Compare commits

..

2 Commits

Author SHA1 Message Date
Zamil Majdy
b2eb4831bd feat(chat): improve agent generator error propagation (#11884)
## Summary
- Add helper functions in `service.py` to create standardized error
responses with `error_type` classification
- Update service functions to return error dicts instead of `None`,
preserving error details from the Agent Generator microservice
- Update `core.py` to pass through error responses properly
- Update `create_agent.py` to handle error responses with user-friendly
messages based on error type

## Error Types Now Propagated
| Error Type | Description | User Message |
|------------|-------------|--------------|
| `llm_parse_error` | LLM returned unparseable response | "The AI had
trouble understanding this request" |
| `llm_timeout` / `timeout` | Request timed out | "The request took too
long" |
| `llm_rate_limit` / `rate_limit` | Rate limited | "The service is
currently busy" |
| `validation_error` | Agent validation failed | "The generated agent
failed validation" |
| `connection_error` | Could not connect to Agent Generator | Generic
error message |
| `http_error` | HTTP error from Agent Generator | Generic error message
|
| `unknown` | Unclassified error | Generic error message |

## Motivation
This enables better debugging for issues like SECRT-1817 where
decomposition failed due to transient LLM errors but the root cause was
unclear in the logs. Now:
1. Error details from the Agent Generator microservice are preserved
2. Users get more helpful error messages based on error type
3. Debugging is easier with `error_type` in response details

## Related PR
- Agent Generator side:
https://github.com/Significant-Gravitas/AutoGPT-Agent-Generator/pull/102

## Test Plan
- [ ] Test decomposition with various error scenarios (timeout, parse
error)
- [ ] Verify user-friendly messages are shown based on error type
- [ ] Check that error details are logged properly
2026-01-29 19:53:40 +00:00
Reinier van der Leer
4cd5da678d refactor(claude): Split autogpt_platform/CLAUDE.md into project-specific files (#11788)
Split `autogpt_platform/CLAUDE.md` into project-specific files, to make
the scope of the instructions clearer.

Also, some minor improvements:

- Change references to other Markdown files to @file/path.md syntax that
Claude recognizes
- Update ambiguous/incorrect/outdated instructions
- Remove trailing slashes
- Fix broken file path references in other docs (including comments)
2026-01-29 17:33:02 +00:00
24 changed files with 565 additions and 1989 deletions

View File

@@ -160,7 +160,7 @@ pnpm storybook # Start component development server
**Backend Entry Points:**
- `backend/backend/server/server.py` - FastAPI application setup
- `backend/backend/api/rest_api.py` - FastAPI application setup
- `backend/backend/data/` - Database models and user management
- `backend/blocks/` - Agent execution blocks and logic
@@ -219,7 +219,7 @@ Agents are built using a visual block-based system where each block performs a s
### API Development
1. Update routes in `/backend/backend/server/routers/`
1. Update routes in `/backend/backend/api/features/`
2. Add/update Pydantic models in same directory
3. Write tests alongside route files
4. For `data/*.py` changes, validate user ID checks
@@ -285,7 +285,7 @@ Agents are built using a visual block-based system where each block performs a s
### Security Guidelines
**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`):
**Cache Protection Middleware** (`/backend/backend/api/middleware/security.py`):
- Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses allow list approach for cacheable paths (static assets, health checks, public pages)

1
.gitignore vendored
View File

@@ -178,4 +178,5 @@ autogpt_platform/backend/settings.py
*.ign.*
.test-contents
.claude/settings.local.json
CLAUDE.local.md
/autogpt_platform/backend/logs

View File

@@ -6,141 +6,30 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
AutoGPT Platform is a monorepo containing:
- **Backend** (`/backend`): Python FastAPI server with async support
- **Frontend** (`/frontend`): Next.js React application
- **Shared Libraries** (`/autogpt_libs`): Common Python utilities
- **Backend** (`backend`): Python FastAPI server with async support
- **Frontend** (`frontend`): Next.js React application
- **Shared Libraries** (`autogpt_libs`): Common Python utilities
## Essential Commands
## Component Documentation
### Backend Development
- **Backend**: See @backend/CLAUDE.md for backend-specific commands, architecture, and development tasks
- **Frontend**: See @frontend/CLAUDE.md for frontend-specific commands, architecture, and development patterns
```bash
# Install dependencies
cd backend && poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend server
poetry run serve
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in TESTING.md
#### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
### Frontend Development
```bash
# Install dependencies
cd frontend && pnpm i
# Generate API client from OpenAPI spec
pnpm generate:api
# Start development server
pnpm dev
# Run E2E tests
pnpm test
# Run Storybook for component development
pnpm storybook
# Build production
pnpm build
# Format and lint
pnpm format
# Type checking
pnpm types
```
## Architecture Overview
### Backend Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
### Frontend Architecture
- **Framework**: Next.js 15 App Router (client-first approach)
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
- **State Management**: React Query for server state, co-located UI state in components/hooks
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
- **Workflow Builder**: Visual graph editor using @xyflow/react
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
- **Icons**: Phosphor Icons only
- **Feature Flags**: LaunchDarkly integration
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
- **Testing**: Playwright for E2E, Storybook for component development
### Key Concepts
## Key Concepts
1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend
2. **Blocks**: Reusable components in `/backend/blocks/` that perform specific tasks
2. **Blocks**: Reusable components in `backend/backend/blocks/` that perform specific tasks
3. **Integrations**: OAuth and API connections stored per user
4. **Store**: Marketplace for sharing agent templates
5. **Virus Scanning**: ClamAV integration for file upload security
### Testing Approach
- Backend uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
- Frontend uses Playwright for E2E tests
- Component testing via Storybook
### Database Schema
Key models (defined in `/backend/schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
### Environment Configuration
#### Configuration Files
- **Backend**: `/backend/.env.default` (defaults) → `/backend/.env` (user overrides)
- **Frontend**: `/frontend/.env.default` (defaults) → `/frontend/.env` (user overrides)
- **Platform**: `/.env.default` (Supabase/shared defaults) → `/.env` (user overrides)
- **Backend**: `backend/.env.default` (defaults) → `backend/.env` (user overrides)
- **Frontend**: `frontend/.env.default` (defaults) → `frontend/.env` (user overrides)
- **Platform**: `.env.default` (Supabase/shared defaults) → `.env` (user overrides)
#### Docker Environment Loading Order
@@ -156,130 +45,12 @@ Key models (defined in `/backend/schema.prisma`):
- Backend/Frontend services use YAML anchors for consistent configuration
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
### Common Development Tasks
**Adding a new block:**
Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `/backend/backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
**Handling files in blocks with `store_media_file()`:**
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
| Format | Use When | Returns |
|--------|----------|---------|
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
**Examples:**
```python
# INPUT: Need to process file locally with ffmpeg
local_path = await store_media_file(
file=input_data.video,
execution_context=execution_context,
return_format="for_local_processing",
)
# local_path = "video.mp4" - use with Path/ffmpeg/etc
# INPUT: Need to send to external API like Replicate
image_b64 = await store_media_file(
file=input_data.image,
execution_context=execution_context,
return_format="for_external_api",
)
# image_b64 = "..." - send to API
# OUTPUT: Returning result from block
result_url = await store_media_file(
file=generated_image_url,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", result_url
# In CoPilot: result_url = "workspace://abc123"
# In graphs: result_url = "data:image/png;base64,..."
```
**Key points:**
- `for_block_output` is the ONLY format that auto-adapts to execution context
- Always use `for_block_output` for block outputs unless you have a specific reason not to
- Never hardcode workspace checks - let `for_block_output` handle it
**Modifying the API:**
1. Update route in `/backend/backend/server/routers/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
### Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Add `usePageName.ts` hook for logic
- Put sub-components in local `components/` folder
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
- Avoid comments at all times unless the code is very complex
- Do not type hook returns, let Typescript infer as much as possible
- Never type with `any`, if not types available use `unknown`
### Security Implementation
**Cache Protection Middleware:**
- Located in `/backend/backend/server/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`/static/*`, `/_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications
### Creating Pull Requests
- Create the PR aginst the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)/
- Use conventional commit messages (see below)/
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description/
- Create the PR against the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)
- Use conventional commit messages (see below)
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description
- Run the github pre-commit hooks to ensure code quality.
### Reviewing/Revising Pull Requests

View File

@@ -0,0 +1,170 @@
# CLAUDE.md - Backend
This file provides guidance to Claude Code when working with the backend.
## Essential Commands
To run something with Python package dependencies you MUST use `poetry run ...`.
```bash
# Install dependencies
poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend as a whole
poetry run app
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in @TESTING.md
### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
## Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
## Testing Approach
- Uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
## Database Schema
Key models (defined in `schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
## Environment Configuration
- **Backend**: `.env.default` (defaults) → `.env` (user overrides)
## Common Development Tasks
### Adding a new block
Follow the comprehensive [Block SDK Guide](@../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph-based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
#### Handling files in blocks with `store_media_file()`
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
| Format | Use When | Returns |
|--------|----------|---------|
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
**Examples:**
```python
# INPUT: Need to process file locally with ffmpeg
local_path = await store_media_file(
file=input_data.video,
execution_context=execution_context,
return_format="for_local_processing",
)
# local_path = "video.mp4" - use with Path/ffmpeg/etc
# INPUT: Need to send to external API like Replicate
image_b64 = await store_media_file(
file=input_data.image,
execution_context=execution_context,
return_format="for_external_api",
)
# image_b64 = "..." - send to API
# OUTPUT: Returning result from block
result_url = await store_media_file(
file=generated_image_url,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", result_url
# In CoPilot: result_url = "workspace://abc123"
# In graphs: result_url = "data:image/png;base64,..."
```
**Key points:**
- `for_block_output` is the ONLY format that auto-adapts to execution context
- Always use `for_block_output` for block outputs unless you have a specific reason not to
- Never hardcode workspace checks - let `for_block_output` handle it
### Modifying the API
1. Update route in `backend/api/features/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
## Security Implementation
### Cache Protection Middleware
- Located in `backend/api/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`static/*`, `_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications

View File

@@ -138,7 +138,7 @@ If the test doesn't need the `user_id` specifically, mocking is not necessary as
#### Using Global Auth Fixtures
Two global auth fixtures are provided by `backend/server/conftest.py`:
Two global auth fixtures are provided by `backend/api/conftest.py`:
- `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id")
- `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id")

View File

@@ -17,7 +17,7 @@ router = fastapi.APIRouter(
)
# Taken from backend/server/v2/store/db.py
# Taken from backend/api/features/store/db.py
def sanitize_query(query: str | None) -> str | None:
if query is None:
return query

View File

@@ -1,325 +0,0 @@
"""RabbitMQ consumer for operation completion messages.
This module provides a consumer that listens for completion notifications
from external services (like Agent Generator) and triggers the appropriate
stream registry and chat service updates.
"""
import asyncio
import logging
import orjson
from pydantic import BaseModel
from backend.data.rabbitmq import (
AsyncRabbitMQ,
Exchange,
ExchangeType,
Queue,
RabbitMQConfig,
)
from . import service as chat_service
from . import stream_registry
from .response_model import StreamError, StreamFinish, StreamToolOutputAvailable
from .tools.models import ErrorResponse
logger = logging.getLogger(__name__)
# Queue and exchange configuration
OPERATION_COMPLETE_EXCHANGE = Exchange(
name="chat_operations",
type=ExchangeType.DIRECT,
durable=True,
)
OPERATION_COMPLETE_QUEUE = Queue(
name="chat_operation_complete",
durable=True,
exchange=OPERATION_COMPLETE_EXCHANGE,
routing_key="operation.complete",
)
RABBITMQ_CONFIG = RabbitMQConfig(
exchanges=[OPERATION_COMPLETE_EXCHANGE],
queues=[OPERATION_COMPLETE_QUEUE],
)
class OperationCompleteMessage(BaseModel):
"""Message format for operation completion notifications."""
operation_id: str
task_id: str
success: bool
result: dict | str | None = None
error: str | None = None
class ChatCompletionConsumer:
"""Consumer for chat operation completion messages from RabbitMQ."""
def __init__(self):
self._rabbitmq: AsyncRabbitMQ | None = None
self._consumer_task: asyncio.Task | None = None
self._running = False
async def start(self) -> None:
"""Start the completion consumer."""
if self._running:
logger.warning("Completion consumer already running")
return
self._rabbitmq = AsyncRabbitMQ(RABBITMQ_CONFIG)
await self._rabbitmq.connect()
self._running = True
self._consumer_task = asyncio.create_task(self._consume_messages())
logger.info("Chat completion consumer started")
async def stop(self) -> None:
"""Stop the completion consumer."""
self._running = False
if self._consumer_task:
self._consumer_task.cancel()
try:
await self._consumer_task
except asyncio.CancelledError:
pass
self._consumer_task = None
if self._rabbitmq:
await self._rabbitmq.disconnect()
self._rabbitmq = None
logger.info("Chat completion consumer stopped")
async def _consume_messages(self) -> None:
"""Main message consumption loop with retry logic."""
max_retries = 10
retry_delay = 5 # seconds
retry_count = 0
while self._running and retry_count < max_retries:
if not self._rabbitmq:
logger.error("RabbitMQ not initialized")
return
try:
channel = await self._rabbitmq.get_channel()
queue = await channel.get_queue(OPERATION_COMPLETE_QUEUE.name)
# Reset retry count on successful connection
retry_count = 0
async with queue.iterator() as queue_iter:
async for message in queue_iter:
if not self._running:
return
try:
async with message.process():
await self._handle_message(message.body)
except Exception as e:
logger.error(
f"Error processing completion message: {e}",
exc_info=True,
)
# Message will be requeued due to exception
except asyncio.CancelledError:
logger.info("Consumer cancelled")
return
except Exception as e:
retry_count += 1
logger.error(
f"Consumer error (retry {retry_count}/{max_retries}): {e}",
exc_info=True,
)
if self._running and retry_count < max_retries:
await asyncio.sleep(retry_delay)
else:
logger.error("Max retries reached, stopping consumer")
return
async def _handle_message(self, body: bytes) -> None:
"""Handle a single completion message."""
try:
data = orjson.loads(body)
message = OperationCompleteMessage(**data)
except Exception as e:
logger.error(f"Failed to parse completion message: {e}")
return
logger.info(
f"Received completion for operation {message.operation_id} "
f"(task_id={message.task_id}, success={message.success})"
)
# Find task in registry
task = await stream_registry.find_task_by_operation_id(message.operation_id)
if task is None:
# Try to look up by task_id directly
task = await stream_registry.get_task(message.task_id)
if task is None:
logger.warning(
f"Task not found for operation {message.operation_id} "
f"(task_id={message.task_id})"
)
return
if message.success:
await self._handle_success(task, message)
else:
await self._handle_failure(task, message)
async def _handle_success(
self,
task: stream_registry.ActiveTask,
message: OperationCompleteMessage,
) -> None:
"""Handle successful operation completion."""
# Publish result to stream registry
result_output = message.result if message.result else {"status": "completed"}
await stream_registry.publish_chunk(
task.task_id,
StreamToolOutputAvailable(
toolCallId=task.tool_call_id,
toolName=task.tool_name,
output=(
result_output
if isinstance(result_output, str)
else orjson.dumps(result_output).decode("utf-8")
),
success=True,
),
)
# Update pending operation in database
result_str = (
message.result
if isinstance(message.result, str)
else (
orjson.dumps(message.result).decode("utf-8")
if message.result
else '{"status": "completed"}'
)
)
await chat_service._update_pending_operation(
session_id=task.session_id,
tool_call_id=task.tool_call_id,
result=result_str,
)
# Generate LLM continuation with streaming
await chat_service._generate_llm_continuation_with_streaming(
session_id=task.session_id,
user_id=task.user_id,
task_id=task.task_id,
)
# Mark task as completed and release Redis lock
await stream_registry.mark_task_completed(task.task_id, status="completed")
await chat_service._mark_operation_completed(task.tool_call_id)
logger.info(
f"Successfully processed completion for task {task.task_id} "
f"(operation {message.operation_id})"
)
async def _handle_failure(
self,
task: stream_registry.ActiveTask,
message: OperationCompleteMessage,
) -> None:
"""Handle failed operation completion."""
error_msg = message.error or "Operation failed"
# Publish error to stream registry followed by finish event
await stream_registry.publish_chunk(
task.task_id,
StreamError(errorText=error_msg),
)
await stream_registry.publish_chunk(task.task_id, StreamFinish())
# Update pending operation with error
error_response = ErrorResponse(
message=error_msg,
error=message.error,
)
await chat_service._update_pending_operation(
session_id=task.session_id,
tool_call_id=task.tool_call_id,
result=error_response.model_dump_json(),
)
# Mark task as failed and release Redis lock
await stream_registry.mark_task_completed(task.task_id, status="failed")
await chat_service._mark_operation_completed(task.tool_call_id)
logger.info(
f"Processed failure for task {task.task_id} "
f"(operation {message.operation_id}): {error_msg}"
)
# Module-level consumer instance
_consumer: ChatCompletionConsumer | None = None
async def start_completion_consumer() -> None:
"""Start the global completion consumer."""
global _consumer
if _consumer is None:
_consumer = ChatCompletionConsumer()
await _consumer.start()
async def stop_completion_consumer() -> None:
"""Stop the global completion consumer."""
global _consumer
if _consumer:
await _consumer.stop()
_consumer = None
async def publish_operation_complete(
operation_id: str,
task_id: str,
success: bool,
result: dict | str | None = None,
error: str | None = None,
) -> None:
"""Publish an operation completion message.
This is a helper function for testing or for services that want to
publish completion messages directly.
Args:
operation_id: The operation ID that completed.
task_id: The task ID associated with the operation.
success: Whether the operation succeeded.
result: The result data (for success).
error: The error message (for failure).
"""
message = OperationCompleteMessage(
operation_id=operation_id,
task_id=task_id,
success=success,
result=result,
error=error,
)
rabbitmq = AsyncRabbitMQ(RABBITMQ_CONFIG)
try:
await rabbitmq.connect()
await rabbitmq.publish_message(
routing_key="operation.complete",
message=message.model_dump_json(),
exchange=OPERATION_COMPLETE_EXCHANGE,
)
logger.info(f"Published completion for operation {operation_id}")
finally:
await rabbitmq.disconnect()

View File

@@ -44,20 +44,6 @@ class ChatConfig(BaseSettings):
description="TTL in seconds for long-running operation tracking in Redis (safety net if pod dies)",
)
# Stream registry configuration for SSE reconnection
stream_ttl: int = Field(
default=3600,
description="TTL in seconds for stream data in Redis (1 hour)",
)
stream_max_length: int = Field(
default=1000,
description="Maximum number of messages to store per stream",
)
internal_api_key: str | None = Field(
default=None,
description="API key for internal webhook callbacks (env: CHAT_INTERNAL_API_KEY)",
)
# Langfuse Prompt Management Configuration
# Note: Langfuse credentials are in Settings().secrets (settings.py)
langfuse_prompt_name: str = Field(
@@ -96,14 +82,6 @@ class ChatConfig(BaseSettings):
v = "https://openrouter.ai/api/v1"
return v
@field_validator("internal_api_key", mode="before")
@classmethod
def get_internal_api_key(cls, v):
"""Get internal API key from environment if not provided."""
if v is None:
v = os.getenv("CHAT_INTERNAL_API_KEY")
return v
# Prompt paths for different contexts
PROMPT_PATHS: dict[str, str] = {
"default": "prompts/chat_system.md",

