Compare commits

..

11 Commits

Author SHA1 Message Date
Otto
8431fbc33a fix: populate discriminator_values for host-scoped credential matching
- Run black formatter on utils.py
- Add discriminator_values population in _resolve_discriminated_credentials
  so _credential_is_for_host can correctly match host-scoped credentials
2026-02-09 02:32:16 +00:00
Otto
9da7efd17c fix: add missing Credentials import and host-scoped credential check
- Import Credentials type from backend.data.model
- Add host-scoped credential matching to find_matching_credential
  (consistent with match_user_credentials_to_graph)
2026-02-09 00:31:06 +00:00
Otto
2067b969bc Merge dev into cleanup branch
Resolved conflicts:
- routes.py: kept dev version (new stream registry implementation)
- utils.py: merged - kept my new functions, took dev's improved _credential_has_required_scopes
2026-02-08 16:51:23 +00:00
Otto
a538d314ac style: move _credential_has_required_scopes after match_user_credentials_to_graph
Both find_matching_credential and match_user_credentials_to_graph use this
helper, so it belongs after both of them.
2026-02-08 16:40:49 +00:00
Otto
0b4f5083f8 style: reorder credential functions in proper top-down order
High-level functions first, helpers below:
1. match_credentials_to_requirements (main entry point)
2. get_user_credentials
3. find_matching_credential
4. create_credential_meta_from_match
5. _credential_has_required_scopes (lowest-level helper)
2026-02-08 16:40:49 +00:00
Otto
c417d31987 refactor: address Pwuts review feedback
- Remove unused error_response() and format_inputs_as_markdown() from helpers.py
- Remove _get_inputs_list() wrapper from run_agent.py, use get_inputs_from_schema directly
- Fix type annotations: get_user_credentials, find_matching_credential, create_credential_meta_from_match
- Remove check_scopes parameter - always check scopes (original missing check was broken behavior)
- Reorder _credential_has_required_scopes to be defined before find_matching_credential
2026-02-08 16:40:49 +00:00
Otto
38222ef682 fix: enable scope checking for block credentials (consistency with graphs)
Previously run_block didn't check OAuth2 scopes while run_agent did.
Now both use the same scope-checking logic for credential matching.
2026-02-08 16:40:49 +00:00
Otto
37afb8e535 fix: preserve original credential matching behavior
- Add check_scopes parameter to find_matching_credential and
  match_credentials_to_requirements (default True)
- run_block uses check_scopes=False to preserve original behavior
  (original run_block did not verify OAuth2 scopes)
- Add isinstance check to get_inputs_from_schema for safety
  (original returned [] if input_schema wasn't a dict)
2026-02-08 16:40:49 +00:00
Otto
0e1d1893c4 fix(backend): Add retry and error handling to block initialization (#11946)
## Summary
Adds retry logic and graceful error handling to `initialize_blocks()` to
prevent transient DB errors from crashing server startup.

## Problem
When a transient database error occurs during block initialization
(e.g., Prisma P1017 "Server has closed the connection"), the entire
server fails to start. This is overly aggressive since:
1. Blocks are already registered in memory
2. The DB sync is primarily for tracking/schema storage
3. One flaky connection shouldn't prevent the server from starting

**Triggered by:** [Sentry
AUTOGPT-SERVER-7PW](https://significant-gravitas.sentry.io/issues/7238733543/)

## Solution
- Add retry decorator (3 attempts with exponential backoff) for DB
operations
- On failure after retries, log a warning and continue to the next block
- Blocks remain available in memory even if DB sync fails
- Log summary of any failed blocks at the end

## Changes
- `autogpt_platform/backend/backend/data/block.py`: Wrap block DB sync
in retry logic with graceful fallback

## Testing
- Existing block initialization behavior unchanged on success
- On transient DB errors: retries up to 3 times, then continues with
warning
2026-02-08 16:40:49 +00:00
Otto
833b888b85 chore: remove docstrings and use sorted() for deterministic UUID ordering 2026-02-08 16:40:49 +00:00
Otto
531fbc008d refactor(copilot): code cleanup - extract shared helpers and reduce duplication
- Create util/validation.py with UUID validation helpers
- Create tools/helpers.py with shared utilities (get_inputs_from_schema, etc.)
- Add shared credential matching utilities to utils.py
- Refactor run_block to use shared matching with discriminator support
- Extract _create_stream_generator in routes.py
- Update run_agent.py to use shared helpers

