'refs/heads/master' || github.ref == 'refs/heads/dev'
defaults:
run:
shell: bash
working-directory: classic
strategy:
matrix:
agent-name: [forge]
fail-fast: false
timeout-minutes: 20
steps:
- name: Checkout repository
uses: actions/checkout@v4
@@ -140,23 +126,51 @@ jobs:
- name: Install Poetry
run: |
curl -sSL https://install.python-poetry.org | python3 -
- name: Install dependencies
run: poetry install
curl -sSL https://install.python-poetry.org | python -
- name: Run regression tests
working-directory: classic
run: |
echo "Running regression tests (previously beaten challenges)..."
poetry run direct-benchmark run \
--fresh \
--strategies one_shot \
--models claude \
--maintain \
--parallel 4 \
--json
./run agent start ${{ matrix.agent-name }}
cd ${{ matrix.agent-name }}
set +e # Ignore non-zero exit codes and continue execution
echo "Running the following command: poetry run agbenchmark --maintain --mock"
poetry run agbenchmark --maintain --mock
EXIT_CODE=$?
set -e # Stop ignoring non-zero exit codes
# Check if the exit code was 5, and if so, exit with 0 instead
if [ $EXIT_CODE -eq 5 ]; then
echo "regression_tests.json is empty."
fi
echo "Running the following command: poetry run agbenchmark --mock"
poetry run agbenchmark --mock
echo "Running the following command: poetry run agbenchmark --mock --category=data"
poetry run agbenchmark --mock --category=data
echo "Running the following command: poetry run agbenchmark --mock --category=coding"
poetry run agbenchmark --mock --category=coding
# echo "Running the following command: poetry run agbenchmark --test=WriteFile"
# poetry run agbenchmark --test=WriteFile
cd ../benchmark
poetry install
echo "Adding the BUILD_SKILL_TREE environment variable. This will attempt to add new elements in the skill tree. If new elements are added, the CI fails because they should have been pushed"
export BUILD_SKILL_TREE=true
# poetry run agbenchmark --mock
# CHANGED=$(git diff --name-only | grep -E '(agbenchmark/challenges)|(../classic/frontend/assets)') || echo "No diffs"
# if [ ! -z "$CHANGED" ]; then
# echo "There are unstaged changes please run agbenchmark and commit those changes since they are needed."
# echo "$CHANGED"
# exit 1
# else
# echo "No unstaged changes."
# fi
env:
CI: true
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
NONINTERACTIVE_MODE: "true"
TELEMETRY_ENVIRONMENT: autogpt-benchmark-ci
TELEMETRY_OPT_IN: ${{ github.ref_name == 'master' }}

View File

@@ -6,11 +6,13 @@ on:
paths:
- '.github/workflows/classic-forge-ci.yml'
- 'classic/forge/**'
- '!classic/forge/tests/vcr_cassettes'
pull_request:
branches: [ master, dev, release-* ]
paths:
- '.github/workflows/classic-forge-ci.yml'
- 'classic/forge/**'
- '!classic/forge/tests/vcr_cassettes'
concurrency:
group: ${{ format('forge-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
@@ -19,60 +21,131 @@ concurrency:
defaults:
run:
shell: bash
working-directory: classic
working-directory: classic/forge
jobs:
test:
permissions:
contents: read
timeout-minutes: 30
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
python-version: ["3.10"]
platform-os: [ubuntu, macos, macos-arm64, windows]
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}
steps:
- name: Start MinIO service
# Quite slow on macOS (2~4 minutes to set up Docker)
# - name: Set up Docker (macOS)
# if: runner.os == 'macOS'
# uses: crazy-max/ghaction-setup-docker@v3
- name: Start MinIO service (Linux)
if: runner.os == 'Linux'
working-directory: '.'
run: |
docker pull minio/minio:edge-cicd
docker run -d -p 9000:9000 minio/minio:edge-cicd
- name: Start MinIO service (macOS)
if: runner.os == 'macOS'
working-directory: ${{ runner.temp }}
run: |
brew install minio/stable/minio
mkdir data
minio server ./data &
# No MinIO on Windows:
# - Windows doesn't support running Linux Docker containers
# - It doesn't seem possible to start background processes on Windows. They are
# killed after the step returns.
# See: https://github.com/actions/runner/issues/598#issuecomment-2011890429
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 0
submodules: true
- name: Set up Python 3.12
- name: Checkout cassettes
if: ${{ startsWith(github.event_name, 'pull_request') }}
env:
PR_BASE: ${{ github.event.pull_request.base.ref }}
PR_BRANCH: ${{ github.event.pull_request.head.ref }}
PR_AUTHOR: ${{ github.event.pull_request.user.login }}
run: |
cassette_branch="${PR_AUTHOR}-${PR_BRANCH}"
cassette_base_branch="${PR_BASE}"
cd tests/vcr_cassettes
if ! git ls-remote --exit-code --heads origin $cassette_base_branch ; then
cassette_base_branch="master"
fi
if git ls-remote --exit-code --heads origin $cassette_branch ; then
git fetch origin $cassette_branch
git fetch origin $cassette_base_branch
git checkout $cassette_branch
# Pick non-conflicting cassette updates from the base branch
git merge --no-commit --strategy-option=ours origin/$cassette_base_branch
echo "Using cassettes from mirror branch '$cassette_branch'," \
"synced to upstream branch '$cassette_base_branch'."
else
git checkout -b $cassette_branch
echo "Branch '$cassette_branch' does not exist in cassette submodule." \
"Using cassettes from '$cassette_base_branch'."
fi
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: "3.12"
python-version: ${{ matrix.python-version }}
- name: Set up Python dependency cache
# On Windows, unpacking cached dependencies takes longer than just installing them
if: runner.os != 'Windows'
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('classic/poetry.lock') }}
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('classic/forge/poetry.lock') }}
- name: Install Poetry
run: curl -sSL https://install.python-poetry.org | python3 -
- name: Install Poetry (Unix)
if: runner.os != 'Windows'
run: |
curl -sSL https://install.python-poetry.org | python3 -
if [ "${{ runner.os }}" = "macOS" ]; then
PATH="$HOME/.local/bin:$PATH"
echo "$HOME/.local/bin" >> $GITHUB_PATH
fi
- name: Install Poetry (Windows)
if: runner.os == 'Windows'
shell: pwsh
run: |
(Invoke-WebRequest -Uri https://install.python-poetry.org -UseBasicParsing).Content | python -
$env:PATH += ";$env:APPDATA\Python\Scripts"
echo "$env:APPDATA\Python\Scripts" >> $env:GITHUB_PATH
- name: Install Python dependencies
run: poetry install
- name: Install Playwright browsers
run: poetry run playwright install chromium
- name: Run pytest with coverage
run: |
poetry run pytest -vv \
--cov=forge --cov-branch --cov-report term-missing --cov-report xml \
--durations=10 \
--junitxml=junit.xml -o junit_family=legacy \
forge/forge forge/tests
forge
env:
CI: true
PLAIN_OUTPUT: True
# API keys - tests that need these will skip if not available
# Secrets are not available to fork PRs (GitHub security feature)
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
S3_ENDPOINT_URL: http://127.0.0.1:9000
S3_ENDPOINT_URL: ${{ runner.os != 'Windows' && 'http://127.0.0.1:9000' || '' }}
AWS_ACCESS_KEY_ID: minioadmin
AWS_SECRET_ACCESS_KEY: minioadmin
@@ -86,11 +159,85 @@ jobs:
uses: codecov/codecov-action@v5
with:
token: ${{ secrets.CODECOV_TOKEN }}
flags: forge
flags: forge,${{ runner.os }}
- id: setup_git_auth
name: Set up git token authentication
# Cassettes may be pushed even when tests fail
if: success() || failure()
run: |
config_key="http.${{ github.server_url }}/.extraheader"
if [ "${{ runner.os }}" = 'macOS' ]; then
base64_pat=$(echo -n "pat:${{ secrets.PAT_REVIEW }}" | base64)
else
base64_pat=$(echo -n "pat:${{ secrets.PAT_REVIEW }}" | base64 -w0)
fi
git config "$config_key" \
"Authorization: Basic $base64_pat"
cd tests/vcr_cassettes
git config "$config_key" \
"Authorization: Basic $base64_pat"
echo "config_key=$config_key" >> $GITHUB_OUTPUT
- id: push_cassettes
name: Push updated cassettes
# For pull requests, push updated cassettes even when tests fail
if: github.event_name == 'push' || (! github.event.pull_request.head.repo.fork && (success() || failure()))
env:
PR_BRANCH: ${{ github.event.pull_request.head.ref }}
PR_AUTHOR: ${{ github.event.pull_request.user.login }}
run: |
if [ "${{ startsWith(github.event_name, 'pull_request') }}" = "true" ]; then
is_pull_request=true
cassette_branch="${PR_AUTHOR}-${PR_BRANCH}"
else
cassette_branch="${{ github.ref_name }}"
fi
cd tests/vcr_cassettes
# Commit & push changes to cassettes if any
if ! git diff --quiet; then
git add .
git commit -m "Auto-update cassettes"
git push origin HEAD:$cassette_branch
if [ ! $is_pull_request ]; then
cd ../..
git add tests/vcr_cassettes
git commit -m "Update cassette submodule"
git push origin HEAD:$cassette_branch
fi
echo "updated=true" >> $GITHUB_OUTPUT
else
echo "updated=false" >> $GITHUB_OUTPUT
echo "No cassette changes to commit"
fi
- name: Post Set up git token auth
if: steps.setup_git_auth.outcome == 'success'
run: |
git config --unset-all '${{ steps.setup_git_auth.outputs.config_key }}'
git submodule foreach git config --unset-all '${{ steps.setup_git_auth.outputs.config_key }}'
- name: Apply "behaviour change" label and comment on PR
if: ${{ startsWith(github.event_name, 'pull_request') }}
run: |
PR_NUMBER="${{ github.event.pull_request.number }}"
TOKEN="${{ secrets.PAT_REVIEW }}"
REPO="${{ github.repository }}"
if [[ "${{ steps.push_cassettes.outputs.updated }}" == "true" ]]; then
echo "Adding label and comment..."
echo $TOKEN | gh auth login --with-token
gh issue edit $PR_NUMBER --add-label "behaviour change"
gh issue comment $PR_NUMBER --body "You changed AutoGPT's behaviour on ${{ runner.os }}. The cassettes have been updated and will be merged to the submodule when this Pull Request gets merged."
fi
- name: Upload logs to artifact
if: always()
uses: actions/upload-artifact@v4
with:
name: test-logs
path: classic/logs/
path: classic/forge/logs/

View File

@@ -0,0 +1,60 @@
name: Classic - Frontend CI/CD
on:
push:
branches:
- master
- dev
- 'ci-test*' # This will match any branch that starts with "ci-test"
paths:
- 'classic/frontend/**'
- '.github/workflows/classic-frontend-ci.yml'
pull_request:
paths:
- 'classic/frontend/**'
- '.github/workflows/classic-frontend-ci.yml'
jobs:
build:
permissions:
contents: write
pull-requests: write
runs-on: ubuntu-latest
env:
BUILD_BRANCH: ${{ format('classic-frontend-build/{0}', github.ref_name) }}
steps:
- name: Checkout Repo
uses: actions/checkout@v4
- name: Setup Flutter
uses: subosito/flutter-action@v2
with:
flutter-version: '3.13.2'
- name: Build Flutter to Web
run: |
cd classic/frontend
flutter build web --base-href /app/
# - name: Commit and Push to ${{ env.BUILD_BRANCH }}
# if: github.event_name == 'push'
# run: |
# git config --local user.email "action@github.com"
# git config --local user.name "GitHub Action"
# git add classic/frontend/build/web
# git checkout -B ${{ env.BUILD_BRANCH }}
# git commit -m "Update frontend build to ${GITHUB_SHA:0:7}" -a
# git push -f origin ${{ env.BUILD_BRANCH }}
- name: Create PR ${{ env.BUILD_BRANCH }} -> ${{ github.ref_name }}
if: github.event_name == 'push'
uses: peter-evans/create-pull-request@v8
with:
add-paths: classic/frontend/build/web
base: ${{ github.ref_name }}
branch: ${{ env.BUILD_BRANCH }}
delete-branch: true
title: "Update frontend build in `${{ github.ref_name }}`"
body: "This PR updates the frontend build based on commit ${{ github.sha }}."
commit-message: "Update frontend build based on commit ${{ github.sha }}"

View File

@@ -7,9 +7,7 @@ on:
- '.github/workflows/classic-python-checks-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/direct_benchmark/**'
- 'classic/pyproject.toml'
- 'classic/poetry.lock'
- 'classic/benchmark/**'
- '**.py'
- '!classic/forge/tests/vcr_cassettes'
pull_request:
@@ -18,9 +16,7 @@ on:
- '.github/workflows/classic-python-checks-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/direct_benchmark/**'
- 'classic/pyproject.toml'
- 'classic/poetry.lock'
- 'classic/benchmark/**'
- '**.py'
- '!classic/forge/tests/vcr_cassettes'
@@ -31,13 +27,44 @@ concurrency:
defaults:
run:
shell: bash
working-directory: classic
jobs:
get-changed-parts:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- id: changes-in
name: Determine affected subprojects
uses: dorny/paths-filter@v3
with:
filters: |
original_autogpt:
- classic/original_autogpt/autogpt/**
- classic/original_autogpt/tests/**
- classic/original_autogpt/poetry.lock
forge:
- classic/forge/forge/**
- classic/forge/tests/**
- classic/forge/poetry.lock
benchmark:
- classic/benchmark/agbenchmark/**
- classic/benchmark/tests/**
- classic/benchmark/poetry.lock
outputs:
changed-parts: ${{ steps.changes-in.outputs.changes }}
lint:
needs: get-changed-parts
runs-on: ubuntu-latest
env:
min-python-version: "3.12"
min-python-version: "3.10"
strategy:
matrix:
sub-package: ${{ fromJson(needs.get-changed-parts.outputs.changed-parts) }}
fail-fast: false
steps:
- name: Checkout repository
@@ -54,31 +81,42 @@ jobs:
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: ${{ runner.os }}-poetry-${{ hashFiles('classic/poetry.lock') }}
key: ${{ runner.os }}-poetry-${{ hashFiles(format('{0}/poetry.lock', matrix.sub-package)) }}
- name: Install Poetry
run: curl -sSL https://install.python-poetry.org | python3 -
# Install dependencies
- name: Install Python dependencies
run: poetry install
run: poetry -C classic/${{ matrix.sub-package }} install
# Lint
- name: Lint (isort)
run: poetry run isort --check .
working-directory: classic/${{ matrix.sub-package }}
- name: Lint (Black)
if: success() || failure()
run: poetry run black --check .
working-directory: classic/${{ matrix.sub-package }}
- name: Lint (Flake8)
if: success() || failure()
run: poetry run flake8 .
working-directory: classic/${{ matrix.sub-package }}
types:
needs: get-changed-parts
runs-on: ubuntu-latest
env:
min-python-version: "3.12"
min-python-version: "3.10"
strategy:
matrix:
sub-package: ${{ fromJson(needs.get-changed-parts.outputs.changed-parts) }}
fail-fast: false
steps:
- name: Checkout repository
@@ -95,16 +133,19 @@ jobs:
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: ${{ runner.os }}-poetry-${{ hashFiles('classic/poetry.lock') }}
key: ${{ runner.os }}-poetry-${{ hashFiles(format('{0}/poetry.lock', matrix.sub-package)) }}
- name: Install Poetry
run: curl -sSL https://install.python-poetry.org | python3 -
# Install dependencies
- name: Install Python dependencies
run: poetry install
run: poetry -C classic/${{ matrix.sub-package }} install
# Typecheck
- name: Typecheck
if: success() || failure()
run: poetry run pyright
working-directory: classic/${{ matrix.sub-package }}

View File

@@ -40,6 +40,48 @@ jobs:
git checkout -b "$BRANCH_NAME"
echo "branch_name=$BRANCH_NAME" >> $GITHUB_OUTPUT
# Backend Python/Poetry setup (so Claude can run linting/tests)
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
- name: Install Poetry
run: |
cd autogpt_platform/backend
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
echo "$HOME/.local/bin" >> $GITHUB_PATH
- name: Install Python dependencies
working-directory: autogpt_platform/backend
run: poetry install
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
# Frontend Node.js/pnpm setup (so Claude can run linting/tests)
- name: Enable corepack
run: corepack enable
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Install JavaScript dependencies
working-directory: autogpt_platform/frontend
run: pnpm install --frozen-lockfile
- name: Get CI failure details
id: failure_details
uses: actions/github-script@v8

View File

@@ -77,27 +77,15 @@ jobs:
run: poetry run prisma generate && poetry run gen-prisma-stub
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Enable corepack
run: corepack enable
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22"
- name: Enable corepack
run: corepack enable
- name: Set pnpm store directory
run: |
pnpm config set store-dir ~/.pnpm-store
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Install JavaScript dependencies
working-directory: autogpt_platform/frontend

View File

@@ -93,27 +93,15 @@ jobs:
run: poetry run prisma generate && poetry run gen-prisma-stub
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Enable corepack
run: corepack enable
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22"
- name: Enable corepack
run: corepack enable
- name: Set pnpm store directory
run: |
pnpm config set store-dir ~/.pnpm-store
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Install JavaScript dependencies
working-directory: autogpt_platform/frontend

View File

@@ -26,7 +26,6 @@ jobs:
setup:
runs-on: ubuntu-latest
outputs:
cache-key: ${{ steps.cache-key.outputs.key }}
components-changed: ${{ steps.filter.outputs.components }}
steps:
@@ -41,28 +40,17 @@ jobs:
components:
- 'autogpt_platform/frontend/src/components/**'
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Generate cache key
id: cache-key
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
- name: Cache dependencies
uses: actions/cache@v5
- name: Set up Node
uses: actions/setup-node@v6
with:
path: ~/.pnpm-store
key: ${{ steps.cache-key.outputs.key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Install dependencies
- name: Install dependencies to populate cache
run: pnpm install --frozen-lockfile
lint:
@@ -73,22 +61,15 @@ jobs:
- name: Checkout repository
uses: actions/checkout@v6
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v5
- name: Set up Node
uses: actions/setup-node@v6
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Install dependencies
run: pnpm install --frozen-lockfile
@@ -111,22 +92,15 @@ jobs:
with:
fetch-depth: 0
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v5
- name: Set up Node
uses: actions/setup-node@v6
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Install dependencies
run: pnpm install --frozen-lockfile
@@ -141,10 +115,8 @@ jobs:
exitOnceUploaded: true
e2e_test:
name: end-to-end tests
runs-on: big-boi
needs: setup
strategy:
fail-fast: false
steps:
- name: Checkout repository
@@ -152,19 +124,11 @@ jobs:
with:
submodules: recursive
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Copy default supabase .env
- name: Set up Platform - Copy default supabase .env
run: |
cp ../.env.default ../.env
- name: Copy backend .env and set OpenAI API key
- name: Set up Platform - Copy backend .env and set OpenAI API key
run: |
cp ../backend/.env.default ../backend/.env
echo "OPENAI_INTERNAL_API_KEY=${{ secrets.OPENAI_API_KEY }}" >> ../backend/.env
@@ -172,77 +136,125 @@ jobs:
# Used by E2E test data script to generate embeddings for approved store agents
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
- name: Set up Docker Buildx
- name: Set up Platform - Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
driver: docker-container
driver-opts: network=host
- name: Cache Docker layers
- name: Set up Platform - Expose GHA cache to docker buildx CLI
uses: crazy-max/ghaction-github-runtime@v3
- name: Set up Platform - Build Docker images (with cache)
working-directory: autogpt_platform
run: |
pip install pyyaml
# Resolve extends and generate a flat compose file that bake can understand
docker compose -f docker-compose.yml config > docker-compose.resolved.yml
# Add cache configuration to the resolved compose file
python ../.github/workflows/scripts/docker-ci-fix-compose-build-cache.py \
--source docker-compose.resolved.yml \
--cache-from "type=gha" \
--cache-to "type=gha,mode=max" \
--backend-hash "${{ hashFiles('autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/poetry.lock', 'autogpt_platform/backend/backend') }}" \
--frontend-hash "${{ hashFiles('autogpt_platform/frontend/Dockerfile', 'autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/src') }}" \
--git-ref "${{ github.ref }}"
# Build with bake using the resolved compose file (now includes cache config)
docker buildx bake --allow=fs.read=.. -f docker-compose.resolved.yml --load
env:
NEXT_PUBLIC_PW_TEST: true
- name: Set up tests - Cache E2E test data
id: e2e-data-cache
uses: actions/cache@v5
with:
path: /tmp/.buildx-cache
key: ${{ runner.os }}-buildx-frontend-test-${{ hashFiles('autogpt_platform/docker-compose.yml', 'autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/pyproject.toml', 'autogpt_platform/backend/poetry.lock') }}
restore-keys: |
${{ runner.os }}-buildx-frontend-test-
path: /tmp/e2e_test_data.sql
key: e2e-test-data-${{ hashFiles('autogpt_platform/backend/test/e2e_test_data.py', 'autogpt_platform/backend/migrations/**', '.github/workflows/platform-frontend-ci.yml') }}
- name: Run docker compose
- name: Set up Platform - Start Supabase DB + Auth
run: |
NEXT_PUBLIC_PW_TEST=true docker compose -f ../docker-compose.yml up -d
docker compose -f ../docker-compose.resolved.yml up -d db auth --no-build
echo "Waiting for database to be ready..."
timeout 60 sh -c 'until docker compose -f ../docker-compose.resolved.yml exec -T db pg_isready -U postgres 2>/dev/null; do sleep 2; done'
echo "Waiting for auth service to be ready..."
timeout 60 sh -c 'until docker compose -f ../docker-compose.resolved.yml exec -T db psql -U postgres -d postgres -c "SELECT 1 FROM auth.users LIMIT 1" 2>/dev/null; do sleep 2; done' || echo "Auth schema check timeout, continuing..."
- name: Set up Platform - Run migrations
run: |
echo "Running migrations..."
docker compose -f ../docker-compose.resolved.yml run --rm migrate
echo "✅ Migrations completed"
env:
DOCKER_BUILDKIT: 1
BUILDX_CACHE_FROM: type=local,src=/tmp/.buildx-cache
BUILDX_CACHE_TO: type=local,dest=/tmp/.buildx-cache-new,mode=max
NEXT_PUBLIC_PW_TEST: true
- name: Move cache
- name: Set up tests - Load cached E2E test data
if: steps.e2e-data-cache.outputs.cache-hit == 'true'
run: |
rm -rf /tmp/.buildx-cache
if [ -d "/tmp/.buildx-cache-new" ]; then
mv /tmp/.buildx-cache-new /tmp/.buildx-cache
fi
echo "✅ Found cached E2E test data, restoring..."
{
echo "SET session_replication_role = 'replica';"
cat /tmp/e2e_test_data.sql
echo "SET session_replication_role = 'origin';"
} | docker compose -f ../docker-compose.resolved.yml exec -T db psql -U postgres -d postgres -b
# Refresh materialized views after restore
docker compose -f ../docker-compose.resolved.yml exec -T db \
psql -U postgres -d postgres -b -c "SET search_path TO platform; SELECT refresh_store_materialized_views();" || true
- name: Wait for services to be ready
echo "✅ E2E test data restored from cache"
- name: Set up Platform - Start (all other services)
run: |
docker compose -f ../docker-compose.resolved.yml up -d --no-build
echo "Waiting for rest_server to be ready..."
timeout 60 sh -c 'until curl -f http://localhost:8006/health 2>/dev/null; do sleep 2; done' || echo "Rest server health check timeout, continuing..."
echo "Waiting for database to be ready..."
timeout 60 sh -c 'until docker compose -f ../docker-compose.yml exec -T db pg_isready -U postgres 2>/dev/null; do sleep 2; done' || echo "Database ready check timeout, continuing..."
env:
NEXT_PUBLIC_PW_TEST: true
- name: Create E2E test data
- name: Set up tests - Create E2E test data
if: steps.e2e-data-cache.outputs.cache-hit != 'true'
run: |
echo "Creating E2E test data..."
# First try to run the script from inside the container
if docker compose -f ../docker-compose.yml exec -T rest_server test -f /app/autogpt_platform/backend/test/e2e_test_data.py; then
echo "✅ Found e2e_test_data.py in container, running it..."
docker compose -f ../docker-compose.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python backend/test/e2e_test_data.py" || {
echo "❌ E2E test data creation failed!"
docker compose -f ../docker-compose.yml logs --tail=50 rest_server
exit 1
}
else
echo "⚠️ e2e_test_data.py not found in container, copying and running..."
# Copy the script into the container and run it
docker cp ../backend/test/e2e_test_data.py $(docker compose -f ../docker-compose.yml ps -q rest_server):/tmp/e2e_test_data.py || {
echo "❌ Failed to copy script to container"
exit 1
}
docker compose -f ../docker-compose.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python /tmp/e2e_test_data.py" || {
echo "❌ E2E test data creation failed!"
docker compose -f ../docker-compose.yml logs --tail=50 rest_server
exit 1
}
fi
docker cp ../backend/test/e2e_test_data.py $(docker compose -f ../docker-compose.resolved.yml ps -q rest_server):/tmp/e2e_test_data.py
docker compose -f ../docker-compose.resolved.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python /tmp/e2e_test_data.py" || {
echo "❌ E2E test data creation failed!"
docker compose -f ../docker-compose.resolved.yml logs --tail=50 rest_server
exit 1
}
- name: Restore dependencies cache
uses: actions/cache@v5
# Dump auth.users + platform schema for cache (two separate dumps)
echo "Dumping database for cache..."
{
docker compose -f ../docker-compose.resolved.yml exec -T db \
pg_dump -U postgres --data-only --column-inserts \
--table='auth.users' postgres
docker compose -f ../docker-compose.resolved.yml exec -T db \
pg_dump -U postgres --data-only --column-inserts \
--schema=platform \
--exclude-table='platform._prisma_migrations' \
--exclude-table='platform.apscheduler_jobs' \
--exclude-table='platform.apscheduler_jobs_batched_notifications' \
postgres
} > /tmp/e2e_test_data.sql
echo "✅ Database dump created for caching ($(wc -l < /tmp/e2e_test_data.sql) lines)"
- name: Set up tests - Enable corepack
run: corepack enable
- name: Set up tests - Set up Node
uses: actions/setup-node@v6
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Install dependencies
- name: Set up tests - Install dependencies
run: pnpm install --frozen-lockfile
- name: Install Browser 'chromium'
- name: Set up tests - Install browser 'chromium'
run: pnpm playwright install --with-deps chromium
- name: Run Playwright tests
@@ -269,7 +281,7 @@ jobs:
- name: Print Final Docker Compose logs
if: always()
run: docker compose -f ../docker-compose.yml logs
run: docker compose -f ../docker-compose.resolved.yml logs
integration_test:
runs-on: ubuntu-latest
@@ -281,22 +293,15 @@ jobs:
with:
submodules: recursive
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v5
- name: Set up Node
uses: actions/setup-node@v6
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Install dependencies
run: pnpm install --frozen-lockfile

View File

@@ -0,0 +1,195 @@
#!/usr/bin/env python3
"""
Add cache configuration to a resolved docker-compose file for all services
that have a build key, and ensure image names match what docker compose expects.
"""
import argparse
import yaml
DEFAULT_BRANCH = "dev"
CACHE_BUILDS_FOR_COMPONENTS = ["backend", "frontend"]
def main():
parser = argparse.ArgumentParser(
description="Add cache config to a resolved compose file"
)
parser.add_argument(
"--source",
required=True,
help="Source compose file to read (should be output of `docker compose config`)",
)
parser.add_argument(
"--cache-from",
default="type=gha",
help="Cache source configuration",
)
parser.add_argument(
"--cache-to",
default="type=gha,mode=max",
help="Cache destination configuration",
)
for component in CACHE_BUILDS_FOR_COMPONENTS:
parser.add_argument(
f"--{component}-hash",
default="",
help=f"Hash for {component} cache scope (e.g., from hashFiles())",
)
parser.add_argument(
"--git-ref",
default="",
help="Git ref for branch-based cache scope (e.g., refs/heads/master)",
)
args = parser.parse_args()
# Normalize git ref to a safe scope name (e.g., refs/heads/master -> master)
git_ref_scope = ""
if args.git_ref:
git_ref_scope = args.git_ref.replace("refs/heads/", "").replace("/", "-")
with open(args.source, "r") as f:
compose = yaml.safe_load(f)
# Get project name from compose file or default
project_name = compose.get("name", "autogpt_platform")
def get_image_name(dockerfile: str, target: str) -> str:
"""Generate image name based on Dockerfile folder and build target."""
dockerfile_parts = dockerfile.replace("\\", "/").split("/")
if len(dockerfile_parts) >= 2:
folder_name = dockerfile_parts[-2] # e.g., "backend" or "frontend"
else:
folder_name = "app"
return f"{project_name}-{folder_name}:{target}"
def get_build_key(dockerfile: str, target: str) -> str:
"""Generate a unique key for a Dockerfile+target combination."""
return f"{dockerfile}:{target}"
def get_component(dockerfile: str) -> str | None:
"""Get component name (frontend/backend) from dockerfile path."""
for component in CACHE_BUILDS_FOR_COMPONENTS:
if component in dockerfile:
return component
return None
# First pass: collect all services with build configs and identify duplicates
# Track which (dockerfile, target) combinations we've seen
build_key_to_first_service: dict[str, str] = {}
services_to_build: list[str] = []
services_to_dedupe: list[str] = []
for service_name, service_config in compose.get("services", {}).items():
if "build" not in service_config:
continue
build_config = service_config["build"]
dockerfile = build_config.get("dockerfile", "Dockerfile")
target = build_config.get("target", "default")
build_key = get_build_key(dockerfile, target)
if build_key not in build_key_to_first_service:
# First service with this build config - it will do the actual build
build_key_to_first_service[build_key] = service_name
services_to_build.append(service_name)
else:
# Duplicate - will just use the image from the first service
services_to_dedupe.append(service_name)
# Second pass: configure builds and deduplicate
modified_services = []
for service_name, service_config in compose.get("services", {}).items():
if "build" not in service_config:
continue
build_config = service_config["build"]
dockerfile = build_config.get("dockerfile", "Dockerfile")
target = build_config.get("target", "latest")
image_name = get_image_name(dockerfile, target)
# Set image name for all services (needed for both builders and deduped)
service_config["image"] = image_name
if service_name in services_to_dedupe:
# Remove build config - this service will use the pre-built image
del service_config["build"]
continue
# This service will do the actual build - add cache config
cache_from_list = []
cache_to_list = []
component = get_component(dockerfile)
if not component:
# Skip services that don't clearly match frontend/backend
continue
# Get the hash for this component
component_hash = getattr(args, f"{component}_hash")
# Scope format: platform-{component}-{target}-{hash|ref}
# Example: platform-backend-server-abc123
if "type=gha" in args.cache_from:
# 1. Primary: exact hash match (most specific)
if component_hash:
hash_scope = f"platform-{component}-{target}-{component_hash}"
cache_from_list.append(f"{args.cache_from},scope={hash_scope}")
# 2. Fallback: branch-based cache
if git_ref_scope:
ref_scope = f"platform-{component}-{target}-{git_ref_scope}"
cache_from_list.append(f"{args.cache_from},scope={ref_scope}")
# 3. Fallback: dev branch cache (for PRs/feature branches)
if git_ref_scope and git_ref_scope != DEFAULT_BRANCH:
master_scope = f"platform-{component}-{target}-{DEFAULT_BRANCH}"
cache_from_list.append(f"{args.cache_from},scope={master_scope}")
if "type=gha" in args.cache_to:
# Write to both hash-based and branch-based scopes
if component_hash:
hash_scope = f"platform-{component}-{target}-{component_hash}"
cache_to_list.append(f"{args.cache_to},scope={hash_scope}")
if git_ref_scope:
ref_scope = f"platform-{component}-{target}-{git_ref_scope}"
cache_to_list.append(f"{args.cache_to},scope={ref_scope}")
# Ensure we have at least one cache source/target
if not cache_from_list:
cache_from_list.append(args.cache_from)
if not cache_to_list:
cache_to_list.append(args.cache_to)
build_config["cache_from"] = cache_from_list
build_config["cache_to"] = cache_to_list
modified_services.append(service_name)
# Write back to the same file
with open(args.source, "w") as f:
yaml.dump(compose, f, default_flow_style=False, sort_keys=False)
print(f"Added cache config to {len(modified_services)} services in {args.source}:")
for svc in modified_services:
svc_config = compose["services"][svc]
build_cfg = svc_config.get("build", {})
cache_from_list = build_cfg.get("cache_from", ["none"])
cache_to_list = build_cfg.get("cache_to", ["none"])
print(f" - {svc}")
print(f" image: {svc_config.get('image', 'N/A')}")
print(f" cache_from: {cache_from_list}")
print(f" cache_to: {cache_to_list}")
if services_to_dedupe:
print(
f"Deduplicated {len(services_to_dedupe)} services (will use pre-built images):"
)
for svc in services_to_dedupe:
print(f" - {svc} -> {compose['services'][svc].get('image', 'N/A')}")
if __name__ == "__main__":
main()

11
.gitignore vendored
View File

@@ -3,7 +3,6 @@
classic/original_autogpt/keys.py
classic/original_autogpt/*.json
auto_gpt_workspace/*
.autogpt/
*.mpeg
.env
# Root .env files
@@ -160,10 +159,6 @@ CURRENT_BULLETIN.md
# AgBenchmark
classic/benchmark/agbenchmark/reports/
classic/reports/
classic/direct_benchmark/reports/
classic/.benchmark_workspaces/
classic/direct_benchmark/.benchmark_workspaces/
# Nodejs
package-lock.json
@@ -182,11 +177,7 @@ autogpt_platform/backend/settings.py
*.ign.*
.test-contents
**/.claude/settings.local.json
.claude/settings.local.json
CLAUDE.local.md
/autogpt_platform/backend/logs
# Test database
test.db
.next
.next

3
.gitmodules vendored Normal file
View File

@@ -0,0 +1,3 @@
[submodule "classic/forge/tests/vcr_cassettes"]
path = classic/forge/tests/vcr_cassettes
url = https://github.com/Significant-Gravitas/Auto-GPT-test-cassettes

View File

@@ -43,10 +43,29 @@ repos:
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - Classic
alias: poetry-install-classic
entry: poetry -C classic install
files: ^classic/poetry\.lock$
name: Check & Install dependencies - Classic - AutoGPT
alias: poetry-install-classic-autogpt
entry: poetry -C classic/original_autogpt install
# include forge source (since it's a path dependency)
files: ^classic/(original_autogpt|forge)/poetry\.lock$
types: [file]
language: system
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - Classic - Forge
alias: poetry-install-classic-forge
entry: poetry -C classic/forge install
files: ^classic/forge/poetry\.lock$
types: [file]
language: system
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - Classic - Benchmark
alias: poetry-install-classic-benchmark
entry: poetry -C classic/benchmark install
files: ^classic/benchmark/poetry\.lock$
types: [file]
language: system
pass_filenames: false
@@ -97,10 +116,26 @@ repos:
language: system
- id: isort
name: Lint (isort) - Classic
alias: isort-classic
entry: bash -c 'cd classic && poetry run isort $(echo "$@" | sed "s|classic/||g")' --
files: ^classic/(original_autogpt|forge|direct_benchmark)/
name: Lint (isort) - Classic - AutoGPT
alias: isort-classic-autogpt
entry: poetry -P classic/original_autogpt run isort -p autogpt
files: ^classic/original_autogpt/
types: [file, python]
language: system
- id: isort
name: Lint (isort) - Classic - Forge
alias: isort-classic-forge
entry: poetry -P classic/forge run isort -p forge
files: ^classic/forge/
types: [file, python]
language: system
- id: isort
name: Lint (isort) - Classic - Benchmark
alias: isort-classic-benchmark
entry: poetry -P classic/benchmark run isort -p agbenchmark
files: ^classic/benchmark/
types: [file, python]
language: system
@@ -114,13 +149,26 @@ repos:
- repo: https://github.com/PyCQA/flake8
rev: 7.0.0
# Use consolidated flake8 config at classic/.flake8
# To have flake8 load the config of the individual subprojects, we have to call
# them separately.
hooks:
- id: flake8
name: Lint (Flake8) - Classic
alias: flake8-classic
files: ^classic/(original_autogpt|forge|direct_benchmark)/
args: [--config=classic/.flake8]
name: Lint (Flake8) - Classic - AutoGPT
alias: flake8-classic-autogpt
files: ^classic/original_autogpt/(autogpt|scripts|tests)/
args: [--config=classic/original_autogpt/.flake8]
- id: flake8
name: Lint (Flake8) - Classic - Forge
alias: flake8-classic-forge
files: ^classic/forge/(forge|tests)/
args: [--config=classic/forge/.flake8]
- id: flake8
name: Lint (Flake8) - Classic - Benchmark
alias: flake8-classic-benchmark
files: ^classic/benchmark/(agbenchmark|tests)/((?!reports).)*[/.]
args: [--config=classic/benchmark/.flake8]
- repo: local
hooks:
@@ -156,10 +204,29 @@ repos:
pass_filenames: false
- id: pyright
name: Typecheck - Classic
alias: pyright-classic
entry: poetry -C classic run pyright
files: ^classic/(original_autogpt|forge|direct_benchmark)/.*\.py$|^classic/poetry\.lock$
name: Typecheck - Classic - AutoGPT
alias: pyright-classic-autogpt
entry: poetry -C classic/original_autogpt run pyright
# include forge source (since it's a path dependency) but exclude *_test.py files:
files: ^(classic/original_autogpt/((autogpt|scripts|tests)/|poetry\.lock$)|classic/forge/(forge/.*(?<!_test)\.py|poetry\.lock)$)
types: [file]
language: system
pass_filenames: false
- id: pyright
name: Typecheck - Classic - Forge
alias: pyright-classic-forge
entry: poetry -C classic/forge run pyright
files: ^classic/forge/(forge/|poetry\.lock$)
types: [file]
language: system
pass_filenames: false
- id: pyright
name: Typecheck - Classic - Benchmark
alias: pyright-classic-benchmark
entry: poetry -C classic/benchmark run pyright
files: ^classic/benchmark/(agbenchmark/|tests/|poetry\.lock$)
types: [file]
language: system
pass_filenames: false

View File

@@ -45,6 +45,11 @@ AutoGPT Platform is a monorepo containing:
- Backend/Frontend services use YAML anchors for consistent configuration
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
### Branching Strategy
- **`dev`** is the main development branch. All PRs should target `dev`.
- **`master`** is the production branch. Only used for production releases.
### Creating Pull Requests
- Create the PR against the `dev` branch of the repository.

View File

@@ -448,61 +448,61 @@ toml = ["tomli ; python_full_version <= \"3.11.0a6\""]
[[package]]
name = "cryptography"
version = "46.0.4"
version = "46.0.5"
description = "cryptography is a package which provides cryptographic recipes and primitives to Python developers."
optional = false
python-versions = "!=3.9.0,!=3.9.1,>=3.8"
groups = ["main"]
files = [
{file = "cryptography-46.0.4-cp311-abi3-macosx_10_9_universal2.whl", hash = "sha256:281526e865ed4166009e235afadf3a4c4cba6056f99336a99efba65336fd5485"},
{file = "cryptography-46.0.4-cp311-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5f14fba5bf6f4390d7ff8f086c566454bff0411f6d8aa7af79c88b6f9267aecc"},
{file = "cryptography-46.0.4-cp311-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:47bcd19517e6389132f76e2d5303ded6cf3f78903da2158a671be8de024f4cd0"},
{file = "cryptography-46.0.4-cp311-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:01df4f50f314fbe7009f54046e908d1754f19d0c6d3070df1e6268c5a4af09fa"},
{file = "cryptography-46.0.4-cp311-abi3-manylinux_2_28_ppc64le.whl", hash = "sha256:5aa3e463596b0087b3da0dbe2b2487e9fc261d25da85754e30e3b40637d61f81"},
{file = "cryptography-46.0.4-cp311-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:0a9ad24359fee86f131836a9ac3bffc9329e956624a2d379b613f8f8abaf5255"},
{file = "cryptography-46.0.4-cp311-abi3-manylinux_2_31_armv7l.whl", hash = "sha256:dc1272e25ef673efe72f2096e92ae39dea1a1a450dd44918b15351f72c5a168e"},
{file = "cryptography-46.0.4-cp311-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:de0f5f4ec8711ebc555f54735d4c673fc34b65c44283895f1a08c2b49d2fd99c"},
{file = "cryptography-46.0.4-cp311-abi3-manylinux_2_34_ppc64le.whl", hash = "sha256:eeeb2e33d8dbcccc34d64651f00a98cb41b2dc69cef866771a5717e6734dfa32"},
{file = "cryptography-46.0.4-cp311-abi3-manylinux_2_34_x86_64.whl", hash = "sha256:3d425eacbc9aceafd2cb429e42f4e5d5633c6f873f5e567077043ef1b9bbf616"},
{file = "cryptography-46.0.4-cp311-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:91627ebf691d1ea3976a031b61fb7bac1ccd745afa03602275dda443e11c8de0"},
{file = "cryptography-46.0.4-cp311-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:2d08bc22efd73e8854b0b7caff402d735b354862f1145d7be3b9c0f740fef6a0"},
{file = "cryptography-46.0.4-cp311-abi3-win32.whl", hash = "sha256:82a62483daf20b8134f6e92898da70d04d0ef9a75829d732ea1018678185f4f5"},
{file = "cryptography-46.0.4-cp311-abi3-win_amd64.whl", hash = "sha256:6225d3ebe26a55dbc8ead5ad1265c0403552a63336499564675b29eb3184c09b"},
{file = "cryptography-46.0.4-cp314-cp314t-macosx_10_9_universal2.whl", hash = "sha256:485e2b65d25ec0d901bca7bcae0f53b00133bf3173916d8e421f6fddde103908"},
{file = "cryptography-46.0.4-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:078e5f06bd2fa5aea5a324f2a09f914b1484f1d0c2a4d6a8a28c74e72f65f2da"},
{file = "cryptography-46.0.4-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:dce1e4f068f03008da7fa51cc7abc6ddc5e5de3e3d1550334eaf8393982a5829"},
{file = "cryptography-46.0.4-cp314-cp314t-manylinux_2_28_aarch64.whl", hash = "sha256:2067461c80271f422ee7bdbe79b9b4be54a5162e90345f86a23445a0cf3fd8a2"},
{file = "cryptography-46.0.4-cp314-cp314t-manylinux_2_28_ppc64le.whl", hash = "sha256:c92010b58a51196a5f41c3795190203ac52edfd5dc3ff99149b4659eba9d2085"},
{file = "cryptography-46.0.4-cp314-cp314t-manylinux_2_28_x86_64.whl", hash = "sha256:829c2b12bbc5428ab02d6b7f7e9bbfd53e33efd6672d21341f2177470171ad8b"},
{file = "cryptography-46.0.4-cp314-cp314t-manylinux_2_31_armv7l.whl", hash = "sha256:62217ba44bf81b30abaeda1488686a04a702a261e26f87db51ff61d9d3510abd"},
{file = "cryptography-46.0.4-cp314-cp314t-manylinux_2_34_aarch64.whl", hash = "sha256:9c2da296c8d3415b93e6053f5a728649a87a48ce084a9aaf51d6e46c87c7f2d2"},
{file = "cryptography-46.0.4-cp314-cp314t-manylinux_2_34_ppc64le.whl", hash = "sha256:9b34d8ba84454641a6bf4d6762d15847ecbd85c1316c0a7984e6e4e9f748ec2e"},
{file = "cryptography-46.0.4-cp314-cp314t-manylinux_2_34_x86_64.whl", hash = "sha256:df4a817fa7138dd0c96c8c8c20f04b8aaa1fac3bbf610913dcad8ea82e1bfd3f"},
{file = "cryptography-46.0.4-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:b1de0ebf7587f28f9190b9cb526e901bf448c9e6a99655d2b07fff60e8212a82"},
{file = "cryptography-46.0.4-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:9b4d17bc7bd7cdd98e3af40b441feaea4c68225e2eb2341026c84511ad246c0c"},
{file = "cryptography-46.0.4-cp314-cp314t-win32.whl", hash = "sha256:c411f16275b0dea722d76544a61d6421e2cc829ad76eec79280dbdc9ddf50061"},
{file = "cryptography-46.0.4-cp314-cp314t-win_amd64.whl", hash = "sha256:728fedc529efc1439eb6107b677f7f7558adab4553ef8669f0d02d42d7b959a7"},
{file = "cryptography-46.0.4-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:a9556ba711f7c23f77b151d5798f3ac44a13455cc68db7697a1096e6d0563cab"},
{file = "cryptography-46.0.4-cp38-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8bf75b0259e87fa70bddc0b8b4078b76e7fd512fd9afae6c1193bcf440a4dbef"},
{file = "cryptography-46.0.4-cp38-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:3c268a3490df22270955966ba236d6bc4a8f9b6e4ffddb78aac535f1a5ea471d"},
{file = "cryptography-46.0.4-cp38-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:812815182f6a0c1d49a37893a303b44eaac827d7f0d582cecfc81b6427f22973"},
{file = "cryptography-46.0.4-cp38-abi3-manylinux_2_28_ppc64le.whl", hash = "sha256:a90e43e3ef65e6dcf969dfe3bb40cbf5aef0d523dff95bfa24256be172a845f4"},
{file = "cryptography-46.0.4-cp38-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:a05177ff6296644ef2876fce50518dffb5bcdf903c85250974fc8bc85d54c0af"},
{file = "cryptography-46.0.4-cp38-abi3-manylinux_2_31_armv7l.whl", hash = "sha256:daa392191f626d50f1b136c9b4cf08af69ca8279d110ea24f5c2700054d2e263"},
{file = "cryptography-46.0.4-cp38-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:e07ea39c5b048e085f15923511d8121e4a9dc45cee4e3b970ca4f0d338f23095"},
{file = "cryptography-46.0.4-cp38-abi3-manylinux_2_34_ppc64le.whl", hash = "sha256:d5a45ddc256f492ce42a4e35879c5e5528c09cd9ad12420828c972951d8e016b"},
{file = "cryptography-46.0.4-cp38-abi3-manylinux_2_34_x86_64.whl", hash = "sha256:6bb5157bf6a350e5b28aee23beb2d84ae6f5be390b2f8ee7ea179cda077e1019"},
{file = "cryptography-46.0.4-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:dd5aba870a2c40f87a3af043e0dee7d9eb02d4aff88a797b48f2b43eff8c3ab4"},
{file = "cryptography-46.0.4-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:93d8291da8d71024379ab2cb0b5c57915300155ad42e07f76bea6ad838d7e59b"},
{file = "cryptography-46.0.4-cp38-abi3-win32.whl", hash = "sha256:0563655cb3c6d05fb2afe693340bc050c30f9f34e15763361cf08e94749401fc"},
{file = "cryptography-46.0.4-cp38-abi3-win_amd64.whl", hash = "sha256:fa0900b9ef9c49728887d1576fd8d9e7e3ea872fa9b25ef9b64888adc434e976"},
{file = "cryptography-46.0.4-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:766330cce7416c92b5e90c3bb71b1b79521760cdcfc3a6a1a182d4c9fab23d2b"},
{file = "cryptography-46.0.4-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c236a44acfb610e70f6b3e1c3ca20ff24459659231ef2f8c48e879e2d32b73da"},
{file = "cryptography-46.0.4-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:8a15fb869670efa8f83cbffbc8753c1abf236883225aed74cd179b720ac9ec80"},
{file = "cryptography-46.0.4-pp311-pypy311_pp73-manylinux_2_34_aarch64.whl", hash = "sha256:fdc3daab53b212472f1524d070735b2f0c214239df131903bae1d598016fa822"},
{file = "cryptography-46.0.4-pp311-pypy311_pp73-manylinux_2_34_x86_64.whl", hash = "sha256:44cc0675b27cadb71bdbb96099cca1fa051cd11d2ade09e5cd3a2edb929ed947"},
{file = "cryptography-46.0.4-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:be8c01a7d5a55f9a47d1888162b76c8f49d62b234d88f0ff91a9fbebe32ffbc3"},
{file = "cryptography-46.0.4.tar.gz", hash = "sha256:bfd019f60f8abc2ed1b9be4ddc21cfef059c841d86d710bb69909a688cbb8f59"},
{file = "cryptography-46.0.5-cp311-abi3-macosx_10_9_universal2.whl", hash = "sha256:351695ada9ea9618b3500b490ad54c739860883df6c1f555e088eaf25b1bbaad"},
{file = "cryptography-46.0.5-cp311-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:c18ff11e86df2e28854939acde2d003f7984f721eba450b56a200ad90eeb0e6b"},
{file = "cryptography-46.0.5-cp311-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4d7e3d356b8cd4ea5aff04f129d5f66ebdc7b6f8eae802b93739ed520c47c79b"},
{file = "cryptography-46.0.5-cp311-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:50bfb6925eff619c9c023b967d5b77a54e04256c4281b0e21336a130cd7fc263"},
{file = "cryptography-46.0.5-cp311-abi3-manylinux_2_28_ppc64le.whl", hash = "sha256:803812e111e75d1aa73690d2facc295eaefd4439be1023fefc4995eaea2af90d"},
{file = "cryptography-46.0.5-cp311-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:3ee190460e2fbe447175cda91b88b84ae8322a104fc27766ad09428754a618ed"},
{file = "cryptography-46.0.5-cp311-abi3-manylinux_2_31_armv7l.whl", hash = "sha256:f145bba11b878005c496e93e257c1e88f154d278d2638e6450d17e0f31e558d2"},
{file = "cryptography-46.0.5-cp311-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:e9251e3be159d1020c4030bd2e5f84d6a43fe54b6c19c12f51cde9542a2817b2"},
{file = "cryptography-46.0.5-cp311-abi3-manylinux_2_34_ppc64le.whl", hash = "sha256:47fb8a66058b80e509c47118ef8a75d14c455e81ac369050f20ba0d23e77fee0"},
{file = "cryptography-46.0.5-cp311-abi3-manylinux_2_34_x86_64.whl", hash = "sha256:4c3341037c136030cb46e4b1e17b7418ea4cbd9dd207e4a6f3b2b24e0d4ac731"},
{file = "cryptography-46.0.5-cp311-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:890bcb4abd5a2d3f852196437129eb3667d62630333aacc13dfd470fad3aaa82"},
{file = "cryptography-46.0.5-cp311-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:80a8d7bfdf38f87ca30a5391c0c9ce4ed2926918e017c29ddf643d0ed2778ea1"},
{file = "cryptography-46.0.5-cp311-abi3-win32.whl", hash = "sha256:60ee7e19e95104d4c03871d7d7dfb3d22ef8a9b9c6778c94e1c8fcc8365afd48"},
{file = "cryptography-46.0.5-cp311-abi3-win_amd64.whl", hash = "sha256:38946c54b16c885c72c4f59846be9743d699eee2b69b6988e0a00a01f46a61a4"},
{file = "cryptography-46.0.5-cp314-cp314t-macosx_10_9_universal2.whl", hash = "sha256:94a76daa32eb78d61339aff7952ea819b1734b46f73646a07decb40e5b3448e2"},
{file = "cryptography-46.0.5-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5be7bf2fb40769e05739dd0046e7b26f9d4670badc7b032d6ce4db64dddc0678"},
{file = "cryptography-46.0.5-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:fe346b143ff9685e40192a4960938545c699054ba11d4f9029f94751e3f71d87"},
{file = "cryptography-46.0.5-cp314-cp314t-manylinux_2_28_aarch64.whl", hash = "sha256:c69fd885df7d089548a42d5ec05be26050ebcd2283d89b3d30676eb32ff87dee"},
{file = "cryptography-46.0.5-cp314-cp314t-manylinux_2_28_ppc64le.whl", hash = "sha256:8293f3dea7fc929ef7240796ba231413afa7b68ce38fd21da2995549f5961981"},
{file = "cryptography-46.0.5-cp314-cp314t-manylinux_2_28_x86_64.whl", hash = "sha256:1abfdb89b41c3be0365328a410baa9df3ff8a9110fb75e7b52e66803ddabc9a9"},
{file = "cryptography-46.0.5-cp314-cp314t-manylinux_2_31_armv7l.whl", hash = "sha256:d66e421495fdb797610a08f43b05269e0a5ea7f5e652a89bfd5a7d3c1dee3648"},
{file = "cryptography-46.0.5-cp314-cp314t-manylinux_2_34_aarch64.whl", hash = "sha256:4e817a8920bfbcff8940ecfd60f23d01836408242b30f1a708d93198393a80b4"},
{file = "cryptography-46.0.5-cp314-cp314t-manylinux_2_34_ppc64le.whl", hash = "sha256:68f68d13f2e1cb95163fa3b4db4bf9a159a418f5f6e7242564fc75fcae667fd0"},
{file = "cryptography-46.0.5-cp314-cp314t-manylinux_2_34_x86_64.whl", hash = "sha256:a3d1fae9863299076f05cb8a778c467578262fae09f9dc0ee9b12eb4268ce663"},
{file = "cryptography-46.0.5-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:c4143987a42a2397f2fc3b4d7e3a7d313fbe684f67ff443999e803dd75a76826"},
{file = "cryptography-46.0.5-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:7d731d4b107030987fd61a7f8ab512b25b53cef8f233a97379ede116f30eb67d"},
{file = "cryptography-46.0.5-cp314-cp314t-win32.whl", hash = "sha256:c3bcce8521d785d510b2aad26ae2c966092b7daa8f45dd8f44734a104dc0bc1a"},
{file = "cryptography-46.0.5-cp314-cp314t-win_amd64.whl", hash = "sha256:4d8ae8659ab18c65ced284993c2265910f6c9e650189d4e3f68445ef82a810e4"},
{file = "cryptography-46.0.5-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:4108d4c09fbbf2789d0c926eb4152ae1760d5a2d97612b92d508d96c861e4d31"},
{file = "cryptography-46.0.5-cp38-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:7d1f30a86d2757199cb2d56e48cce14deddf1f9c95f1ef1b64ee91ea43fe2e18"},
{file = "cryptography-46.0.5-cp38-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:039917b0dc418bb9f6edce8a906572d69e74bd330b0b3fea4f79dab7f8ddd235"},
{file = "cryptography-46.0.5-cp38-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:ba2a27ff02f48193fc4daeadf8ad2590516fa3d0adeeb34336b96f7fa64c1e3a"},
{file = "cryptography-46.0.5-cp38-abi3-manylinux_2_28_ppc64le.whl", hash = "sha256:61aa400dce22cb001a98014f647dc21cda08f7915ceb95df0c9eaf84b4b6af76"},
{file = "cryptography-46.0.5-cp38-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:3ce58ba46e1bc2aac4f7d9290223cead56743fa6ab94a5d53292ffaac6a91614"},
{file = "cryptography-46.0.5-cp38-abi3-manylinux_2_31_armv7l.whl", hash = "sha256:420d0e909050490d04359e7fdb5ed7e667ca5c3c402b809ae2563d7e66a92229"},
{file = "cryptography-46.0.5-cp38-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:582f5fcd2afa31622f317f80426a027f30dc792e9c80ffee87b993200ea115f1"},
{file = "cryptography-46.0.5-cp38-abi3-manylinux_2_34_ppc64le.whl", hash = "sha256:bfd56bb4b37ed4f330b82402f6f435845a5f5648edf1ad497da51a8452d5d62d"},
{file = "cryptography-46.0.5-cp38-abi3-manylinux_2_34_x86_64.whl", hash = "sha256:a3d507bb6a513ca96ba84443226af944b0f7f47dcc9a399d110cd6146481d24c"},
{file = "cryptography-46.0.5-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:9f16fbdf4da055efb21c22d81b89f155f02ba420558db21288b3d0035bafd5f4"},
{file = "cryptography-46.0.5-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:ced80795227d70549a411a4ab66e8ce307899fad2220ce5ab2f296e687eacde9"},
{file = "cryptography-46.0.5-cp38-abi3-win32.whl", hash = "sha256:02f547fce831f5096c9a567fd41bc12ca8f11df260959ecc7c3202555cc47a72"},
{file = "cryptography-46.0.5-cp38-abi3-win_amd64.whl", hash = "sha256:556e106ee01aa13484ce9b0239bca667be5004efb0aabbed28d353df86445595"},
{file = "cryptography-46.0.5-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:3b4995dc971c9fb83c25aa44cf45f02ba86f71ee600d81091c2f0cbae116b06c"},
{file = "cryptography-46.0.5-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:bc84e875994c3b445871ea7181d424588171efec3e185dced958dad9e001950a"},
{file = "cryptography-46.0.5-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:2ae6971afd6246710480e3f15824ed3029a60fc16991db250034efd0b9fb4356"},
{file = "cryptography-46.0.5-pp311-pypy311_pp73-manylinux_2_34_aarch64.whl", hash = "sha256:d861ee9e76ace6cf36a6a89b959ec08e7bc2493ee39d07ffe5acb23ef46d27da"},
{file = "cryptography-46.0.5-pp311-pypy311_pp73-manylinux_2_34_x86_64.whl", hash = "sha256:2b7a67c9cd56372f3249b39699f2ad479f6991e62ea15800973b956f4b73e257"},
{file = "cryptography-46.0.5-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:8456928655f856c6e1533ff59d5be76578a7157224dbd9ce6872f25055ab9ab7"},
{file = "cryptography-46.0.5.tar.gz", hash = "sha256:abace499247268e3757271b2f1e244b36b06f8515cf27c4d49468fc9eb16e93d"},
]
[package.dependencies]
@@ -516,7 +516,7 @@ nox = ["nox[uv] (>=2024.4.15)"]
pep8test = ["check-sdist", "click (>=8.0.1)", "mypy (>=1.14)", "ruff (>=0.11.11)"]
sdist = ["build (>=1.0.0)"]
ssh = ["bcrypt (>=3.1.5)"]
test = ["certifi (>=2024)", "cryptography-vectors (==46.0.4)", "pretend (>=0.7)", "pytest (>=7.4.0)", "pytest-benchmark (>=4.0)", "pytest-cov (>=2.10.1)", "pytest-xdist (>=3.5.0)"]
test = ["certifi (>=2024)", "cryptography-vectors (==46.0.5)", "pretend (>=0.7)", "pytest (>=7.4.0)", "pytest-benchmark (>=4.0)", "pytest-cov (>=2.10.1)", "pytest-xdist (>=3.5.0)"]
test-randomorder = ["pytest-randomly"]
[[package]]
@@ -570,24 +570,25 @@ tests = ["coverage", "coveralls", "dill", "mock", "nose"]
[[package]]
name = "fastapi"
version = "0.128.0"
version = "0.128.7"
description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production"
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "fastapi-0.128.0-py3-none-any.whl", hash = "sha256:aebd93f9716ee3b4f4fcfe13ffb7cf308d99c9f3ab5622d8877441072561582d"},
{file = "fastapi-0.128.0.tar.gz", hash = "sha256:1cc179e1cef10a6be60ffe429f79b829dce99d8de32d7acb7e6c8dfdf7f2645a"},
{file = "fastapi-0.128.7-py3-none-any.whl", hash = "sha256:6bd9bd31cb7047465f2d3fa3ba3f33b0870b17d4eaf7cdb36d1576ab060ad662"},
{file = "fastapi-0.128.7.tar.gz", hash = "sha256:783c273416995486c155ad2c0e2b45905dedfaf20b9ef8d9f6a9124670639a24"},
]
[package.dependencies]
annotated-doc = ">=0.0.2"
pydantic = ">=2.7.0"
starlette = ">=0.40.0,<0.51.0"
starlette = ">=0.40.0,<1.0.0"
typing-extensions = ">=4.8.0"
typing-inspection = ">=0.4.2"
[package.extras]
all = ["email-validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.8)", "httpx (>=0.23.0,<1.0.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=3.1.5)", "orjson (>=3.2.1)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.18)", "pyyaml (>=5.3.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)", "uvicorn[standard] (>=0.12.0)"]
all = ["email-validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.8)", "httpx (>=0.23.0,<1.0.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=3.1.5)", "orjson (>=3.9.3)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.18)", "pyyaml (>=5.3.1)", "ujson (>=5.8.0)", "uvicorn[standard] (>=0.12.0)"]
standard = ["email-validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.8)", "httpx (>=0.23.0,<1.0.0)", "jinja2 (>=3.1.5)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.18)", "uvicorn[standard] (>=0.12.0)"]
standard-no-fastapi-cloud-cli = ["email-validator (>=2.0.0)", "fastapi-cli[standard-no-fastapi-cloud-cli] (>=0.0.8)", "httpx (>=0.23.0,<1.0.0)", "jinja2 (>=3.1.5)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.18)", "uvicorn[standard] (>=0.12.0)"]
@@ -1062,14 +1063,14 @@ urllib3 = ">=1.26.0,<3"
[[package]]
name = "launchdarkly-server-sdk"
version = "9.14.1"
version = "9.15.0"
description = "LaunchDarkly SDK for Python"
optional = false
python-versions = ">=3.9"
python-versions = ">=3.10"
groups = ["main"]
files = [
{file = "launchdarkly_server_sdk-9.14.1-py3-none-any.whl", hash = "sha256:a9e2bd9ecdef845cd631ae0d4334a1115e5b44257c42eb2349492be4bac7815c"},
{file = "launchdarkly_server_sdk-9.14.1.tar.gz", hash = "sha256:1df44baf0a0efa74d8c1dad7a00592b98bce7d19edded7f770da8dbc49922213"},
{file = "launchdarkly_server_sdk-9.15.0-py3-none-any.whl", hash = "sha256:c267e29bfa3fb5e2a06a208448ada6ed5557a2924979b8d79c970b45d227c668"},
{file = "launchdarkly_server_sdk-9.15.0.tar.gz", hash = "sha256:f31441b74bc1a69c381db57c33116509e407a2612628ad6dff0a7dbb39d5020b"},
]
[package.dependencies]
@@ -1478,14 +1479,14 @@ testing = ["coverage", "pytest", "pytest-benchmark"]
[[package]]
name = "postgrest"
version = "2.27.2"
version = "2.28.0"
description = "PostgREST client for Python. This library provides an ORM interface to PostgREST."
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "postgrest-2.27.2-py3-none-any.whl", hash = "sha256:1666fef3de05ca097a314433dd5ae2f2d71c613cb7b233d0f468c4ffe37277da"},
{file = "postgrest-2.27.2.tar.gz", hash = "sha256:55407d530b5af3d64e883a71fec1f345d369958f723ce4a8ab0b7d169e313242"},
{file = "postgrest-2.28.0-py3-none-any.whl", hash = "sha256:7bca2f24dd1a1bf8a3d586c7482aba6cd41662da6733045fad585b63b7f7df75"},
{file = "postgrest-2.28.0.tar.gz", hash = "sha256:c36b38646d25ea4255321d3d924ce70f8d20ec7799cb42c1221d6a818d4f6515"},
]
[package.dependencies]
@@ -2248,14 +2249,14 @@ cli = ["click (>=5.0)"]
[[package]]
name = "realtime"
version = "2.27.2"
version = "2.28.0"
description = ""
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "realtime-2.27.2-py3-none-any.whl", hash = "sha256:34a9cbb26a274e707e8fc9e3ee0a66de944beac0fe604dc336d1e985db2c830f"},
{file = "realtime-2.27.2.tar.gz", hash = "sha256:b960a90294d2cea1b3f1275ecb89204304728e08fff1c393cc1b3150739556b3"},
{file = "realtime-2.28.0-py3-none-any.whl", hash = "sha256:db1bd59bab9b1fcc9f9d3b1a073bed35bf4994d720e6751f10031a58d57a3836"},
{file = "realtime-2.28.0.tar.gz", hash = "sha256:d18cedcebd6a8f22fcd509bc767f639761eb218b7b2b6f14fc4205b6259b50fc"},
]
[package.dependencies]
@@ -2436,14 +2437,14 @@ full = ["httpx (>=0.27.0,<0.29.0)", "itsdangerous", "jinja2", "python-multipart
[[package]]
name = "storage3"
version = "2.27.2"
version = "2.28.0"
description = "Supabase Storage client for Python."
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "storage3-2.27.2-py3-none-any.whl", hash = "sha256:e6f16e7a260729e7b1f46e9bf61746805a02e30f5e419ee1291007c432e3ec63"},
{file = "storage3-2.27.2.tar.gz", hash = "sha256:cb4807b7f86b4bb1272ac6fdd2f3cfd8ba577297046fa5f88557425200275af5"},
{file = "storage3-2.28.0-py3-none-any.whl", hash = "sha256:ecb50efd2ac71dabbdf97e99ad346eafa630c4c627a8e5a138ceb5fbbadae716"},
{file = "storage3-2.28.0.tar.gz", hash = "sha256:bc1d008aff67de7a0f2bd867baee7aadbcdb6f78f5a310b4f7a38e8c13c19865"},
]
[package.dependencies]
@@ -2487,35 +2488,35 @@ python-dateutil = ">=2.6.0"
[[package]]
name = "supabase"
version = "2.27.2"
version = "2.28.0"
description = "Supabase client for Python."
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "supabase-2.27.2-py3-none-any.whl", hash = "sha256:d4dce00b3a418ee578017ec577c0e5be47a9a636355009c76f20ed2faa15bc54"},
{file = "supabase-2.27.2.tar.gz", hash = "sha256:2aed40e4f3454438822442a1e94a47be6694c2c70392e7ae99b51a226d4293f7"},
{file = "supabase-2.28.0-py3-none-any.whl", hash = "sha256:42776971c7d0ccca16034df1ab96a31c50228eb1eb19da4249ad2f756fc20272"},
{file = "supabase-2.28.0.tar.gz", hash = "sha256:aea299aaab2a2eed3c57e0be7fc035c6807214194cce795a3575add20268ece1"},
]
[package.dependencies]
httpx = ">=0.26,<0.29"
postgrest = "2.27.2"
realtime = "2.27.2"
storage3 = "2.27.2"
supabase-auth = "2.27.2"
supabase-functions = "2.27.2"
postgrest = "2.28.0"
realtime = "2.28.0"
storage3 = "2.28.0"
supabase-auth = "2.28.0"
supabase-functions = "2.28.0"
yarl = ">=1.22.0"
[[package]]
name = "supabase-auth"
version = "2.27.2"
version = "2.28.0"
description = "Python Client Library for Supabase Auth"
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "supabase_auth-2.27.2-py3-none-any.whl", hash = "sha256:78ec25b11314d0a9527a7205f3b1c72560dccdc11b38392f80297ef98664ee91"},
{file = "supabase_auth-2.27.2.tar.gz", hash = "sha256:0f5bcc79b3677cb42e9d321f3c559070cfa40d6a29a67672cc8382fb7dc2fe97"},
{file = "supabase_auth-2.28.0-py3-none-any.whl", hash = "sha256:2ac85026cc285054c7fa6d41924f3a333e9ec298c013e5b5e1754039ba7caec9"},
{file = "supabase_auth-2.28.0.tar.gz", hash = "sha256:2bb8f18ff39934e44b28f10918db965659f3735cd6fbfcc022fe0b82dbf8233e"},
]
[package.dependencies]
@@ -2525,14 +2526,14 @@ pyjwt = {version = ">=2.10.1", extras = ["crypto"]}
[[package]]
name = "supabase-functions"
version = "2.27.2"
version = "2.28.0"
description = "Library for Supabase Functions"
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "supabase_functions-2.27.2-py3-none-any.whl", hash = "sha256:db480efc669d0bca07605b9b6f167312af43121adcc842a111f79bea416ef754"},
{file = "supabase_functions-2.27.2.tar.gz", hash = "sha256:d0c8266207a94371cb3fd35ad3c7f025b78a97cf026861e04ccd35ac1775f80b"},
{file = "supabase_functions-2.28.0-py3-none-any.whl", hash = "sha256:30bf2d586f8df285faf0621bb5d5bb3ec3157234fc820553ca156f009475e4ae"},
{file = "supabase_functions-2.28.0.tar.gz", hash = "sha256:db3dddfc37aca5858819eb461130968473bd8c75bd284581013958526dac718b"},
]
[package.dependencies]
@@ -2911,4 +2912,4 @@ type = ["pytest-mypy"]
[metadata]
lock-version = "2.1"
python-versions = ">=3.10,<4.0"
content-hash = "40eae94995dc0a388fa832ed4af9b6137f28d5b5ced3aaea70d5f91d4d9a179d"
content-hash = "9619cae908ad38fa2c48016a58bcf4241f6f5793aa0e6cc140276e91c433cbbb"

View File

@@ -11,14 +11,14 @@ python = ">=3.10,<4.0"
colorama = "^0.4.6"
cryptography = "^46.0"
expiringdict = "^1.2.2"
fastapi = "^0.128.0"
fastapi = "^0.128.7"
google-cloud-logging = "^3.13.0"
launchdarkly-server-sdk = "^9.14.1"
launchdarkly-server-sdk = "^9.15.0"
pydantic = "^2.12.5"
pydantic-settings = "^2.12.0"
pyjwt = { version = "^2.11.0", extras = ["crypto"] }
redis = "^6.2.0"
supabase = "^2.27.2"
supabase = "^2.28.0"
uvicorn = "^0.40.0"
[tool.poetry.group.dev.dependencies]

View File

@@ -104,6 +104,12 @@ TWITTER_CLIENT_SECRET=
# Make a new workspace for your OAuth APP -- trust me
# https://linear.app/settings/api/applications/new
# Callback URL: http://localhost:3000/auth/integrations/oauth_callback
LINEAR_API_KEY=
# Linear project and team IDs for the feature request tracker.
# Find these in your Linear workspace URL: linear.app/<workspace>/project/<project-id>
# and in team settings. Used by the chat copilot to file and search feature requests.
LINEAR_FEATURE_REQUEST_PROJECT_ID=
LINEAR_FEATURE_REQUEST_TEAM_ID=
LINEAR_CLIENT_ID=
LINEAR_CLIENT_SECRET=

View File

@@ -1,3 +1,5 @@
# ============================ DEPENDENCY BUILDER ============================ #
FROM debian:13-slim AS builder
# Set environment variables
@@ -51,7 +53,9 @@ COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/parti
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
RUN poetry run prisma generate && poetry run gen-prisma-stub
FROM debian:13-slim AS server_dependencies
# ============================== BACKEND SERVER ============================== #
FROM debian:13-slim AS server
WORKDIR /app
@@ -63,15 +67,14 @@ ENV POETRY_HOME=/opt/poetry \
ENV PATH=/opt/poetry/bin:$PATH
# Install Python, FFmpeg, and ImageMagick (required for video processing blocks)
RUN apt-get update && apt-get install -y \
# Using --no-install-recommends saves ~650MB by skipping unnecessary deps like llvm, mesa, etc.
RUN apt-get update && apt-get install -y --no-install-recommends \
python3.13 \
python3-pip \
ffmpeg \
imagemagick \
&& rm -rf /var/lib/apt/lists/*
# Copy only necessary files from builder
COPY --from=builder /app /app
COPY --from=builder /usr/local/lib/python3* /usr/local/lib/python3*
COPY --from=builder /usr/local/bin/poetry /usr/local/bin/poetry
# Copy Node.js installation for Prisma
@@ -81,30 +84,54 @@ COPY --from=builder /usr/bin/npm /usr/bin/npm
COPY --from=builder /usr/bin/npx /usr/bin/npx
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
ENV PATH="/app/autogpt_platform/backend/.venv/bin:$PATH"
RUN mkdir -p /app/autogpt_platform/autogpt_libs
RUN mkdir -p /app/autogpt_platform/backend
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml /app/autogpt_platform/backend/
WORKDIR /app/autogpt_platform/backend
FROM server_dependencies AS migrate
# Copy only the .venv from builder (not the entire /app directory)
# The .venv includes the generated Prisma client
COPY --from=builder /app/autogpt_platform/backend/.venv ./.venv
ENV PATH="/app/autogpt_platform/backend/.venv/bin:$PATH"
# Migration stage only needs schema and migrations - much lighter than full backend
COPY autogpt_platform/backend/schema.prisma /app/autogpt_platform/backend/
COPY autogpt_platform/backend/backend/data/partial_types.py /app/autogpt_platform/backend/backend/data/partial_types.py
COPY autogpt_platform/backend/migrations /app/autogpt_platform/backend/migrations
# Copy dependency files + autogpt_libs (path dependency)
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml ./
FROM server_dependencies AS server
COPY autogpt_platform/backend /app/autogpt_platform/backend
# Copy backend code + docs (for Copilot docs search)
COPY autogpt_platform/backend ./
COPY docs /app/docs
RUN poetry install --no-ansi --only-root
ENV PORT=8000
CMD ["poetry", "run", "rest"]
# =============================== DB MIGRATOR =============================== #
# Lightweight migrate stage - only needs Prisma CLI, not full Python environment
FROM debian:13-slim AS migrate
WORKDIR /app/autogpt_platform/backend
ENV DEBIAN_FRONTEND=noninteractive
# Install only what's needed for prisma migrate: Node.js and minimal Python for prisma-python
RUN apt-get update && apt-get install -y --no-install-recommends \
python3.13 \
python3-pip \
ca-certificates \
&& rm -rf /var/lib/apt/lists/*
# Copy Node.js from builder (needed for Prisma CLI)
COPY --from=builder /usr/bin/node /usr/bin/node
COPY --from=builder /usr/lib/node_modules /usr/lib/node_modules
COPY --from=builder /usr/bin/npm /usr/bin/npm
# Copy Prisma binaries
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
# Install prisma-client-py directly (much smaller than copying full venv)
RUN pip3 install prisma>=0.15.0 --break-system-packages
COPY autogpt_platform/backend/schema.prisma ./
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
COPY autogpt_platform/backend/migrations ./migrations

View File

@@ -24,6 +24,7 @@ from .tools.models import (
AgentPreviewResponse,
AgentSavedResponse,
AgentsFoundResponse,
BlockDetailsResponse,
BlockListResponse,
BlockOutputResponse,
ClarificationNeededResponse,
@@ -971,6 +972,7 @@ ToolResponseUnion = (
| AgentSavedResponse
| ClarificationNeededResponse
| BlockListResponse
| BlockDetailsResponse
| BlockOutputResponse
| DocSearchResultsResponse
| DocPageResponse

View File

@@ -1245,6 +1245,7 @@ async def _stream_chat_chunks(
return
except Exception as e:
last_error = e
if _is_retryable_error(e) and retry_count < MAX_RETRIES:
retry_count += 1
# Calculate delay with exponential backoff
@@ -1260,12 +1261,27 @@ async def _stream_chat_chunks(
continue # Retry the stream
else:
# Non-retryable error or max retries exceeded
logger.error(
f"Error in stream (not retrying): {e!s}",
exc_info=True,
_log_api_error(
error=e,
context="stream (not retrying)",
session_id=session.session_id if session else None,
message_count=len(messages) if messages else None,
model=model,
retry_count=retry_count,
)
error_code = None
error_text = str(e)
error_details = _extract_api_error_details(e)
if error_details.get("response_body"):
body = error_details["response_body"]
if isinstance(body, dict):
err = body.get("error")
if isinstance(err, dict) and err.get("message"):
error_text = err["message"]
elif body.get("message"):
error_text = body["message"]
if _is_region_blocked_error(e):
error_code = "MODEL_NOT_AVAILABLE_REGION"
error_text = (
@@ -1282,9 +1298,13 @@ async def _stream_chat_chunks(
# If we exit the retry loop without returning, it means we exhausted retries
if last_error:
logger.error(
f"Max retries ({MAX_RETRIES}) exceeded. Last error: {last_error!s}",
exc_info=True,
_log_api_error(
error=last_error,
context=f"stream (max retries {MAX_RETRIES} exceeded)",
session_id=session.session_id if session else None,
message_count=len(messages) if messages else None,
model=model,
retry_count=MAX_RETRIES,
)
yield StreamError(errorText=f"Max retries exceeded: {last_error!s}")
yield StreamFinish()
@@ -1857,6 +1877,7 @@ async def _generate_llm_continuation(
break # Success, exit retry loop
except Exception as e:
last_error = e
if _is_retryable_error(e) and retry_count < MAX_RETRIES:
retry_count += 1
delay = min(
@@ -1870,17 +1891,25 @@ async def _generate_llm_continuation(
await asyncio.sleep(delay)
continue
else:
# Non-retryable error - log and exit gracefully
logger.error(
f"Non-retryable error in LLM continuation: {e!s}",
exc_info=True,
# Non-retryable error - log details and exit gracefully
_log_api_error(
error=e,
context="LLM continuation (not retrying)",
session_id=session_id,
message_count=len(messages) if messages else None,
model=config.model,
retry_count=retry_count,
)
return
if last_error:
logger.error(
f"Max retries ({MAX_RETRIES}) exceeded for LLM continuation. "
f"Last error: {last_error!s}"
_log_api_error(
error=last_error,
context=f"LLM continuation (max retries {MAX_RETRIES} exceeded)",
session_id=session_id,
message_count=len(messages) if messages else None,
model=config.model,
retry_count=MAX_RETRIES,
)
return
@@ -1920,6 +1949,91 @@ async def _generate_llm_continuation(
logger.error(f"Failed to generate LLM continuation: {e}", exc_info=True)
def _log_api_error(
error: Exception,
context: str,
session_id: str | None = None,
message_count: int | None = None,
model: str | None = None,
retry_count: int = 0,
) -> None:
"""Log detailed API error information for debugging."""
details = _extract_api_error_details(error)
details["context"] = context
details["session_id"] = session_id
details["message_count"] = message_count
details["model"] = model
details["retry_count"] = retry_count
if isinstance(error, RateLimitError):
logger.warning(f"Rate limit error in {context}: {details}", exc_info=error)
elif isinstance(error, APIConnectionError):
logger.warning(f"API connection error in {context}: {details}", exc_info=error)
elif isinstance(error, APIStatusError) and error.status_code >= 500:
logger.error(f"API server error (5xx) in {context}: {details}", exc_info=error)
else:
logger.error(f"API error in {context}: {details}", exc_info=error)
def _extract_api_error_details(error: Exception) -> dict[str, Any]:
"""Extract detailed information from OpenAI/OpenRouter API errors."""
error_msg = str(error)
details: dict[str, Any] = {
"error_type": type(error).__name__,
"error_message": error_msg[:500] + "..." if len(error_msg) > 500 else error_msg,
}
if hasattr(error, "code"):
details["code"] = getattr(error, "code", None)
if hasattr(error, "param"):
details["param"] = getattr(error, "param", None)
if isinstance(error, APIStatusError):
details["status_code"] = error.status_code
details["request_id"] = getattr(error, "request_id", None)
if hasattr(error, "body") and error.body:
details["response_body"] = _sanitize_error_body(error.body)
if hasattr(error, "response") and error.response:
headers = error.response.headers
details["openrouter_provider"] = headers.get("x-openrouter-provider")
details["openrouter_model"] = headers.get("x-openrouter-model")
details["retry_after"] = headers.get("retry-after")
details["rate_limit_remaining"] = headers.get("x-ratelimit-remaining")
return details
def _sanitize_error_body(
body: Any, max_length: int = 2000
) -> dict[str, Any] | str | None:
"""Extract only safe fields from error response body to avoid logging sensitive data."""
if not isinstance(body, dict):
# Non-dict bodies (e.g., HTML error pages) - return truncated string
if body is not None:
body_str = str(body)
if len(body_str) > max_length:
return body_str[:max_length] + "...[truncated]"
return body_str
return None
safe_fields = ("message", "type", "code", "param", "error")
sanitized: dict[str, Any] = {}
for field in safe_fields:
if field in body:
value = body[field]
if field == "error" and isinstance(value, dict):
sanitized[field] = _sanitize_error_body(value, max_length)
elif isinstance(value, str) and len(value) > max_length:
sanitized[field] = value[:max_length] + "...[truncated]"
else:
sanitized[field] = value
return sanitized if sanitized else None
async def _generate_llm_continuation_with_streaming(
session_id: str,
user_id: str | None,

View File

@@ -12,6 +12,7 @@ from .base import BaseTool
from .create_agent import CreateAgentTool
from .customize_agent import CustomizeAgentTool
from .edit_agent import EditAgentTool
from .feature_requests import CreateFeatureRequestTool, SearchFeatureRequestsTool
from .find_agent import FindAgentTool
from .find_block import FindBlockTool
from .find_library_agent import FindLibraryAgentTool
@@ -45,6 +46,9 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
"view_agent_output": AgentOutputTool(),
"search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(),
# Feature request tools
"search_feature_requests": SearchFeatureRequestsTool(),
"create_feature_request": CreateFeatureRequestTool(),
# Workspace tools for CoPilot file operations
"list_workspace_files": ListWorkspaceFilesTool(),
"read_workspace_file": ReadWorkspaceFileTool(),

View File

@@ -0,0 +1,448 @@
"""Feature request tools - search and create feature requests via Linear."""
import logging
from typing import Any
from pydantic import SecretStr
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
ErrorResponse,
FeatureRequestCreatedResponse,
FeatureRequestInfo,
FeatureRequestSearchResponse,
NoResultsResponse,
ToolResponseBase,
)
from backend.blocks.linear._api import LinearClient
from backend.data.model import APIKeyCredentials
from backend.data.user import get_user_email_by_id
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
MAX_SEARCH_RESULTS = 10
# GraphQL queries/mutations
SEARCH_ISSUES_QUERY = """
query SearchFeatureRequests($term: String!, $filter: IssueFilter, $first: Int) {
searchIssues(term: $term, filter: $filter, first: $first) {
nodes {
id
identifier
title
description
}
}
}
"""
CUSTOMER_UPSERT_MUTATION = """
mutation CustomerUpsert($input: CustomerUpsertInput!) {
customerUpsert(input: $input) {
success
customer {
id
name
externalIds
}
}
}
"""
ISSUE_CREATE_MUTATION = """
mutation IssueCreate($input: IssueCreateInput!) {
issueCreate(input: $input) {
success
issue {
id
identifier
title
url
}
}
}
"""
CUSTOMER_NEED_CREATE_MUTATION = """
mutation CustomerNeedCreate($input: CustomerNeedCreateInput!) {
customerNeedCreate(input: $input) {
success
need {
id
body
customer {
id
name
}
issue {
id
identifier
title
url
}
}
}
}
"""
_settings: Settings | None = None
def _get_settings() -> Settings:
global _settings
if _settings is None:
_settings = Settings()
return _settings
def _get_linear_config() -> tuple[LinearClient, str, str]:
"""Return a configured Linear client, project ID, and team ID.
Raises RuntimeError if any required setting is missing.
"""
secrets = _get_settings().secrets
if not secrets.linear_api_key:
raise RuntimeError("LINEAR_API_KEY is not configured")
if not secrets.linear_feature_request_project_id:
raise RuntimeError("LINEAR_FEATURE_REQUEST_PROJECT_ID is not configured")
if not secrets.linear_feature_request_team_id:
raise RuntimeError("LINEAR_FEATURE_REQUEST_TEAM_ID is not configured")
credentials = APIKeyCredentials(
id="system-linear",
provider="linear",
api_key=SecretStr(secrets.linear_api_key),
title="System Linear API Key",
)
client = LinearClient(credentials=credentials)
return (
client,
secrets.linear_feature_request_project_id,
secrets.linear_feature_request_team_id,
)
class SearchFeatureRequestsTool(BaseTool):
"""Tool for searching existing feature requests in Linear."""
@property
def name(self) -> str:
return "search_feature_requests"
@property
def description(self) -> str:
return (
"Search existing feature requests to check if a similar request "
"already exists before creating a new one. Returns matching feature "
"requests with their ID, title, and description."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "Search term to find matching feature requests.",
},
},
"required": ["query"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
query = kwargs.get("query", "").strip()
session_id = session.session_id if session else None
if not query:
return ErrorResponse(
message="Please provide a search query.",
error="Missing query parameter",
session_id=session_id,
)
try:
client, project_id, _team_id = _get_linear_config()
data = await client.query(
SEARCH_ISSUES_QUERY,
{
"term": query,
"filter": {
"project": {"id": {"eq": project_id}},
},
"first": MAX_SEARCH_RESULTS,
},
)
nodes = data.get("searchIssues", {}).get("nodes", [])
if not nodes:
return NoResultsResponse(
message=f"No feature requests found matching '{query}'.",
suggestions=[
"Try different keywords",
"Use broader search terms",
"You can create a new feature request if none exists",
],
session_id=session_id,
)
results = [
FeatureRequestInfo(
id=node["id"],
identifier=node["identifier"],
title=node["title"],
description=node.get("description"),
)
for node in nodes
]
return FeatureRequestSearchResponse(
message=f"Found {len(results)} feature request(s) matching '{query}'.",
results=results,
count=len(results),
query=query,
session_id=session_id,
)
except Exception as e:
logger.exception("Failed to search feature requests")
return ErrorResponse(
message="Failed to search feature requests.",
error=str(e),
session_id=session_id,
)
class CreateFeatureRequestTool(BaseTool):
"""Tool for creating feature requests (or adding needs to existing ones)."""
@property
def name(self) -> str:
return "create_feature_request"
@property
def description(self) -> str:
return (
"Create a new feature request or add a customer need to an existing one. "
"Always search first with search_feature_requests to avoid duplicates. "
"If a matching request exists, pass its ID as existing_issue_id to add "
"the user's need to it instead of creating a duplicate."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"title": {
"type": "string",
"description": "Title for the feature request.",
},
"description": {
"type": "string",
"description": "Detailed description of what the user wants and why.",
},
"existing_issue_id": {
"type": "string",
"description": (
"If adding a need to an existing feature request, "
"provide its Linear issue ID (from search results). "
"Omit to create a new feature request."
),
},
},
"required": ["title", "description"],
}
@property
def requires_auth(self) -> bool:
return True
async def _find_or_create_customer(
self, client: LinearClient, user_id: str, name: str
) -> dict:
"""Find existing customer by user_id or create a new one via upsert.
Args:
client: Linear API client.
user_id: Stable external ID used to deduplicate customers.
name: Human-readable display name (e.g. the user's email).
"""
data = await client.mutate(
CUSTOMER_UPSERT_MUTATION,
{
"input": {
"name": name,
"externalId": user_id,
},
},
)
result = data.get("customerUpsert", {})
if not result.get("success"):
raise RuntimeError(f"Failed to upsert customer: {data}")
return result["customer"]
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
title = kwargs.get("title", "").strip()
description = kwargs.get("description", "").strip()
existing_issue_id = kwargs.get("existing_issue_id")
session_id = session.session_id if session else None
if not title or not description:
return ErrorResponse(
message="Both title and description are required.",
error="Missing required parameters",
session_id=session_id,
)
if not user_id:
return ErrorResponse(
message="Authentication required to create feature requests.",
error="Missing user_id",
session_id=session_id,
)
try:
client, project_id, team_id = _get_linear_config()
except Exception as e:
logger.exception("Failed to initialize Linear client")
return ErrorResponse(
message="Failed to create feature request.",
error=str(e),
session_id=session_id,
)
# Resolve a human-readable name (email) for the Linear customer record.
# Fall back to user_id if the lookup fails or returns None.
try:
customer_display_name = await get_user_email_by_id(user_id) or user_id
except Exception:
customer_display_name = user_id
# Step 1: Find or create customer for this user
try:
customer = await self._find_or_create_customer(
client, user_id, customer_display_name
)
customer_id = customer["id"]
customer_name = customer["name"]
except Exception as e:
logger.exception("Failed to upsert customer in Linear")
return ErrorResponse(
message="Failed to create feature request.",
error=str(e),
session_id=session_id,
)
# Step 2: Create or reuse issue
issue_id: str | None = None
issue_identifier: str | None = None
if existing_issue_id:
# Add need to existing issue - we still need the issue details for response
is_new_issue = False
issue_id = existing_issue_id
else:
# Create new issue in the feature requests project
try:
data = await client.mutate(
ISSUE_CREATE_MUTATION,
{
"input": {
"title": title,
"description": description,
"teamId": team_id,
"projectId": project_id,
},
},
)
result = data.get("issueCreate", {})
if not result.get("success"):
return ErrorResponse(
message="Failed to create feature request issue.",
error=str(data),
session_id=session_id,
)
issue = result["issue"]
issue_id = issue["id"]
issue_identifier = issue.get("identifier")
except Exception as e:
logger.exception("Failed to create feature request issue")
return ErrorResponse(
message="Failed to create feature request.",
error=str(e),
session_id=session_id,
)
is_new_issue = True
# Step 3: Create customer need on the issue
try:
data = await client.mutate(
CUSTOMER_NEED_CREATE_MUTATION,
{
"input": {
"customerId": customer_id,
"issueId": issue_id,
"body": description,
"priority": 0,
},
},
)
need_result = data.get("customerNeedCreate", {})
if not need_result.get("success"):
orphaned = (
{"issue_id": issue_id, "issue_identifier": issue_identifier}
if is_new_issue
else None
)
return ErrorResponse(
message="Failed to attach customer need to the feature request.",
error=str(data),
details=orphaned,
session_id=session_id,
)
need = need_result["need"]
issue_info = need["issue"]
except Exception as e:
logger.exception("Failed to create customer need")
orphaned = (
{"issue_id": issue_id, "issue_identifier": issue_identifier}
if is_new_issue
else None
)
return ErrorResponse(
message="Failed to attach customer need to the feature request.",
error=str(e),
details=orphaned,
session_id=session_id,
)
return FeatureRequestCreatedResponse(
message=(
f"{'Created new feature request' if is_new_issue else 'Added your request to existing feature request'}: "
f"{issue_info['title']}."
),
issue_id=issue_info["id"],
issue_identifier=issue_info["identifier"],
issue_title=issue_info["title"],
issue_url=issue_info.get("url", ""),
is_new_issue=is_new_issue,
customer_name=customer_name,
session_id=session_id,
)

View File

@@ -0,0 +1,615 @@
"""Tests for SearchFeatureRequestsTool and CreateFeatureRequestTool."""
from unittest.mock import AsyncMock, patch
import pytest
from backend.api.features.chat.tools.feature_requests import (
CreateFeatureRequestTool,
SearchFeatureRequestsTool,
)
from backend.api.features.chat.tools.models import (
ErrorResponse,
FeatureRequestCreatedResponse,
FeatureRequestSearchResponse,
NoResultsResponse,
)
from ._test_data import make_session
_TEST_USER_ID = "test-user-feature-requests"
_TEST_USER_EMAIL = "testuser@example.com"
# ---------------------------------------------------------------------------
# Helpers
# ---------------------------------------------------------------------------
_FAKE_PROJECT_ID = "test-project-id"
_FAKE_TEAM_ID = "test-team-id"
def _mock_linear_config(*, query_return=None, mutate_return=None):
"""Return a patched _get_linear_config that yields a mock LinearClient."""
client = AsyncMock()
if query_return is not None:
client.query.return_value = query_return
if mutate_return is not None:
client.mutate.return_value = mutate_return
return (
patch(
"backend.api.features.chat.tools.feature_requests._get_linear_config",
return_value=(client, _FAKE_PROJECT_ID, _FAKE_TEAM_ID),
),
client,
)
def _search_response(nodes: list[dict]) -> dict:
return {"searchIssues": {"nodes": nodes}}
def _customer_upsert_response(
customer_id: str = "cust-1", name: str = _TEST_USER_EMAIL, success: bool = True
) -> dict:
return {
"customerUpsert": {
"success": success,
"customer": {"id": customer_id, "name": name, "externalIds": [name]},
}
}
def _issue_create_response(
issue_id: str = "issue-1",
identifier: str = "FR-1",
title: str = "New Feature",
success: bool = True,
) -> dict:
return {
"issueCreate": {
"success": success,
"issue": {
"id": issue_id,
"identifier": identifier,
"title": title,
"url": f"https://linear.app/issue/{identifier}",
},
}
}
def _need_create_response(
need_id: str = "need-1",
issue_id: str = "issue-1",
identifier: str = "FR-1",
title: str = "New Feature",
success: bool = True,
) -> dict:
return {
"customerNeedCreate": {
"success": success,
"need": {
"id": need_id,
"body": "description",
"customer": {"id": "cust-1", "name": _TEST_USER_EMAIL},
"issue": {
"id": issue_id,
"identifier": identifier,
"title": title,
"url": f"https://linear.app/issue/{identifier}",
},
},
}
}
# ===========================================================================
# SearchFeatureRequestsTool
# ===========================================================================
class TestSearchFeatureRequestsTool:
"""Tests for SearchFeatureRequestsTool._execute."""
@pytest.mark.asyncio(loop_scope="session")
async def test_successful_search(self):
session = make_session(user_id=_TEST_USER_ID)
nodes = [
{
"id": "id-1",
"identifier": "FR-1",
"title": "Dark mode",
"description": "Add dark mode support",
},
{
"id": "id-2",
"identifier": "FR-2",
"title": "Dark theme",
"description": None,
},
]
patcher, _ = _mock_linear_config(query_return=_search_response(nodes))
with patcher:
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="dark mode"
)
assert isinstance(resp, FeatureRequestSearchResponse)
assert resp.count == 2
assert resp.results[0].id == "id-1"
assert resp.results[1].identifier == "FR-2"
assert resp.query == "dark mode"
@pytest.mark.asyncio(loop_scope="session")
async def test_no_results(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, _ = _mock_linear_config(query_return=_search_response([]))
with patcher:
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="nonexistent"
)
assert isinstance(resp, NoResultsResponse)
assert "nonexistent" in resp.message
@pytest.mark.asyncio(loop_scope="session")
async def test_empty_query_returns_error(self):
session = make_session(user_id=_TEST_USER_ID)
tool = SearchFeatureRequestsTool()
resp = await tool._execute(user_id=_TEST_USER_ID, session=session, query=" ")
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "query" in resp.error.lower()
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_query_returns_error(self):
session = make_session(user_id=_TEST_USER_ID)
tool = SearchFeatureRequestsTool()
resp = await tool._execute(user_id=_TEST_USER_ID, session=session)
assert isinstance(resp, ErrorResponse)
@pytest.mark.asyncio(loop_scope="session")
async def test_api_failure(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.query.side_effect = RuntimeError("Linear API down")
with patcher:
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "Linear API down" in resp.error
@pytest.mark.asyncio(loop_scope="session")
async def test_malformed_node_returns_error(self):
"""A node missing required keys should be caught by the try/except."""
session = make_session(user_id=_TEST_USER_ID)
# Node missing 'identifier' key
bad_nodes = [{"id": "id-1", "title": "Missing identifier"}]
patcher, _ = _mock_linear_config(query_return=_search_response(bad_nodes))
with patcher:
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
assert isinstance(resp, ErrorResponse)
@pytest.mark.asyncio(loop_scope="session")
async def test_linear_client_init_failure(self):
session = make_session(user_id=_TEST_USER_ID)
with patch(
"backend.api.features.chat.tools.feature_requests._get_linear_config",
side_effect=RuntimeError("No API key"),
):
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "No API key" in resp.error
# ===========================================================================
# CreateFeatureRequestTool
# ===========================================================================
class TestCreateFeatureRequestTool:
"""Tests for CreateFeatureRequestTool._execute."""
@pytest.fixture(autouse=True)
def _patch_email_lookup(self):
with patch(
"backend.api.features.chat.tools.feature_requests.get_user_email_by_id",
new_callable=AsyncMock,
return_value=_TEST_USER_EMAIL,
):
yield
# ---- Happy paths -------------------------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_create_new_issue(self):
"""Full happy path: upsert customer -> create issue -> attach need."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(),
_need_create_response(),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="New Feature",
description="Please add this",
)
assert isinstance(resp, FeatureRequestCreatedResponse)
assert resp.is_new_issue is True
assert resp.issue_identifier == "FR-1"
assert resp.customer_name == _TEST_USER_EMAIL
assert client.mutate.call_count == 3
@pytest.mark.asyncio(loop_scope="session")
async def test_add_need_to_existing_issue(self):
"""When existing_issue_id is provided, skip issue creation."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_need_create_response(issue_id="existing-1", identifier="FR-99"),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Existing Feature",
description="Me too",
existing_issue_id="existing-1",
)
assert isinstance(resp, FeatureRequestCreatedResponse)
assert resp.is_new_issue is False
assert resp.issue_id == "existing-1"
# Only 2 mutations: customer upsert + need create (no issue create)
assert client.mutate.call_count == 2
# ---- Validation errors -------------------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_title(self):
session = make_session(user_id=_TEST_USER_ID)
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="",
description="some desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "required" in resp.error.lower()
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_description(self):
session = make_session(user_id=_TEST_USER_ID)
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Some title",
description="",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "required" in resp.error.lower()
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_user_id(self):
session = make_session(user_id=_TEST_USER_ID)
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=None,
session=session,
title="Some title",
description="Some desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "user_id" in resp.error.lower()
# ---- Linear client init failure ----------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_linear_client_init_failure(self):
session = make_session(user_id=_TEST_USER_ID)
with patch(
"backend.api.features.chat.tools.feature_requests._get_linear_config",
side_effect=RuntimeError("No API key"),
):
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "No API key" in resp.error
# ---- Customer upsert failures ------------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_customer_upsert_api_error(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = RuntimeError("Customer API error")
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "Customer API error" in resp.error
@pytest.mark.asyncio(loop_scope="session")
async def test_customer_upsert_not_success(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.return_value = _customer_upsert_response(success=False)
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
@pytest.mark.asyncio(loop_scope="session")
async def test_customer_malformed_response(self):
"""Customer dict missing 'id' key should be caught."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
# success=True but customer has no 'id'
client.mutate.return_value = {
"customerUpsert": {
"success": True,
"customer": {"name": _TEST_USER_ID},
}
}
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
# ---- Issue creation failures -------------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_issue_create_api_error(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
RuntimeError("Issue create failed"),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "Issue create failed" in resp.error
@pytest.mark.asyncio(loop_scope="session")
async def test_issue_create_not_success(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(success=False),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert "Failed to create feature request issue" in resp.message
@pytest.mark.asyncio(loop_scope="session")
async def test_issue_create_malformed_response(self):
"""issueCreate success=True but missing 'issue' key."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
{"issueCreate": {"success": True}}, # no 'issue' key
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
# ---- Customer need attachment failures ---------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_api_error_new_issue(self):
"""Need creation fails after new issue was created -> orphaned issue info."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(issue_id="orphan-1", identifier="FR-10"),
RuntimeError("Need attach failed"),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "Need attach failed" in resp.error
assert resp.details is not None
assert resp.details["issue_id"] == "orphan-1"
assert resp.details["issue_identifier"] == "FR-10"
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_api_error_existing_issue(self):
"""Need creation fails on existing issue -> no orphaned info."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
RuntimeError("Need attach failed"),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
existing_issue_id="existing-1",
)
assert isinstance(resp, ErrorResponse)
assert resp.details is None
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_not_success_includes_orphaned_info(self):
"""customerNeedCreate returns success=False -> includes orphaned issue."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(issue_id="orphan-2", identifier="FR-20"),
_need_create_response(success=False),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.details is not None
assert resp.details["issue_id"] == "orphan-2"
assert resp.details["issue_identifier"] == "FR-20"
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_not_success_existing_issue_no_details(self):
"""customerNeedCreate fails on existing issue -> no orphaned info."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_need_create_response(success=False),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
existing_issue_id="existing-1",
)
assert isinstance(resp, ErrorResponse)
assert resp.details is None
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_malformed_response(self):
"""need_result missing 'need' key after success=True."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(),
{"customerNeedCreate": {"success": True}}, # no 'need' key
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.details is not None
assert resp.details["issue_id"] == "issue-1"

View File

@@ -7,7 +7,6 @@ from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool, ToolResponseBase
from backend.api.features.chat.tools.models import (
BlockInfoSummary,
BlockInputFieldInfo,
BlockListResponse,
ErrorResponse,
NoResultsResponse,
@@ -55,7 +54,8 @@ class FindBlockTool(BaseTool):
"Blocks are reusable components that perform specific tasks like "
"sending emails, making API calls, processing text, etc. "
"IMPORTANT: Use this tool FIRST to get the block's 'id' before calling run_block. "
"The response includes each block's id, required_inputs, and input_schema."
"The response includes each block's id, name, and description. "
"Call run_block with the block's id **with no inputs** to see detailed inputs/outputs and execute it."
)
@property
@@ -124,7 +124,7 @@ class FindBlockTool(BaseTool):
session_id=session_id,
)
# Enrich results with full block information
# Enrich results with block information
blocks: list[BlockInfoSummary] = []
for result in results:
block_id = result["content_id"]
@@ -141,65 +141,11 @@ class FindBlockTool(BaseTool):
):
continue
# Get input/output schemas
input_schema = {}
output_schema = {}
try:
input_schema = block.input_schema.jsonschema()
except Exception as e:
logger.debug(
"Failed to generate input schema for block %s: %s",
block_id,
e,
)
try:
output_schema = block.output_schema.jsonschema()
except Exception as e:
logger.debug(
"Failed to generate output schema for block %s: %s",
block_id,
e,
)
# Get categories from block instance
categories = []
if hasattr(block, "categories") and block.categories:
categories = [cat.value for cat in block.categories]
# Extract required inputs for easier use
required_inputs: list[BlockInputFieldInfo] = []
if input_schema:
properties = input_schema.get("properties", {})
required_fields = set(input_schema.get("required", []))
# Get credential field names to exclude from required inputs
credentials_fields = set(
block.input_schema.get_credentials_fields().keys()
)
for field_name, field_schema in properties.items():
# Skip credential fields - they're handled separately
if field_name in credentials_fields:
continue
required_inputs.append(
BlockInputFieldInfo(
name=field_name,
type=field_schema.get("type", "string"),
description=field_schema.get("description", ""),
required=field_name in required_fields,
default=field_schema.get("default"),
)
)
blocks.append(
BlockInfoSummary(
id=block_id,
name=block.name,
description=block.description or "",
categories=categories,
input_schema=input_schema,
output_schema=output_schema,
required_inputs=required_inputs,
)
)
@@ -228,8 +174,7 @@ class FindBlockTool(BaseTool):
return BlockListResponse(
message=(
f"Found {len(blocks)} block(s) matching '{query}'. "
"To execute a block, use run_block with the block's 'id' field "
"and provide 'input_data' matching the block's input_schema."
"To see a block's inputs/outputs and execute it, use run_block with the block's 'id' - providing no inputs."
),
blocks=blocks,
count=len(blocks),

View File

@@ -18,7 +18,13 @@ _TEST_USER_ID = "test-user-find-block"
def make_mock_block(
block_id: str, name: str, block_type: BlockType, disabled: bool = False
block_id: str,
name: str,
block_type: BlockType,
disabled: bool = False,
input_schema: dict | None = None,
output_schema: dict | None = None,
credentials_fields: dict | None = None,
):
"""Create a mock block for testing."""
mock = MagicMock()
@@ -28,10 +34,13 @@ def make_mock_block(
mock.block_type = block_type
mock.disabled = disabled
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = {"properties": {}, "required": []}
mock.input_schema.get_credentials_fields.return_value = {}
mock.input_schema.jsonschema.return_value = input_schema or {
"properties": {},
"required": [],
}
mock.input_schema.get_credentials_fields.return_value = credentials_fields or {}
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = {}
mock.output_schema.jsonschema.return_value = output_schema or {}
mock.categories = []
return mock
@@ -137,3 +146,241 @@ class TestFindBlockFiltering:
assert isinstance(response, BlockListResponse)
assert len(response.blocks) == 1
assert response.blocks[0].id == "normal-block-id"
@pytest.mark.asyncio(loop_scope="session")
async def test_response_size_average_chars_per_block(self):
"""Measure average chars per block in the serialized response."""
session = make_session(user_id=_TEST_USER_ID)
# Realistic block definitions modeled after real blocks
block_defs = [
{
"id": "http-block-id",
"name": "Send Web Request",
"input_schema": {
"properties": {
"url": {
"type": "string",
"description": "The URL to send the request to",
},
"method": {
"type": "string",
"description": "The HTTP method to use",
},
"headers": {
"type": "object",
"description": "Headers to include in the request",
},
"json_format": {
"type": "boolean",
"description": "If true, send the body as JSON",
},
"body": {
"type": "object",
"description": "Form/JSON body payload",
},
"credentials": {
"type": "object",
"description": "HTTP credentials",
},
},
"required": ["url", "method"],
},
"output_schema": {
"properties": {
"response": {
"type": "object",
"description": "The response from the server",
},
"client_error": {
"type": "object",
"description": "Errors on 4xx status codes",
},
"server_error": {
"type": "object",
"description": "Errors on 5xx status codes",
},
"error": {
"type": "string",
"description": "Errors for all other exceptions",
},
},
},
"credentials_fields": {"credentials": True},
},
{
"id": "email-block-id",
"name": "Send Email",
"input_schema": {
"properties": {
"to_email": {
"type": "string",
"description": "Recipient email address",
},
"subject": {
"type": "string",
"description": "Subject of the email",
},
"body": {
"type": "string",
"description": "Body of the email",
},
"config": {
"type": "object",
"description": "SMTP Config",
},
"credentials": {
"type": "object",
"description": "SMTP credentials",
},
},
"required": ["to_email", "subject", "body", "credentials"],
},
"output_schema": {
"properties": {
"status": {
"type": "string",
"description": "Status of the email sending operation",
},
"error": {
"type": "string",
"description": "Error message if sending failed",
},
},
},
"credentials_fields": {"credentials": True},
},
{
"id": "claude-code-block-id",
"name": "Claude Code",
"input_schema": {
"properties": {
"e2b_credentials": {
"type": "object",
"description": "API key for E2B platform",
},
"anthropic_credentials": {
"type": "object",
"description": "API key for Anthropic",
},
"prompt": {
"type": "string",
"description": "Task or instruction for Claude Code",
},
"timeout": {
"type": "integer",
"description": "Sandbox timeout in seconds",
},
"setup_commands": {
"type": "array",
"description": "Shell commands to run before execution",
},
"working_directory": {
"type": "string",
"description": "Working directory for Claude Code",
},
"session_id": {
"type": "string",
"description": "Session ID to resume a conversation",
},
"sandbox_id": {
"type": "string",
"description": "Sandbox ID to reconnect to",
},
"conversation_history": {
"type": "string",
"description": "Previous conversation history",
},
"dispose_sandbox": {
"type": "boolean",
"description": "Whether to dispose sandbox after execution",
},
},
"required": [
"e2b_credentials",
"anthropic_credentials",
"prompt",
],
},
"output_schema": {
"properties": {
"response": {
"type": "string",
"description": "Output from Claude Code execution",
},
"files": {
"type": "array",
"description": "Files created/modified by Claude Code",
},
"conversation_history": {
"type": "string",
"description": "Full conversation history",
},
"session_id": {
"type": "string",
"description": "Session ID for this conversation",
},
"sandbox_id": {
"type": "string",
"description": "ID of the sandbox instance",
},
"error": {
"type": "string",
"description": "Error message if execution failed",
},
},
},
"credentials_fields": {
"e2b_credentials": True,
"anthropic_credentials": True,
},
},
]
search_results = [
{"content_id": d["id"], "score": 0.9 - i * 0.1}
for i, d in enumerate(block_defs)
]
mock_blocks = {
d["id"]: make_mock_block(
block_id=d["id"],
name=d["name"],
block_type=BlockType.STANDARD,
input_schema=d["input_schema"],
output_schema=d["output_schema"],
credentials_fields=d["credentials_fields"],
)
for d in block_defs
}
with patch(
"backend.api.features.chat.tools.find_block.unified_hybrid_search",
new_callable=AsyncMock,
return_value=(search_results, len(search_results)),
), patch(
"backend.api.features.chat.tools.find_block.get_block",
side_effect=lambda bid: mock_blocks.get(bid),
):
tool = FindBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
assert isinstance(response, BlockListResponse)
assert response.count == len(block_defs)
total_chars = len(response.model_dump_json())
avg_chars = total_chars // response.count
# Print for visibility in test output
print(f"\nTotal response size: {total_chars} chars")
print(f"Number of blocks: {response.count}")
print(f"Average chars per block: {avg_chars}")
# The old response was ~90K for 10 blocks (~9K per block).
# Previous optimization reduced it to ~1.5K per block (no raw JSON schemas).
# Now with only id/name/description, we expect ~300 chars per block.
assert avg_chars < 500, (
f"Average chars per block ({avg_chars}) exceeds 500. "
f"Total response: {total_chars} chars for {response.count} blocks."
)

View File

@@ -25,6 +25,7 @@ class ResponseType(str, Enum):
AGENT_SAVED = "agent_saved"
CLARIFICATION_NEEDED = "clarification_needed"
BLOCK_LIST = "block_list"
BLOCK_DETAILS = "block_details"
BLOCK_OUTPUT = "block_output"
DOC_SEARCH_RESULTS = "doc_search_results"
DOC_PAGE = "doc_page"
@@ -40,6 +41,9 @@ class ResponseType(str, Enum):
OPERATION_IN_PROGRESS = "operation_in_progress"
# Input validation
INPUT_VALIDATION_ERROR = "input_validation_error"
# Feature request types
FEATURE_REQUEST_SEARCH = "feature_request_search"
FEATURE_REQUEST_CREATED = "feature_request_created"
# Base response model
@@ -334,13 +338,6 @@ class BlockInfoSummary(BaseModel):
id: str
name: str
description: str
categories: list[str]
input_schema: dict[str, Any]
output_schema: dict[str, Any]
required_inputs: list[BlockInputFieldInfo] = Field(
default_factory=list,
description="List of required input fields for this block",
)
class BlockListResponse(ToolResponseBase):
@@ -350,10 +347,25 @@ class BlockListResponse(ToolResponseBase):
blocks: list[BlockInfoSummary]
count: int
query: str
usage_hint: str = Field(
default="To execute a block, call run_block with block_id set to the block's "
"'id' field and input_data containing the required fields from input_schema."
)
class BlockDetails(BaseModel):
"""Detailed block information."""
id: str
name: str
description: str
inputs: dict[str, Any] = {}
outputs: dict[str, Any] = {}
credentials: list[CredentialsMetaInput] = []
class BlockDetailsResponse(ToolResponseBase):
"""Response for block details (first run_block attempt)."""
type: ResponseType = ResponseType.BLOCK_DETAILS
block: BlockDetails
user_authenticated: bool = False
class BlockOutputResponse(ToolResponseBase):
@@ -421,3 +433,34 @@ class AsyncProcessingResponse(ToolResponseBase):
status: str = "accepted" # Must be "accepted" for detection
operation_id: str | None = None
task_id: str | None = None
# Feature request models
class FeatureRequestInfo(BaseModel):
"""Information about a feature request issue."""
id: str
identifier: str
title: str
description: str | None = None
class FeatureRequestSearchResponse(ToolResponseBase):
"""Response for search_feature_requests tool."""
type: ResponseType = ResponseType.FEATURE_REQUEST_SEARCH
results: list[FeatureRequestInfo]
count: int
query: str
class FeatureRequestCreatedResponse(ToolResponseBase):
"""Response for create_feature_request tool."""
type: ResponseType = ResponseType.FEATURE_REQUEST_CREATED
issue_id: str
issue_identifier: str
issue_title: str
issue_url: str
is_new_issue: bool # False if added to existing
customer_name: str

View File

@@ -23,8 +23,11 @@ from backend.util.exceptions import BlockError
from .base import BaseTool
from .helpers import get_inputs_from_schema
from .models import (
BlockDetails,
BlockDetailsResponse,
BlockOutputResponse,
ErrorResponse,
InputValidationErrorResponse,
SetupInfo,
SetupRequirementsResponse,
ToolResponseBase,
@@ -51,8 +54,8 @@ class RunBlockTool(BaseTool):
"Execute a specific block with the provided input data. "
"IMPORTANT: You MUST call find_block first to get the block's 'id' - "
"do NOT guess or make up block IDs. "
"Use the 'id' from find_block results and provide input_data "
"matching the block's required_inputs."
"On first attempt (without input_data), returns detailed schema showing "
"required inputs and outputs. Then call again with proper input_data to execute."
)
@property
@@ -67,11 +70,19 @@ class RunBlockTool(BaseTool):
"NEVER guess this - always get it from find_block first."
),
},
"block_name": {
"type": "string",
"description": (
"The block's human-readable name from find_block results. "
"Used for display purposes in the UI."
),
},
"input_data": {
"type": "object",
"description": (
"Input values for the block. Use the 'required_inputs' field "
"from find_block to see what fields are needed."
"Input values for the block. "
"First call with empty {} to see the block's schema, "
"then call again with proper values to execute."
),
},
},
@@ -156,6 +167,34 @@ class RunBlockTool(BaseTool):
await self._resolve_block_credentials(user_id, block, input_data)
)
# Get block schemas for details/validation
try:
input_schema: dict[str, Any] = block.input_schema.jsonschema()
except Exception as e:
logger.warning(
"Failed to generate input schema for block %s: %s",
block_id,
e,
)
return ErrorResponse(
message=f"Block '{block.name}' has an invalid input schema",
error=str(e),
session_id=session_id,
)
try:
output_schema: dict[str, Any] = block.output_schema.jsonschema()
except Exception as e:
logger.warning(
"Failed to generate output schema for block %s: %s",
block_id,
e,
)
return ErrorResponse(
message=f"Block '{block.name}' has an invalid output schema",
error=str(e),
session_id=session_id,
)
if missing_credentials:
# Return setup requirements response with missing credentials
credentials_fields_info = block.input_schema.get_credentials_fields_info()
@@ -188,6 +227,53 @@ class RunBlockTool(BaseTool):
graph_version=None,
)
# Check if this is a first attempt (required inputs missing)
# Return block details so user can see what inputs are needed
credentials_fields = set(block.input_schema.get_credentials_fields().keys())
required_keys = set(input_schema.get("required", []))
required_non_credential_keys = required_keys - credentials_fields
provided_input_keys = set(input_data.keys()) - credentials_fields
# Check for unknown input fields
valid_fields = (
set(input_schema.get("properties", {}).keys()) - credentials_fields
)
unrecognized_fields = provided_input_keys - valid_fields
if unrecognized_fields:
return InputValidationErrorResponse(
message=(
f"Unknown input field(s) provided: {', '.join(sorted(unrecognized_fields))}. "
f"Block was not executed. Please use the correct field names from the schema."
),
session_id=session_id,
unrecognized_fields=sorted(unrecognized_fields),
inputs=input_schema,
)
# Show details when not all required non-credential inputs are provided
if not (required_non_credential_keys <= provided_input_keys):
# Get credentials info for the response
credentials_meta = []
for field_name, cred_meta in matched_credentials.items():
credentials_meta.append(cred_meta)
return BlockDetailsResponse(
message=(
f"Block '{block.name}' details. "
"Provide input_data matching the inputs schema to execute the block."
),
session_id=session_id,
block=BlockDetails(
id=block_id,
name=block.name,
description=block.description or "",
inputs=input_schema,
outputs=output_schema,
credentials=credentials_meta,
),
user_authenticated=True,
)
try:
# Get or create user's workspace for CoPilot file operations
workspace = await get_or_create_workspace(user_id)

View File

@@ -1,10 +1,15 @@
"""Tests for block execution guards in RunBlockTool."""
"""Tests for block execution guards and input validation in RunBlockTool."""
from unittest.mock import MagicMock, patch
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.models import ErrorResponse
from backend.api.features.chat.tools.models import (
BlockDetailsResponse,
BlockOutputResponse,
ErrorResponse,
InputValidationErrorResponse,
)
from backend.api.features.chat.tools.run_block import RunBlockTool
from backend.blocks._base import BlockType
@@ -28,6 +33,39 @@ def make_mock_block(
return mock
def make_mock_block_with_schema(
block_id: str,
name: str,
input_properties: dict,
required_fields: list[str],
output_properties: dict | None = None,
):
"""Create a mock block with a defined input/output schema for validation tests."""
mock = MagicMock()
mock.id = block_id
mock.name = name
mock.block_type = BlockType.STANDARD
mock.disabled = False
mock.description = f"Test block: {name}"
input_schema = {
"properties": input_properties,
"required": required_fields,
}
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = input_schema
mock.input_schema.get_credentials_fields_info.return_value = {}
mock.input_schema.get_credentials_fields.return_value = {}
output_schema = {
"properties": output_properties or {"result": {"type": "string"}},
}
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = output_schema
return mock
class TestRunBlockFiltering:
"""Tests for block execution guards in RunBlockTool."""
@@ -104,3 +142,221 @@ class TestRunBlockFiltering:
# (may be other errors like missing credentials, but not the exclusion guard)
if isinstance(response, ErrorResponse):
assert "cannot be run directly in CoPilot" not in response.message
class TestRunBlockInputValidation:
"""Tests for input field validation in RunBlockTool.
run_block rejects unknown input field names with InputValidationErrorResponse,
preventing silent failures where incorrect keys would be ignored and the block
would execute with default values instead of the caller's intended values.
"""
@pytest.mark.asyncio(loop_scope="session")
async def test_unknown_input_fields_are_rejected(self):
"""run_block rejects unknown input fields instead of silently ignoring them.
Scenario: The AI Text Generator block has a field called 'model' (for LLM model
selection), but the LLM calling the tool guesses wrong and sends 'LLM_Model'
instead. The block should reject the request and return the valid schema.
"""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string", "description": "The prompt to send"},
"model": {
"type": "string",
"description": "The LLM model to use",
"default": "gpt-4o-mini",
},
"sys_prompt": {
"type": "string",
"description": "System prompt",
"default": "",
},
},
required_fields=["prompt"],
output_properties={"response": {"type": "string"}},
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
# Provide 'prompt' (correct) but 'LLM_Model' instead of 'model' (wrong key)
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"prompt": "Write a haiku about coding",
"LLM_Model": "claude-opus-4-6", # WRONG KEY - should be 'model'
},
)
assert isinstance(response, InputValidationErrorResponse)
assert "LLM_Model" in response.unrecognized_fields
assert "Block was not executed" in response.message
assert "inputs" in response.model_dump() # valid schema included
@pytest.mark.asyncio(loop_scope="session")
async def test_multiple_wrong_keys_are_all_reported(self):
"""All unrecognized field names are reported in a single error response."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
"sys_prompt": {"type": "string", "default": ""},
"retry": {"type": "integer", "default": 3},
},
required_fields=["prompt"],
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"prompt": "Hello", # correct
"llm_model": "claude-opus-4-6", # WRONG - should be 'model'
"system_prompt": "Be helpful", # WRONG - should be 'sys_prompt'
"retries": 5, # WRONG - should be 'retry'
},
)
assert isinstance(response, InputValidationErrorResponse)
assert set(response.unrecognized_fields) == {
"llm_model",
"system_prompt",
"retries",
}
assert "Block was not executed" in response.message
@pytest.mark.asyncio(loop_scope="session")
async def test_unknown_fields_rejected_even_with_missing_required(self):
"""Unknown fields are caught before the missing-required-fields check."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
},
required_fields=["prompt"],
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
# 'prompt' is missing AND 'LLM_Model' is an unknown field
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"LLM_Model": "claude-opus-4-6", # wrong key, and 'prompt' is missing
},
)
# Unknown fields are caught first
assert isinstance(response, InputValidationErrorResponse)
assert "LLM_Model" in response.unrecognized_fields
@pytest.mark.asyncio(loop_scope="session")
async def test_correct_inputs_still_execute(self):
"""Correct input field names pass validation and the block executes."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
},
required_fields=["prompt"],
)
async def mock_execute(input_data, **kwargs):
yield "response", "Generated text"
mock_block.execute = mock_execute
with (
patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
),
patch(
"backend.api.features.chat.tools.run_block.get_or_create_workspace",
new_callable=AsyncMock,
return_value=MagicMock(id="test-workspace-id"),
),
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"prompt": "Write a haiku",
"model": "gpt-4o-mini", # correct field name
},
)
assert isinstance(response, BlockOutputResponse)
assert response.success is True
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_required_fields_returns_details(self):
"""Missing required fields returns BlockDetailsResponse with schema."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
},
required_fields=["prompt"],
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
# Only provide valid optional field, missing required 'prompt'
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"model": "gpt-4o-mini", # valid but optional
},
)
assert isinstance(response, BlockDetailsResponse)

View File

@@ -0,0 +1,153 @@
"""Tests for BlockDetailsResponse in RunBlockTool."""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.models import BlockDetailsResponse
from backend.api.features.chat.tools.run_block import RunBlockTool
from backend.blocks._base import BlockType
from backend.data.model import CredentialsMetaInput
from backend.integrations.providers import ProviderName
from ._test_data import make_session
_TEST_USER_ID = "test-user-run-block-details"
def make_mock_block_with_inputs(
block_id: str, name: str, description: str = "Test description"
):
"""Create a mock block with input/output schemas for testing."""
mock = MagicMock()
mock.id = block_id
mock.name = name
mock.description = description
mock.block_type = BlockType.STANDARD
mock.disabled = False
# Input schema with non-credential fields
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = {
"properties": {
"url": {"type": "string", "description": "URL to fetch"},
"method": {"type": "string", "description": "HTTP method"},
},
"required": ["url"],
}
mock.input_schema.get_credentials_fields.return_value = {}
mock.input_schema.get_credentials_fields_info.return_value = {}
# Output schema
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = {
"properties": {
"response": {"type": "object", "description": "HTTP response"},
"error": {"type": "string", "description": "Error message"},
}
}
return mock
@pytest.mark.asyncio(loop_scope="session")
async def test_run_block_returns_details_when_no_input_provided():
"""When run_block is called without input_data, it should return BlockDetailsResponse."""
session = make_session(user_id=_TEST_USER_ID)
# Create a block with inputs
http_block = make_mock_block_with_inputs(
"http-block-id", "HTTP Request", "Send HTTP requests"
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=http_block,
):
# Mock credentials check to return no missing credentials
with patch.object(
RunBlockTool,
"_resolve_block_credentials",
new_callable=AsyncMock,
return_value=({}, []), # (matched_credentials, missing_credentials)
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="http-block-id",
input_data={}, # Empty input data
)
# Should return BlockDetailsResponse showing the schema
assert isinstance(response, BlockDetailsResponse)
assert response.block.id == "http-block-id"
assert response.block.name == "HTTP Request"
assert response.block.description == "Send HTTP requests"
assert "url" in response.block.inputs["properties"]
assert "method" in response.block.inputs["properties"]
assert "response" in response.block.outputs["properties"]
assert response.user_authenticated is True
@pytest.mark.asyncio(loop_scope="session")
async def test_run_block_returns_details_when_only_credentials_provided():
"""When only credentials are provided (no actual input), should return details."""
session = make_session(user_id=_TEST_USER_ID)
# Create a block with both credential and non-credential inputs
mock = MagicMock()
mock.id = "api-block-id"
mock.name = "API Call"
mock.description = "Make API calls"
mock.block_type = BlockType.STANDARD
mock.disabled = False
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = {
"properties": {
"credentials": {"type": "object", "description": "API credentials"},
"endpoint": {"type": "string", "description": "API endpoint"},
},
"required": ["credentials", "endpoint"],
}
mock.input_schema.get_credentials_fields.return_value = {"credentials": True}
mock.input_schema.get_credentials_fields_info.return_value = {}
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = {
"properties": {"result": {"type": "object"}}
}
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock,
):
with patch.object(
RunBlockTool,
"_resolve_block_credentials",
new_callable=AsyncMock,
return_value=(
{
"credentials": CredentialsMetaInput(
id="cred-id",
provider=ProviderName("test_provider"),
type="api_key",
title="Test Credential",
)
},
[],
),
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="api-block-id",
input_data={"credentials": {"some": "cred"}}, # Only credential
)
# Should return details because no non-credential inputs provided
assert isinstance(response, BlockDetailsResponse)
assert response.block.id == "api-block-id"
assert response.block.name == "API Call"

View File

@@ -662,6 +662,17 @@ class Secrets(UpdateTrackingModel["Secrets"], BaseSettings):
mem0_api_key: str = Field(default="", description="Mem0 API key")
elevenlabs_api_key: str = Field(default="", description="ElevenLabs API key")
linear_api_key: str = Field(
default="", description="Linear API key for system-level operations"
)
linear_feature_request_project_id: str = Field(
default="",
description="Linear project ID where feature requests are tracked",
)
linear_feature_request_team_id: str = Field(
default="",
description="Linear team ID used when creating feature request issues",
)
linear_client_id: str = Field(default="", description="Linear client ID")
linear_client_secret: str = Field(default="", description="Linear client secret")

View File

@@ -441,14 +441,14 @@ develop = true
colorama = "^0.4.6"
cryptography = "^46.0"
expiringdict = "^1.2.2"
fastapi = "^0.128.0"
fastapi = "^0.128.7"
google-cloud-logging = "^3.13.0"
launchdarkly-server-sdk = "^9.14.1"
launchdarkly-server-sdk = "^9.15.0"
pydantic = "^2.12.5"
pydantic-settings = "^2.12.0"
pyjwt = {version = "^2.11.0", extras = ["crypto"]}
redis = "^6.2.0"
supabase = "^2.27.2"
supabase = "^2.28.0"
uvicorn = "^0.40.0"
[package.source]
@@ -1382,14 +1382,14 @@ tzdata = "*"
[[package]]
name = "fastapi"
version = "0.128.6"
version = "0.128.7"
description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production"
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "fastapi-0.128.6-py3-none-any.whl", hash = "sha256:bb1c1ef87d6086a7132d0ab60869d6f1ee67283b20fbf84ec0003bd335099509"},
{file = "fastapi-0.128.6.tar.gz", hash = "sha256:0cb3946557e792d731b26a42b04912f16367e3c3135ea8290f620e234f2b604f"},
{file = "fastapi-0.128.7-py3-none-any.whl", hash = "sha256:6bd9bd31cb7047465f2d3fa3ba3f33b0870b17d4eaf7cdb36d1576ab060ad662"},
{file = "fastapi-0.128.7.tar.gz", hash = "sha256:783c273416995486c155ad2c0e2b45905dedfaf20b9ef8d9f6a9124670639a24"},
]
[package.dependencies]
@@ -3117,14 +3117,14 @@ urllib3 = ">=1.26.0,<3"
[[package]]
name = "launchdarkly-server-sdk"
version = "9.14.1"
version = "9.15.0"
description = "LaunchDarkly SDK for Python"
optional = false
python-versions = ">=3.9"
python-versions = ">=3.10"
groups = ["main"]
files = [
{file = "launchdarkly_server_sdk-9.14.1-py3-none-any.whl", hash = "sha256:a9e2bd9ecdef845cd631ae0d4334a1115e5b44257c42eb2349492be4bac7815c"},
{file = "launchdarkly_server_sdk-9.14.1.tar.gz", hash = "sha256:1df44baf0a0efa74d8c1dad7a00592b98bce7d19edded7f770da8dbc49922213"},
{file = "launchdarkly_server_sdk-9.15.0-py3-none-any.whl", hash = "sha256:c267e29bfa3fb5e2a06a208448ada6ed5557a2924979b8d79c970b45d227c668"},
{file = "launchdarkly_server_sdk-9.15.0.tar.gz", hash = "sha256:f31441b74bc1a69c381db57c33116509e407a2612628ad6dff0a7dbb39d5020b"},
]
[package.dependencies]
@@ -4728,14 +4728,14 @@ tests = ["coverage-conditional-plugin (>=0.9.0)", "portalocker[redis]", "pytest
[[package]]
name = "postgrest"
version = "2.27.3"
version = "2.28.0"
description = "PostgREST client for Python. This library provides an ORM interface to PostgREST."
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "postgrest-2.27.3-py3-none-any.whl", hash = "sha256:ed79123af7127edd78d538bfe8351d277e45b1a36994a4dbf57ae27dde87a7b7"},
{file = "postgrest-2.27.3.tar.gz", hash = "sha256:c2e2679addfc8eaab23197bad7ddaee6cbb4cbe8c483ebd2d2e5219543037cc3"},
{file = "postgrest-2.28.0-py3-none-any.whl", hash = "sha256:7bca2f24dd1a1bf8a3d586c7482aba6cd41662da6733045fad585b63b7f7df75"},
{file = "postgrest-2.28.0.tar.gz", hash = "sha256:c36b38646d25ea4255321d3d924ce70f8d20ec7799cb42c1221d6a818d4f6515"},
]
[package.dependencies]
@@ -6260,14 +6260,14 @@ all = ["numpy"]
[[package]]
name = "realtime"
version = "2.27.3"
version = "2.28.0"
description = ""
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "realtime-2.27.3-py3-none-any.whl", hash = "sha256:f571115f86988e33c41c895cb3fba2eaa1b693aeaede3617288f44274ca90f43"},
{file = "realtime-2.27.3.tar.gz", hash = "sha256:02b082243107656a5ef3fb63e8e2ab4c40bc199abb45adb8a42ed63f089a1041"},
{file = "realtime-2.28.0-py3-none-any.whl", hash = "sha256:db1bd59bab9b1fcc9f9d3b1a073bed35bf4994d720e6751f10031a58d57a3836"},
{file = "realtime-2.28.0.tar.gz", hash = "sha256:d18cedcebd6a8f22fcd509bc767f639761eb218b7b2b6f14fc4205b6259b50fc"},
]
[package.dependencies]
@@ -7024,14 +7024,14 @@ full = ["httpx (>=0.27.0,<0.29.0)", "itsdangerous", "jinja2", "python-multipart
[[package]]
name = "storage3"
version = "2.27.3"
version = "2.28.0"
description = "Supabase Storage client for Python."
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "storage3-2.27.3-py3-none-any.whl", hash = "sha256:11a05b7da84bccabeeea12d940bca3760cf63fe6ca441868677335cfe4fdfbe0"},
{file = "storage3-2.27.3.tar.gz", hash = "sha256:dc1a4a010cf36d5482c5cb6c1c28fc5f00e23284342b89e4ae43b5eae8501ddb"},
{file = "storage3-2.28.0-py3-none-any.whl", hash = "sha256:ecb50efd2ac71dabbdf97e99ad346eafa630c4c627a8e5a138ceb5fbbadae716"},
{file = "storage3-2.28.0.tar.gz", hash = "sha256:bc1d008aff67de7a0f2bd867baee7aadbcdb6f78f5a310b4f7a38e8c13c19865"},
]
[package.dependencies]
@@ -7091,35 +7091,35 @@ typing-extensions = {version = ">=4.5.0", markers = "python_version >= \"3.7\""}
[[package]]
name = "supabase"
version = "2.27.3"
version = "2.28.0"
description = "Supabase client for Python."
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "supabase-2.27.3-py3-none-any.whl", hash = "sha256:082a74642fcf9954693f1ce8c251baf23e4bda26ffdbc8dcd4c99c82e60d69ff"},
{file = "supabase-2.27.3.tar.gz", hash = "sha256:5e5a348232ac4315c1032ddd687278f0b982465471f0cbb52bca7e6a66495ff3"},
{file = "supabase-2.28.0-py3-none-any.whl", hash = "sha256:42776971c7d0ccca16034df1ab96a31c50228eb1eb19da4249ad2f756fc20272"},
{file = "supabase-2.28.0.tar.gz", hash = "sha256:aea299aaab2a2eed3c57e0be7fc035c6807214194cce795a3575add20268ece1"},
]
[package.dependencies]
httpx = ">=0.26,<0.29"
postgrest = "2.27.3"
realtime = "2.27.3"
storage3 = "2.27.3"
supabase-auth = "2.27.3"
supabase-functions = "2.27.3"
postgrest = "2.28.0"
realtime = "2.28.0"
storage3 = "2.28.0"
supabase-auth = "2.28.0"
supabase-functions = "2.28.0"
yarl = ">=1.22.0"
[[package]]
name = "supabase-auth"
version = "2.27.3"
version = "2.28.0"
description = "Python Client Library for Supabase Auth"
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "supabase_auth-2.27.3-py3-none-any.whl", hash = "sha256:82a4262eaad85383319d394dab0eea11fcf3ebd774062aef8ea3874ae2f02579"},
{file = "supabase_auth-2.27.3.tar.gz", hash = "sha256:39894d4bc60b6f23b5cff4d0d7d4c1659e5d69563cadf014d4896f780ca8ca78"},
{file = "supabase_auth-2.28.0-py3-none-any.whl", hash = "sha256:2ac85026cc285054c7fa6d41924f3a333e9ec298c013e5b5e1754039ba7caec9"},
{file = "supabase_auth-2.28.0.tar.gz", hash = "sha256:2bb8f18ff39934e44b28f10918db965659f3735cd6fbfcc022fe0b82dbf8233e"},
]
[package.dependencies]
@@ -7129,14 +7129,14 @@ pyjwt = {version = ">=2.10.1", extras = ["crypto"]}
[[package]]
name = "supabase-functions"
version = "2.27.3"
version = "2.28.0"
description = "Library for Supabase Functions"
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "supabase_functions-2.27.3-py3-none-any.whl", hash = "sha256:9d14a931d49ede1c6cf5fbfceb11c44061535ba1c3f310f15384964d86a83d9e"},
{file = "supabase_functions-2.27.3.tar.gz", hash = "sha256:e954f1646da8ca6e7e16accef58d0884a5f97b25956ee98e7d4927a210ed92f9"},
{file = "supabase_functions-2.28.0-py3-none-any.whl", hash = "sha256:30bf2d586f8df285faf0621bb5d5bb3ec3157234fc820553ca156f009475e4ae"},
{file = "supabase_functions-2.28.0.tar.gz", hash = "sha256:db3dddfc37aca5858819eb461130968473bd8c75bd284581013958526dac718b"},
]
[package.dependencies]
@@ -8440,4 +8440,4 @@ cffi = ["cffi (>=1.17,<2.0) ; platform_python_implementation != \"PyPy\" and pyt
[metadata]
lock-version = "2.1"
python-versions = ">=3.10,<3.14"
content-hash = "c06e96ad49388ba7a46786e9ea55ea2c1a57408e15613237b4bee40a592a12af"
content-hash = "fa9c5deadf593e815dd2190f58e22152373900603f5f244b9616cd721de84d2f"

View File

@@ -65,7 +65,7 @@ sentry-sdk = {extras = ["anthropic", "fastapi", "launchdarkly", "openai", "sqlal
sqlalchemy = "^2.0.40"
strenum = "^0.4.9"
stripe = "^11.5.0"
supabase = "2.27.3"
supabase = "2.28.0"
tenacity = "^9.1.4"
todoist-api-python = "^2.1.7"
tweepy = "^4.16.0"

View File

@@ -37,7 +37,7 @@ services:
context: ../
dockerfile: autogpt_platform/backend/Dockerfile
target: migrate
command: ["sh", "-c", "poetry run prisma generate && poetry run gen-prisma-stub && poetry run prisma migrate deploy"]
command: ["sh", "-c", "prisma generate && python3 gen_prisma_types_stub.py && prisma migrate deploy"]
develop:
watch:
- path: ./
@@ -56,7 +56,7 @@ services:
test:
[
"CMD-SHELL",
"poetry run prisma migrate status | grep -q 'No pending migrations' || exit 1",
"prisma migrate status | grep -q 'No pending migrations' || exit 1",
]
interval: 30s
timeout: 10s

View File

@@ -4,7 +4,7 @@ import {
} from "@/app/api/__generated__/endpoints/graphs/graphs";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { parseAsInteger, parseAsString, useQueryStates } from "nuqs";
import { GraphExecutionMeta } from "@/app/(platform)/library/agents/[id]/components/OldAgentLibraryView/use-agent-runs";
import { GraphExecutionMeta } from "@/app/api/__generated__/models/graphExecutionMeta";
import { useGraphStore } from "@/app/(platform)/build/stores/graphStore";
import { useShallow } from "zustand/react/shallow";
import { useEffect, useState } from "react";

View File

@@ -1,6 +1,6 @@
import { useCallback } from "react";
import { AgentRunDraftView } from "@/app/(platform)/library/agents/[id]/components/OldAgentLibraryView/components/agent-run-draft-view";
import { AgentRunDraftView } from "@/app/(platform)/build/components/legacy-builder/agent-run-draft-view";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import type {
CredentialsMetaInput,

View File

@@ -18,7 +18,7 @@ import {
import { useToast } from "@/components/molecules/Toast/use-toast";
import { useQueryClient } from "@tanstack/react-query";
import { getGetV2ListMySubmissionsQueryKey } from "@/app/api/__generated__/endpoints/store/store";
import { CronExpressionDialog } from "@/app/(platform)/library/agents/[id]/components/OldAgentLibraryView/components/cron-scheduler-dialog";
import { CronExpressionDialog } from "@/components/contextual/CronScheduler/cron-scheduler-dialog";
import { humanizeCronExpression } from "@/lib/cron-expression-utils";
import { CalendarClockIcon } from "lucide-react";

View File

@@ -20,7 +20,7 @@ import {
import { useBackendAPI } from "@/lib/autogpt-server-api/context";
import { RunAgentInputs } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/RunAgentInputs/RunAgentInputs";
import { ScheduleTaskDialog } from "@/app/(platform)/library/agents/[id]/components/OldAgentLibraryView/components/cron-scheduler-dialog";
import { ScheduleTaskDialog } from "@/components/contextual/CronScheduler/cron-scheduler-dialog";
import ActionButtonGroup from "@/components/__legacy__/action-button-group";
import type { ButtonAction } from "@/components/__legacy__/types";
import {
@@ -53,7 +53,10 @@ import { ClockIcon, CopyIcon, InfoIcon } from "@phosphor-icons/react";
import { CalendarClockIcon, Trash2Icon } from "lucide-react";
import { analytics } from "@/services/analytics";
import { AgentStatus, AgentStatusChip } from "./agent-status-chip";
import {
AgentStatus,
AgentStatusChip,
} from "@/app/(platform)/build/components/legacy-builder/agent-status-chip";
export function AgentRunDraftView({
graph,

View File

@@ -15,6 +15,10 @@ import { ToolUIPart, UIDataTypes, UIMessage, UITools } from "ai";
import { useEffect, useRef, useState } from "react";
import { CreateAgentTool } from "../../tools/CreateAgent/CreateAgent";
import { EditAgentTool } from "../../tools/EditAgent/EditAgent";
import {
CreateFeatureRequestTool,
SearchFeatureRequestsTool,
} from "../../tools/FeatureRequests/FeatureRequests";
import { FindAgentsTool } from "../../tools/FindAgents/FindAgents";
import { FindBlocksTool } from "../../tools/FindBlocks/FindBlocks";
import { RunAgentTool } from "../../tools/RunAgent/RunAgent";
@@ -254,6 +258,20 @@ export const ChatMessagesContainer = ({
part={part as ToolUIPart}
/>
);
case "tool-search_feature_requests":
return (
<SearchFeatureRequestsTool
key={`${message.id}-${i}`}
part={part as ToolUIPart}
/>
);
case "tool-create_feature_request":
return (
<CreateFeatureRequestTool
key={`${message.id}-${i}`}
part={part as ToolUIPart}
/>
);
default:
return null;
}

View File

@@ -14,6 +14,10 @@ import { Text } from "@/components/atoms/Text/Text";
import { CopilotChatActionsProvider } from "../components/CopilotChatActionsProvider/CopilotChatActionsProvider";
import { CreateAgentTool } from "../tools/CreateAgent/CreateAgent";
import { EditAgentTool } from "../tools/EditAgent/EditAgent";
import {
CreateFeatureRequestTool,
SearchFeatureRequestsTool,
} from "../tools/FeatureRequests/FeatureRequests";
import { FindAgentsTool } from "../tools/FindAgents/FindAgents";
import { FindBlocksTool } from "../tools/FindBlocks/FindBlocks";
import { RunAgentTool } from "../tools/RunAgent/RunAgent";
@@ -45,6 +49,8 @@ const SECTIONS = [
"Tool: Create Agent",
"Tool: Edit Agent",
"Tool: View Agent Output",
"Tool: Search Feature Requests",
"Tool: Create Feature Request",
"Full Conversation Example",
] as const;
@@ -1421,6 +1427,235 @@ export default function StyleguidePage() {
</SubSection>
</Section>
{/* ============================================================= */}
{/* SEARCH FEATURE REQUESTS */}
{/* ============================================================= */}
<Section title="Tool: Search Feature Requests">
<SubSection label="Input streaming">
<SearchFeatureRequestsTool
part={{
type: "tool-search_feature_requests",
toolCallId: uid(),
state: "input-streaming",
input: { query: "dark mode" },
}}
/>
</SubSection>
<SubSection label="Input available">
<SearchFeatureRequestsTool
part={{
type: "tool-search_feature_requests",
toolCallId: uid(),
state: "input-available",
input: { query: "dark mode" },
}}
/>
</SubSection>
<SubSection label="Output available (with results)">
<SearchFeatureRequestsTool
part={{
type: "tool-search_feature_requests",
toolCallId: uid(),
state: "output-available",
input: { query: "dark mode" },
output: {
type: "feature_request_search",
message:
'Found 2 feature request(s) matching "dark mode".',
query: "dark mode",
count: 2,
results: [
{
id: "fr-001",
identifier: "INT-42",
title: "Add dark mode to the platform",
description:
"Users have requested a dark mode option for the builder and copilot interfaces to reduce eye strain during long sessions.",
},
{
id: "fr-002",
identifier: "INT-87",
title: "Dark theme for agent output viewer",
description:
"Specifically requesting dark theme support for the agent output/execution viewer panel.",
},
],
},
}}
/>
</SubSection>
<SubSection label="Output available (no results)">
<SearchFeatureRequestsTool
part={{
type: "tool-search_feature_requests",
toolCallId: uid(),
state: "output-available",
input: { query: "teleportation" },
output: {
type: "no_results",
message:
"No feature requests found matching 'teleportation'.",
suggestions: [
"Try different keywords",
"Use broader search terms",
"You can create a new feature request if none exists",
],
},
}}
/>
</SubSection>
<SubSection label="Output available (error)">
<SearchFeatureRequestsTool
part={{
type: "tool-search_feature_requests",
toolCallId: uid(),
state: "output-available",
input: { query: "dark mode" },
output: {
type: "error",
message: "Failed to search feature requests.",
error: "LINEAR_API_KEY environment variable is not set",
},
}}
/>
</SubSection>
<SubSection label="Output error">
<SearchFeatureRequestsTool
part={{
type: "tool-search_feature_requests",
toolCallId: uid(),
state: "output-error",
input: { query: "dark mode" },
}}
/>
</SubSection>
</Section>
{/* ============================================================= */}
{/* CREATE FEATURE REQUEST */}
{/* ============================================================= */}
<Section title="Tool: Create Feature Request">
<SubSection label="Input streaming">
<CreateFeatureRequestTool
part={{
type: "tool-create_feature_request",
toolCallId: uid(),
state: "input-streaming",
input: {
title: "Add dark mode",
description: "I would love dark mode for the platform.",
},
}}
/>
</SubSection>
<SubSection label="Input available">
<CreateFeatureRequestTool
part={{
type: "tool-create_feature_request",
toolCallId: uid(),
state: "input-available",
input: {
title: "Add dark mode",
description: "I would love dark mode for the platform.",
},
}}
/>
</SubSection>
<SubSection label="Output available (new issue created)">
<CreateFeatureRequestTool
part={{
type: "tool-create_feature_request",
toolCallId: uid(),
state: "output-available",
input: {
title: "Add dark mode",
description: "I would love dark mode for the platform.",
},
output: {
type: "feature_request_created",
message:
"Created new feature request [INT-105] Add dark mode.",
issue_id: "issue-new-123",
issue_identifier: "INT-105",
issue_title: "Add dark mode",
issue_url:
"https://linear.app/autogpt/issue/INT-105/add-dark-mode",
is_new_issue: true,
customer_name: "user-abc-123",
},
}}
/>
</SubSection>
<SubSection label="Output available (added to existing issue)">
<CreateFeatureRequestTool
part={{
type: "tool-create_feature_request",
toolCallId: uid(),
state: "output-available",
input: {
title: "Dark mode support",
description:
"Please add dark mode, it would help with long sessions.",
existing_issue_id: "fr-001",
},
output: {
type: "feature_request_created",
message:
"Added your request to existing feature request [INT-42] Add dark mode to the platform.",
issue_id: "fr-001",
issue_identifier: "INT-42",
issue_title: "Add dark mode to the platform",
issue_url:
"https://linear.app/autogpt/issue/INT-42/add-dark-mode-to-the-platform",
is_new_issue: false,
customer_name: "user-xyz-789",
},
}}
/>
</SubSection>
<SubSection label="Output available (error)">
<CreateFeatureRequestTool
part={{
type: "tool-create_feature_request",
toolCallId: uid(),
state: "output-available",
input: {
title: "Add dark mode",
description: "I would love dark mode.",
},
output: {
type: "error",
message:
"Failed to attach customer need to the feature request.",
error: "Linear API request failed (500): Internal error",
},
}}
/>
</SubSection>
<SubSection label="Output error">
<CreateFeatureRequestTool
part={{
type: "tool-create_feature_request",
toolCallId: uid(),
state: "output-error",
input: { title: "Add dark mode" },
}}
/>
</SubSection>
</Section>
{/* ============================================================= */}
{/* FULL CONVERSATION EXAMPLE */}
{/* ============================================================= */}

View File

@@ -0,0 +1,227 @@
"use client";
import type { ToolUIPart } from "ai";
import { useMemo } from "react";
import { MorphingTextAnimation } from "../../components/MorphingTextAnimation/MorphingTextAnimation";
import {
ContentBadge,
ContentCard,
ContentCardDescription,
ContentCardHeader,
ContentCardTitle,
ContentGrid,
ContentMessage,
ContentSuggestionsList,
} from "../../components/ToolAccordion/AccordionContent";
import { ToolAccordion } from "../../components/ToolAccordion/ToolAccordion";
import {
AccordionIcon,
getAccordionTitle,
getAnimationText,
getFeatureRequestOutput,
isCreatedOutput,
isErrorOutput,
isNoResultsOutput,
isSearchResultsOutput,
ToolIcon,
type FeatureRequestToolType,
} from "./helpers";
export interface FeatureRequestToolPart {
type: FeatureRequestToolType;
toolCallId: string;
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}
interface Props {
part: FeatureRequestToolPart;
}
function truncate(text: string, maxChars: number): string {
const trimmed = text.trim();
if (trimmed.length <= maxChars) return trimmed;
return `${trimmed.slice(0, maxChars).trimEnd()}`;
}
export function SearchFeatureRequestsTool({ part }: Props) {
const output = getFeatureRequestOutput(part);
const text = getAnimationText(part);
const isStreaming =
part.state === "input-streaming" || part.state === "input-available";
const isError =
part.state === "output-error" || (!!output && isErrorOutput(output));
const normalized = useMemo(() => {
if (!output) return null;
return { title: getAccordionTitle(part.type, output) };
}, [output, part.type]);
const isOutputAvailable = part.state === "output-available" && !!output;
const searchOutput =
isOutputAvailable && output && isSearchResultsOutput(output)
? output
: null;
const noResultsOutput =
isOutputAvailable && output && isNoResultsOutput(output) ? output : null;
const errorOutput =
isOutputAvailable && output && isErrorOutput(output) ? output : null;
const hasExpandableContent =
isOutputAvailable &&
((!!searchOutput && searchOutput.count > 0) ||
!!noResultsOutput ||
!!errorOutput);
const accordionDescription =
hasExpandableContent && searchOutput
? `Found ${searchOutput.count} result${searchOutput.count === 1 ? "" : "s"} for "${searchOutput.query}"`
: hasExpandableContent && (noResultsOutput || errorOutput)
? ((noResultsOutput ?? errorOutput)?.message ?? null)
: null;
return (
<div className="py-2">
<div className="flex items-center gap-2 text-sm text-muted-foreground">
<ToolIcon
toolType={part.type}
isStreaming={isStreaming}
isError={isError}
/>
<MorphingTextAnimation
text={text}
className={isError ? "text-red-500" : undefined}
/>
</div>
{hasExpandableContent && normalized && (
<ToolAccordion
icon={<AccordionIcon toolType={part.type} />}
title={normalized.title}
description={accordionDescription}
>
{searchOutput && (
<ContentGrid>
{searchOutput.results.map((r) => (
<ContentCard key={r.id}>
<ContentCardHeader>
<ContentCardTitle>{r.title}</ContentCardTitle>
</ContentCardHeader>
{r.description && (
<ContentCardDescription>
{truncate(r.description, 200)}
</ContentCardDescription>
)}
</ContentCard>
))}
</ContentGrid>
)}
{noResultsOutput && (
<div>
<ContentMessage>{noResultsOutput.message}</ContentMessage>
{noResultsOutput.suggestions &&
noResultsOutput.suggestions.length > 0 && (
<ContentSuggestionsList items={noResultsOutput.suggestions} />
)}
</div>
)}
{errorOutput && (
<div>
<ContentMessage>{errorOutput.message}</ContentMessage>
{errorOutput.error && (
<ContentCardDescription>
{errorOutput.error}
</ContentCardDescription>
)}
</div>
)}
</ToolAccordion>
)}
</div>
);
}
export function CreateFeatureRequestTool({ part }: Props) {
const output = getFeatureRequestOutput(part);
const text = getAnimationText(part);
const isStreaming =
part.state === "input-streaming" || part.state === "input-available";
const isError =
part.state === "output-error" || (!!output && isErrorOutput(output));
const normalized = useMemo(() => {
if (!output) return null;
return { title: getAccordionTitle(part.type, output) };
}, [output, part.type]);
const isOutputAvailable = part.state === "output-available" && !!output;
const createdOutput =
isOutputAvailable && output && isCreatedOutput(output) ? output : null;
const errorOutput =
isOutputAvailable && output && isErrorOutput(output) ? output : null;
const hasExpandableContent =
isOutputAvailable && (!!createdOutput || !!errorOutput);
const accordionDescription =
hasExpandableContent && createdOutput
? createdOutput.issue_title
: hasExpandableContent && errorOutput
? errorOutput.message
: null;
return (
<div className="py-2">
<div className="flex items-center gap-2 text-sm text-muted-foreground">
<ToolIcon
toolType={part.type}
isStreaming={isStreaming}
isError={isError}
/>
<MorphingTextAnimation
text={text}
className={isError ? "text-red-500" : undefined}
/>
</div>
{hasExpandableContent && normalized && (
<ToolAccordion
icon={<AccordionIcon toolType={part.type} />}
title={normalized.title}
description={accordionDescription}
>
{createdOutput && (
<ContentCard>
<ContentCardHeader>
<ContentCardTitle>{createdOutput.issue_title}</ContentCardTitle>
</ContentCardHeader>
<div className="mt-2 flex items-center gap-2">
<ContentBadge>
{createdOutput.is_new_issue ? "New" : "Existing"}
</ContentBadge>
</div>
<ContentMessage>{createdOutput.message}</ContentMessage>
</ContentCard>
)}
{errorOutput && (
<div>
<ContentMessage>{errorOutput.message}</ContentMessage>
{errorOutput.error && (
<ContentCardDescription>
{errorOutput.error}
</ContentCardDescription>
)}
</div>
)}
</ToolAccordion>
)}
</div>
);
}

View File

@@ -0,0 +1,271 @@
import {
CheckCircleIcon,
LightbulbIcon,
MagnifyingGlassIcon,
PlusCircleIcon,
} from "@phosphor-icons/react";
import type { ToolUIPart } from "ai";
/* ------------------------------------------------------------------ */
/* Types (local until API client is regenerated) */
/* ------------------------------------------------------------------ */
interface FeatureRequestInfo {
id: string;
identifier: string;
title: string;
description?: string | null;
}
export interface FeatureRequestSearchResponse {
type: "feature_request_search";
message: string;
results: FeatureRequestInfo[];
count: number;
query: string;
}
export interface FeatureRequestCreatedResponse {
type: "feature_request_created";
message: string;
issue_id: string;
issue_identifier: string;
issue_title: string;
issue_url: string;
is_new_issue: boolean;
customer_name: string;
}
interface NoResultsResponse {
type: "no_results";
message: string;
suggestions?: string[];
}
interface ErrorResponse {
type: "error";
message: string;
error?: string;
}
export type FeatureRequestOutput =
| FeatureRequestSearchResponse
| FeatureRequestCreatedResponse
| NoResultsResponse
| ErrorResponse;
export type FeatureRequestToolType =
| "tool-search_feature_requests"
| "tool-create_feature_request"
| string;
/* ------------------------------------------------------------------ */
/* Output parsing */
/* ------------------------------------------------------------------ */
function parseOutput(output: unknown): FeatureRequestOutput | null {
if (!output) return null;
if (typeof output === "string") {
const trimmed = output.trim();
if (!trimmed) return null;
try {
return parseOutput(JSON.parse(trimmed) as unknown);
} catch {
return null;
}
}
if (typeof output === "object") {
const type = (output as { type?: unknown }).type;
if (
type === "feature_request_search" ||
type === "feature_request_created" ||
type === "no_results" ||
type === "error"
) {
return output as FeatureRequestOutput;
}
// Fallback structural checks
if ("results" in output && "query" in output)
return output as FeatureRequestSearchResponse;
if ("issue_identifier" in output)
return output as FeatureRequestCreatedResponse;
if ("suggestions" in output && !("error" in output))
return output as NoResultsResponse;
if ("error" in output || "details" in output)
return output as ErrorResponse;
}
return null;
}
export function getFeatureRequestOutput(
part: unknown,
): FeatureRequestOutput | null {
if (!part || typeof part !== "object") return null;
return parseOutput((part as { output?: unknown }).output);
}
/* ------------------------------------------------------------------ */
/* Type guards */
/* ------------------------------------------------------------------ */
export function isSearchResultsOutput(
output: FeatureRequestOutput,
): output is FeatureRequestSearchResponse {
return (
output.type === "feature_request_search" ||
("results" in output && "query" in output)
);
}
export function isCreatedOutput(
output: FeatureRequestOutput,
): output is FeatureRequestCreatedResponse {
return (
output.type === "feature_request_created" || "issue_identifier" in output
);
}
export function isNoResultsOutput(
output: FeatureRequestOutput,
): output is NoResultsResponse {
return (
output.type === "no_results" ||
("suggestions" in output && !("error" in output))
);
}
export function isErrorOutput(
output: FeatureRequestOutput,
): output is ErrorResponse {
return output.type === "error" || "error" in output;
}
/* ------------------------------------------------------------------ */
/* Accordion metadata */
/* ------------------------------------------------------------------ */
export function getAccordionTitle(
toolType: FeatureRequestToolType,
output: FeatureRequestOutput,
): string {
if (toolType === "tool-search_feature_requests") {
if (isSearchResultsOutput(output)) return "Feature requests";
if (isNoResultsOutput(output)) return "No feature requests found";
return "Feature request search error";
}
if (isCreatedOutput(output)) {
return output.is_new_issue
? "Feature request created"
: "Added to feature request";
}
if (isErrorOutput(output)) return "Feature request error";
return "Feature request";
}
/* ------------------------------------------------------------------ */
/* Animation text */
/* ------------------------------------------------------------------ */
interface AnimationPart {
type: FeatureRequestToolType;
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}
export function getAnimationText(part: AnimationPart): string {
if (part.type === "tool-search_feature_requests") {
const query = (part.input as { query?: string } | undefined)?.query?.trim();
const queryText = query ? ` for "${query}"` : "";
switch (part.state) {
case "input-streaming":
case "input-available":
return `Searching feature requests${queryText}`;
case "output-available": {
const output = parseOutput(part.output);
if (!output) return `Searching feature requests${queryText}`;
if (isSearchResultsOutput(output)) {
return `Found ${output.count} feature request${output.count === 1 ? "" : "s"}${queryText}`;
}
if (isNoResultsOutput(output))
return `No feature requests found${queryText}`;
return `Error searching feature requests${queryText}`;
}
case "output-error":
return `Error searching feature requests${queryText}`;
default:
return "Searching feature requests";
}
}
// create_feature_request
const title = (part.input as { title?: string } | undefined)?.title?.trim();
const titleText = title ? ` "${title}"` : "";
switch (part.state) {
case "input-streaming":
case "input-available":
return `Creating feature request${titleText}`;
case "output-available": {
const output = parseOutput(part.output);
if (!output) return `Creating feature request${titleText}`;
if (isCreatedOutput(output)) {
return output.is_new_issue
? "Feature request created"
: "Added to existing feature request";
}
if (isErrorOutput(output)) return "Error creating feature request";
return `Created feature request${titleText}`;
}
case "output-error":
return "Error creating feature request";
default:
return "Creating feature request";
}
}
/* ------------------------------------------------------------------ */
/* Icons */
/* ------------------------------------------------------------------ */
export function ToolIcon({
toolType,
isStreaming,
isError,
}: {
toolType: FeatureRequestToolType;
isStreaming?: boolean;
isError?: boolean;
}) {
const IconComponent =
toolType === "tool-create_feature_request"
? PlusCircleIcon
: MagnifyingGlassIcon;
return (
<IconComponent
size={14}
weight="regular"
className={
isError
? "text-red-500"
: isStreaming
? "text-neutral-500"
: "text-neutral-400"
}
/>
);
}
export function AccordionIcon({
toolType,
}: {
toolType: FeatureRequestToolType;
}) {
const IconComponent =
toolType === "tool-create_feature_request"
? CheckCircleIcon
: LightbulbIcon;
return <IconComponent size={32} weight="light" />;
}

View File

@@ -3,6 +3,7 @@
import type { ToolUIPart } from "ai";
import { MorphingTextAnimation } from "../../components/MorphingTextAnimation/MorphingTextAnimation";
import { ToolAccordion } from "../../components/ToolAccordion/ToolAccordion";
import { BlockDetailsCard } from "./components/BlockDetailsCard/BlockDetailsCard";
import { BlockOutputCard } from "./components/BlockOutputCard/BlockOutputCard";
import { ErrorCard } from "./components/ErrorCard/ErrorCard";
import { SetupRequirementsCard } from "./components/SetupRequirementsCard/SetupRequirementsCard";
@@ -11,6 +12,7 @@ import {
getAnimationText,
getRunBlockToolOutput,
isRunBlockBlockOutput,
isRunBlockDetailsOutput,
isRunBlockErrorOutput,
isRunBlockSetupRequirementsOutput,
ToolIcon,
@@ -41,6 +43,7 @@ export function RunBlockTool({ part }: Props) {
part.state === "output-available" &&
!!output &&
(isRunBlockBlockOutput(output) ||
isRunBlockDetailsOutput(output) ||
isRunBlockSetupRequirementsOutput(output) ||
isRunBlockErrorOutput(output));
@@ -58,6 +61,10 @@ export function RunBlockTool({ part }: Props) {
<ToolAccordion {...getAccordionMeta(output)}>
{isRunBlockBlockOutput(output) && <BlockOutputCard output={output} />}
{isRunBlockDetailsOutput(output) && (
<BlockDetailsCard output={output} />
)}
{isRunBlockSetupRequirementsOutput(output) && (
<SetupRequirementsCard output={output} />
)}

View File

@@ -0,0 +1,188 @@
import type { Meta, StoryObj } from "@storybook/nextjs";
import { ResponseType } from "@/app/api/__generated__/models/responseType";
import type { BlockDetailsResponse } from "../../helpers";
import { BlockDetailsCard } from "./BlockDetailsCard";
const meta: Meta<typeof BlockDetailsCard> = {
title: "Copilot/RunBlock/BlockDetailsCard",
component: BlockDetailsCard,
parameters: {
layout: "centered",
},
tags: ["autodocs"],
decorators: [
(Story) => (
<div style={{ maxWidth: 480 }}>
<Story />
</div>
),
],
};
export default meta;
type Story = StoryObj<typeof meta>;
const baseBlock: BlockDetailsResponse = {
type: ResponseType.block_details,
message:
"Here are the details for the GetWeather block. Provide the required inputs to run it.",
session_id: "session-123",
user_authenticated: true,
block: {
id: "block-abc-123",
name: "GetWeather",
description: "Fetches current weather data for a given location.",
inputs: {
type: "object",
properties: {
location: {
title: "Location",
type: "string",
description:
"City name or coordinates (e.g. 'London' or '51.5,-0.1')",
},
units: {
title: "Units",
type: "string",
description: "Temperature units: 'metric' or 'imperial'",
},
},
required: ["location"],
},
outputs: {
type: "object",
properties: {
temperature: {
title: "Temperature",
type: "number",
description: "Current temperature in the requested units",
},
condition: {
title: "Condition",
type: "string",
description: "Weather condition description (e.g. 'Sunny', 'Rain')",
},
},
},
credentials: [],
},
};
export const Default: Story = {
args: {
output: baseBlock,
},
};
export const InputsOnly: Story = {
args: {
output: {
...baseBlock,
message: "This block requires inputs. No outputs are defined.",
block: {
...baseBlock.block,
outputs: {},
},
},
},
};
export const OutputsOnly: Story = {
args: {
output: {
...baseBlock,
message: "This block has no required inputs.",
block: {
...baseBlock.block,
inputs: {},
},
},
},
};
export const ManyFields: Story = {
args: {
output: {
...baseBlock,
message: "Block with many input and output fields.",
block: {
...baseBlock.block,
name: "SendEmail",
description: "Sends an email via SMTP.",
inputs: {
type: "object",
properties: {
to: {
title: "To",
type: "string",
description: "Recipient email address",
},
subject: {
title: "Subject",
type: "string",
description: "Email subject line",
},
body: {
title: "Body",
type: "string",
description: "Email body content",
},
cc: {
title: "CC",
type: "string",
description: "CC recipients (comma-separated)",
},
bcc: {
title: "BCC",
type: "string",
description: "BCC recipients (comma-separated)",
},
},
required: ["to", "subject", "body"],
},
outputs: {
type: "object",
properties: {
message_id: {
title: "Message ID",
type: "string",
description: "Unique ID of the sent email",
},
status: {
title: "Status",
type: "string",
description: "Delivery status",
},
},
},
},
},
},
};
export const NoFieldDescriptions: Story = {
args: {
output: {
...baseBlock,
message: "Fields without descriptions.",
block: {
...baseBlock.block,
name: "SimpleBlock",
inputs: {
type: "object",
properties: {
input_a: { title: "Input A", type: "string" },
input_b: { title: "Input B", type: "number" },
},
required: ["input_a"],
},
outputs: {
type: "object",
properties: {
result: { title: "Result", type: "string" },
},
},
},
},
},
};

View File

@@ -0,0 +1,103 @@
"use client";
import type { BlockDetailsResponse } from "../../helpers";
import {
ContentBadge,
ContentCard,
ContentCardDescription,
ContentCardTitle,
ContentGrid,
ContentMessage,
} from "../../../../components/ToolAccordion/AccordionContent";
interface Props {
output: BlockDetailsResponse;
}
function SchemaFieldList({
title,
properties,
required,
}: {
title: string;
properties: Record<string, unknown>;
required?: string[];
}) {
const entries = Object.entries(properties);
if (entries.length === 0) return null;
const requiredSet = new Set(required ?? []);
return (
<ContentCard>
<ContentCardTitle className="text-xs">{title}</ContentCardTitle>
<div className="mt-2 grid gap-2">
{entries.map(([name, schema]) => {
const field = schema as Record<string, unknown> | undefined;
const fieldTitle =
typeof field?.title === "string" ? field.title : name;
const fieldType =
typeof field?.type === "string" ? field.type : "unknown";
const description =
typeof field?.description === "string"
? field.description
: undefined;
return (
<div key={name} className="rounded-xl border p-2">
<div className="flex items-center justify-between gap-2">
<ContentCardTitle className="text-xs">
{fieldTitle}
</ContentCardTitle>
<div className="flex gap-1">
<ContentBadge>{fieldType}</ContentBadge>
{requiredSet.has(name) && (
<ContentBadge>Required</ContentBadge>
)}
</div>
</div>
{description && (
<ContentCardDescription className="mt-1 text-xs">
{description}
</ContentCardDescription>
)}
</div>
);
})}
</div>
</ContentCard>
);
}
export function BlockDetailsCard({ output }: Props) {
const inputs = output.block.inputs as {
properties?: Record<string, unknown>;
required?: string[];
} | null;
const outputs = output.block.outputs as {
properties?: Record<string, unknown>;
required?: string[];
} | null;
return (
<ContentGrid>
<ContentMessage>{output.message}</ContentMessage>
{inputs?.properties && Object.keys(inputs.properties).length > 0 && (
<SchemaFieldList
title="Inputs"
properties={inputs.properties}
required={inputs.required}
/>
)}
{outputs?.properties && Object.keys(outputs.properties).length > 0 && (
<SchemaFieldList
title="Outputs"
properties={outputs.properties}
required={outputs.required}
/>
)}
</ContentGrid>
);
}

View File

@@ -10,18 +10,37 @@ import {
import type { ToolUIPart } from "ai";
import { OrbitLoader } from "../../components/OrbitLoader/OrbitLoader";
/** Block details returned on first run_block attempt (before input_data provided). */
export interface BlockDetailsResponse {
type: typeof ResponseType.block_details;
message: string;
session_id?: string | null;
block: {
id: string;
name: string;
description: string;
inputs: Record<string, unknown>;
outputs: Record<string, unknown>;
credentials: unknown[];
};
user_authenticated: boolean;
}
export interface RunBlockInput {
block_id?: string;
block_name?: string;
input_data?: Record<string, unknown>;
}
export type RunBlockToolOutput =
| SetupRequirementsResponse
| BlockDetailsResponse
| BlockOutputResponse
| ErrorResponse;
const RUN_BLOCK_OUTPUT_TYPES = new Set<string>([
ResponseType.setup_requirements,
ResponseType.block_details,
ResponseType.block_output,
ResponseType.error,
]);
@@ -35,6 +54,15 @@ export function isRunBlockSetupRequirementsOutput(
);
}
export function isRunBlockDetailsOutput(
output: RunBlockToolOutput,
): output is BlockDetailsResponse {
return (
output.type === ResponseType.block_details ||
("block" in output && typeof output.block === "object")
);
}
export function isRunBlockBlockOutput(
output: RunBlockToolOutput,
): output is BlockOutputResponse {
@@ -64,6 +92,7 @@ function parseOutput(output: unknown): RunBlockToolOutput | null {
return output as RunBlockToolOutput;
}
if ("block_id" in output) return output as BlockOutputResponse;
if ("block" in output) return output as BlockDetailsResponse;
if ("setup_info" in output) return output as SetupRequirementsResponse;
if ("error" in output || "details" in output)
return output as ErrorResponse;
@@ -84,17 +113,25 @@ export function getAnimationText(part: {
output?: unknown;
}): string {
const input = part.input as RunBlockInput | undefined;
const blockName = input?.block_name?.trim();
const blockId = input?.block_id?.trim();
const blockText = blockId ? ` "${blockId}"` : "";
// Prefer block_name if available, otherwise fall back to block_id
const blockText = blockName
? ` "${blockName}"`
: blockId
? ` "${blockId}"`
: "";
switch (part.state) {
case "input-streaming":
case "input-available":
return `Running the block${blockText}`;
return `Running${blockText}`;
case "output-available": {
const output = parseOutput(part.output);
if (!output) return `Running the block${blockText}`;
if (!output) return `Running${blockText}`;
if (isRunBlockBlockOutput(output)) return `Ran "${output.block_name}"`;
if (isRunBlockDetailsOutput(output))
return `Details for "${output.block.name}"`;
if (isRunBlockSetupRequirementsOutput(output)) {
return `Setup needed for "${output.setup_info.agent_name}"`;
}
@@ -158,6 +195,21 @@ export function getAccordionMeta(output: RunBlockToolOutput): {
};
}
if (isRunBlockDetailsOutput(output)) {
const inputKeys = Object.keys(
(output.block.inputs as { properties?: Record<string, unknown> })
?.properties ?? {},
);
return {
icon,
title: output.block.name,
description:
inputKeys.length > 0
? `${inputKeys.length} input field${inputKeys.length === 1 ? "" : "s"} available`
: output.message,
};
}
if (isRunBlockSetupRequirementsOutput(output)) {
const missingCredsCount = Object.keys(
(output.setup_info.user_readiness?.missing_credentials ?? {}) as Record<

View File

@@ -1,631 +0,0 @@
"use client";
import { useParams, useRouter } from "next/navigation";
import { useQueryState } from "nuqs";
import React, {
useCallback,
useEffect,
useMemo,
useRef,
useState,
} from "react";
import {
Graph,
GraphExecution,
GraphExecutionID,
GraphExecutionMeta,
GraphID,
LibraryAgent,
LibraryAgentID,
LibraryAgentPreset,
LibraryAgentPresetID,
Schedule,
ScheduleID,
} from "@/lib/autogpt-server-api";
import { useBackendAPI } from "@/lib/autogpt-server-api/context";
import { exportAsJSONFile } from "@/lib/utils";
import DeleteConfirmDialog from "@/components/__legacy__/delete-confirm-dialog";
import type { ButtonAction } from "@/components/__legacy__/types";
import { Button } from "@/components/__legacy__/ui/button";
import {
Dialog,
DialogContent,
DialogDescription,
DialogFooter,
DialogHeader,
DialogTitle,
} from "@/components/__legacy__/ui/dialog";
import LoadingBox, { LoadingSpinner } from "@/components/__legacy__/ui/loading";
import {
useToast,
useToastOnFail,
} from "@/components/molecules/Toast/use-toast";
import { AgentRunDetailsView } from "./components/agent-run-details-view";
import { AgentRunDraftView } from "./components/agent-run-draft-view";
import { CreatePresetDialog } from "./components/create-preset-dialog";
import { useAgentRunsInfinite } from "./use-agent-runs";
import { AgentRunsSelectorList } from "./components/agent-runs-selector-list";
import { AgentScheduleDetailsView } from "./components/agent-schedule-details-view";
export function OldAgentLibraryView() {
const { id: agentID }: { id: LibraryAgentID } = useParams();
const [executionId, setExecutionId] = useQueryState("executionId");
const toastOnFail = useToastOnFail();
const { toast } = useToast();
const router = useRouter();
const api = useBackendAPI();
// ============================ STATE =============================
const [graph, setGraph] = useState<Graph | null>(null); // Graph version corresponding to LibraryAgent
const [agent, setAgent] = useState<LibraryAgent | null>(null);
const agentRunsQuery = useAgentRunsInfinite(graph?.id); // only runs once graph.id is known
const agentRuns = agentRunsQuery.agentRuns;
const [agentPresets, setAgentPresets] = useState<LibraryAgentPreset[]>([]);
const [schedules, setSchedules] = useState<Schedule[]>([]);
const [selectedView, selectView] = useState<
| { type: "run"; id?: GraphExecutionID }
| { type: "preset"; id: LibraryAgentPresetID }
| { type: "schedule"; id: ScheduleID }
>({ type: "run" });
const [selectedRun, setSelectedRun] = useState<
GraphExecution | GraphExecutionMeta | null
>(null);
const selectedSchedule =
selectedView.type == "schedule"
? schedules.find((s) => s.id == selectedView.id)
: null;
const [isFirstLoad, setIsFirstLoad] = useState<boolean>(true);
const [agentDeleteDialogOpen, setAgentDeleteDialogOpen] =
useState<boolean>(false);
const [confirmingDeleteAgentRun, setConfirmingDeleteAgentRun] =
useState<GraphExecutionMeta | null>(null);
const [confirmingDeleteAgentPreset, setConfirmingDeleteAgentPreset] =
useState<LibraryAgentPresetID | null>(null);
const [copyAgentDialogOpen, setCopyAgentDialogOpen] = useState(false);
const [creatingPresetFromExecutionID, setCreatingPresetFromExecutionID] =
useState<GraphExecutionID | null>(null);
// Set page title with agent name
useEffect(() => {
if (agent) {
document.title = `${agent.name} - Library - AutoGPT Platform`;
}
}, [agent]);
const openRunDraftView = useCallback(() => {
selectView({ type: "run" });
}, []);
const selectRun = useCallback((id: GraphExecutionID) => {
selectView({ type: "run", id });
}, []);
const selectPreset = useCallback((id: LibraryAgentPresetID) => {
selectView({ type: "preset", id });
}, []);
const selectSchedule = useCallback((id: ScheduleID) => {
selectView({ type: "schedule", id });
}, []);
const graphVersions = useRef<Record<number, Graph>>({});
const loadingGraphVersions = useRef<Record<number, Promise<Graph>>>({});
const getGraphVersion = useCallback(
async (graphID: GraphID, version: number) => {
if (version in graphVersions.current)
return graphVersions.current[version];
if (version in loadingGraphVersions.current)
return loadingGraphVersions.current[version];
const pendingGraph = api.getGraph(graphID, version).then((graph) => {
graphVersions.current[version] = graph;
return graph;
});
// Cache promise as well to avoid duplicate requests
loadingGraphVersions.current[version] = pendingGraph;
return pendingGraph;
},
[api, graphVersions, loadingGraphVersions],
);
const lastRefresh = useRef<number>(0);
const refreshPageData = useCallback(() => {
if (Date.now() - lastRefresh.current < 2e3) return; // 2 second debounce
lastRefresh.current = Date.now();
api.getLibraryAgent(agentID).then((agent) => {
setAgent(agent);
getGraphVersion(agent.graph_id, agent.graph_version).then(
(_graph) =>
(graph && graph.version == _graph.version) || setGraph(_graph),
);
Promise.all([
agentRunsQuery.refetchRuns(),
api.listLibraryAgentPresets({
graph_id: agent.graph_id,
page_size: 100,
}),
]).then(([runsQueryResult, presets]) => {
setAgentPresets(presets.presets);
const newestAgentRunsResponse = runsQueryResult.data?.pages[0];
if (!newestAgentRunsResponse || newestAgentRunsResponse.status != 200)
return;
const newestAgentRuns = newestAgentRunsResponse.data.executions;
// Preload the corresponding graph versions for the latest 10 runs
new Set(
newestAgentRuns.slice(0, 10).map((run) => run.graph_version),
).forEach((version) => getGraphVersion(agent.graph_id, version));
});
});
}, [api, agentID, getGraphVersion, graph]);
// On first load: select the latest run
useEffect(() => {
// Only for first load or first execution
if (selectedView.id || !isFirstLoad) return;
if (agentRuns.length == 0 && agentPresets.length == 0) return;
setIsFirstLoad(false);
if (agentRuns.length > 0) {
// select latest run
const latestRun = agentRuns.reduce((latest, current) => {
if (!latest.started_at && !current.started_at) return latest;
if (!latest.started_at) return current;
if (!current.started_at) return latest;
return latest.started_at > current.started_at ? latest : current;
}, agentRuns[0]);
selectRun(latestRun.id as GraphExecutionID);
} else {
// select top preset
const latestPreset = agentPresets.toSorted(
(a, b) => b.updated_at.getTime() - a.updated_at.getTime(),
)[0];
selectPreset(latestPreset.id);
}
}, [
isFirstLoad,
selectedView.id,
agentRuns,
agentPresets,
selectRun,
selectPreset,
]);
useEffect(() => {
if (executionId) {
selectRun(executionId as GraphExecutionID);
setExecutionId(null);
}
}, [executionId, selectRun, setExecutionId]);
// Initial load
useEffect(() => {
refreshPageData();
// Show a toast when the WebSocket connection disconnects
let connectionToast: ReturnType<typeof toast> | null = null;
const cancelDisconnectHandler = api.onWebSocketDisconnect(() => {
connectionToast ??= toast({
title: "Connection to server was lost",
variant: "destructive",
description: (
<div className="flex items-center">
Trying to reconnect...
<LoadingSpinner className="ml-1.5 size-3.5" />
</div>
),
duration: Infinity,
dismissable: true,
});
});
const cancelConnectHandler = api.onWebSocketConnect(() => {
if (connectionToast)
connectionToast.update({
id: connectionToast.id,
title: "✅ Connection re-established",
variant: "default",
description: (
<div className="flex items-center">
Refreshing data...
<LoadingSpinner className="ml-1.5 size-3.5" />
</div>
),
duration: 2000,
dismissable: true,
});
connectionToast = null;
});
return () => {
cancelDisconnectHandler();
cancelConnectHandler();
};
}, []);
// Subscribe to WebSocket updates for agent runs
useEffect(() => {
if (!agent?.graph_id) return;
return api.onWebSocketConnect(() => {
refreshPageData(); // Sync up on (re)connect
// Subscribe to all executions for this agent
api.subscribeToGraphExecutions(agent.graph_id);
});
}, [api, agent?.graph_id, refreshPageData]);
// Handle execution updates
useEffect(() => {
const detachExecUpdateHandler = api.onWebSocketMessage(
"graph_execution_event",
(data) => {
if (data.graph_id != agent?.graph_id) return;
agentRunsQuery.upsertAgentRun(data);
if (data.id === selectedView.id) {
// Update currently viewed run
setSelectedRun(data);
}
},
);
return () => {
detachExecUpdateHandler();
};
}, [api, agent?.graph_id, selectedView.id]);
// Pre-load selectedRun based on selectedView
useEffect(() => {
if (selectedView.type != "run" || !selectedView.id) return;
const newSelectedRun = agentRuns.find((run) => run.id == selectedView.id);
if (selectedView.id !== selectedRun?.id) {
// Pull partial data from "cache" while waiting for the rest to load
setSelectedRun((newSelectedRun as GraphExecutionMeta) ?? null);
}
}, [api, selectedView, agentRuns, selectedRun?.id]);
// Load selectedRun based on selectedView; refresh on agent refresh
useEffect(() => {
if (selectedView.type != "run" || !selectedView.id || !agent) return;
api
.getGraphExecutionInfo(agent.graph_id, selectedView.id)
.then(async (run) => {
// Ensure corresponding graph version is available before rendering I/O
await getGraphVersion(run.graph_id, run.graph_version);
setSelectedRun(run);
});
}, [api, selectedView, agent, getGraphVersion]);
const fetchSchedules = useCallback(async () => {
if (!agent) return;
setSchedules(await api.listGraphExecutionSchedules(agent.graph_id));
}, [api, agent?.graph_id]);
useEffect(() => {
fetchSchedules();
}, [fetchSchedules]);
// =========================== ACTIONS ============================
const deleteRun = useCallback(
async (run: GraphExecutionMeta) => {
if (run.status == "RUNNING" || run.status == "QUEUED") {
await api.stopGraphExecution(run.graph_id, run.id);
}
await api.deleteGraphExecution(run.id);
setConfirmingDeleteAgentRun(null);
if (selectedView.type == "run" && selectedView.id == run.id) {
openRunDraftView();
}
agentRunsQuery.removeAgentRun(run.id);
},
[api, selectedView, openRunDraftView],
);
const deletePreset = useCallback(
async (presetID: LibraryAgentPresetID) => {
await api.deleteLibraryAgentPreset(presetID);
setConfirmingDeleteAgentPreset(null);
if (selectedView.type == "preset" && selectedView.id == presetID) {
openRunDraftView();
}
setAgentPresets((presets) => presets.filter((p) => p.id !== presetID));
},
[api, selectedView, openRunDraftView],
);
const deleteSchedule = useCallback(
async (scheduleID: ScheduleID) => {
const removedSchedule =
await api.deleteGraphExecutionSchedule(scheduleID);
setSchedules((schedules) => {
const newSchedules = schedules.filter(
(s) => s.id !== removedSchedule.id,
);
if (
selectedView.type == "schedule" &&
selectedView.id == removedSchedule.id
) {
if (newSchedules.length > 0) {
// Select next schedule if available
selectSchedule(newSchedules[0].id);
} else {
// Reset to draft view if current schedule was deleted
openRunDraftView();
}
}
return newSchedules;
});
openRunDraftView();
},
[schedules, api],
);
const handleCreatePresetFromRun = useCallback(
async (name: string, description: string) => {
if (!creatingPresetFromExecutionID) return;
await api
.createLibraryAgentPreset({
name,
description,
graph_execution_id: creatingPresetFromExecutionID,
})
.then((preset) => {
setAgentPresets((prev) => [...prev, preset]);
selectPreset(preset.id);
setCreatingPresetFromExecutionID(null);
})
.catch(toastOnFail("create a preset"));
},
[api, creatingPresetFromExecutionID, selectPreset, toast],
);
const downloadGraph = useCallback(
async () =>
agent &&
// Export sanitized graph from backend
api
.getGraph(agent.graph_id, agent.graph_version, true)
.then((graph) =>
exportAsJSONFile(graph, `${graph.name}_v${graph.version}.json`),
),
[api, agent],
);
const copyAgent = useCallback(async () => {
setCopyAgentDialogOpen(false);
api
.forkLibraryAgent(agentID)
.then((newAgent) => {
router.push(`/library/agents/${newAgent.id}`);
})
.catch((error) => {
console.error("Error copying agent:", error);
toast({
title: "Error copying agent",
description: `An error occurred while copying the agent: ${error.message}`,
variant: "destructive",
});
});
}, [agentID, api, router, toast]);
const agentActions: ButtonAction[] = useMemo(
() => [
{
label: "Customize agent",
href: `/build?flowID=${agent?.graph_id}&flowVersion=${agent?.graph_version}`,
disabled: !agent?.can_access_graph,
},
{ label: "Export agent to file", callback: downloadGraph },
...(!agent?.can_access_graph
? [
{
label: "Edit a copy",
callback: () => setCopyAgentDialogOpen(true),
},
]
: []),
{
label: "Delete agent",
callback: () => setAgentDeleteDialogOpen(true),
},
],
[agent, downloadGraph],
);
const runGraph =
graphVersions.current[selectedRun?.graph_version ?? 0] ?? graph;
const onCreateSchedule = useCallback(
(schedule: Schedule) => {
setSchedules((prev) => [...prev, schedule]);
selectSchedule(schedule.id);
},
[selectView],
);
const onCreatePreset = useCallback(
(preset: LibraryAgentPreset) => {
setAgentPresets((prev) => [...prev, preset]);
selectPreset(preset.id);
},
[selectPreset],
);
const onUpdatePreset = useCallback(
(updated: LibraryAgentPreset) => {
setAgentPresets((prev) =>
prev.map((p) => (p.id === updated.id ? updated : p)),
);
selectPreset(updated.id);
},
[selectPreset],
);
if (!agent || !graph) {
return <LoadingBox className="h-[90vh]" />;
}
return (
<div className="container justify-stretch p-0 pt-16 lg:flex">
{/* Sidebar w/ list of runs */}
{/* TODO: render this below header in sm and md layouts */}
<AgentRunsSelectorList
className="agpt-div w-full border-b pb-2 lg:w-auto lg:border-b-0 lg:border-r lg:pb-0"
agent={agent}
agentRunsQuery={agentRunsQuery}
agentPresets={agentPresets}
schedules={schedules}
selectedView={selectedView}
onSelectRun={selectRun}
onSelectPreset={selectPreset}
onSelectSchedule={selectSchedule}
onSelectDraftNewRun={openRunDraftView}
doDeleteRun={setConfirmingDeleteAgentRun}
doDeletePreset={setConfirmingDeleteAgentPreset}
doDeleteSchedule={deleteSchedule}
doCreatePresetFromRun={setCreatingPresetFromExecutionID}
/>
<div className="flex-1">
{/* Header */}
<div className="agpt-div w-full border-b">
<h1
data-testid="agent-title"
className="font-poppins text-3xl font-medium"
>
{
agent.name /* TODO: use dynamic/custom run title - https://github.com/Significant-Gravitas/AutoGPT/issues/9184 */
}
</h1>
</div>
{/* Run / Schedule views */}
{(selectedView.type == "run" && selectedView.id ? (
selectedRun && runGraph ? (
<AgentRunDetailsView
agent={agent}
graph={runGraph}
run={selectedRun}
agentActions={agentActions}
onRun={selectRun}
doDeleteRun={() => setConfirmingDeleteAgentRun(selectedRun)}
doCreatePresetFromRun={() =>
setCreatingPresetFromExecutionID(selectedRun.id)
}
/>
) : null
) : selectedView.type == "run" ? (
/* Draft new runs / Create new presets */
<AgentRunDraftView
graph={graph}
onRun={selectRun}
onCreateSchedule={onCreateSchedule}
onCreatePreset={onCreatePreset}
agentActions={agentActions}
recommendedScheduleCron={agent?.recommended_schedule_cron || null}
/>
) : selectedView.type == "preset" ? (
/* Edit & update presets */
<AgentRunDraftView
graph={graph}
agentPreset={
agentPresets.find((preset) => preset.id == selectedView.id)!
}
onRun={selectRun}
recommendedScheduleCron={agent?.recommended_schedule_cron || null}
onCreateSchedule={onCreateSchedule}
onUpdatePreset={onUpdatePreset}
doDeletePreset={setConfirmingDeleteAgentPreset}
agentActions={agentActions}
/>
) : selectedView.type == "schedule" ? (
selectedSchedule &&
graph && (
<AgentScheduleDetailsView
graph={graph}
schedule={selectedSchedule}
// agent={agent}
agentActions={agentActions}
onForcedRun={selectRun}
doDeleteSchedule={deleteSchedule}
/>
)
) : null) || <LoadingBox className="h-[70vh]" />}
<DeleteConfirmDialog
entityType="agent"
open={agentDeleteDialogOpen}
onOpenChange={setAgentDeleteDialogOpen}
onDoDelete={() =>
agent &&
api.deleteLibraryAgent(agent.id).then(() => router.push("/library"))
}
/>
<DeleteConfirmDialog
entityType="agent run"
open={!!confirmingDeleteAgentRun}
onOpenChange={(open) => !open && setConfirmingDeleteAgentRun(null)}
onDoDelete={() =>
confirmingDeleteAgentRun && deleteRun(confirmingDeleteAgentRun)
}
/>
<DeleteConfirmDialog
entityType={agent.has_external_trigger ? "trigger" : "agent preset"}
open={!!confirmingDeleteAgentPreset}
onOpenChange={(open) => !open && setConfirmingDeleteAgentPreset(null)}
onDoDelete={() =>
confirmingDeleteAgentPreset &&
deletePreset(confirmingDeleteAgentPreset)
}
/>
{/* Copy agent confirmation dialog */}
<Dialog
onOpenChange={setCopyAgentDialogOpen}
open={copyAgentDialogOpen}
>
<DialogContent>
<DialogHeader>
<DialogTitle>You&apos;re making an editable copy</DialogTitle>
<DialogDescription className="pt-2">
The original Marketplace agent stays the same and cannot be
edited. We&apos;ll save a new version of this agent to your
Library. From there, you can customize it however you&apos;d
like by clicking &quot;Customize agent&quot; this will open
the builder where you can see and modify the inner workings.
</DialogDescription>
</DialogHeader>
<DialogFooter className="justify-end">
<Button
type="button"
variant="outline"
onClick={() => setCopyAgentDialogOpen(false)}
>
Cancel
</Button>
<Button type="button" onClick={copyAgent}>
Continue
</Button>
</DialogFooter>
</DialogContent>
</Dialog>
<CreatePresetDialog
open={!!creatingPresetFromExecutionID}
onOpenChange={() => setCreatingPresetFromExecutionID(null)}
onConfirm={handleCreatePresetFromRun}
/>
</div>
</div>
);
}

View File

@@ -1,445 +0,0 @@
"use client";
import { format, formatDistanceToNow, formatDistanceStrict } from "date-fns";
import React, { useCallback, useMemo, useEffect } from "react";
import {
Graph,
GraphExecution,
GraphExecutionID,
GraphExecutionMeta,
LibraryAgent,
} from "@/lib/autogpt-server-api";
import { useBackendAPI } from "@/lib/autogpt-server-api/context";
import ActionButtonGroup from "@/components/__legacy__/action-button-group";
import type { ButtonAction } from "@/components/__legacy__/types";
import {
Card,
CardContent,
CardHeader,
CardTitle,
} from "@/components/__legacy__/ui/card";
import {
IconRefresh,
IconSquare,
IconCircleAlert,
} from "@/components/__legacy__/ui/icons";
import { Input } from "@/components/__legacy__/ui/input";
import LoadingBox from "@/components/__legacy__/ui/loading";
import {
Tooltip,
TooltipContent,
TooltipProvider,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import { useToastOnFail } from "@/components/molecules/Toast/use-toast";
import { AgentRunStatus, agentRunStatusMap } from "./agent-run-status-chip";
import useCredits from "@/hooks/useCredits";
import { AgentRunOutputView } from "./agent-run-output-view";
import { analytics } from "@/services/analytics";
import { PendingReviewsList } from "@/components/organisms/PendingReviewsList/PendingReviewsList";
import { usePendingReviewsForExecution } from "@/hooks/usePendingReviews";
export function AgentRunDetailsView({
agent,
graph,
run,
agentActions,
onRun,
doDeleteRun,
doCreatePresetFromRun,
}: {
agent: LibraryAgent;
graph: Graph;
run: GraphExecution | GraphExecutionMeta;
agentActions: ButtonAction[];
onRun: (runID: GraphExecutionID) => void;
doDeleteRun: () => void;
doCreatePresetFromRun: () => void;
}): React.ReactNode {
const api = useBackendAPI();
const { formatCredits } = useCredits();
const runStatus: AgentRunStatus = useMemo(
() => agentRunStatusMap[run.status],
[run],
);
const {
pendingReviews,
isLoading: reviewsLoading,
refetch: refetchReviews,
} = usePendingReviewsForExecution(run.id);
const toastOnFail = useToastOnFail();
// Refetch pending reviews when execution status changes to REVIEW
useEffect(() => {
if (runStatus === "review" && run.id) {
refetchReviews();
}
}, [runStatus, run.id, refetchReviews]);
const infoStats: { label: string; value: React.ReactNode }[] = useMemo(() => {
if (!run) return [];
return [
{
label: "Status",
value: runStatus.charAt(0).toUpperCase() + runStatus.slice(1),
},
{
label: "Started",
value: run.started_at
? `${formatDistanceToNow(run.started_at, { addSuffix: true })}, ${format(run.started_at, "HH:mm")}`
: "—",
},
...(run.stats
? [
{
label: "Duration",
value: formatDistanceStrict(0, run.stats.duration * 1000),
},
{ label: "Steps", value: run.stats.node_exec_count },
{ label: "Cost", value: formatCredits(run.stats.cost) },
]
: []),
];
}, [run, runStatus, formatCredits]);
const agentRunInputs:
| Record<
string,
{
title?: string;
/* type: BlockIOSubType; */
value: string | number | undefined;
}
>
| undefined = useMemo(() => {
if (!run.inputs) return undefined;
// TODO: show (link to) preset - https://github.com/Significant-Gravitas/AutoGPT/issues/9168
// Add type info from agent input schema
return Object.fromEntries(
Object.entries(run.inputs).map(([k, v]) => [
k,
{
title: graph.input_schema.properties[k]?.title,
// type: graph.input_schema.properties[k].type, // TODO: implement typed graph inputs
value: typeof v == "object" ? JSON.stringify(v, undefined, 2) : v,
},
]),
);
}, [graph, run]);
const runAgain = useCallback(() => {
if (
!run.inputs ||
!(graph.credentials_input_schema?.required ?? []).every(
(k) => k in (run.credential_inputs ?? {}),
)
)
return;
if (run.preset_id) {
return api
.executeLibraryAgentPreset(
run.preset_id,
run.inputs!,
run.credential_inputs!,
)
.then(({ id }) => {
analytics.sendDatafastEvent("run_agent", {
name: graph.name,
id: graph.id,
});
onRun(id);
})
.catch(toastOnFail("execute agent preset"));
}
return api
.executeGraph(
graph.id,
graph.version,
run.inputs!,
run.credential_inputs!,
"library",
)
.then(({ id }) => {
analytics.sendDatafastEvent("run_agent", {
name: graph.name,
id: graph.id,
});
onRun(id);
})
.catch(toastOnFail("execute agent"));
}, [api, graph, run, onRun, toastOnFail]);
const stopRun = useCallback(
() => api.stopGraphExecution(graph.id, run.id),
[api, graph.id, run.id],
);
const agentRunOutputs:
| Record<
string,
{
title?: string;
/* type: BlockIOSubType; */
values: Array<React.ReactNode>;
}
>
| null
| undefined = useMemo(() => {
if (!("outputs" in run)) return undefined;
if (!["running", "success", "failed", "stopped"].includes(runStatus))
return null;
// Add type info from agent input schema
return Object.fromEntries(
Object.entries(run.outputs).map(([k, vv]) => [
k,
{
title: graph.output_schema.properties[k].title,
/* type: agent.output_schema.properties[k].type */
values: vv.map((v) =>
typeof v == "object" ? JSON.stringify(v, undefined, 2) : v,
),
},
]),
);
}, [graph, run, runStatus]);
const runActions: ButtonAction[] = useMemo(
() => [
...(["running", "queued"].includes(runStatus)
? ([
{
label: (
<>
<IconSquare className="mr-2 size-4" />
Stop run
</>
),
variant: "secondary",
callback: stopRun,
},
] satisfies ButtonAction[])
: []),
...(["success", "failed", "stopped"].includes(runStatus) &&
!graph.has_external_trigger &&
(graph.credentials_input_schema?.required ?? []).every(
(k) => k in (run.credential_inputs ?? {}),
)
? [
{
label: (
<>
<IconRefresh className="mr-2 size-4" />
Run again
</>
),
callback: runAgain,
dataTestId: "run-again-button",
},
]
: []),
...(agent.can_access_graph
? [
{
label: "Open run in builder",
href: `/build?flowID=${run.graph_id}&flowVersion=${run.graph_version}&flowExecutionID=${run.id}`,
},
]
: []),
{ label: "Create preset from run", callback: doCreatePresetFromRun },
{ label: "Delete run", variant: "secondary", callback: doDeleteRun },
],
[
runStatus,
runAgain,
stopRun,
doDeleteRun,
doCreatePresetFromRun,
graph.has_external_trigger,
graph.credentials_input_schema?.required,
agent.can_access_graph,
run.graph_id,
run.graph_version,
run.id,
],
);
return (
<div className="agpt-div flex gap-6">
<div className="flex flex-1 flex-col gap-4">
<Card className="agpt-box">
<CardHeader>
<CardTitle className="font-poppins text-lg">Info</CardTitle>
</CardHeader>
<CardContent>
<div className="flex justify-stretch gap-4">
{infoStats.map(({ label, value }) => (
<div key={label} className="flex-1">
<p className="text-sm font-medium text-black">{label}</p>
<p className="text-sm text-neutral-600">{value}</p>
</div>
))}
</div>
{run.status === "FAILED" && (
<div className="mt-4 rounded-md border border-red-200 bg-red-50 p-3 dark:border-red-800 dark:bg-red-900/20">
<p className="text-sm text-red-800 dark:text-red-200">
<strong>Error:</strong>{" "}
{run.stats?.error ||
"The execution failed due to an internal error. You can re-run the agent to retry."}
</p>
</div>
)}
</CardContent>
</Card>
{/* Smart Agent Execution Summary */}
{run.stats?.activity_status && (
<Card className="agpt-box">
<CardHeader>
<CardTitle className="flex items-center gap-2 font-poppins text-lg">
Task Summary
<TooltipProvider>
<Tooltip>
<TooltipTrigger asChild>
<IconCircleAlert className="size-4 cursor-help text-neutral-500 hover:text-neutral-700" />
</TooltipTrigger>
<TooltipContent>
<p className="max-w-xs">
This AI-generated summary describes how the agent
handled your task. Its an experimental feature and may
occasionally be inaccurate.
</p>
</TooltipContent>
</Tooltip>
</TooltipProvider>
</CardTitle>
</CardHeader>
<CardContent className="space-y-4">
<p className="text-sm leading-relaxed text-neutral-700">
{run.stats.activity_status}
</p>
{/* Correctness Score */}
{typeof run.stats.correctness_score === "number" && (
<div className="flex items-center gap-3 rounded-lg bg-neutral-50 p-3">
<div className="flex items-center gap-2">
<span className="text-sm font-medium text-neutral-600">
Success Estimate:
</span>
<div className="flex items-center gap-2">
<div className="relative h-2 w-16 overflow-hidden rounded-full bg-neutral-200">
<div
className={`h-full transition-all ${
run.stats.correctness_score >= 0.8
? "bg-green-500"
: run.stats.correctness_score >= 0.6
? "bg-yellow-500"
: run.stats.correctness_score >= 0.4
? "bg-orange-500"
: "bg-red-500"
}`}
style={{
width: `${Math.round(run.stats.correctness_score * 100)}%`,
}}
/>
</div>
<span className="text-sm font-medium">
{Math.round(run.stats.correctness_score * 100)}%
</span>
</div>
</div>
<TooltipProvider>
<Tooltip>
<TooltipTrigger asChild>
<IconCircleAlert className="size-4 cursor-help text-neutral-400 hover:text-neutral-600" />
</TooltipTrigger>
<TooltipContent>
<p className="max-w-xs">
AI-generated estimate of how well this execution
achieved its intended purpose. This score indicates
{run.stats.correctness_score >= 0.8
? " the agent was highly successful."
: run.stats.correctness_score >= 0.6
? " the agent was mostly successful with minor issues."
: run.stats.correctness_score >= 0.4
? " the agent was partially successful with some gaps."
: " the agent had limited success with significant issues."}
</p>
</TooltipContent>
</Tooltip>
</TooltipProvider>
</div>
)}
</CardContent>
</Card>
)}
{agentRunOutputs !== null && (
<AgentRunOutputView agentRunOutputs={agentRunOutputs} />
)}
{/* Pending Reviews Section */}
{runStatus === "review" && (
<Card className="agpt-box">
<CardHeader>
<CardTitle className="font-poppins text-lg">
Pending Reviews ({pendingReviews.length})
</CardTitle>
</CardHeader>
<CardContent>
{reviewsLoading ? (
<LoadingBox spinnerSize={12} className="h-24" />
) : pendingReviews.length > 0 ? (
<PendingReviewsList
reviews={pendingReviews}
onReviewComplete={refetchReviews}
emptyMessage="No pending reviews for this execution"
/>
) : (
<div className="py-4 text-neutral-600">
No pending reviews for this execution
</div>
)}
</CardContent>
</Card>
)}
<Card className="agpt-box">
<CardHeader>
<CardTitle className="font-poppins text-lg">Input</CardTitle>
</CardHeader>
<CardContent className="flex flex-col gap-4">
{agentRunInputs !== undefined ? (
Object.entries(agentRunInputs).map(([key, { title, value }]) => (
<div key={key} className="flex flex-col gap-1.5">
<label className="text-sm font-medium">{title || key}</label>
<Input value={value} className="rounded-full" disabled />
</div>
))
) : (
<LoadingBox spinnerSize={12} className="h-24" />
)}
</CardContent>
</Card>
</div>
{/* Run / Agent Actions */}
<aside className="w-48 xl:w-56">
<div className="flex flex-col gap-8">
<ActionButtonGroup title="Run actions" actions={runActions} />
<ActionButtonGroup title="Agent actions" actions={agentActions} />
</div>
</aside>
</div>
);
}

View File

@@ -1,178 +0,0 @@
"use client";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import React, { useMemo } from "react";
import {
Card,
CardContent,
CardHeader,
CardTitle,
} from "@/components/__legacy__/ui/card";
import LoadingBox from "@/components/__legacy__/ui/loading";
import type { OutputMetadata } from "../../../../../../../../components/contextual/OutputRenderers";
import {
globalRegistry,
OutputActions,
OutputItem,
} from "../../../../../../../../components/contextual/OutputRenderers";
export function AgentRunOutputView({
agentRunOutputs,
}: {
agentRunOutputs:
| Record<
string,
{
title?: string;
/* type: BlockIOSubType; */
values: Array<React.ReactNode>;
}
>
| undefined;
}) {
const enableEnhancedOutputHandling = useGetFlag(
Flag.ENABLE_ENHANCED_OUTPUT_HANDLING,
);
// Prepare items for the renderer system
const outputItems = useMemo(() => {
if (!agentRunOutputs) return [];
const items: Array<{
key: string;
label: string;
value: unknown;
metadata?: OutputMetadata;
renderer: any;
}> = [];
Object.entries(agentRunOutputs).forEach(([key, { title, values }]) => {
values.forEach((value, index) => {
// Enhanced metadata extraction
const metadata: OutputMetadata = {};
// Type guard to safely access properties
if (
typeof value === "object" &&
value !== null &&
!React.isValidElement(value)
) {
const objValue = value as any;
if (objValue.type) metadata.type = objValue.type;
if (objValue.mimeType) metadata.mimeType = objValue.mimeType;
if (objValue.filename) metadata.filename = objValue.filename;
}
const renderer = globalRegistry.getRenderer(value, metadata);
if (renderer) {
items.push({
key: `${key}-${index}`,
label: index === 0 ? title || key : "",
value,
metadata,
renderer,
});
} else {
const textRenderer = globalRegistry
.getAllRenderers()
.find((r) => r.name === "TextRenderer");
if (textRenderer) {
items.push({
key: `${key}-${index}`,
label: index === 0 ? title || key : "",
value: JSON.stringify(value, null, 2),
metadata,
renderer: textRenderer,
});
}
}
});
});
return items;
}, [agentRunOutputs]);
return (
<>
{enableEnhancedOutputHandling ? (
<Card className="agpt-box" style={{ maxWidth: "950px" }}>
<CardHeader>
<div className="flex items-center justify-between">
<CardTitle className="font-poppins text-lg">Output</CardTitle>
{outputItems.length > 0 && (
<OutputActions
items={outputItems.map((item) => ({
value: item.value,
metadata: item.metadata,
renderer: item.renderer,
}))}
/>
)}
</div>
</CardHeader>
<CardContent
className="flex flex-col gap-4"
style={{ maxWidth: "660px" }}
>
{agentRunOutputs !== undefined ? (
outputItems.length > 0 ? (
outputItems.map((item) => (
<OutputItem
key={item.key}
value={item.value}
metadata={item.metadata}
renderer={item.renderer}
label={item.label}
/>
))
) : (
<p className="text-sm text-muted-foreground">
No outputs to display
</p>
)
) : (
<LoadingBox spinnerSize={12} className="h-24" />
)}
</CardContent>
</Card>
) : (
<Card className="agpt-box" style={{ maxWidth: "950px" }}>
<CardHeader>
<CardTitle className="font-poppins text-lg">Output</CardTitle>
</CardHeader>
<CardContent
className="flex flex-col gap-4"
style={{ maxWidth: "660px" }}
>
{agentRunOutputs !== undefined ? (
Object.entries(agentRunOutputs).map(
([key, { title, values }]) => (
<div key={key} className="flex flex-col gap-1.5">
<label className="text-sm font-medium">
{title || key}
</label>
{values.map((value, i) => (
<p
className="resize-none overflow-x-auto whitespace-pre-wrap break-words border-none text-sm text-neutral-700 disabled:cursor-not-allowed"
key={i}
>
{value}
</p>
))}
{/* TODO: pretty type-dependent rendering */}
</div>
),
)
) : (
<LoadingBox spinnerSize={12} className="h-24" />
)}
</CardContent>
</Card>
)}
</>
);
}

View File

@@ -1,68 +0,0 @@
import React from "react";
import { Badge } from "@/components/__legacy__/ui/badge";
import { GraphExecutionMeta } from "@/lib/autogpt-server-api/types";
export type AgentRunStatus =
| "success"
| "failed"
| "queued"
| "running"
| "stopped"
| "scheduled"
| "draft"
| "review";
export const agentRunStatusMap: Record<
GraphExecutionMeta["status"],
AgentRunStatus
> = {
INCOMPLETE: "draft",
COMPLETED: "success",
FAILED: "failed",
QUEUED: "queued",
RUNNING: "running",
TERMINATED: "stopped",
REVIEW: "review",
};
const statusData: Record<
AgentRunStatus,
{ label: string; variant: keyof typeof statusStyles }
> = {
success: { label: "Success", variant: "success" },
running: { label: "Running", variant: "info" },
failed: { label: "Failed", variant: "destructive" },
queued: { label: "Queued", variant: "warning" },
draft: { label: "Draft", variant: "secondary" },
stopped: { label: "Stopped", variant: "secondary" },
scheduled: { label: "Scheduled", variant: "secondary" },
review: { label: "In Review", variant: "warning" },
};
const statusStyles = {
success:
"bg-green-100 text-green-800 hover:bg-green-100 hover:text-green-800",
destructive: "bg-red-100 text-red-800 hover:bg-red-100 hover:text-red-800",
warning:
"bg-yellow-100 text-yellow-800 hover:bg-yellow-100 hover:text-yellow-800",
info: "bg-blue-100 text-blue-800 hover:bg-blue-100 hover:text-blue-800",
secondary:
"bg-slate-100 text-slate-800 hover:bg-slate-100 hover:text-slate-800",
};
export function AgentRunStatusChip({
status,
}: {
status: AgentRunStatus;
}): React.ReactElement {
return (
<Badge
variant="secondary"
className={`text-xs font-medium ${statusStyles[statusData[status]?.variant]} rounded-[45px] px-[9px] py-[3px]`}
>
{statusData[status]?.label}
</Badge>
);
}

View File

@@ -1,130 +0,0 @@
import React from "react";
import { formatDistanceToNow, isPast } from "date-fns";
import { cn } from "@/lib/utils";
import { Link2Icon, Link2OffIcon, MoreVertical } from "lucide-react";
import { Card, CardContent } from "@/components/__legacy__/ui/card";
import { Button } from "@/components/__legacy__/ui/button";
import {
DropdownMenu,
DropdownMenuContent,
DropdownMenuItem,
DropdownMenuTrigger,
} from "@/components/__legacy__/ui/dropdown-menu";
import { AgentStatus, AgentStatusChip } from "./agent-status-chip";
import { AgentRunStatus, AgentRunStatusChip } from "./agent-run-status-chip";
import { PushPinSimpleIcon } from "@phosphor-icons/react";
export type AgentRunSummaryProps = (
| {
type: "run";
status: AgentRunStatus;
}
| {
type: "preset";
status?: undefined;
}
| {
type: "preset.triggered";
status: AgentStatus;
}
| {
type: "schedule";
status: "scheduled";
}
) & {
title: string;
timestamp?: number | Date;
selected?: boolean;
onClick?: () => void;
// onRename: () => void;
onDelete: () => void;
onPinAsPreset?: () => void;
className?: string;
};
export function AgentRunSummaryCard({
type,
status,
title,
timestamp,
selected = false,
onClick,
// onRename,
onDelete,
onPinAsPreset,
className,
}: AgentRunSummaryProps): React.ReactElement {
return (
<Card
className={cn(
"agpt-rounded-card cursor-pointer border-zinc-300",
selected ? "agpt-card-selected" : "",
className,
)}
onClick={onClick}
>
<CardContent className="relative p-2.5 lg:p-4">
{(type == "run" || type == "schedule") && (
<AgentRunStatusChip status={status} />
)}
{type == "preset" && (
<div className="flex items-center text-sm font-medium text-neutral-700">
<PushPinSimpleIcon className="mr-1 size-4 text-foreground" /> Preset
</div>
)}
{type == "preset.triggered" && (
<div className="flex items-center justify-between">
<AgentStatusChip status={status} />
<div className="flex items-center text-sm font-medium text-neutral-700">
{status == "inactive" ? (
<Link2OffIcon className="mr-1 size-4 text-foreground" />
) : (
<Link2Icon className="mr-1 size-4 text-foreground" />
)}{" "}
Trigger
</div>
</div>
)}
<div className="mt-5 flex items-center justify-between">
<h3 className="truncate pr-2 text-base font-medium text-neutral-900">
{title}
</h3>
<DropdownMenu>
<DropdownMenuTrigger asChild>
<Button variant="ghost" className="h-5 w-5 p-0">
<MoreVertical className="h-5 w-5" />
</Button>
</DropdownMenuTrigger>
<DropdownMenuContent>
{onPinAsPreset && (
<DropdownMenuItem onClick={onPinAsPreset}>
Pin as a preset
</DropdownMenuItem>
)}
{/* <DropdownMenuItem onClick={onRename}>Rename</DropdownMenuItem> */}
<DropdownMenuItem onClick={onDelete}>Delete</DropdownMenuItem>
</DropdownMenuContent>
</DropdownMenu>
</div>
{timestamp && (
<p
className="mt-1 text-sm font-normal text-neutral-500"
title={new Date(timestamp).toString()}
>
{isPast(timestamp) ? "Ran" : "Runs in"}{" "}
{formatDistanceToNow(timestamp, { addSuffix: true })}
</p>
)}
</CardContent>
</Card>
);
}

View File

@@ -1,237 +0,0 @@
"use client";
import { Plus } from "lucide-react";
import React, { useEffect, useState } from "react";
import {
GraphExecutionID,
GraphExecutionMeta,
LibraryAgent,
LibraryAgentPreset,
LibraryAgentPresetID,
Schedule,
ScheduleID,
} from "@/lib/autogpt-server-api";
import { cn } from "@/lib/utils";
import { Badge } from "@/components/__legacy__/ui/badge";
import { Button } from "@/components/atoms/Button/Button";
import LoadingBox, { LoadingSpinner } from "@/components/__legacy__/ui/loading";
import { Separator } from "@/components/__legacy__/ui/separator";
import { ScrollArea } from "@/components/__legacy__/ui/scroll-area";
import { InfiniteScroll } from "@/components/contextual/InfiniteScroll/InfiniteScroll";
import { AgentRunsQuery } from "../use-agent-runs";
import { agentRunStatusMap } from "./agent-run-status-chip";
import { AgentRunSummaryCard } from "./agent-run-summary-card";
interface AgentRunsSelectorListProps {
agent: LibraryAgent;
agentRunsQuery: AgentRunsQuery;
agentPresets: LibraryAgentPreset[];
schedules: Schedule[];
selectedView: { type: "run" | "preset" | "schedule"; id?: string };
allowDraftNewRun?: boolean;
onSelectRun: (id: GraphExecutionID) => void;
onSelectPreset: (preset: LibraryAgentPresetID) => void;
onSelectSchedule: (id: ScheduleID) => void;
onSelectDraftNewRun: () => void;
doDeleteRun: (id: GraphExecutionMeta) => void;
doDeletePreset: (id: LibraryAgentPresetID) => void;
doDeleteSchedule: (id: ScheduleID) => void;
doCreatePresetFromRun?: (id: GraphExecutionID) => void;
className?: string;
}
export function AgentRunsSelectorList({
agent,
agentRunsQuery: {
agentRuns,
agentRunCount,
agentRunsLoading,
hasMoreRuns,
fetchMoreRuns,
isFetchingMoreRuns,
},
agentPresets,
schedules,
selectedView,
allowDraftNewRun = true,
onSelectRun,
onSelectPreset,
onSelectSchedule,
onSelectDraftNewRun,
doDeleteRun,
doDeletePreset,
doDeleteSchedule,
doCreatePresetFromRun,
className,
}: AgentRunsSelectorListProps): React.ReactElement {
const [activeListTab, setActiveListTab] = useState<"runs" | "scheduled">(
"runs",
);
useEffect(() => {
if (selectedView.type === "schedule") {
setActiveListTab("scheduled");
} else {
setActiveListTab("runs");
}
}, [selectedView]);
const listItemClasses = "h-28 w-72 lg:w-full lg:h-32";
return (
<aside className={cn("flex flex-col gap-4", className)}>
{allowDraftNewRun ? (
<Button
className={"mb-4 hidden lg:flex"}
onClick={onSelectDraftNewRun}
leftIcon={<Plus className="h-6 w-6" />}
>
New {agent.has_external_trigger ? "trigger" : "run"}
</Button>
) : null}
<div className="flex gap-2">
<Badge
variant={activeListTab === "runs" ? "secondary" : "outline"}
className="cursor-pointer gap-2 rounded-full text-base"
onClick={() => setActiveListTab("runs")}
>
<span>Runs</span>
<span className="text-neutral-600">
{agentRunCount ?? <LoadingSpinner className="size-4" />}
</span>
</Badge>
<Badge
variant={activeListTab === "scheduled" ? "secondary" : "outline"}
className="cursor-pointer gap-2 rounded-full text-base"
onClick={() => setActiveListTab("scheduled")}
>
<span>Scheduled</span>
<span className="text-neutral-600">{schedules.length}</span>
</Badge>
</div>
{/* Runs / Schedules list */}
{agentRunsLoading && activeListTab === "runs" ? (
<LoadingBox className="h-28 w-full lg:h-[calc(100vh-300px)] lg:w-72 xl:w-80" />
) : (
<ScrollArea
className="w-full lg:h-[calc(100vh-300px)] lg:w-72 xl:w-80"
orientation={window.innerWidth >= 1024 ? "vertical" : "horizontal"}
>
<InfiniteScroll
direction={window.innerWidth >= 1024 ? "vertical" : "horizontal"}
hasNextPage={hasMoreRuns}
fetchNextPage={fetchMoreRuns}
isFetchingNextPage={isFetchingMoreRuns}
>
<div className="flex items-center gap-2 lg:flex-col">
{/* New Run button - only in small layouts */}
{allowDraftNewRun && (
<Button
size="large"
className={
"flex h-12 w-40 items-center gap-2 py-6 lg:hidden " +
(selectedView.type == "run" && !selectedView.id
? "agpt-card-selected text-accent"
: "")
}
onClick={onSelectDraftNewRun}
leftIcon={<Plus className="h-6 w-6" />}
>
New {agent.has_external_trigger ? "trigger" : "run"}
</Button>
)}
{activeListTab === "runs" ? (
<>
{agentPresets
.filter((preset) => preset.webhook) // Triggers
.toSorted(
(a, b) => b.updated_at.getTime() - a.updated_at.getTime(),
)
.map((preset) => (
<AgentRunSummaryCard
className={cn(listItemClasses, "lg:h-auto")}
key={preset.id}
type="preset.triggered"
status={preset.is_active ? "active" : "inactive"}
title={preset.name}
// timestamp={preset.last_run_time} // TODO: implement this
selected={selectedView.id === preset.id}
onClick={() => onSelectPreset(preset.id)}
onDelete={() => doDeletePreset(preset.id)}
/>
))}
{agentPresets
.filter((preset) => !preset.webhook) // Presets
.toSorted(
(a, b) => b.updated_at.getTime() - a.updated_at.getTime(),
)
.map((preset) => (
<AgentRunSummaryCard
className={cn(listItemClasses, "lg:h-auto")}
key={preset.id}
type="preset"
title={preset.name}
// timestamp={preset.last_run_time} // TODO: implement this
selected={selectedView.id === preset.id}
onClick={() => onSelectPreset(preset.id)}
onDelete={() => doDeletePreset(preset.id)}
/>
))}
{agentPresets.length > 0 && <Separator className="my-1" />}
{agentRuns
.toSorted((a, b) => {
const aTime = a.started_at?.getTime() ?? 0;
const bTime = b.started_at?.getTime() ?? 0;
return bTime - aTime;
})
.map((run) => (
<AgentRunSummaryCard
className={listItemClasses}
key={run.id}
type="run"
status={agentRunStatusMap[run.status]}
title={
(run.preset_id
? agentPresets.find((p) => p.id == run.preset_id)
?.name
: null) ?? agent.name
}
timestamp={run.started_at ?? undefined}
selected={selectedView.id === run.id}
onClick={() => onSelectRun(run.id)}
onDelete={() => doDeleteRun(run as GraphExecutionMeta)}
onPinAsPreset={
doCreatePresetFromRun
? () => doCreatePresetFromRun(run.id)
: undefined
}
/>
))}
</>
) : (
schedules.map((schedule) => (
<AgentRunSummaryCard
className={listItemClasses}
key={schedule.id}
type="schedule"
status="scheduled" // TODO: implement active/inactive status for schedules
title={schedule.name}
timestamp={schedule.next_run_time}
selected={selectedView.id === schedule.id}
onClick={() => onSelectSchedule(schedule.id)}
onDelete={() => doDeleteSchedule(schedule.id)}
/>
))
)}
</div>
</InfiniteScroll>
</ScrollArea>
)}
</aside>
);
}

View File

@@ -1,180 +0,0 @@
"use client";
import React, { useCallback, useMemo } from "react";
import {
Graph,
GraphExecutionID,
Schedule,
ScheduleID,
} from "@/lib/autogpt-server-api";
import { useBackendAPI } from "@/lib/autogpt-server-api/context";
import ActionButtonGroup from "@/components/__legacy__/action-button-group";
import type { ButtonAction } from "@/components/__legacy__/types";
import {
Card,
CardContent,
CardHeader,
CardTitle,
} from "@/components/__legacy__/ui/card";
import { IconCross } from "@/components/__legacy__/ui/icons";
import { Input } from "@/components/__legacy__/ui/input";
import LoadingBox from "@/components/__legacy__/ui/loading";
import { useToastOnFail } from "@/components/molecules/Toast/use-toast";
import { humanizeCronExpression } from "@/lib/cron-expression-utils";
import { formatScheduleTime } from "@/lib/timezone-utils";
import { useUserTimezone } from "@/lib/hooks/useUserTimezone";
import { PlayIcon } from "lucide-react";
import { AgentRunStatus } from "./agent-run-status-chip";
export function AgentScheduleDetailsView({
graph,
schedule,
agentActions,
onForcedRun,
doDeleteSchedule,
}: {
graph: Graph;
schedule: Schedule;
agentActions: ButtonAction[];
onForcedRun: (runID: GraphExecutionID) => void;
doDeleteSchedule: (scheduleID: ScheduleID) => void;
}): React.ReactNode {
const api = useBackendAPI();
const selectedRunStatus: AgentRunStatus = "scheduled";
const toastOnFail = useToastOnFail();
// Get user's timezone for displaying schedule times
const userTimezone = useUserTimezone();
const infoStats: { label: string; value: React.ReactNode }[] = useMemo(() => {
return [
{
label: "Status",
value:
selectedRunStatus.charAt(0).toUpperCase() +
selectedRunStatus.slice(1),
},
{
label: "Schedule",
value: humanizeCronExpression(schedule.cron),
},
{
label: "Next run",
value: formatScheduleTime(schedule.next_run_time, userTimezone),
},
];
}, [schedule, selectedRunStatus, userTimezone]);
const agentRunInputs: Record<
string,
{ title?: string; /* type: BlockIOSubType; */ value: any }
> = useMemo(() => {
// TODO: show (link to) preset - https://github.com/Significant-Gravitas/AutoGPT/issues/9168
// Add type info from agent input schema
return Object.fromEntries(
Object.entries(schedule.input_data).map(([k, v]) => [
k,
{
title: graph.input_schema.properties[k].title,
/* TODO: type: agent.input_schema.properties[k].type */
value: v,
},
]),
);
}, [graph, schedule]);
const runNow = useCallback(
() =>
api
.executeGraph(
graph.id,
graph.version,
schedule.input_data,
schedule.input_credentials,
"library",
)
.then((run) => onForcedRun(run.id))
.catch(toastOnFail("execute agent")),
[api, graph, schedule, onForcedRun, toastOnFail],
);
const runActions: ButtonAction[] = useMemo(
() => [
{
label: (
<>
<PlayIcon className="mr-2 size-4" />
Run now
</>
),
callback: runNow,
},
{
label: (
<>
<IconCross className="mr-2 size-4 px-0.5" />
Delete schedule
</>
),
callback: () => doDeleteSchedule(schedule.id),
variant: "destructive",
},
],
[runNow],
);
return (
<div className="agpt-div flex gap-6">
<div className="flex flex-1 flex-col gap-4">
<Card className="agpt-box">
<CardHeader>
<CardTitle className="font-poppins text-lg">Info</CardTitle>
</CardHeader>
<CardContent>
<div className="flex justify-stretch gap-4">
{infoStats.map(({ label, value }) => (
<div key={label} className="flex-1">
<p className="text-sm font-medium text-black">{label}</p>
<p className="text-sm text-neutral-600">{value}</p>
</div>
))}
</div>
</CardContent>
</Card>
<Card className="agpt-box">
<CardHeader>
<CardTitle className="font-poppins text-lg">Input</CardTitle>
</CardHeader>
<CardContent className="flex flex-col gap-4">
{agentRunInputs !== undefined ? (
Object.entries(agentRunInputs).map(([key, { title, value }]) => (
<div key={key} className="flex flex-col gap-1.5">
<label className="text-sm font-medium">{title || key}</label>
<Input value={value} className="rounded-full" disabled />
</div>
))
) : (
<LoadingBox spinnerSize={12} className="h-24" />
)}
</CardContent>
</Card>
</div>
{/* Run / Agent Actions */}
<aside className="w-48 xl:w-56">
<div className="flex flex-col gap-8">
<ActionButtonGroup title="Run actions" actions={runActions} />
<ActionButtonGroup title="Agent actions" actions={agentActions} />
</div>
</aside>
</div>
);
}

View File

@@ -1,100 +0,0 @@
"use client";
import React, { useState } from "react";
import { Button } from "@/components/__legacy__/ui/button";
import {
Dialog,
DialogContent,
DialogDescription,
DialogFooter,
DialogHeader,
DialogTitle,
} from "@/components/__legacy__/ui/dialog";
import { Input } from "@/components/__legacy__/ui/input";
import { Textarea } from "@/components/__legacy__/ui/textarea";
interface CreatePresetDialogProps {
open: boolean;
onOpenChange: (open: boolean) => void;
onConfirm: (name: string, description: string) => Promise<void> | void;
}
export function CreatePresetDialog({
open,
onOpenChange,
onConfirm,
}: CreatePresetDialogProps) {
const [name, setName] = useState("");
const [description, setDescription] = useState("");
const handleSubmit = async () => {
if (name.trim()) {
await onConfirm(name.trim(), description.trim());
setName("");
setDescription("");
onOpenChange(false);
}
};
const handleCancel = () => {
setName("");
setDescription("");
onOpenChange(false);
};
const handleKeyDown = (e: React.KeyboardEvent) => {
if (e.key === "Enter" && (e.metaKey || e.ctrlKey)) {
e.preventDefault();
handleSubmit();
}
};
return (
<Dialog open={open} onOpenChange={onOpenChange}>
<DialogContent className="sm:max-w-[425px]">
<DialogHeader>
<DialogTitle>Create Preset</DialogTitle>
<DialogDescription>
Give your preset a name and description to help identify it later.
</DialogDescription>
</DialogHeader>
<div className="grid gap-4 py-4">
<div className="grid gap-2">
<label htmlFor="preset-name" className="text-sm font-medium">
Name *
</label>
<Input
id="preset-name"
placeholder="Enter preset name"
value={name}
onChange={(e) => setName(e.target.value)}
onKeyDown={handleKeyDown}
autoFocus
/>
</div>
<div className="grid gap-2">
<label htmlFor="preset-description" className="text-sm font-medium">
Description
</label>
<Textarea
id="preset-description"
placeholder="Optional description"
value={description}
onChange={(e) => setDescription(e.target.value)}
onKeyDown={handleKeyDown}
rows={3}
/>
</div>
</div>
<DialogFooter>
<Button variant="outline" onClick={handleCancel}>
Cancel
</Button>
<Button onClick={handleSubmit} disabled={!name.trim()}>
Create Preset
</Button>
</DialogFooter>
</DialogContent>
</Dialog>
);
}

View File

@@ -1,210 +0,0 @@
import {
GraphExecutionMeta as LegacyGraphExecutionMeta,
GraphID,
GraphExecutionID,
} from "@/lib/autogpt-server-api";
import { getQueryClient } from "@/lib/react-query/queryClient";
import {
getPaginatedTotalCount,
getPaginationNextPageNumber,
unpaginate,
} from "@/app/api/helpers";
import {
getV1ListGraphExecutionsResponse,
getV1ListGraphExecutionsResponse200,
useGetV1ListGraphExecutionsInfinite,
} from "@/app/api/__generated__/endpoints/graphs/graphs";
import { GraphExecutionsPaginated } from "@/app/api/__generated__/models/graphExecutionsPaginated";
import { GraphExecutionMeta as RawGraphExecutionMeta } from "@/app/api/__generated__/models/graphExecutionMeta";
export type GraphExecutionMeta = Omit<
RawGraphExecutionMeta,
"id" | "user_id" | "graph_id" | "preset_id" | "stats"
> &
Pick<
LegacyGraphExecutionMeta,
"id" | "user_id" | "graph_id" | "preset_id" | "stats"
>;
/** Hook to fetch runs for a specific graph, with support for infinite scroll.
*
* @param graphID - The ID of the graph to fetch agent runs for. This parameter is
* optional in the sense that the hook doesn't run unless it is passed.
* This way, it can be used in components where the graph ID is not
* immediately available.
*/
export const useAgentRunsInfinite = (graphID?: GraphID) => {
const queryClient = getQueryClient();
const {
data: queryResults,
refetch: refetchRuns,
isPending: agentRunsLoading,
isRefetching: agentRunsReloading,
hasNextPage: hasMoreRuns,
fetchNextPage: fetchMoreRuns,
isFetchingNextPage: isFetchingMoreRuns,
queryKey,
} = useGetV1ListGraphExecutionsInfinite(
graphID!,
{ page: 1, page_size: 20 },
{
query: {
getNextPageParam: getPaginationNextPageNumber,
// Prevent query from running if graphID is not available (yet)
...(!graphID
? {
enabled: false,
queryFn: () =>
// Fake empty response if graphID is not available (yet)
Promise.resolve({
status: 200,
data: {
executions: [],
pagination: {
current_page: 1,
page_size: 20,
total_items: 0,
total_pages: 0,
},
},
headers: new Headers(),
} satisfies getV1ListGraphExecutionsResponse),
}
: {}),
},
},
queryClient,
);
const agentRuns = queryResults ? unpaginate(queryResults, "executions") : [];
const agentRunCount = getPaginatedTotalCount(queryResults);
const upsertAgentRun = (newAgentRun: GraphExecutionMeta) => {
queryClient.setQueryData(
queryKey,
(currentQueryData: typeof queryResults) => {
if (!currentQueryData?.pages || agentRunCount === undefined)
return currentQueryData;
const exists = currentQueryData.pages.some((page) => {
if (page.status !== 200) return false;
const response = page.data;
return response.executions.some((run) => run.id === newAgentRun.id);
});
if (exists) {
// If the run already exists, we update it
return {
...currentQueryData,
pages: currentQueryData.pages.map((page) => {
if (page.status !== 200) return page;
const response = page.data;
const executions = response.executions;
const index = executions.findIndex(
(run) => run.id === newAgentRun.id,
);
if (index === -1) return page;
const newExecutions = [...executions];
newExecutions[index] = newAgentRun;
return {
...page,
data: {
...response,
executions: newExecutions,
},
} satisfies getV1ListGraphExecutionsResponse;
}),
};
}
// If the run does not exist, we add it to the first page
const page = currentQueryData
.pages[0] as getV1ListGraphExecutionsResponse200 & {
headers: Headers;
};
const updatedExecutions = [newAgentRun, ...page.data.executions];
const updatedPage = {
...page,
data: {
...page.data,
executions: updatedExecutions,
},
} satisfies getV1ListGraphExecutionsResponse;
const updatedPages = [updatedPage, ...currentQueryData.pages.slice(1)];
return {
...currentQueryData,
pages: updatedPages.map(
// Increment the total runs count in the pagination info of all pages
(page) =>
page.status === 200
? {
...page,
data: {
...page.data,
pagination: {
...page.data.pagination,
total_items: agentRunCount + 1,
},
},
}
: page,
),
};
},
);
};
const removeAgentRun = (runID: GraphExecutionID) => {
queryClient.setQueryData(
[queryKey, { page: 1, page_size: 20 }],
(currentQueryData: typeof queryResults) => {
if (!currentQueryData?.pages) return currentQueryData;
let found = false;
return {
...currentQueryData,
pages: currentQueryData.pages.map((page) => {
const response = page.data as GraphExecutionsPaginated;
const filteredExecutions = response.executions.filter(
(run) => run.id !== runID,
);
if (filteredExecutions.length < response.executions.length) {
found = true;
}
return {
...page,
data: {
...response,
executions: filteredExecutions,
pagination: {
...response.pagination,
total_items:
response.pagination.total_items - (found ? 1 : 0),
},
},
};
}),
};
},
);
};
return {
agentRuns: agentRuns as GraphExecutionMeta[],
refetchRuns,
agentRunCount,
agentRunsLoading: agentRunsLoading || agentRunsReloading,
hasMoreRuns,
fetchMoreRuns,
isFetchingMoreRuns,
upsertAgentRun,
removeAgentRun,
};
};
export type AgentRunsQuery = ReturnType<typeof useAgentRunsInfinite>;

View File

@@ -1,7 +0,0 @@
"use client";
import { OldAgentLibraryView } from "../../agents/[id]/components/OldAgentLibraryView/OldAgentLibraryView";
export default function OldAgentLibraryPage() {
return <OldAgentLibraryView />;
}

View File

@@ -1053,6 +1053,7 @@
"$ref": "#/components/schemas/ClarificationNeededResponse"
},
{ "$ref": "#/components/schemas/BlockListResponse" },
{ "$ref": "#/components/schemas/BlockDetailsResponse" },
{ "$ref": "#/components/schemas/BlockOutputResponse" },
{ "$ref": "#/components/schemas/DocSearchResultsResponse" },
{ "$ref": "#/components/schemas/DocPageResponse" },
@@ -6958,6 +6959,58 @@
"enum": ["run", "byte", "second"],
"title": "BlockCostType"
},
"BlockDetails": {
"properties": {
"id": { "type": "string", "title": "Id" },
"name": { "type": "string", "title": "Name" },
"description": { "type": "string", "title": "Description" },
"inputs": {
"additionalProperties": true,
"type": "object",
"title": "Inputs",
"default": {}
},
"outputs": {
"additionalProperties": true,
"type": "object",
"title": "Outputs",
"default": {}
},
"credentials": {
"items": { "$ref": "#/components/schemas/CredentialsMetaInput" },
"type": "array",
"title": "Credentials",
"default": []
}
},
"type": "object",
"required": ["id", "name", "description"],
"title": "BlockDetails",
"description": "Detailed block information."
},
"BlockDetailsResponse": {
"properties": {
"type": {
"$ref": "#/components/schemas/ResponseType",
"default": "block_details"
},
"message": { "type": "string", "title": "Message" },
"session_id": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Session Id"
},
"block": { "$ref": "#/components/schemas/BlockDetails" },
"user_authenticated": {
"type": "boolean",
"title": "User Authenticated",
"default": false
}
},
"type": "object",
"required": ["message", "block"],
"title": "BlockDetailsResponse",
"description": "Response for block details (first run_block attempt)."
},
"BlockInfo": {
"properties": {
"id": { "type": "string", "title": "Id" },
@@ -7013,62 +7066,13 @@
"properties": {
"id": { "type": "string", "title": "Id" },
"name": { "type": "string", "title": "Name" },
"description": { "type": "string", "title": "Description" },
"categories": {
"items": { "type": "string" },
"type": "array",
"title": "Categories"
},
"input_schema": {
"additionalProperties": true,
"type": "object",
"title": "Input Schema"
},
"output_schema": {
"additionalProperties": true,
"type": "object",
"title": "Output Schema"
},
"required_inputs": {
"items": { "$ref": "#/components/schemas/BlockInputFieldInfo" },
"type": "array",
"title": "Required Inputs",
"description": "List of required input fields for this block"
}
"description": { "type": "string", "title": "Description" }
},
"type": "object",
"required": [
"id",
"name",
"description",
"categories",
"input_schema",
"output_schema"
],
"required": ["id", "name", "description"],
"title": "BlockInfoSummary",
"description": "Summary of a block for search results."
},
"BlockInputFieldInfo": {
"properties": {
"name": { "type": "string", "title": "Name" },
"type": { "type": "string", "title": "Type" },
"description": {
"type": "string",
"title": "Description",
"default": ""
},
"required": {
"type": "boolean",
"title": "Required",
"default": false
},
"default": { "anyOf": [{}, { "type": "null" }], "title": "Default" }
},
"type": "object",
"required": ["name", "type"],
"title": "BlockInputFieldInfo",
"description": "Information about a block input field."
},
"BlockListResponse": {
"properties": {
"type": {
@@ -7086,12 +7090,7 @@
"title": "Blocks"
},
"count": { "type": "integer", "title": "Count" },
"query": { "type": "string", "title": "Query" },
"usage_hint": {
"type": "string",
"title": "Usage Hint",
"default": "To execute a block, call run_block with block_id set to the block's 'id' field and input_data containing the required fields from input_schema."
}
"query": { "type": "string", "title": "Query" }
},
"type": "object",
"required": ["message", "blocks", "count", "query"],
@@ -10484,6 +10483,7 @@
"agent_saved",
"clarification_needed",
"block_list",
"block_details",
"block_output",
"doc_search_results",
"doc_page",
@@ -10495,7 +10495,9 @@
"operation_started",
"operation_pending",
"operation_in_progress",
"input_validation_error"
"input_validation_error",
"feature_request_search",
"feature_request_created"
],
"title": "ResponseType",
"description": "Types of tool responses."

View File

@@ -2,7 +2,7 @@ import { useEffect, useState } from "react";
import { Input } from "@/components/__legacy__/ui/input";
import { Button } from "@/components/__legacy__/ui/button";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { CronScheduler } from "@/app/(platform)/library/agents/[id]/components/OldAgentLibraryView/components/cron-scheduler";
import { CronScheduler } from "@/components/contextual/CronScheduler/cron-scheduler";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { getTimezoneDisplayName } from "@/lib/timezone-utils";
import { useUserTimezone } from "@/lib/hooks/useUserTimezone";

View File

@@ -1,6 +1,6 @@
"use client";
import { CronExpressionDialog } from "@/app/(platform)/library/agents/[id]/components/OldAgentLibraryView/components/cron-scheduler-dialog";
import { CronExpressionDialog } from "@/components/contextual/CronScheduler/cron-scheduler-dialog";
import { Form, FormField } from "@/components/__legacy__/ui/form";
import { Button } from "@/components/atoms/Button/Button";
import { Input } from "@/components/atoms/Input/Input";

View File

@@ -7,7 +7,6 @@ import { useFlags } from "launchdarkly-react-client-sdk";
export enum Flag {
BETA_BLOCKS = "beta-blocks",
NEW_BLOCK_MENU = "new-block-menu",
NEW_AGENT_RUNS = "new-agent-runs",
GRAPH_SEARCH = "graph-search",
ENABLE_ENHANCED_OUTPUT_HANDLING = "enable-enhanced-output-handling",
SHARE_EXECUTION_RESULTS = "share-execution-results",
@@ -22,7 +21,6 @@ const isPwMockEnabled = process.env.NEXT_PUBLIC_PW_TEST === "true";
const defaultFlags = {
[Flag.BETA_BLOCKS]: [],
[Flag.NEW_BLOCK_MENU]: false,
[Flag.NEW_AGENT_RUNS]: false,
[Flag.GRAPH_SEARCH]: false,
[Flag.ENABLE_ENHANCED_OUTPUT_HANDLING]: false,
[Flag.SHARE_EXECUTION_RESULTS]: false,

View File

@@ -1,15 +1,12 @@
[flake8]
max-line-length = 88
extend-ignore = E203
exclude =
.tox,
__pycache__,
*.pyc,
.env,
venv*,
.venv,
reports,
dist,
data,
.benchmark_workspaces,
.autogpt,
.env
venv*/*,
.venv/*,
reports/*,
dist/*,
data/*,

View File

@@ -1,291 +0,0 @@
# CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Project Overview
AutoGPT Classic is an experimental, **unsupported** project demonstrating autonomous GPT-4 operation. Dependencies will not be updated, and the codebase contains known vulnerabilities. This is preserved for educational/historical purposes.
## Repository Structure
```
classic/
├── pyproject.toml # Single consolidated Poetry project
├── poetry.lock # Single lock file
├── forge/
│ └── forge/ # Core agent framework package
├── original_autogpt/
│ └── autogpt/ # AutoGPT agent package
├── direct_benchmark/
│ └── direct_benchmark/ # Benchmark harness package
└── benchmark/ # Challenge definitions (data, not code)
```
All packages are managed by a single `pyproject.toml` at the classic/ root.
## Common Commands
### Setup & Install
```bash
# Install everything from classic/ directory
cd classic
poetry install
```
### Running Agents
```bash
# Run forge agent
poetry run python -m forge
# Run original autogpt server
poetry run serve --debug
# Run autogpt CLI
poetry run autogpt
```
Agents run on `http://localhost:8000` by default.
### Benchmarking
```bash
# Run benchmarks
poetry run direct-benchmark run
# Run specific strategies and models
poetry run direct-benchmark run \
--strategies one_shot,rewoo \
--models claude \
--parallel 4
# Run a single test
poetry run direct-benchmark run --tests ReadFile
# List available commands
poetry run direct-benchmark --help
```
### Testing
```bash
poetry run pytest # All tests
poetry run pytest forge/tests/ # Forge tests only
poetry run pytest original_autogpt/tests/ # AutoGPT tests only
poetry run pytest -k test_name # Single test by name
poetry run pytest path/to/test.py # Specific test file
poetry run pytest --cov # With coverage
```
### Linting & Formatting
Run from the classic/ directory:
```bash
# Format everything (recommended to run together)
poetry run black . && poetry run isort .
# Check formatting (CI-style, no changes)
poetry run black --check . && poetry run isort --check-only .
# Lint
poetry run flake8 # Style linting
# Type check
poetry run pyright # Type checking (some errors are expected in infrastructure code)
```
Note: Always run linters over the entire directory, not specific files, for best results.
## Architecture
### Forge (Core Framework)
The `forge` package is the foundation that other components depend on:
- `forge/agent/` - Agent implementation and protocols
- `forge/llm/` - Multi-provider LLM integrations (OpenAI, Anthropic, Groq, LiteLLM)
- `forge/components/` - Reusable agent components
- `forge/file_storage/` - File system abstraction
- `forge/config/` - Configuration management
### Original AutoGPT
- `original_autogpt/autogpt/app/` - CLI application entry points
- `original_autogpt/autogpt/agents/` - Agent implementations
- `original_autogpt/autogpt/agent_factory/` - Agent creation logic
### Direct Benchmark
Benchmark harness for testing agent performance:
- `direct_benchmark/direct_benchmark/` - CLI and harness code
- `benchmark/agbenchmark/challenges/` - Test cases organized by category (code, retrieval, data, etc.)
- Reports generated in `direct_benchmark/reports/`
### Package Structure
All three packages are included in a single Poetry project. Imports are fully qualified:
- `from forge.agent.base import BaseAgent`
- `from autogpt.agents.agent import Agent`
- `from direct_benchmark.harness import BenchmarkHarness`
## Code Style
- Python 3.12 target
- Line length: 88 characters (Black default)
- Black for formatting, isort for imports (profile="black")
- Type hints with Pyright checking
## Testing Patterns
- Async support via pytest-asyncio
- Fixtures defined in `conftest.py` files provide: `tmp_project_root`, `storage`, `config`, `llm_provider`, `agent`
- Tests requiring API keys (OPENAI_API_KEY, ANTHROPIC_API_KEY) will skip if not set
## Environment Setup
Copy `.env.example` to `.env` in the relevant directory and add your API keys:
```bash
cp .env.example .env
# Edit .env with your OPENAI_API_KEY, etc.
```
## Workspaces
Agents operate within a **workspace** - a directory containing all agent data and files. The workspace root defaults to the current working directory.
### Workspace Structure
```
{workspace}/
├── .autogpt/
│ ├── autogpt.yaml # Workspace-level permissions
│ ├── ap_server.db # Agent Protocol database (server mode)
│ └── agents/
│ └── AutoGPT-{agent_id}/
│ ├── state.json # Agent profile, directives, action history
│ ├── permissions.yaml # Agent-specific permission overrides
│ └── workspace/ # Agent's sandboxed working directory
```
### Key Concepts
- **Multiple agents** can coexist in the same workspace (each gets its own subdirectory)
- **File access** is sandboxed to the agent's `workspace/` directory by default
- **State persistence** - agent state saves to `state.json` and survives across sessions
- **Storage backends** - supports local filesystem, S3, and GCS (via `FILE_STORAGE_BACKEND` env var)
### Specifying a Workspace
```bash
# Default: uses current directory
cd /path/to/my/project && poetry run autogpt
# Or specify explicitly via CLI (if supported)
poetry run autogpt --workspace /path/to/workspace
```
## Settings Location
Configuration uses a **layered system** with three levels (in order of precedence):
### 1. Environment Variables (Global)
Loaded from `.env` file in the working directory:
```bash
# Required
OPENAI_API_KEY=sk-...
# Optional LLM settings
SMART_LLM=gpt-4o # Model for complex reasoning
FAST_LLM=gpt-4o-mini # Model for simple tasks
EMBEDDING_MODEL=text-embedding-3-small
# Optional search providers (for web search component)
TAVILY_API_KEY=tvly-...
SERPER_API_KEY=...
GOOGLE_API_KEY=...
GOOGLE_CUSTOM_SEARCH_ENGINE_ID=...
# Optional infrastructure
LOG_LEVEL=DEBUG # DEBUG, INFO, WARNING, ERROR
DATABASE_STRING=sqlite:///agent.db # Agent Protocol database
PORT=8000 # Server port
FILE_STORAGE_BACKEND=local # local, s3, or gcs
```
### 2. Workspace Settings (`{workspace}/.autogpt/autogpt.yaml`)
Workspace-wide permissions that apply to **all agents** in this workspace:
```yaml
allow:
- read_file({workspace}/**)
- write_to_file({workspace}/**)
- list_folder({workspace}/**)
- web_search(*)
deny:
- read_file(**.env)
- read_file(**.env.*)
- read_file(**.key)
- read_file(**.pem)
- execute_shell(rm -rf:*)
- execute_shell(sudo:*)
```
Auto-generated with sensible defaults if missing.
### 3. Agent Settings (`{workspace}/.autogpt/agents/{id}/permissions.yaml`)
Agent-specific permission overrides:
```yaml
allow:
- execute_python(*)
- web_search(*)
deny:
- execute_shell(*)
```
## Permissions
The permission system uses **pattern matching** with a **first-match-wins** evaluation order.
### Permission Check Order
1. Agent deny list → **Block**
2. Workspace deny list → **Block**
3. Agent allow list → **Allow**
4. Workspace allow list → **Allow**
5. Session denied list → **Block** (commands denied during this session)
6. **Prompt user** → Interactive approval (if in interactive mode)
### Pattern Syntax
Format: `command_name(glob_pattern)`
| Pattern | Description |
|---------|-------------|
| `read_file({workspace}/**)` | Read any file in workspace (recursive) |
| `write_to_file({workspace}/*.txt)` | Write only .txt files in workspace root |
| `execute_shell(python:**)` | Execute Python commands only |
| `execute_shell(git:*)` | Execute any git command |
| `web_search(*)` | Allow all web searches |
Special tokens:
- `{workspace}` - Replaced with actual workspace path
- `**` - Matches any path including `/`
- `*` - Matches any characters except `/`
### Interactive Approval Scopes
When prompted for permission, users can choose:
| Scope | Effect |
|-------|--------|
| **Once** | Allow this one time only (not saved) |
| **Agent** | Always allow for this agent (saves to agent `permissions.yaml`) |
| **Workspace** | Always allow for all agents (saves to `autogpt.yaml`) |
| **Deny** | Deny this command (saves to appropriate deny list) |
### Default Security
Out of the box, the following are **denied by default**:
- Reading sensitive files (`.env`, `.key`, `.pem`)
- Destructive shell commands (`rm -rf`, `sudo`)
- Operations outside the workspace directory

182
classic/CLI-USAGE.md Executable file
View File

@@ -0,0 +1,182 @@
## CLI Documentation
This document describes how to interact with the project's CLI (Command Line Interface). It includes the types of outputs you can expect from each command. Note that the `agents stop` command will terminate any process running on port 8000.
### 1. Entry Point for the CLI
Running the `./run` command without any parameters will display the help message, which provides a list of available commands and options. Additionally, you can append `--help` to any command to view help information specific to that command.
```sh
./run
```
**Output**:
```
Usage: cli.py [OPTIONS] COMMAND [ARGS]...
Options:
--help Show this message and exit.
Commands:
agent Commands to create, start and stop agents
benchmark Commands to start the benchmark and list tests and categories
setup Installs dependencies needed for your system.
```
If you need assistance with any command, simply add the `--help` parameter to the end of your command, like so:
```sh
./run COMMAND --help
```
This will display a detailed help message regarding that specific command, including a list of any additional options and arguments it accepts.
### 2. Setup Command
```sh
./run setup
```
**Output**:
```
Setup initiated
Installation has been completed.
```
This command initializes the setup of the project.
### 3. Agents Commands
**a. List All Agents**
```sh
./run agent list
```
**Output**:
```
Available agents: 🤖
🐙 forge
🐙 autogpt
```
Lists all the available agents.
**b. Create a New Agent**
```sh
./run agent create my_agent
```
**Output**:
```
🎉 New agent 'my_agent' created and switched to the new directory in agents folder.
```
Creates a new agent named 'my_agent'.
**c. Start an Agent**
```sh
./run agent start my_agent
```
**Output**:
```
... (ASCII Art representing the agent startup)
[Date and Time] [forge.sdk.db] [DEBUG] 🐛 Initializing AgentDB with database_string: sqlite:///agent.db
[Date and Time] [forge.sdk.agent] [INFO] 📝 Agent server starting on http://0.0.0.0:8000
```
Starts the 'my_agent' and displays startup ASCII art and logs.
**d. Stop an Agent**
```sh
./run agent stop
```
**Output**:
```
Agent stopped
```
Stops the running agent.
### 4. Benchmark Commands
**a. List Benchmark Categories**
```sh
./run benchmark categories list
```
**Output**:
```
Available categories: 📚
📖 code
📖 safety
📖 memory
... (and so on)
```
Lists all available benchmark categories.
**b. List Benchmark Tests**
```sh
./run benchmark tests list
```
**Output**:
```
Available tests: 📚
📖 interface
🔬 Search - TestSearch
🔬 Write File - TestWriteFile
... (and so on)
```
Lists all available benchmark tests.
**c. Show Details of a Benchmark Test**
```sh
./run benchmark tests details TestWriteFile
```
**Output**:
```
TestWriteFile
-------------
Category: interface
Task: Write the word 'Washington' to a .txt file
... (and other details)
```
Displays the details of the 'TestWriteFile' benchmark test.
**d. Start Benchmark for the Agent**
```sh
./run benchmark start my_agent
```
**Output**:
```
(more details about the testing process shown whilst the test are running)
============= 13 failed, 1 passed in 0.97s ============...
```
Displays the results of the benchmark tests on 'my_agent'.

View File

@@ -2,7 +2,7 @@
ARG BUILD_TYPE=dev
# Use an official Python base image from the Docker Hub
FROM python:3.12-slim AS autogpt-base
FROM python:3.10-slim AS autogpt-base
# Install browsers
RUN apt-get update && apt-get install -y \
@@ -34,6 +34,9 @@ COPY original_autogpt/pyproject.toml original_autogpt/poetry.lock ./
# Include forge so it can be used as a path dependency
COPY forge/ ../forge
# Include frontend
COPY frontend/ ../frontend
# Set the entrypoint
ENTRYPOINT ["poetry", "run", "autogpt"]
CMD []

173
classic/FORGE-QUICKSTART.md Normal file
View File

@@ -0,0 +1,173 @@
# Quickstart Guide
> For the complete getting started [tutorial series](https://aiedge.medium.com/autogpt-forge-e3de53cc58ec) <- click here
Welcome to the Quickstart Guide! This guide will walk you through setting up, building, and running your own AutoGPT agent. Whether you're a seasoned AI developer or just starting out, this guide will provide you with the steps to jumpstart your journey in AI development with AutoGPT.
## System Requirements
This project supports Linux (Debian-based), Mac, and Windows Subsystem for Linux (WSL). If you use a Windows system, you must install WSL. You can find the installation instructions for WSL [here](https://learn.microsoft.com/en-us/windows/wsl/).
## Getting Setup
1. **Fork the Repository**
To fork the repository, follow these steps:
- Navigate to the main page of the repository.
![Repository](../docs/content/imgs/quickstart/001_repo.png)
- In the top-right corner of the page, click Fork.
![Create Fork UI](../docs/content/imgs/quickstart/002_fork.png)
- On the next page, select your GitHub account to create the fork.
- Wait for the forking process to complete. You now have a copy of the repository in your GitHub account.
2. **Clone the Repository**
To clone the repository, you need to have Git installed on your system. If you don't have Git installed, download it from [here](https://git-scm.com/downloads). Once you have Git installed, follow these steps:
- Open your terminal.
- Navigate to the directory where you want to clone the repository.
- Run the git clone command for the fork you just created
![Clone the Repository](../docs/content/imgs/quickstart/003_clone.png)
- Then open your project in your ide
![Open the Project in your IDE](../docs/content/imgs/quickstart/004_ide.png)
4. **Setup the Project**
Next, we need to set up the required dependencies. We have a tool to help you perform all the tasks on the repo.
It can be accessed by running the `run` command by typing `./run` in the terminal.
The first command you need to use is `./run setup.` This will guide you through setting up your system.
Initially, you will get instructions for installing Flutter and Chrome and setting up your GitHub access token like the following image:
![Setup the Project](../docs/content/imgs/quickstart/005_setup.png)
### For Windows Users
If you're a Windows user and experience issues after installing WSL, follow the steps below to resolve them.
#### Update WSL
Run the following command in Powershell or Command Prompt:
1. Enable the optional WSL and Virtual Machine Platform components.
2. Download and install the latest Linux kernel.
3. Set WSL 2 as the default.
4. Download and install the Ubuntu Linux distribution (a reboot may be required).
```shell
wsl --install
```
For more detailed information and additional steps, refer to [Microsoft's WSL Setup Environment Documentation](https://learn.microsoft.com/en-us/windows/wsl/setup/environment).
#### Resolve FileNotFoundError or "No such file or directory" Errors
When you run `./run setup`, if you encounter errors like `No such file or directory` or `FileNotFoundError`, it might be because Windows-style line endings (CRLF - Carriage Return Line Feed) are not compatible with Unix/Linux style line endings (LF - Line Feed).
To resolve this, you can use the `dos2unix` utility to convert the line endings in your script from CRLF to LF. Heres how to install and run `dos2unix` on the script:
```shell
sudo apt update
sudo apt install dos2unix
dos2unix ./run
```
After executing the above commands, running `./run setup` should work successfully.
#### Store Project Files within the WSL File System
If you continue to experience issues, consider storing your project files within the WSL file system instead of the Windows file system. This method avoids path translations and permissions issues and provides a more consistent development environment.
You can keep running the command to get feedback on where you are up to with your setup.
When setup has been completed, the command will return an output like this:
![Setup Complete](../docs/content/imgs/quickstart/006_setup_complete.png)
## Creating Your Agent
After completing the setup, the next step is to create your agent template.
Execute the command `./run agent create YOUR_AGENT_NAME`, where `YOUR_AGENT_NAME` should be replaced with your chosen name.
Tips for naming your agent:
* Give it its own unique name, or name it after yourself
* Include an important aspect of your agent in the name, such as its purpose
Examples: `SwiftyosAssistant`, `PwutsPRAgent`, `MySuperAgent`
![Create an Agent](../docs/content/imgs/quickstart/007_create_agent.png)
## Running your Agent
Your agent can be started using the command: `./run agent start YOUR_AGENT_NAME`
This starts the agent on the URL: `http://localhost:8000/`
![Start the Agent](../docs/content/imgs/quickstart/009_start_agent.png)
The front end can be accessed from `http://localhost:8000/`; first, you must log in using either a Google account or your GitHub account.
![Login](../docs/content/imgs/quickstart/010_login.png)
Upon logging in, you will get a page that looks something like this: your task history down the left-hand side of the page, and the 'chat' window to send tasks to your agent.
![Login](../docs/content/imgs/quickstart/011_home.png)
When you have finished with your agent or just need to restart it, use Ctl-C to end the session. Then, you can re-run the start command.
If you are having issues and want to ensure the agent has been stopped, there is a `./run agent stop` command, which will kill the process using port 8000, which should be the agent.
## Benchmarking your Agent
The benchmarking system can also be accessed using the CLI too:
```bash
agpt % ./run benchmark
Usage: cli.py benchmark [OPTIONS] COMMAND [ARGS]...
Commands to start the benchmark and list tests and categories
Options:
--help Show this message and exit.
Commands:
categories Benchmark categories group command
start Starts the benchmark command
tests Benchmark tests group command
agpt % ./run benchmark categories
Usage: cli.py benchmark categories [OPTIONS] COMMAND [ARGS]...
Benchmark categories group command
Options:
--help Show this message and exit.
Commands:
list List benchmark categories command
agpt % ./run benchmark tests
Usage: cli.py benchmark tests [OPTIONS] COMMAND [ARGS]...
Benchmark tests group command
Options:
--help Show this message and exit.
Commands:
details Benchmark test details command
list List benchmark tests command
```
The benchmark has been split into different categories of skills you can test your agent on. You can see what categories are available with
```bash
./run benchmark categories list
# And what tests are available with
./run benchmark tests list
```
![Login](../docs/content/imgs/quickstart/012_tests.png)
Finally, you can run the benchmark with
```bash
./run benchmark start YOUR_AGENT_NAME
```
>

View File

@@ -4,7 +4,7 @@ AutoGPT Classic was an experimental project to demonstrate autonomous GPT-4 oper
## Project Status
**This project is unsupported, and dependencies will not be updated.** It was an experiment that has concluded its initial research phase. If you want to use AutoGPT, you should use the [AutoGPT Platform](/autogpt_platform).
⚠️ **This project is unsupported, and dependencies will not be updated. It was an experiment that has concluded its initial research phase. If you want to use AutoGPT, you should use the [AutoGPT Platform](/autogpt_platform)**
For those interested in autonomous AI agents, we recommend exploring more actively maintained alternatives or referring to this codebase for educational purposes only.
@@ -16,171 +16,37 @@ AutoGPT Classic was one of the first implementations of autonomous AI agents - A
- Learn from the results and adjust its approach
- Chain multiple actions together to achieve an objective
## Key Features
- 🔄 Autonomous task chaining
- 🛠 Tool and API integration capabilities
- 💾 Memory management for context retention
- 🔍 Web browsing and information gathering
- 📝 File operations and content creation
- 🔄 Self-prompting and task breakdown
## Structure
```
classic/
├── pyproject.toml # Single consolidated Poetry project
├── poetry.lock # Single lock file
├── forge/ # Core autonomous agent framework
├── original_autogpt/ # Original implementation
├── direct_benchmark/ # Benchmark harness
└── benchmark/ # Challenge definitions (data)
```
The project is organized into several key components:
- `/benchmark` - Performance testing tools
- `/forge` - Core autonomous agent framework
- `/frontend` - User interface components
- `/original_autogpt` - Original implementation
## Getting Started
### Prerequisites
- Python 3.12+
- [Poetry](https://python-poetry.org/docs/#installation)
### Installation
While this project is no longer actively maintained, you can still explore the codebase:
1. Clone the repository:
```bash
# Clone the repository
git clone https://github.com/Significant-Gravitas/AutoGPT.git
cd classic
# Install everything
poetry install
```
### Configuration
Configuration uses a layered system:
1. **Environment variables** (`.env` file)
2. **Workspace settings** (`.autogpt/autogpt.yaml`)
3. **Agent settings** (`.autogpt/agents/{id}/permissions.yaml`)
Copy the example environment file and add your API keys:
```bash
cp .env.example .env
```
Key environment variables:
```bash
# Required
OPENAI_API_KEY=sk-...
# Optional LLM settings
SMART_LLM=gpt-4o # Model for complex reasoning
FAST_LLM=gpt-4o-mini # Model for simple tasks
# Optional search providers
TAVILY_API_KEY=tvly-...
SERPER_API_KEY=...
# Optional infrastructure
LOG_LEVEL=DEBUG
PORT=8000
FILE_STORAGE_BACKEND=local # local, s3, or gcs
```
### Running
All commands run from the `classic/` directory:
```bash
# Run forge agent
poetry run python -m forge
# Run original autogpt server
poetry run serve --debug
# Run autogpt CLI
poetry run autogpt
```
Agents run on `http://localhost:8000` by default.
### Benchmarking
```bash
poetry run direct-benchmark run
```
### Testing
```bash
poetry run pytest # All tests
poetry run pytest forge/tests/ # Forge tests only
poetry run pytest original_autogpt/tests/ # AutoGPT tests only
```
## Workspaces
Agents operate within a **workspace** directory that contains all agent data and files:
```
{workspace}/
├── .autogpt/
│ ├── autogpt.yaml # Workspace-level permissions
│ ├── ap_server.db # Agent Protocol database (server mode)
│ └── agents/
│ └── AutoGPT-{agent_id}/
│ ├── state.json # Agent profile, directives, history
│ ├── permissions.yaml # Agent-specific permissions
│ └── workspace/ # Agent's sandboxed working directory
```
- The workspace defaults to the current working directory
- Multiple agents can coexist in the same workspace
- Agent file access is sandboxed to their `workspace/` subdirectory
- State persists across sessions via `state.json`
## Permissions
AutoGPT uses a **layered permission system** with pattern matching:
### Permission Files
| File | Scope | Location |
|------|-------|----------|
| `autogpt.yaml` | All agents in workspace | `.autogpt/autogpt.yaml` |
| `permissions.yaml` | Single agent | `.autogpt/agents/{id}/permissions.yaml` |
### Permission Format
```yaml
allow:
- read_file({workspace}/**) # Read any file in workspace
- write_to_file({workspace}/**) # Write any file in workspace
- web_search(*) # All web searches
deny:
- read_file(**.env) # Block .env files
- execute_shell(sudo:*) # Block sudo commands
```
### Check Order (First Match Wins)
1. Agent deny → Block
2. Workspace deny → Block
3. Agent allow → Allow
4. Workspace allow → Allow
5. Prompt user → Interactive approval
### Interactive Approval
When prompted, users can approve commands with different scopes:
- **Once** - Allow this one time only
- **Agent** - Always allow for this agent
- **Workspace** - Always allow for all agents
- **Deny** - Block this command
### Default Security
Denied by default:
- Sensitive files (`.env`, `.key`, `.pem`)
- Destructive commands (`rm -rf`, `sudo`)
- Operations outside the workspace
## Security Notice
This codebase has **known vulnerabilities** and issues with its dependencies. It will not be updated to new dependencies. Use for educational purposes only.
2. Review the documentation:
- For reference, see the [documentation](https://docs.agpt.co). You can browse at the same point in time as this commit so the docs don't change.
- Check `CLI-USAGE.md` for command-line interface details
- Refer to `TROUBLESHOOTING.md` for common issues
## License
@@ -189,3 +55,27 @@ This project segment is licensed under the MIT License - see the [LICENSE](LICEN
## Documentation
Please refer to the [documentation](https://docs.agpt.co) for more detailed information about the project's architecture and concepts.
You can browse at the same point in time as this commit so the docs don't change.
## Historical Impact
AutoGPT Classic played a significant role in advancing the field of autonomous AI agents:
- Demonstrated practical implementation of AI autonomy
- Inspired numerous derivative projects and research
- Contributed to the development of AI agent architectures
- Helped identify key challenges in AI autonomy
## Security Notice
If you're studying this codebase, please understand this has KNOWN vulnerabilities and issues with its dependencies. It will not be updated to new dependencies.
## Community & Support
While active development has concluded:
- The codebase remains available for study and reference
- Historical discussions can be found in project issues
- Related research and developments continue in the broader AI agent community
## Acknowledgments
Thanks to all contributors who participated in this experimental project and helped advance the field of autonomous AI agents.

12
classic/benchmark/.flake8 Normal file
View File

@@ -0,0 +1,12 @@
[flake8]
max-line-length = 88
# Ignore rules that conflict with Black code style
extend-ignore = E203, W503
exclude =
__pycache__/,
*.pyc,
.pytest_cache/,
venv*/,
.venv/,
reports/,
agbenchmark/reports/,

174
classic/benchmark/.gitignore vendored Normal file
View File

@@ -0,0 +1,174 @@
agbenchmark_config/workspace/
backend/backend_stdout.txt
reports/df*.pkl
reports/raw*
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
.idea/
.DS_Store
```
secrets.json
agbenchmark_config/challenges_already_beaten.json
agbenchmark_config/challenges/pri_*
agbenchmark_config/updates.json
agbenchmark_config/reports/*
agbenchmark_config/reports/success_rate.json
agbenchmark_config/reports/regression_tests.json

21
classic/benchmark/LICENSE Normal file
View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2024 AutoGPT
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,25 @@
# Auto-GPT Benchmarks
Built for the purpose of benchmarking the performance of agents regardless of how they work.
Objectively know how well your agent is performing in categories like code, retrieval, memory, and safety.
Save time and money while doing it through smart dependencies. The best part? It's all automated.
## Scores:
<img width="733" alt="Screenshot 2023-07-25 at 10 35 01 AM" src="https://github.com/Significant-Gravitas/Auto-GPT-Benchmarks/assets/9652976/98963e0b-18b9-4b17-9a6a-4d3e4418af70">
## Ranking overall:
- 1- [Beebot](https://github.com/AutoPackAI/beebot)
- 2- [mini-agi](https://github.com/muellerberndt/mini-agi)
- 3- [Auto-GPT](https://github.com/Significant-Gravitas/AutoGPT)
## Detailed results:
<img width="733" alt="Screenshot 2023-07-25 at 10 42 15 AM" src="https://github.com/Significant-Gravitas/Auto-GPT-Benchmarks/assets/9652976/39be464c-c842-4437-b28a-07d878542a83">
[Click here to see the results and the raw data!](https://docs.google.com/spreadsheets/d/1WXm16P2AHNbKpkOI0LYBpcsGG0O7D8HYTG5Uj0PaJjA/edit#gid=203558751)!
More agents coming soon !

View File

@@ -0,0 +1,69 @@
## As a user
1. `pip install auto-gpt-benchmarks`
2. Add boilerplate code to run and kill agent
3. `agbenchmark`
- `--category challenge_category` to run tests in a specific category
- `--mock` to only run mock tests if they exists for each test
- `--noreg` to skip any tests that have passed in the past. When you run without this flag and a previous challenge that passed fails, it will now not be regression tests
4. We call boilerplate code for your agent
5. Show pass rate of tests, logs, and any other metrics
## Contributing
##### Diagrams: https://whimsical.com/agbenchmark-5n4hXBq1ZGzBwRsK4TVY7x
### To run the existing mocks
1. clone the repo `auto-gpt-benchmarks`
2. `pip install poetry`
3. `poetry shell`
4. `poetry install`
5. `cp .env_example .env`
6. `git submodule update --init --remote --recursive`
7. `uvicorn server:app --reload`
8. `agbenchmark --mock`
Keep config the same and watch the logs :)
### To run with mini-agi
1. Navigate to `auto-gpt-benchmarks/agent/mini-agi`
2. `pip install -r requirements.txt`
3. `cp .env_example .env`, set `PROMPT_USER=false` and add your `OPENAI_API_KEY=`. Sset `MODEL="gpt-3.5-turbo"` if you don't have access to `gpt-4` yet. Also make sure you have Python 3.10^ installed
4. set `AGENT_NAME=mini-agi` in `.env` file and where you want your `REPORTS_FOLDER` to be
5. Make sure to follow the commands above, and remove mock flag `agbenchmark`
- To add requirements `poetry add requirement`.
Feel free to create prs to merge with `main` at will (but also feel free to ask for review) - if you can't send msg in R&D chat for access.
If you push at any point and break things - it'll happen to everyone - fix it asap. Step 1 is to revert `master` to last working commit
Let people know what beautiful code you write does, document everything well
Share your progress :)
#### Dataset
Manually created, existing challenges within Auto-Gpt, https://osu-nlp-group.github.io/Mind2Web/
## How do I add new agents to agbenchmark ?
Example with smol developer.
1- Create a github branch with your agent following the same pattern as this example:
https://github.com/smol-ai/developer/pull/114/files
2- Create the submodule and the github workflow by following the same pattern as this example:
https://github.com/Significant-Gravitas/Auto-GPT-Benchmarks/pull/48/files
## How do I run agent in different environments?
**To just use as the benchmark for your agent**. `pip install` the package and run `agbenchmark`
**For internal Auto-GPT ci runs**, specify the `AGENT_NAME` you want you use and set the `HOME_ENV`.
Ex. `AGENT_NAME=mini-agi`
**To develop agent alongside benchmark**, you can specify the `AGENT_NAME` you want you use and add as a submodule to the repo

View File

@@ -0,0 +1,352 @@
import logging
import os
import sys
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Optional
import click
from click_default_group import DefaultGroup
from dotenv import load_dotenv
from agbenchmark.config import AgentBenchmarkConfig
from agbenchmark.utils.logging import configure_logging
load_dotenv()
# try:
# if os.getenv("HELICONE_API_KEY"):
# import helicone # noqa
# helicone_enabled = True
# else:
# helicone_enabled = False
# except ImportError:
# helicone_enabled = False
class InvalidInvocationError(ValueError):
pass
logger = logging.getLogger(__name__)
BENCHMARK_START_TIME_DT = datetime.now(timezone.utc)
BENCHMARK_START_TIME = BENCHMARK_START_TIME_DT.strftime("%Y-%m-%dT%H:%M:%S+00:00")
# if helicone_enabled:
# from helicone.lock import HeliconeLockManager
# HeliconeLockManager.write_custom_property(
# "benchmark_start_time", BENCHMARK_START_TIME
# )
@click.group(cls=DefaultGroup, default_if_no_args=True)
@click.option("--debug", is_flag=True, help="Enable debug output")
def cli(
debug: bool,
) -> Any:
configure_logging(logging.DEBUG if debug else logging.INFO)
@cli.command(hidden=True)
def start():
raise DeprecationWarning(
"`agbenchmark start` is deprecated. Use `agbenchmark run` instead."
)
@cli.command(default=True)
@click.option(
"-N", "--attempts", default=1, help="Number of times to run each challenge."
)
@click.option(
"-c",
"--category",
multiple=True,
help="(+) Select a category to run.",
)
@click.option(
"-s",
"--skip-category",
multiple=True,
help="(+) Exclude a category from running.",
)
@click.option("--test", multiple=True, help="(+) Select a test to run.")
@click.option("--maintain", is_flag=True, help="Run only regression tests.")
@click.option("--improve", is_flag=True, help="Run only non-regression tests.")
@click.option(
"--explore",
is_flag=True,
help="Run only challenges that have never been beaten.",
)
@click.option(
"--no-dep",
is_flag=True,
help="Run all (selected) challenges, regardless of dependency success/failure.",
)
@click.option("--cutoff", type=int, help="Override the challenge time limit (seconds).")
@click.option("--nc", is_flag=True, help="Disable the challenge time limit.")
@click.option("--mock", is_flag=True, help="Run with mock")
@click.option("--keep-answers", is_flag=True, help="Keep answers")
@click.option(
"--backend",
is_flag=True,
help="Write log output to a file instead of the terminal.",
)
# @click.argument(
# "agent_path",
# type=click.Path(exists=True, file_okay=False, path_type=Path),
# required=False,
# )
def run(
maintain: bool,
improve: bool,
explore: bool,
mock: bool,
no_dep: bool,
nc: bool,
keep_answers: bool,
test: tuple[str],
category: tuple[str],
skip_category: tuple[str],
attempts: int,
cutoff: Optional[int] = None,
backend: Optional[bool] = False,
# agent_path: Optional[Path] = None,
) -> None:
"""
Run the benchmark on the agent in the current directory.
Options marked with (+) can be specified multiple times, to select multiple items.
"""
from agbenchmark.main import run_benchmark, validate_args
agbenchmark_config = AgentBenchmarkConfig.load()
logger.debug(f"agbenchmark_config: {agbenchmark_config.agbenchmark_config_dir}")
try:
validate_args(
maintain=maintain,
improve=improve,
explore=explore,
tests=test,
categories=category,
skip_categories=skip_category,
no_cutoff=nc,
cutoff=cutoff,
)
except InvalidInvocationError as e:
logger.error("Error: " + "\n".join(e.args))
sys.exit(1)
original_stdout = sys.stdout # Save the original standard output
exit_code = None
if backend:
with open("backend/backend_stdout.txt", "w") as f:
sys.stdout = f
exit_code = run_benchmark(
config=agbenchmark_config,
maintain=maintain,
improve=improve,
explore=explore,
mock=mock,
no_dep=no_dep,
no_cutoff=nc,
keep_answers=keep_answers,
tests=test,
categories=category,
skip_categories=skip_category,
attempts_per_challenge=attempts,
cutoff=cutoff,
)
sys.stdout = original_stdout
else:
exit_code = run_benchmark(
config=agbenchmark_config,
maintain=maintain,
improve=improve,
explore=explore,
mock=mock,
no_dep=no_dep,
no_cutoff=nc,
keep_answers=keep_answers,
tests=test,
categories=category,
skip_categories=skip_category,
attempts_per_challenge=attempts,
cutoff=cutoff,
)
sys.exit(exit_code)
@cli.command()
@click.option("--port", type=int, help="Port to run the API on.")
def serve(port: Optional[int] = None):
"""Serve the benchmark frontend and API on port 8080."""
import uvicorn
from agbenchmark.app import setup_fastapi_app
config = AgentBenchmarkConfig.load()
app = setup_fastapi_app(config)
# Run the FastAPI application using uvicorn
port = port or int(os.getenv("PORT", 8080))
uvicorn.run(app, host="0.0.0.0", port=port)
@cli.command()
def config():
"""Displays info regarding the present AGBenchmark config."""
from .utils.utils import pretty_print_model
try:
config = AgentBenchmarkConfig.load()
except FileNotFoundError as e:
click.echo(e, err=True)
return 1
pretty_print_model(config, include_header=False)
@cli.group()
def challenge():
logging.getLogger().setLevel(logging.WARNING)
@challenge.command("list")
@click.option(
"--all", "include_unavailable", is_flag=True, help="Include unavailable challenges."
)
@click.option(
"--names", "only_names", is_flag=True, help="List only the challenge names."
)
@click.option("--json", "output_json", is_flag=True)
def list_challenges(include_unavailable: bool, only_names: bool, output_json: bool):
"""Lists [available|all] challenges."""
import json
from tabulate import tabulate
from .challenges.builtin import load_builtin_challenges
from .challenges.webarena import load_webarena_challenges
from .utils.data_types import Category, DifficultyLevel
from .utils.utils import sorted_by_enum_index
DIFFICULTY_COLORS = {
difficulty: color
for difficulty, color in zip(
DifficultyLevel,
["black", "blue", "cyan", "green", "yellow", "red", "magenta", "white"],
)
}
CATEGORY_COLORS = {
category: f"bright_{color}"
for category, color in zip(
Category,
["blue", "cyan", "green", "yellow", "magenta", "red", "white", "black"],
)
}
# Load challenges
challenges = filter(
lambda c: c.info.available or include_unavailable,
[
*load_builtin_challenges(),
*load_webarena_challenges(skip_unavailable=False),
],
)
challenges = sorted_by_enum_index(
challenges, DifficultyLevel, key=lambda c: c.info.difficulty
)
if only_names:
if output_json:
click.echo(json.dumps([c.info.name for c in challenges]))
return
for c in challenges:
click.echo(
click.style(c.info.name, fg=None if c.info.available else "black")
)
return
if output_json:
click.echo(
json.dumps([json.loads(c.info.model_dump_json()) for c in challenges])
)
return
headers = tuple(
click.style(h, bold=True) for h in ("Name", "Difficulty", "Categories")
)
table = [
tuple(
v if challenge.info.available else click.style(v, fg="black")
for v in (
challenge.info.name,
(
click.style(
challenge.info.difficulty.value,
fg=DIFFICULTY_COLORS[challenge.info.difficulty],
)
if challenge.info.difficulty
else click.style("-", fg="black")
),
" ".join(
click.style(cat.value, fg=CATEGORY_COLORS[cat])
for cat in sorted_by_enum_index(challenge.info.category, Category)
),
)
)
for challenge in challenges
]
click.echo(tabulate(table, headers=headers))
@challenge.command()
@click.option("--json", is_flag=True)
@click.argument("name")
def info(name: str, json: bool):
from itertools import chain
from .challenges.builtin import load_builtin_challenges
from .challenges.webarena import load_webarena_challenges
from .utils.utils import pretty_print_model
for challenge in chain(
load_builtin_challenges(),
load_webarena_challenges(skip_unavailable=False),
):
if challenge.info.name != name:
continue
if json:
click.echo(challenge.info.model_dump_json())
break
pretty_print_model(challenge.info)
break
else:
click.echo(click.style(f"Unknown challenge '{name}'", fg="red"), err=True)
@cli.command()
def version():
"""Print version info for the AGBenchmark application."""
import toml
package_root = Path(__file__).resolve().parent.parent
pyproject = toml.load(package_root / "pyproject.toml")
version = pyproject["tool"]["poetry"]["version"]
click.echo(f"AGBenchmark version {version}")
if __name__ == "__main__":
cli()

View File

@@ -0,0 +1,111 @@
import logging
import time
from pathlib import Path
from typing import AsyncIterator, Optional
from agent_protocol_client import (
AgentApi,
ApiClient,
Configuration,
Step,
TaskRequestBody,
)
from agbenchmark.agent_interface import get_list_of_file_paths
from agbenchmark.config import AgentBenchmarkConfig
logger = logging.getLogger(__name__)
async def run_api_agent(
task: str,
config: AgentBenchmarkConfig,
timeout: int,
artifacts_location: Optional[Path] = None,
*,
mock: bool = False,
) -> AsyncIterator[Step]:
configuration = Configuration(host=config.host)
async with ApiClient(configuration) as api_client:
api_instance = AgentApi(api_client)
task_request_body = TaskRequestBody(input=task, additional_input=None)
start_time = time.time()
response = await api_instance.create_agent_task(
task_request_body=task_request_body
)
task_id = response.task_id
if artifacts_location:
logger.debug("Uploading task input artifacts to agent...")
await upload_artifacts(
api_instance, artifacts_location, task_id, "artifacts_in"
)
logger.debug("Running agent until finished or timeout...")
while True:
step = await api_instance.execute_agent_task_step(task_id=task_id)
yield step
if time.time() - start_time > timeout:
raise TimeoutError("Time limit exceeded")
if step and mock:
step.is_last = True
if not step or step.is_last:
break
if artifacts_location:
# In "mock" mode, we cheat by giving the correct artifacts to pass the test
if mock:
logger.debug("Uploading mock artifacts to agent...")
await upload_artifacts(
api_instance, artifacts_location, task_id, "artifacts_out"
)
logger.debug("Downloading agent artifacts...")
await download_agent_artifacts_into_folder(
api_instance, task_id, config.temp_folder
)
async def download_agent_artifacts_into_folder(
api_instance: AgentApi, task_id: str, folder: Path
):
artifacts = await api_instance.list_agent_task_artifacts(task_id=task_id)
for artifact in artifacts.artifacts:
# current absolute path of the directory of the file
if artifact.relative_path:
path: str = (
artifact.relative_path
if not artifact.relative_path.startswith("/")
else artifact.relative_path[1:]
)
folder = (folder / path).parent
if not folder.exists():
folder.mkdir(parents=True)
file_path = folder / artifact.file_name
logger.debug(f"Downloading agent artifact {artifact.file_name} to {folder}")
with open(file_path, "wb") as f:
content = await api_instance.download_agent_task_artifact(
task_id=task_id, artifact_id=artifact.artifact_id
)
f.write(content)
async def upload_artifacts(
api_instance: AgentApi, artifacts_location: Path, task_id: str, type: str
) -> None:
for file_path in get_list_of_file_paths(artifacts_location, type):
relative_path: Optional[str] = "/".join(
str(file_path).split(f"{type}/", 1)[-1].split("/")[:-1]
)
if not relative_path:
relative_path = None
await api_instance.upload_agent_task_artifacts(
task_id=task_id, file=str(file_path), relative_path=relative_path
)

View File

@@ -0,0 +1,27 @@
import os
import shutil
from pathlib import Path
from dotenv import load_dotenv
load_dotenv()
HELICONE_GRAPHQL_LOGS = os.getenv("HELICONE_GRAPHQL_LOGS", "").lower() == "true"
def get_list_of_file_paths(
challenge_dir_path: str | Path, artifact_folder_name: str
) -> list[Path]:
source_dir = Path(challenge_dir_path) / artifact_folder_name
if not source_dir.exists():
return []
return list(source_dir.iterdir())
def copy_challenge_artifacts_into_workspace(
challenge_dir_path: str | Path, artifact_folder_name: str, workspace: str | Path
) -> None:
file_paths = get_list_of_file_paths(challenge_dir_path, artifact_folder_name)
for file_path in file_paths:
if file_path.is_file():
shutil.copy(file_path, workspace)

View File

@@ -0,0 +1,339 @@
import datetime
import glob
import json
import logging
import sys
import time
import uuid
from collections import deque
from multiprocessing import Process
from pathlib import Path
from typing import Optional
import httpx
import psutil
from agent_protocol_client import AgentApi, ApiClient, ApiException, Configuration
from agent_protocol_client.models import Task, TaskRequestBody
from fastapi import APIRouter, FastAPI, HTTPException, Request, Response
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, ConfigDict, ValidationError
from agbenchmark.challenges import ChallengeInfo
from agbenchmark.config import AgentBenchmarkConfig
from agbenchmark.reports.processing.report_types_v2 import (
BenchmarkRun,
Metrics,
RepositoryInfo,
RunDetails,
TaskInfo,
)
from agbenchmark.schema import TaskEvalRequestBody
from agbenchmark.utils.utils import write_pretty_json
sys.path.append(str(Path(__file__).parent.parent))
logger = logging.getLogger(__name__)
CHALLENGES: dict[str, ChallengeInfo] = {}
challenges_path = Path(__file__).parent / "challenges"
challenge_spec_files = deque(
glob.glob(
f"{challenges_path}/**/data.json",
recursive=True,
)
)
logger.debug("Loading challenges...")
while challenge_spec_files:
challenge_spec_file = Path(challenge_spec_files.popleft())
challenge_relpath = challenge_spec_file.relative_to(challenges_path.parent)
if challenge_relpath.is_relative_to("challenges/deprecated"):
continue
logger.debug(f"Loading {challenge_relpath}...")
try:
challenge_info = ChallengeInfo.model_validate_json(
challenge_spec_file.read_text()
)
except ValidationError as e:
if logging.getLogger().level == logging.DEBUG:
logger.warning(f"Spec file {challenge_relpath} failed to load:\n{e}")
logger.debug(f"Invalid challenge spec: {challenge_spec_file.read_text()}")
continue
if not challenge_info.eval_id:
challenge_info.eval_id = str(uuid.uuid4())
# this will sort all the keys of the JSON systematically
# so that the order is always the same
write_pretty_json(challenge_info.model_dump(), challenge_spec_file)
CHALLENGES[challenge_info.eval_id] = challenge_info
class BenchmarkTaskInfo(BaseModel):
task_id: str
start_time: datetime.datetime
challenge_info: ChallengeInfo
task_informations: dict[str, BenchmarkTaskInfo] = {}
def find_agbenchmark_without_uvicorn():
pids = []
for process in psutil.process_iter(
attrs=[
"pid",
"cmdline",
"name",
"username",
"status",
"cpu_percent",
"memory_info",
"create_time",
"cwd",
"connections",
]
):
try:
# Convert the process.info dictionary values to strings and concatenate them
full_info = " ".join([str(v) for k, v in process.as_dict().items()])
if "agbenchmark" in full_info and "uvicorn" not in full_info:
pids.append(process.pid)
except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess):
pass
return pids
class CreateReportRequest(BaseModel):
test: str
test_run_id: str
# category: Optional[str] = []
mock: Optional[bool] = False
model_config = ConfigDict(extra="forbid")
updates_list = []
origins = [
"http://localhost:8000",
"http://localhost:8080",
"http://127.0.0.1:5000",
"http://localhost:5000",
]
def stream_output(pipe):
for line in pipe:
print(line, end="")
def setup_fastapi_app(agbenchmark_config: AgentBenchmarkConfig) -> FastAPI:
from agbenchmark.agent_api_interface import upload_artifacts
from agbenchmark.challenges import get_challenge_from_source_uri
from agbenchmark.main import run_benchmark
configuration = Configuration(
host=agbenchmark_config.host or "http://localhost:8000"
)
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
router = APIRouter()
@router.post("/reports")
def run_single_test(body: CreateReportRequest) -> dict:
pids = find_agbenchmark_without_uvicorn()
logger.info(f"pids already running with agbenchmark: {pids}")
logger.debug(f"Request to /reports: {body.model_dump()}")
# Start the benchmark in a separate thread
benchmark_process = Process(
target=lambda: run_benchmark(
config=agbenchmark_config,
tests=(body.test,),
mock=body.mock or False,
)
)
benchmark_process.start()
# Wait for the benchmark to finish, with a timeout of 200 seconds
timeout = 200
start_time = time.time()
while benchmark_process.is_alive():
if time.time() - start_time > timeout:
logger.warning(f"Benchmark run timed out after {timeout} seconds")
benchmark_process.terminate()
break
time.sleep(1)
else:
logger.debug(f"Benchmark finished running in {time.time() - start_time} s")
# List all folders in the current working directory
reports_folder = agbenchmark_config.reports_folder
folders = [folder for folder in reports_folder.iterdir() if folder.is_dir()]
# Sort the folders based on their names
sorted_folders = sorted(folders, key=lambda x: x.name)
# Get the last folder
latest_folder = sorted_folders[-1] if sorted_folders else None
# Read report.json from this folder
if latest_folder:
report_path = latest_folder / "report.json"
logger.debug(f"Getting latest report from {report_path}")
if report_path.exists():
with report_path.open() as file:
data = json.load(file)
logger.debug(f"Report data: {data}")
else:
raise HTTPException(
502,
"Could not get result after running benchmark: "
f"'report.json' does not exist in '{latest_folder}'",
)
else:
raise HTTPException(
504, "Could not get result after running benchmark: no reports found"
)
return data
@router.post("/agent/tasks", tags=["agent"])
async def create_agent_task(task_eval_request: TaskEvalRequestBody) -> Task:
"""
Creates a new task using the provided TaskEvalRequestBody and returns a Task.
Args:
task_eval_request: `TaskRequestBody` including an eval_id.
Returns:
Task: A new task with task_id, input, additional_input,
and empty lists for artifacts and steps.
Example:
Request (TaskEvalRequestBody defined in schema.py):
{
...,
"eval_id": "50da533e-3904-4401-8a07-c49adf88b5eb"
}
Response (Task defined in `agent_protocol_client.models`):
{
"task_id": "50da533e-3904-4401-8a07-c49adf88b5eb",
"input": "Write the word 'Washington' to a .txt file",
"artifacts": []
}
"""
try:
challenge_info = CHALLENGES[task_eval_request.eval_id]
async with ApiClient(configuration) as api_client:
api_instance = AgentApi(api_client)
task_input = challenge_info.task
task_request_body = TaskRequestBody(
input=task_input, additional_input=None
)
task_response = await api_instance.create_agent_task(
task_request_body=task_request_body
)
task_info = BenchmarkTaskInfo(
task_id=task_response.task_id,
start_time=datetime.datetime.now(datetime.timezone.utc),
challenge_info=challenge_info,
)
task_informations[task_info.task_id] = task_info
if input_artifacts_dir := challenge_info.task_artifacts_dir:
await upload_artifacts(
api_instance,
input_artifacts_dir,
task_response.task_id,
"artifacts_in",
)
return task_response
except ApiException as e:
logger.error(f"Error whilst trying to create a task:\n{e}")
logger.error(
"The above error was caused while processing request: "
f"{task_eval_request}"
)
raise HTTPException(500)
@router.post("/agent/tasks/{task_id}/steps")
async def proxy(request: Request, task_id: str):
timeout = httpx.Timeout(300.0, read=300.0) # 5 minutes
async with httpx.AsyncClient(timeout=timeout) as client:
# Construct the new URL
new_url = f"{configuration.host}/ap/v1/agent/tasks/{task_id}/steps"
# Forward the request
response = await client.post(
new_url,
content=await request.body(),
headers=dict(request.headers),
)
# Return the response from the forwarded request
return Response(content=response.content, status_code=response.status_code)
@router.post("/agent/tasks/{task_id}/evaluations")
async def create_evaluation(task_id: str) -> BenchmarkRun:
task_info = task_informations[task_id]
challenge = get_challenge_from_source_uri(task_info.challenge_info.source_uri)
try:
async with ApiClient(configuration) as api_client:
api_instance = AgentApi(api_client)
eval_results = await challenge.evaluate_task_state(
api_instance, task_id
)
eval_info = BenchmarkRun(
repository_info=RepositoryInfo(),
run_details=RunDetails(
command=f"agbenchmark --test={challenge.info.name}",
benchmark_start_time=(
task_info.start_time.strftime("%Y-%m-%dT%H:%M:%S+00:00")
),
test_name=challenge.info.name,
),
task_info=TaskInfo(
data_path=challenge.info.source_uri,
is_regression=None,
category=[c.value for c in challenge.info.category],
task=challenge.info.task,
answer=challenge.info.reference_answer or "",
description=challenge.info.description or "",
),
metrics=Metrics(
success=all(e.passed for e in eval_results),
success_percentage=(
100 * sum(e.score for e in eval_results) / len(eval_results)
if eval_results # avoid division by 0
else 0
),
attempted=True,
),
config={},
)
logger.debug(
f"Returning evaluation data:\n{eval_info.model_dump_json(indent=4)}"
)
return eval_info
except ApiException as e:
logger.error(f"Error {e} whilst trying to evaluate task: {task_id}")
raise HTTPException(500)
app.include_router(router, prefix="/ap/v1")
return app

View File

@@ -1,98 +1,19 @@
import logging
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Any, AsyncIterator, Awaitable, ClassVar, Optional
from typing import AsyncIterator, Awaitable, ClassVar, Optional
import pytest
from agbenchmark.config import AgentBenchmarkConfig
from agbenchmark.utils.data_types import Category, DifficultyLevel, EvalResult
from agent_protocol_client import AgentApi, Step
from colorama import Fore, Style
from pydantic import BaseModel, Field
from agbenchmark.config import AgentBenchmarkConfig
from agbenchmark.utils.data_types import Category, DifficultyLevel, EvalResult
logger = logging.getLogger(__name__)
def format_step_output(step: Step, step_num: int, challenge_name: str) -> str:
"""Format a step for concise, informative console output.
Format: [Challenge] step N: tool_name(args) result [$cost]
"""
parts = [f"[{challenge_name}]", f"step {step_num}:"]
# Get additional_output data
ao: dict[str, Any] = step.additional_output or {}
# Get the tool being used in this step
use_tool = ao.get("use_tool", {})
tool_name = use_tool.get("name", "")
tool_args = use_tool.get("arguments", {})
if tool_name:
# Format tool call with abbreviated arguments
args_str = _format_tool_args(tool_name, tool_args)
parts.append(f"{Fore.CYAN}{tool_name}{Fore.RESET}({args_str})")
else:
parts.append(f"{Fore.YELLOW}(no tool){Fore.RESET}")
# Get result from last action (this step's tool will be executed next iteration)
last_action = ao.get("last_action", {})
if last_action:
result = last_action.get("result", {})
if isinstance(result, dict):
if result.get("error"):
parts.append(f"{Fore.RED}error{Fore.RESET}")
elif result.get("status") == "success":
parts.append(f"{Fore.GREEN}{Fore.RESET}")
# Add cost if available
cost = ao.get("task_cumulative_cost", 0)
if cost > 0:
parts.append(f"{Fore.BLUE}${cost:.3f}{Fore.RESET}")
return " ".join(parts)
def _format_tool_args(tool_name: str, args: dict) -> str:
"""Format tool arguments for display, keeping it concise."""
if not args:
return ""
# For common tools, show the most relevant argument
key_args = {
"read_file": ["filename"],
"write_file": ["filename"],
"open_file": ["filename", "file_path"],
"execute_python": ["filename"],
"execute_shell": ["command_line"],
"web_search": ["query"],
"read_webpage": ["url"],
"finish": ["reason"],
"ask_user": ["question"],
"todo_write": [], # Skip args for todo_write (too verbose)
}
if tool_name in key_args:
keys = key_args[tool_name]
if not keys:
return "..."
values = [str(args.get(k, ""))[:40] for k in keys if k in args]
if values:
return ", ".join(
f'"{v}"' if " " not in v else f'"{v[:20]}..."' for v in values
)
# Default: show first arg value, abbreviated
if args:
first_key = next(iter(args))
first_val = str(args[first_key])[:30]
return f'{first_key}="{first_val}"' + (
"..." if len(str(args[first_key])) > 30 else ""
)
return ""
class ChallengeInfo(BaseModel):
eval_id: str = ""
name: str
@@ -174,7 +95,7 @@ class BaseChallenge(ABC):
cls.info.task, config, timeout, cls.info.task_artifacts_dir, mock=mock
):
i += 1
print(format_step_output(step, i, cls.info.name))
print(f"[{cls.info.name}] - step {step.name} ({i}. request)")
yield step
logger.debug(f"Finished {cls.info.name} challenge run")
@@ -182,4 +103,5 @@ class BaseChallenge(ABC):
@abstractmethod
async def evaluate_task_state(
cls, agent: AgentApi, task_id: str
) -> list[EvalResult]: ...
) -> list[EvalResult]:
...

View File

@@ -10,16 +10,6 @@ from pathlib import Path
from typing import Annotated, Any, ClassVar, Iterator, Literal, Optional
import pytest
from agbenchmark.agent_api_interface import download_agent_artifacts_into_folder
from agbenchmark.agent_interface import copy_challenge_artifacts_into_workspace
from agbenchmark.config import AgentBenchmarkConfig
from agbenchmark.utils.data_types import Category, DifficultyLevel, EvalResult
from agbenchmark.utils.prompts import (
END_PROMPT,
FEW_SHOT_EXAMPLES,
PROMPT_MAP,
SCORING_MAP,
)
from agent_protocol_client import AgentApi, ApiClient
from agent_protocol_client import Configuration as ClientConfig
from agent_protocol_client import Step
@@ -33,6 +23,17 @@ from pydantic import (
field_validator,
)
from agbenchmark.agent_api_interface import download_agent_artifacts_into_folder
from agbenchmark.agent_interface import copy_challenge_artifacts_into_workspace
from agbenchmark.config import AgentBenchmarkConfig
from agbenchmark.utils.data_types import Category, DifficultyLevel, EvalResult
from agbenchmark.utils.prompts import (
END_PROMPT,
FEW_SHOT_EXAMPLES,
PROMPT_MAP,
SCORING_MAP,
)
from .base import BaseChallenge, ChallengeInfo
logger = logging.getLogger(__name__)
@@ -68,9 +69,9 @@ class BuiltinChallengeSpec(BaseModel):
class Eval(BaseModel):
type: str
scoring: Optional[Literal["percentage", "scale", "binary"]] = None
template: Optional[Literal["rubric", "reference", "question", "custom"]] = (
None
)
template: Optional[
Literal["rubric", "reference", "question", "custom"]
] = None
examples: Optional[str] = None
@field_validator("scoring", "template")
@@ -227,11 +228,9 @@ class BuiltinChallenge(BaseChallenge):
request.node.user_properties.append(
(
"answers",
(
[r.result for r in eval_results]
if request.config.getoption("--keep-answers")
else None
),
[r.result for r in eval_results]
if request.config.getoption("--keep-answers")
else None,
)
)
request.node.user_properties.append(("scores", [r.score for r in eval_results]))

Some files were not shown because too many files have changed in this diff Show More