mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-01-30 09:28:19 -05:00
Compare commits
12 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
350ad3591b | ||
|
|
de0ec3d388 | ||
|
|
7cb1e588b0 | ||
|
|
582c6cad36 | ||
|
|
3b822cdaf7 | ||
|
|
b2eb4831bd | ||
|
|
4cd5da678d | ||
|
|
b94c83aacc | ||
|
|
7668c17d9c | ||
|
|
e0dfae5732 | ||
|
|
7df867d645 | ||
|
|
d855f79874 |
@@ -29,8 +29,7 @@
|
||||
"postCreateCmd": [
|
||||
"cd autogpt_platform/autogpt_libs && poetry install",
|
||||
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
|
||||
"cd autogpt_platform/frontend && pnpm install",
|
||||
"cd docs && pip install -r requirements.txt"
|
||||
"cd autogpt_platform/frontend && pnpm install"
|
||||
],
|
||||
"terminalCommand": "code .",
|
||||
"deleteBranchWithWorktree": false
|
||||
|
||||
6
.github/copilot-instructions.md
vendored
6
.github/copilot-instructions.md
vendored
@@ -160,7 +160,7 @@ pnpm storybook # Start component development server
|
||||
|
||||
**Backend Entry Points:**
|
||||
|
||||
- `backend/backend/server/server.py` - FastAPI application setup
|
||||
- `backend/backend/api/rest_api.py` - FastAPI application setup
|
||||
- `backend/backend/data/` - Database models and user management
|
||||
- `backend/blocks/` - Agent execution blocks and logic
|
||||
|
||||
@@ -219,7 +219,7 @@ Agents are built using a visual block-based system where each block performs a s
|
||||
|
||||
### API Development
|
||||
|
||||
1. Update routes in `/backend/backend/server/routers/`
|
||||
1. Update routes in `/backend/backend/api/features/`
|
||||
2. Add/update Pydantic models in same directory
|
||||
3. Write tests alongside route files
|
||||
4. For `data/*.py` changes, validate user ID checks
|
||||
@@ -285,7 +285,7 @@ Agents are built using a visual block-based system where each block performs a s
|
||||
|
||||
### Security Guidelines
|
||||
|
||||
**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`):
|
||||
**Cache Protection Middleware** (`/backend/backend/api/middleware/security.py`):
|
||||
|
||||
- Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
|
||||
- Uses allow list approach for cacheable paths (static assets, health checks, public pages)
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -178,4 +178,5 @@ autogpt_platform/backend/settings.py
|
||||
*.ign.*
|
||||
.test-contents
|
||||
.claude/settings.local.json
|
||||
CLAUDE.local.md
|
||||
/autogpt_platform/backend/logs
|
||||
|
||||
24
AGENTS.md
24
AGENTS.md
@@ -16,7 +16,6 @@ See `docs/content/platform/getting-started.md` for setup instructions.
|
||||
- Format Python code with `poetry run format`.
|
||||
- Format frontend code using `pnpm format`.
|
||||
|
||||
|
||||
## Frontend guidelines:
|
||||
|
||||
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
@@ -33,14 +32,17 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
|
||||
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
|
||||
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
|
||||
|
||||
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
|
||||
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
|
||||
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
|
||||
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
|
||||
- Use function declarations for components, arrow functions only for callbacks
|
||||
- No barrel files or `index.ts` re-exports
|
||||
- Do not use `useCallback` or `useMemo` unless strictly needed
|
||||
- Avoid comments at all times unless the code is very complex
|
||||
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
|
||||
- Do not type hook returns, let Typescript infer as much as possible
|
||||
- Never type with `any`, if not types available use `unknown`
|
||||
|
||||
## Testing
|
||||
|
||||
@@ -49,22 +51,8 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
|
||||
Always run the relevant linters and tests before committing.
|
||||
Use conventional commit messages for all commits (e.g. `feat(backend): add API`).
|
||||
Types:
|
||||
- feat
|
||||
- fix
|
||||
- refactor
|
||||
- ci
|
||||
- dx (developer experience)
|
||||
Scopes:
|
||||
- platform
|
||||
- platform/library
|
||||
- platform/marketplace
|
||||
- backend
|
||||
- backend/executor
|
||||
- frontend
|
||||
- frontend/library
|
||||
- frontend/marketplace
|
||||
- blocks
|
||||
Types: - feat - fix - refactor - ci - dx (developer experience)
|
||||
Scopes: - platform - platform/library - platform/marketplace - backend - backend/executor - frontend - frontend/library - frontend/marketplace - blocks
|
||||
|
||||
## Pull requests
|
||||
|
||||
|
||||
@@ -6,152 +6,30 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
|
||||
|
||||
AutoGPT Platform is a monorepo containing:
|
||||
|
||||
- **Backend** (`/backend`): Python FastAPI server with async support
|
||||
- **Frontend** (`/frontend`): Next.js React application
|
||||
- **Shared Libraries** (`/autogpt_libs`): Common Python utilities
|
||||
- **Backend** (`backend`): Python FastAPI server with async support
|
||||
- **Frontend** (`frontend`): Next.js React application
|
||||
- **Shared Libraries** (`autogpt_libs`): Common Python utilities
|
||||
|
||||
## Essential Commands
|
||||
## Component Documentation
|
||||
|
||||
### Backend Development
|
||||
- **Backend**: See @backend/CLAUDE.md for backend-specific commands, architecture, and development tasks
|
||||
- **Frontend**: See @frontend/CLAUDE.md for frontend-specific commands, architecture, and development patterns
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
cd backend && poetry install
|
||||
|
||||
# Run database migrations
|
||||
poetry run prisma migrate dev
|
||||
|
||||
# Start all services (database, redis, rabbitmq, clamav)
|
||||
docker compose up -d
|
||||
|
||||
# Run the backend server
|
||||
poetry run serve
|
||||
|
||||
# Run tests
|
||||
poetry run test
|
||||
|
||||
# Run specific test
|
||||
poetry run pytest path/to/test_file.py::test_function_name
|
||||
|
||||
# Run block tests (tests that validate all blocks work correctly)
|
||||
poetry run pytest backend/blocks/test/test_block.py -xvs
|
||||
|
||||
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
|
||||
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
|
||||
|
||||
# Lint and format
|
||||
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
|
||||
poetry run format # Black + isort
|
||||
poetry run lint # ruff
|
||||
```
|
||||
|
||||
More details can be found in TESTING.md
|
||||
|
||||
#### Creating/Updating Snapshots
|
||||
|
||||
When you first write a test or when the expected output changes:
|
||||
|
||||
```bash
|
||||
poetry run pytest path/to/test.py --snapshot-update
|
||||
```
|
||||
|
||||
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
|
||||
|
||||
### Frontend Development
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
cd frontend && pnpm i
|
||||
|
||||
# Generate API client from OpenAPI spec
|
||||
pnpm generate:api
|
||||
|
||||
# Start development server
|
||||
pnpm dev
|
||||
|
||||
# Run E2E tests
|
||||
pnpm test
|
||||
|
||||
# Run Storybook for component development
|
||||
pnpm storybook
|
||||
|
||||
# Build production
|
||||
pnpm build
|
||||
|
||||
# Format and lint
|
||||
pnpm format
|
||||
|
||||
# Type checking
|
||||
pnpm types
|
||||
```
|
||||
|
||||
**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns.
|
||||
|
||||
**Key Frontend Conventions:**
|
||||
|
||||
- Separate render logic from data/behavior in components
|
||||
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
|
||||
- Use function declarations (not arrow functions) for components/handlers
|
||||
- Use design system components from `src/components/` (atoms, molecules, organisms)
|
||||
- Only use Phosphor Icons
|
||||
- Never use `src/components/__legacy__/*` or deprecated `BackendAPI`
|
||||
|
||||
## Architecture Overview
|
||||
|
||||
### Backend Architecture
|
||||
|
||||
- **API Layer**: FastAPI with REST and WebSocket endpoints
|
||||
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
|
||||
- **Queue System**: RabbitMQ for async task processing
|
||||
- **Execution Engine**: Separate executor service processes agent workflows
|
||||
- **Authentication**: JWT-based with Supabase integration
|
||||
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
|
||||
|
||||
### Frontend Architecture
|
||||
|
||||
- **Framework**: Next.js 15 App Router (client-first approach)
|
||||
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
|
||||
- **State Management**: React Query for server state, co-located UI state in components/hooks
|
||||
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
|
||||
- **Workflow Builder**: Visual graph editor using @xyflow/react
|
||||
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
|
||||
- **Icons**: Phosphor Icons only
|
||||
- **Feature Flags**: LaunchDarkly integration
|
||||
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
|
||||
- **Testing**: Playwright for E2E, Storybook for component development
|
||||
|
||||
### Key Concepts
|
||||
## Key Concepts
|
||||
|
||||
1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend
|
||||
2. **Blocks**: Reusable components in `/backend/blocks/` that perform specific tasks
|
||||
2. **Blocks**: Reusable components in `backend/backend/blocks/` that perform specific tasks
|
||||
3. **Integrations**: OAuth and API connections stored per user
|
||||
4. **Store**: Marketplace for sharing agent templates
|
||||
5. **Virus Scanning**: ClamAV integration for file upload security
|
||||
|
||||
### Testing Approach
|
||||
|
||||
- Backend uses pytest with snapshot testing for API responses
|
||||
- Test files are colocated with source files (`*_test.py`)
|
||||
- Frontend uses Playwright for E2E tests
|
||||
- Component testing via Storybook
|
||||
|
||||
### Database Schema
|
||||
|
||||
Key models (defined in `/backend/schema.prisma`):
|
||||
|
||||
- `User`: Authentication and profile data
|
||||
- `AgentGraph`: Workflow definitions with version control
|
||||
- `AgentGraphExecution`: Execution history and results
|
||||
- `AgentNode`: Individual nodes in a workflow
|
||||
- `StoreListing`: Marketplace listings for sharing agents
|
||||
|
||||
### Environment Configuration
|
||||
|
||||
#### Configuration Files
|
||||
|
||||
- **Backend**: `/backend/.env.default` (defaults) → `/backend/.env` (user overrides)
|
||||
- **Frontend**: `/frontend/.env.default` (defaults) → `/frontend/.env` (user overrides)
|
||||
- **Platform**: `/.env.default` (Supabase/shared defaults) → `/.env` (user overrides)
|
||||
- **Backend**: `backend/.env.default` (defaults) → `backend/.env` (user overrides)
|
||||
- **Frontend**: `frontend/.env.default` (defaults) → `frontend/.env` (user overrides)
|
||||
- **Platform**: `.env.default` (Supabase/shared defaults) → `.env` (user overrides)
|
||||
|
||||
#### Docker Environment Loading Order
|
||||
|
||||
@@ -167,83 +45,12 @@ Key models (defined in `/backend/schema.prisma`):
|
||||
- Backend/Frontend services use YAML anchors for consistent configuration
|
||||
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
|
||||
|
||||
### Common Development Tasks
|
||||
|
||||
**Adding a new block:**
|
||||
|
||||
Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers:
|
||||
|
||||
- Provider configuration with `ProviderBuilder`
|
||||
- Block schema definition
|
||||
- Authentication (API keys, OAuth, webhooks)
|
||||
- Testing and validation
|
||||
- File organization
|
||||
|
||||
Quick steps:
|
||||
|
||||
1. Create new file in `/backend/backend/blocks/`
|
||||
2. Configure provider using `ProviderBuilder` in `_config.py`
|
||||
3. Inherit from `Block` base class
|
||||
4. Define input/output schemas using `BlockSchema`
|
||||
5. Implement async `run` method
|
||||
6. Generate unique block ID using `uuid.uuid4()`
|
||||
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
|
||||
|
||||
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph based editor or would they struggle to connect productively?
|
||||
ex: do the inputs and outputs tie well together?
|
||||
|
||||
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
|
||||
|
||||
**Modifying the API:**
|
||||
|
||||
1. Update route in `/backend/backend/server/routers/`
|
||||
2. Add/update Pydantic models in same directory
|
||||
3. Write tests alongside the route file
|
||||
4. Run `poetry run test` to verify
|
||||
|
||||
### Frontend guidelines:
|
||||
|
||||
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
|
||||
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
|
||||
- Add `usePageName.ts` hook for logic
|
||||
- Put sub-components in local `components/` folder
|
||||
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
|
||||
- Use design system components from `src/components/` (atoms, molecules, organisms)
|
||||
- Never use `src/components/__legacy__/*`
|
||||
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
|
||||
- Regenerate with `pnpm generate:api`
|
||||
- Pattern: `use{Method}{Version}{OperationName}`
|
||||
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
|
||||
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
|
||||
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
|
||||
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
|
||||
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
|
||||
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
|
||||
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
|
||||
- Use function declarations for components, arrow functions only for callbacks
|
||||
- No barrel files or `index.ts` re-exports
|
||||
- Do not use `useCallback` or `useMemo` unless strictly needed
|
||||
- Avoid comments at all times unless the code is very complex
|
||||
|
||||
### Security Implementation
|
||||
|
||||
**Cache Protection Middleware:**
|
||||
|
||||
- Located in `/backend/backend/server/middleware/security.py`
|
||||
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
|
||||
- Uses an allow list approach - only explicitly permitted paths can be cached
|
||||
- Cacheable paths include: static assets (`/static/*`, `/_next/static/*`), health checks, public store pages, documentation
|
||||
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
|
||||
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
|
||||
- Applied to both main API server and external API applications
|
||||
|
||||
### Creating Pull Requests
|
||||
|
||||
- Create the PR aginst the `dev` branch of the repository.
|
||||
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)/
|
||||
- Use conventional commit messages (see below)/
|
||||
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description/
|
||||
- Create the PR against the `dev` branch of the repository.
|
||||
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)
|
||||
- Use conventional commit messages (see below)
|
||||
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description
|
||||
- Run the github pre-commit hooks to ensure code quality.
|
||||
|
||||
### Reviewing/Revising Pull Requests
|
||||
|
||||
170
autogpt_platform/backend/CLAUDE.md
Normal file
170
autogpt_platform/backend/CLAUDE.md
Normal file
@@ -0,0 +1,170 @@
|
||||
# CLAUDE.md - Backend
|
||||
|
||||
This file provides guidance to Claude Code when working with the backend.
|
||||
|
||||
## Essential Commands
|
||||
|
||||
To run something with Python package dependencies you MUST use `poetry run ...`.