View File

@@ -4,19 +4,16 @@ import logging
from collections.abc import AsyncGenerator
from typing import Annotated
import orjson
from autogpt_libs import auth
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Security
from fastapi import APIRouter, Depends, Query, Security
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from backend.util.exceptions import NotFoundError
from . import service as chat_service
from . import stream_registry
from .config import ChatConfig
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
from .response_model import StreamFinish, StreamHeartbeat
config = ChatConfig()
@@ -84,14 +81,6 @@ class ListSessionsResponse(BaseModel):
total: int
class OperationCompleteRequest(BaseModel):
"""Request model for external completion webhook."""
success: bool
result: dict | str | None = None
error: str | None = None
# ========== Routes ==========
@@ -377,267 +366,6 @@ async def session_assign_user(
return {"status": "ok"}
# ========== Task Streaming (SSE Reconnection) ==========
@router.get(
"/tasks/{task_id}/stream",
)
async def stream_task(
task_id: str,
user_id: str | None = Depends(auth.get_user_id),
last_message_id: str = Query(
default="0-0",
description="Last Redis Stream message ID received (e.g., '1706540123456-0'). Use '0-0' for full replay.",
),
):
"""
Reconnect to a long-running task's SSE stream.
When a long-running operation (like agent generation) starts, the client
receives a task_id. If the connection drops, the client can reconnect
using this endpoint to resume receiving updates.
Args:
task_id: The task ID from the operation_started response.
user_id: Authenticated user ID for ownership validation.
last_message_id: Last Redis Stream message ID received ("0-0" for full replay).
Returns:
StreamingResponse: SSE-formatted response chunks starting after last_message_id.
Raises:
NotFoundError: If task_id is not found or user doesn't have access.
"""
# Get subscriber queue from stream registry
subscriber_queue = await stream_registry.subscribe_to_task(
task_id=task_id,
user_id=user_id,
last_message_id=last_message_id,
)
if subscriber_queue is None:
raise NotFoundError(f"Task {task_id} not found or access denied.")
async def event_generator() -> AsyncGenerator[str, None]:
import asyncio
chunk_count = 0
heartbeat_interval = 15.0 # Send heartbeat every 15 seconds
try:
while True:
try:
# Wait for next chunk with timeout for heartbeats
chunk = await asyncio.wait_for(
subscriber_queue.get(), timeout=heartbeat_interval
)
chunk_count += 1
yield chunk.to_sse()
# Check for finish signal
if isinstance(chunk, StreamFinish):
logger.info(
f"Task stream completed for task {task_id}, "
f"chunk_count={chunk_count}"
)
break
except asyncio.TimeoutError:
# Send heartbeat to keep connection alive
yield StreamHeartbeat().to_sse()
except Exception as e:
logger.error(f"Error in task stream {task_id}: {e}", exc_info=True)
finally:
# Unsubscribe when client disconnects or stream ends
await stream_registry.unsubscribe_from_task(task_id, subscriber_queue)
# AI SDK protocol termination
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"x-vercel-ai-ui-message-stream": "v1",
},
)
@router.get(
"/tasks/{task_id}",
)
async def get_task_status(
task_id: str,
user_id: str | None = Depends(auth.get_user_id),
) -> dict:
"""
Get the status of a long-running task.
Args:
task_id: The task ID to check.
user_id: Authenticated user ID for ownership validation.
Returns:
dict: Task status including task_id, status, tool_name, and operation_id.
Raises:
NotFoundError: If task_id is not found or user doesn't have access.
"""
task = await stream_registry.get_task(task_id)
if task is None:
raise NotFoundError(f"Task {task_id} not found.")
# Validate ownership
if user_id and task.user_id and task.user_id != user_id:
raise NotFoundError(f"Task {task_id} not found.")
return {
"task_id": task.task_id,
"session_id": task.session_id,
"status": task.status,
"tool_name": task.tool_name,
"operation_id": task.operation_id,
"created_at": task.created_at.isoformat(),
}
# ========== External Completion Webhook ==========
@router.post(
"/operations/{operation_id}/complete",
status_code=200,
)
async def complete_operation(
operation_id: str,
request: OperationCompleteRequest,
x_api_key: str | None = Header(default=None),
) -> dict:
"""
External completion webhook for long-running operations.
Called by Agent Generator (or other services) when an operation completes.
This triggers the stream registry to publish completion and continue LLM generation.
Args:
operation_id: The operation ID to complete.
request: Completion payload with success status and result/error.
x_api_key: Internal API key for authentication.
Returns:
dict: Status of the completion.
Raises:
HTTPException: If API key is invalid or operation not found.
"""
# Validate internal API key - reject if not configured or invalid
if not config.internal_api_key:
logger.error(
"Operation complete webhook rejected: CHAT_INTERNAL_API_KEY not configured"
)
raise HTTPException(
status_code=503,
detail="Webhook not available: internal API key not configured",
)
if x_api_key != config.internal_api_key:
raise HTTPException(status_code=401, detail="Invalid API key")
# Find task by operation_id
task = await stream_registry.find_task_by_operation_id(operation_id)
if task is None:
raise HTTPException(
status_code=404,
detail=f"Operation {operation_id} not found",
)
logger.info(
f"Received completion webhook for operation {operation_id} "
f"(task_id={task.task_id}, success={request.success})"
)
if request.success:
# Publish result to stream registry
from .response_model import StreamToolOutputAvailable
result_output = request.result if request.result else {"status": "completed"}
await stream_registry.publish_chunk(
task.task_id,
StreamToolOutputAvailable(
toolCallId=task.tool_call_id,
toolName=task.tool_name,
output=(
result_output
if isinstance(result_output, str)
else orjson.dumps(result_output).decode("utf-8")
),
success=True,
),
)
# Update pending operation in database
from . import service as svc
result_str = (
request.result
if isinstance(request.result, str)
else (
orjson.dumps(request.result).decode("utf-8")
if request.result
else '{"status": "completed"}'
)
)
await svc._update_pending_operation(
session_id=task.session_id,
tool_call_id=task.tool_call_id,
result=result_str,
)
# Generate LLM continuation with streaming
await svc._generate_llm_continuation_with_streaming(
session_id=task.session_id,
user_id=task.user_id,
task_id=task.task_id,
)
# Mark task as completed and release Redis lock
await stream_registry.mark_task_completed(task.task_id, status="completed")
await svc._mark_operation_completed(task.tool_call_id)
else:
# Publish error to stream registry
from .response_model import StreamError
error_msg = request.error or "Operation failed"
await stream_registry.publish_chunk(
task.task_id,
StreamError(errorText=error_msg),
)
# Send finish event to end the stream
await stream_registry.publish_chunk(task.task_id, StreamFinish())
# Update pending operation with error
from . import service as svc
from .tools.models import ErrorResponse
error_response = ErrorResponse(
message=error_msg,
error=request.error,
)
await svc._update_pending_operation(
session_id=task.session_id,
tool_call_id=task.tool_call_id,
result=error_response.model_dump_json(),
)
# Mark task as failed and release Redis lock
await stream_registry.mark_task_completed(task.task_id, status="failed")
await svc._mark_operation_completed(task.tool_call_id)
return {"status": "ok", "task_id": task.task_id}
# ========== Health Check ==========

