Compare commits

...

17 Commits

Author SHA1 Message Date
Zamil Majdy
ba13606e3d chore(platform/copilot): merge dev - move chat tools to backend/copilot module
Resolves merge conflict from directory rename:
- backend/api/features/chat/tools/ → backend/copilot/tools/
- Updated create_agent_test.py imports and patch paths to new module location
2026-02-18 17:59:29 +05:30
Reinier van der Leer
d23248f065 feat(backend/copilot): Copilot Executor Microservice (#12057)
Uncouple Copilot task execution from the REST API server. This should
help performance and scalability, and allows task execution to continue
regardless of the state of the user's connection.

- Resolves #12023

### Changes 🏗️

- Add `backend.copilot.executor`->`CoPilotExecutor` (setup similar to
`backend.executor`->`ExecutionManager`).

This executor service uses RabbitMQ-based task distribution, and sticks
with the existing Redis Streams setup for task output. It uses a cluster
lock mechanism to ensure a task is only executed by one pod, and the
`DatabaseManager` for pooled DB access.

- Add `backend.data.db_accessors` for automatic choice of direct/proxied
DB access

Chat requests now flow: API → RabbitMQ → CoPilot Executor → Redis
Streams → SSE Client. This enables horizontal scaling of chat processing
and isolates long-running LLM operations from the API service.

- Move non-API Copilot stuff into `backend.copilot` (from
`backend.api.features.chat`)
  - Updated import paths for all usages

- Move `backend.executor.database` to `backend.data.db_manager` and add
methods for copilot executor
  - Updated import paths for all usages
- Make `backend.copilot.db` RPC-compatible (-> DB ops return ~~Prisma~~
Pydantic models)
  - Make `backend.data.workspace` RPC-compatible
  - Make `backend.data.graphs.get_store_listed_graphs` RPC-compatible

DX:
- Add `copilot_executor` service to Docker setup

Config:
- Add `Config.num_copilot_workers` (default 5) and
`Config.copilot_executor_port` (default 8008)
- Remove unused `Config.agent_server_port`

> [!WARNING]
> **This change adds a new microservice to the system, with entrypoint
`backend.copilot.executor`.**
> The `docker compose` setup has been updated, but if you run the
Platform on something else, you'll have to update your deployment config
to include this new service.
>
> When running locally, the `CoPilotExecutor` uses port 8008 by default.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Copilot works
    - [x] Processes messages when triggered
    - [x] Can use its tools

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
2026-02-17 16:15:28 +00:00
Bently
905373a712 fix(frontend): use singleton Shiki highlighter for code syntax highlighting (#12144)
## Summary
Addresses SENTRY-1051: Shiki warning about multiple highlighter
instances.

## Problem
The `@streamdown/code` package creates a **new Shiki highlighter for
each language** encountered. When users view AI chat responses with code
blocks in multiple languages (JavaScript, Python, JSON, YAML, etc.),
this creates 10+ highlighter instances, triggering Shiki's warning:

> "10 instances have been created. Shiki is supposed to be used as a
singleton, consider refactoring your code to cache your highlighter
instance"

This causes memory bloat and performance degradation.

## Solution
Introduced a custom code highlighting plugin that properly implements
the singleton pattern:

### New files:
- `src/lib/shiki-highlighter.ts` - Singleton highlighter management
- `src/lib/streamdown-code-plugin.ts` - Drop-in replacement for
`@streamdown/code`

### Key features:
- **Single shared highlighter** - One instance serves all code blocks
- **Preloaded common languages** - JS, TS, Python, JSON, Bash, YAML,
etc.
- **Lazy loading** - Additional languages loaded on demand
- **Result caching** - Avoids re-highlighting identical code blocks

### Changes:
- Added `shiki` as direct dependency
- Updated `message.tsx` to use the new plugin

## Testing
- [ ] Verify code blocks render correctly in AI chat
- [ ] Confirm no Shiki singleton warnings in console
- [ ] Test with multiple languages in same conversation

## Related
- Linear: SENTRY-1051
- Sentry: Multiple Shiki instances warning

<!-- greptile_comment -->

<details><summary><h3>Greptile Summary</h3></summary>

Replaced `@streamdown/code` with a custom singleton-based Shiki
highlighter implementation to resolve memory bloat from creating
multiple highlighter instances per language. The new implementation
creates a single shared highlighter with preloaded common languages (JS,
TS, Python, JSON, etc.) and lazy-loads additional languages on demand.
Results are cached to avoid re-highlighting identical code blocks.

**Key changes:**
- Added `shiki` v3.21.0 as a direct dependency
- Created `shiki-highlighter.ts` with singleton pattern and language
management utilities
- Created `streamdown-code-plugin.ts` as a drop-in replacement for
`@streamdown/code`
- Updated `message.tsx` to import from the new plugin instead of
`@streamdown/code`

The implementation follows React best practices with async highlighting
and callback-based notifications. The cache key uses code length +
prefix/suffix for efficient lookups on large code blocks.
</details>


<details><summary><h3>Confidence Score: 4/5</h3></summary>

- Safe to merge with minor considerations for edge cases
- The implementation is solid with proper singleton pattern, caching,
and async handling. The code is well-structured and addresses the stated
problem. However, there's a subtle potential race condition in the
callback handling where multiple concurrent requests for the same cache
key could trigger duplicate highlight operations before the first
completes. The cache key generation using prefix/suffix could
theoretically cause false cache hits for large files with identical
prefixes and suffixes. Despite these edge cases, the implementation
should work correctly for the vast majority of use cases.
- No files require special attention
</details>


<details><summary><h3>Sequence Diagram</h3></summary>

```mermaid
sequenceDiagram
    participant UI as Streamdown Component
    participant Plugin as Custom Code Plugin
    participant Cache as Token Cache
    participant Singleton as Shiki Highlighter (Singleton)
    participant Callbacks as Pending Callbacks

    UI->>Plugin: highlight(code, lang)
    Plugin->>Cache: Check cache key
    
    alt Cache hit
        Cache-->>Plugin: Return cached result
        Plugin-->>UI: Return highlighted tokens
    else Cache miss
        Plugin->>Callbacks: Register callback
        Plugin->>Singleton: Get highlighter instance
        
        alt First call
            Singleton->>Singleton: Create highlighter with preloaded languages
        end
        
        Singleton-->>Plugin: Return highlighter
        
        alt Language not loaded
            Plugin->>Singleton: Load language dynamically
        end
        
        Plugin->>Singleton: codeToTokens(code, lang, themes)
        Singleton-->>Plugin: Return tokens
        Plugin->>Cache: Store result
        Plugin->>Callbacks: Notify all waiting callbacks
        Callbacks-->>UI: Async callback with result
    end
```
</details>


<sub>Last reviewed commit: 96c793b</sub>

<!-- greptile_other_comments_section -->

<!-- /greptile_comment -->
2026-02-17 12:15:53 +00:00
Otto
ee9d39bc0f refactor(copilot): Replace legacy delete dialog with molecules/Dialog (#12136)
## Summary
Updates the session delete confirmation in CoPilot to use the new
`Dialog` component from `molecules/Dialog` instead of the legacy
`DeleteConfirmDialog`.

## Changes
- **ChatSidebar**: Use Dialog component for delete confirmation
(desktop)
- **CopilotPage**: Use Dialog component for delete confirmation (mobile)

## Behavior
- Dialog stays **open** during deletion with loading state on button
- Cancel button **disabled** while delete is in progress
- Delete button shows **loading spinner** during deletion
- Dialog only closes on successful delete or when cancel is clicked (if
not deleting)

## Screenshots
*Dialog uses the same styling as other molecules/Dialog instances in the
app*

## Requested by
@0ubbe

<!-- greptile_comment -->

<details><summary><h3>Greptile Summary</h3></summary>

Replaces the legacy `DeleteConfirmDialog` component with the new
`molecules/Dialog` component for session delete confirmations in both
desktop (ChatSidebar) and mobile (CopilotPage) views. The new
implementation maintains the same behavior: dialog stays open during
deletion with a loading state on the delete button and disabled cancel
button, closing only on successful deletion or cancel click.
</details>


<details><summary><h3>Confidence Score: 5/5</h3></summary>

- This PR is safe to merge with minimal risk
- This is a straightforward component replacement that maintains the
same behavior and UX. The Dialog component API is properly used with
controlled state, the loading states are correctly implemented, and both
mobile and desktop views are handled consistently. The changes are
well-tested patterns used elsewhere in the codebase.
- No files require special attention
</details>


<details><summary><h3>Flowchart</h3></summary>

```mermaid
flowchart TD
    A[User clicks delete button] --> B{isMobile?}
    B -->|Yes| C[CopilotPage Dialog]
    B -->|No| D[ChatSidebar Dialog]
    
    C --> E[Set sessionToDelete state]
    D --> E
    
    E --> F[Dialog opens with controlled.isOpen]
    F --> G{User action?}
    
    G -->|Cancel| H{isDeleting?}
    H -->|No| I[handleCancelDelete: setSessionToDelete null]
    H -->|Yes| J[Cancel button disabled]
    
    G -->|Confirm Delete| K[handleConfirmDelete called]
    K --> L[deleteSession mutation]
    L --> M[isDeleting = true]
    M --> N[Button shows loading spinner]
    M --> O[Cancel button disabled]
    
    L --> P{Mutation result?}
    P -->|Success| Q[Invalidate sessions query]
    Q --> R[Clear sessionId if current]
    R --> S[setSessionToDelete null]
    S --> T[Dialog closes]
    
    P -->|Error| U[Show toast error]
    U --> V[setSessionToDelete null]
    V --> W[Dialog closes]
```
</details>


<sub>Last reviewed commit: 275950c</sub>

<!-- greptile_other_comments_section -->

<!-- /greptile_comment -->

---------

Co-authored-by: Lluis Agusti <hi@llu.lu>
Co-authored-by: Ubbe <hi@ubbe.dev>
2026-02-17 19:12:27 +07:00
Swifty
05aaf7a85e fix(backend): Rename LINEAR_API_KEY to COPILOT_LINEAR_API_KEY to prevent global access (#12143)
The `LINEAR_API_KEY` environment variable name is too generic — it
matches the key name used by integrations/blocks, meaning that if set
globally, it could inadvertently grant all users access to Linear
through the blocks system rather than restricting it to the copilot
feature-request tool.

This renames the setting to `COPILOT_LINEAR_API_KEY` to make it clear
this key is scoped exclusively to the copilot's feature-request
functionality, preventing it from being picked up as a general-purpose
Linear credential.

### Changes 🏗️

- Renamed `linear_api_key` → `copilot_linear_api_key` in `Secrets`
settings model (`backend/util/settings.py`)
- Updated all references in the copilot feature-request tool
(`backend/api/features/chat/tools/feature_requests.py`)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified the rename is consistent across all references (settings
+ feature_requests tool)
  - [x] No other files reference the old `linear_api_key` setting name

#### For configuration changes:
- [x] `.env.default` is updated or already compatible with my changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

> **Note:** The env var changes from `LINEAR_API_KEY` to
`COPILOT_LINEAR_API_KEY`. Any deployment using the old name will need to
update accordingly.

<!-- greptile_comment -->

<details><summary><h3>Greptile Summary</h3></summary>

Renamed `LINEAR_API_KEY` to `COPILOT_LINEAR_API_KEY` in settings and the
copilot feature-request tool to prevent unintended access through Linear
blocks.

**Key changes:**
- Updated `Secrets.linear_api_key` → `Secrets.copilot_linear_api_key` in
`backend/util/settings.py`
- Updated all references in
`backend/api/features/chat/tools/feature_requests.py`
- The rename prevents the copilot Linear key from being picked up by the
Linear blocks integration (which uses `LINEAR_API_KEY` via
`ProviderBuilder` in `backend/blocks/linear/_config.py`)

**Issues found:**
- `.env.default` still references `LINEAR_API_KEY` instead of
`COPILOT_LINEAR_API_KEY`
- Frontend styleguide has a hardcoded error message with the old
variable name
</details>


<details><summary><h3>Confidence Score: 3/5</h3></summary>

- Generally safe but requires fixing `.env.default` before deployment
- The code changes are correct and achieve the intended security
improvement by preventing scope leakage. However, the PR is incomplete -
`.env.default` wasn't updated (critical for deployment) and a frontend
error message reference was missed. These issues will cause
configuration problems for anyone deploying with the new variable name.
- Check `autogpt_platform/backend/.env.default` and
`autogpt_platform/frontend/src/app/(platform)/copilot/styleguide/page.tsx`
- both need updates to match the renamed variable
</details>


<details><summary><h3>Flowchart</h3></summary>

```mermaid
flowchart TD
    A[".env file<br/>COPILOT_LINEAR_API_KEY"] --> B["Secrets model<br/>copilot_linear_api_key"]
    B --> C["feature_requests.py<br/>_get_linear_config()"]
    C --> D["Creates APIKeyCredentials<br/>for copilot feature requests"]
    
    E[".env file<br/>LINEAR_API_KEY"] --> F["ProviderBuilder<br/>in blocks/linear/_config.py"]
    F --> G["Linear blocks integration<br/>for user workflows"]
    
    style A fill:#90EE90
    style B fill:#90EE90
    style C fill:#90EE90
    style D fill:#90EE90
    style E fill:#FFD700
    style F fill:#FFD700
    style G fill:#FFD700
```
</details>


<sub>Last reviewed commit: 86dc57a</sub>

<!-- greptile_other_comments_section -->

<!-- /greptile_comment -->
2026-02-17 11:16:43 +01:00
Zamil Majdy
c12894698e fix(platform/copilot): add SuggestedGoalResponse to ToolResponseUnion for OpenAPI schema
Adds SuggestedGoalResponse to the ToolResponseUnion in routes.py so it is
included in the generated OpenAPI schema. Regenerates openapi.json from the
live backend spec.
2026-02-17 12:22:16 +04:00
Zamil Majdy
2f37aeec12 feat(platform/copilot): add SuggestedGoalResponse for vague/unachievable goals
- Add SUGGESTED_GOAL response type and SuggestedGoalResponse model to backend
- Return SuggestedGoalResponse instead of ErrorResponse for vague/unachievable goals
- Update system prompt with guidance for suggested_goal and clarifying_questions feedback loops
- Add SuggestedGoalCard frontend component with amber styling and "Use this goal" button
- Add error recovery buttons ("Try again", "Simplify goal") to error output
- Update openapi.json and frontend helpers/type guards for the new response type
- Add create_agent_test.py covering all decomposition result types
2026-02-17 11:57:36 +04:00
Reinier van der Leer
9d4dcbd9e0 fix(backend/docker): Make server last (= default) build stage
Without specifying an explicit build target it would build the `migrate` stage because it is the last stage in the Dockerfile. This caused deployment failures.

- Follow-up to #12124 and 074be7ae
2026-02-16 14:49:30 +01:00
Reinier van der Leer
074be7aea6 fix(backend/docker): Update run commands to match deployment
- Follow-up to #12124

Changes:
- Update `run` commands for all backend services in `docker-compose.platform.yml` to match the deployment commands used in production
- Add trigger on `docker-compose(.platform)?.yml` changes to the Frontend CI workflow
2026-02-16 14:23:29 +01:00
Otto
39d28b24fc ci(backend): Upgrade RabbitMQ from 3.12 (EOL) to 4.1.4 (#12118)
## Summary
Upgrades RabbitMQ from the end-of-life `rabbitmq:3.12-management` to
`rabbitmq:4.1.4`, aligning CI, local dev, and e2e testing with
production.

## Changes

### CI Workflow (`.github/workflows/platform-backend-ci.yml`)
- **Image:** `rabbitmq:3.12-management` → `rabbitmq:4.1.4`
- **Port:** Removed 15672 (management UI) — not used
- **Health check:** Added to prevent flaky tests from race conditions
during startup

### Docker Compose (`docker-compose.platform.yml`,
`docker-compose.test.yaml`)
- **Image:** `rabbitmq:management` → `rabbitmq:4.1.4`
- **Port:** Removed 15672 (management UI) — not used

## Why
- RabbitMQ 3.12 is EOL
- We don't use the management interface, so `-management` variant is
unnecessary
- CI and local dev/e2e should match production (4.1.4)

## Testing
CI validates that backend tests pass against RabbitMQ 4.1.4 on Python
3.11, 3.12, and 3.13.

---
Closes SECRT-1703
2026-02-16 12:45:39 +00:00
Reinier van der Leer
bf79a7748a fix(backend/build): Update stale Poetry usage in Dockerfile (#12124)
[SECRT-2006: Dev deployment failing: poetry not found in container
PATH](https://linear.app/autogpt/issue/SECRT-2006)

- Follow-up to #12090

### Changes 🏗️

- Remove now-broken Poetry path config values
- Remove usage of now-broken `poetry run` in container run command
- Add trigger on `backend/Dockerfile` changes to Frontend CI workflow

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - If it works, CI will pass
2026-02-16 13:54:20 +01:00
Otto
649d4ab7f5 feat(chat): Add delete chat session endpoint and UI (#12112)
## Summary

Adds the ability to delete chat sessions from the CoPilot interface.

## Changes

### Backend
- Add `DELETE /api/chat/sessions/{session_id}` endpoint in `routes.py`
- Returns 204 on success, 404 if not found or not owned by user
- Reuses existing `delete_chat_session` function from `model.py`

### Frontend
- Add delete button (trash icon) that appears on hover for each chat
session
- Add confirmation dialog before deletion using existing
`DeleteConfirmDialog` component
- Refresh session list after successful delete
- Clear current session selection if the deleted session was active
- Update OpenAPI spec with new endpoint

## Testing

1. Hover over a chat session in sidebar → trash icon appears
2. Click trash icon → confirmation dialog
3. Confirm deletion → session removed, list refreshes
4. If deleted session was active, selection is cleared

## Screenshots

Delete button appears on hover, confirmation dialog on click.

## Related Issues

Closes SECRT-1928

<!-- greptile_comment -->

<h2>Greptile Overview</h2>

<details><summary><h3>Greptile Summary</h3></summary>

Adds the ability to delete chat sessions from the CoPilot interface — a
new `DELETE /api/chat/sessions/{session_id}` backend endpoint and a
corresponding delete button with confirmation dialog in the
`ChatSidebar` frontend component.

- **Backend route** (`routes.py`): Clean implementation reusing the
existing `delete_chat_session` model function with proper auth guards
and 204/404 responses. No issues.
- **Frontend** (`ChatSidebar.tsx`): Adds hover-visible trash icon per
session, confirmation dialog, mutation with cache invalidation, and
active session clearing on delete. However, it uses a `__legacy__`
component (`DeleteConfirmDialog`) which violates the project's style
guide — new code should use the modern design system components. Error
handling only logs to console without user-facing feedback (project
convention is to use toast notifications for mutation errors).
`isDeleting` is destructured but unused.
- **OpenAPI spec** updated correctly.
- **Unrelated file included**:
`notes/plan-SECRT-1959-graph-edge-desync.md` is a planning document for
a different ticket and should be removed from this PR. The `notes/`
directory is newly introduced and both plan files should be reconsidered
for inclusion.
</details>


<details><summary><h3>Confidence Score: 3/5</h3></summary>

- Functionally correct but has style guide violations and includes
unrelated files that should be addressed before merge.
- The core feature implementation (backend DELETE endpoint and frontend
mutation logic) is sound and follows existing patterns. Score is lowered
because: (1) the frontend uses a legacy component explicitly prohibited
by the project's style guide, (2) mutation errors are not surfaced to
the user, and (3) the PR includes an unrelated planning document for a
different ticket.
- Pay close attention to `ChatSidebar.tsx` for the legacy component
import and error handling, and
`notes/plan-SECRT-1959-graph-edge-desync.md` which should be removed.
</details>


<details><summary><h3>Sequence Diagram</h3></summary>

```mermaid
sequenceDiagram
    participant User
    participant ChatSidebar as ChatSidebar (Frontend)
    participant ReactQuery as React Query
    participant API as DELETE /api/chat/sessions/{id}
    participant Model as model.delete_chat_session
    participant DB as db.delete_chat_session (Prisma)
    participant Redis as Redis Cache

    User->>ChatSidebar: Click trash icon on session
    ChatSidebar->>ChatSidebar: Show DeleteConfirmDialog
    User->>ChatSidebar: Confirm deletion
    ChatSidebar->>ReactQuery: deleteSession({ sessionId })
    ReactQuery->>API: DELETE /api/chat/sessions/{session_id}
    API->>Model: delete_chat_session(session_id, user_id)
    Model->>DB: delete_many(where: {id, userId})
    DB-->>Model: bool (deleted count > 0)
    Model->>Redis: Delete session cache key
    Model->>Model: Clean up session lock
    Model-->>API: True
    API-->>ReactQuery: 204 No Content
    ReactQuery->>ChatSidebar: onSuccess callback
    ChatSidebar->>ReactQuery: invalidateQueries(sessions list)
    ChatSidebar->>ChatSidebar: Clear sessionId if deleted was active
```
</details>


<sub>Last reviewed commit: 44a92c6</sub>

<!-- greptile_other_comments_section -->

<details><summary><h4>Context used (3)</h4></summary>

- Context from `dashboard` - autogpt_platform/frontend/CLAUDE.md
([source](https://app.greptile.com/review/custom-context?memory=39861924-d320-41ba-a1a7-a8bff44f780a))
- Context from `dashboard` - autogpt_platform/frontend/CONTRIBUTING.md
([source](https://app.greptile.com/review/custom-context?memory=cc4f1b17-cb5c-4b63-b218-c772b48e20ee))
- Context from `dashboard` - autogpt_platform/CLAUDE.md
([source](https://app.greptile.com/review/custom-context?memory=6e9dc5dc-8942-47df-8677-e60062ec8c3a))
</details>


<!-- /greptile_comment -->

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
2026-02-16 12:19:18 +00:00
Ubbe
223df9d3da feat(frontend): improve create/edit copilot UX (#12117)
## Changes 🏗️

Make the UX nicer when running long tasks in Copilot, like creating an
agent, editing it or running a task.

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run locally and play the game!

<!-- greptile_comment -->

<details><summary><h3>Greptile Summary</h3></summary>

This PR replaces the static progress bar and idle wait screens with an
interactive mini-game across the Create, Edit, and Run Agent copilot
tools. The existing mini-game (a simple runner with projectile-dodge
boss encounters) is significantly overhauled into a two-mode game: a
runner mode with animated tree obstacles and a duel mode featuring a
melee boss fight with attack, guard, and movement mechanics.
Sprite-based rendering replaces the previous shape-drawing approach.

- **Create/Edit/Run Agent UX**: All three tool views now show the
mini-game with contextual overlays during long-running operations,
replacing the progress bar in EditAgent and adding the game to RunAgent
- **Game mechanics overhaul**: Boss encounters changed from
projectile-dodging to melee duel with attack (Z), block (X), movement
(arrows), and jump (Space) controls
- **Sprite rendering**: Added 9 sprite sheet assets for characters,
trees, and boss animations with fallback to shape rendering if images
fail to load
- **UI overlays**: Added React-managed overlay states for idle,
boss-intro, boss-defeated, and game-over screens with continue/retry
buttons
- **Minor issues found**: Unused `isRunActive` variable in
`MiniGame.tsx`, unreachable "leaving" boss phase in `useMiniGame.ts`,
and a missing `expanded` property in `getAccordionMeta` return type
annotation in `EditAgent.tsx`
- **Unused asset**: `archer-shoot.png` is included in the PR but never
imported or referenced in any code
</details>


<details><summary><h3>Confidence Score: 4/5</h3></summary>

- This PR is safe to merge — it only affects the copilot mini-game UX
with no backend or data model changes.
- The changes are entirely frontend/cosmetic, scoped to the copilot
tools' waiting UX. The mini-game logic is self-contained in a
canvas-based hook and doesn't affect any application state, API calls,
or routing. The issues found are minor (unused variable, dead code, type
annotation gap, unused asset) and don't impact runtime behavior.
- `useMiniGame.ts` has the most complex logic changes (boss AI, death
animations, sprite rendering) and contains unreachable dead code in the
"leaving" phase handler. `EditAgent.tsx` has a return type annotation
that doesn't include `expanded`.
</details>


<details><summary><h3>Flowchart</h3></summary>

```mermaid
flowchart TD
    A[Game Idle] -->|"Start button"| B[Run Mode]
    B -->|"Jump over trees"| C{Score >= Threshold?}
    C -->|No| B
    C -->|"Yes, obstacles clear"| D[Boss Intro Overlay]
    D -->|"Continue button"| E[Duel Mode]
    E -->|"Attack Z / Guard X / Move ←→"| F{Boss HP <= 0?}
    F -->|No| G{Player hit & not guarding?}
    G -->|No| E
    G -->|Yes| H[Player Death Animation]
    H --> I[Game Over Overlay]
    I -->|"Retry button"| B
    F -->|Yes| J[Boss Death Animation]
    J --> K[Boss Defeated Overlay]
    K -->|"Continue button"| L[Reset Boss & Resume Run]
    L --> B
```
</details>


<sub>Last reviewed commit: ad80e24</sub>

<!-- greptile_other_comments_section -->

<!-- /greptile_comment -->
2026-02-16 10:53:08 +00:00
Ubbe
187ab04745 refactor(frontend): remove OldAgentLibraryView and NEW_AGENT_RUNS flag (#12088)
## Summary
- Removes the deprecated `OldAgentLibraryView` directory (13 files,
~2200 lines deleted)
- Removes the `NEW_AGENT_RUNS` feature flag from the `Flag` enum and
defaults
- Removes the legacy agent library page at `library/legacy/[id]`
- Moves shared `CronScheduler` components to
`src/components/contextual/CronScheduler/`
- Moves `agent-run-draft-view` and `agent-status-chip` to
`legacy-builder/` (co-located with their only consumer)
- Updates all import paths in consuming files (`AgentInfoStep`,
`SaveControl`, `RunnerInputUI`, `useRunGraph`)

## Test plan
- [x] `pnpm format` passes
- [x] `pnpm types` passes (no TypeScript errors)
- [x] No remaining references to `OldAgentLibraryView`,
`NEW_AGENT_RUNS`, or `new-agent-runs` in the codebase
- [x] Verify `RunnerInputUI` dialog still works in the legacy builder
- [x] Verify `AgentInfoStep` cron scheduling works in the publish modal
- [x] Verify `SaveControl` cron scheduling works in the legacy builder

🤖 Generated with [Claude Code](https://claude.com/claude-code)

<!-- greptile_comment -->

<h2>Greptile Overview</h2>

<details><summary><h3>Greptile Summary</h3></summary>

This PR removes deprecated code from the legacy agent library view
system and consolidates the codebase to use the new agent runs
implementation exclusively. The refactor successfully removes ~2200
lines of code across 13 deleted files while properly relocating shared
components.

**Key changes:**
- Removed the entire `OldAgentLibraryView` directory and its 13
component files
- Removed the `NEW_AGENT_RUNS` feature flag from the `Flag` enum and
defaults
- Deleted the legacy agent library page route at `library/legacy/[id]`
- Moved `CronScheduler` components to
`src/components/contextual/CronScheduler/` for shared use across the
application
- Moved `agent-run-draft-view` and `agent-status-chip` to
`legacy-builder/` directory, co-locating them with their only consumer
- Updated `useRunGraph.ts` to import `GraphExecutionMeta` from the
generated API models instead of the deleted custom type definition
- Updated all import paths in consuming components (`AgentInfoStep`,
`SaveControl`, `RunnerInputUI`)

**Technical notes:**
- The new import path for `GraphExecutionMeta`
(`@/app/api/__generated__/models/graphExecutionMeta`) will be generated
when running `pnpm generate:api` from the OpenAPI spec
- All references to the old code have been cleanly removed from the
codebase
- The refactor maintains proper separation of concerns by moving shared
components to contextual locations
</details>


<details><summary><h3>Confidence Score: 4/5</h3></summary>

- This PR is safe to merge with minimal risk, pending manual
verification of the UI components mentioned in the test plan
- The refactor is well-structured and all code changes are correct. The
score of 4 (rather than 5) reflects that the PR author has marked three
manual testing items as incomplete in the test plan: verifying
`RunnerInputUI` dialog, `AgentInfoStep` cron scheduling, and
`SaveControl` cron scheduling. While the code changes are sound, these
UI components should be manually tested before merging to ensure the
moved components work correctly in their new locations.
- No files require special attention. The author should complete the
manual testing checklist items for `RunnerInputUI`, `AgentInfoStep`, and
`SaveControl` as noted in the test plan.
</details>


<details><summary><h3>Sequence Diagram</h3></summary>

```mermaid
sequenceDiagram
    participant Dev as Developer
    participant FE as Frontend Build
    participant API as Backend API
    participant Gen as Generated Types

    Note over Dev,Gen: Refactor: Remove OldAgentLibraryView & NEW_AGENT_RUNS flag

    Dev->>FE: Delete OldAgentLibraryView (13 files, ~2200 lines)
    Dev->>FE: Remove NEW_AGENT_RUNS from Flag enum
    Dev->>FE: Delete library/legacy/[id]/page.tsx
    
    Dev->>FE: Move CronScheduler → src/components/contextual/
    Dev->>FE: Move agent-run-draft-view → legacy-builder/
    Dev->>FE: Move agent-status-chip → legacy-builder/
    
    Dev->>FE: Update RunnerInputUI import path
    Dev->>FE: Update SaveControl import path
    Dev->>FE: Update AgentInfoStep import path
    
    Dev->>FE: Update useRunGraph.ts
    FE->>Gen: Import GraphExecutionMeta from generated models
    Note over Gen: Type available after pnpm generate:api
    
    Gen-->>API: Uses OpenAPI spec schema
    API-->>FE: Type-safe GraphExecutionMeta model
```
</details>


<!-- greptile_other_comments_section -->

<!-- /greptile_comment -->

Co-authored-by: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 18:29:59 +08:00
Abhimanyu Yadav
e2d3c8a217 fix(frontend): Prevent node drag when selecting text in object editor key input (#11955)
## Summary
- Add `nodrag` class to the key name input wrapper in
`WrapIfAdditionalTemplate.tsx`
- This prevents the node from being dragged when users try to select
text in the key name input field
- Follows the same pattern used by other input components like
`TextWidget.tsx`

## Test plan
- [x] Open the new builder
- [x] Add a custom node with an Object input field
- [x] Try to select text in the key name input by clicking and dragging
- [x] Verify that text selection works without moving the block

Co-authored-by: Claude <noreply@anthropic.com>
2026-02-16 06:59:33 +00:00
Eve
647c8ed8d4 feat(backend/blocks): enhance list concatenation with advanced operations (#12105)
## Summary

Enhances the existing `ConcatenateListsBlock` and adds five new
companion blocks for comprehensive list manipulation, addressing issue
#11139 ("Implement block to concatenate lists").

