Compare commits

..

19 Commits

Author SHA1 Message Date
Nicholas Tindle
77453f5f15 Merge branch 'dev' into claude/fix-block-search-vector-error-QMbO4 2026-01-27 10:50:47 -06:00
Nicholas Tindle
9ffff490b5 fix(backend): add pod and pgvector diagnostics to vector query logging
Enhance debug logging for vector query failures to help identify which
database replicas have pgvector installed vs not:

- Add get_pod_info() to capture pod hostname, name, namespace, and IP
- Extend get_connection_debug_info() to check pgvector extension status,
  including which schema it's installed in and list all extensions
- Log connection details BEFORE every vector query (not just on failure)
  to correlate backend_pid with success/failure patterns
- Include server_addr to identify which DB replica is being hit

This helps diagnose the 30% failure rate where identical queries randomly
fail with "type vector does not exist" - likely due to some replicas
missing the pgvector extension.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-26 15:22:39 -06:00
Nicholas Tindle
097949b3e7 Merge branch 'feat/agent-generator' into claude/fix-block-search-vector-error-QMbO4 2026-01-26 13:10:02 -06:00
Zamil Majdy
7f1a1f636f Merge branch 'dev' into feat/agent-generator 2026-01-26 11:23:42 -06:00
Zamil Majdy
4dc4ca4256 fix(frontend): address PR review comments
- Remove unnecessary useCallback from handleClarificationAnswers
- Remove redundant comment for clarification_needed rendering
- Use Input component from design system instead of raw textarea
2026-01-26 10:38:23 -06:00
Claude
00730496e3 fix(backend): use SET LOCAL search_path for vector queries
The connection-level search_path via options parameter is being ignored,
likely by PgBouncer/Supavisor in transaction pooling mode. Logs showed
connections with wrong search_path ('"$user", public, extensions') and
wrong current_schema ('public' instead of 'platform').

This fix wraps vector-type queries (those using ::vector or <=>) in a
transaction with SET LOCAL search_path to ensure pgvector types are
always resolvable, regardless of PgBouncer configuration.

Also exposed SEARCH_PATH constant for use in other modules if needed.
2026-01-25 23:36:30 +00:00
Claude
21c753b971 fix(backend): ensure pgvector search_path for all pooled connections
Fix random "type 'vector' does not exist" errors during copilot chat
block search. The error occurred because pooled database connections
could have inconsistent search_path configurations that didn't include
the schema where pgvector was installed.

The fix adds search_path to the PostgreSQL connection options to ensure
all connections include both the application schema and common extension
schemas (public, extensions) where pgvector may be installed across
different environments (local, CI, Supabase).

Also adds connection debug logging for "does not exist" errors to help
diagnose the related "CoPilotUnderstanding table does not exist" issue,
which may indicate connections routing to different database instances.

Debug info includes: search_path, current_schema, server_addr, backend_pid.
2026-01-25 22:26:10 +00:00
Zamil Majdy
732dfcbb63 Merge branch 'dev' of github.com:Significant-Gravitas/AutoGPT into feat/agent-generator 2026-01-24 15:45:55 -06:00
Zamil Majdy
eebaf7df14 feat(frontend): implement clarification questions UI for agent generation
Add interactive form to collect user answers when agent-generator service
returns clarifying questions during agent creation/editing.

Changes:
- Add clarification_needed message type to ChatMessageData
- Create ClarificationQuestionsWidget component for collecting answers
- Update parseToolResponse to detect clarification_needed responses
- Integrate widget into ChatMessage rendering

Fixes issue where users had no way to answer clarifying questions,
causing the chat to keep retrying without necessary context.
2026-01-24 15:45:34 -06:00
Zamil Majdy
653aab44b6 Merge branch 'dev' of github.com:Significant-Gravitas/AutoGPT into feat/agent-generator 2026-01-24 15:05:34 -06:00
Zamil Majdy
f0bc3f2a49 Merge branch 'dev' of github.com:Significant-Gravitas/AutoGPT into feat/agent-generator 2026-01-24 11:16:02 -06:00
Zamil Majdy
e702d77cdf Revert "fix(backend): resolve OAuth test event loop issue"
This reverts commit 25d9dbac83.
2026-01-23 21:25:41 -06:00
Zamil Majdy
38741d2465 Merge branch 'dev' into feat/agent-generator 2026-01-23 21:23:00 -05:00
Zamil Majdy
25d9dbac83 fix(backend): resolve OAuth test event loop issue
Fix RuntimeError: Event loop is closed when running oauth_test.py in
full test suite. Changed client fixture from implicit session scope to
explicit function scope to avoid httpx.AsyncClient binding to event
loops that get closed/replaced between tests.

- Set @pytest.fixture(scope="function") for client fixture
- Added explicit timeout=30.0 to AsyncClient
- Added documentation explaining the fix

This resolves the last failing test in the suite (1722 passed, 1 error).
2026-01-23 20:20:16 -06:00
Zamil Majdy
fcbecf3502 Merge branch 'dev' of github.com:Significant-Gravitas/AutoGPT into feat/agent-generator 2026-01-22 14:32:39 -05:00
Zamil Majdy
da9c4a4adf fix: wrap generate_agent call in try/except for consistency
Add exception handler for AgentGeneratorNotConfiguredError in generate_agent
call for defensive consistency, even though decompose_goal would typically
catch it first.

Addresses CodeRabbit review suggestion.
2026-01-21 18:48:39 -05:00
Zamil Majdy
0ca73004e5 feat: add clear error when Agent Generator service is not configured
- Add AgentGeneratorNotConfiguredError exception
- Check service configuration before calling external service
- Return helpful error message in create_agent and edit_agent tools
- Update tests to mock is_external_service_configured

Addresses Sentry review comment about unconditional external service calls
2026-01-21 18:38:05 -05:00
Zamil Majdy
9a786ed8d9 refactor: remove redundant local agent generation code
The external Agent Generator service handles fixing and validation
internally, so we no longer need these components in the backend:

- Removed client.py (built-in LLM client)
- Removed prompts.py (built-in prompts)
- Removed fixer.py (local agent fixing)
- Removed validator.py (local agent validation)
- Removed utils.py (utility functions for fixer/validator)

Simplified create_agent.py and edit_agent.py to directly use
the external service results without local post-processing.

Updated tests to match the simplified architecture.

This reduces ~1,800 lines of code that duplicated functionality
already provided by the external Agent Generator service.
2026-01-21 18:13:09 -05:00
Zamil Majdy
0a435e2ffb feat(backend): add external Agent Generator service integration
Add support for delegating agent generation to an external microservice
when AGENTGENERATOR_HOST is configured. Falls back to built-in LLM-based
implementation when not configured.

Changes:
- Add agentgenerator_host, agentgenerator_port, agentgenerator_timeout settings
- Add service.py client for external Agent Generator API
- Update core.py to delegate to external service when configured
- Export is_external_service_configured and check_external_service_health
- Add comprehensive tests for service client and core integration
2026-01-21 17:44:56 -05:00
194 changed files with 2974 additions and 10744 deletions

View File

@@ -29,7 +29,8 @@
"postCreateCmd": [
"cd autogpt_platform/autogpt_libs && poetry install",
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
"cd autogpt_platform/frontend && pnpm install"
"cd autogpt_platform/frontend && pnpm install",
"cd docs && pip install -r requirements.txt"
],
"terminalCommand": "code .",
"deleteBranchWithWorktree": false

View File

@@ -160,7 +160,7 @@ pnpm storybook # Start component development server
**Backend Entry Points:**
- `backend/backend/api/rest_api.py` - FastAPI application setup
- `backend/backend/server/server.py` - FastAPI application setup
- `backend/backend/data/` - Database models and user management
- `backend/blocks/` - Agent execution blocks and logic
@@ -219,7 +219,7 @@ Agents are built using a visual block-based system where each block performs a s
### API Development
1. Update routes in `/backend/backend/api/features/`
1. Update routes in `/backend/backend/server/routers/`
2. Add/update Pydantic models in same directory
3. Write tests alongside route files
4. For `data/*.py` changes, validate user ID checks
@@ -285,7 +285,7 @@ Agents are built using a visual block-based system where each block performs a s
### Security Guidelines
**Cache Protection Middleware** (`/backend/backend/api/middleware/security.py`):
**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`):
- Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses allow list approach for cacheable paths (static assets, health checks, public pages)

2
.gitignore vendored
View File

@@ -178,6 +178,4 @@ autogpt_platform/backend/settings.py
*.ign.*
.test-contents
.claude/settings.local.json
CLAUDE.local.md
/autogpt_platform/backend/logs
.next

View File

@@ -16,6 +16,7 @@ See `docs/content/platform/getting-started.md` for setup instructions.
- Format Python code with `poetry run format`.
- Format frontend code using `pnpm format`.
## Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
@@ -32,17 +33,14 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Do not use `useCallback` or `useMemo` unless strictly needed
- Avoid comments at all times unless the code is very complex
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
- Do not type hook returns, let Typescript infer as much as possible
- Never type with `any`, if not types available use `unknown`
## Testing
@@ -51,8 +49,22 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
Always run the relevant linters and tests before committing.
Use conventional commit messages for all commits (e.g. `feat(backend): add API`).
Types: - feat - fix - refactor - ci - dx (developer experience)
Scopes: - platform - platform/library - platform/marketplace - backend - backend/executor - frontend - frontend/library - frontend/marketplace - blocks
Types:
- feat
- fix
- refactor
- ci
- dx (developer experience)
Scopes:
- platform
- platform/library
- platform/marketplace
- backend
- backend/executor
- frontend
- frontend/library
- frontend/marketplace
- blocks
## Pull requests

View File

@@ -54,7 +54,7 @@ Before proceeding with the installation, ensure your system meets the following
### Updated Setup Instructions:
We've moved to a fully maintained and regularly updated documentation site.
👉 [Follow the official self-hosting guide here](https://agpt.co/docs/platform/getting-started/getting-started)
👉 [Follow the official self-hosting guide here](https://docs.agpt.co/platform/getting-started/)
This tutorial assumes you have Docker, VSCode, git and npm installed.

View File

@@ -6,30 +6,152 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
AutoGPT Platform is a monorepo containing:
- **Backend** (`backend`): Python FastAPI server with async support
- **Frontend** (`frontend`): Next.js React application
- **Shared Libraries** (`autogpt_libs`): Common Python utilities
- **Backend** (`/backend`): Python FastAPI server with async support
- **Frontend** (`/frontend`): Next.js React application
- **Shared Libraries** (`/autogpt_libs`): Common Python utilities
## Component Documentation
## Essential Commands
- **Backend**: See @backend/CLAUDE.md for backend-specific commands, architecture, and development tasks
- **Frontend**: See @frontend/CLAUDE.md for frontend-specific commands, architecture, and development patterns
### Backend Development
## Key Concepts
```bash
# Install dependencies
cd backend && poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend server
poetry run serve
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in TESTING.md
#### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
### Frontend Development
```bash
# Install dependencies
cd frontend && pnpm i
# Generate API client from OpenAPI spec
pnpm generate:api
# Start development server
pnpm dev
# Run E2E tests
pnpm test
# Run Storybook for component development
pnpm storybook
# Build production
pnpm build
# Format and lint
pnpm format
# Type checking
pnpm types
```
**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns.
**Key Frontend Conventions:**
- Separate render logic from data/behavior in components
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Use function declarations (not arrow functions) for components/handlers
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Only use Phosphor Icons
- Never use `src/components/__legacy__/*` or deprecated `BackendAPI`
## Architecture Overview
### Backend Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
### Frontend Architecture
- **Framework**: Next.js 15 App Router (client-first approach)
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
- **State Management**: React Query for server state, co-located UI state in components/hooks
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
- **Workflow Builder**: Visual graph editor using @xyflow/react
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
- **Icons**: Phosphor Icons only
- **Feature Flags**: LaunchDarkly integration
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
- **Testing**: Playwright for E2E, Storybook for component development
### Key Concepts
1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend
2. **Blocks**: Reusable components in `backend/backend/blocks/` that perform specific tasks
2. **Blocks**: Reusable components in `/backend/blocks/` that perform specific tasks
3. **Integrations**: OAuth and API connections stored per user
4. **Store**: Marketplace for sharing agent templates
5. **Virus Scanning**: ClamAV integration for file upload security
### Testing Approach
- Backend uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
- Frontend uses Playwright for E2E tests
- Component testing via Storybook
### Database Schema
Key models (defined in `/backend/schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
### Environment Configuration
#### Configuration Files
- **Backend**: `backend/.env.default` (defaults) → `backend/.env` (user overrides)
- **Frontend**: `frontend/.env.default` (defaults) → `frontend/.env` (user overrides)
- **Platform**: `.env.default` (Supabase/shared defaults) → `.env` (user overrides)
- **Backend**: `/backend/.env.default` (defaults) → `/backend/.env` (user overrides)
- **Frontend**: `/frontend/.env.default` (defaults) → `/frontend/.env` (user overrides)
- **Platform**: `/.env.default` (Supabase/shared defaults) → `/.env` (user overrides)
#### Docker Environment Loading Order
@@ -45,12 +167,83 @@ AutoGPT Platform is a monorepo containing:
- Backend/Frontend services use YAML anchors for consistent configuration
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
### Common Development Tasks
**Adding a new block:**
Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `/backend/backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
**Modifying the API:**
1. Update route in `/backend/backend/server/routers/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
### Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Add `usePageName.ts` hook for logic
- Put sub-components in local `components/` folder
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Do not use `useCallback` or `useMemo` unless strictly needed
- Avoid comments at all times unless the code is very complex
### Security Implementation
**Cache Protection Middleware:**
- Located in `/backend/backend/server/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`/static/*`, `/_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications
### Creating Pull Requests
- Create the PR against the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)
- Use conventional commit messages (see below)
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description
- Create the PR aginst the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)/
- Use conventional commit messages (see below)/
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description/
- Run the github pre-commit hooks to ensure code quality.
### Reviewing/Revising Pull Requests

View File

@@ -1,170 +0,0 @@
# CLAUDE.md - Backend
This file provides guidance to Claude Code when working with the backend.
## Essential Commands
To run something with Python package dependencies you MUST use `poetry run ...`.
```bash
# Install dependencies
poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend as a whole
poetry run app
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in @TESTING.md
### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
## Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
## Testing Approach
- Uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
## Database Schema
Key models (defined in `schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
## Environment Configuration
- **Backend**: `.env.default` (defaults) → `.env` (user overrides)
## Common Development Tasks
### Adding a new block
Follow the comprehensive [Block SDK Guide](@../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph-based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
#### Handling files in blocks with `store_media_file()`
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
| Format | Use When | Returns |
|--------|----------|---------|
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
**Examples:**
```python
# INPUT: Need to process file locally with ffmpeg
local_path = await store_media_file(
file=input_data.video,
execution_context=execution_context,
return_format="for_local_processing",
)
# local_path = "video.mp4" - use with Path/ffmpeg/etc
# INPUT: Need to send to external API like Replicate
image_b64 = await store_media_file(
file=input_data.image,
execution_context=execution_context,
return_format="for_external_api",
)
# image_b64 = "..." - send to API
# OUTPUT: Returning result from block
result_url = await store_media_file(
file=generated_image_url,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", result_url
# In CoPilot: result_url = "workspace://abc123"
# In graphs: result_url = "data:image/png;base64,..."
```
**Key points:**
- `for_block_output` is the ONLY format that auto-adapts to execution context
- Always use `for_block_output` for block outputs unless you have a specific reason not to
- Never hardcode workspace checks - let `for_block_output` handle it
### Modifying the API
1. Update route in `backend/api/features/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
## Security Implementation
### Cache Protection Middleware
- Located in `backend/api/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`static/*`, `_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications

View File

@@ -138,7 +138,7 @@ If the test doesn't need the `user_id` specifically, mocking is not necessary as
#### Using Global Auth Fixtures
Two global auth fixtures are provided by `backend/api/conftest.py`:
Two global auth fixtures are provided by `backend/server/conftest.py`:
- `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id")
- `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id")

View File

@@ -17,7 +17,7 @@ router = fastapi.APIRouter(
)
# Taken from backend/api/features/store/db.py
# Taken from backend/server/v2/store/db.py
def sanitize_query(query: str | None) -> str | None:
if query is None:
return query

View File

@@ -33,15 +33,9 @@ class ChatConfig(BaseSettings):
stream_timeout: int = Field(default=300, description="Stream timeout in seconds")
max_retries: int = Field(default=3, description="Maximum number of retries")
max_agent_runs: int = Field(default=30, description="Maximum number of agent runs")
max_agent_runs: int = Field(default=3, description="Maximum number of agent runs")
max_agent_schedules: int = Field(
default=30, description="Maximum number of agent schedules"
)
# Long-running operation configuration
long_running_operation_ttl: int = Field(
default=600,
description="TTL in seconds for long-running operation tracking in Redis (safety net if pod dies)",
default=3, description="Maximum number of agent schedules"
)
# Langfuse Prompt Management Configuration

View File

@@ -247,45 +247,3 @@ async def get_chat_session_message_count(session_id: str) -> int:
"""Get the number of messages in a chat session."""
count = await PrismaChatMessage.prisma().count(where={"sessionId": session_id})
return count
async def update_tool_message_content(
session_id: str,
tool_call_id: str,
new_content: str,
) -> bool:
"""Update the content of a tool message in chat history.
Used by background tasks to update pending operation messages with final results.
Args:
session_id: The chat session ID.
tool_call_id: The tool call ID to find the message.
new_content: The new content to set.
Returns:
True if a message was updated, False otherwise.
"""
try:
result = await PrismaChatMessage.prisma().update_many(
where={
"sessionId": session_id,
"toolCallId": tool_call_id,
},
data={
"content": new_content,
},
)
if result == 0:
logger.warning(
f"No message found to update for session {session_id}, "
f"tool_call_id {tool_call_id}"
)
return False
return True
except Exception as e:
logger.error(
f"Failed to update tool message for session {session_id}, "
f"tool_call_id {tool_call_id}: {e}"
)
return False

View File

@@ -295,21 +295,6 @@ async def cache_chat_session(session: ChatSession) -> None:
await _cache_session(session)
async def invalidate_session_cache(session_id: str) -> None:
"""Invalidate a chat session from Redis cache.
Used by background tasks to ensure fresh data is loaded on next access.
This is best-effort - Redis failures are logged but don't fail the operation.
"""
try:
redis_key = _get_session_cache_key(session_id)
async_redis = await get_redis_async()
await async_redis.delete(redis_key)
except Exception as e:
# Best-effort: log but don't fail - cache will expire naturally
logger.warning(f"Failed to invalidate session cache for {session_id}: {e}")
async def _get_session_from_db(session_id: str) -> ChatSession | None:
"""Get a chat session from the database."""
prisma_session = await chat_db.get_chat_session(session_id)

View File

@@ -17,13 +17,6 @@ from .model import ChatSession, create_chat_session, get_chat_session, get_user_
config = ChatConfig()
SSE_RESPONSE_HEADERS = {
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"x-vercel-ai-ui-message-stream": "v1",
}
logger = logging.getLogger(__name__)
@@ -39,48 +32,6 @@ async def _validate_and_get_session(
return session
async def _create_stream_generator(
session_id: str,
message: str,
user_id: str | None,
session: ChatSession,
is_user_message: bool = True,
context: dict[str, str] | None = None,
) -> AsyncGenerator[str, None]:
"""Create SSE event generator for chat streaming."""
chunk_count = 0
first_chunk_type: str | None = None
async for chunk in chat_service.stream_chat_completion(
session_id,
message,
is_user_message=is_user_message,
user_id=user_id,
session=session,
context=context,
):
if chunk_count < 3:
logger.info(
"Chat stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
logger.info(
"Chat stream completed",
extra={
"session_id": session_id,
"chunk_count": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
yield "data: [DONE]\n\n"
router = APIRouter(
tags=["chat"],
)
@@ -270,17 +221,49 @@ async def stream_chat_post(
"""
session = await _validate_and_get_session(session_id, user_id)
return StreamingResponse(
_create_stream_generator(
session_id=session_id,
message=request.message,
user_id=user_id,
session=session,
async def event_generator() -> AsyncGenerator[str, None]:
chunk_count = 0
first_chunk_type: str | None = None
async for chunk in chat_service.stream_chat_completion(
session_id,
request.message,
is_user_message=request.is_user_message,
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
context=request.context,
),
):
if chunk_count < 3:
logger.info(
"Chat stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
logger.info(
"Chat stream completed",
extra={
"session_id": session_id,
"chunk_count": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
# AI SDK protocol termination
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers=SSE_RESPONSE_HEADERS,
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no", # Disable nginx buffering
"x-vercel-ai-ui-message-stream": "v1", # AI SDK protocol header
},
)
@@ -312,16 +295,48 @@ async def stream_chat_get(
"""
session = await _validate_and_get_session(session_id, user_id)
return StreamingResponse(
_create_stream_generator(
session_id=session_id,
message=message,
user_id=user_id,
session=session,
async def event_generator() -> AsyncGenerator[str, None]:
chunk_count = 0
first_chunk_type: str | None = None
async for chunk in chat_service.stream_chat_completion(
session_id,
message,
is_user_message=is_user_message,
),
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
):
if chunk_count < 3:
logger.info(
"Chat stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
logger.info(
"Chat stream completed",
extra={
"session_id": session_id,
"chunk_count": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
# AI SDK protocol termination
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers=SSE_RESPONSE_HEADERS,
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no", # Disable nginx buffering
"x-vercel-ai-ui-message-stream": "v1", # AI SDK protocol header
},
)

File diff suppressed because it is too large Load Diff

View File

@@ -1,79 +0,0 @@
# CoPilot Tools - Future Ideas
## Multimodal Image Support for CoPilot
**Problem:** CoPilot uses a vision-capable model but can't "see" workspace images. When a block generates an image and returns `workspace://abc123`, CoPilot can't evaluate it (e.g., checking blog thumbnail quality).
**Backend Solution:**
When preparing messages for the LLM, detect `workspace://` image references and convert them to proper image content blocks:
```python
# Before sending to LLM, scan for workspace image references
# and inject them as image content parts
# Example message transformation:
# FROM: {"role": "assistant", "content": "Generated image: workspace://abc123"}
# TO: {"role": "assistant", "content": [
# {"type": "text", "text": "Generated image: workspace://abc123"},
# {"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}}
# ]}
```
**Where to implement:**
- In the chat stream handler before calling the LLM
- Or in a message preprocessing step
- Need to fetch image from workspace, convert to base64, add as image content
**Considerations:**
- Only do this for image MIME types (image/png, image/jpeg, etc.)
- May want a size limit (don't pass 10MB images)
- Track which images were "shown" to the AI for frontend indicator
- Cost implications - vision API calls are more expensive
**Frontend Solution:**
Show visual indicator on workspace files in chat:
- If AI saw the image: normal display
- If AI didn't see it: overlay icon saying "AI can't see this image"
Requires response metadata indicating which `workspace://` refs were passed to the model.
---
## Output Post-Processing Layer for run_block
**Problem:** Many blocks produce large outputs that:
- Consume massive context (100KB base64 image = ~133KB tokens)
- Can't fit in conversation
- Break things and cause high LLM costs
**Proposed Solution:** Instead of modifying individual blocks or `store_media_file()`, implement a centralized output processor in `run_block.py` that handles outputs before they're returned to CoPilot.
**Benefits:**
1. **Centralized** - one place to handle all output processing
2. **Future-proof** - new blocks automatically get output processing
3. **Keeps blocks pure** - they don't need to know about context constraints
4. **Handles all large outputs** - not just images
**Processing Rules:**
- Detect base64 data URIs → save to workspace, return `workspace://` reference
- Truncate very long strings (>N chars) with truncation note
- Summarize large arrays/lists (e.g., "Array with 1000 items, first 5: [...]")
- Handle nested large outputs in dicts recursively
- Cap total output size
**Implementation Location:** `run_block.py` after block execution, before returning `BlockOutputResponse`
**Example:**
```python
def _process_outputs_for_context(
outputs: dict[str, list[Any]],
workspace_manager: WorkspaceManager,
max_string_length: int = 10000,
max_array_preview: int = 5,
) -> dict[str, list[Any]]:
"""Process block outputs to prevent context bloat."""
processed = {}
for name, values in outputs.items():
processed[name] = [_process_value(v, workspace_manager) for v in values]
return processed
```

View File

@@ -18,12 +18,6 @@ from .get_doc_page import GetDocPageTool
from .run_agent import RunAgentTool
from .run_block import RunBlockTool
from .search_docs import SearchDocsTool
from .workspace_files import (
DeleteWorkspaceFileTool,
ListWorkspaceFilesTool,
ReadWorkspaceFileTool,
WriteWorkspaceFileTool,
)
if TYPE_CHECKING:
from backend.api.features.chat.response_model import StreamToolOutputAvailable
@@ -43,11 +37,6 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
"view_agent_output": AgentOutputTool(),
"search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(),
# Workspace tools for CoPilot file operations
"list_workspace_files": ListWorkspaceFilesTool(),
"read_workspace_file": ReadWorkspaceFileTool(),
"write_workspace_file": WriteWorkspaceFileTool(),
"delete_workspace_file": DeleteWorkspaceFileTool(),
}
# Export individual tool instances for backwards compatibility
@@ -60,11 +49,6 @@ tools: list[ChatCompletionToolParam] = [
]
def get_tool(tool_name: str) -> BaseTool | None:
"""Get a tool instance by name."""
return TOOL_REGISTRY.get(tool_name)
async def execute_tool(
tool_name: str,
parameters: dict[str, Any],
@@ -73,7 +57,7 @@ async def execute_tool(
tool_call_id: str,
) -> "StreamToolOutputAvailable":
"""Execute a tool by name."""
tool = get_tool(tool_name)
tool = TOOL_REGISTRY.get(tool_name)
if not tool:
raise ValueError(f"Tool {tool_name} not found")

View File

@@ -2,54 +2,27 @@
from .core import (
AgentGeneratorNotConfiguredError,
AgentJsonValidationError,
AgentSummary,
DecompositionResult,
DecompositionStep,
LibraryAgentSummary,
MarketplaceAgentSummary,
decompose_goal,
enrich_library_agents_from_steps,
extract_search_terms_from_steps,
extract_uuids_from_text,
generate_agent,
generate_agent_patch,
get_agent_as_json,
get_all_relevant_agents_for_generation,
get_library_agent_by_graph_id,
get_library_agent_by_id,
get_library_agents_for_generation,
json_to_graph,
save_agent_to_library,
search_marketplace_agents_for_generation,
)
from .errors import get_user_message_for_error
from .service import health_check as check_external_service_health
from .service import is_external_service_configured
__all__ = [
"AgentGeneratorNotConfiguredError",
"AgentJsonValidationError",
"AgentSummary",
"DecompositionResult",
"DecompositionStep",
"LibraryAgentSummary",
"MarketplaceAgentSummary",
"check_external_service_health",
# Core functions
"decompose_goal",
"enrich_library_agents_from_steps",
"extract_search_terms_from_steps",
"extract_uuids_from_text",
"generate_agent",
"generate_agent_patch",
"get_agent_as_json",
"get_all_relevant_agents_for_generation",
"get_library_agent_by_graph_id",
"get_library_agent_by_id",
"get_library_agents_for_generation",
"get_user_message_for_error",
"is_external_service_configured",
"json_to_graph",
"save_agent_to_library",
"search_marketplace_agents_for_generation",
"get_agent_as_json",
"json_to_graph",
# Exceptions
"AgentGeneratorNotConfiguredError",
# Service
"is_external_service_configured",
"check_external_service_health",
]