View File

@@ -26,7 +26,6 @@ from backend.util.exceptions import NotFoundError
from backend.util.settings import Settings
from . import db as chat_db
from . import stream_registry
from .config import ChatConfig
from .model import (
ChatMessage,
@@ -1611,9 +1610,8 @@ async def _yield_tool_call(
)
return
# Generate operation ID and task ID
# Generate operation ID
operation_id = str(uuid_module.uuid4())
task_id = str(uuid_module.uuid4())
# Build a user-friendly message based on tool and arguments
if tool_name == "create_agent":
@@ -1656,16 +1654,6 @@ async def _yield_tool_call(
# Wrap session save and task creation in try-except to release lock on failure
try:
# Create task in stream registry for SSE reconnection support
await stream_registry.create_task(
task_id=task_id,
session_id=session.session_id,
user_id=session.user_id,
tool_call_id=tool_call_id,
tool_name=tool_name,
operation_id=operation_id,
)
# Save assistant message with tool_call FIRST (required by LLM)
assistant_message = ChatMessage(
role="assistant",
@@ -1687,27 +1675,23 @@ async def _yield_tool_call(
session.messages.append(pending_message)
await upsert_chat_session(session)
logger.info(
f"Saved pending operation {operation_id} (task_id={task_id}) "
f"for tool {tool_name} in session {session.session_id}"
f"Saved pending operation {operation_id} for tool {tool_name} "
f"in session {session.session_id}"
)
# Store task reference in module-level set to prevent GC before completion
bg_task = asyncio.create_task(
_execute_long_running_tool_with_streaming(
task = asyncio.create_task(
_execute_long_running_tool(
tool_name=tool_name,
parameters=arguments,
tool_call_id=tool_call_id,
operation_id=operation_id,
task_id=task_id,
session_id=session.session_id,
user_id=session.user_id,
)
)
_background_tasks.add(bg_task)
bg_task.add_done_callback(_background_tasks.discard)
# Associate the asyncio task with the stream registry task
await stream_registry.set_task_asyncio_task(task_id, bg_task)
_background_tasks.add(task)
task.add_done_callback(_background_tasks.discard)
except Exception as e:
# Roll back appended messages to prevent data corruption on subsequent saves
if (
@@ -1725,11 +1709,6 @@ async def _yield_tool_call(
# Release the Redis lock since the background task won't be spawned
await _mark_operation_completed(tool_call_id)
# Mark stream registry task as failed if it was created
try:
await stream_registry.mark_task_completed(task_id, status="failed")
except Exception:
pass
logger.error(
f"Failed to setup long-running tool {tool_name}: {e}", exc_info=True
)
@@ -1743,7 +1722,6 @@ async def _yield_tool_call(
message=started_msg,
operation_id=operation_id,
tool_name=tool_name,
task_id=task_id, # Include task_id for SSE reconnection
).model_dump_json(),
success=True,
)
@@ -1813,9 +1791,6 @@ async def _execute_long_running_tool(
This function runs independently of the SSE connection, so the operation
survives if the user closes their browser tab.
NOTE: This is the legacy function without stream registry support.
Use _execute_long_running_tool_with_streaming for new implementations.
"""
try:
# Load fresh session (not stale reference)
@@ -1863,128 +1838,6 @@ async def _execute_long_running_tool(
await _mark_operation_completed(tool_call_id)
async def _execute_long_running_tool_with_streaming(
tool_name: str,
parameters: dict[str, Any],
tool_call_id: str,
operation_id: str,
task_id: str,
session_id: str,
user_id: str | None,
) -> None:
"""Execute a long-running tool with stream registry support for SSE reconnection.
This function runs independently of the SSE connection, publishes progress
to the stream registry, and survives if the user closes their browser tab.
Clients can reconnect via GET /chat/tasks/{task_id}/stream to resume streaming.
If the external service returns a 202 Accepted (async), this function exits
early and lets the RabbitMQ completion consumer handle the rest.
"""
# Track whether we delegated to async processing - if so, the RabbitMQ
# completion consumer will handle cleanup, not us
delegated_to_async = False
try:
# Load fresh session (not stale reference)
session = await get_chat_session(session_id, user_id)
if not session:
logger.error(f"Session {session_id} not found for background tool")
await stream_registry.mark_task_completed(task_id, status="failed")
return
# Pass operation_id and task_id to the tool for async processing
enriched_parameters = {
**parameters,
"_operation_id": operation_id,
"_task_id": task_id,
}
# Execute the actual tool
result = await execute_tool(
tool_name=tool_name,
parameters=enriched_parameters,
tool_call_id=tool_call_id,
user_id=user_id,
session=session,
)
# Check if the tool result indicates async processing
# (e.g., Agent Generator returned 202 Accepted)
try:
result_data = orjson.loads(result.output) if result.output else {}
if result_data.get("status") == "accepted":
logger.info(
f"Tool {tool_name} delegated to async processing "
f"(operation_id={operation_id}, task_id={task_id}). "
f"RabbitMQ completion consumer will handle the rest."
)
# Don't publish result, don't continue with LLM, and don't cleanup
# The RabbitMQ consumer will handle everything when the external
# service completes and publishes to the queue
delegated_to_async = True
return
except (orjson.JSONDecodeError, TypeError):
pass # Not JSON or not async - continue normally
# Publish tool result to stream registry
await stream_registry.publish_chunk(task_id, result)
# Update the pending message with result
result_str = (
result.output
if isinstance(result.output, str)
else orjson.dumps(result.output).decode("utf-8")
)
await _update_pending_operation(
session_id=session_id,
tool_call_id=tool_call_id,
result=result_str,
)
logger.info(
f"Background tool {tool_name} completed for session {session_id} "
f"(task_id={task_id})"
)
# Generate LLM continuation and stream chunks to registry
await _generate_llm_continuation_with_streaming(
session_id=session_id,
user_id=user_id,
task_id=task_id,
)
# Mark task as completed in stream registry
await stream_registry.mark_task_completed(task_id, status="completed")
except Exception as e:
logger.error(f"Background tool {tool_name} failed: {e}", exc_info=True)
error_response = ErrorResponse(
message=f"Tool {tool_name} failed: {str(e)}",
)
# Publish error to stream registry followed by finish event
await stream_registry.publish_chunk(
task_id,
StreamError(errorText=str(e)),
)
await stream_registry.publish_chunk(task_id, StreamFinish())
await _update_pending_operation(
session_id=session_id,
tool_call_id=tool_call_id,
result=error_response.model_dump_json(),
)
# Mark task as failed in stream registry
await stream_registry.mark_task_completed(task_id, status="failed")
finally:
# Only cleanup if we didn't delegate to async processing
# For async path, the RabbitMQ completion consumer handles cleanup
if not delegated_to_async:
await _mark_operation_completed(tool_call_id)
async def _update_pending_operation(
session_id: str,
tool_call_id: str,
@@ -2111,128 +1964,3 @@ async def _generate_llm_continuation(
except Exception as e:
logger.error(f"Failed to generate LLM continuation: {e}", exc_info=True)
async def _generate_llm_continuation_with_streaming(
session_id: str,
user_id: str | None,
task_id: str,
) -> None:
"""Generate an LLM response with streaming to the stream registry.
This is called by background tasks to continue the conversation
after a tool result is saved. Chunks are published to the stream registry
so reconnecting clients can receive them.
"""
import uuid as uuid_module
try:
# Load fresh session from DB (bypass cache to get the updated tool result)
await invalidate_session_cache(session_id)
session = await get_chat_session(session_id, user_id)
if not session:
logger.error(f"Session {session_id} not found for LLM continuation")
return
# Build system prompt
system_prompt, _ = await _build_system_prompt(user_id)
# Build messages in OpenAI format
messages = session.to_openai_messages()
if system_prompt:
from openai.types.chat import ChatCompletionSystemMessageParam
system_message = ChatCompletionSystemMessageParam(
role="system",
content=system_prompt,
)
messages = [system_message] + messages
# Build extra_body for tracing
extra_body: dict[str, Any] = {
"posthogProperties": {
"environment": settings.config.app_env.value,
},
}
if user_id:
extra_body["user"] = user_id[:128]
extra_body["posthogDistinctId"] = user_id
if session_id:
extra_body["session_id"] = session_id[:128]
# Make streaming LLM call (no tools - just text response)
from typing import cast
from openai.types.chat import ChatCompletionMessageParam
# Generate unique IDs for AI SDK protocol
message_id = str(uuid_module.uuid4())
text_block_id = str(uuid_module.uuid4())
# Publish start event
await stream_registry.publish_chunk(task_id, StreamStart(messageId=message_id))
await stream_registry.publish_chunk(task_id, StreamTextStart(id=text_block_id))
# Stream the response
stream = await client.chat.completions.create(
model=config.model,
messages=cast(list[ChatCompletionMessageParam], messages),
extra_body=extra_body,
stream=True,
)
assistant_content = ""
async for chunk in stream:
if chunk.choices and chunk.choices[0].delta.content:
delta = chunk.choices[0].delta.content
assistant_content += delta
# Publish delta to stream registry
await stream_registry.publish_chunk(
task_id,
StreamTextDelta(id=text_block_id, delta=delta),
)
# Publish end events
await stream_registry.publish_chunk(task_id, StreamTextEnd(id=text_block_id))
if assistant_content:
# Reload session from DB to avoid race condition with user messages
fresh_session = await get_chat_session(session_id, user_id)
if not fresh_session:
logger.error(
f"Session {session_id} disappeared during LLM continuation"
)
return
# Save assistant message to database
assistant_message = ChatMessage(
role="assistant",
content=assistant_content,
)
fresh_session.messages.append(assistant_message)
# Save to database (not cache) to persist the response
await upsert_chat_session(fresh_session)
# Invalidate cache so next poll/refresh gets fresh data
await invalidate_session_cache(session_id)
logger.info(
f"Generated streaming LLM continuation for session {session_id} "
f"(task_id={task_id}), response length: {len(assistant_content)}"
)
else:
logger.warning(
f"Streaming LLM continuation returned empty response for {session_id}"
)
except Exception as e:
logger.error(
f"Failed to generate streaming LLM continuation: {e}", exc_info=True
)
# Publish error to stream registry followed by finish event
await stream_registry.publish_chunk(
task_id,
StreamError(errorText=f"Failed to generate response: {e}"),
)
await stream_registry.publish_chunk(task_id, StreamFinish())