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
poetry install
|
||||
|
||||
# Run database migrations
|
||||
poetry run prisma migrate dev
|
||||
|
||||
# Start all services (database, redis, rabbitmq, clamav)
|
||||
docker compose up -d
|
||||
|
||||
# Run the backend as a whole
|
||||
poetry run app
|
||||
|
||||
# Run tests
|
||||
poetry run test
|
||||
|
||||
# Run specific test
|
||||
poetry run pytest path/to/test_file.py::test_function_name
|
||||
|
||||
# Run block tests (tests that validate all blocks work correctly)
|
||||
poetry run pytest backend/blocks/test/test_block.py -xvs
|
||||
|
||||
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
|
||||
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
|
||||
|
||||
# Lint and format
|
||||
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
|
||||
poetry run format # Black + isort
|
||||
poetry run lint # ruff
|
||||
```
|
||||
|
||||
More details can be found in @TESTING.md
|
||||
|
||||
### Creating/Updating Snapshots
|
||||
|
||||
When you first write a test or when the expected output changes:
|
||||
|
||||
```bash
|
||||
poetry run pytest path/to/test.py --snapshot-update
|
||||
```
|
||||
|
||||
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
|
||||
|
||||
## Architecture
|
||||
|
||||
- **API Layer**: FastAPI with REST and WebSocket endpoints
|
||||
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
|
||||
- **Queue System**: RabbitMQ for async task processing
|
||||
- **Execution Engine**: Separate executor service processes agent workflows
|
||||
- **Authentication**: JWT-based with Supabase integration
|
||||
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
|
||||
|
||||
## Testing Approach
|
||||
|
||||
- Uses pytest with snapshot testing for API responses
|
||||
- Test files are colocated with source files (`*_test.py`)
|
||||
|
||||
## Database Schema
|
||||
|
||||
Key models (defined in `schema.prisma`):
|
||||
|
||||
- `User`: Authentication and profile data
|
||||
- `AgentGraph`: Workflow definitions with version control
|
||||
- `AgentGraphExecution`: Execution history and results
|
||||
- `AgentNode`: Individual nodes in a workflow
|
||||
- `StoreListing`: Marketplace listings for sharing agents
|
||||
|
||||
## Environment Configuration
|
||||
|
||||
- **Backend**: `.env.default` (defaults) → `.env` (user overrides)
|
||||
|
||||
## Common Development Tasks
|
||||
|
||||
### Adding a new block
|
||||
|
||||
Follow the comprehensive [Block SDK Guide](@../../docs/content/platform/block-sdk-guide.md) which covers:
|
||||
|
||||
- Provider configuration with `ProviderBuilder`
|
||||
- Block schema definition
|
||||
- Authentication (API keys, OAuth, webhooks)
|
||||
- Testing and validation
|
||||
- File organization
|
||||
|
||||
Quick steps:
|
||||
|
||||
1. Create new file in `backend/blocks/`
|
||||
2. Configure provider using `ProviderBuilder` in `_config.py`
|
||||
3. Inherit from `Block` base class
|
||||
4. Define input/output schemas using `BlockSchema`
|
||||
5. Implement async `run` method
|
||||
6. Generate unique block ID using `uuid.uuid4()`
|
||||
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
|
||||
|
||||
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph-based editor or would they struggle to connect productively?
|
||||
ex: do the inputs and outputs tie well together?
|
||||
|
||||
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
|
||||
|
||||
#### Handling files in blocks with `store_media_file()`
|
||||
|
||||
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
|
||||
|
||||
| Format | Use When | Returns |
|
||||
|--------|----------|---------|
|
||||
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
|
||||
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
|
||||
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
|
||||
|
||||
**Examples:**
|
||||
|
||||
```python
|
||||
# INPUT: Need to process file locally with ffmpeg
|
||||
local_path = await store_media_file(
|
||||
file=input_data.video,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
# local_path = "video.mp4" - use with Path/ffmpeg/etc
|
||||
|
||||
# INPUT: Need to send to external API like Replicate
|
||||
image_b64 = await store_media_file(
|
||||
file=input_data.image,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api",
|
||||
)
|
||||
# image_b64 = "..." - send to API
|
||||
|
||||
# OUTPUT: Returning result from block
|
||||
result_url = await store_media_file(
|
||||
file=generated_image_url,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", result_url
|
||||
# In CoPilot: result_url = "workspace://abc123"
|
||||
# In graphs: result_url = "data:image/png;base64,..."
|
||||
```
|
||||
|
||||
**Key points:**
|
||||
|
||||
- `for_block_output` is the ONLY format that auto-adapts to execution context
|
||||
- Always use `for_block_output` for block outputs unless you have a specific reason not to
|
||||
- Never hardcode workspace checks - let `for_block_output` handle it
|
||||
|
||||
### Modifying the API
|
||||
|
||||
1. Update route in `backend/api/features/`
|
||||
2. Add/update Pydantic models in same directory
|
||||
3. Write tests alongside the route file
|
||||
4. Run `poetry run test` to verify
|
||||
|
||||
## Security Implementation
|
||||
|
||||
### Cache Protection Middleware
|
||||
|
||||
- Located in `backend/api/middleware/security.py`
|
||||
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
|
||||
- Uses an allow list approach - only explicitly permitted paths can be cached
|
||||
- Cacheable paths include: static assets (`static/*`, `_next/static/*`), health checks, public store pages, documentation
|
||||
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
|
||||
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
|
||||
- Applied to both main API server and external API applications
|
||||
@@ -138,7 +138,7 @@ If the test doesn't need the `user_id` specifically, mocking is not necessary as
|
||||
|
||||
#### Using Global Auth Fixtures
|
||||
|
||||
Two global auth fixtures are provided by `backend/server/conftest.py`:
|
||||
Two global auth fixtures are provided by `backend/api/conftest.py`:
|
||||
|
||||
- `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id")
|
||||
- `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id")
|
||||
|
||||
@@ -17,7 +17,7 @@ router = fastapi.APIRouter(
|
||||
)
|
||||
|
||||
|
||||
# Taken from backend/server/v2/store/db.py
|
||||
# Taken from backend/api/features/store/db.py
|
||||
def sanitize_query(query: str | None) -> str | None:
|
||||
if query is None:
|
||||
return query
|
||||
|
||||
@@ -0,0 +1,79 @@
|
||||
# CoPilot Tools - Future Ideas
|
||||
|
||||
## Multimodal Image Support for CoPilot
|
||||
|
||||
**Problem:** CoPilot uses a vision-capable model but can't "see" workspace images. When a block generates an image and returns `workspace://abc123`, CoPilot can't evaluate it (e.g., checking blog thumbnail quality).
|
||||
|
||||
**Backend Solution:**
|
||||
When preparing messages for the LLM, detect `workspace://` image references and convert them to proper image content blocks:
|
||||
|
||||
```python
|
||||
# Before sending to LLM, scan for workspace image references
|
||||
# and inject them as image content parts
|
||||
|
||||
# Example message transformation:
|
||||
# FROM: {"role": "assistant", "content": "Generated image: workspace://abc123"}
|
||||
# TO: {"role": "assistant", "content": [
|
||||
# {"type": "text", "text": "Generated image: workspace://abc123"},
|
||||
# {"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}}
|
||||
# ]}
|
||||
```
|
||||
|
||||
**Where to implement:**
|
||||
- In the chat stream handler before calling the LLM
|
||||
- Or in a message preprocessing step
|
||||
- Need to fetch image from workspace, convert to base64, add as image content
|
||||
|
||||
**Considerations:**
|
||||
- Only do this for image MIME types (image/png, image/jpeg, etc.)
|
||||
- May want a size limit (don't pass 10MB images)
|
||||
- Track which images were "shown" to the AI for frontend indicator
|
||||
- Cost implications - vision API calls are more expensive
|
||||
|
||||
**Frontend Solution:**
|
||||
Show visual indicator on workspace files in chat:
|
||||
- If AI saw the image: normal display
|
||||
- If AI didn't see it: overlay icon saying "AI can't see this image"
|
||||
|
||||
Requires response metadata indicating which `workspace://` refs were passed to the model.
|
||||
|
||||
---
|
||||
|
||||
## Output Post-Processing Layer for run_block
|
||||
|
||||
**Problem:** Many blocks produce large outputs that:
|
||||
- Consume massive context (100KB base64 image = ~133KB tokens)
|
||||
- Can't fit in conversation
|
||||
- Break things and cause high LLM costs
|
||||
|
||||
**Proposed Solution:** Instead of modifying individual blocks or `store_media_file()`, implement a centralized output processor in `run_block.py` that handles outputs before they're returned to CoPilot.
|
||||
|
||||
**Benefits:**
|
||||
1. **Centralized** - one place to handle all output processing
|
||||
2. **Future-proof** - new blocks automatically get output processing
|
||||
3. **Keeps blocks pure** - they don't need to know about context constraints
|
||||
4. **Handles all large outputs** - not just images
|
||||
|
||||
**Processing Rules:**
|
||||
- Detect base64 data URIs → save to workspace, return `workspace://` reference
|
||||
- Truncate very long strings (>N chars) with truncation note
|
||||
- Summarize large arrays/lists (e.g., "Array with 1000 items, first 5: [...]")
|
||||
- Handle nested large outputs in dicts recursively
|
||||
- Cap total output size
|
||||
|
||||
**Implementation Location:** `run_block.py` after block execution, before returning `BlockOutputResponse`
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
def _process_outputs_for_context(
|
||||
outputs: dict[str, list[Any]],
|
||||
workspace_manager: WorkspaceManager,
|
||||
max_string_length: int = 10000,
|
||||
max_array_preview: int = 5,
|
||||
) -> dict[str, list[Any]]:
|
||||
"""Process block outputs to prevent context bloat."""
|
||||
processed = {}
|
||||
for name, values in outputs.items():
|
||||
processed[name] = [_process_value(v, workspace_manager) for v in values]
|
||||
return processed
|
||||
```
|
||||
@@ -18,6 +18,12 @@ from .get_doc_page import GetDocPageTool
|
||||
from .run_agent import RunAgentTool
|
||||
from .run_block import RunBlockTool
|
||||
from .search_docs import SearchDocsTool
|
||||
from .workspace_files import (
|
||||
DeleteWorkspaceFileTool,
|
||||
ListWorkspaceFilesTool,
|
||||
ReadWorkspaceFileTool,
|
||||
WriteWorkspaceFileTool,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.api.features.chat.response_model import StreamToolOutputAvailable
|
||||
@@ -37,6 +43,11 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
|
||||
"view_agent_output": AgentOutputTool(),
|
||||
"search_docs": SearchDocsTool(),
|
||||
"get_doc_page": GetDocPageTool(),
|
||||
# Workspace tools for CoPilot file operations
|
||||
"list_workspace_files": ListWorkspaceFilesTool(),
|
||||
"read_workspace_file": ReadWorkspaceFileTool(),
|
||||
"write_workspace_file": WriteWorkspaceFileTool(),
|
||||
"delete_workspace_file": DeleteWorkspaceFileTool(),
|
||||
}
|
||||
|
||||
# Export individual tool instances for backwards compatibility
|
||||
|
||||
@@ -9,6 +9,7 @@ from .core import (
|
||||
json_to_graph,
|
||||
save_agent_to_library,
|
||||
)
|
||||
from .errors import get_user_message_for_error
|
||||
from .service import health_check as check_external_service_health
|
||||
from .service import is_external_service_configured
|
||||
|
||||
@@ -25,4 +26,6 @@ __all__ = [
|
||||
# Service
|
||||
"is_external_service_configured",
|
||||
"check_external_service_health",
|
||||
# Error handling
|
||||
"get_user_message_for_error",
|
||||
]
|
||||
|
||||
@@ -64,7 +64,7 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
|
||||
instructions: Structured instructions from decompose_goal
|
||||
|
||||
Returns:
|
||||
Agent JSON dict or None on error
|
||||
Agent JSON dict, error dict {"type": "error", ...}, or None on error
|
||||
|
||||
Raises:
|
||||
AgentGeneratorNotConfiguredError: If the external service is not configured.
|
||||
@@ -73,7 +73,10 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
|
||||
logger.info("Calling external Agent Generator service for generate_agent")
|
||||
result = await generate_agent_external(instructions)
|
||||
if result:
|
||||
# Ensure required fields
|
||||
# Check if it's an error response - pass through as-is
|
||||
if isinstance(result, dict) and result.get("type") == "error":
|
||||
return result
|
||||
# Ensure required fields for successful agent generation
|
||||
if "id" not in result:
|
||||
result["id"] = str(uuid.uuid4())
|
||||
if "version" not in result:
|
||||
@@ -267,7 +270,8 @@ async def generate_agent_patch(
|
||||
current_agent: Current agent JSON
|
||||
|
||||
Returns:
|
||||
Updated agent JSON, clarifying questions dict, or None on error
|
||||
Updated agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
|
||||
error dict {"type": "error", ...}, or None on unexpected error
|
||||
|
||||
Raises:
|
||||
AgentGeneratorNotConfiguredError: If the external service is not configured.
|
||||
|
||||
@@ -0,0 +1,43 @@
|
||||
"""Error handling utilities for agent generator."""
|
||||
|
||||
|
||||
def get_user_message_for_error(
|
||||
error_type: str,
|
||||
operation: str = "process the request",
|
||||
llm_parse_message: str | None = None,
|
||||
validation_message: str | None = None,
|
||||
) -> str:
|
||||
"""Get a user-friendly error message based on error type.
|
||||
|
||||
This function maps internal error types to user-friendly messages,
|
||||
providing a consistent experience across different agent operations.