Preserves discriminator logic for multi-provider credential matching.
2026-02-08 16:40:49 +00:00
3 changed files with 480 additions and 118 deletions

View File

@@ -1,29 +1,26 @@
"""Chat API routes for chat session management and streaming via SSE."""
import logging
import uuid as uuid_module
from collections.abc import AsyncGenerator
from typing import Annotated
from autogpt_libs import auth
from fastapi import APIRouter, Depends, Query, Security
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Security
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from backend.util.exceptions import NotFoundError
from . import service as chat_service
from . import stream_registry
from .completion_handler import process_operation_failure, process_operation_success
from .config import ChatConfig
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
from .response_model import StreamFinish, StreamHeartbeat, StreamStart
config = ChatConfig()
SSE_RESPONSE_HEADERS = {
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"x-vercel-ai-ui-message-stream": "v1",
}
logger = logging.getLogger(__name__)
@@ -39,48 +36,6 @@ async def _validate_and_get_session(
return session
async def _create_stream_generator(
session_id: str,
message: str,
user_id: str | None,
session: ChatSession,
is_user_message: bool = True,
context: dict[str, str] | None = None,
) -> AsyncGenerator[str, None]:
"""Create SSE event generator for chat streaming."""
chunk_count = 0
first_chunk_type: str | None = None
async for chunk in chat_service.stream_chat_completion(
session_id,
message,
is_user_message=is_user_message,
user_id=user_id,
session=session,
context=context,
):
if chunk_count < 3:
logger.info(
"Chat stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
logger.info(
"Chat stream completed",
extra={
"session_id": session_id,
"chunk_count": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
yield "data: [DONE]\n\n"
router = APIRouter(
tags=["chat"],
)
@@ -104,6 +59,15 @@ class CreateSessionResponse(BaseModel):
user_id: str | None
class ActiveStreamInfo(BaseModel):
"""Information about an active stream for reconnection."""
task_id: str
last_message_id: str # Redis Stream message ID for resumption
operation_id: str # Operation ID for completion tracking
tool_name: str # Name of the tool being executed
class SessionDetailResponse(BaseModel):
"""Response model providing complete details for a chat session, including messages."""
@@ -112,6 +76,7 @@ class SessionDetailResponse(BaseModel):
updated_at: str
user_id: str | None
messages: list[dict]
active_stream: ActiveStreamInfo | None = None # Present if stream is still active
class SessionSummaryResponse(BaseModel):
@@ -130,6 +95,14 @@ class ListSessionsResponse(BaseModel):
total: int
class OperationCompleteRequest(BaseModel):
"""Request model for external completion webhook."""
success: bool
result: dict | str | None = None
error: str | None = None
# ========== Routes ==========
@@ -215,13 +188,14 @@ async def get_session(
Retrieve the details of a specific chat session.
Looks up a chat session by ID for the given user (if authenticated) and returns all session data including messages.
If there's an active stream for this session, returns the task_id for reconnection.
Args:
session_id: The unique identifier for the desired chat session.
user_id: The optional authenticated user ID, or None for anonymous access.
Returns:
SessionDetailResponse: Details for the requested session, or None if not found.
SessionDetailResponse: Details for the requested session, including active_stream info if applicable.
"""
session = await get_chat_session(session_id, user_id)
@@ -229,11 +203,28 @@ async def get_session(
raise NotFoundError(f"Session {session_id} not found.")
messages = [message.model_dump() for message in session.messages]
logger.info(
f"Returning session {session_id}: "
f"message_count={len(messages)}, "
f"roles={[m.get('role') for m in messages]}"
# Check if there's an active stream for this session
active_stream_info = None