View File

@@ -1,648 +0,0 @@
"""Stream registry for managing reconnectable SSE streams.
This module provides a registry for tracking active streaming tasks and their
messages. It supports:
- Creating tasks with unique IDs for long-running operations
- Publishing stream messages to both Redis Streams and in-memory queues
- Subscribing to tasks with replay of missed messages
- Looking up tasks by operation_id for webhook callbacks
- Cross-pod real-time delivery via Redis pub/sub
"""
import asyncio
import logging
from dataclasses import dataclass, field
from datetime import datetime, timezone
from typing import Any, Literal
import orjson
from backend.data.redis_client import get_redis_async
from .config import ChatConfig
from .response_model import StreamBaseResponse, StreamFinish
logger = logging.getLogger(__name__)
config = ChatConfig()
# Track active pub/sub listeners for cross-pod delivery
_pubsub_listeners: dict[str, asyncio.Task] = {}
@dataclass
class ActiveTask:
"""Represents an active streaming task."""
task_id: str
session_id: str
user_id: str | None
tool_call_id: str
tool_name: str
operation_id: str
status: Literal["running", "completed", "failed"] = "running"
created_at: datetime = field(default_factory=lambda: datetime.now(timezone.utc))
queue: asyncio.Queue[StreamBaseResponse] = field(default_factory=asyncio.Queue)
asyncio_task: asyncio.Task | None = None
# Lock for atomic status checks and subscriber management
lock: asyncio.Lock = field(default_factory=asyncio.Lock)
# Set of subscriber queues for fan-out
subscribers: set[asyncio.Queue[StreamBaseResponse]] = field(default_factory=set)
# Module-level registry for active tasks
_active_tasks: dict[str, ActiveTask] = {}
# Redis key patterns
TASK_META_PREFIX = "chat:task:meta:" # Hash for task metadata
TASK_STREAM_PREFIX = "chat:stream:" # Redis Stream for messages
TASK_OP_PREFIX = "chat:task:op:" # Operation ID -> task_id mapping
TASK_PUBSUB_PREFIX = "chat:task:pubsub:" # Pub/sub channel for cross-pod delivery
def _get_task_meta_key(task_id: str) -> str:
"""Get Redis key for task metadata."""
return f"{TASK_META_PREFIX}{task_id}"
def _get_task_stream_key(task_id: str) -> str:
"""Get Redis key for task message stream."""
return f"{TASK_STREAM_PREFIX}{task_id}"
def _get_operation_mapping_key(operation_id: str) -> str:
"""Get Redis key for operation_id to task_id mapping."""
return f"{TASK_OP_PREFIX}{operation_id}"
def _get_task_pubsub_channel(task_id: str) -> str:
"""Get Redis pub/sub channel for task cross-pod delivery."""
return f"{TASK_PUBSUB_PREFIX}{task_id}"
async def create_task(
task_id: str,
session_id: str,
user_id: str | None,
tool_call_id: str,
tool_name: str,
operation_id: str,
) -> ActiveTask:
"""Create a new streaming task in memory and Redis.
Args:
task_id: Unique identifier for the task
session_id: Chat session ID
user_id: User ID (may be None for anonymous)
tool_call_id: Tool call ID from the LLM
tool_name: Name of the tool being executed
operation_id: Operation ID for webhook callbacks
Returns:
The created ActiveTask instance
"""
task = ActiveTask(
task_id=task_id,
session_id=session_id,
user_id=user_id,
tool_call_id=tool_call_id,
tool_name=tool_name,
operation_id=operation_id,
)
# Store in memory registry
_active_tasks[task_id] = task
# Store metadata in Redis for durability
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
op_key = _get_operation_mapping_key(operation_id)
await redis.hset( # type: ignore[misc]
meta_key,
mapping={
"task_id": task_id,
"session_id": session_id,
"user_id": user_id or "",
"tool_call_id": tool_call_id,
"tool_name": tool_name,
"operation_id": operation_id,
"status": task.status,
"created_at": task.created_at.isoformat(),
},
)
await redis.expire(meta_key, config.stream_ttl)
# Create operation_id -> task_id mapping for webhook lookups
await redis.set(op_key, task_id, ex=config.stream_ttl)
logger.info(
f"Created streaming task {task_id} for operation {operation_id} "
f"in session {session_id}"
)
return task
async def publish_chunk(
task_id: str,
chunk: StreamBaseResponse,
) -> str:
"""Publish a chunk to the task's stream.
Delivers to in-memory subscribers first (for real-time), then persists to
Redis Stream (for replay). This order ensures live subscribers get messages
even if Redis temporarily fails.
Args:
task_id: Task ID to publish to
chunk: The stream response chunk to publish
Returns:
The Redis Stream message ID (format: "timestamp-sequence"), or "0-0" if
Redis persistence failed
"""
# Deliver to in-memory subscribers FIRST for real-time updates
task = _active_tasks.get(task_id)
if task:
async with task.lock:
for subscriber_queue in task.subscribers:
try:
subscriber_queue.put_nowait(chunk)
except asyncio.QueueFull:
logger.warning(
f"Subscriber queue full for task {task_id}, dropping chunk"
)
# Then persist to Redis Stream for replay (with error handling)
message_id = "0-0"
chunk_json = chunk.model_dump_json()
try:
redis = await get_redis_async()
stream_key = _get_task_stream_key(task_id)
# Add to Redis Stream with auto-generated ID
# The ID format is "timestamp-sequence" which gives us ordering
raw_id = await redis.xadd(
stream_key,
{"data": chunk_json},
maxlen=config.stream_max_length,
)
message_id = raw_id if isinstance(raw_id, str) else raw_id.decode()
# Publish to pub/sub for cross-pod real-time delivery
pubsub_channel = _get_task_pubsub_channel(task_id)
await redis.publish(pubsub_channel, chunk_json)
logger.debug(f"Published chunk to task {task_id}, message_id={message_id}")
except Exception as e:
logger.error(
f"Failed to persist chunk to Redis for task {task_id}: {e}",
exc_info=True,
)
return message_id
async def subscribe_to_task(
task_id: str,
user_id: str | None,
last_message_id: str = "0-0",
) -> asyncio.Queue[StreamBaseResponse] | None:
"""Subscribe to a task's stream with replay of missed messages.
Args:
task_id: Task ID to subscribe to
user_id: User ID for ownership validation
last_message_id: Last Redis Stream message ID received ("0-0" for full replay)
Returns:
An asyncio Queue that will receive stream chunks, or None if task not found
or user doesn't have access
"""
# Check in-memory first
task = _active_tasks.get(task_id)
if task:
# Validate ownership
if user_id and task.user_id and task.user_id != user_id:
logger.warning(
f"User {user_id} attempted to subscribe to task {task_id} "
f"owned by {task.user_id}"
)
return None
# Create a new queue for this subscriber
subscriber_queue: asyncio.Queue[StreamBaseResponse] = asyncio.Queue()
# Replay from Redis Stream
redis = await get_redis_async()
stream_key = _get_task_stream_key(task_id)
# Track the last message ID we've seen for gap detection
replay_last_id = last_message_id
# Read all messages from stream starting after last_message_id
# xread returns messages with ID > last_message_id
messages = await redis.xread({stream_key: last_message_id}, block=0, count=1000)
if messages:
# messages format: [[stream_name, [(id, {data: json}), ...]]]
for _stream_name, stream_messages in messages:
for msg_id, msg_data in stream_messages:
# Track the last message ID we've processed
replay_last_id = (
msg_id if isinstance(msg_id, str) else msg_id.decode()
)
if b"data" in msg_data:
try:
chunk_data = orjson.loads(msg_data[b"data"])
# Reconstruct the appropriate response type
chunk = _reconstruct_chunk(chunk_data)
if chunk:
await subscriber_queue.put(chunk)
except Exception as e:
logger.warning(f"Failed to replay message: {e}")
# Atomically check status and register subscriber under lock
# This prevents race condition where task completes between check and subscribe
should_start_pubsub = False
async with task.lock:
if task.status == "running":
# Register this subscriber for live updates
task.subscribers.add(subscriber_queue)
# Start pub/sub listener if this is the first subscriber
should_start_pubsub = len(task.subscribers) == 1
logger.debug(
f"Registered subscriber for task {task_id}, "
f"total subscribers: {len(task.subscribers)}"
)
else:
# Task is done, add finish marker
await subscriber_queue.put(StreamFinish())
# After registering, do a second read to catch any messages published
# between the first read and registration (closes the race window)
if task.status == "running":
gap_messages = await redis.xread(
{stream_key: replay_last_id}, block=0, count=1000
)
if gap_messages:
for _stream_name, stream_messages in gap_messages:
for _msg_id, msg_data in stream_messages:
if b"data" in msg_data:
try:
chunk_data = orjson.loads(msg_data[b"data"])
chunk = _reconstruct_chunk(chunk_data)
if chunk:
await subscriber_queue.put(chunk)
except Exception as e:
logger.warning(f"Failed to replay gap message: {e}")
# Start pub/sub listener outside the lock to avoid deadlocks
if should_start_pubsub:
await start_pubsub_listener(task_id)
return subscriber_queue
# Try to load from Redis if not in memory
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
if not meta:
logger.warning(f"Task {task_id} not found in memory or Redis")
return None
# Validate ownership
task_user_id = meta.get(b"user_id", b"").decode() or None
if user_id and task_user_id and task_user_id != user_id:
logger.warning(
f"User {user_id} attempted to subscribe to task {task_id} "
f"owned by {task_user_id}"
)
return None
# Replay from Redis Stream only (task is not in memory, so it's completed/crashed)
subscriber_queue = asyncio.Queue()
stream_key = _get_task_stream_key(task_id)
# Read all messages starting after last_message_id
messages = await redis.xread({stream_key: last_message_id}, block=0, count=1000)
if messages:
for _stream_name, stream_messages in messages:
for _msg_id, msg_data in stream_messages:
if b"data" in msg_data:
try:
chunk_data = orjson.loads(msg_data[b"data"])
chunk = _reconstruct_chunk(chunk_data)
if chunk:
await subscriber_queue.put(chunk)
except Exception as e:
logger.warning(f"Failed to replay message: {e}")
# Add finish marker since task is not active
await subscriber_queue.put(StreamFinish())
return subscriber_queue
async def mark_task_completed(
task_id: str,
status: Literal["completed", "failed"] = "completed",
) -> None:
"""Mark a task as completed and publish final event.
Args:
task_id: Task ID to mark as completed
status: Final status ("completed" or "failed")
"""
task = _active_tasks.get(task_id)
if task:
# Acquire lock to prevent new subscribers during completion
async with task.lock:
task.status = status
# Send finish event directly to all current subscribers
finish_event = StreamFinish()
for subscriber_queue in task.subscribers:
try:
subscriber_queue.put_nowait(finish_event)
except asyncio.QueueFull:
logger.warning(
f"Subscriber queue full for task {task_id} during completion"
)
# Clear subscribers since task is done
task.subscribers.clear()
# Stop pub/sub listener since task is done
await stop_pubsub_listener(task_id)
# Also publish to Redis Stream for replay (and pub/sub for cross-pod)
await publish_chunk(task_id, StreamFinish())
# Remove from active tasks after a short delay to allow subscribers to finish
async def _cleanup():
await asyncio.sleep(5)
_active_tasks.pop(task_id, None)
logger.info(f"Cleaned up task {task_id} from memory")
asyncio.create_task(_cleanup())
# Update Redis metadata
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
await redis.hset(meta_key, "status", status) # type: ignore[misc]
logger.info(f"Marked task {task_id} as {status}")
async def find_task_by_operation_id(operation_id: str) -> ActiveTask | None:
"""Find a task by its operation ID.
Used by webhook callbacks to locate the task to update.
Args:
operation_id: Operation ID to search for
Returns:
ActiveTask if found, None otherwise
"""
# Check in-memory first
for task in _active_tasks.values():
if task.operation_id == operation_id:
return task
# Try Redis lookup
redis = await get_redis_async()
op_key = _get_operation_mapping_key(operation_id)
task_id = await redis.get(op_key)
if task_id:
task_id_str = task_id.decode() if isinstance(task_id, bytes) else task_id
# Check if task is in memory
if task_id_str in _active_tasks:
return _active_tasks[task_id_str]
# Load metadata from Redis
meta_key = _get_task_meta_key(task_id_str)
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
if meta:
# Reconstruct task object (not fully active, but has metadata)
return ActiveTask(
task_id=meta.get(b"task_id", b"").decode(),
session_id=meta.get(b"session_id", b"").decode(),
user_id=meta.get(b"user_id", b"").decode() or None,
tool_call_id=meta.get(b"tool_call_id", b"").decode(),
tool_name=meta.get(b"tool_name", b"").decode(),
operation_id=operation_id,
status=meta.get(b"status", b"running").decode(), # type: ignore
)
return None
async def get_task(task_id: str) -> ActiveTask | None:
"""Get a task by its ID.
Args:
task_id: Task ID to look up
Returns:
ActiveTask if found, None otherwise
"""
# Check in-memory first
if task_id in _active_tasks:
return _active_tasks[task_id]
# Try Redis lookup
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
if meta:
return ActiveTask(
task_id=meta.get(b"task_id", b"").decode(),
session_id=meta.get(b"session_id", b"").decode(),
user_id=meta.get(b"user_id", b"").decode() or None,
tool_call_id=meta.get(b"tool_call_id", b"").decode(),
tool_name=meta.get(b"tool_name", b"").decode(),
operation_id=meta.get(b"operation_id", b"").decode(),
status=meta.get(b"status", b"running").decode(), # type: ignore[arg-type]
)
return None
def _reconstruct_chunk(chunk_data: dict) -> StreamBaseResponse | None:
"""Reconstruct a StreamBaseResponse from JSON data.
Args:
chunk_data: Parsed JSON data from Redis
Returns:
Reconstructed response object, or None if unknown type
"""
from .response_model import (
ResponseType,
StreamError,
StreamFinish,
StreamHeartbeat,
StreamStart,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
StreamToolInputAvailable,
StreamToolInputStart,
StreamToolOutputAvailable,
StreamUsage,
)
chunk_type = chunk_data.get("type")
try:
if chunk_type == ResponseType.START.value:
return StreamStart(**chunk_data)
elif chunk_type == ResponseType.FINISH.value:
return StreamFinish(**chunk_data)
elif chunk_type == ResponseType.TEXT_START.value:
return StreamTextStart(**chunk_data)
elif chunk_type == ResponseType.TEXT_DELTA.value:
return StreamTextDelta(**chunk_data)
elif chunk_type == ResponseType.TEXT_END.value:
return StreamTextEnd(**chunk_data)
elif chunk_type == ResponseType.TOOL_INPUT_START.value:
return StreamToolInputStart(**chunk_data)
elif chunk_type == ResponseType.TOOL_INPUT_AVAILABLE.value:
return StreamToolInputAvailable(**chunk_data)
elif chunk_type == ResponseType.TOOL_OUTPUT_AVAILABLE.value:
return StreamToolOutputAvailable(**chunk_data)
elif chunk_type == ResponseType.ERROR.value:
return StreamError(**chunk_data)
elif chunk_type == ResponseType.USAGE.value:
return StreamUsage(**chunk_data)
elif chunk_type == ResponseType.HEARTBEAT.value:
return StreamHeartbeat(**chunk_data)
else:
logger.warning(f"Unknown chunk type: {chunk_type}")
return None
except Exception as e:
logger.warning(f"Failed to reconstruct chunk of type {chunk_type}: {e}")
return None
async def set_task_asyncio_task(task_id: str, asyncio_task: asyncio.Task) -> None:
"""Associate an asyncio.Task with an ActiveTask.
Args:
task_id: Task ID
asyncio_task: The asyncio Task to associate
"""
task = _active_tasks.get(task_id)
if task:
task.asyncio_task = asyncio_task
async def unsubscribe_from_task(
task_id: str,
subscriber_queue: asyncio.Queue[StreamBaseResponse],
) -> None:
"""Unsubscribe a queue from a task's stream.
Should be called when a client disconnects to clean up resources.
Also stops the pub/sub listener if there are no more local subscribers.
Args:
task_id: Task ID to unsubscribe from
subscriber_queue: The queue to remove from subscribers
"""
task = _active_tasks.get(task_id)
if task:
async with task.lock:
task.subscribers.discard(subscriber_queue)
remaining = len(task.subscribers)
logger.debug(
f"Unsubscribed from task {task_id}, "
f"remaining subscribers: {remaining}"
)
# Stop pub/sub listener if no more local subscribers
if remaining == 0:
await stop_pubsub_listener(task_id)
async def start_pubsub_listener(task_id: str) -> None:
"""Start listening to Redis pub/sub for cross-pod delivery.
This enables real-time updates when another pod publishes chunks for a task
that has local subscribers on this pod.
Args:
task_id: Task ID to listen for
"""
if task_id in _pubsub_listeners:
return # Already listening
task = _active_tasks.get(task_id)
if not task:
return
async def _listener():
try:
redis = await get_redis_async()
pubsub = redis.pubsub()
channel = _get_task_pubsub_channel(task_id)
await pubsub.subscribe(channel)
logger.debug(f"Started pub/sub listener for task {task_id}")
async for message in pubsub.listen():
if message["type"] != "message":
continue
try:
chunk_data = orjson.loads(message["data"])
chunk = _reconstruct_chunk(chunk_data)
if chunk:
# Deliver to local subscribers
local_task = _active_tasks.get(task_id)
if local_task:
async with local_task.lock:
for queue in local_task.subscribers:
try:
queue.put_nowait(chunk)
except asyncio.QueueFull:
pass
# Stop listening if this was a finish event
if isinstance(chunk, StreamFinish):
break
except Exception as e:
logger.warning(f"Error processing pub/sub message: {e}")
await pubsub.unsubscribe(channel)
await pubsub.close()
except asyncio.CancelledError:
pass
except Exception as e:
logger.error(f"Pub/sub listener error for task {task_id}: {e}")
finally:
_pubsub_listeners.pop(task_id, None)
logger.debug(f"Stopped pub/sub listener for task {task_id}")
listener_task = asyncio.create_task(_listener())
_pubsub_listeners[task_id] = listener_task
async def stop_pubsub_listener(task_id: str) -> None:
"""Stop the pub/sub listener for a task.
Args:
task_id: Task ID to stop listening for
"""
listener = _pubsub_listeners.pop(task_id, None)
if listener and not listener.done():
listener.cancel()
try:
await listener
except asyncio.CancelledError:
pass
logger.debug(f"Cancelled pub/sub listener for task {task_id}")

