Compare commits

..

69 Commits

Author SHA1 Message Date
Nicholas Tindle
0040636948 fix(permissions): update wildcard handling for command patterns 2026-01-26 12:42:21 -06:00
Nicholas Tindle
c671af851f feat(classic): add platform_blocks to Agent, enable via PLATFORM_API_KEY
- Add PlatformBlocksComponent to Agent as a default component
- Component automatically enables when PLATFORM_API_KEY env var is set
- Config now uses UserConfigurable for env var support:
  - PLATFORM_API_KEY (required to enable)
  - PLATFORM_URL (default: https://platform.agpt.co)
  - PLATFORM_BLOCKS_ENABLED (default: true)
  - PLATFORM_TIMEOUT (default: 60)
- API key stored as SecretStr for security

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-22 17:30:24 -06:00
Nicholas Tindle
7dd181f4b0 feat(classic): make CWD the default agent workspace for CLI mode
In CLI mode, agents now work directly in the current directory instead of
being sandboxed to .autogpt/agents/{id}/workspace/. Agent state files are
still stored in .autogpt/agents/{id}/state.json.

Server mode retains the original sandboxed behavior for isolation.

Changes:
- Add workspace_root parameter to FileManagerComponent to detect CLI mode
- Update Agent to pass workspace_root when file_storage is rooted at workspace
- Adjust save_state paths based on mode (CLI uses .autogpt/ prefix)
- Add use_tools field to ActionProposal for parallel tool execution
- Support parallel tool execution in Agent.execute()

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-22 15:20:12 -06:00
Nicholas Tindle
114856cef1 refactor(classic): improve prompt strategies with both general and code-specific guidance
- SystemComponent: Keep both general constraints (physical objects) and
  code-specific constraints (don't modify tests, check dependencies, no secrets)
- SystemComponent: Keep both general best practices (self-review, reflection)
  and code-specific best practices (read before modify, mimic style, verify)
- LATS: Keep general phase instructions while adding coding task priorities
- one_shot: Remove redundant 'text' field from AssistantThoughts, use 'reasoning'
- one_shot: Fix intro to clarify when to use ask_user instead of contradicting it
- one_shot: Add efficiency guidelines and parallel execution support
- Update UI to display reasoning as main thoughts (remove redundant REASONING line)
- Update test fixtures to match new AssistantThoughts schema

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-22 12:27:32 -06:00
Nicholas Tindle
68b9bd0c51 refactor(classic): use platform API for blocks instead of local loading
Simplify the platform_blocks component to fetch blocks from the
platform API (/api/v1/blocks) instead of loading them locally from
the monorepo. This removes the dependency on having the platform
backend code available.

- Remove loader.py (no longer needed)
- Update client.py with list_blocks() method
- Simplify component.py to use API for both search and execute
- Remove user_id from config (not needed by API)
- Update tests for API-based approach

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-22 12:16:39 -06:00
Nicholas Tindle
ff076b1f15 feat(classic): add platform blocks component for classic agents
Add search_blocks and execute_block commands that expose platform blocks
to classic agents:

- search_blocks: Local search by name, description, or category (fast, offline)
- execute_block: Execute via platform API with automatic credential handling

The loader automatically discovers the platform backend from the monorepo
structure without requiring manual PYTHONPATH configuration.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-21 13:10:57 -06:00
Nicholas Tindle
57fbab500b feat(classic): add external benchmark adapters for GAIA, SWE-bench, and AgentBench
Integrate standard AI agent benchmarks into the direct_benchmark infrastructure
using a plugin-based adapter pattern:

- Add BenchmarkAdapter base class with setup(), load_challenges(), and evaluate()
- Implement GAIAAdapter for the GAIA benchmark (requires HF token)
- Implement SWEBenchAdapter for SWE-bench (requires Docker)
- Implement AgentBenchAdapter for AgentBench multi-environment benchmark
- Extend HarnessConfig with benchmark options (--benchmark, --benchmark-split, etc.)
- Modify ParallelExecutor to use adapter's evaluate() for external benchmarks
- Fix runner to record finish step (was being skipped, breaking answer extraction)
- Add optional benchmarks dependency group with datasets and huggingface-hub
- Increase default benchmark timeout to 900s

Usage:
  poetry run direct-benchmark run \
    --benchmark agent-bench \
    --benchmark-subset dbbench \
    --strategies one_shot \
    --models claude

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-21 13:06:32 -06:00
Nicholas Tindle
6faabef24d fix(classic): always recreate Docker containers for code execution
Docker containers cannot have their mount bindings updated after creation.
When running benchmarks or multiple agent instances, the same container name
could be reused with a different workspace directory, causing the container
to still reference the OLD mount path. This resulted in "python: can't open
file '/workspace/temp*.py'" errors.

The fix: remove existing containers before creating new ones to ensure fresh
mount bindings to the current workspace directory.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 23:57:02 -06:00
Nicholas Tindle
a67d475a69 fix(classic): handle parallel tool calls in action history
When prompts encourage parallel tool execution and the LLM makes multiple
tool calls simultaneously, the Anthropic API requires a tool_result message
for EACH tool_use. Previously, we only created one tool result for the first
tool call, causing "tool_use ids were found without tool_result blocks" errors.

This fix:
- Adds _make_result_messages() to create results for ALL tool calls
- Maps tool names to their outputs from parallel execution results
- Handles errors per-tool from the _errors list
- Falls back gracefully when results are missing

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 23:18:15 -06:00
Nicholas Tindle
326554d89a style(classic): update black to 24.10.0 and reformat
Update black version to match pre-commit hook (24.10.0) and reformat
all files with the new version.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 10:51:54 -06:00
Nicholas Tindle
5e22a1888a chore: add classic benchmark reports and workspaces to gitignore
Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 10:42:55 -06:00
Nicholas Tindle
a4d7b0142f fix(classic): resolve all pyright type errors
- Add missing strategies (lats, multi_agent_debate) to PromptStrategyName
- Fix method override signatures for reasoning_effort parameter
- Fix Pydantic Field() overload issues with helper function
- Fix BeautifulSoup Tag type narrowing in web_fetch.py
- Fix Optional member access in playwright_browser.py and rewoo.py
- Convert hasattr patterns to getattr for proper type narrowing
- Add proper type casts for Literal types
- Fix file storage path type conversions
- Exclude legacy challenges/ from pyright checking

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 10:41:53 -06:00
Nicholas Tindle
7d6375f59c style(classic): fix flake8 line length issue
Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 01:25:00 -06:00
Nicholas Tindle
aeec0ce509 chore: add test.db to gitignore 2026-01-20 01:24:22 -06:00
Nicholas Tindle
b32bfcaac5 chore: remove test.db from tracking 2026-01-20 01:24:00 -06:00
Nicholas Tindle
5373a6eb6e style(classic): fix code formatting with black
Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 01:23:51 -06:00
Nicholas Tindle
98cde46ccb style(classic): fix import sorting with isort
Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 01:23:33 -06:00
Nicholas Tindle
bd10da10d9 ci: update pre-commit hooks for consolidated classic Poetry project
- Consolidate classic poetry-install hooks into single hook using classic/
- Update isort hook to work with consolidated project structure
- Simplify flake8 hooks to use single classic/.flake8 config
- Consolidate pyright hooks into single hook for classic/
- Add direct_benchmark to hook coverage

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 01:21:50 -06:00
Nicholas Tindle
60fdee1345 fix(classic): resolve linting and formatting issues for CI compliance
- Update .flake8 config to exclude workspace directories and ignore E203
- Fix import sorting (isort) across multiple files
- Fix code formatting (black) across multiple files
- Remove unused imports and fix line length issues (flake8)
- Fix f-strings without placeholders and unused variables

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 01:16:38 -06:00
Nicholas Tindle
6f2783468c feat(classic): add sub-agent architecture and LATS/multi-agent debate strategies
Add comprehensive sub-agent spawning infrastructure that enables prompt
strategies to coordinate multiple agents for advanced reasoning patterns.

New files:
- forge/agent/execution_context.py: ExecutionContext, ResourceBudget,
  SubAgentHandle, and AgentFactory protocol for sub-agent lifecycle
- agent_factory/default_factory.py: DefaultAgentFactory implementation
- prompt_strategies/lats.py: Language Agent Tree Search using MCTS
  with sub-agents for action expansion and evaluation
- prompt_strategies/multi_agent_debate.py: Multi-agent debate with
  proposal, critique, and consensus phases

Key changes:
- BaseMultiStepPromptStrategy gains spawn_sub_agent(), run_sub_agent(),
  spawn_and_run(), and run_parallel() methods
- Agent class accepts optional ExecutionContext and injects it into strategies
- Sub-agents enabled by default (enable_sub_agents=True)
- Resource limits: max_depth=5, max_sub_agents=25, max_cycles=25

All 7 strategies now available in benchmark:
one_shot, rewoo, plan_execute, reflexion, tree_of_thoughts, lats, multi_agent_debate

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 01:01:28 -06:00
Nicholas Tindle
c1031b286d ci(classic): update CI workflows for consolidated Poetry project
Update all classic CI workflows to use the single consolidated
pyproject.toml at classic/ instead of individual project directories.

Changes:
- classic-autogpt-ci.yml: Run from classic/, update cache key and test paths
- classic-forge-ci.yml: Run from classic/, update cache key and test paths
- classic-benchmark-ci.yml: Run from classic/, use direct-benchmark command
- classic-python-checks.yml: Simplify to single job (no matrix needed)
- classic-autogpts-ci.yml: Update to use direct-benchmark for smoke tests

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 00:53:50 -06:00
Nicholas Tindle
b849eafb7f feat(direct_benchmark): enable shell command execution with safety denylist
Enable agents to execute shell commands during benchmarks by setting
execute_local_commands=True and using denylist mode to block dangerous
commands (rm, sudo, chmod, kill, etc.) while allowing safe operations.

Also adds ExecutePython challenge to test code execution capability.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 00:52:06 -06:00
Nicholas Tindle
572c3f5e0d refactor(classic): consolidate Poetry projects into single pyproject.toml
Merge forge/, original_autogpt/, and direct_benchmark/ into a single Poetry
project to eliminate cross-project path dependency issues.

Changes:
- Create classic/pyproject.toml with merged dependencies from all three projects
- Remove individual pyproject.toml and poetry.lock files from subdirectories
- Update all CLAUDE.md files to reflect commands run from classic/ root
- Update all README.md files with new installation and usage instructions

All packages are now included via the packages directive:
- forge/forge (core agent framework)
- original_autogpt/autogpt (AutoGPT agent)
- direct_benchmark/direct_benchmark (benchmark harness)

CLI entry points preserved: autogpt, serve, direct-benchmark

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 00:49:56 -06:00
Nicholas Tindle
89003a585d feat(direct_benchmark): show "would have passed" for timed-out challenges
When a challenge times out but the agent's solution would have passed
evaluation, this is now clearly indicated:

- Completion blocks show "TIMEOUT (would have passed)" in yellow
- Recent completions panel shows hourglass icon + "would pass" suffix
- Summary table has new "Would Pass" column
- Final summary shows "+N would pass" count
- Success rate includes "would pass" challenges

The evaluator still runs on timed-out challenges to calculate the score,
but success remains False. This gives visibility into near-misses that
just needed more time.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 00:30:00 -06:00
Nicholas Tindle
0e65785228 fix(direct_benchmark): don't mark timed-out challenges as passed
Previously, the evaluator would run on all results including timed-out
challenges. If the agent happened to write a working solution before
timing out, evaluation would pass and override success=True, resulting
in contradictory output showing both PASS and "timed out".

Now we skip evaluation for timed-out challenges - they cannot pass.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 00:25:41 -06:00
Nicholas Tindle
f07dff1cdd fix(direct_benchmark): add pytest dependency for challenge evaluation
The TicTacToe and other challenges use pytest-based test files for
evaluation. Without pytest installed in the benchmark virtualenv,
these evaluations were silently failing.

Root cause: test.py imports pytest but the package wasn't a dependency,
causing ModuleNotFoundError during evaluation subprocess.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 00:21:12 -06:00
Nicholas Tindle
00e02a4696 feat(direct_benchmark): add run ID to completion blocks
Include config:challenge:attempt and timestamp in completion block
header for easier debugging and log correlation.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 00:14:23 -06:00
Nicholas Tindle
634bff8277 refactor(forge): replace Selenium with Playwright for web browsing
- Remove selenium.py and test_selenium.py
- Add playwright_browser.py with WebPlaywrightComponent
- Update web component exports to use Playwright
- Update dependencies in pyproject.toml/poetry.lock
- Minor agent and reflexion strategy improvements
- Update CLAUDE.md documentation

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 23:57:17 -06:00
Nicholas Tindle
d591f36c7b fix(direct_benchmark): track cost from LLM provider
Previously cost was hardcoded to 0.0. Now extracts cumulative cost
from MultiProvider.get_incurred_cost() after each step execution.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 23:37:12 -06:00
Nicholas Tindle
a347bed0b1 feat(direct_benchmark): add incremental resume and selective reset
Benchmarks now automatically save progress and resume from where they
left off. State is persisted to .benchmark_state.json in reports dir.

Features:
- Auto-resume: runs skip already-completed challenges
- --fresh: clear all state and start over
- --retry-failures: re-run only failed challenges
- --reset-strategy/model/challenge: selective resets
- `state show/clear/reset` subcommands for state management
- Config mismatch detection with auto-reset

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 23:32:27 -06:00
Nicholas Tindle
4eeb6ee2b0 feat(direct_benchmark): add CI mode for non-interactive environments
Add --ci flag that disables Rich Live display while preserving
completion blocks. Auto-detects CI environment via CI env var or
non-TTY stdout. Prints progress every 10 completions for visibility.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 23:21:10 -06:00
Nicholas Tindle
7db962b9f9 feat(direct_benchmark): dynamic column layout up to 10 wide
- Calculate max columns based on terminal width (up to 10)
- Reduced panel width from 35 to 30 chars to fit more
- Wider terminals can now show more parallel runs side-by-side

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 23:15:16 -06:00
Nicholas Tindle
9108b21541 fix(direct_benchmark): parallel execution and always show completion blocks
Fixes:
- Use run_key (config:challenge) instead of just config_name for tracking
  active runs - allows multiple challenges from same config to run in parallel
- Add asyncio.sleep(0) yields to let multiple tasks acquire semaphore
  and start before any proceed with work
- Always print completion blocks (not just failures) for visibility

This should properly show 8/8 active runs when running with --parallel 8.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 23:13:56 -06:00
Nicholas Tindle
ffe9325296 feat(direct_benchmark): multi-panel UI with copy-paste completion blocks
UI improvements:
- Multi-column layout: each active config gets its own panel showing
  challenge name and step history (last 6 steps with status)
- Copy-paste completion blocks: when a challenge finishes (especially
  failures), prints a detailed block with all steps for easy debugging
- Configurable logging: suppresses noisy LLM provider warnings unless
  --debug flag is set
- Pass debug flag through harness to UI

Example active runs panel:
┌─ one_shot/claude ─┬─ rewoo/claude ────┐
│ ReadFile          │ WriteFile         │
│   ✓ #1 read_file  │   ✓ #1 think      │
│   ✓ #2 write_file │   ✓ #2 plan       │
│   ● step 3: ...   │   ● step 3: ...   │
└───────────────────┴───────────────────┘

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 23:10:34 -06:00
Nicholas Tindle
0a616d9267 feat(direct_benchmark): add step-level logging with colored prefixes
- Add step callback to AgentRunner for real-time step logging
- BenchmarkUI now shows:
  - Active runs with current step info
  - Recent steps panel with colored config prefixes
  - Proper Live display refresh (implements __rich_console__)
- Each config gets a distinct color for easy identification
- Verbose mode prints step logs immediately with config prefix
- Fix Live display not updating (pass UI object, not rendered content)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 23:02:20 -06:00
Nicholas Tindle
ab95077e5b refactor(forge): remove VCR cassettes, use real API calls with skip for forks
- Remove vcrpy and pytest-recording dependencies
- Remove tests/vcr/ directory and vcr_cassettes submodule
- Remove .gitmodules (only had cassette submodule)
- Simplify CI workflow - no more cassette checkout/push/PAT_REVIEW
- Tests requiring API keys now skip if not set (fork PRs)
- Update CLAUDE.md files to remove cassette references
- Fix broken agbenchmark path in pyproject.toml

Security improvement: removes need for PAT with cross-repo write access.
Fork PRs will have API-dependent tests skipped (GitHub protects secrets).

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 22:51:57 -06:00
Nicholas Tindle
e477150979 Merge branch 'dev' into make-old-work 2026-01-19 22:30:46 -06:00
Nicholas Tindle
804430e243 refactor(classic): migrate from agbenchmark to direct_benchmark harness
- Remove old benchmark/ folder with agbenchmark framework
- Move challenges to direct_benchmark/challenges/
- Move analysis tools (analyze_reports.py, analyze_failures.py) to direct_benchmark/
- Move challenges_already_beaten.json to direct_benchmark/
- Update CI workflow to use direct_benchmark
- Update CLAUDE.md files with new benchmarking instructions
- Add benchmarking section to original_autogpt/CLAUDE.md

The direct_benchmark harness directly instantiates agents without HTTP
server overhead, enabling parallel execution with asyncio semaphore.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 22:29:51 -06:00
Nicholas Tindle
acb320d32d feat(classic): add noninteractive mode env var and benchmark config logging
- Add NONINTERACTIVE_MODE env var support to AppConfig for disabling
  user interaction during automated runs
- Benchmark harness now sets NONINTERACTIVE_MODE=True when starting agents
- Add agent configuration logging at server startup (model, strategy, etc.)
- Harness logs env vars being passed to agent for verification
- Add --agent-output flag to show full agent server output for debugging

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 19:40:24 -06:00
Nicholas Tindle
32f68d5999 feat(classic): add failure analysis tool and improve benchmark output
Benchmark improvements:
- Add analyze_failures.py for pattern detection and failure analysis
- Add informative step output: tool name, args, result status, cost
- Add --all and --matrix flags for comprehensive model/strategy testing
- Add --analyze-only and --no-analyze flags for flexible analysis control
- Auto-run failure analysis after benchmarks with markdown export
- Fix directory creation bug in ReportManager (add parents=True)

Prompt strategy enhancements:
- Implement full plan_execute, reflexion, rewoo, tree_of_thoughts strategies
- Add PROMPT_STRATEGY env var support for strategy selection
- Add extended thinking support for Anthropic models
- Add reasoning effort support for OpenAI o-series models

LLM provider improvements:
- Add thinking_budget_tokens config for Anthropic extended thinking
- Add reasoning_effort config for OpenAI reasoning models
- Improve error feedback for LLM self-correction

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 18:58:41 -06:00
Nicholas Tindle
49f56b4e8d feat(classic): enhance strategy benchmark harness with model comparison and bug fixes
- Add model comparison support to test harness (claude, openai, gpt5, opus presets)
- Add --models, --smart-llm, --fast-llm, --list-models CLI args
- Add real-time logging with timestamps and progress indicators
- Fix success parsing bug: read results[0].success instead of non-existent metrics.success
- Fix agbenchmark TestResult validation: use exception typename when value is empty
- Fix WebArena challenge validation: use strings instead of integers in instantiation_dict
- Fix Agent type annotations: create AnyActionProposal union for all prompt strategies
- Add pytest integration tests for the strategy benchmark harness

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 18:07:14 -06:00
Nicholas Tindle
bead811e73 docs(classic): add workspace, settings, and permissions documentation
Document the layered configuration system including:
- Workspace structure (.autogpt/ directory layout)
- Settings location (environment variables, workspace YAML, agent YAML)
- Permission system (check order, pattern syntax, approval scopes)
- Default security behavior

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 12:17:10 -06:00
Nicholas Tindle
013f728ebf feat(forge): improve tool call error feedback for LLM self-correction
When tool calls fail validation, the error messages now include:
- What arguments were actually provided
- The expected parameter schema with types and required/optional indicators

This helps LLMs understand and fix their mistakes when retrying,
rather than just being told a parameter is missing.

Example improved error:
  Invalid function call for write_file: 'contents' is a required property
  You provided: {"filename": 'story.txt'}
  Expected parameters: {"filename": string (required), "contents": string (required)}

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 11:49:17 -06:00
Nicholas Tindle
cda9572acd feat(forge): add lightweight web fetch component
Add WebFetchComponent for fast HTTP-based page fetching without browser
overhead. Uses trafilatura for intelligent content extraction.

Commands:
- fetch_webpage: Extract main content as text/markdown/xml
  - Removes navigation, ads, boilerplate automatically
  - Extracts page metadata (title, description, author, date)
  - Extracts and lists page links
  - Much faster than Selenium-based read_webpage

- fetch_raw_html: Get raw HTML for structure inspection
  - Optional truncation for large pages

Features:
- Trafilatura-powered content extraction (best-in-class accuracy)
- Automatic link extraction with relative URL resolution
- Page metadata extraction (OG tags, meta tags)
- Configurable timeout, max content length, max links
- Proper error handling for timeouts and HTTP errors
- 19 comprehensive tests

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 01:04:22 -06:00
Nicholas Tindle
e0784f8f6b refactor(forge): simplify deeply nested error handling in Anthropic provider
- Extract _get_tool_error_message helper method
- Replace 20+ levels of nesting with simple for loop
- Improve readability of tool_result construction
- Update benchmark poetry.lock

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 00:15:33 -06:00
Nicholas Tindle
3040f39136 feat(forge): modernize web search with tiered provider system
Replace basic DuckDuckGo-only search with a modern tiered system:

1. Tavily (primary) - AI-optimized results with content extraction
   - AI-generated answer summaries
   - Relevance scoring
   - Full page content extraction via search_and_extract command

2. Serper (secondary) - Fast, cheap Google SERP results
   - $0.30-1.00 per 1K queries
   - Real Google results without scraping

3. DDGS multi-engine (fallback) - Free, no API key required
   - Automatic fallback chain: DuckDuckGo → Bing → Brave → Google → etc.
   - 8 search backends supported

Key changes:
- Upgrade duckduckgo-search to ddgs v9.10 (renamed successor package)
- Add Tavily and Serper API integrations
- Implement automatic provider selection and fallback chain
- Add search_and_extract command for research with content extraction
- Add TAVILY_API_KEY and SERPER_API_KEY to env templates
- Update benchmark httpx constraint for ddgs compatibility
- 23 comprehensive tests for all providers and fallback scenarios

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 00:06:42 -06:00
Nicholas Tindle
515504c604 fix(classic): resolve pyright type errors in original_autogpt
- Change Agent class to use ActionProposal instead of OneShotAgentActionProposal
  to support multiple prompt strategy types
- Widen display_thoughts parameter type from AssistantThoughts to ModelWithSummary
- Fix speak attribute access in agent_protocol_server with hasattr check
- Add type: ignore comments for intentional thoughts field overrides in strategies
- Remove unused OneShotAgentActionProposal import

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 23:53:23 -06:00
Nicholas Tindle
18edeaeaf4 fix(classic): fix linting and formatting errors across codebase
- Fix 32+ flake8 E501 (line too long) errors by shortening descriptions
- Remove unused import in todo.py
- Fix test_todo.py argument order (config= keyword)
- Add type annotations to fix pyright errors where straightforward
- Add noqa comments for flake8 false positives in __init__.py
- Remove unused nonlocal declarations in main.py
- Run black and isort to fix formatting
- Update CLAUDE.md with improved linting commands

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 23:37:28 -06:00
Nicholas Tindle
44182aff9c feat(classic): add strategy benchmark test harness for CI
- Add test_prompt_strategies.py harness to compare prompt strategies
- Add pytest wrapper (test_strategy_benchmark.py) for CI integration
- Fix serve command (remove invalid --port flag, use AP_SERVER_PORT env)
- Fix test category (interface -> general)
- Add aiohttp-retry dependency for agbenchmark
- Add pytest markers: slow, integration, requires_agent

Usage:
  poetry run python agbenchmark_config/test_prompt_strategies.py --quick
  poetry run pytest tests/integration/test_strategy_benchmark.py -v

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 23:36:19 -06:00
Nicholas Tindle
864c5a7846 fix(classic): approve+feedback now executes command then sends feedback
Previously, when a user selected "Once" or "Always" with feedback (via Tab),
the command was NOT executed because UserFeedbackProvided was raised before
checking the approval scope. This fix changes the architecture from
exception-based to return-value-based.

Changes:
- Add PermissionCheckResult class with allowed, scope, and feedback fields
- Change check_command() to return PermissionCheckResult instead of bool
- Update prompt_fn signature to return (ApprovalScope, feedback) tuple
- Add pending_user_feedback mechanism to EpisodicActionHistory
- Update execute() to handle feedback after successful command execution
- Feedback message explicitly states "Command executed successfully"
- Add on_auto_approve callback for displaying auto-approved commands
- Add comprehensive tests for approval/denial with feedback scenarios

Behavior:
- Once + feedback → Execute command, then send feedback to agent
- Always + feedback → Execute command, save permission, send feedback
- Deny + feedback → Don't execute, send feedback to agent

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 22:32:43 -06:00
Nicholas Tindle
699fffb1a8 feat(classic): add Rich interactive selector for command approval
Adds a custom Rich-based interactive selector for the command approval
workflow. Features include:
- Arrow key navigation for selecting approval options
- Tab to add context to any selection (e.g., "Once + also check file x")
- Dedicated inline feedback option with shadow placeholder text
- Quick select with number keys 1-5
- Works within existing asyncio event loop (no prompt_toolkit dependency)

Also adds UIProvider abstraction pattern for future UI implementations.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 21:49:43 -06:00
Nicholas Tindle
f0641c2d26 fix(classic): auto-advance plan steps in Plan-Execute strategy
The strategy was stuck in a loop because it tracked plan steps but never
advanced them - the record_step_success() method existed but was never
called by the agent's execution loop.

Fix by using a _pending_step_advance flag to track when an action has
been proposed. On the next parse_response_content() call, advance the
previous step before processing the new response. This keeps step
tracking self-contained in the strategy without requiring agent changes.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 21:14:16 -06:00
Nicholas Tindle
94b6f74c95 feat(classic): add multiple prompt strategies for agent reasoning
Implement four new prompt strategies based on research papers:

- ReWOO: Reasoning Without Observation (5x token efficiency)
- Plan-and-Execute: Separate planning from execution phases
- Reflexion: Verbal reinforcement learning with episodic memory
- Tree of Thoughts: Deliberate problem solving with tree search

Each strategy extends a new BaseMultiStepPromptStrategy base class
with shared utilities. Strategies are selectable via PROMPT_STRATEGY
environment variable or config.prompt_strategy setting.

Fix JSONSchema generation issue where Optional/Union types created
anyOf schemas without direct type field - resolved by storing
plan/phase state in strategy instances rather than ActionProposal.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 20:33:10 -06:00
Nicholas Tindle
46aabab3ea feat(classic): upgrade to Python 3.12+ with CI testing on 3.12, 3.13, 3.14
- Update Python version constraint from ^3.10 to ^3.12 in all pyproject.toml
- Update classifiers to reflect Python 3.12, 3.13, 3.14 support
- Update dependencies for Python 3.13+ compatibility:
  - chromadb: ^0.4.10 -> ^1.4.0
  - numpy: >=1.26.0,<2.0.0 -> >=2.0.0
  - watchdog: 4.0.0 -> ^6.0.0
  - spacy: ^3.0.0 -> ^3.8.0 (numpy 2.x compatibility)
  - en-core-web-sm model: 3.7.1 -> 3.8.0
  - httpx (benchmark): ^0.24.0 -> ^0.27.0
- Update tool configuration:
  - Black target-version: py310 -> py312
  - Pyright pythonVersion: 3.10 -> 3.12
- Update Dockerfiles to use Python 3.12
- Update CI workflows to test on Python 3.12, 3.13, and 3.14
- Regenerate all poetry.lock files

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 20:25:11 -06:00
Nicholas Tindle
0a65df5102 fix(classic): always use native tool calling, fix N/A command loop
- Remove openai_functions config option - native tool calling is now always enabled
- Remove use_functions_api from BaseAgentConfiguration and prompt strategy
- Add use_prefill config to disable prefill for Anthropic (prefill + tools incompatible)
- Update anthropic dependency to ^0.45.0 for tools API support
- Simplify prompt strategy to always expect tool_calls from LLM response

This fixes the N/A command loop bug where models would output "N/A" as a
command name when function calling was disabled. With native tool calling
always enabled, models are forced to pick from valid tools only.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 19:54:40 -06:00
Nicholas Tindle
6fbd208fe3 chore: ignore .claude/settings.local.json in all directories
Update gitignore to use glob pattern for settings.local.json files
in any .claude directory. Also untrack the existing file.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:54:42 -06:00
Nicholas Tindle
8fc174ca87 refactor(classic): simplify log format by removing timestamps
Remove asctime from log formats since terminal output already has
timestamps from the logging infrastructure. Makes logs cleaner
and easier to read.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:52:47 -06:00
Nicholas Tindle
cacc89790f feat(classic): improve AutoGPT configuration and setup
Environment loading:
- Search for .env in multiple locations (cwd, ~/.autogpt, ~/.config/autogpt)
- Allows running autogpt from any directory
- Document search order in .env.template

Setup simplification:
- Remove interactive AI settings revision (was broken/unused)
- Simplify to just printing current settings
- Clean up unused imports

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:52:38 -06:00
Nicholas Tindle
b9113bee02 feat(classic): enhance existing components with new capabilities
CodeExecutorComponent:
- Add timeout and env_vars parameters to execution commands
- Add execute_shell_popen for streaming output
- Improve error handling with CodeTimeoutError

FileManagerComponent:
- Add file_info, file_search, file_copy, file_move commands
- Add directory_create, directory_list_tree commands
- Better path validation and error messages

GitOperationsComponent:
- Add git_log, git_show, git_branch commands
- Add git_stash, git_stash_pop, git_stash_list commands
- Add git_cherry_pick, git_revert, git_reset commands
- Add git_remote, git_fetch, git_pull, git_push commands

UserInteractionComponent:
- Add ask_multiple_choice for structured options
- Add notify_user for non-blocking notifications
- Add confirm_action for yes/no confirmations

WebSearchComponent:
- Minor error handling improvements

WebSeleniumComponent:
- Add get_page_content, execute_javascript commands
- Add take_element_screenshot command
- Add wait_for_element, scroll_page commands
- Improve element interaction reliability

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:52:27 -06:00
Nicholas Tindle
3f65da03e7 feat(classic): add new exception types for enhanced error handling
Add specialized exception classes for better error reporting:
- CodeTimeoutError: For code execution timeouts
- HTTPError: For HTTP request failures with status code/URL
- DataProcessingError: For JSON/CSV processing errors

Each exception includes helpful hints for users.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:52:10 -06:00
Nicholas Tindle
9e96d11b2d feat(classic): add utility components for agent capabilities
Add 6 new utility components to expand agent functionality:

- ArchiveHandlerComponent: ZIP/TAR archive operations (create, extract, list)
- ClipboardComponent: In-memory clipboard for copy/paste operations
- DataProcessorComponent: CSV/JSON data manipulation and analysis
- HTTPClientComponent: HTTP requests (GET, POST, PUT, DELETE)
- MathUtilsComponent: Mathematical calculations and statistics
- TextUtilsComponent: Text processing (regex, diff, encoding, hashing)

All components follow the forge component pattern with:
- CommandProvider for exposing commands
- DirectiveProvider for resources/best practices
- Comprehensive parameter validation

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:50:52 -06:00
Nicholas Tindle
4c264b7ae9 feat(classic): add TodoComponent with LLM-powered decomposition
Add a task management component modeled after Claude Code's TodoWrite:
- TodoItem with recursive sub_items for hierarchical task structure
- todo_write: atomic list replacement with sub-items support
- todo_read: retrieve current todos with nested structure
- todo_clear: clear all todos
- todo_decompose: use smart LLM to break down tasks into sub-steps

Features:
- Hierarchical task tracking with independent status per sub-item
- MessageProvider shows todos in LLM context with proper indentation
- DirectiveProvider adds best practices for task management
- Graceful fallback when LLM provider not configured

Integrates with:
- original_autogpt Agent (full LLM decomposition support)
- ForgeAgent (basic task tracking, no decomposition)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:49:48 -06:00
Nicholas Tindle
0adbc0bd05 fix(classic): update CI for removed frontend and helper scripts
Remove references to deleted files (./run, cli.py, setup.py, frontend/)
from CI workflows. Replace ./run agent start with direct poetry commands
to start agent servers in background.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 17:41:11 -06:00
Nicholas Tindle
8f3291bc92 feat(classic): add workspace permissions system for agent commands
Add a layered permission system that controls agent command execution:

- Create autogpt.yaml in .autogpt/ folder with default allow/deny rules
- File operations in workspace allowed by default
- Sensitive files (.env, .key, .pem) blocked by default
- Dangerous shell commands (sudo, rm -rf) blocked by default
- Interactive prompts for unknown commands (y=agent, Y=workspace, n=deny)
- Agent-specific permissions stored in .autogpt/agents/{id}/permissions.yaml

Files added:
- forge/forge/config/workspace_settings.py - Pydantic models for settings
- forge/forge/permissions.py - CommandPermissionManager with pattern matching

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 17:39:33 -06:00
Nicholas Tindle
7a20de880d chore: add .autogpt/ to gitignore
The .autogpt/ directory is where AutoGPT stores agent data when running
from any directory. This should not be committed to version control.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 17:02:47 -06:00
Nicholas Tindle
ef8a6d2528 feat(classic): make AutoGPT installable and runnable from any directory
Add --workspace option to CLI that defaults to current working directory,
allowing users to run `autogpt` from any folder. Agent data is now stored
in `.autogpt/` subdirectory of the workspace instead of a hardcoded path.

Changes:
- Add -w/--workspace CLI option to run and serve commands
- Remove dependency on forge package location for PROJECT_ROOT
- Update config to use workspace instead of project_root
- Store agent data in .autogpt/ within workspace directory
- Update pyproject.toml files with proper PyPI metadata
- Fix outdated tests to match current implementation

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 17:00:36 -06:00
Nicholas Tindle
fd66be2aaa chore(classic): remove unneeded files and add CLAUDE.md docs
- Remove deprecated Flutter frontend (replaced by autogpt_platform)
- Remove shell scripts (run, setup, autogpt.sh, etc.)
- Remove tutorials (outdated)
- Remove CLI-USAGE.md and FORGE-QUICKSTART.md
- Add CLAUDE.md files for Claude Code guidance

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 16:17:35 -06:00
Nicholas Tindle
ae2cc97dc4 feat(classic): add modern Anthropic models and fix deprecated API
- Add Claude 3.5 v2, Claude 4 Sonnet, Claude 4 Opus, and Claude 4.5 Opus models
- Add rolling aliases (CLAUDE_SONNET, CLAUDE_OPUS, CLAUDE_HAIKU)
- Fix deprecated beta.tools.messages.create API call to use standard messages.create
- Update anthropic SDK from ^0.25.1 to >=0.40,<1.0

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 16:15:16 -06:00
Nicholas Tindle
ea521eed26 wip: add supprot for new openai models (non working) 2025-12-26 10:02:17 -06:00
2756 changed files with 43763 additions and 841636 deletions

View File

@@ -6,11 +6,15 @@ on:
paths:
- '.github/workflows/classic-autogpt-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/direct_benchmark/**'
- 'classic/forge/**'
pull_request:
branches: [ master, dev, release-* ]
paths:
- '.github/workflows/classic-autogpt-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/direct_benchmark/**'
- 'classic/forge/**'
concurrency:
group: ${{ format('classic-autogpt-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
@@ -19,47 +23,22 @@ concurrency:
defaults:
run:
shell: bash
working-directory: classic/original_autogpt
working-directory: classic
jobs:
test:
permissions:
contents: read
timeout-minutes: 30
strategy:
fail-fast: false
matrix:
python-version: ["3.10"]
platform-os: [ubuntu, macos, macos-arm64, windows]
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}
runs-on: ubuntu-latest
steps:
# Quite slow on macOS (2~4 minutes to set up Docker)
# - name: Set up Docker (macOS)
# if: runner.os == 'macOS'
# uses: crazy-max/ghaction-setup-docker@v3
- name: Start MinIO service (Linux)
if: runner.os == 'Linux'
- name: Start MinIO service
working-directory: '.'
run: |
docker pull minio/minio:edge-cicd
docker run -d -p 9000:9000 minio/minio:edge-cicd
- name: Start MinIO service (macOS)
if: runner.os == 'macOS'
working-directory: ${{ runner.temp }}
run: |
brew install minio/stable/minio
mkdir data
minio server ./data &
# No MinIO on Windows:
# - Windows doesn't support running Linux Docker containers
# - It doesn't seem possible to start background processes on Windows. They are
# killed after the step returns.
# See: https://github.com/actions/runner/issues/598#issuecomment-2011890429
- name: Checkout repository
uses: actions/checkout@v4
with:
@@ -71,41 +50,23 @@ jobs:
git config --global user.name "Auto-GPT-Bot"
git config --global user.email "github-bot@agpt.co"
- name: Set up Python ${{ matrix.python-version }}
- name: Set up Python 3.12
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
python-version: "3.12"
- id: get_date
name: Get date
run: echo "date=$(date +'%Y-%m-%d')" >> $GITHUB_OUTPUT
- name: Set up Python dependency cache
# On Windows, unpacking cached dependencies takes longer than just installing them
if: runner.os != 'Windows'
uses: actions/cache@v4
with:
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('classic/original_autogpt/poetry.lock') }}
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('classic/poetry.lock') }}
- name: Install Poetry (Unix)
if: runner.os != 'Windows'
run: |
curl -sSL https://install.python-poetry.org | python3 -
if [ "${{ runner.os }}" = "macOS" ]; then
PATH="$HOME/.local/bin:$PATH"
echo "$HOME/.local/bin" >> $GITHUB_PATH
fi
- name: Install Poetry (Windows)
if: runner.os == 'Windows'
shell: pwsh
run: |
(Invoke-WebRequest -Uri https://install.python-poetry.org -UseBasicParsing).Content | python -
$env:PATH += ";$env:APPDATA\Python\Scripts"
echo "$env:APPDATA\Python\Scripts" >> $env:GITHUB_PATH
- name: Install Poetry
run: curl -sSL https://install.python-poetry.org | python3 -
- name: Install Python dependencies
run: poetry install
@@ -116,12 +77,12 @@ jobs:
--cov=autogpt --cov-branch --cov-report term-missing --cov-report xml \
--numprocesses=logical --durations=10 \
--junitxml=junit.xml -o junit_family=legacy \
tests/unit tests/integration
original_autogpt/tests/unit original_autogpt/tests/integration
env:
CI: true
PLAIN_OUTPUT: True
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
S3_ENDPOINT_URL: ${{ runner.os != 'Windows' && 'http://127.0.0.1:9000' || '' }}
S3_ENDPOINT_URL: http://127.0.0.1:9000
AWS_ACCESS_KEY_ID: minioadmin
AWS_SECRET_ACCESS_KEY: minioadmin
@@ -135,11 +96,11 @@ jobs:
uses: codecov/codecov-action@v5
with:
token: ${{ secrets.CODECOV_TOKEN }}
flags: autogpt-agent,${{ runner.os }}
flags: autogpt-agent
- name: Upload logs to artifact
if: always()
uses: actions/upload-artifact@v4
with:
name: test-logs
path: classic/original_autogpt/logs/
path: classic/logs/

View File

@@ -11,9 +11,6 @@ on:
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- 'classic/run'
- 'classic/cli.py'
- 'classic/setup.py'
- '!**/*.md'
pull_request:
branches: [ master, dev, release-* ]
@@ -22,9 +19,6 @@ on:
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- 'classic/run'
- 'classic/cli.py'
- 'classic/setup.py'
- '!**/*.md'
defaults:
@@ -35,13 +29,9 @@ defaults:
jobs:
serve-agent-protocol:
runs-on: ubuntu-latest
strategy:
matrix:
agent-name: [ original_autogpt ]
fail-fast: false
timeout-minutes: 20
env:
min-python-version: '3.10'
min-python-version: '3.12'
steps:
- name: Checkout repository
uses: actions/checkout@v4
@@ -55,22 +45,22 @@ jobs:
python-version: ${{ env.min-python-version }}
- name: Install Poetry
working-directory: ./classic/${{ matrix.agent-name }}/
run: |
curl -sSL https://install.python-poetry.org | python -
- name: Run regression tests
- name: Install dependencies
run: poetry install
- name: Run smoke tests with direct-benchmark
run: |
./run agent start ${{ matrix.agent-name }}
cd ${{ matrix.agent-name }}
poetry run agbenchmark --mock --test=BasicRetrieval --test=Battleship --test=WebArenaTask_0
poetry run agbenchmark --test=WriteFile
poetry run direct-benchmark run \
--strategies one_shot \
--models claude \
--tests ReadFile,WriteFile \
--json
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
AGENT_NAME: ${{ matrix.agent-name }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
REQUESTS_CA_BUNDLE: /etc/ssl/certs/ca-certificates.crt
HELICONE_CACHE_ENABLED: false
HELICONE_PROPERTY_AGENT: ${{ matrix.agent-name }}
REPORTS_FOLDER: ${{ format('../../reports/{0}', matrix.agent-name) }}
TELEMETRY_ENVIRONMENT: autogpt-ci
TELEMETRY_OPT_IN: ${{ github.ref_name == 'master' }}
NONINTERACTIVE_MODE: "true"
CI: true

View File

@@ -1,17 +1,21 @@
name: Classic - AGBenchmark CI
name: Classic - Direct Benchmark CI
on:
push:
branches: [ master, dev, ci-test* ]
paths:
- 'classic/benchmark/**'
- '!classic/benchmark/reports/**'
- 'classic/direct_benchmark/**'
- 'classic/benchmark/agbenchmark/challenges/**'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- .github/workflows/classic-benchmark-ci.yml
pull_request:
branches: [ master, dev, release-* ]
paths:
- 'classic/benchmark/**'
- '!classic/benchmark/reports/**'
- 'classic/direct_benchmark/**'
- 'classic/benchmark/agbenchmark/challenges/**'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- .github/workflows/classic-benchmark-ci.yml
concurrency:
@@ -23,23 +27,16 @@ defaults:
shell: bash
env:
min-python-version: '3.10'
min-python-version: '3.12'
jobs:
test:
permissions:
contents: read
benchmark-tests:
runs-on: ubuntu-latest
timeout-minutes: 30
strategy:
fail-fast: false
matrix:
python-version: ["3.10"]
platform-os: [ubuntu, macos, macos-arm64, windows]
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}
defaults:
run:
shell: bash
working-directory: classic/benchmark
working-directory: classic
steps:
- name: Checkout repository
uses: actions/checkout@v4
@@ -47,71 +44,84 @@ jobs:
fetch-depth: 0
submodules: true
- name: Set up Python ${{ matrix.python-version }}
- name: Set up Python ${{ env.min-python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
python-version: ${{ env.min-python-version }}
- name: Set up Python dependency cache
# On Windows, unpacking cached dependencies takes longer than just installing them
if: runner.os != 'Windows'
uses: actions/cache@v4
with:
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('classic/benchmark/poetry.lock') }}
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('classic/poetry.lock') }}
- name: Install Poetry (Unix)
if: runner.os != 'Windows'
- name: Install Poetry
run: |
curl -sSL https://install.python-poetry.org | python3 -
if [ "${{ runner.os }}" = "macOS" ]; then
PATH="$HOME/.local/bin:$PATH"
echo "$HOME/.local/bin" >> $GITHUB_PATH
fi
- name: Install Poetry (Windows)
if: runner.os == 'Windows'
shell: pwsh
run: |
(Invoke-WebRequest -Uri https://install.python-poetry.org -UseBasicParsing).Content | python -
$env:PATH += ";$env:APPDATA\Python\Scripts"
echo "$env:APPDATA\Python\Scripts" >> $env:GITHUB_PATH
- name: Install Python dependencies
- name: Install dependencies
run: poetry install
- name: Run pytest with coverage
- name: Run basic benchmark tests
run: |
poetry run pytest -vv \
--cov=agbenchmark --cov-branch --cov-report term-missing --cov-report xml \
--durations=10 \
--junitxml=junit.xml -o junit_family=legacy \
tests
echo "Testing ReadFile challenge with one_shot strategy..."
poetry run direct-benchmark run \
--strategies one_shot \
--models claude \
--tests ReadFile \
--json
echo "Testing WriteFile challenge..."
poetry run direct-benchmark run \
--strategies one_shot \
--models claude \
--tests WriteFile \
--json
env:
CI: true
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
NONINTERACTIVE_MODE: "true"
- name: Upload test results to Codecov
if: ${{ !cancelled() }} # Run even if tests fail
uses: codecov/test-results-action@v1
with:
token: ${{ secrets.CODECOV_TOKEN }}
- name: Test category filtering
run: |
echo "Testing coding category..."
poetry run direct-benchmark run \
--strategies one_shot \
--models claude \
--categories coding \
--tests ReadFile,WriteFile \
--json
env:
CI: true
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
NONINTERACTIVE_MODE: "true"
- name: Upload coverage reports to Codecov
uses: codecov/codecov-action@v5
with:
token: ${{ secrets.CODECOV_TOKEN }}
flags: agbenchmark,${{ runner.os }}
- name: Test multiple strategies
run: |
echo "Testing multiple strategies..."
poetry run direct-benchmark run \
--strategies one_shot,plan_execute \
--models claude \
--tests ReadFile \
--parallel 2 \
--json
env:
CI: true
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
NONINTERACTIVE_MODE: "true"
self-test-with-agent:
# Run regression tests on maintain challenges
regression-tests:
runs-on: ubuntu-latest
strategy:
matrix:
agent-name: [forge]
fail-fast: false
timeout-minutes: 20
timeout-minutes: 45
if: github.ref == 'refs/heads/master' || github.ref == 'refs/heads/dev'
defaults:
run:
shell: bash
working-directory: classic
steps:
- name: Checkout repository
uses: actions/checkout@v4
@@ -126,51 +136,22 @@ jobs:
- name: Install Poetry
run: |
curl -sSL https://install.python-poetry.org | python -
curl -sSL https://install.python-poetry.org | python3 -
- name: Install dependencies
run: poetry install
- name: Run regression tests
working-directory: classic
run: |
./run agent start ${{ matrix.agent-name }}
cd ${{ matrix.agent-name }}
set +e # Ignore non-zero exit codes and continue execution
echo "Running the following command: poetry run agbenchmark --maintain --mock"
poetry run agbenchmark --maintain --mock
EXIT_CODE=$?
set -e # Stop ignoring non-zero exit codes
# Check if the exit code was 5, and if so, exit with 0 instead
if [ $EXIT_CODE -eq 5 ]; then
echo "regression_tests.json is empty."
fi
echo "Running the following command: poetry run agbenchmark --mock"
poetry run agbenchmark --mock
echo "Running the following command: poetry run agbenchmark --mock --category=data"
poetry run agbenchmark --mock --category=data
echo "Running the following command: poetry run agbenchmark --mock --category=coding"
poetry run agbenchmark --mock --category=coding
# echo "Running the following command: poetry run agbenchmark --test=WriteFile"
# poetry run agbenchmark --test=WriteFile
cd ../benchmark
poetry install
echo "Adding the BUILD_SKILL_TREE environment variable. This will attempt to add new elements in the skill tree. If new elements are added, the CI fails because they should have been pushed"
export BUILD_SKILL_TREE=true
# poetry run agbenchmark --mock
# CHANGED=$(git diff --name-only | grep -E '(agbenchmark/challenges)|(../classic/frontend/assets)') || echo "No diffs"
# if [ ! -z "$CHANGED" ]; then
# echo "There are unstaged changes please run agbenchmark and commit those changes since they are needed."
# echo "$CHANGED"
# exit 1
# else
# echo "No unstaged changes."
# fi
echo "Running regression tests (previously beaten challenges)..."
poetry run direct-benchmark run \
--strategies one_shot \
--models claude \
--maintain \
--parallel 4 \
--json
env:
CI: true
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
TELEMETRY_ENVIRONMENT: autogpt-benchmark-ci
TELEMETRY_OPT_IN: ${{ github.ref_name == 'master' }}
NONINTERACTIVE_MODE: "true"

View File

@@ -6,13 +6,11 @@ on:
paths:
- '.github/workflows/classic-forge-ci.yml'
- 'classic/forge/**'
- '!classic/forge/tests/vcr_cassettes'
pull_request:
branches: [ master, dev, release-* ]
paths:
- '.github/workflows/classic-forge-ci.yml'
- 'classic/forge/**'
- '!classic/forge/tests/vcr_cassettes'
concurrency:
group: ${{ format('forge-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
@@ -21,115 +19,38 @@ concurrency:
defaults:
run:
shell: bash
working-directory: classic/forge
working-directory: classic
jobs:
test:
permissions:
contents: read
timeout-minutes: 30
strategy:
fail-fast: false
matrix:
python-version: ["3.10"]
platform-os: [ubuntu, macos, macos-arm64, windows]
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}
runs-on: ubuntu-latest
steps:
# Quite slow on macOS (2~4 minutes to set up Docker)
# - name: Set up Docker (macOS)
# if: runner.os == 'macOS'
# uses: crazy-max/ghaction-setup-docker@v3
- name: Start MinIO service (Linux)
if: runner.os == 'Linux'
- name: Start MinIO service
working-directory: '.'
run: |
docker pull minio/minio:edge-cicd
docker run -d -p 9000:9000 minio/minio:edge-cicd
- name: Start MinIO service (macOS)
if: runner.os == 'macOS'
working-directory: ${{ runner.temp }}
run: |
brew install minio/stable/minio
mkdir data
minio server ./data &
# No MinIO on Windows:
# - Windows doesn't support running Linux Docker containers
# - It doesn't seem possible to start background processes on Windows. They are
# killed after the step returns.
# See: https://github.com/actions/runner/issues/598#issuecomment-2011890429
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 0
submodules: true
- name: Checkout cassettes
if: ${{ startsWith(github.event_name, 'pull_request') }}
env:
PR_BASE: ${{ github.event.pull_request.base.ref }}
PR_BRANCH: ${{ github.event.pull_request.head.ref }}
PR_AUTHOR: ${{ github.event.pull_request.user.login }}
run: |
cassette_branch="${PR_AUTHOR}-${PR_BRANCH}"
cassette_base_branch="${PR_BASE}"
cd tests/vcr_cassettes
if ! git ls-remote --exit-code --heads origin $cassette_base_branch ; then
cassette_base_branch="master"
fi
if git ls-remote --exit-code --heads origin $cassette_branch ; then
git fetch origin $cassette_branch
git fetch origin $cassette_base_branch
git checkout $cassette_branch
# Pick non-conflicting cassette updates from the base branch
git merge --no-commit --strategy-option=ours origin/$cassette_base_branch
echo "Using cassettes from mirror branch '$cassette_branch'," \
"synced to upstream branch '$cassette_base_branch'."
else
git checkout -b $cassette_branch
echo "Branch '$cassette_branch' does not exist in cassette submodule." \
"Using cassettes from '$cassette_base_branch'."
fi
- name: Set up Python ${{ matrix.python-version }}
- name: Set up Python 3.12
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
python-version: "3.12"
- name: Set up Python dependency cache
# On Windows, unpacking cached dependencies takes longer than just installing them
if: runner.os != 'Windows'
uses: actions/cache@v4
with:
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('classic/forge/poetry.lock') }}
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('classic/poetry.lock') }}
- name: Install Poetry (Unix)
if: runner.os != 'Windows'
run: |
curl -sSL https://install.python-poetry.org | python3 -
if [ "${{ runner.os }}" = "macOS" ]; then
PATH="$HOME/.local/bin:$PATH"
echo "$HOME/.local/bin" >> $GITHUB_PATH
fi
- name: Install Poetry (Windows)
if: runner.os == 'Windows'
shell: pwsh
run: |
(Invoke-WebRequest -Uri https://install.python-poetry.org -UseBasicParsing).Content | python -
$env:PATH += ";$env:APPDATA\Python\Scripts"
echo "$env:APPDATA\Python\Scripts" >> $env:GITHUB_PATH
- name: Install Poetry
run: curl -sSL https://install.python-poetry.org | python3 -
- name: Install Python dependencies
run: poetry install
@@ -140,12 +61,15 @@ jobs:
--cov=forge --cov-branch --cov-report term-missing --cov-report xml \
--durations=10 \
--junitxml=junit.xml -o junit_family=legacy \
forge
forge/forge forge/tests
env:
CI: true
PLAIN_OUTPUT: True
# API keys - tests that need these will skip if not available
# Secrets are not available to fork PRs (GitHub security feature)
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
S3_ENDPOINT_URL: ${{ runner.os != 'Windows' && 'http://127.0.0.1:9000' || '' }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
S3_ENDPOINT_URL: http://127.0.0.1:9000
AWS_ACCESS_KEY_ID: minioadmin
AWS_SECRET_ACCESS_KEY: minioadmin
@@ -159,85 +83,11 @@ jobs:
uses: codecov/codecov-action@v5
with:
token: ${{ secrets.CODECOV_TOKEN }}
flags: forge,${{ runner.os }}
- id: setup_git_auth
name: Set up git token authentication
# Cassettes may be pushed even when tests fail
if: success() || failure()
run: |
config_key="http.${{ github.server_url }}/.extraheader"
if [ "${{ runner.os }}" = 'macOS' ]; then
base64_pat=$(echo -n "pat:${{ secrets.PAT_REVIEW }}" | base64)
else
base64_pat=$(echo -n "pat:${{ secrets.PAT_REVIEW }}" | base64 -w0)
fi
git config "$config_key" \
"Authorization: Basic $base64_pat"
cd tests/vcr_cassettes
git config "$config_key" \
"Authorization: Basic $base64_pat"
echo "config_key=$config_key" >> $GITHUB_OUTPUT
- id: push_cassettes
name: Push updated cassettes
# For pull requests, push updated cassettes even when tests fail
if: github.event_name == 'push' || (! github.event.pull_request.head.repo.fork && (success() || failure()))
env:
PR_BRANCH: ${{ github.event.pull_request.head.ref }}
PR_AUTHOR: ${{ github.event.pull_request.user.login }}
run: |
if [ "${{ startsWith(github.event_name, 'pull_request') }}" = "true" ]; then
is_pull_request=true
cassette_branch="${PR_AUTHOR}-${PR_BRANCH}"
else
cassette_branch="${{ github.ref_name }}"
fi
cd tests/vcr_cassettes
# Commit & push changes to cassettes if any
if ! git diff --quiet; then
git add .
git commit -m "Auto-update cassettes"
git push origin HEAD:$cassette_branch
if [ ! $is_pull_request ]; then
cd ../..
git add tests/vcr_cassettes
git commit -m "Update cassette submodule"
git push origin HEAD:$cassette_branch
fi
echo "updated=true" >> $GITHUB_OUTPUT
else
echo "updated=false" >> $GITHUB_OUTPUT
echo "No cassette changes to commit"
fi
- name: Post Set up git token auth
if: steps.setup_git_auth.outcome == 'success'
run: |
git config --unset-all '${{ steps.setup_git_auth.outputs.config_key }}'
git submodule foreach git config --unset-all '${{ steps.setup_git_auth.outputs.config_key }}'
- name: Apply "behaviour change" label and comment on PR
if: ${{ startsWith(github.event_name, 'pull_request') }}
run: |
PR_NUMBER="${{ github.event.pull_request.number }}"
TOKEN="${{ secrets.PAT_REVIEW }}"
REPO="${{ github.repository }}"
if [[ "${{ steps.push_cassettes.outputs.updated }}" == "true" ]]; then
echo "Adding label and comment..."
echo $TOKEN | gh auth login --with-token
gh issue edit $PR_NUMBER --add-label "behaviour change"
gh issue comment $PR_NUMBER --body "You changed AutoGPT's behaviour on ${{ runner.os }}. The cassettes have been updated and will be merged to the submodule when this Pull Request gets merged."
fi
flags: forge
- name: Upload logs to artifact
if: always()
uses: actions/upload-artifact@v4
with:
name: test-logs
path: classic/forge/logs/
path: classic/logs/

View File

@@ -1,60 +0,0 @@
name: Classic - Frontend CI/CD
on:
push:
branches:
- master
- dev
- 'ci-test*' # This will match any branch that starts with "ci-test"
paths:
- 'classic/frontend/**'
- '.github/workflows/classic-frontend-ci.yml'
pull_request:
paths:
- 'classic/frontend/**'
- '.github/workflows/classic-frontend-ci.yml'
jobs:
build:
permissions:
contents: write
pull-requests: write
runs-on: ubuntu-latest
env:
BUILD_BRANCH: ${{ format('classic-frontend-build/{0}', github.ref_name) }}
steps:
- name: Checkout Repo
uses: actions/checkout@v4
- name: Setup Flutter
uses: subosito/flutter-action@v2
with:
flutter-version: '3.13.2'
- name: Build Flutter to Web
run: |
cd classic/frontend
flutter build web --base-href /app/
# - name: Commit and Push to ${{ env.BUILD_BRANCH }}
# if: github.event_name == 'push'
# run: |
# git config --local user.email "action@github.com"
# git config --local user.name "GitHub Action"
# git add classic/frontend/build/web
# git checkout -B ${{ env.BUILD_BRANCH }}
# git commit -m "Update frontend build to ${GITHUB_SHA:0:7}" -a
# git push -f origin ${{ env.BUILD_BRANCH }}
- name: Create PR ${{ env.BUILD_BRANCH }} -> ${{ github.ref_name }}
if: github.event_name == 'push'
uses: peter-evans/create-pull-request@v7
with:
add-paths: classic/frontend/build/web
base: ${{ github.ref_name }}
branch: ${{ env.BUILD_BRANCH }}
delete-branch: true
title: "Update frontend build in `${{ github.ref_name }}`"
body: "This PR updates the frontend build based on commit ${{ github.sha }}."
commit-message: "Update frontend build based on commit ${{ github.sha }}"

View File

@@ -7,7 +7,9 @@ on:
- '.github/workflows/classic-python-checks-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- 'classic/direct_benchmark/**'
- 'classic/pyproject.toml'
- 'classic/poetry.lock'
- '**.py'
- '!classic/forge/tests/vcr_cassettes'
pull_request:
@@ -16,7 +18,9 @@ on:
- '.github/workflows/classic-python-checks-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- 'classic/direct_benchmark/**'
- 'classic/pyproject.toml'
- 'classic/poetry.lock'
- '**.py'
- '!classic/forge/tests/vcr_cassettes'
@@ -27,44 +31,13 @@ concurrency:
defaults:
run:
shell: bash
working-directory: classic
jobs:
get-changed-parts:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- id: changes-in
name: Determine affected subprojects
uses: dorny/paths-filter@v3
with:
filters: |
original_autogpt:
- classic/original_autogpt/autogpt/**
- classic/original_autogpt/tests/**
- classic/original_autogpt/poetry.lock
forge:
- classic/forge/forge/**
- classic/forge/tests/**
- classic/forge/poetry.lock
benchmark:
- classic/benchmark/agbenchmark/**
- classic/benchmark/tests/**
- classic/benchmark/poetry.lock
outputs:
changed-parts: ${{ steps.changes-in.outputs.changes }}
lint:
needs: get-changed-parts
runs-on: ubuntu-latest
env:
min-python-version: "3.10"
strategy:
matrix:
sub-package: ${{ fromJson(needs.get-changed-parts.outputs.changed-parts) }}
fail-fast: false
min-python-version: "3.12"
steps:
- name: Checkout repository
@@ -81,42 +54,31 @@ jobs:
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: ${{ runner.os }}-poetry-${{ hashFiles(format('{0}/poetry.lock', matrix.sub-package)) }}
key: ${{ runner.os }}-poetry-${{ hashFiles('classic/poetry.lock') }}
- name: Install Poetry
run: curl -sSL https://install.python-poetry.org | python3 -
# Install dependencies
- name: Install Python dependencies
run: poetry -C classic/${{ matrix.sub-package }} install
run: poetry install
# Lint
- name: Lint (isort)
run: poetry run isort --check .
working-directory: classic/${{ matrix.sub-package }}
- name: Lint (Black)
if: success() || failure()
run: poetry run black --check .
working-directory: classic/${{ matrix.sub-package }}
- name: Lint (Flake8)
if: success() || failure()
run: poetry run flake8 .
working-directory: classic/${{ matrix.sub-package }}
types:
needs: get-changed-parts
runs-on: ubuntu-latest
env:
min-python-version: "3.10"
strategy:
matrix:
sub-package: ${{ fromJson(needs.get-changed-parts.outputs.changed-parts) }}
fail-fast: false
min-python-version: "3.12"
steps:
- name: Checkout repository
@@ -133,19 +95,16 @@ jobs:
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: ${{ runner.os }}-poetry-${{ hashFiles(format('{0}/poetry.lock', matrix.sub-package)) }}
key: ${{ runner.os }}-poetry-${{ hashFiles('classic/poetry.lock') }}
- name: Install Poetry
run: curl -sSL https://install.python-poetry.org | python3 -
# Install dependencies
- name: Install Python dependencies
run: poetry -C classic/${{ matrix.sub-package }} install
run: poetry install
# Typecheck
- name: Typecheck
if: success() || failure()
run: poetry run pyright
working-directory: classic/${{ matrix.sub-package }}

View File

@@ -128,7 +128,7 @@ jobs:
token: ${{ secrets.GITHUB_TOKEN }}
exitOnceUploaded: true
e2e_test:
test:
runs-on: big-boi
needs: setup
strategy:
@@ -258,39 +258,3 @@ jobs:
- name: Print Final Docker Compose logs
if: always()
run: docker compose -f ../docker-compose.yml logs
integration_test:
runs-on: ubuntu-latest
needs: setup
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
submodules: recursive
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
- name: Generate API client
run: pnpm generate:api
- name: Run Integration Tests
run: pnpm test:unit

10
.gitignore vendored
View File

@@ -3,6 +3,7 @@
classic/original_autogpt/keys.py
classic/original_autogpt/*.json
auto_gpt_workspace/*
.autogpt/
*.mpeg
.env
# Root .env files
@@ -159,6 +160,10 @@ CURRENT_BULLETIN.md
# AgBenchmark
classic/benchmark/agbenchmark/reports/
classic/reports/
classic/direct_benchmark/reports/
classic/.benchmark_workspaces/
classic/direct_benchmark/.benchmark_workspaces/
# Nodejs
package-lock.json
@@ -177,5 +182,8 @@ autogpt_platform/backend/settings.py
*.ign.*
.test-contents
.claude/settings.local.json
**/.claude/settings.local.json
/autogpt_platform/backend/logs
# Test database
test.db

3
.gitmodules vendored
View File

@@ -1,3 +0,0 @@
[submodule "classic/forge/tests/vcr_cassettes"]
path = classic/forge/tests/vcr_cassettes
url = https://github.com/Significant-Gravitas/Auto-GPT-test-cassettes

View File

@@ -43,29 +43,10 @@ repos:
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - Classic - AutoGPT
alias: poetry-install-classic-autogpt
entry: poetry -C classic/original_autogpt install
# include forge source (since it's a path dependency)
files: ^classic/(original_autogpt|forge)/poetry\.lock$
types: [file]
language: system
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - Classic - Forge
alias: poetry-install-classic-forge
entry: poetry -C classic/forge install
files: ^classic/forge/poetry\.lock$
types: [file]
language: system
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - Classic - Benchmark
alias: poetry-install-classic-benchmark
entry: poetry -C classic/benchmark install
files: ^classic/benchmark/poetry\.lock$
name: Check & Install dependencies - Classic
alias: poetry-install-classic
entry: poetry -C classic install
files: ^classic/poetry\.lock$
types: [file]
language: system
pass_filenames: false
@@ -116,26 +97,10 @@ repos:
language: system
- id: isort
name: Lint (isort) - Classic - AutoGPT
alias: isort-classic-autogpt
entry: poetry -P classic/original_autogpt run isort -p autogpt
files: ^classic/original_autogpt/
types: [file, python]
language: system
- id: isort
name: Lint (isort) - Classic - Forge
alias: isort-classic-forge
entry: poetry -P classic/forge run isort -p forge
files: ^classic/forge/
types: [file, python]
language: system
- id: isort
name: Lint (isort) - Classic - Benchmark
alias: isort-classic-benchmark
entry: poetry -P classic/benchmark run isort -p agbenchmark
files: ^classic/benchmark/
name: Lint (isort) - Classic
alias: isort-classic
entry: bash -c 'cd classic && poetry run isort $(echo "$@" | sed "s|classic/||g")' --
files: ^classic/(original_autogpt|forge|direct_benchmark)/
types: [file, python]
language: system
@@ -149,26 +114,13 @@ repos:
- repo: https://github.com/PyCQA/flake8
rev: 7.0.0
# To have flake8 load the config of the individual subprojects, we have to call
# them separately.
# Use consolidated flake8 config at classic/.flake8
hooks:
- id: flake8
name: Lint (Flake8) - Classic - AutoGPT
alias: flake8-classic-autogpt
files: ^classic/original_autogpt/(autogpt|scripts|tests)/
args: [--config=classic/original_autogpt/.flake8]
- id: flake8
name: Lint (Flake8) - Classic - Forge
alias: flake8-classic-forge
files: ^classic/forge/(forge|tests)/
args: [--config=classic/forge/.flake8]
- id: flake8
name: Lint (Flake8) - Classic - Benchmark
alias: flake8-classic-benchmark
files: ^classic/benchmark/(agbenchmark|tests)/((?!reports).)*[/.]
args: [--config=classic/benchmark/.flake8]
name: Lint (Flake8) - Classic
alias: flake8-classic
files: ^classic/(original_autogpt|forge|direct_benchmark)/
args: [--config=classic/.flake8]
- repo: local
hooks:
@@ -204,29 +156,10 @@ repos:
pass_filenames: false
- id: pyright
name: Typecheck - Classic - AutoGPT
alias: pyright-classic-autogpt
entry: poetry -C classic/original_autogpt run pyright
# include forge source (since it's a path dependency) but exclude *_test.py files:
files: ^(classic/original_autogpt/((autogpt|scripts|tests)/|poetry\.lock$)|classic/forge/(forge/.*(?<!_test)\.py|poetry\.lock)$)
types: [file]
language: system
pass_filenames: false
- id: pyright
name: Typecheck - Classic - Forge
alias: pyright-classic-forge
entry: poetry -C classic/forge run pyright
files: ^classic/forge/(forge/|poetry\.lock$)
types: [file]
language: system
pass_filenames: false
- id: pyright
name: Typecheck - Classic - Benchmark
alias: pyright-classic-benchmark
entry: poetry -C classic/benchmark run pyright
files: ^classic/benchmark/(agbenchmark/|tests/|poetry\.lock$)
name: Typecheck - Classic
alias: pyright-classic
entry: poetry -C classic run pyright
files: ^classic/(original_autogpt|forge|direct_benchmark)/.*\.py$|^classic/poetry\.lock$
types: [file]
language: system
pass_filenames: false

View File

@@ -16,34 +16,6 @@ See `docs/content/platform/getting-started.md` for setup instructions.
- Format Python code with `poetry run format`.
- Format frontend code using `pnpm format`.
## Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Add `usePageName.ts` hook for logic
- Put sub-components in local `components/` folder
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Avoid comments at all times unless the code is very complex
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
- Do not type hook returns, let Typescript infer as much as possible
- Never type with `any`, if not types available use `unknown`
## Testing
- Backend: `poetry run test` (runs pytest with a docker based postgres + prisma).
@@ -51,8 +23,22 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
Always run the relevant linters and tests before committing.
Use conventional commit messages for all commits (e.g. `feat(backend): add API`).
Types: - feat - fix - refactor - ci - dx (developer experience)
Scopes: - platform - platform/library - platform/marketplace - backend - backend/executor - frontend - frontend/library - frontend/marketplace - blocks
Types:
- feat
- fix
- refactor
- ci
- dx (developer experience)
Scopes:
- platform
- platform/library
- platform/marketplace
- backend
- backend/executor
- frontend
- frontend/library
- frontend/marketplace
- blocks
## Pull requests