active_task, last_message_id = await stream_registry.get_active_task_for_session(
session_id, user_id
)
if active_task:
# Filter out the in-progress assistant message from the session response.
# The client will receive the complete assistant response through the SSE
# stream replay instead, preventing duplicate content.
if messages and messages[-1].get("role") == "assistant":
messages = messages[:-1]
# Use "0-0" as last_message_id to replay the stream from the beginning.
# Since we filtered out the cached assistant message, the client needs
# the full stream to reconstruct the response.
active_stream_info = ActiveStreamInfo(
task_id=active_task.task_id,
last_message_id="0-0",
operation_id=active_task.operation_id,
tool_name=active_task.tool_name,
)
return SessionDetailResponse(
id=session.session_id,
@@ -241,6 +232,7 @@ async def get_session(
updated_at=session.updated_at.isoformat(),
user_id=session.user_id or None,
messages=messages,
active_stream=active_stream_info,
)
@@ -260,27 +252,122 @@ async def stream_chat_post(
- Tool call UI elements (if invoked)
- Tool execution results
The AI generation runs in a background task that continues even if the client disconnects.
All chunks are written to Redis for reconnection support. If the client disconnects,
they can reconnect using GET /tasks/{task_id}/stream to resume from where they left off.
Args:
session_id: The chat session identifier to associate with the streamed messages.
request: Request body containing message, is_user_message, and optional context.
user_id: Optional authenticated user ID.
Returns:
StreamingResponse: SSE-formatted response chunks.
StreamingResponse: SSE-formatted response chunks. First chunk is a "start" event
containing the task_id for reconnection.
"""
import asyncio
session = await _validate_and_get_session(session_id, user_id)
# Create a task in the stream registry for reconnection support
task_id = str(uuid_module.uuid4())
operation_id = str(uuid_module.uuid4())
await stream_registry.create_task(
task_id=task_id,
session_id=session_id,
user_id=user_id,
tool_call_id="chat_stream", # Not a tool call, but needed for the model
tool_name="chat",
operation_id=operation_id,
)
# Background task that runs the AI generation independently of SSE connection
async def run_ai_generation():
try:
# Emit a start event with task_id for reconnection
start_chunk = StreamStart(messageId=task_id, taskId=task_id)
await stream_registry.publish_chunk(task_id, start_chunk)
async for chunk in chat_service.stream_chat_completion(
session_id,
request.message,
is_user_message=request.is_user_message,
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
context=request.context,
):
# Write to Redis (subscribers will receive via XREAD)
await stream_registry.publish_chunk(task_id, chunk)
# Mark task as completed
await stream_registry.mark_task_completed(task_id, "completed")
except Exception as e:
logger.error(
f"Error in background AI generation for session {session_id}: {e}"
)
await stream_registry.mark_task_completed(task_id, "failed")
# Start the AI generation in a background task
bg_task = asyncio.create_task(run_ai_generation())
await stream_registry.set_task_asyncio_task(task_id, bg_task)
# SSE endpoint that subscribes to the task's stream
async def event_generator() -> AsyncGenerator[str, None]:
subscriber_queue = None
try:
# Subscribe to the task stream (this replays existing messages + live updates)
subscriber_queue = await stream_registry.subscribe_to_task(
task_id=task_id,
user_id=user_id,
last_message_id="0-0", # Get all messages from the beginning
)
if subscriber_queue is None:
yield StreamFinish().to_sse()
yield "data: [DONE]\n\n"
return
# Read from the subscriber queue and yield to SSE
while True:
try:
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
yield chunk.to_sse()
# Check for finish signal
if isinstance(chunk, StreamFinish):
break
except asyncio.TimeoutError:
# Send heartbeat to keep connection alive
yield StreamHeartbeat().to_sse()
except GeneratorExit:
pass # Client disconnected - background task continues