### Changes

- **Enhanced `ConcatenateListsBlock`** with optional deduplication
(`deduplicate`) and None-value filtering (`remove_none`), plus an output
`length` field
- **New `FlattenListBlock`**: Recursively flattens nested list
structures with configurable `max_depth`
- **New `InterleaveListsBlock`**: Round-robin interleaving of elements
from multiple lists
- **New `ZipListsBlock`**: Zips corresponding elements from multiple
lists with support for padding to longest or truncating to shortest
- **New `ListDifferenceBlock`**: Computes set difference between two
lists (regular or symmetric)
- **New `ListIntersectionBlock`**: Finds common elements between two
lists, preserving order

### Helper Utilities

Extracted reusable helper functions for validation, flattening,
deduplication, interleaving, chunking, and statistics computation to
support the blocks and enable future reuse.

### Test Coverage

Comprehensive test suite with 188 test functions across 29 test classes
covering:
- Built-in block test harness validation for all 6 blocks
- Manual edge-case tests for each block (empty inputs, large lists,
mixed types, nested structures)
- Internal method tests for all block classes
- Unit tests for all helper utility functions

Closes #11139

## Test plan

- [x] All files pass Python syntax validation (`ast.parse`)
- [x] Built-in `test_input`/`test_output` tests defined for all blocks
- [x] Manual tests cover edge cases: empty lists, large lists, mixed
types, nested structures, deduplication, None removal
- [x] Helper function tests validate all utility functions independently
- [x] All block IDs are valid UUID4
- [x] Block categories set to `BlockCategory.BASIC` for consistency with
existing list blocks


<!-- greptile_comment -->

<h2>Greptile Overview</h2>

<details><summary><h3>Greptile Summary</h3></summary>

Enhanced `ConcatenateListsBlock` with deduplication and None-filtering
options, and added five new list manipulation blocks
(`FlattenListBlock`, `InterleaveListsBlock`, `ZipListsBlock`,
`ListDifferenceBlock`, `ListIntersectionBlock`) with comprehensive
helper functions and test coverage.

**Key Changes:**
- Enhanced `ConcatenateListsBlock` with `deduplicate` and `remove_none`
options, plus `length` output field
- Added `FlattenListBlock` for recursively flattening nested lists with
configurable `max_depth`
- Added `InterleaveListsBlock` for round-robin element interleaving
- Added `ZipListsBlock` with support for padding/truncation
- Added `ListDifferenceBlock` and `ListIntersectionBlock` for set
operations
- Extracted 12 reusable helper functions for validation, flattening,
deduplication, etc.
- Comprehensive test suite with 188 test functions covering edge cases

**Minor Issues:**
- Helper function `_deduplicate_list` has redundant logic in the `else`
branch that duplicates the `if` branch
- Three helper functions (`_filter_empty_collections`,
`_compute_list_statistics`, `_chunk_list`) are defined but unused -
consider removing unless planned for future use
- The `_make_hashable` function uses `hash(repr(item))` for unhashable
types, which correctly treats structurally identical dicts/lists as
duplicates
</details>


<details><summary><h3>Confidence Score: 4/5</h3></summary>

- Safe to merge with minor style improvements recommended
- The implementation is well-structured with comprehensive test coverage
(188 tests), proper error handling, and follows existing block patterns.
All blocks use valid UUID4 IDs and correct categories. The helper
functions provide good code reuse. The minor issues are purely stylistic
(redundant code, unused helpers) and don't affect functionality or
safety.
- No files require special attention - both files are well-tested and
follow project conventions
</details>


<details><summary><h3>Sequence Diagram</h3></summary>

```mermaid
sequenceDiagram
    participant User
    participant Block as List Block
    participant Helper as Helper Functions
    participant Output
    
    User->>Block: Input (lists/parameters)
    Block->>Helper: _validate_all_lists()
    Helper-->>Block: validation result
    
    alt validation fails
        Block->>Output: error message
    else validation succeeds
        Block->>Helper: _concatenate_lists_simple() / _flatten_nested_list() / etc.
        Helper-->>Block: processed result
        
        opt deduplicate enabled
            Block->>Helper: _deduplicate_list()
            Helper-->>Block: deduplicated result
        end
        
        opt remove_none enabled
            Block->>Helper: _filter_none_values()
            Helper-->>Block: filtered result
        end
        
        Block->>Output: result + length
    end
    
    Output-->>User: Block outputs
```
</details>


<sub>Last reviewed commit: a6d5445</sub>

<!-- greptile_other_comments_section -->

<sub>(2/5) Greptile learns from your feedback when you react with thumbs
up/down!</sub>

<!-- /greptile_comment -->

---------

Co-authored-by: Otto <otto@agpt.co>
2026-02-16 05:39:53 +00:00
Zamil Majdy
27d94e395c feat(backend/sdk): enable WebSearch, block WebFetch, consolidate tool constants (#12108)
## Summary
- Enable Claude Agent SDK built-in **WebSearch** tool (Brave Search via
Anthropic API) for the CoPilot SDK agent
- Explicitly **block WebFetch** via `SDK_DISALLOWED_TOOLS`. The agent
uses the SSRF-protected `mcp__copilot__web_fetch` MCP tool instead
- **Consolidate** all tool security constants (`BLOCKED_TOOLS`,
`WORKSPACE_SCOPED_TOOLS`, `DANGEROUS_PATTERNS`, `SDK_DISALLOWED_TOOLS`)
into `tool_adapter.py` as a single source of truth — previously
scattered across `tool_adapter.py`, `security_hooks.py`, and inline in
`service.py`

## Changes
- `tool_adapter.py`: Add `WebSearch` to `_SDK_BUILTIN_TOOLS`, add
`SDK_DISALLOWED_TOOLS`, move security constants here
- `security_hooks.py`: Import constants from `tool_adapter.py` instead
of defining locally
- `service.py`: Use `SDK_DISALLOWED_TOOLS` instead of inline `["Bash"]`

## Test plan
- [x] All 21 security hooks tests pass
- [x] Ruff lint clean
- [x] All pre-commit hooks pass
- [ ] Verify WebSearch works in CoPilot chat (manual test)

<!-- greptile_comment -->

<h2>Greptile Overview</h2>

<details><summary><h3>Greptile Summary</h3></summary>

Consolidates tool security constants into `tool_adapter.py` as single
source of truth, enables WebSearch (Brave via Anthropic API), and
explicitly blocks WebFetch to prevent SSRF attacks. The change improves
security by ensuring the agent uses the SSRF-protected
`mcp__copilot__web_fetch` tool instead of the built-in WebFetch which
can access internal networks like `localhost:8006`.
</details>


<details><summary><h3>Confidence Score: 5/5</h3></summary>

- This PR is safe to merge with minimal risk
- The changes improve security by blocking WebFetch (SSRF risk) while
enabling safe WebSearch. The consolidation of constants into a single
source of truth improves maintainability. All existing tests pass (21
security hooks tests), and the refactoring is straightforward with no
behavioral changes to existing security logic. The only suggestions are
minor improvements: adding a test for WebFetch blocking and considering
a lowercase alias for consistency.
- No files require special attention
</details>


<details><summary><h3>Sequence Diagram</h3></summary>

```mermaid
sequenceDiagram
    participant Agent as SDK Agent
    participant Hooks as Security Hooks
    participant TA as tool_adapter.py
    participant MCP as MCP Tools
    
    Note over TA: SDK_DISALLOWED_TOOLS = ["Bash", "WebFetch"]
    Note over TA: _SDK_BUILTIN_TOOLS includes WebSearch
    
    Agent->>Hooks: Request WebSearch (Brave API)
    Hooks->>TA: Check BLOCKED_TOOLS
    TA-->>Hooks: Not blocked
    Hooks-->>Agent: Allowed ✓
    Agent->>Agent: Execute via Anthropic API
    
    Agent->>Hooks: Request WebFetch (SSRF risk)
    Hooks->>TA: Check BLOCKED_TOOLS
    Note over TA: WebFetch in SDK_DISALLOWED_TOOLS
    TA-->>Hooks: Blocked
    Hooks-->>Agent: Denied ✗
    Note over Agent: Use mcp__copilot__web_fetch instead
    
    Agent->>Hooks: Request mcp__copilot__web_fetch
    Hooks->>MCP: Validate (MCP tool, not SDK builtin)
    MCP-->>Hooks: Has SSRF protection
    Hooks-->>Agent: Allowed ✓
    Agent->>MCP: Execute with SSRF checks
```
</details>


<sub>Last reviewed commit: 2d9975f</sub>

<!-- greptile_other_comments_section -->

<!-- /greptile_comment -->
2026-02-15 06:51:25 +00:00
155 changed files with 6352 additions and 3858 deletions

View File

@@ -41,13 +41,18 @@ jobs:
ports:
- 6379:6379
rabbitmq:
image: rabbitmq:3.12-management
image: rabbitmq:4.1.4
ports:
- 5672:5672
- 15672:15672
env:
RABBITMQ_DEFAULT_USER: ${{ env.RABBITMQ_DEFAULT_USER }}
RABBITMQ_DEFAULT_PASS: ${{ env.RABBITMQ_DEFAULT_PASS }}
options: >-
--health-cmd "rabbitmq-diagnostics -q ping"
--health-interval 30s
--health-timeout 10s
--health-retries 5
--health-start-period 10s
clamav:
image: clamav/clamav-debian:latest
ports:

View File

@@ -6,10 +6,16 @@ on:
paths:
- ".github/workflows/platform-frontend-ci.yml"
- "autogpt_platform/frontend/**"
- "autogpt_platform/backend/Dockerfile"
- "autogpt_platform/docker-compose.yml"
- "autogpt_platform/docker-compose.platform.yml"
pull_request:
paths:
- ".github/workflows/platform-frontend-ci.yml"
- "autogpt_platform/frontend/**"
- "autogpt_platform/backend/Dockerfile"
- "autogpt_platform/docker-compose.yml"
- "autogpt_platform/docker-compose.platform.yml"
merge_group:
workflow_dispatch:

View File

@@ -53,63 +53,6 @@ COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/parti
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
RUN poetry run prisma generate && poetry run gen-prisma-stub
# ============================== BACKEND SERVER ============================== #
FROM debian:13-slim AS server
WORKDIR /app
ENV POETRY_HOME=/opt/poetry \
POETRY_NO_INTERACTION=1 \
POETRY_VIRTUALENVS_CREATE=true \
POETRY_VIRTUALENVS_IN_PROJECT=true \
DEBIAN_FRONTEND=noninteractive
ENV PATH=/opt/poetry/bin:$PATH
# Install Python, FFmpeg, ImageMagick, and CLI tools for agent use.
# bubblewrap provides OS-level sandbox (whitelist-only FS + no network)
# for the bash_exec MCP tool.
# Using --no-install-recommends saves ~650MB by skipping unnecessary deps like llvm, mesa, etc.
RUN apt-get update && apt-get install -y --no-install-recommends \
python3.13 \
python3-pip \
ffmpeg \
imagemagick \
jq \
ripgrep \
tree \
bubblewrap \
&& rm -rf /var/lib/apt/lists/*
COPY --from=builder /usr/local/lib/python3* /usr/local/lib/python3*
COPY --from=builder /usr/local/bin/poetry /usr/local/bin/poetry
# Copy Node.js installation for Prisma
COPY --from=builder /usr/bin/node /usr/bin/node
COPY --from=builder /usr/lib/node_modules /usr/lib/node_modules
COPY --from=builder /usr/bin/npm /usr/bin/npm
COPY --from=builder /usr/bin/npx /usr/bin/npx
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
WORKDIR /app/autogpt_platform/backend
# Copy only the .venv from builder (not the entire /app directory)
# The .venv includes the generated Prisma client
COPY --from=builder /app/autogpt_platform/backend/.venv ./.venv
ENV PATH="/app/autogpt_platform/backend/.venv/bin:$PATH"
# Copy dependency files + autogpt_libs (path dependency)
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml ./
# Copy backend code + docs (for Copilot docs search)
COPY autogpt_platform/backend ./
COPY docs /app/docs
RUN poetry install --no-ansi --only-root
ENV PORT=8000
CMD ["poetry", "run", "rest"]
# =============================== DB MIGRATOR =============================== #
# Lightweight migrate stage - only needs Prisma CLI, not full Python environment
@@ -141,3 +84,59 @@ COPY autogpt_platform/backend/schema.prisma ./
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
COPY autogpt_platform/backend/migrations ./migrations
# ============================== BACKEND SERVER ============================== #
FROM debian:13-slim AS server
WORKDIR /app
ENV DEBIAN_FRONTEND=noninteractive
# Install Python, FFmpeg, ImageMagick, and CLI tools for agent use.
# bubblewrap provides OS-level sandbox (whitelist-only FS + no network)
# for the bash_exec MCP tool.
# Using --no-install-recommends saves ~650MB by skipping unnecessary deps like llvm, mesa, etc.
RUN apt-get update && apt-get install -y --no-install-recommends \
python3.13 \
python3-pip \
ffmpeg \
imagemagick \
jq \
ripgrep \
tree \
bubblewrap \
&& rm -rf /var/lib/apt/lists/*
# Copy poetry (build-time only, for `poetry install --only-root` to create entry points)
COPY --from=builder /usr/local/lib/python3* /usr/local/lib/python3*
COPY --from=builder /usr/local/bin/poetry /usr/local/bin/poetry
# Copy Node.js installation for Prisma
COPY --from=builder /usr/bin/node /usr/bin/node
COPY --from=builder /usr/lib/node_modules /usr/lib/node_modules
COPY --from=builder /usr/bin/npm /usr/bin/npm
COPY --from=builder /usr/bin/npx /usr/bin/npx
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
WORKDIR /app/autogpt_platform/backend
# Copy only the .venv from builder (not the entire /app directory)
# The .venv includes the generated Prisma client
COPY --from=builder /app/autogpt_platform/backend/.venv ./.venv
ENV PATH="/app/autogpt_platform/backend/.venv/bin:$PATH"
# Copy dependency files + autogpt_libs (path dependency)
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml ./
# Copy backend code + docs (for Copilot docs search)
COPY autogpt_platform/backend ./
COPY docs /app/docs
# Install the project package to create entry point scripts in .venv/bin/
# (e.g., rest, executor, ws, db, scheduler, notification - see [tool.poetry.scripts])
RUN POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true \
poetry install --no-ansi --only-root
ENV PORT=8000
CMD ["rest"]

View File

@@ -1,4 +1,9 @@
"""Common test fixtures for server tests."""
"""Common test fixtures for server tests.
Note: Common fixtures like test_user_id, admin_user_id, target_user_id,
setup_test_user, and setup_admin_user are defined in the parent conftest.py
(backend/conftest.py) and are available here automatically.
"""
import pytest
from pytest_snapshot.plugin import Snapshot
@@ -11,54 +16,6 @@ def configured_snapshot(snapshot: Snapshot) -> Snapshot:
return snapshot
@pytest.fixture
def test_user_id() -> str:
"""Test user ID fixture."""
return "3e53486c-cf57-477e-ba2a-cb02dc828e1a"
@pytest.fixture
def admin_user_id() -> str:
"""Admin user ID fixture."""
return "4e53486c-cf57-477e-ba2a-cb02dc828e1b"
@pytest.fixture
def target_user_id() -> str:
"""Target user ID fixture."""
return "5e53486c-cf57-477e-ba2a-cb02dc828e1c"
@pytest.fixture
async def setup_test_user(test_user_id):
"""Create test user in database before tests."""
from backend.data.user import get_or_create_user
# Create the test user in the database using JWT token format
user_data = {
"sub": test_user_id,
"email": "test@example.com",
"user_metadata": {"name": "Test User"},
}
await get_or_create_user(user_data)
return test_user_id
@pytest.fixture
async def setup_admin_user(admin_user_id):
"""Create admin user in database before tests."""
from backend.data.user import get_or_create_user
# Create the admin user in the database using JWT token format
user_data = {
"sub": admin_user_id,
"email": "test-admin@example.com",
"user_metadata": {"name": "Test Admin"},
}
await get_or_create_user(user_data)
return admin_user_id
@pytest.fixture
def mock_jwt_user(test_user_id):
"""Provide mock JWT payload for regular user testing."""

View File

@@ -15,9 +15,9 @@ from prisma.enums import APIKeyPermission
from pydantic import BaseModel, Field
from backend.api.external.middleware import require_permission
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools import find_agent_tool, run_agent_tool
from backend.api.features.chat.tools.models import ToolResponseBase
from backend.copilot.model import ChatSession
from backend.copilot.tools import find_agent_tool, run_agent_tool
from backend.copilot.tools.models import ToolResponseBase
from backend.data.auth.base import APIAuthorizationInfo
logger = logging.getLogger(__name__)

View File

@@ -11,24 +11,25 @@ from fastapi import APIRouter, Depends, Header, HTTPException, Query, Response,
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from backend.util.exceptions import NotFoundError
from backend.util.feature_flag import Flag, is_feature_enabled
from . import service as chat_service
from . import stream_registry
from .completion_handler import process_operation_failure, process_operation_success
from .config import ChatConfig
from .model import (
from backend.copilot import service as chat_service
from backend.copilot import stream_registry
from backend.copilot.completion_handler import (
process_operation_failure,
process_operation_success,
)
from backend.copilot.config import ChatConfig
from backend.copilot.executor.utils import enqueue_copilot_task
from backend.copilot.model import (
ChatMessage,
ChatSession,
append_and_save_message,
create_chat_session,
delete_chat_session,
get_chat_session,
get_user_sessions,
)
from .response_model import StreamError, StreamFinish, StreamHeartbeat, StreamStart
from .sdk import service as sdk_service
from .tools.models import (
from backend.copilot.response_model import StreamError, StreamFinish, StreamHeartbeat
from backend.copilot.tools.models import (
AgentDetailsResponse,
AgentOutputResponse,
AgentPreviewResponse,
@@ -49,9 +50,11 @@ from .tools.models import (
OperationPendingResponse,
OperationStartedResponse,
SetupRequirementsResponse,
SuggestedGoalResponse,
UnderstandingUpdatedResponse,
)
from .tracking import track_user_message
from backend.copilot.tracking import track_user_message
from backend.util.exceptions import NotFoundError
config = ChatConfig()
@@ -211,6 +214,43 @@ async def create_session(
)
@router.delete(
"/sessions/{session_id}",
dependencies=[Security(auth.requires_user)],
status_code=204,
responses={404: {"description": "Session not found or access denied"}},
)
async def delete_session(
session_id: str,
user_id: Annotated[str, Security(auth.get_user_id)],
) -> Response:
"""
Delete a chat session.
Permanently removes a chat session and all its messages.
Only the owner can delete their sessions.
Args:
session_id: The session ID to delete.
user_id: The authenticated user's ID.
Returns:
204 No Content on success.
Raises:
HTTPException: 404 if session not found or not owned by user.
"""
deleted = await delete_chat_session(session_id, user_id)
if not deleted:
raise HTTPException(
status_code=404,
detail=f"Session {session_id} not found or access denied",
)
return Response(status_code=204)
@router.get(
"/sessions/{session_id}",
)
@@ -316,7 +356,7 @@ async def stream_chat_post(
f"user={user_id}, message_len={len(request.message)}",
extra={"json_fields": log_meta},
)
session = await _validate_and_get_session(session_id, user_id)
await _validate_and_get_session(session_id, user_id)
logger.info(
f"[TIMING] session validated in {(time.perf_counter() - stream_start_time) * 1000:.1f}ms",
extra={
@@ -343,7 +383,7 @@ async def stream_chat_post(
message_length=len(request.message),
)
logger.info(f"[STREAM] Saving user message to session {session_id}")
session = await append_and_save_message(session_id, message)
await append_and_save_message(session_id, message)
logger.info(f"[STREAM] User message saved for session {session_id}")
# Create a task in the stream registry for reconnection support
@@ -370,125 +410,19 @@ async def stream_chat_post(
},
)
# Background task that runs the AI generation independently of SSE connection
async def run_ai_generation():
import time as time_module
await enqueue_copilot_task(
task_id=task_id,
session_id=session_id,
user_id=user_id,
operation_id=operation_id,
message=request.message,
is_user_message=request.is_user_message,
context=request.context,
)
gen_start_time = time_module.perf_counter()
logger.info(
f"[TIMING] run_ai_generation STARTED, task={task_id}, session={session_id}, user={user_id}",
extra={"json_fields": log_meta},
)
first_chunk_time, ttfc = None, None
chunk_count = 0
try:
# Emit a start event with task_id for reconnection
start_chunk = StreamStart(messageId=task_id, taskId=task_id)
await stream_registry.publish_chunk(task_id, start_chunk)
logger.info(
f"[TIMING] StreamStart published at {(time_module.perf_counter() - gen_start_time) * 1000:.1f}ms",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": (time_module.perf_counter() - gen_start_time)
* 1000,
}
},
)
# Choose service based on LaunchDarkly flag (falls back to config default)
use_sdk = await is_feature_enabled(
Flag.COPILOT_SDK,
user_id or "anonymous",
default=config.use_claude_agent_sdk,
)
stream_fn = (
sdk_service.stream_chat_completion_sdk
if use_sdk
else chat_service.stream_chat_completion
)
logger.info(
f"[TIMING] Calling {'sdk' if use_sdk else 'standard'} stream_chat_completion",
extra={"json_fields": log_meta},
)
# Pass message=None since we already added it to the session above
async for chunk in stream_fn(
session_id,
None, # Message already in session
is_user_message=request.is_user_message,
user_id=user_id,
session=session, # Pass session with message already added
context=request.context,
):
# Skip duplicate StreamStart — we already published one above
if isinstance(chunk, StreamStart):
continue
chunk_count += 1
if first_chunk_time is None:
first_chunk_time = time_module.perf_counter()
ttfc = first_chunk_time - gen_start_time
logger.info(
f"[TIMING] FIRST AI CHUNK at {ttfc:.2f}s, type={type(chunk).__name__}",
extra={
"json_fields": {
**log_meta,
"chunk_type": type(chunk).__name__,
"time_to_first_chunk_ms": ttfc * 1000,
}
},
)
# Write to Redis (subscribers will receive via XREAD)
await stream_registry.publish_chunk(task_id, chunk)
gen_end_time = time_module.perf_counter()
total_time = (gen_end_time - gen_start_time) * 1000
logger.info(
f"[TIMING] run_ai_generation FINISHED in {total_time / 1000:.1f}s; "
f"task={task_id}, session={session_id}, "
f"ttfc={ttfc or -1:.2f}s, n_chunks={chunk_count}",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time,
"time_to_first_chunk_ms": (
ttfc * 1000 if ttfc is not None else None
),
"n_chunks": chunk_count,
}
},
)
await stream_registry.mark_task_completed(task_id, "completed")
except Exception as e:
elapsed = time_module.perf_counter() - gen_start_time
logger.error(
f"[TIMING] run_ai_generation ERROR after {elapsed:.2f}s: {e}",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": elapsed * 1000,
"error": str(e),
}
},
)
# Publish a StreamError so the frontend can display an error message
try:
await stream_registry.publish_chunk(
task_id,
StreamError(
errorText="An error occurred. Please try again.",
code="stream_error",
),
)
except Exception:
pass # Best-effort; mark_task_completed will publish StreamFinish
await stream_registry.mark_task_completed(task_id, "failed")
# Start the AI generation in a background task
bg_task = asyncio.create_task(run_ai_generation())
await stream_registry.set_task_asyncio_task(task_id, bg_task)
setup_time = (time.perf_counter() - stream_start_time) * 1000
logger.info(
f"[TIMING] Background task started, setup={setup_time:.1f}ms",
f"[TIMING] Task enqueued to RabbitMQ, setup={setup_time:.1f}ms",
extra={"json_fields": {**log_meta, "setup_time_ms": setup_time}},
)
@@ -1051,6 +985,7 @@ ToolResponseUnion = (
| AgentPreviewResponse
| AgentSavedResponse
| ClarificationNeededResponse
| SuggestedGoalResponse
| BlockListResponse
| BlockDetailsResponse
| BlockOutputResponse

View File

@@ -11,7 +11,7 @@ import fastapi
from autogpt_libs.auth.dependencies import get_user_id, requires_user
from fastapi.responses import Response
from backend.data.workspace import get_workspace, get_workspace_file
from backend.data.workspace import WorkspaceFile, get_workspace, get_workspace_file
from backend.util.workspace_storage import get_workspace_storage
@@ -44,11 +44,11 @@ router = fastapi.APIRouter(
)
def _create_streaming_response(content: bytes, file) -> Response:
def _create_streaming_response(content: bytes, file: WorkspaceFile) -> Response:
"""Create a streaming response for file content."""
return Response(
content=content,
media_type=file.mimeType,
media_type=file.mime_type,
headers={
"Content-Disposition": _sanitize_filename_for_header(file.name),
"Content-Length": str(len(content)),
@@ -56,7 +56,7 @@ def _create_streaming_response(content: bytes, file) -> Response:
)
async def _create_file_download_response(file) -> Response:
async def _create_file_download_response(file: WorkspaceFile) -> Response:
"""
Create a download response for a workspace file.
@@ -66,33 +66,33 @@ async def _create_file_download_response(file) -> Response:
storage = await get_workspace_storage()
# For local storage, stream the file directly
if file.storagePath.startswith("local://"):
content = await storage.retrieve(file.storagePath)
if file.storage_path.startswith("local://"):
content = await storage.retrieve(file.storage_path)
return _create_streaming_response(content, file)
# For GCS, try to redirect to signed URL, fall back to streaming
try:
url = await storage.get_download_url(file.storagePath, expires_in=300)
url = await storage.get_download_url(file.storage_path, expires_in=300)
# If we got back an API path (fallback), stream directly instead
if url.startswith("/api/"):
content = await storage.retrieve(file.storagePath)
content = await storage.retrieve(file.storage_path)
return _create_streaming_response(content, file)
return fastapi.responses.RedirectResponse(url=url, status_code=302)
except Exception as e:
# Log the signed URL failure with context
logger.error(
f"Failed to get signed URL for file {file.id} "
f"(storagePath={file.storagePath}): {e}",
f"(storagePath={file.storage_path}): {e}",
exc_info=True,
)
# Fall back to streaming directly from GCS
try:
content = await storage.retrieve(file.storagePath)
content = await storage.retrieve(file.storage_path)
return _create_streaming_response(content, file)
except Exception as fallback_error:
logger.error(
f"Fallback streaming also failed for file {file.id} "
f"(storagePath={file.storagePath}): {fallback_error}",
f"(storagePath={file.storage_path}): {fallback_error}",
exc_info=True,
)
raise

View File

@@ -41,11 +41,11 @@ import backend.data.user
import backend.integrations.webhooks.utils
import backend.util.service
import backend.util.settings
from backend.api.features.chat.completion_consumer import (
from backend.blocks.llm import DEFAULT_LLM_MODEL
from backend.copilot.completion_consumer import (
start_completion_consumer,
stop_completion_consumer,
)
from backend.blocks.llm import DEFAULT_LLM_MODEL
from backend.data.model import Credentials
from backend.integrations.providers import ProviderName
from backend.monitoring.instrumentation import instrument_fastapi

View File

@@ -38,7 +38,9 @@ def main(**kwargs):
from backend.api.rest_api import AgentServer
from backend.api.ws_api import WebsocketServer
from backend.executor import DatabaseManager, ExecutionManager, Scheduler
from backend.copilot.executor.manager import CoPilotExecutor
from backend.data.db_manager import DatabaseManager
from backend.executor import ExecutionManager, Scheduler
from backend.notifications import NotificationManager
run_processes(
@@ -48,6 +50,7 @@ def main(**kwargs):
WebsocketServer(),
AgentServer(),
ExecutionManager(),
CoPilotExecutor(),
**kwargs,
)