|
||||
|
||||
Args:
|
||||
error_type: The error type from the external service
|
||||
(e.g., "llm_parse_error", "timeout", "rate_limit")
|
||||
operation: Description of what operation failed, used in the default
|
||||
message (e.g., "analyze the goal", "generate the agent")
|
||||
llm_parse_message: Custom message for llm_parse_error type
|
||||
validation_message: Custom message for validation_error type
|
||||
|
||||
Returns:
|
||||
User-friendly error message suitable for display to the user
|
||||
"""
|
||||
if error_type == "llm_parse_error":
|
||||
return (
|
||||
llm_parse_message
|
||||
or "The AI had trouble processing this request. Please try again."
|
||||
)
|
||||
elif error_type == "validation_error":
|
||||
return (
|
||||
validation_message
|
||||
or "The request failed validation. Please try rephrasing."
|
||||
)
|
||||
elif error_type == "patch_error":
|
||||
return "Failed to apply the changes. Please try a different approach."
|
||||
elif error_type in ("timeout", "llm_timeout"):
|
||||
return "The request took too long. Please try again."
|
||||
elif error_type in ("rate_limit", "llm_rate_limit"):
|
||||
return "The service is currently busy. Please try again in a moment."
|
||||
else:
|
||||
return f"Failed to {operation}. Please try again."
|
||||
@@ -14,6 +14,70 @@ from backend.util.settings import Settings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _create_error_response(
|
||||
error_message: str,
|
||||
error_type: str = "unknown",
|
||||
details: dict[str, Any] | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""Create a standardized error response dict.
|
||||
|
||||
Args:
|
||||
error_message: Human-readable error message
|
||||
error_type: Machine-readable error type
|
||||
details: Optional additional error details
|
||||
|
||||
Returns:
|
||||
Error dict with type="error" and error details
|
||||
"""
|
||||
response: dict[str, Any] = {
|
||||
"type": "error",
|
||||
"error": error_message,
|
||||
"error_type": error_type,
|
||||
}
|
||||
if details:
|
||||
response["details"] = details
|
||||
return response
|
||||
|
||||
|
||||
def _classify_http_error(e: httpx.HTTPStatusError) -> tuple[str, str]:
|
||||
"""Classify an HTTP error into error_type and message.
|
||||
|
||||
Args:
|
||||
e: The HTTP status error
|
||||
|
||||
Returns:
|
||||
Tuple of (error_type, error_message)
|
||||
"""
|
||||
status = e.response.status_code
|
||||
if status == 429:
|
||||
return "rate_limit", f"Agent Generator rate limited: {e}"
|
||||
elif status == 503:
|
||||
return "service_unavailable", f"Agent Generator unavailable: {e}"
|
||||
elif status == 504 or status == 408:
|
||||
return "timeout", f"Agent Generator timed out: {e}"
|
||||
else:
|
||||
return "http_error", f"HTTP error calling Agent Generator: {e}"
|
||||
|
||||
|
||||
def _classify_request_error(e: httpx.RequestError) -> tuple[str, str]:
|
||||
"""Classify a request error into error_type and message.
|
||||
|
||||
Args:
|
||||
e: The request error
|
||||
|
||||
Returns:
|
||||
Tuple of (error_type, error_message)
|
||||
"""
|
||||
error_str = str(e).lower()
|
||||
if "timeout" in error_str or "timed out" in error_str:
|
||||
return "timeout", f"Agent Generator request timed out: {e}"
|
||||
elif "connect" in error_str:
|
||||
return "connection_error", f"Could not connect to Agent Generator: {e}"
|
||||
else:
|
||||
return "request_error", f"Request error calling Agent Generator: {e}"
|
||||
|
||||
|
||||
_client: httpx.AsyncClient | None = None
|
||||
_settings: Settings | None = None
|
||||
|
||||
@@ -67,7 +131,8 @@ async def decompose_goal_external(
|
||||
- {"type": "instructions", "steps": [...]}
|
||||
- {"type": "unachievable_goal", ...}
|
||||
- {"type": "vague_goal", ...}
|
||||
Or None on error
|
||||
- {"type": "error", "error": "...", "error_type": "..."} on error
|
||||
Or None on unexpected error
|
||||
"""
|
||||
client = _get_client()
|
||||
|
||||
@@ -83,8 +148,13 @@ async def decompose_goal_external(
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
logger.error(f"External service returned error: {data.get('error')}")
|
||||
return None
|
||||
error_msg = data.get("error", "Unknown error from Agent Generator")
|
||||
error_type = data.get("error_type", "unknown")
|
||||
logger.error(
|
||||
f"Agent Generator decomposition failed: {error_msg} "
|
||||
f"(type: {error_type})"
|
||||
)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
|
||||
# Map the response to the expected format
|
||||
response_type = data.get("type")
|
||||
@@ -106,25 +176,37 @@ async def decompose_goal_external(
|
||||
"type": "vague_goal",
|
||||
"suggested_goal": data.get("suggested_goal"),
|
||||
}
|
||||
elif response_type == "error":
|
||||
# Pass through error from the service
|
||||
return _create_error_response(
|
||||
data.get("error", "Unknown error"),
|
||||
data.get("error_type", "unknown"),
|
||||
)
|
||||
else:
|
||||
logger.error(
|
||||
f"Unknown response type from external service: {response_type}"
|
||||
)
|
||||
return None
|
||||
return _create_error_response(
|
||||
f"Unknown response type from Agent Generator: {response_type}",
|
||||
"invalid_response",
|
||||
)
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
logger.error(f"HTTP error calling external agent generator: {e}")
|
||||
return None
|
||||
error_type, error_msg = _classify_http_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except httpx.RequestError as e:
|
||||
logger.error(f"Request error calling external agent generator: {e}")
|
||||
return None
|
||||
error_type, error_msg = _classify_request_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error calling external agent generator: {e}")
|
||||
return None
|
||||
error_msg = f"Unexpected error calling Agent Generator: {e}"
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, "unexpected_error")
|
||||
|
||||
|
||||
async def generate_agent_external(
|
||||
instructions: dict[str, Any]
|
||||
instructions: dict[str, Any],
|
||||
) -> dict[str, Any] | None:
|
||||
"""Call the external service to generate an agent from instructions.
|
||||
|
||||
@@ -132,7 +214,7 @@ async def generate_agent_external(
|
||||
instructions: Structured instructions from decompose_goal
|
||||
|
||||
Returns:
|
||||
Agent JSON dict or None on error
|
||||
Agent JSON dict on success, or error dict {"type": "error", ...} on error
|
||||
"""
|
||||
client = _get_client()
|
||||
|
||||
@@ -144,20 +226,28 @@ async def generate_agent_external(
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
logger.error(f"External service returned error: {data.get('error')}")
|
||||
return None
|
||||
error_msg = data.get("error", "Unknown error from Agent Generator")
|
||||
error_type = data.get("error_type", "unknown")
|
||||
logger.error(
|
||||
f"Agent Generator generation failed: {error_msg} "
|
||||
f"(type: {error_type})"
|
||||
)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
|
||||
return data.get("agent_json")
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
logger.error(f"HTTP error calling external agent generator: {e}")
|
||||
return None
|
||||
error_type, error_msg = _classify_http_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except httpx.RequestError as e:
|
||||
logger.error(f"Request error calling external agent generator: {e}")
|
||||
return None
|
||||
error_type, error_msg = _classify_request_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error calling external agent generator: {e}")
|
||||
return None
|
||||
error_msg = f"Unexpected error calling Agent Generator: {e}"
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, "unexpected_error")
|
||||
|
||||
|
||||
async def generate_agent_patch_external(
|
||||
@@ -170,7 +260,7 @@ async def generate_agent_patch_external(
|
||||
current_agent: Current agent JSON
|
||||
|
||||
Returns:
|
||||
Updated agent JSON, clarifying questions dict, or None on error
|
||||
Updated agent JSON, clarifying questions dict, or error dict on error
|
||||
"""
|
||||
client = _get_client()
|
||||
|
||||
@@ -186,8 +276,13 @@ async def generate_agent_patch_external(
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
logger.error(f"External service returned error: {data.get('error')}")
|
||||
return None
|
||||
error_msg = data.get("error", "Unknown error from Agent Generator")
|
||||
error_type = data.get("error_type", "unknown")
|
||||
logger.error(
|
||||
f"Agent Generator patch generation failed: {error_msg} "
|
||||
f"(type: {error_type})"
|
||||
)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
|
||||
# Check if it's clarifying questions
|
||||
if data.get("type") == "clarifying_questions":
|
||||
@@ -196,18 +291,28 @@ async def generate_agent_patch_external(
|
||||
"questions": data.get("questions", []),
|
||||
}
|
||||
|
||||
# Check if it's an error passed through
|
||||
if data.get("type") == "error":
|
||||
return _create_error_response(
|
||||
data.get("error", "Unknown error"),
|
||||
data.get("error_type", "unknown"),
|
||||
)
|
||||
|
||||
# Otherwise return the updated agent JSON
|
||||
return data.get("agent_json")
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
logger.error(f"HTTP error calling external agent generator: {e}")
|
||||
return None
|
||||
error_type, error_msg = _classify_http_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except httpx.RequestError as e:
|
||||
logger.error(f"Request error calling external agent generator: {e}")
|
||||
return None
|
||||
error_type, error_msg = _classify_request_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error calling external agent generator: {e}")
|
||||
return None
|
||||
error_msg = f"Unexpected error calling Agent Generator: {e}"
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, "unexpected_error")
|
||||
|
||||
|
||||
async def get_blocks_external() -> list[dict[str, Any]] | None:
|
||||
|
||||
@@ -9,6 +9,7 @@ from .agent_generator import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
decompose_goal,
|
||||
generate_agent,
|
||||
get_user_message_for_error,
|
||||
save_agent_to_library,
|
||||
)
|
||||
from .base import BaseTool
|
||||
@@ -117,11 +118,29 @@ class CreateAgentTool(BaseTool):
|
||||
|
||||
if decomposition_result is None:
|
||||
return ErrorResponse(
|
||||
message="Failed to analyze the goal. The agent generation service may be unavailable or timed out. Please try again.",
|
||||
message="Failed to analyze the goal. The agent generation service may be unavailable. Please try again.",
|
||||
error="decomposition_failed",
|
||||
details={"description": description[:100]},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if the result is an error from the external service
|
||||
if decomposition_result.get("type") == "error":
|
||||
error_msg = decomposition_result.get("error", "Unknown error")
|
||||
error_type = decomposition_result.get("error_type", "unknown")
|
||||
user_message = get_user_message_for_error(
|
||||
error_type,
|
||||
operation="analyze the goal",
|
||||
llm_parse_message="The AI had trouble understanding this request. Please try rephrasing your goal.",
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=user_message,
|
||||
error=f"decomposition_failed:{error_type}",
|
||||
details={
|
||||
"description": description[:100]
|
||||
}, # Include context for debugging
|
||||
"description": description[:100],
|
||||
"service_error": error_msg,
|
||||
"error_type": error_type,
|
||||
},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
@@ -186,11 +205,30 @@ class CreateAgentTool(BaseTool):
|
||||
|
||||
if agent_json is None:
|
||||
return ErrorResponse(
|
||||
message="Failed to generate the agent. The agent generation service may be unavailable or timed out. Please try again.",
|
||||
message="Failed to generate the agent. The agent generation service may be unavailable. Please try again.",
|
||||
error="generation_failed",
|
||||
details={"description": description[:100]},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if the result is an error from the external service
|
||||
if isinstance(agent_json, dict) and agent_json.get("type") == "error":
|
||||
error_msg = agent_json.get("error", "Unknown error")
|
||||
error_type = agent_json.get("error_type", "unknown")
|
||||
user_message = get_user_message_for_error(
|
||||
error_type,
|
||||
operation="generate the agent",
|
||||
llm_parse_message="The AI had trouble generating the agent. Please try again or simplify your goal.",
|
||||
validation_message="The generated agent failed validation. Please try rephrasing your goal.",
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=user_message,
|
||||
error=f"generation_failed:{error_type}",
|
||||
details={
|
||||
"description": description[:100]
|
||||
}, # Include context for debugging
|
||||
"description": description[:100],
|
||||
"service_error": error_msg,
|
||||
"error_type": error_type,
|
||||
},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
|
||||
@@ -9,6 +9,7 @@ from .agent_generator import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
generate_agent_patch,
|
||||
get_agent_as_json,
|
||||
get_user_message_for_error,
|
||||
save_agent_to_library,
|
||||
)
|
||||
from .base import BaseTool
|
||||
@@ -152,6 +153,28 @@ class EditAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if the result is an error from the external service
|
||||
if isinstance(result, dict) and result.get("type") == "error":
|
||||
error_msg = result.get("error", "Unknown error")
|
||||
error_type = result.get("error_type", "unknown")
|
||||
user_message = get_user_message_for_error(
|
||||
error_type,
|
||||
operation="generate the changes",
|
||||
llm_parse_message="The AI had trouble generating the changes. Please try again or simplify your request.",
|
||||
validation_message="The generated changes failed validation. Please try rephrasing your request.",
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=user_message,
|
||||
error=f"update_generation_failed:{error_type}",
|
||||
details={
|
||||
"agent_id": agent_id,
|
||||
"changes": changes[:100],
|
||||
"service_error": error_msg,
|
||||
"error_type": error_type,
|
||||
},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if LLM returned clarifying questions
|
||||
if result.get("type") == "clarifying_questions":
|
||||
questions = result.get("questions", [])
|
||||
|
||||
@@ -28,6 +28,12 @@ class ResponseType(str, Enum):
|
||||
BLOCK_OUTPUT = "block_output"
|
||||
DOC_SEARCH_RESULTS = "doc_search_results"
|
||||
DOC_PAGE = "doc_page"
|
||||
# Workspace response types
|
||||
WORKSPACE_FILE_LIST = "workspace_file_list"
|
||||
WORKSPACE_FILE_CONTENT = "workspace_file_content"
|
||||
WORKSPACE_FILE_METADATA = "workspace_file_metadata"
|
||||
WORKSPACE_FILE_WRITTEN = "workspace_file_written"
|
||||
WORKSPACE_FILE_DELETED = "workspace_file_deleted"
|
||||
# Long-running operation types
|
||||
OPERATION_STARTED = "operation_started"
|
||||
OPERATION_PENDING = "operation_pending"
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
"""Tool for executing blocks directly."""
|
||||
|
||||
import logging
|
||||
import uuid
|
||||
from collections import defaultdict
|
||||
from typing import Any
|
||||
|
||||
@@ -8,6 +9,7 @@ from backend.api.features.chat.model import ChatSession
|
||||
from backend.data.block import get_block
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.data.workspace import get_or_create_workspace
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.util.exceptions import BlockError
|
||||
|
||||
@@ -223,11 +225,48 @@ class RunBlockTool(BaseTool):
|
||||
)
|
||||
|
||||
try:
|
||||
# Fetch actual credentials and prepare kwargs for block execution
|
||||
# Create execution context with defaults (blocks may require it)
|
||||
# Get or create user's workspace for CoPilot file operations
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
|
||||
# Generate synthetic IDs for CoPilot context
|
||||
# Each chat session is treated as its own agent with one continuous run
|
||||
# This means:
|
||||
# - graph_id (agent) = session (memories scoped to session when limit_to_agent=True)
|
||||
# - graph_exec_id (run) = session (memories scoped to session when limit_to_run=True)
|
||||
# - node_exec_id = unique per block execution
|
||||
synthetic_graph_id = f"copilot-session-{session.session_id}"
|
||||
synthetic_graph_exec_id = f"copilot-session-{session.session_id}"
|
||||
synthetic_node_id = f"copilot-node-{block_id}"
|
||||
synthetic_node_exec_id = (
|
||||
f"copilot-{session.session_id}-{uuid.uuid4().hex[:8]}"
|
||||
)
|
||||
|
||||
# Create unified execution context with all required fields
|
||||
execution_context = ExecutionContext(
|
||||
# Execution identity
|
||||
user_id=user_id,
|
||||
graph_id=synthetic_graph_id,
|
||||
graph_exec_id=synthetic_graph_exec_id,
|
||||
graph_version=1, # Versions are 1-indexed
|
||||
node_id=synthetic_node_id,
|
||||
node_exec_id=synthetic_node_exec_id,
|
||||
# Workspace with session scoping
|
||||
workspace_id=workspace.id,
|
||||
session_id=session.session_id,
|
||||
)
|
||||
|
||||
# Prepare kwargs for block execution
|
||||
# Keep individual kwargs for backwards compatibility with existing blocks
|
||||
exec_kwargs: dict[str, Any] = {
|
||||
"user_id": user_id,
|
||||
"execution_context": ExecutionContext(),
|
||||
"execution_context": execution_context,
|
||||
# Legacy: individual kwargs for blocks not yet using execution_context
|
||||
"workspace_id": workspace.id,
|
||||
"graph_exec_id": synthetic_graph_exec_id,
|
||||
"node_exec_id": synthetic_node_exec_id,
|
||||
"node_id": synthetic_node_id,
|
||||
"graph_version": 1, # Versions are 1-indexed
|
||||
"graph_id": synthetic_graph_id,
|
||||
}
|
||||
|
||||
for field_name, cred_meta in matched_credentials.items():
|
||||
|
||||
@@ -8,7 +8,7 @@ from backend.api.features.library import model as library_model
|
||||
from backend.api.features.store import db as store_db
|
||||
from backend.data import graph as graph_db
|
||||
from backend.data.graph import GraphModel
|
||||
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
|
||||
from backend.data.model import Credentials, CredentialsFieldInfo, CredentialsMetaInput
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.util.exceptions import NotFoundError
|
||||
|
||||
@@ -266,13 +266,14 @@ async def match_user_credentials_to_graph(
|
||||
credential_requirements,
|
||||
_node_fields,
|
||||
) in aggregated_creds.items():
|
||||
# Find first matching credential by provider and type
|
||||
# Find first matching credential by provider, type, and scopes
|
||||
matching_cred = next(
|
||||
(
|
||||
cred
|
||||
for cred in available_creds
|
||||
if cred.provider in credential_requirements.provider
|
||||
and cred.type in credential_requirements.supported_types
|
||||
and _credential_has_required_scopes(cred, credential_requirements)
|
||||
),
|
||||
None,
|
||||
)
|
||||
@@ -296,10 +297,17 @@ async def match_user_credentials_to_graph(
|
||||
f"{credential_field_name} (validation failed: {e})"
|
||||
)
|
||||
else:
|
||||
# Build a helpful error message including scope requirements
|
||||
error_parts = [
|
||||
f"provider in {list(credential_requirements.provider)}",
|
||||
f"type in {list(credential_requirements.supported_types)}",
|
||||
]
|
||||
if credential_requirements.required_scopes:
|
||||
error_parts.append(
|
||||
f"scopes including {list(credential_requirements.required_scopes)}"
|
||||
)
|
||||
missing_creds.append(
|
||||
f"{credential_field_name} "
|
||||
f"(requires provider in {list(credential_requirements.provider)}, "
|
||||
f"type in {list(credential_requirements.supported_types)})"
|
||||
f"{credential_field_name} (requires {', '.join(error_parts)})"
|
||||
)
|
||||
|
||||
logger.info(
|
||||
@@ -309,6 +317,28 @@ async def match_user_credentials_to_graph(
|
||||
return graph_credentials_inputs, missing_creds
|
||||
|
||||
|
||||
def _credential_has_required_scopes(
|
||||
credential: Credentials,
|
||||
requirements: CredentialsFieldInfo,
|
||||
) -> bool:
|
||||
"""
|
||||
Check if a credential has all the scopes required by the block.
|
||||
|
||||
For OAuth2 credentials, verifies that the credential's scopes are a superset
|
||||
of the required scopes. For other credential types, returns True (no scope check).
|
||||
"""
|
||||
# Only OAuth2 credentials have scopes to check
|
||||
if credential.type != "oauth2":
|
||||
return True
|
||||
|
||||
# If no scopes are required, any credential matches
|
||||
if not requirements.required_scopes:
|
||||
return True
|
||||
|
||||
# Check that credential scopes are a superset of required scopes
|
||||
return set(credential.scopes).issuperset(requirements.required_scopes)
|
||||
|
||||
|
||||
async def check_user_has_required_credentials(
|
||||
user_id: str,
|
||||
required_credentials: list[CredentialsMetaInput],
|
||||
|
||||
@@ -0,0 +1,620 @@
|
||||
"""CoPilot tools for workspace file operations."""
|
||||
|
||||
import base64
|
||||
import logging
|
||||
from typing import Any, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.data.workspace import get_or_create_workspace
|
||||
from backend.util.settings import Config
|
||||
from backend.util.virus_scanner import scan_content_safe
|
||||
from backend.util.workspace import WorkspaceManager
|
||||
|
||||
from .base import BaseTool
|
||||
from .models import ErrorResponse, ResponseType, ToolResponseBase
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkspaceFileInfoData(BaseModel):
|
||||
"""Data model for workspace file information (not a response itself)."""
|
||||
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
mime_type: str
|
||||
size_bytes: int
|
||||
|
||||
|
||||
class WorkspaceFileListResponse(ToolResponseBase):
|
||||
"""Response containing list of workspace files."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_LIST
|
||||
files: list[WorkspaceFileInfoData]
|
||||
total_count: int
|
||||
|
||||
|
||||
class WorkspaceFileContentResponse(ToolResponseBase):
|
||||
"""Response containing workspace file content (legacy, for small text files)."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_CONTENT
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
mime_type: str
|
||||
content_base64: str
|
||||
|
||||
|
||||
class WorkspaceFileMetadataResponse(ToolResponseBase):
|
||||
"""Response containing workspace file metadata and download URL (prevents context bloat)."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_METADATA
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
mime_type: str
|
||||
size_bytes: int
|
||||
download_url: str
|
||||
preview: str | None = None # First 500 chars for text files
|
||||
|
||||
|
||||
class WorkspaceWriteResponse(ToolResponseBase):
|
||||
"""Response after writing a file to workspace."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_WRITTEN
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
size_bytes: int
|
||||
|
||||
|
||||
class WorkspaceDeleteResponse(ToolResponseBase):
|
||||
"""Response after deleting a file from workspace."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_DELETED
|
||||
file_id: str
|
||||
success: bool
|
||||
|
||||
|
||||
class ListWorkspaceFilesTool(BaseTool):
|
||||
"""Tool for listing files in user's workspace."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "list_workspace_files"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"List files in the user's workspace. "
|
||||
"Returns file names, paths, sizes, and metadata. "
|
||||
"Optionally filter by path prefix."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"path_prefix": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Optional path prefix to filter files "
|
||||
"(e.g., '/documents/' to list only files in documents folder). "
|
||||
"By default, only files from the current session are listed."
|
||||
),
|
||||
},
|
||||
"limit": {
|
||||
"type": "integer",
|
||||
"description": "Maximum number of files to return (default 50, max 100)",
|
||||
"minimum": 1,
|
||||
"maximum": 100,
|
||||
},
|
||||
"include_all_sessions": {
|
||||
"type": "boolean",
|
||||
"description": (
|
||||
"If true, list files from all sessions. "
|
||||
"Default is false (only current session's files)."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": [],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
path_prefix: Optional[str] = kwargs.get("path_prefix")
|
||||
limit = min(kwargs.get("limit", 50), 100)
|
||||
include_all_sessions: bool = kwargs.get("include_all_sessions", False)
|
||||
|
||||
try:
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
files = await manager.list_files(
|
||||
path=path_prefix,
|
||||
limit=limit,
|
||||
include_all_sessions=include_all_sessions,
|
||||
)
|
||||
total = await manager.get_file_count(
|
||||
path=path_prefix,
|
||||
include_all_sessions=include_all_sessions,
|
||||
)
|
||||
|
||||
file_infos = [
|
||||
WorkspaceFileInfoData(
|
||||
file_id=f.id,
|
||||
name=f.name,
|
||||
path=f.path,
|
||||
mime_type=f.mimeType,
|
||||
size_bytes=f.sizeBytes,
|
||||
)
|
||||
for f in files
|
||||
]
|
||||
|
||||
scope_msg = "all sessions" if include_all_sessions else "current session"
|
||||
return WorkspaceFileListResponse(
|
||||
files=file_infos,
|
||||
total_count=total,
|
||||
message=f"Found {len(files)} files in workspace ({scope_msg})",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error listing workspace files: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to list workspace files: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
|
||||
class ReadWorkspaceFileTool(BaseTool):
|
||||
"""Tool for reading file content from workspace."""
|
||||
|
||||
# Size threshold for returning full content vs metadata+URL
|
||||
# Files larger than this return metadata with download URL to prevent context bloat
|
||||
MAX_INLINE_SIZE_BYTES = 32 * 1024 # 32KB
|
||||
# Preview size for text files
|
||||
PREVIEW_SIZE = 500
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "read_workspace_file"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Read a file from the user's workspace. "
|
||||
"Specify either file_id or path to identify the file. "
|
||||
"For small text files, returns content directly. "
|
||||
"For large or binary files, returns metadata and a download URL. "
|
||||
"Paths are scoped to the current session by default. "
|
||||
"Use /sessions/<session_id>/... for cross-session access."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"file_id": {
|
||||
"type": "string",
|
||||
"description": "The file's unique ID (from list_workspace_files)",
|
||||
},
|
||||
"path": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The virtual file path (e.g., '/documents/report.pdf'). "
|
||||
"Scoped to current session by default."
|
||||
),
|
||||
},
|
||||
"force_download_url": {
|
||||
"type": "boolean",
|
||||
"description": (
|
||||
"If true, always return metadata+URL instead of inline content. "
|
||||
"Default is false (auto-selects based on file size/type)."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": [], # At least one must be provided
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
def _is_text_mime_type(self, mime_type: str) -> bool:
|
||||
"""Check if the MIME type is a text-based type."""
|
||||
text_types = [
|
||||
"text/",
|
||||
"application/json",
|
||||
"application/xml",
|
||||
"application/javascript",
|
||||
"application/x-python",
|
||||
"application/x-sh",
|
||||
]
|
||||
return any(mime_type.startswith(t) for t in text_types)
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
file_id: Optional[str] = kwargs.get("file_id")
|
||||
path: Optional[str] = kwargs.get("path")
|
||||
force_download_url: bool = kwargs.get("force_download_url", False)
|
||||
|
||||
if not file_id and not path:
|
||||
return ErrorResponse(
|
||||
message="Please provide either file_id or path",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
# Get file info
|
||||
if file_id:
|
||||
file_info = await manager.get_file_info(file_id)
|
||||
if file_info is None:
|
||||
return ErrorResponse(
|
||||
message=f"File not found: {file_id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
target_file_id = file_id
|
||||
else:
|
||||
# path is guaranteed to be non-None here due to the check above
|
||||
assert path is not None
|
||||
file_info = await manager.get_file_info_by_path(path)
|
||||
if file_info is None:
|
||||
return ErrorResponse(
|
||||
message=f"File not found at path: {path}",
|
||||
session_id=session_id,
|
||||
)
|
||||
target_file_id = file_info.id
|
||||
|
||||
# Decide whether to return inline content or metadata+URL
|
||||
is_small_file = file_info.sizeBytes <= self.MAX_INLINE_SIZE_BYTES
|
||||
is_text_file = self._is_text_mime_type(file_info.mimeType)
|
||||
|
||||
# Return inline content for small text files (unless force_download_url)
|
||||
if is_small_file and is_text_file and not force_download_url:
|
||||
content = await manager.read_file_by_id(target_file_id)
|
||||
content_b64 = base64.b64encode(content).decode("utf-8")
|
||||
|
||||
return WorkspaceFileContentResponse(
|
||||
file_id=file_info.id,
|
||||
name=file_info.name,
|
||||
path=file_info.path,
|
||||
mime_type=file_info.mimeType,
|
||||
content_base64=content_b64,
|
||||
message=f"Successfully read file: {file_info.name}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Return metadata + workspace:// reference for large or binary files
|
||||
# This prevents context bloat (100KB file = ~133KB as base64)
|
||||
# Use workspace:// format so frontend urlTransform can add proxy prefix
|
||||
download_url = f"workspace://{target_file_id}"
|
||||
|
||||
# Generate preview for text files
|
||||
preview: str | None = None
|
||||
if is_text_file:
|
||||
try:
|
||||
content = await manager.read_file_by_id(target_file_id)
|
||||
preview_text = content[: self.PREVIEW_SIZE].decode(
|
||||
"utf-8", errors="replace"
|
||||
)
|
||||
if len(content) > self.PREVIEW_SIZE:
|
||||
preview_text += "..."