except Exception as e:
logger.error(f"Error in SSE stream for task {task_id}: {e}")
finally:
# Unsubscribe when client disconnects or stream ends to prevent resource leak
if subscriber_queue is not None:
try:
await stream_registry.unsubscribe_from_task(
task_id, subscriber_queue
)
except Exception as unsub_err:
logger.error(
f"Error unsubscribing from task {task_id}: {unsub_err}",
exc_info=True,
)
# AI SDK protocol termination - always yield even if unsubscribe fails
yield "data: [DONE]\n\n"
return StreamingResponse(
_create_stream_generator(
session_id=session_id,
message=request.message,
user_id=user_id,
session=session,
is_user_message=request.is_user_message,
context=request.context,
),
event_generator(),
media_type="text/event-stream",
headers=SSE_RESPONSE_HEADERS,
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no", # Disable nginx buffering
"x-vercel-ai-ui-message-stream": "v1", # AI SDK protocol header
},
)
@@ -312,16 +399,48 @@ async def stream_chat_get(
"""
session = await _validate_and_get_session(session_id, user_id)
return StreamingResponse(
_create_stream_generator(
session_id=session_id,
message=message,
user_id=user_id,
session=session,
async def event_generator() -> AsyncGenerator[str, None]:
chunk_count = 0
first_chunk_type: str | None = None
async for chunk in chat_service.stream_chat_completion(
session_id,
message,
is_user_message=is_user_message,
),
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
):
if chunk_count < 3:
logger.info(
"Chat stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
logger.info(
"Chat stream completed",
extra={
"session_id": session_id,
"chunk_count": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
# AI SDK protocol termination
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers=SSE_RESPONSE_HEADERS,
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no", # Disable nginx buffering
"x-vercel-ai-ui-message-stream": "v1", # AI SDK protocol header
},
)
@@ -351,6 +470,251 @@ async def session_assign_user(
return {"status": "ok"}
# ========== Task Streaming (SSE Reconnection) ==========
@router.get(
"/tasks/{task_id}/stream",
)
async def stream_task(
task_id: str,
user_id: str | None = Depends(auth.get_user_id),
last_message_id: str = Query(
default="0-0",
description="Last Redis Stream message ID received (e.g., '1706540123456-0'). Use '0-0' for full replay.",
),
):
"""
Reconnect to a long-running task's SSE stream.
When a long-running operation (like agent generation) starts, the client
receives a task_id. If the connection drops, the client can reconnect
using this endpoint to resume receiving updates.
Args:
task_id: The task ID from the operation_started response.
user_id: Authenticated user ID for ownership validation.
last_message_id: Last Redis Stream message ID received ("0-0" for full replay).
Returns:
StreamingResponse: SSE-formatted response chunks starting after last_message_id.
Raises:
HTTPException: 404 if task not found, 410 if task expired, 403 if access denied.
"""
# Check task existence and expiry before subscribing
task, error_code = await stream_registry.get_task_with_expiry_info(task_id)
if error_code == "TASK_EXPIRED":
raise HTTPException(
status_code=410,
detail={
"code": "TASK_EXPIRED",
"message": "This operation has expired. Please try again.",
},
)
if error_code == "TASK_NOT_FOUND":
raise HTTPException(
status_code=404,
detail={
"code": "TASK_NOT_FOUND",
"message": f"Task {task_id} not found.",
},
)
# Validate ownership if task has an owner
if task and task.user_id and user_id != task.user_id:
raise HTTPException(
status_code=403,
detail={
"code": "ACCESS_DENIED",
"message": "You do not have access to this task.",
},
)
# Get subscriber queue from stream registry
subscriber_queue = await stream_registry.subscribe_to_task(
task_id=task_id,
user_id=user_id,
last_message_id=last_message_id,
)
if subscriber_queue is None:
raise HTTPException(
status_code=404,
detail={
"code": "TASK_NOT_FOUND",
"message": f"Task {task_id} not found or access denied.",
},
)
async def event_generator() -> AsyncGenerator[str, None]:
import asyncio
heartbeat_interval = 15.0 # Send heartbeat every 15 seconds
try:
while True:
try:
# Wait for next chunk with timeout for heartbeats
chunk = await asyncio.wait_for(
subscriber_queue.get(), timeout=heartbeat_interval
)
yield chunk.to_sse()
# Check for finish signal
if isinstance(chunk, StreamFinish):
break
except asyncio.TimeoutError:
# Send heartbeat to keep connection alive
yield StreamHeartbeat().to_sse()
except Exception as e:
logger.error(f"Error in task stream {task_id}: {e}", exc_info=True)
finally:
# Unsubscribe when client disconnects or stream ends
try:
await stream_registry.unsubscribe_from_task(task_id, subscriber_queue)
except Exception as unsub_err:
logger.error(
f"Error unsubscribing from task {task_id}: {unsub_err}",
exc_info=True,
)
# AI SDK protocol termination - always yield even if unsubscribe fails
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"x-vercel-ai-ui-message-stream": "v1",
},
)
@router.get(
"/tasks/{task_id}",
)
async def get_task_status(
task_id: str,
user_id: str | None = Depends(auth.get_user_id),
) -> dict:
"""
Get the status of a long-running task.
Args:
task_id: The task ID to check.
user_id: Authenticated user ID for ownership validation.
Returns:
dict: Task status including task_id, status, tool_name, and operation_id.
Raises:
NotFoundError: If task_id is not found or user doesn't have access.
"""
task = await stream_registry.get_task(task_id)
if task is None:
raise NotFoundError(f"Task {task_id} not found.")
# Validate ownership - if task has an owner, requester must match
if task.user_id and user_id != task.user_id:
raise NotFoundError(f"Task {task_id} not found.")
return {
"task_id": task.task_id,
"session_id": task.session_id,
"status": task.status,
"tool_name": task.tool_name,
"operation_id": task.operation_id,
"created_at": task.created_at.isoformat(),
}
# ========== External Completion Webhook ==========
@router.post(
"/operations/{operation_id}/complete",
status_code=200,
)
async def complete_operation(
operation_id: str,
request: OperationCompleteRequest,
x_api_key: str | None = Header(default=None),
) -> dict:
"""
External completion webhook for long-running operations.
Called by Agent Generator (or other services) when an operation completes.
This triggers the stream registry to publish completion and continue LLM generation.
Args:
operation_id: The operation ID to complete.
request: Completion payload with success status and result/error.
x_api_key: Internal API key for authentication.
Returns:
dict: Status of the completion.
Raises:
HTTPException: If API key is invalid or operation not found.
"""
# Validate internal API key - reject if not configured or invalid
if not config.internal_api_key:
logger.error(
"Operation complete webhook rejected: CHAT_INTERNAL_API_KEY not configured"
)
raise HTTPException(
status_code=503,
detail="Webhook not available: internal API key not configured",
)
if x_api_key != config.internal_api_key:
raise HTTPException(status_code=401, detail="Invalid API key")
# Find task by operation_id
task = await stream_registry.find_task_by_operation_id(operation_id)
if task is None:
raise HTTPException(
status_code=404,
detail=f"Operation {operation_id} not found",
)
logger.info(
f"Received completion webhook for operation {operation_id} "
f"(task_id={task.task_id}, success={request.success})"
)
if request.success:
await process_operation_success(task, request.result)
else:
await process_operation_failure(task, request.error)
return {"status": "ok", "task_id": task.task_id}
# ========== Configuration ==========
@router.get("/config/ttl", status_code=200)
async def get_ttl_config() -> dict:
"""
Get the stream TTL configuration.
Returns the Time-To-Live settings for chat streams, which determines
how long clients can reconnect to an active stream.
Returns:
dict: TTL configuration with seconds and milliseconds values.
"""
return {
"stream_ttl_seconds": config.stream_ttl,
"stream_ttl_ms": config.stream_ttl * 1000,
}
# ========== Health Check ==========