View File

@@ -9,6 +9,7 @@ from .core import (
json_to_graph,
save_agent_to_library,
)
from .errors import get_user_message_for_error
from .service import health_check as check_external_service_health
from .service import is_external_service_configured
@@ -25,4 +26,6 @@ __all__ = [
# Service
"is_external_service_configured",
"check_external_service_health",
# Error handling
"get_user_message_for_error",
]

View File

@@ -57,34 +57,26 @@ async def decompose_goal(description: str, context: str = "") -> dict[str, Any]
return await decompose_goal_external(description, context)
async def generate_agent(
instructions: dict[str, Any],
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any] | None:
async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
"""Generate agent JSON from instructions.
Args:
instructions: Structured instructions from decompose_goal
operation_id: Operation ID for async processing (enables RabbitMQ callback)
task_id: Task ID for async processing (enables RabbitMQ callback)
Returns:
Agent JSON dict, {"status": "accepted"} for async, or None on error
Agent JSON dict, error dict {"type": "error", ...}, or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent")
result = await generate_agent_external(instructions, operation_id, task_id)
# Don't modify async response
if result and result.get("status") == "accepted":
return result
result = await generate_agent_external(instructions)
if result:
# Ensure required fields
# Check if it's an error response - pass through as-is
if isinstance(result, dict) and result.get("type") == "error":
return result
# Ensure required fields for successful agent generation
if "id" not in result:
result["id"] = str(uuid.uuid4())
if "version" not in result:
@@ -264,10 +256,7 @@ async def get_agent_as_json(
async def generate_agent_patch(
update_request: str,
current_agent: dict[str, Any],
operation_id: str | None = None,
task_id: str | None = None,
update_request: str, current_agent: dict[str, Any]
) -> dict[str, Any] | None:
"""Update an existing agent using natural language.
@@ -279,17 +268,14 @@ async def generate_agent_patch(
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
operation_id: Operation ID for async processing (enables RabbitMQ callback)
task_id: Task ID for async processing (enables RabbitMQ callback)
Returns:
Updated agent JSON, clarifying questions dict, {"status": "accepted"} for async, or None on error
Updated agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
error dict {"type": "error", ...}, or None on unexpected error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent_patch")
return await generate_agent_patch_external(
update_request, current_agent, operation_id, task_id
)
return await generate_agent_patch_external(update_request, current_agent)

View File

@@ -0,0 +1,43 @@
"""Error handling utilities for agent generator."""
def get_user_message_for_error(
error_type: str,
operation: str = "process the request",
llm_parse_message: str | None = None,
validation_message: str | None = None,
) -> str:
"""Get a user-friendly error message based on error type.
This function maps internal error types to user-friendly messages,
providing a consistent experience across different agent operations.
Args:
error_type: The error type from the external service
(e.g., "llm_parse_error", "timeout", "rate_limit")
operation: Description of what operation failed, used in the default
message (e.g., "analyze the goal", "generate the agent")
llm_parse_message: Custom message for llm_parse_error type
validation_message: Custom message for validation_error type
Returns:
User-friendly error message suitable for display to the user
"""
if error_type == "llm_parse_error":
return (
llm_parse_message
or "The AI had trouble processing this request. Please try again."
)
elif error_type == "validation_error":
return (
validation_message
or "The request failed validation. Please try rephrasing."
)
elif error_type == "patch_error":
return "Failed to apply the changes. Please try a different approach."
elif error_type in ("timeout", "llm_timeout"):
return "The request took too long. Please try again."
elif error_type in ("rate_limit", "llm_rate_limit"):
return "The service is currently busy. Please try again in a moment."
else:
return f"Failed to {operation}. Please try again."

