mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-02-10 06:45:28 -05:00
Compare commits
4 Commits
ntindle/go
...
dependabot
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
44850e2b15 | ||
|
|
30576119a8 | ||
|
|
81f8290f01 | ||
|
|
cd4fb00821 |
@@ -8,6 +8,7 @@ Includes BM25 reranking for improved lexical relevance.
|
||||
|
||||
import logging
|
||||
import re
|
||||
import time
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Literal
|
||||
|
||||
@@ -362,7 +363,11 @@ async def unified_hybrid_search(
|
||||
LIMIT {limit_param} OFFSET {offset_param}
|
||||
"""
|
||||
|
||||
results = await query_raw_with_schema(sql_query, *params)
|
||||
try:
|
||||
results = await query_raw_with_schema(sql_query, *params)
|
||||
except Exception as e:
|
||||
await _log_vector_error_diagnostics(e)
|
||||
raise
|
||||
|
||||
total = results[0]["total_count"] if results else 0
|
||||
# Apply BM25 reranking
|
||||
@@ -686,7 +691,11 @@ async def hybrid_search(
|
||||
LIMIT {limit_param} OFFSET {offset_param}
|
||||
"""
|
||||
|
||||
results = await query_raw_with_schema(sql_query, *params)
|
||||
try:
|
||||
results = await query_raw_with_schema(sql_query, *params)
|
||||
except Exception as e:
|
||||
await _log_vector_error_diagnostics(e)
|
||||
raise
|
||||
|
||||
total = results[0]["total_count"] if results else 0
|
||||
|
||||
@@ -718,6 +727,87 @@ async def hybrid_search_simple(
|
||||
return await hybrid_search(query=query, page=page, page_size=page_size)
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Diagnostics
|
||||
# ============================================================================
|
||||
|
||||
# Rate limit: only log vector error diagnostics once per this interval
|
||||
_VECTOR_DIAG_INTERVAL_SECONDS = 60
|
||||
_last_vector_diag_time: float = 0
|
||||
|
||||
|
||||
async def _log_vector_error_diagnostics(error: Exception) -> None:
|
||||
"""Log diagnostic info when 'type vector does not exist' error occurs.
|
||||
|
||||
Note: Diagnostic queries use query_raw_with_schema which may run on a different
|
||||
pooled connection than the one that failed. Session-level search_path can differ,
|
||||
so these diagnostics show cluster-wide state, not necessarily the failed session.
|
||||
|
||||
Includes rate limiting to avoid log spam - only logs once per minute.
|
||||
Caller should re-raise the error after calling this function.
|
||||
"""
|
||||
global _last_vector_diag_time
|
||||
|
||||
# Check if this is the vector type error
|
||||
error_str = str(error).lower()
|
||||
if not (
|
||||
"type" in error_str and "vector" in error_str and "does not exist" in error_str
|
||||
):
|
||||
return
|
||||
|
||||
# Rate limit: only log once per interval
|
||||
now = time.time()
|
||||
if now - _last_vector_diag_time < _VECTOR_DIAG_INTERVAL_SECONDS:
|
||||
return
|
||||
_last_vector_diag_time = now
|
||||
|
||||
try:
|
||||
diagnostics: dict[str, object] = {}
|
||||
|
||||
try:
|
||||
search_path_result = await query_raw_with_schema("SHOW search_path")
|
||||
diagnostics["search_path"] = search_path_result
|
||||
except Exception as e:
|
||||
diagnostics["search_path"] = f"Error: {e}"
|
||||
|
||||
try:
|
||||
schema_result = await query_raw_with_schema("SELECT current_schema()")
|
||||
diagnostics["current_schema"] = schema_result
|
||||
except Exception as e:
|
||||
diagnostics["current_schema"] = f"Error: {e}"
|
||||
|
||||
try:
|
||||
user_result = await query_raw_with_schema(
|
||||
"SELECT current_user, session_user, current_database()"
|
||||
)
|
||||
diagnostics["user_info"] = user_result
|
||||
except Exception as e:
|
||||
diagnostics["user_info"] = f"Error: {e}"
|
||||
|
||||
try:
|
||||
# Check pgvector extension installation (cluster-wide, stable info)
|
||||
ext_result = await query_raw_with_schema(
|
||||
"SELECT extname, extversion, nspname as schema "
|
||||
"FROM pg_extension e "
|