View File

@@ -85,6 +85,17 @@ pnpm format
pnpm types
```
**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns.
**Key Frontend Conventions:**
- Separate render logic from data/behavior in components
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Use function declarations (not arrow functions) for components/handlers
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Only use Phosphor Icons
- Never use `src/components/__legacy__/*` or deprecated `BackendAPI`
## Architecture Overview
### Backend Architecture
@@ -183,50 +194,6 @@ ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
**Handling files in blocks with `store_media_file()`:**
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
| Format | Use When | Returns |
|--------|----------|---------|
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
**Examples:**
```python
# INPUT: Need to process file locally with ffmpeg
local_path = await store_media_file(
file=input_data.video,
execution_context=execution_context,
return_format="for_local_processing",
)
# local_path = "video.mp4" - use with Path/ffmpeg/etc
# INPUT: Need to send to external API like Replicate
image_b64 = await store_media_file(
file=input_data.image,
execution_context=execution_context,
return_format="for_external_api",
)
# image_b64 = "..." - send to API
# OUTPUT: Returning result from block
result_url = await store_media_file(
file=generated_image_url,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", result_url
# In CoPilot: result_url = "workspace://abc123"
# In graphs: result_url = "data:image/png;base64,..."
```
**Key points:**
- `for_block_output` is the ONLY format that auto-adapts to execution context
- Always use `for_block_output` for block outputs unless you have a specific reason not to
- Never hardcode workspace checks - let `for_block_output` handle it
**Modifying the API:**
1. Update route in `/backend/backend/server/routers/`
@@ -234,7 +201,7 @@ yield "image_url", result_url
3. Write tests alongside the route file
4. Run `poetry run test` to verify
### Frontend guidelines:
**Frontend feature development:**
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
@@ -251,17 +218,6 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
- Avoid comments at all times unless the code is very complex
- Do not type hook returns, let Typescript infer as much as possible
- Never type with `any`, if not types available use `unknown`
### Security Implementation
**Cache Protection Middleware:**

View File

@@ -178,10 +178,5 @@ AYRSHARE_JWT_KEY=
SMARTLEAD_API_KEY=
ZEROBOUNCE_API_KEY=
# PostHog Analytics
# Get API key from https://posthog.com - Project Settings > Project API Key
POSTHOG_API_KEY=
POSTHOG_HOST=https://eu.i.posthog.com
# Other Services
AUTOMOD_API_KEY=

View File

@@ -86,8 +86,6 @@ async def execute_graph_block(
obj = backend.data.block.get_block(block_id)
if not obj:
raise HTTPException(status_code=404, detail=f"Block #{block_id} not found.")
if obj.disabled:
raise HTTPException(status_code=403, detail=f"Block #{block_id} is disabled.")
output = defaultdict(list)
async for name, data in obj.execute(data):

View File

@@ -1,308 +0,0 @@
"""RabbitMQ consumer for operation completion messages.
This module provides a consumer that listens for completion notifications
from external services (like Agent Generator) and triggers the appropriate
stream registry and chat service updates.
"""
import asyncio
import logging
import orjson
from pydantic import BaseModel
from backend.data.rabbitmq import (
AsyncRabbitMQ,
Exchange,
ExchangeType,
Queue,
RabbitMQConfig,
)
from . import service as chat_service
from . import stream_registry
from .response_model import StreamError, StreamToolOutputAvailable
from .tools.models import ErrorResponse
logger = logging.getLogger(__name__)
# Queue and exchange configuration
OPERATION_COMPLETE_EXCHANGE = Exchange(
name="chat_operations",
type=ExchangeType.DIRECT,
durable=True,
)
OPERATION_COMPLETE_QUEUE = Queue(
name="chat_operation_complete",
durable=True,
exchange=OPERATION_COMPLETE_EXCHANGE,
routing_key="operation.complete",
)
RABBITMQ_CONFIG = RabbitMQConfig(
exchanges=[OPERATION_COMPLETE_EXCHANGE],
queues=[OPERATION_COMPLETE_QUEUE],
)
class OperationCompleteMessage(BaseModel):
"""Message format for operation completion notifications."""
operation_id: str
task_id: str
success: bool
result: dict | str | None = None
error: str | None = None
class ChatCompletionConsumer:
"""Consumer for chat operation completion messages from RabbitMQ."""
def __init__(self):
self._rabbitmq: AsyncRabbitMQ | None = None
self._consumer_task: asyncio.Task | None = None
self._running = False
async def start(self) -> None:
"""Start the completion consumer."""
if self._running:
logger.warning("Completion consumer already running")
return
self._rabbitmq = AsyncRabbitMQ(RABBITMQ_CONFIG)
await self._rabbitmq.connect()
self._running = True
self._consumer_task = asyncio.create_task(self._consume_messages())
logger.info("Chat completion consumer started")
async def stop(self) -> None:
"""Stop the completion consumer."""
self._running = False
if self._consumer_task:
self._consumer_task.cancel()
try:
await self._consumer_task
except asyncio.CancelledError:
pass
self._consumer_task = None
if self._rabbitmq:
await self._rabbitmq.disconnect()
self._rabbitmq = None
logger.info("Chat completion consumer stopped")
async def _consume_messages(self) -> None:
"""Main message consumption loop."""
if not self._rabbitmq:
logger.error("RabbitMQ not initialized")
return
try:
channel = await self._rabbitmq.get_channel()
queue = await channel.get_queue(OPERATION_COMPLETE_QUEUE.name)
async with queue.iterator() as queue_iter:
async for message in queue_iter:
if not self._running:
break
try:
async with message.process():
await self._handle_message(message.body)
except Exception as e:
logger.error(
f"Error processing completion message: {e}",
exc_info=True,
)
# Message will be requeued due to exception
except asyncio.CancelledError:
logger.info("Consumer cancelled")
except Exception as e:
logger.error(f"Consumer error: {e}", exc_info=True)
# Attempt to reconnect after a delay
if self._running:
await asyncio.sleep(5)
await self._consume_messages()
async def _handle_message(self, body: bytes) -> None:
"""Handle a single completion message."""
try:
data = orjson.loads(body)
message = OperationCompleteMessage(**data)
except Exception as e:
logger.error(f"Failed to parse completion message: {e}")
return
logger.info(
f"Received completion for operation {message.operation_id} "
f"(task_id={message.task_id}, success={message.success})"
)
# Find task in registry
task = await stream_registry.find_task_by_operation_id(message.operation_id)
if task is None:
# Try to look up by task_id directly
task = await stream_registry.get_task(message.task_id)
if task is None:
logger.warning(
f"Task not found for operation {message.operation_id} "
f"(task_id={message.task_id})"
)
return
if message.success:
await self._handle_success(task, message)
else:
await self._handle_failure(task, message)
async def _handle_success(
self,
task: stream_registry.ActiveTask,
message: OperationCompleteMessage,
) -> None:
"""Handle successful operation completion."""
# Publish result to stream registry
result_output = message.result if message.result else {"status": "completed"}
await stream_registry.publish_chunk(
task.task_id,
StreamToolOutputAvailable(
toolCallId=task.tool_call_id,
toolName=task.tool_name,
output=(
result_output
if isinstance(result_output, str)
else orjson.dumps(result_output).decode("utf-8")
),
success=True,
),
)
# Update pending operation in database
result_str = (
message.result
if isinstance(message.result, str)
else (
orjson.dumps(message.result).decode("utf-8")
if message.result
else '{"status": "completed"}'
)
)
await chat_service._update_pending_operation(
session_id=task.session_id,
tool_call_id=task.tool_call_id,
result=result_str,
)
# Generate LLM continuation with streaming
await chat_service._generate_llm_continuation_with_streaming(
session_id=task.session_id,
user_id=task.user_id,
task_id=task.task_id,
)
# Mark task as completed
await stream_registry.mark_task_completed(task.task_id, status="completed")
logger.info(
f"Successfully processed completion for task {task.task_id} "
f"(operation {message.operation_id})"
)
async def _handle_failure(
self,
task: stream_registry.ActiveTask,
message: OperationCompleteMessage,
) -> None:
"""Handle failed operation completion."""
error_msg = message.error or "Operation failed"
# Publish error to stream registry
await stream_registry.publish_chunk(
task.task_id,
StreamError(errorText=error_msg),
)
# Update pending operation with error
error_response = ErrorResponse(
message=error_msg,
error=message.error,
)
await chat_service._update_pending_operation(
session_id=task.session_id,
tool_call_id=task.tool_call_id,
result=error_response.model_dump_json(),
)
# Mark task as failed
await stream_registry.mark_task_completed(task.task_id, status="failed")
logger.info(
f"Processed failure for task {task.task_id} "
f"(operation {message.operation_id}): {error_msg}"
)
# Module-level consumer instance
_consumer: ChatCompletionConsumer | None = None
async def start_completion_consumer() -> None:
"""Start the global completion consumer."""
global _consumer
if _consumer is None:
_consumer = ChatCompletionConsumer()
await _consumer.start()
async def stop_completion_consumer() -> None:
"""Stop the global completion consumer."""
global _consumer
if _consumer:
await _consumer.stop()
_consumer = None
async def publish_operation_complete(
operation_id: str,
task_id: str,
success: bool,
result: dict | str | None = None,
error: str | None = None,
) -> None:
"""Publish an operation completion message.
This is a helper function for testing or for services that want to
publish completion messages directly.
Args:
operation_id: The operation ID that completed.
task_id: The task ID associated with the operation.
success: Whether the operation succeeded.
result: The result data (for success).
error: The error message (for failure).
"""
message = OperationCompleteMessage(
operation_id=operation_id,
task_id=task_id,
success=success,
result=result,
error=error,
)
rabbitmq = AsyncRabbitMQ(RABBITMQ_CONFIG)
try:
await rabbitmq.connect()
await rabbitmq.publish_message(
routing_key="operation.complete",
message=message.model_dump_json(),
exchange=OPERATION_COMPLETE_EXCHANGE,
)
logger.info(f"Published completion for operation {operation_id}")
finally:
await rabbitmq.disconnect()

View File

@@ -33,29 +33,9 @@ class ChatConfig(BaseSettings):
stream_timeout: int = Field(default=300, description="Stream timeout in seconds")
max_retries: int = Field(default=3, description="Maximum number of retries")
max_agent_runs: int = Field(default=30, description="Maximum number of agent runs")
max_agent_runs: int = Field(default=3, description="Maximum number of agent runs")
max_agent_schedules: int = Field(
default=30, description="Maximum number of agent schedules"
)
# Long-running operation configuration
long_running_operation_ttl: int = Field(
default=600,
description="TTL in seconds for long-running operation tracking in Redis (safety net if pod dies)",
)
# Stream registry configuration for SSE reconnection
stream_ttl: int = Field(
default=3600,
description="TTL in seconds for stream data in Redis (1 hour)",
)
stream_max_length: int = Field(
default=1000,
description="Maximum number of messages to store per stream",
)
internal_api_key: str | None = Field(
default=None,
description="API key for internal webhook callbacks (env: CHAT_INTERNAL_API_KEY)",
default=3, description="Maximum number of agent schedules"
)
# Langfuse Prompt Management Configuration

View File

@@ -247,45 +247,3 @@ async def get_chat_session_message_count(session_id: str) -> int:
"""Get the number of messages in a chat session."""
count = await PrismaChatMessage.prisma().count(where={"sessionId": session_id})
return count
async def update_tool_message_content(
session_id: str,
tool_call_id: str,
new_content: str,
) -> bool:
"""Update the content of a tool message in chat history.
Used by background tasks to update pending operation messages with final results.
Args:
session_id: The chat session ID.
tool_call_id: The tool call ID to find the message.
new_content: The new content to set.
Returns:
True if a message was updated, False otherwise.
"""
try:
result = await PrismaChatMessage.prisma().update_many(
where={
"sessionId": session_id,
"toolCallId": tool_call_id,
},
data={
"content": new_content,
},
)
if result == 0:
logger.warning(
f"No message found to update for session {session_id}, "
f"tool_call_id {tool_call_id}"
)
return False
return True
except Exception as e:
logger.error(
f"Failed to update tool message for session {session_id}, "
f"tool_call_id {tool_call_id}: {e}"
)
return False

View File

@@ -290,26 +290,6 @@ async def _cache_session(session: ChatSession) -> None:
await async_redis.setex(redis_key, config.session_ttl, session.model_dump_json())
async def cache_chat_session(session: ChatSession) -> None:
"""Cache a chat session without persisting to the database."""
await _cache_session(session)
async def invalidate_session_cache(session_id: str) -> None:
"""Invalidate a chat session from Redis cache.
Used by background tasks to ensure fresh data is loaded on next access.
This is best-effort - Redis failures are logged but don't fail the operation.
"""
try:
redis_key = _get_session_cache_key(session_id)
async_redis = await get_redis_async()
await async_redis.delete(redis_key)
except Exception as e:
# Best-effort: log but don't fail - cache will expire naturally
logger.warning(f"Failed to invalidate session cache for {session_id}: {e}")
async def _get_session_from_db(session_id: str) -> ChatSession | None:
"""Get a chat session from the database."""
prisma_session = await chat_db.get_chat_session(session_id)

View File

@@ -31,7 +31,6 @@ class ResponseType(str, Enum):
# Other
ERROR = "error"
USAGE = "usage"
HEARTBEAT = "heartbeat"
class StreamBaseResponse(BaseModel):
@@ -143,20 +142,3 @@ class StreamError(StreamBaseResponse):
details: dict[str, Any] | None = Field(
default=None, description="Additional error details"
)
class StreamHeartbeat(StreamBaseResponse):
"""Heartbeat to keep SSE connection alive during long-running operations.
Uses SSE comment format (: comment) which is ignored by clients but keeps
the connection alive through proxies and load balancers.
"""
type: ResponseType = ResponseType.HEARTBEAT
toolCallId: str | None = Field(
default=None, description="Tool call ID if heartbeat is for a specific tool"
)
def to_sse(self) -> str:
"""Convert to SSE comment format to keep connection alive."""
return ": heartbeat\n\n"

View File

@@ -5,17 +5,15 @@ from collections.abc import AsyncGenerator
from typing import Annotated
from autogpt_libs import auth
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Security
from fastapi import APIRouter, Depends, Query, Security
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from backend.util.exceptions import NotFoundError
from . import service as chat_service
from . import stream_registry
from .config import ChatConfig
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
from .response_model import StreamFinish
config = ChatConfig()
@@ -83,14 +81,6 @@ class ListSessionsResponse(BaseModel):
total: int
class OperationCompleteRequest(BaseModel):
"""Request model for external completion webhook."""
success: bool
result: dict | str | None = None
error: str | None = None
# ========== Routes ==========
@@ -182,12 +172,12 @@ async def get_session(
user_id: The optional authenticated user ID, or None for anonymous access.
Returns:
SessionDetailResponse: Details for the requested session, or None if not found.
SessionDetailResponse: Details for the requested session; raises NotFoundError if not found.
"""
session = await get_chat_session(session_id, user_id)
if not session:
raise NotFoundError(f"Session {session_id} not found.")
raise NotFoundError(f"Session {session_id} not found")
messages = [message.model_dump() for message in session.messages]
logger.info(
@@ -232,8 +222,6 @@ async def stream_chat_post(
session = await _validate_and_get_session(session_id, user_id)
async def event_generator() -> AsyncGenerator[str, None]:
chunk_count = 0
first_chunk_type: str | None = None
async for chunk in chat_service.stream_chat_completion(
session_id,
request.message,
@@ -242,26 +230,7 @@ async def stream_chat_post(
session=session, # Pass pre-fetched session to avoid double-fetch
context=request.context,
):
if chunk_count < 3:
logger.info(
"Chat stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
logger.info(
"Chat stream completed",
extra={
"session_id": session_id,
"chunk_count": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
# AI SDK protocol termination
yield "data: [DONE]\n\n"
@@ -306,8 +275,6 @@ async def stream_chat_get(
session = await _validate_and_get_session(session_id, user_id)
async def event_generator() -> AsyncGenerator[str, None]:
chunk_count = 0
first_chunk_type: str | None = None
async for chunk in chat_service.stream_chat_completion(
session_id,
message,
@@ -315,26 +282,7 @@ async def stream_chat_get(
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
):
if chunk_count < 3:
logger.info(
"Chat stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
logger.info(
"Chat stream completed",
extra={
"session_id": session_id,
"chunk_count": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
# AI SDK protocol termination
yield "data: [DONE]\n\n"
@@ -376,243 +324,6 @@ async def session_assign_user(
return {"status": "ok"}
# ========== Task Streaming (SSE Reconnection) ==========
@router.get(
"/tasks/{task_id}/stream",
)
async def stream_task(
task_id: str,
user_id: str | None = Depends(auth.get_user_id),
last_idx: int = Query(default=0, ge=0, description="Last message index received"),
):
"""
Reconnect to a long-running task's SSE stream.
When a long-running operation (like agent generation) starts, the client
receives a task_id. If the connection drops, the client can reconnect
using this endpoint to resume receiving updates.
Args:
task_id: The task ID from the operation_started response.
user_id: Authenticated user ID for ownership validation.
last_idx: Last message index received (0 for full replay).
Returns:
StreamingResponse: SSE-formatted response chunks starting from last_idx.
Raises:
NotFoundError: If task_id is not found or user doesn't have access.
"""
# Get subscriber queue from stream registry
subscriber_queue = await stream_registry.subscribe_to_task(
task_id=task_id,
user_id=user_id,
last_idx=last_idx,
)
if subscriber_queue is None:
raise NotFoundError(f"Task {task_id} not found or access denied.")
async def event_generator() -> AsyncGenerator[str, None]:
chunk_count = 0
try:
while True:
# Wait for next chunk from the queue
chunk = await subscriber_queue.get()
chunk_count += 1
yield chunk.to_sse()
# Check for finish signal
if isinstance(chunk, StreamFinish):
logger.info(
f"Task stream completed for task {task_id}, "
f"chunk_count={chunk_count}"
)
break
except Exception as e:
logger.error(f"Error in task stream {task_id}: {e}", exc_info=True)
# AI SDK protocol termination
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"x-vercel-ai-ui-message-stream": "v1",
},
)
@router.get(
"/tasks/{task_id}",
)
async def get_task_status(
task_id: str,
user_id: str | None = Depends(auth.get_user_id),
) -> dict:
"""
Get the status of a long-running task.
Args:
task_id: The task ID to check.
user_id: Authenticated user ID for ownership validation.
Returns:
dict: Task status including task_id, status, tool_name, and operation_id.
Raises:
NotFoundError: If task_id is not found or user doesn't have access.
"""
task = await stream_registry.get_task(task_id)
if task is None:
raise NotFoundError(f"Task {task_id} not found.")
# Validate ownership
if user_id and task.user_id and task.user_id != user_id:
raise NotFoundError(f"Task {task_id} not found.")
return {
"task_id": task.task_id,
"session_id": task.session_id,
"status": task.status,
"tool_name": task.tool_name,
"operation_id": task.operation_id,
"created_at": task.created_at.isoformat(),
}
# ========== External Completion Webhook ==========
@router.post(
"/operations/{operation_id}/complete",
status_code=200,
)
async def complete_operation(
operation_id: str,
request: OperationCompleteRequest,
x_api_key: str | None = Header(default=None),
) -> dict:
"""
External completion webhook for long-running operations.
Called by Agent Generator (or other services) when an operation completes.
This triggers the stream registry to publish completion and continue LLM generation.
Args:
operation_id: The operation ID to complete.
request: Completion payload with success status and result/error.
x_api_key: Internal API key for authentication.
Returns:
dict: Status of the completion.
Raises:
HTTPException: If API key is invalid or operation not found.
"""
# Validate internal API key
if config.internal_api_key:
if x_api_key != config.internal_api_key:
raise HTTPException(status_code=401, detail="Invalid API key")
else:
# If no internal API key is configured, log a warning
logger.warning(
"Operation complete webhook called without API key validation "
"(CHAT_INTERNAL_API_KEY not configured)"
)
# Find task by operation_id
task = await stream_registry.find_task_by_operation_id(operation_id)
if task is None:
raise HTTPException(
status_code=404,
detail=f"Operation {operation_id} not found",
)
logger.info(
f"Received completion webhook for operation {operation_id} "
f"(task_id={task.task_id}, success={request.success})"
)
if request.success:
# Publish result to stream registry
from .response_model import StreamToolOutputAvailable
result_output = request.result if request.result else {"status": "completed"}
await stream_registry.publish_chunk(
task.task_id,
StreamToolOutputAvailable(
toolCallId=task.tool_call_id,
toolName=task.tool_name,
output=(
result_output
if isinstance(result_output, str)
else str(result_output)
),
success=True,
),
)
# Update pending operation in database
from . import service as svc
result_str = (
request.result
if isinstance(request.result, str)
else str(request.result) if request.result else '{"status": "completed"}'
)
await svc._update_pending_operation(
session_id=task.session_id,
tool_call_id=task.tool_call_id,
result=result_str,
)
# Generate LLM continuation with streaming
await svc._generate_llm_continuation_with_streaming(
session_id=task.session_id,
user_id=task.user_id,
task_id=task.task_id,
)
# Mark task as completed
await stream_registry.mark_task_completed(task.task_id, status="completed")
else:
# Publish error to stream registry
from .response_model import StreamError
error_msg = request.error or "Operation failed"
await stream_registry.publish_chunk(
task.task_id,
StreamError(errorText=error_msg),
)
# Update pending operation with error
from . import service as svc
from .tools.models import ErrorResponse
error_response = ErrorResponse(
message=error_msg,
error=request.error,
)
await svc._update_pending_operation(
session_id=task.session_id,
tool_call_id=task.tool_call_id,
result=error_response.model_dump_json(),
)
# Mark task as failed
await stream_registry.mark_task_completed(task.task_id, status="failed")
return {"status": "ok", "task_id": task.task_id}
# ========== Health Check ==========

File diff suppressed because it is too large Load Diff

View File

@@ -1,470 +0,0 @@
"""Stream registry for managing reconnectable SSE streams.
This module provides a registry for tracking active streaming tasks and their
messages. It supports:
- Creating tasks with unique IDs for long-running operations
- Publishing stream messages to both Redis Streams and in-memory queues
- Subscribing to tasks with replay of missed messages
- Looking up tasks by operation_id for webhook callbacks
"""
import asyncio
import logging
from dataclasses import dataclass, field
from datetime import datetime, timezone
from typing import Any, Literal
import orjson
from backend.data.redis_client import get_redis_async
from .config import ChatConfig
from .response_model import StreamBaseResponse, StreamFinish
logger = logging.getLogger(__name__)
config = ChatConfig()
@dataclass
class ActiveTask:
"""Represents an active streaming task."""
task_id: str
session_id: str
user_id: str | None
tool_call_id: str
tool_name: str
operation_id: str
status: Literal["running", "completed", "failed"] = "running"
created_at: datetime = field(default_factory=lambda: datetime.now(timezone.utc))
queue: asyncio.Queue[StreamBaseResponse] = field(default_factory=asyncio.Queue)
asyncio_task: asyncio.Task | None = None
# Module-level registry for active tasks
_active_tasks: dict[str, ActiveTask] = {}
# Redis key patterns
TASK_META_PREFIX = "chat:task:meta:" # Hash for task metadata
TASK_STREAM_PREFIX = "chat:stream:" # Redis Stream for messages
TASK_OP_PREFIX = "chat:task:op:" # Operation ID -> task_id mapping
def _get_task_meta_key(task_id: str) -> str:
"""Get Redis key for task metadata."""
return f"{TASK_META_PREFIX}{task_id}"
def _get_task_stream_key(task_id: str) -> str:
"""Get Redis key for task message stream."""
return f"{TASK_STREAM_PREFIX}{task_id}"
def _get_operation_mapping_key(operation_id: str) -> str:
"""Get Redis key for operation_id to task_id mapping."""
return f"{TASK_OP_PREFIX}{operation_id}"
async def create_task(
task_id: str,
session_id: str,
user_id: str | None,
tool_call_id: str,
tool_name: str,
operation_id: str,
) -> ActiveTask:
"""Create a new streaming task in memory and Redis.
Args:
task_id: Unique identifier for the task
session_id: Chat session ID
user_id: User ID (may be None for anonymous)
tool_call_id: Tool call ID from the LLM
tool_name: Name of the tool being executed
operation_id: Operation ID for webhook callbacks
Returns:
The created ActiveTask instance
"""
task = ActiveTask(
task_id=task_id,
session_id=session_id,
user_id=user_id,
tool_call_id=tool_call_id,
tool_name=tool_name,
operation_id=operation_id,
)
# Store in memory registry
_active_tasks[task_id] = task
# Store metadata in Redis for durability
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
op_key = _get_operation_mapping_key(operation_id)
await redis.hset( # type: ignore[misc]
meta_key,
mapping={
"task_id": task_id,
"session_id": session_id,
"user_id": user_id or "",
"tool_call_id": tool_call_id,
"tool_name": tool_name,
"operation_id": operation_id,
"status": task.status,
"created_at": task.created_at.isoformat(),
},
)
await redis.expire(meta_key, config.stream_ttl)
# Create operation_id -> task_id mapping for webhook lookups
await redis.set(op_key, task_id, ex=config.stream_ttl)
logger.info(
f"Created streaming task {task_id} for operation {operation_id} "
f"in session {session_id}"
)
return task
async def publish_chunk(
task_id: str,
chunk: StreamBaseResponse,
) -> int:
"""Publish a chunk to the task's stream.
Writes to both Redis Stream (for replay) and in-memory queue (for live subscribers).
Args:
task_id: Task ID to publish to
chunk: The stream response chunk to publish
Returns:
The message index in the Redis Stream
"""
redis = await get_redis_async()
stream_key = _get_task_stream_key(task_id)
# Serialize chunk to JSON
chunk_json = chunk.model_dump_json()
# Add to Redis Stream with auto-generated ID
# The ID format is "timestamp-sequence" which gives us ordering
message_id = await redis.xadd(
stream_key,
{"data": chunk_json},
maxlen=config.stream_max_length,
)
# Publish to in-memory queue if task exists
task = _active_tasks.get(task_id)
if task:
try:
task.queue.put_nowait(chunk)
except asyncio.QueueFull:
logger.warning(f"Queue full for task {task_id}, dropping chunk")
logger.debug(f"Published chunk to task {task_id}, message_id={message_id}")
# Parse the message_id to extract the index
# Redis Stream IDs are "timestamp-sequence", we return the raw ID
return int(message_id.split("-")[1]) if "-" in message_id else 0
async def subscribe_to_task(
task_id: str,
user_id: str | None,
last_idx: int = 0,
) -> asyncio.Queue[StreamBaseResponse] | None:
"""Subscribe to a task's stream with replay of missed messages.
Args:
task_id: Task ID to subscribe to
user_id: User ID for ownership validation
last_idx: Last message index received (0 for full replay)
Returns:
An asyncio Queue that will receive stream chunks, or None if task not found
or user doesn't have access
"""
# Check in-memory first
task = _active_tasks.get(task_id)
if task:
# Validate ownership
if user_id and task.user_id and task.user_id != user_id:
logger.warning(
f"User {user_id} attempted to subscribe to task {task_id} "
f"owned by {task.user_id}"
)
return None
# Create a new queue for this subscriber
subscriber_queue: asyncio.Queue[StreamBaseResponse] = asyncio.Queue()
# Replay from Redis Stream
redis = await get_redis_async()
stream_key = _get_task_stream_key(task_id)
# Read all messages from stream
# Use "0-0" to get all messages or construct ID from last_idx
start_id = "0-0" if last_idx == 0 else f"0-{last_idx}"
messages = await redis.xread({stream_key: start_id}, block=0, count=1000)
if messages:
# messages format: [[stream_name, [(id, {data: json}), ...]]]
for _stream_name, stream_messages in messages:
for _msg_id, msg_data in stream_messages:
if b"data" in msg_data:
try:
chunk_data = orjson.loads(msg_data[b"data"])
# Reconstruct the appropriate response type
chunk = _reconstruct_chunk(chunk_data)
if chunk:
await subscriber_queue.put(chunk)
except Exception as e:
logger.warning(f"Failed to replay message: {e}")
# If task is still running, set up live subscription
if task.status == "running":
# Forward messages from task queue to subscriber queue
async def _forward_messages():
try:
while True:
chunk = await task.queue.get()
await subscriber_queue.put(chunk)
if isinstance(chunk, StreamFinish):
break
except asyncio.CancelledError:
pass
asyncio.create_task(_forward_messages())
else:
# Task is done, add finish marker
await subscriber_queue.put(StreamFinish())
return subscriber_queue
# Try to load from Redis if not in memory
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
if not meta:
logger.warning(f"Task {task_id} not found in memory or Redis")
return None
# Validate ownership
task_user_id = meta.get(b"user_id", b"").decode() or None
if user_id and task_user_id and task_user_id != user_id:
logger.warning(
f"User {user_id} attempted to subscribe to task {task_id} "
f"owned by {task_user_id}"
)
return None
# Replay from Redis Stream only (task is not in memory, so it's completed/crashed)
subscriber_queue = asyncio.Queue()
stream_key = _get_task_stream_key(task_id)
start_id = "0-0" if last_idx == 0 else f"0-{last_idx}"
messages = await redis.xread({stream_key: start_id}, block=0, count=1000)
if messages:
for _stream_name, stream_messages in messages:
for _msg_id, msg_data in stream_messages:
if b"data" in msg_data:
try:
chunk_data = orjson.loads(msg_data[b"data"])
chunk = _reconstruct_chunk(chunk_data)
if chunk:
await subscriber_queue.put(chunk)
except Exception as e:
logger.warning(f"Failed to replay message: {e}")
# Add finish marker since task is not active
await subscriber_queue.put(StreamFinish())
return subscriber_queue
async def mark_task_completed(
task_id: str,
status: Literal["completed", "failed"] = "completed",
) -> None:
"""Mark a task as completed and publish final event.
Args:
task_id: Task ID to mark as completed
status: Final status ("completed" or "failed")
"""
task = _active_tasks.get(task_id)
if task:
task.status = status
# Publish finish event to all subscribers
await publish_chunk(task_id, StreamFinish())
# Remove from active tasks after a short delay to allow subscribers to finish
async def _cleanup():
await asyncio.sleep(5)
_active_tasks.pop(task_id, None)
logger.info(f"Cleaned up task {task_id} from memory")
asyncio.create_task(_cleanup())
# Update Redis metadata
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
await redis.hset(meta_key, "status", status) # type: ignore[misc]
logger.info(f"Marked task {task_id} as {status}")
async def find_task_by_operation_id(operation_id: str) -> ActiveTask | None:
"""Find a task by its operation ID.
Used by webhook callbacks to locate the task to update.
Args:
operation_id: Operation ID to search for
Returns:
ActiveTask if found, None otherwise
"""
# Check in-memory first
for task in _active_tasks.values():
if task.operation_id == operation_id:
return task
# Try Redis lookup
redis = await get_redis_async()
op_key = _get_operation_mapping_key(operation_id)
task_id = await redis.get(op_key)
if task_id:
task_id_str = task_id.decode() if isinstance(task_id, bytes) else task_id
# Check if task is in memory
if task_id_str in _active_tasks:
return _active_tasks[task_id_str]
# Load metadata from Redis
meta_key = _get_task_meta_key(task_id_str)
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
if meta:
# Reconstruct task object (not fully active, but has metadata)
return ActiveTask(
task_id=meta.get(b"task_id", b"").decode(),
session_id=meta.get(b"session_id", b"").decode(),
user_id=meta.get(b"user_id", b"").decode() or None,
tool_call_id=meta.get(b"tool_call_id", b"").decode(),
tool_name=meta.get(b"tool_name", b"").decode(),
operation_id=operation_id,
status=meta.get(b"status", b"running").decode(), # type: ignore
)
return None
async def get_task(task_id: str) -> ActiveTask | None:
"""Get a task by its ID.
Args:
task_id: Task ID to look up
Returns:
ActiveTask if found, None otherwise
"""
# Check in-memory first
if task_id in _active_tasks:
return _active_tasks[task_id]
# Try Redis lookup
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
if meta:
return ActiveTask(
task_id=meta.get(b"task_id", b"").decode(),
session_id=meta.get(b"session_id", b"").decode(),
user_id=meta.get(b"user_id", b"").decode() or None,
tool_call_id=meta.get(b"tool_call_id", b"").decode(),
tool_name=meta.get(b"tool_name", b"").decode(),
operation_id=meta.get(b"operation_id", b"").decode(),
status=meta.get(b"status", b"running").decode(), # type: ignore[arg-type]
)
return None
def _reconstruct_chunk(chunk_data: dict) -> StreamBaseResponse | None:
"""Reconstruct a StreamBaseResponse from JSON data.
Args:
chunk_data: Parsed JSON data from Redis
Returns:
Reconstructed response object, or None if unknown type
"""
from .response_model import (
ResponseType,
StreamError,
StreamFinish,
StreamHeartbeat,
StreamStart,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
StreamToolInputAvailable,
StreamToolInputStart,
StreamToolOutputAvailable,
StreamUsage,
)
chunk_type = chunk_data.get("type")
try:
if chunk_type == ResponseType.START.value:
return StreamStart(**chunk_data)
elif chunk_type == ResponseType.FINISH.value:
return StreamFinish(**chunk_data)
elif chunk_type == ResponseType.TEXT_START.value:
return StreamTextStart(**chunk_data)
elif chunk_type == ResponseType.TEXT_DELTA.value:
return StreamTextDelta(**chunk_data)
elif chunk_type == ResponseType.TEXT_END.value:
return StreamTextEnd(**chunk_data)
elif chunk_type == ResponseType.TOOL_INPUT_START.value:
return StreamToolInputStart(**chunk_data)
elif chunk_type == ResponseType.TOOL_INPUT_AVAILABLE.value:
return StreamToolInputAvailable(**chunk_data)
elif chunk_type == ResponseType.TOOL_OUTPUT_AVAILABLE.value:
return StreamToolOutputAvailable(**chunk_data)
elif chunk_type == ResponseType.ERROR.value:
return StreamError(**chunk_data)
elif chunk_type == ResponseType.USAGE.value:
return StreamUsage(**chunk_data)
elif chunk_type == ResponseType.HEARTBEAT.value:
return StreamHeartbeat(**chunk_data)
else:
logger.warning(f"Unknown chunk type: {chunk_type}")
return None
except Exception as e:
logger.warning(f"Failed to reconstruct chunk of type {chunk_type}: {e}")
return None
async def set_task_asyncio_task(task_id: str, asyncio_task: asyncio.Task) -> None:
"""Associate an asyncio.Task with an ActiveTask.
Args:
task_id: Task ID
asyncio_task: The asyncio Task to associate
"""
task = _active_tasks.get(task_id)
if task:
task.asyncio_task = asyncio_task

View File

@@ -1,79 +0,0 @@
# CoPilot Tools - Future Ideas
## Multimodal Image Support for CoPilot
**Problem:** CoPilot uses a vision-capable model but can't "see" workspace images. When a block generates an image and returns `workspace://abc123`, CoPilot can't evaluate it (e.g., checking blog thumbnail quality).
**Backend Solution:**
When preparing messages for the LLM, detect `workspace://` image references and convert them to proper image content blocks:
```python
# Before sending to LLM, scan for workspace image references
# and inject them as image content parts
# Example message transformation:
# FROM: {"role": "assistant", "content": "Generated image: workspace://abc123"}
# TO: {"role": "assistant", "content": [
# {"type": "text", "text": "Generated image: workspace://abc123"},
# {"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}}
# ]}
```
**Where to implement:**
- In the chat stream handler before calling the LLM
- Or in a message preprocessing step
- Need to fetch image from workspace, convert to base64, add as image content
**Considerations:**
- Only do this for image MIME types (image/png, image/jpeg, etc.)
- May want a size limit (don't pass 10MB images)
- Track which images were "shown" to the AI for frontend indicator
- Cost implications - vision API calls are more expensive
**Frontend Solution:**
Show visual indicator on workspace files in chat:
- If AI saw the image: normal display
- If AI didn't see it: overlay icon saying "AI can't see this image"
Requires response metadata indicating which `workspace://` refs were passed to the model.
---
## Output Post-Processing Layer for run_block
**Problem:** Many blocks produce large outputs that:
- Consume massive context (100KB base64 image = ~133KB tokens)
- Can't fit in conversation
- Break things and cause high LLM costs
**Proposed Solution:** Instead of modifying individual blocks or `store_media_file()`, implement a centralized output processor in `run_block.py` that handles outputs before they're returned to CoPilot.
**Benefits:**
1. **Centralized** - one place to handle all output processing
2. **Future-proof** - new blocks automatically get output processing
3. **Keeps blocks pure** - they don't need to know about context constraints
4. **Handles all large outputs** - not just images
**Processing Rules:**
- Detect base64 data URIs → save to workspace, return `workspace://` reference
- Truncate very long strings (>N chars) with truncation note
- Summarize large arrays/lists (e.g., "Array with 1000 items, first 5: [...]")
- Handle nested large outputs in dicts recursively
- Cap total output size
**Implementation Location:** `run_block.py` after block execution, before returning `BlockOutputResponse`
**Example:**
```python
def _process_outputs_for_context(
outputs: dict[str, list[Any]],
workspace_manager: WorkspaceManager,
max_string_length: int = 10000,
max_array_preview: int = 5,
) -> dict[str, list[Any]]:
"""Process block outputs to prevent context bloat."""
processed = {}
for name, values in outputs.items():
processed[name] = [_process_value(v, workspace_manager) for v in values]
return processed
```

View File

@@ -1,10 +1,8 @@
import logging
from typing import TYPE_CHECKING, Any
from openai.types.chat import ChatCompletionToolParam
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tracking import track_tool_called
from .add_understanding import AddUnderstandingTool
from .agent_output import AgentOutputTool
@@ -18,18 +16,10 @@ from .get_doc_page import GetDocPageTool
from .run_agent import RunAgentTool
from .run_block import RunBlockTool
from .search_docs import SearchDocsTool
from .workspace_files import (
DeleteWorkspaceFileTool,
ListWorkspaceFilesTool,
ReadWorkspaceFileTool,
WriteWorkspaceFileTool,
)
if TYPE_CHECKING:
from backend.api.features.chat.response_model import StreamToolOutputAvailable
logger = logging.getLogger(__name__)
# Single source of truth for all tools
TOOL_REGISTRY: dict[str, BaseTool] = {
"add_understanding": AddUnderstandingTool(),
@@ -43,11 +33,6 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
"view_agent_output": AgentOutputTool(),
"search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(),
# Workspace tools for CoPilot file operations
"list_workspace_files": ListWorkspaceFilesTool(),
"read_workspace_file": ReadWorkspaceFileTool(),
"write_workspace_file": WriteWorkspaceFileTool(),
"delete_workspace_file": DeleteWorkspaceFileTool(),
}
# Export individual tool instances for backwards compatibility
@@ -60,11 +45,6 @@ tools: list[ChatCompletionToolParam] = [
]
def get_tool(tool_name: str) -> BaseTool | None:
"""Get a tool instance by name."""
return TOOL_REGISTRY.get(tool_name)
async def execute_tool(
tool_name: str,
parameters: dict[str, Any],
@@ -73,20 +53,7 @@ async def execute_tool(
tool_call_id: str,
) -> "StreamToolOutputAvailable":
"""Execute a tool by name."""
tool = get_tool(tool_name)
tool = TOOL_REGISTRY.get(tool_name)
if not tool:
raise ValueError(f"Tool {tool_name} not found")
# Track tool call in PostHog
logger.info(
f"Tracking tool call: tool={tool_name}, user={user_id}, "
f"session={session.session_id}, call_id={tool_call_id}"
)
track_tool_called(
user_id=user_id,
session_id=session.session_id,
tool_name=tool_name,
tool_call_id=tool_call_id,
)
return await tool.execute(user_id, session, tool_call_id, **parameters)

View File

@@ -3,6 +3,8 @@
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.data.understanding import (
BusinessUnderstandingInput,
@@ -59,6 +61,7 @@ and automations for the user's specific needs."""
"""Requires authentication to store user-specific data."""
return True
@observe(as_type="tool", name="add_understanding")
async def _execute(
self,
user_id: str | None,

View File

@@ -1,28 +1,29 @@
"""Agent generator package - Creates agents from natural language."""
from .core import (
AgentGeneratorNotConfiguredError,
apply_agent_patch,
decompose_goal,
generate_agent,
generate_agent_patch,
get_agent_as_json,
json_to_graph,
save_agent_to_library,
)
from .service import health_check as check_external_service_health
from .service import is_external_service_configured
from .fixer import apply_all_fixes
from .utils import get_blocks_info
from .validator import validate_agent
__all__ = [
# Core functions
"decompose_goal",
"generate_agent",
"generate_agent_patch",
"apply_agent_patch",
"save_agent_to_library",
"get_agent_as_json",
"json_to_graph",
# Exceptions
"AgentGeneratorNotConfiguredError",
# Service
"is_external_service_configured",
"check_external_service_health",
# Fixer
"apply_all_fixes",
# Validator
"validate_agent",
# Utils
"get_blocks_info",
]

View File

@@ -0,0 +1,25 @@
"""OpenRouter client configuration for agent generation."""
import os
from openai import AsyncOpenAI
# Configuration - use OPEN_ROUTER_API_KEY for consistency with chat/config.py
OPENROUTER_API_KEY = os.getenv("OPEN_ROUTER_API_KEY")
AGENT_GENERATOR_MODEL = os.getenv("AGENT_GENERATOR_MODEL", "anthropic/claude-opus-4.5")
# OpenRouter client (OpenAI-compatible API)
_client: AsyncOpenAI | None = None
def get_client() -> AsyncOpenAI:
"""Get or create the OpenRouter client."""
global _client
if _client is None:
if not OPENROUTER_API_KEY:
raise ValueError("OPENROUTER_API_KEY environment variable is required")
_client = AsyncOpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=OPENROUTER_API_KEY,
)
return _client

View File

@@ -1,5 +1,7 @@
"""Core agent generation functions."""
import copy
import json
import logging
import uuid
from typing import Any
@@ -7,35 +9,13 @@ from typing import Any
from backend.api.features.library import db as library_db
from backend.data.graph import Graph, Link, Node, create_graph
from .service import (
decompose_goal_external,
generate_agent_external,
generate_agent_patch_external,
is_external_service_configured,
)
from .client import AGENT_GENERATOR_MODEL, get_client
from .prompts import DECOMPOSITION_PROMPT, GENERATION_PROMPT, PATCH_PROMPT
from .utils import get_block_summaries, parse_json_from_llm
logger = logging.getLogger(__name__)
class AgentGeneratorNotConfiguredError(Exception):
"""Raised when the external Agent Generator service is not configured."""
pass
def _check_service_configured() -> None:
"""Check if the external Agent Generator service is configured.
Raises:
AgentGeneratorNotConfiguredError: If the service is not configured.
"""
if not is_external_service_configured():
raise AgentGeneratorNotConfiguredError(
"Agent Generator service is not configured. "
"Set AGENTGENERATOR_HOST environment variable to enable agent generation."
)
async def decompose_goal(description: str, context: str = "") -> dict[str, Any] | None:
"""Break down a goal into steps or return clarifying questions.
@@ -48,13 +28,40 @@ async def decompose_goal(description: str, context: str = "") -> dict[str, Any]
- {"type": "clarifying_questions", "questions": [...]}
- {"type": "instructions", "steps": [...]}
Or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for decompose_goal")
return await decompose_goal_external(description, context)
client = get_client()
prompt = DECOMPOSITION_PROMPT.format(block_summaries=get_block_summaries())
full_description = description
if context:
full_description = f"{description}\n\nAdditional context:\n{context}"
try:
response = await client.chat.completions.create(
model=AGENT_GENERATOR_MODEL,
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": full_description},
],
temperature=0,
)
content = response.choices[0].message.content
if content is None:
logger.error("LLM returned empty content for decomposition")
return None
result = parse_json_from_llm(content)
if result is None:
logger.error(f"Failed to parse decomposition response: {content[:200]}")
return None
return result
except Exception as e:
logger.error(f"Error decomposing goal: {e}")
return None
async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
@@ -65,14 +72,31 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
Returns:
Agent JSON dict or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent")
result = await generate_agent_external(instructions)
if result:
client = get_client()
prompt = GENERATION_PROMPT.format(block_summaries=get_block_summaries())
try:
response = await client.chat.completions.create(
model=AGENT_GENERATOR_MODEL,
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": json.dumps(instructions, indent=2)},
],
temperature=0,
)
content = response.choices[0].message.content
if content is None:
logger.error("LLM returned empty content for agent generation")
return None
result = parse_json_from_llm(content)
if result is None:
logger.error(f"Failed to parse agent JSON: {content[:200]}")
return None
# Ensure required fields
if "id" not in result:
result["id"] = str(uuid.uuid4())
@@ -80,7 +104,12 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
result["version"] = 1
if "is_active" not in result:
result["is_active"] = True
return result
return result
except Exception as e:
logger.error(f"Error generating agent: {e}")
return None
def json_to_graph(agent_json: dict[str, Any]) -> Graph:
@@ -189,7 +218,6 @@ async def save_agent_to_library(
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
@@ -255,23 +283,108 @@ async def get_agent_as_json(
async def generate_agent_patch(
update_request: str, current_agent: dict[str, Any]
) -> dict[str, Any] | None:
"""Update an existing agent using natural language.
The external Agent Generator service handles:
- Generating the patch
- Applying the patch
- Fixing and validating the result
"""Generate a patch to update an existing agent.
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
Returns:
Updated agent JSON, clarifying questions dict, or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
Patch dict or clarifying questions, or None on error
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent_patch")
return await generate_agent_patch_external(update_request, current_agent)
client = get_client()
prompt = PATCH_PROMPT.format(
current_agent=json.dumps(current_agent, indent=2),
block_summaries=get_block_summaries(),
)
try:
response = await client.chat.completions.create(
model=AGENT_GENERATOR_MODEL,
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": update_request},
],
temperature=0,
)
content = response.choices[0].message.content
if content is None:
logger.error("LLM returned empty content for patch generation")
return None
return parse_json_from_llm(content)
except Exception as e:
logger.error(f"Error generating patch: {e}")
return None
def apply_agent_patch(
current_agent: dict[str, Any], patch: dict[str, Any]
) -> dict[str, Any]:
"""Apply a patch to an existing agent.
Args:
current_agent: Current agent JSON
patch: Patch dict with operations
Returns:
Updated agent JSON
"""
agent = copy.deepcopy(current_agent)
patches = patch.get("patches", [])
for p in patches:
patch_type = p.get("type")
if patch_type == "modify":
node_id = p.get("node_id")
changes = p.get("changes", {})
for node in agent.get("nodes", []):
if node["id"] == node_id:
_deep_update(node, changes)
logger.debug(f"Modified node {node_id}")
break
elif patch_type == "add":
new_nodes = p.get("new_nodes", [])
new_links = p.get("new_links", [])
agent["nodes"] = agent.get("nodes", []) + new_nodes
agent["links"] = agent.get("links", []) + new_links
logger.debug(f"Added {len(new_nodes)} nodes, {len(new_links)} links")
elif patch_type == "remove":
node_ids_to_remove = set(p.get("node_ids", []))
link_ids_to_remove = set(p.get("link_ids", []))
# Remove nodes
agent["nodes"] = [
n for n in agent.get("nodes", []) if n["id"] not in node_ids_to_remove
]
# Remove links (both explicit and those referencing removed nodes)
agent["links"] = [
link
for link in agent.get("links", [])
if link["id"] not in link_ids_to_remove
and link["source_id"] not in node_ids_to_remove
and link["sink_id"] not in node_ids_to_remove
]
logger.debug(
f"Removed {len(node_ids_to_remove)} nodes, {len(link_ids_to_remove)} links"
)
return agent
def _deep_update(target: dict, source: dict) -> None:
"""Recursively update a dict with another dict."""
for key, value in source.items():
if key in target and isinstance(target[key], dict) and isinstance(value, dict):
_deep_update(target[key], value)
else:
target[key] = value

View File

@@ -0,0 +1,606 @@
"""Agent fixer - Fixes common LLM generation errors."""
import logging
import re
import uuid
from typing import Any
from .utils import (
ADDTODICTIONARY_BLOCK_ID,
ADDTOLIST_BLOCK_ID,
CODE_EXECUTION_BLOCK_ID,
CONDITION_BLOCK_ID,
CREATEDICT_BLOCK_ID,
CREATELIST_BLOCK_ID,
DATA_SAMPLING_BLOCK_ID,
DOUBLE_CURLY_BRACES_BLOCK_IDS,
GET_CURRENT_DATE_BLOCK_ID,
STORE_VALUE_BLOCK_ID,
UNIVERSAL_TYPE_CONVERTER_BLOCK_ID,
get_blocks_info,
is_valid_uuid,
)
logger = logging.getLogger(__name__)
def fix_agent_ids(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix invalid UUIDs in agent and link IDs."""
# Fix agent ID
if not is_valid_uuid(agent.get("id", "")):
agent["id"] = str(uuid.uuid4())
logger.debug(f"Fixed agent ID: {agent['id']}")
# Fix node IDs
id_mapping = {} # Old ID -> New ID
for node in agent.get("nodes", []):
if not is_valid_uuid(node.get("id", "")):
old_id = node.get("id", "")
new_id = str(uuid.uuid4())
id_mapping[old_id] = new_id
node["id"] = new_id
logger.debug(f"Fixed node ID: {old_id} -> {new_id}")
# Fix link IDs and update references
for link in agent.get("links", []):
if not is_valid_uuid(link.get("id", "")):
link["id"] = str(uuid.uuid4())
logger.debug(f"Fixed link ID: {link['id']}")
# Update source/sink IDs if they were remapped
if link.get("source_id") in id_mapping:
link["source_id"] = id_mapping[link["source_id"]]
if link.get("sink_id") in id_mapping:
link["sink_id"] = id_mapping[link["sink_id"]]
return agent
def fix_double_curly_braces(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix single curly braces to double in template blocks."""
for node in agent.get("nodes", []):
if node.get("block_id") not in DOUBLE_CURLY_BRACES_BLOCK_IDS:
continue
input_data = node.get("input_default", {})
for key in ("prompt", "format"):
if key in input_data and isinstance(input_data[key], str):
original = input_data[key]
# Fix simple variable references: {var} -> {{var}}
fixed = re.sub(
r"(?<!\{)\{([a-zA-Z_][a-zA-Z0-9_]*)\}(?!\})",
r"{{\1}}",
original,
)
if fixed != original:
input_data[key] = fixed
logger.debug(f"Fixed curly braces in {key}")
return agent
def fix_storevalue_before_condition(agent: dict[str, Any]) -> dict[str, Any]:
"""Add StoreValueBlock before ConditionBlock if needed for value2."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
# Find all ConditionBlock nodes
condition_node_ids = {
node["id"] for node in nodes if node.get("block_id") == CONDITION_BLOCK_ID
}
if not condition_node_ids:
return agent
new_nodes = []
new_links = []
processed_conditions = set()
for link in links:
sink_id = link.get("sink_id")
sink_name = link.get("sink_name")
# Check if this link goes to a ConditionBlock's value2
if sink_id in condition_node_ids and sink_name == "value2":
source_node = next(
(n for n in nodes if n["id"] == link.get("source_id")), None
)
# Skip if source is already a StoreValueBlock
if source_node and source_node.get("block_id") == STORE_VALUE_BLOCK_ID:
continue
# Skip if we already processed this condition
if sink_id in processed_conditions:
continue
processed_conditions.add(sink_id)
# Create StoreValueBlock
store_node_id = str(uuid.uuid4())
store_node = {
"id": store_node_id,
"block_id": STORE_VALUE_BLOCK_ID,
"input_default": {"data": None},
"metadata": {"position": {"x": 0, "y": -100}},
}
new_nodes.append(store_node)
# Create link: original source -> StoreValueBlock
new_links.append(
{
"id": str(uuid.uuid4()),
"source_id": link["source_id"],
"source_name": link["source_name"],
"sink_id": store_node_id,
"sink_name": "input",
"is_static": False,
}
)
# Update original link: StoreValueBlock -> ConditionBlock
link["source_id"] = store_node_id
link["source_name"] = "output"
logger.debug(f"Added StoreValueBlock before ConditionBlock {sink_id}")
if new_nodes:
agent["nodes"] = nodes + new_nodes
return agent
def fix_addtolist_blocks(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix AddToList blocks by adding prerequisite empty AddToList block.
When an AddToList block is found:
1. Checks if there's a CreateListBlock before it
2. Removes CreateListBlock if linked directly to AddToList
3. Adds an empty AddToList block before the original
4. Ensures the original has a self-referencing link
"""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
new_nodes = []
original_addtolist_ids = set()
nodes_to_remove = set()
links_to_remove = []
# First pass: identify CreateListBlock nodes to remove
for link in links:
source_node = next(
(n for n in nodes if n.get("id") == link.get("source_id")), None
)
sink_node = next((n for n in nodes if n.get("id") == link.get("sink_id")), None)
if (
source_node
and sink_node
and source_node.get("block_id") == CREATELIST_BLOCK_ID
and sink_node.get("block_id") == ADDTOLIST_BLOCK_ID
):
nodes_to_remove.add(source_node.get("id"))
links_to_remove.append(link)
logger.debug(f"Removing CreateListBlock {source_node.get('id')}")
# Second pass: process AddToList blocks
filtered_nodes = []
for node in nodes:
if node.get("id") in nodes_to_remove:
continue
if node.get("block_id") == ADDTOLIST_BLOCK_ID:
original_addtolist_ids.add(node.get("id"))
node_id = node.get("id")
pos = node.get("metadata", {}).get("position", {"x": 0, "y": 0})
# Check if already has prerequisite
has_prereq = any(
link.get("sink_id") == node_id
and link.get("sink_name") == "list"
and link.get("source_name") == "updated_list"
for link in links
)
if not has_prereq:
# Remove links to "list" input (except self-reference)
for link in links:
if (
link.get("sink_id") == node_id
and link.get("sink_name") == "list"
and link.get("source_id") != node_id
and link not in links_to_remove
):
links_to_remove.append(link)
# Create prerequisite AddToList block
prereq_id = str(uuid.uuid4())
prereq_node = {
"id": prereq_id,
"block_id": ADDTOLIST_BLOCK_ID,
"input_default": {"list": [], "entry": None, "entries": []},
"metadata": {
"position": {"x": pos.get("x", 0) - 800, "y": pos.get("y", 0)}
},
}
new_nodes.append(prereq_node)
# Link prerequisite to original
links.append(
{
"id": str(uuid.uuid4()),
"source_id": prereq_id,
"source_name": "updated_list",
"sink_id": node_id,
"sink_name": "list",
"is_static": False,
}
)
logger.debug(f"Added prerequisite AddToList block for {node_id}")
filtered_nodes.append(node)
# Remove marked links
filtered_links = [link for link in links if link not in links_to_remove]
# Add self-referencing links for original AddToList blocks
for node in filtered_nodes + new_nodes:
if (
node.get("block_id") == ADDTOLIST_BLOCK_ID
and node.get("id") in original_addtolist_ids
):
node_id = node.get("id")
has_self_ref = any(
link["source_id"] == node_id
and link["sink_id"] == node_id
and link["source_name"] == "updated_list"
and link["sink_name"] == "list"
for link in filtered_links
)
if not has_self_ref:
filtered_links.append(
{
"id": str(uuid.uuid4()),
"source_id": node_id,
"source_name": "updated_list",
"sink_id": node_id,
"sink_name": "list",
"is_static": False,
}
)
logger.debug(f"Added self-reference for AddToList {node_id}")
agent["nodes"] = filtered_nodes + new_nodes
agent["links"] = filtered_links
return agent
def fix_addtodictionary_blocks(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix AddToDictionary blocks by removing empty CreateDictionary nodes."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
nodes_to_remove = set()
links_to_remove = []
for link in links:
source_node = next(
(n for n in nodes if n.get("id") == link.get("source_id")), None
)
sink_node = next((n for n in nodes if n.get("id") == link.get("sink_id")), None)
if (
source_node
and sink_node
and source_node.get("block_id") == CREATEDICT_BLOCK_ID
and sink_node.get("block_id") == ADDTODICTIONARY_BLOCK_ID
):
nodes_to_remove.add(source_node.get("id"))
links_to_remove.append(link)
logger.debug(f"Removing CreateDictionary {source_node.get('id')}")
agent["nodes"] = [n for n in nodes if n.get("id") not in nodes_to_remove]
agent["links"] = [link for link in links if link not in links_to_remove]
return agent
def fix_code_execution_output(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix CodeExecutionBlock output: change 'response' to 'stdout_logs'."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
for link in links:
source_node = next(
(n for n in nodes if n.get("id") == link.get("source_id")), None
)
if (
source_node
and source_node.get("block_id") == CODE_EXECUTION_BLOCK_ID
and link.get("source_name") == "response"
):
link["source_name"] = "stdout_logs"
logger.debug("Fixed CodeExecutionBlock output: response -> stdout_logs")
return agent
def fix_data_sampling_sample_size(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix DataSamplingBlock by setting sample_size to 1 as default."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
links_to_remove = []
for node in nodes:
if node.get("block_id") == DATA_SAMPLING_BLOCK_ID:
node_id = node.get("id")
input_default = node.get("input_default", {})
# Remove links to sample_size
for link in links:
if (
link.get("sink_id") == node_id
and link.get("sink_name") == "sample_size"
):
links_to_remove.append(link)
# Set default
input_default["sample_size"] = 1
node["input_default"] = input_default
logger.debug(f"Fixed DataSamplingBlock {node_id} sample_size to 1")
if links_to_remove:
agent["links"] = [link for link in links if link not in links_to_remove]
return agent
def fix_node_x_coordinates(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix node x-coordinates to ensure 800+ unit spacing between linked nodes."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
node_lookup = {n.get("id"): n for n in nodes}
for link in links:
source_id = link.get("source_id")
sink_id = link.get("sink_id")
source_node = node_lookup.get(source_id)
sink_node = node_lookup.get(sink_id)
if not source_node or not sink_node:
continue
source_pos = source_node.get("metadata", {}).get("position", {})
sink_pos = sink_node.get("metadata", {}).get("position", {})
source_x = source_pos.get("x", 0)
sink_x = sink_pos.get("x", 0)
if abs(sink_x - source_x) < 800:
new_x = source_x + 800
if "metadata" not in sink_node:
sink_node["metadata"] = {}
if "position" not in sink_node["metadata"]:
sink_node["metadata"]["position"] = {}
sink_node["metadata"]["position"]["x"] = new_x
logger.debug(f"Fixed node {sink_id} x: {sink_x} -> {new_x}")
return agent
def fix_getcurrentdate_offset(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix GetCurrentDateBlock offset to ensure it's positive."""
for node in agent.get("nodes", []):
if node.get("block_id") == GET_CURRENT_DATE_BLOCK_ID:
input_default = node.get("input_default", {})
if "offset" in input_default:
offset = input_default["offset"]
if isinstance(offset, (int, float)) and offset < 0:
input_default["offset"] = abs(offset)
logger.debug(f"Fixed offset: {offset} -> {abs(offset)}")
return agent
def fix_ai_model_parameter(
agent: dict[str, Any],
blocks_info: list[dict[str, Any]],
default_model: str = "gpt-4o",
) -> dict[str, Any]:
"""Add default model parameter to AI blocks if missing."""
block_map = {b.get("id"): b for b in blocks_info}
for node in agent.get("nodes", []):
block_id = node.get("block_id")
block = block_map.get(block_id)
if not block:
continue
# Check if block has AI category
categories = block.get("categories", [])
is_ai_block = any(
cat.get("category") == "AI" for cat in categories if isinstance(cat, dict)
)
if is_ai_block:
input_default = node.get("input_default", {})
if "model" not in input_default:
input_default["model"] = default_model
node["input_default"] = input_default
logger.debug(
f"Added model '{default_model}' to AI block {node.get('id')}"
)
return agent
def fix_link_static_properties(
agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> dict[str, Any]:
"""Fix is_static property based on source block's staticOutput."""
block_map = {b.get("id"): b for b in blocks_info}
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
for link in agent.get("links", []):
source_node = node_lookup.get(link.get("source_id"))
if not source_node:
continue
source_block = block_map.get(source_node.get("block_id"))
if not source_block:
continue
static_output = source_block.get("staticOutput", False)
if link.get("is_static") != static_output:
link["is_static"] = static_output
logger.debug(f"Fixed link {link.get('id')} is_static to {static_output}")
return agent
def fix_data_type_mismatch(
agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> dict[str, Any]:
"""Fix data type mismatches by inserting UniversalTypeConverterBlock."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
block_map = {b.get("id"): b for b in blocks_info}
node_lookup = {n.get("id"): n for n in nodes}
def get_property_type(schema: dict, name: str) -> str | None:
if "_#_" in name:
parent, child = name.split("_#_", 1)
parent_schema = schema.get(parent, {})
if "properties" in parent_schema:
return parent_schema["properties"].get(child, {}).get("type")
return None
return schema.get(name, {}).get("type")
def are_types_compatible(src: str, sink: str) -> bool:
if {src, sink} <= {"integer", "number"}:
return True
return src == sink
type_mapping = {
"string": "string",
"text": "string",
"integer": "number",
"number": "number",
"float": "number",
"boolean": "boolean",
"bool": "boolean",
"array": "list",
"list": "list",
"object": "dictionary",
"dict": "dictionary",
"dictionary": "dictionary",
}
new_links = []
nodes_to_add = []
for link in links:
source_node = node_lookup.get(link.get("source_id"))
sink_node = node_lookup.get(link.get("sink_id"))
if not source_node or not sink_node:
new_links.append(link)
continue
source_block = block_map.get(source_node.get("block_id"))
sink_block = block_map.get(sink_node.get("block_id"))
if not source_block or not sink_block:
new_links.append(link)
continue
source_outputs = source_block.get("outputSchema", {}).get("properties", {})
sink_inputs = sink_block.get("inputSchema", {}).get("properties", {})
source_type = get_property_type(source_outputs, link.get("source_name", ""))
sink_type = get_property_type(sink_inputs, link.get("sink_name", ""))
if (
source_type
and sink_type
and not are_types_compatible(source_type, sink_type)
):
# Insert type converter
converter_id = str(uuid.uuid4())
target_type = type_mapping.get(sink_type, sink_type)
converter_node = {
"id": converter_id,
"block_id": UNIVERSAL_TYPE_CONVERTER_BLOCK_ID,
"input_default": {"type": target_type},
"metadata": {"position": {"x": 0, "y": 100}},
}
nodes_to_add.append(converter_node)
# source -> converter
new_links.append(
{
"id": str(uuid.uuid4()),
"source_id": link["source_id"],
"source_name": link["source_name"],
"sink_id": converter_id,
"sink_name": "value",
"is_static": False,
}
)
# converter -> sink
new_links.append(
{
"id": str(uuid.uuid4()),
"source_id": converter_id,
"source_name": "value",
"sink_id": link["sink_id"],
"sink_name": link["sink_name"],
"is_static": False,
}
)
logger.debug(f"Inserted type converter: {source_type} -> {target_type}")
else:
new_links.append(link)
if nodes_to_add:
agent["nodes"] = nodes + nodes_to_add
agent["links"] = new_links
return agent
def apply_all_fixes(
agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
) -> dict[str, Any]:
"""Apply all fixes to an agent JSON.
Args:
agent: Agent JSON dict
blocks_info: Optional list of block info dicts for advanced fixes
Returns:
Fixed agent JSON
"""
# Basic fixes (no block info needed)
agent = fix_agent_ids(agent)
agent = fix_double_curly_braces(agent)
agent = fix_storevalue_before_condition(agent)
agent = fix_addtolist_blocks(agent)
agent = fix_addtodictionary_blocks(agent)
agent = fix_code_execution_output(agent)
agent = fix_data_sampling_sample_size(agent)
agent = fix_node_x_coordinates(agent)
agent = fix_getcurrentdate_offset(agent)
# Advanced fixes (require block info)
if blocks_info is None:
blocks_info = get_blocks_info()
agent = fix_ai_model_parameter(agent, blocks_info)
agent = fix_link_static_properties(agent, blocks_info)
agent = fix_data_type_mismatch(agent, blocks_info)
return agent

View File

@@ -0,0 +1,225 @@
"""Prompt templates for agent generation."""
DECOMPOSITION_PROMPT = """
You are an expert AutoGPT Workflow Decomposer. Your task is to analyze a user's high-level goal and break it down into a clear, step-by-step plan using the available blocks.
Each step should represent a distinct, automatable action suitable for execution by an AI automation system.
---
FIRST: Analyze the user's goal and determine:
1) Design-time configuration (fixed settings that won't change per run)
2) Runtime inputs (values the agent's end-user will provide each time it runs)
For anything that can vary per run (email addresses, names, dates, search terms, etc.):
- DO NOT ask for the actual value
- Instead, define it as an Agent Input with a clear name, type, and description
Only ask clarifying questions about design-time config that affects how you build the workflow:
- Which external service to use (e.g., "Gmail vs Outlook", "Notion vs Google Docs")
- Required formats or structures (e.g., "CSV, JSON, or PDF output?")
- Business rules that must be hard-coded
IMPORTANT CLARIFICATIONS POLICY:
- Ask no more than five essential questions
- Do not ask for concrete values that can be provided at runtime as Agent Inputs
- Do not ask for API keys or credentials; the platform handles those directly
- If there is enough information to infer reasonable defaults, prefer to propose defaults
---
GUIDELINES:
1. List each step as a numbered item
2. Describe the action clearly and specify inputs/outputs
3. Ensure steps are in logical, sequential order
4. Mention block names naturally (e.g., "Use GetWeatherByLocationBlock to...")
5. Help the user reach their goal efficiently
---
RULES:
1. OUTPUT FORMAT: Only output either clarifying questions OR step-by-step instructions, not both
2. USE ONLY THE BLOCKS PROVIDED
3. ALL required_input fields must be provided
4. Data types of linked properties must match
5. Write expert-level prompts for AI-related blocks
---
CRITICAL BLOCK RESTRICTIONS:
1. AddToListBlock: Outputs updated list EVERY addition, not after all additions
2. SendEmailBlock: Draft the email for user review; set SMTP config based on email type
3. ConditionBlock: value2 is reference, value1 is contrast
4. CodeExecutionBlock: DO NOT USE - use AI blocks instead
5. ReadCsvBlock: Only use the 'rows' output, not 'row'
---
OUTPUT FORMAT:
If more information is needed:
```json
{{
"type": "clarifying_questions",
"questions": [
{{
"question": "Which email provider should be used? (Gmail, Outlook, custom SMTP)",
"keyword": "email_provider",
"example": "Gmail"
}}
]
}}
```
If ready to proceed:
```json
{{
"type": "instructions",
"steps": [
{{
"step_number": 1,
"block_name": "AgentShortTextInputBlock",
"description": "Get the URL of the content to analyze.",
"inputs": [{{"name": "name", "value": "URL"}}],
"outputs": [{{"name": "result", "description": "The URL entered by user"}}]
}}
]
}}
```
---
AVAILABLE BLOCKS:
{block_summaries}
"""
GENERATION_PROMPT = """
You are an expert AI workflow builder. Generate a valid agent JSON from the given instructions.
---
NODES:
Each node must include:
- `id`: Unique UUID v4 (e.g. `a8f5b1e2-c3d4-4e5f-8a9b-0c1d2e3f4a5b`)
- `block_id`: The block identifier (must match an Allowed Block)
- `input_default`: Dict of inputs (can be empty if no static inputs needed)
- `metadata`: Must contain:
- `position`: {{"x": number, "y": number}} - adjacent nodes should differ by 800+ in X
- `customized_name`: Clear name describing this block's purpose in the workflow
---
LINKS:
Each link connects a source node's output to a sink node's input:
- `id`: MUST be UUID v4 (NOT "link-1", "link-2", etc.)
- `source_id`: ID of the source node
- `source_name`: Output field name from the source block
- `sink_id`: ID of the sink node
- `sink_name`: Input field name on the sink block
- `is_static`: true only if source block has static_output: true
CRITICAL: All IDs must be valid UUID v4 format!
---
AGENT (GRAPH):
Wrap nodes and links in:
- `id`: UUID of the agent
- `name`: Short, generic name (avoid specific company names, URLs)
- `description`: Short, generic description
- `nodes`: List of all nodes
- `links`: List of all links
- `version`: 1
- `is_active`: true
---
TIPS:
- All required_input fields must be provided via input_default or a valid link
- Ensure consistent source_id and sink_id references
- Avoid dangling links
- Input/output pins must match block schemas
- Do not invent unknown block_ids
---
ALLOWED BLOCKS:
{block_summaries}
---
Generate the complete agent JSON. Output ONLY valid JSON, no explanation.
"""
PATCH_PROMPT = """
You are an expert at modifying AutoGPT agent workflows. Given the current agent and a modification request, generate a JSON patch to update the agent.
CURRENT AGENT:
{current_agent}
AVAILABLE BLOCKS:
{block_summaries}
---
PATCH FORMAT:
Return a JSON object with the following structure:
```json
{{
"type": "patch",
"intent": "Brief description of what the patch does",
"patches": [
{{
"type": "modify",
"node_id": "uuid-of-node-to-modify",
"changes": {{
"input_default": {{"field": "new_value"}},
"metadata": {{"customized_name": "New Name"}}
}}
}},
{{
"type": "add",
"new_nodes": [
{{
"id": "new-uuid",
"block_id": "block-uuid",
"input_default": {{}},
"metadata": {{"position": {{"x": 0, "y": 0}}, "customized_name": "Name"}}
}}
],
"new_links": [
{{
"id": "link-uuid",
"source_id": "source-node-id",
"source_name": "output_field",
"sink_id": "sink-node-id",
"sink_name": "input_field"
}}
]
}},
{{
"type": "remove",
"node_ids": ["uuid-of-node-to-remove"],
"link_ids": ["uuid-of-link-to-remove"]
}}
]
}}
```
If you need more information, return:
```json
{{
"type": "clarifying_questions",
"questions": [
{{
"question": "What specific change do you want?",
"keyword": "change_type",
"example": "Add error handling"
}}
]
}}
```
Generate the minimal patch needed. Output ONLY valid JSON.
"""

View File

@@ -1,269 +0,0 @@
"""External Agent Generator service client.
This module provides a client for communicating with the external Agent Generator
microservice. When AGENTGENERATOR_HOST is configured, the agent generation functions
will delegate to the external service instead of using the built-in LLM-based implementation.
"""
import logging
from typing import Any
import httpx
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
_client: httpx.AsyncClient | None = None
_settings: Settings | None = None
def _get_settings() -> Settings:
"""Get or create settings singleton."""
global _settings
if _settings is None:
_settings = Settings()
return _settings
def is_external_service_configured() -> bool:
"""Check if external Agent Generator service is configured."""
settings = _get_settings()
return bool(settings.config.agentgenerator_host)
def _get_base_url() -> str:
"""Get the base URL for the external service."""
settings = _get_settings()
host = settings.config.agentgenerator_host
port = settings.config.agentgenerator_port
return f"http://{host}:{port}"
def _get_client() -> httpx.AsyncClient:
"""Get or create the HTTP client for the external service."""
global _client
if _client is None:
settings = _get_settings()
_client = httpx.AsyncClient(
base_url=_get_base_url(),
timeout=httpx.Timeout(settings.config.agentgenerator_timeout),
)
return _client
async def decompose_goal_external(
description: str, context: str = ""
) -> dict[str, Any] | None:
"""Call the external service to decompose a goal.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
Returns:
Dict with either:
- {"type": "clarifying_questions", "questions": [...]}
- {"type": "instructions", "steps": [...]}
- {"type": "unachievable_goal", ...}
- {"type": "vague_goal", ...}
Or None on error
"""
client = _get_client()
# Build the request payload
payload: dict[str, Any] = {"description": description}
if context:
# The external service uses user_instruction for additional context
payload["user_instruction"] = context
try:
response = await client.post("/api/decompose-description", json=payload)
response.raise_for_status()
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
# Map the response to the expected format
response_type = data.get("type")
if response_type == "instructions":
return {"type": "instructions", "steps": data.get("steps", [])}
elif response_type == "clarifying_questions":
return {
"type": "clarifying_questions",
"questions": data.get("questions", []),
}
elif response_type == "unachievable_goal":
return {
"type": "unachievable_goal",
"reason": data.get("reason"),
"suggested_goal": data.get("suggested_goal"),
}
elif response_type == "vague_goal":
return {
"type": "vague_goal",
"suggested_goal": data.get("suggested_goal"),
}
else:
logger.error(
f"Unknown response type from external service: {response_type}"
)
return None
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
async def generate_agent_external(
instructions: dict[str, Any]
) -> dict[str, Any] | None:
"""Call the external service to generate an agent from instructions.
Args:
instructions: Structured instructions from decompose_goal
Returns:
Agent JSON dict or None on error
"""
client = _get_client()
try:
response = await client.post(
"/api/generate-agent", json={"instructions": instructions}
)
response.raise_for_status()
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
return data.get("agent_json")
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
async def generate_agent_patch_external(
update_request: str, current_agent: dict[str, Any]
) -> dict[str, Any] | None:
"""Call the external service to generate a patch for an existing agent.
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
Returns:
Updated agent JSON, clarifying questions dict, or None on error
"""
client = _get_client()
try:
response = await client.post(
"/api/update-agent",
json={
"update_request": update_request,
"current_agent_json": current_agent,
},
)
response.raise_for_status()
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
# Check if it's clarifying questions
if data.get("type") == "clarifying_questions":
return {
"type": "clarifying_questions",
"questions": data.get("questions", []),
}
# Otherwise return the updated agent JSON
return data.get("agent_json")
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
async def get_blocks_external() -> list[dict[str, Any]] | None:
"""Get available blocks from the external service.
Returns:
List of block info dicts or None on error
"""
client = _get_client()
try:
response = await client.get("/api/blocks")
response.raise_for_status()
data = response.json()
if not data.get("success"):
logger.error("External service returned error getting blocks")
return None
return data.get("blocks", [])
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error getting blocks from external service: {e}")
return None
except httpx.RequestError as e:
logger.error(f"Request error getting blocks from external service: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error getting blocks from external service: {e}")
return None
async def health_check() -> bool:
"""Check if the external service is healthy.
Returns:
True if healthy, False otherwise
"""
if not is_external_service_configured():
return False
client = _get_client()
try:
response = await client.get("/health")
response.raise_for_status()
data = response.json()
return data.get("status") == "healthy" and data.get("blocks_loaded", False)
except Exception as e:
logger.warning(f"External agent generator health check failed: {e}")
return False
async def close_client() -> None:
"""Close the HTTP client."""
global _client
if _client is not None:
await _client.aclose()
_client = None

View File

@@ -0,0 +1,213 @@
"""Utilities for agent generation."""
import json
import re
from typing import Any
from backend.data.block import get_blocks
# UUID validation regex
UUID_REGEX = re.compile(
r"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$"
)
# Block IDs for various fixes
STORE_VALUE_BLOCK_ID = "1ff065e9-88e8-4358-9d82-8dc91f622ba9"
CONDITION_BLOCK_ID = "715696a0-e1da-45c8-b209-c2fa9c3b0be6"
ADDTOLIST_BLOCK_ID = "aeb08fc1-2fc1-4141-bc8e-f758f183a822"
ADDTODICTIONARY_BLOCK_ID = "31d1064e-7446-4693-a7d4-65e5ca1180d1"
CREATELIST_BLOCK_ID = "a912d5c7-6e00-4542-b2a9-8034136930e4"
CREATEDICT_BLOCK_ID = "b924ddf4-de4f-4b56-9a85-358930dcbc91"
CODE_EXECUTION_BLOCK_ID = "0b02b072-abe7-11ef-8372-fb5d162dd712"
DATA_SAMPLING_BLOCK_ID = "4a448883-71fa-49cf-91cf-70d793bd7d87"
UNIVERSAL_TYPE_CONVERTER_BLOCK_ID = "95d1b990-ce13-4d88-9737-ba5c2070c97b"
GET_CURRENT_DATE_BLOCK_ID = "b29c1b50-5d0e-4d9f-8f9d-1b0e6fcbf0b1"
DOUBLE_CURLY_BRACES_BLOCK_IDS = [
"44f6c8ad-d75c-4ae1-8209-aad1c0326928", # FillTextTemplateBlock
"6ab085e2-20b3-4055-bc3e-08036e01eca6",
"90f8c45e-e983-4644-aa0b-b4ebe2f531bc",
"363ae599-353e-4804-937e-b2ee3cef3da4", # AgentOutputBlock
"3b191d9f-356f-482d-8238-ba04b6d18381",
"db7d8f02-2f44-4c55-ab7a-eae0941f0c30",
"3a7c4b8d-6e2f-4a5d-b9c1-f8d23c5a9b0e",
"ed1ae7a0-b770-4089-b520-1f0005fad19a",
"a892b8d9-3e4e-4e9c-9c1e-75f8efcf1bfa",
"b29c1b50-5d0e-4d9f-8f9d-1b0e6fcbf0b1",
"716a67b3-6760-42e7-86dc-18645c6e00fc",
"530cf046-2ce0-4854-ae2c-659db17c7a46",
"ed55ac19-356e-4243-a6cb-bc599e9b716f",
"1f292d4a-41a4-4977-9684-7c8d560b9f91", # LLM blocks
"32a87eab-381e-4dd4-bdb8-4c47151be35a",
]
def is_valid_uuid(value: str) -> bool:
"""Check if a string is a valid UUID v4."""
return isinstance(value, str) and UUID_REGEX.match(value) is not None
def _compact_schema(schema: dict) -> dict[str, str]:
"""Extract compact type info from a JSON schema properties dict.
Returns a dict of {field_name: type_string} for essential info only.
"""
props = schema.get("properties", {})
result = {}
for name, prop in props.items():
# Skip internal/complex fields
if name.startswith("_"):
continue
# Get type string
type_str = prop.get("type", "any")
# Handle anyOf/oneOf (optional types)
if "anyOf" in prop:
types = [t.get("type", "?") for t in prop["anyOf"] if t.get("type")]
type_str = "|".join(types) if types else "any"
elif "allOf" in prop:
type_str = "object"
# Add array item type if present
if type_str == "array" and "items" in prop:
items = prop["items"]
if isinstance(items, dict):
item_type = items.get("type", "any")
type_str = f"array[{item_type}]"
result[name] = type_str
return result
def get_block_summaries(include_schemas: bool = True) -> str:
"""Generate compact block summaries for prompts.
Args:
include_schemas: Whether to include input/output type info
Returns:
Formatted string of block summaries (compact format)
"""
blocks = get_blocks()
summaries = []
for block_id, block_cls in blocks.items():
block = block_cls()
name = block.name
desc = getattr(block, "description", "") or ""
# Truncate description
if len(desc) > 150:
desc = desc[:147] + "..."
if not include_schemas:
summaries.append(f"- {name} (id: {block_id}): {desc}")
else:
# Compact format with type info only
inputs = {}
outputs = {}
required = []
if hasattr(block, "input_schema"):
try:
schema = block.input_schema.jsonschema()
inputs = _compact_schema(schema)
required = schema.get("required", [])
except Exception:
pass
if hasattr(block, "output_schema"):
try:
schema = block.output_schema.jsonschema()
outputs = _compact_schema(schema)
except Exception:
pass
# Build compact line format
# Format: NAME (id): desc | in: {field:type, ...} [required] | out: {field:type}
in_str = ", ".join(f"{k}:{v}" for k, v in inputs.items())
out_str = ", ".join(f"{k}:{v}" for k, v in outputs.items())
req_str = f" req=[{','.join(required)}]" if required else ""
static = " [static]" if getattr(block, "static_output", False) else ""
line = f"- {name} (id: {block_id}): {desc}"
if in_str:
line += f"\n in: {{{in_str}}}{req_str}"
if out_str:
line += f"\n out: {{{out_str}}}{static}"
summaries.append(line)
return "\n".join(summaries)
def get_blocks_info() -> list[dict[str, Any]]:
"""Get block information with schemas for validation and fixing."""
blocks = get_blocks()
blocks_info = []
for block_id, block_cls in blocks.items():
block = block_cls()
blocks_info.append(
{
"id": block_id,
"name": block.name,
"description": getattr(block, "description", ""),
"categories": getattr(block, "categories", []),
"staticOutput": getattr(block, "static_output", False),
"inputSchema": (
block.input_schema.jsonschema()
if hasattr(block, "input_schema")
else {}
),
"outputSchema": (
block.output_schema.jsonschema()
if hasattr(block, "output_schema")
else {}
),
}
)
return blocks_info
def parse_json_from_llm(text: str) -> dict[str, Any] | None:
"""Extract JSON from LLM response (handles markdown code blocks)."""
if not text:
return None
# Try fenced code block
match = re.search(r"```(?:json)?\s*([\s\S]*?)```", text, re.IGNORECASE)
if match:
try:
return json.loads(match.group(1).strip())
except json.JSONDecodeError:
pass
# Try raw text
try:
return json.loads(text.strip())
except json.JSONDecodeError:
pass
# Try finding {...} span
start = text.find("{")
end = text.rfind("}")
if start != -1 and end > start:
try:
return json.loads(text[start : end + 1])
except json.JSONDecodeError:
pass
# Try finding [...] span
start = text.find("[")
end = text.rfind("]")
if start != -1 and end > start:
try:
return json.loads(text[start : end + 1])
except json.JSONDecodeError:
pass
return None

View File

@@ -0,0 +1,279 @@
"""Agent validator - Validates agent structure and connections."""
import logging
import re
from typing import Any
from .utils import get_blocks_info
logger = logging.getLogger(__name__)
class AgentValidator:
"""Validator for AutoGPT agents with detailed error reporting."""
def __init__(self):
self.errors: list[str] = []
def add_error(self, error: str) -> None:
"""Add an error message."""
self.errors.append(error)
def validate_block_existence(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> bool:
"""Validate all block IDs exist in the blocks library."""
valid = True
valid_block_ids = {b.get("id") for b in blocks_info if b.get("id")}
for node in agent.get("nodes", []):
block_id = node.get("block_id")
node_id = node.get("id")
if not block_id:
self.add_error(f"Node '{node_id}' is missing 'block_id' field.")
valid = False
continue
if block_id not in valid_block_ids:
self.add_error(
f"Node '{node_id}' references block_id '{block_id}' which does not exist."
)
valid = False
return valid
def validate_link_node_references(self, agent: dict[str, Any]) -> bool:
"""Validate all node IDs referenced in links exist."""
valid = True
valid_node_ids = {n.get("id") for n in agent.get("nodes", []) if n.get("id")}
for link in agent.get("links", []):
link_id = link.get("id", "Unknown")
source_id = link.get("source_id")
sink_id = link.get("sink_id")
if not source_id:
self.add_error(f"Link '{link_id}' is missing 'source_id'.")
valid = False
elif source_id not in valid_node_ids:
self.add_error(
f"Link '{link_id}' references non-existent source_id '{source_id}'."
)
valid = False
if not sink_id:
self.add_error(f"Link '{link_id}' is missing 'sink_id'.")
valid = False
elif sink_id not in valid_node_ids:
self.add_error(
f"Link '{link_id}' references non-existent sink_id '{sink_id}'."
)
valid = False
return valid
def validate_required_inputs(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> bool:
"""Validate required inputs are provided."""
valid = True
block_map = {b.get("id"): b for b in blocks_info}
for node in agent.get("nodes", []):
block_id = node.get("block_id")
block = block_map.get(block_id)
if not block:
continue
required_inputs = block.get("inputSchema", {}).get("required", [])
input_defaults = node.get("input_default", {})
node_id = node.get("id")
# Get linked inputs
linked_inputs = {
link["sink_name"]
for link in agent.get("links", [])
if link.get("sink_id") == node_id
}
for req_input in required_inputs:
if (
req_input not in input_defaults
and req_input not in linked_inputs
and req_input != "credentials"
):
block_name = block.get("name", "Unknown Block")
self.add_error(
f"Node '{node_id}' ({block_name}) is missing required input '{req_input}'."
)
valid = False
return valid
def validate_data_type_compatibility(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> bool:
"""Validate linked data types are compatible."""
valid = True
block_map = {b.get("id"): b for b in blocks_info}
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
def get_type(schema: dict, name: str) -> str | None:
if "_#_" in name:
parent, child = name.split("_#_", 1)
parent_schema = schema.get(parent, {})
if "properties" in parent_schema:
return parent_schema["properties"].get(child, {}).get("type")
return None
return schema.get(name, {}).get("type")
def are_compatible(src: str, sink: str) -> bool:
if {src, sink} <= {"integer", "number"}:
return True
return src == sink
for link in agent.get("links", []):
source_node = node_lookup.get(link.get("source_id"))
sink_node = node_lookup.get(link.get("sink_id"))
if not source_node or not sink_node:
continue
source_block = block_map.get(source_node.get("block_id"))
sink_block = block_map.get(sink_node.get("block_id"))
if not source_block or not sink_block:
continue
source_outputs = source_block.get("outputSchema", {}).get("properties", {})
sink_inputs = sink_block.get("inputSchema", {}).get("properties", {})
source_type = get_type(source_outputs, link.get("source_name", ""))
sink_type = get_type(sink_inputs, link.get("sink_name", ""))
if source_type and sink_type and not are_compatible(source_type, sink_type):
self.add_error(
f"Type mismatch: {source_block.get('name')} output '{link['source_name']}' "
f"({source_type}) -> {sink_block.get('name')} input '{link['sink_name']}' ({sink_type})."
)
valid = False
return valid
def validate_nested_sink_links(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> bool:
"""Validate nested sink links (with _#_ notation)."""
valid = True
block_map = {b.get("id"): b for b in blocks_info}
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
for link in agent.get("links", []):
sink_name = link.get("sink_name", "")
if "_#_" in sink_name:
parent, child = sink_name.split("_#_", 1)
sink_node = node_lookup.get(link.get("sink_id"))
if not sink_node:
continue
block = block_map.get(sink_node.get("block_id"))
if not block:
continue
input_props = block.get("inputSchema", {}).get("properties", {})
parent_schema = input_props.get(parent)
if not parent_schema:
self.add_error(
f"Invalid nested link '{sink_name}': parent '{parent}' not found."
)
valid = False
continue
if not parent_schema.get("additionalProperties"):
if not (
isinstance(parent_schema, dict)
and "properties" in parent_schema
and child in parent_schema.get("properties", {})
):
self.add_error(
f"Invalid nested link '{sink_name}': child '{child}' not found in '{parent}'."
)
valid = False
return valid
def validate_prompt_spaces(self, agent: dict[str, Any]) -> bool:
"""Validate prompts don't have spaces in template variables."""
valid = True
for node in agent.get("nodes", []):
input_default = node.get("input_default", {})
prompt = input_default.get("prompt", "")
if not isinstance(prompt, str):
continue
# Find {{...}} with spaces
matches = re.finditer(r"\{\{([^}]+)\}\}", prompt)
for match in matches:
content = match.group(1)
if " " in content:
self.add_error(
f"Node '{node.get('id')}' has spaces in template variable: "
f"'{{{{{content}}}}}' should be '{{{{{content.replace(' ', '_')}}}}}'."
)
valid = False
return valid
def validate(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
) -> tuple[bool, str | None]:
"""Run all validations.
Returns:
Tuple of (is_valid, error_message)
"""
self.errors = []
if blocks_info is None:
blocks_info = get_blocks_info()
checks = [
self.validate_block_existence(agent, blocks_info),
self.validate_link_node_references(agent),
self.validate_required_inputs(agent, blocks_info),
self.validate_data_type_compatibility(agent, blocks_info),
self.validate_nested_sink_links(agent, blocks_info),
self.validate_prompt_spaces(agent),
]
all_passed = all(checks)
if all_passed:
logger.info("Agent validation successful")
return True, None
error_message = "Agent validation failed:\n"
for i, error in enumerate(self.errors, 1):
error_message += f"{i}. {error}\n"
logger.warning(f"Agent validation failed with {len(self.errors)} errors")
return False, error_message
def validate_agent(
agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
) -> tuple[bool, str | None]:
"""Convenience function to validate an agent.
Returns:
Tuple of (is_valid, error_message)
"""
validator = AgentValidator()
return validator.validate(agent, blocks_info)

View File

@@ -5,6 +5,7 @@ import re
from datetime import datetime, timedelta, timezone
from typing import Any
from langfuse import observe
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
@@ -328,6 +329,7 @@ class AgentOutputTool(BaseTool):
total_executions=len(available_executions) if available_executions else 1,
)
@observe(as_type="tool", name="view_agent_output")
async def _execute(
self,
user_id: str | None,

View File

@@ -36,16 +36,6 @@ class BaseTool:
"""Whether this tool requires authentication."""
return False
@property
def is_long_running(self) -> bool:
"""Whether this tool is long-running and should execute in background.
Long-running tools (like agent generation) are executed via background
tasks to survive SSE disconnections. The result is persisted to chat
history and visible when the user refreshes.
"""
return False
def as_openai_tool(self) -> ChatCompletionToolParam:
"""Convert to OpenAI tool format."""
return ChatCompletionToolParam(

View File

@@ -3,13 +3,17 @@
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
AgentGeneratorNotConfiguredError,
apply_all_fixes,
decompose_goal,
generate_agent,
get_blocks_info,
save_agent_to_library,
validate_agent,
)
from .base import BaseTool
from .models import (
@@ -23,6 +27,9 @@ from .models import (
logger = logging.getLogger(__name__)
# Maximum retries for agent generation with validation feedback
MAX_GENERATION_RETRIES = 2
class CreateAgentTool(BaseTool):
"""Tool for creating agents from natural language descriptions."""
@@ -42,10 +49,6 @@ class CreateAgentTool(BaseTool):
def requires_auth(self) -> bool:
return True
@property
def is_long_running(self) -> bool:
return True
@property
def parameters(self) -> dict[str, Any]:
return {
@@ -77,6 +80,7 @@ class CreateAgentTool(BaseTool):
"required": ["description"],
}
@observe(as_type="tool", name="create_agent")
async def _execute(
self,
user_id: str | None,
@@ -87,8 +91,9 @@ class CreateAgentTool(BaseTool):
Flow:
1. Decompose the description into steps (may return clarifying questions)
2. Generate agent JSON (external service handles fixing and validation)
3. Preview or save based on the save parameter
2. Generate agent JSON from the steps
3. Apply fixes to correct common LLM errors
4. Preview or save based on the save parameter
"""
description = kwargs.get("description", "").strip()
context = kwargs.get("context", "")
@@ -105,23 +110,18 @@ class CreateAgentTool(BaseTool):
# Step 1: Decompose goal into steps
try:
decomposition_result = await decompose_goal(description, context)
except AgentGeneratorNotConfiguredError:
except ValueError as e:
# Handle missing API key or configuration errors
return ErrorResponse(
message=(
"Agent generation is not available. "
"The Agent Generator service is not configured."
),
error="service_not_configured",
message=f"Agent generation is not configured: {str(e)}",
error="configuration_error",
session_id=session_id,
)
if decomposition_result is None:
return ErrorResponse(
message="Failed to analyze the goal. The agent generation service may be unavailable or timed out. Please try again.",
error="decomposition_failed",
details={
"description": description[:100]
}, # Include context for debugging
message="Failed to analyze the goal. Please try rephrasing.",
error="Decomposition failed",
session_id=session_id,
)
@@ -171,35 +171,72 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Step 2: Generate agent JSON (external service handles fixing and validation)
try:
agent_json = await generate_agent(decomposition_result)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
"Agent generation is not available. "
"The Agent Generator service is not configured."
),
error="service_not_configured",
session_id=session_id,
# Step 2: Generate agent JSON with retry on validation failure
blocks_info = get_blocks_info()
agent_json = None
validation_errors = None
for attempt in range(MAX_GENERATION_RETRIES + 1):
# Generate agent (include validation errors from previous attempt)
if attempt == 0:
agent_json = await generate_agent(decomposition_result)
else:
# Retry with validation error feedback
logger.info(
f"Retry {attempt}/{MAX_GENERATION_RETRIES} with validation feedback"
)
retry_instructions = {
**decomposition_result,
"previous_errors": validation_errors,
"retry_instructions": (
"The previous generation had validation errors. "
"Please fix these issues in the new generation:\n"
f"{validation_errors}"
),
}
agent_json = await generate_agent(retry_instructions)
if agent_json is None:
if attempt == MAX_GENERATION_RETRIES:
return ErrorResponse(
message="Failed to generate the agent. Please try again.",
error="Generation failed",
session_id=session_id,
)
continue
# Step 3: Apply fixes to correct common errors
agent_json = apply_all_fixes(agent_json, blocks_info)
# Step 4: Validate the agent
is_valid, validation_errors = validate_agent(agent_json, blocks_info)
if is_valid:
logger.info(f"Agent generated successfully on attempt {attempt + 1}")
break
logger.warning(
f"Validation failed on attempt {attempt + 1}: {validation_errors}"
)
if agent_json is None:
return ErrorResponse(
message="Failed to generate the agent. The agent generation service may be unavailable or timed out. Please try again.",
error="generation_failed",
details={
"description": description[:100]
}, # Include context for debugging
session_id=session_id,
)
if attempt == MAX_GENERATION_RETRIES:
# Return error with validation details
return ErrorResponse(
message=(
f"Generated agent has validation errors after {MAX_GENERATION_RETRIES + 1} attempts. "
f"Please try rephrasing your request or simplify the workflow."
),
error="validation_failed",
details={"validation_errors": validation_errors},
session_id=session_id,
)
agent_name = agent_json.get("name", "Generated Agent")
agent_description = agent_json.get("description", "")
node_count = len(agent_json.get("nodes", []))
link_count = len(agent_json.get("links", []))
# Step 3: Preview or save
# Step 4: Preview or save
if not save:
return AgentPreviewResponse(
message=(

View File

@@ -3,13 +3,18 @@
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
AgentGeneratorNotConfiguredError,
apply_agent_patch,
apply_all_fixes,
generate_agent_patch,
get_agent_as_json,
get_blocks_info,
save_agent_to_library,
validate_agent,
)
from .base import BaseTool
from .models import (
@@ -23,6 +28,9 @@ from .models import (
logger = logging.getLogger(__name__)
# Maximum retries for patch generation with validation feedback
MAX_GENERATION_RETRIES = 2
class EditAgentTool(BaseTool):
"""Tool for editing existing agents using natural language."""
@@ -35,17 +43,13 @@ class EditAgentTool(BaseTool):
def description(self) -> str:
return (
"Edit an existing agent from the user's library using natural language. "
"Generates updates to the agent while preserving unchanged parts."
"Generates a patch to update the agent while preserving unchanged parts."
)
@property
def requires_auth(self) -> bool:
return True
@property
def is_long_running(self) -> bool:
return True
@property
def parameters(self) -> dict[str, Any]:
return {
@@ -83,6 +87,7 @@ class EditAgentTool(BaseTool):
"required": ["agent_id", "changes"],
}
@observe(as_type="tool", name="edit_agent")
async def _execute(
self,
user_id: str | None,
@@ -93,8 +98,9 @@ class EditAgentTool(BaseTool):
Flow:
1. Fetch the current agent
2. Generate updated agent (external service handles fixing and validation)
3. Preview or save based on the save parameter
2. Generate a patch based on the requested changes
3. Apply the patch to create an updated agent
4. Preview or save based on the save parameter
"""
agent_id = kwargs.get("agent_id", "").strip()
changes = kwargs.get("changes", "").strip()
@@ -131,59 +137,121 @@ class EditAgentTool(BaseTool):
if context:
update_request = f"{changes}\n\nAdditional context:\n{context}"
# Step 2: Generate updated agent (external service handles fixing and validation)
try:
result = await generate_agent_patch(update_request, current_agent)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
"Agent editing is not available. "
"The Agent Generator service is not configured."
),
error="service_not_configured",
session_id=session_id,
)
# Step 2: Generate patch with retry on validation failure
blocks_info = get_blocks_info()
updated_agent = None
validation_errors = None
intent = "Applied requested changes"
if result is None:
return ErrorResponse(
message="Failed to generate changes. The agent generation service may be unavailable or timed out. Please try again.",
error="update_generation_failed",
details={"agent_id": agent_id, "changes": changes[:100]},
session_id=session_id,
)
# Check if LLM returned clarifying questions
if result.get("type") == "clarifying_questions":
questions = result.get("questions", [])
return ClarificationNeededResponse(
message=(
"I need some more information about the changes. "
"Please answer the following questions:"
),
questions=[
ClarifyingQuestion(
question=q.get("question", ""),
keyword=q.get("keyword", ""),
example=q.get("example"),
for attempt in range(MAX_GENERATION_RETRIES + 1):
# Generate patch (include validation errors from previous attempt)
try:
if attempt == 0:
patch_result = await generate_agent_patch(
update_request, current_agent
)
for q in questions
],
session_id=session_id,
else:
# Retry with validation error feedback
logger.info(
f"Retry {attempt}/{MAX_GENERATION_RETRIES} with validation feedback"
)
retry_request = (
f"{update_request}\n\n"
f"IMPORTANT: The previous edit had validation errors. "
f"Please fix these issues:\n{validation_errors}"
)
patch_result = await generate_agent_patch(
retry_request, current_agent
)
except ValueError as e:
# Handle missing API key or configuration errors
return ErrorResponse(
message=f"Agent generation is not configured: {str(e)}",
error="configuration_error",
session_id=session_id,
)
if patch_result is None:
if attempt == MAX_GENERATION_RETRIES:
return ErrorResponse(
message="Failed to generate changes. Please try rephrasing.",
error="Patch generation failed",
session_id=session_id,
)
continue
# Check if LLM returned clarifying questions
if patch_result.get("type") == "clarifying_questions":
questions = patch_result.get("questions", [])
return ClarificationNeededResponse(
message=(
"I need some more information about the changes. "
"Please answer the following questions:"
),
questions=[
ClarifyingQuestion(
question=q.get("question", ""),
keyword=q.get("keyword", ""),
example=q.get("example"),
)
for q in questions
],
session_id=session_id,
)
# Step 3: Apply patch and fixes
try:
updated_agent = apply_agent_patch(current_agent, patch_result)
updated_agent = apply_all_fixes(updated_agent, blocks_info)
except Exception as e:
if attempt == MAX_GENERATION_RETRIES:
return ErrorResponse(
message=f"Failed to apply changes: {str(e)}",
error="patch_apply_failed",
details={"exception": str(e)},
session_id=session_id,
)
validation_errors = str(e)
continue
# Step 4: Validate the updated agent
is_valid, validation_errors = validate_agent(updated_agent, blocks_info)
if is_valid:
logger.info(f"Agent edited successfully on attempt {attempt + 1}")
intent = patch_result.get("intent", "Applied requested changes")
break
logger.warning(
f"Validation failed on attempt {attempt + 1}: {validation_errors}"
)
# Result is the updated agent JSON
updated_agent = result
if attempt == MAX_GENERATION_RETRIES:
# Return error with validation details
return ErrorResponse(
message=(
f"Updated agent has validation errors after "
f"{MAX_GENERATION_RETRIES + 1} attempts. "
f"Please try rephrasing your request or simplify the changes."
),
error="validation_failed",
details={"validation_errors": validation_errors},
session_id=session_id,
)
# At this point, updated_agent is guaranteed to be set (we return on all failure paths)
assert updated_agent is not None
agent_name = updated_agent.get("name", "Updated Agent")
agent_description = updated_agent.get("description", "")
node_count = len(updated_agent.get("nodes", []))
link_count = len(updated_agent.get("links", []))
# Step 3: Preview or save
# Step 5: Preview or save
if not save:
return AgentPreviewResponse(
message=(
f"I've updated the agent. "
f"I've updated the agent. Changes: {intent}. "
f"The agent now has {node_count} blocks. "
f"Review it and call edit_agent with save=true to save the changes."
),
@@ -209,7 +277,10 @@ class EditAgentTool(BaseTool):
)
return AgentSavedResponse(
message=f"Updated agent '{created_graph.name}' has been saved to your library!",
message=(
f"Updated agent '{created_graph.name}' has been saved to your library! "
f"Changes: {intent}"
),
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,

View File

@@ -2,6 +2,8 @@
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_search import search_agents
@@ -35,6 +37,7 @@ class FindAgentTool(BaseTool):
"required": ["query"],
}
@observe(as_type="tool", name="find_agent")
async def _execute(
self, user_id: str | None, session: ChatSession, **kwargs
) -> ToolResponseBase:

View File

@@ -1,6 +1,7 @@
import logging
from typing import Any
from langfuse import observe
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
@@ -55,6 +56,7 @@ class FindBlockTool(BaseTool):
def requires_auth(self) -> bool:
return True
@observe(as_type="tool", name="find_block")
async def _execute(
self,
user_id: str | None,
@@ -107,8 +109,7 @@ class FindBlockTool(BaseTool):
block_id = result["content_id"]
block = get_block(block_id)
# Skip disabled blocks
if block and not block.disabled:
if block:
# Get input/output schemas
input_schema = {}
output_schema = {}

View File

@@ -2,6 +2,8 @@
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_search import search_agents
@@ -41,6 +43,7 @@ class FindLibraryAgentTool(BaseTool):
def requires_auth(self) -> bool:
return True
@observe(as_type="tool", name="find_library_agent")
async def _execute(
self, user_id: str | None, session: ChatSession, **kwargs
) -> ToolResponseBase:

View File

@@ -4,6 +4,8 @@ import logging
from pathlib import Path
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
@@ -71,6 +73,7 @@ class GetDocPageTool(BaseTool):
url_path = path.rsplit(".", 1)[0] if "." in path else path
return f"{DOCS_BASE_URL}/{url_path}"
@observe(as_type="tool", name="get_doc_page")
async def _execute(
self,
user_id: str | None,

View File

@@ -28,16 +28,6 @@ class ResponseType(str, Enum):
BLOCK_OUTPUT = "block_output"
DOC_SEARCH_RESULTS = "doc_search_results"
DOC_PAGE = "doc_page"
# Workspace response types
WORKSPACE_FILE_LIST = "workspace_file_list"
WORKSPACE_FILE_CONTENT = "workspace_file_content"
WORKSPACE_FILE_METADATA = "workspace_file_metadata"
WORKSPACE_FILE_WRITTEN = "workspace_file_written"
WORKSPACE_FILE_DELETED = "workspace_file_deleted"
# Long-running operation types
OPERATION_STARTED = "operation_started"
OPERATION_PENDING = "operation_pending"
OPERATION_IN_PROGRESS = "operation_in_progress"
# Base response model
@@ -344,43 +334,3 @@ class BlockOutputResponse(ToolResponseBase):
block_name: str
outputs: dict[str, list[Any]]
success: bool = True
# Long-running operation models
class OperationStartedResponse(ToolResponseBase):
"""Response when a long-running operation has been started in the background.
This is returned immediately to the client while the operation continues
to execute. The user can close the tab and check back later.
The task_id can be used to reconnect to the SSE stream via
GET /chat/tasks/{task_id}/stream?last_idx=0
"""
type: ResponseType = ResponseType.OPERATION_STARTED
operation_id: str
tool_name: str
task_id: str | None = None # For SSE reconnection
class OperationPendingResponse(ToolResponseBase):
"""Response stored in chat history while a long-running operation is executing.
This is persisted to the database so users see a pending state when they
refresh before the operation completes.
"""
type: ResponseType = ResponseType.OPERATION_PENDING
operation_id: str
tool_name: str
class OperationInProgressResponse(ToolResponseBase):
"""Response when an operation is already in progress.
Returned for idempotency when the same tool_call_id is requested again
while the background task is still running.
"""
type: ResponseType = ResponseType.OPERATION_IN_PROGRESS
tool_call_id: str

View File

@@ -3,14 +3,11 @@
import logging
from typing import Any
from langfuse import observe
from pydantic import BaseModel, Field, field_validator
from backend.api.features.chat.config import ChatConfig
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tracking import (
track_agent_run_success,
track_agent_scheduled,
)
from backend.api.features.library import db as library_db
from backend.data.graph import GraphModel
from backend.data.model import CredentialsMetaInput
@@ -36,7 +33,7 @@ from .models import (
UserReadiness,
)
from .utils import (
build_missing_credentials_from_graph,
check_user_has_required_credentials,
extract_credentials_from_schema,
fetch_graph_from_store_slug,
get_or_create_library_agent,
@@ -158,6 +155,7 @@ class RunAgentTool(BaseTool):
"""All operations require authentication."""
return True
@observe(as_type="tool", name="run_agent")
async def _execute(
self,
user_id: str | None,
@@ -239,13 +237,15 @@ class RunAgentTool(BaseTool):
# Return credentials needed response with input data info
# The UI handles credential setup automatically, so the message
# focuses on asking about input data
requirements_creds_dict = build_missing_credentials_from_graph(
graph, None
credentials = extract_credentials_from_schema(
graph.credentials_input_schema
)
missing_credentials_dict = build_missing_credentials_from_graph(
graph, graph_credentials
missing_creds_check = await check_user_has_required_credentials(
user_id, credentials
)
requirements_creds_list = list(requirements_creds_dict.values())
missing_credentials_dict = {
c.id: c.model_dump() for c in missing_creds_check
}
return SetupRequirementsResponse(
message=self._build_inputs_message(graph, MSG_WHAT_VALUES_TO_USE),
@@ -259,7 +259,7 @@ class RunAgentTool(BaseTool):
ready_to_run=False,
),
requirements={
"credentials": requirements_creds_list,
"credentials": [c.model_dump() for c in credentials],
"inputs": self._get_inputs_list(graph.input_schema),
"execution_modes": self._get_execution_modes(graph),
},
@@ -455,16 +455,6 @@ class RunAgentTool(BaseTool):
session.successful_agent_runs.get(library_agent.graph_id, 0) + 1
)
# Track in PostHog
track_agent_run_success(
user_id=user_id,
session_id=session_id,
graph_id=library_agent.graph_id,
graph_name=library_agent.name,
execution_id=execution.id,
library_agent_id=library_agent.id,
)
library_agent_link = f"/library/agents/{library_agent.id}"
return ExecutionStartedResponse(
message=(
@@ -546,18 +536,6 @@ class RunAgentTool(BaseTool):
session.successful_agent_schedules.get(library_agent.graph_id, 0) + 1
)
# Track in PostHog
track_agent_scheduled(
user_id=user_id,
session_id=session_id,
graph_id=library_agent.graph_id,
graph_name=library_agent.name,
schedule_id=result.id,
schedule_name=schedule_name,
cron=cron,
library_agent_id=library_agent.id,
)
library_agent_link = f"/library/agents/{library_agent.id}"
return ExecutionStartedResponse(
message=(

View File

@@ -29,7 +29,7 @@ def mock_embedding_functions():
yield
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.asyncio(scope="session")
async def test_run_agent(setup_test_data):
"""Test that the run_agent tool successfully executes an approved agent"""
# Use test data from fixture
@@ -70,7 +70,7 @@ async def test_run_agent(setup_test_data):
assert result_data["graph_name"] == "Test Agent"
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.asyncio(scope="session")
async def test_run_agent_missing_inputs(setup_test_data):
"""Test that the run_agent tool returns error when inputs are missing"""
# Use test data from fixture
@@ -106,7 +106,7 @@ async def test_run_agent_missing_inputs(setup_test_data):
assert "message" in result_data
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.asyncio(scope="session")
async def test_run_agent_invalid_agent_id(setup_test_data):
"""Test that the run_agent tool returns error for invalid agent ID"""
# Use test data from fixture
@@ -141,7 +141,7 @@ async def test_run_agent_invalid_agent_id(setup_test_data):
)
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.asyncio(scope="session")
async def test_run_agent_with_llm_credentials(setup_llm_test_data):
"""Test that run_agent works with an agent requiring LLM credentials"""
# Use test data from fixture
@@ -185,7 +185,7 @@ async def test_run_agent_with_llm_credentials(setup_llm_test_data):
assert result_data["graph_name"] == "LLM Test Agent"
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.asyncio(scope="session")
async def test_run_agent_shows_available_inputs_when_none_provided(setup_test_data):
"""Test that run_agent returns available inputs when called without inputs or use_defaults."""
user = setup_test_data["user"]
@@ -219,7 +219,7 @@ async def test_run_agent_shows_available_inputs_when_none_provided(setup_test_da
assert "inputs" in result_data["message"].lower()
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.asyncio(scope="session")
async def test_run_agent_with_use_defaults(setup_test_data):
"""Test that run_agent executes successfully with use_defaults=True."""
user = setup_test_data["user"]
@@ -251,7 +251,7 @@ async def test_run_agent_with_use_defaults(setup_test_data):
assert result_data["graph_id"] == graph.id
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.asyncio(scope="session")
async def test_run_agent_missing_credentials(setup_firecrawl_test_data):
"""Test that run_agent returns setup_requirements when credentials are missing."""
user = setup_firecrawl_test_data["user"]
@@ -285,7 +285,7 @@ async def test_run_agent_missing_credentials(setup_firecrawl_test_data):
assert len(setup_info["user_readiness"]["missing_credentials"]) > 0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.asyncio(scope="session")
async def test_run_agent_invalid_slug_format(setup_test_data):
"""Test that run_agent returns error for invalid slug format (no slash)."""
user = setup_test_data["user"]
@@ -313,7 +313,7 @@ async def test_run_agent_invalid_slug_format(setup_test_data):
assert "username/agent-name" in result_data["message"]
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.asyncio(scope="session")
async def test_run_agent_unauthenticated():
"""Test that run_agent returns need_login for unauthenticated users."""
tool = RunAgentTool()
@@ -340,7 +340,7 @@ async def test_run_agent_unauthenticated():
assert "sign in" in result_data["message"].lower()
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.asyncio(scope="session")
async def test_run_agent_schedule_without_cron(setup_test_data):
"""Test that run_agent returns error when scheduling without cron expression."""
user = setup_test_data["user"]
@@ -372,7 +372,7 @@ async def test_run_agent_schedule_without_cron(setup_test_data):
assert "cron" in result_data["message"].lower()
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.asyncio(scope="session")
async def test_run_agent_schedule_without_name(setup_test_data):
"""Test that run_agent returns error when scheduling without schedule_name."""
user = setup_test_data["user"]

View File

@@ -1,15 +1,15 @@
"""Tool for executing blocks directly."""
import logging
import uuid
from collections import defaultdict
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.data.block import get_block
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsMetaInput
from backend.data.workspace import get_or_create_workspace
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import BlockError
@@ -22,7 +22,6 @@ from .models import (
ToolResponseBase,
UserReadiness,
)
from .utils import build_missing_credentials_from_field_info
logger = logging.getLogger(__name__)
@@ -130,6 +129,7 @@ class RunBlockTool(BaseTool):
return matched_credentials, missing_credentials
@observe(as_type="tool", name="run_block")
async def _execute(
self,
user_id: str | None,
@@ -178,11 +178,6 @@ class RunBlockTool(BaseTool):
message=f"Block '{block_id}' not found",
session_id=session_id,
)
if block.disabled:
return ErrorResponse(
message=f"Block '{block_id}' is disabled",
session_id=session_id,
)
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
@@ -194,11 +189,7 @@ class RunBlockTool(BaseTool):
if missing_credentials:
# Return setup requirements response with missing credentials
credentials_fields_info = block.input_schema.get_credentials_fields_info()
missing_creds_dict = build_missing_credentials_from_field_info(
credentials_fields_info, set(matched_credentials.keys())
)
missing_creds_list = list(missing_creds_dict.values())
missing_creds_dict = {c.id: c.model_dump() for c in missing_credentials}
return SetupRequirementsResponse(
message=(
@@ -215,7 +206,7 @@ class RunBlockTool(BaseTool):
ready_to_run=False,
),
requirements={
"credentials": missing_creds_list,
"credentials": [c.model_dump() for c in missing_credentials],
"inputs": self._get_inputs_list(block),
"execution_modes": ["immediate"],
},
@@ -225,48 +216,11 @@ class RunBlockTool(BaseTool):
)
try:
# Get or create user's workspace for CoPilot file operations
workspace = await get_or_create_workspace(user_id)
# Generate synthetic IDs for CoPilot context
# Each chat session is treated as its own agent with one continuous run
# This means:
# - graph_id (agent) = session (memories scoped to session when limit_to_agent=True)
# - graph_exec_id (run) = session (memories scoped to session when limit_to_run=True)
# - node_exec_id = unique per block execution
synthetic_graph_id = f"copilot-session-{session.session_id}"
synthetic_graph_exec_id = f"copilot-session-{session.session_id}"
synthetic_node_id = f"copilot-node-{block_id}"
synthetic_node_exec_id = (
f"copilot-{session.session_id}-{uuid.uuid4().hex[:8]}"
)
# Create unified execution context with all required fields
execution_context = ExecutionContext(
# Execution identity
user_id=user_id,
graph_id=synthetic_graph_id,
graph_exec_id=synthetic_graph_exec_id,
graph_version=1, # Versions are 1-indexed
node_id=synthetic_node_id,
node_exec_id=synthetic_node_exec_id,
# Workspace with session scoping
workspace_id=workspace.id,
session_id=session.session_id,
)
# Prepare kwargs for block execution
# Keep individual kwargs for backwards compatibility with existing blocks
# Fetch actual credentials and prepare kwargs for block execution
# Create execution context with defaults (blocks may require it)
exec_kwargs: dict[str, Any] = {
"user_id": user_id,
"execution_context": execution_context,
# Legacy: individual kwargs for blocks not yet using execution_context
"workspace_id": workspace.id,
"graph_exec_id": synthetic_graph_exec_id,
"node_exec_id": synthetic_node_exec_id,
"node_id": synthetic_node_id,
"graph_version": 1, # Versions are 1-indexed
"graph_id": synthetic_graph_id,
"execution_context": ExecutionContext(),
}
for field_name, cred_meta in matched_credentials.items():

View File

@@ -3,6 +3,7 @@
import logging
from typing import Any
from langfuse import observe
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
@@ -87,6 +88,7 @@ class SearchDocsTool(BaseTool):
url_path = path.rsplit(".", 1)[0] if "." in path else path
return f"{DOCS_BASE_URL}/{url_path}"
@observe(as_type="tool", name="search_docs")
async def _execute(
self,
user_id: str | None,

View File

@@ -8,7 +8,7 @@ from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data import graph as graph_db
from backend.data.graph import GraphModel
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import NotFoundError
@@ -89,59 +89,6 @@ def extract_credentials_from_schema(
return credentials
def _serialize_missing_credential(
field_key: str, field_info: CredentialsFieldInfo
) -> dict[str, Any]:
"""
Convert credential field info into a serializable dict that preserves all supported
credential types (e.g., api_key + oauth2) so the UI can offer multiple options.
"""
supported_types = sorted(field_info.supported_types)
provider = next(iter(field_info.provider), "unknown")
scopes = sorted(field_info.required_scopes or [])
return {
"id": field_key,
"title": field_key.replace("_", " ").title(),
"provider": provider,
"provider_name": provider.replace("_", " ").title(),
"type": supported_types[0] if supported_types else "api_key",
"types": supported_types,
"scopes": scopes,
}
def build_missing_credentials_from_graph(
graph: GraphModel, matched_credentials: dict[str, CredentialsMetaInput] | None
) -> dict[str, Any]:
"""
Build a missing_credentials mapping from a graph's aggregated credentials inputs,
preserving all supported credential types for each field.
"""
matched_keys = set(matched_credentials.keys()) if matched_credentials else set()
aggregated_fields = graph.aggregate_credentials_inputs()
return {
field_key: _serialize_missing_credential(field_key, field_info)
for field_key, (field_info, _node_fields) in aggregated_fields.items()
if field_key not in matched_keys
}
def build_missing_credentials_from_field_info(
credential_fields: dict[str, CredentialsFieldInfo],
matched_keys: set[str],
) -> dict[str, Any]:
"""
Build missing_credentials mapping from a simple credentials field info dictionary.
"""
return {
field_key: _serialize_missing_credential(field_key, field_info)
for field_key, field_info in credential_fields.items()
if field_key not in matched_keys
}
def extract_credentials_as_dict(
credentials_input_schema: dict[str, Any] | None,
) -> dict[str, CredentialsMetaInput]:

View File

@@ -1,620 +0,0 @@
"""CoPilot tools for workspace file operations."""
import base64
import logging
from typing import Any, Optional
from pydantic import BaseModel
from backend.api.features.chat.model import ChatSession
from backend.data.workspace import get_or_create_workspace
from backend.util.settings import Config
from backend.util.virus_scanner import scan_content_safe
from backend.util.workspace import WorkspaceManager
from .base import BaseTool
from .models import ErrorResponse, ResponseType, ToolResponseBase
logger = logging.getLogger(__name__)
class WorkspaceFileInfoData(BaseModel):
"""Data model for workspace file information (not a response itself)."""
file_id: str
name: str
path: str
mime_type: str
size_bytes: int
class WorkspaceFileListResponse(ToolResponseBase):
"""Response containing list of workspace files."""
type: ResponseType = ResponseType.WORKSPACE_FILE_LIST
files: list[WorkspaceFileInfoData]
total_count: int
class WorkspaceFileContentResponse(ToolResponseBase):
"""Response containing workspace file content (legacy, for small text files)."""
type: ResponseType = ResponseType.WORKSPACE_FILE_CONTENT
file_id: str
name: str
path: str
mime_type: str
content_base64: str
class WorkspaceFileMetadataResponse(ToolResponseBase):
"""Response containing workspace file metadata and download URL (prevents context bloat)."""
type: ResponseType = ResponseType.WORKSPACE_FILE_METADATA
file_id: str
name: str
path: str
mime_type: str
size_bytes: int
download_url: str
preview: str | None = None # First 500 chars for text files
class WorkspaceWriteResponse(ToolResponseBase):
"""Response after writing a file to workspace."""
type: ResponseType = ResponseType.WORKSPACE_FILE_WRITTEN
file_id: str
name: str
path: str
size_bytes: int
class WorkspaceDeleteResponse(ToolResponseBase):
"""Response after deleting a file from workspace."""
type: ResponseType = ResponseType.WORKSPACE_FILE_DELETED
file_id: str
success: bool
class ListWorkspaceFilesTool(BaseTool):
"""Tool for listing files in user's workspace."""
@property
def name(self) -> str:
return "list_workspace_files"
@property
def description(self) -> str:
return (
"List files in the user's workspace. "
"Returns file names, paths, sizes, and metadata. "
"Optionally filter by path prefix."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"path_prefix": {
"type": "string",
"description": (
"Optional path prefix to filter files "
"(e.g., '/documents/' to list only files in documents folder). "
"By default, only files from the current session are listed."
),
},
"limit": {
"type": "integer",
"description": "Maximum number of files to return (default 50, max 100)",
"minimum": 1,
"maximum": 100,
},
"include_all_sessions": {
"type": "boolean",
"description": (
"If true, list files from all sessions. "
"Default is false (only current session's files)."
),
},
},
"required": [],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
path_prefix: Optional[str] = kwargs.get("path_prefix")
limit = min(kwargs.get("limit", 50), 100)
include_all_sessions: bool = kwargs.get("include_all_sessions", False)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
files = await manager.list_files(
path=path_prefix,
limit=limit,
include_all_sessions=include_all_sessions,
)
total = await manager.get_file_count(
path=path_prefix,
include_all_sessions=include_all_sessions,
)
file_infos = [
WorkspaceFileInfoData(
file_id=f.id,
name=f.name,
path=f.path,
mime_type=f.mimeType,
size_bytes=f.sizeBytes,
)
for f in files
]
scope_msg = "all sessions" if include_all_sessions else "current session"
return WorkspaceFileListResponse(
files=file_infos,
total_count=total,
message=f"Found {len(files)} files in workspace ({scope_msg})",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error listing workspace files: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to list workspace files: {str(e)}",
error=str(e),
session_id=session_id,
)
class ReadWorkspaceFileTool(BaseTool):
"""Tool for reading file content from workspace."""
# Size threshold for returning full content vs metadata+URL
# Files larger than this return metadata with download URL to prevent context bloat
MAX_INLINE_SIZE_BYTES = 32 * 1024 # 32KB
# Preview size for text files
PREVIEW_SIZE = 500
@property
def name(self) -> str:
return "read_workspace_file"
@property
def description(self) -> str:
return (
"Read a file from the user's workspace. "
"Specify either file_id or path to identify the file. "
"For small text files, returns content directly. "
"For large or binary files, returns metadata and a download URL. "
"Paths are scoped to the current session by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"file_id": {
"type": "string",
"description": "The file's unique ID (from list_workspace_files)",
},
"path": {
"type": "string",
"description": (
"The virtual file path (e.g., '/documents/report.pdf'). "
"Scoped to current session by default."
),
},
"force_download_url": {
"type": "boolean",
"description": (
"If true, always return metadata+URL instead of inline content. "
"Default is false (auto-selects based on file size/type)."
),
},
},
"required": [], # At least one must be provided
}
@property
def requires_auth(self) -> bool:
return True
def _is_text_mime_type(self, mime_type: str) -> bool:
"""Check if the MIME type is a text-based type."""
text_types = [
"text/",
"application/json",
"application/xml",
"application/javascript",
"application/x-python",
"application/x-sh",
]
return any(mime_type.startswith(t) for t in text_types)
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
file_id: Optional[str] = kwargs.get("file_id")
path: Optional[str] = kwargs.get("path")
force_download_url: bool = kwargs.get("force_download_url", False)
if not file_id and not path:
return ErrorResponse(
message="Please provide either file_id or path",
session_id=session_id,
)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
# Get file info
if file_id:
file_info = await manager.get_file_info(file_id)
if file_info is None:
return ErrorResponse(
message=f"File not found: {file_id}",
session_id=session_id,
)
target_file_id = file_id
else:
# path is guaranteed to be non-None here due to the check above
assert path is not None
file_info = await manager.get_file_info_by_path(path)
if file_info is None:
return ErrorResponse(
message=f"File not found at path: {path}",
session_id=session_id,
)
target_file_id = file_info.id
# Decide whether to return inline content or metadata+URL
is_small_file = file_info.sizeBytes <= self.MAX_INLINE_SIZE_BYTES
is_text_file = self._is_text_mime_type(file_info.mimeType)
# Return inline content for small text files (unless force_download_url)
if is_small_file and is_text_file and not force_download_url:
content = await manager.read_file_by_id(target_file_id)
content_b64 = base64.b64encode(content).decode("utf-8")
return WorkspaceFileContentResponse(
file_id=file_info.id,
name=file_info.name,
path=file_info.path,
mime_type=file_info.mimeType,
content_base64=content_b64,
message=f"Successfully read file: {file_info.name}",
session_id=session_id,
)
# Return metadata + workspace:// reference for large or binary files
# This prevents context bloat (100KB file = ~133KB as base64)
# Use workspace:// format so frontend urlTransform can add proxy prefix
download_url = f"workspace://{target_file_id}"
# Generate preview for text files
preview: str | None = None
if is_text_file:
try:
content = await manager.read_file_by_id(target_file_id)
preview_text = content[: self.PREVIEW_SIZE].decode(
"utf-8", errors="replace"
)
if len(content) > self.PREVIEW_SIZE:
preview_text += "..."
preview = preview_text
except Exception:
pass # Preview is optional
return WorkspaceFileMetadataResponse(
file_id=file_info.id,
name=file_info.name,
path=file_info.path,
mime_type=file_info.mimeType,
size_bytes=file_info.sizeBytes,
download_url=download_url,
preview=preview,
message=f"File: {file_info.name} ({file_info.sizeBytes} bytes). Use download_url to retrieve content.",
session_id=session_id,
)
except FileNotFoundError as e:
return ErrorResponse(
message=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Error reading workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to read workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)
class WriteWorkspaceFileTool(BaseTool):
"""Tool for writing files to workspace."""
@property
def name(self) -> str:
return "write_workspace_file"
@property
def description(self) -> str:
return (
"Write or create a file in the user's workspace. "
"Provide the content as a base64-encoded string. "
f"Maximum file size is {Config().max_file_size_mb}MB. "
"Files are saved to the current session's folder by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"filename": {
"type": "string",
"description": "Name for the file (e.g., 'report.pdf')",
},
"content_base64": {
"type": "string",
"description": "Base64-encoded file content",
},
"path": {
"type": "string",
"description": (
"Optional virtual path where to save the file "
"(e.g., '/documents/report.pdf'). "
"Defaults to '/{filename}'. Scoped to current session."
),
},
"mime_type": {
"type": "string",
"description": (
"Optional MIME type of the file. "
"Auto-detected from filename if not provided."
),
},
"overwrite": {
"type": "boolean",
"description": "Whether to overwrite if file exists at path (default: false)",
},
},
"required": ["filename", "content_base64"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
filename: str = kwargs.get("filename", "")
content_b64: str = kwargs.get("content_base64", "")
path: Optional[str] = kwargs.get("path")
mime_type: Optional[str] = kwargs.get("mime_type")
overwrite: bool = kwargs.get("overwrite", False)
if not filename:
return ErrorResponse(
message="Please provide a filename",
session_id=session_id,
)
if not content_b64:
return ErrorResponse(
message="Please provide content_base64",
session_id=session_id,
)
# Decode content
try:
content = base64.b64decode(content_b64)
except Exception:
return ErrorResponse(
message="Invalid base64-encoded content",
session_id=session_id,
)
# Check size
max_file_size = Config().max_file_size_mb * 1024 * 1024
if len(content) > max_file_size:
return ErrorResponse(
message=f"File too large. Maximum size is {Config().max_file_size_mb}MB",
session_id=session_id,
)
try:
# Virus scan
await scan_content_safe(content, filename=filename)
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
file_record = await manager.write_file(
content=content,
filename=filename,
path=path,
mime_type=mime_type,
overwrite=overwrite,
)
return WorkspaceWriteResponse(
file_id=file_record.id,
name=file_record.name,
path=file_record.path,
size_bytes=file_record.sizeBytes,
message=f"Successfully wrote file: {file_record.name}",
session_id=session_id,
)
except ValueError as e:
return ErrorResponse(
message=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Error writing workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to write workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)
class DeleteWorkspaceFileTool(BaseTool):
"""Tool for deleting files from workspace."""
@property
def name(self) -> str:
return "delete_workspace_file"
@property
def description(self) -> str:
return (
"Delete a file from the user's workspace. "
"Specify either file_id or path to identify the file. "
"Paths are scoped to the current session by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"file_id": {
"type": "string",
"description": "The file's unique ID (from list_workspace_files)",
},
"path": {
"type": "string",
"description": (
"The virtual file path (e.g., '/documents/report.pdf'). "
"Scoped to current session by default."
),
},
},
"required": [], # At least one must be provided
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
file_id: Optional[str] = kwargs.get("file_id")
path: Optional[str] = kwargs.get("path")
if not file_id and not path:
return ErrorResponse(
message="Please provide either file_id or path",
session_id=session_id,
)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
# Determine the file_id to delete
target_file_id: str
if file_id:
target_file_id = file_id
else:
# path is guaranteed to be non-None here due to the check above
assert path is not None
file_info = await manager.get_file_info_by_path(path)
if file_info is None:
return ErrorResponse(
message=f"File not found at path: {path}",
session_id=session_id,
)
target_file_id = file_info.id
success = await manager.delete_file(target_file_id)
if not success:
return ErrorResponse(
message=f"File not found: {target_file_id}",
session_id=session_id,
)
return WorkspaceDeleteResponse(
file_id=target_file_id,
success=True,
message="File deleted successfully",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error deleting workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to delete workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)

View File

@@ -1,250 +0,0 @@
"""PostHog analytics tracking for the chat system."""
import atexit
import logging
from typing import Any
from posthog import Posthog
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
settings = Settings()
# PostHog client instance (lazily initialized)
_posthog_client: Posthog | None = None
def _shutdown_posthog() -> None:
"""Flush and shutdown PostHog client on process exit."""
if _posthog_client is not None:
_posthog_client.flush()
_posthog_client.shutdown()
atexit.register(_shutdown_posthog)
def _get_posthog_client() -> Posthog | None:
"""Get or create the PostHog client instance."""
global _posthog_client
if _posthog_client is not None:
return _posthog_client
if not settings.secrets.posthog_api_key:
logger.debug("PostHog API key not configured, analytics disabled")
return None
_posthog_client = Posthog(
settings.secrets.posthog_api_key,
host=settings.secrets.posthog_host,
)
logger.info(
f"PostHog client initialized with host: {settings.secrets.posthog_host}"
)
return _posthog_client
def _get_base_properties() -> dict[str, Any]:
"""Get base properties included in all events."""
return {
"environment": settings.config.app_env.value,
"source": "chat_copilot",
}
def track_user_message(
user_id: str | None,
session_id: str,
message_length: int,
) -> None:
"""Track when a user sends a message in chat.
Args:
user_id: The user's ID (or None for anonymous)
session_id: The chat session ID
message_length: Length of the user's message
"""
client = _get_posthog_client()
if not client:
return
try:
properties = {
**_get_base_properties(),
"session_id": session_id,
"message_length": message_length,
}
client.capture(
distinct_id=user_id or f"anonymous_{session_id}",
event="copilot_message_sent",
properties=properties,
)
except Exception as e:
logger.warning(f"Failed to track user message: {e}")
def track_tool_called(
user_id: str | None,
session_id: str,
tool_name: str,
tool_call_id: str,
) -> None:
"""Track when a tool is called in chat.
Args:
user_id: The user's ID (or None for anonymous)
session_id: The chat session ID
tool_name: Name of the tool being called
tool_call_id: Unique ID of the tool call
"""
client = _get_posthog_client()
if not client:
logger.info("PostHog client not available for tool tracking")
return
try:
properties = {
**_get_base_properties(),
"session_id": session_id,
"tool_name": tool_name,
"tool_call_id": tool_call_id,
}
distinct_id = user_id or f"anonymous_{session_id}"
logger.info(
f"Sending copilot_tool_called event to PostHog: distinct_id={distinct_id}, "
f"tool_name={tool_name}"
)
client.capture(
distinct_id=distinct_id,
event="copilot_tool_called",
properties=properties,
)
except Exception as e:
logger.warning(f"Failed to track tool call: {e}")
def track_agent_run_success(
user_id: str,
session_id: str,
graph_id: str,
graph_name: str,
execution_id: str,
library_agent_id: str,
) -> None:
"""Track when an agent is successfully run.
Args:
user_id: The user's ID
session_id: The chat session ID
graph_id: ID of the agent graph
graph_name: Name of the agent
execution_id: ID of the execution
library_agent_id: ID of the library agent
"""
client = _get_posthog_client()
if not client:
return
try:
properties = {
**_get_base_properties(),
"session_id": session_id,
"graph_id": graph_id,
"graph_name": graph_name,
"execution_id": execution_id,
"library_agent_id": library_agent_id,
}
client.capture(
distinct_id=user_id,
event="copilot_agent_run_success",
properties=properties,
)
except Exception as e:
logger.warning(f"Failed to track agent run: {e}")
def track_agent_scheduled(
user_id: str,
session_id: str,
graph_id: str,
graph_name: str,
schedule_id: str,
schedule_name: str,
cron: str,
library_agent_id: str,
) -> None:
"""Track when an agent is successfully scheduled.
Args:
user_id: The user's ID
session_id: The chat session ID
graph_id: ID of the agent graph
graph_name: Name of the agent
schedule_id: ID of the schedule
schedule_name: Name of the schedule
cron: Cron expression for the schedule
library_agent_id: ID of the library agent
"""
client = _get_posthog_client()
if not client:
return
try:
properties = {
**_get_base_properties(),
"session_id": session_id,
"graph_id": graph_id,
"graph_name": graph_name,
"schedule_id": schedule_id,
"schedule_name": schedule_name,
"cron": cron,
"library_agent_id": library_agent_id,
}
client.capture(
distinct_id=user_id,
event="copilot_agent_scheduled",
properties=properties,
)
except Exception as e:
logger.warning(f"Failed to track agent schedule: {e}")
def track_trigger_setup(
user_id: str,
session_id: str,
graph_id: str,
graph_name: str,
trigger_type: str,
library_agent_id: str,
) -> None:
"""Track when a trigger is set up for an agent.
Args:
user_id: The user's ID
session_id: The chat session ID
graph_id: ID of the agent graph
graph_name: Name of the agent
trigger_type: Type of trigger (e.g., 'webhook')
library_agent_id: ID of the library agent
"""
client = _get_posthog_client()
if not client:
return
try:
properties = {
**_get_base_properties(),
"session_id": session_id,
"graph_id": graph_id,
"graph_name": graph_name,
"trigger_type": trigger_type,
"library_agent_id": library_agent_id,
}
client.capture(
distinct_id=user_id,
event="copilot_trigger_setup",
properties=properties,
)
except Exception as e:
logger.warning(f"Failed to track trigger setup: {e}")

View File

@@ -23,7 +23,6 @@ class PendingHumanReviewModel(BaseModel):
id: Unique identifier for the review record
user_id: ID of the user who must perform the review
node_exec_id: ID of the node execution that created this review
node_id: ID of the node definition (for grouping reviews from same node)
graph_exec_id: ID of the graph execution containing the node
graph_id: ID of the graph template being executed
graph_version: Version number of the graph template
@@ -38,10 +37,6 @@ class PendingHumanReviewModel(BaseModel):
"""
node_exec_id: str = Field(description="Node execution ID (primary key)")
node_id: str = Field(
description="Node definition ID (for grouping)",
default="", # Temporary default for test compatibility
)
user_id: str = Field(description="User ID associated with the review")
graph_exec_id: str = Field(description="Graph execution ID")
graph_id: str = Field(description="Graph ID")
@@ -71,9 +66,7 @@ class PendingHumanReviewModel(BaseModel):
)
@classmethod
def from_db(
cls, review: "PendingHumanReview", node_id: str
) -> "PendingHumanReviewModel":
def from_db(cls, review: "PendingHumanReview") -> "PendingHumanReviewModel":
"""
Convert a database model to a response model.
@@ -81,14 +74,9 @@ class PendingHumanReviewModel(BaseModel):
payload, instructions, and editable flag.
Handles invalid data gracefully by using safe defaults.
Args:
review: Database review object
node_id: Node definition ID (fetched from NodeExecution)
"""
return cls(
node_exec_id=review.nodeExecId,
node_id=node_id,
user_id=review.userId,
graph_exec_id=review.graphExecId,
graph_id=review.graphId,
@@ -119,13 +107,6 @@ class ReviewItem(BaseModel):
reviewed_data: SafeJsonData | None = Field(
None, description="Optional edited data (ignored if approved=False)"
)
auto_approve_future: bool = Field(
default=False,
description=(
"If true and this review is approved, future executions of this same "
"block (node) will be automatically approved. This only affects approved reviews."
),
)
@field_validator("reviewed_data")
@classmethod
@@ -193,9 +174,6 @@ class ReviewRequest(BaseModel):
This request must include ALL pending reviews for a graph execution.
Each review will be either approved (with optional data modifications)
or rejected (data ignored). The execution will resume only after ALL reviews are processed.
Each review item can individually specify whether to auto-approve future executions
of the same block via the `auto_approve_future` field on ReviewItem.
"""
reviews: List[ReviewItem] = Field(

View File

@@ -1,27 +1,17 @@
import asyncio
import logging
from typing import Any, List
from typing import List
import autogpt_libs.auth as autogpt_auth_lib
from fastapi import APIRouter, HTTPException, Query, Security, status
from prisma.enums import ReviewStatus
from backend.data.execution import (
ExecutionContext,
ExecutionStatus,
get_graph_execution_meta,
)
from backend.data.graph import get_graph_settings
from backend.data.execution import get_graph_execution_meta
from backend.data.human_review import (
create_auto_approval_record,
get_pending_reviews_for_execution,
get_pending_reviews_for_user,
get_reviews_by_node_exec_ids,
has_pending_reviews_for_graph_exec,
process_all_reviews_for_execution,
)
from backend.data.model import USER_TIMEZONE_NOT_SET
from backend.data.user import get_user_by_id
from backend.executor.utils import add_graph_execution
from .model import PendingHumanReviewModel, ReviewRequest, ReviewResponse
@@ -137,70 +127,17 @@ async def process_review_action(
detail="At least one review must be provided",
)
# Batch fetch all requested reviews (regardless of status for idempotent handling)
reviews_map = await get_reviews_by_node_exec_ids(
list(all_request_node_ids), user_id
)
# Validate all reviews were found (must exist, any status is OK for now)
missing_ids = all_request_node_ids - set(reviews_map.keys())
if missing_ids:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Review(s) not found: {', '.join(missing_ids)}",
)
# Validate all reviews belong to the same execution
graph_exec_ids = {review.graph_exec_id for review in reviews_map.values()}
if len(graph_exec_ids) > 1:
raise HTTPException(
status_code=status.HTTP_409_CONFLICT,
detail="All reviews in a single request must belong to the same execution.",
)
graph_exec_id = next(iter(graph_exec_ids))
# Validate execution status before processing reviews
graph_exec_meta = await get_graph_execution_meta(
user_id=user_id, execution_id=graph_exec_id
)
if not graph_exec_meta:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Graph execution #{graph_exec_id} not found",
)
# Only allow processing reviews if execution is paused for review
# or incomplete (partial execution with some reviews already processed)
if graph_exec_meta.status not in (
ExecutionStatus.REVIEW,
ExecutionStatus.INCOMPLETE,
):
raise HTTPException(
status_code=status.HTTP_409_CONFLICT,
detail=f"Cannot process reviews while execution status is {graph_exec_meta.status}. "
f"Reviews can only be processed when execution is paused (REVIEW status). "
f"Current status: {graph_exec_meta.status}",
)
# Build review decisions map and track which reviews requested auto-approval
# Auto-approved reviews use original data (no modifications allowed)
# Build review decisions map
review_decisions = {}
auto_approve_requests = {} # Map node_exec_id -> auto_approve_future flag
for review in request.reviews:
review_status = (
ReviewStatus.APPROVED if review.approved else ReviewStatus.REJECTED
)
# If this review requested auto-approval, don't allow data modifications
reviewed_data = None if review.auto_approve_future else review.reviewed_data
review_decisions[review.node_exec_id] = (
review_status,
reviewed_data,
review.reviewed_data,
review.message,
)
auto_approve_requests[review.node_exec_id] = review.auto_approve_future
# Process all reviews
updated_reviews = await process_all_reviews_for_execution(
@@ -208,87 +145,6 @@ async def process_review_action(
review_decisions=review_decisions,
)
# Create auto-approval records for approved reviews that requested it
# Deduplicate by node_id to avoid race conditions when multiple reviews
# for the same node are processed in parallel
async def create_auto_approval_for_node(
node_id: str, review_result
) -> tuple[str, bool]:
"""
Create auto-approval record for a node.
Returns (node_id, success) tuple for tracking failures.
"""
try:
await create_auto_approval_record(
user_id=user_id,
graph_exec_id=review_result.graph_exec_id,
graph_id=review_result.graph_id,
graph_version=review_result.graph_version,
node_id=node_id,
payload=review_result.payload,
)
return (node_id, True)
except Exception as e:
logger.error(
f"Failed to create auto-approval record for node {node_id}",
exc_info=e,
)
return (node_id, False)
# Collect node_exec_ids that need auto-approval
node_exec_ids_needing_auto_approval = [
node_exec_id
for node_exec_id, review_result in updated_reviews.items()
if review_result.status == ReviewStatus.APPROVED
and auto_approve_requests.get(node_exec_id, False)
]
# Batch-fetch node executions to get node_ids
nodes_needing_auto_approval: dict[str, Any] = {}
if node_exec_ids_needing_auto_approval:
from backend.data.execution import get_node_executions
node_execs = await get_node_executions(
graph_exec_id=graph_exec_id, include_exec_data=False
)
node_exec_map = {node_exec.node_exec_id: node_exec for node_exec in node_execs}
for node_exec_id in node_exec_ids_needing_auto_approval:
node_exec = node_exec_map.get(node_exec_id)
if node_exec:
review_result = updated_reviews[node_exec_id]
# Use the first approved review for this node (deduplicate by node_id)
if node_exec.node_id not in nodes_needing_auto_approval:
nodes_needing_auto_approval[node_exec.node_id] = review_result
else:
logger.error(
f"Failed to create auto-approval record for {node_exec_id}: "
f"Node execution not found. This may indicate a race condition "
f"or data inconsistency."
)
# Execute all auto-approval creations in parallel (deduplicated by node_id)
auto_approval_results = await asyncio.gather(
*[
create_auto_approval_for_node(node_id, review_result)
for node_id, review_result in nodes_needing_auto_approval.items()
],
return_exceptions=True,
)
# Count auto-approval failures
auto_approval_failed_count = 0
for result in auto_approval_results:
if isinstance(result, Exception):
# Unexpected exception during auto-approval creation
auto_approval_failed_count += 1
logger.error(
f"Unexpected exception during auto-approval creation: {result}"
)
elif isinstance(result, tuple) and len(result) == 2 and not result[1]:
# Auto-approval creation failed (returned False)
auto_approval_failed_count += 1
# Count results
approved_count = sum(
1
@@ -301,53 +157,30 @@ async def process_review_action(
if review.status == ReviewStatus.REJECTED
)
# Resume execution only if ALL pending reviews for this execution have been processed
# Resume execution if we processed some reviews
if updated_reviews:
# Get graph execution ID from any processed review
first_review = next(iter(updated_reviews.values()))
graph_exec_id = first_review.graph_exec_id
# Check if any pending reviews remain for this execution
still_has_pending = await has_pending_reviews_for_graph_exec(graph_exec_id)
if not still_has_pending:
# Get the graph_id from any processed review
first_review = next(iter(updated_reviews.values()))
# Resume execution
try:
# Fetch user and settings to build complete execution context
user = await get_user_by_id(user_id)
settings = await get_graph_settings(
user_id=user_id, graph_id=first_review.graph_id
)
# Preserve user's timezone preference when resuming execution
user_timezone = (
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
)
execution_context = ExecutionContext(
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
user_timezone=user_timezone,
)
await add_graph_execution(
graph_id=first_review.graph_id,
user_id=user_id,
graph_exec_id=graph_exec_id,
execution_context=execution_context,
)
logger.info(f"Resumed execution {graph_exec_id}")
except Exception as e:
logger.error(f"Failed to resume execution {graph_exec_id}: {str(e)}")
# Build error message if auto-approvals failed
error_message = None
if auto_approval_failed_count > 0:
error_message = (
f"{auto_approval_failed_count} auto-approval setting(s) could not be saved. "
f"You may need to manually approve these reviews in future executions."
)
return ReviewResponse(
approved_count=approved_count,
rejected_count=rejected_count,
failed_count=auto_approval_failed_count,
error=error_message,
failed_count=0,
error=None,
)

View File

@@ -21,7 +21,7 @@ from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate
from backend.util.clients import get_scheduler_client
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
from backend.util.exceptions import DatabaseError, NotFoundError
from backend.util.json import SafeJson
from backend.util.models import Pagination
from backend.util.settings import Config
@@ -64,11 +64,11 @@ async def list_library_agents(
if page < 1 or page_size < 1:
logger.warning(f"Invalid pagination: page={page}, page_size={page_size}")
raise InvalidInputError("Invalid pagination input")
raise DatabaseError("Invalid pagination input")
if search_term and len(search_term.strip()) > 100:
logger.warning(f"Search term too long: {repr(search_term)}")
raise InvalidInputError("Search term is too long")
raise DatabaseError("Search term is too long")
where_clause: prisma.types.LibraryAgentWhereInput = {
"userId": user_id,
@@ -175,7 +175,7 @@ async def list_favorite_library_agents(
if page < 1 or page_size < 1:
logger.warning(f"Invalid pagination: page={page}, page_size={page_size}")
raise InvalidInputError("Invalid pagination input")
raise DatabaseError("Invalid pagination input")
where_clause: prisma.types.LibraryAgentWhereInput = {
"userId": user_id,
@@ -401,11 +401,27 @@ async def add_generated_agent_image(
)
def _initialize_graph_settings(graph: graph_db.GraphModel) -> GraphSettings:
"""
Initialize GraphSettings based on graph content.
Args:
graph: The graph to analyze
Returns:
GraphSettings with appropriate human_in_the_loop_safe_mode value
"""
if graph.has_human_in_the_loop:
# Graph has HITL blocks - set safe mode to True by default
return GraphSettings(human_in_the_loop_safe_mode=True)
else:
# Graph has no HITL blocks - keep None
return GraphSettings(human_in_the_loop_safe_mode=None)
async def create_library_agent(
graph: graph_db.GraphModel,
user_id: str,
hitl_safe_mode: bool = True,
sensitive_action_safe_mode: bool = False,
create_library_agents_for_sub_graphs: bool = True,
) -> list[library_model.LibraryAgent]:
"""
@@ -414,8 +430,6 @@ async def create_library_agent(
Args:
agent: The agent/Graph to add to the library.
user_id: The user to whom the agent will be added.
hitl_safe_mode: Whether HITL blocks require manual review (default True).
sensitive_action_safe_mode: Whether sensitive action blocks require review.
create_library_agents_for_sub_graphs: If True, creates LibraryAgent records for sub-graphs as well.
Returns:
@@ -451,11 +465,7 @@ async def create_library_agent(
}
},
settings=SafeJson(
GraphSettings.from_graph(
graph_entry,
hitl_safe_mode=hitl_safe_mode,
sensitive_action_safe_mode=sensitive_action_safe_mode,
).model_dump()
_initialize_graph_settings(graph_entry).model_dump()
),
),
include=library_agent_include(
@@ -583,13 +593,7 @@ async def update_library_agent(
)
update_fields["isDeleted"] = is_deleted
if settings is not None:
existing_agent = await get_library_agent(id=library_agent_id, user_id=user_id)
current_settings_dict = (
existing_agent.settings.model_dump() if existing_agent.settings else {}
)
new_settings = settings.model_dump(exclude_unset=True)
merged_settings = {**current_settings_dict, **new_settings}
update_fields["settings"] = SafeJson(merged_settings)
update_fields["settings"] = SafeJson(settings.model_dump())
try:
# If graph_version is provided, update to that specific version
@@ -623,6 +627,33 @@ async def update_library_agent(
raise DatabaseError("Failed to update library agent") from e
async def update_library_agent_settings(
user_id: str,
agent_id: str,
settings: GraphSettings,
) -> library_model.LibraryAgent:
"""
Updates the settings for a specific LibraryAgent.
Args:
user_id: The owner of the LibraryAgent.
agent_id: The ID of the LibraryAgent to update.
settings: New GraphSettings to apply.
Returns:
The updated LibraryAgent.
Raises:
NotFoundError: If the specified LibraryAgent does not exist.
DatabaseError: If there's an error in the update operation.
"""
return await update_library_agent(
library_agent_id=agent_id,
user_id=user_id,
settings=settings,
)
async def delete_library_agent(
library_agent_id: str, user_id: str, soft_delete: bool = True
) -> None:
@@ -807,7 +838,7 @@ async def add_store_agent_to_library(
"isCreatedByUser": False,
"useGraphIsActiveVersion": False,
"settings": SafeJson(
GraphSettings.from_graph(graph_model).model_dump()
_initialize_graph_settings(graph_model).model_dump()
),
},
include=library_agent_include(
@@ -1197,15 +1228,8 @@ async def fork_library_agent(
)
new_graph = await on_graph_activate(new_graph, user_id=user_id)
# Create a library agent for the new graph, preserving safe mode settings
return (
await create_library_agent(
new_graph,
user_id,
hitl_safe_mode=original_agent.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=original_agent.settings.sensitive_action_safe_mode,
)
)[0]
# Create a library agent for the new graph
return (await create_library_agent(new_graph, user_id))[0]
except prisma.errors.PrismaError as e:
logger.error(f"Database error cloning library agent: {e}")
raise DatabaseError("Failed to fork library agent") from e

View File

@@ -73,12 +73,6 @@ class LibraryAgent(pydantic.BaseModel):
has_external_trigger: bool = pydantic.Field(
description="Whether the agent has an external trigger (e.g. webhook) node"
)
has_human_in_the_loop: bool = pydantic.Field(
description="Whether the agent has human-in-the-loop blocks"
)
has_sensitive_action: bool = pydantic.Field(
description="Whether the agent has sensitive action blocks"
)
trigger_setup_info: Optional[GraphTriggerInfo] = None
# Indicates whether there's a new output (based on recent runs)
@@ -186,8 +180,6 @@ class LibraryAgent(pydantic.BaseModel):
graph.credentials_input_schema if sub_graphs is not None else None
),
has_external_trigger=graph.has_external_trigger,
has_human_in_the_loop=graph.has_human_in_the_loop,
has_sensitive_action=graph.has_sensitive_action,
trigger_setup_info=graph.trigger_setup_info,
new_output=new_output,
can_access_graph=can_access_graph,

View File

@@ -1,3 +1,4 @@
import logging
from typing import Literal, Optional
import autogpt_libs.auth as autogpt_auth_lib
@@ -5,11 +6,15 @@ from fastapi import APIRouter, Body, HTTPException, Query, Security, status
from fastapi.responses import Response
from prisma.enums import OnboardingStep
import backend.api.features.store.exceptions as store_exceptions
from backend.data.onboarding import complete_onboarding_step
from backend.util.exceptions import DatabaseError, NotFoundError
from .. import db as library_db
from .. import model as library_model
logger = logging.getLogger(__name__)
router = APIRouter(
prefix="/agents",
tags=["library", "private"],
@@ -21,6 +26,10 @@ router = APIRouter(
"",
summary="List Library Agents",
response_model=library_model.LibraryAgentResponse,
responses={
200: {"description": "List of library agents"},
500: {"description": "Server error", "content": {"application/json": {}}},
},
)
async def list_library_agents(
user_id: str = Security(autogpt_auth_lib.get_user_id),
@@ -44,19 +53,43 @@ async def list_library_agents(
) -> library_model.LibraryAgentResponse:
"""
Get all agents in the user's library (both created and saved).
Args:
user_id: ID of the authenticated user.
search_term: Optional search term to filter agents by name/description.
filter_by: List of filters to apply (favorites, created by user).
sort_by: List of sorting criteria (created date, updated date).
page: Page number to retrieve.
page_size: Number of agents per page.
Returns:
A LibraryAgentResponse containing agents and pagination metadata.
Raises:
HTTPException: If a server/database error occurs.
"""
return await library_db.list_library_agents(
user_id=user_id,
search_term=search_term,
sort_by=sort_by,
page=page,
page_size=page_size,
)
try:
return await library_db.list_library_agents(
user_id=user_id,
search_term=search_term,
sort_by=sort_by,
page=page,
page_size=page_size,
)
except Exception as e:
logger.error(f"Could not list library agents for user #{user_id}: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e),
) from e
@router.get(
"/favorites",
summary="List Favorite Library Agents",
responses={
500: {"description": "Server error", "content": {"application/json": {}}},
},
)
async def list_favorite_library_agents(
user_id: str = Security(autogpt_auth_lib.get_user_id),
@@ -73,12 +106,30 @@ async def list_favorite_library_agents(
) -> library_model.LibraryAgentResponse:
"""
Get all favorite agents in the user's library.
Args:
user_id: ID of the authenticated user.
page: Page number to retrieve.
page_size: Number of agents per page.
Returns:
A LibraryAgentResponse containing favorite agents and pagination metadata.
Raises:
HTTPException: If a server/database error occurs.
"""
return await library_db.list_favorite_library_agents(
user_id=user_id,
page=page,
page_size=page_size,
)
try:
return await library_db.list_favorite_library_agents(
user_id=user_id,
page=page,
page_size=page_size,
)
except Exception as e:
logger.error(f"Could not list favorite library agents for user #{user_id}: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e),
) from e
@router.get("/{library_agent_id}", summary="Get Library Agent")
@@ -111,6 +162,10 @@ async def get_library_agent_by_graph_id(
summary="Get Agent By Store ID",
tags=["store", "library"],
response_model=library_model.LibraryAgent | None,
responses={
200: {"description": "Library agent found"},
404: {"description": "Agent not found"},
},
)
async def get_library_agent_by_store_listing_version_id(
store_listing_version_id: str,
@@ -119,15 +174,32 @@ async def get_library_agent_by_store_listing_version_id(
"""
Get Library Agent from Store Listing Version ID.
"""
return await library_db.get_library_agent_by_store_version_id(
store_listing_version_id, user_id
)
try:
return await library_db.get_library_agent_by_store_version_id(
store_listing_version_id, user_id
)
except NotFoundError as e:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=str(e),
)
except Exception as e:
logger.error(f"Could not fetch library agent from store version ID: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e),
) from e
@router.post(
"",
summary="Add Marketplace Agent",
status_code=status.HTTP_201_CREATED,
responses={
201: {"description": "Agent added successfully"},
404: {"description": "Store listing version not found"},
500: {"description": "Server error"},
},
)
async def add_marketplace_agent_to_library(
store_listing_version_id: str = Body(embed=True),
@@ -138,19 +210,59 @@ async def add_marketplace_agent_to_library(
) -> library_model.LibraryAgent:
"""
Add an agent from the marketplace to the user's library.
Args:
store_listing_version_id: ID of the store listing version to add.
user_id: ID of the authenticated user.
Returns:
library_model.LibraryAgent: Agent added to the library
Raises:
HTTPException(404): If the listing version is not found.
HTTPException(500): If a server/database error occurs.
"""
agent = await library_db.add_store_agent_to_library(
store_listing_version_id=store_listing_version_id,
user_id=user_id,
)
if source != "onboarding":
await complete_onboarding_step(user_id, OnboardingStep.MARKETPLACE_ADD_AGENT)
return agent
try:
agent = await library_db.add_store_agent_to_library(
store_listing_version_id=store_listing_version_id,
user_id=user_id,
)
if source != "onboarding":
await complete_onboarding_step(
user_id, OnboardingStep.MARKETPLACE_ADD_AGENT
)
return agent
except store_exceptions.AgentNotFoundError as e:
logger.warning(
f"Could not find store listing version {store_listing_version_id} "
"to add to library"
)
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=str(e))
except DatabaseError as e:
logger.error(f"Database error while adding agent to library: {e}", e)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={"message": str(e), "hint": "Inspect DB logs for details."},
) from e
except Exception as e:
logger.error(f"Unexpected error while adding agent to library: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={
"message": str(e),
"hint": "Check server logs for more information.",
},
) from e
@router.patch(
"/{library_agent_id}",
summary="Update Library Agent",
responses={
200: {"description": "Agent updated successfully"},
500: {"description": "Server error"},
},
)
async def update_library_agent(
library_agent_id: str,
@@ -159,21 +271,52 @@ async def update_library_agent(
) -> library_model.LibraryAgent:
"""
Update the library agent with the given fields.
Args:
library_agent_id: ID of the library agent to update.
payload: Fields to update (auto_update_version, is_favorite, etc.).
user_id: ID of the authenticated user.
Raises:
HTTPException(500): If a server/database error occurs.
"""
return await library_db.update_library_agent(
library_agent_id=library_agent_id,
user_id=user_id,
auto_update_version=payload.auto_update_version,
graph_version=payload.graph_version,
is_favorite=payload.is_favorite,
is_archived=payload.is_archived,
settings=payload.settings,
)
try:
return await library_db.update_library_agent(
library_agent_id=library_agent_id,
user_id=user_id,
auto_update_version=payload.auto_update_version,
graph_version=payload.graph_version,
is_favorite=payload.is_favorite,
is_archived=payload.is_archived,
settings=payload.settings,
)
except NotFoundError as e:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=str(e),
) from e
except DatabaseError as e:
logger.error(f"Database error while updating library agent: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={"message": str(e), "hint": "Verify DB connection."},
) from e
except Exception as e:
logger.error(f"Unexpected error while updating library agent: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={"message": str(e), "hint": "Check server logs."},
) from e
@router.delete(
"/{library_agent_id}",
summary="Delete Library Agent",
responses={
204: {"description": "Agent deleted successfully"},
404: {"description": "Agent not found"},
500: {"description": "Server error"},
},
)
async def delete_library_agent(
library_agent_id: str,
@@ -181,11 +324,28 @@ async def delete_library_agent(
) -> Response:
"""
Soft-delete the specified library agent.
Args:
library_agent_id: ID of the library agent to delete.
user_id: ID of the authenticated user.
Returns:
204 No Content if successful.
Raises:
HTTPException(404): If the agent does not exist.
HTTPException(500): If a server/database error occurs.
"""
await library_db.delete_library_agent(
library_agent_id=library_agent_id, user_id=user_id
)
return Response(status_code=status.HTTP_204_NO_CONTENT)
try:
await library_db.delete_library_agent(
library_agent_id=library_agent_id, user_id=user_id
)
return Response(status_code=status.HTTP_204_NO_CONTENT)
except NotFoundError as e:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=str(e),
) from e
@router.post("/{library_agent_id}/fork", summary="Fork Library Agent")

View File

@@ -52,8 +52,6 @@ async def test_get_library_agents_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
recommended_schedule_cron=None,
new_output=False,
@@ -77,8 +75,6 @@ async def test_get_library_agents_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
recommended_schedule_cron=None,
new_output=False,
@@ -118,6 +114,21 @@ async def test_get_library_agents_success(
)
def test_get_library_agents_error(mocker: pytest_mock.MockFixture, test_user_id: str):
mock_db_call = mocker.patch("backend.api.features.library.db.list_library_agents")
mock_db_call.side_effect = Exception("Test error")
response = client.get("/agents?search_term=test")
assert response.status_code == 500
mock_db_call.assert_called_once_with(
user_id=test_user_id,
search_term="test",
sort_by=library_model.LibraryAgentSort.UPDATED_AT,
page=1,
page_size=15,
)
@pytest.mark.asyncio
async def test_get_favorite_library_agents_success(
mocker: pytest_mock.MockFixture,
@@ -139,8 +150,6 @@ async def test_get_favorite_library_agents_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
recommended_schedule_cron=None,
new_output=False,
@@ -175,6 +184,23 @@ async def test_get_favorite_library_agents_success(
)
def test_get_favorite_library_agents_error(
mocker: pytest_mock.MockFixture, test_user_id: str
):
mock_db_call = mocker.patch(
"backend.api.features.library.db.list_favorite_library_agents"
)
mock_db_call.side_effect = Exception("Test error")
response = client.get("/agents/favorites")
assert response.status_code == 500
mock_db_call.assert_called_once_with(
user_id=test_user_id,
page=1,
page_size=15,
)
def test_add_agent_to_library_success(
mocker: pytest_mock.MockFixture, test_user_id: str
):
@@ -192,8 +218,6 @@ def test_add_agent_to_library_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
new_output=False,
can_access_graph=True,
@@ -226,3 +250,19 @@ def test_add_agent_to_library_success(
store_listing_version_id="test-version-id", user_id=test_user_id
)
mock_complete_onboarding.assert_awaited_once()
def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture, test_user_id: str):
mock_db_call = mocker.patch(
"backend.api.features.library.db.add_store_agent_to_library"
)
mock_db_call.side_effect = Exception("Test error")
response = client.post(
"/agents", json={"store_listing_version_id": "test-version-id"}
)
assert response.status_code == 500
assert "detail" in response.json() # Verify error response structure
mock_db_call.assert_called_once_with(
store_listing_version_id="test-version-id", user_id=test_user_id
)

View File

@@ -20,7 +20,6 @@ from typing import AsyncGenerator
import httpx
import pytest
import pytest_asyncio
from autogpt_libs.api_key.keysmith import APIKeySmith
from prisma.enums import APIKeyPermission
from prisma.models import OAuthAccessToken as PrismaOAuthAccessToken
@@ -39,13 +38,13 @@ keysmith = APIKeySmith()
# ============================================================================
@pytest.fixture(scope="session")
@pytest.fixture
def test_user_id() -> str:
"""Test user ID for OAuth tests."""
return str(uuid.uuid4())
@pytest_asyncio.fixture(scope="session", loop_scope="session")
@pytest.fixture
async def test_user(server, test_user_id: str):
"""Create a test user in the database."""
await PrismaUser.prisma().create(
@@ -68,7 +67,7 @@ async def test_user(server, test_user_id: str):
await PrismaUser.prisma().delete(where={"id": test_user_id})
@pytest_asyncio.fixture
@pytest.fixture
async def test_oauth_app(test_user: str):
"""Create a test OAuth application in the database."""
app_id = str(uuid.uuid4())
@@ -123,7 +122,7 @@ def pkce_credentials() -> tuple[str, str]:
return generate_pkce()
@pytest_asyncio.fixture
@pytest.fixture
async def client(server, test_user: str) -> AsyncGenerator[httpx.AsyncClient, None]:
"""
Create an async HTTP client that talks directly to the FastAPI app.
@@ -288,7 +287,7 @@ async def test_authorize_invalid_client_returns_error(
assert query_params["error"][0] == "invalid_client"
@pytest_asyncio.fixture
@pytest.fixture
async def inactive_oauth_app(test_user: str):
"""Create an inactive test OAuth application in the database."""
app_id = str(uuid.uuid4())
@@ -1005,7 +1004,7 @@ async def test_token_refresh_revoked(
assert "revoked" in response.json()["detail"].lower()
@pytest_asyncio.fixture
@pytest.fixture
async def other_oauth_app(test_user: str):
"""Create a second OAuth application for cross-app tests."""
app_id = str(uuid.uuid4())

View File

@@ -188,10 +188,6 @@ class BlockHandler(ContentHandler):
try:
block_instance = block_cls()
# Skip disabled blocks - they shouldn't be indexed
if block_instance.disabled:
continue
# Build searchable text from block metadata
parts = []
if hasattr(block_instance, "name") and block_instance.name:
@@ -252,19 +248,12 @@ class BlockHandler(ContentHandler):
from backend.data.block import get_blocks
all_blocks = get_blocks()
# Filter out disabled blocks - they're not indexed
enabled_block_ids = [
block_id
for block_id, block_cls in all_blocks.items()
if not block_cls().disabled
]
total_blocks = len(enabled_block_ids)
total_blocks = len(all_blocks)
if total_blocks == 0:
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
block_ids = enabled_block_ids
block_ids = list(all_blocks.keys())
placeholders = ",".join([f"${i+1}" for i in range(len(block_ids))])
embedded_result = await query_raw_with_schema(

View File

@@ -81,7 +81,6 @@ async def test_block_handler_get_missing_items(mocker):
mock_block_instance.name = "Calculator Block"
mock_block_instance.description = "Performs calculations"
mock_block_instance.categories = [MagicMock(value="MATH")]
mock_block_instance.disabled = False
mock_block_instance.input_schema.model_json_schema.return_value = {
"properties": {"expression": {"description": "Math expression to evaluate"}}
}
@@ -117,18 +116,11 @@ async def test_block_handler_get_stats(mocker):
"""Test BlockHandler returns correct stats."""
handler = BlockHandler()
# Mock get_blocks - each block class returns an instance with disabled=False
def make_mock_block_class():
mock_class = MagicMock()
mock_instance = MagicMock()
mock_instance.disabled = False
mock_class.return_value = mock_instance
return mock_class
# Mock get_blocks
mock_blocks = {
"block-1": make_mock_block_class(),
"block-2": make_mock_block_class(),
"block-3": make_mock_block_class(),
"block-1": MagicMock(),
"block-2": MagicMock(),
"block-3": MagicMock(),
}
# Mock embedded count query (2 blocks have embeddings)
@@ -317,7 +309,6 @@ async def test_block_handler_handles_missing_attributes():
mock_block_class = MagicMock()
mock_block_instance = MagicMock()
mock_block_instance.name = "Minimal Block"
mock_block_instance.disabled = False
# No description, categories, or schema
del mock_block_instance.description
del mock_block_instance.categories
@@ -351,7 +342,6 @@ async def test_block_handler_skips_failed_blocks():
good_instance.name = "Good Block"
good_instance.description = "Works fine"
good_instance.categories = []
good_instance.disabled = False
good_block.return_value = good_instance
bad_block = MagicMock()

View File

@@ -1552,7 +1552,7 @@ async def review_store_submission(
# Generate embedding for approved listing (blocking - admin operation)
# Inside transaction: if embedding fails, entire transaction rolls back
await ensure_embedding(
embedding_success = await ensure_embedding(
version_id=store_listing_version_id,
name=store_listing_version.name,
description=store_listing_version.description,
@@ -1560,6 +1560,12 @@ async def review_store_submission(
categories=store_listing_version.categories or [],
tx=tx,
)
if not embedding_success:
raise ValueError(
f"Failed to generate embedding for listing {store_listing_version_id}. "
"This is likely due to OpenAI API being unavailable. "
"Please try again later or contact support if the issue persists."
)
await prisma.models.StoreListing.prisma(tx).update(
where={"id": store_listing_version.StoreListing.id},

View File

@@ -21,6 +21,7 @@ from backend.util.json import dumps
logger = logging.getLogger(__name__)
# OpenAI embedding model configuration
EMBEDDING_MODEL = "text-embedding-3-small"
# Embedding dimension for the model above
@@ -62,42 +63,49 @@ def build_searchable_text(
return " ".join(parts)
async def generate_embedding(text: str) -> list[float]:
async def generate_embedding(text: str) -> list[float] | None:
"""
Generate embedding for text using OpenAI API.
Raises exceptions on failure - caller should handle.
Returns None if embedding generation fails.
Fail-fast: no retries to maintain consistency with approval flow.
"""
client = get_openai_client()
if not client:
raise RuntimeError("openai_internal_api_key not set, cannot generate embedding")
try:
client = get_openai_client()
if not client:
logger.error("openai_internal_api_key not set, cannot generate embedding")
return None
# Truncate text to token limit using tiktoken
# Character-based truncation is insufficient because token ratios vary by content type
enc = encoding_for_model(EMBEDDING_MODEL)
tokens = enc.encode(text)
if len(tokens) > EMBEDDING_MAX_TOKENS:
tokens = tokens[:EMBEDDING_MAX_TOKENS]
truncated_text = enc.decode(tokens)
logger.info(
f"Truncated text from {len(enc.encode(text))} to {len(tokens)} tokens"
# Truncate text to token limit using tiktoken
# Character-based truncation is insufficient because token ratios vary by content type
enc = encoding_for_model(EMBEDDING_MODEL)
tokens = enc.encode(text)
if len(tokens) > EMBEDDING_MAX_TOKENS:
tokens = tokens[:EMBEDDING_MAX_TOKENS]
truncated_text = enc.decode(tokens)
logger.info(
f"Truncated text from {len(enc.encode(text))} to {len(tokens)} tokens"
)
else:
truncated_text = text
start_time = time.time()
response = await client.embeddings.create(
model=EMBEDDING_MODEL,
input=truncated_text,
)
else:
truncated_text = text
latency_ms = (time.time() - start_time) * 1000
start_time = time.time()
response = await client.embeddings.create(
model=EMBEDDING_MODEL,
input=truncated_text,
)
latency_ms = (time.time() - start_time) * 1000
embedding = response.data[0].embedding
logger.info(
f"Generated embedding: {len(embedding)} dims, "
f"{len(tokens)} tokens, {latency_ms:.0f}ms"
)
return embedding
embedding = response.data[0].embedding
logger.info(
f"Generated embedding: {len(embedding)} dims, "
f"{len(tokens)} tokens, {latency_ms:.0f}ms"
)
return embedding
except Exception as e:
logger.error(f"Failed to generate embedding: {e}")
return None
async def store_embedding(
@@ -136,45 +144,48 @@ async def store_content_embedding(
New function for unified content embedding storage.
Uses raw SQL since Prisma doesn't natively support pgvector.
Raises exceptions on failure - caller should handle.
"""
client = tx if tx else prisma.get_client()
try:
client = tx if tx else prisma.get_client()
# Convert embedding to PostgreSQL vector format
embedding_str = embedding_to_vector_string(embedding)
metadata_json = dumps(metadata or {})
# Convert embedding to PostgreSQL vector format
embedding_str = embedding_to_vector_string(embedding)
metadata_json = dumps(metadata or {})
# Upsert the embedding
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
# Use unqualified ::vector - pgvector is in search_path on all environments
await execute_raw_with_schema(
"""
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
# Upsert the embedding
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
await execute_raw_with_schema(
"""
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
)
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::vector, $5, $6::jsonb, NOW(), NOW())
ON CONFLICT ("contentType", "contentId", "userId")
DO UPDATE SET
"embedding" = $4::vector,
"searchableText" = $5,
"metadata" = $6::jsonb,
"updatedAt" = NOW()
WHERE {schema_prefix}"UnifiedContentEmbedding"."contentType" = $1::{schema_prefix}"ContentType"
AND {schema_prefix}"UnifiedContentEmbedding"."contentId" = $2
AND ({schema_prefix}"UnifiedContentEmbedding"."userId" = $3 OR ($3 IS NULL AND {schema_prefix}"UnifiedContentEmbedding"."userId" IS NULL))
""",
content_type,
content_id,
user_id,
embedding_str,
searchable_text,
metadata_json,
client=client,
set_public_search_path=True,
)
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::vector, $5, $6::jsonb, NOW(), NOW())
ON CONFLICT ("contentType", "contentId", "userId")
DO UPDATE SET
"embedding" = $4::vector,
"searchableText" = $5,
"metadata" = $6::jsonb,
"updatedAt" = NOW()
WHERE {schema_prefix}"UnifiedContentEmbedding"."contentType" = $1::{schema_prefix}"ContentType"
AND {schema_prefix}"UnifiedContentEmbedding"."contentId" = $2
AND ({schema_prefix}"UnifiedContentEmbedding"."userId" = $3 OR ($3 IS NULL AND {schema_prefix}"UnifiedContentEmbedding"."userId" IS NULL))
""",
content_type,
content_id,
user_id,
embedding_str,
searchable_text,
metadata_json,
client=client,
)
logger.info(f"Stored embedding for {content_type}:{content_id}")
return True
logger.info(f"Stored embedding for {content_type}:{content_id}")
return True
except Exception as e:
logger.error(f"Failed to store embedding for {content_type}:{content_id}: {e}")
return False
async def get_embedding(version_id: str) -> dict[str, Any] | None:
@@ -206,31 +217,35 @@ async def get_content_embedding(
New function for unified content embedding retrieval.
Returns dict with contentType, contentId, embedding, timestamps or None if not found.
Raises exceptions on failure - caller should handle.
"""
result = await query_raw_with_schema(
"""
SELECT
"contentType",
"contentId",
"userId",
"embedding"::text as "embedding",
"searchableText",
"metadata",
"createdAt",
"updatedAt"
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType" AND "contentId" = $2 AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
""",
content_type,
content_id,
user_id,
)
try:
result = await query_raw_with_schema(
"""
SELECT
"contentType",
"contentId",
"userId",
"embedding"::text as "embedding",
"searchableText",
"metadata",
"createdAt",
"updatedAt"
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType" AND "contentId" = $2 AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
""",
content_type,
content_id,
user_id,
set_public_search_path=True,
)
if result and len(result) > 0:
return result[0]
return None
if result and len(result) > 0:
return result[0]
return None
except Exception as e:
logger.error(f"Failed to get embedding for {content_type}:{content_id}: {e}")
return None
async def ensure_embedding(
@@ -258,38 +273,46 @@ async def ensure_embedding(
tx: Optional transaction client
Returns:
True if embedding exists/was created
Raises exceptions on failure - caller should handle.
True if embedding exists/was created, False on failure
"""
# Check if embedding already exists
if not force:
existing = await get_embedding(version_id)
if existing and existing.get("embedding"):
logger.debug(f"Embedding for version {version_id} already exists")
return True
try:
# Check if embedding already exists
if not force:
existing = await get_embedding(version_id)
if existing and existing.get("embedding"):
logger.debug(f"Embedding for version {version_id} already exists")
return True
# Build searchable text for embedding
searchable_text = build_searchable_text(name, description, sub_heading, categories)
# Build searchable text for embedding
searchable_text = build_searchable_text(
name, description, sub_heading, categories
)
# Generate new embedding
embedding = await generate_embedding(searchable_text)
# Generate new embedding
embedding = await generate_embedding(searchable_text)
if embedding is None:
logger.warning(f"Could not generate embedding for version {version_id}")
return False
# Store the embedding with metadata using new function
metadata = {
"name": name,
"subHeading": sub_heading,
"categories": categories,
}
return await store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=version_id,
embedding=embedding,
searchable_text=searchable_text,
metadata=metadata,
user_id=None, # Store agents are public
tx=tx,
)
# Store the embedding with metadata using new function
metadata = {
"name": name,
"subHeading": sub_heading,
"categories": categories,
}
return await store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=version_id,
embedding=embedding,
searchable_text=searchable_text,
metadata=metadata,
user_id=None, # Store agents are public
tx=tx,
)
except Exception as e:
logger.error(f"Failed to ensure embedding for version {version_id}: {e}")
return False
async def delete_embedding(version_id: str) -> bool:
@@ -454,7 +477,6 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
total_processed = 0
total_success = 0
total_failed = 0
all_errors: dict[str, int] = {} # Aggregate errors across all content types
# Process content types in explicit order
processing_order = [
@@ -500,13 +522,6 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
success = sum(1 for result in results if result is True)
failed = len(results) - success
# Aggregate errors across all content types
if failed > 0:
for result in results:
if isinstance(result, Exception):
error_key = f"{type(result).__name__}: {str(result)}"
all_errors[error_key] = all_errors.get(error_key, 0) + 1
results_by_type[content_type.value] = {
"processed": len(missing_items),
"success": success,
@@ -532,13 +547,6 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
"error": str(e),
}
# Log aggregated errors once at the end
if all_errors:
error_details = ", ".join(
f"{error} ({count}x)" for error, count in all_errors.items()
)
logger.error(f"Embedding backfill errors: {error_details}")
return {
"by_type": results_by_type,
"totals": {
@@ -550,12 +558,11 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
}
async def embed_query(query: str) -> list[float]:
async def embed_query(query: str) -> list[float] | None:
"""
Generate embedding for a search query.
Same as generate_embedding but with clearer intent.
Raises exceptions on failure - caller should handle.
"""
return await generate_embedding(query)
@@ -588,30 +595,40 @@ async def ensure_content_embedding(
tx: Optional transaction client
Returns:
True if embedding exists/was created
Raises exceptions on failure - caller should handle.
True if embedding exists/was created, False on failure
"""
# Check if embedding already exists
if not force:
existing = await get_content_embedding(content_type, content_id, user_id)
if existing and existing.get("embedding"):
logger.debug(f"Embedding for {content_type}:{content_id} already exists")
return True
try:
# Check if embedding already exists
if not force:
existing = await get_content_embedding(content_type, content_id, user_id)
if existing and existing.get("embedding"):
logger.debug(
f"Embedding for {content_type}:{content_id} already exists"
)
return True
# Generate new embedding
embedding = await generate_embedding(searchable_text)
# Generate new embedding
embedding = await generate_embedding(searchable_text)
if embedding is None:
logger.warning(
f"Could not generate embedding for {content_type}:{content_id}"
)
return False
# Store the embedding
return await store_content_embedding(
content_type=content_type,
content_id=content_id,
embedding=embedding,
searchable_text=searchable_text,
metadata=metadata or {},
user_id=user_id,
tx=tx,
)
# Store the embedding
return await store_content_embedding(
content_type=content_type,
content_id=content_id,
embedding=embedding,
searchable_text=searchable_text,
metadata=metadata or {},
user_id=user_id,
tx=tx,
)
except Exception as e:
logger.error(f"Failed to ensure embedding for {content_type}:{content_id}: {e}")
return False
async def cleanup_orphaned_embeddings() -> dict[str, Any]:
@@ -838,8 +855,9 @@ async def semantic_search(
limit = 100
# Generate query embedding
try:
query_embedding = await embed_query(query)
query_embedding = await embed_query(query)
if query_embedding is not None:
# Semantic search with embeddings
embedding_str = embedding_to_vector_string(query_embedding)
@@ -853,58 +871,47 @@ async def semantic_search(
# Add content type parameters and build placeholders dynamically
content_type_start_idx = len(params) + 1
content_type_placeholders = ", ".join(
"$" + str(content_type_start_idx + i) + '::{schema_prefix}"ContentType"'
f'${content_type_start_idx + i}::{{{{schema_prefix}}}}"ContentType"'
for i in range(len(content_types))
)
params.extend([ct.value for ct in content_types])
# Build min_similarity param index before appending
min_similarity_idx = len(params) + 1
params.append(min_similarity)
# Use unqualified ::vector and <=> operator - pgvector is in search_path on all environments
sql = (
"""
sql = f"""
SELECT
"contentId" as content_id,
"contentType" as content_type,
"searchableText" as searchable_text,
metadata,
1 - (embedding <=> '"""
+ embedding_str
+ """'::vector) as similarity
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" IN ("""
+ content_type_placeholders
+ """)
"""
+ user_filter
+ """
AND 1 - (embedding <=> '"""
+ embedding_str
+ """'::vector) >= $"""
+ str(min_similarity_idx)
+ """
1 - (embedding <=> '{embedding_str}'::vector) as similarity
FROM {{{{schema_prefix}}}}"UnifiedContentEmbedding"
WHERE "contentType" IN ({content_type_placeholders})
{user_filter}
AND 1 - (embedding <=> '{embedding_str}'::vector) >= ${len(params) + 1}
ORDER BY similarity DESC
LIMIT $1
"""
)
params.append(min_similarity)
results = await query_raw_with_schema(sql, *params)
return [
{
"content_id": row["content_id"],
"content_type": row["content_type"],
"searchable_text": row["searchable_text"],
"metadata": row["metadata"],
"similarity": float(row["similarity"]),
}
for row in results
]
except Exception as e:
logger.warning(f"Semantic search failed, falling back to lexical search: {e}")
try:
results = await query_raw_with_schema(
sql, *params, set_public_search_path=True
)
return [
{
"content_id": row["content_id"],
"content_type": row["content_type"],
"searchable_text": row["searchable_text"],
"metadata": row["metadata"],
"similarity": float(row["similarity"]),
}
for row in results
]
except Exception as e:
logger.error(f"Semantic search failed: {e}")
# Fall through to lexical search below
# Fallback to lexical search if embeddings unavailable
logger.warning("Falling back to lexical search (embeddings unavailable)")
params_lexical: list[Any] = [limit]
user_filter = ""
@@ -915,41 +922,31 @@ async def semantic_search(
# Add content type parameters and build placeholders dynamically
content_type_start_idx = len(params_lexical) + 1
content_type_placeholders_lexical = ", ".join(
"$" + str(content_type_start_idx + i) + '::{schema_prefix}"ContentType"'
f'${content_type_start_idx + i}::{{{{schema_prefix}}}}"ContentType"'
for i in range(len(content_types))
)
params_lexical.extend([ct.value for ct in content_types])
# Build query param index before appending
query_param_idx = len(params_lexical) + 1
params_lexical.append(f"%{query}%")
# Use regular string (not f-string) for template to preserve {schema_prefix} placeholders
sql_lexical = (
"""
sql_lexical = f"""
SELECT
"contentId" as content_id,
"contentType" as content_type,
"searchableText" as searchable_text,
metadata,
0.0 as similarity
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" IN ("""
+ content_type_placeholders_lexical
+ """)
"""
+ user_filter
+ """
AND "searchableText" ILIKE $"""
+ str(query_param_idx)
+ """
FROM {{{{schema_prefix}}}}"UnifiedContentEmbedding"
WHERE "contentType" IN ({content_type_placeholders_lexical})
{user_filter}
AND "searchableText" ILIKE ${len(params_lexical) + 1}
ORDER BY "updatedAt" DESC
LIMIT $1
"""
)
params_lexical.append(f"%{query}%")
try:
results = await query_raw_with_schema(sql_lexical, *params_lexical)
results = await query_raw_with_schema(
sql_lexical, *params_lexical, set_public_search_path=True
)
return [
{
"content_id": row["content_id"],

View File

@@ -298,16 +298,17 @@ async def test_schema_handling_error_cases():
mock_client.execute_raw.side_effect = Exception("Database error")
mock_get_client.return_value = mock_client
# Should raise exception on error
with pytest.raises(Exception, match="Database error"):
await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
embedding=[0.1] * EMBEDDING_DIM,
searchable_text="test",
metadata=None,
user_id=None,
)
result = await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
embedding=[0.1] * EMBEDDING_DIM,
searchable_text="test",
metadata=None,
user_id=None,
)
# Should return False on error, not raise
assert result is False
if __name__ == "__main__":

View File

@@ -80,8 +80,9 @@ async def test_generate_embedding_no_api_key():
) as mock_get_client:
mock_get_client.return_value = None
with pytest.raises(RuntimeError, match="openai_internal_api_key not set"):
await embeddings.generate_embedding("test text")
result = await embeddings.generate_embedding("test text")
assert result is None
@pytest.mark.asyncio(loop_scope="session")
@@ -96,8 +97,9 @@ async def test_generate_embedding_api_error():
) as mock_get_client:
mock_get_client.return_value = mock_client
with pytest.raises(Exception, match="API Error"):
await embeddings.generate_embedding("test text")
result = await embeddings.generate_embedding("test text")
assert result is None
@pytest.mark.asyncio(loop_scope="session")
@@ -153,14 +155,18 @@ async def test_store_embedding_success(mocker):
)
assert result is True
# execute_raw is called once for INSERT (no separate SET search_path needed)
assert mock_client.execute_raw.call_count == 1
# execute_raw is called twice: once for SET search_path, once for INSERT
assert mock_client.execute_raw.call_count == 2
# Verify the INSERT query with the actual data
call_args = mock_client.execute_raw.call_args_list[0][0]
assert "test-version-id" in call_args
assert "[0.1,0.2,0.3]" in call_args
assert None in call_args # userId should be None for store agents
# First call: SET search_path
first_call_args = mock_client.execute_raw.call_args_list[0][0]
assert "SET search_path" in first_call_args[0]
# Second call: INSERT query with the actual data
second_call_args = mock_client.execute_raw.call_args_list[1][0]
assert "test-version-id" in second_call_args
assert "[0.1,0.2,0.3]" in second_call_args
assert None in second_call_args # userId should be None for store agents
@pytest.mark.asyncio(loop_scope="session")
@@ -171,10 +177,11 @@ async def test_store_embedding_database_error(mocker):
embedding = [0.1, 0.2, 0.3]
with pytest.raises(Exception, match="Database error"):
await embeddings.store_embedding(
version_id="test-version-id", embedding=embedding, tx=mock_client
)
result = await embeddings.store_embedding(
version_id="test-version-id", embedding=embedding, tx=mock_client
)
assert result is False
@pytest.mark.asyncio(loop_scope="session")
@@ -274,16 +281,17 @@ async def test_ensure_embedding_create_new(mock_get, mock_store, mock_generate):
async def test_ensure_embedding_generation_fails(mock_get, mock_generate):
"""Test ensure_embedding when generation fails."""
mock_get.return_value = None
mock_generate.side_effect = Exception("Generation failed")
mock_generate.return_value = None
with pytest.raises(Exception, match="Generation failed"):
await embeddings.ensure_embedding(
version_id="test-id",
name="Test",
description="Test description",
sub_heading="Test heading",
categories=["test"],
)
result = await embeddings.ensure_embedding(
version_id="test-id",
name="Test",
description="Test description",
sub_heading="Test heading",
categories=["test"],
)
assert result is False
@pytest.mark.asyncio(loop_scope="session")

View File

@@ -12,7 +12,7 @@ from dataclasses import dataclass
from typing import Any, Literal
from prisma.enums import ContentType
from rank_bm25 import BM25Okapi # type: ignore[import-untyped]
from rank_bm25 import BM25Okapi
from backend.api.features.store.embeddings import (
EMBEDDING_DIM,
@@ -186,12 +186,13 @@ async def unified_hybrid_search(
offset = (page - 1) * page_size
# Generate query embedding with graceful degradation
try:
query_embedding = await embed_query(query)
except Exception as e:
# Generate query embedding
query_embedding = await embed_query(query)
# Graceful degradation if embedding unavailable
if query_embedding is None or not query_embedding:
logger.warning(
f"Failed to generate query embedding - falling back to lexical-only search: {e}. "
"Failed to generate query embedding - falling back to lexical-only search. "
"Check that openai_internal_api_key is configured and OpenAI API is accessible."
)
query_embedding = [0.0] * EMBEDDING_DIM
@@ -362,7 +363,9 @@ async def unified_hybrid_search(
LIMIT {limit_param} OFFSET {offset_param}
"""
results = await query_raw_with_schema(sql_query, *params)
results = await query_raw_with_schema(
sql_query, *params, set_public_search_path=True
)
total = results[0]["total_count"] if results else 0
# Apply BM25 reranking
@@ -463,12 +466,13 @@ async def hybrid_search(
offset = (page - 1) * page_size
# Generate query embedding with graceful degradation
try:
query_embedding = await embed_query(query)
except Exception as e:
# Generate query embedding
query_embedding = await embed_query(query)
# Graceful degradation
if query_embedding is None or not query_embedding:
logger.warning(
f"Failed to generate query embedding - falling back to lexical-only search: {e}"
"Failed to generate query embedding - falling back to lexical-only search."
)
query_embedding = [0.0] * EMBEDDING_DIM
total_non_semantic = (
@@ -684,7 +688,9 @@ async def hybrid_search(
LIMIT {limit_param} OFFSET {offset_param}
"""
results = await query_raw_with_schema(sql_query, *params)
results = await query_raw_with_schema(
sql_query, *params, set_public_search_path=True
)
total = results[0]["total_count"] if results else 0

View File

@@ -172,8 +172,8 @@ async def test_hybrid_search_without_embeddings():
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
# Simulate embedding failure by raising exception
mock_embed.side_effect = Exception("Embedding generation failed")
# Simulate embedding failure
mock_embed.return_value = None
mock_query.return_value = mock_results
# Should NOT raise - graceful degradation
@@ -613,9 +613,7 @@ async def test_unified_hybrid_search_graceful_degradation():
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_query.return_value = mock_results
mock_embed.side_effect = Exception(
"Embedding generation failed"
) # Embedding failure
mock_embed.return_value = None # Embedding failure
# Should NOT raise - graceful degradation
results, total = await unified_hybrid_search(

View File

@@ -261,36 +261,14 @@ async def get_onboarding_agents(
return await get_recommended_agents(user_id)
class OnboardingStatusResponse(pydantic.BaseModel):
"""Response for onboarding status check."""
is_onboarding_enabled: bool
is_chat_enabled: bool
@v1_router.get(
"/onboarding/enabled",
summary="Is onboarding enabled",
tags=["onboarding", "public"],
response_model=OnboardingStatusResponse,
dependencies=[Security(requires_user)],
)
async def is_onboarding_enabled(
user_id: Annotated[str, Security(get_user_id)],
) -> OnboardingStatusResponse:
# Check if chat is enabled for user
is_chat_enabled = await is_feature_enabled(Flag.CHAT, user_id, False)
# If chat is enabled, skip legacy onboarding
if is_chat_enabled:
return OnboardingStatusResponse(
is_onboarding_enabled=False,
is_chat_enabled=True,
)
return OnboardingStatusResponse(
is_onboarding_enabled=await onboarding_enabled(),
is_chat_enabled=False,
)
async def is_onboarding_enabled() -> bool:
return await onboarding_enabled()
@v1_router.post(
@@ -386,8 +364,6 @@ async def execute_graph_block(
obj = get_block(block_id)
if not obj:
raise HTTPException(status_code=404, detail=f"Block #{block_id} not found.")
if obj.disabled:
raise HTTPException(status_code=403, detail=f"Block #{block_id} is disabled.")
user = await get_user_by_id(user_id)
if not user:
@@ -785,8 +761,10 @@ async def create_new_graph(
graph.reassign_ids(user_id=user_id, reassign_graph_id=True)
graph.validate_graph(for_run=False)
# The return value of the create graph & library function is intentionally not used here,
# as the graph already valid and no sub-graphs are returned back.
await graph_db.create_graph(graph, user_id=user_id)
await library_db.create_library_agent(graph, user_id)
await library_db.create_library_agent(graph, user_id=user_id)
activated_graph = await on_graph_activate(graph, user_id=user_id)
if create_graph.source == "builder":
@@ -910,19 +888,21 @@ async def set_graph_active_version(
async def _update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
# Keep the library agent up to date with the new active version
library = await library_db.update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await library_db.update_library_agent(
library_agent_id=library.id,
# If the graph has HITL node, initialize the setting if it's not already set.
if (
agent_graph.has_human_in_the_loop
and library.settings.human_in_the_loop_safe_mode is None
):
await library_db.update_library_agent_settings(
user_id=user_id,
settings=updated_settings,
agent_id=library.id,
settings=library.settings.model_copy(
update={"human_in_the_loop_safe_mode": True}
),
)
return library
@@ -939,18 +919,21 @@ async def update_graph_settings(
user_id: Annotated[str, Security(get_user_id)],
) -> GraphSettings:
"""Update graph settings for the user's library agent."""
# Get the library agent for this graph
library_agent = await library_db.get_library_agent_by_graph_id(
graph_id=graph_id, user_id=user_id
)
if not library_agent:
raise HTTPException(404, f"Graph #{graph_id} not found in user's library")
updated_agent = await library_db.update_library_agent(
library_agent_id=library_agent.id,
# Update the library agent settings
updated_agent = await library_db.update_library_agent_settings(
user_id=user_id,
agent_id=library_agent.id,
settings=settings,
)
# Return the updated settings
return GraphSettings.model_validate(updated_agent.settings)

View File

@@ -138,7 +138,6 @@ def test_execute_graph_block(
"""Test execute block endpoint"""
# Mock block
mock_block = Mock()
mock_block.disabled = False
async def mock_execute(*args, **kwargs):
yield "output1", {"data": "result1"}

View File

@@ -1 +0,0 @@
# Workspace API feature module

View File

@@ -1,122 +0,0 @@
"""
Workspace API routes for managing user file storage.
"""
import logging
import re
from typing import Annotated
from urllib.parse import quote
import fastapi
from autogpt_libs.auth.dependencies import get_user_id, requires_user
from fastapi.responses import Response
from backend.data.workspace import get_workspace, get_workspace_file
from backend.util.workspace_storage import get_workspace_storage
def _sanitize_filename_for_header(filename: str) -> str:
"""
Sanitize filename for Content-Disposition header to prevent header injection.
Removes/replaces characters that could break the header or inject new headers.
Uses RFC5987 encoding for non-ASCII characters.
"""
# Remove CR, LF, and null bytes (header injection prevention)
sanitized = re.sub(r"[\r\n\x00]", "", filename)
# Escape quotes
sanitized = sanitized.replace('"', '\\"')
# For non-ASCII, use RFC5987 filename* parameter
# Check if filename has non-ASCII characters
try:
sanitized.encode("ascii")
return f'attachment; filename="{sanitized}"'
except UnicodeEncodeError:
# Use RFC5987 encoding for UTF-8 filenames
encoded = quote(sanitized, safe="")
return f"attachment; filename*=UTF-8''{encoded}"
logger = logging.getLogger(__name__)
router = fastapi.APIRouter(
dependencies=[fastapi.Security(requires_user)],
)
def _create_streaming_response(content: bytes, file) -> Response:
"""Create a streaming response for file content."""
return Response(
content=content,
media_type=file.mimeType,
headers={
"Content-Disposition": _sanitize_filename_for_header(file.name),
"Content-Length": str(len(content)),
},
)
async def _create_file_download_response(file) -> Response:
"""
Create a download response for a workspace file.
Handles both local storage (direct streaming) and GCS (signed URL redirect
with fallback to streaming).
"""
storage = await get_workspace_storage()
# For local storage, stream the file directly
if file.storagePath.startswith("local://"):
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
# For GCS, try to redirect to signed URL, fall back to streaming
try:
url = await storage.get_download_url(file.storagePath, expires_in=300)
# If we got back an API path (fallback), stream directly instead
if url.startswith("/api/"):
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
return fastapi.responses.RedirectResponse(url=url, status_code=302)
except Exception as e:
# Log the signed URL failure with context
logger.error(
f"Failed to get signed URL for file {file.id} "
f"(storagePath={file.storagePath}): {e}",
exc_info=True,
)
# Fall back to streaming directly from GCS
try:
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
except Exception as fallback_error:
logger.error(
f"Fallback streaming also failed for file {file.id} "
f"(storagePath={file.storagePath}): {fallback_error}",
exc_info=True,
)
raise
@router.get(
"/files/{file_id}/download",
summary="Download file by ID",
)
async def download_file(
user_id: Annotated[str, fastapi.Security(get_user_id)],
file_id: str,
) -> Response:
"""
Download a file by its ID.
Returns the file content directly or redirects to a signed URL for GCS.
"""
workspace = await get_workspace(user_id)
if workspace is None:
raise fastapi.HTTPException(status_code=404, detail="Workspace not found")
file = await get_workspace_file(file_id, workspace.id)
if file is None:
raise fastapi.HTTPException(status_code=404, detail="File not found")
return await _create_file_download_response(file)

View File

@@ -32,7 +32,6 @@ import backend.api.features.postmark.postmark
import backend.api.features.store.model
import backend.api.features.store.routes
import backend.api.features.v1
import backend.api.features.workspace.routes as workspace_routes
import backend.data.block
import backend.data.db
import backend.data.graph
@@ -53,7 +52,6 @@ from backend.util.exceptions import (
)
from backend.util.feature_flag import initialize_launchdarkly, shutdown_launchdarkly
from backend.util.service import UnhealthyServiceError
from backend.util.workspace_storage import shutdown_workspace_storage
from .external.fastapi_app import external_api
from .features.analytics import router as analytics_router
@@ -126,11 +124,6 @@ async def lifespan_context(app: fastapi.FastAPI):
except Exception as e:
logger.warning(f"Error shutting down cloud storage handler: {e}")
try:
await shutdown_workspace_storage()
except Exception as e:
logger.warning(f"Error shutting down workspace storage: {e}")
await backend.data.db.disconnect()
@@ -322,11 +315,6 @@ app.include_router(
tags=["v2", "chat"],
prefix="/api/chat",
)
app.include_router(
workspace_routes.router,
tags=["workspace"],
prefix="/api/workspace",
)
app.include_router(
backend.api.features.oauth.router,
tags=["oauth"],

View File

@@ -13,7 +13,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -118,13 +117,11 @@ class AIImageCustomizerBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
# Output will be a workspace ref or data URI depending on context
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
("image_url", "https://replicate.delivery/generated-image.jpg"),
],
test_mock={
# Use data URI to avoid HTTP requests during tests
"run_model": lambda *args, **kwargs: MediaFileType(
""
"https://replicate.delivery/generated-image.jpg"
),
},
test_credentials=TEST_CREDENTIALS,
@@ -135,7 +132,8 @@ class AIImageCustomizerBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
try:
@@ -143,9 +141,10 @@ class AIImageCustomizerBlock(Block):
processed_images = await asyncio.gather(
*(
store_media_file(
graph_exec_id=graph_exec_id,
file=img,
execution_context=execution_context,
return_format="for_external_api", # Get content for Replicate API
user_id=user_id,
return_content=True,
)
for img in input_data.images
)
@@ -159,14 +158,7 @@ class AIImageCustomizerBlock(Block):
aspect_ratio=input_data.aspect_ratio.value,
output_format=input_data.output_format.value,
)
# Store the generated image to the user's workspace for persistence
stored_url = await store_media_file(
file=result,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
yield "image_url", result
except Exception as e:
yield "error", str(e)

View File

@@ -6,7 +6,6 @@ from replicate.client import Client as ReplicateClient
from replicate.helpers import FileOutput
from backend.data.block import Block, BlockCategory, BlockSchemaInput, BlockSchemaOutput
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -14,8 +13,6 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
class ImageSize(str, Enum):
@@ -168,13 +165,11 @@ class AIImageGeneratorBlock(Block):
test_output=[
(
"image_url",
# Test output is a data URI since we now store images
lambda x: x.startswith(""
"_run_client": lambda *args, **kwargs: "https://replicate.delivery/generated-image.webp"
},
)
@@ -323,24 +318,11 @@ class AIImageGeneratorBlock(Block):
style_text = style_map.get(style, "")
return f"{style_text} of" if style_text else ""
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
try:
url = await self.generate_image(input_data, credentials)
if url:
# Store the generated image to the user's workspace/execution folder
stored_url = await store_media_file(
file=MediaFileType(url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
yield "image_url", url
else:
yield "error", "Image generation returned an empty result."
except Exception as e:

View File

@@ -13,7 +13,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -22,9 +21,7 @@ from backend.data.model import (
)
from backend.integrations.providers import ProviderName
from backend.util.exceptions import BlockExecutionError
from backend.util.file import store_media_file
from backend.util.request import Requests
from backend.util.type import MediaFileType
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
@@ -274,10 +271,7 @@ class AIShortformVideoCreatorBlock(Block):
"voice": Voice.LILY,
"video_style": VisualMediaType.STOCK_VIDEOS,
},
test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_output=("video_url", "https://example.com/video.mp4"),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
@@ -286,21 +280,15 @@ class AIShortformVideoCreatorBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "data:video/mp4;base64,AAAA",
"videoUrl": "https://example.com/video.mp4",
},
# Use data URI to avoid HTTP requests during tests
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
"wait_for_video": lambda *args, **kwargs: "https://example.com/video.mp4",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
# Create a new Webhook.site URL
webhook_token, webhook_url = await self.create_webhook()
@@ -352,13 +340,7 @@ class AIShortformVideoCreatorBlock(Block):
)
video_url = await self.wait_for_video(credentials.api_key, pid)
logger.debug(f"Video ready: {video_url}")
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
yield "video_url", video_url
class AIAdMakerVideoCreatorBlock(Block):
@@ -465,10 +447,7 @@ class AIAdMakerVideoCreatorBlock(Block):
"https://cdn.revid.ai/uploads/1747076315114-image.png",
],
},
test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_output=("video_url", "https://example.com/ad.mp4"),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
@@ -477,21 +456,14 @@ class AIAdMakerVideoCreatorBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "data:video/mp4;base64,AAAA",
"videoUrl": "https://example.com/ad.mp4",
},
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
"wait_for_video": lambda *args, **kwargs: "https://example.com/ad.mp4",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
webhook_token, webhook_url = await self.create_webhook()
payload = {
@@ -559,13 +531,7 @@ class AIAdMakerVideoCreatorBlock(Block):
raise RuntimeError("Failed to create video: No project ID returned")
video_url = await self.wait_for_video(credentials.api_key, pid)
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
yield "video_url", video_url
class AIScreenshotToVideoAdBlock(Block):
@@ -660,10 +626,7 @@ class AIScreenshotToVideoAdBlock(Block):
"script": "Amazing numbers!",
"screenshot_url": "https://cdn.revid.ai/uploads/1747080376028-image.png",
},
test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_output=("video_url", "https://example.com/screenshot.mp4"),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
@@ -672,21 +635,14 @@ class AIScreenshotToVideoAdBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "data:video/mp4;base64,AAAA",
"videoUrl": "https://example.com/screenshot.mp4",
},
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
"wait_for_video": lambda *args, **kwargs: "https://example.com/screenshot.mp4",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
webhook_token, webhook_url = await self.create_webhook()
payload = {
@@ -754,10 +710,4 @@ class AIScreenshotToVideoAdBlock(Block):
raise RuntimeError("Failed to create video: No project ID returned")
video_url = await self.wait_for_video(credentials.api_key, pid)
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
yield "video_url", video_url

View File

@@ -6,7 +6,6 @@ if TYPE_CHECKING:
from pydantic import SecretStr
from backend.data.execution import ExecutionContext
from backend.sdk import (
APIKeyCredentials,
Block,
@@ -18,8 +17,6 @@ from backend.sdk import (
Requests,
SchemaField,
)
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
from ._config import bannerbear
@@ -138,17 +135,15 @@ class BannerbearTextOverlayBlock(Block):
},
test_output=[
("success", True),
# Output will be a workspace ref or data URI depending on context
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
("image_url", "https://cdn.bannerbear.com/test-image.jpg"),
("uid", "test-uid-123"),
("status", "completed"),
],
test_mock={
# Use data URI to avoid HTTP requests during tests
"_make_api_request": lambda *args, **kwargs: {
"uid": "test-uid-123",
"status": "completed",
"image_url": "",
"image_url": "https://cdn.bannerbear.com/test-image.jpg",
}
},
test_credentials=TEST_CREDENTIALS,
@@ -182,12 +177,7 @@ class BannerbearTextOverlayBlock(Block):
raise Exception(error_msg)
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
# Build the modifications array
modifications = []
@@ -244,18 +234,6 @@ class BannerbearTextOverlayBlock(Block):
# Synchronous request - image should be ready
yield "success", True
# Store the generated image to workspace for persistence
image_url = data.get("image_url", "")
if image_url:
stored_url = await store_media_file(
file=MediaFileType(image_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
else:
yield "image_url", ""
yield "image_url", data.get("image_url", "")
yield "uid", data.get("uid", "")
yield "status", data.get("status", "completed")

View File

@@ -9,7 +9,6 @@ from backend.data.block import (
BlockSchemaOutput,
BlockType,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.type import MediaFileType, convert
@@ -18,10 +17,10 @@ from backend.util.type import MediaFileType, convert
class FileStoreBlock(Block):
class Input(BlockSchemaInput):
file_in: MediaFileType = SchemaField(
description="The file to download and store. Can be a URL (https://...), data URI, or local path."
description="The file to store in the temporary directory, it can be a URL, data URI, or local path."
)
base_64: bool = SchemaField(
description="Whether to produce output in base64 format (not recommended, you can pass the file reference across blocks).",
description="Whether produce an output in base64 format (not recommended, you can pass the string path just fine accross blocks).",
default=False,
advanced=True,
title="Produce Base64 Output",
@@ -29,18 +28,13 @@ class FileStoreBlock(Block):
class Output(BlockSchemaOutput):
file_out: MediaFileType = SchemaField(
description="Reference to the stored file. In CoPilot: workspace:// URI (visible in list_workspace_files). In graphs: data URI for passing to other blocks."
description="The relative path to the stored file in the temporary directory."
)
def __init__(self):
super().__init__(
id="cbb50872-625b-42f0-8203-a2ae78242d8a",
description=(
"Downloads and stores a file from a URL, data URI, or local path. "
"Use this to fetch images, documents, or other files for processing. "
"In CoPilot: saves to workspace (use list_workspace_files to see it). "
"In graphs: outputs a data URI to pass to other blocks."
),
description="Stores the input file in the temporary directory.",
categories={BlockCategory.BASIC, BlockCategory.MULTIMEDIA},
input_schema=FileStoreBlock.Input,
output_schema=FileStoreBlock.Output,
@@ -51,18 +45,15 @@ class FileStoreBlock(Block):
self,
input_data: Input,
*,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
# Determine return format based on user preference
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
yield "file_out", await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.file_in,
execution_context=execution_context,
return_format=return_format,
user_id=user_id,
return_content=input_data.base_64,
)
@@ -125,7 +116,6 @@ class PrintToConsoleBlock(Block):
input_schema=PrintToConsoleBlock.Input,
output_schema=PrintToConsoleBlock.Output,
test_input={"text": "Hello, World!"},
is_sensitive_action=True,
test_output=[
("output", "Hello, World!"),
("status", "printed"),

View File

@@ -1,659 +0,0 @@
import json
import shlex
import uuid
from typing import Literal, Optional
from e2b import AsyncSandbox as BaseAsyncSandbox
from pydantic import BaseModel, SecretStr
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
CredentialsMetaInput,
SchemaField,
)
from backend.integrations.providers import ProviderName
class ClaudeCodeExecutionError(Exception):
"""Exception raised when Claude Code execution fails.
Carries the sandbox_id so it can be returned to the user for cleanup
when dispose_sandbox=False.
"""
def __init__(self, message: str, sandbox_id: str = ""):
super().__init__(message)
self.sandbox_id = sandbox_id
# Test credentials for E2B
TEST_E2B_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="e2b",
api_key=SecretStr("mock-e2b-api-key"),
title="Mock E2B API key",
expires_at=None,
)
TEST_E2B_CREDENTIALS_INPUT = {
"provider": TEST_E2B_CREDENTIALS.provider,
"id": TEST_E2B_CREDENTIALS.id,
"type": TEST_E2B_CREDENTIALS.type,
"title": TEST_E2B_CREDENTIALS.title,
}
# Test credentials for Anthropic
TEST_ANTHROPIC_CREDENTIALS = APIKeyCredentials(
id="2e568a2b-b2ea-475a-8564-9a676bf31c56",
provider="anthropic",
api_key=SecretStr("mock-anthropic-api-key"),
title="Mock Anthropic API key",
expires_at=None,
)
TEST_ANTHROPIC_CREDENTIALS_INPUT = {
"provider": TEST_ANTHROPIC_CREDENTIALS.provider,
"id": TEST_ANTHROPIC_CREDENTIALS.id,
"type": TEST_ANTHROPIC_CREDENTIALS.type,
"title": TEST_ANTHROPIC_CREDENTIALS.title,
}
class ClaudeCodeBlock(Block):
"""
Execute tasks using Claude Code (Anthropic's AI coding assistant) in an E2B sandbox.
Claude Code can create files, install tools, run commands, and perform complex
coding tasks autonomously within a secure sandbox environment.
"""
# Use base template - we'll install Claude Code ourselves for latest version
DEFAULT_TEMPLATE = "base"
class Input(BlockSchemaInput):
e2b_credentials: CredentialsMetaInput[
Literal[ProviderName.E2B], Literal["api_key"]
] = CredentialsField(
description=(
"API key for the E2B platform to create the sandbox. "
"Get one on the [e2b website](https://e2b.dev/docs)"
),
)
anthropic_credentials: CredentialsMetaInput[
Literal[ProviderName.ANTHROPIC], Literal["api_key"]
] = CredentialsField(
description=(
"API key for Anthropic to power Claude Code. "
"Get one at [Anthropic's website](https://console.anthropic.com)"
),
)
prompt: str = SchemaField(
description=(
"The task or instruction for Claude Code to execute. "
"Claude Code can create files, install packages, run commands, "
"and perform complex coding tasks."
),
placeholder="Create a hello world index.html file",
default="",
advanced=False,
)
timeout: int = SchemaField(
description=(
"Sandbox timeout in seconds. Claude Code tasks can take "
"a while, so set this appropriately for your task complexity. "
"Note: This only applies when creating a new sandbox. "
"When reconnecting to an existing sandbox via sandbox_id, "
"the original timeout is retained."
),
default=300, # 5 minutes default
advanced=True,
)
setup_commands: list[str] = SchemaField(
description=(
"Optional shell commands to run before executing Claude Code. "
"Useful for installing dependencies or setting up the environment."
),
default_factory=list,
advanced=True,
)
working_directory: str = SchemaField(
description="Working directory for Claude Code to operate in.",
default="/home/user",
advanced=True,
)
# Session/continuation support
session_id: str = SchemaField(
description=(
"Session ID to resume a previous conversation. "
"Leave empty for a new conversation. "
"Use the session_id from a previous run to continue that conversation."
),
default="",
advanced=True,
)
sandbox_id: str = SchemaField(
description=(
"Sandbox ID to reconnect to an existing sandbox. "
"Required when resuming a session (along with session_id). "
"Use the sandbox_id from a previous run where dispose_sandbox was False."
),
default="",
advanced=True,
)
conversation_history: str = SchemaField(
description=(
"Previous conversation history to continue from. "
"Use this to restore context on a fresh sandbox if the previous one timed out. "
"Pass the conversation_history output from a previous run."
),
default="",
advanced=True,
)
dispose_sandbox: bool = SchemaField(
description=(
"Whether to dispose of the sandbox immediately after execution. "
"Set to False if you want to continue the conversation later "
"(you'll need both sandbox_id and session_id from the output)."
),
default=True,
advanced=True,
)
class FileOutput(BaseModel):
"""A file extracted from the sandbox."""
path: str
relative_path: str # Path relative to working directory (for GitHub, etc.)
name: str
content: str
class Output(BlockSchemaOutput):
response: str = SchemaField(
description="The output/response from Claude Code execution"
)
files: list["ClaudeCodeBlock.FileOutput"] = SchemaField(
description=(
"List of text files created/modified by Claude Code during this execution. "
"Each file has 'path', 'relative_path', 'name', and 'content' fields."
)
)
conversation_history: str = SchemaField(
description=(
"Full conversation history including this turn. "
"Pass this to conversation_history input to continue on a fresh sandbox "
"if the previous sandbox timed out."
)
)
session_id: str = SchemaField(
description=(
"Session ID for this conversation. "
"Pass this back along with sandbox_id to continue the conversation."
)
)
sandbox_id: Optional[str] = SchemaField(
description=(
"ID of the sandbox instance. "
"Pass this back along with session_id to continue the conversation. "
"This is None if dispose_sandbox was True (sandbox was disposed)."
),
default=None,
)
error: str = SchemaField(description="Error message if execution failed")
def __init__(self):
super().__init__(
id="4e34f4a5-9b89-4326-ba77-2dd6750b7194",
description=(
"Execute tasks using Claude Code in an E2B sandbox. "
"Claude Code can create files, install tools, run commands, "
"and perform complex coding tasks autonomously."
),
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.AI},
input_schema=ClaudeCodeBlock.Input,
output_schema=ClaudeCodeBlock.Output,
test_credentials={
"e2b_credentials": TEST_E2B_CREDENTIALS,
"anthropic_credentials": TEST_ANTHROPIC_CREDENTIALS,
},
test_input={
"e2b_credentials": TEST_E2B_CREDENTIALS_INPUT,
"anthropic_credentials": TEST_ANTHROPIC_CREDENTIALS_INPUT,
"prompt": "Create a hello world HTML file",
"timeout": 300,
"setup_commands": [],
"working_directory": "/home/user",
"session_id": "",
"sandbox_id": "",
"conversation_history": "",
"dispose_sandbox": True,
},
test_output=[
("response", "Created index.html with hello world content"),
(
"files",
[
{
"path": "/home/user/index.html",
"relative_path": "index.html",
"name": "index.html",
"content": "<html>Hello World</html>",
}
],
),
(
"conversation_history",
"User: Create a hello world HTML file\n"
"Claude: Created index.html with hello world content",
),
("session_id", str),
("sandbox_id", None), # None because dispose_sandbox=True in test_input
],
test_mock={
"execute_claude_code": lambda *args, **kwargs: (
"Created index.html with hello world content", # response
[
ClaudeCodeBlock.FileOutput(
path="/home/user/index.html",
relative_path="index.html",
name="index.html",
content="<html>Hello World</html>",
)
], # files
"User: Create a hello world HTML file\n"
"Claude: Created index.html with hello world content", # conversation_history
"test-session-id", # session_id
"sandbox_id", # sandbox_id
),
},
)
async def execute_claude_code(
self,
e2b_api_key: str,
anthropic_api_key: str,
prompt: str,
timeout: int,
setup_commands: list[str],
working_directory: str,
session_id: str,
existing_sandbox_id: str,
conversation_history: str,
dispose_sandbox: bool,
) -> tuple[str, list["ClaudeCodeBlock.FileOutput"], str, str, str]:
"""
Execute Claude Code in an E2B sandbox.
Returns:
Tuple of (response, files, conversation_history, session_id, sandbox_id)
"""
# Validate that sandbox_id is provided when resuming a session
if session_id and not existing_sandbox_id:
raise ValueError(
"sandbox_id is required when resuming a session with session_id. "
"The session state is stored in the original sandbox. "
"If the sandbox has timed out, use conversation_history instead "
"to restore context on a fresh sandbox."
)
sandbox = None
sandbox_id = ""
try:
# Either reconnect to existing sandbox or create a new one
if existing_sandbox_id:
# Reconnect to existing sandbox for conversation continuation
sandbox = await BaseAsyncSandbox.connect(
sandbox_id=existing_sandbox_id,
api_key=e2b_api_key,
)
else:
# Create new sandbox
sandbox = await BaseAsyncSandbox.create(
template=self.DEFAULT_TEMPLATE,
api_key=e2b_api_key,
timeout=timeout,
envs={"ANTHROPIC_API_KEY": anthropic_api_key},
)
# Install Claude Code from npm (ensures we get the latest version)
install_result = await sandbox.commands.run(
"npm install -g @anthropic-ai/claude-code@latest",
timeout=120, # 2 min timeout for install
)
if install_result.exit_code != 0:
raise Exception(
f"Failed to install Claude Code: {install_result.stderr}"
)
# Run any user-provided setup commands
for cmd in setup_commands:
setup_result = await sandbox.commands.run(cmd)
if setup_result.exit_code != 0:
raise Exception(
f"Setup command failed: {cmd}\n"
f"Exit code: {setup_result.exit_code}\n"
f"Stdout: {setup_result.stdout}\n"
f"Stderr: {setup_result.stderr}"
)
# Capture sandbox_id immediately after creation/connection
# so it's available for error recovery if dispose_sandbox=False
sandbox_id = sandbox.sandbox_id
# Generate or use provided session ID
current_session_id = session_id if session_id else str(uuid.uuid4())
# Build base Claude flags
base_flags = "-p --dangerously-skip-permissions --output-format json"
# Add conversation history context if provided (for fresh sandbox continuation)
history_flag = ""
if conversation_history and not session_id:
# Inject previous conversation as context via system prompt
# Use consistent escaping via _escape_prompt helper
escaped_history = self._escape_prompt(
f"Previous conversation context: {conversation_history}"
)
history_flag = f" --append-system-prompt {escaped_history}"
# Build Claude command based on whether we're resuming or starting new
# Use shlex.quote for working_directory and session IDs to prevent injection
safe_working_dir = shlex.quote(working_directory)
if session_id:
# Resuming existing session (sandbox still alive)
safe_session_id = shlex.quote(session_id)
claude_command = (
f"cd {safe_working_dir} && "
f"echo {self._escape_prompt(prompt)} | "
f"claude --resume {safe_session_id} {base_flags}"
)
else:
# New session with specific ID
safe_current_session_id = shlex.quote(current_session_id)
claude_command = (
f"cd {safe_working_dir} && "
f"echo {self._escape_prompt(prompt)} | "
f"claude --session-id {safe_current_session_id} {base_flags}{history_flag}"
)
# Capture timestamp before running Claude Code to filter files later
# Capture timestamp 1 second in the past to avoid race condition with file creation
timestamp_result = await sandbox.commands.run(
"date -u -d '1 second ago' +%Y-%m-%dT%H:%M:%S"
)
if timestamp_result.exit_code != 0:
raise RuntimeError(
f"Failed to capture timestamp: {timestamp_result.stderr}"
)
start_timestamp = (
timestamp_result.stdout.strip() if timestamp_result.stdout else None
)
result = await sandbox.commands.run(
claude_command,
timeout=0, # No command timeout - let sandbox timeout handle it
)
# Check for command failure
if result.exit_code != 0:
error_msg = result.stderr or result.stdout or "Unknown error"
raise Exception(
f"Claude Code command failed with exit code {result.exit_code}:\n"
f"{error_msg}"
)
raw_output = result.stdout or ""
# Parse JSON output to extract response and build conversation history
response = ""
new_conversation_history = conversation_history or ""
try:
# The JSON output contains the result
output_data = json.loads(raw_output)
response = output_data.get("result", raw_output)
# Build conversation history entry
turn_entry = f"User: {prompt}\nClaude: {response}"
if new_conversation_history:
new_conversation_history = (
f"{new_conversation_history}\n\n{turn_entry}"
)
else:
new_conversation_history = turn_entry
except json.JSONDecodeError:
# If not valid JSON, use raw output
response = raw_output
turn_entry = f"User: {prompt}\nClaude: {response}"
if new_conversation_history:
new_conversation_history = (
f"{new_conversation_history}\n\n{turn_entry}"
)
else:
new_conversation_history = turn_entry
# Extract files created/modified during this run
files = await self._extract_files(
sandbox, working_directory, start_timestamp
)
return (
response,
files,
new_conversation_history,
current_session_id,
sandbox_id,
)
except Exception as e:
# Wrap exception with sandbox_id so caller can access/cleanup
# the preserved sandbox when dispose_sandbox=False
raise ClaudeCodeExecutionError(str(e), sandbox_id) from e
finally:
if dispose_sandbox and sandbox:
await sandbox.kill()
async def _extract_files(
self,
sandbox: BaseAsyncSandbox,
working_directory: str,
since_timestamp: str | None = None,
) -> list["ClaudeCodeBlock.FileOutput"]:
"""
Extract text files created/modified during this Claude Code execution.
Args:
sandbox: The E2B sandbox instance
working_directory: Directory to search for files
since_timestamp: ISO timestamp - only return files modified after this time
Returns:
List of FileOutput objects with path, relative_path, name, and content
"""
files: list[ClaudeCodeBlock.FileOutput] = []
# Text file extensions we can safely read as text
text_extensions = {
".txt",
".md",
".html",
".htm",
".css",
".js",
".ts",
".jsx",
".tsx",
".json",
".xml",
".yaml",
".yml",
".toml",
".ini",
".cfg",
".conf",
".py",
".rb",
".php",
".java",
".c",
".cpp",
".h",
".hpp",
".cs",
".go",
".rs",
".swift",
".kt",
".scala",
".sh",
".bash",
".zsh",
".sql",
".graphql",
".env",
".gitignore",
".dockerfile",
"Dockerfile",
".vue",
".svelte",
".astro",
".mdx",
".rst",
".tex",
".csv",
".log",
}
try:
# List files recursively using find command
# Exclude node_modules and .git directories, but allow hidden files
# like .env and .gitignore (they're filtered by text_extensions later)
# Filter by timestamp to only get files created/modified during this run
safe_working_dir = shlex.quote(working_directory)
timestamp_filter = ""
if since_timestamp:
timestamp_filter = f"-newermt {shlex.quote(since_timestamp)} "
find_result = await sandbox.commands.run(
f"find {safe_working_dir} -type f "
f"{timestamp_filter}"
f"-not -path '*/node_modules/*' "
f"-not -path '*/.git/*' "
f"2>/dev/null"
)
if find_result.stdout:
for file_path in find_result.stdout.strip().split("\n"):
if not file_path:
continue
# Check if it's a text file we can read
is_text = any(
file_path.endswith(ext) for ext in text_extensions
) or file_path.endswith("Dockerfile")
if is_text:
try:
content = await sandbox.files.read(file_path)
# Handle bytes or string
if isinstance(content, bytes):
content = content.decode("utf-8", errors="replace")
# Extract filename from path
file_name = file_path.split("/")[-1]
# Calculate relative path by stripping working directory
relative_path = file_path
if file_path.startswith(working_directory):
relative_path = file_path[len(working_directory) :]
# Remove leading slash if present
if relative_path.startswith("/"):
relative_path = relative_path[1:]
files.append(
ClaudeCodeBlock.FileOutput(
path=file_path,
relative_path=relative_path,
name=file_name,
content=content,
)
)
except Exception:
# Skip files that can't be read
pass
except Exception:
# If file extraction fails, return empty results
pass
return files
def _escape_prompt(self, prompt: str) -> str:
"""Escape the prompt for safe shell execution."""
# Use single quotes and escape any single quotes in the prompt
escaped = prompt.replace("'", "'\"'\"'")
return f"'{escaped}'"
async def run(
self,
input_data: Input,
*,
e2b_credentials: APIKeyCredentials,
anthropic_credentials: APIKeyCredentials,
**kwargs,
) -> BlockOutput:
try:
(
response,
files,
conversation_history,
session_id,
sandbox_id,
) = await self.execute_claude_code(
e2b_api_key=e2b_credentials.api_key.get_secret_value(),
anthropic_api_key=anthropic_credentials.api_key.get_secret_value(),
prompt=input_data.prompt,
timeout=input_data.timeout,
setup_commands=input_data.setup_commands,
working_directory=input_data.working_directory,
session_id=input_data.session_id,
existing_sandbox_id=input_data.sandbox_id,
conversation_history=input_data.conversation_history,
dispose_sandbox=input_data.dispose_sandbox,
)
yield "response", response
# Always yield files (empty list if none) to match Output schema
yield "files", [f.model_dump() for f in files]
# Always yield conversation_history so user can restore context on fresh sandbox
yield "conversation_history", conversation_history
# Always yield session_id so user can continue conversation
yield "session_id", session_id
# Always yield sandbox_id (None if disposed) to match Output schema
yield "sandbox_id", sandbox_id if not input_data.dispose_sandbox else None
except ClaudeCodeExecutionError as e:
yield "error", str(e)
# If sandbox was preserved (dispose_sandbox=False), yield sandbox_id
# so user can reconnect to or clean up the orphaned sandbox
if not input_data.dispose_sandbox and e.sandbox_id:
yield "sandbox_id", e.sandbox_id
except Exception as e:
yield "error", str(e)

View File

@@ -680,58 +680,3 @@ class ListIsEmptyBlock(Block):
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
yield "is_empty", len(input_data.list) == 0
class ConcatenateListsBlock(Block):
class Input(BlockSchemaInput):
lists: List[List[Any]] = SchemaField(
description="A list of lists to concatenate together. All lists will be combined in order into a single list.",
placeholder="e.g., [[1, 2], [3, 4], [5, 6]]",
)
class Output(BlockSchemaOutput):
concatenated_list: List[Any] = SchemaField(
description="The concatenated list containing all elements from all input lists in order."
)
error: str = SchemaField(
description="Error message if concatenation failed due to invalid input types."
)
def __init__(self):
super().__init__(
id="3cf9298b-5817-4141-9d80-7c2cc5199c8e",
description="Concatenates multiple lists into a single list. All elements from all input lists are combined in order.",
categories={BlockCategory.BASIC},
input_schema=ConcatenateListsBlock.Input,
output_schema=ConcatenateListsBlock.Output,
test_input=[
{"lists": [[1, 2, 3], [4, 5, 6]]},
{"lists": [["a", "b"], ["c"], ["d", "e", "f"]]},
{"lists": [[1, 2], []]},
{"lists": []},
],
test_output=[
("concatenated_list", [1, 2, 3, 4, 5, 6]),
("concatenated_list", ["a", "b", "c", "d", "e", "f"]),
("concatenated_list", [1, 2]),
("concatenated_list", []),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
concatenated = []
for idx, lst in enumerate(input_data.lists):
if lst is None:
# Skip None values to avoid errors
continue
if not isinstance(lst, list):
# Type validation: each item must be a list
# Strings are iterable and would cause extend() to iterate character-by-character
# Non-iterable types would raise TypeError
yield "error", (
f"Invalid input at index {idx}: expected a list, got {type(lst).__name__}. "
f"All items in 'lists' must be lists (e.g., [[1, 2], [3, 4]])."
)
return
concatenated.extend(lst)
yield "concatenated_list", concatenated

View File

@@ -15,7 +15,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import APIKeyCredentials, SchemaField
from backend.util.file import store_media_file
from backend.util.request import Requests
@@ -667,7 +666,8 @@ class SendDiscordFileBlock(Block):
file: MediaFileType,
filename: str,
message_content: str,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
) -> dict:
intents = discord.Intents.default()
intents.guilds = True
@@ -731,9 +731,10 @@ class SendDiscordFileBlock(Block):
# Local file path - read from stored media file
# This would be a path from a previous block's output
stored_file = await store_media_file(
graph_exec_id=graph_exec_id,
file=file,
execution_context=execution_context,
return_format="for_external_api", # Get content to send to Discord
user_id=user_id,
return_content=True, # Get as data URI
)
# Now process as data URI
header, encoded = stored_file.split(",", 1)
@@ -780,7 +781,8 @@ class SendDiscordFileBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
try:
@@ -791,7 +793,8 @@ class SendDiscordFileBlock(Block):
file=input_data.file,
filename=input_data.filename,
message_content=input_data.message_content,
execution_context=execution_context,
graph_exec_id=graph_exec_id,
user_id=user_id,
)
yield "status", result.get("status", "Unknown error")

View File

@@ -17,11 +17,8 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.request import ClientResponseError, Requests
from backend.util.type import MediaFileType
logger = logging.getLogger(__name__)
@@ -67,13 +64,9 @@ class AIVideoGeneratorBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
# Output will be a workspace ref or data URI depending on context
("video_url", lambda x: x.startswith(("workspace://", "data:"))),
],
test_output=[("video_url", "https://fal.media/files/example/video.mp4")],
test_mock={
# Use data URI to avoid HTTP requests during tests
"generate_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA"
"generate_video": lambda *args, **kwargs: "https://fal.media/files/example/video.mp4"
},
)
@@ -215,22 +208,11 @@ class AIVideoGeneratorBlock(Block):
raise RuntimeError(f"API request failed: {str(e)}")
async def run(
self,
input_data: Input,
*,
credentials: FalCredentials,
execution_context: ExecutionContext,
**kwargs,
self, input_data: Input, *, credentials: FalCredentials, **kwargs
) -> BlockOutput:
try:
video_url = await self.generate_video(input_data, credentials)
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
yield "video_url", video_url
except Exception as e:
error_message = str(e)
yield "error", error_message

View File

@@ -12,7 +12,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -122,12 +121,10 @@ class AIImageEditorBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
# Output will be a workspace ref or data URI depending on context
("output_image", lambda x: x.startswith(("workspace://", "data:"))),
("output_image", "https://replicate.com/output/edited-image.png"),
],
test_mock={
# Use data URI to avoid HTTP requests during tests
"run_model": lambda *args, **kwargs: "",
"run_model": lambda *args, **kwargs: "https://replicate.com/output/edited-image.png",
},
test_credentials=TEST_CREDENTIALS,
)
@@ -137,7 +134,8 @@ class AIImageEditorBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
result = await self.run_model(
@@ -146,25 +144,20 @@ class AIImageEditorBlock(Block):
prompt=input_data.prompt,
input_image_b64=(
await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.input_image,
execution_context=execution_context,
return_format="for_external_api", # Get content for Replicate API
user_id=user_id,
return_content=True,
)
if input_data.input_image
else None
),
aspect_ratio=input_data.aspect_ratio.value,
seed=input_data.seed,
user_id=execution_context.user_id or "",
graph_exec_id=execution_context.graph_exec_id or "",
user_id=user_id,
graph_exec_id=graph_exec_id,
)
# Store the generated image to the user's workspace for persistence
stored_url = await store_media_file(
file=result,
execution_context=execution_context,
return_format="for_block_output",
)
yield "output_image", stored_url
yield "output_image", result
async def run_model(
self,

View File

@@ -21,7 +21,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
from backend.util.settings import Settings
@@ -96,7 +95,8 @@ def _make_mime_text(
async def create_mime_message(
input_data,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
) -> str:
"""Create a MIME message with attachments and return base64-encoded raw message."""
@@ -117,12 +117,12 @@ async def create_mime_message(
if input_data.attachments:
for attach in input_data.attachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
execution_context=execution_context,
return_format="for_local_processing",
return_content=False,
)
assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
abs_path = get_exec_file_path(graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())
@@ -582,25 +582,27 @@ class GmailSendBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
result = await self._send_email(
service,
input_data,
execution_context,
graph_exec_id,
user_id,
)
yield "result", result
async def _send_email(
self, service, input_data: Input, execution_context: ExecutionContext
self, service, input_data: Input, graph_exec_id: str, user_id: str
) -> dict:
if not input_data.to or not input_data.subject or not input_data.body:
raise ValueError(
"At least one recipient, subject, and body are required for sending an email"
)
raw_message = await create_mime_message(input_data, execution_context)
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
sent_message = await asyncio.to_thread(
lambda: service.users()
.messages()
@@ -690,28 +692,30 @@ class GmailCreateDraftBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
result = await self._create_draft(
service,
input_data,
execution_context,
graph_exec_id,
user_id,
)
yield "result", GmailDraftResult(
id=result["id"], message_id=result["message"]["id"], status="draft_created"
)
async def _create_draft(
self, service, input_data: Input, execution_context: ExecutionContext
self, service, input_data: Input, graph_exec_id: str, user_id: str
) -> dict:
if not input_data.to or not input_data.subject:
raise ValueError(
"At least one recipient and subject are required for creating a draft"
)
raw_message = await create_mime_message(input_data, execution_context)
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
draft = await asyncio.to_thread(
lambda: service.users()
.drafts()
@@ -1096,7 +1100,7 @@ class GmailGetThreadBlock(GmailBase):
async def _build_reply_message(
service, input_data, execution_context: ExecutionContext
service, input_data, graph_exec_id: str, user_id: str
) -> tuple[str, str]:
"""
Builds a reply MIME message for Gmail threads.
@@ -1186,12 +1190,12 @@ async def _build_reply_message(
# Handle attachments
for attach in input_data.attachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
execution_context=execution_context,
return_format="for_local_processing",
return_content=False,
)
assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
abs_path = get_exec_file_path(graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())
@@ -1307,14 +1311,16 @@ class GmailReplyBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
message = await self._reply(
service,
input_data,
execution_context,
graph_exec_id,
user_id,
)
yield "messageId", message["id"]
yield "threadId", message.get("threadId", input_data.threadId)
@@ -1337,11 +1343,11 @@ class GmailReplyBlock(GmailBase):
yield "email", email
async def _reply(
self, service, input_data: Input, execution_context: ExecutionContext
self, service, input_data: Input, graph_exec_id: str, user_id: str
) -> dict:
# Build the reply message using the shared helper
raw, thread_id = await _build_reply_message(
service, input_data, execution_context
service, input_data, graph_exec_id, user_id
)
# Send the message
@@ -1435,14 +1441,16 @@ class GmailDraftReplyBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
draft = await self._create_draft_reply(
service,
input_data,
execution_context,
graph_exec_id,
user_id,
)
yield "draftId", draft["id"]
yield "messageId", draft["message"]["id"]
@@ -1450,11 +1458,11 @@ class GmailDraftReplyBlock(GmailBase):
yield "status", "draft_created"
async def _create_draft_reply(
self, service, input_data: Input, execution_context: ExecutionContext
self, service, input_data: Input, graph_exec_id: str, user_id: str
) -> dict:
# Build the reply message using the shared helper
raw, thread_id = await _build_reply_message(
service, input_data, execution_context
service, input_data, graph_exec_id, user_id
)
# Create draft with proper thread association
@@ -1621,21 +1629,23 @@ class GmailForwardBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
result = await self._forward_message(
service,
input_data,
execution_context,
graph_exec_id,
user_id,
)
yield "messageId", result["id"]
yield "threadId", result.get("threadId", "")
yield "status", "forwarded"
async def _forward_message(
self, service, input_data: Input, execution_context: ExecutionContext
self, service, input_data: Input, graph_exec_id: str, user_id: str
) -> dict:
if not input_data.to:
raise ValueError("At least one recipient is required for forwarding")
@@ -1717,12 +1727,12 @@ To: {original_to}
# Add any additional attachments
for attach in input_data.additionalAttachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
execution_context=execution_context,
return_format="for_local_processing",
return_content=False,
)
assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
abs_path = get_exec_file_path(graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())

View File

@@ -9,7 +9,7 @@ from typing import Any, Optional
from prisma.enums import ReviewStatus
from pydantic import BaseModel
from backend.data.execution import ExecutionStatus
from backend.data.execution import ExecutionContext, ExecutionStatus
from backend.data.human_review import ReviewResult
from backend.executor.manager import async_update_node_execution_status
from backend.util.clients import get_database_manager_async_client
@@ -28,11 +28,6 @@ class ReviewDecision(BaseModel):
class HITLReviewHelper:
"""Helper class for Human-In-The-Loop review operations."""
@staticmethod
async def check_approval(**kwargs) -> Optional[ReviewResult]:
"""Check if there's an existing approval for this node execution."""
return await get_database_manager_async_client().check_approval(**kwargs)
@staticmethod
async def get_or_create_human_review(**kwargs) -> Optional[ReviewResult]:
"""Create or retrieve a human review from the database."""
@@ -60,11 +55,11 @@ class HITLReviewHelper:
async def _handle_review_request(
input_data: Any,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
block_name: str = "Block",
editable: bool = False,
) -> Optional[ReviewResult]:
@@ -74,11 +69,11 @@ class HITLReviewHelper:
Args:
input_data: The input data to be reviewed
user_id: ID of the user requesting the review
node_id: ID of the node in the graph definition
node_exec_id: ID of the node execution
graph_exec_id: ID of the graph execution
graph_id: ID of the graph
graph_version: Version of the graph
execution_context: Current execution context
block_name: Name of the block requesting review
editable: Whether the reviewer can edit the data
@@ -88,41 +83,15 @@ class HITLReviewHelper:
Raises:
Exception: If review creation or status update fails
"""
# Note: Safe mode checks (human_in_the_loop_safe_mode, sensitive_action_safe_mode)
# are handled by the caller:
# - HITL blocks check human_in_the_loop_safe_mode in their run() method
# - Sensitive action blocks check sensitive_action_safe_mode in is_block_exec_need_review()
# This function only handles checking for existing approvals.
# Check if this node has already been approved (normal or auto-approval)
if approval_result := await HITLReviewHelper.check_approval(
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
node_id=node_id,
user_id=user_id,
input_data=input_data,
):
# Skip review if safe mode is disabled - return auto-approved result
if not execution_context.safe_mode:
logger.info(
f"Block {block_name} skipping review for node {node_exec_id} - "
f"found existing approval"
)
# Return a new ReviewResult with the current node_exec_id but approved status
# For auto-approvals, always use current input_data
# For normal approvals, use approval_result.data unless it's None
is_auto_approval = approval_result.node_exec_id != node_exec_id
approved_data = (
input_data
if is_auto_approval
else (
approval_result.data
if approval_result.data is not None
else input_data
)
f"Block {block_name} skipping review for node {node_exec_id} - safe mode disabled"
)
return ReviewResult(
data=approved_data,
data=input_data,
status=ReviewStatus.APPROVED,
message=approval_result.message,
message="Auto-approved (safe mode disabled)",
processed=True,
node_exec_id=node_exec_id,
)
@@ -134,7 +103,7 @@ class HITLReviewHelper:
graph_id=graph_id,
graph_version=graph_version,
input_data=input_data,
message=block_name, # Use block_name directly as the message
message=f"Review required for {block_name} execution",
editable=editable,
)
@@ -160,11 +129,11 @@ class HITLReviewHelper:
async def handle_review_decision(
input_data: Any,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
block_name: str = "Block",
editable: bool = False,
) -> Optional[ReviewDecision]:
@@ -174,11 +143,11 @@ class HITLReviewHelper:
Args:
input_data: The input data to be reviewed
user_id: ID of the user requesting the review
node_id: ID of the node in the graph definition
node_exec_id: ID of the node execution
graph_exec_id: ID of the graph execution
graph_id: ID of the graph
graph_version: Version of the graph
execution_context: Current execution context
block_name: Name of the block requesting review
editable: Whether the reviewer can edit the data
@@ -189,11 +158,11 @@ class HITLReviewHelper:
review_result = await HITLReviewHelper._handle_review_request(
input_data=input_data,
user_id=user_id,
node_id=node_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=block_name,
editable=editable,
)

View File

@@ -15,7 +15,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
CredentialsField,
CredentialsMetaInput,
@@ -117,9 +116,10 @@ class SendWebRequestBlock(Block):
@staticmethod
async def _prepare_files(
execution_context: ExecutionContext,
graph_exec_id: str,
files_name: str,
files: list[MediaFileType],
user_id: str,
) -> list[tuple[str, tuple[str, BytesIO, str]]]:
"""
Prepare files for the request by storing them and reading their content.
@@ -127,16 +127,11 @@ class SendWebRequestBlock(Block):
(files_name, (filename, BytesIO, mime_type))
"""
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
graph_exec_id = execution_context.graph_exec_id
if graph_exec_id is None:
raise ValueError("graph_exec_id is required for file operations")
for media in files:
# Normalise to a list so we can repeat the same key
rel_path = await store_media_file(
file=media,
execution_context=execution_context,
return_format="for_local_processing",
graph_exec_id, media, user_id, return_content=False
)
abs_path = get_exec_file_path(graph_exec_id, rel_path)
async with aiofiles.open(abs_path, "rb") as f:
@@ -148,7 +143,7 @@ class SendWebRequestBlock(Block):
return files_payload
async def run(
self, input_data: Input, *, execution_context: ExecutionContext, **kwargs
self, input_data: Input, *, graph_exec_id: str, user_id: str, **kwargs
) -> BlockOutput:
# ─── Parse/normalise body ────────────────────────────────────
body = input_data.body
@@ -179,7 +174,7 @@ class SendWebRequestBlock(Block):
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
if use_files:
files_payload = await self._prepare_files(
execution_context, input_data.files_name, input_data.files
graph_exec_id, input_data.files_name, input_data.files, user_id
)
# Enforce body format rules
@@ -243,8 +238,9 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
self,
input_data: Input,
*,
execution_context: ExecutionContext,
graph_exec_id: str,
credentials: HostScopedCredentials,
user_id: str,
**kwargs,
) -> BlockOutput:
# Create SendWebRequestBlock.Input from our input (removing credentials field)
@@ -275,6 +271,6 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
# Use parent class run method
async for output_name, output_data in super().run(
base_input, execution_context=execution_context, **kwargs
base_input, graph_exec_id=graph_exec_id, user_id=user_id, **kwargs
):
yield output_name, output_data

View File

@@ -97,7 +97,6 @@ class HumanInTheLoopBlock(Block):
input_data: Input,
*,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
@@ -105,7 +104,7 @@ class HumanInTheLoopBlock(Block):
execution_context: ExecutionContext,
**_kwargs,
) -> BlockOutput:
if not execution_context.human_in_the_loop_safe_mode:
if not execution_context.safe_mode:
logger.info(
f"HITL block skipping review for node {node_exec_id} - safe mode disabled"
)
@@ -116,12 +115,12 @@ class HumanInTheLoopBlock(Block):
decision = await self.handle_review_decision(
input_data=input_data.data,
user_id=user_id,
node_id=node_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
block_name=input_data.name, # Use user-provided name instead of block type
execution_context=execution_context,
block_name=self.name,
editable=input_data.editable,
)

View File

@@ -12,7 +12,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockType,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.mock import MockObject
@@ -463,21 +462,18 @@ class AgentFileInputBlock(AgentInputBlock):
self,
input_data: Input,
*,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
if not input_data.value:
return
# Determine return format based on user preference
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
yield "result", await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.value,
execution_context=execution_context,
return_format=return_format,
user_id=user_id,
return_content=input_data.base_64,
)

View File

@@ -79,10 +79,6 @@ class ModelMetadata(NamedTuple):
provider: str
context_window: int
max_output_tokens: int | None
display_name: str
provider_name: str
creator_name: str
price_tier: Literal[1, 2, 3]
class LlmModelMeta(EnumMeta):
@@ -175,26 +171,6 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
V0_1_5_LG = "v0-1.5-lg"
V0_1_0_MD = "v0-1.0-md"
@classmethod
def __get_pydantic_json_schema__(cls, schema, handler):
json_schema = handler(schema)
llm_model_metadata = {}
for model in cls:
model_name = model.value
metadata = model.metadata
llm_model_metadata[model_name] = {
"creator": metadata.creator_name,
"creator_name": metadata.creator_name,
"title": metadata.display_name,
"provider": metadata.provider,
"provider_name": metadata.provider_name,
"name": model_name,
"price_tier": metadata.price_tier,
}
json_schema["llm_model"] = True
json_schema["llm_model_metadata"] = llm_model_metadata
return json_schema
@property
def metadata(self) -> ModelMetadata:
return MODEL_METADATA[self]
@@ -214,291 +190,119 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
MODEL_METADATA = {
# https://platform.openai.com/docs/models
LlmModel.O3: ModelMetadata("openai", 200000, 100000, "O3", "OpenAI", "OpenAI", 2),
LlmModel.O3_MINI: ModelMetadata(
"openai", 200000, 100000, "O3 Mini", "OpenAI", "OpenAI", 1
), # o3-mini-2025-01-31
LlmModel.O1: ModelMetadata(
"openai", 200000, 100000, "O1", "OpenAI", "OpenAI", 3
), # o1-2024-12-17
LlmModel.O1_MINI: ModelMetadata(
"openai", 128000, 65536, "O1 Mini", "OpenAI", "OpenAI", 2
), # o1-mini-2024-09-12
LlmModel.O3: ModelMetadata("openai", 200000, 100000),
LlmModel.O3_MINI: ModelMetadata("openai", 200000, 100000), # o3-mini-2025-01-31
LlmModel.O1: ModelMetadata("openai", 200000, 100000), # o1-2024-12-17
LlmModel.O1_MINI: ModelMetadata("openai", 128000, 65536), # o1-mini-2024-09-12
# GPT-5 models
LlmModel.GPT5_2: ModelMetadata(
"openai", 400000, 128000, "GPT-5.2", "OpenAI", "OpenAI", 3
),
LlmModel.GPT5_1: ModelMetadata(
"openai", 400000, 128000, "GPT-5.1", "OpenAI", "OpenAI", 2
),
LlmModel.GPT5: ModelMetadata(
"openai", 400000, 128000, "GPT-5", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_MINI: ModelMetadata(
"openai", 400000, 128000, "GPT-5 Mini", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_NANO: ModelMetadata(
"openai", 400000, 128000, "GPT-5 Nano", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_CHAT: ModelMetadata(
"openai", 400000, 16384, "GPT-5 Chat Latest", "OpenAI", "OpenAI", 2
),
LlmModel.GPT41: ModelMetadata(
"openai", 1047576, 32768, "GPT-4.1", "OpenAI", "OpenAI", 1
),
LlmModel.GPT41_MINI: ModelMetadata(
"openai", 1047576, 32768, "GPT-4.1 Mini", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_2: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_1: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_MINI: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_NANO: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_CHAT: ModelMetadata("openai", 400000, 16384),
LlmModel.GPT41: ModelMetadata("openai", 1047576, 32768),
LlmModel.GPT41_MINI: ModelMetadata("openai", 1047576, 32768),
LlmModel.GPT4O_MINI: ModelMetadata(
"openai", 128000, 16384, "GPT-4o Mini", "OpenAI", "OpenAI", 1
"openai", 128000, 16384
), # gpt-4o-mini-2024-07-18
LlmModel.GPT4O: ModelMetadata(
"openai", 128000, 16384, "GPT-4o", "OpenAI", "OpenAI", 2
), # gpt-4o-2024-08-06
LlmModel.GPT4O: ModelMetadata("openai", 128000, 16384), # gpt-4o-2024-08-06
LlmModel.GPT4_TURBO: ModelMetadata(
"openai", 128000, 4096, "GPT-4 Turbo", "OpenAI", "OpenAI", 3
"openai", 128000, 4096
), # gpt-4-turbo-2024-04-09
LlmModel.GPT3_5_TURBO: ModelMetadata(
"openai", 16385, 4096, "GPT-3.5 Turbo", "OpenAI", "OpenAI", 1
), # gpt-3.5-turbo-0125
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385, 4096), # gpt-3.5-turbo-0125
# https://docs.anthropic.com/en/docs/about-claude/models
LlmModel.CLAUDE_4_1_OPUS: ModelMetadata(
"anthropic", 200000, 32000, "Claude Opus 4.1", "Anthropic", "Anthropic", 3
"anthropic", 200000, 32000
), # claude-opus-4-1-20250805
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
"anthropic", 200000, 32000, "Claude Opus 4", "Anthropic", "Anthropic", 3
"anthropic", 200000, 32000
), # claude-4-opus-20250514
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
"anthropic", 200000, 64000
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
"anthropic", 200000, 64000
), # claude-opus-4-5-20251101
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude Sonnet 4.5", "Anthropic", "Anthropic", 3
"anthropic", 200000, 64000
), # claude-sonnet-4-5-20250929
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
"anthropic", 200000, 64000
), # claude-haiku-4-5-20251001
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude 3.7 Sonnet", "Anthropic", "Anthropic", 2
"anthropic", 200000, 64000
), # claude-3-7-sonnet-20250219
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
"anthropic", 200000, 4096
), # claude-3-haiku-20240307
# https://docs.aimlapi.com/api-overview/model-database/text-models
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata(
"aiml_api", 32000, 8000, "Qwen 2.5 72B Instruct Turbo", "AI/ML", "Qwen", 1
),
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata(
"aiml_api",
128000,
40000,
"Llama 3.1 Nemotron 70B Instruct",
"AI/ML",
"Nvidia",
1,
),
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata(
"aiml_api", 128000, None, "Llama 3.3 70B Instruct Turbo", "AI/ML", "Meta", 1
),
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata(
"aiml_api", 131000, 2000, "Llama 3.1 70B Instruct Turbo", "AI/ML", "Meta", 1
),
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata(
"aiml_api", 128000, None, "Llama 3.2 3B Instruct Turbo", "AI/ML", "Meta", 1
),
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata("aiml_api", 32000, 8000),
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata("aiml_api", 128000, 40000),
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata("aiml_api", 128000, None),
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata("aiml_api", 131000, 2000),
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata("aiml_api", 128000, None),
# https://console.groq.com/docs/models
LlmModel.LLAMA3_3_70B: ModelMetadata(
"groq", 128000, 32768, "Llama 3.3 70B Versatile", "Groq", "Meta", 1
),
LlmModel.LLAMA3_1_8B: ModelMetadata(
"groq", 128000, 8192, "Llama 3.1 8B Instant", "Groq", "Meta", 1
),
LlmModel.LLAMA3_3_70B: ModelMetadata("groq", 128000, 32768),
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 128000, 8192),
# https://ollama.com/library
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata(
"ollama", 8192, None, "Llama 3.3", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata(
"ollama", 8192, None, "Llama 3.2", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata(
"ollama", 8192, None, "Llama 3", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata(
"ollama", 8192, None, "Llama 3.1 405B", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_DOLPHIN: ModelMetadata(
"ollama", 32768, None, "Dolphin Mistral Latest", "Ollama", "Mistral AI", 1
),
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_DOLPHIN: ModelMetadata("ollama", 32768, None),
# https://openrouter.ai/models
LlmModel.GEMINI_2_5_PRO: ModelMetadata(
"open_router",
1050000,
8192,
"Gemini 2.5 Pro Preview 03.25",
"OpenRouter",
"Google",
2,
),
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata(
"open_router", 1048576, 65535, "Gemini 3 Pro Preview", "OpenRouter", "Google", 2
),
LlmModel.GEMINI_2_5_FLASH: ModelMetadata(
"open_router", 1048576, 65535, "Gemini 2.5 Flash", "OpenRouter", "Google", 1
),
LlmModel.GEMINI_2_0_FLASH: ModelMetadata(
"open_router", 1048576, 8192, "Gemini 2.0 Flash 001", "OpenRouter", "Google", 1
),
LlmModel.GEMINI_2_5_PRO: ModelMetadata("open_router", 1050000, 8192),
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata("open_router", 1048576, 65535),
LlmModel.GEMINI_2_5_FLASH: ModelMetadata("open_router", 1048576, 65535),
LlmModel.GEMINI_2_0_FLASH: ModelMetadata("open_router", 1048576, 8192),
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
"open_router",
1048576,
65535,
"Gemini 2.5 Flash Lite Preview 06.17",
"OpenRouter",
"Google",
1,
),
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata(
"open_router",
1048576,
8192,
"Gemini 2.0 Flash Lite 001",
"OpenRouter",
"Google",
1,
),
LlmModel.MISTRAL_NEMO: ModelMetadata(
"open_router", 128000, 4096, "Mistral Nemo", "OpenRouter", "Mistral AI", 1
),
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata(
"open_router", 128000, 4096, "Command R 08.2024", "OpenRouter", "Cohere", 1
),
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata(
"open_router", 128000, 4096, "Command R Plus 08.2024", "OpenRouter", "Cohere", 2
),
LlmModel.DEEPSEEK_CHAT: ModelMetadata(
"open_router", 64000, 2048, "DeepSeek Chat", "OpenRouter", "DeepSeek", 1
),
LlmModel.DEEPSEEK_R1_0528: ModelMetadata(
"open_router", 163840, 163840, "DeepSeek R1 0528", "OpenRouter", "DeepSeek", 1
),
LlmModel.PERPLEXITY_SONAR: ModelMetadata(
"open_router", 127000, 8000, "Sonar", "OpenRouter", "Perplexity", 1
),
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata(
"open_router", 200000, 8000, "Sonar Pro", "OpenRouter", "Perplexity", 2
"open_router", 1048576, 65535
),
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata("open_router", 1048576, 8192),
LlmModel.MISTRAL_NEMO: ModelMetadata("open_router", 128000, 4096),
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata("open_router", 128000, 4096),
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata("open_router", 128000, 4096),
LlmModel.DEEPSEEK_CHAT: ModelMetadata("open_router", 64000, 2048),
LlmModel.DEEPSEEK_R1_0528: ModelMetadata("open_router", 163840, 163840),
LlmModel.PERPLEXITY_SONAR: ModelMetadata("open_router", 127000, 8000),
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata("open_router", 200000, 8000),
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: ModelMetadata(
"open_router",
128000,
16000,
"Sonar Deep Research",
"OpenRouter",
"Perplexity",
3,
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: ModelMetadata(
"open_router",
131000,
4096,
"Hermes 3 Llama 3.1 405B",
"OpenRouter",
"Nous Research",
1,
"open_router", 131000, 4096
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: ModelMetadata(
"open_router",
12288,
12288,
"Hermes 3 Llama 3.1 70B",
"OpenRouter",
"Nous Research",
1,
),
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata(
"open_router", 131072, 131072, "GPT-OSS 120B", "OpenRouter", "OpenAI", 1
),
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata(
"open_router", 131072, 32768, "GPT-OSS 20B", "OpenRouter", "OpenAI", 1
),
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata(
"open_router", 300000, 5120, "Nova Lite V1", "OpenRouter", "Amazon", 1
),
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata(
"open_router", 128000, 5120, "Nova Micro V1", "OpenRouter", "Amazon", 1
),
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata(
"open_router", 300000, 5120, "Nova Pro V1", "OpenRouter", "Amazon", 1
),
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata(
"open_router", 65536, 4096, "WizardLM 2 8x22B", "OpenRouter", "Microsoft", 1
),
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata(
"open_router", 4096, 4096, "MythoMax L2 13B", "OpenRouter", "Gryphe", 1
),
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata(
"open_router", 131072, 131072, "Llama 4 Scout", "OpenRouter", "Meta", 1
),
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata(
"open_router", 1048576, 1000000, "Llama 4 Maverick", "OpenRouter", "Meta", 1
),
LlmModel.GROK_4: ModelMetadata(
"open_router", 256000, 256000, "Grok 4", "OpenRouter", "xAI", 3
),
LlmModel.GROK_4_FAST: ModelMetadata(
"open_router", 2000000, 30000, "Grok 4 Fast", "OpenRouter", "xAI", 1
),
LlmModel.GROK_4_1_FAST: ModelMetadata(
"open_router", 2000000, 30000, "Grok 4.1 Fast", "OpenRouter", "xAI", 1
),
LlmModel.GROK_CODE_FAST_1: ModelMetadata(
"open_router", 256000, 10000, "Grok Code Fast 1", "OpenRouter", "xAI", 1
),
LlmModel.KIMI_K2: ModelMetadata(
"open_router", 131000, 131000, "Kimi K2", "OpenRouter", "Moonshot AI", 1
),
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata(
"open_router",
262144,
262144,
"Qwen 3 235B A22B Thinking 2507",
"OpenRouter",
"Qwen",
1,
),
LlmModel.QWEN3_CODER: ModelMetadata(
"open_router", 262144, 262144, "Qwen 3 Coder", "OpenRouter", "Qwen", 3
"open_router", 12288, 12288
),
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata("open_router", 131072, 131072),
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata("open_router", 131072, 32768),
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata("open_router", 300000, 5120),
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata("open_router", 128000, 5120),
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata("open_router", 300000, 5120),
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata("open_router", 65536, 4096),
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata("open_router", 4096, 4096),
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata("open_router", 131072, 131072),
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata("open_router", 1048576, 1000000),
LlmModel.GROK_4: ModelMetadata("open_router", 256000, 256000),
LlmModel.GROK_4_FAST: ModelMetadata("open_router", 2000000, 30000),
LlmModel.GROK_4_1_FAST: ModelMetadata("open_router", 2000000, 30000),
LlmModel.GROK_CODE_FAST_1: ModelMetadata("open_router", 256000, 10000),
LlmModel.KIMI_K2: ModelMetadata("open_router", 131000, 131000),
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata("open_router", 262144, 262144),
LlmModel.QWEN3_CODER: ModelMetadata("open_router", 262144, 262144),
# Llama API models
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata(
"llama_api",
128000,
4028,
"Llama 4 Scout 17B 16E Instruct FP8",
"Llama API",
"Meta",
1,
),
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata(
"llama_api",
128000,
4028,
"Llama 4 Maverick 17B 128E Instruct FP8",
"Llama API",
"Meta",
1,
),
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata(
"llama_api", 128000, 4028, "Llama 3.3 8B Instruct", "Llama API", "Meta", 1
),
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata(
"llama_api", 128000, 4028, "Llama 3.3 70B Instruct", "Llama API", "Meta", 1
),
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata("llama_api", 128000, 4028),
# v0 by Vercel models
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000, "v0 1.5 MD", "V0", "V0", 1),
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000, "v0 1.5 LG", "V0", "V0", 1),
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000, "v0 1.0 MD", "V0", "V0", 1),
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000),
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000),
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000),
}
DEFAULT_LLM_MODEL = LlmModel.GPT5_2

View File

@@ -1,6 +1,6 @@
import os
import tempfile
from typing import Optional
from typing import Literal, Optional
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.fx.Loop import Loop
@@ -13,7 +13,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
@@ -47,19 +46,18 @@ class MediaDurationBlock(Block):
self,
input_data: Input,
*,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
# 1) Store the input media locally
local_media_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.media_in,
execution_context=execution_context,
return_format="for_local_processing",
)
assert execution_context.graph_exec_id is not None
media_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_media_path
user_id=user_id,
return_content=False,
)
media_abspath = get_exec_file_path(graph_exec_id, local_media_path)
# 2) Load the clip
if input_data.is_video:
@@ -90,6 +88,10 @@ class LoopVideoBlock(Block):
default=None,
ge=1,
)
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="How to return the output video. Either a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput):
video_out: str = SchemaField(
@@ -109,19 +111,17 @@ class LoopVideoBlock(Block):
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the input video locally
local_video_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
user_id=user_id,
return_content=False,
)
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
@@ -149,11 +149,12 @@ class LoopVideoBlock(Block):
looped_clip = looped_clip.with_audio(clip.audio)
looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# Return output - for_block_output returns workspace:// if available, else data URI
# Return as data URI
video_out = await store_media_file(
graph_exec_id=graph_exec_id,
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
user_id=user_id,
return_content=input_data.output_return_type == "data_uri",
)
yield "video_out", video_out
@@ -176,6 +177,10 @@ class AddAudioToVideoBlock(Block):
description="Volume scale for the newly attached audio track (1.0 = original).",
default=1.0,
)
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="Return the final output as a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
@@ -195,24 +200,23 @@ class AddAudioToVideoBlock(Block):
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the inputs locally
local_video_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
user_id=user_id,
return_content=False,
)
local_audio_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.audio_in,
execution_context=execution_context,
return_format="for_local_processing",
user_id=user_id,
return_content=False,
)
abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id)
@@ -236,11 +240,12 @@ class AddAudioToVideoBlock(Block):
output_abspath = os.path.join(abs_temp_dir, output_filename)
final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# 5) Return output - for_block_output returns workspace:// if available, else data URI
# 5) Return either path or data URI
video_out = await store_media_file(
graph_exec_id=graph_exec_id,
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
user_id=user_id,
return_content=input_data.output_return_type == "data_uri",
)
yield "video_out", video_out

View File

@@ -11,7 +11,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -113,7 +112,8 @@ class ScreenshotWebPageBlock(Block):
@staticmethod
async def take_screenshot(
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
url: str,
viewport_width: int,
viewport_height: int,
@@ -155,11 +155,12 @@ class ScreenshotWebPageBlock(Block):
return {
"image": await store_media_file(
graph_exec_id=graph_exec_id,
file=MediaFileType(
f"data:image/{format.value};base64,{b64encode(content).decode('utf-8')}"
),
execution_context=execution_context,
return_format="for_block_output",
user_id=user_id,
return_content=True,
)
}
@@ -168,13 +169,15 @@ class ScreenshotWebPageBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
try:
screenshot_data = await self.take_screenshot(
credentials=credentials,
execution_context=execution_context,
graph_exec_id=graph_exec_id,
user_id=user_id,
url=input_data.url,
viewport_width=input_data.viewport_width,
viewport_height=input_data.viewport_height,

View File

@@ -7,7 +7,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import ContributorDetails, SchemaField
from backend.util.file import get_exec_file_path, store_media_file
from backend.util.type import MediaFileType
@@ -99,7 +98,7 @@ class ReadSpreadsheetBlock(Block):
)
async def run(
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
) -> BlockOutput:
import csv
from io import StringIO
@@ -107,16 +106,14 @@ class ReadSpreadsheetBlock(Block):
# Determine data source - prefer file_input if provided, otherwise use contents
if input_data.file_input:
stored_file_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=input_data.file_input,
execution_context=execution_context,
return_format="for_local_processing",
return_content=False,
)
# Get full file path
assert execution_context.graph_exec_id # Validated by store_media_file
file_path = get_exec_file_path(
execution_context.graph_exec_id, stored_file_path
)
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
if not Path(file_path).exists():
raise ValueError(f"File does not exist: {file_path}")

View File

@@ -10,7 +10,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -18,9 +17,7 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.file import store_media_file
from backend.util.request import Requests
from backend.util.type import MediaFileType
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
@@ -105,7 +102,7 @@ class CreateTalkingAvatarVideoBlock(Block):
test_output=[
(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
"https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
),
],
test_mock={
@@ -113,10 +110,9 @@ class CreateTalkingAvatarVideoBlock(Block):
"id": "abcd1234-5678-efgh-ijkl-mnopqrstuvwx",
"status": "created",
},
# Use data URI to avoid HTTP requests during tests
"get_clip_status": lambda *args, **kwargs: {
"status": "done",
"result_url": "data:video/mp4;base64,AAAA",
"result_url": "https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
},
},
test_credentials=TEST_CREDENTIALS,
@@ -142,12 +138,7 @@ class CreateTalkingAvatarVideoBlock(Block):
return response.json()
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
# Create the clip
payload = {
@@ -174,14 +165,7 @@ class CreateTalkingAvatarVideoBlock(Block):
for _ in range(input_data.max_polling_attempts):
status_response = await self.get_clip_status(credentials.api_key, clip_id)
if status_response["status"] == "done":
# Store the generated video to the user's workspace for persistence
video_url = status_response["result_url"]
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
yield "video_url", status_response["result_url"]
return
elif status_response["status"] == "error":
raise RuntimeError(

View File

@@ -12,7 +12,6 @@ from backend.blocks.iteration import StepThroughItemsBlock
from backend.blocks.llm import AITextSummarizerBlock
from backend.blocks.text import ExtractTextInformationBlock
from backend.blocks.xml_parser import XMLParserBlock
from backend.data.execution import ExecutionContext
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
@@ -234,12 +233,9 @@ class TestStoreMediaFileSecurity:
with pytest.raises(ValueError, match="File too large"):
await store_media_file(
graph_exec_id="test",
file=MediaFileType(large_data_uri),
execution_context=ExecutionContext(
user_id="test_user",
graph_exec_id="test",
),
return_format="for_local_processing",
user_id="test_user",
)
@patch("backend.util.file.Path")
@@ -274,12 +270,9 @@ class TestStoreMediaFileSecurity:
# Should raise an error when directory size exceeds limit
with pytest.raises(ValueError, match="Disk usage limit exceeded"):
await store_media_file(
graph_exec_id="test",
file=MediaFileType(
"data:text/plain;base64,dGVzdA=="
), # Small test file
execution_context=ExecutionContext(
user_id="test_user",
graph_exec_id="test",
),
return_format="for_local_processing",
user_id="test_user",
)

View File

@@ -11,22 +11,10 @@ from backend.blocks.http import (
HttpMethod,
SendAuthenticatedWebRequestBlock,
)
from backend.data.execution import ExecutionContext
from backend.data.model import HostScopedCredentials
from backend.util.request import Response
def make_test_context(
graph_exec_id: str = "test-exec-id",
user_id: str = "test-user-id",
) -> ExecutionContext:
"""Helper to create test ExecutionContext."""
return ExecutionContext(
user_id=user_id,
graph_exec_id=graph_exec_id,
)
class TestHttpBlockWithHostScopedCredentials:
"""Test suite for HTTP block integration with HostScopedCredentials."""
@@ -117,7 +105,8 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=exact_match_credentials,
execution_context=make_test_context(),
graph_exec_id="test-exec-id",
user_id="test-user-id",
):
result.append((output_name, output_data))
@@ -172,7 +161,8 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=wildcard_credentials,
execution_context=make_test_context(),
graph_exec_id="test-exec-id",
user_id="test-user-id",
):
result.append((output_name, output_data))
@@ -218,7 +208,8 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=non_matching_credentials,
execution_context=make_test_context(),
graph_exec_id="test-exec-id",
user_id="test-user-id",
):
result.append((output_name, output_data))
@@ -267,7 +258,8 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=exact_match_credentials,
execution_context=make_test_context(),
graph_exec_id="test-exec-id",
user_id="test-user-id",
):
result.append((output_name, output_data))
@@ -326,7 +318,8 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=auto_discovered_creds, # Execution manager found these
execution_context=make_test_context(),
graph_exec_id="test-exec-id",
user_id="test-user-id",
):
result.append((output_name, output_data))
@@ -389,7 +382,8 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=multi_header_creds,
execution_context=make_test_context(),
graph_exec_id="test-exec-id",
user_id="test-user-id",
):
result.append((output_name, output_data))
@@ -477,7 +471,8 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=test_creds,
execution_context=make_test_context(),
graph_exec_id="test-exec-id",
user_id="test-user-id",
):
result.append((output_name, output_data))

View File

@@ -242,7 +242,7 @@ async def test_smart_decision_maker_tracks_llm_stats():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
@@ -343,7 +343,7 @@ async def test_smart_decision_maker_parameter_validation():
# Create execution context
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
@@ -409,7 +409,7 @@ async def test_smart_decision_maker_parameter_validation():
# Create execution context
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
@@ -471,7 +471,7 @@ async def test_smart_decision_maker_parameter_validation():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
@@ -535,7 +535,7 @@ async def test_smart_decision_maker_parameter_validation():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
@@ -658,7 +658,7 @@ async def test_smart_decision_maker_raw_response_conversion():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
@@ -730,7 +730,7 @@ async def test_smart_decision_maker_raw_response_conversion():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
@@ -786,7 +786,7 @@ async def test_smart_decision_maker_raw_response_conversion():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
@@ -905,7 +905,7 @@ async def test_smart_decision_maker_agent_mode():
# Create a mock execution context
mock_execution_context = ExecutionContext(
human_in_the_loop_safe_mode=False,
safe_mode=False,
)
# Create a mock execution processor for agent mode tests
@@ -1027,7 +1027,7 @@ async def test_smart_decision_maker_traditional_mode_default():
# Create execution context
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests

View File

@@ -386,7 +386,7 @@ async def test_output_yielding_with_dynamic_fields():
outputs = {}
from backend.data.execution import ExecutionContext
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_processor = MagicMock()
async for output_name, output_value in block.run(
@@ -609,9 +609,7 @@ async def test_validation_errors_dont_pollute_conversation():
outputs = {}
from backend.data.execution import ExecutionContext
mock_execution_context = ExecutionContext(
human_in_the_loop_safe_mode=False
)
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a proper mock execution processor for agent mode
from collections import defaultdict

View File

@@ -11,7 +11,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util import json, text
from backend.util.file import get_exec_file_path, store_media_file
@@ -445,21 +444,18 @@ class FileReadBlock(Block):
)
async def run(
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
) -> BlockOutput:
# Store the media file properly (handles URLs, data URIs, etc.)
stored_file_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=input_data.file_input,
execution_context=execution_context,
return_format="for_local_processing",
return_content=False,
)
# Get full file path (graph_exec_id validated by store_media_file above)
if not execution_context.graph_exec_id:
raise ValueError("execution_context.graph_exec_id is required")
file_path = get_exec_file_path(
execution_context.graph_exec_id, stored_file_path
)
# Get full file path
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
if not Path(file_path).exists():
raise ValueError(f"File does not exist: {file_path}")

View File

@@ -1,7 +1,7 @@
import logging
import os
import pytest_asyncio
import pytest
from dotenv import load_dotenv
from backend.util.logging import configure_logging
@@ -19,7 +19,7 @@ if not os.getenv("PRISMA_DEBUG"):
prisma_logger.setLevel(logging.INFO)
@pytest_asyncio.fixture(scope="session", loop_scope="session")
@pytest.fixture(scope="session")
async def server():
from backend.util.test import SpinTestServer
@@ -27,7 +27,7 @@ async def server():
yield server
@pytest_asyncio.fixture(scope="session", loop_scope="session", autouse=True)
@pytest.fixture(scope="session", autouse=True)
async def graph_cleanup(server):
created_graph_ids = []
original_create_graph = server.agent_server.test_create_graph

View File

@@ -441,7 +441,6 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
static_output: bool = False,
block_type: BlockType = BlockType.STANDARD,
webhook_config: Optional[BlockWebhookConfig | BlockManualWebhookConfig] = None,
is_sensitive_action: bool = False,
):
"""
Initialize the block with the given schema.
@@ -474,8 +473,8 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
self.static_output = static_output
self.block_type = block_type
self.webhook_config = webhook_config
self.is_sensitive_action = is_sensitive_action
self.execution_stats: NodeExecutionStats = NodeExecutionStats()
self.requires_human_review: bool = False
if self.webhook_config:
if isinstance(self.webhook_config, BlockWebhookConfig):
@@ -623,7 +622,6 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
input_data: BlockInput,
*,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
@@ -639,9 +637,8 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
- should_pause: True if execution should be paused for review
- input_data_to_use: The input data to use (may be modified by reviewer)
"""
if not (
self.is_sensitive_action and execution_context.sensitive_action_safe_mode
):
# Skip review if not required or safe mode is disabled
if not self.requires_human_review or not execution_context.safe_mode:
return False, input_data
from backend.blocks.helpers.review import HITLReviewHelper
@@ -650,11 +647,11 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
decision = await HITLReviewHelper.handle_review_decision(
input_data=input_data,
user_id=user_id,
node_id=node_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=self.name,
editable=True,
)

View File

@@ -99,15 +99,10 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.OPENAI_GPT_OSS_20B: 1,
LlmModel.GEMINI_2_5_PRO: 4,
LlmModel.GEMINI_3_PRO_PREVIEW: 5,
LlmModel.GEMINI_2_5_FLASH: 1,
LlmModel.GEMINI_2_0_FLASH: 1,
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
LlmModel.MISTRAL_NEMO: 1,
LlmModel.COHERE_COMMAND_R_08_2024: 1,
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: 3,
LlmModel.DEEPSEEK_CHAT: 2,
LlmModel.DEEPSEEK_R1_0528: 1,
LlmModel.PERPLEXITY_SONAR: 1,
LlmModel.PERPLEXITY_SONAR_PRO: 5,
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: 10,
@@ -131,6 +126,11 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.KIMI_K2: 1,
LlmModel.QWEN3_235B_A22B_THINKING: 1,
LlmModel.QWEN3_CODER: 9,
LlmModel.GEMINI_2_5_FLASH: 1,
LlmModel.GEMINI_2_0_FLASH: 1,
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
LlmModel.DEEPSEEK_R1_0528: 1,
# v0 by Vercel models
LlmModel.V0_1_5_MD: 1,
LlmModel.V0_1_5_LG: 2,

View File

@@ -38,6 +38,20 @@ POOL_TIMEOUT = os.getenv("DB_POOL_TIMEOUT")
if POOL_TIMEOUT:
DATABASE_URL = add_param(DATABASE_URL, "pool_timeout", POOL_TIMEOUT)
# Add public schema to search_path for pgvector type access
# The vector extension is in public schema, but search_path is determined by schema parameter
# Extract the schema from DATABASE_URL or default to 'public' (matching get_database_schema())
parsed_url = urlparse(DATABASE_URL)
url_params = dict(parse_qsl(parsed_url.query))
db_schema = url_params.get("schema", "public")
# Build search_path, avoiding duplicates if db_schema is already 'public'
search_path_schemas = list(
dict.fromkeys([db_schema, "public"])
) # Preserves order, removes duplicates
search_path = ",".join(search_path_schemas)
# This allows using ::vector without schema qualification
DATABASE_URL = add_param(DATABASE_URL, "options", f"-c search_path={search_path}")
HTTP_TIMEOUT = int(POOL_TIMEOUT) if POOL_TIMEOUT else None
prisma = Prisma(
@@ -113,48 +127,38 @@ async def _raw_with_schema(
*args,
execute: bool = False,
client: Prisma | None = None,
set_public_search_path: bool = False,
) -> list[dict] | int:
"""Internal: Execute raw SQL with proper schema handling.
Use query_raw_with_schema() or execute_raw_with_schema() instead.
Supports placeholders:
- {schema_prefix}: Table/type prefix (e.g., "platform".)
- {schema}: Raw schema name for application tables (e.g., platform)
Note on pgvector types:
Use unqualified ::vector and <=> operator in queries. PostgreSQL resolves
these via search_path, which includes the schema where pgvector is installed
on all environments (local, CI, dev).
Args:
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
query_template: SQL query with {schema_prefix} placeholder
*args: Query parameters
execute: If False, executes SELECT query. If True, executes INSERT/UPDATE/DELETE.
client: Optional Prisma client for transactions (only used when execute=True).
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
- list[dict] if execute=False (query results)
- int if execute=True (number of affected rows)
Example with vector type:
await execute_raw_with_schema(
'INSERT INTO {schema_prefix}"Embedding" (vec) VALUES ($1::vector)',
embedding_data
)
"""
schema = get_database_schema()
schema_prefix = f'"{schema}".' if schema != "public" else ""
formatted_query = query_template.format(
schema_prefix=schema_prefix,
schema=schema,
)
formatted_query = query_template.format(schema_prefix=schema_prefix)
import prisma as prisma_module
db_client = client if client else prisma_module.get_client()
# Set search_path to include public schema if requested
# Prisma doesn't support the 'options' connection parameter, so we set it per-session
# This is idempotent and safe to call multiple times
if set_public_search_path:
await db_client.execute_raw(f"SET search_path = {schema}, public") # type: ignore
if execute:
result = await db_client.execute_raw(formatted_query, *args) # type: ignore
else:
@@ -163,12 +167,16 @@ async def _raw_with_schema(
return result
async def query_raw_with_schema(query_template: str, *args) -> list[dict]:
async def query_raw_with_schema(
query_template: str, *args, set_public_search_path: bool = False
) -> list[dict]:
"""Execute raw SQL SELECT query with proper schema handling.
Args:
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
query_template: SQL query with {schema_prefix} placeholder
*args: Query parameters
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
List of result rows as dictionaries
@@ -179,20 +187,23 @@ async def query_raw_with_schema(query_template: str, *args) -> list[dict]:
user_id
)
"""
return await _raw_with_schema(query_template, *args, execute=False) # type: ignore
return await _raw_with_schema(query_template, *args, execute=False, set_public_search_path=set_public_search_path) # type: ignore
async def execute_raw_with_schema(
query_template: str,
*args,
client: Prisma | None = None,
set_public_search_path: bool = False,
) -> int:
"""Execute raw SQL command (INSERT/UPDATE/DELETE) with proper schema handling.
Args:
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
query_template: SQL query with {schema_prefix} placeholder
*args: Query parameters
client: Optional Prisma client for transactions
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
Number of affected rows
@@ -204,7 +215,7 @@ async def execute_raw_with_schema(
client=tx # Optional transaction client
)
"""
return await _raw_with_schema(query_template, *args, execute=True, client=client) # type: ignore
return await _raw_with_schema(query_template, *args, execute=True, client=client, set_public_search_path=set_public_search_path) # type: ignore
class BaseDbModel(BaseModel):

View File

@@ -103,18 +103,8 @@ class RedisEventBus(BaseRedisEventBus[M], ABC):
return redis.get_redis()
def publish_event(self, event: M, channel_key: str):
"""
Publish an event to Redis. Gracefully handles connection failures
by logging the error instead of raising exceptions.
"""
try:
message, full_channel_name = self._serialize_message(event, channel_key)
self.connection.publish(full_channel_name, message)
except Exception:
logger.exception(
f"Failed to publish event to Redis channel {channel_key}. "
"Event bus operation will continue without Redis connectivity."
)
message, full_channel_name = self._serialize_message(event, channel_key)
self.connection.publish(full_channel_name, message)
def listen_events(self, channel_key: str) -> Generator[M, None, None]:
pubsub, full_channel_name = self._get_pubsub_channel(
@@ -138,19 +128,9 @@ class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
return await redis.get_redis_async()
async def publish_event(self, event: M, channel_key: str):
"""
Publish an event to Redis. Gracefully handles connection failures
by logging the error instead of raising exceptions.
"""
try:
message, full_channel_name = self._serialize_message(event, channel_key)
connection = await self.connection
await connection.publish(full_channel_name, message)
except Exception:
logger.exception(
f"Failed to publish event to Redis channel {channel_key}. "
"Event bus operation will continue without Redis connectivity."
)
message, full_channel_name = self._serialize_message(event, channel_key)
connection = await self.connection
await connection.publish(full_channel_name, message)
async def listen_events(self, channel_key: str) -> AsyncGenerator[M, None]:
pubsub, full_channel_name = self._get_pubsub_channel(

Some files were not shown because too many files have changed in this diff Show More