View File

@@ -14,6 +14,70 @@ from backend.util.settings import Settings
logger = logging.getLogger(__name__)
def _create_error_response(
error_message: str,
error_type: str = "unknown",
details: dict[str, Any] | None = None,
) -> dict[str, Any]:
"""Create a standardized error response dict.
Args:
error_message: Human-readable error message
error_type: Machine-readable error type
details: Optional additional error details
Returns:
Error dict with type="error" and error details
"""
response: dict[str, Any] = {
"type": "error",
"error": error_message,
"error_type": error_type,
}
if details:
response["details"] = details
return response
def _classify_http_error(e: httpx.HTTPStatusError) -> tuple[str, str]:
"""Classify an HTTP error into error_type and message.
Args:
e: The HTTP status error
Returns:
Tuple of (error_type, error_message)
"""
status = e.response.status_code
if status == 429:
return "rate_limit", f"Agent Generator rate limited: {e}"
elif status == 503:
return "service_unavailable", f"Agent Generator unavailable: {e}"
elif status == 504 or status == 408:
return "timeout", f"Agent Generator timed out: {e}"
else:
return "http_error", f"HTTP error calling Agent Generator: {e}"
def _classify_request_error(e: httpx.RequestError) -> tuple[str, str]:
"""Classify a request error into error_type and message.
Args:
e: The request error
Returns:
Tuple of (error_type, error_message)
"""
error_str = str(e).lower()
if "timeout" in error_str or "timed out" in error_str:
return "timeout", f"Agent Generator request timed out: {e}"
elif "connect" in error_str:
return "connection_error", f"Could not connect to Agent Generator: {e}"
else:
return "request_error", f"Request error calling Agent Generator: {e}"
_client: httpx.AsyncClient | None = None
_settings: Settings | None = None
@@ -67,7 +131,8 @@ async def decompose_goal_external(
- {"type": "instructions", "steps": [...]}
- {"type": "unachievable_goal", ...}
- {"type": "vague_goal", ...}
Or None on error
- {"type": "error", "error": "...", "error_type": "..."} on error
Or None on unexpected error
"""
client = _get_client()
@@ -83,8 +148,13 @@ async def decompose_goal_external(
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator decomposition failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
# Map the response to the expected format
response_type = data.get("type")
@@ -106,122 +176,113 @@ async def decompose_goal_external(
"type": "vague_goal",
"suggested_goal": data.get("suggested_goal"),
}
elif response_type == "error":
# Pass through error from the service
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
else:
logger.error(
f"Unknown response type from external service: {response_type}"
)
return None
return _create_error_response(
f"Unknown response type from Agent Generator: {response_type}",
"invalid_response",
)
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def generate_agent_external(
instructions: dict[str, Any],
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any] | None:
"""Call the external service to generate an agent from instructions.
Args:
instructions: Structured instructions from decompose_goal
operation_id: Operation ID for async processing (enables RabbitMQ callback)
task_id: Task ID for async processing (enables RabbitMQ callback)
Returns:
Agent JSON dict, or {"status": "accepted"} for async, or None on error
Agent JSON dict on success, or error dict {"type": "error", ...} on error
"""
client = _get_client()
# Build request payload
payload: dict[str, Any] = {"instructions": instructions}
if operation_id and task_id:
payload["operation_id"] = operation_id
payload["task_id"] = task_id
try:
response = await client.post("/api/generate-agent", json=payload)
# Handle 202 Accepted for async processing
if response.status_code == 202:
logger.info(
f"Agent Generator accepted async request "
f"(operation_id={operation_id}, task_id={task_id})"
)
return {"status": "accepted", "operation_id": operation_id, "task_id": task_id}
response = await client.post(
"/api/generate-agent", json={"instructions": instructions}
)
response.raise_for_status()
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator generation failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
return data.get("agent_json")
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def generate_agent_patch_external(
update_request: str,
current_agent: dict[str, Any],
operation_id: str | None = None,
task_id: str | None = None,
update_request: str, current_agent: dict[str, Any]
) -> dict[str, Any] | None:
"""Call the external service to generate a patch for an existing agent.
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
operation_id: Operation ID for async processing (enables RabbitMQ callback)
task_id: Task ID for async processing (enables RabbitMQ callback)
Returns:
Updated agent JSON, clarifying questions dict, {"status": "accepted"} for async, or None on error
Updated agent JSON, clarifying questions dict, or error dict on error
"""
client = _get_client()
# Build request payload
payload: dict[str, Any] = {
"update_request": update_request,
"current_agent_json": current_agent,
}
if operation_id and task_id:
payload["operation_id"] = operation_id
payload["task_id"] = task_id
try:
response = await client.post("/api/update-agent", json=payload)
# Handle 202 Accepted for async processing
if response.status_code == 202:
logger.info(
f"Agent Generator accepted async update request "
f"(operation_id={operation_id}, task_id={task_id})"
)
return {"status": "accepted", "operation_id": operation_id, "task_id": task_id}
response = await client.post(
"/api/update-agent",
json={
"update_request": update_request,
"current_agent_json": current_agent,
},
)
response.raise_for_status()
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator patch generation failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
# Check if it's clarifying questions
if data.get("type") == "clarifying_questions":
@@ -230,18 +291,28 @@ async def generate_agent_patch_external(
"questions": data.get("questions", []),
}
# Check if it's an error passed through
if data.get("type") == "error":
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
# Otherwise return the updated agent JSON
return data.get("agent_json")
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def get_blocks_external() -> list[dict[str, Any]] | None:

View File

@@ -9,13 +9,13 @@ from .agent_generator import (
AgentGeneratorNotConfiguredError,
decompose_goal,
generate_agent,
get_user_message_for_error,
save_agent_to_library,
)
from .base import BaseTool
from .models import (
AgentPreviewResponse,
AgentSavedResponse,
AsyncProcessingResponse,
ClarificationNeededResponse,
ClarifyingQuestion,
ErrorResponse,
@@ -96,10 +96,6 @@ class CreateAgentTool(BaseTool):
save = kwargs.get("save", True)
session_id = session.session_id if session else None
# Extract async processing params (passed by long-running tool handler)
operation_id = kwargs.get("_operation_id")
task_id = kwargs.get("_task_id")
if not description:
return ErrorResponse(
message="Please provide a description of what the agent should do.",
@@ -122,11 +118,29 @@ class CreateAgentTool(BaseTool):
if decomposition_result is None:
return ErrorResponse(
message="Failed to analyze the goal. The agent generation service may be unavailable or timed out. Please try again.",
message="Failed to analyze the goal. The agent generation service may be unavailable. Please try again.",
error="decomposition_failed",
details={"description": description[:100]},
session_id=session_id,
)
# Check if the result is an error from the external service
if decomposition_result.get("type") == "error":
error_msg = decomposition_result.get("error", "Unknown error")
error_type = decomposition_result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="analyze the goal",
llm_parse_message="The AI had trouble understanding this request. Please try rephrasing your goal.",
)
return ErrorResponse(
message=user_message,
error=f"decomposition_failed:{error_type}",
details={
"description": description[:100]
}, # Include context for debugging
"description": description[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)
@@ -178,11 +192,7 @@ class CreateAgentTool(BaseTool):
# Step 2: Generate agent JSON (external service handles fixing and validation)
try:
agent_json = await generate_agent(
decomposition_result,
operation_id=operation_id,
task_id=task_id,
)
agent_json = await generate_agent(decomposition_result)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -195,24 +205,30 @@ class CreateAgentTool(BaseTool):
if agent_json is None:
return ErrorResponse(
message="Failed to generate the agent. The agent generation service may be unavailable or timed out. Please try again.",
message="Failed to generate the agent. The agent generation service may be unavailable. Please try again.",
error="generation_failed",
details={
"description": description[:100]
}, # Include context for debugging
details={"description": description[:100]},
session_id=session_id,
)
# Check if Agent Generator accepted for async processing
if agent_json.get("status") == "accepted":
logger.info(
f"Agent generation delegated to async processing "
f"(operation_id={operation_id}, task_id={task_id})"
# Check if the result is an error from the external service
if isinstance(agent_json, dict) and agent_json.get("type") == "error":
error_msg = agent_json.get("error", "Unknown error")
error_type = agent_json.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="generate the agent",
llm_parse_message="The AI had trouble generating the agent. Please try again or simplify your goal.",
validation_message="The generated agent failed validation. Please try rephrasing your goal.",
)
return AsyncProcessingResponse(
message="Agent generation started. You'll be notified when it's complete.",
operation_id=operation_id,
task_id=task_id,
return ErrorResponse(
message=user_message,
error=f"generation_failed:{error_type}",
details={
"description": description[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)