View File

@@ -106,6 +106,9 @@ class RunBlockTool(BaseTool):
and discriminator_value in field_info.discriminator_mapping
):
effective_field_info = field_info.discriminate(discriminator_value)
# For host-scoped credentials, add the discriminator value
# (e.g., URL) so _credential_is_for_host can match it
effective_field_info.discriminator_values.add(discriminator_value)
logger.debug(
f"Discriminated provider for {field_name}: "
f"{discriminator_value} -> {effective_field_info.provider}"

View File

@@ -8,6 +8,7 @@ from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data.graph import GraphModel
from backend.data.model import (
Credentials,
CredentialsFieldInfo,
CredentialsMetaInput,
HostScopedCredentials,
@@ -223,54 +224,14 @@ async def get_or_create_library_agent(
return library_agents[0]
async def get_user_credentials(user_id: str) -> list:
"""Get all available credentials for a user."""
creds_manager = IntegrationCredentialsManager()
return await creds_manager.store.get_all_creds(user_id)
def find_matching_credential(
available_creds: list,
field_info: CredentialsFieldInfo,
check_scopes: bool = True,
):
"""Find a credential that matches the required provider, type, and optionally scopes."""
for cred in available_creds:
if cred.provider not in field_info.provider:
continue
if cred.type not in field_info.supported_types:
continue
if check_scopes and not _credential_has_required_scopes(cred, field_info):
continue
return cred
return None
def create_credential_meta_from_match(matching_cred) -> CredentialsMetaInput:
"""Create a CredentialsMetaInput from a matched credential."""
return CredentialsMetaInput(
id=matching_cred.id,
provider=matching_cred.provider, # type: ignore
type=matching_cred.type,
title=matching_cred.title,
)
async def match_credentials_to_requirements(
user_id: str,
requirements: dict[str, CredentialsFieldInfo],
check_scopes: bool = True,
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Match user's credentials against a dictionary of credential requirements.
This is the core matching logic shared by both graph and block credential matching.
Args:
user_id: User ID to fetch credentials for
requirements: Dict mapping field names to CredentialsFieldInfo
check_scopes: Whether to verify OAuth2 scopes match requirements (default True).
Set to False to preserve original run_block behavior which didn't check scopes.
"""
matched: dict[str, CredentialsMetaInput] = {}
missing: list[CredentialsMetaInput] = []
@@ -281,9 +242,7 @@ async def match_credentials_to_requirements(
available_creds = await get_user_credentials(user_id)
for field_name, field_info in requirements.items():
matching_cred = find_matching_credential(
available_creds, field_info, check_scopes=check_scopes
)
matching_cred = find_matching_credential(available_creds, field_info)
if matching_cred:
try:
@@ -320,6 +279,44 @@ async def match_credentials_to_requirements(
return matched, missing
async def get_user_credentials(user_id: str) -> list[Credentials]:
"""Get all available credentials for a user."""
creds_manager = IntegrationCredentialsManager()
return await creds_manager.store.get_all_creds(user_id)
def find_matching_credential(
available_creds: list[Credentials],
field_info: CredentialsFieldInfo,
) -> Credentials | None:
"""Find a credential that matches the required provider, type, scopes, and host."""
for cred in available_creds:
if cred.provider not in field_info.provider:
continue
if cred.type not in field_info.supported_types:
continue
if cred.type == "oauth2" and not _credential_has_required_scopes(
cred, field_info
):
continue
if cred.type == "host_scoped" and not _credential_is_for_host(cred, field_info):
continue
return cred
return None
def create_credential_meta_from_match(
matching_cred: Credentials,
) -> CredentialsMetaInput:
"""Create a CredentialsMetaInput from a matched credential."""
return CredentialsMetaInput(
id=matching_cred.id,
provider=matching_cred.provider, # type: ignore
type=matching_cred.type,
title=matching_cred.title,
)
async def match_user_credentials_to_graph(
user_id: str,
graph: GraphModel,
@@ -428,8 +425,6 @@ def _credential_has_required_scopes(
# If no scopes are required, any credential matches
if not requirements.required_scopes:
return True
# Check that credential scopes are a superset of required scopes
return set(credential.scopes).issuperset(requirements.required_scopes)