|
||||
preview = preview_text
|
||||
except Exception:
|
||||
pass # Preview is optional
|
||||
|
||||
return WorkspaceFileMetadataResponse(
|
||||
file_id=file_info.id,
|
||||
name=file_info.name,
|
||||
path=file_info.path,
|
||||
mime_type=file_info.mimeType,
|
||||
size_bytes=file_info.sizeBytes,
|
||||
download_url=download_url,
|
||||
preview=preview,
|
||||
message=f"File: {file_info.name} ({file_info.sizeBytes} bytes). Use download_url to retrieve content.",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except FileNotFoundError as e:
|
||||
return ErrorResponse(
|
||||
message=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error reading workspace file: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to read workspace file: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
|
||||
class WriteWorkspaceFileTool(BaseTool):
|
||||
"""Tool for writing files to workspace."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "write_workspace_file"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Write or create a file in the user's workspace. "
|
||||
"Provide the content as a base64-encoded string. "
|
||||
f"Maximum file size is {Config().max_file_size_mb}MB. "
|
||||
"Files are saved to the current session's folder by default. "
|
||||
"Use /sessions/<session_id>/... for cross-session access."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"filename": {
|
||||
"type": "string",
|
||||
"description": "Name for the file (e.g., 'report.pdf')",
|
||||
},
|
||||
"content_base64": {
|
||||
"type": "string",
|
||||
"description": "Base64-encoded file content",
|
||||
},
|
||||
"path": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Optional virtual path where to save the file "
|
||||
"(e.g., '/documents/report.pdf'). "
|
||||
"Defaults to '/{filename}'. Scoped to current session."
|
||||
),
|
||||
},
|
||||
"mime_type": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Optional MIME type of the file. "
|
||||
"Auto-detected from filename if not provided."
|
||||
),
|
||||
},
|
||||
"overwrite": {
|
||||
"type": "boolean",
|
||||
"description": "Whether to overwrite if file exists at path (default: false)",
|
||||
},
|
||||
},
|
||||
"required": ["filename", "content_base64"],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
filename: str = kwargs.get("filename", "")
|
||||
content_b64: str = kwargs.get("content_base64", "")
|
||||
path: Optional[str] = kwargs.get("path")
|
||||
mime_type: Optional[str] = kwargs.get("mime_type")
|
||||
overwrite: bool = kwargs.get("overwrite", False)
|
||||
|
||||
if not filename:
|
||||
return ErrorResponse(
|
||||
message="Please provide a filename",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if not content_b64:
|
||||
return ErrorResponse(
|
||||
message="Please provide content_base64",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Decode content
|
||||
try:
|
||||
content = base64.b64decode(content_b64)
|
||||
except Exception:
|
||||
return ErrorResponse(
|
||||
message="Invalid base64-encoded content",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check size
|
||||
max_file_size = Config().max_file_size_mb * 1024 * 1024
|
||||
if len(content) > max_file_size:
|
||||
return ErrorResponse(
|
||||
message=f"File too large. Maximum size is {Config().max_file_size_mb}MB",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
# Virus scan
|
||||
await scan_content_safe(content, filename=filename)
|
||||
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
file_record = await manager.write_file(
|
||||
content=content,
|
||||
filename=filename,
|
||||
path=path,
|
||||
mime_type=mime_type,
|
||||
overwrite=overwrite,
|
||||
)
|
||||
|
||||
return WorkspaceWriteResponse(
|
||||
file_id=file_record.id,
|
||||
name=file_record.name,
|
||||
path=file_record.path,
|
||||
size_bytes=file_record.sizeBytes,
|
||||
message=f"Successfully wrote file: {file_record.name}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except ValueError as e:
|
||||
return ErrorResponse(
|
||||
message=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error writing workspace file: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to write workspace file: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
|
||||
class DeleteWorkspaceFileTool(BaseTool):
|
||||
"""Tool for deleting files from workspace."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "delete_workspace_file"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Delete a file from the user's workspace. "
|
||||
"Specify either file_id or path to identify the file. "
|
||||
"Paths are scoped to the current session by default. "
|
||||
"Use /sessions/<session_id>/... for cross-session access."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"file_id": {
|
||||
"type": "string",
|
||||
"description": "The file's unique ID (from list_workspace_files)",
|
||||
},
|
||||
"path": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The virtual file path (e.g., '/documents/report.pdf'). "
|
||||
"Scoped to current session by default."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": [], # At least one must be provided
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
file_id: Optional[str] = kwargs.get("file_id")
|
||||
path: Optional[str] = kwargs.get("path")
|
||||
|
||||
if not file_id and not path:
|
||||
return ErrorResponse(
|
||||
message="Please provide either file_id or path",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
# Determine the file_id to delete
|
||||
target_file_id: str
|
||||
if file_id:
|
||||
target_file_id = file_id
|
||||
else:
|
||||
# path is guaranteed to be non-None here due to the check above
|
||||
assert path is not None
|
||||
file_info = await manager.get_file_info_by_path(path)
|
||||
if file_info is None:
|
||||
return ErrorResponse(
|
||||
message=f"File not found at path: {path}",
|
||||
session_id=session_id,
|
||||
)
|
||||
target_file_id = file_info.id
|
||||
|
||||
success = await manager.delete_file(target_file_id)
|
||||
|
||||
if not success:
|
||||
return ErrorResponse(
|
||||
message=f"File not found: {target_file_id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
return WorkspaceDeleteResponse(
|
||||
file_id=target_file_id,
|
||||
success=True,
|
||||
message="File deleted successfully",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting workspace file: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to delete workspace file: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -21,7 +21,7 @@ from backend.data.model import CredentialsMetaInput
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate
|
||||
from backend.util.clients import get_scheduler_client
|
||||
from backend.util.exceptions import DatabaseError, NotFoundError
|
||||
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
|
||||
from backend.util.json import SafeJson
|
||||
from backend.util.models import Pagination
|
||||
from backend.util.settings import Config
|
||||
@@ -64,11 +64,11 @@ async def list_library_agents(
|
||||
|
||||
if page < 1 or page_size < 1:
|
||||
logger.warning(f"Invalid pagination: page={page}, page_size={page_size}")
|
||||
raise DatabaseError("Invalid pagination input")
|
||||
raise InvalidInputError("Invalid pagination input")
|
||||
|
||||
if search_term and len(search_term.strip()) > 100:
|
||||
logger.warning(f"Search term too long: {repr(search_term)}")
|
||||
raise DatabaseError("Search term is too long")
|
||||
raise InvalidInputError("Search term is too long")
|
||||
|
||||
where_clause: prisma.types.LibraryAgentWhereInput = {
|
||||
"userId": user_id,
|
||||
@@ -175,7 +175,7 @@ async def list_favorite_library_agents(
|
||||
|
||||
if page < 1 or page_size < 1:
|
||||
logger.warning(f"Invalid pagination: page={page}, page_size={page_size}")
|
||||
raise DatabaseError("Invalid pagination input")
|
||||
raise InvalidInputError("Invalid pagination input")
|
||||
|
||||
where_clause: prisma.types.LibraryAgentWhereInput = {
|
||||
"userId": user_id,
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import logging
|
||||
from typing import Literal, Optional
|
||||
|
||||
import autogpt_libs.auth as autogpt_auth_lib
|
||||
@@ -6,15 +5,11 @@ from fastapi import APIRouter, Body, HTTPException, Query, Security, status
|
||||
from fastapi.responses import Response
|
||||
from prisma.enums import OnboardingStep
|
||||
|
||||
import backend.api.features.store.exceptions as store_exceptions
|
||||
from backend.data.onboarding import complete_onboarding_step
|
||||
from backend.util.exceptions import DatabaseError, NotFoundError
|
||||
|
||||
from .. import db as library_db
|
||||
from .. import model as library_model
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = APIRouter(
|
||||
prefix="/agents",
|
||||
tags=["library", "private"],
|
||||
@@ -26,10 +21,6 @@ router = APIRouter(
|
||||
"",
|
||||
summary="List Library Agents",
|
||||
response_model=library_model.LibraryAgentResponse,
|
||||
responses={
|
||||
200: {"description": "List of library agents"},
|
||||
500: {"description": "Server error", "content": {"application/json": {}}},
|
||||
},
|
||||
)
|
||||
async def list_library_agents(
|
||||
user_id: str = Security(autogpt_auth_lib.get_user_id),
|
||||
@@ -53,43 +44,19 @@ async def list_library_agents(
|
||||
) -> library_model.LibraryAgentResponse:
|
||||
"""
|
||||
Get all agents in the user's library (both created and saved).
|
||||
|
||||
Args:
|
||||
user_id: ID of the authenticated user.
|
||||
search_term: Optional search term to filter agents by name/description.
|
||||
filter_by: List of filters to apply (favorites, created by user).
|
||||
sort_by: List of sorting criteria (created date, updated date).
|
||||
page: Page number to retrieve.
|
||||
page_size: Number of agents per page.
|
||||
|
||||
Returns:
|
||||
A LibraryAgentResponse containing agents and pagination metadata.
|
||||
|
||||
Raises:
|
||||
HTTPException: If a server/database error occurs.
|
||||
"""
|
||||
try:
|
||||
return await library_db.list_library_agents(
|
||||
user_id=user_id,
|
||||
search_term=search_term,
|
||||
sort_by=sort_by,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Could not list library agents for user #{user_id}: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail=str(e),
|
||||
) from e
|
||||
return await library_db.list_library_agents(
|
||||
user_id=user_id,
|
||||
search_term=search_term,
|
||||
sort_by=sort_by,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/favorites",
|
||||
summary="List Favorite Library Agents",
|
||||
responses={
|
||||
500: {"description": "Server error", "content": {"application/json": {}}},
|
||||
},
|
||||
)
|
||||
async def list_favorite_library_agents(
|
||||
user_id: str = Security(autogpt_auth_lib.get_user_id),
|
||||
@@ -106,30 +73,12 @@ async def list_favorite_library_agents(
|
||||
) -> library_model.LibraryAgentResponse:
|
||||
"""
|
||||
Get all favorite agents in the user's library.
|
||||
|
||||
Args:
|
||||
user_id: ID of the authenticated user.
|
||||
page: Page number to retrieve.
|
||||
page_size: Number of agents per page.
|
||||
|
||||
Returns:
|
||||
A LibraryAgentResponse containing favorite agents and pagination metadata.
|
||||
|
||||
Raises:
|
||||
HTTPException: If a server/database error occurs.
|
||||
"""
|
||||
try:
|
||||
return await library_db.list_favorite_library_agents(
|
||||
user_id=user_id,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Could not list favorite library agents for user #{user_id}: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail=str(e),
|
||||
) from e
|
||||
return await library_db.list_favorite_library_agents(
|
||||
user_id=user_id,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
|
||||
|
||||
@router.get("/{library_agent_id}", summary="Get Library Agent")
|
||||
@@ -162,10 +111,6 @@ async def get_library_agent_by_graph_id(
|
||||
summary="Get Agent By Store ID",
|
||||
tags=["store", "library"],
|
||||
response_model=library_model.LibraryAgent | None,
|
||||
responses={
|
||||
200: {"description": "Library agent found"},
|
||||
404: {"description": "Agent not found"},
|
||||
},
|
||||
)
|
||||
async def get_library_agent_by_store_listing_version_id(
|
||||
store_listing_version_id: str,
|
||||
@@ -174,32 +119,15 @@ async def get_library_agent_by_store_listing_version_id(
|
||||
"""
|
||||
Get Library Agent from Store Listing Version ID.
|
||||
"""
|
||||
try:
|
||||
return await library_db.get_library_agent_by_store_version_id(
|
||||
store_listing_version_id, user_id
|
||||
)
|
||||
except NotFoundError as e:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=str(e),
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Could not fetch library agent from store version ID: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail=str(e),
|
||||
) from e
|
||||
return await library_db.get_library_agent_by_store_version_id(
|
||||
store_listing_version_id, user_id
|
||||
)
|
||||
|
||||
|
||||
@router.post(
|
||||
"",
|
||||
summary="Add Marketplace Agent",
|
||||
status_code=status.HTTP_201_CREATED,
|
||||
responses={
|
||||
201: {"description": "Agent added successfully"},
|
||||
404: {"description": "Store listing version not found"},
|
||||
500: {"description": "Server error"},
|
||||
},
|
||||
)
|
||||
async def add_marketplace_agent_to_library(
|
||||
store_listing_version_id: str = Body(embed=True),
|
||||
@@ -210,59 +138,19 @@ async def add_marketplace_agent_to_library(
|
||||
) -> library_model.LibraryAgent:
|
||||
"""
|
||||
Add an agent from the marketplace to the user's library.
|
||||
|
||||
Args:
|
||||
store_listing_version_id: ID of the store listing version to add.
|
||||
user_id: ID of the authenticated user.
|
||||
|
||||
Returns:
|
||||
library_model.LibraryAgent: Agent added to the library
|
||||
|
||||
Raises:
|
||||
HTTPException(404): If the listing version is not found.
|
||||
HTTPException(500): If a server/database error occurs.
|
||||
"""
|
||||
try:
|
||||
agent = await library_db.add_store_agent_to_library(
|
||||
store_listing_version_id=store_listing_version_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
if source != "onboarding":
|
||||
await complete_onboarding_step(
|
||||
user_id, OnboardingStep.MARKETPLACE_ADD_AGENT
|
||||
)
|
||||
return agent
|
||||
|
||||
except store_exceptions.AgentNotFoundError as e:
|
||||
logger.warning(
|
||||
f"Could not find store listing version {store_listing_version_id} "
|
||||
"to add to library"
|
||||
)
|
||||
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=str(e))
|
||||
except DatabaseError as e:
|
||||
logger.error(f"Database error while adding agent to library: {e}", e)
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail={"message": str(e), "hint": "Inspect DB logs for details."},
|
||||
) from e
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error while adding agent to library: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail={
|
||||
"message": str(e),
|
||||
"hint": "Check server logs for more information.",
|
||||
},
|
||||
) from e
|
||||
agent = await library_db.add_store_agent_to_library(
|
||||
store_listing_version_id=store_listing_version_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
if source != "onboarding":
|
||||
await complete_onboarding_step(user_id, OnboardingStep.MARKETPLACE_ADD_AGENT)
|
||||
return agent
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/{library_agent_id}",
|
||||
summary="Update Library Agent",
|
||||
responses={
|
||||
200: {"description": "Agent updated successfully"},
|
||||
500: {"description": "Server error"},
|
||||
},
|
||||
)
|
||||
async def update_library_agent(
|
||||
library_agent_id: str,
|
||||
@@ -271,52 +159,21 @@ async def update_library_agent(
|
||||
) -> library_model.LibraryAgent:
|
||||
"""
|
||||
Update the library agent with the given fields.