View File

@@ -682,17 +682,219 @@ class ListIsEmptyBlock(Block):
yield "is_empty", len(input_data.list) == 0
# =============================================================================
# List Concatenation Helpers
# =============================================================================
def _validate_list_input(item: Any, index: int) -> str | None:
"""Validate that an item is a list. Returns error message or None."""
if item is None:
return None # None is acceptable, will be skipped
if not isinstance(item, list):
return (
f"Invalid input at index {index}: expected a list, "
f"got {type(item).__name__}. "
f"All items in 'lists' must be lists (e.g., [[1, 2], [3, 4]])."
)
return None
def _validate_all_lists(lists: List[Any]) -> str | None:
"""Validate that all items in a sequence are lists. Returns first error or None."""
for idx, item in enumerate(lists):
error = _validate_list_input(item, idx)
if error is not None and item is not None:
return error
return None
def _concatenate_lists_simple(lists: List[List[Any]]) -> List[Any]:
"""Concatenate a sequence of lists into a single list, skipping None values."""
result: List[Any] = []
for lst in lists:
if lst is None:
continue
result.extend(lst)
return result
def _flatten_nested_list(nested: List[Any], max_depth: int = -1) -> List[Any]:
"""
Recursively flatten a nested list structure.
Args:
nested: The list to flatten.
max_depth: Maximum recursion depth. -1 means unlimited.
Returns:
A flat list with all nested elements extracted.
"""
result: List[Any] = []
_flatten_recursive(nested, result, current_depth=0, max_depth=max_depth)
return result
_MAX_FLATTEN_DEPTH = 1000
def _flatten_recursive(
items: List[Any],
result: List[Any],
current_depth: int,
max_depth: int,
) -> None:
"""Internal recursive helper for flattening nested lists."""
if current_depth > _MAX_FLATTEN_DEPTH:
raise RecursionError(
f"Flattening exceeded maximum depth of {_MAX_FLATTEN_DEPTH} levels. "
"Input may be too deeply nested."
)
for item in items:
if isinstance(item, list) and (max_depth == -1 or current_depth < max_depth):
_flatten_recursive(item, result, current_depth + 1, max_depth)
else:
result.append(item)
def _deduplicate_list(items: List[Any]) -> List[Any]:
"""
Remove duplicate elements from a list, preserving order of first occurrences.
Args:
items: The list to deduplicate.
Returns:
A list with duplicates removed, maintaining original order.
"""
seen: set = set()
result: List[Any] = []
for item in items:
item_id = _make_hashable(item)
if item_id not in seen:
seen.add(item_id)
result.append(item)
return result
def _make_hashable(item: Any):
"""
Create a hashable representation of any item for deduplication.
Converts unhashable types (dicts, lists) into deterministic tuple structures.
"""
if isinstance(item, dict):
return tuple(
sorted(
((_make_hashable(k), _make_hashable(v)) for k, v in item.items()),
key=lambda x: (str(type(x[0])), str(x[0])),
)
)
if isinstance(item, (list, tuple)):
return tuple(_make_hashable(i) for i in item)
if isinstance(item, set):
return frozenset(_make_hashable(i) for i in item)
return item
def _filter_none_values(items: List[Any]) -> List[Any]:
"""Remove None values from a list."""
return [item for item in items if item is not None]
def _compute_nesting_depth(
items: Any, current: int = 0, max_depth: int = _MAX_FLATTEN_DEPTH
) -> int:
"""
Compute the maximum nesting depth of a list structure using iteration to avoid RecursionError.
Uses a stack-based approach to handle deeply nested structures without hitting Python's
recursion limit (~1000 levels).
"""
if not isinstance(items, list):
return current
# Stack contains tuples of (item, depth)
stack = [(items, current)]
max_observed_depth = current
while stack:
item, depth = stack.pop()
if depth > max_depth:
return depth
if not isinstance(item, list):
max_observed_depth = max(max_observed_depth, depth)
continue
if len(item) == 0:
max_observed_depth = max(max_observed_depth, depth + 1)
continue
# Add all children to stack with incremented depth
for child in item:
stack.append((child, depth + 1))
return max_observed_depth
def _interleave_lists(lists: List[List[Any]]) -> List[Any]:
"""
Interleave elements from multiple lists in round-robin fashion.
Example: [[1,2,3], [a,b], [x,y,z]] -> [1, a, x, 2, b, y, 3, z]
"""
if not lists:
return []
filtered = [lst for lst in lists if lst is not None]
if not filtered:
return []
result: List[Any] = []
max_len = max(len(lst) for lst in filtered)
for i in range(max_len):
for lst in filtered:
if i < len(lst):
result.append(lst[i])
return result
# =============================================================================
# List Concatenation Blocks
# =============================================================================
class ConcatenateListsBlock(Block):
"""
Concatenates two or more lists into a single list.
This block accepts a list of lists and combines all their elements
in order into one flat output list. It supports options for
deduplication and None-filtering to provide flexible list merging
capabilities for workflow pipelines.
"""
class Input(BlockSchemaInput):
lists: List[List[Any]] = SchemaField(
description="A list of lists to concatenate together. All lists will be combined in order into a single list.",
placeholder="e.g., [[1, 2], [3, 4], [5, 6]]",
)
deduplicate: bool = SchemaField(
description="If True, remove duplicate elements from the concatenated result while preserving order.",
default=False,
advanced=True,
)
remove_none: bool = SchemaField(
description="If True, remove None values from the concatenated result.",
default=False,
advanced=True,
)
class Output(BlockSchemaOutput):
concatenated_list: List[Any] = SchemaField(
description="The concatenated list containing all elements from all input lists in order."
)
length: int = SchemaField(
description="The total number of elements in the concatenated list."
)
error: str = SchemaField(
description="Error message if concatenation failed due to invalid input types."
)
@@ -700,7 +902,7 @@ class ConcatenateListsBlock(Block):
def __init__(self):
super().__init__(
id="3cf9298b-5817-4141-9d80-7c2cc5199c8e",
description="Concatenates multiple lists into a single list. All elements from all input lists are combined in order.",
description="Concatenates multiple lists into a single list. All elements from all input lists are combined in order. Supports optional deduplication and None removal.",
categories={BlockCategory.BASIC},
input_schema=ConcatenateListsBlock.Input,
output_schema=ConcatenateListsBlock.Output,
@@ -709,29 +911,497 @@ class ConcatenateListsBlock(Block):
{"lists": [["a", "b"], ["c"], ["d", "e", "f"]]},
{"lists": [[1, 2], []]},
{"lists": []},
{"lists": [[1, 2, 2, 3], [3, 4]], "deduplicate": True},
{"lists": [[1, None, 2], [None, 3]], "remove_none": True},
],
test_output=[
("concatenated_list", [1, 2, 3, 4, 5, 6]),
("length", 6),
("concatenated_list", ["a", "b", "c", "d", "e", "f"]),
("length", 6),
("concatenated_list", [1, 2]),
("length", 2),
("concatenated_list", []),
("length", 0),
("concatenated_list", [1, 2, 3, 4]),
("length", 4),
("concatenated_list", [1, 2, 3]),
("length", 3),
],
)
def _validate_inputs(self, lists: List[Any]) -> str | None:
return _validate_all_lists(lists)
def _perform_concatenation(self, lists: List[List[Any]]) -> List[Any]:
return _concatenate_lists_simple(lists)
def _apply_deduplication(self, items: List[Any]) -> List[Any]:
return _deduplicate_list(items)
def _apply_none_removal(self, items: List[Any]) -> List[Any]:
return _filter_none_values(items)
def _post_process(
self, items: List[Any], deduplicate: bool, remove_none: bool
) -> List[Any]:
"""Apply all post-processing steps to the concatenated result."""
result = items
if remove_none:
result = self._apply_none_removal(result)
if deduplicate:
result = self._apply_deduplication(result)
return result
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
concatenated = []
for idx, lst in enumerate(input_data.lists):
if lst is None:
# Skip None values to avoid errors
continue
if not isinstance(lst, list):
# Type validation: each item must be a list
# Strings are iterable and would cause extend() to iterate character-by-character
# Non-iterable types would raise TypeError
yield "error", (
f"Invalid input at index {idx}: expected a list, got {type(lst).__name__}. "
f"All items in 'lists' must be lists (e.g., [[1, 2], [3, 4]])."
)
return
concatenated.extend(lst)
yield "concatenated_list", concatenated
# Validate all inputs are lists
validation_error = self._validate_inputs(input_data.lists)
if validation_error is not None:
yield "error", validation_error
return
# Perform concatenation
concatenated = self._perform_concatenation(input_data.lists)
# Apply post-processing
result = self._post_process(
concatenated, input_data.deduplicate, input_data.remove_none
)
yield "concatenated_list", result
yield "length", len(result)
class FlattenListBlock(Block):
"""
Flattens a nested list structure into a single flat list.
This block takes a list that may contain nested lists at any depth
and produces a single-level list with all leaf elements. Useful
for normalizing data structures from multiple sources that may
have varying levels of nesting.
"""
class Input(BlockSchemaInput):
nested_list: List[Any] = SchemaField(
description="A potentially nested list to flatten into a single-level list.",
placeholder="e.g., [[1, [2, 3]], [4, [5, [6]]]]",
)
max_depth: int = SchemaField(
description="Maximum depth to flatten. -1 means flatten completely. 1 means flatten only one level.",
default=-1,
advanced=True,
)
class Output(BlockSchemaOutput):
flattened_list: List[Any] = SchemaField(
description="The flattened list with all nested elements extracted."
)
length: int = SchemaField(
description="The number of elements in the flattened list."
)
original_depth: int = SchemaField(
description="The maximum nesting depth of the original input list."
)
error: str = SchemaField(description="Error message if flattening failed.")
def __init__(self):
super().__init__(
id="cc45bb0f-d035-4756-96a7-fe3e36254b4d",
description="Flattens a nested list structure into a single flat list. Supports configurable maximum flattening depth.",
categories={BlockCategory.BASIC},
input_schema=FlattenListBlock.Input,
output_schema=FlattenListBlock.Output,
test_input=[
{"nested_list": [[1, 2], [3, [4, 5]]]},
{"nested_list": [1, [2, [3, [4]]]]},
{"nested_list": [1, [2, [3, [4]]], 5], "max_depth": 1},
{"nested_list": []},
{"nested_list": [1, 2, 3]},
],
test_output=[
("flattened_list", [1, 2, 3, 4, 5]),
("length", 5),
("original_depth", 3),
("flattened_list", [1, 2, 3, 4]),
("length", 4),
("original_depth", 4),
("flattened_list", [1, 2, [3, [4]], 5]),
("length", 4),
("original_depth", 4),
("flattened_list", []),
("length", 0),
("original_depth", 1),
("flattened_list", [1, 2, 3]),
("length", 3),
("original_depth", 1),
],
)
def _compute_depth(self, items: List[Any]) -> int:
"""Compute the nesting depth of the input list."""
return _compute_nesting_depth(items)
def _flatten(self, items: List[Any], max_depth: int) -> List[Any]:
"""Flatten the list to the specified depth."""
return _flatten_nested_list(items, max_depth=max_depth)
def _validate_max_depth(self, max_depth: int) -> str | None:
"""Validate the max_depth parameter."""
if max_depth < -1:
return f"max_depth must be -1 (unlimited) or a non-negative integer, got {max_depth}"
return None
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
# Validate max_depth
depth_error = self._validate_max_depth(input_data.max_depth)
if depth_error is not None:
yield "error", depth_error
return
original_depth = self._compute_depth(input_data.nested_list)
flattened = self._flatten(input_data.nested_list, input_data.max_depth)
yield "flattened_list", flattened
yield "length", len(flattened)
yield "original_depth", original_depth
class InterleaveListsBlock(Block):
"""
Interleaves elements from multiple lists in round-robin fashion.
Given multiple input lists, this block takes one element from each
list in turn, producing an output where elements alternate between
sources. Lists of different lengths are handled gracefully - shorter
lists simply stop contributing once exhausted.
"""
class Input(BlockSchemaInput):
lists: List[List[Any]] = SchemaField(
description="A list of lists to interleave. Elements will be taken in round-robin order.",
placeholder="e.g., [[1, 2, 3], ['a', 'b', 'c']]",
)
class Output(BlockSchemaOutput):
interleaved_list: List[Any] = SchemaField(
description="The interleaved list with elements alternating from each input list."
)
length: int = SchemaField(
description="The total number of elements in the interleaved list."
)
error: str = SchemaField(description="Error message if interleaving failed.")
def __init__(self):
super().__init__(
id="9f616084-1d9f-4f8e-bc00-5b9d2a75cd75",
description="Interleaves elements from multiple lists in round-robin fashion, alternating between sources.",
categories={BlockCategory.BASIC},
input_schema=InterleaveListsBlock.Input,
output_schema=InterleaveListsBlock.Output,
test_input=[
{"lists": [[1, 2, 3], ["a", "b", "c"]]},
{"lists": [[1, 2, 3], ["a", "b"], ["x", "y", "z"]]},
{"lists": [[1], [2], [3]]},
{"lists": []},
],
test_output=[
("interleaved_list", [1, "a", 2, "b", 3, "c"]),
("length", 6),
("interleaved_list", [1, "a", "x", 2, "b", "y", 3, "z"]),
("length", 8),
("interleaved_list", [1, 2, 3]),
("length", 3),
("interleaved_list", []),
("length", 0),
],
)
def _validate_inputs(self, lists: List[Any]) -> str | None:
return _validate_all_lists(lists)
def _interleave(self, lists: List[List[Any]]) -> List[Any]:
return _interleave_lists(lists)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
validation_error = self._validate_inputs(input_data.lists)
if validation_error is not None:
yield "error", validation_error
return
result = self._interleave(input_data.lists)
yield "interleaved_list", result
yield "length", len(result)
class ZipListsBlock(Block):
"""
Zips multiple lists together into a list of grouped tuples/lists.
Takes two or more input lists and combines corresponding elements
into sub-lists. For example, zipping [1,2,3] and ['a','b','c']
produces [[1,'a'], [2,'b'], [3,'c']]. Supports both truncating
to shortest list and padding to longest list with a fill value.
"""
class Input(BlockSchemaInput):
lists: List[List[Any]] = SchemaField(
description="A list of lists to zip together. Corresponding elements will be grouped.",
placeholder="e.g., [[1, 2, 3], ['a', 'b', 'c']]",
)
pad_to_longest: bool = SchemaField(
description="If True, pad shorter lists with fill_value to match the longest list. If False, truncate to shortest.",
default=False,
advanced=True,
)
fill_value: Any = SchemaField(
description="Value to use for padding when pad_to_longest is True.",
default=None,
advanced=True,
)
class Output(BlockSchemaOutput):
zipped_list: List[List[Any]] = SchemaField(
description="The zipped list of grouped elements."
)
length: int = SchemaField(
description="The number of groups in the zipped result."
)
error: str = SchemaField(description="Error message if zipping failed.")
def __init__(self):
super().__init__(
id="0d0e684f-5cb9-4c4b-b8d1-47a0860e0c07",
description="Zips multiple lists together into a list of grouped elements. Supports padding to longest or truncating to shortest.",
categories={BlockCategory.BASIC},
input_schema=ZipListsBlock.Input,
output_schema=ZipListsBlock.Output,
test_input=[
{"lists": [[1, 2, 3], ["a", "b", "c"]]},
{"lists": [[1, 2, 3], ["a", "b"]]},
{
"lists": [[1, 2], ["a", "b", "c"]],
"pad_to_longest": True,
"fill_value": 0,
},
{"lists": []},
],
test_output=[
("zipped_list", [[1, "a"], [2, "b"], [3, "c"]]),
("length", 3),
("zipped_list", [[1, "a"], [2, "b"]]),
("length", 2),
("zipped_list", [[1, "a"], [2, "b"], [0, "c"]]),
("length", 3),
("zipped_list", []),
("length", 0),
],
)
def _validate_inputs(self, lists: List[Any]) -> str | None:
return _validate_all_lists(lists)
def _zip_truncate(self, lists: List[List[Any]]) -> List[List[Any]]:
"""Zip lists, truncating to shortest."""
filtered = [lst for lst in lists if lst is not None]
if not filtered:
return []
return [list(group) for group in zip(*filtered)]
def _zip_pad(self, lists: List[List[Any]], fill_value: Any) -> List[List[Any]]:
"""Zip lists, padding shorter ones with fill_value."""
if not lists:
return []
lists = [lst for lst in lists if lst is not None]
if not lists:
return []
max_len = max(len(lst) for lst in lists)
result: List[List[Any]] = []
for i in range(max_len):
group: List[Any] = []
for lst in lists:
if i < len(lst):
group.append(lst[i])
else:
group.append(fill_value)
result.append(group)
return result
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
validation_error = self._validate_inputs(input_data.lists)
if validation_error is not None:
yield "error", validation_error
return
if not input_data.lists:
yield "zipped_list", []
yield "length", 0
return
if input_data.pad_to_longest:
result = self._zip_pad(input_data.lists, input_data.fill_value)
else:
result = self._zip_truncate(input_data.lists)
yield "zipped_list", result
yield "length", len(result)
class ListDifferenceBlock(Block):
"""
Computes the difference between two lists (elements in the first
list that are not in the second list).
This is useful for finding items that exist in one dataset but
not in another, such as finding new items, missing items, or
items that need to be processed.
"""
class Input(BlockSchemaInput):
list_a: List[Any] = SchemaField(
description="The primary list to check elements from.",
placeholder="e.g., [1, 2, 3, 4, 5]",
)
list_b: List[Any] = SchemaField(
description="The list to subtract. Elements found here will be removed from list_a.",
placeholder="e.g., [3, 4, 5, 6]",
)
symmetric: bool = SchemaField(
description="If True, compute symmetric difference (elements in either list but not both).",
default=False,
advanced=True,
)
class Output(BlockSchemaOutput):
difference: List[Any] = SchemaField(
description="Elements from list_a not found in list_b (or symmetric difference if enabled)."
)
length: int = SchemaField(
description="The number of elements in the difference result."
)
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="05309873-9d61-447e-96b5-b804e2511829",
description="Computes the difference between two lists. Returns elements in the first list not found in the second, or symmetric difference.",
categories={BlockCategory.BASIC},
input_schema=ListDifferenceBlock.Input,
output_schema=ListDifferenceBlock.Output,
test_input=[
{"list_a": [1, 2, 3, 4, 5], "list_b": [3, 4, 5, 6, 7]},
{
"list_a": [1, 2, 3, 4, 5],
"list_b": [3, 4, 5, 6, 7],
"symmetric": True,
},
{"list_a": ["a", "b", "c"], "list_b": ["b"]},
{"list_a": [], "list_b": [1, 2, 3]},
],
test_output=[
("difference", [1, 2]),
("length", 2),
("difference", [1, 2, 6, 7]),
("length", 4),
("difference", ["a", "c"]),
("length", 2),
("difference", []),
("length", 0),
],
)
def _compute_difference(self, list_a: List[Any], list_b: List[Any]) -> List[Any]:
"""Compute elements in list_a not in list_b."""
b_hashes = {_make_hashable(item) for item in list_b}
return [item for item in list_a if _make_hashable(item) not in b_hashes]
def _compute_symmetric_difference(
self, list_a: List[Any], list_b: List[Any]
) -> List[Any]:
"""Compute elements in either list but not both."""
a_hashes = {_make_hashable(item) for item in list_a}
b_hashes = {_make_hashable(item) for item in list_b}
only_in_a = [item for item in list_a if _make_hashable(item) not in b_hashes]
only_in_b = [item for item in list_b if _make_hashable(item) not in a_hashes]
return only_in_a + only_in_b
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
if input_data.symmetric:
result = self._compute_symmetric_difference(
input_data.list_a, input_data.list_b
)
else:
result = self._compute_difference(input_data.list_a, input_data.list_b)
yield "difference", result
yield "length", len(result)
class ListIntersectionBlock(Block):
"""
Computes the intersection of two lists (elements present in both lists).
This is useful for finding common items between two datasets,
such as shared tags, mutual connections, or overlapping categories.
"""
class Input(BlockSchemaInput):
list_a: List[Any] = SchemaField(
description="The first list to intersect.",
placeholder="e.g., [1, 2, 3, 4, 5]",
)
list_b: List[Any] = SchemaField(
description="The second list to intersect.",
placeholder="e.g., [3, 4, 5, 6, 7]",
)
class Output(BlockSchemaOutput):
intersection: List[Any] = SchemaField(
description="Elements present in both list_a and list_b."
)
length: int = SchemaField(
description="The number of elements in the intersection."
)
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="b6eb08b6-dbe3-411b-b9b4-2508cb311a1f",
description="Computes the intersection of two lists, returning only elements present in both.",
categories={BlockCategory.BASIC},
input_schema=ListIntersectionBlock.Input,
output_schema=ListIntersectionBlock.Output,
test_input=[
{"list_a": [1, 2, 3, 4, 5], "list_b": [3, 4, 5, 6, 7]},
{"list_a": ["a", "b", "c"], "list_b": ["c", "d", "e"]},
{"list_a": [1, 2], "list_b": [3, 4]},
{"list_a": [], "list_b": [1, 2, 3]},
],
test_output=[
("intersection", [3, 4, 5]),
("length", 3),
("intersection", ["c"]),
("length", 1),
("intersection", []),
("length", 0),
("intersection", []),
("length", 0),
],
)
def _compute_intersection(self, list_a: List[Any], list_b: List[Any]) -> List[Any]:
"""Compute elements present in both lists, preserving order from list_a."""
b_hashes = {_make_hashable(item) for item in list_b}
seen: set = set()
result: List[Any] = []
for item in list_a:
h = _make_hashable(item)
if h in b_hashes and h not in seen:
result.append(item)
seen.add(h)
return result
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
result = self._compute_intersection(input_data.list_a, input_data.list_b)
yield "intersection", result
yield "length", len(result)

View File

@@ -1,6 +1,7 @@
import logging
import os
import pytest
import pytest_asyncio
from dotenv import load_dotenv
@@ -27,6 +28,54 @@ async def server():
yield server
@pytest.fixture
def test_user_id() -> str:
"""Test user ID fixture."""
return "3e53486c-cf57-477e-ba2a-cb02dc828e1a"
@pytest.fixture
def admin_user_id() -> str:
"""Admin user ID fixture."""
return "4e53486c-cf57-477e-ba2a-cb02dc828e1b"
@pytest.fixture
def target_user_id() -> str:
"""Target user ID fixture."""
return "5e53486c-cf57-477e-ba2a-cb02dc828e1c"
@pytest.fixture
async def setup_test_user(test_user_id):
"""Create test user in database before tests."""
from backend.data.user import get_or_create_user
# Create the test user in the database using JWT token format
user_data = {
"sub": test_user_id,
"email": "test@example.com",
"user_metadata": {"name": "Test User"},
}
await get_or_create_user(user_data)
return test_user_id
@pytest.fixture
async def setup_admin_user(admin_user_id):
"""Create admin user in database before tests."""
from backend.data.user import get_or_create_user
# Create the admin user in the database using JWT token format
user_data = {
"sub": admin_user_id,
"email": "test-admin@example.com",
"user_metadata": {"name": "Test Admin"},
}
await get_or_create_user(user_data)
return admin_user_id
@pytest_asyncio.fixture(scope="session", loop_scope="session", autouse=True)
async def graph_cleanup(server):
created_graph_ids = []

View File

@@ -0,0 +1 @@

View File

@@ -37,12 +37,10 @@ stale pending messages from dead consumers.
import asyncio
import logging
import os
import uuid
from typing import Any
import orjson
from prisma import Prisma
from pydantic import BaseModel
from redis.exceptions import ResponseError
@@ -69,8 +67,8 @@ class OperationCompleteMessage(BaseModel):
class ChatCompletionConsumer:
"""Consumer for chat operation completion messages from Redis Streams.
This consumer initializes its own Prisma client in start() to ensure
database operations work correctly within this async context.
Database operations are handled through the chat_db() accessor, which
routes through DatabaseManager RPC when Prisma is not directly connected.
Uses Redis consumer groups to allow multiple platform pods to consume
messages reliably with automatic redelivery on failure.
@@ -79,7 +77,6 @@ class ChatCompletionConsumer:
def __init__(self):
self._consumer_task: asyncio.Task | None = None
self._running = False
self._prisma: Prisma | None = None
self._consumer_name = f"consumer-{uuid.uuid4().hex[:8]}"
async def start(self) -> None:
@@ -115,15 +112,6 @@ class ChatCompletionConsumer:
f"Chat completion consumer started (consumer: {self._consumer_name})"
)
async def _ensure_prisma(self) -> Prisma:
"""Lazily initialize Prisma client on first use."""
if self._prisma is None:
database_url = os.getenv("DATABASE_URL", "postgresql://localhost:5432")
self._prisma = Prisma(datasource={"url": database_url})
await self._prisma.connect()
logger.info("[COMPLETION] Consumer Prisma client connected (lazy init)")
return self._prisma
async def stop(self) -> None:
"""Stop the completion consumer."""
self._running = False
@@ -136,11 +124,6 @@ class ChatCompletionConsumer:
pass
self._consumer_task = None
if self._prisma:
await self._prisma.disconnect()
self._prisma = None
logger.info("[COMPLETION] Consumer Prisma client disconnected")
logger.info("Chat completion consumer stopped")
async def _consume_messages(self) -> None:
@@ -252,7 +235,7 @@ class ChatCompletionConsumer:
# XAUTOCLAIM after min_idle_time expires
async def _handle_message(self, body: bytes) -> None:
"""Handle a completion message using our own Prisma client."""
"""Handle a completion message."""
try:
data = orjson.loads(body)
message = OperationCompleteMessage(**data)
@@ -302,8 +285,7 @@ class ChatCompletionConsumer:
message: OperationCompleteMessage,
) -> None:
"""Handle successful operation completion."""
prisma = await self._ensure_prisma()
await process_operation_success(task, message.result, prisma)
await process_operation_success(task, message.result)
async def _handle_failure(
self,
@@ -311,8 +293,7 @@ class ChatCompletionConsumer:
message: OperationCompleteMessage,
) -> None:
"""Handle failed operation completion."""
prisma = await self._ensure_prisma()
await process_operation_failure(task, message.error, prisma)
await process_operation_failure(task, message.error)
# Module-level consumer instance

View File

@@ -9,7 +9,8 @@ import logging
from typing import Any
import orjson
from prisma import Prisma
from backend.data.db_accessors import chat_db
from . import service as chat_service
from . import stream_registry
@@ -72,48 +73,40 @@ async def _update_tool_message(
session_id: str,
tool_call_id: str,
content: str,
prisma_client: Prisma | None,
) -> None:
"""Update tool message in database.
"""Update tool message in database using the chat_db accessor.
Routes through DatabaseManager RPC when Prisma is not directly
connected (e.g. in the CoPilot Executor microservice).
Args:
session_id: The session ID
tool_call_id: The tool call ID to update
content: The new content for the message
prisma_client: Optional Prisma client. If None, uses chat_service.
Raises:
ToolMessageUpdateError: If the database update fails. The caller should
handle this to avoid marking the task as completed with inconsistent state.
ToolMessageUpdateError: If the database update fails.
"""
try:
if prisma_client:
# Use provided Prisma client (for consumer with its own connection)
updated_count = await prisma_client.chatmessage.update_many(
where={
"sessionId": session_id,
"toolCallId": tool_call_id,
},
data={"content": content},
)
# Check if any rows were updated - 0 means message not found
if updated_count == 0:
raise ToolMessageUpdateError(
f"No message found with tool_call_id={tool_call_id} in session {session_id}"
)
else:
# Use service function (for webhook endpoint)
await chat_service._update_pending_operation(
session_id=session_id,
tool_call_id=tool_call_id,
result=content,
updated = await chat_db().update_tool_message_content(
session_id=session_id,
tool_call_id=tool_call_id,
new_content=content,
)
if not updated:
raise ToolMessageUpdateError(
f"No message found with tool_call_id="
f"{tool_call_id} in session {session_id}"
)
except ToolMessageUpdateError:
raise
except Exception as e:
logger.error(f"[COMPLETION] Failed to update tool message: {e}", exc_info=True)
logger.error(
f"[COMPLETION] Failed to update tool message: {e}",
exc_info=True,
)
raise ToolMessageUpdateError(
f"Failed to update tool message for tool_call_id={tool_call_id}: {e}"
f"Failed to update tool message for tool call #{tool_call_id}: {e}"
) from e
@@ -202,7 +195,6 @@ async def _save_agent_from_result(
async def process_operation_success(
task: stream_registry.ActiveTask,
result: dict | str | None,
prisma_client: Prisma | None = None,
) -> None:
"""Handle successful operation completion.
@@ -212,12 +204,10 @@ async def process_operation_success(
Args:
task: The active task that completed
result: The result data from the operation
prisma_client: Optional Prisma client for database operations.
If None, uses chat_service._update_pending_operation instead.
Raises:
ToolMessageUpdateError: If the database update fails. The task will be
marked as failed instead of completed to avoid inconsistent state.
ToolMessageUpdateError: If the database update fails. The task
will be marked as failed instead of completed.
"""
# For agent generation tools, save the agent to library
if task.tool_name in AGENT_GENERATION_TOOLS and isinstance(result, dict):
@@ -250,7 +240,6 @@ async def process_operation_success(
session_id=task.session_id,
tool_call_id=task.tool_call_id,
content=result_str,
prisma_client=prisma_client,
)
except ToolMessageUpdateError:
# DB update failed - mark task as failed to avoid inconsistent state
@@ -293,18 +282,15 @@ async def process_operation_success(
async def process_operation_failure(
task: stream_registry.ActiveTask,
error: str | None,
prisma_client: Prisma | None = None,
) -> None:
"""Handle failed operation completion.
Publishes the error to the stream registry, updates the database with
the error response, and marks the task as failed.
Publishes the error to the stream registry, updates the database
with the error response, and marks the task as failed.
Args:
task: The active task that failed
error: The error message from the operation
prisma_client: Optional Prisma client for database operations.
If None, uses chat_service._update_pending_operation instead.
"""
error_msg = error or "Operation failed"
@@ -325,7 +311,6 @@ async def process_operation_failure(
session_id=task.session_id,
tool_call_id=task.tool_call_id,
content=error_response.model_dump_json(),
prisma_client=prisma_client,
)
except ToolMessageUpdateError:
# DB update failed - log but continue with cleanup

View File

@@ -14,29 +14,27 @@ from prisma.types import (
ChatSessionWhereInput,
)
from backend.data.db import transaction
from backend.data import db
from backend.util.json import SafeJson
from .model import ChatMessage, ChatSession, ChatSessionInfo
logger = logging.getLogger(__name__)
async def get_chat_session(session_id: str) -> PrismaChatSession | None:
async def get_chat_session(session_id: str) -> ChatSession | None:
"""Get a chat session by ID from the database."""
session = await PrismaChatSession.prisma().find_unique(
where={"id": session_id},
include={"Messages": True},
include={"Messages": {"order_by": {"sequence": "asc"}}},
)
if session and session.Messages:
# Sort messages by sequence in Python - Prisma Python client doesn't support
# order_by in include clauses (unlike Prisma JS), so we sort after fetching
session.Messages.sort(key=lambda m: m.sequence)
return session
return ChatSession.from_db(session) if session else None
async def create_chat_session(
session_id: str,
user_id: str,
) -> PrismaChatSession:
) -> ChatSessionInfo:
"""Create a new chat session in the database."""
data = ChatSessionCreateInput(
id=session_id,
@@ -45,7 +43,8 @@ async def create_chat_session(
successfulAgentRuns=SafeJson({}),
successfulAgentSchedules=SafeJson({}),
)
return await PrismaChatSession.prisma().create(data=data)
prisma_session = await PrismaChatSession.prisma().create(data=data)
return ChatSessionInfo.from_db(prisma_session)
async def update_chat_session(
@@ -56,7 +55,7 @@ async def update_chat_session(
total_prompt_tokens: int | None = None,
total_completion_tokens: int | None = None,
title: str | None = None,
) -> PrismaChatSession | None:
) -> ChatSession | None:
"""Update a chat session's metadata."""
data: ChatSessionUpdateInput = {"updatedAt": datetime.now(UTC)}
@@ -76,12 +75,9 @@ async def update_chat_session(
session = await PrismaChatSession.prisma().update(
where={"id": session_id},
data=data,
include={"Messages": True},
include={"Messages": {"order_by": {"sequence": "asc"}}},
)
if session and session.Messages:
# Sort in Python - Prisma Python doesn't support order_by in include clauses
session.Messages.sort(key=lambda m: m.sequence)
return session
return ChatSession.from_db(session) if session else None
async def add_chat_message(
@@ -94,7 +90,7 @@ async def add_chat_message(
refusal: str | None = None,
tool_calls: list[dict[str, Any]] | None = None,
function_call: dict[str, Any] | None = None,
) -> PrismaChatMessage:
) -> ChatMessage:
"""Add a message to a chat session."""
# Build input dict dynamically rather than using ChatMessageCreateInput directly
# because Prisma's TypedDict validation rejects optional fields set to None.
@@ -129,14 +125,14 @@ async def add_chat_message(
),
PrismaChatMessage.prisma().create(data=cast(ChatMessageCreateInput, data)),
)
return message
return ChatMessage.from_db(message)
async def add_chat_messages_batch(
session_id: str,
messages: list[dict[str, Any]],
start_sequence: int,
) -> list[PrismaChatMessage]:
) -> list[ChatMessage]:
"""Add multiple messages to a chat session in a batch.
Uses a transaction for atomicity - if any message creation fails,
@@ -147,7 +143,7 @@ async def add_chat_messages_batch(
created_messages = []
async with transaction() as tx:
async with db.transaction() as tx:
for i, msg in enumerate(messages):
# Build input dict dynamically rather than using ChatMessageCreateInput
# directly because Prisma's TypedDict validation rejects optional fields
@@ -187,21 +183,22 @@ async def add_chat_messages_batch(
data={"updatedAt": datetime.now(UTC)},
)
return created_messages
return [ChatMessage.from_db(m) for m in created_messages]
async def get_user_chat_sessions(
user_id: str,
limit: int = 50,
offset: int = 0,
) -> list[PrismaChatSession]:
) -> list[ChatSessionInfo]:
"""Get chat sessions for a user, ordered by most recent."""
return await PrismaChatSession.prisma().find_many(
prisma_sessions = await PrismaChatSession.prisma().find_many(
where={"userId": user_id},
order={"updatedAt": "desc"},
take=limit,
skip=offset,
)
return [ChatSessionInfo.from_db(s) for s in prisma_sessions]
async def get_user_session_count(user_id: str) -> int:

View File

@@ -0,0 +1,18 @@
"""Entry point for running the CoPilot Executor service.
Usage:
python -m backend.copilot.executor
"""
from backend.app import run_processes
from .manager import CoPilotExecutor
def main():
"""Run the CoPilot Executor service."""
run_processes(CoPilotExecutor())
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,519 @@
"""CoPilot Executor Manager - main service for CoPilot task execution.
This module contains the CoPilotExecutor class that consumes chat tasks from
RabbitMQ and processes them using a thread pool, following the graph executor pattern.
"""
import asyncio
import logging
import os
import threading
import time
import uuid
from concurrent.futures import Future, ThreadPoolExecutor
from pika.adapters.blocking_connection import BlockingChannel
from pika.exceptions import AMQPChannelError, AMQPConnectionError
from pika.spec import Basic, BasicProperties
from prometheus_client import Gauge, start_http_server
from backend.data import redis_client as redis
from backend.data.rabbitmq import SyncRabbitMQ
from backend.executor.cluster_lock import ClusterLock
from backend.util.decorator import error_logged
from backend.util.logging import TruncatedLogger
from backend.util.process import AppProcess
from backend.util.retry import continuous_retry
from backend.util.settings import Settings
from .processor import execute_copilot_task, init_worker
from .utils import (
COPILOT_CANCEL_QUEUE_NAME,
COPILOT_EXECUTION_QUEUE_NAME,
GRACEFUL_SHUTDOWN_TIMEOUT_SECONDS,
CancelCoPilotEvent,
CoPilotExecutionEntry,
create_copilot_queue_config,
)
logger = TruncatedLogger(logging.getLogger(__name__), prefix="[CoPilotExecutor]")
settings = Settings()
# Prometheus metrics
active_tasks_gauge = Gauge(
"copilot_executor_active_tasks",
"Number of active CoPilot tasks",
)
pool_size_gauge = Gauge(
"copilot_executor_pool_size",
"Maximum number of CoPilot executor workers",
)
utilization_gauge = Gauge(
"copilot_executor_utilization_ratio",
"Ratio of active tasks to pool size",
)
class CoPilotExecutor(AppProcess):
"""CoPilot Executor service for processing chat generation tasks.
This service consumes tasks from RabbitMQ, processes them using a thread pool,
and publishes results to Redis Streams. It follows the graph executor pattern
for reliable message handling and graceful shutdown.
Key features:
- RabbitMQ-based task distribution with manual acknowledgment
- Thread pool executor for concurrent task processing
- Cluster lock for duplicate prevention across pods
- Graceful shutdown with timeout for in-flight tasks
- FANOUT exchange for cancellation broadcast
"""
def __init__(self):
super().__init__()
self.pool_size = settings.config.num_copilot_workers
self.active_tasks: dict[str, tuple[Future, threading.Event]] = {}
self.executor_id = str(uuid.uuid4())
self._executor = None
self._stop_consuming = None
self._cancel_thread = None
self._cancel_client = None
self._run_thread = None
self._run_client = None
self._task_locks: dict[str, ClusterLock] = {}
self._active_tasks_lock = threading.Lock()
# ============ Main Entry Points (AppProcess interface) ============ #
def run(self):
"""Main service loop - consume from RabbitMQ."""
logger.info(f"Pod assigned executor_id: {self.executor_id}")
logger.info(f"Spawn max-{self.pool_size} workers...")
pool_size_gauge.set(self.pool_size)
self._update_metrics()
start_http_server(settings.config.copilot_executor_port)
self.cancel_thread.start()
self.run_thread.start()
while True:
time.sleep(1e5)
def cleanup(self):
"""Graceful shutdown with active execution waiting."""
pid = os.getpid()
logger.info(f"[cleanup {pid}] Starting graceful shutdown...")
# Signal the consumer thread to stop
try:
self.stop_consuming.set()
run_channel = self.run_client.get_channel()
run_channel.connection.add_callback_threadsafe(
lambda: run_channel.stop_consuming()
)
logger.info(f"[cleanup {pid}] Consumer has been signaled to stop")
except Exception as e:
logger.error(f"[cleanup {pid}] Error stopping consumer: {e}")
# Wait for active executions to complete
if self.active_tasks:
logger.info(
f"[cleanup {pid}] Waiting for {len(self.active_tasks)} active tasks to complete (timeout: {GRACEFUL_SHUTDOWN_TIMEOUT_SECONDS}s)..."
)
start_time = time.monotonic()
last_refresh = start_time
lock_refresh_interval = settings.config.cluster_lock_timeout / 10
while (
self.active_tasks
and (time.monotonic() - start_time) < GRACEFUL_SHUTDOWN_TIMEOUT_SECONDS
):
self._cleanup_completed_tasks()
if not self.active_tasks:
break
# Refresh cluster locks periodically
current_time = time.monotonic()
if current_time - last_refresh >= lock_refresh_interval:
for lock in list(self._task_locks.values()):
try:
lock.refresh()
except Exception as e:
logger.warning(
f"[cleanup {pid}] Failed to refresh lock: {e}"
)
last_refresh = current_time
logger.info(
f"[cleanup {pid}] {len(self.active_tasks)} tasks still active, waiting..."
)
time.sleep(10.0)
# Stop message consumers
if self._run_thread:
self._stop_message_consumers(
self._run_thread, self.run_client, "[cleanup][run]"
)
if self._cancel_thread:
self._stop_message_consumers(
self._cancel_thread, self.cancel_client, "[cleanup][cancel]"
)
# Shutdown executor
if self._executor:
logger.info(f"[cleanup {pid}] Shutting down executor...")
self._executor.shutdown(wait=False)
# Close async resources (workspace storage aiohttp session, etc.)
try:
from backend.util.workspace_storage import shutdown_workspace_storage
loop = asyncio.new_event_loop()
loop.run_until_complete(shutdown_workspace_storage())
loop.close()
except Exception as e:
logger.warning(f"[cleanup {pid}] Error closing workspace storage: {e}")
# Release any remaining locks
for task_id, lock in list(self._task_locks.items()):
try:
lock.release()
logger.info(f"[cleanup {pid}] Released lock for {task_id}")
except Exception as e:
logger.error(
f"[cleanup {pid}] Failed to release lock for {task_id}: {e}"
)
logger.info(f"[cleanup {pid}] Graceful shutdown completed")
# ============ RabbitMQ Consumer Methods ============ #
@continuous_retry()
def _consume_cancel(self):
"""Consume cancellation messages from FANOUT exchange."""
if self.stop_consuming.is_set() and not self.active_tasks:
logger.info("Stop reconnecting cancel consumer - service cleaned up")
return
if not self.cancel_client.is_ready:
self.cancel_client.disconnect()
self.cancel_client.connect()
# Check again after connect - shutdown may have been requested
if self.stop_consuming.is_set() and not self.active_tasks:
logger.info("Stop consuming requested during reconnect - disconnecting")
self.cancel_client.disconnect()
return
cancel_channel = self.cancel_client.get_channel()
cancel_channel.basic_consume(
queue=COPILOT_CANCEL_QUEUE_NAME,
on_message_callback=self._handle_cancel_message,
auto_ack=True,
)
logger.info("Starting to consume cancel messages...")
cancel_channel.start_consuming()
if not self.stop_consuming.is_set() or self.active_tasks:
raise RuntimeError("Cancel message consumer stopped unexpectedly")
logger.info("Cancel message consumer stopped gracefully")
@continuous_retry()
def _consume_run(self):
"""Consume run messages from DIRECT exchange."""
if self.stop_consuming.is_set():
logger.info("Stop reconnecting run consumer - service cleaned up")
return
if not self.run_client.is_ready:
self.run_client.disconnect()
self.run_client.connect()
# Check again after connect - shutdown may have been requested
if self.stop_consuming.is_set():
logger.info("Stop consuming requested during reconnect - disconnecting")
self.run_client.disconnect()
return
run_channel = self.run_client.get_channel()
run_channel.basic_qos(prefetch_count=self.pool_size)
run_channel.basic_consume(
queue=COPILOT_EXECUTION_QUEUE_NAME,
on_message_callback=self._handle_run_message,
auto_ack=False,
consumer_tag="copilot_execution_consumer",
)
logger.info("Starting to consume run messages...")
run_channel.start_consuming()
if not self.stop_consuming.is_set():
raise RuntimeError("Run message consumer stopped unexpectedly")
logger.info("Run message consumer stopped gracefully")
# ============ Message Handlers ============ #
@error_logged(swallow=True)
def _handle_cancel_message(
self,
_channel: BlockingChannel,
_method: Basic.Deliver,
_properties: BasicProperties,
body: bytes,
):
"""Handle cancel message from FANOUT exchange."""
request = CancelCoPilotEvent.model_validate_json(body)
task_id = request.task_id
if not task_id:
logger.warning("Cancel message missing 'task_id'")
return
if task_id not in self.active_tasks:
logger.debug(f"Cancel received for {task_id} but not active")
return
_, cancel_event = self.active_tasks[task_id]
logger.info(f"Received cancel for {task_id}")
if not cancel_event.is_set():
cancel_event.set()
else:
logger.debug(f"Cancel already set for {task_id}")
def _handle_run_message(
self,
_channel: BlockingChannel,
method: Basic.Deliver,
_properties: BasicProperties,
body: bytes,
):
"""Handle run message from DIRECT exchange."""
delivery_tag = method.delivery_tag
# Capture the channel used at message delivery time to ensure we ack
# on the correct channel. Delivery tags are channel-scoped and become
# invalid if the channel is recreated after reconnection.
delivery_channel = _channel
def ack_message(reject: bool, requeue: bool):
"""Acknowledge or reject the message.
Uses the channel from the original message delivery. If the channel
is no longer open (e.g., after reconnection), logs a warning and
skips the ack - RabbitMQ will redeliver the message automatically.
"""
try:
if not delivery_channel.is_open:
logger.warning(
f"Channel closed, cannot ack delivery_tag={delivery_tag}. "
"Message will be redelivered by RabbitMQ."
)
return
if reject:
delivery_channel.connection.add_callback_threadsafe(
lambda: delivery_channel.basic_nack(
delivery_tag, requeue=requeue
)
)
else:
delivery_channel.connection.add_callback_threadsafe(
lambda: delivery_channel.basic_ack(delivery_tag)
)
except (AMQPChannelError, AMQPConnectionError) as e:
# Channel/connection errors indicate stale delivery tag - don't retry
logger.warning(
f"Cannot ack delivery_tag={delivery_tag} due to channel/connection "
f"error: {e}. Message will be redelivered by RabbitMQ."
)
except Exception as e:
# Other errors might be transient, but log and skip to avoid blocking
logger.error(
f"Unexpected error acking delivery_tag={delivery_tag}: {e}"
)
# Check if we're shutting down
if self.stop_consuming.is_set():
logger.info("Rejecting new task during shutdown")
ack_message(reject=True, requeue=True)
return
# Check if we can accept more tasks
self._cleanup_completed_tasks()
if len(self.active_tasks) >= self.pool_size:
ack_message(reject=True, requeue=True)
return
try:
entry = CoPilotExecutionEntry.model_validate_json(body)
except Exception as e:
logger.error(f"Could not parse run message: {e}, body={body}")
ack_message(reject=True, requeue=False)
return
task_id = entry.task_id
# Check for local duplicate - task is already running on this executor
if task_id in self.active_tasks:
logger.warning(
f"Task {task_id} already running locally, rejecting duplicate"
)
ack_message(reject=True, requeue=False)
return
# Try to acquire cluster-wide lock
cluster_lock = ClusterLock(
redis=redis.get_redis(),
key=f"copilot:task:{task_id}:lock",
owner_id=self.executor_id,
timeout=settings.config.cluster_lock_timeout,
)
current_owner = cluster_lock.try_acquire()
if current_owner != self.executor_id:
if current_owner is not None:
logger.warning(f"Task {task_id} already running on pod {current_owner}")
ack_message(reject=True, requeue=False)
else:
logger.warning(
f"Could not acquire lock for {task_id} - Redis unavailable"
)
ack_message(reject=True, requeue=True)
return
# Execute the task
try:
self._task_locks[task_id] = cluster_lock
logger.info(
f"Acquired cluster lock for {task_id}, executor_id={self.executor_id}"
)
cancel_event = threading.Event()
future = self.executor.submit(
execute_copilot_task, entry, cancel_event, cluster_lock
)
self.active_tasks[task_id] = (future, cancel_event)
except Exception as e:
logger.warning(f"Failed to setup execution for {task_id}: {e}")
cluster_lock.release()
if task_id in self._task_locks:
del self._task_locks[task_id]
ack_message(reject=True, requeue=True)
return
self._update_metrics()
def on_run_done(f: Future):
logger.info(f"Run completed for {task_id}")
try:
if exec_error := f.exception():
logger.error(f"Execution for {task_id} failed: {exec_error}")
# Don't requeue failed tasks - they've been marked as failed
# in the stream registry. Requeuing would cause infinite retries
# for deterministic failures.
ack_message(reject=True, requeue=False)
else:
ack_message(reject=False, requeue=False)
except BaseException as e:
logger.exception(f"Error in run completion callback: {e}")
finally:
# Release the cluster lock
if task_id in self._task_locks:
logger.info(f"Releasing cluster lock for {task_id}")
self._task_locks[task_id].release()
del self._task_locks[task_id]
self._cleanup_completed_tasks()
future.add_done_callback(on_run_done)
# ============ Helper Methods ============ #
def _cleanup_completed_tasks(self) -> list[str]:
"""Remove completed futures from active_tasks and update metrics."""
completed_tasks = []
with self._active_tasks_lock:
for task_id, (future, _) in list(self.active_tasks.items()):
if future.done():
completed_tasks.append(task_id)
self.active_tasks.pop(task_id, None)
logger.info(f"Cleaned up completed task {task_id}")
self._update_metrics()
return completed_tasks
def _update_metrics(self):
"""Update Prometheus metrics."""
active_count = len(self.active_tasks)
active_tasks_gauge.set(active_count)
if self.stop_consuming.is_set():
utilization_gauge.set(1.0)
else:
utilization_gauge.set(
active_count / self.pool_size if self.pool_size > 0 else 0
)
def _stop_message_consumers(
self, thread: threading.Thread, client: SyncRabbitMQ, prefix: str
):
"""Stop a message consumer thread."""
try:
channel = client.get_channel()
channel.connection.add_callback_threadsafe(lambda: channel.stop_consuming())
thread.join(timeout=300)
if thread.is_alive():
logger.error(
f"{prefix} Thread did not finish in time, forcing disconnect"
)
client.disconnect()
logger.info(f"{prefix} Client disconnected")
except Exception as e:
logger.error(f"{prefix} Error disconnecting client: {e}")
# ============ Lazy-initialized Properties ============ #
@property
def cancel_thread(self) -> threading.Thread:
if self._cancel_thread is None:
self._cancel_thread = threading.Thread(
target=lambda: self._consume_cancel(),
daemon=True,
)
return self._cancel_thread
@property
def run_thread(self) -> threading.Thread:
if self._run_thread is None:
self._run_thread = threading.Thread(
target=lambda: self._consume_run(),
daemon=True,
)
return self._run_thread
@property
def stop_consuming(self) -> threading.Event:
if self._stop_consuming is None:
self._stop_consuming = threading.Event()
return self._stop_consuming
@property
def executor(self) -> ThreadPoolExecutor:
if self._executor is None:
self._executor = ThreadPoolExecutor(
max_workers=self.pool_size,
initializer=init_worker,
)
return self._executor
@property
def cancel_client(self) -> SyncRabbitMQ:
if self._cancel_client is None:
self._cancel_client = SyncRabbitMQ(create_copilot_queue_config())
return self._cancel_client
@property
def run_client(self) -> SyncRabbitMQ:
if self._run_client is None:
self._run_client = SyncRabbitMQ(create_copilot_queue_config())
return self._run_client

View File

@@ -0,0 +1,253 @@
"""CoPilot execution processor - per-worker execution logic.
This module contains the processor class that handles CoPilot task execution
in a thread-local context, following the graph executor pattern.
"""
import asyncio
import logging
import threading
import time
from backend.copilot import service as copilot_service
from backend.copilot import stream_registry
from backend.copilot.config import ChatConfig
from backend.copilot.response_model import StreamError, StreamFinish, StreamFinishStep
from backend.copilot.sdk import service as sdk_service
from backend.executor.cluster_lock import ClusterLock
from backend.util.decorator import error_logged
from backend.util.feature_flag import Flag, is_feature_enabled
from backend.util.logging import TruncatedLogger, configure_logging
from backend.util.process import set_service_name
from backend.util.retry import func_retry
from .utils import CoPilotExecutionEntry, CoPilotLogMetadata
logger = TruncatedLogger(logging.getLogger(__name__), prefix="[CoPilotExecutor]")
# ============ Module Entry Points ============ #
# Thread-local storage for processor instances
_tls = threading.local()
def execute_copilot_task(
entry: CoPilotExecutionEntry,
cancel: threading.Event,
cluster_lock: ClusterLock,
):
"""Execute a CoPilot task using the thread-local processor.
This function is the entry point called by the thread pool executor.
Args:
entry: The task payload
cancel: Threading event to signal cancellation
cluster_lock: Distributed lock for this execution
"""
processor: CoPilotProcessor = _tls.processor
return processor.execute(entry, cancel, cluster_lock)
def init_worker():
"""Initialize the processor for the current worker thread.
This function is called by the thread pool executor when a new worker
thread is created. It ensures each worker has its own processor instance.
"""
_tls.processor = CoPilotProcessor()
_tls.processor.on_executor_start()
# ============ Processor Class ============ #
class CoPilotProcessor:
"""Per-worker execution logic for CoPilot tasks.
This class is instantiated once per worker thread and handles the execution
of CoPilot chat generation tasks. It maintains an async event loop for
running the async service code.
The execution flow:
1. CoPilot task is picked from RabbitMQ queue
2. Manager submits task to thread pool
3. Processor executes the task in its event loop
4. Results are published to Redis Streams
"""
@func_retry
def on_executor_start(self):
"""Initialize the processor when the worker thread starts.
This method is called once per worker thread to set up the async event
loop and initialize any required resources.
Database is accessed only through DatabaseManager, so we don't need to connect
to Prisma directly.
"""
configure_logging()
set_service_name("CoPilotExecutor")
self.tid = threading.get_ident()
self.execution_loop = asyncio.new_event_loop()
self.execution_thread = threading.Thread(
target=self.execution_loop.run_forever, daemon=True
)
self.execution_thread.start()
logger.info(f"[CoPilotExecutor] Worker {self.tid} started")
@error_logged(swallow=False)
def execute(
self,
entry: CoPilotExecutionEntry,
cancel: threading.Event,
cluster_lock: ClusterLock,
):
"""Execute a CoPilot task.
This is the main entry point for task execution. It runs the async
execution logic in the worker's event loop and handles errors.
Args:
entry: The task payload containing session and message info
cancel: Threading event to signal cancellation
cluster_lock: Distributed lock to prevent duplicate execution
"""
log = CoPilotLogMetadata(
logging.getLogger(__name__),
task_id=entry.task_id,
session_id=entry.session_id,
user_id=entry.user_id,
)
log.info("Starting execution")
start_time = time.monotonic()
try:
# Run the async execution in our event loop
future = asyncio.run_coroutine_threadsafe(
self._execute_async(entry, cancel, cluster_lock, log),
self.execution_loop,
)
# Wait for completion, checking cancel periodically
while not future.done():
try:
future.result(timeout=1.0)
except asyncio.TimeoutError:
if cancel.is_set():
log.info("Cancellation requested")
future.cancel()
break
# Refresh cluster lock to maintain ownership
cluster_lock.refresh()
if not future.cancelled():
# Get result to propagate any exceptions
future.result()
elapsed = time.monotonic() - start_time
log.info(f"Execution completed in {elapsed:.2f}s")
except Exception as e:
elapsed = time.monotonic() - start_time
log.error(f"Execution failed after {elapsed:.2f}s: {e}")
# Note: _execute_async already marks the task as failed before re-raising,
# so we don't call _mark_task_failed here to avoid duplicate error events.
raise
async def _execute_async(
self,
entry: CoPilotExecutionEntry,
cancel: threading.Event,
cluster_lock: ClusterLock,
log: CoPilotLogMetadata,
):
"""Async execution logic for CoPilot task.
This method calls the existing stream_chat_completion service function
and publishes results to the stream registry.
Args:
entry: The task payload
cancel: Threading event to signal cancellation
cluster_lock: Distributed lock for refresh
log: Structured logger for this task
"""
last_refresh = time.monotonic()
refresh_interval = 30.0 # Refresh lock every 30 seconds
try:
# Choose service based on LaunchDarkly flag
config = ChatConfig()
use_sdk = await is_feature_enabled(
Flag.COPILOT_SDK,
entry.user_id or "anonymous",
default=config.use_claude_agent_sdk,
)
stream_fn = (
sdk_service.stream_chat_completion_sdk
if use_sdk
else copilot_service.stream_chat_completion
)
log.info(f"Using {'SDK' if use_sdk else 'standard'} service")
# Stream chat completion and publish chunks to Redis
async for chunk in stream_fn(
session_id=entry.session_id,
message=entry.message if entry.message else None,
is_user_message=entry.is_user_message,
user_id=entry.user_id,
context=entry.context,
):
# Check for cancellation
if cancel.is_set():
log.info("Cancelled during streaming")
await stream_registry.publish_chunk(
entry.task_id, StreamError(errorText="Operation cancelled")
)
await stream_registry.publish_chunk(
entry.task_id, StreamFinishStep()
)
await stream_registry.publish_chunk(entry.task_id, StreamFinish())
await stream_registry.mark_task_completed(
entry.task_id, status="failed"
)
return
# Refresh cluster lock periodically
current_time = time.monotonic()
if current_time - last_refresh >= refresh_interval:
cluster_lock.refresh()
last_refresh = current_time
# Publish chunk to stream registry
await stream_registry.publish_chunk(entry.task_id, chunk)
# Mark task as completed
await stream_registry.mark_task_completed(entry.task_id, status="completed")
log.info("Task completed successfully")
except asyncio.CancelledError:
log.info("Task cancelled")
await stream_registry.mark_task_completed(entry.task_id, status="failed")
raise
except Exception as e:
log.error(f"Task failed: {e}")
await self._mark_task_failed(entry.task_id, str(e))
raise
async def _mark_task_failed(self, task_id: str, error_message: str):
"""Mark a task as failed and publish error to stream registry."""
try:
await stream_registry.publish_chunk(
task_id, StreamError(errorText=error_message)
)
await stream_registry.publish_chunk(task_id, StreamFinishStep())
await stream_registry.publish_chunk(task_id, StreamFinish())
await stream_registry.mark_task_completed(task_id, status="failed")
except Exception as e:
logger.error(f"Failed to mark task {task_id} as failed: {e}")

View File

@@ -0,0 +1,207 @@
"""RabbitMQ queue configuration for CoPilot executor.
Defines two exchanges and queues following the graph executor pattern:
- 'copilot_execution' (DIRECT) for chat generation tasks
- 'copilot_cancel' (FANOUT) for cancellation requests
"""
import logging
from pydantic import BaseModel
from backend.data.rabbitmq import Exchange, ExchangeType, Queue, RabbitMQConfig
from backend.util.logging import TruncatedLogger, is_structured_logging_enabled
logger = logging.getLogger(__name__)
# ============ Logging Helper ============ #
class CoPilotLogMetadata(TruncatedLogger):
"""Structured logging helper for CoPilot executor.
In cloud environments (structured logging enabled), uses a simple prefix
and passes metadata via json_fields. In local environments, uses a detailed
prefix with all metadata key-value pairs for easier debugging.
Args:
logger: The underlying logger instance
max_length: Maximum log message length before truncation
**kwargs: Metadata key-value pairs (e.g., task_id="abc", session_id="xyz")
These are added to json_fields in cloud mode, or to the prefix in local mode.
"""
def __init__(
self,
logger: logging.Logger,
max_length: int = 1000,
**kwargs: str | None,
):
# Filter out None values
metadata = {k: v for k, v in kwargs.items() if v is not None}
metadata["component"] = "CoPilotExecutor"
if is_structured_logging_enabled():
prefix = "[CoPilotExecutor]"
else:
# Build prefix from metadata key-value pairs
meta_parts = "|".join(
f"{k}:{v}" for k, v in metadata.items() if k != "component"
)
prefix = (
f"[CoPilotExecutor|{meta_parts}]" if meta_parts else "[CoPilotExecutor]"
)
super().__init__(
logger,
max_length=max_length,
prefix=prefix,
metadata=metadata,
)
# ============ Exchange and Queue Configuration ============ #
COPILOT_EXECUTION_EXCHANGE = Exchange(
name="copilot_execution",
type=ExchangeType.DIRECT,
durable=True,
auto_delete=False,
)
COPILOT_EXECUTION_QUEUE_NAME = "copilot_execution_queue"
COPILOT_EXECUTION_ROUTING_KEY = "copilot.run"
COPILOT_CANCEL_EXCHANGE = Exchange(
name="copilot_cancel",
type=ExchangeType.FANOUT,
durable=True,
auto_delete=False,
)
COPILOT_CANCEL_QUEUE_NAME = "copilot_cancel_queue"
# CoPilot operations can include extended thinking and agent generation
# which may take 30+ minutes to complete
COPILOT_CONSUMER_TIMEOUT_SECONDS = 60 * 60 # 1 hour
# Graceful shutdown timeout - allow in-flight operations to complete
GRACEFUL_SHUTDOWN_TIMEOUT_SECONDS = 30 * 60 # 30 minutes
def create_copilot_queue_config() -> RabbitMQConfig:
"""Create RabbitMQ configuration for CoPilot executor.
Defines two exchanges and queues:
- 'copilot_execution' (DIRECT) for chat generation tasks
- 'copilot_cancel' (FANOUT) for cancellation requests
Returns:
RabbitMQConfig with exchanges and queues defined
"""
run_queue = Queue(
name=COPILOT_EXECUTION_QUEUE_NAME,
exchange=COPILOT_EXECUTION_EXCHANGE,
routing_key=COPILOT_EXECUTION_ROUTING_KEY,
durable=True,
auto_delete=False,
arguments={
# Extended consumer timeout for long-running LLM operations
# Default 30-minute timeout is insufficient for extended thinking
# and agent generation which can take 30+ minutes
"x-consumer-timeout": COPILOT_CONSUMER_TIMEOUT_SECONDS
* 1000,
},
)
cancel_queue = Queue(
name=COPILOT_CANCEL_QUEUE_NAME,
exchange=COPILOT_CANCEL_EXCHANGE,
routing_key="", # not used for FANOUT
durable=True,
auto_delete=False,
)
return RabbitMQConfig(
vhost="/",
exchanges=[COPILOT_EXECUTION_EXCHANGE, COPILOT_CANCEL_EXCHANGE],
queues=[run_queue, cancel_queue],
)
# ============ Message Models ============ #
class CoPilotExecutionEntry(BaseModel):
"""Task payload for CoPilot AI generation.
This model represents a chat generation task to be processed by the executor.
"""
task_id: str
"""Unique identifier for this task (used for stream registry)"""
session_id: str
"""Chat session ID"""
user_id: str | None
"""User ID (may be None for anonymous users)"""
operation_id: str
"""Operation ID for webhook callbacks and completion tracking"""
message: str
"""User's message to process"""
is_user_message: bool = True
"""Whether the message is from the user (vs system/assistant)"""
context: dict[str, str] | None = None
"""Optional context for the message (e.g., {url: str, content: str})"""
class CancelCoPilotEvent(BaseModel):
"""Event to cancel a CoPilot operation."""
task_id: str
"""Task ID to cancel"""
# ============ Queue Publishing Helpers ============ #
async def enqueue_copilot_task(
task_id: str,
session_id: str,
user_id: str | None,
operation_id: str,
message: str,
is_user_message: bool = True,
context: dict[str, str] | None = None,
) -> None:
"""Enqueue a CoPilot task for processing by the executor service.
Args:
task_id: Unique identifier for this task (used for stream registry)
session_id: Chat session ID
user_id: User ID (may be None for anonymous users)
operation_id: Operation ID for webhook callbacks and completion tracking
message: User's message to process
is_user_message: Whether the message is from the user (vs system/assistant)
context: Optional context for the message (e.g., {url: str, content: str})
"""
from backend.util.clients import get_async_copilot_queue
entry = CoPilotExecutionEntry(
task_id=task_id,
session_id=session_id,
user_id=user_id,
operation_id=operation_id,
message=message,
is_user_message=is_user_message,
context=context,
)
queue_client = await get_async_copilot_queue()
await queue_client.publish_message(
routing_key=COPILOT_EXECUTION_ROUTING_KEY,
message=entry.model_dump_json(),
exchange=COPILOT_EXECUTION_EXCHANGE,
)

View File

@@ -2,7 +2,7 @@ import asyncio
import logging
import uuid
from datetime import UTC, datetime
from typing import Any, cast
from typing import Any, Self, cast
from weakref import WeakValueDictionary
from openai.types.chat import (
@@ -23,26 +23,17 @@ from prisma.models import ChatMessage as PrismaChatMessage
from prisma.models import ChatSession as PrismaChatSession
from pydantic import BaseModel
from backend.data.db_accessors import chat_db
from backend.data.redis_client import get_redis_async
from backend.util import json
from backend.util.exceptions import DatabaseError, RedisError
from . import db as chat_db
from .config import ChatConfig
logger = logging.getLogger(__name__)
config = ChatConfig()
def _parse_json_field(value: str | dict | list | None, default: Any = None) -> Any:
"""Parse a JSON field that may be stored as string or already parsed."""
if value is None:
return default
if isinstance(value, str):
return json.loads(value)
return value
# Redis cache key prefix for chat sessions
CHAT_SESSION_CACHE_PREFIX = "chat:session:"
@@ -52,28 +43,7 @@ def _get_session_cache_key(session_id: str) -> str:
return f"{CHAT_SESSION_CACHE_PREFIX}{session_id}"
# Session-level locks to prevent race conditions during concurrent upserts.
# Uses WeakValueDictionary to automatically garbage collect locks when no longer referenced,
# preventing unbounded memory growth while maintaining lock semantics for active sessions.
# Invalidation: Locks are auto-removed by GC when no coroutine holds a reference (after
# async with lock: completes). Explicit cleanup also occurs in delete_chat_session().
_session_locks: WeakValueDictionary[str, asyncio.Lock] = WeakValueDictionary()
_session_locks_mutex = asyncio.Lock()
async def _get_session_lock(session_id: str) -> asyncio.Lock:
"""Get or create a lock for a specific session to prevent concurrent upserts.
Uses WeakValueDictionary for automatic cleanup: locks are garbage collected
when no coroutine holds a reference to them, preventing memory leaks from
unbounded growth of session locks.
"""
async with _session_locks_mutex:
lock = _session_locks.get(session_id)
if lock is None:
lock = asyncio.Lock()
_session_locks[session_id] = lock
return lock
# ===================== Chat data models ===================== #
class ChatMessage(BaseModel):
@@ -85,6 +55,19 @@ class ChatMessage(BaseModel):
tool_calls: list[dict] | None = None
function_call: dict | None = None
@staticmethod
def from_db(prisma_message: PrismaChatMessage) -> "ChatMessage":
"""Convert a Prisma ChatMessage to a Pydantic ChatMessage."""
return ChatMessage(
role=prisma_message.role,
content=prisma_message.content,
name=prisma_message.name,
tool_call_id=prisma_message.toolCallId,
refusal=prisma_message.refusal,
tool_calls=_parse_json_field(prisma_message.toolCalls),
function_call=_parse_json_field(prisma_message.functionCall),
)
class Usage(BaseModel):
prompt_tokens: int
@@ -92,11 +75,10 @@ class Usage(BaseModel):
total_tokens: int
class ChatSession(BaseModel):
class ChatSessionInfo(BaseModel):
session_id: str
user_id: str
title: str | None = None
messages: list[ChatMessage]
usage: list[Usage]
credentials: dict[str, dict] = {} # Map of provider -> credential metadata
started_at: datetime
@@ -104,60 +86,9 @@ class ChatSession(BaseModel):
successful_agent_runs: dict[str, int] = {}
successful_agent_schedules: dict[str, int] = {}
def add_tool_call_to_current_turn(self, tool_call: dict) -> None:
"""Attach a tool_call to the current turn's assistant message.
Searches backwards for the most recent assistant message (stopping at
any user message boundary). If found, appends the tool_call to it.
Otherwise creates a new assistant message with the tool_call.
"""
for msg in reversed(self.messages):
if msg.role == "user":
break
if msg.role == "assistant":
if not msg.tool_calls:
msg.tool_calls = []
msg.tool_calls.append(tool_call)
return
self.messages.append(
ChatMessage(role="assistant", content="", tool_calls=[tool_call])
)
@staticmethod
def new(user_id: str) -> "ChatSession":
return ChatSession(
session_id=str(uuid.uuid4()),
user_id=user_id,
title=None,
messages=[],
usage=[],
credentials={},
started_at=datetime.now(UTC),
updated_at=datetime.now(UTC),
)
@staticmethod
def from_db(
prisma_session: PrismaChatSession,
prisma_messages: list[PrismaChatMessage] | None = None,
) -> "ChatSession":
"""Convert Prisma models to Pydantic ChatSession."""
messages = []
if prisma_messages:
for msg in prisma_messages:
messages.append(
ChatMessage(
role=msg.role,
content=msg.content,
name=msg.name,
tool_call_id=msg.toolCallId,
refusal=msg.refusal,
tool_calls=_parse_json_field(msg.toolCalls),
function_call=_parse_json_field(msg.functionCall),
)
)
@classmethod
def from_db(cls, prisma_session: PrismaChatSession) -> Self:
"""Convert Prisma ChatSession to Pydantic ChatSession."""
# Parse JSON fields from Prisma
credentials = _parse_json_field(prisma_session.credentials, default={})
successful_agent_runs = _parse_json_field(
@@ -179,11 +110,10 @@ class ChatSession(BaseModel):
)
)
return ChatSession(
return cls(
session_id=prisma_session.id,
user_id=prisma_session.userId,
title=prisma_session.title,
messages=messages,
usage=usage,
credentials=credentials,
started_at=prisma_session.createdAt,
@@ -192,46 +122,55 @@ class ChatSession(BaseModel):
successful_agent_schedules=successful_agent_schedules,
)
@staticmethod
def _merge_consecutive_assistant_messages(
messages: list[ChatCompletionMessageParam],
) -> list[ChatCompletionMessageParam]:
"""Merge consecutive assistant messages into single messages.
Long-running tool flows can create split assistant messages: one with
text content and another with tool_calls. Anthropic's API requires
tool_result blocks to reference a tool_use in the immediately preceding
assistant message, so these splits cause 400 errors via OpenRouter.
class ChatSession(ChatSessionInfo):
messages: list[ChatMessage]
@classmethod
def new(cls, user_id: str) -> Self:
return cls(
session_id=str(uuid.uuid4()),
user_id=user_id,
title=None,
messages=[],
usage=[],
credentials={},
started_at=datetime.now(UTC),
updated_at=datetime.now(UTC),
)
@classmethod
def from_db(cls, prisma_session: PrismaChatSession) -> Self:
"""Convert Prisma ChatSession to Pydantic ChatSession."""
if prisma_session.Messages is None:
raise ValueError(
f"Prisma session {prisma_session.id} is missing Messages relation"
)
return cls(
**ChatSessionInfo.from_db(prisma_session).model_dump(),
messages=[ChatMessage.from_db(m) for m in prisma_session.Messages],
)
def add_tool_call_to_current_turn(self, tool_call: dict) -> None:
"""Attach a tool_call to the current turn's assistant message.
Searches backwards for the most recent assistant message (stopping at
any user message boundary). If found, appends the tool_call to it.
Otherwise creates a new assistant message with the tool_call.
"""
if len(messages) < 2:
return messages
for msg in reversed(self.messages):
if msg.role == "user":
break
if msg.role == "assistant":
if not msg.tool_calls:
msg.tool_calls = []
msg.tool_calls.append(tool_call)
return
result: list[ChatCompletionMessageParam] = [messages[0]]
for msg in messages[1:]:
prev = result[-1]
if prev.get("role") != "assistant" or msg.get("role") != "assistant":
result.append(msg)
continue
prev = cast(ChatCompletionAssistantMessageParam, prev)
curr = cast(ChatCompletionAssistantMessageParam, msg)
curr_content = curr.get("content") or ""
if curr_content:
prev_content = prev.get("content") or ""
prev["content"] = (
f"{prev_content}\n{curr_content}" if prev_content else curr_content
)
curr_tool_calls = curr.get("tool_calls")
if curr_tool_calls:
prev_tool_calls = prev.get("tool_calls")
prev["tool_calls"] = (
list(prev_tool_calls) + list(curr_tool_calls)
if prev_tool_calls
else list(curr_tool_calls)
)
return result
self.messages.append(
ChatMessage(role="assistant", content="", tool_calls=[tool_call])
)
def to_openai_messages(self) -> list[ChatCompletionMessageParam]:
messages = []
@@ -321,38 +260,68 @@ class ChatSession(BaseModel):
)
return self._merge_consecutive_assistant_messages(messages)
@staticmethod
def _merge_consecutive_assistant_messages(
messages: list[ChatCompletionMessageParam],
) -> list[ChatCompletionMessageParam]:
"""Merge consecutive assistant messages into single messages.
async def _get_session_from_cache(session_id: str) -> ChatSession | None:
"""Get a chat session from Redis cache."""
redis_key = _get_session_cache_key(session_id)
async_redis = await get_redis_async()
raw_session: bytes | None = await async_redis.get(redis_key)
Long-running tool flows can create split assistant messages: one with
text content and another with tool_calls. Anthropic's API requires
tool_result blocks to reference a tool_use in the immediately preceding
assistant message, so these splits cause 400 errors via OpenRouter.
"""
if len(messages) < 2:
return messages
if raw_session is None:
return None
result: list[ChatCompletionMessageParam] = [messages[0]]
for msg in messages[1:]:
prev = result[-1]
if prev.get("role") != "assistant" or msg.get("role") != "assistant":
result.append(msg)
continue
try:
session = ChatSession.model_validate_json(raw_session)
logger.info(
f"[CACHE] Loaded session {session_id}: {len(session.messages)} messages, "
f"last_roles={[m.role for m in session.messages[-3:]]}" # Last 3 roles
)
return session
except Exception as e:
logger.error(f"Failed to deserialize session {session_id}: {e}", exc_info=True)
raise RedisError(f"Corrupted session data for {session_id}") from e
prev = cast(ChatCompletionAssistantMessageParam, prev)
curr = cast(ChatCompletionAssistantMessageParam, msg)
curr_content = curr.get("content") or ""
if curr_content:
prev_content = prev.get("content") or ""
prev["content"] = (
f"{prev_content}\n{curr_content}" if prev_content else curr_content
)
curr_tool_calls = curr.get("tool_calls")
if curr_tool_calls:
prev_tool_calls = prev.get("tool_calls")
prev["tool_calls"] = (
list(prev_tool_calls) + list(curr_tool_calls)
if prev_tool_calls
else list(curr_tool_calls)
)
return result
async def _cache_session(session: ChatSession) -> None:
"""Cache a chat session in Redis."""
redis_key = _get_session_cache_key(session.session_id)
async_redis = await get_redis_async()
await async_redis.setex(redis_key, config.session_ttl, session.model_dump_json())
def _parse_json_field(value: str | dict | list | None, default: Any = None) -> Any:
"""Parse a JSON field that may be stored as string or already parsed."""
if value is None:
return default
if isinstance(value, str):
return json.loads(value)
return value
# ================ Chat cache + DB operations ================ #
# NOTE: Database calls are automatically routed through DatabaseManager if Prisma is not
# connected directly.
async def cache_chat_session(session: ChatSession) -> None:
"""Cache a chat session without persisting to the database."""
await _cache_session(session)
"""Cache a chat session in Redis (without persisting to the database)."""
redis_key = _get_session_cache_key(session.session_id)
async_redis = await get_redis_async()
await async_redis.setex(redis_key, config.session_ttl, session.model_dump_json())
async def invalidate_session_cache(session_id: str) -> None:
@@ -370,77 +339,6 @@ async def invalidate_session_cache(session_id: str) -> None:
logger.warning(f"Failed to invalidate session cache for {session_id}: {e}")
async def _get_session_from_db(session_id: str) -> ChatSession | None:
"""Get a chat session from the database."""
prisma_session = await chat_db.get_chat_session(session_id)
if not prisma_session:
return None
messages = prisma_session.Messages
logger.debug(
f"[DB] Loaded session {session_id}: {len(messages) if messages else 0} messages, "
f"roles={[m.role for m in messages[-3:]] if messages else []}" # Last 3 roles
)
return ChatSession.from_db(prisma_session, messages)
async def _save_session_to_db(
session: ChatSession, existing_message_count: int
) -> None:
"""Save or update a chat session in the database."""
# Check if session exists in DB
existing = await chat_db.get_chat_session(session.session_id)
if not existing:
# Create new session
await chat_db.create_chat_session(
session_id=session.session_id,
user_id=session.user_id,
)
existing_message_count = 0
# Calculate total tokens from usage
total_prompt = sum(u.prompt_tokens for u in session.usage)
total_completion = sum(u.completion_tokens for u in session.usage)
# Update session metadata
await chat_db.update_chat_session(
session_id=session.session_id,
credentials=session.credentials,
successful_agent_runs=session.successful_agent_runs,
successful_agent_schedules=session.successful_agent_schedules,
total_prompt_tokens=total_prompt,
total_completion_tokens=total_completion,
)
# Add new messages (only those after existing count)
new_messages = session.messages[existing_message_count:]
if new_messages:
messages_data = []
for msg in new_messages:
messages_data.append(
{
"role": msg.role,
"content": msg.content,
"name": msg.name,
"tool_call_id": msg.tool_call_id,
"refusal": msg.refusal,
"tool_calls": msg.tool_calls,
"function_call": msg.function_call,
}
)
logger.debug(
f"[DB] Saving {len(new_messages)} messages to session {session.session_id}, "
f"roles={[m['role'] for m in messages_data]}"
)
await chat_db.add_chat_messages_batch(
session_id=session.session_id,
messages=messages_data,
start_sequence=existing_message_count,
)
async def get_chat_session(
session_id: str,
user_id: str | None = None,
@@ -488,16 +386,53 @@ async def get_chat_session(
# Cache the session from DB
try:
await _cache_session(session)
await cache_chat_session(session)
logger.info(f"Cached session {session_id} from database")
except Exception as e:
logger.warning(f"Failed to cache session {session_id}: {e}")
return session
async def upsert_chat_session(
session: ChatSession,
) -> ChatSession:
async def _get_session_from_cache(session_id: str) -> ChatSession | None:
"""Get a chat session from Redis cache."""
redis_key = _get_session_cache_key(session_id)
async_redis = await get_redis_async()
raw_session: bytes | None = await async_redis.get(redis_key)
if raw_session is None:
return None
try:
session = ChatSession.model_validate_json(raw_session)
logger.info(
f"Loading session {session_id} from cache: "
f"message_count={len(session.messages)}, "
f"roles={[m.role for m in session.messages]}"
)
return session
except Exception as e:
logger.error(f"Failed to deserialize session {session_id}: {e}", exc_info=True)
raise RedisError(f"Corrupted session data for {session_id}") from e
async def _get_session_from_db(session_id: str) -> ChatSession | None:
"""Get a chat session from the database."""
session = await chat_db().get_chat_session(session_id)
if not session:
return None
logger.info(
f"Loaded session {session_id} from DB: "
f"has_messages={bool(session.messages)}, "
f"message_count={len(session.messages)}, "
f"roles={[m.role for m in session.messages]}"
)
return session
async def upsert_chat_session(session: ChatSession) -> ChatSession:
"""Update a chat session in both cache and database.
Uses session-level locking to prevent race conditions when concurrent
@@ -515,7 +450,7 @@ async def upsert_chat_session(
async with lock:
# Get existing message count from DB for incremental saves
existing_message_count = await chat_db.get_chat_session_message_count(
existing_message_count = await chat_db().get_chat_session_message_count(
session.session_id
)
@@ -532,7 +467,7 @@ async def upsert_chat_session(
# Save to cache (best-effort, even if DB failed)
try:
await _cache_session(session)
await cache_chat_session(session)
except Exception as e:
# If DB succeeded but cache failed, raise cache error
if db_error is None:
@@ -553,6 +488,65 @@ async def upsert_chat_session(
return session
async def _save_session_to_db(
session: ChatSession, existing_message_count: int
) -> None:
"""Save or update a chat session in the database."""
db = chat_db()
# Check if session exists in DB
existing = await db.get_chat_session(session.session_id)
if not existing:
# Create new session
await db.create_chat_session(
session_id=session.session_id,
user_id=session.user_id,
)
existing_message_count = 0
# Calculate total tokens from usage
total_prompt = sum(u.prompt_tokens for u in session.usage)
total_completion = sum(u.completion_tokens for u in session.usage)
# Update session metadata
await db.update_chat_session(
session_id=session.session_id,
credentials=session.credentials,
successful_agent_runs=session.successful_agent_runs,
successful_agent_schedules=session.successful_agent_schedules,
total_prompt_tokens=total_prompt,
total_completion_tokens=total_completion,
)
# Add new messages (only those after existing count)
new_messages = session.messages[existing_message_count:]
if new_messages:
messages_data = []
for msg in new_messages:
messages_data.append(
{
"role": msg.role,
"content": msg.content,
"name": msg.name,
"tool_call_id": msg.tool_call_id,
"refusal": msg.refusal,
"tool_calls": msg.tool_calls,
"function_call": msg.function_call,
}
)
logger.info(
f"Saving {len(new_messages)} new messages to DB for session {session.session_id}: "
f"roles={[m['role'] for m in messages_data]}, "
f"start_sequence={existing_message_count}"
)
await db.add_chat_messages_batch(
session_id=session.session_id,
messages=messages_data,
start_sequence=existing_message_count,
)
async def append_and_save_message(session_id: str, message: ChatMessage) -> ChatSession:
"""Atomically append a message to a session and persist it.
@@ -568,7 +562,7 @@ async def append_and_save_message(session_id: str, message: ChatMessage) -> Chat
raise ValueError(f"Session {session_id} not found")
session.messages.append(message)
existing_message_count = await chat_db.get_chat_session_message_count(
existing_message_count = await chat_db().get_chat_session_message_count(
session_id
)
@@ -580,7 +574,7 @@ async def append_and_save_message(session_id: str, message: ChatMessage) -> Chat
) from e
try:
await _cache_session(session)
await cache_chat_session(session)
except Exception as e:
logger.warning(f"Cache write failed for session {session_id}: {e}")
@@ -599,7 +593,7 @@ async def create_chat_session(user_id: str) -> ChatSession:
# Create in database first - fail fast if this fails
try:
await chat_db.create_chat_session(
await chat_db().create_chat_session(
session_id=session.session_id,
user_id=user_id,
)
@@ -611,7 +605,7 @@ async def create_chat_session(user_id: str) -> ChatSession:
# Cache the session (best-effort optimization, DB is source of truth)
try:
await _cache_session(session)
await cache_chat_session(session)
except Exception as e:
logger.warning(f"Failed to cache new session {session.session_id}: {e}")
@@ -622,20 +616,16 @@ async def get_user_sessions(
user_id: str,
limit: int = 50,
offset: int = 0,
) -> tuple[list[ChatSession], int]:
) -> tuple[list[ChatSessionInfo], int]:
"""Get chat sessions for a user from the database with total count.
Returns:
A tuple of (sessions, total_count) where total_count is the overall
number of sessions for the user (not just the current page).
"""
prisma_sessions = await chat_db.get_user_chat_sessions(user_id, limit, offset)
total_count = await chat_db.get_user_session_count(user_id)
sessions = []
for prisma_session in prisma_sessions:
# Convert without messages for listing (lighter weight)
sessions.append(ChatSession.from_db(prisma_session, None))
db = chat_db()
sessions = await db.get_user_chat_sessions(user_id, limit, offset)
total_count = await db.get_user_session_count(user_id)
return sessions, total_count
@@ -653,7 +643,7 @@ async def delete_chat_session(session_id: str, user_id: str | None = None) -> bo
"""
# Delete from database first (with optional user_id validation)
# This confirms ownership before invalidating cache
deleted = await chat_db.delete_chat_session(session_id, user_id)
deleted = await chat_db().delete_chat_session(session_id, user_id)
if not deleted:
return False
@@ -688,7 +678,7 @@ async def update_session_title(session_id: str, title: str) -> bool:
True if updated successfully, False otherwise.
"""
try:
result = await chat_db.update_chat_session(session_id=session_id, title=title)
result = await chat_db().update_chat_session(session_id=session_id, title=title)
if result is None:
logger.warning(f"Session {session_id} not found for title update")
return False
@@ -700,7 +690,7 @@ async def update_session_title(session_id: str, title: str) -> bool:
cached = await _get_session_from_cache(session_id)
if cached:
cached.title = title
await _cache_session(cached)
await cache_chat_session(cached)
except Exception as e:
# Not critical - title will be correct on next full cache refresh
logger.warning(
@@ -711,3 +701,29 @@ async def update_session_title(session_id: str, title: str) -> bool:
except Exception as e:
logger.error(f"Failed to update title for session {session_id}: {e}")
return False
# ==================== Chat session locks ==================== #
_session_locks: WeakValueDictionary[str, asyncio.Lock] = WeakValueDictionary()
_session_locks_mutex = asyncio.Lock()
async def _get_session_lock(session_id: str) -> asyncio.Lock:
"""Get or create a lock for a specific session to prevent concurrent upserts.
This was originally added to solve the specific problem of race conditions between
the session title thread and the conversation thread, which always occurs on the
same instance as we prevent rapid request sends on the frontend.
Uses WeakValueDictionary for automatic cleanup: locks are garbage collected
when no coroutine holds a reference to them, preventing memory leaks from
unbounded growth of session locks. Explicit cleanup also occurs
in `delete_chat_session()`.
"""
async with _session_locks_mutex:
lock = _session_locks.get(session_id)
if lock is None:
lock = asyncio.Lock()
_session_locks[session_id] = lock
return lock

View File

@@ -20,7 +20,7 @@ from claude_agent_sdk import (
UserMessage,
)
from backend.api.features.chat.response_model import (
from backend.copilot.response_model import (
StreamBaseResponse,
StreamError,
StreamFinish,
@@ -34,10 +34,8 @@ from backend.api.features.chat.response_model import (
StreamToolInputStart,
StreamToolOutputAvailable,
)
from backend.api.features.chat.sdk.tool_adapter import (
MCP_TOOL_PREFIX,
pop_pending_tool_output,
)
from .tool_adapter import MCP_TOOL_PREFIX, pop_pending_tool_output
logger = logging.getLogger(__name__)

View File

@@ -10,7 +10,7 @@ from claude_agent_sdk import (
UserMessage,
)
from backend.api.features.chat.response_model import (
from backend.copilot.response_model import (
StreamBaseResponse,
StreamError,
StreamFinish,

View File

@@ -11,45 +11,15 @@ import re
from collections.abc import Callable
from typing import Any, cast
from backend.api.features.chat.sdk.tool_adapter import MCP_TOOL_PREFIX
from .tool_adapter import (
BLOCKED_TOOLS,
DANGEROUS_PATTERNS,
MCP_TOOL_PREFIX,
WORKSPACE_SCOPED_TOOLS,
)
logger = logging.getLogger(__name__)
# Tools that are blocked entirely (CLI/system access).
# "Bash" (capital) is the SDK built-in — it's NOT in allowed_tools but blocked
# here as defence-in-depth. The agent uses mcp__copilot__bash_exec instead,
# which has kernel-level network isolation (unshare --net).
BLOCKED_TOOLS = {
"Bash",
"bash",
"shell",
"exec",
"terminal",
"command",
}
# Tools allowed only when their path argument stays within the SDK workspace.
# The SDK uses these to handle oversized tool results (writes to tool-results/
# files, then reads them back) and for workspace file operations.
WORKSPACE_SCOPED_TOOLS = {"Read", "Write", "Edit", "Glob", "Grep"}
# Dangerous patterns in tool inputs
DANGEROUS_PATTERNS = [
r"sudo",
r"rm\s+-rf",
r"dd\s+if=",
r"/etc/passwd",
r"/etc/shadow",
r"chmod\s+777",
r"curl\s+.*\|.*sh",
r"wget\s+.*\|.*sh",
r"eval\s*\(",
r"exec\s*\(",
r"__import__",
r"os\.system",
r"subprocess",
]
def _deny(reason: str) -> dict[str, Any]:
"""Return a hook denial response."""

View File

@@ -1,4 +1,9 @@
"""Unit tests for SDK security hooks."""
"""Tests for SDK security hooks — workspace paths, tool access, and deny messages.
These are pure unit tests with no external dependencies (no SDK, no DB, no server).
They validate that the security hooks correctly block unauthorized paths,
tool access, and dangerous input patterns.
"""
import os
@@ -12,6 +17,10 @@ def _is_denied(result: dict) -> bool:
return hook.get("permissionDecision") == "deny"
def _reason(result: dict) -> str:
return result.get("hookSpecificOutput", {}).get("permissionDecisionReason", "")
# -- Blocked tools -----------------------------------------------------------
@@ -163,3 +172,19 @@ def test_non_workspace_tool_passes_isolation():
"find_agent", {"query": "email"}, user_id="user-1"
)
assert result == {}
# -- Deny message quality ----------------------------------------------------
def test_blocked_tool_message_clarity():
"""Deny messages must include [SECURITY] and 'cannot be bypassed'."""
reason = _reason(_validate_tool_access("bash", {}))
assert "[SECURITY]" in reason
assert "cannot be bypassed" in reason
def test_bash_builtin_blocked_message_clarity():
reason = _reason(_validate_tool_access("Bash", {"command": "echo hello"}))
assert "[SECURITY]" in reason
assert "cannot be bypassed" in reason

View File

@@ -41,6 +41,7 @@ from .response_adapter import SDKResponseAdapter
from .security_hooks import create_security_hooks
from .tool_adapter import (
COPILOT_TOOL_NAMES,
SDK_DISALLOWED_TOOLS,
LongRunningCallback,
create_copilot_mcp_server,
set_execution_context,
@@ -254,7 +255,7 @@ def _build_sdk_env() -> dict[str, str]:
def _make_sdk_cwd(session_id: str) -> str:
"""Create a safe, session-specific working directory path.
Delegates to :func:`~backend.api.features.chat.tools.sandbox.make_session_path`
Delegates to :func:`~backend.copilot.tools.sandbox.make_session_path`
(single source of truth for path sanitization) and adds a defence-in-depth
assertion.
"""
@@ -439,12 +440,16 @@ async def stream_chat_completion_sdk(
f"Session {session_id} not found. Please create a new session first."
)
if message:
session.messages.append(
ChatMessage(
role="user" if is_user_message else "assistant", content=message
)
# Append the new message to the session if it's not already there
new_message_role = "user" if is_user_message else "assistant"
if message and (
len(session.messages) == 0
or not (
session.messages[-1].role == new_message_role
and session.messages[-1].content == message
)
):
session.messages.append(ChatMessage(role=new_message_role, content=message))
if is_user_message:
track_user_message(
user_id=user_id, session_id=session_id, message_length=len(message)
@@ -543,7 +548,7 @@ async def stream_chat_completion_sdk(
"system_prompt": system_prompt,
"mcp_servers": {"copilot": mcp_server},
"allowed_tools": COPILOT_TOOL_NAMES,
"disallowed_tools": ["Bash"],
"disallowed_tools": SDK_DISALLOWED_TOOLS,
"hooks": security_hooks,
"cwd": sdk_cwd,
"max_buffer_size": config.claude_agent_max_buffer_size,

View File

@@ -18,9 +18,9 @@ from collections.abc import Awaitable, Callable
from contextvars import ContextVar
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools import TOOL_REGISTRY
from backend.api.features.chat.tools.base import BaseTool
from backend.copilot.model import ChatSession
from backend.copilot.tools import TOOL_REGISTRY
from backend.copilot.tools.base import BaseTool
logger = logging.getLogger(__name__)
@@ -310,7 +310,48 @@ def create_copilot_mcp_server():
# Bash is NOT included — use the sandboxed MCP bash_exec tool instead,
# which provides kernel-level network isolation via unshare --net.
# Task allows spawning sub-agents (rate-limited by security hooks).
_SDK_BUILTIN_TOOLS = ["Read", "Write", "Edit", "Glob", "Grep", "Task"]
# WebSearch uses Brave Search via Anthropic's API — safe, no SSRF risk.
_SDK_BUILTIN_TOOLS = ["Read", "Write", "Edit", "Glob", "Grep", "Task", "WebSearch"]
# SDK built-in tools that must be explicitly blocked.
# Bash: dangerous — agent uses mcp__copilot__bash_exec with kernel-level
# network isolation (unshare --net) instead.
# WebFetch: SSRF risk — can reach internal network (localhost, 10.x, etc.).
# Agent uses the SSRF-protected mcp__copilot__web_fetch tool instead.
SDK_DISALLOWED_TOOLS = ["Bash", "WebFetch"]
# Tools that are blocked entirely in security hooks (defence-in-depth).
# Includes SDK_DISALLOWED_TOOLS plus common aliases/synonyms.
BLOCKED_TOOLS = {
*SDK_DISALLOWED_TOOLS,
"bash",
"shell",
"exec",
"terminal",
"command",
}
# Tools allowed only when their path argument stays within the SDK workspace.
# The SDK uses these to handle oversized tool results (writes to tool-results/
# files, then reads them back) and for workspace file operations.
WORKSPACE_SCOPED_TOOLS = {"Read", "Write", "Edit", "Glob", "Grep"}
# Dangerous patterns in tool inputs
DANGEROUS_PATTERNS = [
r"sudo",
r"rm\s+-rf",
r"dd\s+if=",
r"/etc/passwd",
r"/etc/shadow",
r"chmod\s+777",
r"curl\s+.*\|.*sh",
r"wget\s+.*\|.*sh",
r"eval\s*\(",
r"exec\s*\(",
r"__import__",
r"os\.system",
r"subprocess",
]
# List of tool names for allowed_tools configuration
# Include MCP tools, the MCP Read tool for oversized results,

View File

@@ -3,7 +3,7 @@
import json
import os
from backend.api.features.chat.sdk.transcript import (
from .transcript import (
STRIPPABLE_TYPES,
read_transcript_file,
strip_progress_entries,

View File

@@ -27,20 +27,18 @@ from openai.types.chat import (
ChatCompletionToolParam,
)
from backend.data.db_accessors import chat_db, understanding_db
from backend.data.redis_client import get_redis_async
from backend.data.understanding import (
format_understanding_for_prompt,
get_business_understanding,
)
from backend.data.understanding import format_understanding_for_prompt
from backend.util.exceptions import NotFoundError
from backend.util.settings import AppEnvironment, Settings
from . import db as chat_db
from . import stream_registry
from .config import ChatConfig
from .model import (
ChatMessage,
ChatSession,
ChatSessionInfo,
Usage,
cache_chat_session,
get_chat_session,
@@ -120,6 +118,8 @@ Adapt flexibly to the conversation context. Not every interaction requires all s
- Find reusable components with `find_block`
- Create custom solutions with `create_agent` if nothing suitable exists
- Modify existing library agents with `edit_agent`
- **When `create_agent` returns `suggested_goal`**: Present the suggestion to the user and ask "Would you like me to proceed with this refined goal?" If they accept, call `create_agent` again with the suggested goal.
- **When `create_agent` returns `clarifying_questions`**: After the user answers, call `create_agent` again with the original description AND the answers in the `context` parameter.
5. **Execute**: Run automations immediately, schedule them, or set up webhooks using `run_agent`. Test specific components with `run_block`.
@@ -166,6 +166,11 @@ Adapt flexibly to the conversation context. Not every interaction requires all s
- Use `add_understanding` to capture valuable business context
- When tool calls fail, try alternative approaches
**Handle Feedback Loops:**
- When a tool returns a suggested alternative (like a refined goal), present it clearly and ask the user for confirmation before proceeding
- When clarifying questions are answered, immediately re-call the tool with the accumulated context
- Don't ask redundant questions if the user has already provided context in the conversation
## CRITICAL REMINDER
You are NOT a chatbot. You are NOT documentation. You are a partner who helps busy business owners get value quickly by showing proof through working automations. Bias toward action over explanation."""
@@ -263,7 +268,7 @@ async def _build_system_prompt(
understanding = None
if user_id:
try:
understanding = await get_business_understanding(user_id)
understanding = await understanding_db().get_business_understanding(user_id)
except Exception as e:
logger.warning(f"Failed to fetch business understanding: {e}")
understanding = None
@@ -339,7 +344,7 @@ async def _generate_session_title(
async def assign_user_to_session(
session_id: str,
user_id: str,
) -> ChatSession:
) -> ChatSessionInfo:
"""
Assign a user to a chat session.
"""
@@ -428,12 +433,16 @@ async def stream_chat_completion(
f"Session {session_id} not found. Please create a new session first."
)
if message:
session.messages.append(
ChatMessage(
role="user" if is_user_message else "assistant", content=message
)
# Append the new message to the session if it's not already there
new_message_role = "user" if is_user_message else "assistant"
if message and (
len(session.messages) == 0
or not (
session.messages[-1].role == new_message_role
and session.messages[-1].content == message
)
):
session.messages.append(ChatMessage(role=new_message_role, content=message))
logger.info(
f"Appended message (role={'user' if is_user_message else 'assistant'}), "
f"new message_count={len(session.messages)}"
@@ -1770,7 +1779,7 @@ async def _update_pending_operation(
This is called by background tasks when long-running operations complete.
"""
# Update the message in database
updated = await chat_db.update_tool_message_content(
updated = await chat_db().update_tool_message_content(
session_id=session_id,
tool_call_id=tool_call_id,
new_content=result,

View File

@@ -3,8 +3,8 @@ from typing import TYPE_CHECKING, Any
from openai.types.chat import ChatCompletionToolParam
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tracking import track_tool_called
from backend.copilot.model import ChatSession
from backend.copilot.tracking import track_tool_called
from .add_understanding import AddUnderstandingTool
from .agent_output import AgentOutputTool
@@ -31,7 +31,7 @@ from .workspace_files import (
)
if TYPE_CHECKING:
from backend.api.features.chat.response_model import StreamToolOutputAvailable
from backend.copilot.response_model import StreamToolOutputAvailable
logger = logging.getLogger(__name__)

View File

@@ -6,11 +6,11 @@ import pytest
from prisma.types import ProfileCreateInput
from pydantic import SecretStr
from backend.api.features.chat.model import ChatSession
from backend.api.features.store import db as store_db
from backend.blocks.firecrawl.scrape import FirecrawlScrapeBlock
from backend.blocks.io import AgentInputBlock, AgentOutputBlock
from backend.blocks.llm import AITextGeneratorBlock
from backend.copilot.model import ChatSession
from backend.data.db import prisma
from backend.data.graph import Graph, Link, Node, create_graph
from backend.data.model import APIKeyCredentials

View File

@@ -3,11 +3,9 @@
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.data.understanding import (
BusinessUnderstandingInput,
upsert_business_understanding,
)
from backend.copilot.model import ChatSession
from backend.data.db_accessors import understanding_db
from backend.data.understanding import BusinessUnderstandingInput
from .base import BaseTool
from .models import ErrorResponse, ToolResponseBase, UnderstandingUpdatedResponse
@@ -99,7 +97,9 @@ and automations for the user's specific needs."""
]
# Upsert with merge
understanding = await upsert_business_understanding(user_id, input_data)
understanding = await understanding_db().upsert_business_understanding(
user_id, input_data
)
# Build current understanding summary (filter out empty values)
current_understanding = {

View File

@@ -5,9 +5,8 @@ import re
import uuid
from typing import Any, NotRequired, TypedDict
from backend.api.features.library import db as library_db
from backend.api.features.store import db as store_db
from backend.data.graph import Graph, Link, Node, get_graph, get_store_listed_graphs
from backend.data.db_accessors import graph_db, library_db, store_db
from backend.data.graph import Graph, Link, Node
from backend.util.exceptions import DatabaseError, NotFoundError
from .service import (
@@ -145,8 +144,9 @@ async def get_library_agent_by_id(
Returns:
LibraryAgentSummary if found, None otherwise
"""
db = library_db()
try:
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
agent = await db.get_library_agent_by_graph_id(user_id, agent_id)
if agent:
logger.debug(f"Found library agent by graph_id: {agent.name}")
return LibraryAgentSummary(
@@ -163,7 +163,7 @@ async def get_library_agent_by_id(
logger.debug(f"Could not fetch library agent by graph_id {agent_id}: {e}")
try:
agent = await library_db.get_library_agent(agent_id, user_id)
agent = await db.get_library_agent(agent_id, user_id)
if agent:
logger.debug(f"Found library agent by library_id: {agent.name}")
return LibraryAgentSummary(
@@ -215,7 +215,7 @@ async def get_library_agents_for_generation(
List of LibraryAgentSummary with schemas and recent executions for sub-agent composition
"""
try:
response = await library_db.list_library_agents(
response = await library_db().list_library_agents(
user_id=user_id,
search_term=search_query,
page=1,
@@ -272,7 +272,7 @@ async def search_marketplace_agents_for_generation(
List of LibraryAgentSummary with full input/output schemas
"""
try:
response = await store_db.get_store_agents(
response = await store_db().get_store_agents(
search_query=search_query,
page=1,
page_size=max_results,
@@ -286,7 +286,7 @@ async def search_marketplace_agents_for_generation(
return []
graph_ids = [agent.agent_graph_id for agent in agents_with_graphs]
graphs = await get_store_listed_graphs(*graph_ids)
graphs = await graph_db().get_store_listed_graphs(graph_ids)
results: list[LibraryAgentSummary] = []
for agent in agents_with_graphs:
@@ -673,9 +673,10 @@ async def save_agent_to_library(
Tuple of (created Graph, LibraryAgent)
"""
graph = json_to_graph(agent_json)
db = library_db()
if is_update:
return await library_db.update_graph_in_library(graph, user_id)
return await library_db.create_graph_in_library(graph, user_id)
return await db.update_graph_in_library(graph, user_id)
return await db.create_graph_in_library(graph, user_id)
def graph_to_json(graph: Graph) -> dict[str, Any]:
@@ -735,12 +736,14 @@ async def get_agent_as_json(
Returns:
Agent as JSON dict or None if not found
"""
graph = await get_graph(agent_id, version=None, user_id=user_id)
db = graph_db()
graph = await db.get_graph(agent_id, version=None, user_id=user_id)
if not graph and user_id:
try:
library_agent = await library_db.get_library_agent(agent_id, user_id)
graph = await get_graph(
library_agent = await library_db().get_library_agent(agent_id, user_id)
graph = await db.get_graph(
library_agent.graph_id, version=None, user_id=user_id
)
except NotFoundError:

View File

@@ -7,10 +7,9 @@ from typing import Any
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
from backend.api.features.library import db as library_db
from backend.api.features.library.model import LibraryAgent
from backend.data import execution as execution_db
from backend.copilot.model import ChatSession
from backend.data.db_accessors import execution_db, library_db
from backend.data.execution import ExecutionStatus, GraphExecution, GraphExecutionMeta
from .base import BaseTool
@@ -165,10 +164,12 @@ class AgentOutputTool(BaseTool):
Resolve agent from provided identifiers.
Returns (library_agent, error_message).
"""
lib_db = library_db()
# Priority 1: Exact library agent ID
if library_agent_id:
try:
agent = await library_db.get_library_agent(library_agent_id, user_id)
agent = await lib_db.get_library_agent(library_agent_id, user_id)
return agent, None
except Exception as e:
logger.warning(f"Failed to get library agent by ID: {e}")
@@ -182,7 +183,7 @@ class AgentOutputTool(BaseTool):
return None, f"Agent '{store_slug}' not found in marketplace"
# Find in user's library by graph_id
agent = await library_db.get_library_agent_by_graph_id(user_id, graph.id)
agent = await lib_db.get_library_agent_by_graph_id(user_id, graph.id)
if not agent:
return (
None,
@@ -194,7 +195,7 @@ class AgentOutputTool(BaseTool):
# Priority 3: Fuzzy name search in library
if agent_name:
try:
response = await library_db.list_library_agents(
response = await lib_db.list_library_agents(
user_id=user_id,
search_term=agent_name,
page_size=5,
@@ -228,9 +229,11 @@ class AgentOutputTool(BaseTool):
Fetch execution(s) based on filters.
Returns (single_execution, available_executions_meta, error_message).
"""
exec_db = execution_db()
# If specific execution_id provided, fetch it directly
if execution_id:
execution = await execution_db.get_graph_execution(
execution = await exec_db.get_graph_execution(
user_id=user_id,
execution_id=execution_id,
include_node_executions=False,
@@ -240,7 +243,7 @@ class AgentOutputTool(BaseTool):
return execution, [], None
# Get completed executions with time filters
executions = await execution_db.get_graph_executions(
executions = await exec_db.get_graph_executions(
graph_id=graph_id,
user_id=user_id,
statuses=[ExecutionStatus.COMPLETED],
@@ -254,7 +257,7 @@ class AgentOutputTool(BaseTool):
# If only one execution, fetch full details
if len(executions) == 1:
full_execution = await execution_db.get_graph_execution(
full_execution = await exec_db.get_graph_execution(
user_id=user_id,
execution_id=executions[0].id,
include_node_executions=False,
@@ -262,7 +265,7 @@ class AgentOutputTool(BaseTool):
return full_execution, [], None
# Multiple executions - return latest with full details, plus list of available
full_execution = await execution_db.get_graph_execution(
full_execution = await exec_db.get_graph_execution(
user_id=user_id,
execution_id=executions[0].id,
include_node_executions=False,
@@ -380,7 +383,7 @@ class AgentOutputTool(BaseTool):
and not input_data.store_slug
):
# Fetch execution directly to get graph_id
execution = await execution_db.get_graph_execution(
execution = await execution_db().get_graph_execution(
user_id=user_id,
execution_id=input_data.execution_id,
include_node_executions=False,
@@ -392,7 +395,7 @@ class AgentOutputTool(BaseTool):
)
# Find library agent by graph_id
agent = await library_db.get_library_agent_by_graph_id(
agent = await library_db().get_library_agent_by_graph_id(
user_id, execution.graph_id
)
if not agent:

View File

@@ -4,8 +4,7 @@ import logging
import re
from typing import Literal
from backend.api.features.library import db as library_db
from backend.api.features.store import db as store_db
from backend.data.db_accessors import library_db, store_db
from backend.util.exceptions import DatabaseError, NotFoundError
from .models import (
@@ -45,8 +44,10 @@ async def _get_library_agent_by_id(user_id: str, agent_id: str) -> AgentInfo | N
Returns:
AgentInfo if found, None otherwise
"""
lib_db = library_db()
try:
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
agent = await lib_db.get_library_agent_by_graph_id(user_id, agent_id)
if agent:
logger.debug(f"Found library agent by graph_id: {agent.name}")
return AgentInfo(
@@ -71,7 +72,7 @@ async def _get_library_agent_by_id(user_id: str, agent_id: str) -> AgentInfo | N
)
try:
agent = await library_db.get_library_agent(agent_id, user_id)
agent = await lib_db.get_library_agent(agent_id, user_id)
if agent:
logger.debug(f"Found library agent by library_id: {agent.name}")
return AgentInfo(
@@ -133,7 +134,7 @@ async def search_agents(
try:
if source == "marketplace":
logger.info(f"Searching marketplace for: {query}")
results = await store_db.get_store_agents(search_query=query, page_size=5)
results = await store_db().get_store_agents(search_query=query, page_size=5)
for agent in results.agents:
agents.append(
AgentInfo(
@@ -159,7 +160,7 @@ async def search_agents(
if not agents:
logger.info(f"Searching user library for: {query}")
results = await library_db.list_library_agents(
results = await library_db().list_library_agents(
user_id=user_id, # type: ignore[arg-type]
search_term=query,
page_size=10,

View File

@@ -5,8 +5,8 @@ from typing import Any
from openai.types.chat import ChatCompletionToolParam
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.response_model import StreamToolOutputAvailable
from backend.copilot.model import ChatSession
from backend.copilot.response_model import StreamToolOutputAvailable
from .models import ErrorResponse, NeedLoginResponse, ToolResponseBase

View File

@@ -11,18 +11,11 @@ available (e.g. macOS development).
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
BashExecResponse,
ErrorResponse,
ToolResponseBase,
)
from backend.api.features.chat.tools.sandbox import (
get_workspace_dir,
has_full_sandbox,
run_sandboxed,
)
from backend.copilot.model import ChatSession
from .base import BaseTool
from .models import BashExecResponse, ErrorResponse, ToolResponseBase
from .sandbox import get_workspace_dir, has_full_sandbox, run_sandboxed
logger = logging.getLogger(__name__)

View File

@@ -3,13 +3,10 @@
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
ErrorResponse,
ResponseType,
ToolResponseBase,
)
from backend.copilot.model import ChatSession
from .base import BaseTool
from .models import ErrorResponse, ResponseType, ToolResponseBase
logger = logging.getLogger(__name__)
@@ -78,7 +75,7 @@ class CheckOperationStatusTool(BaseTool):
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
from backend.api.features.chat import stream_registry
from backend.copilot import stream_registry
operation_id = (kwargs.get("operation_id") or "").strip()
task_id = (kwargs.get("task_id") or "").strip()

View File

@@ -3,7 +3,7 @@
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.copilot.model import ChatSession
from .agent_generator import (
AgentGeneratorNotConfiguredError,
@@ -22,6 +22,7 @@ from .models import (
ClarificationNeededResponse,
ClarifyingQuestion,
ErrorResponse,
SuggestedGoalResponse,
ToolResponseBase,
)
@@ -186,26 +187,25 @@ class CreateAgentTool(BaseTool):
if decomposition_result.get("type") == "unachievable_goal":
suggested = decomposition_result.get("suggested_goal", "")
reason = decomposition_result.get("reason", "")
return ErrorResponse(
return SuggestedGoalResponse(
message=(
f"This goal cannot be accomplished with the available blocks. "
f"{reason} "
f"Suggestion: {suggested}"
f"This goal cannot be accomplished with the available blocks. {reason}"
),
error="unachievable_goal",
details={"suggested_goal": suggested, "reason": reason},
suggested_goal=suggested,
reason=reason,
original_goal=description,
goal_type="unachievable",
session_id=session_id,
)
if decomposition_result.get("type") == "vague_goal":
suggested = decomposition_result.get("suggested_goal", "")
return ErrorResponse(
message=(
f"The goal is too vague to create a specific workflow. "
f"Suggestion: {suggested}"
),
error="vague_goal",
details={"suggested_goal": suggested},
return SuggestedGoalResponse(
message="The goal is too vague to create a specific workflow.",
suggested_goal=suggested,
reason="The goal needs more specific details",
original_goal=description,
goal_type="vague",
session_id=session_id,
)

View File

@@ -0,0 +1,142 @@
"""Tests for CreateAgentTool response types."""
from unittest.mock import AsyncMock, patch
import pytest
from backend.copilot.tools.create_agent import CreateAgentTool
from backend.copilot.tools.models import (
ClarificationNeededResponse,
ErrorResponse,
SuggestedGoalResponse,
)
from ._test_data import make_session
_TEST_USER_ID = "test-user-create-agent"
@pytest.fixture
def tool():
return CreateAgentTool()
@pytest.fixture
def session():
return make_session(_TEST_USER_ID)
@pytest.mark.asyncio
async def test_missing_description_returns_error(tool, session):
"""Missing description returns ErrorResponse."""
result = await tool._execute(user_id=_TEST_USER_ID, session=session, description="")
assert isinstance(result, ErrorResponse)
assert result.error == "Missing description parameter"
@pytest.mark.asyncio
async def test_vague_goal_returns_suggested_goal_response(tool, session):
"""vague_goal decomposition result returns SuggestedGoalResponse, not ErrorResponse."""
vague_result = {
"type": "vague_goal",
"suggested_goal": "Monitor Twitter mentions for a specific keyword and send a daily digest email",
}
with (
patch(
"backend.copilot.tools.create_agent.get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=[],
),
patch(
"backend.copilot.tools.create_agent.decompose_goal",
new_callable=AsyncMock,
return_value=vague_result,
),
):
result = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
description="monitor social media",
)
assert isinstance(result, SuggestedGoalResponse)
assert result.goal_type == "vague"
assert result.suggested_goal == vague_result["suggested_goal"]
assert result.original_goal == "monitor social media"
assert result.reason == "The goal needs more specific details"
assert not isinstance(result, ErrorResponse)
@pytest.mark.asyncio
async def test_unachievable_goal_returns_suggested_goal_response(tool, session):
"""unachievable_goal decomposition result returns SuggestedGoalResponse, not ErrorResponse."""
unachievable_result = {
"type": "unachievable_goal",
"suggested_goal": "Summarize the latest news articles on a topic and send them by email",
"reason": "There are no blocks for mind-reading.",
}
with (
patch(
"backend.copilot.tools.create_agent.get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=[],
),
patch(
"backend.copilot.tools.create_agent.decompose_goal",
new_callable=AsyncMock,
return_value=unachievable_result,
),
):
result = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
description="read my mind",
)
assert isinstance(result, SuggestedGoalResponse)
assert result.goal_type == "unachievable"
assert result.suggested_goal == unachievable_result["suggested_goal"]
assert result.original_goal == "read my mind"
assert result.reason == unachievable_result["reason"]
assert not isinstance(result, ErrorResponse)
@pytest.mark.asyncio
async def test_clarifying_questions_returns_clarification_needed_response(
tool, session
):
"""clarifying_questions decomposition result returns ClarificationNeededResponse."""
clarifying_result = {
"type": "clarifying_questions",
"questions": [
{
"question": "What platform should be monitored?",
"keyword": "platform",
"example": "Twitter, Reddit",
}
],
}
with (
patch(
"backend.copilot.tools.create_agent.get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=[],
),
patch(
"backend.copilot.tools.create_agent.decompose_goal",
new_callable=AsyncMock,
return_value=clarifying_result,
),
):
result = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
description="monitor social media and alert me",
)
assert isinstance(result, ClarificationNeededResponse)
assert len(result.questions) == 1
assert result.questions[0].keyword == "platform"

View File

@@ -3,9 +3,9 @@
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.store import db as store_db
from backend.api.features.store.exceptions import AgentNotFoundError
from backend.copilot.model import ChatSession
from backend.data.db_accessors import store_db as get_store_db
from .agent_generator import (
AgentGeneratorNotConfiguredError,
@@ -137,6 +137,8 @@ class CustomizeAgentTool(BaseTool):
creator_username, agent_slug = parts
store_db = get_store_db()
# Fetch the marketplace agent details
try:
agent_details = await store_db.get_store_agent_details(

View File

@@ -3,7 +3,7 @@
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.copilot.model import ChatSession
from .agent_generator import (
AgentGeneratorNotConfiguredError,

View File

@@ -5,9 +5,14 @@ from typing import Any
from pydantic import SecretStr
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
from backend.blocks.linear._api import LinearClient
from backend.copilot.model import ChatSession
from backend.data.db_accessors import user_db
from backend.data.model import APIKeyCredentials
from backend.util.settings import Settings
from .base import BaseTool
from .models import (
ErrorResponse,
FeatureRequestCreatedResponse,
FeatureRequestInfo,
@@ -15,10 +20,6 @@ from backend.api.features.chat.tools.models import (
NoResultsResponse,
ToolResponseBase,
)
from backend.blocks.linear._api import LinearClient
from backend.data.model import APIKeyCredentials
from backend.data.user import get_user_email_by_id
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
@@ -104,8 +105,8 @@ def _get_linear_config() -> tuple[LinearClient, str, str]:
Raises RuntimeError if any required setting is missing.
"""
secrets = _get_settings().secrets
if not secrets.linear_api_key:
raise RuntimeError("LINEAR_API_KEY is not configured")
if not secrets.copilot_linear_api_key:
raise RuntimeError("COPILOT_LINEAR_API_KEY is not configured")
if not secrets.linear_feature_request_project_id:
raise RuntimeError("LINEAR_FEATURE_REQUEST_PROJECT_ID is not configured")
if not secrets.linear_feature_request_team_id:
@@ -114,7 +115,7 @@ def _get_linear_config() -> tuple[LinearClient, str, str]:
credentials = APIKeyCredentials(
id="system-linear",
provider="linear",
api_key=SecretStr(secrets.linear_api_key),
api_key=SecretStr(secrets.copilot_linear_api_key),
title="System Linear API Key",
)
client = LinearClient(credentials=credentials)
@@ -332,7 +333,9 @@ class CreateFeatureRequestTool(BaseTool):
# Resolve a human-readable name (email) for the Linear customer record.
# Fall back to user_id if the lookup fails or returns None.
try:
customer_display_name = await get_user_email_by_id(user_id) or user_id
customer_display_name = (
await user_db().get_user_email_by_id(user_id) or user_id
)
except Exception:
customer_display_name = user_id

View File

@@ -1,22 +1,18 @@
"""Tests for SearchFeatureRequestsTool and CreateFeatureRequestTool."""
from unittest.mock import AsyncMock, patch
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.feature_requests import (
CreateFeatureRequestTool,
SearchFeatureRequestsTool,
)
from backend.api.features.chat.tools.models import (
from ._test_data import make_session
from .feature_requests import CreateFeatureRequestTool, SearchFeatureRequestsTool
from .models import (
ErrorResponse,
FeatureRequestCreatedResponse,
FeatureRequestSearchResponse,
NoResultsResponse,
)
from ._test_data import make_session
_TEST_USER_ID = "test-user-feature-requests"
_TEST_USER_EMAIL = "testuser@example.com"
@@ -39,7 +35,7 @@ def _mock_linear_config(*, query_return=None, mutate_return=None):
client.mutate.return_value = mutate_return
return (
patch(
"backend.api.features.chat.tools.feature_requests._get_linear_config",
"backend.copilot.tools.feature_requests._get_linear_config",
return_value=(client, _FAKE_PROJECT_ID, _FAKE_TEAM_ID),
),
client,
@@ -208,7 +204,7 @@ class TestSearchFeatureRequestsTool:
async def test_linear_client_init_failure(self):
session = make_session(user_id=_TEST_USER_ID)
with patch(
"backend.api.features.chat.tools.feature_requests._get_linear_config",
"backend.copilot.tools.feature_requests._get_linear_config",
side_effect=RuntimeError("No API key"),
):
tool = SearchFeatureRequestsTool()
@@ -231,10 +227,11 @@ class TestCreateFeatureRequestTool:
@pytest.fixture(autouse=True)
def _patch_email_lookup(self):
mock_user_db = MagicMock()
mock_user_db.get_user_email_by_id = AsyncMock(return_value=_TEST_USER_EMAIL)
with patch(
"backend.api.features.chat.tools.feature_requests.get_user_email_by_id",
new_callable=AsyncMock,
return_value=_TEST_USER_EMAIL,
"backend.copilot.tools.feature_requests.user_db",
return_value=mock_user_db,
):
yield
@@ -347,7 +344,7 @@ class TestCreateFeatureRequestTool:
async def test_linear_client_init_failure(self):
session = make_session(user_id=_TEST_USER_ID)
with patch(
"backend.api.features.chat.tools.feature_requests._get_linear_config",
"backend.copilot.tools.feature_requests._get_linear_config",
side_effect=RuntimeError("No API key"),
):
tool = CreateFeatureRequestTool()

View File

@@ -2,7 +2,7 @@
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.copilot.model import ChatSession
from .agent_search import search_agents
from .base import BaseTool

View File

@@ -3,17 +3,18 @@ from typing import Any
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool, ToolResponseBase
from backend.api.features.chat.tools.models import (
from backend.blocks import get_block
from backend.blocks._base import BlockType
from backend.copilot.model import ChatSession
from backend.data.db_accessors import search
from .base import BaseTool, ToolResponseBase
from .models import (
BlockInfoSummary,
BlockListResponse,
ErrorResponse,
NoResultsResponse,
)
from backend.api.features.store.hybrid_search import unified_hybrid_search
from backend.blocks import get_block
from backend.blocks._base import BlockType
logger = logging.getLogger(__name__)
@@ -107,7 +108,7 @@ class FindBlockTool(BaseTool):
try:
# Search for blocks using hybrid search
results, total = await unified_hybrid_search(
results, total = await search().unified_hybrid_search(
query=query,
content_types=[ContentType.BLOCK],
page=1,

View File

@@ -4,15 +4,15 @@ from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.find_block import (
from backend.blocks._base import BlockType
from ._test_data import make_session
from .find_block import (
COPILOT_EXCLUDED_BLOCK_IDS,
COPILOT_EXCLUDED_BLOCK_TYPES,
FindBlockTool,
)
from backend.api.features.chat.tools.models import BlockListResponse
from backend.blocks._base import BlockType
from ._test_data import make_session
from .models import BlockListResponse
_TEST_USER_ID = "test-user-find-block"
@@ -84,13 +84,17 @@ class TestFindBlockFiltering:
"standard-block-id": standard_block,
}.get(block_id)
mock_search_db = MagicMock()
mock_search_db.unified_hybrid_search = AsyncMock(
return_value=(search_results, 2)
)
with patch(
"backend.api.features.chat.tools.find_block.unified_hybrid_search",
new_callable=AsyncMock,
return_value=(search_results, 2),
"backend.copilot.tools.find_block.search",
return_value=mock_search_db,
):
with patch(
"backend.api.features.chat.tools.find_block.get_block",
"backend.copilot.tools.find_block.get_block",
side_effect=mock_get_block,
):
tool = FindBlockTool()
@@ -128,13 +132,17 @@ class TestFindBlockFiltering:
"normal-block-id": normal_block,
}.get(block_id)
mock_search_db = MagicMock()
mock_search_db.unified_hybrid_search = AsyncMock(
return_value=(search_results, 2)
)
with patch(
"backend.api.features.chat.tools.find_block.unified_hybrid_search",
new_callable=AsyncMock,
return_value=(search_results, 2),
"backend.copilot.tools.find_block.search",
return_value=mock_search_db,
):
with patch(
"backend.api.features.chat.tools.find_block.get_block",
"backend.copilot.tools.find_block.get_block",
side_effect=mock_get_block,
):
tool = FindBlockTool()
@@ -353,12 +361,16 @@ class TestFindBlockFiltering:
for d in block_defs
}
mock_search_db = MagicMock()
mock_search_db.unified_hybrid_search = AsyncMock(
return_value=(search_results, len(search_results))
)
with patch(
"backend.api.features.chat.tools.find_block.unified_hybrid_search",
new_callable=AsyncMock,
return_value=(search_results, len(search_results)),
"backend.copilot.tools.find_block.search",
return_value=mock_search_db,
), patch(
"backend.api.features.chat.tools.find_block.get_block",
"backend.copilot.tools.find_block.get_block",
side_effect=lambda bid: mock_blocks.get(bid),
):
tool = FindBlockTool()

View File

@@ -2,7 +2,7 @@
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.copilot.model import ChatSession
from .agent_search import search_agents
from .base import BaseTool

View File

@@ -4,13 +4,10 @@ import logging
from pathlib import Path
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
DocPageResponse,
ErrorResponse,
ToolResponseBase,
)
from backend.copilot.model import ChatSession
from .base import BaseTool
from .models import DocPageResponse, ErrorResponse, ToolResponseBase
logger = logging.getLogger(__name__)

View File

@@ -50,6 +50,8 @@ class ResponseType(str, Enum):
# Feature request types
FEATURE_REQUEST_SEARCH = "feature_request_search"
FEATURE_REQUEST_CREATED = "feature_request_created"
# Goal refinement
SUGGESTED_GOAL = "suggested_goal"
# Base response model
@@ -296,6 +298,22 @@ class ClarificationNeededResponse(ToolResponseBase):
questions: list[ClarifyingQuestion] = Field(default_factory=list)
class SuggestedGoalResponse(ToolResponseBase):
"""Response when the goal needs refinement with a suggested alternative."""
type: ResponseType = ResponseType.SUGGESTED_GOAL
suggested_goal: str = Field(description="The suggested alternative goal")
reason: str = Field(
default="", description="Why the original goal needs refinement"
)
original_goal: str = Field(
default="", description="The user's original goal for context"
)
goal_type: str = Field(
default="vague", description="Type: 'vague' or 'unachievable'"
)
# Documentation search models
class DocSearchResult(BaseModel):
"""A single documentation search result."""