||||
"JOIN pg_namespace n ON e.extnamespace = n.oid "
|
||||
"WHERE extname = 'vector'"
|
||||
)
|
||||
diagnostics["pgvector_extension"] = ext_result
|
||||
except Exception as e:
|
||||
diagnostics["pgvector_extension"] = f"Error: {e}"
|
||||
|
||||
logger.error(
|
||||
f"Vector type error diagnostics:\n"
|
||||
f" Error: {error}\n"
|
||||
f" search_path: {diagnostics.get('search_path')}\n"
|
||||
f" current_schema: {diagnostics.get('current_schema')}\n"
|
||||
f" user_info: {diagnostics.get('user_info')}\n"
|
||||
f" pgvector_extension: {diagnostics.get('pgvector_extension')}"
|
||||
)
|
||||
except Exception as diag_error:
|
||||
logger.error(f"Failed to collect vector error diagnostics: {diag_error}")
|
||||
|
||||
|
||||
# Backward compatibility alias - HybridSearchWeights maps to StoreAgentSearchWeights
|
||||
# for existing code that expects the popularity parameter
|
||||
HybridSearchWeights = StoreAgentSearchWeights
|
||||
|
||||
14
autogpt_platform/backend/poetry.lock
generated
14
autogpt_platform/backend/poetry.lock
generated
@@ -1382,14 +1382,14 @@ tzdata = "*"
|
||||
|
||||
[[package]]
|
||||
name = "fastapi"
|
||||
version = "0.128.5"
|
||||
version = "0.128.6"
|
||||
description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production"
|
||||
optional = false
|
||||
python-versions = ">=3.9"
|
||||
groups = ["main"]
|
||||
files = [
|
||||
{file = "fastapi-0.128.5-py3-none-any.whl", hash = "sha256:bceec0de8aa6564599c5bcc0593b0d287703562c848271fca8546fd2c87bf4dd"},
|
||||
{file = "fastapi-0.128.5.tar.gz", hash = "sha256:a7173579fc162d6471e3c6fbd9a4b7610c7a3b367bcacf6c4f90d5d022cab711"},
|
||||
{file = "fastapi-0.128.6-py3-none-any.whl", hash = "sha256:bb1c1ef87d6086a7132d0ab60869d6f1ee67283b20fbf84ec0003bd335099509"},
|
||||
{file = "fastapi-0.128.6.tar.gz", hash = "sha256:0cb3946557e792d731b26a42b04912f16367e3c3135ea8290f620e234f2b604f"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -3078,14 +3078,14 @@ type = ["pygobject-stubs", "pytest-mypy (>=1.0.1)", "shtab", "types-pywin32"]
|
||||
|
||||
[[package]]
|
||||
name = "langfuse"
|
||||
version = "3.13.0"
|
||||
version = "3.14.1"
|
||||
description = "A client library for accessing langfuse"
|
||||
optional = false
|
||||
python-versions = "<4.0,>=3.10"
|
||||
groups = ["main"]
|
||||
files = [
|
||||
{file = "langfuse-3.13.0-py3-none-any.whl", hash = "sha256:71912ddac1cc831a65df895eae538a556f564c094ae51473e747426e9ded1a9d"},
|
||||
{file = "langfuse-3.13.0.tar.gz", hash = "sha256:dacea8111ca4442e97dbfec4f8d676cf9709b35357a26e468f8887b95de0012f"},
|
||||
{file = "langfuse-3.14.1-py3-none-any.whl", hash = "sha256:17bed605dbfc9947cbd1738a715f6d27c1b80b6da9f2946586171958fa5820d0"},
|
||||
{file = "langfuse-3.14.1.tar.gz", hash = "sha256:404a6104cd29353d7829aa417ec46565b04917e5599afdda96c5b0865f4bc991"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -8440,4 +8440,4 @@ cffi = ["cffi (>=1.17,<2.0) ; platform_python_implementation != \"PyPy\" and pyt
|
||||
[metadata]
|
||||
lock-version = "2.1"
|
||||
python-versions = ">=3.10,<3.14"
|
||||
content-hash = "14686ee0e2dc446a75d0db145b08dc410dc31c357e25085bb0f9b0174711c4b1"
|
||||
content-hash = "fc135114e01de39c8adf70f6132045e7d44a19473c1279aee0978de65aad1655"
|
||||
|
||||
@@ -21,7 +21,7 @@ cryptography = "^46.0"
|
||||
discord-py = "^2.5.2"
|
||||
e2b-code-interpreter = "^1.5.2"
|
||||
elevenlabs = "^1.50.0"
|
||||
fastapi = "^0.128.5"
|
||||
fastapi = "^0.128.6"
|
||||
feedparser = "^6.0.11"
|
||||
flake8 = "^7.3.0"
|
||||
google-api-python-client = "^2.177.0"
|
||||
@@ -34,7 +34,7 @@ html2text = "^2024.2.26"
|
||||
jinja2 = "^3.1.6"
|
||||
jsonref = "^1.1.0"
|
||||
jsonschema = "^4.25.0"
|
||||
langfuse = "^3.11.0"
|
||||
langfuse = "^3.14.1"
|
||||
launchdarkly-server-sdk = "^9.14.1"
|
||||
mem0ai = "^0.1.115"
|
||||
moviepy = "^2.1.2"
|
||||
|
||||
Reference in New Issue
Block a user