|
||||
|
||||
Args:
|
||||
library_agent_id: ID of the library agent to update.
|
||||
payload: Fields to update (auto_update_version, is_favorite, etc.).
|
||||
user_id: ID of the authenticated user.
|
||||
|
||||
Raises:
|
||||
HTTPException(500): If a server/database error occurs.
|
||||
"""
|
||||
try:
|
||||
return await library_db.update_library_agent(
|
||||
library_agent_id=library_agent_id,
|
||||
user_id=user_id,
|
||||
auto_update_version=payload.auto_update_version,
|
||||
graph_version=payload.graph_version,
|
||||
is_favorite=payload.is_favorite,
|
||||
is_archived=payload.is_archived,
|
||||
settings=payload.settings,
|
||||
)
|
||||
except NotFoundError as e:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=str(e),
|
||||
) from e
|
||||
except DatabaseError as e:
|
||||
logger.error(f"Database error while updating library agent: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail={"message": str(e), "hint": "Verify DB connection."},
|
||||
) from e
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error while updating library agent: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail={"message": str(e), "hint": "Check server logs."},
|
||||
) from e
|
||||
return await library_db.update_library_agent(
|
||||
library_agent_id=library_agent_id,
|
||||
user_id=user_id,
|
||||
auto_update_version=payload.auto_update_version,
|
||||
graph_version=payload.graph_version,
|
||||
is_favorite=payload.is_favorite,
|
||||
is_archived=payload.is_archived,
|
||||
settings=payload.settings,
|
||||
)
|
||||
|
||||
|
||||
@router.delete(
|
||||
"/{library_agent_id}",
|
||||
summary="Delete Library Agent",
|
||||
responses={
|
||||
204: {"description": "Agent deleted successfully"},
|
||||
404: {"description": "Agent not found"},
|
||||
500: {"description": "Server error"},
|
||||
},
|
||||
)
|
||||
async def delete_library_agent(
|
||||
library_agent_id: str,
|
||||
@@ -324,28 +181,11 @@ async def delete_library_agent(
|
||||
) -> Response:
|
||||
"""
|
||||
Soft-delete the specified library agent.
|
||||
|
||||
Args:
|
||||
library_agent_id: ID of the library agent to delete.
|
||||
user_id: ID of the authenticated user.
|
||||
|
||||
Returns:
|
||||
204 No Content if successful.
|
||||
|
||||
Raises:
|
||||
HTTPException(404): If the agent does not exist.
|
||||
HTTPException(500): If a server/database error occurs.
|
||||
"""
|
||||
try:
|
||||
await library_db.delete_library_agent(
|
||||
library_agent_id=library_agent_id, user_id=user_id
|
||||
)
|
||||
return Response(status_code=status.HTTP_204_NO_CONTENT)
|
||||
except NotFoundError as e:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=str(e),
|
||||
) from e
|
||||
await library_db.delete_library_agent(
|
||||
library_agent_id=library_agent_id, user_id=user_id
|
||||
)
|
||||
return Response(status_code=status.HTTP_204_NO_CONTENT)
|
||||
|
||||
|
||||
@router.post("/{library_agent_id}/fork", summary="Fork Library Agent")
|
||||
|
||||
@@ -118,21 +118,6 @@ async def test_get_library_agents_success(
|
||||
)
|
||||
|
||||
|
||||
def test_get_library_agents_error(mocker: pytest_mock.MockFixture, test_user_id: str):
|
||||
mock_db_call = mocker.patch("backend.api.features.library.db.list_library_agents")
|
||||
mock_db_call.side_effect = Exception("Test error")
|
||||
|
||||
response = client.get("/agents?search_term=test")
|
||||
assert response.status_code == 500
|
||||
mock_db_call.assert_called_once_with(
|
||||
user_id=test_user_id,
|
||||
search_term="test",
|
||||
sort_by=library_model.LibraryAgentSort.UPDATED_AT,
|
||||
page=1,
|
||||
page_size=15,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_favorite_library_agents_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
@@ -190,23 +175,6 @@ async def test_get_favorite_library_agents_success(
|
||||
)
|
||||
|
||||
|
||||
def test_get_favorite_library_agents_error(
|
||||
mocker: pytest_mock.MockFixture, test_user_id: str
|
||||
):
|
||||
mock_db_call = mocker.patch(
|
||||
"backend.api.features.library.db.list_favorite_library_agents"
|
||||
)
|
||||
mock_db_call.side_effect = Exception("Test error")
|
||||
|
||||
response = client.get("/agents/favorites")
|
||||
assert response.status_code == 500
|
||||
mock_db_call.assert_called_once_with(
|
||||
user_id=test_user_id,
|
||||
page=1,
|
||||
page_size=15,
|
||||
)
|
||||
|
||||
|
||||
def test_add_agent_to_library_success(
|
||||
mocker: pytest_mock.MockFixture, test_user_id: str
|
||||
):
|
||||
@@ -258,19 +226,3 @@ def test_add_agent_to_library_success(
|
||||
store_listing_version_id="test-version-id", user_id=test_user_id
|
||||
)
|
||||
mock_complete_onboarding.assert_awaited_once()
|
||||
|
||||
|
||||
def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture, test_user_id: str):
|
||||
mock_db_call = mocker.patch(
|
||||
"backend.api.features.library.db.add_store_agent_to_library"
|
||||
)
|
||||
mock_db_call.side_effect = Exception("Test error")
|
||||
|
||||
response = client.post(
|
||||
"/agents", json={"store_listing_version_id": "test-version-id"}
|
||||
)
|
||||
assert response.status_code == 500
|
||||
assert "detail" in response.json() # Verify error response structure
|
||||
mock_db_call.assert_called_once_with(
|
||||
store_listing_version_id="test-version-id", user_id=test_user_id
|
||||
)
|
||||
|
||||
@@ -454,6 +454,7 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
|
||||
total_processed = 0
|
||||
total_success = 0
|
||||
total_failed = 0
|
||||
all_errors: dict[str, int] = {} # Aggregate errors across all content types
|
||||
|
||||
# Process content types in explicit order
|
||||
processing_order = [
|
||||
@@ -499,23 +500,12 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
|
||||
success = sum(1 for result in results if result is True)
|
||||
failed = len(results) - success
|
||||
|
||||
# Aggregate unique errors to avoid Sentry spam
|
||||
# Aggregate errors across all content types
|
||||
if failed > 0:
|
||||
# Group errors by type and message
|
||||
error_summary: dict[str, int] = {}
|
||||
for result in results:
|
||||
if isinstance(result, Exception):
|
||||
error_key = f"{type(result).__name__}: {str(result)}"
|
||||
error_summary[error_key] = error_summary.get(error_key, 0) + 1
|
||||
|
||||
# Log aggregated error summary
|
||||
error_details = ", ".join(
|
||||
f"{error} ({count}x)" for error, count in error_summary.items()
|
||||
)
|
||||
logger.error(
|
||||
f"{content_type.value}: {failed}/{len(results)} embeddings failed. "
|
||||
f"Errors: {error_details}"
|
||||
)
|
||||
all_errors[error_key] = all_errors.get(error_key, 0) + 1
|
||||
|
||||
results_by_type[content_type.value] = {
|
||||
"processed": len(missing_items),
|
||||
@@ -542,6 +532,13 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
|
||||
"error": str(e),
|
||||
}
|
||||
|
||||
# Log aggregated errors once at the end
|
||||
if all_errors:
|
||||
error_details = ", ".join(
|
||||
f"{error} ({count}x)" for error, count in all_errors.items()
|
||||
)
|
||||
logger.error(f"Embedding backfill errors: {error_details}")
|
||||
|
||||
return {
|
||||
"by_type": results_by_type,
|
||||
"totals": {
|
||||
|
||||
@@ -261,18 +261,36 @@ async def get_onboarding_agents(
|
||||
return await get_recommended_agents(user_id)
|
||||
|
||||
|
||||
class OnboardingStatusResponse(pydantic.BaseModel):
|
||||
"""Response for onboarding status check."""
|
||||
|
||||
is_onboarding_enabled: bool
|
||||
is_chat_enabled: bool
|
||||
|
||||
|
||||
@v1_router.get(
|
||||
"/onboarding/enabled",
|
||||
summary="Is onboarding enabled",
|
||||
tags=["onboarding", "public"],
|
||||
response_model=OnboardingStatusResponse,
|
||||
)
|
||||
async def is_onboarding_enabled(
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> bool:
|
||||
# If chat is enabled for user, skip legacy onboarding
|
||||
if await is_feature_enabled(Flag.CHAT, user_id, False):
|
||||
return False
|
||||
return await onboarding_enabled()
|
||||
) -> OnboardingStatusResponse:
|
||||
# Check if chat is enabled for user
|
||||
is_chat_enabled = await is_feature_enabled(Flag.CHAT, user_id, False)
|
||||
|
||||
# If chat is enabled, skip legacy onboarding
|
||||
if is_chat_enabled:
|
||||
return OnboardingStatusResponse(
|
||||
is_onboarding_enabled=False,
|
||||
is_chat_enabled=True,
|
||||
)
|
||||
|
||||
return OnboardingStatusResponse(
|
||||
is_onboarding_enabled=await onboarding_enabled(),
|
||||
is_chat_enabled=False,
|
||||
)
|
||||
|
||||
|
||||
@v1_router.post(
|
||||
|
||||
@@ -0,0 +1 @@
|
||||
# Workspace API feature module
|
||||
@@ -0,0 +1,122 @@
|
||||
"""
|
||||
Workspace API routes for managing user file storage.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import re
|
||||
from typing import Annotated
|
||||
from urllib.parse import quote
|
||||
|
||||
import fastapi
|
||||
from autogpt_libs.auth.dependencies import get_user_id, requires_user
|
||||
from fastapi.responses import Response
|
||||
|
||||
from backend.data.workspace import get_workspace, get_workspace_file
|
||||
from backend.util.workspace_storage import get_workspace_storage
|
||||
|
||||
|
||||
def _sanitize_filename_for_header(filename: str) -> str:
|
||||
"""
|
||||
Sanitize filename for Content-Disposition header to prevent header injection.
|
||||
|
||||
Removes/replaces characters that could break the header or inject new headers.
|
||||
Uses RFC5987 encoding for non-ASCII characters.
|
||||
"""
|
||||
# Remove CR, LF, and null bytes (header injection prevention)
|
||||
sanitized = re.sub(r"[\r\n\x00]", "", filename)
|
||||
# Escape quotes
|
||||
sanitized = sanitized.replace('"', '\\"')
|
||||
# For non-ASCII, use RFC5987 filename* parameter
|
||||
# Check if filename has non-ASCII characters
|
||||
try:
|
||||
sanitized.encode("ascii")
|
||||
return f'attachment; filename="{sanitized}"'
|
||||
except UnicodeEncodeError:
|
||||
# Use RFC5987 encoding for UTF-8 filenames
|
||||
encoded = quote(sanitized, safe="")
|
||||
return f"attachment; filename*=UTF-8''{encoded}"
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = fastapi.APIRouter(
|
||||
dependencies=[fastapi.Security(requires_user)],
|
||||
)
|
||||
|
||||
|
||||
def _create_streaming_response(content: bytes, file) -> Response:
|
||||
"""Create a streaming response for file content."""
|
||||
return Response(
|
||||
content=content,
|
||||
media_type=file.mimeType,
|
||||
headers={
|
||||
"Content-Disposition": _sanitize_filename_for_header(file.name),
|
||||
"Content-Length": str(len(content)),
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
async def _create_file_download_response(file) -> Response:
|
||||
"""
|
||||
Create a download response for a workspace file.
|
||||
|
||||
Handles both local storage (direct streaming) and GCS (signed URL redirect
|
||||
with fallback to streaming).
|
||||
"""
|
||||
storage = await get_workspace_storage()
|
||||
|
||||
# For local storage, stream the file directly
|
||||
if file.storagePath.startswith("local://"):
|
||||
content = await storage.retrieve(file.storagePath)
|
||||
return _create_streaming_response(content, file)
|
||||
|
||||
# For GCS, try to redirect to signed URL, fall back to streaming
|
||||
try:
|
||||
url = await storage.get_download_url(file.storagePath, expires_in=300)
|
||||
# If we got back an API path (fallback), stream directly instead
|
||||
if url.startswith("/api/"):
|
||||
content = await storage.retrieve(file.storagePath)
|
||||
return _create_streaming_response(content, file)
|
||||
return fastapi.responses.RedirectResponse(url=url, status_code=302)
|
||||
except Exception as e:
|
||||
# Log the signed URL failure with context
|
||||
logger.error(
|
||||
f"Failed to get signed URL for file {file.id} "
|
||||
f"(storagePath={file.storagePath}): {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
# Fall back to streaming directly from GCS
|
||||
try:
|
||||
content = await storage.retrieve(file.storagePath)
|
||||
return _create_streaming_response(content, file)
|
||||
except Exception as fallback_error:
|
||||
logger.error(
|
||||
f"Fallback streaming also failed for file {file.id} "
|
||||
f"(storagePath={file.storagePath}): {fallback_error}",
|
||||
exc_info=True,
|
||||
)
|
||||
raise
|
||||
|
||||
|
||||
@router.get(
|
||||
"/files/{file_id}/download",
|
||||
summary="Download file by ID",
|
||||
)
|
||||
async def download_file(
|
||||
user_id: Annotated[str, fastapi.Security(get_user_id)],
|
||||
file_id: str,
|
||||
) -> Response:
|
||||
"""
|
||||
Download a file by its ID.
|
||||
|
||||
Returns the file content directly or redirects to a signed URL for GCS.
|
||||
"""
|
||||
workspace = await get_workspace(user_id)
|
||||
if workspace is None:
|
||||
raise fastapi.HTTPException(status_code=404, detail="Workspace not found")
|
||||
|
||||
file = await get_workspace_file(file_id, workspace.id)
|
||||
if file is None:
|
||||
raise fastapi.HTTPException(status_code=404, detail="File not found")
|
||||
|
||||
return await _create_file_download_response(file)
|
||||
@@ -32,6 +32,7 @@ import backend.api.features.postmark.postmark
|
||||
import backend.api.features.store.model
|
||||
import backend.api.features.store.routes
|
||||
import backend.api.features.v1
|
||||
import backend.api.features.workspace.routes as workspace_routes
|
||||
import backend.data.block
|
||||
import backend.data.db
|
||||
import backend.data.graph
|
||||
@@ -52,6 +53,7 @@ from backend.util.exceptions import (
|
||||
)
|
||||
from backend.util.feature_flag import initialize_launchdarkly, shutdown_launchdarkly
|
||||
from backend.util.service import UnhealthyServiceError
|
||||
from backend.util.workspace_storage import shutdown_workspace_storage
|
||||
|
||||
from .external.fastapi_app import external_api
|
||||
from .features.analytics import router as analytics_router
|
||||
@@ -124,6 +126,11 @@ async def lifespan_context(app: fastapi.FastAPI):
|
||||
except Exception as e:
|
||||
logger.warning(f"Error shutting down cloud storage handler: {e}")
|
||||
|
||||
try:
|
||||
await shutdown_workspace_storage()
|
||||
except Exception as e:
|
||||
logger.warning(f"Error shutting down workspace storage: {e}")
|
||||
|
||||
await backend.data.db.disconnect()
|
||||
|
||||
|
||||
@@ -315,6 +322,11 @@ app.include_router(
|
||||
tags=["v2", "chat"],
|
||||
prefix="/api/chat",
|
||||
)
|
||||
app.include_router(
|
||||
workspace_routes.router,
|
||||
tags=["workspace"],
|
||||
prefix="/api/workspace",
|
||||
)
|
||||
app.include_router(
|
||||
backend.api.features.oauth.router,
|
||||
tags=["oauth"],
|
||||
|
||||
@@ -13,6 +13,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -117,11 +118,13 @@ class AIImageCustomizerBlock(Block):
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_output=[
|
||||
("image_url", "https://replicate.delivery/generated-image.jpg"),
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
],
|
||||
test_mock={
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"run_model": lambda *args, **kwargs: MediaFileType(
|
||||
"https://replicate.delivery/generated-image.jpg"
|
||||
""
|
||||
),
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
@@ -132,8 +135,7 @@ class AIImageCustomizerBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
@@ -141,10 +143,9 @@ class AIImageCustomizerBlock(Block):
|
||||
processed_images = await asyncio.gather(
|
||||
*(
|
||||
store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=img,
|
||||
user_id=user_id,
|
||||
return_content=True,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api", # Get content for Replicate API
|
||||
)
|
||||
for img in input_data.images
|
||||
)
|
||||
@@ -158,7 +159,14 @@ class AIImageCustomizerBlock(Block):
|
||||
aspect_ratio=input_data.aspect_ratio.value,
|
||||
output_format=input_data.output_format.value,
|
||||
)
|
||||
yield "image_url", result
|
||||
|
||||
# Store the generated image to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=result,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", stored_url
|
||||
except Exception as e:
|
||||
yield "error", str(e)
|
||||
|
||||
|
||||
@@ -6,6 +6,7 @@ from replicate.client import Client as ReplicateClient
|
||||
from replicate.helpers import FileOutput
|
||||
|
||||
from backend.data.block import Block, BlockCategory, BlockSchemaInput, BlockSchemaOutput
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -13,6 +14,8 @@ from backend.data.model import (
|
||||
SchemaField,
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
|
||||
class ImageSize(str, Enum):
|
||||
@@ -165,11 +168,13 @@ class AIImageGeneratorBlock(Block):
|
||||
test_output=[
|
||||
(
|
||||
"image_url",
|
||||
"https://replicate.delivery/generated-image.webp",
|
||||
# Test output is a data URI since we now store images
|
||||
lambda x: x.startswith(""
|
||||
},
|
||||
)
|
||||
|
||||
@@ -318,11 +323,24 @@ class AIImageGeneratorBlock(Block):
|
||||
style_text = style_map.get(style, "")
|
||||
return f"{style_text} of" if style_text else ""
|
||||
|
||||
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
):
|
||||
try:
|
||||
url = await self.generate_image(input_data, credentials)
|
||||
if url:
|
||||
yield "image_url", url
|
||||
# Store the generated image to the user's workspace/execution folder
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", stored_url
|
||||
else:
|
||||
yield "error", "Image generation returned an empty result."
|
||||
except Exception as e:
|
||||
|
||||
@@ -13,6 +13,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -21,7 +22,9 @@ from backend.data.model import (
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.exceptions import BlockExecutionError
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import Requests
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
TEST_CREDENTIALS = APIKeyCredentials(
|
||||
id="01234567-89ab-cdef-0123-456789abcdef",
|
||||
@@ -271,7 +274,10 @@ class AIShortformVideoCreatorBlock(Block):
|
||||
"voice": Voice.LILY,
|
||||
"video_style": VisualMediaType.STOCK_VIDEOS,
|
||||
},
|
||||
test_output=("video_url", "https://example.com/video.mp4"),
|
||||
test_output=(
|
||||
"video_url",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
test_mock={
|
||||
"create_webhook": lambda *args, **kwargs: (
|
||||
"test_uuid",
|
||||
@@ -280,15 +286,21 @@ class AIShortformVideoCreatorBlock(Block):
|
||||
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
|
||||
"check_video_status": lambda *args, **kwargs: {
|
||||
"status": "ready",
|
||||
"videoUrl": "https://example.com/video.mp4",
|
||||
"videoUrl": "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
"wait_for_video": lambda *args, **kwargs: "https://example.com/video.mp4",
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Create a new Webhook.site URL
|
||||
webhook_token, webhook_url = await self.create_webhook()
|
||||
@@ -340,7 +352,13 @@ class AIShortformVideoCreatorBlock(Block):
|
||||
)
|
||||
video_url = await self.wait_for_video(credentials.api_key, pid)
|
||||
logger.debug(f"Video ready: {video_url}")
|
||||
yield "video_url", video_url
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
|
||||
|
||||
class AIAdMakerVideoCreatorBlock(Block):
|
||||
@@ -447,7 +465,10 @@ class AIAdMakerVideoCreatorBlock(Block):
|
||||
"https://cdn.revid.ai/uploads/1747076315114-image.png",
|
||||
],
|
||||
},
|
||||
test_output=("video_url", "https://example.com/ad.mp4"),
|
||||
test_output=(
|
||||
"video_url",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
test_mock={
|
||||
"create_webhook": lambda *args, **kwargs: (
|
||||
"test_uuid",
|
||||
@@ -456,14 +477,21 @@ class AIAdMakerVideoCreatorBlock(Block):
|
||||
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
|
||||
"check_video_status": lambda *args, **kwargs: {
|
||||
"status": "ready",
|
||||
"videoUrl": "https://example.com/ad.mp4",
|
||||
"videoUrl": "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
"wait_for_video": lambda *args, **kwargs: "https://example.com/ad.mp4",
|
||||
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
):
|
||||
webhook_token, webhook_url = await self.create_webhook()
|
||||
|
||||
payload = {
|
||||
@@ -531,7 +559,13 @@ class AIAdMakerVideoCreatorBlock(Block):
|
||||
raise RuntimeError("Failed to create video: No project ID returned")
|
||||
|
||||
video_url = await self.wait_for_video(credentials.api_key, pid)
|
||||
yield "video_url", video_url
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
|
||||
|
||||
class AIScreenshotToVideoAdBlock(Block):
|
||||
@@ -626,7 +660,10 @@ class AIScreenshotToVideoAdBlock(Block):
|
||||
"script": "Amazing numbers!",
|
||||
"screenshot_url": "https://cdn.revid.ai/uploads/1747080376028-image.png",
|
||||
},
|
||||
test_output=("video_url", "https://example.com/screenshot.mp4"),
|
||||
test_output=(
|
||||
"video_url",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
test_mock={
|
||||
"create_webhook": lambda *args, **kwargs: (
|
||||
"test_uuid",
|
||||
@@ -635,14 +672,21 @@ class AIScreenshotToVideoAdBlock(Block):
|
||||
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
|
||||
"check_video_status": lambda *args, **kwargs: {
|
||||
"status": "ready",
|
||||
"videoUrl": "https://example.com/screenshot.mp4",
|
||||
"videoUrl": "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
"wait_for_video": lambda *args, **kwargs: "https://example.com/screenshot.mp4",
|
||||
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
):
|
||||
webhook_token, webhook_url = await self.create_webhook()
|
||||
|
||||
payload = {
|
||||
@@ -710,4 +754,10 @@ class AIScreenshotToVideoAdBlock(Block):
|
||||
raise RuntimeError("Failed to create video: No project ID returned")
|
||||
|
||||
video_url = await self.wait_for_video(credentials.api_key, pid)
|
||||
yield "video_url", video_url
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
|
||||
@@ -6,6 +6,7 @@ if TYPE_CHECKING:
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.sdk import (
|
||||
APIKeyCredentials,
|
||||
Block,
|
||||
@@ -17,6 +18,8 @@ from backend.sdk import (
|
||||
Requests,
|
||||
SchemaField,
|
||||
)
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
from ._config import bannerbear
|
||||
|
||||
@@ -135,15 +138,17 @@ class BannerbearTextOverlayBlock(Block):
|
||||
},
|
||||
test_output=[
|
||||
("success", True),
|
||||
("image_url", "https://cdn.bannerbear.com/test-image.jpg"),
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
("uid", "test-uid-123"),
|
||||
("status", "completed"),
|
||||
],
|
||||
test_mock={
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"_make_api_request": lambda *args, **kwargs: {
|
||||
"uid": "test-uid-123",
|
||||
"status": "completed",
|
||||
"image_url": "https://cdn.bannerbear.com/test-image.jpg",
|
||||
"image_url": "",
|
||||
}
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
@@ -177,7 +182,12 @@ class BannerbearTextOverlayBlock(Block):
|
||||
raise Exception(error_msg)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Build the modifications array
|
||||
modifications = []
|
||||
@@ -234,6 +244,18 @@ class BannerbearTextOverlayBlock(Block):
|
||||
|
||||
# Synchronous request - image should be ready
|
||||
yield "success", True
|
||||
yield "image_url", data.get("image_url", "")
|
||||
|
||||
# Store the generated image to workspace for persistence
|
||||
image_url = data.get("image_url", "")
|
||||
if image_url:
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(image_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", stored_url
|
||||
else:
|
||||
yield "image_url", ""
|
||||
|
||||
yield "uid", data.get("uid", "")
|
||||
yield "status", data.get("status", "completed")
|
||||
|
||||
@@ -9,6 +9,7 @@ from backend.data.block import (
|
||||
BlockSchemaOutput,
|
||||
BlockType,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType, convert
|
||||
@@ -17,10 +18,10 @@ from backend.util.type import MediaFileType, convert
|
||||
class FileStoreBlock(Block):
|
||||
class Input(BlockSchemaInput):
|
||||
file_in: MediaFileType = SchemaField(
|
||||
description="The file to store in the temporary directory, it can be a URL, data URI, or local path."
|
||||
description="The file to download and store. Can be a URL (https://...), data URI, or local path."
|
||||
)
|
||||
base_64: bool = SchemaField(
|
||||
description="Whether produce an output in base64 format (not recommended, you can pass the string path just fine accross blocks).",
|
||||
description="Whether to produce output in base64 format (not recommended, you can pass the file reference across blocks).",
|
||||
default=False,
|
||||
advanced=True,
|
||||
title="Produce Base64 Output",
|
||||
@@ -28,13 +29,18 @@ class FileStoreBlock(Block):
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
file_out: MediaFileType = SchemaField(
|
||||
description="The relative path to the stored file in the temporary directory."
|
||||
description="Reference to the stored file. In CoPilot: workspace:// URI (visible in list_workspace_files). In graphs: data URI for passing to other blocks."