View File

@@ -5,16 +5,12 @@ from typing import Any
from pydantic import BaseModel, Field, field_validator
from backend.api.features.chat.config import ChatConfig
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tracking import (
track_agent_run_success,
track_agent_scheduled,
)
from backend.api.features.library import db as library_db
from backend.copilot.config import ChatConfig
from backend.copilot.model import ChatSession
from backend.copilot.tracking import track_agent_run_success, track_agent_scheduled
from backend.data.db_accessors import graph_db, library_db, user_db
from backend.data.graph import GraphModel
from backend.data.model import CredentialsMetaInput
from backend.data.user import get_user_by_id
from backend.executor import utils as execution_utils
from backend.util.clients import get_scheduler_client
from backend.util.exceptions import DatabaseError, NotFoundError
@@ -200,7 +196,7 @@ class RunAgentTool(BaseTool):
# Priority: library_agent_id if provided
if has_library_id:
library_agent = await library_db.get_library_agent(
library_agent = await library_db().get_library_agent(
params.library_agent_id, user_id
)
if not library_agent:
@@ -209,9 +205,7 @@ class RunAgentTool(BaseTool):
session_id=session_id,
)
# Get the graph from the library agent
from backend.data.graph import get_graph
graph = await get_graph(
graph = await graph_db().get_graph(
library_agent.graph_id,
library_agent.graph_version,
user_id=user_id,
@@ -522,7 +516,7 @@ class RunAgentTool(BaseTool):
library_agent = await get_or_create_library_agent(graph, user_id)
# Get user timezone
user = await get_user_by_id(user_id)
user = await user_db().get_user_by_id(user_id)
user_timezone = get_user_timezone_or_utc(user.timezone if user else timezone)
# Create schedule

View File

@@ -7,20 +7,17 @@ from typing import Any
from pydantic_core import PydanticUndefined
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.find_block import (
COPILOT_EXCLUDED_BLOCK_IDS,
COPILOT_EXCLUDED_BLOCK_TYPES,
)
from backend.blocks import get_block
from backend.blocks._base import AnyBlockSchema
from backend.copilot.model import ChatSession
from backend.data.db_accessors import workspace_db
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.data.workspace import get_or_create_workspace
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import BlockError
from .base import BaseTool
from .find_block import COPILOT_EXCLUDED_BLOCK_IDS, COPILOT_EXCLUDED_BLOCK_TYPES
from .helpers import get_inputs_from_schema
from .models import (
BlockDetails,
@@ -276,7 +273,7 @@ class RunBlockTool(BaseTool):
try:
# Get or create user's workspace for CoPilot file operations
workspace = await get_or_create_workspace(user_id)
workspace = await workspace_db().get_or_create_workspace(user_id)
# Generate synthetic IDs for CoPilot context
# Each chat session is treated as its own agent with one continuous run

View File

@@ -4,16 +4,16 @@ from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.models import (
from backend.blocks._base import BlockType
from ._test_data import make_session
from .models import (
BlockDetailsResponse,
BlockOutputResponse,
ErrorResponse,
InputValidationErrorResponse,
)
from backend.api.features.chat.tools.run_block import RunBlockTool
from backend.blocks._base import BlockType
from ._test_data import make_session
from .run_block import RunBlockTool
_TEST_USER_ID = "test-user-run-block"
@@ -77,7 +77,7 @@ class TestRunBlockFiltering:
input_block = make_mock_block("input-block-id", "Input Block", BlockType.INPUT)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
"backend.copilot.tools.run_block.get_block",
return_value=input_block,
):
tool = RunBlockTool()
@@ -103,7 +103,7 @@ class TestRunBlockFiltering:
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
"backend.copilot.tools.run_block.get_block",
return_value=smart_block,
):
tool = RunBlockTool()
@@ -127,7 +127,7 @@ class TestRunBlockFiltering:
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
"backend.copilot.tools.run_block.get_block",
return_value=standard_block,
):
tool = RunBlockTool()
@@ -183,7 +183,7 @@ class TestRunBlockInputValidation:
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
"backend.copilot.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
@@ -222,7 +222,7 @@ class TestRunBlockInputValidation:
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
"backend.copilot.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
@@ -263,7 +263,7 @@ class TestRunBlockInputValidation:
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
"backend.copilot.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
@@ -302,15 +302,19 @@ class TestRunBlockInputValidation:
mock_block.execute = mock_execute
mock_workspace_db = MagicMock()
mock_workspace_db.get_or_create_workspace = AsyncMock(
return_value=MagicMock(id="test-workspace-id")
)
with (
patch(
"backend.api.features.chat.tools.run_block.get_block",
"backend.copilot.tools.run_block.get_block",
return_value=mock_block,
),
patch(
"backend.api.features.chat.tools.run_block.get_or_create_workspace",
new_callable=AsyncMock,
return_value=MagicMock(id="test-workspace-id"),
"backend.copilot.tools.run_block.workspace_db",
return_value=mock_workspace_db,
),
):
tool = RunBlockTool()
@@ -344,7 +348,7 @@ class TestRunBlockInputValidation:
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
"backend.copilot.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()

View File

@@ -5,16 +5,17 @@ from typing import Any
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
from backend.copilot.model import ChatSession
from backend.data.db_accessors import search
from .base import BaseTool
from .models import (
DocSearchResult,
DocSearchResultsResponse,
ErrorResponse,
NoResultsResponse,
ToolResponseBase,
)
from backend.api.features.store.hybrid_search import unified_hybrid_search
logger = logging.getLogger(__name__)
@@ -117,7 +118,7 @@ class SearchDocsTool(BaseTool):
try:
# Search using hybrid search for DOCUMENTATION content type only
results, total = await unified_hybrid_search(
results, total = await search().unified_hybrid_search(
query=query,
content_types=[ContentType.DOCUMENTATION],
page=1,

View File

@@ -4,13 +4,13 @@ from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.models import BlockDetailsResponse
from backend.api.features.chat.tools.run_block import RunBlockTool
from backend.blocks._base import BlockType
from backend.data.model import CredentialsMetaInput
from backend.integrations.providers import ProviderName
from ._test_data import make_session
from .models import BlockDetailsResponse
from .run_block import RunBlockTool
_TEST_USER_ID = "test-user-run-block-details"
@@ -61,7 +61,7 @@ async def test_run_block_returns_details_when_no_input_provided():
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
"backend.copilot.tools.run_block.get_block",
return_value=http_block,
):
# Mock credentials check to return no missing credentials
@@ -120,7 +120,7 @@ async def test_run_block_returns_details_when_only_credentials_provided():
}
with patch(
"backend.api.features.chat.tools.run_block.get_block",
"backend.copilot.tools.run_block.get_block",
return_value=mock,
):
with patch.object(

View File

@@ -3,9 +3,8 @@
import logging
from typing import Any
from backend.api.features.library import db as library_db
from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data.db_accessors import library_db, store_db
from backend.data.graph import GraphModel
from backend.data.model import (
Credentials,
@@ -39,13 +38,14 @@ async def fetch_graph_from_store_slug(
Raises:
DatabaseError: If there's a database error during lookup.
"""
sdb = store_db()
try:
store_agent = await store_db.get_store_agent_details(username, agent_name)
store_agent = await sdb.get_store_agent_details(username, agent_name)
except NotFoundError:
return None, None
# Get the graph from store listing version
graph = await store_db.get_available_graph(
graph = await sdb.get_available_graph(
store_agent.store_listing_version_id, hide_nodes=False
)
return graph, store_agent
@@ -210,13 +210,13 @@ async def get_or_create_library_agent(
Returns:
LibraryAgent instance
"""
existing = await library_db.get_library_agent_by_graph_id(
existing = await library_db().get_library_agent_by_graph_id(
graph_id=graph.id, user_id=user_id
)
if existing:
return existing
library_agents = await library_db.create_library_agent(
library_agents = await library_db().create_library_agent(
graph=graph,
user_id=user_id,
create_library_agents_for_sub_graphs=False,

View File

@@ -6,15 +6,12 @@ from typing import Any
import aiohttp
import html2text
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
ErrorResponse,
ToolResponseBase,
WebFetchResponse,
)
from backend.copilot.model import ChatSession
from backend.util.request import Requests
from .base import BaseTool
from .models import ErrorResponse, ToolResponseBase, WebFetchResponse
logger = logging.getLogger(__name__)
# Limits

View File

@@ -6,8 +6,8 @@ from typing import Any, Optional
from pydantic import BaseModel
from backend.api.features.chat.model import ChatSession
from backend.data.workspace import get_or_create_workspace
from backend.copilot.model import ChatSession
from backend.data.db_accessors import workspace_db
from backend.util.settings import Config
from backend.util.virus_scanner import scan_content_safe
from backend.util.workspace import WorkspaceManager
@@ -148,7 +148,7 @@ class ListWorkspaceFilesTool(BaseTool):
include_all_sessions: bool = kwargs.get("include_all_sessions", False)
try:
workspace = await get_or_create_workspace(user_id)
workspace = await workspace_db().get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
@@ -167,8 +167,8 @@ class ListWorkspaceFilesTool(BaseTool):
file_id=f.id,
name=f.name,
path=f.path,
mime_type=f.mimeType,
size_bytes=f.sizeBytes,
mime_type=f.mime_type,
size_bytes=f.size_bytes,
)
for f in files
]
@@ -284,7 +284,7 @@ class ReadWorkspaceFileTool(BaseTool):
)
try:
workspace = await get_or_create_workspace(user_id)
workspace = await workspace_db().get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
@@ -309,8 +309,8 @@ class ReadWorkspaceFileTool(BaseTool):
target_file_id = file_info.id
# Decide whether to return inline content or metadata+URL
is_small_file = file_info.sizeBytes <= self.MAX_INLINE_SIZE_BYTES
is_text_file = self._is_text_mime_type(file_info.mimeType)
is_small_file = file_info.size_bytes <= self.MAX_INLINE_SIZE_BYTES
is_text_file = self._is_text_mime_type(file_info.mime_type)
# Return inline content for small text files (unless force_download_url)
if is_small_file and is_text_file and not force_download_url:
@@ -321,7 +321,7 @@ class ReadWorkspaceFileTool(BaseTool):
file_id=file_info.id,
name=file_info.name,
path=file_info.path,
mime_type=file_info.mimeType,
mime_type=file_info.mime_type,
content_base64=content_b64,
message=f"Successfully read file: {file_info.name}",
session_id=session_id,
@@ -350,11 +350,11 @@ class ReadWorkspaceFileTool(BaseTool):
file_id=file_info.id,
name=file_info.name,
path=file_info.path,
mime_type=file_info.mimeType,
size_bytes=file_info.sizeBytes,
mime_type=file_info.mime_type,
size_bytes=file_info.size_bytes,
download_url=download_url,
preview=preview,
message=f"File: {file_info.name} ({file_info.sizeBytes} bytes). Use download_url to retrieve content.",
message=f"File: {file_info.name} ({file_info.size_bytes} bytes). Use download_url to retrieve content.",
session_id=session_id,
)
@@ -484,7 +484,7 @@ class WriteWorkspaceFileTool(BaseTool):
# Virus scan
await scan_content_safe(content, filename=filename)
workspace = await get_or_create_workspace(user_id)
workspace = await workspace_db().get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
@@ -500,7 +500,7 @@ class WriteWorkspaceFileTool(BaseTool):
file_id=file_record.id,
name=file_record.name,
path=file_record.path,
size_bytes=file_record.sizeBytes,
size_bytes=file_record.size_bytes,
message=f"Successfully wrote file: {file_record.name}",
session_id=session_id,
)
@@ -583,7 +583,7 @@ class DeleteWorkspaceFileTool(BaseTool):
)
try:
workspace = await get_or_create_workspace(user_id)
workspace = await workspace_db().get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)

View File

@@ -0,0 +1,118 @@
from backend.data import db
def chat_db():
if db.is_connected():
from backend.copilot import db as _chat_db
chat_db = _chat_db
else:
from backend.util.clients import get_database_manager_async_client
chat_db = get_database_manager_async_client()
return chat_db
def graph_db():
if db.is_connected():
from backend.data import graph as _graph_db
graph_db = _graph_db
else:
from backend.util.clients import get_database_manager_async_client
graph_db = get_database_manager_async_client()
return graph_db
def library_db():
if db.is_connected():
from backend.api.features.library import db as _library_db
library_db = _library_db
else:
from backend.util.clients import get_database_manager_async_client
library_db = get_database_manager_async_client()
return library_db
def store_db():
if db.is_connected():
from backend.api.features.store import db as _store_db
store_db = _store_db
else:
from backend.util.clients import get_database_manager_async_client
store_db = get_database_manager_async_client()
return store_db
def search():
if db.is_connected():
from backend.api.features.store import hybrid_search as _search
search = _search
else:
from backend.util.clients import get_database_manager_async_client
search = get_database_manager_async_client()
return search
def execution_db():
if db.is_connected():
from backend.data import execution as _execution_db
execution_db = _execution_db
else:
from backend.util.clients import get_database_manager_async_client
execution_db = get_database_manager_async_client()
return execution_db
def user_db():
if db.is_connected():
from backend.data import user as _user_db
user_db = _user_db
else:
from backend.util.clients import get_database_manager_async_client
user_db = get_database_manager_async_client()
return user_db
def understanding_db():
if db.is_connected():
from backend.data import understanding as _understanding_db
understanding_db = _understanding_db
else:
from backend.util.clients import get_database_manager_async_client
understanding_db = get_database_manager_async_client()
return understanding_db
def workspace_db():
if db.is_connected():
from backend.data import workspace as _workspace_db
workspace_db = _workspace_db
else:
from backend.util.clients import get_database_manager_async_client
workspace_db = get_database_manager_async_client()
return workspace_db

View File

@@ -4,14 +4,26 @@ from typing import TYPE_CHECKING, Callable, Concatenate, ParamSpec, TypeVar, cas
from backend.api.features.library.db import (
add_store_agent_to_library,
create_graph_in_library,
create_library_agent,
get_library_agent,
get_library_agent_by_graph_id,
list_library_agents,
update_graph_in_library,
)
from backend.api.features.store.db import (
get_agent,
get_available_graph,
get_store_agent_details,
get_store_agents,
)
from backend.api.features.store.db import get_store_agent_details, get_store_agents
from backend.api.features.store.embeddings import (
backfill_missing_embeddings,
cleanup_orphaned_embeddings,
get_embedding_stats,
)
from backend.api.features.store.hybrid_search import unified_hybrid_search
from backend.copilot import db as chat_db
from backend.data import db
from backend.data.analytics import (
get_accuracy_trends_and_alerts,
@@ -48,6 +60,7 @@ from backend.data.graph import (
get_graph_metadata,
get_graph_settings,
get_node,
get_store_listed_graphs,
validate_graph_execution_permissions,
)
from backend.data.human_review import (
@@ -67,6 +80,10 @@ from backend.data.notifications import (
remove_notifications_from_batch,
)
from backend.data.onboarding import increment_onboarding_runs
from backend.data.understanding import (
get_business_understanding,
upsert_business_understanding,
)
from backend.data.user import (
get_active_user_ids_in_timerange,
get_user_by_id,
@@ -76,6 +93,7 @@ from backend.data.user import (
get_user_notification_preference,
update_user_integrations,
)
from backend.data.workspace import get_or_create_workspace
from backend.util.service import (
AppService,
AppServiceClient,
@@ -107,6 +125,13 @@ async def _get_credits(user_id: str) -> int:
class DatabaseManager(AppService):
"""Database connection pooling service.
This service connects to the Prisma engine and exposes database
operations via RPC endpoints. It acts as a centralized connection pool
for all services that need database access.
"""
@asynccontextmanager
async def lifespan(self, app: "FastAPI"):
async with super().lifespan(app):
@@ -142,11 +167,15 @@ class DatabaseManager(AppService):
def _(
f: Callable[P, R], name: str | None = None
) -> Callable[Concatenate[object, P], R]:
"""
Exposes a function as an RPC endpoint, and adds a virtual `self` param
to the function's type so it can be bound as a method.
"""
if name is not None:
f.__name__ = name
return cast(Callable[Concatenate[object, P], R], expose(f))
# Executions
# ============ Graph Executions ============ #
get_child_graph_executions = _(get_child_graph_executions)
get_graph_executions = _(get_graph_executions)
get_graph_executions_count = _(get_graph_executions_count)
@@ -170,36 +199,37 @@ class DatabaseManager(AppService):
get_frequently_executed_graphs = _(get_frequently_executed_graphs)
get_marketplace_graphs_for_monitoring = _(get_marketplace_graphs_for_monitoring)
# Graphs
# ============ Graphs ============ #
get_node = _(get_node)
get_graph = _(get_graph)
get_connected_output_nodes = _(get_connected_output_nodes)
get_graph_metadata = _(get_graph_metadata)
get_graph_settings = _(get_graph_settings)
get_store_listed_graphs = _(get_store_listed_graphs)
# Credits
# ============ Credits ============ #
spend_credits = _(_spend_credits, name="spend_credits")
get_credits = _(_get_credits, name="get_credits")
# User + User Metadata + User Integrations
# ============ User + Integrations ============ #
get_user_by_id = _(get_user_by_id)
get_user_integrations = _(get_user_integrations)
update_user_integrations = _(update_user_integrations)
# User Comms - async
# ============ User Comms ============ #
get_active_user_ids_in_timerange = _(get_active_user_ids_in_timerange)
get_user_by_id = _(get_user_by_id)
get_user_email_by_id = _(get_user_email_by_id)
get_user_email_verification = _(get_user_email_verification)
get_user_notification_preference = _(get_user_notification_preference)
# Human In The Loop
# ============ Human In The Loop ============ #
cancel_pending_reviews_for_execution = _(cancel_pending_reviews_for_execution)
check_approval = _(check_approval)
get_or_create_human_review = _(get_or_create_human_review)
has_pending_reviews_for_graph_exec = _(has_pending_reviews_for_graph_exec)
update_review_processed_status = _(update_review_processed_status)
# Notifications - async
# ============ Notifications ============ #
clear_all_user_notification_batches = _(clear_all_user_notification_batches)
create_or_add_to_user_notification_batch = _(
create_or_add_to_user_notification_batch
@@ -212,29 +242,56 @@ class DatabaseManager(AppService):
get_user_notification_oldest_message_in_batch
)
# Library
# ============ Library ============ #
list_library_agents = _(list_library_agents)
add_store_agent_to_library = _(add_store_agent_to_library)
create_graph_in_library = _(create_graph_in_library)
create_library_agent = _(create_library_agent)
get_library_agent = _(get_library_agent)
get_library_agent_by_graph_id = _(get_library_agent_by_graph_id)
update_graph_in_library = _(update_graph_in_library)
validate_graph_execution_permissions = _(validate_graph_execution_permissions)
# Onboarding
# ============ Onboarding ============ #
increment_onboarding_runs = _(increment_onboarding_runs)
# OAuth
# ============ OAuth ============ #
cleanup_expired_oauth_tokens = _(cleanup_expired_oauth_tokens)
# Store
# ============ Store ============ #
get_store_agents = _(get_store_agents)
get_store_agent_details = _(get_store_agent_details)
get_agent = _(get_agent)
get_available_graph = _(get_available_graph)
# Store Embeddings
# ============ Search ============ #
get_embedding_stats = _(get_embedding_stats)
backfill_missing_embeddings = _(backfill_missing_embeddings)
cleanup_orphaned_embeddings = _(cleanup_orphaned_embeddings)
unified_hybrid_search = _(unified_hybrid_search)
# Summary data - async
# ============ Summary Data ============ #
get_user_execution_summary_data = _(get_user_execution_summary_data)
# ============ Workspace ============ #
get_or_create_workspace = _(get_or_create_workspace)
# ============ Understanding ============ #
get_business_understanding = _(get_business_understanding)
upsert_business_understanding = _(upsert_business_understanding)
# ============ CoPilot Chat Sessions ============ #
get_chat_session = _(chat_db.get_chat_session)
create_chat_session = _(chat_db.create_chat_session)
update_chat_session = _(chat_db.update_chat_session)
add_chat_message = _(chat_db.add_chat_message)
add_chat_messages_batch = _(chat_db.add_chat_messages_batch)
get_user_chat_sessions = _(chat_db.get_user_chat_sessions)
get_user_session_count = _(chat_db.get_user_session_count)
delete_chat_session = _(chat_db.delete_chat_session)
get_chat_session_message_count = _(chat_db.get_chat_session_message_count)
update_tool_message_content = _(chat_db.update_tool_message_content)
class DatabaseManagerClient(AppServiceClient):
d = DatabaseManager
@@ -296,43 +353,50 @@ class DatabaseManagerAsyncClient(AppServiceClient):
def get_service_type(cls):
return DatabaseManager
# ============ Graph Executions ============ #
create_graph_execution = d.create_graph_execution
get_child_graph_executions = d.get_child_graph_executions
get_connected_output_nodes = d.get_connected_output_nodes
get_latest_node_execution = d.get_latest_node_execution
get_graph = d.get_graph
get_graph_metadata = d.get_graph_metadata
get_graph_settings = d.get_graph_settings
get_graph_execution = d.get_graph_execution
get_graph_execution_meta = d.get_graph_execution_meta
get_node = d.get_node
get_graph_executions = d.get_graph_executions
get_node_execution = d.get_node_execution
get_node_executions = d.get_node_executions
get_user_by_id = d.get_user_by_id
get_user_integrations = d.get_user_integrations
upsert_execution_input = d.upsert_execution_input
upsert_execution_output = d.upsert_execution_output
get_execution_outputs_by_node_exec_id = d.get_execution_outputs_by_node_exec_id
update_graph_execution_stats = d.update_graph_execution_stats
update_node_execution_status = d.update_node_execution_status
update_node_execution_status_batch = d.update_node_execution_status_batch
update_user_integrations = d.update_user_integrations
upsert_execution_input = d.upsert_execution_input
upsert_execution_output = d.upsert_execution_output
get_execution_outputs_by_node_exec_id = d.get_execution_outputs_by_node_exec_id
get_execution_kv_data = d.get_execution_kv_data
set_execution_kv_data = d.set_execution_kv_data
# Human In The Loop
# ============ Graphs ============ #
get_graph = d.get_graph
get_graph_metadata = d.get_graph_metadata
get_graph_settings = d.get_graph_settings
get_node = d.get_node
get_store_listed_graphs = d.get_store_listed_graphs
# ============ User + Integrations ============ #
get_user_by_id = d.get_user_by_id
get_user_integrations = d.get_user_integrations
update_user_integrations = d.update_user_integrations
# ============ Human In The Loop ============ #
cancel_pending_reviews_for_execution = d.cancel_pending_reviews_for_execution
check_approval = d.check_approval
get_or_create_human_review = d.get_or_create_human_review
update_review_processed_status = d.update_review_processed_status
# User Comms
# ============ User Comms ============ #
get_active_user_ids_in_timerange = d.get_active_user_ids_in_timerange
get_user_email_by_id = d.get_user_email_by_id
get_user_email_verification = d.get_user_email_verification
get_user_notification_preference = d.get_user_notification_preference
# Notifications
# ============ Notifications ============ #
clear_all_user_notification_batches = d.clear_all_user_notification_batches
create_or_add_to_user_notification_batch = (
d.create_or_add_to_user_notification_batch
@@ -345,20 +409,49 @@ class DatabaseManagerAsyncClient(AppServiceClient):
d.get_user_notification_oldest_message_in_batch
)
# Library
# ============ Library ============ #
list_library_agents = d.list_library_agents
add_store_agent_to_library = d.add_store_agent_to_library
create_graph_in_library = d.create_graph_in_library
create_library_agent = d.create_library_agent
get_library_agent = d.get_library_agent
get_library_agent_by_graph_id = d.get_library_agent_by_graph_id
update_graph_in_library = d.update_graph_in_library
validate_graph_execution_permissions = d.validate_graph_execution_permissions
# Onboarding
# ============ Onboarding ============ #
increment_onboarding_runs = d.increment_onboarding_runs
# OAuth
# ============ OAuth ============ #
cleanup_expired_oauth_tokens = d.cleanup_expired_oauth_tokens
# Store
# ============ Store ============ #
get_store_agents = d.get_store_agents
get_store_agent_details = d.get_store_agent_details
get_agent = d.get_agent
get_available_graph = d.get_available_graph
# Summary data
# ============ Search ============ #
unified_hybrid_search = d.unified_hybrid_search
# ============ Summary Data ============ #
get_user_execution_summary_data = d.get_user_execution_summary_data
# ============ Workspace ============ #
get_or_create_workspace = d.get_or_create_workspace
# ============ Understanding ============ #
get_business_understanding = d.get_business_understanding
upsert_business_understanding = d.upsert_business_understanding
# ============ CoPilot Chat Sessions ============ #
get_chat_session = d.get_chat_session
create_chat_session = d.create_chat_session
update_chat_session = d.update_chat_session
add_chat_message = d.add_chat_message
add_chat_messages_batch = d.add_chat_messages_batch
get_user_chat_sessions = d.get_user_chat_sessions
get_user_session_count = d.get_user_session_count
delete_chat_session = d.delete_chat_session
get_chat_session_message_count = d.get_chat_session_message_count
update_tool_message_content = d.update_tool_message_content

View File

@@ -1147,14 +1147,14 @@ async def get_graph(
return GraphModel.from_db(graph, for_export)
async def get_store_listed_graphs(*graph_ids: str) -> dict[str, GraphModel]:
async def get_store_listed_graphs(graph_ids: list[str]) -> dict[str, GraphModel]:
"""Batch-fetch multiple store-listed graphs by their IDs.
Only returns graphs that have approved store listings (publicly available).
Does not require permission checks since store-listed graphs are public.
Args:
*graph_ids: Variable number of graph IDs to fetch
graph_ids: List of graph IDs to fetch
Returns:
Dict mapping graph_id to GraphModel for graphs with approved store listings

View File

@@ -8,6 +8,7 @@ import logging
from datetime import datetime, timezone
from typing import Optional
import pydantic
from prisma.models import UserWorkspace, UserWorkspaceFile
from prisma.types import UserWorkspaceFileWhereInput
@@ -16,7 +17,61 @@ from backend.util.json import SafeJson
logger = logging.getLogger(__name__)
async def get_or_create_workspace(user_id: str) -> UserWorkspace:
class Workspace(pydantic.BaseModel):
"""Pydantic model for UserWorkspace, safe for RPC transport."""
id: str
user_id: str
created_at: datetime
updated_at: datetime
@staticmethod
def from_db(workspace: "UserWorkspace") -> "Workspace":
return Workspace(
id=workspace.id,
user_id=workspace.userId,
created_at=workspace.createdAt,
updated_at=workspace.updatedAt,
)
class WorkspaceFile(pydantic.BaseModel):
"""Pydantic model for UserWorkspaceFile, safe for RPC transport."""
id: str
workspace_id: str
created_at: datetime
updated_at: datetime
name: str
path: str
storage_path: str
mime_type: str
size_bytes: int
checksum: Optional[str] = None
is_deleted: bool = False
deleted_at: Optional[datetime] = None
metadata: dict = pydantic.Field(default_factory=dict)
@staticmethod
def from_db(file: "UserWorkspaceFile") -> "WorkspaceFile":
return WorkspaceFile(
id=file.id,
workspace_id=file.workspaceId,
created_at=file.createdAt,
updated_at=file.updatedAt,
name=file.name,
path=file.path,
storage_path=file.storagePath,
mime_type=file.mimeType,
size_bytes=file.sizeBytes,
checksum=file.checksum,
is_deleted=file.isDeleted,
deleted_at=file.deletedAt,
metadata=file.metadata if isinstance(file.metadata, dict) else {},
)
async def get_or_create_workspace(user_id: str) -> Workspace:
"""
Get user's workspace, creating one if it doesn't exist.
@@ -27,7 +82,7 @@ async def get_or_create_workspace(user_id: str) -> UserWorkspace:
user_id: The user's ID
Returns:
UserWorkspace instance
Workspace instance
"""
workspace = await UserWorkspace.prisma().upsert(
where={"userId": user_id},
@@ -37,10 +92,10 @@ async def get_or_create_workspace(user_id: str) -> UserWorkspace:
},
)
return workspace
return Workspace.from_db(workspace)
async def get_workspace(user_id: str) -> Optional[UserWorkspace]:
async def get_workspace(user_id: str) -> Optional[Workspace]:
"""
Get user's workspace if it exists.
@@ -48,9 +103,10 @@ async def get_workspace(user_id: str) -> Optional[UserWorkspace]:
user_id: The user's ID
Returns:
UserWorkspace instance or None
Workspace instance or None
"""
return await UserWorkspace.prisma().find_unique(where={"userId": user_id})
workspace = await UserWorkspace.prisma().find_unique(where={"userId": user_id})
return Workspace.from_db(workspace) if workspace else None
async def create_workspace_file(
@@ -63,7 +119,7 @@ async def create_workspace_file(
size_bytes: int,
checksum: Optional[str] = None,
metadata: Optional[dict] = None,
) -> UserWorkspaceFile:
) -> WorkspaceFile:
"""
Create a new workspace file record.
@@ -79,7 +135,7 @@ async def create_workspace_file(
metadata: Optional additional metadata
Returns:
Created UserWorkspaceFile instance
Created WorkspaceFile instance
"""
# Normalize path to start with /
if not path.startswith("/"):
@@ -103,13 +159,13 @@ async def create_workspace_file(
f"Created workspace file {file.id} at path {path} "
f"in workspace {workspace_id}"
)
return file
return WorkspaceFile.from_db(file)
async def get_workspace_file(
file_id: str,
workspace_id: Optional[str] = None,
) -> Optional[UserWorkspaceFile]:
) -> Optional[WorkspaceFile]:
"""
Get a workspace file by ID.
@@ -118,19 +174,20 @@ async def get_workspace_file(
workspace_id: Optional workspace ID for validation
Returns:
UserWorkspaceFile instance or None
WorkspaceFile instance or None
"""
where_clause: dict = {"id": file_id, "isDeleted": False}
if workspace_id:
where_clause["workspaceId"] = workspace_id
return await UserWorkspaceFile.prisma().find_first(where=where_clause)
file = await UserWorkspaceFile.prisma().find_first(where=where_clause)
return WorkspaceFile.from_db(file) if file else None
async def get_workspace_file_by_path(
workspace_id: str,
path: str,
) -> Optional[UserWorkspaceFile]:
) -> Optional[WorkspaceFile]:
"""
Get a workspace file by its virtual path.
@@ -139,19 +196,20 @@ async def get_workspace_file_by_path(
path: Virtual path
Returns:
UserWorkspaceFile instance or None
WorkspaceFile instance or None
"""
# Normalize path
if not path.startswith("/"):
path = f"/{path}"
return await UserWorkspaceFile.prisma().find_first(
file = await UserWorkspaceFile.prisma().find_first(
where={
"workspaceId": workspace_id,
"path": path,
"isDeleted": False,
}
)
return WorkspaceFile.from_db(file) if file else None
async def list_workspace_files(
@@ -160,7 +218,7 @@ async def list_workspace_files(
include_deleted: bool = False,
limit: Optional[int] = None,
offset: int = 0,
) -> list[UserWorkspaceFile]:
) -> list[WorkspaceFile]:
"""
List files in a workspace.
@@ -172,7 +230,7 @@ async def list_workspace_files(
offset: Number of files to skip
Returns:
List of UserWorkspaceFile instances
List of WorkspaceFile instances
"""
where_clause: UserWorkspaceFileWhereInput = {"workspaceId": workspace_id}
@@ -185,12 +243,13 @@ async def list_workspace_files(
path_prefix = f"/{path_prefix}"
where_clause["path"] = {"startswith": path_prefix}
return await UserWorkspaceFile.prisma().find_many(
files = await UserWorkspaceFile.prisma().find_many(
where=where_clause,
order={"createdAt": "desc"},
take=limit,
skip=offset,
)
return [WorkspaceFile.from_db(f) for f in files]
async def count_workspace_files(
@@ -225,7 +284,7 @@ async def count_workspace_files(
async def soft_delete_workspace_file(
file_id: str,
workspace_id: Optional[str] = None,
) -> Optional[UserWorkspaceFile]:
) -> Optional[WorkspaceFile]:
"""
Soft-delete a workspace file.
@@ -237,7 +296,7 @@ async def soft_delete_workspace_file(
workspace_id: Optional workspace ID for validation
Returns:
Updated UserWorkspaceFile instance or None if not found
Updated WorkspaceFile instance or None if not found
"""
# First verify the file exists and belongs to workspace
file = await get_workspace_file(file_id, workspace_id)
@@ -259,7 +318,7 @@ async def soft_delete_workspace_file(
)
logger.info(f"Soft-deleted workspace file {file_id}")
return updated
return WorkspaceFile.from_db(updated) if updated else None
async def get_workspace_total_size(workspace_id: str) -> int:
@@ -273,4 +332,4 @@ async def get_workspace_total_size(workspace_id: str) -> int:
Total size in bytes
"""
files = await list_workspace_files(workspace_id)
return sum(file.sizeBytes for file in files)
return sum(file.size_bytes for file in files)

View File

@@ -1,5 +1,5 @@
from backend.app import run_processes
from backend.executor import DatabaseManager
from backend.data.db_manager import DatabaseManager
def main():

View File

@@ -1,11 +1,7 @@
from .database import DatabaseManager, DatabaseManagerAsyncClient, DatabaseManagerClient
from .manager import ExecutionManager
from .scheduler import Scheduler
__all__ = [
"DatabaseManager",
"DatabaseManagerClient",
"DatabaseManagerAsyncClient",
"ExecutionManager",
"Scheduler",
]

View File

@@ -22,7 +22,7 @@ from backend.util.settings import Settings
from backend.util.truncate import truncate
if TYPE_CHECKING:
from backend.executor import DatabaseManagerAsyncClient
from backend.data.db_manager import DatabaseManagerAsyncClient
logger = logging.getLogger(__name__)

View File

@@ -4,7 +4,7 @@ import logging
from typing import TYPE_CHECKING, Any, Literal
if TYPE_CHECKING:
from backend.executor import DatabaseManagerAsyncClient
from backend.data.db_manager import DatabaseManagerAsyncClient
from pydantic import ValidationError

View File

@@ -1,6 +1,7 @@
"""Redis-based distributed locking for cluster coordination."""
import logging
import threading
import time
from typing import TYPE_CHECKING
@@ -19,6 +20,7 @@ class ClusterLock:
self.owner_id = owner_id
self.timeout = timeout
self._last_refresh = 0.0
self._refresh_lock = threading.Lock()
def try_acquire(self) -> str | None:
"""Try to acquire the lock.
@@ -31,7 +33,8 @@ class ClusterLock:
try:
success = self.redis.set(self.key, self.owner_id, nx=True, ex=self.timeout)
if success:
self._last_refresh = time.time()
with self._refresh_lock:
self._last_refresh = time.time()
return self.owner_id # Successfully acquired
# Failed to acquire, get current owner
@@ -57,23 +60,27 @@ class ClusterLock:
Rate limited to at most once every timeout/10 seconds (minimum 1 second).
During rate limiting, still verifies lock existence but skips TTL extension.
Setting _last_refresh to 0 bypasses rate limiting for testing.
Thread-safe: uses _refresh_lock to protect _last_refresh access.
"""
# Calculate refresh interval: max(timeout // 10, 1)
refresh_interval = max(self.timeout // 10, 1)
current_time = time.time()
# Check if we're within the rate limit period
# Check if we're within the rate limit period (thread-safe read)
# _last_refresh == 0 forces a refresh (bypasses rate limiting for testing)
with self._refresh_lock:
last_refresh = self._last_refresh
is_rate_limited = (
self._last_refresh > 0
and (current_time - self._last_refresh) < refresh_interval
last_refresh > 0 and (current_time - last_refresh) < refresh_interval
)
try:
# Always verify lock existence, even during rate limiting
current_value = self.redis.get(self.key)
if not current_value:
self._last_refresh = 0
with self._refresh_lock:
self._last_refresh = 0
return False
stored_owner = (
@@ -82,7 +89,8 @@ class ClusterLock:
else str(current_value)
)
if stored_owner != self.owner_id:
self._last_refresh = 0
with self._refresh_lock:
self._last_refresh = 0
return False
# If rate limited, return True but don't update TTL or timestamp
@@ -91,25 +99,30 @@ class ClusterLock:
# Perform actual refresh
if self.redis.expire(self.key, self.timeout):
self._last_refresh = current_time
with self._refresh_lock:
self._last_refresh = current_time
return True
self._last_refresh = 0
with self._refresh_lock:
self._last_refresh = 0
return False
except Exception as e:
logger.error(f"ClusterLock.refresh failed for key {self.key}: {e}")
self._last_refresh = 0
with self._refresh_lock:
self._last_refresh = 0
return False
def release(self):
"""Release the lock."""
if self._last_refresh == 0:
return
with self._refresh_lock:
if self._last_refresh == 0:
return
try:
self.redis.delete(self.key)
except Exception:
pass
self._last_refresh = 0.0
with self._refresh_lock:
self._last_refresh = 0.0

View File

@@ -93,7 +93,10 @@ from .utils import (
)
if TYPE_CHECKING:
from backend.executor import DatabaseManagerAsyncClient, DatabaseManagerClient
from backend.data.db_manager import (
DatabaseManagerAsyncClient,
DatabaseManagerClient,
)
_logger = logging.getLogger(__name__)

View File

@@ -13,12 +13,15 @@ if TYPE_CHECKING:
from openai import AsyncOpenAI
from supabase import AClient, Client
from backend.data.db_manager import (
DatabaseManagerAsyncClient,
DatabaseManagerClient,
)
from backend.data.execution import (
AsyncRedisExecutionEventBus,
RedisExecutionEventBus,
)
from backend.data.rabbitmq import AsyncRabbitMQ, SyncRabbitMQ
from backend.executor import DatabaseManagerAsyncClient, DatabaseManagerClient
from backend.executor.scheduler import SchedulerClient
from backend.integrations.credentials_store import IntegrationCredentialsStore
from backend.notifications.notifications import NotificationManagerClient
@@ -27,7 +30,7 @@ if TYPE_CHECKING:
@thread_cached
def get_database_manager_client() -> "DatabaseManagerClient":
"""Get a thread-cached DatabaseManagerClient with request retry enabled."""
from backend.executor import DatabaseManagerClient
from backend.data.db_manager import DatabaseManagerClient
from backend.util.service import get_service_client
return get_service_client(DatabaseManagerClient, request_retry=True)
@@ -38,7 +41,7 @@ def get_database_manager_async_client(
should_retry: bool = True,
) -> "DatabaseManagerAsyncClient":
"""Get a thread-cached DatabaseManagerAsyncClient with request retry enabled."""
from backend.executor import DatabaseManagerAsyncClient
from backend.data.db_manager import DatabaseManagerAsyncClient
from backend.util.service import get_service_client
return get_service_client(DatabaseManagerAsyncClient, request_retry=should_retry)
@@ -106,6 +109,20 @@ async def get_async_execution_queue() -> "AsyncRabbitMQ":
return client
# ============ CoPilot Queue Helpers ============ #
@thread_cached
async def get_async_copilot_queue() -> "AsyncRabbitMQ":
"""Get a thread-cached AsyncRabbitMQ CoPilot queue client."""
from backend.copilot.executor.utils import create_copilot_queue_config
from backend.data.rabbitmq import AsyncRabbitMQ
client = AsyncRabbitMQ(create_copilot_queue_config())
await client.connect()
return client
# ============ Integration Credentials Store ============ #

View File

@@ -383,7 +383,7 @@ async def store_media_file(
else:
info = await workspace_manager.get_file_info(ws.file_ref)
if info:
return MediaFileType(f"{file}#{info.mimeType}")
return MediaFileType(f"{file}#{info.mime_type}")
except Exception:
pass
return MediaFileType(file)
@@ -397,7 +397,7 @@ async def store_media_file(
filename=filename,
overwrite=True,
)
return MediaFileType(f"workspace://{file_record.id}#{file_record.mimeType}")
return MediaFileType(f"workspace://{file_record.id}#{file_record.mime_type}")
else:
raise ValueError(f"Invalid return_format: {return_format}")

View File

@@ -211,16 +211,23 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
description="The port for execution manager daemon to run on",
)
num_copilot_workers: int = Field(
default=5,
ge=1,
le=100,
description="Number of concurrent CoPilot executor workers",
)
copilot_executor_port: int = Field(
default=8008,
description="The port for CoPilot executor daemon to run on",
)
execution_scheduler_port: int = Field(
default=8003,
description="The port for execution scheduler daemon to run on",
)
agent_server_port: int = Field(
default=8004,
description="The port for agent server daemon to run on",
)
database_api_port: int = Field(
default=8005,
description="The port for database server API to run on",
@@ -662,7 +669,7 @@ class Secrets(UpdateTrackingModel["Secrets"], BaseSettings):
mem0_api_key: str = Field(default="", description="Mem0 API key")
elevenlabs_api_key: str = Field(default="", description="ElevenLabs API key")
linear_api_key: str = Field(
copilot_linear_api_key: str = Field(
default="", description="Linear API key for system-level operations"
)
linear_feature_request_project_id: str = Field(

View File

@@ -11,6 +11,7 @@ from backend.api.rest_api import AgentServer
from backend.blocks._base import Block, BlockSchema
from backend.data import db
from backend.data.block import initialize_blocks
from backend.data.db_manager import DatabaseManager
from backend.data.execution import (
ExecutionContext,
ExecutionStatus,
@@ -19,7 +20,7 @@ from backend.data.execution import (
)
from backend.data.model import _BaseCredentials
from backend.data.user import create_default_user
from backend.executor import DatabaseManager, ExecutionManager, Scheduler
from backend.executor import ExecutionManager, Scheduler
from backend.notifications.notifications import NotificationManager
log = logging.getLogger(__name__)

View File

@@ -11,9 +11,9 @@ import uuid
from typing import Optional
from prisma.errors import UniqueViolationError
from prisma.models import UserWorkspaceFile
from backend.data.workspace import (
WorkspaceFile,
count_workspace_files,
create_workspace_file,
get_workspace_file,
@@ -131,7 +131,7 @@ class WorkspaceManager:
raise FileNotFoundError(f"File not found at path: {resolved_path}")
storage = await get_workspace_storage()
return await storage.retrieve(file.storagePath)
return await storage.retrieve(file.storage_path)
async def read_file_by_id(self, file_id: str) -> bytes:
"""
@@ -151,7 +151,7 @@ class WorkspaceManager:
raise FileNotFoundError(f"File not found: {file_id}")
storage = await get_workspace_storage()
return await storage.retrieve(file.storagePath)
return await storage.retrieve(file.storage_path)
async def write_file(
self,
@@ -160,7 +160,7 @@ class WorkspaceManager:
path: Optional[str] = None,
mime_type: Optional[str] = None,
overwrite: bool = False,
) -> UserWorkspaceFile:
) -> WorkspaceFile:
"""
Write file to workspace.
@@ -175,7 +175,7 @@ class WorkspaceManager:
overwrite: Whether to overwrite existing file at path
Returns:
Created UserWorkspaceFile instance
Created WorkspaceFile instance
Raises:
ValueError: If file exceeds size limit or path already exists
@@ -296,7 +296,7 @@ class WorkspaceManager:
limit: Optional[int] = None,
offset: int = 0,
include_all_sessions: bool = False,
) -> list[UserWorkspaceFile]:
) -> list[WorkspaceFile]:
"""
List files in workspace.
@@ -311,7 +311,7 @@ class WorkspaceManager:
If False (default), only list current session's files.
Returns:
List of UserWorkspaceFile instances
List of WorkspaceFile instances
"""
effective_path = self._get_effective_path(path, include_all_sessions)
@@ -339,7 +339,7 @@ class WorkspaceManager:
# Delete from storage
storage = await get_workspace_storage()
try:
await storage.delete(file.storagePath)
await storage.delete(file.storage_path)
except Exception as e:
logger.warning(f"Failed to delete file from storage: {e}")
# Continue with database soft-delete even if storage delete fails
@@ -367,9 +367,9 @@ class WorkspaceManager:
raise FileNotFoundError(f"File not found: {file_id}")
storage = await get_workspace_storage()
return await storage.get_download_url(file.storagePath, expires_in)
return await storage.get_download_url(file.storage_path, expires_in)
async def get_file_info(self, file_id: str) -> Optional[UserWorkspaceFile]:
async def get_file_info(self, file_id: str) -> Optional[WorkspaceFile]:
"""
Get file metadata.
@@ -377,11 +377,11 @@ class WorkspaceManager:
file_id: The file's ID
Returns:
UserWorkspaceFile instance or None
WorkspaceFile instance or None
"""
return await get_workspace_file(file_id, self.workspace_id)
async def get_file_info_by_path(self, path: str) -> Optional[UserWorkspaceFile]:
async def get_file_info_by_path(self, path: str) -> Optional[WorkspaceFile]:
"""
Get file metadata by path.
@@ -392,7 +392,7 @@ class WorkspaceManager:
path: Virtual path
Returns:
UserWorkspaceFile instance or None
WorkspaceFile instance or None
"""
resolved_path = self._resolve_path(path)
return await get_workspace_file_by_path(self.workspace_id, resolved_path)

View File

@@ -53,7 +53,7 @@ services:
rabbitmq:
<<: *agpt-services
image: rabbitmq:management
image: rabbitmq:4.1.4
container_name: rabbitmq
healthcheck:
test: rabbitmq-diagnostics -q ping
@@ -66,7 +66,6 @@ services:
- RABBITMQ_DEFAULT_PASS=k0VMxyIJF9S35f3x2uaw5IWAl6Y536O7
ports:
- "5672:5672"
- "15672:15672"
clamav:
image: clamav/clamav-debian:latest
ports:

View File

@@ -117,6 +117,7 @@ ws = "backend.ws:main"
scheduler = "backend.scheduler:main"
notification = "backend.notification:main"
executor = "backend.exec:main"
copilot-executor = "backend.copilot.executor.__main__:main"
cli = "backend.cli:main"
format = "linter:format"
lint = "linter:lint"

View File

@@ -9,10 +9,8 @@ from unittest.mock import AsyncMock, patch
import pytest
from backend.api.features.chat.tools.agent_generator import core
from backend.api.features.chat.tools.agent_generator.core import (
AgentGeneratorNotConfiguredError,
)
from backend.copilot.tools.agent_generator import core
from backend.copilot.tools.agent_generator.core import AgentGeneratorNotConfiguredError
class TestServiceNotConfigured:

View File

@@ -9,7 +9,7 @@ from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.agent_generator import core
from backend.copilot.tools.agent_generator import core
class TestGetLibraryAgentsForGeneration:
@@ -31,18 +31,20 @@ class TestGetLibraryAgentsForGeneration:
mock_response = MagicMock()
mock_response.agents = [mock_agent]
mock_db = MagicMock()
mock_db.list_library_agents = AsyncMock(return_value=mock_response)
with patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
) as mock_list:
core,
"library_db",
return_value=mock_db,
):
result = await core.get_library_agents_for_generation(
user_id="user-123",
search_query="send email",
)
mock_list.assert_called_once_with(
mock_db.list_library_agents.assert_called_once_with(
user_id="user-123",
search_term="send email",
page=1,
@@ -80,11 +82,13 @@ class TestGetLibraryAgentsForGeneration:
),
]
mock_db = MagicMock()
mock_db.list_library_agents = AsyncMock(return_value=mock_response)
with patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
core,
"library_db",
return_value=mock_db,
):
result = await core.get_library_agents_for_generation(
user_id="user-123",
@@ -101,18 +105,20 @@ class TestGetLibraryAgentsForGeneration:
mock_response = MagicMock()
mock_response.agents = []
mock_db = MagicMock()
mock_db.list_library_agents = AsyncMock(return_value=mock_response)
with patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
) as mock_list:
core,
"library_db",
return_value=mock_db,
):
await core.get_library_agents_for_generation(
user_id="user-123",
max_results=5,
)
mock_list.assert_called_once_with(
mock_db.list_library_agents.assert_called_once_with(
user_id="user-123",
search_term=None,
page=1,
@@ -144,24 +150,24 @@ class TestSearchMarketplaceAgentsForGeneration:
mock_graph.input_schema = {"type": "object"}
mock_graph.output_schema = {"type": "object"}
mock_store_db = MagicMock()
mock_store_db.get_store_agents = AsyncMock(return_value=mock_response)
mock_graph_db = MagicMock()
mock_graph_db.get_store_listed_graphs = AsyncMock(
return_value={"graph-123": mock_graph}
)
with (
patch(
"backend.api.features.store.db.get_store_agents",
new_callable=AsyncMock,
return_value=mock_response,
) as mock_search,
patch(
"backend.api.features.chat.tools.agent_generator.core.get_store_listed_graphs",
new_callable=AsyncMock,
return_value={"graph-123": mock_graph},
),
patch.object(core, "store_db", return_value=mock_store_db),
patch.object(core, "graph_db", return_value=mock_graph_db),
):
result = await core.search_marketplace_agents_for_generation(
search_query="automation",
max_results=10,
)
mock_search.assert_called_once_with(
mock_store_db.get_store_agents.assert_called_once_with(
search_query="automation",
page=1,
page_size=10,
@@ -707,7 +713,7 @@ class TestExtractUuidsFromText:
class TestGetLibraryAgentById:
"""Test get_library_agent_by_id function (and its alias get_library_agent_by_graph_id)."""
"""Test get_library_agent_by_id function (alias: get_library_agent_by_graph_id)."""
@pytest.mark.asyncio
async def test_returns_agent_when_found_by_graph_id(self):
@@ -720,12 +726,10 @@ class TestGetLibraryAgentById:
mock_agent.input_schema = {"properties": {}}
mock_agent.output_schema = {"properties": {}}
with patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=mock_agent,
):
mock_db = MagicMock()
mock_db.get_library_agent_by_graph_id = AsyncMock(return_value=mock_agent)
with patch.object(core, "library_db", return_value=mock_db):
result = await core.get_library_agent_by_id("user-123", "agent-123")
assert result is not None
@@ -743,20 +747,11 @@ class TestGetLibraryAgentById:
mock_agent.input_schema = {"properties": {}}
mock_agent.output_schema = {"properties": {}}
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=None, # Not found by graph_id
),
patch.object(
core.library_db,
"get_library_agent",
new_callable=AsyncMock,
return_value=mock_agent, # Found by library ID
),
):
mock_db = MagicMock()
mock_db.get_library_agent_by_graph_id = AsyncMock(return_value=None)
mock_db.get_library_agent = AsyncMock(return_value=mock_agent)
with patch.object(core, "library_db", return_value=mock_db):
result = await core.get_library_agent_by_id("user-123", "library-id-123")
assert result is not None
@@ -766,20 +761,13 @@ class TestGetLibraryAgentById:
@pytest.mark.asyncio
async def test_returns_none_when_not_found_by_either_method(self):
"""Test that None is returned when agent not found by either method."""
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=None,
),
patch.object(
core.library_db,
"get_library_agent",
new_callable=AsyncMock,
side_effect=core.NotFoundError("Not found"),
),
):
mock_db = MagicMock()
mock_db.get_library_agent_by_graph_id = AsyncMock(return_value=None)
mock_db.get_library_agent = AsyncMock(
side_effect=core.NotFoundError("Not found")
)
with patch.object(core, "library_db", return_value=mock_db):
result = await core.get_library_agent_by_id("user-123", "nonexistent")
assert result is None
@@ -787,27 +775,20 @@ class TestGetLibraryAgentById:
@pytest.mark.asyncio
async def test_returns_none_on_exception(self):
"""Test that None is returned when exception occurs in both lookups."""
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
side_effect=Exception("Database error"),
),
patch.object(
core.library_db,
"get_library_agent",
new_callable=AsyncMock,
side_effect=Exception("Database error"),
),
):
mock_db = MagicMock()
mock_db.get_library_agent_by_graph_id = AsyncMock(
side_effect=Exception("Database error")
)
mock_db.get_library_agent = AsyncMock(side_effect=Exception("Database error"))
with patch.object(core, "library_db", return_value=mock_db):
result = await core.get_library_agent_by_id("user-123", "agent-123")
assert result is None
@pytest.mark.asyncio
async def test_alias_works(self):
"""Test that get_library_agent_by_graph_id is an alias for get_library_agent_by_id."""
"""Test that get_library_agent_by_graph_id is an alias."""
assert core.get_library_agent_by_graph_id is core.get_library_agent_by_id
@@ -828,20 +809,11 @@ class TestGetAllRelevantAgentsWithUuids:
mock_response = MagicMock()
mock_response.agents = []
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=mock_agent,
),
patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
),
):
mock_db = MagicMock()
mock_db.get_library_agent_by_graph_id = AsyncMock(return_value=mock_agent)
mock_db.list_library_agents = AsyncMock(return_value=mock_response)
with patch.object(core, "library_db", return_value=mock_db):
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="Use agent 46631191-e8a8-486f-ad90-84f89738321d",

View File

@@ -10,7 +10,7 @@ from unittest.mock import AsyncMock, MagicMock, patch
import httpx
import pytest
from backend.api.features.chat.tools.agent_generator import service
from backend.copilot.tools.agent_generator import service
class TestServiceConfiguration:

File diff suppressed because it is too large Load Diff

View File

@@ -1,133 +0,0 @@
"""Tests for SDK security hooks — workspace paths, tool access, and deny messages.
These are pure unit tests with no external dependencies (no SDK, no DB, no server).
They validate that the security hooks correctly block unauthorized paths,
tool access, and dangerous input patterns.
Note: Bash command validation was removed — the SDK built-in Bash tool is not in
allowed_tools, and the bash_exec MCP tool has kernel-level network isolation
(unshare --net) making command-level parsing unnecessary.
"""
from backend.api.features.chat.sdk.security_hooks import (
_validate_tool_access,
_validate_workspace_path,
)
SDK_CWD = "/tmp/copilot-test-session"
def _is_denied(result: dict) -> bool:
hook = result.get("hookSpecificOutput", {})
return hook.get("permissionDecision") == "deny"
def _reason(result: dict) -> str:
return result.get("hookSpecificOutput", {}).get("permissionDecisionReason", "")
# ============================================================
# Workspace path validation (Read, Write, Edit, etc.)
# ============================================================
class TestWorkspacePathValidation:
def test_path_in_workspace(self):
result = _validate_workspace_path(
"Read", {"file_path": f"{SDK_CWD}/file.txt"}, SDK_CWD
)
assert not _is_denied(result)
def test_path_outside_workspace(self):
result = _validate_workspace_path("Read", {"file_path": "/etc/passwd"}, SDK_CWD)
assert _is_denied(result)
def test_tool_results_allowed(self):
result = _validate_workspace_path(
"Read",
{"file_path": "~/.claude/projects/abc/tool-results/out.txt"},
SDK_CWD,
)
assert not _is_denied(result)
def test_claude_settings_blocked(self):
result = _validate_workspace_path(
"Read", {"file_path": "~/.claude/settings.json"}, SDK_CWD
)
assert _is_denied(result)
def test_claude_projects_without_tool_results(self):
result = _validate_workspace_path(
"Read", {"file_path": "~/.claude/projects/abc/credentials.json"}, SDK_CWD
)
assert _is_denied(result)
def test_no_path_allowed(self):
"""Glob/Grep without path defaults to cwd — should be allowed."""
result = _validate_workspace_path("Grep", {"pattern": "foo"}, SDK_CWD)
assert not _is_denied(result)
def test_path_traversal_with_dotdot(self):
result = _validate_workspace_path(
"Read", {"file_path": f"{SDK_CWD}/../../../etc/passwd"}, SDK_CWD
)
assert _is_denied(result)
# ============================================================
# Tool access validation
# ============================================================
class TestToolAccessValidation:
def test_blocked_tools(self):
for tool in ("bash", "shell", "exec", "terminal", "command"):
result = _validate_tool_access(tool, {})
assert _is_denied(result), f"Tool '{tool}' should be blocked"
def test_bash_builtin_blocked(self):
"""SDK built-in Bash (capital) is blocked as defence-in-depth."""
result = _validate_tool_access("Bash", {"command": "echo hello"}, SDK_CWD)
assert _is_denied(result)
assert "Bash" in _reason(result)
def test_workspace_tools_delegate(self):
result = _validate_tool_access(
"Read", {"file_path": f"{SDK_CWD}/file.txt"}, SDK_CWD
)
assert not _is_denied(result)
def test_dangerous_pattern_blocked(self):
result = _validate_tool_access("SomeUnknownTool", {"data": "sudo rm -rf /"})
assert _is_denied(result)
def test_safe_unknown_tool_allowed(self):
result = _validate_tool_access("SomeSafeTool", {"data": "hello world"})
assert not _is_denied(result)
# ============================================================
# Deny message quality (ntindle feedback)
# ============================================================
class TestDenyMessageClarity:
"""Deny messages must include [SECURITY] and 'cannot be bypassed'
so the model knows the restriction is enforced, not a suggestion."""
def test_blocked_tool_message(self):
reason = _reason(_validate_tool_access("bash", {}))
assert "[SECURITY]" in reason
assert "cannot be bypassed" in reason
def test_bash_builtin_blocked_message(self):
reason = _reason(_validate_tool_access("Bash", {"command": "echo hello"}))
assert "[SECURITY]" in reason
assert "cannot be bypassed" in reason
def test_workspace_path_message(self):
reason = _reason(
_validate_workspace_path("Read", {"file_path": "/etc/passwd"}, SDK_CWD)
)
assert "[SECURITY]" in reason
assert "cannot be bypassed" in reason

View File

@@ -75,7 +75,7 @@ services:
timeout: 5s
retries: 5
rabbitmq:
image: rabbitmq:management
image: rabbitmq:4.1.4
container_name: rabbitmq
healthcheck:
test: rabbitmq-diagnostics -q ping
@@ -88,14 +88,13 @@ services:
<<: *backend-env
ports:
- "5672:5672"
- "15672:15672"
rest_server:
build:
context: ../
dockerfile: autogpt_platform/backend/Dockerfile
target: server
command: ["python", "-m", "backend.rest"]
command: ["rest"] # points to entry in [tool.poetry.scripts] in pyproject.toml
develop:
watch:
- path: ./
@@ -128,7 +127,7 @@ services:
context: ../
dockerfile: autogpt_platform/backend/Dockerfile
target: server
command: ["python", "-m", "backend.exec"]
command: ["executor"] # points to entry in [tool.poetry.scripts] in pyproject.toml
develop:
watch:
- path: ./
@@ -158,12 +157,47 @@ services:
max-size: "10m"
max-file: "3"
copilot_executor:
build:
context: ../
dockerfile: autogpt_platform/backend/Dockerfile
target: server
command: ["python", "-m", "backend.copilot.executor"]
develop:
watch:
- path: ./
target: autogpt_platform/backend/
action: rebuild
depends_on:
redis:
condition: service_healthy
rabbitmq:
condition: service_healthy
db:
condition: service_healthy
migrate:
condition: service_completed_successfully
database_manager:
condition: service_started
<<: *backend-env-files
environment:
<<: *backend-env
ports:
- "8008:8008"
networks:
- app-network
logging:
driver: json-file
options:
max-size: "10m"
max-file: "3"
websocket_server:
build:
context: ../
dockerfile: autogpt_platform/backend/Dockerfile
target: server
command: ["python", "-m", "backend.ws"]
command: ["ws"] # points to entry in [tool.poetry.scripts] in pyproject.toml
develop:
watch:
- path: ./
@@ -196,7 +230,7 @@ services:
context: ../
dockerfile: autogpt_platform/backend/Dockerfile
target: server
command: ["python", "-m", "backend.db"]
command: ["db"] # points to entry in [tool.poetry.scripts] in pyproject.toml
develop:
watch:
- path: ./
@@ -225,7 +259,7 @@ services:
context: ../
dockerfile: autogpt_platform/backend/Dockerfile
target: server
command: ["python", "-m", "backend.scheduler"]
command: ["scheduler"] # points to entry in [tool.poetry.scripts] in pyproject.toml
develop:
watch:
- path: ./
@@ -273,7 +307,7 @@ services:
context: ../
dockerfile: autogpt_platform/backend/Dockerfile
target: server
command: ["python", "-m", "backend.notification"]
command: ["notification"] # points to entry in [tool.poetry.scripts] in pyproject.toml
develop:
watch:
- path: ./

View File

@@ -53,6 +53,12 @@ services:
file: ./docker-compose.platform.yml
service: executor
copilot_executor:
<<: *agpt-services
extends:
file: ./docker-compose.platform.yml
service: copilot_executor
websocket_server:
<<: *agpt-services
extends:
@@ -174,5 +180,6 @@ services:
- deps
- rest_server
- executor
- copilot_executor
- websocket_server
- database_manager

View File

@@ -62,7 +62,6 @@
"@rjsf/validator-ajv8": "6.1.2",
"@sentry/nextjs": "10.27.0",
"@streamdown/cjk": "1.0.1",
"@streamdown/code": "1.0.1",
"@streamdown/math": "1.0.1",
"@streamdown/mermaid": "1.0.1",
"@supabase/ssr": "0.7.0",
@@ -116,6 +115,7 @@
"remark-gfm": "4.0.1",
"remark-math": "6.0.0",
"shepherd.js": "14.5.1",
"shiki": "^3.21.0",
"sonner": "2.0.7",
"streamdown": "2.1.0",
"tailwind-merge": "2.6.0",

View File

@@ -108,9 +108,6 @@ importers:
'@streamdown/cjk':
specifier: 1.0.1
version: 1.0.1(@types/mdast@4.0.4)(micromark-util-types@2.0.2)(micromark@4.0.2)(react@18.3.1)(unified@11.0.5)
'@streamdown/code':
specifier: 1.0.1
version: 1.0.1(react@18.3.1)
'@streamdown/math':
specifier: 1.0.1
version: 1.0.1(react@18.3.1)
@@ -270,6 +267,9 @@ importers:
shepherd.js:
specifier: 14.5.1
version: 14.5.1
shiki:
specifier: ^3.21.0
version: 3.21.0
sonner:
specifier: 2.0.7
version: 2.0.7(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
@@ -3307,11 +3307,6 @@ packages:
peerDependencies:
react: ^18.0.0 || ^19.0.0
'@streamdown/code@1.0.1':
resolution: {integrity: sha512-U9LITfQ28tZYAoY922jdtw1ryg4kgRBdURopqK9hph7G2fBUwPeHthjH7SvaV0fvFv7EqjqCzARJuWUljLe9Ag==}
peerDependencies:
react: ^18.0.0 || ^19.0.0
'@streamdown/math@1.0.1':
resolution: {integrity: sha512-R9WdHbpERiRU7WeO7oT1aIbnLJ/jraDr89F7X9x2OM//Y8G8UMATRnLD/RUwg4VLr8Nu7QSIJ0Pa8lXd2meM4Q==}
peerDependencies:
@@ -11907,11 +11902,6 @@ snapshots:
- micromark-util-types
- unified
'@streamdown/code@1.0.1(react@18.3.1)':
dependencies:
react: 18.3.1
shiki: 3.21.0
'@streamdown/math@1.0.1(react@18.3.1)':
dependencies:
katex: 0.16.28

Some files were not shown because too many files have changed in this diff Show More