View File

@@ -1,22 +1,11 @@
"""Core agent generation functions."""
import logging
import re
import uuid
from typing import Any, NotRequired, TypedDict
from typing import Any
from backend.api.features.library import db as library_db
from backend.api.features.store import db as store_db
from backend.data.graph import (
Graph,
Link,
Node,
create_graph,
get_graph,
get_graph_all_versions,
get_store_listed_graphs,
)
from backend.util.exceptions import DatabaseError, NotFoundError
from backend.data.graph import Graph, Link, Node, create_graph
from .service import (
decompose_goal_external,
@@ -27,74 +16,6 @@ from .service import (
logger = logging.getLogger(__name__)
AGENT_EXECUTOR_BLOCK_ID = "e189baac-8c20-45a1-94a7-55177ea42565"
class ExecutionSummary(TypedDict):
"""Summary of a single execution for quality assessment."""
status: str
correctness_score: NotRequired[float]
activity_summary: NotRequired[str]
class LibraryAgentSummary(TypedDict):
"""Summary of a library agent for sub-agent composition.
Includes recent executions to help the LLM decide whether to use this agent.
Each execution shows status, correctness_score (0-1), and activity_summary.
"""
graph_id: str
graph_version: int
name: str
description: str
input_schema: dict[str, Any]
output_schema: dict[str, Any]
recent_executions: NotRequired[list[ExecutionSummary]]
class MarketplaceAgentSummary(TypedDict):
"""Summary of a marketplace agent for sub-agent composition."""
name: str
description: str
sub_heading: str
creator: str
is_marketplace_agent: bool
class DecompositionStep(TypedDict, total=False):
"""A single step in decomposed instructions."""
description: str
action: str
block_name: str
tool: str
name: str
class DecompositionResult(TypedDict, total=False):
"""Result from decompose_goal - can be instructions, questions, or error."""
type: str
steps: list[DecompositionStep]
questions: list[dict[str, Any]]
error: str
error_type: str
AgentSummary = LibraryAgentSummary | MarketplaceAgentSummary | dict[str, Any]
def _to_dict_list(
agents: list[AgentSummary] | list[dict[str, Any]] | None,
) -> list[dict[str, Any]] | None:
"""Convert typed agent summaries to plain dicts for external service calls."""
if agents is None:
return None
return [dict(a) for a in agents]
class AgentGeneratorNotConfiguredError(Exception):
"""Raised when the external Agent Generator service is not configured."""
@@ -115,422 +36,15 @@ def _check_service_configured() -> None:
)
_UUID_PATTERN = re.compile(
r"[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}",
re.IGNORECASE,
)
def extract_uuids_from_text(text: str) -> list[str]:
"""Extract all UUID v4 strings from text.
Args:
text: Text that may contain UUIDs (e.g., user's goal description)
Returns:
List of unique UUIDs found in the text (lowercase)
"""
matches = _UUID_PATTERN.findall(text)
return list({m.lower() for m in matches})
async def get_library_agent_by_id(
user_id: str, agent_id: str
) -> LibraryAgentSummary | None:
"""Fetch a specific library agent by its ID (library agent ID or graph_id).
This function tries multiple lookup strategies:
1. First tries to find by graph_id (AgentGraph primary key)
2. If not found, tries to find by library agent ID (LibraryAgent primary key)
This handles both cases:
- User provides graph_id (e.g., from AgentExecutorBlock)
- User provides library agent ID (e.g., from library URL)
Args:
user_id: The user ID
agent_id: The ID to look up (can be graph_id or library agent ID)
Returns:
LibraryAgentSummary if found, None otherwise
"""
try:
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
if agent:
logger.debug(f"Found library agent by graph_id: {agent.name}")
return LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
except DatabaseError:
raise
except Exception as e:
logger.debug(f"Could not fetch library agent by graph_id {agent_id}: {e}")
try:
agent = await library_db.get_library_agent(agent_id, user_id)
if agent:
logger.debug(f"Found library agent by library_id: {agent.name}")
return LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
except NotFoundError:
logger.debug(f"Library agent not found by library_id: {agent_id}")
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by library_id {agent_id}: {e}",
exc_info=True,
)
return None
get_library_agent_by_graph_id = get_library_agent_by_id
async def get_library_agents_for_generation(
user_id: str,
search_query: str | None = None,
exclude_graph_id: str | None = None,
max_results: int = 15,
) -> list[LibraryAgentSummary]:
"""Fetch user's library agents formatted for Agent Generator.
Uses search-based fetching to return relevant agents instead of all agents.
This is more scalable for users with large libraries.
Includes recent_executions list to help the LLM assess agent quality:
- Each execution has status, correctness_score (0-1), and activity_summary
- This gives the LLM concrete examples of recent performance
Args:
user_id: The user ID
search_query: Optional search term to find relevant agents (user's goal/description)
exclude_graph_id: Optional graph ID to exclude (prevents circular references)
max_results: Maximum number of agents to return (default 15)
Returns:
List of LibraryAgentSummary with schemas and recent executions for sub-agent composition
"""
try:
response = await library_db.list_library_agents(
user_id=user_id,
search_term=search_query,
page=1,
page_size=max_results,
include_executions=True,
)
results: list[LibraryAgentSummary] = []
for agent in response.agents:
if exclude_graph_id is not None and agent.graph_id == exclude_graph_id:
continue
summary = LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
if agent.recent_executions:
exec_summaries: list[ExecutionSummary] = []
for ex in agent.recent_executions:
exec_sum = ExecutionSummary(status=ex.status)
if ex.correctness_score is not None:
exec_sum["correctness_score"] = ex.correctness_score
if ex.activity_summary:
exec_sum["activity_summary"] = ex.activity_summary
exec_summaries.append(exec_sum)
summary["recent_executions"] = exec_summaries
results.append(summary)
return results
except DatabaseError:
raise
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
return []
async def search_marketplace_agents_for_generation(
search_query: str,
max_results: int = 10,
) -> list[LibraryAgentSummary]:
"""Search marketplace agents formatted for Agent Generator.
Fetches marketplace agents and their full schemas so they can be used
as sub-agents in generated workflows.
Args:
search_query: Search term to find relevant public agents
max_results: Maximum number of agents to return (default 10)
Returns:
List of LibraryAgentSummary with full input/output schemas
"""
try:
response = await store_db.get_store_agents(
search_query=search_query,
page=1,
page_size=max_results,
)
agents_with_graphs = [
agent for agent in response.agents if agent.agent_graph_id
]
if not agents_with_graphs:
return []
graph_ids = [agent.agent_graph_id for agent in agents_with_graphs]
graphs = await get_store_listed_graphs(*graph_ids)
results: list[LibraryAgentSummary] = []
for agent in agents_with_graphs:
graph_id = agent.agent_graph_id
if graph_id and graph_id in graphs:
graph = graphs[graph_id]
results.append(
LibraryAgentSummary(
graph_id=graph.id,
graph_version=graph.version,
name=agent.agent_name,
description=agent.description,
input_schema=graph.input_schema,
output_schema=graph.output_schema,
)
)
return results
except Exception as e:
logger.warning(f"Failed to search marketplace agents: {e}")
return []
async def get_all_relevant_agents_for_generation(
user_id: str,
search_query: str | None = None,
exclude_graph_id: str | None = None,
include_library: bool = True,
include_marketplace: bool = True,
max_library_results: int = 15,
max_marketplace_results: int = 10,
) -> list[AgentSummary]:
"""Fetch relevant agents from library and/or marketplace.
Searches both user's library and marketplace by default.
Explicitly mentioned UUIDs in the search query are always looked up.
Args:
user_id: The user ID
search_query: Search term to find relevant agents (user's goal/description)
exclude_graph_id: Optional graph ID to exclude (prevents circular references)
include_library: Whether to search user's library (default True)
include_marketplace: Whether to also search marketplace (default True)
max_library_results: Max library agents to return (default 15)
max_marketplace_results: Max marketplace agents to return (default 10)
Returns:
List of AgentSummary with full schemas (both library and marketplace agents)
"""
agents: list[AgentSummary] = []
seen_graph_ids: set[str] = set()
if search_query:
mentioned_uuids = extract_uuids_from_text(search_query)
for graph_id in mentioned_uuids:
if graph_id == exclude_graph_id:
continue
agent = await get_library_agent_by_graph_id(user_id, graph_id)
agent_graph_id = agent.get("graph_id") if agent else None
if agent and agent_graph_id and agent_graph_id not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(agent_graph_id)
logger.debug(
f"Found explicitly mentioned agent: {agent.get('name') or 'Unknown'}"
)
if include_library:
library_agents = await get_library_agents_for_generation(
user_id=user_id,
search_query=search_query,
exclude_graph_id=exclude_graph_id,
max_results=max_library_results,
)
for agent in library_agents:
graph_id = agent.get("graph_id")
if graph_id and graph_id not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(graph_id)
if include_marketplace and search_query:
marketplace_agents = await search_marketplace_agents_for_generation(
search_query=search_query,
max_results=max_marketplace_results,
)
for agent in marketplace_agents:
graph_id = agent.get("graph_id")
if graph_id and graph_id not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(graph_id)
return agents
def extract_search_terms_from_steps(
decomposition_result: DecompositionResult | dict[str, Any],
) -> list[str]:
"""Extract search terms from decomposed instruction steps.
Analyzes the decomposition result to extract relevant keywords
for additional library agent searches.
Args:
decomposition_result: Result from decompose_goal containing steps
Returns:
List of unique search terms extracted from steps
"""
search_terms: list[str] = []
if decomposition_result.get("type") != "instructions":
return search_terms
steps = decomposition_result.get("steps", [])
if not steps:
return search_terms
step_keys: list[str] = ["description", "action", "block_name", "tool", "name"]
for step in steps:
for key in step_keys:
value = step.get(key) # type: ignore[union-attr]
if isinstance(value, str) and len(value) > 3:
search_terms.append(value)
seen: set[str] = set()
unique_terms: list[str] = []
for term in search_terms:
term_lower = term.lower()
if term_lower not in seen:
seen.add(term_lower)
unique_terms.append(term)
return unique_terms
async def enrich_library_agents_from_steps(
user_id: str,
decomposition_result: DecompositionResult | dict[str, Any],
existing_agents: list[AgentSummary] | list[dict[str, Any]],
exclude_graph_id: str | None = None,
include_marketplace: bool = True,
max_additional_results: int = 10,
) -> list[AgentSummary] | list[dict[str, Any]]:
"""Enrich library agents list with additional searches based on decomposed steps.
This implements two-phase search: after decomposition, we search for additional
relevant agents based on the specific steps identified.
Args:
user_id: The user ID
decomposition_result: Result from decompose_goal containing steps
existing_agents: Already fetched library agents from initial search
exclude_graph_id: Optional graph ID to exclude
include_marketplace: Whether to also search marketplace
max_additional_results: Max additional agents per search term (default 10)
Returns:
Combined list of library agents (existing + newly discovered)
"""
search_terms = extract_search_terms_from_steps(decomposition_result)
if not search_terms:
return existing_agents
existing_ids: set[str] = set()
existing_names: set[str] = set()
for agent in existing_agents:
agent_name = agent.get("name")
if agent_name and isinstance(agent_name, str):
existing_names.add(agent_name.lower())
graph_id = agent.get("graph_id") # type: ignore[call-overload]
if graph_id and isinstance(graph_id, str):
existing_ids.add(graph_id)
all_agents: list[AgentSummary] | list[dict[str, Any]] = list(existing_agents)
for term in search_terms[:3]:
try:
additional_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=term,
exclude_graph_id=exclude_graph_id,
include_marketplace=include_marketplace,
max_library_results=max_additional_results,
max_marketplace_results=5,
)
for agent in additional_agents:
agent_name = agent.get("name")
if not agent_name or not isinstance(agent_name, str):
continue
agent_name_lower = agent_name.lower()
if agent_name_lower in existing_names:
continue
graph_id = agent.get("graph_id") # type: ignore[call-overload]
if graph_id and graph_id in existing_ids:
continue
all_agents.append(agent)
existing_names.add(agent_name_lower)
if graph_id and isinstance(graph_id, str):
existing_ids.add(graph_id)
except DatabaseError:
logger.error(f"Database error searching for agents with term '{term}'")
raise
except Exception as e:
logger.warning(
f"Failed to search for additional agents with term '{term}': {e}"
)
logger.debug(
f"Enriched library agents: {len(existing_agents)} initial + "
f"{len(all_agents) - len(existing_agents)} additional = {len(all_agents)} total"
)
return all_agents
async def decompose_goal(
description: str,
context: str = "",
library_agents: list[AgentSummary] | None = None,
) -> DecompositionResult | None:
async def decompose_goal(description: str, context: str = "") -> dict[str, Any] | None:
"""Break down a goal into steps or return clarifying questions.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
library_agents: User's library agents available for sub-agent composition
Returns:
DecompositionResult with either:
Dict with either:
- {"type": "clarifying_questions", "questions": [...]}
- {"type": "instructions", "steps": [...]}
Or None on error
@@ -540,36 +54,26 @@ async def decompose_goal(
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for decompose_goal")
result = await decompose_goal_external(
description, context, _to_dict_list(library_agents)
)
return result # type: ignore[return-value]
return await decompose_goal_external(description, context)
async def generate_agent(
instructions: DecompositionResult | dict[str, Any],
library_agents: list[AgentSummary] | list[dict[str, Any]] | None = None,
) -> dict[str, Any] | None:
async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
"""Generate agent JSON from instructions.
Args:
instructions: Structured instructions from decompose_goal
library_agents: User's library agents available for sub-agent composition
Returns:
Agent JSON dict, error dict {"type": "error", ...}, or None on error
Agent JSON dict or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent")
result = await generate_agent_external(
dict(instructions), _to_dict_list(library_agents)
)
result = await generate_agent_external(instructions)
if result:
if isinstance(result, dict) and result.get("type") == "error":
return result
# Ensure required fields
if "id" not in result:
result["id"] = str(uuid.uuid4())
if "version" not in result:
@@ -579,12 +83,6 @@ async def generate_agent(
return result
class AgentJsonValidationError(Exception):
"""Raised when agent JSON is invalid or missing required fields."""
pass
def json_to_graph(agent_json: dict[str, Any]) -> Graph:
"""Convert agent JSON dict to Graph model.
@@ -593,55 +91,25 @@ def json_to_graph(agent_json: dict[str, Any]) -> Graph:
Returns:
Graph ready for saving
Raises:
AgentJsonValidationError: If required fields are missing from nodes or links
"""
nodes = []
for idx, n in enumerate(agent_json.get("nodes", [])):
block_id = n.get("block_id")
if not block_id:
node_id = n.get("id", f"index_{idx}")
raise AgentJsonValidationError(
f"Node '{node_id}' is missing required field 'block_id'"
)
for n in agent_json.get("nodes", []):
node = Node(
id=n.get("id", str(uuid.uuid4())),
block_id=block_id,
block_id=n["block_id"],
input_default=n.get("input_default", {}),
metadata=n.get("metadata", {}),
)
nodes.append(node)
links = []
for idx, link_data in enumerate(agent_json.get("links", [])):
source_id = link_data.get("source_id")
sink_id = link_data.get("sink_id")
source_name = link_data.get("source_name")
sink_name = link_data.get("sink_name")
missing_fields = []
if not source_id:
missing_fields.append("source_id")
if not sink_id:
missing_fields.append("sink_id")
if not source_name:
missing_fields.append("source_name")
if not sink_name:
missing_fields.append("sink_name")
if missing_fields:
link_id = link_data.get("id", f"index_{idx}")
raise AgentJsonValidationError(
f"Link '{link_id}' is missing required fields: {', '.join(missing_fields)}"
)
for link_data in agent_json.get("links", []):
link = Link(
id=link_data.get("id", str(uuid.uuid4())),
source_id=source_id,
sink_id=sink_id,
source_name=source_name,
sink_name=sink_name,
source_id=link_data["source_id"],
sink_id=link_data["sink_id"],
source_name=link_data["source_name"],
sink_name=link_data["sink_name"],
is_static=link_data.get("is_static", False),
)
links.append(link)
@@ -662,40 +130,22 @@ def _reassign_node_ids(graph: Graph) -> None:
This is needed when creating a new version to avoid unique constraint violations.
"""
# Create mapping from old node IDs to new UUIDs
id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes}
# Reassign node IDs
for node in graph.nodes:
node.id = id_map[node.id]
# Update link references to use new node IDs
for link in graph.links:
link.id = str(uuid.uuid4())
link.id = str(uuid.uuid4()) # Also give links new IDs
if link.source_id in id_map:
link.source_id = id_map[link.source_id]
if link.sink_id in id_map:
link.sink_id = id_map[link.sink_id]
def _populate_agent_executor_user_ids(agent_json: dict[str, Any], user_id: str) -> None:
"""Populate user_id in AgentExecutorBlock nodes.
The external agent generator creates AgentExecutorBlock nodes with empty user_id.
This function fills in the actual user_id so sub-agents run with correct permissions.
Args:
agent_json: Agent JSON dict (modified in place)
user_id: User ID to set
"""
for node in agent_json.get("nodes", []):
if node.get("block_id") == AGENT_EXECUTOR_BLOCK_ID:
input_default = node.get("input_default") or {}
if not input_default.get("user_id"):
input_default["user_id"] = user_id
node["input_default"] = input_default
logger.debug(
f"Set user_id for AgentExecutorBlock node {node.get('id')}"
)
async def save_agent_to_library(
agent_json: dict[str, Any], user_id: str, is_update: bool = False
) -> tuple[Graph, Any]:
@@ -709,27 +159,33 @@ async def save_agent_to_library(
Returns:
Tuple of (created Graph, LibraryAgent)
"""
# Populate user_id in AgentExecutorBlock nodes before conversion
_populate_agent_executor_user_ids(agent_json, user_id)
from backend.data.graph import get_graph_all_versions
graph = json_to_graph(agent_json)
if is_update:
# For updates, keep the same graph ID but increment version
# and reassign node/link IDs to avoid conflicts
if graph.id:
existing_versions = await get_graph_all_versions(graph.id, user_id)
if existing_versions:
latest_version = max(v.version for v in existing_versions)
graph.version = latest_version + 1
# Reassign node IDs (but keep graph ID the same)
_reassign_node_ids(graph)
logger.info(f"Updating agent {graph.id} to version {graph.version}")
else:
# For new agents, always generate a fresh UUID to avoid collisions
graph.id = str(uuid.uuid4())
graph.version = 1
# Reassign all node IDs as well
_reassign_node_ids(graph)
logger.info(f"Creating new agent with ID {graph.id}")
# Save to database
created_graph = await create_graph(graph, user_id)
# Add to user's library (or update existing library agent)
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
@@ -741,31 +197,25 @@ async def save_agent_to_library(
async def get_agent_as_json(
agent_id: str, user_id: str | None
graph_id: str, user_id: str | None
) -> dict[str, Any] | None:
"""Fetch an agent and convert to JSON format for editing.
Args:
agent_id: Graph ID or library agent ID
graph_id: Graph ID or library agent ID
user_id: User ID
Returns:
Agent as JSON dict or None if not found
"""
graph = await get_graph(agent_id, version=None, user_id=user_id)
if not graph and user_id:
try:
library_agent = await library_db.get_library_agent(agent_id, user_id)
graph = await get_graph(
library_agent.graph_id, version=None, user_id=user_id
)
except NotFoundError:
pass
from backend.data.graph import get_graph
# Try to get the graph (version=None gets the active version)
graph = await get_graph(graph_id, version=None, user_id=user_id)
if not graph:
return None
# Convert to JSON format
nodes = []
for node in graph.nodes:
nodes.append(
@@ -803,9 +253,7 @@ async def get_agent_as_json(
async def generate_agent_patch(
update_request: str,
current_agent: dict[str, Any],
library_agents: list[AgentSummary] | None = None,
update_request: str, current_agent: dict[str, Any]
) -> dict[str, Any] | None:
"""Update an existing agent using natural language.
@@ -817,17 +265,13 @@ async def generate_agent_patch(
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
library_agents: User's library agents available for sub-agent composition
Returns:
Updated agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
error dict {"type": "error", ...}, or None on unexpected error
Updated agent JSON, clarifying questions dict, or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent_patch")
return await generate_agent_patch_external(
update_request, current_agent, _to_dict_list(library_agents)
)
return await generate_agent_patch_external(update_request, current_agent)

View File

@@ -1,95 +0,0 @@
"""Error handling utilities for agent generator."""
import re
def _sanitize_error_details(details: str) -> str:
"""Sanitize error details to remove sensitive information.
Strips common patterns that could expose internal system info:
- File paths (Unix and Windows)
- Database connection strings
- URLs with credentials
- Stack trace internals
Args:
details: Raw error details string
Returns:
Sanitized error details safe for user display
"""
sanitized = re.sub(
r"/[a-zA-Z0-9_./\-]+\.(py|js|ts|json|yaml|yml)", "[path]", details
)
sanitized = re.sub(r"[A-Z]:\\[a-zA-Z0-9_\\.\\-]+", "[path]", sanitized)
sanitized = re.sub(
r"(postgres|mysql|mongodb|redis)://[^\s]+", "[database_url]", sanitized
)
sanitized = re.sub(r"https?://[^:]+:[^@]+@[^\s]+", "[url]", sanitized)
sanitized = re.sub(r", line \d+", "", sanitized)
sanitized = re.sub(r'File "[^"]+",?', "", sanitized)
return sanitized.strip()
def get_user_message_for_error(
error_type: str,
operation: str = "process the request",
llm_parse_message: str | None = None,
validation_message: str | None = None,
error_details: str | None = None,
) -> str:
"""Get a user-friendly error message based on error type.
This function maps internal error types to user-friendly messages,
providing a consistent experience across different agent operations.
Args:
error_type: The error type from the external service
(e.g., "llm_parse_error", "timeout", "rate_limit")
operation: Description of what operation failed, used in the default
message (e.g., "analyze the goal", "generate the agent")
llm_parse_message: Custom message for llm_parse_error type
validation_message: Custom message for validation_error type
error_details: Optional additional details about the error
Returns:
User-friendly error message suitable for display to the user
"""
base_message = ""
if error_type == "llm_parse_error":
base_message = (
llm_parse_message
or "The AI had trouble processing this request. Please try again."
)
elif error_type == "validation_error":
base_message = (
validation_message
or "The generated agent failed validation. "
"This usually happens when the agent structure doesn't match "
"what the platform expects. Please try simplifying your goal "
"or breaking it into smaller parts."
)
elif error_type == "patch_error":
base_message = (
"Failed to apply the changes. The modification couldn't be "
"validated. Please try a different approach or simplify the change."
)
elif error_type in ("timeout", "llm_timeout"):
base_message = (
"The request took too long to process. This can happen with "
"complex agents. Please try again or simplify your goal."
)
elif error_type in ("rate_limit", "llm_rate_limit"):
base_message = "The service is currently busy. Please try again in a moment."
else:
base_message = f"Failed to {operation}. Please try again."
if error_details:
details = _sanitize_error_details(error_details)
if len(details) > 200:
details = details[:200] + "..."
base_message += f"\n\nTechnical details: {details}"
return base_message

View File

@@ -14,70 +14,6 @@ from backend.util.settings import Settings
logger = logging.getLogger(__name__)
def _create_error_response(
error_message: str,
error_type: str = "unknown",
details: dict[str, Any] | None = None,
) -> dict[str, Any]:
"""Create a standardized error response dict.
Args:
error_message: Human-readable error message
error_type: Machine-readable error type
details: Optional additional error details
Returns:
Error dict with type="error" and error details
"""
response: dict[str, Any] = {
"type": "error",
"error": error_message,
"error_type": error_type,
}
if details:
response["details"] = details
return response
def _classify_http_error(e: httpx.HTTPStatusError) -> tuple[str, str]:
"""Classify an HTTP error into error_type and message.
Args:
e: The HTTP status error
Returns:
Tuple of (error_type, error_message)
"""
status = e.response.status_code
if status == 429:
return "rate_limit", f"Agent Generator rate limited: {e}"
elif status == 503:
return "service_unavailable", f"Agent Generator unavailable: {e}"
elif status == 504 or status == 408:
return "timeout", f"Agent Generator timed out: {e}"
else:
return "http_error", f"HTTP error calling Agent Generator: {e}"
def _classify_request_error(e: httpx.RequestError) -> tuple[str, str]:
"""Classify a request error into error_type and message.
Args:
e: The request error
Returns:
Tuple of (error_type, error_message)
"""
error_str = str(e).lower()
if "timeout" in error_str or "timed out" in error_str:
return "timeout", f"Agent Generator request timed out: {e}"
elif "connect" in error_str:
return "connection_error", f"Could not connect to Agent Generator: {e}"
else:
return "request_error", f"Request error calling Agent Generator: {e}"
_client: httpx.AsyncClient | None = None
_settings: Settings | None = None
@@ -117,16 +53,13 @@ def _get_client() -> httpx.AsyncClient:
async def decompose_goal_external(
description: str,
context: str = "",
library_agents: list[dict[str, Any]] | None = None,
description: str, context: str = ""
) -> dict[str, Any] | None:
"""Call the external service to decompose a goal.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
library_agents: User's library agents available for sub-agent composition
Returns:
Dict with either:
@@ -134,17 +67,15 @@ async def decompose_goal_external(
- {"type": "instructions", "steps": [...]}
- {"type": "unachievable_goal", ...}
- {"type": "vague_goal", ...}
- {"type": "error", "error": "...", "error_type": "..."} on error
Or None on unexpected error
Or None on error
"""
client = _get_client()
if context:
description = f"{description}\n\nAdditional context from user:\n{context}"
# Build the request payload
payload: dict[str, Any] = {"description": description}
if library_agents:
payload["library_agents"] = library_agents
if context:
# The external service uses user_instruction for additional context
payload["user_instruction"] = context
try:
response = await client.post("/api/decompose-description", json=payload)
@@ -152,13 +83,8 @@ async def decompose_goal_external(
data = response.json()
if not data.get("success"):
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator decomposition failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
logger.error(f"External service returned error: {data.get('error')}")
return None
# Map the response to the expected format
response_type = data.get("type")
@@ -180,120 +106,88 @@ async def decompose_goal_external(
"type": "vague_goal",
"suggested_goal": data.get("suggested_goal"),
}
elif response_type == "error":
# Pass through error from the service
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
else:
logger.error(
f"Unknown response type from external service: {response_type}"
)
return _create_error_response(
f"Unknown response type from Agent Generator: {response_type}",
"invalid_response",
)
return None
except httpx.HTTPStatusError as e:
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
logger.error(f"HTTP error calling external agent generator: {e}")
return None
except httpx.RequestError as e:
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
logger.error(f"Request error calling external agent generator: {e}")
return None
except Exception as e:
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
async def generate_agent_external(
instructions: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
instructions: dict[str, Any]
) -> dict[str, Any] | None:
"""Call the external service to generate an agent from instructions.
Args:
instructions: Structured instructions from decompose_goal
library_agents: User's library agents available for sub-agent composition
Returns:
Agent JSON dict on success, or error dict {"type": "error", ...} on error
Agent JSON dict or None on error
"""
client = _get_client()
payload: dict[str, Any] = {"instructions": instructions}
if library_agents:
payload["library_agents"] = library_agents
try:
response = await client.post("/api/generate-agent", json=payload)
response = await client.post(
"/api/generate-agent", json={"instructions": instructions}
)
response.raise_for_status()
data = response.json()
if not data.get("success"):
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator generation failed: {error_msg} (type: {error_type})"
)
return _create_error_response(error_msg, error_type)
logger.error(f"External service returned error: {data.get('error')}")
return None
return data.get("agent_json")
except httpx.HTTPStatusError as e:
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
logger.error(f"HTTP error calling external agent generator: {e}")
return None
except httpx.RequestError as e:
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
logger.error(f"Request error calling external agent generator: {e}")
return None
except Exception as e:
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
async def generate_agent_patch_external(
update_request: str,
current_agent: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
update_request: str, current_agent: dict[str, Any]
) -> dict[str, Any] | None:
"""Call the external service to generate a patch for an existing agent.
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
library_agents: User's library agents available for sub-agent composition
Returns:
Updated agent JSON, clarifying questions dict, or error dict on error
Updated agent JSON, clarifying questions dict, or None on error
"""
client = _get_client()
payload: dict[str, Any] = {
"update_request": update_request,
"current_agent_json": current_agent,
}
if library_agents:
payload["library_agents"] = library_agents
try:
response = await client.post("/api/update-agent", json=payload)
response = await client.post(
"/api/update-agent",
json={
"update_request": update_request,
"current_agent_json": current_agent,
},
)
response.raise_for_status()
data = response.json()
if not data.get("success"):
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator patch generation failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
logger.error(f"External service returned error: {data.get('error')}")
return None
# Check if it's clarifying questions
if data.get("type") == "clarifying_questions":
@@ -302,28 +196,18 @@ async def generate_agent_patch_external(
"questions": data.get("questions", []),
}
# Check if it's an error passed through
if data.get("type") == "error":
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
# Otherwise return the updated agent JSON
return data.get("agent_json")
except httpx.HTTPStatusError as e:
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
logger.error(f"HTTP error calling external agent generator: {e}")
return None
except httpx.RequestError as e:
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
logger.error(f"Request error calling external agent generator: {e}")
return None
except Exception as e:
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
async def get_blocks_external() -> list[dict[str, Any]] | None:

View File

@@ -1,7 +1,6 @@
"""Shared agent search functionality for find_agent and find_library_agent tools."""
import logging
import re
from typing import Literal
from backend.api.features.library import db as library_db
@@ -20,85 +19,6 @@ logger = logging.getLogger(__name__)
SearchSource = Literal["marketplace", "library"]
_UUID_PATTERN = re.compile(
r"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$",
re.IGNORECASE,
)
def _is_uuid(text: str) -> bool:
"""Check if text is a valid UUID v4."""
return bool(_UUID_PATTERN.match(text.strip()))
async def _get_library_agent_by_id(user_id: str, agent_id: str) -> AgentInfo | None:
"""Fetch a library agent by ID (library agent ID or graph_id).
Tries multiple lookup strategies:
1. First by graph_id (AgentGraph primary key)
2. Then by library agent ID (LibraryAgent primary key)
Args:
user_id: The user ID
agent_id: The ID to look up (can be graph_id or library agent ID)
Returns:
AgentInfo if found, None otherwise
"""
try:
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
if agent:
logger.debug(f"Found library agent by graph_id: {agent.name}")
return AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by graph_id {agent_id}: {e}",
exc_info=True,
)
try:
agent = await library_db.get_library_agent(agent_id, user_id)
if agent:
logger.debug(f"Found library agent by library_id: {agent.name}")
return AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
except NotFoundError:
logger.debug(f"Library agent not found by library_id: {agent_id}")
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by library_id {agent_id}: {e}",
exc_info=True,
)
return None
async def search_agents(
query: str,
@@ -149,37 +69,29 @@ async def search_agents(
is_featured=False,
)
)
else:
if _is_uuid(query):
logger.info(f"Query looks like UUID, trying direct lookup: {query}")
agent = await _get_library_agent_by_id(user_id, query) # type: ignore[arg-type]
if agent:
agents.append(agent)
logger.info(f"Found agent by direct ID lookup: {agent.name}")
if not agents:
logger.info(f"Searching user library for: {query}")
results = await library_db.list_library_agents(
user_id=user_id, # type: ignore[arg-type]
search_term=query,
page_size=10,
)
for agent in results.agents:
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
else: # library
logger.info(f"Searching user library for: {query}")
results = await library_db.list_library_agents(
user_id=user_id, # type: ignore[arg-type]
search_term=query,
page_size=10,
)
for agent in results.agents:
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
)
logger.info(f"Found {len(agents)} agents in {source}")
except NotFoundError:
pass

View File

@@ -36,16 +36,6 @@ class BaseTool:
"""Whether this tool requires authentication."""
return False
@property
def is_long_running(self) -> bool:
"""Whether this tool is long-running and should execute in background.
Long-running tools (like agent generation) are executed via background
tasks to survive SSE disconnections. The result is persisted to chat
history and visible when the user refreshes.
"""
return False
def as_openai_tool(self) -> ChatCompletionToolParam:
"""Convert to OpenAI tool format."""
return ChatCompletionToolParam(

View File

@@ -8,10 +8,7 @@ from backend.api.features.chat.model import ChatSession
from .agent_generator import (
AgentGeneratorNotConfiguredError,
decompose_goal,
enrich_library_agents_from_steps,
generate_agent,
get_all_relevant_agents_for_generation,
get_user_message_for_error,
save_agent_to_library,
)
from .base import BaseTool
@@ -45,10 +42,6 @@ class CreateAgentTool(BaseTool):
def requires_auth(self) -> bool:
return True
@property
def is_long_running(self) -> bool:
return True
@property
def parameters(self) -> dict[str, Any]:
return {
@@ -105,24 +98,9 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
library_agents = None
if user_id:
try:
library_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=description,
include_marketplace=True,
)
logger.debug(
f"Found {len(library_agents)} relevant agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
# Step 1: Decompose goal into steps
try:
decomposition_result = await decompose_goal(
description, context, library_agents
)
decomposition_result = await decompose_goal(description, context)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -135,31 +113,15 @@ class CreateAgentTool(BaseTool):
if decomposition_result is None:
return ErrorResponse(
message="Failed to analyze the goal. The agent generation service may be unavailable. Please try again.",
message="Failed to analyze the goal. The agent generation service may be unavailable or timed out. Please try again.",
error="decomposition_failed",
details={"description": description[:100]},
session_id=session_id,
)
if decomposition_result.get("type") == "error":
error_msg = decomposition_result.get("error", "Unknown error")
error_type = decomposition_result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="analyze the goal",
llm_parse_message="The AI had trouble understanding this request. Please try rephrasing your goal.",
)
return ErrorResponse(
message=user_message,
error=f"decomposition_failed:{error_type}",
details={
"description": description[:100],
"service_error": error_msg,
"error_type": error_type,
},
"description": description[:100]
}, # Include context for debugging
session_id=session_id,
)
# Check if LLM returned clarifying questions
if decomposition_result.get("type") == "clarifying_questions":
questions = decomposition_result.get("questions", [])
return ClarificationNeededResponse(
@@ -178,6 +140,7 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Check for unachievable/vague goals
if decomposition_result.get("type") == "unachievable_goal":
suggested = decomposition_result.get("suggested_goal", "")
reason = decomposition_result.get("reason", "")
@@ -204,22 +167,9 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
if user_id and library_agents is not None:
try:
library_agents = await enrich_library_agents_from_steps(
user_id=user_id,
decomposition_result=decomposition_result,
existing_agents=library_agents,
include_marketplace=True,
)
logger.debug(
f"After enrichment: {len(library_agents)} total agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to enrich library agents from steps: {e}")
# Step 2: Generate agent JSON (external service handles fixing and validation)
try:
agent_json = await generate_agent(decomposition_result, library_agents)
agent_json = await generate_agent(decomposition_result)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -232,34 +182,11 @@ class CreateAgentTool(BaseTool):
if agent_json is None:
return ErrorResponse(
message="Failed to generate the agent. The agent generation service may be unavailable. Please try again.",
message="Failed to generate the agent. The agent generation service may be unavailable or timed out. Please try again.",
error="generation_failed",
details={"description": description[:100]},
session_id=session_id,
)
if isinstance(agent_json, dict) and agent_json.get("type") == "error":
error_msg = agent_json.get("error", "Unknown error")
error_type = agent_json.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="generate the agent",
llm_parse_message="The AI had trouble generating the agent. Please try again or simplify your goal.",
validation_message=(
"I wasn't able to create a valid agent for this request. "
"The generated workflow had some structural issues. "
"Please try simplifying your goal or breaking it into smaller steps."
),
error_details=error_msg,
)
return ErrorResponse(
message=user_message,
error=f"generation_failed:{error_type}",
details={
"description": description[:100],
"service_error": error_msg,
"error_type": error_type,
},
"description": description[:100]
}, # Include context for debugging
session_id=session_id,
)
@@ -268,6 +195,7 @@ class CreateAgentTool(BaseTool):
node_count = len(agent_json.get("nodes", []))
link_count = len(agent_json.get("links", []))
# Step 3: Preview or save
if not save:
return AgentPreviewResponse(
message=(
@@ -282,6 +210,7 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Save to library
if not user_id:
return ErrorResponse(
message="You must be logged in to save agents.",
@@ -299,7 +228,7 @@ class CreateAgentTool(BaseTool):
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/agents/{library_agent.id}",
library_agent_link=f"/library/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)

View File

@@ -9,8 +9,6 @@ from .agent_generator import (
AgentGeneratorNotConfiguredError,
generate_agent_patch,
get_agent_as_json,
get_all_relevant_agents_for_generation,
get_user_message_for_error,
save_agent_to_library,
)
from .base import BaseTool
@@ -44,10 +42,6 @@ class EditAgentTool(BaseTool):
def requires_auth(self) -> bool:
return True
@property
def is_long_running(self) -> bool:
return True
@property
def parameters(self) -> dict[str, Any]:
return {
@@ -118,6 +112,7 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Step 1: Fetch current agent
current_agent = await get_agent_as_json(agent_id, user_id)
if current_agent is None:
@@ -127,30 +122,14 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
library_agents = None
if user_id:
try:
graph_id = current_agent.get("id")
library_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=changes,
exclude_graph_id=graph_id,
include_marketplace=True,
)
logger.debug(
f"Found {len(library_agents)} relevant agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
# Build the update request with context
update_request = changes
if context:
update_request = f"{changes}\n\nAdditional context:\n{context}"
# Step 2: Generate updated agent (external service handles fixing and validation)
try:
result = await generate_agent_patch(
update_request, current_agent, library_agents
)
result = await generate_agent_patch(update_request, current_agent)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -169,28 +148,7 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
if isinstance(result, dict) and result.get("type") == "error":
error_msg = result.get("error", "Unknown error")
error_type = result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="generate the changes",
llm_parse_message="The AI had trouble generating the changes. Please try again or simplify your request.",
validation_message="The generated changes failed validation. Please try rephrasing your request.",
error_details=error_msg,
)
return ErrorResponse(
message=user_message,
error=f"update_generation_failed:{error_type}",
details={
"agent_id": agent_id,
"changes": changes[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)
# Check if LLM returned clarifying questions
if result.get("type") == "clarifying_questions":
questions = result.get("questions", [])
return ClarificationNeededResponse(
@@ -209,6 +167,7 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Result is the updated agent JSON
updated_agent = result
agent_name = updated_agent.get("name", "Updated Agent")
@@ -216,6 +175,7 @@ class EditAgentTool(BaseTool):
node_count = len(updated_agent.get("nodes", []))
link_count = len(updated_agent.get("links", []))
# Step 3: Preview or save
if not save:
return AgentPreviewResponse(
message=(
@@ -231,6 +191,7 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Save to library (creates a new version)
if not user_id:
return ErrorResponse(
message="You must be logged in to save agents.",
@@ -248,7 +209,7 @@ class EditAgentTool(BaseTool):
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/agents/{library_agent.id}",
library_agent_link=f"/library/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)

View File

@@ -1,81 +0,0 @@
"""Shared helpers for chat tools."""
from typing import Any
from .models import ErrorResponse
def error_response(
message: str, session_id: str | None, **kwargs: Any
) -> ErrorResponse:
"""Create standardized error response.
Args:
message: Error message to display
session_id: Current session ID
**kwargs: Additional fields to pass to ErrorResponse
Returns:
ErrorResponse with the given message and session_id
"""
return ErrorResponse(message=message, session_id=session_id, **kwargs)
def get_inputs_from_schema(
input_schema: dict[str, Any],
exclude_fields: set[str] | None = None,
) -> list[dict[str, Any]]:
"""Extract input field info from JSON schema.
Args:
input_schema: JSON schema dict with 'properties' and 'required'
exclude_fields: Set of field names to exclude (e.g., credential fields)
Returns:
List of dicts with field info (name, title, type, description, required, default)
"""
# Safety check: original code returned [] if input_schema wasn't a dict
if not isinstance(input_schema, dict):
return []
exclude = exclude_fields or set()
properties = input_schema.get("properties", {})
required = set(input_schema.get("required", []))
return [
{
"name": name,
"title": schema.get("title", name),
"type": schema.get("type", "string"),
"description": schema.get("description", ""),
"required": name in required,
"default": schema.get("default"),
}
for name, schema in properties.items()
if name not in exclude
]
def format_inputs_as_markdown(inputs: list[dict[str, Any]]) -> str:
"""Format input fields as a readable markdown list.
Args:
inputs: List of input dicts from get_inputs_from_schema
Returns:
Markdown-formatted string listing the inputs
"""
if not inputs:
return "No inputs required."
lines = []
for inp in inputs:
required_marker = " (required)" if inp.get("required") else ""
default = inp.get("default")
default_info = f" [default: {default}]" if default is not None else ""
description = inp.get("description", "")
desc_info = f" - {description}" if description else ""
lines.append(f"- **{inp['name']}**{required_marker}{default_info}{desc_info}")
return "\n".join(lines)

View File

@@ -28,18 +28,6 @@ class ResponseType(str, Enum):
BLOCK_OUTPUT = "block_output"
DOC_SEARCH_RESULTS = "doc_search_results"
DOC_PAGE = "doc_page"
# Workspace response types
WORKSPACE_FILE_LIST = "workspace_file_list"
WORKSPACE_FILE_CONTENT = "workspace_file_content"
WORKSPACE_FILE_METADATA = "workspace_file_metadata"
WORKSPACE_FILE_WRITTEN = "workspace_file_written"
WORKSPACE_FILE_DELETED = "workspace_file_deleted"
# Long-running operation types
OPERATION_STARTED = "operation_started"
OPERATION_PENDING = "operation_pending"
OPERATION_IN_PROGRESS = "operation_in_progress"
# Input validation
INPUT_VALIDATION_ERROR = "input_validation_error"
# Base response model
@@ -70,10 +58,6 @@ class AgentInfo(BaseModel):
has_external_trigger: bool | None = None
new_output: bool | None = None
graph_id: str | None = None
inputs: dict[str, Any] | None = Field(
default=None,
description="Input schema for the agent, including field names, types, and defaults",
)
class AgentsFoundResponse(ToolResponseBase):
@@ -200,20 +184,6 @@ class ErrorResponse(ToolResponseBase):
details: dict[str, Any] | None = None
class InputValidationErrorResponse(ToolResponseBase):
"""Response when run_agent receives unknown input fields."""
type: ResponseType = ResponseType.INPUT_VALIDATION_ERROR
unrecognized_fields: list[str] = Field(
description="List of input field names that were not recognized"
)
inputs: dict[str, Any] = Field(
description="The agent's valid input schema for reference"
)
graph_id: str | None = None
graph_version: int | None = None
# Agent output models
class ExecutionOutputInfo(BaseModel):
"""Summary of a single execution's outputs."""
@@ -364,39 +334,3 @@ class BlockOutputResponse(ToolResponseBase):
block_name: str
outputs: dict[str, list[Any]]
success: bool = True
# Long-running operation models
class OperationStartedResponse(ToolResponseBase):
"""Response when a long-running operation has been started in the background.
This is returned immediately to the client while the operation continues
to execute. The user can close the tab and check back later.
"""
type: ResponseType = ResponseType.OPERATION_STARTED
operation_id: str
tool_name: str
class OperationPendingResponse(ToolResponseBase):
"""Response stored in chat history while a long-running operation is executing.
This is persisted to the database so users see a pending state when they
refresh before the operation completes.
"""
type: ResponseType = ResponseType.OPERATION_PENDING
operation_id: str
tool_name: str
class OperationInProgressResponse(ToolResponseBase):
"""Response when an operation is already in progress.
Returned for idempotency when the same tool_call_id is requested again
while the background task is still running.
"""
type: ResponseType = ResponseType.OPERATION_IN_PROGRESS
tool_call_id: str

View File

@@ -24,14 +24,12 @@ from backend.util.timezone_utils import (
)
from .base import BaseTool
from .helpers import get_inputs_from_schema
from .models import (
AgentDetails,
AgentDetailsResponse,
ErrorResponse,
ExecutionOptions,
ExecutionStartedResponse,
InputValidationErrorResponse,
SetupInfo,
SetupRequirementsResponse,
ToolResponseBase,
@@ -275,22 +273,6 @@ class RunAgentTool(BaseTool):
input_properties = graph.input_schema.get("properties", {})
required_fields = set(graph.input_schema.get("required", []))
provided_inputs = set(params.inputs.keys())
valid_fields = set(input_properties.keys())
# Check for unknown input fields
unrecognized_fields = provided_inputs - valid_fields
if unrecognized_fields:
return InputValidationErrorResponse(
message=(
f"Unknown input field(s) provided: {', '.join(sorted(unrecognized_fields))}. "
f"Agent was not executed. Please use the correct field names from the schema."
),
session_id=session_id,
unrecognized_fields=sorted(unrecognized_fields),
inputs=graph.input_schema,
graph_id=graph.id,
graph_version=graph.version,
)
# If agent has inputs but none were provided AND use_defaults is not set,
# always show what's available first so user can decide
@@ -372,7 +354,19 @@ class RunAgentTool(BaseTool):
def _get_inputs_list(self, input_schema: dict[str, Any]) -> list[dict[str, Any]]:
"""Extract inputs list from schema."""
return get_inputs_from_schema(input_schema)
inputs_list = []
if isinstance(input_schema, dict) and "properties" in input_schema:
for field_name, field_schema in input_schema["properties"].items():
inputs_list.append(
{
"name": field_name,
"title": field_schema.get("title", field_name),
"type": field_schema.get("type", "string"),
"description": field_schema.get("description", ""),
"required": field_name in input_schema.get("required", []),
}
)
return inputs_list
def _get_execution_modes(self, graph: GraphModel) -> list[str]:
"""Get available execution modes for the graph."""

View File

@@ -402,42 +402,3 @@ async def test_run_agent_schedule_without_name(setup_test_data):
# Should return error about missing schedule_name
assert result_data.get("type") == "error"
assert "schedule_name" in result_data["message"].lower()
@pytest.mark.asyncio(loop_scope="session")
async def test_run_agent_rejects_unknown_input_fields(setup_test_data):
"""Test that run_agent returns input_validation_error for unknown input fields."""
user = setup_test_data["user"]
store_submission = setup_test_data["store_submission"]
tool = RunAgentTool()
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
session = make_session(user_id=user.id)
# Execute with unknown input field names
response = await tool.execute(
user_id=user.id,
session_id=str(uuid.uuid4()),
tool_call_id=str(uuid.uuid4()),
username_agent_slug=agent_marketplace_id,
inputs={
"unknown_field": "some value",
"another_unknown": "another value",
},
session=session,
)
assert response is not None
assert hasattr(response, "output")
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Should return input_validation_error type with unrecognized fields
assert result_data.get("type") == "input_validation_error"
assert "unrecognized_fields" in result_data
assert set(result_data["unrecognized_fields"]) == {
"another_unknown",
"unknown_field",
}
assert "inputs" in result_data # Contains the valid schema
assert "Agent was not executed" in result_data["message"]

View File

@@ -1,22 +1,17 @@
"""Tool for executing blocks directly."""
import logging
import uuid
from collections import defaultdict
from typing import Any
from pydantic_core import PydanticUndefined
from backend.api.features.chat.model import ChatSession
from backend.data.block import get_block
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.data.workspace import get_or_create_workspace
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import BlockError
from .base import BaseTool
from .helpers import get_inputs_from_schema
from .models import (
BlockOutputResponse,
ErrorResponse,
@@ -25,10 +20,7 @@ from .models import (
ToolResponseBase,
UserReadiness,
)
from .utils import (
build_missing_credentials_from_field_info,
match_credentials_to_requirements,
)
from .utils import build_missing_credentials_from_field_info
logger = logging.getLogger(__name__)
@@ -77,68 +69,64 @@ class RunBlockTool(BaseTool):
def requires_auth(self) -> bool:
return True
def _resolve_discriminated_credentials(
self,
block: Any,
input_data: dict[str, Any],
) -> dict[str, CredentialsFieldInfo]:
"""Resolve credential requirements, applying discriminator logic where needed."""
credentials_fields_info = block.input_schema.get_credentials_fields_info()
if not credentials_fields_info:
return {}
resolved: dict[str, CredentialsFieldInfo] = {}
for field_name, field_info in credentials_fields_info.items():
effective_field_info = field_info
if field_info.discriminator and field_info.discriminator_mapping:
discriminator_value = input_data.get(field_info.discriminator)
if discriminator_value is None:
field = block.input_schema.model_fields.get(
field_info.discriminator
)
if field and field.default is not PydanticUndefined:
discriminator_value = field.default
if (
discriminator_value
and discriminator_value in field_info.discriminator_mapping
):
effective_field_info = field_info.discriminate(discriminator_value)
logger.debug(
f"Discriminated provider for {field_name}: "
f"{discriminator_value} -> {effective_field_info.provider}"
)
resolved[field_name] = effective_field_info
return resolved
async def _check_block_credentials(
self,
user_id: str,
block: Any,
input_data: dict[str, Any] | None = None,
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Check if user has required credentials for a block.
Args:
user_id: User ID
block: Block to check credentials for
input_data: Input data for the block (used to determine provider via discriminator)
Returns:
tuple[matched_credentials, missing_credentials]
"""
input_data = input_data or {}
requirements = self._resolve_discriminated_credentials(block, input_data)
matched_credentials: dict[str, CredentialsMetaInput] = {}
missing_credentials: list[CredentialsMetaInput] = []
if not requirements:
return {}, []
# Get credential field info from block's input schema
credentials_fields_info = block.input_schema.get_credentials_fields_info()
return await match_credentials_to_requirements(user_id, requirements)
if not credentials_fields_info:
return matched_credentials, missing_credentials
# Get user's available credentials
creds_manager = IntegrationCredentialsManager()
available_creds = await creds_manager.store.get_all_creds(user_id)
for field_name, field_info in credentials_fields_info.items():
# field_info.provider is a frozenset of acceptable providers
# field_info.supported_types is a frozenset of acceptable types
matching_cred = next(
(
cred
for cred in available_creds
if cred.provider in field_info.provider
and cred.type in field_info.supported_types
),
None,
)
if matching_cred:
matched_credentials[field_name] = CredentialsMetaInput(
id=matching_cred.id,
provider=matching_cred.provider, # type: ignore
type=matching_cred.type,
title=matching_cred.title,
)
else:
# Create a placeholder for the missing credential
provider = next(iter(field_info.provider), "unknown")
cred_type = next(iter(field_info.supported_types), "api_key")
missing_credentials.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=field_name.replace("_", " ").title(),
)
)
return matched_credentials, missing_credentials
async def _execute(
self,
@@ -196,9 +184,10 @@ class RunBlockTool(BaseTool):
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
# Check credentials
creds_manager = IntegrationCredentialsManager()
matched_credentials, missing_credentials = await self._check_block_credentials(
user_id, block, input_data
user_id, block
)
if missing_credentials:
@@ -234,48 +223,11 @@ class RunBlockTool(BaseTool):
)
try:
# Get or create user's workspace for CoPilot file operations
workspace = await get_or_create_workspace(user_id)
# Generate synthetic IDs for CoPilot context
# Each chat session is treated as its own agent with one continuous run
# This means:
# - graph_id (agent) = session (memories scoped to session when limit_to_agent=True)
# - graph_exec_id (run) = session (memories scoped to session when limit_to_run=True)
# - node_exec_id = unique per block execution
synthetic_graph_id = f"copilot-session-{session.session_id}"
synthetic_graph_exec_id = f"copilot-session-{session.session_id}"
synthetic_node_id = f"copilot-node-{block_id}"
synthetic_node_exec_id = (
f"copilot-{session.session_id}-{uuid.uuid4().hex[:8]}"
)
# Create unified execution context with all required fields
execution_context = ExecutionContext(
# Execution identity
user_id=user_id,
graph_id=synthetic_graph_id,
graph_exec_id=synthetic_graph_exec_id,
graph_version=1, # Versions are 1-indexed
node_id=synthetic_node_id,
node_exec_id=synthetic_node_exec_id,
# Workspace with session scoping
workspace_id=workspace.id,
session_id=session.session_id,
)
# Prepare kwargs for block execution
# Keep individual kwargs for backwards compatibility with existing blocks
# Fetch actual credentials and prepare kwargs for block execution
# Create execution context with defaults (blocks may require it)
exec_kwargs: dict[str, Any] = {
"user_id": user_id,
"execution_context": execution_context,
# Legacy: individual kwargs for blocks not yet using execution_context
"workspace_id": workspace.id,
"graph_exec_id": synthetic_graph_exec_id,
"node_exec_id": synthetic_node_exec_id,
"node_id": synthetic_node_id,
"graph_version": 1, # Versions are 1-indexed
"graph_id": synthetic_graph_id,
"execution_context": ExecutionContext(),
}
for field_name, cred_meta in matched_credentials.items():
@@ -329,6 +281,27 @@ class RunBlockTool(BaseTool):
def _get_inputs_list(self, block: Any) -> list[dict[str, Any]]:
"""Extract non-credential inputs from block schema."""
inputs_list = []
schema = block.input_schema.jsonschema()
properties = schema.get("properties", {})
required_fields = set(schema.get("required", []))
# Get credential field names to exclude
credentials_fields = set(block.input_schema.get_credentials_fields().keys())
return get_inputs_from_schema(schema, exclude_fields=credentials_fields)
for field_name, field_schema in properties.items():
# Skip credential fields
if field_name in credentials_fields:
continue
inputs_list.append(
{
"name": field_name,
"title": field_schema.get("title", field_name),
"type": field_schema.get("type", "string"),
"description": field_schema.get("description", ""),
"required": field_name in required_fields,
}
)
return inputs_list

View File

@@ -8,7 +8,7 @@ from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data import graph as graph_db
from backend.data.graph import GraphModel
from backend.data.model import Credentials, CredentialsFieldInfo, CredentialsMetaInput
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import NotFoundError
@@ -225,103 +225,6 @@ async def get_or_create_library_agent(
return library_agents[0]
async def get_user_credentials(user_id: str) -> list:
"""Get all available credentials for a user."""
creds_manager = IntegrationCredentialsManager()
return await creds_manager.store.get_all_creds(user_id)
def find_matching_credential(
available_creds: list,
field_info: CredentialsFieldInfo,
check_scopes: bool = True,
):
"""Find a credential that matches the required provider, type, and optionally scopes."""
for cred in available_creds:
if cred.provider not in field_info.provider:
continue
if cred.type not in field_info.supported_types:
continue
if check_scopes and not _credential_has_required_scopes(cred, field_info):
continue
return cred
return None
def create_credential_meta_from_match(matching_cred) -> CredentialsMetaInput:
"""Create a CredentialsMetaInput from a matched credential."""
return CredentialsMetaInput(
id=matching_cred.id,
provider=matching_cred.provider, # type: ignore
type=matching_cred.type,
title=matching_cred.title,
)
async def match_credentials_to_requirements(
user_id: str,
requirements: dict[str, CredentialsFieldInfo],
check_scopes: bool = True,
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Match user's credentials against a dictionary of credential requirements.
This is the core matching logic shared by both graph and block credential matching.
Args:
user_id: User ID to fetch credentials for
requirements: Dict mapping field names to CredentialsFieldInfo
check_scopes: Whether to verify OAuth2 scopes match requirements (default True).
Set to False to preserve original run_block behavior which didn't check scopes.
"""
matched: dict[str, CredentialsMetaInput] = {}
missing: list[CredentialsMetaInput] = []
if not requirements:
return matched, missing
available_creds = await get_user_credentials(user_id)
for field_name, field_info in requirements.items():
matching_cred = find_matching_credential(
available_creds, field_info, check_scopes=check_scopes
)
if matching_cred:
try:
matched[field_name] = create_credential_meta_from_match(matching_cred)
except Exception as e:
logger.error(
f"Failed to create CredentialsMetaInput for field '{field_name}': "
f"provider={matching_cred.provider}, type={matching_cred.type}, "
f"credential_id={matching_cred.id}",
exc_info=True,
)
provider = next(iter(field_info.provider), "unknown")
cred_type = next(iter(field_info.supported_types), "api_key")
missing.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=f"{field_name} (validation failed: {e})",
)
)
else:
provider = next(iter(field_info.provider), "unknown")
cred_type = next(iter(field_info.supported_types), "api_key")
missing.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=field_name.replace("_", " ").title(),
)
)
return matched, missing
async def match_user_credentials_to_graph(
user_id: str,
graph: GraphModel,
@@ -363,14 +266,13 @@ async def match_user_credentials_to_graph(
credential_requirements,
_node_fields,
) in aggregated_creds.items():
# Find first matching credential by provider, type, and scopes
# Find first matching credential by provider and type
matching_cred = next(
(
cred
for cred in available_creds
if cred.provider in credential_requirements.provider
and cred.type in credential_requirements.supported_types
and _credential_has_required_scopes(cred, credential_requirements)
),
None,
)
@@ -394,17 +296,10 @@ async def match_user_credentials_to_graph(
f"{credential_field_name} (validation failed: {e})"
)
else:
# Build a helpful error message including scope requirements
error_parts = [
f"provider in {list(credential_requirements.provider)}",
f"type in {list(credential_requirements.supported_types)}",
]
if credential_requirements.required_scopes:
error_parts.append(
f"scopes including {list(credential_requirements.required_scopes)}"
)
missing_creds.append(
f"{credential_field_name} (requires {', '.join(error_parts)})"
f"{credential_field_name} "
f"(requires provider in {list(credential_requirements.provider)}, "
f"type in {list(credential_requirements.supported_types)})"
)
logger.info(
@@ -414,28 +309,6 @@ async def match_user_credentials_to_graph(
return graph_credentials_inputs, missing_creds
def _credential_has_required_scopes(
credential: Credentials,
requirements: CredentialsFieldInfo,
) -> bool:
"""
Check if a credential has all the scopes required by the block.
For OAuth2 credentials, verifies that the credential's scopes are a superset
of the required scopes. For other credential types, returns True (no scope check).
"""
# Only OAuth2 credentials have scopes to check
if credential.type != "oauth2":
return True
# If no scopes are required, any credential matches
if not requirements.required_scopes:
return True
# Check that credential scopes are a superset of required scopes
return set(credential.scopes).issuperset(requirements.required_scopes)
async def check_user_has_required_credentials(
user_id: str,
required_credentials: list[CredentialsMetaInput],

View File

@@ -1,620 +0,0 @@
"""CoPilot tools for workspace file operations."""
import base64
import logging
from typing import Any, Optional
from pydantic import BaseModel
from backend.api.features.chat.model import ChatSession
from backend.data.workspace import get_or_create_workspace
from backend.util.settings import Config
from backend.util.virus_scanner import scan_content_safe
from backend.util.workspace import WorkspaceManager
from .base import BaseTool
from .models import ErrorResponse, ResponseType, ToolResponseBase
logger = logging.getLogger(__name__)
class WorkspaceFileInfoData(BaseModel):
"""Data model for workspace file information (not a response itself)."""
file_id: str
name: str
path: str
mime_type: str
size_bytes: int
class WorkspaceFileListResponse(ToolResponseBase):
"""Response containing list of workspace files."""
type: ResponseType = ResponseType.WORKSPACE_FILE_LIST
files: list[WorkspaceFileInfoData]
total_count: int
class WorkspaceFileContentResponse(ToolResponseBase):
"""Response containing workspace file content (legacy, for small text files)."""
type: ResponseType = ResponseType.WORKSPACE_FILE_CONTENT
file_id: str
name: str
path: str
mime_type: str
content_base64: str
class WorkspaceFileMetadataResponse(ToolResponseBase):
"""Response containing workspace file metadata and download URL (prevents context bloat)."""
type: ResponseType = ResponseType.WORKSPACE_FILE_METADATA
file_id: str
name: str
path: str
mime_type: str
size_bytes: int
download_url: str
preview: str | None = None # First 500 chars for text files
class WorkspaceWriteResponse(ToolResponseBase):
"""Response after writing a file to workspace."""
type: ResponseType = ResponseType.WORKSPACE_FILE_WRITTEN
file_id: str
name: str
path: str
size_bytes: int
class WorkspaceDeleteResponse(ToolResponseBase):
"""Response after deleting a file from workspace."""
type: ResponseType = ResponseType.WORKSPACE_FILE_DELETED
file_id: str
success: bool
class ListWorkspaceFilesTool(BaseTool):
"""Tool for listing files in user's workspace."""
@property
def name(self) -> str:
return "list_workspace_files"
@property
def description(self) -> str:
return (
"List files in the user's workspace. "
"Returns file names, paths, sizes, and metadata. "
"Optionally filter by path prefix."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"path_prefix": {
"type": "string",
"description": (
"Optional path prefix to filter files "
"(e.g., '/documents/' to list only files in documents folder). "
"By default, only files from the current session are listed."
),
},
"limit": {
"type": "integer",
"description": "Maximum number of files to return (default 50, max 100)",
"minimum": 1,
"maximum": 100,
},
"include_all_sessions": {
"type": "boolean",
"description": (
"If true, list files from all sessions. "
"Default is false (only current session's files)."
),
},
},
"required": [],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
path_prefix: Optional[str] = kwargs.get("path_prefix")
limit = min(kwargs.get("limit", 50), 100)
include_all_sessions: bool = kwargs.get("include_all_sessions", False)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
files = await manager.list_files(
path=path_prefix,
limit=limit,
include_all_sessions=include_all_sessions,
)
total = await manager.get_file_count(
path=path_prefix,
include_all_sessions=include_all_sessions,
)
file_infos = [
WorkspaceFileInfoData(
file_id=f.id,
name=f.name,
path=f.path,
mime_type=f.mimeType,
size_bytes=f.sizeBytes,
)
for f in files
]
scope_msg = "all sessions" if include_all_sessions else "current session"
return WorkspaceFileListResponse(
files=file_infos,
total_count=total,
message=f"Found {len(files)} files in workspace ({scope_msg})",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error listing workspace files: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to list workspace files: {str(e)}",
error=str(e),
session_id=session_id,
)
class ReadWorkspaceFileTool(BaseTool):
"""Tool for reading file content from workspace."""
# Size threshold for returning full content vs metadata+URL
# Files larger than this return metadata with download URL to prevent context bloat
MAX_INLINE_SIZE_BYTES = 32 * 1024 # 32KB
# Preview size for text files
PREVIEW_SIZE = 500
@property
def name(self) -> str:
return "read_workspace_file"
@property
def description(self) -> str:
return (
"Read a file from the user's workspace. "
"Specify either file_id or path to identify the file. "
"For small text files, returns content directly. "
"For large or binary files, returns metadata and a download URL. "
"Paths are scoped to the current session by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"file_id": {
"type": "string",
"description": "The file's unique ID (from list_workspace_files)",
},
"path": {
"type": "string",
"description": (
"The virtual file path (e.g., '/documents/report.pdf'). "
"Scoped to current session by default."
),
},
"force_download_url": {
"type": "boolean",
"description": (
"If true, always return metadata+URL instead of inline content. "
"Default is false (auto-selects based on file size/type)."
),
},
},
"required": [], # At least one must be provided
}
@property
def requires_auth(self) -> bool:
return True
def _is_text_mime_type(self, mime_type: str) -> bool:
"""Check if the MIME type is a text-based type."""
text_types = [
"text/",
"application/json",
"application/xml",
"application/javascript",
"application/x-python",
"application/x-sh",
]
return any(mime_type.startswith(t) for t in text_types)
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
file_id: Optional[str] = kwargs.get("file_id")
path: Optional[str] = kwargs.get("path")
force_download_url: bool = kwargs.get("force_download_url", False)
if not file_id and not path:
return ErrorResponse(
message="Please provide either file_id or path",
session_id=session_id,
)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
# Get file info
if file_id:
file_info = await manager.get_file_info(file_id)
if file_info is None:
return ErrorResponse(
message=f"File not found: {file_id}",
session_id=session_id,
)
target_file_id = file_id
else:
# path is guaranteed to be non-None here due to the check above
assert path is not None
file_info = await manager.get_file_info_by_path(path)
if file_info is None:
return ErrorResponse(
message=f"File not found at path: {path}",
session_id=session_id,
)
target_file_id = file_info.id
# Decide whether to return inline content or metadata+URL
is_small_file = file_info.sizeBytes <= self.MAX_INLINE_SIZE_BYTES
is_text_file = self._is_text_mime_type(file_info.mimeType)
# Return inline content for small text files (unless force_download_url)
if is_small_file and is_text_file and not force_download_url:
content = await manager.read_file_by_id(target_file_id)
content_b64 = base64.b64encode(content).decode("utf-8")
return WorkspaceFileContentResponse(
file_id=file_info.id,
name=file_info.name,
path=file_info.path,
mime_type=file_info.mimeType,
content_base64=content_b64,
message=f"Successfully read file: {file_info.name}",
session_id=session_id,
)
# Return metadata + workspace:// reference for large or binary files
# This prevents context bloat (100KB file = ~133KB as base64)
# Use workspace:// format so frontend urlTransform can add proxy prefix
download_url = f"workspace://{target_file_id}"
# Generate preview for text files
preview: str | None = None
if is_text_file:
try:
content = await manager.read_file_by_id(target_file_id)
preview_text = content[: self.PREVIEW_SIZE].decode(
"utf-8", errors="replace"
)
if len(content) > self.PREVIEW_SIZE:
preview_text += "..."
preview = preview_text
except Exception:
pass # Preview is optional
return WorkspaceFileMetadataResponse(
file_id=file_info.id,
name=file_info.name,
path=file_info.path,
mime_type=file_info.mimeType,
size_bytes=file_info.sizeBytes,
download_url=download_url,
preview=preview,
message=f"File: {file_info.name} ({file_info.sizeBytes} bytes). Use download_url to retrieve content.",
session_id=session_id,
)
except FileNotFoundError as e:
return ErrorResponse(
message=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Error reading workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to read workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)
class WriteWorkspaceFileTool(BaseTool):
"""Tool for writing files to workspace."""
@property
def name(self) -> str:
return "write_workspace_file"
@property
def description(self) -> str:
return (
"Write or create a file in the user's workspace. "
"Provide the content as a base64-encoded string. "
f"Maximum file size is {Config().max_file_size_mb}MB. "
"Files are saved to the current session's folder by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"filename": {
"type": "string",
"description": "Name for the file (e.g., 'report.pdf')",
},
"content_base64": {
"type": "string",
"description": "Base64-encoded file content",
},
"path": {
"type": "string",
"description": (
"Optional virtual path where to save the file "
"(e.g., '/documents/report.pdf'). "
"Defaults to '/{filename}'. Scoped to current session."
),
},
"mime_type": {
"type": "string",
"description": (
"Optional MIME type of the file. "
"Auto-detected from filename if not provided."
),
},
"overwrite": {
"type": "boolean",
"description": "Whether to overwrite if file exists at path (default: false)",
},
},
"required": ["filename", "content_base64"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
filename: str = kwargs.get("filename", "")
content_b64: str = kwargs.get("content_base64", "")
path: Optional[str] = kwargs.get("path")
mime_type: Optional[str] = kwargs.get("mime_type")
overwrite: bool = kwargs.get("overwrite", False)
if not filename:
return ErrorResponse(
message="Please provide a filename",
session_id=session_id,
)
if not content_b64:
return ErrorResponse(
message="Please provide content_base64",
session_id=session_id,
)
# Decode content
try:
content = base64.b64decode(content_b64)
except Exception:
return ErrorResponse(
message="Invalid base64-encoded content",
session_id=session_id,
)
# Check size
max_file_size = Config().max_file_size_mb * 1024 * 1024
if len(content) > max_file_size:
return ErrorResponse(
message=f"File too large. Maximum size is {Config().max_file_size_mb}MB",
session_id=session_id,
)
try:
# Virus scan
await scan_content_safe(content, filename=filename)
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
file_record = await manager.write_file(
content=content,
filename=filename,
path=path,
mime_type=mime_type,
overwrite=overwrite,
)
return WorkspaceWriteResponse(
file_id=file_record.id,
name=file_record.name,
path=file_record.path,
size_bytes=file_record.sizeBytes,
message=f"Successfully wrote file: {file_record.name}",
session_id=session_id,
)
except ValueError as e:
return ErrorResponse(
message=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Error writing workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to write workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)
class DeleteWorkspaceFileTool(BaseTool):
"""Tool for deleting files from workspace."""
@property
def name(self) -> str:
return "delete_workspace_file"
@property
def description(self) -> str:
return (
"Delete a file from the user's workspace. "
"Specify either file_id or path to identify the file. "
"Paths are scoped to the current session by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"file_id": {
"type": "string",
"description": "The file's unique ID (from list_workspace_files)",
},
"path": {
"type": "string",
"description": (
"The virtual file path (e.g., '/documents/report.pdf'). "
"Scoped to current session by default."
),
},
},
"required": [], # At least one must be provided
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
file_id: Optional[str] = kwargs.get("file_id")
path: Optional[str] = kwargs.get("path")
if not file_id and not path:
return ErrorResponse(
message="Please provide either file_id or path",
session_id=session_id,
)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
# Determine the file_id to delete
target_file_id: str
if file_id:
target_file_id = file_id
else:
# path is guaranteed to be non-None here due to the check above
assert path is not None
file_info = await manager.get_file_info_by_path(path)
if file_info is None:
return ErrorResponse(
message=f"File not found at path: {path}",
session_id=session_id,
)
target_file_id = file_info.id
success = await manager.delete_file(target_file_id)
if not success:
return ErrorResponse(
message=f"File not found: {target_file_id}",
session_id=session_id,
)
return WorkspaceDeleteResponse(
file_id=target_file_id,
success=True,
message="File deleted successfully",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error deleting workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to delete workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)

View File

@@ -21,7 +21,7 @@ from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate
from backend.util.clients import get_scheduler_client
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
from backend.util.exceptions import DatabaseError, NotFoundError
from backend.util.json import SafeJson
from backend.util.models import Pagination
from backend.util.settings import Config
@@ -39,7 +39,6 @@ async def list_library_agents(
sort_by: library_model.LibraryAgentSort = library_model.LibraryAgentSort.UPDATED_AT,
page: int = 1,
page_size: int = 50,
include_executions: bool = False,
) -> library_model.LibraryAgentResponse:
"""
Retrieves a paginated list of LibraryAgent records for a given user.
@@ -50,9 +49,6 @@ async def list_library_agents(
sort_by: Sorting field (createdAt, updatedAt, isFavorite, isCreatedByUser).
page: Current page (1-indexed).
page_size: Number of items per page.
include_executions: Whether to include execution data for status calculation.
Defaults to False for performance (UI fetches status separately).
Set to True when accurate status/metrics are needed (e.g., agent generator).
Returns:
A LibraryAgentResponse containing the list of agents and pagination details.
@@ -68,11 +64,11 @@ async def list_library_agents(
if page < 1 or page_size < 1:
logger.warning(f"Invalid pagination: page={page}, page_size={page_size}")
raise InvalidInputError("Invalid pagination input")
raise DatabaseError("Invalid pagination input")
if search_term and len(search_term.strip()) > 100:
logger.warning(f"Search term too long: {repr(search_term)}")
raise InvalidInputError("Search term is too long")
raise DatabaseError("Search term is too long")
where_clause: prisma.types.LibraryAgentWhereInput = {
"userId": user_id,
@@ -80,6 +76,7 @@ async def list_library_agents(
"isArchived": False,
}
# Build search filter if applicable
if search_term:
where_clause["OR"] = [
{
@@ -96,6 +93,7 @@ async def list_library_agents(
},
]
# Determine sorting
order_by: prisma.types.LibraryAgentOrderByInput | None = None
if sort_by == library_model.LibraryAgentSort.CREATED_AT:
@@ -107,7 +105,7 @@ async def list_library_agents(
library_agents = await prisma.models.LibraryAgent.prisma().find_many(
where=where_clause,
include=library_agent_include(
user_id, include_nodes=False, include_executions=include_executions
user_id, include_nodes=False, include_executions=False
),
order=order_by,
skip=(page - 1) * page_size,
@@ -177,7 +175,7 @@ async def list_favorite_library_agents(
if page < 1 or page_size < 1:
logger.warning(f"Invalid pagination: page={page}, page_size={page_size}")
raise InvalidInputError("Invalid pagination input")
raise DatabaseError("Invalid pagination input")
where_clause: prisma.types.LibraryAgentWhereInput = {
"userId": user_id,

View File

@@ -9,7 +9,6 @@ import pydantic
from backend.data.block import BlockInput
from backend.data.graph import GraphModel, GraphSettings, GraphTriggerInfo
from backend.data.model import CredentialsMetaInput, is_credentials_field_name
from backend.util.json import loads as json_loads
from backend.util.models import Pagination
if TYPE_CHECKING:
@@ -17,10 +16,10 @@ if TYPE_CHECKING:
class LibraryAgentStatus(str, Enum):
COMPLETED = "COMPLETED"
HEALTHY = "HEALTHY"
WAITING = "WAITING"
ERROR = "ERROR"
COMPLETED = "COMPLETED" # All runs completed
HEALTHY = "HEALTHY" # Agent is running (not all runs have completed)
WAITING = "WAITING" # Agent is queued or waiting to start
ERROR = "ERROR" # Agent is in an error state
class MarketplaceListingCreator(pydantic.BaseModel):
@@ -40,30 +39,6 @@ class MarketplaceListing(pydantic.BaseModel):
creator: MarketplaceListingCreator
class RecentExecution(pydantic.BaseModel):
"""Summary of a recent execution for quality assessment.
Used by the LLM to understand the agent's recent performance with specific examples
rather than just aggregate statistics.
"""
status: str
correctness_score: float | None = None
activity_summary: str | None = None
def _parse_settings(settings: dict | str | None) -> GraphSettings:
"""Parse settings from database, handling both dict and string formats."""
if settings is None:
return GraphSettings()
try:
if isinstance(settings, str):
settings = json_loads(settings)
return GraphSettings.model_validate(settings)
except Exception:
return GraphSettings()
class LibraryAgent(pydantic.BaseModel):
"""
Represents an agent in the library, including metadata for display and
@@ -73,7 +48,7 @@ class LibraryAgent(pydantic.BaseModel):
id: str
graph_id: str
graph_version: int
owner_user_id: str
owner_user_id: str # ID of user who owns/created this agent graph
image_url: str | None
@@ -89,7 +64,7 @@ class LibraryAgent(pydantic.BaseModel):
description: str
instructions: str | None = None
input_schema: dict[str, Any]
input_schema: dict[str, Any] # Should be BlockIOObjectSubSchema in frontend
output_schema: dict[str, Any]
credentials_input_schema: dict[str, Any] | None = pydantic.Field(
description="Input schema for credentials required by the agent",
@@ -106,19 +81,25 @@ class LibraryAgent(pydantic.BaseModel):
)
trigger_setup_info: Optional[GraphTriggerInfo] = None
# Indicates whether there's a new output (based on recent runs)
new_output: bool
execution_count: int = 0
success_rate: float | None = None
avg_correctness_score: float | None = None
recent_executions: list[RecentExecution] = pydantic.Field(
default_factory=list,
description="List of recent executions with status, score, and summary",
)
# Whether the user can access the underlying graph
can_access_graph: bool
# Indicates if this agent is the latest version
is_latest_version: bool
# Whether the agent is marked as favorite by the user
is_favorite: bool
# Recommended schedule cron (from marketplace agents)
recommended_schedule_cron: str | None = None
# User-specific settings for this library agent
settings: GraphSettings = pydantic.Field(default_factory=GraphSettings)
# Marketplace listing information if the agent has been published
marketplace_listing: Optional["MarketplaceListing"] = None
@staticmethod
@@ -142,6 +123,7 @@ class LibraryAgent(pydantic.BaseModel):
agent_updated_at = agent.AgentGraph.updatedAt
lib_agent_updated_at = agent.updatedAt
# Compute updated_at as the latest between library agent and graph
updated_at = (
max(agent_updated_at, lib_agent_updated_at)
if agent_updated_at
@@ -154,6 +136,7 @@ class LibraryAgent(pydantic.BaseModel):
creator_name = agent.Creator.name or "Unknown"
creator_image_url = agent.Creator.avatarUrl or ""
# Logic to calculate status and new_output
week_ago = datetime.datetime.now(datetime.timezone.utc) - datetime.timedelta(
days=7
)
@@ -162,55 +145,13 @@ class LibraryAgent(pydantic.BaseModel):
status = status_result.status
new_output = status_result.new_output
execution_count = len(executions)
success_rate: float | None = None
avg_correctness_score: float | None = None
if execution_count > 0:
success_count = sum(
1
for e in executions
if e.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED
)
success_rate = (success_count / execution_count) * 100
correctness_scores = []
for e in executions:
if e.stats and isinstance(e.stats, dict):
score = e.stats.get("correctness_score")
if score is not None and isinstance(score, (int, float)):
correctness_scores.append(float(score))
if correctness_scores:
avg_correctness_score = sum(correctness_scores) / len(
correctness_scores
)
recent_executions: list[RecentExecution] = []
for e in executions:
exec_score: float | None = None
exec_summary: str | None = None
if e.stats and isinstance(e.stats, dict):
score = e.stats.get("correctness_score")
if score is not None and isinstance(score, (int, float)):
exec_score = float(score)
summary = e.stats.get("activity_status")
if summary is not None and isinstance(summary, str):
exec_summary = summary
exec_status = (
e.executionStatus.value
if hasattr(e.executionStatus, "value")
else str(e.executionStatus)
)
recent_executions.append(
RecentExecution(
status=exec_status,
correctness_score=exec_score,
activity_summary=exec_summary,
)
)
# Check if user can access the graph
can_access_graph = agent.AgentGraph.userId == agent.userId
# Hard-coded to True until a method to check is implemented
is_latest_version = True
# Build marketplace_listing if available
marketplace_listing_data = None
if store_listing and store_listing.ActiveVersion and profile:
creator_data = MarketplaceListingCreator(
@@ -249,15 +190,11 @@ class LibraryAgent(pydantic.BaseModel):
has_sensitive_action=graph.has_sensitive_action,
trigger_setup_info=graph.trigger_setup_info,
new_output=new_output,
execution_count=execution_count,
success_rate=success_rate,
avg_correctness_score=avg_correctness_score,
recent_executions=recent_executions,
can_access_graph=can_access_graph,
is_latest_version=is_latest_version,
is_favorite=agent.isFavorite,
recommended_schedule_cron=agent.AgentGraph.recommendedScheduleCron,
settings=_parse_settings(agent.settings),
settings=GraphSettings.model_validate(agent.settings),
marketplace_listing=marketplace_listing_data,
)
@@ -283,15 +220,18 @@ def _calculate_agent_status(
if not executions:
return AgentStatusResult(status=LibraryAgentStatus.COMPLETED, new_output=False)
# Track how many times each execution status appears
status_counts = {status: 0 for status in prisma.enums.AgentExecutionStatus}
new_output = False
for execution in executions:
# Check if there's a completed run more recent than `recent_threshold`
if execution.createdAt >= recent_threshold:
if execution.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED:
new_output = True
status_counts[execution.executionStatus] += 1
# Determine the final status based on counts
if status_counts[prisma.enums.AgentExecutionStatus.FAILED] > 0:
return AgentStatusResult(status=LibraryAgentStatus.ERROR, new_output=new_output)
elif status_counts[prisma.enums.AgentExecutionStatus.QUEUED] > 0:

View File

@@ -1,3 +1,4 @@
import logging
from typing import Literal, Optional
import autogpt_libs.auth as autogpt_auth_lib
@@ -5,11 +6,15 @@ from fastapi import APIRouter, Body, HTTPException, Query, Security, status
from fastapi.responses import Response
from prisma.enums import OnboardingStep
import backend.api.features.store.exceptions as store_exceptions
from backend.data.onboarding import complete_onboarding_step
from backend.util.exceptions import DatabaseError, NotFoundError
from .. import db as library_db
from .. import model as library_model
logger = logging.getLogger(__name__)
router = APIRouter(
prefix="/agents",
tags=["library", "private"],
@@ -21,6 +26,10 @@ router = APIRouter(
"",
summary="List Library Agents",
response_model=library_model.LibraryAgentResponse,
responses={
200: {"description": "List of library agents"},
500: {"description": "Server error", "content": {"application/json": {}}},
},
)
async def list_library_agents(
user_id: str = Security(autogpt_auth_lib.get_user_id),
@@ -44,19 +53,43 @@ async def list_library_agents(
) -> library_model.LibraryAgentResponse:
"""
Get all agents in the user's library (both created and saved).
Args:
user_id: ID of the authenticated user.
search_term: Optional search term to filter agents by name/description.
filter_by: List of filters to apply (favorites, created by user).
sort_by: List of sorting criteria (created date, updated date).
page: Page number to retrieve.
page_size: Number of agents per page.
Returns:
A LibraryAgentResponse containing agents and pagination metadata.
Raises:
HTTPException: If a server/database error occurs.
"""
return await library_db.list_library_agents(
user_id=user_id,
search_term=search_term,
sort_by=sort_by,
page=page,
page_size=page_size,
)
try:
return await library_db.list_library_agents(
user_id=user_id,
search_term=search_term,
sort_by=sort_by,
page=page,
page_size=page_size,
)
except Exception as e:
logger.error(f"Could not list library agents for user #{user_id}: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e),
) from e
@router.get(
"/favorites",
summary="List Favorite Library Agents",
responses={
500: {"description": "Server error", "content": {"application/json": {}}},
},
)
async def list_favorite_library_agents(
user_id: str = Security(autogpt_auth_lib.get_user_id),
@@ -73,12 +106,30 @@ async def list_favorite_library_agents(
) -> library_model.LibraryAgentResponse:
"""
Get all favorite agents in the user's library.
Args:
user_id: ID of the authenticated user.
page: Page number to retrieve.
page_size: Number of agents per page.
Returns:
A LibraryAgentResponse containing favorite agents and pagination metadata.
Raises:
HTTPException: If a server/database error occurs.
"""
return await library_db.list_favorite_library_agents(
user_id=user_id,
page=page,
page_size=page_size,
)
try:
return await library_db.list_favorite_library_agents(
user_id=user_id,
page=page,
page_size=page_size,
)
except Exception as e:
logger.error(f"Could not list favorite library agents for user #{user_id}: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e),
) from e
@router.get("/{library_agent_id}", summary="Get Library Agent")
@@ -111,6 +162,10 @@ async def get_library_agent_by_graph_id(
summary="Get Agent By Store ID",
tags=["store", "library"],
response_model=library_model.LibraryAgent | None,
responses={
200: {"description": "Library agent found"},
404: {"description": "Agent not found"},
},
)
async def get_library_agent_by_store_listing_version_id(
store_listing_version_id: str,
@@ -119,15 +174,32 @@ async def get_library_agent_by_store_listing_version_id(
"""
Get Library Agent from Store Listing Version ID.
"""
return await library_db.get_library_agent_by_store_version_id(
store_listing_version_id, user_id
)
try:
return await library_db.get_library_agent_by_store_version_id(
store_listing_version_id, user_id
)
except NotFoundError as e:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=str(e),
)
except Exception as e:
logger.error(f"Could not fetch library agent from store version ID: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e),
) from e
@router.post(
"",
summary="Add Marketplace Agent",
status_code=status.HTTP_201_CREATED,
responses={
201: {"description": "Agent added successfully"},
404: {"description": "Store listing version not found"},
500: {"description": "Server error"},
},
)
async def add_marketplace_agent_to_library(
store_listing_version_id: str = Body(embed=True),
@@ -138,19 +210,59 @@ async def add_marketplace_agent_to_library(
) -> library_model.LibraryAgent:
"""
Add an agent from the marketplace to the user's library.
Args:
store_listing_version_id: ID of the store listing version to add.
user_id: ID of the authenticated user.
Returns:
library_model.LibraryAgent: Agent added to the library
Raises:
HTTPException(404): If the listing version is not found.
HTTPException(500): If a server/database error occurs.
"""
agent = await library_db.add_store_agent_to_library(
store_listing_version_id=store_listing_version_id,
user_id=user_id,
)
if source != "onboarding":
await complete_onboarding_step(user_id, OnboardingStep.MARKETPLACE_ADD_AGENT)
return agent
try:
agent = await library_db.add_store_agent_to_library(
store_listing_version_id=store_listing_version_id,
user_id=user_id,
)
if source != "onboarding":
await complete_onboarding_step(
user_id, OnboardingStep.MARKETPLACE_ADD_AGENT
)
return agent
except store_exceptions.AgentNotFoundError as e:
logger.warning(
f"Could not find store listing version {store_listing_version_id} "
"to add to library"
)
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=str(e))
except DatabaseError as e:
logger.error(f"Database error while adding agent to library: {e}", e)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={"message": str(e), "hint": "Inspect DB logs for details."},
) from e
except Exception as e:
logger.error(f"Unexpected error while adding agent to library: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={
"message": str(e),
"hint": "Check server logs for more information.",
},
) from e
@router.patch(
"/{library_agent_id}",
summary="Update Library Agent",
responses={
200: {"description": "Agent updated successfully"},
500: {"description": "Server error"},
},
)
async def update_library_agent(
library_agent_id: str,
@@ -159,21 +271,52 @@ async def update_library_agent(
) -> library_model.LibraryAgent:
"""
Update the library agent with the given fields.
Args:
library_agent_id: ID of the library agent to update.
payload: Fields to update (auto_update_version, is_favorite, etc.).
user_id: ID of the authenticated user.
Raises:
HTTPException(500): If a server/database error occurs.
"""
return await library_db.update_library_agent(
library_agent_id=library_agent_id,
user_id=user_id,
auto_update_version=payload.auto_update_version,
graph_version=payload.graph_version,
is_favorite=payload.is_favorite,
is_archived=payload.is_archived,
settings=payload.settings,
)
try:
return await library_db.update_library_agent(
library_agent_id=library_agent_id,
user_id=user_id,
auto_update_version=payload.auto_update_version,
graph_version=payload.graph_version,
is_favorite=payload.is_favorite,
is_archived=payload.is_archived,
settings=payload.settings,
)
except NotFoundError as e:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=str(e),
) from e
except DatabaseError as e:
logger.error(f"Database error while updating library agent: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={"message": str(e), "hint": "Verify DB connection."},
) from e
except Exception as e:
logger.error(f"Unexpected error while updating library agent: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={"message": str(e), "hint": "Check server logs."},
) from e
@router.delete(
"/{library_agent_id}",
summary="Delete Library Agent",
responses={
204: {"description": "Agent deleted successfully"},
404: {"description": "Agent not found"},
500: {"description": "Server error"},
},
)
async def delete_library_agent(
library_agent_id: str,
@@ -181,11 +324,28 @@ async def delete_library_agent(
) -> Response:
"""
Soft-delete the specified library agent.
Args:
library_agent_id: ID of the library agent to delete.
user_id: ID of the authenticated user.
Returns:
204 No Content if successful.
Raises:
HTTPException(404): If the agent does not exist.
HTTPException(500): If a server/database error occurs.
"""
await library_db.delete_library_agent(
library_agent_id=library_agent_id, user_id=user_id
)
return Response(status_code=status.HTTP_204_NO_CONTENT)
try:
await library_db.delete_library_agent(
library_agent_id=library_agent_id, user_id=user_id
)
return Response(status_code=status.HTTP_204_NO_CONTENT)
except NotFoundError as e:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=str(e),
) from e
@router.post("/{library_agent_id}/fork", summary="Fork Library Agent")

View File

@@ -118,6 +118,21 @@ async def test_get_library_agents_success(
)
def test_get_library_agents_error(mocker: pytest_mock.MockFixture, test_user_id: str):
mock_db_call = mocker.patch("backend.api.features.library.db.list_library_agents")
mock_db_call.side_effect = Exception("Test error")
response = client.get("/agents?search_term=test")
assert response.status_code == 500
mock_db_call.assert_called_once_with(
user_id=test_user_id,
search_term="test",
sort_by=library_model.LibraryAgentSort.UPDATED_AT,
page=1,
page_size=15,
)
@pytest.mark.asyncio
async def test_get_favorite_library_agents_success(
mocker: pytest_mock.MockFixture,
@@ -175,6 +190,23 @@ async def test_get_favorite_library_agents_success(
)
def test_get_favorite_library_agents_error(
mocker: pytest_mock.MockFixture, test_user_id: str
):
mock_db_call = mocker.patch(
"backend.api.features.library.db.list_favorite_library_agents"
)
mock_db_call.side_effect = Exception("Test error")
response = client.get("/agents/favorites")
assert response.status_code == 500
mock_db_call.assert_called_once_with(
user_id=test_user_id,
page=1,
page_size=15,
)
def test_add_agent_to_library_success(
mocker: pytest_mock.MockFixture, test_user_id: str
):
@@ -226,3 +258,19 @@ def test_add_agent_to_library_success(
store_listing_version_id="test-version-id", user_id=test_user_id
)
mock_complete_onboarding.assert_awaited_once()
def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture, test_user_id: str):
mock_db_call = mocker.patch(
"backend.api.features.library.db.add_store_agent_to_library"
)
mock_db_call.side_effect = Exception("Test error")
response = client.post(
"/agents", json={"store_listing_version_id": "test-version-id"}
)
assert response.status_code == 500
assert "detail" in response.json() # Verify error response structure
mock_db_call.assert_called_once_with(
store_listing_version_id="test-version-id", user_id=test_user_id
)

View File

@@ -112,7 +112,6 @@ async def get_store_agents(
description=agent["description"],
runs=agent["runs"],
rating=agent["rating"],
agent_graph_id=agent.get("agentGraphId", ""),
)
store_agents.append(store_agent)
except Exception as e:
@@ -171,7 +170,6 @@ async def get_store_agents(
description=agent.description,
runs=agent.runs,
rating=agent.rating,
agent_graph_id=agent.agentGraphId,
)
# Add to the list only if creation was successful
store_agents.append(store_agent)

View File

@@ -454,7 +454,6 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
total_processed = 0
total_success = 0
total_failed = 0
all_errors: dict[str, int] = {} # Aggregate errors across all content types
# Process content types in explicit order
processing_order = [
@@ -500,12 +499,23 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
success = sum(1 for result in results if result is True)
failed = len(results) - success
# Aggregate errors across all content types
# Aggregate unique errors to avoid Sentry spam
if failed > 0:
# Group errors by type and message
error_summary: dict[str, int] = {}
for result in results:
if isinstance(result, Exception):
error_key = f"{type(result).__name__}: {str(result)}"
all_errors[error_key] = all_errors.get(error_key, 0) + 1
error_summary[error_key] = error_summary.get(error_key, 0) + 1
# Log aggregated error summary
error_details = ", ".join(
f"{error} ({count}x)" for error, count in error_summary.items()
)
logger.error(
f"{content_type.value}: {failed}/{len(results)} embeddings failed. "
f"Errors: {error_details}"
)
results_by_type[content_type.value] = {
"processed": len(missing_items),
@@ -532,13 +542,6 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
"error": str(e),
}
# Log aggregated errors once at the end
if all_errors:
error_details = ", ".join(
f"{error} ({count}x)" for error, count in all_errors.items()
)
logger.error(f"Embedding backfill errors: {error_details}")
return {
"by_type": results_by_type,
"totals": {

View File

@@ -600,7 +600,6 @@ async def hybrid_search(
sa.featured,
sa.is_available,
sa.updated_at,
sa."agentGraphId",
-- Searchable text for BM25 reranking
COALESCE(sa.agent_name, '') || ' ' || COALESCE(sa.sub_heading, '') || ' ' || COALESCE(sa.description, '') as searchable_text,
-- Semantic score
@@ -660,7 +659,6 @@ async def hybrid_search(
featured,
is_available,
updated_at,
"agentGraphId",
searchable_text,
semantic_score,
lexical_score,

View File

@@ -38,7 +38,6 @@ class StoreAgent(pydantic.BaseModel):
description: str
runs: int
rating: float
agent_graph_id: str
class StoreAgentsResponse(pydantic.BaseModel):

View File

@@ -26,13 +26,11 @@ def test_store_agent():
description="Test description",
runs=50,
rating=4.5,
agent_graph_id="test-graph-id",
)
assert agent.slug == "test-agent"
assert agent.agent_name == "Test Agent"
assert agent.runs == 50
assert agent.rating == 4.5
assert agent.agent_graph_id == "test-graph-id"
def test_store_agents_response():
@@ -48,7 +46,6 @@ def test_store_agents_response():
description="Test description",
runs=50,
rating=4.5,
agent_graph_id="test-graph-id",
)
],
pagination=store_model.Pagination(

View File

@@ -82,7 +82,6 @@ def test_get_agents_featured(
description="Featured agent description",
runs=100,
rating=4.5,
agent_graph_id="test-graph-1",
)
],
pagination=store_model.Pagination(
@@ -128,7 +127,6 @@ def test_get_agents_by_creator(
description="Creator agent description",
runs=50,
rating=4.0,
agent_graph_id="test-graph-2",
)
],
pagination=store_model.Pagination(
@@ -174,7 +172,6 @@ def test_get_agents_sorted(
description="Top agent description",
runs=1000,
rating=5.0,
agent_graph_id="test-graph-3",
)
],
pagination=store_model.Pagination(
@@ -220,7 +217,6 @@ def test_get_agents_search(
description="Specific search term description",
runs=75,
rating=4.2,
agent_graph_id="test-graph-search",
)
],
pagination=store_model.Pagination(
@@ -266,7 +262,6 @@ def test_get_agents_category(
description="Category agent description",
runs=60,
rating=4.1,
agent_graph_id="test-graph-category",
)
],
pagination=store_model.Pagination(
@@ -311,7 +306,6 @@ def test_get_agents_pagination(
description=f"Agent {i} description",
runs=i * 10,
rating=4.0,
agent_graph_id="test-graph-2",
)
for i in range(5)
],

View File

@@ -33,7 +33,6 @@ class TestCacheDeletion:
description="Test description",
runs=100,
rating=4.5,
agent_graph_id="test-graph-id",
)
],
pagination=Pagination(

View File

@@ -261,36 +261,14 @@ async def get_onboarding_agents(
return await get_recommended_agents(user_id)
class OnboardingStatusResponse(pydantic.BaseModel):
"""Response for onboarding status check."""
is_onboarding_enabled: bool
is_chat_enabled: bool
@v1_router.get(
"/onboarding/enabled",
summary="Is onboarding enabled",
tags=["onboarding", "public"],
response_model=OnboardingStatusResponse,
dependencies=[Security(requires_user)],
)
async def is_onboarding_enabled(
user_id: Annotated[str, Security(get_user_id)],
) -> OnboardingStatusResponse:
# Check if chat is enabled for user
is_chat_enabled = await is_feature_enabled(Flag.CHAT, user_id, False)
# If chat is enabled, skip legacy onboarding
if is_chat_enabled:
return OnboardingStatusResponse(
is_onboarding_enabled=False,
is_chat_enabled=True,
)
return OnboardingStatusResponse(
is_onboarding_enabled=await onboarding_enabled(),
is_chat_enabled=False,
)
async def is_onboarding_enabled() -> bool:
return await onboarding_enabled()
@v1_router.post(

View File

@@ -1 +0,0 @@
# Workspace API feature module

View File

@@ -1,122 +0,0 @@
"""
Workspace API routes for managing user file storage.
"""
import logging
import re
from typing import Annotated
from urllib.parse import quote
import fastapi
from autogpt_libs.auth.dependencies import get_user_id, requires_user
from fastapi.responses import Response
from backend.data.workspace import get_workspace, get_workspace_file
from backend.util.workspace_storage import get_workspace_storage
def _sanitize_filename_for_header(filename: str) -> str:
"""
Sanitize filename for Content-Disposition header to prevent header injection.
Removes/replaces characters that could break the header or inject new headers.
Uses RFC5987 encoding for non-ASCII characters.
"""
# Remove CR, LF, and null bytes (header injection prevention)
sanitized = re.sub(r"[\r\n\x00]", "", filename)
# Escape quotes
sanitized = sanitized.replace('"', '\\"')
# For non-ASCII, use RFC5987 filename* parameter
# Check if filename has non-ASCII characters
try:
sanitized.encode("ascii")
return f'attachment; filename="{sanitized}"'
except UnicodeEncodeError:
# Use RFC5987 encoding for UTF-8 filenames
encoded = quote(sanitized, safe="")
return f"attachment; filename*=UTF-8''{encoded}"
logger = logging.getLogger(__name__)
router = fastapi.APIRouter(
dependencies=[fastapi.Security(requires_user)],
)
def _create_streaming_response(content: bytes, file) -> Response:
"""Create a streaming response for file content."""
return Response(
content=content,
media_type=file.mimeType,
headers={
"Content-Disposition": _sanitize_filename_for_header(file.name),
"Content-Length": str(len(content)),
},
)
async def _create_file_download_response(file) -> Response:
"""
Create a download response for a workspace file.
Handles both local storage (direct streaming) and GCS (signed URL redirect
with fallback to streaming).
"""
storage = await get_workspace_storage()
# For local storage, stream the file directly
if file.storagePath.startswith("local://"):
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
# For GCS, try to redirect to signed URL, fall back to streaming
try:
url = await storage.get_download_url(file.storagePath, expires_in=300)
# If we got back an API path (fallback), stream directly instead
if url.startswith("/api/"):
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
return fastapi.responses.RedirectResponse(url=url, status_code=302)
except Exception as e:
# Log the signed URL failure with context
logger.error(
f"Failed to get signed URL for file {file.id} "
f"(storagePath={file.storagePath}): {e}",
exc_info=True,
)
# Fall back to streaming directly from GCS
try:
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
except Exception as fallback_error:
logger.error(
f"Fallback streaming also failed for file {file.id} "
f"(storagePath={file.storagePath}): {fallback_error}",
exc_info=True,
)
raise
@router.get(
"/files/{file_id}/download",
summary="Download file by ID",
)
async def download_file(
user_id: Annotated[str, fastapi.Security(get_user_id)],
file_id: str,
) -> Response:
"""
Download a file by its ID.
Returns the file content directly or redirects to a signed URL for GCS.
"""
workspace = await get_workspace(user_id)
if workspace is None:
raise fastapi.HTTPException(status_code=404, detail="Workspace not found")
file = await get_workspace_file(file_id, workspace.id)
if file is None:
raise fastapi.HTTPException(status_code=404, detail="File not found")
return await _create_file_download_response(file)

View File

@@ -32,7 +32,6 @@ import backend.api.features.postmark.postmark
import backend.api.features.store.model
import backend.api.features.store.routes
import backend.api.features.v1
import backend.api.features.workspace.routes as workspace_routes
import backend.data.block
import backend.data.db
import backend.data.graph
@@ -53,7 +52,6 @@ from backend.util.exceptions import (
)
from backend.util.feature_flag import initialize_launchdarkly, shutdown_launchdarkly
from backend.util.service import UnhealthyServiceError
from backend.util.workspace_storage import shutdown_workspace_storage
from .external.fastapi_app import external_api
from .features.analytics import router as analytics_router
@@ -126,11 +124,6 @@ async def lifespan_context(app: fastapi.FastAPI):
except Exception as e:
logger.warning(f"Error shutting down cloud storage handler: {e}")
try:
await shutdown_workspace_storage()
except Exception as e:
logger.warning(f"Error shutting down workspace storage: {e}")
await backend.data.db.disconnect()
@@ -322,11 +315,6 @@ app.include_router(
tags=["v2", "chat"],
prefix="/api/chat",
)
app.include_router(
workspace_routes.router,
tags=["workspace"],
prefix="/api/workspace",
)
app.include_router(
backend.api.features.oauth.router,
tags=["oauth"],

View File

@@ -66,24 +66,18 @@ async def event_broadcaster(manager: ConnectionManager):
execution_bus = AsyncRedisExecutionEventBus()
notification_bus = AsyncRedisNotificationEventBus()
try:
async def execution_worker():
async for event in execution_bus.listen("*"):
await manager.send_execution_update(event)
async def execution_worker():
async for event in execution_bus.listen("*"):
await manager.send_execution_update(event)
async def notification_worker():
async for notification in notification_bus.listen("*"):
await manager.send_notification(
user_id=notification.user_id,
payload=notification.payload,
)
async def notification_worker():
async for notification in notification_bus.listen("*"):
await manager.send_notification(
user_id=notification.user_id,
payload=notification.payload,
)
await asyncio.gather(execution_worker(), notification_worker())
finally:
# Ensure PubSub connections are closed on any exit to prevent leaks
await execution_bus.close()
await notification_bus.close()
await asyncio.gather(execution_worker(), notification_worker())
async def authenticate_websocket(websocket: WebSocket) -> str:

View File

@@ -13,7 +13,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -118,13 +117,11 @@ class AIImageCustomizerBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
# Output will be a workspace ref or data URI depending on context
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
("image_url", "https://replicate.delivery/generated-image.jpg"),
],
test_mock={
# Use data URI to avoid HTTP requests during tests
"run_model": lambda *args, **kwargs: MediaFileType(
""
"https://replicate.delivery/generated-image.jpg"
),
},
test_credentials=TEST_CREDENTIALS,
@@ -135,7 +132,8 @@ class AIImageCustomizerBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
try:
@@ -143,9 +141,10 @@ class AIImageCustomizerBlock(Block):
processed_images = await asyncio.gather(
*(
store_media_file(
graph_exec_id=graph_exec_id,
file=img,
execution_context=execution_context,
return_format="for_external_api", # Get content for Replicate API
user_id=user_id,
return_content=True,
)
for img in input_data.images
)
@@ -159,14 +158,7 @@ class AIImageCustomizerBlock(Block):
aspect_ratio=input_data.aspect_ratio.value,
output_format=input_data.output_format.value,
)
# Store the generated image to the user's workspace for persistence
stored_url = await store_media_file(
file=result,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
yield "image_url", result
except Exception as e:
yield "error", str(e)

View File

@@ -6,7 +6,6 @@ from replicate.client import Client as ReplicateClient
from replicate.helpers import FileOutput
from backend.data.block import Block, BlockCategory, BlockSchemaInput, BlockSchemaOutput
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -14,8 +13,6 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
class ImageSize(str, Enum):
@@ -168,13 +165,11 @@ class AIImageGeneratorBlock(Block):
test_output=[
(
"image_url",
# Test output is a data URI since we now store images
lambda x: x.startswith(""
"_run_client": lambda *args, **kwargs: "https://replicate.delivery/generated-image.webp"
},
)
@@ -323,24 +318,11 @@ class AIImageGeneratorBlock(Block):
style_text = style_map.get(style, "")
return f"{style_text} of" if style_text else ""
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
try:
url = await self.generate_image(input_data, credentials)
if url:
# Store the generated image to the user's workspace/execution folder
stored_url = await store_media_file(
file=MediaFileType(url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
yield "image_url", url
else:
yield "error", "Image generation returned an empty result."
except Exception as e:

View File

@@ -13,7 +13,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -22,9 +21,7 @@ from backend.data.model import (
)
from backend.integrations.providers import ProviderName
from backend.util.exceptions import BlockExecutionError
from backend.util.file import store_media_file
from backend.util.request import Requests
from backend.util.type import MediaFileType
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
@@ -274,10 +271,7 @@ class AIShortformVideoCreatorBlock(Block):
"voice": Voice.LILY,
"video_style": VisualMediaType.STOCK_VIDEOS,
},
test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_output=("video_url", "https://example.com/video.mp4"),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
@@ -286,21 +280,15 @@ class AIShortformVideoCreatorBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "data:video/mp4;base64,AAAA",
"videoUrl": "https://example.com/video.mp4",
},
# Use data URI to avoid HTTP requests during tests
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
"wait_for_video": lambda *args, **kwargs: "https://example.com/video.mp4",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
# Create a new Webhook.site URL
webhook_token, webhook_url = await self.create_webhook()
@@ -352,13 +340,7 @@ class AIShortformVideoCreatorBlock(Block):
)
video_url = await self.wait_for_video(credentials.api_key, pid)
logger.debug(f"Video ready: {video_url}")
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
yield "video_url", video_url
class AIAdMakerVideoCreatorBlock(Block):
@@ -465,10 +447,7 @@ class AIAdMakerVideoCreatorBlock(Block):
"https://cdn.revid.ai/uploads/1747076315114-image.png",
],
},
test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_output=("video_url", "https://example.com/ad.mp4"),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
@@ -477,21 +456,14 @@ class AIAdMakerVideoCreatorBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "data:video/mp4;base64,AAAA",
"videoUrl": "https://example.com/ad.mp4",
},
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
"wait_for_video": lambda *args, **kwargs: "https://example.com/ad.mp4",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
webhook_token, webhook_url = await self.create_webhook()
payload = {
@@ -559,13 +531,7 @@ class AIAdMakerVideoCreatorBlock(Block):
raise RuntimeError("Failed to create video: No project ID returned")
video_url = await self.wait_for_video(credentials.api_key, pid)
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
yield "video_url", video_url
class AIScreenshotToVideoAdBlock(Block):
@@ -660,10 +626,7 @@ class AIScreenshotToVideoAdBlock(Block):
"script": "Amazing numbers!",
"screenshot_url": "https://cdn.revid.ai/uploads/1747080376028-image.png",
},
test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_output=("video_url", "https://example.com/screenshot.mp4"),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
@@ -672,21 +635,14 @@ class AIScreenshotToVideoAdBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "data:video/mp4;base64,AAAA",
"videoUrl": "https://example.com/screenshot.mp4",
},
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
"wait_for_video": lambda *args, **kwargs: "https://example.com/screenshot.mp4",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
webhook_token, webhook_url = await self.create_webhook()
payload = {
@@ -754,10 +710,4 @@ class AIScreenshotToVideoAdBlock(Block):
raise RuntimeError("Failed to create video: No project ID returned")
video_url = await self.wait_for_video(credentials.api_key, pid)
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
yield "video_url", video_url

View File

@@ -6,7 +6,6 @@ if TYPE_CHECKING:
from pydantic import SecretStr
from backend.data.execution import ExecutionContext
from backend.sdk import (
APIKeyCredentials,
Block,
@@ -18,8 +17,6 @@ from backend.sdk import (
Requests,
SchemaField,
)
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
from ._config import bannerbear
@@ -138,17 +135,15 @@ class BannerbearTextOverlayBlock(Block):
},
test_output=[
("success", True),
# Output will be a workspace ref or data URI depending on context
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
("image_url", "https://cdn.bannerbear.com/test-image.jpg"),
("uid", "test-uid-123"),
("status", "completed"),
],
test_mock={
# Use data URI to avoid HTTP requests during tests
"_make_api_request": lambda *args, **kwargs: {
"uid": "test-uid-123",
"status": "completed",
"image_url": "",
"image_url": "https://cdn.bannerbear.com/test-image.jpg",
}
},
test_credentials=TEST_CREDENTIALS,
@@ -182,12 +177,7 @@ class BannerbearTextOverlayBlock(Block):
raise Exception(error_msg)
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
# Build the modifications array
modifications = []
@@ -244,18 +234,6 @@ class BannerbearTextOverlayBlock(Block):
# Synchronous request - image should be ready
yield "success", True
# Store the generated image to workspace for persistence
image_url = data.get("image_url", "")
if image_url:
stored_url = await store_media_file(
file=MediaFileType(image_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
else:
yield "image_url", ""
yield "image_url", data.get("image_url", "")
yield "uid", data.get("uid", "")
yield "status", data.get("status", "completed")

View File

@@ -9,7 +9,6 @@ from backend.data.block import (
BlockSchemaOutput,
BlockType,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.type import MediaFileType, convert
@@ -18,10 +17,10 @@ from backend.util.type import MediaFileType, convert
class FileStoreBlock(Block):
class Input(BlockSchemaInput):
file_in: MediaFileType = SchemaField(
description="The file to download and store. Can be a URL (https://...), data URI, or local path."
description="The file to store in the temporary directory, it can be a URL, data URI, or local path."
)
base_64: bool = SchemaField(
description="Whether to produce output in base64 format (not recommended, you can pass the file reference across blocks).",
description="Whether produce an output in base64 format (not recommended, you can pass the string path just fine accross blocks).",
default=False,
advanced=True,
title="Produce Base64 Output",
@@ -29,18 +28,13 @@ class FileStoreBlock(Block):
class Output(BlockSchemaOutput):
file_out: MediaFileType = SchemaField(
description="Reference to the stored file. In CoPilot: workspace:// URI (visible in list_workspace_files). In graphs: data URI for passing to other blocks."
description="The relative path to the stored file in the temporary directory."
)
def __init__(self):
super().__init__(
id="cbb50872-625b-42f0-8203-a2ae78242d8a",
description=(
"Downloads and stores a file from a URL, data URI, or local path. "
"Use this to fetch images, documents, or other files for processing. "
"In CoPilot: saves to workspace (use list_workspace_files to see it). "
"In graphs: outputs a data URI to pass to other blocks."
),
description="Stores the input file in the temporary directory.",
categories={BlockCategory.BASIC, BlockCategory.MULTIMEDIA},
input_schema=FileStoreBlock.Input,
output_schema=FileStoreBlock.Output,
@@ -51,18 +45,15 @@ class FileStoreBlock(Block):
self,
input_data: Input,
*,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
# Determine return format based on user preference
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
yield "file_out", await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.file_in,
execution_context=execution_context,
return_format=return_format,
user_id=user_id,
return_content=input_data.base_64,
)

View File

@@ -15,7 +15,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import APIKeyCredentials, SchemaField
from backend.util.file import store_media_file
from backend.util.request import Requests
@@ -667,7 +666,8 @@ class SendDiscordFileBlock(Block):
file: MediaFileType,
filename: str,
message_content: str,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
) -> dict:
intents = discord.Intents.default()
intents.guilds = True
@@ -731,9 +731,10 @@ class SendDiscordFileBlock(Block):
# Local file path - read from stored media file
# This would be a path from a previous block's output
stored_file = await store_media_file(
graph_exec_id=graph_exec_id,
file=file,
execution_context=execution_context,
return_format="for_external_api", # Get content to send to Discord
user_id=user_id,
return_content=True, # Get as data URI
)
# Now process as data URI
header, encoded = stored_file.split(",", 1)
@@ -780,7 +781,8 @@ class SendDiscordFileBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
try:
@@ -791,7 +793,8 @@ class SendDiscordFileBlock(Block):
file=input_data.file,
filename=input_data.filename,
message_content=input_data.message_content,
execution_context=execution_context,
graph_exec_id=graph_exec_id,
user_id=user_id,
)
yield "status", result.get("status", "Unknown error")

View File

@@ -17,11 +17,8 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.request import ClientResponseError, Requests
from backend.util.type import MediaFileType
logger = logging.getLogger(__name__)
@@ -67,13 +64,9 @@ class AIVideoGeneratorBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
# Output will be a workspace ref or data URI depending on context
("video_url", lambda x: x.startswith(("workspace://", "data:"))),
],
test_output=[("video_url", "https://fal.media/files/example/video.mp4")],
test_mock={
# Use data URI to avoid HTTP requests during tests
"generate_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA"
"generate_video": lambda *args, **kwargs: "https://fal.media/files/example/video.mp4"
},
)
@@ -215,22 +208,11 @@ class AIVideoGeneratorBlock(Block):
raise RuntimeError(f"API request failed: {str(e)}")
async def run(
self,
input_data: Input,
*,
credentials: FalCredentials,
execution_context: ExecutionContext,
**kwargs,
self, input_data: Input, *, credentials: FalCredentials, **kwargs
) -> BlockOutput:
try:
video_url = await self.generate_video(input_data, credentials)
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
yield "video_url", video_url
except Exception as e:
error_message = str(e)
yield "error", error_message

View File

@@ -12,7 +12,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -122,12 +121,10 @@ class AIImageEditorBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
# Output will be a workspace ref or data URI depending on context
("output_image", lambda x: x.startswith(("workspace://", "data:"))),
("output_image", "https://replicate.com/output/edited-image.png"),
],
test_mock={
# Use data URI to avoid HTTP requests during tests
"run_model": lambda *args, **kwargs: "",
"run_model": lambda *args, **kwargs: "https://replicate.com/output/edited-image.png",
},
test_credentials=TEST_CREDENTIALS,
)
@@ -137,7 +134,8 @@ class AIImageEditorBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
result = await self.run_model(
@@ -146,25 +144,20 @@ class AIImageEditorBlock(Block):
prompt=input_data.prompt,
input_image_b64=(
await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.input_image,
execution_context=execution_context,
return_format="for_external_api", # Get content for Replicate API
user_id=user_id,
return_content=True,
)
if input_data.input_image
else None
),
aspect_ratio=input_data.aspect_ratio.value,
seed=input_data.seed,
user_id=execution_context.user_id or "",
graph_exec_id=execution_context.graph_exec_id or "",
user_id=user_id,
graph_exec_id=graph_exec_id,
)
# Store the generated image to the user's workspace for persistence
stored_url = await store_media_file(
file=result,
execution_context=execution_context,
return_format="for_block_output",
)
yield "output_image", stored_url
yield "output_image", result
async def run_model(
self,

View File

@@ -21,7 +21,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
from backend.util.settings import Settings
@@ -96,7 +95,8 @@ def _make_mime_text(
async def create_mime_message(
input_data,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
) -> str:
"""Create a MIME message with attachments and return base64-encoded raw message."""
@@ -117,12 +117,12 @@ async def create_mime_message(
if input_data.attachments:
for attach in input_data.attachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
execution_context=execution_context,
return_format="for_local_processing",
return_content=False,
)
assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
abs_path = get_exec_file_path(graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())
@@ -582,25 +582,27 @@ class GmailSendBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
result = await self._send_email(
service,
input_data,
execution_context,
graph_exec_id,
user_id,
)
yield "result", result
async def _send_email(
self, service, input_data: Input, execution_context: ExecutionContext
self, service, input_data: Input, graph_exec_id: str, user_id: str
) -> dict:
if not input_data.to or not input_data.subject or not input_data.body:
raise ValueError(
"At least one recipient, subject, and body are required for sending an email"
)
raw_message = await create_mime_message(input_data, execution_context)
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
sent_message = await asyncio.to_thread(
lambda: service.users()
.messages()
@@ -690,28 +692,30 @@ class GmailCreateDraftBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
result = await self._create_draft(
service,
input_data,
execution_context,
graph_exec_id,
user_id,
)
yield "result", GmailDraftResult(
id=result["id"], message_id=result["message"]["id"], status="draft_created"
)
async def _create_draft(
self, service, input_data: Input, execution_context: ExecutionContext
self, service, input_data: Input, graph_exec_id: str, user_id: str
) -> dict:
if not input_data.to or not input_data.subject:
raise ValueError(
"At least one recipient and subject are required for creating a draft"
)
raw_message = await create_mime_message(input_data, execution_context)
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
draft = await asyncio.to_thread(
lambda: service.users()
.drafts()
@@ -1096,7 +1100,7 @@ class GmailGetThreadBlock(GmailBase):
async def _build_reply_message(
service, input_data, execution_context: ExecutionContext
service, input_data, graph_exec_id: str, user_id: str
) -> tuple[str, str]:
"""
Builds a reply MIME message for Gmail threads.
@@ -1186,12 +1190,12 @@ async def _build_reply_message(
# Handle attachments
for attach in input_data.attachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
execution_context=execution_context,
return_format="for_local_processing",
return_content=False,
)
assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
abs_path = get_exec_file_path(graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())
@@ -1307,14 +1311,16 @@ class GmailReplyBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
message = await self._reply(
service,
input_data,
execution_context,
graph_exec_id,
user_id,
)
yield "messageId", message["id"]
yield "threadId", message.get("threadId", input_data.threadId)
@@ -1337,11 +1343,11 @@ class GmailReplyBlock(GmailBase):
yield "email", email
async def _reply(
self, service, input_data: Input, execution_context: ExecutionContext
self, service, input_data: Input, graph_exec_id: str, user_id: str
) -> dict:
# Build the reply message using the shared helper
raw, thread_id = await _build_reply_message(
service, input_data, execution_context
service, input_data, graph_exec_id, user_id
)
# Send the message
@@ -1435,14 +1441,16 @@ class GmailDraftReplyBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
draft = await self._create_draft_reply(
service,
input_data,
execution_context,
graph_exec_id,
user_id,
)
yield "draftId", draft["id"]
yield "messageId", draft["message"]["id"]
@@ -1450,11 +1458,11 @@ class GmailDraftReplyBlock(GmailBase):
yield "status", "draft_created"
async def _create_draft_reply(
self, service, input_data: Input, execution_context: ExecutionContext
self, service, input_data: Input, graph_exec_id: str, user_id: str
) -> dict:
# Build the reply message using the shared helper
raw, thread_id = await _build_reply_message(
service, input_data, execution_context
service, input_data, graph_exec_id, user_id
)
# Create draft with proper thread association
@@ -1621,21 +1629,23 @@ class GmailForwardBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
result = await self._forward_message(
service,
input_data,
execution_context,
graph_exec_id,
user_id,
)
yield "messageId", result["id"]
yield "threadId", result.get("threadId", "")
yield "status", "forwarded"
async def _forward_message(
self, service, input_data: Input, execution_context: ExecutionContext
self, service, input_data: Input, graph_exec_id: str, user_id: str
) -> dict:
if not input_data.to:
raise ValueError("At least one recipient is required for forwarding")
@@ -1717,12 +1727,12 @@ To: {original_to}
# Add any additional attachments
for attach in input_data.additionalAttachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
execution_context=execution_context,
return_format="for_local_processing",
return_content=False,
)
assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
abs_path = get_exec_file_path(graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())

View File

@@ -15,7 +15,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
CredentialsField,
CredentialsMetaInput,
@@ -117,9 +116,10 @@ class SendWebRequestBlock(Block):
@staticmethod
async def _prepare_files(
execution_context: ExecutionContext,
graph_exec_id: str,
files_name: str,
files: list[MediaFileType],
user_id: str,
) -> list[tuple[str, tuple[str, BytesIO, str]]]:
"""
Prepare files for the request by storing them and reading their content.
@@ -127,16 +127,11 @@ class SendWebRequestBlock(Block):
(files_name, (filename, BytesIO, mime_type))
"""
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
graph_exec_id = execution_context.graph_exec_id
if graph_exec_id is None:
raise ValueError("graph_exec_id is required for file operations")
for media in files:
# Normalise to a list so we can repeat the same key
rel_path = await store_media_file(
file=media,
execution_context=execution_context,
return_format="for_local_processing",
graph_exec_id, media, user_id, return_content=False
)
abs_path = get_exec_file_path(graph_exec_id, rel_path)
async with aiofiles.open(abs_path, "rb") as f:
@@ -148,7 +143,7 @@ class SendWebRequestBlock(Block):
return files_payload
async def run(
self, input_data: Input, *, execution_context: ExecutionContext, **kwargs
self, input_data: Input, *, graph_exec_id: str, user_id: str, **kwargs
) -> BlockOutput:
# ─── Parse/normalise body ────────────────────────────────────
body = input_data.body
@@ -179,7 +174,7 @@ class SendWebRequestBlock(Block):
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
if use_files:
files_payload = await self._prepare_files(
execution_context, input_data.files_name, input_data.files
graph_exec_id, input_data.files_name, input_data.files, user_id
)
# Enforce body format rules
@@ -243,8 +238,9 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
self,
input_data: Input,
*,
execution_context: ExecutionContext,
graph_exec_id: str,
credentials: HostScopedCredentials,
user_id: str,
**kwargs,
) -> BlockOutput:
# Create SendWebRequestBlock.Input from our input (removing credentials field)
@@ -275,6 +271,6 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
# Use parent class run method
async for output_name, output_data in super().run(
base_input, execution_context=execution_context, **kwargs
base_input, graph_exec_id=graph_exec_id, user_id=user_id, **kwargs
):
yield output_name, output_data

View File

@@ -12,7 +12,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockType,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.mock import MockObject
@@ -463,21 +462,18 @@ class AgentFileInputBlock(AgentInputBlock):
self,
input_data: Input,
*,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
if not input_data.value:
return
# Determine return format based on user preference
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
yield "result", await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.value,
execution_context=execution_context,
return_format=return_format,
user_id=user_id,
return_content=input_data.base_64,
)

View File

@@ -32,7 +32,7 @@ from backend.data.model import (
from backend.integrations.providers import ProviderName
from backend.util import json
from backend.util.logging import TruncatedLogger
from backend.util.prompt import compress_context, estimate_token_count
from backend.util.prompt import compress_prompt, estimate_token_count
from backend.util.text import TextFormatter
logger = TruncatedLogger(logging.getLogger(__name__), "[LLM-Block]")
@@ -115,6 +115,7 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
# AI/ML API models
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
@@ -279,6 +280,9 @@ MODEL_METADATA = {
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
), # claude-haiku-4-5-20251001
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude 3.7 Sonnet", "Anthropic", "Anthropic", 2
), # claude-3-7-sonnet-20250219
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
), # claude-3-haiku-20240307
@@ -634,18 +638,11 @@ async def llm_call(
context_window = llm_model.context_window
if compress_prompt_to_fit:
result = await compress_context(
prompt = compress_prompt(
messages=prompt,
target_tokens=llm_model.context_window // 2,
client=None, # Truncation-only, no LLM summarization
reserve=0, # Caller handles response token budget separately
lossy_ok=True,
)
if result.error:
logger.warning(
f"Prompt compression did not meet target: {result.error}. "
f"Proceeding with {result.token_count} tokens."
)
prompt = result.messages
# Calculate available tokens based on context window and input length
estimated_input_tokens = estimate_token_count(prompt)

View File

@@ -1,6 +1,6 @@
import os
import tempfile
from typing import Optional
from typing import Literal, Optional
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.fx.Loop import Loop
@@ -13,7 +13,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
@@ -47,19 +46,18 @@ class MediaDurationBlock(Block):
self,
input_data: Input,
*,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
# 1) Store the input media locally
local_media_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.media_in,
execution_context=execution_context,
return_format="for_local_processing",
)
assert execution_context.graph_exec_id is not None
media_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_media_path
user_id=user_id,
return_content=False,
)
media_abspath = get_exec_file_path(graph_exec_id, local_media_path)
# 2) Load the clip
if input_data.is_video:
@@ -90,6 +88,10 @@ class LoopVideoBlock(Block):
default=None,
ge=1,
)
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="How to return the output video. Either a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput):
video_out: str = SchemaField(
@@ -109,19 +111,17 @@ class LoopVideoBlock(Block):
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the input video locally
local_video_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
user_id=user_id,
return_content=False,
)
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
@@ -149,11 +149,12 @@ class LoopVideoBlock(Block):
looped_clip = looped_clip.with_audio(clip.audio)
looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# Return output - for_block_output returns workspace:// if available, else data URI
# Return as data URI
video_out = await store_media_file(
graph_exec_id=graph_exec_id,
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
user_id=user_id,
return_content=input_data.output_return_type == "data_uri",
)
yield "video_out", video_out
@@ -176,6 +177,10 @@ class AddAudioToVideoBlock(Block):
description="Volume scale for the newly attached audio track (1.0 = original).",
default=1.0,
)
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="Return the final output as a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
@@ -195,24 +200,23 @@ class AddAudioToVideoBlock(Block):
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the inputs locally
local_video_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
user_id=user_id,
return_content=False,
)
local_audio_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.audio_in,
execution_context=execution_context,
return_format="for_local_processing",
user_id=user_id,
return_content=False,
)
abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id)
@@ -236,11 +240,12 @@ class AddAudioToVideoBlock(Block):
output_abspath = os.path.join(abs_temp_dir, output_filename)
final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# 5) Return output - for_block_output returns workspace:// if available, else data URI
# 5) Return either path or data URI
video_out = await store_media_file(
graph_exec_id=graph_exec_id,
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
user_id=user_id,
return_content=input_data.output_return_type == "data_uri",
)
yield "video_out", video_out

View File

@@ -11,7 +11,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -113,7 +112,8 @@ class ScreenshotWebPageBlock(Block):
@staticmethod
async def take_screenshot(
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
url: str,
viewport_width: int,
viewport_height: int,
@@ -155,11 +155,12 @@ class ScreenshotWebPageBlock(Block):
return {
"image": await store_media_file(
graph_exec_id=graph_exec_id,
file=MediaFileType(
f"data:image/{format.value};base64,{b64encode(content).decode('utf-8')}"
),
execution_context=execution_context,
return_format="for_block_output",
user_id=user_id,
return_content=True,
)
}
@@ -168,13 +169,15 @@ class ScreenshotWebPageBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
try:
screenshot_data = await self.take_screenshot(
credentials=credentials,
execution_context=execution_context,
graph_exec_id=graph_exec_id,
user_id=user_id,
url=input_data.url,
viewport_width=input_data.viewport_width,
viewport_height=input_data.viewport_height,

View File

@@ -7,7 +7,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import ContributorDetails, SchemaField
from backend.util.file import get_exec_file_path, store_media_file
from backend.util.type import MediaFileType
@@ -99,7 +98,7 @@ class ReadSpreadsheetBlock(Block):
)
async def run(
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
) -> BlockOutput:
import csv
from io import StringIO
@@ -107,16 +106,14 @@ class ReadSpreadsheetBlock(Block):
# Determine data source - prefer file_input if provided, otherwise use contents
if input_data.file_input:
stored_file_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=input_data.file_input,
execution_context=execution_context,
return_format="for_local_processing",
return_content=False,
)
# Get full file path
assert execution_context.graph_exec_id # Validated by store_media_file
file_path = get_exec_file_path(
execution_context.graph_exec_id, stored_file_path
)
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
if not Path(file_path).exists():
raise ValueError(f"File does not exist: {file_path}")

View File

@@ -83,7 +83,7 @@ class StagehandRecommendedLlmModel(str, Enum):
GPT41_MINI = "gpt-4.1-mini-2025-04-14"
# Anthropic
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
@property
def provider_name(self) -> str:
@@ -137,7 +137,7 @@ class StagehandObserveBlock(Block):
model: StagehandRecommendedLlmModel = SchemaField(
title="LLM Model",
description="LLM to use for Stagehand (provider is inferred)",
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
advanced=False,
)
model_credentials: AICredentials = AICredentialsField()
@@ -230,7 +230,7 @@ class StagehandActBlock(Block):
model: StagehandRecommendedLlmModel = SchemaField(
title="LLM Model",
description="LLM to use for Stagehand (provider is inferred)",
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
advanced=False,
)
model_credentials: AICredentials = AICredentialsField()
@@ -330,7 +330,7 @@ class StagehandExtractBlock(Block):
model: StagehandRecommendedLlmModel = SchemaField(
title="LLM Model",
description="LLM to use for Stagehand (provider is inferred)",
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
advanced=False,
)
model_credentials: AICredentials = AICredentialsField()

View File

@@ -10,7 +10,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -18,9 +17,7 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.file import store_media_file
from backend.util.request import Requests
from backend.util.type import MediaFileType
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
@@ -105,7 +102,7 @@ class CreateTalkingAvatarVideoBlock(Block):
test_output=[
(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
"https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
),
],
test_mock={
@@ -113,10 +110,9 @@ class CreateTalkingAvatarVideoBlock(Block):
"id": "abcd1234-5678-efgh-ijkl-mnopqrstuvwx",
"status": "created",
},
# Use data URI to avoid HTTP requests during tests
"get_clip_status": lambda *args, **kwargs: {
"status": "done",
"result_url": "data:video/mp4;base64,AAAA",
"result_url": "https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
},
},
test_credentials=TEST_CREDENTIALS,
@@ -142,12 +138,7 @@ class CreateTalkingAvatarVideoBlock(Block):
return response.json()
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
# Create the clip
payload = {
@@ -174,14 +165,7 @@ class CreateTalkingAvatarVideoBlock(Block):
for _ in range(input_data.max_polling_attempts):
status_response = await self.get_clip_status(credentials.api_key, clip_id)
if status_response["status"] == "done":
# Store the generated video to the user's workspace for persistence
video_url = status_response["result_url"]
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
yield "video_url", status_response["result_url"]
return
elif status_response["status"] == "error":
raise RuntimeError(

View File

@@ -12,7 +12,6 @@ from backend.blocks.iteration import StepThroughItemsBlock
from backend.blocks.llm import AITextSummarizerBlock
from backend.blocks.text import ExtractTextInformationBlock
from backend.blocks.xml_parser import XMLParserBlock
from backend.data.execution import ExecutionContext
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
@@ -234,12 +233,9 @@ class TestStoreMediaFileSecurity:
with pytest.raises(ValueError, match="File too large"):
await store_media_file(
graph_exec_id="test",
file=MediaFileType(large_data_uri),
execution_context=ExecutionContext(
user_id="test_user",
graph_exec_id="test",
),
return_format="for_local_processing",
user_id="test_user",
)
@patch("backend.util.file.Path")
@@ -274,12 +270,9 @@ class TestStoreMediaFileSecurity:
# Should raise an error when directory size exceeds limit
with pytest.raises(ValueError, match="Disk usage limit exceeded"):
await store_media_file(
graph_exec_id="test",
file=MediaFileType(
"data:text/plain;base64,dGVzdA=="
), # Small test file
execution_context=ExecutionContext(
user_id="test_user",
graph_exec_id="test",
),
return_format="for_local_processing",
user_id="test_user",
)

View File

@@ -11,22 +11,10 @@ from backend.blocks.http import (
HttpMethod,
SendAuthenticatedWebRequestBlock,
)
from backend.data.execution import ExecutionContext
from backend.data.model import HostScopedCredentials
from backend.util.request import Response
def make_test_context(
graph_exec_id: str = "test-exec-id",
user_id: str = "test-user-id",
) -> ExecutionContext:
"""Helper to create test ExecutionContext."""
return ExecutionContext(
user_id=user_id,
graph_exec_id=graph_exec_id,
)
class TestHttpBlockWithHostScopedCredentials:
"""Test suite for HTTP block integration with HostScopedCredentials."""
@@ -117,7 +105,8 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=exact_match_credentials,
execution_context=make_test_context(),
graph_exec_id="test-exec-id",
user_id="test-user-id",
):
result.append((output_name, output_data))
@@ -172,7 +161,8 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=wildcard_credentials,
execution_context=make_test_context(),
graph_exec_id="test-exec-id",
user_id="test-user-id",
):
result.append((output_name, output_data))
@@ -218,7 +208,8 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=non_matching_credentials,
execution_context=make_test_context(),
graph_exec_id="test-exec-id",
user_id="test-user-id",
):
result.append((output_name, output_data))
@@ -267,7 +258,8 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=exact_match_credentials,
execution_context=make_test_context(),
graph_exec_id="test-exec-id",
user_id="test-user-id",
):
result.append((output_name, output_data))
@@ -326,7 +318,8 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=auto_discovered_creds, # Execution manager found these
execution_context=make_test_context(),
graph_exec_id="test-exec-id",
user_id="test-user-id",
):
result.append((output_name, output_data))
@@ -389,7 +382,8 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=multi_header_creds,
execution_context=make_test_context(),
graph_exec_id="test-exec-id",
user_id="test-user-id",
):
result.append((output_name, output_data))
@@ -477,7 +471,8 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=test_creds,
execution_context=make_test_context(),
graph_exec_id="test-exec-id",
user_id="test-user-id",
):
result.append((output_name, output_data))

View File

@@ -11,7 +11,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util import json, text
from backend.util.file import get_exec_file_path, store_media_file
@@ -445,21 +444,18 @@ class FileReadBlock(Block):
)
async def run(
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
) -> BlockOutput:
# Store the media file properly (handles URLs, data URIs, etc.)
stored_file_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=input_data.file_input,
execution_context=execution_context,
return_format="for_local_processing",
return_content=False,
)
# Get full file path (graph_exec_id validated by store_media_file above)
if not execution_context.graph_exec_id:
raise ValueError("execution_context.graph_exec_id is required")
file_path = get_exec_file_path(
execution_context.graph_exec_id, stored_file_path
)
# Get full file path
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
if not Path(file_path).exists():
raise ValueError(f"File does not exist: {file_path}")

View File

@@ -873,13 +873,14 @@ def is_block_auth_configured(
async def initialize_blocks() -> None:
# First, sync all provider costs to blocks
# Imported here to avoid circular import
from backend.sdk.cost_integration import sync_all_provider_costs
from backend.util.retry import func_retry
sync_all_provider_costs()
@func_retry
async def sync_block_to_db(block: Block) -> None:
for cls in get_blocks().values():
block = cls()
existing_block = await AgentBlock.prisma().find_first(
where={"OR": [{"id": block.id}, {"name": block.name}]}
)
@@ -892,7 +893,7 @@ async def initialize_blocks() -> None:
outputSchema=json.dumps(block.output_schema.jsonschema()),
)
)
return
continue
input_schema = json.dumps(block.input_schema.jsonschema())
output_schema = json.dumps(block.output_schema.jsonschema())
@@ -912,25 +913,6 @@ async def initialize_blocks() -> None:
},
)
failed_blocks: list[str] = []
for cls in get_blocks().values():
block = cls()
try:
await sync_block_to_db(block)
except Exception as e:
logger.warning(
f"Failed to sync block {block.name} to database: {e}. "
"Block is still available in memory.",
exc_info=True,
)
failed_blocks.append(block.name)
if failed_blocks:
logger.error(
f"Failed to sync {len(failed_blocks)} block(s) to database: "
f"{', '.join(failed_blocks)}. These blocks are still available in memory."
)
# Note on the return type annotation: https://github.com/microsoft/pyright/issues/10281
def get_block(block_id: str) -> AnyBlockSchema | None:

View File

@@ -81,6 +81,7 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.CLAUDE_4_5_HAIKU: 4,
LlmModel.CLAUDE_4_5_OPUS: 14,
LlmModel.CLAUDE_4_5_SONNET: 9,
LlmModel.CLAUDE_3_7_SONNET: 5,
LlmModel.CLAUDE_3_HAIKU: 1,
LlmModel.AIML_API_QWEN2_5_72B: 1,
LlmModel.AIML_API_LLAMA3_1_70B: 1,

View File

@@ -26,6 +26,31 @@ def add_param(url: str, key: str, value: str) -> str:
DATABASE_URL = os.getenv("DATABASE_URL", "postgresql://localhost:5432")
# Extract the application schema from DATABASE_URL for use in queries
_parsed = urlparse(DATABASE_URL)
_query_params = dict(parse_qsl(_parsed.query))
_app_schema = _query_params.get("schema", "public")
# Build search_path that includes app schema and extension schemas where pgvector may live.
# This is used both in connection options (may be ignored by PgBouncer) and in SET LOCAL
# statements before raw queries (guaranteed to work).
SEARCH_PATH = (
f"{_app_schema},extensions,public"
if _app_schema != "public"
else "public,extensions"
)
# Try to set search_path via PostgreSQL options parameter at connection time.
# NOTE: This may be ignored by PgBouncer in transaction pooling mode.
# As a fallback, we also SET LOCAL search_path before raw queries.
if "options" in _query_params:
_query_params["options"] = (
_query_params["options"] + f" -c search_path={SEARCH_PATH}"
)
else:
_query_params["options"] = f"-c search_path={SEARCH_PATH}"
DATABASE_URL = urlunparse(_parsed._replace(query=urlencode(_query_params)))
CONN_LIMIT = os.getenv("DB_CONNECTION_LIMIT")
if CONN_LIMIT:
DATABASE_URL = add_param(DATABASE_URL, "connection_limit", CONN_LIMIT)
@@ -108,6 +133,70 @@ def get_database_schema() -> str:
return query_params.get("schema", "public")
def get_pod_info() -> dict:
"""Get information about the current pod/host.
Returns dict with: hostname, pod_name (from HOSTNAME env var in k8s),
pod_namespace, pod_ip if available.
"""
import socket
return {
"hostname": socket.gethostname(),
"pod_name": os.getenv("HOSTNAME", "unknown"),
"pod_namespace": os.getenv("POD_NAMESPACE", "unknown"),
"pod_ip": os.getenv("POD_IP", "unknown"),
}
async def get_connection_debug_info(tx=None) -> dict:
"""Get diagnostic info about the current database connection and pod.
Useful for debugging "table does not exist" or "type does not exist" errors
that may indicate connections going to different database instances or pods.
Args:
tx: Optional transaction client to use for the query (ensures same connection)
Returns dict with: search_path, current_schema, server_version, pg_backend_pid,
pgvector_installed, pgvector_schema, plus pod info
"""
import prisma as prisma_module
pod_info = get_pod_info()
db_client = tx if tx else prisma_module.get_client()
try:
# Get connection info and check for pgvector in a single query
result = await db_client.query_raw(
"""
SELECT
current_setting('search_path') as search_path,
current_schema() as current_schema,
current_database() as current_database,
inet_server_addr() as server_addr,
inet_server_port() as server_port,
pg_backend_pid() as backend_pid,
version() as server_version,
(SELECT EXISTS(
SELECT 1 FROM pg_extension WHERE extname = 'vector'
)) as pgvector_installed,
(SELECT nspname FROM pg_extension e
JOIN pg_namespace n ON e.extnamespace = n.oid
WHERE e.extname = 'vector'
LIMIT 1) as pgvector_schema,
(SELECT string_agg(extname || ' in ' || nspname, ', ')
FROM pg_extension e
JOIN pg_namespace n ON e.extnamespace = n.oid
) as all_extensions
"""
)
db_info = result[0] if result else {}
return {**pod_info, **db_info}
except Exception as e:
return {**pod_info, "db_error": str(e)}
async def _raw_with_schema(
query_template: str,
*args,
@@ -124,8 +213,9 @@ async def _raw_with_schema(
Note on pgvector types:
Use unqualified ::vector and <=> operator in queries. PostgreSQL resolves
these via search_path, which includes the schema where pgvector is installed
on all environments (local, CI, dev).
these via search_path. The connection's search_path is configured at module
load to include common extension schemas (public, extensions) where pgvector
may be installed across different environments (local, CI, Supabase).
Args:
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
@@ -155,12 +245,60 @@ async def _raw_with_schema(
db_client = client if client else prisma_module.get_client()
if execute:
result = await db_client.execute_raw(formatted_query, *args) # type: ignore
else:
result = await db_client.query_raw(formatted_query, *args) # type: ignore
# For queries that might use pgvector types (::vector or <=> operator),
# we need to ensure search_path includes the schema where pgvector is installed.
# PgBouncer in transaction mode may ignore connection-level options, so we
# use SET LOCAL within a transaction to guarantee correct search_path.
needs_vector_search_path = "::vector" in formatted_query or "<=>" in formatted_query
return result
try:
if needs_vector_search_path and client is None:
# Use transaction to set search_path for vector queries
async with db_client.tx() as tx:
# Log debug info BEFORE the query to capture which backend we're hitting
debug_info = await get_connection_debug_info(tx)
logger.info(
f"Vector query starting. backend_pid={debug_info.get('backend_pid')}, "
f"server_addr={debug_info.get('server_addr')}, "
f"pgvector_installed={debug_info.get('pgvector_installed')}, "
f"pgvector_schema={debug_info.get('pgvector_schema')}, "
f"search_path={debug_info.get('search_path')}, "
f"pod={debug_info.get('pod_name')}"
)
await tx.execute_raw(f"SET LOCAL search_path TO {SEARCH_PATH}")
if execute:
result = await tx.execute_raw(formatted_query, *args) # type: ignore
else:
result = await tx.query_raw(formatted_query, *args) # type: ignore
logger.info(
f"Vector query SUCCESS. backend_pid={debug_info.get('backend_pid')}"
)
else:
# Regular query without vector types, or already in a transaction
if execute:
result = await db_client.execute_raw(formatted_query, *args) # type: ignore
else:
result = await db_client.query_raw(formatted_query, *args) # type: ignore
return result
except Exception as e:
error_msg = str(e)
# Log connection debug info for "does not exist" errors to help diagnose
# whether connections are going to different database instances
if "does not exist" in error_msg:
try:
debug_info = await get_connection_debug_info()
logger.error(
f"Vector query FAILED. Connection debug info: {debug_info}. "
f"Query template: {query_template[:200]}... Error: {error_msg}"
)
except Exception:
logger.error(
f"Vector query FAILED (debug info unavailable). "
f"Query template: {query_template[:200]}... Error: {error_msg}"
)
raise
async def query_raw_with_schema(query_template: str, *args) -> list[dict]:

View File

@@ -133,23 +133,10 @@ class RedisEventBus(BaseRedisEventBus[M], ABC):
class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
def __init__(self):
self._pubsub: AsyncPubSub | None = None
@property
async def connection(self) -> redis.AsyncRedis:
return await redis.get_redis_async()
async def close(self) -> None:
"""Close the PubSub connection if it exists."""
if self._pubsub is not None:
try:
await self._pubsub.close()
except Exception:
logger.warning("Failed to close PubSub connection", exc_info=True)
finally:
self._pubsub = None
async def publish_event(self, event: M, channel_key: str):
"""
Publish an event to Redis. Gracefully handles connection failures
@@ -170,7 +157,6 @@ class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
await self.connection, channel_key
)
assert isinstance(pubsub, AsyncPubSub)
self._pubsub = pubsub
if "*" in channel_key:
await pubsub.psubscribe(full_channel_name)

View File

@@ -83,29 +83,12 @@ class ExecutionContext(BaseModel):
model_config = {"extra": "ignore"}
# Execution identity
user_id: Optional[str] = None
graph_id: Optional[str] = None
graph_exec_id: Optional[str] = None
graph_version: Optional[int] = None
node_id: Optional[str] = None
node_exec_id: Optional[str] = None
# Safety settings
human_in_the_loop_safe_mode: bool = True
sensitive_action_safe_mode: bool = False
# User settings
user_timezone: str = "UTC"
# Execution hierarchy
root_execution_id: Optional[str] = None
parent_execution_id: Optional[str] = None
# Workspace
workspace_id: Optional[str] = None
session_id: Optional[str] = None
# -------------------------- Models -------------------------- #

View File

@@ -1028,39 +1028,6 @@ async def get_graph(
return GraphModel.from_db(graph, for_export)
async def get_store_listed_graphs(*graph_ids: str) -> dict[str, GraphModel]:
"""Batch-fetch multiple store-listed graphs by their IDs.
Only returns graphs that have approved store listings (publicly available).
Does not require permission checks since store-listed graphs are public.
Args:
*graph_ids: Variable number of graph IDs to fetch
Returns:
Dict mapping graph_id to GraphModel for graphs with approved store listings
"""
if not graph_ids:
return {}
store_listings = await StoreListingVersion.prisma().find_many(
where={
"agentGraphId": {"in": list(graph_ids)},
"submissionStatus": SubmissionStatus.APPROVED,
"isDeleted": False,
},
include={"AgentGraph": {"include": AGENT_GRAPH_INCLUDE}},
distinct=["agentGraphId"],
order={"agentGraphVersion": "desc"},
)
return {
listing.agentGraphId: GraphModel.from_db(listing.AgentGraph)
for listing in store_listings
if listing.AgentGraph
}
async def get_graph_as_admin(
graph_id: str,
version: int | None = None,

View File

@@ -666,16 +666,10 @@ class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
if not (self.discriminator and self.discriminator_mapping):
return self
try:
provider = self.discriminator_mapping[discriminator_value]
except KeyError:
raise ValueError(
f"Model '{discriminator_value}' is not supported. "
"It may have been deprecated. Please update your agent configuration."
)
return CredentialsFieldInfo(
credentials_provider=frozenset([provider]),
credentials_provider=frozenset(
[self.discriminator_mapping[discriminator_value]]
),
credentials_types=self.supported_types,
credentials_scopes=self.required_scopes,
discriminator=self.discriminator,

View File

@@ -41,7 +41,6 @@ FrontendOnboardingStep = Literal[
OnboardingStep.AGENT_NEW_RUN,
OnboardingStep.AGENT_INPUT,
OnboardingStep.CONGRATS,
OnboardingStep.VISIT_COPILOT,
OnboardingStep.MARKETPLACE_VISIT,
OnboardingStep.BUILDER_OPEN,
]
@@ -123,9 +122,6 @@ async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
async def _reward_user(user_id: str, onboarding: UserOnboarding, step: OnboardingStep):
reward = 0
match step:
# Welcome bonus for visiting copilot ($5 = 500 credits)
case OnboardingStep.VISIT_COPILOT:
reward = 500
# Reward user when they clicked New Run during onboarding
# This is because they need credits before scheduling a run (next step)
# This is seen as a reward for the GET_RESULTS step in the wallet

View File

@@ -216,7 +216,27 @@ async def get_business_understanding(
# Cache miss - load from database
logger.debug(f"Business understanding cache miss for user {user_id}")
record = await CoPilotUnderstanding.prisma().find_unique(where={"userId": user_id})
try:
record = await CoPilotUnderstanding.prisma().find_unique(where={"userId": user_id})
except Exception as e:
error_msg = str(e)
if "does not exist" in error_msg:
# Log connection debug info to diagnose if connections go to different DBs
from backend.data.db import get_connection_debug_info
try:
debug_info = await get_connection_debug_info()
logger.error(
f"CoPilotUnderstanding table not found. Connection debug: {debug_info}. "
f"Error: {error_msg}"
)
except Exception:
logger.error(
f"CoPilotUnderstanding table not found (debug unavailable). "
f"Error: {error_msg}"
)
raise
if record is None:
return None

View File

@@ -1,276 +0,0 @@
"""
Database CRUD operations for User Workspace.
This module provides functions for managing user workspaces and workspace files.
"""
import logging
from datetime import datetime, timezone
from typing import Optional
from prisma.models import UserWorkspace, UserWorkspaceFile
from prisma.types import UserWorkspaceFileWhereInput
from backend.util.json import SafeJson
logger = logging.getLogger(__name__)
async def get_or_create_workspace(user_id: str) -> UserWorkspace:
"""
Get user's workspace, creating one if it doesn't exist.
Uses upsert to handle race conditions when multiple concurrent requests
attempt to create a workspace for the same user.
Args:
user_id: The user's ID
Returns:
UserWorkspace instance
"""
workspace = await UserWorkspace.prisma().upsert(
where={"userId": user_id},
data={
"create": {"userId": user_id},
"update": {}, # No updates needed if exists
},
)
return workspace
async def get_workspace(user_id: str) -> Optional[UserWorkspace]:
"""
Get user's workspace if it exists.
Args:
user_id: The user's ID
Returns:
UserWorkspace instance or None
"""
return await UserWorkspace.prisma().find_unique(where={"userId": user_id})
async def create_workspace_file(
workspace_id: str,
file_id: str,
name: str,
path: str,
storage_path: str,
mime_type: str,
size_bytes: int,
checksum: Optional[str] = None,
metadata: Optional[dict] = None,
) -> UserWorkspaceFile:
"""
Create a new workspace file record.
Args:
workspace_id: The workspace ID
file_id: The file ID (same as used in storage path for consistency)
name: User-visible filename
path: Virtual path (e.g., "/documents/report.pdf")
storage_path: Actual storage path (GCS or local)
mime_type: MIME type of the file
size_bytes: File size in bytes
checksum: Optional SHA256 checksum
metadata: Optional additional metadata
Returns:
Created UserWorkspaceFile instance
"""
# Normalize path to start with /
if not path.startswith("/"):
path = f"/{path}"
file = await UserWorkspaceFile.prisma().create(
data={
"id": file_id,
"workspaceId": workspace_id,
"name": name,
"path": path,
"storagePath": storage_path,
"mimeType": mime_type,
"sizeBytes": size_bytes,
"checksum": checksum,
"metadata": SafeJson(metadata or {}),
}
)
logger.info(
f"Created workspace file {file.id} at path {path} "
f"in workspace {workspace_id}"
)
return file
async def get_workspace_file(
file_id: str,
workspace_id: Optional[str] = None,
) -> Optional[UserWorkspaceFile]:
"""
Get a workspace file by ID.
Args:
file_id: The file ID
workspace_id: Optional workspace ID for validation
Returns:
UserWorkspaceFile instance or None
"""
where_clause: dict = {"id": file_id, "isDeleted": False}
if workspace_id:
where_clause["workspaceId"] = workspace_id
return await UserWorkspaceFile.prisma().find_first(where=where_clause)
async def get_workspace_file_by_path(
workspace_id: str,
path: str,
) -> Optional[UserWorkspaceFile]:
"""
Get a workspace file by its virtual path.
Args:
workspace_id: The workspace ID
path: Virtual path
Returns:
UserWorkspaceFile instance or None
"""
# Normalize path
if not path.startswith("/"):
path = f"/{path}"
return await UserWorkspaceFile.prisma().find_first(
where={
"workspaceId": workspace_id,
"path": path,
"isDeleted": False,
}
)
async def list_workspace_files(
workspace_id: str,
path_prefix: Optional[str] = None,
include_deleted: bool = False,
limit: Optional[int] = None,
offset: int = 0,
) -> list[UserWorkspaceFile]:
"""
List files in a workspace.
Args:
workspace_id: The workspace ID
path_prefix: Optional path prefix to filter (e.g., "/documents/")
include_deleted: Whether to include soft-deleted files
limit: Maximum number of files to return
offset: Number of files to skip
Returns:
List of UserWorkspaceFile instances
"""
where_clause: UserWorkspaceFileWhereInput = {"workspaceId": workspace_id}
if not include_deleted:
where_clause["isDeleted"] = False
if path_prefix:
# Normalize prefix
if not path_prefix.startswith("/"):
path_prefix = f"/{path_prefix}"
where_clause["path"] = {"startswith": path_prefix}
return await UserWorkspaceFile.prisma().find_many(
where=where_clause,
order={"createdAt": "desc"},
take=limit,
skip=offset,
)
async def count_workspace_files(
workspace_id: str,
path_prefix: Optional[str] = None,
include_deleted: bool = False,
) -> int:
"""
Count files in a workspace.
Args:
workspace_id: The workspace ID
path_prefix: Optional path prefix to filter (e.g., "/sessions/abc123/")
include_deleted: Whether to include soft-deleted files
Returns:
Number of files
"""
where_clause: dict = {"workspaceId": workspace_id}
if not include_deleted:
where_clause["isDeleted"] = False
if path_prefix:
# Normalize prefix
if not path_prefix.startswith("/"):
path_prefix = f"/{path_prefix}"
where_clause["path"] = {"startswith": path_prefix}
return await UserWorkspaceFile.prisma().count(where=where_clause)
async def soft_delete_workspace_file(
file_id: str,
workspace_id: Optional[str] = None,
) -> Optional[UserWorkspaceFile]:
"""
Soft-delete a workspace file.
The path is modified to include a deletion timestamp to free up the original
path for new files while preserving the record for potential recovery.
Args:
file_id: The file ID
workspace_id: Optional workspace ID for validation
Returns:
Updated UserWorkspaceFile instance or None if not found
"""
# First verify the file exists and belongs to workspace
file = await get_workspace_file(file_id, workspace_id)
if file is None:
return None
deleted_at = datetime.now(timezone.utc)
# Modify path to free up the unique constraint for new files at original path
# Format: {original_path}__deleted__{timestamp}
deleted_path = f"{file.path}__deleted__{int(deleted_at.timestamp())}"
updated = await UserWorkspaceFile.prisma().update(
where={"id": file_id},
data={
"isDeleted": True,
"deletedAt": deleted_at,
"path": deleted_path,
},
)
logger.info(f"Soft-deleted workspace file {file_id}")
return updated
async def get_workspace_total_size(workspace_id: str) -> int:
"""
Get the total size of all files in a workspace.
Args:
workspace_id: The workspace ID
Returns:
Total size in bytes
"""
files = await list_workspace_files(workspace_id)
return sum(file.sizeBytes for file in files)

View File

@@ -17,7 +17,6 @@ from backend.data.analytics import (
get_accuracy_trends_and_alerts,
get_marketplace_graphs_for_monitoring,
)
from backend.data.auth.oauth import cleanup_expired_oauth_tokens
from backend.data.credit import UsageTransactionMetadata, get_user_credit_model
from backend.data.execution import (
create_graph_execution,
@@ -220,9 +219,6 @@ class DatabaseManager(AppService):
# Onboarding
increment_onboarding_runs = _(increment_onboarding_runs)
# OAuth
cleanup_expired_oauth_tokens = _(cleanup_expired_oauth_tokens)
# Store
get_store_agents = _(get_store_agents)
get_store_agent_details = _(get_store_agent_details)
@@ -353,9 +349,6 @@ class DatabaseManagerAsyncClient(AppServiceClient):
# Onboarding
increment_onboarding_runs = d.increment_onboarding_runs
# OAuth
cleanup_expired_oauth_tokens = d.cleanup_expired_oauth_tokens
# Store
get_store_agents = d.get_store_agents
get_store_agent_details = d.get_store_agent_details

View File

@@ -236,14 +236,7 @@ async def execute_node(
input_size = len(input_data_str)
log_metadata.debug("Executed node with input", input=input_data_str)
# Create node-specific execution context to avoid race conditions
# (multiple nodes can execute concurrently and would otherwise mutate shared state)
execution_context = execution_context.model_copy(
update={"node_id": node_id, "node_exec_id": node_exec_id}
)
# Inject extra execution arguments for the blocks via kwargs
# Keep individual kwargs for backwards compatibility with existing blocks
extra_exec_kwargs: dict = {
"graph_id": graph_id,
"graph_version": graph_version,

View File

@@ -24,9 +24,11 @@ from dotenv import load_dotenv
from pydantic import BaseModel, Field, ValidationError
from sqlalchemy import MetaData, create_engine
from backend.data.auth.oauth import cleanup_expired_oauth_tokens
from backend.data.block import BlockInput
from backend.data.execution import GraphExecutionWithNodes
from backend.data.model import CredentialsMetaInput
from backend.data.onboarding import increment_onboarding_runs
from backend.executor import utils as execution_utils
from backend.monitoring import (
NotificationJobArgs,
@@ -36,11 +38,7 @@ from backend.monitoring import (
report_execution_accuracy_alerts,
report_late_executions,
)
from backend.util.clients import (
get_database_manager_async_client,
get_database_manager_client,
get_scheduler_client,
)
from backend.util.clients import get_database_manager_client, get_scheduler_client
from backend.util.cloud_storage import cleanup_expired_files_async
from backend.util.exceptions import (
GraphNotFoundError,
@@ -150,7 +148,6 @@ def execute_graph(**kwargs):
async def _execute_graph(**kwargs):
args = GraphExecutionJobArgs(**kwargs)
start_time = asyncio.get_event_loop().time()
db = get_database_manager_async_client()
try:
logger.info(f"Executing recurring job for graph #{args.graph_id}")
graph_exec: GraphExecutionWithNodes = await execution_utils.add_graph_execution(
@@ -160,7 +157,7 @@ async def _execute_graph(**kwargs):
inputs=args.input_data,
graph_credentials_inputs=args.input_credentials,
)
await db.increment_onboarding_runs(args.user_id)
await increment_onboarding_runs(args.user_id)
elapsed = asyncio.get_event_loop().time() - start_time
logger.info(
f"Graph execution started with ID {graph_exec.id} for graph {args.graph_id} "
@@ -249,13 +246,8 @@ def cleanup_expired_files():
def cleanup_oauth_tokens():
"""Clean up expired OAuth tokens from the database."""
# Wait for completion
async def _cleanup():
db = get_database_manager_async_client()
return await db.cleanup_expired_oauth_tokens()
run_async(_cleanup())
run_async(cleanup_expired_oauth_tokens())
def execution_accuracy_alerts():

View File

@@ -892,19 +892,11 @@ async def add_graph_execution(
settings = await gdb.get_graph_settings(user_id=user_id, graph_id=graph_id)
execution_context = ExecutionContext(
# Execution identity
user_id=user_id,
graph_id=graph_id,
graph_exec_id=graph_exec.id,
graph_version=graph_exec.graph_version,
# Safety settings
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
# User settings
user_timezone=(
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
),
# Execution hierarchy
root_execution_id=graph_exec.id,
)

View File

@@ -348,7 +348,6 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
mock_graph_exec.id = "execution-id-123"
mock_graph_exec.node_executions = [] # Add this to avoid AttributeError
mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check
mock_graph_exec.graph_version = graph_version
mock_graph_exec.to_graph_execution_entry.return_value = mocker.MagicMock()
# Mock the queue and event bus
@@ -435,9 +434,6 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
# Create a second mock execution for the sanity check
mock_graph_exec_2 = mocker.MagicMock(spec=GraphExecutionWithNodes)
mock_graph_exec_2.id = "execution-id-456"
mock_graph_exec_2.node_executions = []
mock_graph_exec_2.status = ExecutionStatus.QUEUED
mock_graph_exec_2.graph_version = graph_version
mock_graph_exec_2.to_graph_execution_entry.return_value = mocker.MagicMock()
# Reset mocks and set up for second call
@@ -618,7 +614,6 @@ async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
mock_graph_exec.id = "execution-id-123"
mock_graph_exec.node_executions = []
mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check
mock_graph_exec.graph_version = graph_version
# Track what's passed to to_graph_execution_entry
captured_kwargs = {}

View File

@@ -1,39 +0,0 @@
from urllib.parse import urlparse
import fastapi
from fastapi.routing import APIRoute
from backend.api.features.integrations.router import router as integrations_router
from backend.integrations.providers import ProviderName
from backend.integrations.webhooks import utils as webhooks_utils
def test_webhook_ingress_url_matches_route(monkeypatch) -> None:
app = fastapi.FastAPI()
app.include_router(integrations_router, prefix="/api/integrations")
provider = ProviderName.GITHUB
webhook_id = "webhook_123"
base_url = "https://example.com"
monkeypatch.setattr(webhooks_utils.app_config, "platform_base_url", base_url)
route = next(
route
for route in integrations_router.routes
if isinstance(route, APIRoute)
and route.path == "/{provider}/webhooks/{webhook_id}/ingress"
and "POST" in route.methods
)
expected_path = f"/api/integrations{route.path}".format(
provider=provider.value,
webhook_id=webhook_id,
)
actual_url = urlparse(webhooks_utils.webhook_ingress_url(provider, webhook_id))
expected_base = urlparse(base_url)
assert (actual_url.scheme, actual_url.netloc) == (
expected_base.scheme,
expected_base.netloc,
)
assert actual_url.path == expected_path

View File

@@ -13,7 +13,6 @@ import aiohttp
from gcloud.aio import storage as async_gcs_storage
from google.cloud import storage as gcs_storage
from backend.util.gcs_utils import download_with_fresh_session, generate_signed_url
from backend.util.settings import Config
logger = logging.getLogger(__name__)
@@ -252,7 +251,7 @@ class CloudStorageHandler:
f"in_task: {current_task is not None}"
)
# Parse bucket and blob name from path (path already has gcs:// prefix removed)
# Parse bucket and blob name from path
parts = path.split("/", 1)
if len(parts) != 2:
raise ValueError(f"Invalid GCS path: {path}")
@@ -262,19 +261,50 @@ class CloudStorageHandler:
# Authorization check
self._validate_file_access(blob_name, user_id, graph_exec_id)
logger.info(
f"[CloudStorage] About to download from GCS - bucket: {bucket_name}, blob: {blob_name}"
# Use a fresh client for each download to avoid session issues
# This is less efficient but more reliable with the executor's event loop
logger.info("[CloudStorage] Creating fresh GCS client for download")
# Create a new session specifically for this download
session = aiohttp.ClientSession(
connector=aiohttp.TCPConnector(limit=10, force_close=True)
)
async_client = None
try:
content = await download_with_fresh_session(bucket_name, blob_name)
# Create a new GCS client with the fresh session
async_client = async_gcs_storage.Storage(session=session)
logger.info(
f"[CloudStorage] About to download from GCS - bucket: {bucket_name}, blob: {blob_name}"
)
# Download content using the fresh client
content = await async_client.download(bucket_name, blob_name)
logger.info(
f"[CloudStorage] GCS download successful - size: {len(content)} bytes"
)
# Clean up
await async_client.close()
await session.close()
return content
except FileNotFoundError:
raise
except Exception as e:
# Always try to clean up
if async_client is not None:
try:
await async_client.close()
except Exception as cleanup_error:
logger.warning(
f"[CloudStorage] Error closing GCS client: {cleanup_error}"
)
try:
await session.close()
except Exception as cleanup_error:
logger.warning(f"[CloudStorage] Error closing session: {cleanup_error}")
# Log the specific error for debugging
logger.error(
f"[CloudStorage] GCS download failed - error: {str(e)}, "
@@ -289,6 +319,10 @@ class CloudStorageHandler:
f"current_task: {current_task}, "
f"bucket: {bucket_name}, blob: redacted for privacy"
)
# Convert gcloud-aio exceptions to standard ones
if "404" in str(e) or "Not Found" in str(e):
raise FileNotFoundError(f"File not found: gcs://{path}")
raise
def _validate_file_access(
@@ -411,7 +445,8 @@ class CloudStorageHandler:
graph_exec_id: str | None = None,
) -> str:
"""Generate signed URL for GCS with authorization."""
# Parse bucket and blob name from path (path already has gcs:// prefix removed)
# Parse bucket and blob name from path
parts = path.split("/", 1)
if len(parts) != 2:
raise ValueError(f"Invalid GCS path: {path}")
@@ -421,11 +456,21 @@ class CloudStorageHandler:
# Authorization check
self._validate_file_access(blob_name, user_id, graph_exec_id)
# Use sync client for signed URLs since gcloud-aio doesn't support them
sync_client = self._get_sync_gcs_client()
return await generate_signed_url(
sync_client, bucket_name, blob_name, expiration_hours * 3600
bucket = sync_client.bucket(bucket_name)
blob = bucket.blob(blob_name)
# Generate signed URL asynchronously using sync client
url = await asyncio.to_thread(
blob.generate_signed_url,
version="v4",
expiration=datetime.now(timezone.utc) + timedelta(hours=expiration_hours),
method="GET",
)
return url
async def delete_expired_files(self, provider: str = "gcs") -> int:
"""
Delete files that have passed their expiration time.

View File

@@ -135,12 +135,6 @@ class GraphValidationError(ValueError):
)
class InvalidInputError(ValueError):
"""Raised when user input validation fails (e.g., search term too long)"""
pass
class DatabaseError(Exception):
"""Raised when there is an error interacting with the database"""

View File

@@ -5,26 +5,13 @@ import shutil
import tempfile
import uuid
from pathlib import Path
from typing import TYPE_CHECKING, Literal
from urllib.parse import urlparse
from backend.util.cloud_storage import get_cloud_storage_handler
from backend.util.request import Requests
from backend.util.settings import Config
from backend.util.type import MediaFileType
from backend.util.virus_scanner import scan_content_safe
if TYPE_CHECKING:
from backend.data.execution import ExecutionContext
# Return format options for store_media_file
# - "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
# - "for_external_api": Returns data URI (base64) - use when sending content to external APIs
# - "for_block_output": Returns best format for output - workspace:// in CoPilot, data URI in graphs
MediaReturnFormat = Literal[
"for_local_processing", "for_external_api", "for_block_output"
]
TEMP_DIR = Path(tempfile.gettempdir()).resolve()
# Maximum filename length (conservative limit for most filesystems)
@@ -80,56 +67,42 @@ def clean_exec_files(graph_exec_id: str, file: str = "") -> None:
async def store_media_file(
graph_exec_id: str,
file: MediaFileType,
execution_context: "ExecutionContext",
*,
return_format: MediaReturnFormat,
user_id: str,
return_content: bool = False,
) -> MediaFileType:
"""
Safely handle 'file' (a data URI, a URL, a workspace:// reference, or a local path
relative to {temp}/exec_file/{exec_id}), placing or verifying it under:
Safely handle 'file' (a data URI, a URL, or a local path relative to {temp}/exec_file/{exec_id}),
placing or verifying it under:
{tempdir}/exec_file/{exec_id}/...
For each MediaFileType input:
- Data URI: decode and store locally
- URL: download and store locally
- workspace:// reference: read from workspace, store locally
- Local path: verify it exists in exec_file directory
If 'return_content=True', return a data URI (data:<mime>;base64,<content>).
Otherwise, returns the file media path relative to the exec_id folder.
Return format options:
- "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
- "for_external_api": Returns data URI (base64) - use when sending to external APIs
- "for_block_output": Returns best format for output - workspace:// in CoPilot, data URI in graphs
For each MediaFileType type:
- Data URI:
-> decode and store in a new random file in that folder
- URL:
-> download and store in that folder
- Local path:
-> interpret as relative to that folder; verify it exists
(no copying, as it's presumably already there).
We realpath-check so no symlink or '..' can escape the folder.
:param file: Data URI, URL, workspace://, or local (relative) path.
:param execution_context: ExecutionContext with user_id, graph_exec_id, workspace_id.
:param return_format: What to return: "for_local_processing", "for_external_api", or "for_block_output".
:return: The requested result based on return_format.
:param graph_exec_id: The unique ID of the graph execution.
:param file: Data URI, URL, or local (relative) path.
:param return_content: If True, return a data URI of the file content.
If False, return the *relative* path inside the exec_id folder.
:return: The requested result: data URI or relative path of the media.
"""
# Extract values from execution_context
graph_exec_id = execution_context.graph_exec_id
user_id = execution_context.user_id
if not graph_exec_id:
raise ValueError("execution_context.graph_exec_id is required")
if not user_id:
raise ValueError("execution_context.user_id is required")
# Create workspace_manager if we have workspace_id (with session scoping)
# Import here to avoid circular import (file.py → workspace.py → data → blocks → file.py)
from backend.util.workspace import WorkspaceManager
workspace_manager: WorkspaceManager | None = None
if execution_context.workspace_id:
workspace_manager = WorkspaceManager(
user_id, execution_context.workspace_id, execution_context.session_id
)
# Build base path
base_path = Path(get_exec_file_path(graph_exec_id, ""))
base_path.mkdir(parents=True, exist_ok=True)
# Security fix: Add disk space limits to prevent DoS
MAX_FILE_SIZE_BYTES = Config().max_file_size_mb * 1024 * 1024
MAX_FILE_SIZE = 100 * 1024 * 1024 # 100MB per file
MAX_TOTAL_DISK_USAGE = 1024 * 1024 * 1024 # 1GB total per execution directory
# Check total disk usage in base_path
@@ -169,57 +142,9 @@ async def store_media_file(
"""
return str(absolute_path.relative_to(base))
# Get cloud storage handler for checking cloud paths
cloud_storage = await get_cloud_storage_handler()
# Track if the input came from workspace (don't re-save it)
is_from_workspace = file.startswith("workspace://")
# Check if this is a workspace file reference
if is_from_workspace:
if workspace_manager is None:
raise ValueError(
"Workspace file reference requires workspace context. "
"This file type is only available in CoPilot sessions."
)
# Parse workspace reference
# workspace://abc123 - by file ID
# workspace:///path/to/file.txt - by virtual path
file_ref = file[12:] # Remove "workspace://"
if file_ref.startswith("/"):
# Path reference
workspace_content = await workspace_manager.read_file(file_ref)
file_info = await workspace_manager.get_file_info_by_path(file_ref)
filename = sanitize_filename(
file_info.name if file_info else f"{uuid.uuid4()}.bin"
)
else:
# ID reference
workspace_content = await workspace_manager.read_file_by_id(file_ref)
file_info = await workspace_manager.get_file_info(file_ref)
filename = sanitize_filename(
file_info.name if file_info else f"{uuid.uuid4()}.bin"
)
try:
target_path = _ensure_inside_base(base_path / filename, base_path)
except OSError as e:
raise ValueError(f"Invalid file path '{filename}': {e}") from e
# Check file size limit
if len(workspace_content) > MAX_FILE_SIZE_BYTES:
raise ValueError(
f"File too large: {len(workspace_content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
)
# Virus scan the workspace content before writing locally
await scan_content_safe(workspace_content, filename=filename)
target_path.write_bytes(workspace_content)
# Check if this is a cloud storage path
elif cloud_storage.is_cloud_path(file):
cloud_storage = await get_cloud_storage_handler()
if cloud_storage.is_cloud_path(file):
# Download from cloud storage and store locally
cloud_content = await cloud_storage.retrieve_file(
file, user_id=user_id, graph_exec_id=graph_exec_id
@@ -234,9 +159,9 @@ async def store_media_file(
raise ValueError(f"Invalid file path '{filename}': {e}") from e
# Check file size limit
if len(cloud_content) > MAX_FILE_SIZE_BYTES:
if len(cloud_content) > MAX_FILE_SIZE:
raise ValueError(
f"File too large: {len(cloud_content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
f"File too large: {len(cloud_content)} bytes > {MAX_FILE_SIZE} bytes"
)
# Virus scan the cloud content before writing locally
@@ -264,9 +189,9 @@ async def store_media_file(
content = base64.b64decode(b64_content)
# Check file size limit
if len(content) > MAX_FILE_SIZE_BYTES:
if len(content) > MAX_FILE_SIZE:
raise ValueError(
f"File too large: {len(content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
f"File too large: {len(content)} bytes > {MAX_FILE_SIZE} bytes"
)
# Virus scan the base64 content before writing
@@ -274,31 +199,23 @@ async def store_media_file(
target_path.write_bytes(content)
elif file.startswith(("http://", "https://")):
# URL - download first to get Content-Type header
resp = await Requests().get(file)
# Check file size limit
if len(resp.content) > MAX_FILE_SIZE_BYTES:
raise ValueError(
f"File too large: {len(resp.content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
)
# Extract filename from URL path
# URL
parsed_url = urlparse(file)
filename = sanitize_filename(Path(parsed_url.path).name or f"{uuid.uuid4()}")
# If filename lacks extension, add one from Content-Type header
if "." not in filename:
content_type = resp.headers.get("Content-Type", "").split(";")[0].strip()
if content_type:
ext = _extension_from_mime(content_type)
filename = f"{filename}{ext}"
try:
target_path = _ensure_inside_base(base_path / filename, base_path)
except OSError as e:
raise ValueError(f"Invalid file path '{filename}': {e}") from e
# Download and save
resp = await Requests().get(file)
# Check file size limit
if len(resp.content) > MAX_FILE_SIZE:
raise ValueError(
f"File too large: {len(resp.content)} bytes > {MAX_FILE_SIZE} bytes"
)
# Virus scan the downloaded content before writing
await scan_content_safe(resp.content, filename=filename)
target_path.write_bytes(resp.content)
@@ -313,43 +230,11 @@ async def store_media_file(
if not target_path.is_file():
raise ValueError(f"Local file does not exist: {target_path}")
# Return based on requested format
if return_format == "for_local_processing":
# Use when processing files locally with tools like ffmpeg, MoviePy, PIL
# Returns: relative path in exec_file directory (e.g., "image.png")
return MediaFileType(_strip_base_prefix(target_path, base_path))
elif return_format == "for_external_api":
# Use when sending content to external APIs that need base64
# Returns: data URI (e.g., "...")
# Return result
if return_content:
return MediaFileType(_file_to_data_uri(target_path))
elif return_format == "for_block_output":
# Use when returning output from a block to user/next block
# Returns: workspace:// ref (CoPilot) or data URI (graph execution)
if workspace_manager is None:
# No workspace available (graph execution without CoPilot)
# Fallback to data URI so the content can still be used/displayed
return MediaFileType(_file_to_data_uri(target_path))
# Don't re-save if input was already from workspace
if is_from_workspace:
# Return original workspace reference
return MediaFileType(file)
# Save new content to workspace
content = target_path.read_bytes()
filename = target_path.name
file_record = await workspace_manager.write_file(
content=content,
filename=filename,
overwrite=True,
)
return MediaFileType(f"workspace://{file_record.id}")
else:
raise ValueError(f"Invalid return_format: {return_format}")
return MediaFileType(_strip_base_prefix(target_path, base_path))
def get_dir_size(path: Path) -> int:

View File

@@ -7,22 +7,10 @@ from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.data.execution import ExecutionContext
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
def make_test_context(
graph_exec_id: str = "test-exec-123",
user_id: str = "test-user-123",
) -> ExecutionContext:
"""Helper to create test ExecutionContext."""
return ExecutionContext(
user_id=user_id,
graph_exec_id=graph_exec_id,
)
class TestFileCloudIntegration:
"""Test cases for cloud storage integration in file utilities."""
@@ -82,9 +70,10 @@ class TestFileCloudIntegration:
mock_path_class.side_effect = path_constructor
result = await store_media_file(
file=MediaFileType(cloud_path),
execution_context=make_test_context(graph_exec_id=graph_exec_id),
return_format="for_local_processing",
graph_exec_id,
MediaFileType(cloud_path),
"test-user-123",
return_content=False,
)
# Verify cloud storage operations
@@ -155,9 +144,10 @@ class TestFileCloudIntegration:
mock_path_obj.name = "image.png"
with patch("backend.util.file.Path", return_value=mock_path_obj):
result = await store_media_file(
file=MediaFileType(cloud_path),
execution_context=make_test_context(graph_exec_id=graph_exec_id),
return_format="for_external_api",
graph_exec_id,
MediaFileType(cloud_path),
"test-user-123",
return_content=True,
)
# Verify result is a data URI
@@ -208,9 +198,10 @@ class TestFileCloudIntegration:
mock_resolved_path.relative_to.return_value = Path("test-uuid-789.txt")
await store_media_file(
file=MediaFileType(data_uri),
execution_context=make_test_context(graph_exec_id=graph_exec_id),
return_format="for_local_processing",
graph_exec_id,
MediaFileType(data_uri),
"test-user-123",
return_content=False,
)
# Verify cloud handler was checked but not used for retrieval
@@ -243,7 +234,5 @@ class TestFileCloudIntegration:
FileNotFoundError, match="File not found in cloud storage"
):
await store_media_file(
file=MediaFileType(cloud_path),
execution_context=make_test_context(graph_exec_id=graph_exec_id),
return_format="for_local_processing",
graph_exec_id, MediaFileType(cloud_path), "test-user-123"
)

View File

@@ -1,108 +0,0 @@
"""
Shared GCS utilities for workspace and cloud storage backends.
This module provides common functionality for working with Google Cloud Storage,
including path parsing, client management, and signed URL generation.
"""
import asyncio
import logging
from datetime import datetime, timedelta, timezone
import aiohttp
from gcloud.aio import storage as async_gcs_storage
from google.cloud import storage as gcs_storage
logger = logging.getLogger(__name__)
def parse_gcs_path(path: str) -> tuple[str, str]:
"""
Parse a GCS path in the format 'gcs://bucket/blob' to (bucket, blob).
Args:
path: GCS path string (e.g., "gcs://my-bucket/path/to/file")
Returns:
Tuple of (bucket_name, blob_name)
Raises:
ValueError: If the path format is invalid
"""
if not path.startswith("gcs://"):
raise ValueError(f"Invalid GCS path: {path}")
path_without_prefix = path[6:] # Remove "gcs://"
parts = path_without_prefix.split("/", 1)
if len(parts) != 2:
raise ValueError(f"Invalid GCS path format: {path}")
return parts[0], parts[1]
async def download_with_fresh_session(bucket: str, blob: str) -> bytes:
"""
Download file content using a fresh session.
This approach avoids event loop issues that can occur when reusing
sessions across different async contexts (e.g., in executors).
Args:
bucket: GCS bucket name
blob: Blob path within the bucket
Returns:
File content as bytes
Raises:
FileNotFoundError: If the file doesn't exist
"""
session = aiohttp.ClientSession(
connector=aiohttp.TCPConnector(limit=10, force_close=True)
)
client: async_gcs_storage.Storage | None = None
try:
client = async_gcs_storage.Storage(session=session)
content = await client.download(bucket, blob)
return content
except Exception as e:
if "404" in str(e) or "Not Found" in str(e):
raise FileNotFoundError(f"File not found: gcs://{bucket}/{blob}")
raise
finally:
if client:
try:
await client.close()
except Exception:
pass # Best-effort cleanup
await session.close()
async def generate_signed_url(
sync_client: gcs_storage.Client,
bucket_name: str,
blob_name: str,
expires_in: int,
) -> str:
"""
Generate a signed URL for temporary access to a GCS file.
Uses asyncio.to_thread() to run the sync operation without blocking.
Args:
sync_client: Sync GCS client with service account credentials
bucket_name: GCS bucket name
blob_name: Blob path within the bucket
expires_in: URL expiration time in seconds
Returns:
Signed URL string
"""
bucket = sync_client.bucket(bucket_name)
blob = bucket.blob(blob_name)
return await asyncio.to_thread(
blob.generate_signed_url,
version="v4",
expiration=datetime.now(timezone.utc) + timedelta(seconds=expires_in),
method="GET",
)

View File

@@ -1,19 +1,10 @@
from __future__ import annotations
import logging
from copy import deepcopy
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any
from typing import Any
from tiktoken import encoding_for_model
from backend.util import json
if TYPE_CHECKING:
from openai import AsyncOpenAI
logger = logging.getLogger(__name__)
# ---------------------------------------------------------------------------#
# CONSTANTS #
# ---------------------------------------------------------------------------#
@@ -109,17 +100,9 @@ def _is_objective_message(msg: dict) -> bool:
def _truncate_tool_message_content(msg: dict, enc, max_tokens: int) -> None:
"""
Carefully truncate tool message content while preserving tool structure.
Handles both Anthropic-style (list content) and OpenAI-style (string content) tool messages.
Only truncates tool_result content, leaves tool_use intact.
"""
content = msg.get("content")
# OpenAI-style tool message: role="tool" with string content
if msg.get("role") == "tool" and isinstance(content, str):
if _tok_len(content, enc) > max_tokens:
msg["content"] = _truncate_middle_tokens(content, enc, max_tokens)
return
# Anthropic-style: list content with tool_result items
if not isinstance(content, list):
return
@@ -157,6 +140,141 @@ def _truncate_middle_tokens(text: str, enc, max_tok: int) -> str:
# ---------------------------------------------------------------------------#
def compress_prompt(
messages: list[dict],
target_tokens: int,
*,
model: str = "gpt-4o",
reserve: int = 2_048,
start_cap: int = 8_192,
floor_cap: int = 128,
lossy_ok: bool = True,
) -> list[dict]:
"""
Shrink *messages* so that::
token_count(prompt) + reserve ≤ target_tokens
Strategy
--------
1. **Token-aware truncation** progressively halve a per-message cap
(`start_cap`, `start_cap/2`, … `floor_cap`) and apply it to the
*content* of every message except the first and last. Tool shells
are included: we keep the envelope but shorten huge payloads.
2. **Middle-out deletion** if still over the limit, delete whole
messages working outward from the centre, **skipping** any message
that contains ``tool_calls`` or has ``role == "tool"``.
3. **Last-chance trim** if still too big, truncate the *first* and
*last* message bodies down to `floor_cap` tokens.
4. If the prompt is *still* too large:
• raise ``ValueError`` when ``lossy_ok == False`` (default)
• return the partially-trimmed prompt when ``lossy_ok == True``
Parameters
----------
messages Complete chat history (will be deep-copied).
model Model name; passed to tiktoken to pick the right
tokenizer (gpt-4o → 'o200k_base', others fallback).
target_tokens Hard ceiling for prompt size **excluding** the model's
forthcoming answer.
reserve How many tokens you want to leave available for that
answer (`max_tokens` in your subsequent completion call).
start_cap Initial per-message truncation ceiling (tokens).
floor_cap Lowest cap we'll accept before moving to deletions.
lossy_ok If *True* return best-effort prompt instead of raising
after all trim passes have been exhausted.
Returns
-------
list[dict] A *new* messages list that abides by the rules above.
"""
enc = encoding_for_model(model) # best-match tokenizer
msgs = deepcopy(messages) # never mutate caller
def total_tokens() -> int:
"""Current size of *msgs* in tokens."""
return sum(_msg_tokens(m, enc) for m in msgs)
original_token_count = total_tokens()
if original_token_count + reserve <= target_tokens:
return msgs
# ---- STEP 0 : normalise content --------------------------------------
# Convert non-string payloads to strings so token counting is coherent.
for i, m in enumerate(msgs):
if not isinstance(m.get("content"), str) and m.get("content") is not None:
if _is_tool_message(m):
continue
# Keep first and last messages intact (unless they're tool messages)
if i == 0 or i == len(msgs) - 1:
continue
# Reasonable 20k-char ceiling prevents pathological blobs
content_str = json.dumps(m["content"], separators=(",", ":"))
if len(content_str) > 20_000:
content_str = _truncate_middle_tokens(content_str, enc, 20_000)
m["content"] = content_str
# ---- STEP 1 : token-aware truncation ---------------------------------
cap = start_cap
while total_tokens() + reserve > target_tokens and cap >= floor_cap:
for m in msgs[1:-1]: # keep first & last intact
if _is_tool_message(m):
# For tool messages, only truncate tool result content, preserve structure
_truncate_tool_message_content(m, enc, cap)
continue
if _is_objective_message(m):
# Never truncate objective messages - they contain the core task
continue
content = m.get("content") or ""
if _tok_len(content, enc) > cap:
m["content"] = _truncate_middle_tokens(content, enc, cap)
cap //= 2 # tighten the screw
# ---- STEP 2 : middle-out deletion -----------------------------------
while total_tokens() + reserve > target_tokens and len(msgs) > 2:
# Identify all deletable messages (not first/last, not tool messages, not objective messages)
deletable_indices = []
for i in range(1, len(msgs) - 1): # Skip first and last
if not _is_tool_message(msgs[i]) and not _is_objective_message(msgs[i]):
deletable_indices.append(i)
if not deletable_indices:
break # nothing more we can drop
# Delete from center outward - find the index closest to center
centre = len(msgs) // 2
to_delete = min(deletable_indices, key=lambda i: abs(i - centre))
del msgs[to_delete]
# ---- STEP 3 : final safety-net trim on first & last ------------------
cap = start_cap
while total_tokens() + reserve > target_tokens and cap >= floor_cap:
for idx in (0, -1): # first and last
if _is_tool_message(msgs[idx]):
# For tool messages at first/last position, truncate tool result content only
_truncate_tool_message_content(msgs[idx], enc, cap)
continue
text = msgs[idx].get("content") or ""
if _tok_len(text, enc) > cap:
msgs[idx]["content"] = _truncate_middle_tokens(text, enc, cap)
cap //= 2 # tighten the screw
# ---- STEP 4 : success or fail-gracefully -----------------------------
if total_tokens() + reserve > target_tokens and not lossy_ok:
raise ValueError(
"compress_prompt: prompt still exceeds budget "
f"({total_tokens() + reserve} > {target_tokens})."
)
return msgs
def estimate_token_count(
messages: list[dict],
*,
@@ -175,8 +293,7 @@ def estimate_token_count(
-------
int Token count.
"""
token_model = _normalize_model_for_tokenizer(model)
enc = encoding_for_model(token_model)
enc = encoding_for_model(model) # best-match tokenizer
return sum(_msg_tokens(m, enc) for m in messages)
@@ -198,543 +315,6 @@ def estimate_token_count_str(
-------
int Token count.
"""
token_model = _normalize_model_for_tokenizer(model)
enc = encoding_for_model(token_model)
enc = encoding_for_model(model) # best-match tokenizer
text = json.dumps(text) if not isinstance(text, str) else text
return _tok_len(text, enc)
# ---------------------------------------------------------------------------#
# UNIFIED CONTEXT COMPRESSION #
# ---------------------------------------------------------------------------#
# Default thresholds
DEFAULT_TOKEN_THRESHOLD = 120_000
DEFAULT_KEEP_RECENT = 15
@dataclass
class CompressResult:
"""Result of context compression."""
messages: list[dict]
token_count: int
was_compacted: bool
error: str | None = None
original_token_count: int = 0
messages_summarized: int = 0
messages_dropped: int = 0
def _normalize_model_for_tokenizer(model: str) -> str:
"""Normalize model name for tiktoken tokenizer selection."""
if "/" in model:
model = model.split("/")[-1]
if "claude" in model.lower() or not any(
known in model.lower() for known in ["gpt", "o1", "chatgpt", "text-"]
):
return "gpt-4o"
return model
def _extract_tool_call_ids_from_message(msg: dict) -> set[str]:
"""
Extract tool_call IDs from an assistant message.
Supports both formats:
- OpenAI: {"role": "assistant", "tool_calls": [{"id": "..."}]}
- Anthropic: {"role": "assistant", "content": [{"type": "tool_use", "id": "..."}]}
Returns:
Set of tool_call IDs found in the message.
"""
ids: set[str] = set()
if msg.get("role") != "assistant":
return ids
# OpenAI format: tool_calls array
if msg.get("tool_calls"):
for tc in msg["tool_calls"]:
tc_id = tc.get("id")
if tc_id:
ids.add(tc_id)
# Anthropic format: content list with tool_use blocks
content = msg.get("content")
if isinstance(content, list):
for block in content:
if isinstance(block, dict) and block.get("type") == "tool_use":
tc_id = block.get("id")
if tc_id:
ids.add(tc_id)
return ids
def _extract_tool_response_ids_from_message(msg: dict) -> set[str]:
"""
Extract tool_call IDs that this message is responding to.
Supports both formats:
- OpenAI: {"role": "tool", "tool_call_id": "..."}
- Anthropic: {"role": "user", "content": [{"type": "tool_result", "tool_use_id": "..."}]}
Returns:
Set of tool_call IDs this message responds to.
"""
ids: set[str] = set()
# OpenAI format: role=tool with tool_call_id
if msg.get("role") == "tool":
tc_id = msg.get("tool_call_id")
if tc_id:
ids.add(tc_id)
# Anthropic format: content list with tool_result blocks
content = msg.get("content")
if isinstance(content, list):
for block in content:
if isinstance(block, dict) and block.get("type") == "tool_result":
tc_id = block.get("tool_use_id")
if tc_id:
ids.add(tc_id)
return ids
def _is_tool_response_message(msg: dict) -> bool:
"""Check if message is a tool response (OpenAI or Anthropic format)."""
# OpenAI format
if msg.get("role") == "tool":
return True
# Anthropic format
content = msg.get("content")
if isinstance(content, list):
for block in content:
if isinstance(block, dict) and block.get("type") == "tool_result":
return True
return False
def _remove_orphan_tool_responses(
messages: list[dict], orphan_ids: set[str]
) -> list[dict]:
"""
Remove tool response messages/blocks that reference orphan tool_call IDs.
Supports both OpenAI and Anthropic formats.
For Anthropic messages with mixed valid/orphan tool_result blocks,
filters out only the orphan blocks instead of dropping the entire message.
"""
result = []
for msg in messages:
# OpenAI format: role=tool - drop entire message if orphan
if msg.get("role") == "tool":
tc_id = msg.get("tool_call_id")
if tc_id and tc_id in orphan_ids:
continue
result.append(msg)
continue
# Anthropic format: content list may have mixed tool_result blocks
content = msg.get("content")
if isinstance(content, list):
has_tool_results = any(
isinstance(b, dict) and b.get("type") == "tool_result" for b in content
)
if has_tool_results:
# Filter out orphan tool_result blocks, keep valid ones
filtered_content = [
block
for block in content
if not (
isinstance(block, dict)
and block.get("type") == "tool_result"
and block.get("tool_use_id") in orphan_ids
)
]
# Only keep message if it has remaining content
if filtered_content:
msg = msg.copy()
msg["content"] = filtered_content
result.append(msg)
continue
result.append(msg)
return result
def _ensure_tool_pairs_intact(
recent_messages: list[dict],
all_messages: list[dict],
start_index: int,
) -> list[dict]:
"""
Ensure tool_call/tool_response pairs stay together after slicing.
When slicing messages for context compaction, a naive slice can separate
an assistant message containing tool_calls from its corresponding tool
response messages. This causes API validation errors (e.g., Anthropic's
"unexpected tool_use_id found in tool_result blocks").
This function checks for orphan tool responses in the slice and extends
backwards to include their corresponding assistant messages.
Supports both formats:
- OpenAI: tool_calls array + role="tool" responses
- Anthropic: tool_use blocks + tool_result blocks
Args:
recent_messages: The sliced messages to validate
all_messages: The complete message list (for looking up missing assistants)
start_index: The index in all_messages where recent_messages begins
Returns:
A potentially extended list of messages with tool pairs intact
"""
if not recent_messages:
return recent_messages
# Collect all tool_call_ids from assistant messages in the slice
available_tool_call_ids: set[str] = set()
for msg in recent_messages:
available_tool_call_ids |= _extract_tool_call_ids_from_message(msg)
# Find orphan tool responses (responses whose tool_call_id is missing)
orphan_tool_call_ids: set[str] = set()
for msg in recent_messages:
response_ids = _extract_tool_response_ids_from_message(msg)
for tc_id in response_ids:
if tc_id not in available_tool_call_ids:
orphan_tool_call_ids.add(tc_id)
if not orphan_tool_call_ids:
# No orphans, slice is valid
return recent_messages
# Find the assistant messages that contain the orphan tool_call_ids
# Search backwards from start_index in all_messages
messages_to_prepend: list[dict] = []
for i in range(start_index - 1, -1, -1):
msg = all_messages[i]
msg_tool_ids = _extract_tool_call_ids_from_message(msg)
if msg_tool_ids & orphan_tool_call_ids:
# This assistant message has tool_calls we need
# Also collect its contiguous tool responses that follow it
assistant_and_responses: list[dict] = [msg]
# Scan forward from this assistant to collect tool responses
for j in range(i + 1, start_index):
following_msg = all_messages[j]
following_response_ids = _extract_tool_response_ids_from_message(
following_msg
)
if following_response_ids and following_response_ids & msg_tool_ids:
assistant_and_responses.append(following_msg)
elif not _is_tool_response_message(following_msg):
# Stop at first non-tool-response message
break
# Prepend the assistant and its tool responses (maintain order)
messages_to_prepend = assistant_and_responses + messages_to_prepend
# Mark these as found
orphan_tool_call_ids -= msg_tool_ids
# Also add this assistant's tool_call_ids to available set
available_tool_call_ids |= msg_tool_ids
if not orphan_tool_call_ids:
# Found all missing assistants
break
if orphan_tool_call_ids:
# Some tool_call_ids couldn't be resolved - remove those tool responses
# This shouldn't happen in normal operation but handles edge cases
logger.warning(
f"Could not find assistant messages for tool_call_ids: {orphan_tool_call_ids}. "
"Removing orphan tool responses."
)
recent_messages = _remove_orphan_tool_responses(
recent_messages, orphan_tool_call_ids
)
if messages_to_prepend:
logger.info(
f"Extended recent messages by {len(messages_to_prepend)} to preserve "
f"tool_call/tool_response pairs"
)
return messages_to_prepend + recent_messages
return recent_messages
async def _summarize_messages_llm(
messages: list[dict],
client: AsyncOpenAI,
model: str,
timeout: float = 30.0,
) -> str:
"""Summarize messages using an LLM."""
conversation = []
for msg in messages:
role = msg.get("role", "")
content = msg.get("content", "")
if content and role in ("user", "assistant", "tool"):
conversation.append(f"{role.upper()}: {content}")
conversation_text = "\n\n".join(conversation)
if not conversation_text:
return "No conversation history available."
# Limit to ~100k chars for safety
MAX_CHARS = 100_000
if len(conversation_text) > MAX_CHARS:
conversation_text = conversation_text[:MAX_CHARS] + "\n\n[truncated]"
response = await client.with_options(timeout=timeout).chat.completions.create(
model=model,
messages=[
{
"role": "system",
"content": (
"Create a detailed summary of the conversation so far. "
"This summary will be used as context when continuing the conversation.\n\n"
"Before writing the summary, analyze each message chronologically to identify:\n"
"- User requests and their explicit goals\n"
"- Your approach and key decisions made\n"
"- Technical specifics (file names, tool outputs, function signatures)\n"
"- Errors encountered and resolutions applied\n\n"
"You MUST include ALL of the following sections:\n\n"
"## 1. Primary Request and Intent\n"
"The user's explicit goals and what they are trying to accomplish.\n\n"
"## 2. Key Technical Concepts\n"
"Technologies, frameworks, tools, and patterns being used or discussed.\n\n"
"## 3. Files and Resources Involved\n"
"Specific files examined or modified, with relevant snippets and identifiers.\n\n"
"## 4. Errors and Fixes\n"
"Problems encountered, error messages, and their resolutions. "
"Include any user feedback on fixes.\n\n"
"## 5. Problem Solving\n"
"Issues that have been resolved and how they were addressed.\n\n"
"## 6. All User Messages\n"
"A complete list of all user inputs (excluding tool outputs) to preserve their exact requests.\n\n"
"## 7. Pending Tasks\n"
"Work items the user explicitly requested that have not yet been completed.\n\n"
"## 8. Current Work\n"
"Precise description of what was being worked on most recently, including relevant context.\n\n"
"## 9. Next Steps\n"
"What should happen next, aligned with the user's most recent requests. "
"Include verbatim quotes of recent instructions if relevant."
),
},
{"role": "user", "content": f"Summarize:\n\n{conversation_text}"},
],
max_tokens=1500,
temperature=0.3,
)
return response.choices[0].message.content or "No summary available."
async def compress_context(
messages: list[dict],
target_tokens: int = DEFAULT_TOKEN_THRESHOLD,
*,
model: str = "gpt-4o",
client: AsyncOpenAI | None = None,
keep_recent: int = DEFAULT_KEEP_RECENT,
reserve: int = 2_048,
start_cap: int = 8_192,
floor_cap: int = 128,
) -> CompressResult:
"""
Unified context compression that combines summarization and truncation strategies.
Strategy (in order):
1. **LLM summarization** If client provided, summarize old messages into a
single context message while keeping recent messages intact. This is the
primary strategy for chat service.
2. **Content truncation** Progressively halve a per-message cap and truncate
bloated message content (tool outputs, large pastes). Preserves all messages
but shortens their content. Primary strategy when client=None (LLM blocks).
3. **Middle-out deletion** Delete whole messages one at a time from the center
outward, skipping tool messages and objective messages.
4. **First/last trim** Truncate first and last message content as last resort.
Parameters
----------
messages Complete chat history (will be deep-copied).
target_tokens Hard ceiling for prompt size.
model Model name for tokenization and summarization.
client AsyncOpenAI client. If provided, enables LLM summarization
as the first strategy. If None, skips to truncation strategies.
keep_recent Number of recent messages to preserve during summarization.
reserve Tokens to reserve for model response.
start_cap Initial per-message truncation ceiling (tokens).
floor_cap Lowest cap before moving to deletions.
Returns
-------
CompressResult with compressed messages and metadata.
"""
# Guard clause for empty messages
if not messages:
return CompressResult(
messages=[],
token_count=0,
was_compacted=False,
original_token_count=0,
)
token_model = _normalize_model_for_tokenizer(model)
enc = encoding_for_model(token_model)
msgs = deepcopy(messages)
def total_tokens() -> int:
return sum(_msg_tokens(m, enc) for m in msgs)
original_count = total_tokens()
# Already under limit
if original_count + reserve <= target_tokens:
return CompressResult(
messages=msgs,
token_count=original_count,
was_compacted=False,
original_token_count=original_count,
)
messages_summarized = 0
messages_dropped = 0
# ---- STEP 1: LLM summarization (if client provided) -------------------
# This is the primary compression strategy for chat service.
# Summarize old messages while keeping recent ones intact.
if client is not None:
has_system = len(msgs) > 0 and msgs[0].get("role") == "system"
system_msg = msgs[0] if has_system else None
# Calculate old vs recent messages
if has_system:
if len(msgs) > keep_recent + 1:
old_msgs = msgs[1:-keep_recent]
recent_msgs = msgs[-keep_recent:]
else:
old_msgs = []
recent_msgs = msgs[1:] if len(msgs) > 1 else []
else:
if len(msgs) > keep_recent:
old_msgs = msgs[:-keep_recent]
recent_msgs = msgs[-keep_recent:]
else:
old_msgs = []
recent_msgs = msgs
# Ensure tool pairs stay intact
slice_start = max(0, len(msgs) - keep_recent)
recent_msgs = _ensure_tool_pairs_intact(recent_msgs, msgs, slice_start)
if old_msgs:
try:
summary_text = await _summarize_messages_llm(old_msgs, client, model)
summary_msg = {
"role": "assistant",
"content": f"[Previous conversation summary — for context only]: {summary_text}",
}
messages_summarized = len(old_msgs)
if has_system:
msgs = [system_msg, summary_msg] + recent_msgs
else:
msgs = [summary_msg] + recent_msgs
logger.info(
f"Context summarized: {original_count} -> {total_tokens()} tokens, "
f"summarized {messages_summarized} messages"
)
except Exception as e:
logger.warning(f"Summarization failed, continuing with truncation: {e}")
# Fall through to content truncation
# ---- STEP 2: Normalize content ----------------------------------------
# Convert non-string payloads to strings so token counting is coherent.
# Always run this before truncation to ensure consistent token counting.
for i, m in enumerate(msgs):
if not isinstance(m.get("content"), str) and m.get("content") is not None:
if _is_tool_message(m):
continue
if i == 0 or i == len(msgs) - 1:
continue
content_str = json.dumps(m["content"], separators=(",", ":"))
if len(content_str) > 20_000:
content_str = _truncate_middle_tokens(content_str, enc, 20_000)
m["content"] = content_str
# ---- STEP 3: Token-aware content truncation ---------------------------
# Progressively halve per-message cap and truncate bloated content.
# This preserves all messages but shortens their content.
cap = start_cap
while total_tokens() + reserve > target_tokens and cap >= floor_cap:
for m in msgs[1:-1]:
if _is_tool_message(m):
_truncate_tool_message_content(m, enc, cap)
continue
if _is_objective_message(m):
continue
content = m.get("content") or ""
if _tok_len(content, enc) > cap:
m["content"] = _truncate_middle_tokens(content, enc, cap)
cap //= 2
# ---- STEP 4: Middle-out deletion --------------------------------------
# Delete messages one at a time from the center outward.
# This is more granular than dropping all old messages at once.
while total_tokens() + reserve > target_tokens and len(msgs) > 2:
deletable: list[int] = []
for i in range(1, len(msgs) - 1):
msg = msgs[i]
if (
msg is not None
and not _is_tool_message(msg)
and not _is_objective_message(msg)
):
deletable.append(i)
if not deletable:
break
centre = len(msgs) // 2
to_delete = min(deletable, key=lambda i: abs(i - centre))
del msgs[to_delete]
messages_dropped += 1
# ---- STEP 5: Final trim on first/last ---------------------------------
cap = start_cap
while total_tokens() + reserve > target_tokens and cap >= floor_cap:
for idx in (0, -1):
msg = msgs[idx]
if msg is None:
continue
if _is_tool_message(msg):
_truncate_tool_message_content(msg, enc, cap)
continue
text = msg.get("content") or ""
if _tok_len(text, enc) > cap:
msg["content"] = _truncate_middle_tokens(text, enc, cap)
cap //= 2
# Filter out any None values that may have been introduced
final_msgs: list[dict] = [m for m in msgs if m is not None]
final_count = sum(_msg_tokens(m, enc) for m in final_msgs)
error = None
if final_count + reserve > target_tokens:
error = f"Could not compress below target ({final_count + reserve} > {target_tokens})"
logger.warning(error)
return CompressResult(
messages=final_msgs,
token_count=final_count,
was_compacted=True,
error=error,
original_token_count=original_count,
messages_summarized=messages_summarized,
messages_dropped=messages_dropped,
)

View File

@@ -1,21 +1,10 @@
"""Tests for prompt utility functions, especially tool call token counting."""
from unittest.mock import AsyncMock, MagicMock
import pytest
from tiktoken import encoding_for_model
from backend.util import json
from backend.util.prompt import (
CompressResult,
_ensure_tool_pairs_intact,
_msg_tokens,
_normalize_model_for_tokenizer,
_truncate_middle_tokens,
_truncate_tool_message_content,
compress_context,
estimate_token_count,
)
from backend.util.prompt import _msg_tokens, estimate_token_count
class TestMsgTokens:
@@ -287,690 +276,3 @@ class TestEstimateTokenCount:
assert total_tokens == expected_total
assert total_tokens > 20 # Should be substantial
class TestNormalizeModelForTokenizer:
"""Test model name normalization for tiktoken."""
def test_openai_models_unchanged(self):
"""Test that OpenAI models are returned as-is."""
assert _normalize_model_for_tokenizer("gpt-4o") == "gpt-4o"
assert _normalize_model_for_tokenizer("gpt-4") == "gpt-4"
assert _normalize_model_for_tokenizer("gpt-3.5-turbo") == "gpt-3.5-turbo"
def test_claude_models_normalized(self):
"""Test that Claude models are normalized to gpt-4o."""
assert _normalize_model_for_tokenizer("claude-3-opus") == "gpt-4o"
assert _normalize_model_for_tokenizer("claude-3-sonnet") == "gpt-4o"
assert _normalize_model_for_tokenizer("anthropic/claude-3-haiku") == "gpt-4o"
def test_openrouter_paths_extracted(self):
"""Test that OpenRouter model paths are handled."""
assert _normalize_model_for_tokenizer("openai/gpt-4o") == "gpt-4o"
assert _normalize_model_for_tokenizer("anthropic/claude-3-opus") == "gpt-4o"
def test_unknown_models_default_to_gpt4o(self):
"""Test that unknown models default to gpt-4o."""
assert _normalize_model_for_tokenizer("some-random-model") == "gpt-4o"
assert _normalize_model_for_tokenizer("llama-3-70b") == "gpt-4o"
class TestTruncateToolMessageContent:
"""Test tool message content truncation."""
@pytest.fixture
def enc(self):
return encoding_for_model("gpt-4o")
def test_truncate_openai_tool_message(self, enc):
"""Test truncation of OpenAI-style tool message with string content."""
long_content = "x" * 10000
msg = {"role": "tool", "tool_call_id": "call_123", "content": long_content}
_truncate_tool_message_content(msg, enc, max_tokens=100)
# Content should be truncated
assert len(msg["content"]) < len(long_content)
assert "" in msg["content"] # Has ellipsis marker
def test_truncate_anthropic_tool_result(self, enc):
"""Test truncation of Anthropic-style tool_result."""
long_content = "y" * 10000
msg = {
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_123",
"content": long_content,
}
],
}
_truncate_tool_message_content(msg, enc, max_tokens=100)
# Content should be truncated
result_content = msg["content"][0]["content"]
assert len(result_content) < len(long_content)
assert "" in result_content
def test_preserve_tool_use_blocks(self, enc):
"""Test that tool_use blocks are not truncated."""
msg = {
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_123",
"name": "some_function",
"input": {"key": "value" * 1000}, # Large input
}
],
}
original = json.dumps(msg["content"][0]["input"])
_truncate_tool_message_content(msg, enc, max_tokens=10)
# tool_use should be unchanged
assert json.dumps(msg["content"][0]["input"]) == original
def test_no_truncation_when_under_limit(self, enc):
"""Test that short content is not modified."""
msg = {"role": "tool", "tool_call_id": "call_123", "content": "Short content"}
original = msg["content"]
_truncate_tool_message_content(msg, enc, max_tokens=1000)
assert msg["content"] == original
class TestTruncateMiddleTokens:
"""Test middle truncation of text."""
@pytest.fixture
def enc(self):
return encoding_for_model("gpt-4o")
def test_truncates_long_text(self, enc):
"""Test that long text is truncated with ellipsis in middle."""
long_text = "word " * 1000
result = _truncate_middle_tokens(long_text, enc, max_tok=50)
assert len(enc.encode(result)) <= 52 # Allow some slack for ellipsis
assert "" in result
assert result.startswith("word") # Head preserved
assert result.endswith("word ") # Tail preserved
def test_preserves_short_text(self, enc):
"""Test that short text is not modified."""
short_text = "Hello world"
result = _truncate_middle_tokens(short_text, enc, max_tok=100)
assert result == short_text
class TestEnsureToolPairsIntact:
"""Test tool call/response pair preservation for both OpenAI and Anthropic formats."""
# ---- OpenAI Format Tests ----
def test_openai_adds_missing_tool_call(self):
"""Test that orphaned OpenAI tool_response gets its tool_call prepended."""
all_msgs = [
{"role": "system", "content": "You are helpful."},
{
"role": "assistant",
"tool_calls": [
{"id": "call_1", "type": "function", "function": {"name": "f1"}}
],
},
{"role": "tool", "tool_call_id": "call_1", "content": "result"},
{"role": "user", "content": "Thanks!"},
]
# Recent messages start at index 2 (the tool response)
recent = [all_msgs[2], all_msgs[3]]
start_index = 2
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
# Should prepend the tool_call message
assert len(result) == 3
assert result[0]["role"] == "assistant"
assert "tool_calls" in result[0]
def test_openai_keeps_complete_pairs(self):
"""Test that complete OpenAI pairs are unchanged."""
all_msgs = [
{"role": "system", "content": "System"},
{
"role": "assistant",
"tool_calls": [
{"id": "call_1", "type": "function", "function": {"name": "f1"}}
],
},
{"role": "tool", "tool_call_id": "call_1", "content": "result"},
]
recent = all_msgs[1:] # Include both tool_call and response
start_index = 1
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
assert len(result) == 2 # No messages added
def test_openai_multiple_tool_calls(self):
"""Test multiple OpenAI tool calls in one assistant message."""
all_msgs = [
{"role": "system", "content": "System"},
{
"role": "assistant",
"tool_calls": [
{"id": "call_1", "type": "function", "function": {"name": "f1"}},
{"id": "call_2", "type": "function", "function": {"name": "f2"}},
],
},
{"role": "tool", "tool_call_id": "call_1", "content": "result1"},
{"role": "tool", "tool_call_id": "call_2", "content": "result2"},
{"role": "user", "content": "Thanks!"},
]
# Recent messages start at index 2 (first tool response)
recent = [all_msgs[2], all_msgs[3], all_msgs[4]]
start_index = 2
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
# Should prepend the assistant message with both tool_calls
assert len(result) == 4
assert result[0]["role"] == "assistant"
assert len(result[0]["tool_calls"]) == 2
# ---- Anthropic Format Tests ----
def test_anthropic_adds_missing_tool_use(self):
"""Test that orphaned Anthropic tool_result gets its tool_use prepended."""
all_msgs = [
{"role": "system", "content": "You are helpful."},
{
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_123",
"name": "get_weather",
"input": {"location": "SF"},
}
],
},
{
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_123",
"content": "22°C and sunny",
}
],
},
{"role": "user", "content": "Thanks!"},
]
# Recent messages start at index 2 (the tool_result)
recent = [all_msgs[2], all_msgs[3]]
start_index = 2
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
# Should prepend the tool_use message
assert len(result) == 3
assert result[0]["role"] == "assistant"
assert result[0]["content"][0]["type"] == "tool_use"
def test_anthropic_keeps_complete_pairs(self):
"""Test that complete Anthropic pairs are unchanged."""
all_msgs = [
{"role": "system", "content": "System"},
{
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_456",
"name": "calculator",
"input": {"expr": "2+2"},
}
],
},
{
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_456",
"content": "4",
}
],
},
]
recent = all_msgs[1:] # Include both tool_use and result
start_index = 1
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
assert len(result) == 2 # No messages added
def test_anthropic_multiple_tool_uses(self):
"""Test multiple Anthropic tool_use blocks in one message."""
all_msgs = [
{"role": "system", "content": "System"},
{
"role": "assistant",
"content": [
{"type": "text", "text": "Let me check both..."},
{
"type": "tool_use",
"id": "toolu_1",
"name": "get_weather",
"input": {"city": "NYC"},
},
{
"type": "tool_use",
"id": "toolu_2",
"name": "get_weather",
"input": {"city": "LA"},
},
],
},
{
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_1",
"content": "Cold",
},
{
"type": "tool_result",
"tool_use_id": "toolu_2",
"content": "Warm",
},
],
},
{"role": "user", "content": "Thanks!"},
]
# Recent messages start at index 2 (tool_result)
recent = [all_msgs[2], all_msgs[3]]
start_index = 2
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
# Should prepend the assistant message with both tool_uses
assert len(result) == 3
assert result[0]["role"] == "assistant"
tool_use_count = sum(
1 for b in result[0]["content"] if b.get("type") == "tool_use"
)
assert tool_use_count == 2
# ---- Mixed/Edge Case Tests ----
def test_anthropic_with_type_message_field(self):
"""Test Anthropic format with 'type': 'message' field (smart_decision_maker style)."""
all_msgs = [
{"role": "system", "content": "You are helpful."},
{
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_abc",
"name": "search",
"input": {"q": "test"},
}
],
},
{
"role": "user",
"type": "message", # Extra field from smart_decision_maker
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_abc",
"content": "Found results",
}
],
},
{"role": "user", "content": "Thanks!"},
]
# Recent messages start at index 2 (the tool_result with 'type': 'message')
recent = [all_msgs[2], all_msgs[3]]
start_index = 2
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
# Should prepend the tool_use message
assert len(result) == 3
assert result[0]["role"] == "assistant"
assert result[0]["content"][0]["type"] == "tool_use"
def test_handles_no_tool_messages(self):
"""Test messages without tool calls."""
all_msgs = [
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi there!"},
]
recent = all_msgs
start_index = 0
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
assert result == all_msgs
def test_handles_empty_messages(self):
"""Test empty message list."""
result = _ensure_tool_pairs_intact([], [], 0)
assert result == []
def test_mixed_text_and_tool_content(self):
"""Test Anthropic message with mixed text and tool_use content."""
all_msgs = [
{
"role": "assistant",
"content": [
{"type": "text", "text": "I'll help you with that."},
{
"type": "tool_use",
"id": "toolu_mixed",
"name": "search",
"input": {"q": "test"},
},
],
},
{
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_mixed",
"content": "Found results",
}
],
},
{"role": "assistant", "content": "Here are the results..."},
]
# Start from tool_result
recent = [all_msgs[1], all_msgs[2]]
start_index = 1
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
# Should prepend the assistant message with tool_use
assert len(result) == 3
assert result[0]["content"][0]["type"] == "text"
assert result[0]["content"][1]["type"] == "tool_use"
class TestCompressContext:
"""Test the async compress_context function."""
@pytest.mark.asyncio
async def test_no_compression_needed(self):
"""Test messages under limit return without compression."""
messages = [
{"role": "system", "content": "You are helpful."},
{"role": "user", "content": "Hello!"},
]
result = await compress_context(messages, target_tokens=100000)
assert isinstance(result, CompressResult)
assert result.was_compacted is False
assert len(result.messages) == 2
assert result.error is None
@pytest.mark.asyncio
async def test_truncation_without_client(self):
"""Test that truncation works without LLM client."""
long_content = "x" * 50000
messages = [
{"role": "system", "content": "System"},
{"role": "user", "content": long_content},
{"role": "assistant", "content": "Response"},
]
result = await compress_context(
messages, target_tokens=1000, client=None, reserve=100
)
assert result.was_compacted is True
# Should have truncated without summarization
assert result.messages_summarized == 0
@pytest.mark.asyncio
async def test_with_mocked_llm_client(self):
"""Test summarization with mocked LLM client."""
# Create many messages to trigger summarization
messages = [{"role": "system", "content": "System prompt"}]
for i in range(30):
messages.append({"role": "user", "content": f"User message {i} " * 100})
messages.append(
{"role": "assistant", "content": f"Assistant response {i} " * 100}
)
# Mock the AsyncOpenAI client
mock_client = AsyncMock()
mock_response = MagicMock()
mock_response.choices = [MagicMock()]
mock_response.choices[0].message.content = "Summary of conversation"
mock_client.with_options.return_value.chat.completions.create = AsyncMock(
return_value=mock_response
)
result = await compress_context(
messages,
target_tokens=5000,
client=mock_client,
keep_recent=5,
reserve=500,
)
assert result.was_compacted is True
# Should have attempted summarization
assert mock_client.with_options.called or result.messages_summarized > 0
@pytest.mark.asyncio
async def test_preserves_tool_pairs(self):
"""Test that tool call/response pairs stay together."""
messages = [
{"role": "system", "content": "System"},
{"role": "user", "content": "Do something"},
{
"role": "assistant",
"tool_calls": [
{"id": "call_1", "type": "function", "function": {"name": "func"}}
],
},
{"role": "tool", "tool_call_id": "call_1", "content": "Result " * 1000},
{"role": "assistant", "content": "Done!"},
]
result = await compress_context(
messages, target_tokens=500, client=None, reserve=50
)
# Check that if tool response exists, its call exists too
tool_call_ids = set()
tool_response_ids = set()
for msg in result.messages:
if "tool_calls" in msg:
for tc in msg["tool_calls"]:
tool_call_ids.add(tc["id"])
if msg.get("role") == "tool":
tool_response_ids.add(msg.get("tool_call_id"))
# All tool responses should have their calls
assert tool_response_ids <= tool_call_ids
@pytest.mark.asyncio
async def test_returns_error_when_cannot_compress(self):
"""Test that error is returned when compression fails."""
# Single huge message that can't be compressed enough
messages = [
{"role": "user", "content": "x" * 100000},
]
result = await compress_context(
messages, target_tokens=100, client=None, reserve=50
)
# Should have an error since we can't get below 100 tokens
assert result.error is not None
assert result.was_compacted is True
@pytest.mark.asyncio
async def test_empty_messages(self):
"""Test that empty messages list returns early without error."""
result = await compress_context([], target_tokens=1000)
assert result.messages == []
assert result.token_count == 0
assert result.was_compacted is False
assert result.error is None
class TestRemoveOrphanToolResponses:
"""Test _remove_orphan_tool_responses helper function."""
def test_removes_openai_orphan(self):
"""Test removal of orphan OpenAI tool response."""
from backend.util.prompt import _remove_orphan_tool_responses
messages = [
{"role": "tool", "tool_call_id": "call_orphan", "content": "result"},
{"role": "user", "content": "Hello"},
]
orphan_ids = {"call_orphan"}
result = _remove_orphan_tool_responses(messages, orphan_ids)
assert len(result) == 1
assert result[0]["role"] == "user"
def test_keeps_valid_openai_tool(self):
"""Test that valid OpenAI tool responses are kept."""
from backend.util.prompt import _remove_orphan_tool_responses
messages = [
{"role": "tool", "tool_call_id": "call_valid", "content": "result"},
]
orphan_ids = {"call_other"}
result = _remove_orphan_tool_responses(messages, orphan_ids)
assert len(result) == 1
assert result[0]["tool_call_id"] == "call_valid"
def test_filters_anthropic_mixed_blocks(self):
"""Test filtering individual orphan blocks from Anthropic message with mixed valid/orphan."""
from backend.util.prompt import _remove_orphan_tool_responses
messages = [
{
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_valid",
"content": "valid result",
},
{
"type": "tool_result",
"tool_use_id": "toolu_orphan",
"content": "orphan result",
},
],
},
]
orphan_ids = {"toolu_orphan"}
result = _remove_orphan_tool_responses(messages, orphan_ids)
assert len(result) == 1
# Should only have the valid tool_result, orphan filtered out
assert len(result[0]["content"]) == 1
assert result[0]["content"][0]["tool_use_id"] == "toolu_valid"
def test_removes_anthropic_all_orphan(self):
"""Test removal of Anthropic message when all tool_results are orphans."""
from backend.util.prompt import _remove_orphan_tool_responses
messages = [
{
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_orphan1",
"content": "result1",
},
{
"type": "tool_result",
"tool_use_id": "toolu_orphan2",
"content": "result2",
},
],
},
]
orphan_ids = {"toolu_orphan1", "toolu_orphan2"}
result = _remove_orphan_tool_responses(messages, orphan_ids)
# Message should be completely removed since no content left
assert len(result) == 0
def test_preserves_non_tool_messages(self):
"""Test that non-tool messages are preserved."""
from backend.util.prompt import _remove_orphan_tool_responses
messages = [
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi there!"},
]
orphan_ids = {"some_id"}
result = _remove_orphan_tool_responses(messages, orphan_ids)
assert result == messages
class TestCompressResultDataclass:
"""Test CompressResult dataclass."""
def test_default_values(self):
"""Test default values are set correctly."""
result = CompressResult(
messages=[{"role": "user", "content": "test"}],
token_count=10,
was_compacted=False,
)
assert result.error is None
assert result.original_token_count == 0 # Defaults to 0, not None
assert result.messages_summarized == 0
assert result.messages_dropped == 0
def test_all_fields(self):
"""Test all fields can be set."""
result = CompressResult(
messages=[{"role": "user", "content": "test"}],
token_count=100,
was_compacted=True,
error="Some error",
original_token_count=500,
messages_summarized=10,
messages_dropped=5,
)
assert result.token_count == 100
assert result.was_compacted is True
assert result.error == "Some error"
assert result.original_token_count == 500
assert result.messages_summarized == 10
assert result.messages_dropped == 5

View File

@@ -263,12 +263,6 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
description="The name of the Google Cloud Storage bucket for media files",
)
workspace_storage_dir: str = Field(
default="",
description="Local directory for workspace file storage when GCS is not configured. "
"If empty, defaults to {app_data}/workspaces. Used for self-hosted deployments.",
)
reddit_user_agent: str = Field(
default="web:AutoGPT:v0.6.0 (by /u/autogpt)",
description="The user agent for the Reddit API",
@@ -365,8 +359,8 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
description="The port for the Agent Generator service",
)
agentgenerator_timeout: int = Field(
default=600,
description="The timeout in seconds for Agent Generator service requests (includes retries for rate limits)",
default=120,
description="The timeout in seconds for Agent Generator service requests",
)
enable_example_blocks: bool = Field(
@@ -395,13 +389,6 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
description="Maximum file size in MB for file uploads (1-1024 MB)",
)
max_file_size_mb: int = Field(
default=100,
ge=1,
le=1024,
description="Maximum file size in MB for workspace files (1-1024 MB)",
)
# AutoMod configuration
automod_enabled: bool = Field(
default=False,

View File

@@ -140,29 +140,14 @@ async def execute_block_test(block: Block):
setattr(block, mock_name, mock_obj)
# Populate credentials argument(s)
# Generate IDs for execution context
graph_id = str(uuid.uuid4())
node_id = str(uuid.uuid4())
graph_exec_id = str(uuid.uuid4())
node_exec_id = str(uuid.uuid4())
user_id = str(uuid.uuid4())
graph_version = 1 # Default version for tests
extra_exec_kwargs: dict = {
"graph_id": graph_id,
"node_id": node_id,
"graph_exec_id": graph_exec_id,
"node_exec_id": node_exec_id,
"user_id": user_id,
"graph_version": graph_version,
"execution_context": ExecutionContext(
user_id=user_id,
graph_id=graph_id,
graph_exec_id=graph_exec_id,
graph_version=graph_version,
node_id=node_id,
node_exec_id=node_exec_id,
),
"graph_id": str(uuid.uuid4()),
"node_id": str(uuid.uuid4()),
"graph_exec_id": str(uuid.uuid4()),
"node_exec_id": str(uuid.uuid4()),
"user_id": str(uuid.uuid4()),
"graph_version": 1, # Default version for tests
"execution_context": ExecutionContext(),
}
input_model = cast(type[BlockSchema], block.input_schema)

View File

@@ -1,16 +0,0 @@
"""Validation utilities."""
import re
_UUID_V4_PATTERN = re.compile(
r"[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}",
re.IGNORECASE,
)
def is_uuid_v4(text: str) -> bool:
return bool(_UUID_V4_PATTERN.fullmatch(text.strip()))
def extract_uuids(text: str) -> list[str]:
return sorted({m.lower() for m in _UUID_V4_PATTERN.findall(text)})

View File

@@ -1,419 +0,0 @@
"""
WorkspaceManager for managing user workspace file operations.
This module provides a high-level interface for workspace file operations,
combining the storage backend and database layer.
"""
import logging
import mimetypes
import uuid
from typing import Optional
from prisma.errors import UniqueViolationError
from prisma.models import UserWorkspaceFile
from backend.data.workspace import (
count_workspace_files,
create_workspace_file,
get_workspace_file,
get_workspace_file_by_path,
list_workspace_files,
soft_delete_workspace_file,
)
from backend.util.settings import Config
from backend.util.workspace_storage import compute_file_checksum, get_workspace_storage
logger = logging.getLogger(__name__)
class WorkspaceManager:
"""
Manages workspace file operations.
Combines storage backend operations with database record management.
Supports session-scoped file segmentation where files are stored in
session-specific virtual paths: /sessions/{session_id}/{filename}
"""
def __init__(
self, user_id: str, workspace_id: str, session_id: Optional[str] = None
):
"""
Initialize WorkspaceManager.
Args:
user_id: The user's ID
workspace_id: The workspace ID
session_id: Optional session ID for session-scoped file access
"""
self.user_id = user_id
self.workspace_id = workspace_id
self.session_id = session_id
# Session path prefix for file isolation
self.session_path = f"/sessions/{session_id}" if session_id else ""
def _resolve_path(self, path: str) -> str:
"""
Resolve a path, defaulting to session folder if session_id is set.
Cross-session access is allowed by explicitly using /sessions/other-session-id/...
Args:
path: Virtual path (e.g., "/file.txt" or "/sessions/abc123/file.txt")
Returns:
Resolved path with session prefix if applicable
"""
# If path explicitly references a session folder, use it as-is
if path.startswith("/sessions/"):
return path
# If we have a session context, prepend session path
if self.session_path:
# Normalize the path
if not path.startswith("/"):
path = f"/{path}"
return f"{self.session_path}{path}"
# No session context, use path as-is
return path if path.startswith("/") else f"/{path}"
def _get_effective_path(
self, path: Optional[str], include_all_sessions: bool
) -> Optional[str]:
"""
Get effective path for list/count operations based on session context.
Args:
path: Optional path prefix to filter
include_all_sessions: If True, don't apply session scoping
Returns:
Effective path prefix for database query
"""
if include_all_sessions:
# Normalize path to ensure leading slash (stored paths are normalized)
if path is not None and not path.startswith("/"):
return f"/{path}"
return path
elif path is not None:
# Resolve the provided path with session scoping
return self._resolve_path(path)
elif self.session_path:
# Default to session folder with trailing slash to prevent prefix collisions
# e.g., "/sessions/abc" should not match "/sessions/abc123"
return self.session_path.rstrip("/") + "/"
else:
# No session context, use path as-is
return path
async def read_file(self, path: str) -> bytes:
"""
Read file from workspace by virtual path.
When session_id is set, paths are resolved relative to the session folder
unless they explicitly reference /sessions/...
Args:
path: Virtual path (e.g., "/documents/report.pdf")
Returns:
File content as bytes
Raises:
FileNotFoundError: If file doesn't exist
"""
resolved_path = self._resolve_path(path)
file = await get_workspace_file_by_path(self.workspace_id, resolved_path)
if file is None:
raise FileNotFoundError(f"File not found at path: {resolved_path}")
storage = await get_workspace_storage()
return await storage.retrieve(file.storagePath)
async def read_file_by_id(self, file_id: str) -> bytes:
"""
Read file from workspace by file ID.
Args:
file_id: The file's ID
Returns:
File content as bytes
Raises:
FileNotFoundError: If file doesn't exist
"""
file = await get_workspace_file(file_id, self.workspace_id)
if file is None:
raise FileNotFoundError(f"File not found: {file_id}")
storage = await get_workspace_storage()
return await storage.retrieve(file.storagePath)
async def write_file(
self,
content: bytes,
filename: str,
path: Optional[str] = None,
mime_type: Optional[str] = None,
overwrite: bool = False,
) -> UserWorkspaceFile:
"""
Write file to workspace.
When session_id is set, files are written to /sessions/{session_id}/...
by default. Use explicit /sessions/... paths for cross-session access.
Args:
content: File content as bytes
filename: Filename for the file
path: Virtual path (defaults to "/{filename}", session-scoped if session_id set)
mime_type: MIME type (auto-detected if not provided)
overwrite: Whether to overwrite existing file at path
Returns:
Created UserWorkspaceFile instance
Raises:
ValueError: If file exceeds size limit or path already exists
"""
# Enforce file size limit
max_file_size = Config().max_file_size_mb * 1024 * 1024
if len(content) > max_file_size:
raise ValueError(
f"File too large: {len(content)} bytes exceeds "
f"{Config().max_file_size_mb}MB limit"
)
# Determine path with session scoping
if path is None:
path = f"/{filename}"
elif not path.startswith("/"):
path = f"/{path}"
# Resolve path with session prefix
path = self._resolve_path(path)
# Check if file exists at path (only error for non-overwrite case)
# For overwrite=True, we let the write proceed and handle via UniqueViolationError
# This ensures the new file is written to storage BEFORE the old one is deleted,
# preventing data loss if the new write fails
if not overwrite:
existing = await get_workspace_file_by_path(self.workspace_id, path)
if existing is not None:
raise ValueError(f"File already exists at path: {path}")
# Auto-detect MIME type if not provided
if mime_type is None:
mime_type, _ = mimetypes.guess_type(filename)
mime_type = mime_type or "application/octet-stream"
# Compute checksum
checksum = compute_file_checksum(content)
# Generate unique file ID for storage
file_id = str(uuid.uuid4())
# Store file in storage backend
storage = await get_workspace_storage()
storage_path = await storage.store(
workspace_id=self.workspace_id,
file_id=file_id,
filename=filename,
content=content,
)
# Create database record - handle race condition where another request
# created a file at the same path between our check and create
try:
file = await create_workspace_file(
workspace_id=self.workspace_id,
file_id=file_id,
name=filename,
path=path,
storage_path=storage_path,
mime_type=mime_type,
size_bytes=len(content),
checksum=checksum,
)
except UniqueViolationError:
# Race condition: another request created a file at this path
if overwrite:
# Re-fetch and delete the conflicting file, then retry
existing = await get_workspace_file_by_path(self.workspace_id, path)
if existing:
await self.delete_file(existing.id)
# Retry the create - if this also fails, clean up storage file
try:
file = await create_workspace_file(
workspace_id=self.workspace_id,
file_id=file_id,
name=filename,
path=path,
storage_path=storage_path,
mime_type=mime_type,
size_bytes=len(content),
checksum=checksum,
)
except Exception:
# Clean up orphaned storage file on retry failure
try:
await storage.delete(storage_path)
except Exception as e:
logger.warning(f"Failed to clean up orphaned storage file: {e}")
raise
else:
# Clean up the orphaned storage file before raising
try:
await storage.delete(storage_path)
except Exception as e:
logger.warning(f"Failed to clean up orphaned storage file: {e}")
raise ValueError(f"File already exists at path: {path}")
except Exception:
# Any other database error (connection, validation, etc.) - clean up storage
try:
await storage.delete(storage_path)
except Exception as e:
logger.warning(f"Failed to clean up orphaned storage file: {e}")
raise
logger.info(
f"Wrote file {file.id} ({filename}) to workspace {self.workspace_id} "
f"at path {path}, size={len(content)} bytes"
)
return file
async def list_files(
self,
path: Optional[str] = None,
limit: Optional[int] = None,
offset: int = 0,
include_all_sessions: bool = False,
) -> list[UserWorkspaceFile]:
"""
List files in workspace.
When session_id is set and include_all_sessions is False (default),
only files in the current session's folder are listed.
Args:
path: Optional path prefix to filter (e.g., "/documents/")
limit: Maximum number of files to return
offset: Number of files to skip
include_all_sessions: If True, list files from all sessions.
If False (default), only list current session's files.
Returns:
List of UserWorkspaceFile instances
"""
effective_path = self._get_effective_path(path, include_all_sessions)
return await list_workspace_files(
workspace_id=self.workspace_id,
path_prefix=effective_path,
limit=limit,
offset=offset,
)
async def delete_file(self, file_id: str) -> bool:
"""
Delete a file (soft-delete).
Args:
file_id: The file's ID
Returns:
True if deleted, False if not found
"""
file = await get_workspace_file(file_id, self.workspace_id)
if file is None:
return False
# Delete from storage
storage = await get_workspace_storage()
try:
await storage.delete(file.storagePath)
except Exception as e:
logger.warning(f"Failed to delete file from storage: {e}")
# Continue with database soft-delete even if storage delete fails
# Soft-delete database record
result = await soft_delete_workspace_file(file_id, self.workspace_id)
return result is not None
async def get_download_url(self, file_id: str, expires_in: int = 3600) -> str:
"""
Get download URL for a file.
Args:
file_id: The file's ID
expires_in: URL expiration in seconds (default 1 hour)
Returns:
Download URL (signed URL for GCS, API endpoint for local)
Raises:
FileNotFoundError: If file doesn't exist
"""
file = await get_workspace_file(file_id, self.workspace_id)
if file is None:
raise FileNotFoundError(f"File not found: {file_id}")
storage = await get_workspace_storage()
return await storage.get_download_url(file.storagePath, expires_in)
async def get_file_info(self, file_id: str) -> Optional[UserWorkspaceFile]:
"""
Get file metadata.
Args:
file_id: The file's ID
Returns:
UserWorkspaceFile instance or None
"""
return await get_workspace_file(file_id, self.workspace_id)
async def get_file_info_by_path(self, path: str) -> Optional[UserWorkspaceFile]:
"""
Get file metadata by path.
When session_id is set, paths are resolved relative to the session folder
unless they explicitly reference /sessions/...
Args:
path: Virtual path
Returns:
UserWorkspaceFile instance or None
"""
resolved_path = self._resolve_path(path)
return await get_workspace_file_by_path(self.workspace_id, resolved_path)
async def get_file_count(
self,
path: Optional[str] = None,
include_all_sessions: bool = False,
) -> int:
"""
Get number of files in workspace.
When session_id is set and include_all_sessions is False (default),
only counts files in the current session's folder.
Args:
path: Optional path prefix to filter (e.g., "/documents/")
include_all_sessions: If True, count all files in workspace.
If False (default), only count current session's files.
Returns:
Number of files
"""
effective_path = self._get_effective_path(path, include_all_sessions)
return await count_workspace_files(
self.workspace_id, path_prefix=effective_path
)

View File

@@ -1,398 +0,0 @@
"""
Workspace storage backend abstraction for supporting both cloud and local deployments.
This module provides a unified interface for storing workspace files, with implementations
for Google Cloud Storage (cloud deployments) and local filesystem (self-hosted deployments).
"""
import asyncio
import hashlib
import logging
from abc import ABC, abstractmethod
from datetime import datetime, timezone
from pathlib import Path
from typing import Optional
import aiofiles
import aiohttp
from gcloud.aio import storage as async_gcs_storage
from google.cloud import storage as gcs_storage
from backend.util.data import get_data_path
from backend.util.gcs_utils import (
download_with_fresh_session,
generate_signed_url,
parse_gcs_path,
)
from backend.util.settings import Config
logger = logging.getLogger(__name__)
class WorkspaceStorageBackend(ABC):
"""Abstract interface for workspace file storage."""
@abstractmethod
async def store(
self,
workspace_id: str,
file_id: str,
filename: str,
content: bytes,
) -> str:
"""
Store file content, return storage path.
Args:
workspace_id: The workspace ID
file_id: Unique file ID for storage
filename: Original filename
content: File content as bytes
Returns:
Storage path string (cloud path or local path)
"""
pass
@abstractmethod
async def retrieve(self, storage_path: str) -> bytes:
"""
Retrieve file content from storage.
Args:
storage_path: The storage path returned from store()
Returns:
File content as bytes
"""
pass
@abstractmethod
async def delete(self, storage_path: str) -> None:
"""
Delete file from storage.
Args:
storage_path: The storage path to delete
"""
pass
@abstractmethod
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
"""
Get URL for downloading the file.
Args:
storage_path: The storage path
expires_in: URL expiration time in seconds (default 1 hour)
Returns:
Download URL (signed URL for GCS, direct API path for local)
"""
pass
class GCSWorkspaceStorage(WorkspaceStorageBackend):
"""Google Cloud Storage implementation for workspace storage."""
def __init__(self, bucket_name: str):
self.bucket_name = bucket_name
self._async_client: Optional[async_gcs_storage.Storage] = None
self._sync_client: Optional[gcs_storage.Client] = None
self._session: Optional[aiohttp.ClientSession] = None
async def _get_async_client(self) -> async_gcs_storage.Storage:
"""Get or create async GCS client."""
if self._async_client is None:
self._session = aiohttp.ClientSession(
connector=aiohttp.TCPConnector(limit=100, force_close=False)
)
self._async_client = async_gcs_storage.Storage(session=self._session)
return self._async_client
def _get_sync_client(self) -> gcs_storage.Client:
"""Get or create sync GCS client (for signed URLs)."""
if self._sync_client is None:
self._sync_client = gcs_storage.Client()
return self._sync_client
async def close(self) -> None:
"""Close all client connections."""
if self._async_client is not None:
try:
await self._async_client.close()
except Exception as e:
logger.warning(f"Error closing GCS client: {e}")
self._async_client = None
if self._session is not None:
try:
await self._session.close()
except Exception as e:
logger.warning(f"Error closing session: {e}")
self._session = None
def _build_blob_name(self, workspace_id: str, file_id: str, filename: str) -> str:
"""Build the blob path for workspace files."""
return f"workspaces/{workspace_id}/{file_id}/{filename}"
async def store(
self,
workspace_id: str,
file_id: str,
filename: str,
content: bytes,
) -> str:
"""Store file in GCS."""
client = await self._get_async_client()
blob_name = self._build_blob_name(workspace_id, file_id, filename)
# Upload with metadata
upload_time = datetime.now(timezone.utc)
await client.upload(
self.bucket_name,
blob_name,
content,
metadata={
"uploaded_at": upload_time.isoformat(),
"workspace_id": workspace_id,
"file_id": file_id,
},
)
return f"gcs://{self.bucket_name}/{blob_name}"
async def retrieve(self, storage_path: str) -> bytes:
"""Retrieve file from GCS."""
bucket_name, blob_name = parse_gcs_path(storage_path)
return await download_with_fresh_session(bucket_name, blob_name)
async def delete(self, storage_path: str) -> None:
"""Delete file from GCS."""
bucket_name, blob_name = parse_gcs_path(storage_path)
client = await self._get_async_client()
try:
await client.delete(bucket_name, blob_name)
except Exception as e:
if "404" not in str(e) and "Not Found" not in str(e):
raise
# File already deleted, that's fine
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
"""
Generate download URL for GCS file.
Attempts to generate a signed URL if running with service account credentials.
Falls back to an API proxy endpoint if signed URL generation fails
(e.g., when running locally with user OAuth credentials).
"""
bucket_name, blob_name = parse_gcs_path(storage_path)
# Extract file_id from blob_name for fallback: workspaces/{workspace_id}/{file_id}/{filename}
blob_parts = blob_name.split("/")
file_id = blob_parts[2] if len(blob_parts) >= 3 else None
# Try to generate signed URL (requires service account credentials)
try:
sync_client = self._get_sync_client()
return await generate_signed_url(
sync_client, bucket_name, blob_name, expires_in
)
except AttributeError as e:
# Signed URL generation requires service account with private key.
# When running with user OAuth credentials, fall back to API proxy.
if "private key" in str(e) and file_id:
logger.debug(
"Cannot generate signed URL (no service account credentials), "
"falling back to API proxy endpoint"
)
return f"/api/workspace/files/{file_id}/download"
raise
class LocalWorkspaceStorage(WorkspaceStorageBackend):
"""Local filesystem implementation for workspace storage (self-hosted deployments)."""
def __init__(self, base_dir: Optional[str] = None):
"""
Initialize local storage backend.
Args:
base_dir: Base directory for workspace storage.
If None, defaults to {app_data}/workspaces
"""
if base_dir:
self.base_dir = Path(base_dir)
else:
self.base_dir = Path(get_data_path()) / "workspaces"
# Ensure base directory exists
self.base_dir.mkdir(parents=True, exist_ok=True)
def _build_file_path(self, workspace_id: str, file_id: str, filename: str) -> Path:
"""Build the local file path with path traversal protection."""
# Import here to avoid circular import
# (file.py imports workspace.py which imports workspace_storage.py)
from backend.util.file import sanitize_filename
# Sanitize filename to prevent path traversal (removes / and \ among others)
safe_filename = sanitize_filename(filename)
file_path = (self.base_dir / workspace_id / file_id / safe_filename).resolve()
# Verify the resolved path is still under base_dir
if not file_path.is_relative_to(self.base_dir.resolve()):
raise ValueError("Invalid filename: path traversal detected")
return file_path
def _parse_storage_path(self, storage_path: str) -> Path:
"""Parse local storage path to filesystem path."""
if storage_path.startswith("local://"):
relative_path = storage_path[8:] # Remove "local://"
else:
relative_path = storage_path
full_path = (self.base_dir / relative_path).resolve()
# Security check: ensure path is under base_dir
# Use is_relative_to() for robust path containment check
# (handles case-insensitive filesystems and edge cases)
if not full_path.is_relative_to(self.base_dir.resolve()):
raise ValueError("Invalid storage path: path traversal detected")
return full_path
async def store(
self,
workspace_id: str,
file_id: str,
filename: str,
content: bytes,
) -> str:
"""Store file locally."""
file_path = self._build_file_path(workspace_id, file_id, filename)
# Create parent directories
file_path.parent.mkdir(parents=True, exist_ok=True)
# Write file asynchronously
async with aiofiles.open(file_path, "wb") as f:
await f.write(content)
# Return relative path as storage path
relative_path = file_path.relative_to(self.base_dir)
return f"local://{relative_path}"
async def retrieve(self, storage_path: str) -> bytes:
"""Retrieve file from local storage."""
file_path = self._parse_storage_path(storage_path)
if not file_path.exists():
raise FileNotFoundError(f"File not found: {storage_path}")
async with aiofiles.open(file_path, "rb") as f:
return await f.read()
async def delete(self, storage_path: str) -> None:
"""Delete file from local storage."""
file_path = self._parse_storage_path(storage_path)
if file_path.exists():
# Remove file
file_path.unlink()
# Clean up empty parent directories
parent = file_path.parent
while parent != self.base_dir:
try:
if parent.exists() and not any(parent.iterdir()):
parent.rmdir()
else:
break
except OSError:
break
parent = parent.parent
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
"""
Get download URL for local file.
For local storage, this returns an API endpoint path.
The actual serving is handled by the API layer.
"""
# Parse the storage path to get the components
if storage_path.startswith("local://"):
relative_path = storage_path[8:]
else:
relative_path = storage_path
# Return the API endpoint for downloading
# The file_id is extracted from the path: {workspace_id}/{file_id}/{filename}
parts = relative_path.split("/")
if len(parts) >= 2:
file_id = parts[1] # Second component is file_id
return f"/api/workspace/files/{file_id}/download"
else:
raise ValueError(f"Invalid storage path format: {storage_path}")
# Global storage backend instance
_workspace_storage: Optional[WorkspaceStorageBackend] = None
_storage_lock = asyncio.Lock()
async def get_workspace_storage() -> WorkspaceStorageBackend:
"""
Get the workspace storage backend instance.
Uses GCS if media_gcs_bucket_name is configured, otherwise uses local storage.
"""
global _workspace_storage
if _workspace_storage is None:
async with _storage_lock:
if _workspace_storage is None:
config = Config()
if config.media_gcs_bucket_name:
logger.info(
f"Using GCS workspace storage: {config.media_gcs_bucket_name}"
)
_workspace_storage = GCSWorkspaceStorage(
config.media_gcs_bucket_name
)
else:
storage_dir = (
config.workspace_storage_dir
if config.workspace_storage_dir
else None
)
logger.info(
f"Using local workspace storage: {storage_dir or 'default'}"
)
_workspace_storage = LocalWorkspaceStorage(storage_dir)
return _workspace_storage
async def shutdown_workspace_storage() -> None:
"""
Properly shutdown the global workspace storage backend.
Closes aiohttp sessions and other resources for GCS backend.
Should be called during application shutdown.
"""
global _workspace_storage
if _workspace_storage is not None:
async with _storage_lock:
if _workspace_storage is not None:
if isinstance(_workspace_storage, GCSWorkspaceStorage):
await _workspace_storage.close()
_workspace_storage = None
def compute_file_checksum(content: bytes) -> str:
"""Compute SHA256 checksum of file content."""
return hashlib.sha256(content).hexdigest()

View File

@@ -1,22 +0,0 @@
-- Migrate Claude 3.7 Sonnet to Claude 4.5 Sonnet
-- This updates all AgentNode blocks that use the deprecated Claude 3.7 Sonnet model
-- Anthropic is retiring claude-3-7-sonnet-20250219 on February 19, 2026
-- Update AgentNode constant inputs
UPDATE "AgentNode"
SET "constantInput" = JSONB_SET(
"constantInput"::jsonb,
'{model}',
'"claude-sonnet-4-5-20250929"'::jsonb
)
WHERE "constantInput"::jsonb->>'model' = 'claude-3-7-sonnet-20250219';
-- Update AgentPreset input overrides (stored in AgentNodeExecutionInputOutput)
UPDATE "AgentNodeExecutionInputOutput"
SET "data" = JSONB_SET(
"data"::jsonb,
'{model}',
'"claude-sonnet-4-5-20250929"'::jsonb
)
WHERE "agentPresetId" IS NOT NULL
AND "data"::jsonb->>'model' = 'claude-3-7-sonnet-20250219';

View File

@@ -1,2 +0,0 @@
-- AlterEnum
ALTER TYPE "OnboardingStep" ADD VALUE 'VISIT_COPILOT';

View File

@@ -1,52 +0,0 @@
-- CreateEnum
CREATE TYPE "WorkspaceFileSource" AS ENUM ('UPLOAD', 'EXECUTION', 'COPILOT', 'IMPORT');
-- CreateTable
CREATE TABLE "UserWorkspace" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"userId" TEXT NOT NULL,
CONSTRAINT "UserWorkspace_pkey" PRIMARY KEY ("id")
);
-- CreateTable
CREATE TABLE "UserWorkspaceFile" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"workspaceId" TEXT NOT NULL,
"name" TEXT NOT NULL,
"path" TEXT NOT NULL,
"storagePath" TEXT NOT NULL,
"mimeType" TEXT NOT NULL,
"sizeBytes" BIGINT NOT NULL,
"checksum" TEXT,
"isDeleted" BOOLEAN NOT NULL DEFAULT false,
"deletedAt" TIMESTAMP(3),
"source" "WorkspaceFileSource" NOT NULL DEFAULT 'UPLOAD',
"sourceExecId" TEXT,
"sourceSessionId" TEXT,
"metadata" JSONB NOT NULL DEFAULT '{}',
CONSTRAINT "UserWorkspaceFile_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE UNIQUE INDEX "UserWorkspace_userId_key" ON "UserWorkspace"("userId");
-- CreateIndex
CREATE INDEX "UserWorkspace_userId_idx" ON "UserWorkspace"("userId");
-- CreateIndex
CREATE INDEX "UserWorkspaceFile_workspaceId_isDeleted_idx" ON "UserWorkspaceFile"("workspaceId", "isDeleted");
-- CreateIndex
CREATE UNIQUE INDEX "UserWorkspaceFile_workspaceId_path_key" ON "UserWorkspaceFile"("workspaceId", "path");
-- AddForeignKey
ALTER TABLE "UserWorkspace" ADD CONSTRAINT "UserWorkspace_userId_fkey" FOREIGN KEY ("userId") REFERENCES "User"("id") ON DELETE CASCADE ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "UserWorkspaceFile" ADD CONSTRAINT "UserWorkspaceFile_workspaceId_fkey" FOREIGN KEY ("workspaceId") REFERENCES "UserWorkspace"("id") ON DELETE CASCADE ON UPDATE CASCADE;

View File

@@ -1,16 +0,0 @@
/*
Warnings:
- You are about to drop the column `source` on the `UserWorkspaceFile` table. All the data in the column will be lost.
- You are about to drop the column `sourceExecId` on the `UserWorkspaceFile` table. All the data in the column will be lost.
- You are about to drop the column `sourceSessionId` on the `UserWorkspaceFile` table. All the data in the column will be lost.
*/
-- AlterTable
ALTER TABLE "UserWorkspaceFile" DROP COLUMN "source",
DROP COLUMN "sourceExecId",
DROP COLUMN "sourceSessionId";
-- DropEnum
DROP TYPE "WorkspaceFileSource";

View File

@@ -63,7 +63,6 @@ model User {
IntegrationWebhooks IntegrationWebhook[]
NotificationBatches UserNotificationBatch[]
PendingHumanReviews PendingHumanReview[]
Workspace UserWorkspace?
// OAuth Provider relations
OAuthApplications OAuthApplication[]
@@ -82,7 +81,6 @@ enum OnboardingStep {
AGENT_INPUT
CONGRATS
// First Wins
VISIT_COPILOT
GET_RESULTS
MARKETPLACE_VISIT
MARKETPLACE_ADD_AGENT
@@ -138,53 +136,6 @@ model CoPilotUnderstanding {
@@index([userId])
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
//////////////// USER WORKSPACE TABLES /////////////////
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// User's persistent file storage workspace
model UserWorkspace {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
userId String @unique
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
Files UserWorkspaceFile[]
@@index([userId])
}
// Individual files in a user's workspace
model UserWorkspaceFile {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
workspaceId String
Workspace UserWorkspace @relation(fields: [workspaceId], references: [id], onDelete: Cascade)
// File metadata
name String // User-visible filename
path String // Virtual path (e.g., "/documents/report.pdf")
storagePath String // Actual GCS or local storage path
mimeType String
sizeBytes BigInt
checksum String? // SHA256 for integrity
// File state
isDeleted Boolean @default(false)
deletedAt DateTime?
metadata Json @default("{}")
@@unique([workspaceId, path])
@@index([workspaceId, isDeleted])
}
model BuilderSearchHistory {
id String @id @default(uuid())
createdAt DateTime @default(now())

Some files were not shown because too many files have changed in this diff Show More