View File

@@ -9,13 +9,13 @@ from .agent_generator import (
AgentGeneratorNotConfiguredError,
generate_agent_patch,
get_agent_as_json,
get_user_message_for_error,
save_agent_to_library,
)
from .base import BaseTool
from .models import (
AgentPreviewResponse,
AgentSavedResponse,
AsyncProcessingResponse,
ClarificationNeededResponse,
ClarifyingQuestion,
ErrorResponse,
@@ -103,10 +103,6 @@ class EditAgentTool(BaseTool):
save = kwargs.get("save", True)
session_id = session.session_id if session else None
# Extract async processing params (passed by long-running tool handler)
operation_id = kwargs.get("_operation_id")
task_id = kwargs.get("_task_id")
if not agent_id:
return ErrorResponse(
message="Please provide the agent ID to edit.",
@@ -138,12 +134,7 @@ class EditAgentTool(BaseTool):
# Step 2: Generate updated agent (external service handles fixing and validation)
try:
result = await generate_agent_patch(
update_request,
current_agent,
operation_id=operation_id,
task_id=task_id,
)
result = await generate_agent_patch(update_request, current_agent)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -162,16 +153,25 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Check if Agent Generator accepted for async processing
if result.get("status") == "accepted":
logger.info(
f"Agent edit delegated to async processing "
f"(operation_id={operation_id}, task_id={task_id})"
# Check if the result is an error from the external service
if isinstance(result, dict) and result.get("type") == "error":
error_msg = result.get("error", "Unknown error")
error_type = result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="generate the changes",
llm_parse_message="The AI had trouble generating the changes. Please try again or simplify your request.",
validation_message="The generated changes failed validation. Please try rephrasing your request.",
)
return AsyncProcessingResponse(
message="Agent edit started. You'll be notified when it's complete.",
operation_id=operation_id,
task_id=task_id,
return ErrorResponse(
message=user_message,
error=f"update_generation_failed:{error_type}",
details={
"agent_id": agent_id,
"changes": changes[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)

View File

@@ -352,15 +352,11 @@ class OperationStartedResponse(ToolResponseBase):
This is returned immediately to the client while the operation continues
to execute. The user can close the tab and check back later.
The task_id can be used to reconnect to the SSE stream via
GET /chat/tasks/{task_id}/stream?last_idx=0
"""
type: ResponseType = ResponseType.OPERATION_STARTED
operation_id: str
tool_name: str
task_id: str | None = None # For SSE reconnection
class OperationPendingResponse(ToolResponseBase):
@@ -384,20 +380,3 @@ class OperationInProgressResponse(ToolResponseBase):
type: ResponseType = ResponseType.OPERATION_IN_PROGRESS
tool_call_id: str
class AsyncProcessingResponse(ToolResponseBase):
"""Response when an operation has been delegated to async processing.
This is returned by tools when the external service accepts the request
for async processing (HTTP 202 Accepted). The RabbitMQ completion consumer
will handle the result when the external service completes.
The status field is specifically "accepted" to allow the long-running tool
handler to detect this response and skip LLM continuation.
"""
type: ResponseType = ResponseType.OPERATION_STARTED
status: str = "accepted" # Must be "accepted" for detection
operation_id: str | None = None
task_id: str | None = None

View File

@@ -22,10 +22,6 @@ import backend.api.features.admin.store_admin_routes
import backend.api.features.builder
import backend.api.features.builder.routes
import backend.api.features.chat.routes as chat_routes
from backend.api.features.chat.completion_consumer import (
start_completion_consumer,
stop_completion_consumer,
)
import backend.api.features.executions.review.routes
import backend.api.features.library.db
import backend.api.features.library.model
@@ -122,21 +118,9 @@ async def lifespan_context(app: fastapi.FastAPI):
await backend.data.graph.migrate_llm_models(DEFAULT_LLM_MODEL)
await backend.integrations.webhooks.utils.migrate_legacy_triggered_graphs()
# Start chat completion consumer for RabbitMQ notifications
try:
await start_completion_consumer()
except Exception as e:
logger.warning(f"Could not start chat completion consumer: {e}")
with launch_darkly_context():
yield
# Stop chat completion consumer
try:
await stop_completion_consumer()
except Exception as e:
logger.warning(f"Error stopping chat completion consumer: {e}")
try:
await shutdown_cloud_storage_handler()
except Exception as e:

View File

@@ -151,15 +151,20 @@ class TestDecomposeGoalExternal:
@pytest.mark.asyncio
async def test_decompose_goal_handles_http_error(self):
"""Test decomposition handles HTTP errors gracefully."""
mock_response = MagicMock()
mock_response.status_code = 500
mock_client = AsyncMock()
mock_client.post.side_effect = httpx.HTTPStatusError(
"Server error", request=MagicMock(), response=MagicMock()
"Server error", request=MagicMock(), response=mock_response
)
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot")
assert result is None
assert result is not None
assert result.get("type") == "error"
assert result.get("error_type") == "http_error"
assert "Server error" in result.get("error", "")
@pytest.mark.asyncio
async def test_decompose_goal_handles_request_error(self):
@@ -170,7 +175,10 @@ class TestDecomposeGoalExternal:
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot")
assert result is None
assert result is not None
assert result.get("type") == "error"
assert result.get("error_type") == "connection_error"
assert "Connection failed" in result.get("error", "")
@pytest.mark.asyncio
async def test_decompose_goal_handles_service_error(self):
@@ -179,6 +187,7 @@ class TestDecomposeGoalExternal:
mock_response.json.return_value = {
"success": False,
"error": "Internal error",
"error_type": "internal_error",
}
mock_response.raise_for_status = MagicMock()
@@ -188,7 +197,10 @@ class TestDecomposeGoalExternal:
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot")
assert result is None
assert result is not None
assert result.get("type") == "error"
assert result.get("error") == "Internal error"
assert result.get("error_type") == "internal_error"
class TestGenerateAgentExternal:
@@ -236,7 +248,10 @@ class TestGenerateAgentExternal:
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.generate_agent_external({"steps": []})
assert result is None
assert result is not None
assert result.get("type") == "error"
assert result.get("error_type") == "connection_error"
assert "Connection failed" in result.get("error", "")
class TestGenerateAgentPatchExternal:

View File

@@ -0,0 +1,76 @@
# CLAUDE.md - Frontend
This file provides guidance to Claude Code when working with the frontend.
## Essential Commands
```bash
# Install dependencies
pnpm i
# Generate API client from OpenAPI spec
pnpm generate:api
# Start development server
pnpm dev
# Run E2E tests
pnpm test
# Run Storybook for component development
pnpm storybook
# Build production
pnpm build
# Format and lint
pnpm format
# Type checking
pnpm types
```
### Code Style
- Fully capitalize acronyms in symbols, e.g. `graphID`, `useBackendAPI`
- Use function declarations (not arrow functions) for components/handlers
## Architecture
- **Framework**: Next.js 15 App Router (client-first approach)
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
- **State Management**: React Query for server state, co-located UI state in components/hooks
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
- **Workflow Builder**: Visual graph editor using @xyflow/react
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
- **Icons**: Phosphor Icons only
- **Feature Flags**: LaunchDarkly integration
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
- **Testing**: Playwright for E2E, Storybook for component development
## Environment Configuration
`.env.default` (defaults) → `.env` (user overrides)
## Feature Development
See @CONTRIBUTING.md for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Extract component logic into custom hooks grouped by concern, not by component. Each hook should represent a cohesive domain of functionality (e.g., useSearch, useFilters, usePagination) rather than bundling all state into one useComponentState hook.
- Put each hook in its own `.ts` file
- Put sub-components in local `components/` folder
- Component props should be `type Props = { ... }` (not exported) unless it needs to be used outside the component
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**:
- Use function declarations (not arrow functions) for components/handlers
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
- Do not type hook returns, let Typescript infer as much as possible
- Never type with `any` unless a variable/attribute can ACTUALLY be of any type

View File

@@ -516,7 +516,7 @@ export type GraphValidationErrorResponse = {
/* *** LIBRARY *** */
/* Mirror of backend/server/v2/library/model.py:LibraryAgent */
/* Mirror of backend/api/features/library/model.py:LibraryAgent */
export type LibraryAgent = {
id: LibraryAgentID;
graph_id: GraphID;
@@ -616,7 +616,7 @@ export enum LibraryAgentSortEnum {
/* *** CREDENTIALS *** */
/* Mirror of backend/server/integrations/router.py:CredentialsMetaResponse */
/* Mirror of backend/api/features/integrations/router.py:CredentialsMetaResponse */
export type CredentialsMetaResponse = {
id: string;
provider: CredentialsProviderName;
@@ -628,13 +628,13 @@ export type CredentialsMetaResponse = {
is_system?: boolean;
};
/* Mirror of backend/server/integrations/router.py:CredentialsDeletionResponse */
/* Mirror of backend/api/features/integrations/router.py:CredentialsDeletionResponse */
export type CredentialsDeleteResponse = {
deleted: true;
revoked: boolean | null;
};
/* Mirror of backend/server/integrations/router.py:CredentialsDeletionNeedsConfirmationResponse */
/* Mirror of backend/api/features/integrations/router.py:CredentialsDeletionNeedsConfirmationResponse */
export type CredentialsDeleteNeedConfirmationResponse = {
deleted: false;
need_confirmation: true;
@@ -888,7 +888,7 @@ export type Schedule = {
export type ScheduleID = Brand<string, "ScheduleID">;
/* Mirror of backend/server/routers/v1.py:ScheduleCreationRequest */
/* Mirror of backend/api/features/v1.py:ScheduleCreationRequest */
export type ScheduleCreatable = {
graph_id: GraphID;
graph_version: number;

View File

@@ -25,7 +25,7 @@ This document focuses on the **API Integration OAuth flow** used for connecting
### 2. Backend API Trust Boundary
- **Location**: Server-side FastAPI application
- **Components**:
- Integration router (`/backend/backend/server/integrations/router.py`)
- Integration router (`/backend/backend/api/features/integrations/router.py`)
- OAuth handlers (`/backend/backend/integrations/oauth/`)
- Credentials store (`/backend/backend/integrations/credentials_store.py`)
- **Trust Level**: Trusted - server-controlled environment

View File

@@ -246,7 +246,7 @@ If you encounter any issues, verify that:
```bash
ollama pull llama3.2
```
- If using a custom model, ensure it's added to the model list in `backend/server/model.py`
- If using a custom model, ensure it's added to the model list in `backend/api/model.py`
#### Docker Issues
- Ensure Docker daemon is running: