Compare commits

..

2 Commits

Author SHA1 Message Date
Swifty
eabc7bbe47 Merge branch 'dev' into fix/fork-marketplace-agent-on-save 2026-02-06 17:02:29 +01:00
Swifty
c12c6b4e5f fix(backend): Auto-fork marketplace agent on first save to fix "Graph not found" error
When a user adds a marketplace agent to their library and tries to save
edits, the update_graph endpoint returned 404 because the graph is owned
by the original creator. Now, if the user has the graph in their library
but doesn't own it, a fork is automatically created with their edits
applied, new IDs assigned, and a new library agent entry created.
2026-02-06 16:06:28 +01:00
44 changed files with 4269 additions and 5913 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -11,15 +11,15 @@ python = ">=3.10,<4.0"
colorama = "^0.4.6"
cryptography = "^45.0"
expiringdict = "^1.2.2"
fastapi = "^0.128.0"
google-cloud-logging = "^3.13.0"
launchdarkly-server-sdk = "^9.14.1"
pydantic = "^2.12.5"
pydantic-settings = "^2.12.0"
pyjwt = { version = "^2.11.0", extras = ["crypto"] }
fastapi = "^0.116.1"
google-cloud-logging = "^3.12.1"
launchdarkly-server-sdk = "^9.12.0"
pydantic = "^2.11.7"
pydantic-settings = "^2.10.1"
pyjwt = { version = "^2.10.1", extras = ["crypto"] }
redis = "^6.2.0"
supabase = "^2.27.2"
uvicorn = "^0.40.0"
supabase = "^2.16.0"
uvicorn = "^0.35.0"
[tool.poetry.group.dev.dependencies]
pyright = "^1.1.404"

View File

@@ -1,29 +1,26 @@
"""Chat API routes for chat session management and streaming via SSE."""
import logging
import uuid as uuid_module
from collections.abc import AsyncGenerator
from typing import Annotated
from autogpt_libs import auth
from fastapi import APIRouter, Depends, Query, Security
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Security
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from backend.util.exceptions import NotFoundError
from . import service as chat_service
from . import stream_registry
from .completion_handler import process_operation_failure, process_operation_success
from .config import ChatConfig
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
from .response_model import StreamFinish, StreamHeartbeat, StreamStart
config = ChatConfig()
SSE_RESPONSE_HEADERS = {
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"x-vercel-ai-ui-message-stream": "v1",
}
logger = logging.getLogger(__name__)
@@ -39,48 +36,6 @@ async def _validate_and_get_session(
return session
async def _create_stream_generator(
session_id: str,
message: str,
user_id: str | None,
session: ChatSession,
is_user_message: bool = True,
context: dict[str, str] | None = None,
) -> AsyncGenerator[str, None]:
"""Create SSE event generator for chat streaming."""
chunk_count = 0
first_chunk_type: str | None = None
async for chunk in chat_service.stream_chat_completion(
session_id,
message,
is_user_message=is_user_message,
user_id=user_id,
session=session,
context=context,
):
if chunk_count < 3:
logger.info(
"Chat stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
logger.info(
"Chat stream completed",
extra={
"session_id": session_id,
"chunk_count": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
yield "data: [DONE]\n\n"
router = APIRouter(
tags=["chat"],
)
@@ -104,6 +59,15 @@ class CreateSessionResponse(BaseModel):
user_id: str | None
class ActiveStreamInfo(BaseModel):
"""Information about an active stream for reconnection."""
task_id: str
last_message_id: str # Redis Stream message ID for resumption
operation_id: str # Operation ID for completion tracking
tool_name: str # Name of the tool being executed
class SessionDetailResponse(BaseModel):
"""Response model providing complete details for a chat session, including messages."""
@@ -112,6 +76,7 @@ class SessionDetailResponse(BaseModel):
updated_at: str
user_id: str | None
messages: list[dict]
active_stream: ActiveStreamInfo | None = None # Present if stream is still active
class SessionSummaryResponse(BaseModel):
@@ -130,6 +95,14 @@ class ListSessionsResponse(BaseModel):
total: int
class OperationCompleteRequest(BaseModel):
"""Request model for external completion webhook."""
success: bool
result: dict | str | None = None
error: str | None = None
# ========== Routes ==========
@@ -215,13 +188,14 @@ async def get_session(
Retrieve the details of a specific chat session.
Looks up a chat session by ID for the given user (if authenticated) and returns all session data including messages.
If there's an active stream for this session, returns the task_id for reconnection.
Args:
session_id: The unique identifier for the desired chat session.
user_id: The optional authenticated user ID, or None for anonymous access.
Returns:
SessionDetailResponse: Details for the requested session, or None if not found.
SessionDetailResponse: Details for the requested session, including active_stream info if applicable.
"""
session = await get_chat_session(session_id, user_id)
@@ -229,11 +203,28 @@ async def get_session(
raise NotFoundError(f"Session {session_id} not found.")
messages = [message.model_dump() for message in session.messages]
logger.info(
f"Returning session {session_id}: "
f"message_count={len(messages)}, "
f"roles={[m.get('role') for m in messages]}"
# Check if there's an active stream for this session
active_stream_info = None
active_task, last_message_id = await stream_registry.get_active_task_for_session(
session_id, user_id
)
if active_task:
# Filter out the in-progress assistant message from the session response.
# The client will receive the complete assistant response through the SSE
# stream replay instead, preventing duplicate content.
if messages and messages[-1].get("role") == "assistant":
messages = messages[:-1]
# Use "0-0" as last_message_id to replay the stream from the beginning.
# Since we filtered out the cached assistant message, the client needs
# the full stream to reconstruct the response.
active_stream_info = ActiveStreamInfo(
task_id=active_task.task_id,
last_message_id="0-0",
operation_id=active_task.operation_id,
tool_name=active_task.tool_name,
)
return SessionDetailResponse(
id=session.session_id,
@@ -241,6 +232,7 @@ async def get_session(
updated_at=session.updated_at.isoformat(),
user_id=session.user_id or None,
messages=messages,
active_stream=active_stream_info,
)
@@ -260,27 +252,122 @@ async def stream_chat_post(
- Tool call UI elements (if invoked)
- Tool execution results
The AI generation runs in a background task that continues even if the client disconnects.
All chunks are written to Redis for reconnection support. If the client disconnects,
they can reconnect using GET /tasks/{task_id}/stream to resume from where they left off.
Args:
session_id: The chat session identifier to associate with the streamed messages.
request: Request body containing message, is_user_message, and optional context.
user_id: Optional authenticated user ID.
Returns:
StreamingResponse: SSE-formatted response chunks.
StreamingResponse: SSE-formatted response chunks. First chunk is a "start" event
containing the task_id for reconnection.
"""
import asyncio
session = await _validate_and_get_session(session_id, user_id)
# Create a task in the stream registry for reconnection support
task_id = str(uuid_module.uuid4())
operation_id = str(uuid_module.uuid4())
await stream_registry.create_task(
task_id=task_id,
session_id=session_id,
user_id=user_id,
tool_call_id="chat_stream", # Not a tool call, but needed for the model
tool_name="chat",
operation_id=operation_id,
)
# Background task that runs the AI generation independently of SSE connection
async def run_ai_generation():
try:
# Emit a start event with task_id for reconnection
start_chunk = StreamStart(messageId=task_id, taskId=task_id)
await stream_registry.publish_chunk(task_id, start_chunk)
async for chunk in chat_service.stream_chat_completion(
session_id,
request.message,
is_user_message=request.is_user_message,
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
context=request.context,
):
# Write to Redis (subscribers will receive via XREAD)
await stream_registry.publish_chunk(task_id, chunk)
# Mark task as completed
await stream_registry.mark_task_completed(task_id, "completed")
except Exception as e:
logger.error(
f"Error in background AI generation for session {session_id}: {e}"
)
await stream_registry.mark_task_completed(task_id, "failed")
# Start the AI generation in a background task
bg_task = asyncio.create_task(run_ai_generation())
await stream_registry.set_task_asyncio_task(task_id, bg_task)
# SSE endpoint that subscribes to the task's stream
async def event_generator() -> AsyncGenerator[str, None]:
subscriber_queue = None
try:
# Subscribe to the task stream (this replays existing messages + live updates)
subscriber_queue = await stream_registry.subscribe_to_task(
task_id=task_id,
user_id=user_id,
last_message_id="0-0", # Get all messages from the beginning
)
if subscriber_queue is None:
yield StreamFinish().to_sse()
yield "data: [DONE]\n\n"
return
# Read from the subscriber queue and yield to SSE
while True:
try:
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
yield chunk.to_sse()
# Check for finish signal
if isinstance(chunk, StreamFinish):
break
except asyncio.TimeoutError:
# Send heartbeat to keep connection alive
yield StreamHeartbeat().to_sse()
except GeneratorExit:
pass # Client disconnected - background task continues
except Exception as e:
logger.error(f"Error in SSE stream for task {task_id}: {e}")
finally:
# Unsubscribe when client disconnects or stream ends to prevent resource leak
if subscriber_queue is not None:
try:
await stream_registry.unsubscribe_from_task(
task_id, subscriber_queue
)
except Exception as unsub_err:
logger.error(
f"Error unsubscribing from task {task_id}: {unsub_err}",
exc_info=True,
)
# AI SDK protocol termination - always yield even if unsubscribe fails
yield "data: [DONE]\n\n"
return StreamingResponse(
_create_stream_generator(
session_id=session_id,
message=request.message,
user_id=user_id,
session=session,
is_user_message=request.is_user_message,
context=request.context,
),
event_generator(),
media_type="text/event-stream",
headers=SSE_RESPONSE_HEADERS,
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no", # Disable nginx buffering
"x-vercel-ai-ui-message-stream": "v1", # AI SDK protocol header
},
)
@@ -312,16 +399,48 @@ async def stream_chat_get(
"""
session = await _validate_and_get_session(session_id, user_id)
return StreamingResponse(
_create_stream_generator(
session_id=session_id,
message=message,
user_id=user_id,
session=session,
async def event_generator() -> AsyncGenerator[str, None]:
chunk_count = 0
first_chunk_type: str | None = None
async for chunk in chat_service.stream_chat_completion(
session_id,
message,
is_user_message=is_user_message,
),
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
):
if chunk_count < 3:
logger.info(
"Chat stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
logger.info(
"Chat stream completed",
extra={
"session_id": session_id,
"chunk_count": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
# AI SDK protocol termination
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers=SSE_RESPONSE_HEADERS,
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no", # Disable nginx buffering
"x-vercel-ai-ui-message-stream": "v1", # AI SDK protocol header
},
)
@@ -351,6 +470,251 @@ async def session_assign_user(
return {"status": "ok"}
# ========== Task Streaming (SSE Reconnection) ==========
@router.get(
"/tasks/{task_id}/stream",
)
async def stream_task(
task_id: str,
user_id: str | None = Depends(auth.get_user_id),
last_message_id: str = Query(
default="0-0",
description="Last Redis Stream message ID received (e.g., '1706540123456-0'). Use '0-0' for full replay.",
),
):
"""
Reconnect to a long-running task's SSE stream.
When a long-running operation (like agent generation) starts, the client
receives a task_id. If the connection drops, the client can reconnect
using this endpoint to resume receiving updates.
Args:
task_id: The task ID from the operation_started response.
user_id: Authenticated user ID for ownership validation.
last_message_id: Last Redis Stream message ID received ("0-0" for full replay).
Returns:
StreamingResponse: SSE-formatted response chunks starting after last_message_id.
Raises:
HTTPException: 404 if task not found, 410 if task expired, 403 if access denied.
"""
# Check task existence and expiry before subscribing
task, error_code = await stream_registry.get_task_with_expiry_info(task_id)
if error_code == "TASK_EXPIRED":
raise HTTPException(
status_code=410,
detail={
"code": "TASK_EXPIRED",
"message": "This operation has expired. Please try again.",
},
)
if error_code == "TASK_NOT_FOUND":
raise HTTPException(
status_code=404,
detail={
"code": "TASK_NOT_FOUND",
"message": f"Task {task_id} not found.",
},
)
# Validate ownership if task has an owner
if task and task.user_id and user_id != task.user_id:
raise HTTPException(
status_code=403,
detail={
"code": "ACCESS_DENIED",
"message": "You do not have access to this task.",
},
)
# Get subscriber queue from stream registry
subscriber_queue = await stream_registry.subscribe_to_task(
task_id=task_id,
user_id=user_id,
last_message_id=last_message_id,
)
if subscriber_queue is None:
raise HTTPException(
status_code=404,
detail={
"code": "TASK_NOT_FOUND",
"message": f"Task {task_id} not found or access denied.",
},
)
async def event_generator() -> AsyncGenerator[str, None]:
import asyncio
heartbeat_interval = 15.0 # Send heartbeat every 15 seconds
try:
while True:
try:
# Wait for next chunk with timeout for heartbeats
chunk = await asyncio.wait_for(
subscriber_queue.get(), timeout=heartbeat_interval
)
yield chunk.to_sse()
# Check for finish signal
if isinstance(chunk, StreamFinish):
break
except asyncio.TimeoutError:
# Send heartbeat to keep connection alive
yield StreamHeartbeat().to_sse()
except Exception as e:
logger.error(f"Error in task stream {task_id}: {e}", exc_info=True)
finally:
# Unsubscribe when client disconnects or stream ends
try:
await stream_registry.unsubscribe_from_task(task_id, subscriber_queue)
except Exception as unsub_err:
logger.error(
f"Error unsubscribing from task {task_id}: {unsub_err}",
exc_info=True,
)
# AI SDK protocol termination - always yield even if unsubscribe fails
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"x-vercel-ai-ui-message-stream": "v1",
},
)
@router.get(
"/tasks/{task_id}",
)
async def get_task_status(
task_id: str,
user_id: str | None = Depends(auth.get_user_id),
) -> dict:
"""
Get the status of a long-running task.
Args:
task_id: The task ID to check.
user_id: Authenticated user ID for ownership validation.
Returns:
dict: Task status including task_id, status, tool_name, and operation_id.
Raises:
NotFoundError: If task_id is not found or user doesn't have access.
"""
task = await stream_registry.get_task(task_id)
if task is None:
raise NotFoundError(f"Task {task_id} not found.")
# Validate ownership - if task has an owner, requester must match
if task.user_id and user_id != task.user_id:
raise NotFoundError(f"Task {task_id} not found.")
return {
"task_id": task.task_id,
"session_id": task.session_id,
"status": task.status,
"tool_name": task.tool_name,
"operation_id": task.operation_id,
"created_at": task.created_at.isoformat(),
}
# ========== External Completion Webhook ==========
@router.post(
"/operations/{operation_id}/complete",
status_code=200,
)
async def complete_operation(
operation_id: str,
request: OperationCompleteRequest,
x_api_key: str | None = Header(default=None),
) -> dict:
"""
External completion webhook for long-running operations.
Called by Agent Generator (or other services) when an operation completes.
This triggers the stream registry to publish completion and continue LLM generation.
Args:
operation_id: The operation ID to complete.
request: Completion payload with success status and result/error.
x_api_key: Internal API key for authentication.
Returns:
dict: Status of the completion.
Raises:
HTTPException: If API key is invalid or operation not found.
"""
# Validate internal API key - reject if not configured or invalid
if not config.internal_api_key:
logger.error(
"Operation complete webhook rejected: CHAT_INTERNAL_API_KEY not configured"
)
raise HTTPException(
status_code=503,
detail="Webhook not available: internal API key not configured",
)
if x_api_key != config.internal_api_key:
raise HTTPException(status_code=401, detail="Invalid API key")
# Find task by operation_id
task = await stream_registry.find_task_by_operation_id(operation_id)
if task is None:
raise HTTPException(
status_code=404,
detail=f"Operation {operation_id} not found",
)
logger.info(
f"Received completion webhook for operation {operation_id} "
f"(task_id={task.task_id}, success={request.success})"
)
if request.success:
await process_operation_success(task, request.result)
else:
await process_operation_failure(task, request.error)
return {"status": "ok", "task_id": task.task_id}
# ========== Configuration ==========
@router.get("/config/ttl", status_code=200)
async def get_ttl_config() -> dict:
"""
Get the stream TTL configuration.
Returns the Time-To-Live settings for chat streams, which determines
how long clients can reconnect to an active stream.
Returns:
dict: TTL configuration with seconds and milliseconds values.
"""
return {
"stream_ttl_seconds": config.stream_ttl,
"stream_ttl_ms": config.stream_ttl * 1000,
}
# ========== Health Check ==========

View File

@@ -1,29 +0,0 @@
"""Shared helpers for chat tools."""
from typing import Any
def get_inputs_from_schema(
input_schema: dict[str, Any],
exclude_fields: set[str] | None = None,
) -> list[dict[str, Any]]:
"""Extract input field info from JSON schema."""
if not isinstance(input_schema, dict):
return []
exclude = exclude_fields or set()
properties = input_schema.get("properties", {})
required = set(input_schema.get("required", []))
return [
{
"name": name,
"title": schema.get("title", name),
"type": schema.get("type", "string"),
"description": schema.get("description", ""),
"required": name in required,
"default": schema.get("default"),
}
for name, schema in properties.items()
if name not in exclude
]

View File

@@ -24,7 +24,6 @@ from backend.util.timezone_utils import (
)
from .base import BaseTool
from .helpers import get_inputs_from_schema
from .models import (
AgentDetails,
AgentDetailsResponse,
@@ -262,7 +261,7 @@ class RunAgentTool(BaseTool):
),
requirements={
"credentials": requirements_creds_list,
"inputs": get_inputs_from_schema(graph.input_schema),
"inputs": self._get_inputs_list(graph.input_schema),
"execution_modes": self._get_execution_modes(graph),
},
),
@@ -370,6 +369,22 @@ class RunAgentTool(BaseTool):
session_id=session_id,
)
def _get_inputs_list(self, input_schema: dict[str, Any]) -> list[dict[str, Any]]:
"""Extract inputs list from schema."""
inputs_list = []
if isinstance(input_schema, dict) and "properties" in input_schema:
for field_name, field_schema in input_schema["properties"].items():
inputs_list.append(
{
"name": field_name,
"title": field_schema.get("title", field_name),
"type": field_schema.get("type", "string"),
"description": field_schema.get("description", ""),
"required": field_name in input_schema.get("required", []),
}
)
return inputs_list
def _get_execution_modes(self, graph: GraphModel) -> list[str]:
"""Get available execution modes for the graph."""
trigger_info = graph.trigger_setup_info
@@ -383,7 +398,7 @@ class RunAgentTool(BaseTool):
suffix: str,
) -> str:
"""Build a message describing available inputs for an agent."""
inputs_list = get_inputs_from_schema(graph.input_schema)
inputs_list = self._get_inputs_list(graph.input_schema)
required_names = [i["name"] for i in inputs_list if i["required"]]
optional_names = [i["name"] for i in inputs_list if not i["required"]]

View File

@@ -10,13 +10,12 @@ from pydantic_core import PydanticUndefined
from backend.api.features.chat.model import ChatSession
from backend.data.block import get_block
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.data.model import CredentialsMetaInput
from backend.data.workspace import get_or_create_workspace
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import BlockError
from .base import BaseTool
from .helpers import get_inputs_from_schema
from .models import (
BlockOutputResponse,
ErrorResponse,
@@ -25,10 +24,7 @@ from .models import (
ToolResponseBase,
UserReadiness,
)
from .utils import (
build_missing_credentials_from_field_info,
match_credentials_to_requirements,
)
from .utils import build_missing_credentials_from_field_info
logger = logging.getLogger(__name__)
@@ -77,22 +73,41 @@ class RunBlockTool(BaseTool):
def requires_auth(self) -> bool:
return True
def _resolve_discriminated_credentials(
async def _check_block_credentials(
self,
user_id: str,
block: Any,
input_data: dict[str, Any],
) -> dict[str, CredentialsFieldInfo]:
"""Resolve credential requirements, applying discriminator logic where needed."""
credentials_fields_info = block.input_schema.get_credentials_fields_info()
if not credentials_fields_info:
return {}
input_data: dict[str, Any] | None = None,
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Check if user has required credentials for a block.
resolved: dict[str, CredentialsFieldInfo] = {}
Args:
user_id: User ID
block: Block to check credentials for
input_data: Input data for the block (used to determine provider via discriminator)
Returns:
tuple[matched_credentials, missing_credentials]
"""
matched_credentials: dict[str, CredentialsMetaInput] = {}
missing_credentials: list[CredentialsMetaInput] = []
input_data = input_data or {}
# Get credential field info from block's input schema
credentials_fields_info = block.input_schema.get_credentials_fields_info()
if not credentials_fields_info:
return matched_credentials, missing_credentials
# Get user's available credentials
creds_manager = IntegrationCredentialsManager()
available_creds = await creds_manager.store.get_all_creds(user_id)
for field_name, field_info in credentials_fields_info.items():
effective_field_info = field_info
if field_info.discriminator and field_info.discriminator_mapping:
# Get discriminator from input, falling back to schema default
discriminator_value = input_data.get(field_info.discriminator)
if discriminator_value is None:
field = block.input_schema.model_fields.get(
@@ -111,34 +126,37 @@ class RunBlockTool(BaseTool):
f"{discriminator_value} -> {effective_field_info.provider}"
)
resolved[field_name] = effective_field_info
matching_cred = next(
(
cred
for cred in available_creds
if cred.provider in effective_field_info.provider
and cred.type in effective_field_info.supported_types
),
None,
)
return resolved
if matching_cred:
matched_credentials[field_name] = CredentialsMetaInput(
id=matching_cred.id,
provider=matching_cred.provider, # type: ignore
type=matching_cred.type,
title=matching_cred.title,
)
else:
# Create a placeholder for the missing credential
provider = next(iter(effective_field_info.provider), "unknown")
cred_type = next(iter(effective_field_info.supported_types), "api_key")
missing_credentials.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=field_name.replace("_", " ").title(),
)
)
async def _check_block_credentials(
self,
user_id: str,
block: Any,
input_data: dict[str, Any] | None = None,
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Check if user has required credentials for a block.
Args:
user_id: User ID
block: Block to check credentials for
input_data: Input data for the block (used to determine provider via discriminator)
Returns:
tuple[matched_credentials, missing_credentials]
"""
input_data = input_data or {}
requirements = self._resolve_discriminated_credentials(block, input_data)
if not requirements:
return {}, []
return await match_credentials_to_requirements(user_id, requirements)
return matched_credentials, missing_credentials
async def _execute(
self,
@@ -329,6 +347,27 @@ class RunBlockTool(BaseTool):
def _get_inputs_list(self, block: Any) -> list[dict[str, Any]]:
"""Extract non-credential inputs from block schema."""
inputs_list = []
schema = block.input_schema.jsonschema()
properties = schema.get("properties", {})
required_fields = set(schema.get("required", []))
# Get credential field names to exclude
credentials_fields = set(block.input_schema.get_credentials_fields().keys())
return get_inputs_from_schema(schema, exclude_fields=credentials_fields)
for field_name, field_schema in properties.items():
# Skip credential fields
if field_name in credentials_fields:
continue
inputs_list.append(
{
"name": field_name,
"title": field_schema.get("title", field_name),
"type": field_schema.get("type", "string"),
"description": field_schema.get("description", ""),
"required": field_name in required_fields,
}
)
return inputs_list

View File

@@ -6,6 +6,7 @@ from typing import Any
from backend.api.features.library import db as library_db
from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data import graph as graph_db
from backend.data.graph import GraphModel
from backend.data.model import (
CredentialsFieldInfo,
@@ -43,8 +44,14 @@ async def fetch_graph_from_store_slug(
return None, None
# Get the graph from store listing version
graph = await store_db.get_available_graph(
store_agent.store_listing_version_id, hide_nodes=False
graph_meta = await store_db.get_available_graph(
store_agent.store_listing_version_id
)
graph = await graph_db.get_graph(
graph_id=graph_meta.id,
version=graph_meta.version,
user_id=None, # Public access
include_subgraphs=True,
)
return graph, store_agent
@@ -121,7 +128,7 @@ def build_missing_credentials_from_graph(
return {
field_key: _serialize_missing_credential(field_key, field_info)
for field_key, (field_info, _, _) in aggregated_fields.items()
for field_key, (field_info, _node_fields) in aggregated_fields.items()
if field_key not in matched_keys
}
@@ -223,103 +230,6 @@ async def get_or_create_library_agent(
return library_agents[0]
async def get_user_credentials(user_id: str) -> list:
"""Get all available credentials for a user."""
creds_manager = IntegrationCredentialsManager()
return await creds_manager.store.get_all_creds(user_id)
def find_matching_credential(
available_creds: list,
field_info: CredentialsFieldInfo,
check_scopes: bool = True,
):
"""Find a credential that matches the required provider, type, and optionally scopes."""
for cred in available_creds:
if cred.provider not in field_info.provider:
continue
if cred.type not in field_info.supported_types:
continue
if check_scopes and not _credential_has_required_scopes(cred, field_info):
continue
return cred
return None
def create_credential_meta_from_match(matching_cred) -> CredentialsMetaInput:
"""Create a CredentialsMetaInput from a matched credential."""
return CredentialsMetaInput(
id=matching_cred.id,
provider=matching_cred.provider, # type: ignore
type=matching_cred.type,
title=matching_cred.title,
)
async def match_credentials_to_requirements(
user_id: str,
requirements: dict[str, CredentialsFieldInfo],
check_scopes: bool = True,
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Match user's credentials against a dictionary of credential requirements.
This is the core matching logic shared by both graph and block credential matching.
Args:
user_id: User ID to fetch credentials for
requirements: Dict mapping field names to CredentialsFieldInfo
check_scopes: Whether to verify OAuth2 scopes match requirements (default True).
Set to False to preserve original run_block behavior which didn't check scopes.
"""
matched: dict[str, CredentialsMetaInput] = {}
missing: list[CredentialsMetaInput] = []
if not requirements:
return matched, missing
available_creds = await get_user_credentials(user_id)
for field_name, field_info in requirements.items():
matching_cred = find_matching_credential(
available_creds, field_info, check_scopes=check_scopes
)
if matching_cred:
try:
matched[field_name] = create_credential_meta_from_match(matching_cred)
except Exception as e:
logger.error(
f"Failed to create CredentialsMetaInput for field '{field_name}': "
f"provider={matching_cred.provider}, type={matching_cred.type}, "
f"credential_id={matching_cred.id}",
exc_info=True,
)
provider = next(iter(field_info.provider), "unknown")
cred_type = next(iter(field_info.supported_types), "api_key")
missing.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=f"{field_name} (validation failed: {e})",
)
)
else:
provider = next(iter(field_info.provider), "unknown")
cred_type = next(iter(field_info.supported_types), "api_key")
missing.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=field_name.replace("_", " ").title(),
)
)
return matched, missing
async def match_user_credentials_to_graph(
user_id: str,
graph: GraphModel,
@@ -359,8 +269,7 @@ async def match_user_credentials_to_graph(
# provider is in the set of acceptable providers.
for credential_field_name, (
credential_requirements,
_,
_,
_node_fields,
) in aggregated_creds.items():
# Find first matching credential by provider, type, and scopes
matching_cred = next(

View File

@@ -374,7 +374,7 @@ async def get_library_agent_by_graph_id(
async def add_generated_agent_image(
graph: graph_db.GraphBaseMeta,
graph: graph_db.BaseGraph,
user_id: str,
library_agent_id: str,
) -> Optional[prisma.models.LibraryAgent]:

View File

@@ -1,7 +1,7 @@
import asyncio
import logging
from datetime import datetime, timezone
from typing import Any, Literal, overload
from typing import Any, Literal
import fastapi
import prisma.enums
@@ -11,8 +11,8 @@ import prisma.types
from backend.data.db import transaction
from backend.data.graph import (
GraphMeta,
GraphModel,
GraphModelWithoutNodes,
get_graph,
get_graph_as_admin,
get_sub_graphs,
@@ -334,22 +334,7 @@ async def get_store_agent_details(
raise DatabaseError("Failed to fetch agent details") from e
@overload
async def get_available_graph(
store_listing_version_id: str, hide_nodes: Literal[False]
) -> GraphModel: ...
@overload
async def get_available_graph(
store_listing_version_id: str, hide_nodes: Literal[True] = True
) -> GraphModelWithoutNodes: ...
async def get_available_graph(
store_listing_version_id: str,
hide_nodes: bool = True,
) -> GraphModelWithoutNodes | GraphModel:
async def get_available_graph(store_listing_version_id: str) -> GraphMeta:
try:
# Get avaialble, non-deleted store listing version
store_listing_version = (
@@ -359,7 +344,7 @@ async def get_available_graph(
"isAvailable": True,
"isDeleted": False,
},
include={"AgentGraph": {"include": AGENT_GRAPH_INCLUDE}},
include={"AgentGraph": {"include": {"Nodes": True}}},
)
)
@@ -369,9 +354,7 @@ async def get_available_graph(
detail=f"Store listing version {store_listing_version_id} not found",
)
return (GraphModelWithoutNodes if hide_nodes else GraphModel).from_db(
store_listing_version.AgentGraph
)
return GraphModel.from_db(store_listing_version.AgentGraph).meta()
except Exception as e:
logger.error(f"Error getting agent: {e}")

View File

@@ -16,7 +16,7 @@ from backend.blocks.ideogram import (
StyleType,
UpscaleOption,
)
from backend.data.graph import GraphBaseMeta
from backend.data.graph import BaseGraph
from backend.data.model import CredentialsMetaInput, ProviderName
from backend.integrations.credentials_store import ideogram_credentials
from backend.util.request import Requests
@@ -34,14 +34,14 @@ class ImageStyle(str, Enum):
DIGITAL_ART = "digital art"
async def generate_agent_image(agent: GraphBaseMeta | AgentGraph) -> io.BytesIO:
async def generate_agent_image(agent: BaseGraph | AgentGraph) -> io.BytesIO:
if settings.config.use_agent_image_generation_v2:
return await generate_agent_image_v2(graph=agent)
else:
return await generate_agent_image_v1(agent=agent)
async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.BytesIO:
async def generate_agent_image_v2(graph: BaseGraph | AgentGraph) -> io.BytesIO:
"""
Generate an image for an agent using Ideogram model.
Returns:
@@ -54,17 +54,14 @@ async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.Bytes
description = f"{name} ({graph.description})" if graph.description else name
prompt = (
"Create a visually striking retro-futuristic vector pop art illustration "
f'prominently featuring "{name}" in bold typography. The image clearly and '
f"literally depicts a {description}, along with recognizable objects directly "
f"associated with the primary function of a {name}. "
f"Ensure the imagery is concrete, intuitive, and immediately understandable, "
f"clearly conveying the purpose of a {name}. "
"Maintain vibrant, limited-palette colors, sharp vector lines, "
"geometric shapes, flat illustration techniques, and solid colors "
"without gradients or shading. Preserve a retro-futuristic aesthetic "
"influenced by mid-century futurism and 1960s psychedelia, "
"prioritizing clear visual storytelling and thematic clarity above all else."
f"Create a visually striking retro-futuristic vector pop art illustration prominently featuring "
f'"{name}" in bold typography. The image clearly and literally depicts a {description}, '
f"along with recognizable objects directly associated with the primary function of a {name}. "
f"Ensure the imagery is concrete, intuitive, and immediately understandable, clearly conveying the "
f"purpose of a {name}. Maintain vibrant, limited-palette colors, sharp vector lines, geometric "
f"shapes, flat illustration techniques, and solid colors without gradients or shading. Preserve a "
f"retro-futuristic aesthetic influenced by mid-century futurism and 1960s psychedelia, "
f"prioritizing clear visual storytelling and thematic clarity above all else."
)
custom_colors = [
@@ -102,12 +99,12 @@ async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.Bytes
return io.BytesIO(response.content)
async def generate_agent_image_v1(agent: GraphBaseMeta | AgentGraph) -> io.BytesIO:
async def generate_agent_image_v1(agent: BaseGraph | AgentGraph) -> io.BytesIO:
"""
Generate an image for an agent using Flux model via Replicate API.
Args:
agent (GraphBaseMeta | AgentGraph): The agent to generate an image for
agent (Graph): The agent to generate an image for
Returns:
io.BytesIO: The generated image as bytes
@@ -117,13 +114,7 @@ async def generate_agent_image_v1(agent: GraphBaseMeta | AgentGraph) -> io.Bytes
raise ValueError("Missing Replicate API key in settings")
# Construct prompt from agent details
prompt = (
"Create a visually engaging app store thumbnail for the AI agent "
"that highlights what it does in a clear and captivating way:\n"
f"- **Name**: {agent.name}\n"
f"- **Description**: {agent.description}\n"
f"Focus on showcasing its core functionality with an appealing design."
)
prompt = f"Create a visually engaging app store thumbnail for the AI agent that highlights what it does in a clear and captivating way:\n- **Name**: {agent.name}\n- **Description**: {agent.description}\nFocus on showcasing its core functionality with an appealing design."
# Set up Replicate client
client = ReplicateClient(api_token=settings.secrets.replicate_api_key)

View File

@@ -278,7 +278,7 @@ async def get_agent(
)
async def get_graph_meta_by_store_listing_version_id(
store_listing_version_id: str,
) -> backend.data.graph.GraphModelWithoutNodes:
) -> backend.data.graph.GraphMeta:
"""
Get Agent Graph from Store Listing Version ID.
"""

View File

@@ -7,6 +7,7 @@ from collections import defaultdict
from datetime import datetime, timezone
from typing import Annotated, Any, Sequence, get_args
import prisma.models
import pydantic
import stripe
from autogpt_libs.auth import get_user_id, requires_user
@@ -827,7 +828,44 @@ async def update_graph(
existing_versions = await graph_db.get_graph_all_versions(graph_id, user_id=user_id)
if not existing_versions:
raise HTTPException(404, detail=f"Graph #{graph_id} not found")
# User doesn't own this graph -- check if they have it in their library
# (e.g. added from the marketplace). If so, fork it with their edits applied.
library_agent = await prisma.models.LibraryAgent.prisma().find_first(
where={
"userId": user_id,
"agentGraphId": graph_id,
"isDeleted": False,
}
)
if not library_agent:
raise HTTPException(404, detail=f"Graph #{graph_id} not found")
# Fork: apply the user's edits to a new user-owned graph
graph.version = 1
graph.is_active = True
forked = graph_db.make_graph_model(graph, user_id)
forked.forked_from_id = graph_id
forked.forked_from_version = library_agent.agentGraphVersion
forked.reassign_ids(user_id=user_id, reassign_graph_id=True)
forked.validate_graph(for_run=False)
new_graph_version = await graph_db.create_graph(forked, user_id=user_id)
new_graph_version = await on_graph_activate(new_graph_version, user_id=user_id)
await graph_db.set_graph_active_version(
graph_id=new_graph_version.id,
version=new_graph_version.version,
user_id=user_id,
)
await library_db.create_library_agent(new_graph_version, user_id)
new_graph_with_subgraphs = await graph_db.get_graph(
new_graph_version.id,
new_graph_version.version,
user_id=user_id,
include_subgraphs=True,
)
assert new_graph_with_subgraphs
return new_graph_with_subgraphs
graph.version = max(g.version for g in existing_versions) + 1
current_active_version = next((v for v in existing_versions if v.is_active), None)

View File

@@ -478,7 +478,7 @@ class ExaCreateOrFindWebsetBlock(Block):
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
try:
webset = await aexa.websets.get(id=input_data.external_id)
webset = aexa.websets.get(id=input_data.external_id)
webset_result = Webset.model_validate(webset.model_dump(by_alias=True))
yield "webset", webset_result
@@ -494,7 +494,7 @@ class ExaCreateOrFindWebsetBlock(Block):
count=input_data.search_count,
)
webset = await aexa.websets.create(
webset = aexa.websets.create(
params=CreateWebsetParameters(
search=search_params,
external_id=input_data.external_id,
@@ -554,7 +554,7 @@ class ExaUpdateWebsetBlock(Block):
if input_data.metadata is not None:
payload["metadata"] = input_data.metadata
sdk_webset = await aexa.websets.update(id=input_data.webset_id, params=payload)
sdk_webset = aexa.websets.update(id=input_data.webset_id, params=payload)
status_str = (
sdk_webset.status.value
@@ -617,7 +617,7 @@ class ExaListWebsetsBlock(Block):
) -> BlockOutput:
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
response = await aexa.websets.list(
response = aexa.websets.list(
cursor=input_data.cursor,
limit=input_data.limit,
)
@@ -678,7 +678,7 @@ class ExaGetWebsetBlock(Block):
) -> BlockOutput:
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
sdk_webset = await aexa.websets.get(id=input_data.webset_id)
sdk_webset = aexa.websets.get(id=input_data.webset_id)
status_str = (
sdk_webset.status.value
@@ -748,7 +748,7 @@ class ExaDeleteWebsetBlock(Block):
) -> BlockOutput:
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
deleted_webset = await aexa.websets.delete(id=input_data.webset_id)
deleted_webset = aexa.websets.delete(id=input_data.webset_id)
status_str = (
deleted_webset.status.value
@@ -798,7 +798,7 @@ class ExaCancelWebsetBlock(Block):
) -> BlockOutput:
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
canceled_webset = await aexa.websets.cancel(id=input_data.webset_id)
canceled_webset = aexa.websets.cancel(id=input_data.webset_id)
status_str = (
canceled_webset.status.value
@@ -968,7 +968,7 @@ class ExaPreviewWebsetBlock(Block):
entity["description"] = input_data.entity_description
payload["entity"] = entity
sdk_preview = await aexa.websets.preview(params=payload)
sdk_preview = aexa.websets.preview(params=payload)
preview = PreviewWebsetModel.from_sdk(sdk_preview)
@@ -1051,7 +1051,7 @@ class ExaWebsetStatusBlock(Block):
) -> BlockOutput:
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
webset = await aexa.websets.get(id=input_data.webset_id)
webset = aexa.websets.get(id=input_data.webset_id)
status = (
webset.status.value
@@ -1185,7 +1185,7 @@ class ExaWebsetSummaryBlock(Block):
) -> BlockOutput:
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
webset = await aexa.websets.get(id=input_data.webset_id)
webset = aexa.websets.get(id=input_data.webset_id)
# Extract basic info
webset_id = webset.id
@@ -1211,7 +1211,7 @@ class ExaWebsetSummaryBlock(Block):
total_items = 0
if input_data.include_sample_items and input_data.sample_size > 0:
items_response = await aexa.websets.items.list(
items_response = aexa.websets.items.list(
webset_id=input_data.webset_id, limit=input_data.sample_size
)
sample_items_data = [
@@ -1362,7 +1362,7 @@ class ExaWebsetReadyCheckBlock(Block):
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
# Get webset details
webset = await aexa.websets.get(id=input_data.webset_id)
webset = aexa.websets.get(id=input_data.webset_id)
status = (
webset.status.value

View File

@@ -202,7 +202,7 @@ class ExaCreateEnrichmentBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
sdk_enrichment = await aexa.websets.enrichments.create(
sdk_enrichment = aexa.websets.enrichments.create(
webset_id=input_data.webset_id, params=payload
)
@@ -223,7 +223,7 @@ class ExaCreateEnrichmentBlock(Block):
items_enriched = 0
while time.time() - poll_start < input_data.polling_timeout:
current_enrich = await aexa.websets.enrichments.get(
current_enrich = aexa.websets.enrichments.get(
webset_id=input_data.webset_id, id=enrichment_id
)
current_status = (
@@ -234,7 +234,7 @@ class ExaCreateEnrichmentBlock(Block):
if current_status in ["completed", "failed", "cancelled"]:
# Estimate items from webset searches
webset = await aexa.websets.get(id=input_data.webset_id)
webset = aexa.websets.get(id=input_data.webset_id)
if webset.searches:
for search in webset.searches:
if search.progress:
@@ -329,7 +329,7 @@ class ExaGetEnrichmentBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
sdk_enrichment = await aexa.websets.enrichments.get(
sdk_enrichment = aexa.websets.enrichments.get(
webset_id=input_data.webset_id, id=input_data.enrichment_id
)
@@ -474,7 +474,7 @@ class ExaDeleteEnrichmentBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
deleted_enrichment = await aexa.websets.enrichments.delete(
deleted_enrichment = aexa.websets.enrichments.delete(
webset_id=input_data.webset_id, id=input_data.enrichment_id
)
@@ -525,13 +525,13 @@ class ExaCancelEnrichmentBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
canceled_enrichment = await aexa.websets.enrichments.cancel(
canceled_enrichment = aexa.websets.enrichments.cancel(
webset_id=input_data.webset_id, id=input_data.enrichment_id
)
# Try to estimate how many items were enriched before cancellation
items_enriched = 0
items_response = await aexa.websets.items.list(
items_response = aexa.websets.items.list(
webset_id=input_data.webset_id, limit=100
)

View File

@@ -222,7 +222,7 @@ class ExaCreateImportBlock(Block):
def _create_test_mock():
"""Create test mocks for the AsyncExa SDK."""
from datetime import datetime
from unittest.mock import AsyncMock, MagicMock
from unittest.mock import MagicMock
# Create mock SDK import object
mock_import = MagicMock()
@@ -247,7 +247,7 @@ class ExaCreateImportBlock(Block):
return {
"_get_client": lambda *args, **kwargs: MagicMock(
websets=MagicMock(
imports=MagicMock(create=AsyncMock(return_value=mock_import))
imports=MagicMock(create=lambda *args, **kwargs: mock_import)
)
)
}
@@ -294,7 +294,7 @@ class ExaCreateImportBlock(Block):
if input_data.metadata:
payload["metadata"] = input_data.metadata
sdk_import = await aexa.websets.imports.create(
sdk_import = aexa.websets.imports.create(
params=payload, csv_data=input_data.csv_data
)
@@ -360,7 +360,7 @@ class ExaGetImportBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
sdk_import = await aexa.websets.imports.get(import_id=input_data.import_id)
sdk_import = aexa.websets.imports.get(import_id=input_data.import_id)
import_obj = ImportModel.from_sdk(sdk_import)
@@ -426,7 +426,7 @@ class ExaListImportsBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
response = await aexa.websets.imports.list(
response = aexa.websets.imports.list(
cursor=input_data.cursor,
limit=input_data.limit,
)
@@ -474,9 +474,7 @@ class ExaDeleteImportBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
deleted_import = await aexa.websets.imports.delete(
import_id=input_data.import_id
)
deleted_import = aexa.websets.imports.delete(import_id=input_data.import_id)
yield "import_id", deleted_import.id
yield "success", "true"
@@ -575,14 +573,14 @@ class ExaExportWebsetBlock(Block):
}
)
# Create async iterator for list_all
async def async_item_iterator(*args, **kwargs):
for item in [mock_item1, mock_item2]:
yield item
# Create mock iterator
mock_items = [mock_item1, mock_item2]
return {
"_get_client": lambda *args, **kwargs: MagicMock(
websets=MagicMock(items=MagicMock(list_all=async_item_iterator))
websets=MagicMock(
items=MagicMock(list_all=lambda *args, **kwargs: iter(mock_items))
)
)
}
@@ -604,7 +602,7 @@ class ExaExportWebsetBlock(Block):
webset_id=input_data.webset_id, limit=input_data.max_items
)
async for sdk_item in item_iterator:
for sdk_item in item_iterator:
if len(all_items) >= input_data.max_items:
break

View File

@@ -178,7 +178,7 @@ class ExaGetWebsetItemBlock(Block):
) -> BlockOutput:
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
sdk_item = await aexa.websets.items.get(
sdk_item = aexa.websets.items.get(
webset_id=input_data.webset_id, id=input_data.item_id
)
@@ -269,7 +269,7 @@ class ExaListWebsetItemsBlock(Block):
response = None
while time.time() - start_time < input_data.wait_timeout:
response = await aexa.websets.items.list(
response = aexa.websets.items.list(
webset_id=input_data.webset_id,
cursor=input_data.cursor,
limit=input_data.limit,
@@ -282,13 +282,13 @@ class ExaListWebsetItemsBlock(Block):
interval = min(interval * 1.2, 10)
if not response:
response = await aexa.websets.items.list(
response = aexa.websets.items.list(
webset_id=input_data.webset_id,
cursor=input_data.cursor,
limit=input_data.limit,
)
else:
response = await aexa.websets.items.list(
response = aexa.websets.items.list(
webset_id=input_data.webset_id,
cursor=input_data.cursor,
limit=input_data.limit,
@@ -340,7 +340,7 @@ class ExaDeleteWebsetItemBlock(Block):
) -> BlockOutput:
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
deleted_item = await aexa.websets.items.delete(
deleted_item = aexa.websets.items.delete(
webset_id=input_data.webset_id, id=input_data.item_id
)
@@ -408,7 +408,7 @@ class ExaBulkWebsetItemsBlock(Block):
webset_id=input_data.webset_id, limit=input_data.max_items
)
async for sdk_item in item_iterator:
for sdk_item in item_iterator:
if len(all_items) >= input_data.max_items:
break
@@ -475,7 +475,7 @@ class ExaWebsetItemsSummaryBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
webset = await aexa.websets.get(id=input_data.webset_id)
webset = aexa.websets.get(id=input_data.webset_id)
entity_type = "unknown"
if webset.searches:
@@ -495,7 +495,7 @@ class ExaWebsetItemsSummaryBlock(Block):
# Get sample items if requested
sample_items: List[WebsetItemModel] = []
if input_data.sample_size > 0:
items_response = await aexa.websets.items.list(
items_response = aexa.websets.items.list(
webset_id=input_data.webset_id, limit=input_data.sample_size
)
# Convert to our stable models
@@ -569,7 +569,7 @@ class ExaGetNewItemsBlock(Block):
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
# Get items starting from cursor
response = await aexa.websets.items.list(
response = aexa.websets.items.list(
webset_id=input_data.webset_id,
cursor=input_data.since_cursor,
limit=input_data.max_items,

View File

@@ -233,7 +233,7 @@ class ExaCreateMonitorBlock(Block):
def _create_test_mock():
"""Create test mocks for the AsyncExa SDK."""
from datetime import datetime
from unittest.mock import AsyncMock, MagicMock
from unittest.mock import MagicMock
# Create mock SDK monitor object
mock_monitor = MagicMock()
@@ -263,7 +263,7 @@ class ExaCreateMonitorBlock(Block):
return {
"_get_client": lambda *args, **kwargs: MagicMock(
websets=MagicMock(
monitors=MagicMock(create=AsyncMock(return_value=mock_monitor))
monitors=MagicMock(create=lambda *args, **kwargs: mock_monitor)
)
)
}
@@ -320,7 +320,7 @@ class ExaCreateMonitorBlock(Block):
if input_data.metadata:
payload["metadata"] = input_data.metadata
sdk_monitor = await aexa.websets.monitors.create(params=payload)
sdk_monitor = aexa.websets.monitors.create(params=payload)
monitor = MonitorModel.from_sdk(sdk_monitor)
@@ -384,7 +384,7 @@ class ExaGetMonitorBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
sdk_monitor = await aexa.websets.monitors.get(monitor_id=input_data.monitor_id)
sdk_monitor = aexa.websets.monitors.get(monitor_id=input_data.monitor_id)
monitor = MonitorModel.from_sdk(sdk_monitor)
@@ -476,7 +476,7 @@ class ExaUpdateMonitorBlock(Block):
if input_data.metadata is not None:
payload["metadata"] = input_data.metadata
sdk_monitor = await aexa.websets.monitors.update(
sdk_monitor = aexa.websets.monitors.update(
monitor_id=input_data.monitor_id, params=payload
)
@@ -522,9 +522,7 @@ class ExaDeleteMonitorBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
deleted_monitor = await aexa.websets.monitors.delete(
monitor_id=input_data.monitor_id
)
deleted_monitor = aexa.websets.monitors.delete(monitor_id=input_data.monitor_id)
yield "monitor_id", deleted_monitor.id
yield "success", "true"
@@ -581,7 +579,7 @@ class ExaListMonitorsBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
response = await aexa.websets.monitors.list(
response = aexa.websets.monitors.list(
cursor=input_data.cursor,
limit=input_data.limit,
webset_id=input_data.webset_id,

View File

@@ -121,7 +121,7 @@ class ExaWaitForWebsetBlock(Block):
WebsetTargetStatus.IDLE,
WebsetTargetStatus.ANY_COMPLETE,
]:
final_webset = await aexa.websets.wait_until_idle(
final_webset = aexa.websets.wait_until_idle(
id=input_data.webset_id,
timeout=input_data.timeout,
poll_interval=input_data.check_interval,
@@ -164,7 +164,7 @@ class ExaWaitForWebsetBlock(Block):
interval = input_data.check_interval
while time.time() - start_time < input_data.timeout:
# Get current webset status
webset = await aexa.websets.get(id=input_data.webset_id)
webset = aexa.websets.get(id=input_data.webset_id)
current_status = (
webset.status.value
if hasattr(webset.status, "value")
@@ -209,7 +209,7 @@ class ExaWaitForWebsetBlock(Block):
# Timeout reached
elapsed = time.time() - start_time
webset = await aexa.websets.get(id=input_data.webset_id)
webset = aexa.websets.get(id=input_data.webset_id)
final_status = (
webset.status.value
if hasattr(webset.status, "value")
@@ -345,7 +345,7 @@ class ExaWaitForSearchBlock(Block):
try:
while time.time() - start_time < input_data.timeout:
# Get current search status using SDK
search = await aexa.websets.searches.get(
search = aexa.websets.searches.get(
webset_id=input_data.webset_id, id=input_data.search_id
)
@@ -401,7 +401,7 @@ class ExaWaitForSearchBlock(Block):
elapsed = time.time() - start_time
# Get last known status
search = await aexa.websets.searches.get(
search = aexa.websets.searches.get(
webset_id=input_data.webset_id, id=input_data.search_id
)
final_status = (
@@ -503,7 +503,7 @@ class ExaWaitForEnrichmentBlock(Block):
try:
while time.time() - start_time < input_data.timeout:
# Get current enrichment status using SDK
enrichment = await aexa.websets.enrichments.get(
enrichment = aexa.websets.enrichments.get(
webset_id=input_data.webset_id, id=input_data.enrichment_id
)
@@ -548,7 +548,7 @@ class ExaWaitForEnrichmentBlock(Block):
elapsed = time.time() - start_time
# Get last known status
enrichment = await aexa.websets.enrichments.get(
enrichment = aexa.websets.enrichments.get(
webset_id=input_data.webset_id, id=input_data.enrichment_id
)
final_status = (
@@ -575,7 +575,7 @@ class ExaWaitForEnrichmentBlock(Block):
) -> tuple[list[SampleEnrichmentModel], int]:
"""Get sample enriched data and count."""
# Get a few items to see enrichment results using SDK
response = await aexa.websets.items.list(webset_id=webset_id, limit=5)
response = aexa.websets.items.list(webset_id=webset_id, limit=5)
sample_data: list[SampleEnrichmentModel] = []
enriched_count = 0

View File

@@ -317,7 +317,7 @@ class ExaCreateWebsetSearchBlock(Block):
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
sdk_search = await aexa.websets.searches.create(
sdk_search = aexa.websets.searches.create(
webset_id=input_data.webset_id, params=payload
)
@@ -350,7 +350,7 @@ class ExaCreateWebsetSearchBlock(Block):
poll_start = time.time()
while time.time() - poll_start < input_data.polling_timeout:
current_search = await aexa.websets.searches.get(
current_search = aexa.websets.searches.get(
webset_id=input_data.webset_id, id=search_id
)
current_status = (
@@ -442,7 +442,7 @@ class ExaGetWebsetSearchBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
sdk_search = await aexa.websets.searches.get(
sdk_search = aexa.websets.searches.get(
webset_id=input_data.webset_id, id=input_data.search_id
)
@@ -523,7 +523,7 @@ class ExaCancelWebsetSearchBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
canceled_search = await aexa.websets.searches.cancel(
canceled_search = aexa.websets.searches.cancel(
webset_id=input_data.webset_id, id=input_data.search_id
)
@@ -604,7 +604,7 @@ class ExaFindOrCreateSearchBlock(Block):
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
# Get webset to check existing searches
webset = await aexa.websets.get(id=input_data.webset_id)
webset = aexa.websets.get(id=input_data.webset_id)
# Look for existing search with same query
existing_search = None
@@ -636,7 +636,7 @@ class ExaFindOrCreateSearchBlock(Block):
if input_data.entity_type != SearchEntityType.AUTO:
payload["entity"] = {"type": input_data.entity_type.value}
sdk_search = await aexa.websets.searches.create(
sdk_search = aexa.websets.searches.create(
webset_id=input_data.webset_id, params=payload
)

View File

@@ -596,10 +596,10 @@ def extract_openai_tool_calls(response) -> list[ToolContentBlock] | None:
def get_parallel_tool_calls_param(
llm_model: LlmModel, parallel_tool_calls: bool | None
) -> bool | openai.Omit:
):
"""Get the appropriate parallel_tool_calls parameter for OpenAI-compatible APIs."""
if llm_model.startswith("o") or parallel_tool_calls is None:
return openai.omit
return openai.NOT_GIVEN
return parallel_tool_calls

View File

@@ -246,9 +246,7 @@ class BlockSchema(BaseModel):
f"is not of type {CredentialsMetaInput.__name__}"
)
CredentialsMetaInput.validate_credentials_field_schema(
cls.get_field_schema(field_name), field_name
)
credentials_fields[field_name].validate_credentials_field_schema(cls)
elif field_name in credentials_fields:
raise KeyError(

View File

@@ -3,7 +3,7 @@ import logging
import uuid
from collections import defaultdict
from datetime import datetime, timezone
from typing import TYPE_CHECKING, Annotated, Any, Literal, Optional, Self, cast
from typing import TYPE_CHECKING, Annotated, Any, Literal, Optional, cast
from prisma.enums import SubmissionStatus
from prisma.models import (
@@ -20,7 +20,7 @@ from prisma.types import (
AgentNodeLinkCreateInput,
StoreListingVersionWhereInput,
)
from pydantic import BaseModel, BeforeValidator, Field
from pydantic import BaseModel, BeforeValidator, Field, create_model
from pydantic.fields import computed_field
from backend.blocks.agent import AgentExecutorBlock
@@ -30,6 +30,7 @@ from backend.data.db import prisma as db
from backend.data.dynamic_fields import is_tool_pin, sanitize_pin_name
from backend.data.includes import MAX_GRAPH_VERSIONS_FETCH
from backend.data.model import (
CredentialsField,
CredentialsFieldInfo,
CredentialsMetaInput,
is_credentials_field_name,
@@ -44,6 +45,7 @@ from .block import (
AnyBlockSchema,
Block,
BlockInput,
BlockSchema,
BlockType,
EmptySchema,
get_block,
@@ -111,12 +113,10 @@ class Link(BaseDbModel):
class Node(BaseDbModel):
block_id: str
input_default: BlockInput = Field( # dict[input_name, default_value]
default_factory=dict
)
metadata: dict[str, Any] = Field(default_factory=dict)
input_links: list[Link] = Field(default_factory=list)
output_links: list[Link] = Field(default_factory=list)
input_default: BlockInput = {} # dict[input_name, default_value]
metadata: dict[str, Any] = {}
input_links: list[Link] = []
output_links: list[Link] = []
@property
def credentials_optional(self) -> bool:
@@ -221,33 +221,18 @@ class NodeModel(Node):
return result
class GraphBaseMeta(BaseDbModel):
"""
Shared base for `GraphMeta` and `BaseGraph`, with core graph metadata fields.
"""
class BaseGraph(BaseDbModel):
version: int = 1
is_active: bool = True
name: str
description: str
instructions: str | None = None
recommended_schedule_cron: str | None = None
nodes: list[Node] = []
links: list[Link] = []
forked_from_id: str | None = None
forked_from_version: int | None = None
class BaseGraph(GraphBaseMeta):
"""
Graph with nodes, links, and computed I/O schema fields.
Used to represent sub-graphs within a `Graph`. Contains the full graph
structure including nodes and links, plus computed fields for schemas
and trigger info. Does NOT include user_id or created_at (see GraphModel).
"""
nodes: list[Node] = Field(default_factory=list)
links: list[Link] = Field(default_factory=list)
@computed_field
@property
def input_schema(self) -> dict[str, Any]:
@@ -376,79 +361,44 @@ class GraphTriggerInfo(BaseModel):
class Graph(BaseGraph):
"""Creatable graph model used in API create/update endpoints."""
sub_graphs: list[BaseGraph] = Field(default_factory=list) # Flattened sub-graphs
class GraphMeta(GraphBaseMeta):
"""
Lightweight graph metadata model representing an existing graph from the database,
for use in listings and summaries.
Lacks `GraphModel`'s nodes, links, and expensive computed fields.
Use for list endpoints where full graph data is not needed and performance matters.
"""
id: str # type: ignore
version: int # type: ignore
user_id: str
created_at: datetime
@classmethod
def from_db(cls, graph: "AgentGraph") -> Self:
return cls(
id=graph.id,
version=graph.version,
is_active=graph.isActive,
name=graph.name or "",
description=graph.description or "",
instructions=graph.instructions,
recommended_schedule_cron=graph.recommendedScheduleCron,
forked_from_id=graph.forkedFromId,
forked_from_version=graph.forkedFromVersion,
user_id=graph.userId,
created_at=graph.createdAt,
)
class GraphModel(Graph, GraphMeta):
"""
Full graph model representing an existing graph from the database.
This is the primary model for working with persisted graphs. Includes all
graph data (nodes, links, sub_graphs) plus user ownership and timestamps.
Provides computed fields (input_schema, output_schema, etc.) used during
set-up (frontend) and execution (backend).
Inherits from:
- `Graph`: provides structure (nodes, links, sub_graphs) and computed schemas
- `GraphMeta`: provides user_id, created_at for database records
"""
nodes: list[NodeModel] = Field(default_factory=list) # type: ignore
@property
def starting_nodes(self) -> list[NodeModel]:
outbound_nodes = {link.sink_id for link in self.links}
input_nodes = {
node.id for node in self.nodes if node.block.block_type == BlockType.INPUT
}
return [
node
for node in self.nodes
if node.id not in outbound_nodes or node.id in input_nodes
]
@property
def webhook_input_node(self) -> NodeModel | None: # type: ignore
return cast(NodeModel, super().webhook_input_node)
sub_graphs: list[BaseGraph] = [] # Flattened sub-graphs
@computed_field
@property
def credentials_input_schema(self) -> dict[str, Any]:
graph_credentials_inputs = self.aggregate_credentials_inputs()
schema = self._credentials_input_schema.jsonschema()
# Determine which credential fields are required based on credentials_optional metadata
graph_credentials_inputs = self.aggregate_credentials_inputs()
required_fields = []
# Build a map of node_id -> node for quick lookup
all_nodes = {node.id: node for node in self.nodes}
for sub_graph in self.sub_graphs:
for node in sub_graph.nodes:
all_nodes[node.id] = node
for field_key, (
_field_info,
node_field_pairs,
) in graph_credentials_inputs.items():
# A field is required if ANY node using it has credentials_optional=False
is_required = False
for node_id, _field_name in node_field_pairs:
node = all_nodes.get(node_id)
if node and not node.credentials_optional:
is_required = True
break
if is_required:
required_fields.append(field_key)
schema["required"] = required_fields
return schema
@property
def _credentials_input_schema(self) -> type[BlockSchema]:
graph_credentials_inputs = self.aggregate_credentials_inputs()
logger.debug(
f"Combined credentials input fields for graph #{self.id} ({self.name}): "
f"{graph_credentials_inputs}"
@@ -456,8 +406,8 @@ class GraphModel(Graph, GraphMeta):
# Warn if same-provider credentials inputs can't be combined (= bad UX)
graph_cred_fields = list(graph_credentials_inputs.values())
for i, (field, keys, _) in enumerate(graph_cred_fields):
for other_field, other_keys, _ in list(graph_cred_fields)[i + 1 :]:
for i, (field, keys) in enumerate(graph_cred_fields):
for other_field, other_keys in list(graph_cred_fields)[i + 1 :]:
if field.provider != other_field.provider:
continue
if ProviderName.HTTP in field.provider:
@@ -473,78 +423,31 @@ class GraphModel(Graph, GraphMeta):
f"keys: {keys} <> {other_keys}."
)
# Build JSON schema directly to avoid expensive create_model + validation overhead
properties = {}
required_fields = []
for agg_field_key, (
field_info,
_,
is_required,
) in graph_credentials_inputs.items():
providers = list(field_info.provider)
cred_types = list(field_info.supported_types)
field_schema: dict[str, Any] = {
"credentials_provider": providers,
"credentials_types": cred_types,
"type": "object",
"properties": {
"id": {"title": "Id", "type": "string"},
"title": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"default": None,
"title": "Title",
},
"provider": {
"title": "Provider",
"type": "string",
**(
{"enum": providers}
if len(providers) > 1
else {"const": providers[0]}
),
},
"type": {
"title": "Type",
"type": "string",
**(
{"enum": cred_types}
if len(cred_types) > 1
else {"const": cred_types[0]}
),
},
},
"required": ["id", "provider", "type"],
}
# Add other (optional) field info items
field_schema.update(
field_info.model_dump(
by_alias=True,
exclude_defaults=True,
exclude={"provider", "supported_types"}, # already included above
)
fields: dict[str, tuple[type[CredentialsMetaInput], CredentialsMetaInput]] = {
agg_field_key: (
CredentialsMetaInput[
Literal[tuple(field_info.provider)], # type: ignore
Literal[tuple(field_info.supported_types)], # type: ignore
],
CredentialsField(
required_scopes=set(field_info.required_scopes or []),
discriminator=field_info.discriminator,
discriminator_mapping=field_info.discriminator_mapping,
discriminator_values=field_info.discriminator_values,
),
)
# Ensure field schema is well-formed
CredentialsMetaInput.validate_credentials_field_schema(
field_schema, agg_field_key
)
properties[agg_field_key] = field_schema
if is_required:
required_fields.append(agg_field_key)
return {
"type": "object",
"properties": properties,
"required": required_fields,
for agg_field_key, (field_info, _) in graph_credentials_inputs.items()
}
return create_model(
self.name.replace(" ", "") + "CredentialsInputSchema",
__base__=BlockSchema,
**fields, # type: ignore
)
def aggregate_credentials_inputs(
self,
) -> dict[str, tuple[CredentialsFieldInfo, set[tuple[str, str]], bool]]:
) -> dict[str, tuple[CredentialsFieldInfo, set[tuple[str, str]]]]:
"""
Returns:
dict[aggregated_field_key, tuple(
@@ -552,19 +455,13 @@ class GraphModel(Graph, GraphMeta):
(now includes discriminator_values from matching nodes)
set[(node_id, field_name)]: Node credentials fields that are
compatible with this aggregated field spec
bool: True if the field is required (any node has credentials_optional=False)
)]
"""
# First collect all credential field data with input defaults
# Track (field_info, (node_id, field_name), is_required) for each credential field
node_credential_data: list[tuple[CredentialsFieldInfo, tuple[str, str]]] = []
node_required_map: dict[str, bool] = {} # node_id -> is_required
node_credential_data = []
for graph in [self] + self.sub_graphs:
for node in graph.nodes:
# Track if this node requires credentials (credentials_optional=False means required)
node_required_map[node.id] = not node.credentials_optional
for (
field_name,
field_info,
@@ -588,21 +485,37 @@ class GraphModel(Graph, GraphMeta):
)
# Combine credential field info (this will merge discriminator_values automatically)
combined = CredentialsFieldInfo.combine(*node_credential_data)
return CredentialsFieldInfo.combine(*node_credential_data)
# Add is_required flag to each aggregated field
# A field is required if ANY node using it has credentials_optional=False
return {
key: (
field_info,
node_field_pairs,
any(
node_required_map.get(node_id, True)
for node_id, _ in node_field_pairs
),
)
for key, (field_info, node_field_pairs) in combined.items()
class GraphModel(Graph):
user_id: str
nodes: list[NodeModel] = [] # type: ignore
created_at: datetime
@property
def starting_nodes(self) -> list[NodeModel]:
outbound_nodes = {link.sink_id for link in self.links}
input_nodes = {
node.id for node in self.nodes if node.block.block_type == BlockType.INPUT
}
return [
node
for node in self.nodes
if node.id not in outbound_nodes or node.id in input_nodes
]
@property
def webhook_input_node(self) -> NodeModel | None: # type: ignore
return cast(NodeModel, super().webhook_input_node)
def meta(self) -> "GraphMeta":
"""
Returns a GraphMeta object with metadata about the graph.
This is used to return metadata about the graph without exposing nodes and links.
"""
return GraphMeta.from_graph(self)
def reassign_ids(self, user_id: str, reassign_graph_id: bool = False):
"""
@@ -886,14 +799,13 @@ class GraphModel(Graph, GraphMeta):
if is_static_output_block(link.source_id):
link.is_static = True # Each value block output should be static.
@classmethod
def from_db( # type: ignore[reportIncompatibleMethodOverride]
cls,
@staticmethod
def from_db(
graph: AgentGraph,
for_export: bool = False,
sub_graphs: list[AgentGraph] | None = None,
) -> Self:
return cls(
) -> "GraphModel":
return GraphModel(
id=graph.id,
user_id=graph.userId if not for_export else "",
version=graph.version,
@@ -919,28 +831,17 @@ class GraphModel(Graph, GraphMeta):
],
)
def hide_nodes(self) -> "GraphModelWithoutNodes":
"""
Returns a copy of the `GraphModel` with nodes, links, and sub-graphs hidden
(excluded from serialization). They are still present in the model instance
so all computed fields (e.g. `credentials_input_schema`) still work.
"""
return GraphModelWithoutNodes.model_validate(self, from_attributes=True)
class GraphMeta(Graph):
user_id: str
class GraphModelWithoutNodes(GraphModel):
"""
GraphModel variant that excludes nodes, links, and sub-graphs from serialization.
# Easy work-around to prevent exposing nodes and links in the API response
nodes: list[NodeModel] = Field(default=[], exclude=True) # type: ignore
links: list[Link] = Field(default=[], exclude=True)
Used in contexts like the store where exposing internal graph structure
is not desired. Inherits all computed fields from GraphModel but marks
nodes and links as excluded from JSON output.
"""
nodes: list[NodeModel] = Field(default_factory=list, exclude=True)
links: list[Link] = Field(default_factory=list, exclude=True)
sub_graphs: list[BaseGraph] = Field(default_factory=list, exclude=True)
@staticmethod
def from_graph(graph: GraphModel) -> "GraphMeta":
return GraphMeta(**graph.model_dump())
class GraphsPaginated(BaseModel):
@@ -1011,11 +912,21 @@ async def list_graphs_paginated(
where=where_clause,
distinct=["id"],
order={"version": "desc"},
include=AGENT_GRAPH_INCLUDE,
skip=offset,
take=page_size,
)
graph_models = [GraphMeta.from_db(graph) for graph in graphs]
graph_models: list[GraphMeta] = []
for graph in graphs:
try:
graph_meta = GraphModel.from_db(graph).meta()
# Trigger serialization to validate that the graph is well formed
graph_meta.model_dump()
graph_models.append(graph_meta)
except Exception as e:
logger.error(f"Error processing graph {graph.id}: {e}")
continue
return GraphsPaginated(
graphs=graph_models,

View File

@@ -163,6 +163,7 @@ class User(BaseModel):
if TYPE_CHECKING:
from prisma.models import User as PrismaUser
from backend.data.block import BlockSchema
T = TypeVar("T")
logger = logging.getLogger(__name__)
@@ -507,13 +508,15 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
def allowed_cred_types(cls) -> tuple[CredentialsType, ...]:
return get_args(cls.model_fields["type"].annotation)
@staticmethod
def validate_credentials_field_schema(
field_schema: dict[str, Any], field_name: str
):
@classmethod
def validate_credentials_field_schema(cls, model: type["BlockSchema"]):
"""Validates the schema of a credentials input field"""
field_name = next(
name for name, type in model.get_credentials_fields().items() if type is cls
)
field_schema = model.jsonschema()["properties"][field_name]
try:
field_info = CredentialsFieldInfo[CP, CT].model_validate(field_schema)
schema_extra = CredentialsFieldInfo[CP, CT].model_validate(field_schema)
except ValidationError as e:
if "Field required [type=missing" not in str(e):
raise
@@ -523,11 +526,11 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
f"{field_schema}"
) from e
providers = field_info.provider
providers = cls.allowed_providers()
if (
providers is not None
and len(providers) > 1
and not field_info.discriminator
and not schema_extra.discriminator
):
raise TypeError(
f"Multi-provider CredentialsField '{field_name}' "

View File

@@ -373,7 +373,7 @@ def make_node_credentials_input_map(
# Get aggregated credentials fields for the graph
graph_cred_inputs = graph.aggregate_credentials_inputs()
for graph_input_name, (_, compatible_node_fields, _) in graph_cred_inputs.items():
for graph_input_name, (_, compatible_node_fields) in graph_cred_inputs.items():
# Best-effort map: skip missing items
if graph_input_name not in graph_credentials_input:
continue

View File

@@ -1,16 +0,0 @@
"""Validation utilities."""
import re
_UUID_V4_PATTERN = re.compile(
r"[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}",
re.IGNORECASE,
)
def is_uuid_v4(text: str) -> bool:
return bool(_UUID_V4_PATTERN.fullmatch(text.strip()))
def extract_uuids(text: str) -> list[str]:
return sorted({m.lower() for m in _UUID_V4_PATTERN.findall(text)})

File diff suppressed because it is too large Load Diff

View File

@@ -21,7 +21,7 @@ cryptography = "^45.0"
discord-py = "^2.5.2"
e2b-code-interpreter = "^1.5.2"
elevenlabs = "^1.50.0"
fastapi = "^0.128.0"
fastapi = "^0.116.1"
feedparser = "^6.0.11"
flake8 = "^7.3.0"
google-api-python-client = "^2.177.0"
@@ -35,7 +35,7 @@ jinja2 = "^3.1.6"
jsonref = "^1.1.0"
jsonschema = "^4.25.0"
langfuse = "^3.11.0"
launchdarkly-server-sdk = "^9.14.1"
launchdarkly-server-sdk = "^9.12.0"
mem0ai = "^0.1.115"
moviepy = "^2.1.2"
ollama = "^0.5.1"
@@ -52,8 +52,8 @@ prometheus-client = "^0.22.1"
prometheus-fastapi-instrumentator = "^7.0.0"
psutil = "^7.0.0"
psycopg2-binary = "^2.9.10"
pydantic = { extras = ["email"], version = "^2.12.5" }
pydantic-settings = "^2.12.0"
pydantic = { extras = ["email"], version = "^2.11.7" }
pydantic-settings = "^2.10.1"
pytest = "^8.4.1"
pytest-asyncio = "^1.1.0"
python-dotenv = "^1.1.1"
@@ -65,11 +65,11 @@ sentry-sdk = {extras = ["anthropic", "fastapi", "launchdarkly", "openai", "sqlal
sqlalchemy = "^2.0.40"
strenum = "^0.4.9"
stripe = "^11.5.0"
supabase = "2.27.2"
supabase = "2.17.0"
tenacity = "^9.1.2"
todoist-api-python = "^2.1.7"
tweepy = "^4.16.0"
uvicorn = { extras = ["standard"], version = "^0.40.0" }
uvicorn = { extras = ["standard"], version = "^0.35.0" }
websockets = "^15.0"
youtube-transcript-api = "^1.2.1"
yt-dlp = "2025.12.08"

View File

@@ -3,6 +3,7 @@
"credentials_input_schema": {
"properties": {},
"required": [],
"title": "TestGraphCredentialsInputSchema",
"type": "object"
},
"description": "A test graph",

View File

@@ -1,14 +1,34 @@
[
{
"created_at": "2025-09-04T13:37:00",
"credentials_input_schema": {
"properties": {},
"required": [],
"title": "TestGraphCredentialsInputSchema",
"type": "object"
},
"description": "A test graph",
"forked_from_id": null,
"forked_from_version": null,
"has_external_trigger": false,
"has_human_in_the_loop": false,
"has_sensitive_action": false,
"id": "graph-123",
"input_schema": {
"properties": {},
"required": [],
"type": "object"
},
"instructions": null,
"is_active": true,
"name": "Test Graph",
"output_schema": {
"properties": {},
"required": [],
"type": "object"
},
"recommended_schedule_cron": null,
"sub_graphs": [],
"trigger_setup_info": null,
"user_id": "3e53486c-cf57-477e-ba2a-cb02dc828e1a",
"version": 1
}

View File

@@ -1,5 +1,5 @@
import { CredentialsMetaInput } from "@/app/api/__generated__/models/credentialsMetaInput";
import { GraphModel } from "@/app/api/__generated__/models/graphModel";
import { GraphMeta } from "@/app/api/__generated__/models/graphMeta";
import { CredentialsInput } from "@/components/contextual/CredentialsInput/CredentialsInput";
import { useState } from "react";
import { getSchemaDefaultCredentials } from "../../helpers";
@@ -9,7 +9,7 @@ type Credential = CredentialsMetaInput | undefined;
type Credentials = Record<string, Credential>;
type Props = {
agent: GraphModel | null;
agent: GraphMeta | null;
siblingInputs?: Record<string, any>;
onCredentialsChange: (
credentials: Record<string, CredentialsMetaInput>,

View File

@@ -1,9 +1,9 @@
import { CredentialsMetaInput } from "@/app/api/__generated__/models/credentialsMetaInput";
import { GraphModel } from "@/app/api/__generated__/models/graphModel";
import { GraphMeta } from "@/app/api/__generated__/models/graphMeta";
import { BlockIOCredentialsSubSchema } from "@/lib/autogpt-server-api/types";
export function getCredentialFields(
agent: GraphModel | null,
agent: GraphMeta | null,
): AgentCredentialsFields {
if (!agent) return {};

View File

@@ -3,10 +3,10 @@ import type {
CredentialsMetaInput,
} from "@/lib/autogpt-server-api/types";
import type { InputValues } from "./types";
import { GraphModel } from "@/app/api/__generated__/models/graphModel";
import { GraphMeta } from "@/app/api/__generated__/models/graphMeta";
export function computeInitialAgentInputs(
agent: GraphModel | null,
agent: GraphMeta | null,
existingInputs?: InputValues | null,
): InputValues {
const properties = agent?.input_schema?.properties || {};
@@ -29,7 +29,7 @@ export function computeInitialAgentInputs(
}
type IsRunDisabledParams = {
agent: GraphModel | null;
agent: GraphMeta | null;
isRunning: boolean;
agentInputs: InputValues | null | undefined;
};

View File

@@ -30,8 +30,6 @@ import {
} from "@/components/atoms/Tooltip/BaseTooltip";
import { GraphMeta } from "@/lib/autogpt-server-api";
import jaro from "jaro-winkler";
import { getV1GetSpecificGraph } from "@/app/api/__generated__/endpoints/graphs/graphs";
import { okData } from "@/app/api/helpers";
type _Block = Omit<Block, "inputSchema" | "outputSchema"> & {
uiKey?: string;
@@ -109,8 +107,6 @@ export function BlocksControl({
.filter((b) => b.uiType !== BlockUIType.AGENT)
.sort((a, b) => a.name.localeCompare(b.name));
// Agent blocks are created from GraphMeta which doesn't include schemas.
// Schemas will be fetched on-demand when the block is actually added.
const agentBlockList = flows
.map((flow): _Block => {
return {
@@ -120,9 +116,8 @@ export function BlocksControl({
`Ver.${flow.version}` +
(flow.description ? ` | ${flow.description}` : ""),
categories: [{ category: "AGENT", description: "" }],
// Empty schemas - will be populated when block is added
inputSchema: { type: "object", properties: {} },
outputSchema: { type: "object", properties: {} },
inputSchema: flow.input_schema,
outputSchema: flow.output_schema,
staticOutput: false,
uiType: BlockUIType.AGENT,
costs: [],
@@ -130,7 +125,8 @@ export function BlocksControl({
hardcodedValues: {
graph_id: flow.id,
graph_version: flow.version,
// Schemas will be fetched on-demand when block is added
input_schema: flow.input_schema,
output_schema: flow.output_schema,
},
};
})
@@ -186,37 +182,6 @@ export function BlocksControl({
setSelectedCategory(null);
}, []);
// Handler to add a block, fetching graph data on-demand for agent blocks
const handleAddBlock = useCallback(
async (block: _Block & { notAvailable: string | null }) => {
if (block.notAvailable) return;
// For agent blocks, fetch the full graph to get schemas
if (block.uiType === BlockUIType.AGENT && block.hardcodedValues) {
const graphID = block.hardcodedValues.graph_id as string;
const graphVersion = block.hardcodedValues.graph_version as number;
const graphData = okData(
await getV1GetSpecificGraph(graphID, { version: graphVersion }),
);
if (graphData) {
addBlock(block.id, block.name, {
...block.hardcodedValues,
input_schema: graphData.input_schema,
output_schema: graphData.output_schema,
});
} else {
// Fallback: add without schemas (will be incomplete)
console.error("Failed to fetch graph data for agent block");
addBlock(block.id, block.name, block.hardcodedValues || {});
}
} else {
addBlock(block.id, block.name, block.hardcodedValues || {});
}
},
[addBlock],
);
// Extract unique categories from blocks
const categories = useMemo(() => {
return Array.from(
@@ -338,7 +303,10 @@ export function BlocksControl({
}),
);
}}
onClick={() => handleAddBlock(block)}
onClick={() =>
!block.notAvailable &&
addBlock(block.id, block.name, block?.hardcodedValues || {})
}
title={block.notAvailable ?? undefined}
>
<div

View File

@@ -29,17 +29,13 @@ import "@xyflow/react/dist/style.css";
import { ConnectedEdge, CustomNode } from "../CustomNode/CustomNode";
import "./flow.css";
import {
BlockIORootSchema,
BlockUIType,
formatEdgeID,
GraphExecutionID,
GraphID,
GraphMeta,
LibraryAgent,
SpecialBlockID,
} from "@/lib/autogpt-server-api";
import { getV1GetSpecificGraph } from "@/app/api/__generated__/endpoints/graphs/graphs";
import { okData } from "@/app/api/helpers";
import { IncompatibilityInfo } from "../../../hooks/useSubAgentUpdate/types";
import { Key, storage } from "@/services/storage/local-storage";
import { findNewlyAddedBlockCoordinates, getTypeColor } from "@/lib/utils";
@@ -691,94 +687,8 @@ const FlowEditor: React.FC<{
[getNode, updateNode, nodes],
);
/* Shared helper to create and add a node */
const createAndAddNode = useCallback(
async (
blockID: string,
blockName: string,
hardcodedValues: Record<string, any>,
position: { x: number; y: number },
): Promise<CustomNode | null> => {
const nodeSchema = availableBlocks.find((node) => node.id === blockID);
if (!nodeSchema) {
console.error(`Schema not found for block ID: ${blockID}`);
return null;
}
// For agent blocks, fetch the full graph to get schemas
let inputSchema: BlockIORootSchema = nodeSchema.inputSchema;
let outputSchema: BlockIORootSchema = nodeSchema.outputSchema;
let finalHardcodedValues = hardcodedValues;
if (blockID === SpecialBlockID.AGENT) {
const graphID = hardcodedValues.graph_id as string;
const graphVersion = hardcodedValues.graph_version as number;
const graphData = okData(
await getV1GetSpecificGraph(graphID, { version: graphVersion }),
);
if (graphData) {
inputSchema = graphData.input_schema as BlockIORootSchema;
outputSchema = graphData.output_schema as BlockIORootSchema;
finalHardcodedValues = {
...hardcodedValues,
input_schema: graphData.input_schema,
output_schema: graphData.output_schema,
};
} else {
console.error("Failed to fetch graph data for agent block");
}
}
const newNode: CustomNode = {
id: nodeId.toString(),
type: "custom",
position,
data: {
blockType: blockName,
blockCosts: nodeSchema.costs || [],
title: `${blockName} ${nodeId}`,
description: nodeSchema.description,
categories: nodeSchema.categories,
inputSchema: inputSchema,
outputSchema: outputSchema,
hardcodedValues: finalHardcodedValues,
connections: [],
isOutputOpen: false,
block_id: blockID,
isOutputStatic: nodeSchema.staticOutput,
uiType: nodeSchema.uiType,
},
};
addNodes(newNode);
setNodeId((prevId) => prevId + 1);
clearNodesStatusAndOutput();
history.push({
type: "ADD_NODE",
payload: { node: { ...newNode, ...newNode.data } },
undo: () => deleteElements({ nodes: [{ id: newNode.id }] }),
redo: () => addNodes(newNode),
});
return newNode;
},
[
availableBlocks,
nodeId,
addNodes,
deleteElements,
clearNodesStatusAndOutput,
],
);
const addNode = useCallback(
async (
blockId: string,
nodeType: string,
hardcodedValues: Record<string, any> = {},
) => {
(blockId: string, nodeType: string, hardcodedValues: any = {}) => {
const nodeSchema = availableBlocks.find((node) => node.id === blockId);
if (!nodeSchema) {
console.error(`Schema not found for block ID: ${blockId}`);
@@ -797,42 +707,73 @@ const FlowEditor: React.FC<{
// Alternative: We could also use D3 force, Intersection for this (React flow Pro examples)
const { x, y } = getViewport();
const position =
const viewportCoordinates =
nodeDimensions && Object.keys(nodeDimensions).length > 0
? findNewlyAddedBlockCoordinates(
? // we will get all the dimension of nodes, then store
findNewlyAddedBlockCoordinates(
nodeDimensions,
nodeSchema.uiType == BlockUIType.NOTE ? 300 : 500,
60,
1.0,
)
: {
: // we will get all the dimension of nodes, then store
{
x: window.innerWidth / 2 - x,
y: window.innerHeight / 2 - y,
};
const newNode = await createAndAddNode(
blockId,
nodeType,
hardcodedValues,
position,
);
if (!newNode) return;
const newNode: CustomNode = {
id: nodeId.toString(),
type: "custom",
position: viewportCoordinates, // Set the position to the calculated viewport center
data: {
blockType: nodeType,
blockCosts: nodeSchema.costs,
title: `${nodeType} ${nodeId}`,
description: nodeSchema.description,
categories: nodeSchema.categories,
inputSchema: nodeSchema.inputSchema,
outputSchema: nodeSchema.outputSchema,
hardcodedValues: hardcodedValues,
connections: [],
isOutputOpen: false,
block_id: blockId,
isOutputStatic: nodeSchema.staticOutput,
uiType: nodeSchema.uiType,
},
};
addNodes(newNode);
setNodeId((prevId) => prevId + 1);
clearNodesStatusAndOutput(); // Clear status and output when a new node is added
setViewport(
{
x: -position.x * 0.8 + (window.innerWidth - 0.0) / 2,
y: -position.y * 0.8 + (window.innerHeight - 400) / 2,
// Rough estimate of the dimension of the node is: 500x400px.
// Though we skip shifting the X, considering the block menu side-bar.
x: -viewportCoordinates.x * 0.8 + (window.innerWidth - 0.0) / 2,
y: -viewportCoordinates.y * 0.8 + (window.innerHeight - 400) / 2,
zoom: 0.8,
},
{ duration: 500 },
);
history.push({
type: "ADD_NODE",
payload: { node: { ...newNode, ...newNode.data } },
undo: () => deleteElements({ nodes: [{ id: newNode.id }] }),
redo: () => addNodes(newNode),
});
},
[
nodeId,
getViewport,
setViewport,
availableBlocks,
addNodes,
nodeDimensions,
createAndAddNode,
deleteElements,
clearNodesStatusAndOutput,
],
);
@@ -979,7 +920,7 @@ const FlowEditor: React.FC<{
}, []);
const onDrop = useCallback(
async (event: React.DragEvent) => {
(event: React.DragEvent) => {
event.preventDefault();
const blockData = event.dataTransfer.getData("application/reactflow");
@@ -994,17 +935,62 @@ const FlowEditor: React.FC<{
y: event.clientY,
});
await createAndAddNode(
blockId,
blockName,
hardcodedValues || {},
// Find the block schema
const nodeSchema = availableBlocks.find((node) => node.id === blockId);
if (!nodeSchema) {
console.error(`Schema not found for block ID: ${blockId}`);
return;
}
// Create the new node at the drop position
const newNode: CustomNode = {
id: nodeId.toString(),
type: "custom",
position,
);
data: {
blockType: blockName,
blockCosts: nodeSchema.costs || [],
title: `${blockName} ${nodeId}`,
description: nodeSchema.description,
categories: nodeSchema.categories,
inputSchema: nodeSchema.inputSchema,
outputSchema: nodeSchema.outputSchema,
hardcodedValues: hardcodedValues,
connections: [],
isOutputOpen: false,
block_id: blockId,
uiType: nodeSchema.uiType,
},
};
history.push({
type: "ADD_NODE",
payload: { node: { ...newNode, ...newNode.data } },
undo: () => {
deleteElements({ nodes: [{ id: newNode.id } as any], edges: [] });
},
redo: () => {
addNodes([newNode]);
},
});
addNodes([newNode]);
clearNodesStatusAndOutput();
setNodeId((prevId) => prevId + 1);
} catch (error) {
console.error("Failed to drop block:", error);
}
},
[screenToFlowPosition, createAndAddNode],
[
nodeId,
availableBlocks,
nodes,
edges,
addNodes,
screenToFlowPosition,
deleteElements,
clearNodesStatusAndOutput,
],
);
const buildContextValue: BuilderContextType = useMemo(

View File

@@ -4,13 +4,13 @@ import { AgentRunDraftView } from "@/app/(platform)/library/agents/[id]/componen
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import type {
CredentialsMetaInput,
Graph,
GraphMeta,
} from "@/lib/autogpt-server-api/types";
interface RunInputDialogProps {
isOpen: boolean;
doClose: () => void;
graph: Graph;
graph: GraphMeta;
doRun?: (
inputs: Record<string, any>,
credentialsInputs: Record<string, CredentialsMetaInput>,

View File

@@ -9,13 +9,13 @@ import { CustomNodeData } from "@/app/(platform)/build/components/legacy-builder
import {
BlockUIType,
CredentialsMetaInput,
Graph,
GraphMeta,
} from "@/lib/autogpt-server-api/types";
import RunnerOutputUI, { OutputNodeInfo } from "./RunnerOutputUI";
import { RunnerInputDialog } from "./RunnerInputUI";
interface RunnerUIWrapperProps {
graph: Graph;
graph: GraphMeta;
nodes: Node<CustomNodeData>[];
graphExecutionError?: string | null;
saveAndRun: (

View File

@@ -1,5 +1,5 @@
import { GraphInputSchema } from "@/lib/autogpt-server-api";
import { GraphLike, IncompatibilityInfo } from "./types";
import { GraphMetaLike, IncompatibilityInfo } from "./types";
// Helper type for schema properties - the generated types are too loose
type SchemaProperties = Record<string, GraphInputSchema["properties"][string]>;
@@ -36,7 +36,7 @@ export function getSchemaRequired(schema: unknown): SchemaRequired {
*/
export function createUpdatedAgentNodeInputs(
currentInputs: Record<string, unknown>,
latestSubGraphVersion: GraphLike,
latestSubGraphVersion: GraphMetaLike,
): Record<string, unknown> {
return {
...currentInputs,

View File

@@ -1,11 +1,7 @@
import type {
Graph as LegacyGraph,
GraphMeta as LegacyGraphMeta,
} from "@/lib/autogpt-server-api";
import type { GraphModel as GeneratedGraph } from "@/app/api/__generated__/models/graphModel";
import type { GraphMeta as LegacyGraphMeta } from "@/lib/autogpt-server-api";
import type { GraphMeta as GeneratedGraphMeta } from "@/app/api/__generated__/models/graphMeta";
export type SubAgentUpdateInfo<T extends GraphLike = GraphLike> = {
export type SubAgentUpdateInfo<T extends GraphMetaLike = GraphMetaLike> = {
hasUpdate: boolean;
currentVersion: number;
latestVersion: number;
@@ -14,10 +10,7 @@ export type SubAgentUpdateInfo<T extends GraphLike = GraphLike> = {
incompatibilities: IncompatibilityInfo | null;
};
// Union type for Graph (with schemas) that works with both legacy and new builder
export type GraphLike = LegacyGraph | GeneratedGraph;
// Union type for GraphMeta (without schemas) for version detection
// Union type for GraphMeta that works with both legacy and new builder
export type GraphMetaLike = LegacyGraphMeta | GeneratedGraphMeta;
export type IncompatibilityInfo = {

View File

@@ -1,11 +1,5 @@
import { useMemo } from "react";
import type {
GraphInputSchema,
GraphOutputSchema,
} from "@/lib/autogpt-server-api";
import type { GraphModel } from "@/app/api/__generated__/models/graphModel";
import { useGetV1GetSpecificGraph } from "@/app/api/__generated__/endpoints/graphs/graphs";
import { okData } from "@/app/api/helpers";
import { GraphInputSchema, GraphOutputSchema } from "@/lib/autogpt-server-api";
import { getEffectiveType } from "@/lib/utils";
import { EdgeLike, getSchemaProperties, getSchemaRequired } from "./helpers";
import {
@@ -17,38 +11,26 @@ import {
/**
* Checks if a newer version of a sub-agent is available and determines compatibility
*/
export function useSubAgentUpdate(
export function useSubAgentUpdate<T extends GraphMetaLike>(
nodeID: string,
graphID: string | undefined,
graphVersion: number | undefined,
currentInputSchema: GraphInputSchema | undefined,
currentOutputSchema: GraphOutputSchema | undefined,
connections: EdgeLike[],
availableGraphs: GraphMetaLike[],
): SubAgentUpdateInfo<GraphModel> {
availableGraphs: T[],
): SubAgentUpdateInfo<T> {
// Find the latest version of the same graph
const latestGraphInfo = useMemo(() => {
const latestGraph = useMemo(() => {
if (!graphID) return null;
return availableGraphs.find((graph) => graph.id === graphID) || null;
}, [graphID, availableGraphs]);
// Check if there's a newer version available
// Check if there's an update available
const hasUpdate = useMemo(() => {
if (!latestGraphInfo || graphVersion === undefined) return false;
return latestGraphInfo.version! > graphVersion;
}, [latestGraphInfo, graphVersion]);
// Fetch full graph IF an update is detected
const { data: latestGraph } = useGetV1GetSpecificGraph(
graphID ?? "",
{ version: latestGraphInfo?.version },
{
query: {
enabled: hasUpdate && !!graphID && !!latestGraphInfo?.version,
select: okData,
},
},
);
if (!latestGraph || graphVersion === undefined) return false;
return latestGraph.version! > graphVersion;
}, [latestGraph, graphVersion]);
// Get connected input and output handles for this specific node
const connectedHandles = useMemo(() => {
@@ -170,8 +152,8 @@ export function useSubAgentUpdate(
return {
hasUpdate,
currentVersion: graphVersion || 0,
latestVersion: latestGraphInfo?.version || 0,
latestGraph: latestGraph || null,
latestVersion: latestGraph?.version || 0,
latestGraph,
isCompatible: compatibilityResult.isCompatible,
incompatibilities: compatibilityResult.incompatibilities,
};

View File

@@ -18,7 +18,7 @@ interface GraphStore {
outputSchema: Record<string, any> | null,
) => void;
// Available graphs; used for sub-graph updated version detection
// Available graphs; used for sub-graph updates
availableSubGraphs: GraphMeta[];
setAvailableSubGraphs: (graphs: GraphMeta[]) => void;

View File

@@ -10,8 +10,8 @@ import React, {
import {
CredentialsMetaInput,
CredentialsType,
Graph,
GraphExecutionID,
GraphMeta,
LibraryAgentPreset,
LibraryAgentPresetID,
LibraryAgentPresetUpdatable,
@@ -69,7 +69,7 @@ export function AgentRunDraftView({
className,
recommendedScheduleCron,
}: {
graph: Graph;
graph: GraphMeta;
agentActions?: ButtonAction[];
recommendedScheduleCron?: string | null;
doRun?: (

View File

@@ -2,8 +2,8 @@
import React, { useCallback, useMemo } from "react";
import {
Graph,
GraphExecutionID,
GraphMeta,
Schedule,
ScheduleID,
} from "@/lib/autogpt-server-api";
@@ -35,7 +35,7 @@ export function AgentScheduleDetailsView({
onForcedRun,
doDeleteSchedule,
}: {
graph: Graph;
graph: GraphMeta;
schedule: Schedule;
agentActions: ButtonAction[];
onForcedRun: (runID: GraphExecutionID) => void;

View File

@@ -5629,9 +5629,7 @@
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/GraphModelWithoutNodes"
}
"schema": { "$ref": "#/components/schemas/GraphMeta" }
}
}
},
@@ -6497,6 +6495,18 @@
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Recommended Schedule Cron"
},
"nodes": {
"items": { "$ref": "#/components/schemas/Node" },
"type": "array",
"title": "Nodes",
"default": []
},
"links": {
"items": { "$ref": "#/components/schemas/Link" },
"type": "array",
"title": "Links",
"default": []
},
"forked_from_id": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Forked From Id"
@@ -6504,22 +6514,11 @@
"forked_from_version": {
"anyOf": [{ "type": "integer" }, { "type": "null" }],
"title": "Forked From Version"
},
"nodes": {
"items": { "$ref": "#/components/schemas/Node" },
"type": "array",
"title": "Nodes"
},
"links": {
"items": { "$ref": "#/components/schemas/Link" },
"type": "array",
"title": "Links"
}
},
"type": "object",
"required": ["name", "description"],
"title": "BaseGraph",
"description": "Graph with nodes, links, and computed I/O schema fields.\n\nUsed to represent sub-graphs within a `Graph`. Contains the full graph\nstructure including nodes and links, plus computed fields for schemas\nand trigger info. Does NOT include user_id or created_at (see GraphModel)."
"title": "BaseGraph"
},
"BaseGraph-Output": {
"properties": {
@@ -6540,6 +6539,18 @@
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Recommended Schedule Cron"
},
"nodes": {
"items": { "$ref": "#/components/schemas/Node" },
"type": "array",
"title": "Nodes",
"default": []
},
"links": {
"items": { "$ref": "#/components/schemas/Link" },
"type": "array",
"title": "Links",
"default": []
},
"forked_from_id": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Forked From Id"
@@ -6548,16 +6559,6 @@
"anyOf": [{ "type": "integer" }, { "type": "null" }],
"title": "Forked From Version"
},
"nodes": {
"items": { "$ref": "#/components/schemas/Node" },
"type": "array",
"title": "Nodes"
},
"links": {
"items": { "$ref": "#/components/schemas/Link" },
"type": "array",
"title": "Links"
},
"input_schema": {
"additionalProperties": true,
"type": "object",
@@ -6604,8 +6605,7 @@
"has_sensitive_action",
"trigger_setup_info"
],
"title": "BaseGraph",
"description": "Graph with nodes, links, and computed I/O schema fields.\n\nUsed to represent sub-graphs within a `Graph`. Contains the full graph\nstructure including nodes and links, plus computed fields for schemas\nand trigger info. Does NOT include user_id or created_at (see GraphModel)."
"title": "BaseGraph"
},
"BlockCategoryResponse": {
"properties": {
@@ -7399,6 +7399,18 @@
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Recommended Schedule Cron"
},
"nodes": {
"items": { "$ref": "#/components/schemas/Node" },
"type": "array",
"title": "Nodes",
"default": []
},
"links": {
"items": { "$ref": "#/components/schemas/Link" },
"type": "array",
"title": "Links",
"default": []
},
"forked_from_id": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Forked From Id"
@@ -7407,26 +7419,16 @@
"anyOf": [{ "type": "integer" }, { "type": "null" }],
"title": "Forked From Version"
},
"nodes": {
"items": { "$ref": "#/components/schemas/Node" },
"type": "array",
"title": "Nodes"
},
"links": {
"items": { "$ref": "#/components/schemas/Link" },
"type": "array",
"title": "Links"
},
"sub_graphs": {
"items": { "$ref": "#/components/schemas/BaseGraph-Input" },
"type": "array",
"title": "Sub Graphs"
"title": "Sub Graphs",
"default": []
}
},
"type": "object",
"required": ["name", "description"],
"title": "Graph",
"description": "Creatable graph model used in API create/update endpoints."
"title": "Graph"
},
"GraphExecution": {
"properties": {
@@ -7778,7 +7780,7 @@
"GraphMeta": {
"properties": {
"id": { "type": "string", "title": "Id" },
"version": { "type": "integer", "title": "Version" },
"version": { "type": "integer", "title": "Version", "default": 1 },
"is_active": {
"type": "boolean",
"title": "Is Active",
@@ -7802,24 +7804,68 @@
"anyOf": [{ "type": "integer" }, { "type": "null" }],
"title": "Forked From Version"
},
"sub_graphs": {
"items": { "$ref": "#/components/schemas/BaseGraph-Output" },
"type": "array",
"title": "Sub Graphs",
"default": []
},
"user_id": { "type": "string", "title": "User Id" },
"created_at": {
"type": "string",
"format": "date-time",
"title": "Created At"
"input_schema": {
"additionalProperties": true,
"type": "object",
"title": "Input Schema",
"readOnly": true
},
"output_schema": {
"additionalProperties": true,
"type": "object",
"title": "Output Schema",
"readOnly": true
},
"has_external_trigger": {
"type": "boolean",
"title": "Has External Trigger",
"readOnly": true
},
"has_human_in_the_loop": {
"type": "boolean",
"title": "Has Human In The Loop",
"readOnly": true
},
"has_sensitive_action": {
"type": "boolean",
"title": "Has Sensitive Action",
"readOnly": true
},
"trigger_setup_info": {
"anyOf": [
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
{ "type": "null" }
],
"readOnly": true
},
"credentials_input_schema": {
"additionalProperties": true,
"type": "object",
"title": "Credentials Input Schema",
"readOnly": true
}
},
"type": "object",
"required": [
"id",
"version",
"name",
"description",
"user_id",
"created_at"
"input_schema",
"output_schema",
"has_external_trigger",
"has_human_in_the_loop",
"has_sensitive_action",
"trigger_setup_info",
"credentials_input_schema"
],
"title": "GraphMeta",
"description": "Lightweight graph metadata model representing an existing graph from the database,\nfor use in listings and summaries.\n\nLacks `GraphModel`'s nodes, links, and expensive computed fields.\nUse for list endpoints where full graph data is not needed and performance matters."
"title": "GraphMeta"
},
"GraphModel": {
"properties": {
@@ -7840,111 +7886,17 @@
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Recommended Schedule Cron"
},
"forked_from_id": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Forked From Id"
},
"forked_from_version": {
"anyOf": [{ "type": "integer" }, { "type": "null" }],
"title": "Forked From Version"
},
"user_id": { "type": "string", "title": "User Id" },
"created_at": {
"type": "string",
"format": "date-time",
"title": "Created At"
},
"nodes": {
"items": { "$ref": "#/components/schemas/NodeModel" },
"type": "array",
"title": "Nodes"
"title": "Nodes",
"default": []
},
"links": {
"items": { "$ref": "#/components/schemas/Link" },
"type": "array",
"title": "Links"
},
"sub_graphs": {
"items": { "$ref": "#/components/schemas/BaseGraph-Output" },
"type": "array",
"title": "Sub Graphs"
},
"input_schema": {
"additionalProperties": true,
"type": "object",
"title": "Input Schema",
"readOnly": true
},
"output_schema": {
"additionalProperties": true,
"type": "object",
"title": "Output Schema",
"readOnly": true
},
"has_external_trigger": {
"type": "boolean",
"title": "Has External Trigger",
"readOnly": true
},
"has_human_in_the_loop": {
"type": "boolean",
"title": "Has Human In The Loop",
"readOnly": true
},
"has_sensitive_action": {
"type": "boolean",
"title": "Has Sensitive Action",
"readOnly": true
},
"trigger_setup_info": {
"anyOf": [
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
{ "type": "null" }
],
"readOnly": true
},
"credentials_input_schema": {
"additionalProperties": true,
"type": "object",
"title": "Credentials Input Schema",
"readOnly": true
}
},
"type": "object",
"required": [
"name",
"description",
"user_id",
"created_at",
"input_schema",
"output_schema",
"has_external_trigger",
"has_human_in_the_loop",
"has_sensitive_action",
"trigger_setup_info",
"credentials_input_schema"
],
"title": "GraphModel",
"description": "Full graph model representing an existing graph from the database.\n\nThis is the primary model for working with persisted graphs. Includes all\ngraph data (nodes, links, sub_graphs) plus user ownership and timestamps.\nProvides computed fields (input_schema, output_schema, etc.) used during\nset-up (frontend) and execution (backend).\n\nInherits from:\n- `Graph`: provides structure (nodes, links, sub_graphs) and computed schemas\n- `GraphMeta`: provides user_id, created_at for database records"
},
"GraphModelWithoutNodes": {
"properties": {
"id": { "type": "string", "title": "Id" },
"version": { "type": "integer", "title": "Version", "default": 1 },
"is_active": {
"type": "boolean",
"title": "Is Active",
"default": true
},
"name": { "type": "string", "title": "Name" },
"description": { "type": "string", "title": "Description" },
"instructions": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Instructions"
},
"recommended_schedule_cron": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Recommended Schedule Cron"
"title": "Links",
"default": []
},
"forked_from_id": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
@@ -7954,6 +7906,12 @@
"anyOf": [{ "type": "integer" }, { "type": "null" }],
"title": "Forked From Version"
},
"sub_graphs": {
"items": { "$ref": "#/components/schemas/BaseGraph-Output" },
"type": "array",
"title": "Sub Graphs",
"default": []
},
"user_id": { "type": "string", "title": "User Id" },
"created_at": {
"type": "string",
@@ -8015,8 +7973,7 @@
"trigger_setup_info",
"credentials_input_schema"
],
"title": "GraphModelWithoutNodes",
"description": "GraphModel variant that excludes nodes, links, and sub-graphs from serialization.\n\nUsed in contexts like the store where exposing internal graph structure\nis not desired. Inherits all computed fields from GraphModel but marks\nnodes and links as excluded from JSON output."
"title": "GraphModel"
},
"GraphSettings": {
"properties": {
@@ -8656,22 +8613,26 @@
"input_default": {
"additionalProperties": true,
"type": "object",
"title": "Input Default"
"title": "Input Default",
"default": {}
},
"metadata": {
"additionalProperties": true,
"type": "object",
"title": "Metadata"
"title": "Metadata",
"default": {}
},
"input_links": {
"items": { "$ref": "#/components/schemas/Link" },
"type": "array",
"title": "Input Links"
"title": "Input Links",
"default": []
},
"output_links": {
"items": { "$ref": "#/components/schemas/Link" },
"type": "array",
"title": "Output Links"
"title": "Output Links",
"default": []
}
},
"type": "object",
@@ -8751,22 +8712,26 @@
"input_default": {
"additionalProperties": true,
"type": "object",
"title": "Input Default"
"title": "Input Default",
"default": {}
},
"metadata": {
"additionalProperties": true,
"type": "object",
"title": "Metadata"
"title": "Metadata",
"default": {}
},
"input_links": {
"items": { "$ref": "#/components/schemas/Link" },
"type": "array",
"title": "Input Links"
"title": "Input Links",
"default": []
},
"output_links": {
"items": { "$ref": "#/components/schemas/Link" },
"type": "array",
"title": "Output Links"
"title": "Output Links",
"default": []
},
"graph_id": { "type": "string", "title": "Graph Id" },
"graph_version": { "type": "integer", "title": "Graph Version" },
@@ -12307,9 +12272,7 @@
"title": "Location"
},
"msg": { "type": "string", "title": "Message" },
"type": { "type": "string", "title": "Error Type" },
"input": { "title": "Input" },
"ctx": { "type": "object", "title": "Context" }
"type": { "type": "string", "title": "Error Type" }
},
"type": "object",
"required": ["loc", "msg", "type"],

View File

@@ -362,14 +362,25 @@ export type GraphMeta = {
user_id: UserID;
version: number;
is_active: boolean;
created_at: Date;
name: string;
description: string;
instructions?: string | null;
recommended_schedule_cron: string | null;
forked_from_id?: GraphID | null;
forked_from_version?: number | null;
};
input_schema: GraphInputSchema;
output_schema: GraphOutputSchema;
credentials_input_schema: CredentialsInputSchema;
} & (
| {
has_external_trigger: true;
trigger_setup_info: GraphTriggerInfo;
}
| {
has_external_trigger: false;
trigger_setup_info: null;
}
);
export type GraphID = Brand<string, "GraphID">;
@@ -436,22 +447,11 @@ export type GraphTriggerInfo = {
/* Mirror of backend/data/graph.py:Graph */
export type Graph = GraphMeta & {
created_at: Date;
nodes: Node[];
links: Link[];
sub_graphs: Omit<Graph, "sub_graphs">[]; // Flattened sub-graphs
input_schema: GraphInputSchema;
output_schema: GraphOutputSchema;
credentials_input_schema: CredentialsInputSchema;
} & (
| {
has_external_trigger: true;
trigger_setup_info: GraphTriggerInfo;
}
| {
has_external_trigger: false;
trigger_setup_info: null;
}
);
};
export type GraphUpdateable = Omit<
Graph,