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="cbb50872-625b-42f0-8203-a2ae78242d8a",
|
||||
description="Stores the input file in the temporary directory.",
|
||||
description=(
|
||||
"Downloads and stores a file from a URL, data URI, or local path. "
|
||||
"Use this to fetch images, documents, or other files for processing. "
|
||||
"In CoPilot: saves to workspace (use list_workspace_files to see it). "
|
||||
"In graphs: outputs a data URI to pass to other blocks."
|
||||
),
|
||||
categories={BlockCategory.BASIC, BlockCategory.MULTIMEDIA},
|
||||
input_schema=FileStoreBlock.Input,
|
||||
output_schema=FileStoreBlock.Output,
|
||||
@@ -45,15 +51,18 @@ class FileStoreBlock(Block):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Determine return format based on user preference
|
||||
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
|
||||
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
|
||||
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
|
||||
|
||||
yield "file_out", await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.file_in,
|
||||
user_id=user_id,
|
||||
return_content=input_data.base_64,
|
||||
execution_context=execution_context,
|
||||
return_format=return_format,
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -15,6 +15,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import APIKeyCredentials, SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import Requests
|
||||
@@ -666,8 +667,7 @@ class SendDiscordFileBlock(Block):
|
||||
file: MediaFileType,
|
||||
filename: str,
|
||||
message_content: str,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
) -> dict:
|
||||
intents = discord.Intents.default()
|
||||
intents.guilds = True
|
||||
@@ -731,10 +731,9 @@ class SendDiscordFileBlock(Block):
|
||||
# Local file path - read from stored media file
|
||||
# This would be a path from a previous block's output
|
||||
stored_file = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=file,
|
||||
user_id=user_id,
|
||||
return_content=True, # Get as data URI
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api", # Get content to send to Discord
|
||||
)
|
||||
# Now process as data URI
|
||||
header, encoded = stored_file.split(",", 1)
|
||||
@@ -781,8 +780,7 @@ class SendDiscordFileBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
@@ -793,8 +791,7 @@ class SendDiscordFileBlock(Block):
|
||||
file=input_data.file,
|
||||
filename=input_data.filename,
|
||||
message_content=input_data.message_content,
|
||||
graph_exec_id=graph_exec_id,
|
||||
user_id=user_id,
|
||||
execution_context=execution_context,
|
||||
)
|
||||
|
||||
yield "status", result.get("status", "Unknown error")
|
||||
|
||||
@@ -17,8 +17,11 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import ClientResponseError, Requests
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -64,9 +67,13 @@ class AIVideoGeneratorBlock(Block):
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_output=[("video_url", "https://fal.media/files/example/video.mp4")],
|
||||
test_output=[
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("video_url", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
],
|
||||
test_mock={
|
||||
"generate_video": lambda *args, **kwargs: "https://fal.media/files/example/video.mp4"
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"generate_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA"
|
||||
},
|
||||
)
|
||||
|
||||
@@ -208,11 +215,22 @@ class AIVideoGeneratorBlock(Block):
|
||||
raise RuntimeError(f"API request failed: {str(e)}")
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: FalCredentials, **kwargs
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: FalCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
video_url = await self.generate_video(input_data, credentials)
|
||||
yield "video_url", video_url
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
except Exception as e:
|
||||
error_message = str(e)
|
||||
yield "error", error_message
|
||||
|
||||
@@ -12,6 +12,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -121,10 +122,12 @@ class AIImageEditorBlock(Block):
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_output=[
|
||||
("output_image", "https://replicate.com/output/edited-image.png"),
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("output_image", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
],
|
||||
test_mock={
|
||||
"run_model": lambda *args, **kwargs: "https://replicate.com/output/edited-image.png",
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"run_model": lambda *args, **kwargs: "",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
@@ -134,8 +137,7 @@ class AIImageEditorBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
result = await self.run_model(
|
||||
@@ -144,20 +146,25 @@ class AIImageEditorBlock(Block):
|
||||
prompt=input_data.prompt,
|
||||
input_image_b64=(
|
||||
await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.input_image,
|
||||
user_id=user_id,
|
||||
return_content=True,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api", # Get content for Replicate API
|
||||
)
|
||||
if input_data.input_image
|
||||
else None
|
||||
),
|
||||
aspect_ratio=input_data.aspect_ratio.value,
|
||||
seed=input_data.seed,
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
user_id=execution_context.user_id or "",
|
||||
graph_exec_id=execution_context.graph_exec_id or "",
|
||||
)
|
||||
yield "output_image", result
|
||||
# Store the generated image to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=result,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "output_image", stored_url
|
||||
|
||||
async def run_model(
|
||||
self,
|
||||
|
||||
@@ -21,6 +21,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
from backend.util.settings import Settings
|
||||
@@ -95,8 +96,7 @@ def _make_mime_text(
|
||||
|
||||
async def create_mime_message(
|
||||
input_data,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
) -> str:
|
||||
"""Create a MIME message with attachments and return base64-encoded raw message."""
|
||||
|
||||
@@ -117,12 +117,12 @@ async def create_mime_message(
|
||||
if input_data.attachments:
|
||||
for attach in input_data.attachments:
|
||||
local_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=attach,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
abs_path = get_exec_file_path(graph_exec_id, local_path)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
|
||||
part = MIMEBase("application", "octet-stream")
|
||||
with open(abs_path, "rb") as f:
|
||||
part.set_payload(f.read())
|
||||
@@ -582,27 +582,25 @@ class GmailSendBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
result = await self._send_email(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "result", result
|
||||
|
||||
async def _send_email(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
if not input_data.to or not input_data.subject or not input_data.body:
|
||||
raise ValueError(
|
||||
"At least one recipient, subject, and body are required for sending an email"
|
||||
)
|
||||
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
|
||||
raw_message = await create_mime_message(input_data, execution_context)
|
||||
sent_message = await asyncio.to_thread(
|
||||
lambda: service.users()
|
||||
.messages()
|
||||
@@ -692,30 +690,28 @@ class GmailCreateDraftBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
result = await self._create_draft(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "result", GmailDraftResult(
|
||||
id=result["id"], message_id=result["message"]["id"], status="draft_created"
|
||||
)
|
||||
|
||||
async def _create_draft(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
if not input_data.to or not input_data.subject:
|
||||
raise ValueError(
|
||||
"At least one recipient and subject are required for creating a draft"
|
||||
)
|
||||
|
||||
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
|
||||
raw_message = await create_mime_message(input_data, execution_context)
|
||||
draft = await asyncio.to_thread(
|
||||
lambda: service.users()
|
||||
.drafts()
|
||||
@@ -1100,7 +1096,7 @@ class GmailGetThreadBlock(GmailBase):
|
||||
|
||||
|
||||
async def _build_reply_message(
|
||||
service, input_data, graph_exec_id: str, user_id: str
|
||||
service, input_data, execution_context: ExecutionContext
|
||||
) -> tuple[str, str]:
|
||||
"""
|
||||
Builds a reply MIME message for Gmail threads.
|
||||
@@ -1190,12 +1186,12 @@ async def _build_reply_message(
|
||||
# Handle attachments
|
||||
for attach in input_data.attachments:
|
||||
local_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=attach,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
abs_path = get_exec_file_path(graph_exec_id, local_path)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
|
||||
part = MIMEBase("application", "octet-stream")
|
||||
with open(abs_path, "rb") as f:
|
||||
part.set_payload(f.read())
|
||||
@@ -1311,16 +1307,14 @@ class GmailReplyBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
message = await self._reply(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "messageId", message["id"]
|
||||
yield "threadId", message.get("threadId", input_data.threadId)
|
||||
@@ -1343,11 +1337,11 @@ class GmailReplyBlock(GmailBase):
|
||||
yield "email", email
|
||||
|
||||
async def _reply(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
# Build the reply message using the shared helper
|
||||
raw, thread_id = await _build_reply_message(
|
||||
service, input_data, graph_exec_id, user_id
|
||||
service, input_data, execution_context
|
||||
)
|
||||
|
||||
# Send the message
|
||||
@@ -1441,16 +1435,14 @@ class GmailDraftReplyBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
draft = await self._create_draft_reply(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "draftId", draft["id"]
|
||||
yield "messageId", draft["message"]["id"]
|
||||
@@ -1458,11 +1450,11 @@ class GmailDraftReplyBlock(GmailBase):
|
||||
yield "status", "draft_created"
|
||||
|
||||
async def _create_draft_reply(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
# Build the reply message using the shared helper
|
||||
raw, thread_id = await _build_reply_message(
|
||||
service, input_data, graph_exec_id, user_id
|
||||
service, input_data, execution_context
|
||||
)
|
||||
|
||||
# Create draft with proper thread association
|
||||
@@ -1629,23 +1621,21 @@ class GmailForwardBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
result = await self._forward_message(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "messageId", result["id"]
|
||||
yield "threadId", result.get("threadId", "")
|
||||
yield "status", "forwarded"
|
||||
|
||||
async def _forward_message(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
if not input_data.to:
|
||||
raise ValueError("At least one recipient is required for forwarding")
|
||||
@@ -1727,12 +1717,12 @@ To: {original_to}
|
||||
# Add any additional attachments
|
||||
for attach in input_data.additionalAttachments:
|
||||
local_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=attach,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
abs_path = get_exec_file_path(graph_exec_id, local_path)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
|
||||
part = MIMEBase("application", "octet-stream")
|
||||
with open(abs_path, "rb") as f:
|
||||
part.set_payload(f.read())
|
||||
|
||||
@@ -15,6 +15,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
CredentialsField,
|
||||
CredentialsMetaInput,
|
||||
@@ -116,10 +117,9 @@ class SendWebRequestBlock(Block):
|
||||
|
||||
@staticmethod
|
||||
async def _prepare_files(
|
||||
graph_exec_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
files_name: str,
|
||||
files: list[MediaFileType],
|
||||
user_id: str,
|
||||
) -> list[tuple[str, tuple[str, BytesIO, str]]]:
|
||||
"""
|
||||
Prepare files for the request by storing them and reading their content.
|
||||
@@ -127,11 +127,16 @@ class SendWebRequestBlock(Block):
|
||||
(files_name, (filename, BytesIO, mime_type))
|
||||
"""
|
||||
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
if graph_exec_id is None:
|
||||
raise ValueError("graph_exec_id is required for file operations")
|
||||
|
||||
for media in files:
|
||||
# Normalise to a list so we can repeat the same key
|
||||
rel_path = await store_media_file(
|
||||
graph_exec_id, media, user_id, return_content=False
|
||||
file=media,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
abs_path = get_exec_file_path(graph_exec_id, rel_path)
|
||||
async with aiofiles.open(abs_path, "rb") as f:
|
||||
@@ -143,7 +148,7 @@ class SendWebRequestBlock(Block):
|
||||
return files_payload
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, graph_exec_id: str, user_id: str, **kwargs
|
||||
self, input_data: Input, *, execution_context: ExecutionContext, **kwargs
|
||||
) -> BlockOutput:
|
||||
# ─── Parse/normalise body ────────────────────────────────────
|
||||
body = input_data.body
|
||||
@@ -174,7 +179,7 @@ class SendWebRequestBlock(Block):
|
||||
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
|
||||
if use_files:
|
||||
files_payload = await self._prepare_files(
|
||||
graph_exec_id, input_data.files_name, input_data.files, user_id
|
||||
execution_context, input_data.files_name, input_data.files
|
||||
)
|
||||
|
||||
# Enforce body format rules
|
||||
@@ -238,9 +243,8 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
graph_exec_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
credentials: HostScopedCredentials,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Create SendWebRequestBlock.Input from our input (removing credentials field)
|
||||
@@ -271,6 +275,6 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
|
||||
|
||||
# Use parent class run method
|
||||
async for output_name, output_data in super().run(
|
||||
base_input, graph_exec_id=graph_exec_id, user_id=user_id, **kwargs
|
||||
base_input, execution_context=execution_context, **kwargs
|
||||
):
|
||||
yield output_name, output_data
|
||||
|
||||
@@ -12,6 +12,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockType,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.mock import MockObject
|
||||
@@ -462,18 +463,21 @@ class AgentFileInputBlock(AgentInputBlock):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
if not input_data.value:
|
||||
return
|
||||
|
||||
# Determine return format based on user preference
|
||||
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
|
||||
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
|
||||
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
|
||||
|
||||
yield "result", await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.value,
|
||||
user_id=user_id,
|
||||
return_content=input_data.base_64,
|
||||
execution_context=execution_context,
|
||||
return_format=return_format,
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -115,7 +115,6 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
|
||||
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
|
||||
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
|
||||
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
|
||||
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
|
||||
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
|
||||
# AI/ML API models
|
||||
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
|
||||
@@ -280,9 +279,6 @@ MODEL_METADATA = {
|
||||
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
|
||||
), # claude-haiku-4-5-20251001
|
||||
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude 3.7 Sonnet", "Anthropic", "Anthropic", 2
|
||||
), # claude-3-7-sonnet-20250219
|
||||
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
|
||||
), # claude-3-haiku-20240307
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
import tempfile
|
||||
from typing import Literal, Optional
|
||||
from typing import Optional
|
||||
|
||||
from moviepy.audio.io.AudioFileClip import AudioFileClip
|
||||
from moviepy.video.fx.Loop import Loop
|
||||
@@ -13,6 +13,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
|
||||
@@ -46,18 +47,19 @@ class MediaDurationBlock(Block):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# 1) Store the input media locally
|
||||
local_media_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.media_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
assert execution_context.graph_exec_id is not None
|
||||
media_abspath = get_exec_file_path(
|
||||
execution_context.graph_exec_id, local_media_path
|
||||
)
|
||||
media_abspath = get_exec_file_path(graph_exec_id, local_media_path)
|
||||
|
||||
# 2) Load the clip
|
||||
if input_data.is_video:
|
||||
@@ -88,10 +90,6 @@ class LoopVideoBlock(Block):
|
||||
default=None,
|
||||
ge=1,
|
||||
)
|
||||
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
|
||||
description="How to return the output video. Either a relative path or base64 data URI.",
|
||||
default="file_path",
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_out: str = SchemaField(
|
||||
@@ -111,17 +109,19 @@ class LoopVideoBlock(Block):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
assert execution_context.graph_exec_id is not None
|
||||
assert execution_context.node_exec_id is not None
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
node_exec_id = execution_context.node_exec_id
|
||||
|
||||
# 1) Store the input video locally
|
||||
local_video_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.video_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
|
||||
|
||||
@@ -149,12 +149,11 @@ class LoopVideoBlock(Block):
|
||||
looped_clip = looped_clip.with_audio(clip.audio)
|
||||
looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
|
||||
|
||||
# Return as data URI
|
||||
# Return output - for_block_output returns workspace:// if available, else data URI
|
||||
video_out = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=output_filename,
|
||||
user_id=user_id,
|
||||
return_content=input_data.output_return_type == "data_uri",
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
|
||||
yield "video_out", video_out
|
||||
@@ -177,10 +176,6 @@ class AddAudioToVideoBlock(Block):
|
||||
description="Volume scale for the newly attached audio track (1.0 = original).",
|
||||
default=1.0,
|
||||
)
|
||||
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
|
||||
description="Return the final output as a relative path or base64 data URI.",
|
||||
default="file_path",
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_out: MediaFileType = SchemaField(
|
||||
@@ -200,23 +195,24 @@ class AddAudioToVideoBlock(Block):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
assert execution_context.graph_exec_id is not None
|
||||
assert execution_context.node_exec_id is not None
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
node_exec_id = execution_context.node_exec_id
|
||||
|
||||
# 1) Store the inputs locally
|
||||
local_video_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.video_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
local_audio_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.audio_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id)
|
||||
@@ -240,12 +236,11 @@ class AddAudioToVideoBlock(Block):
|
||||
output_abspath = os.path.join(abs_temp_dir, output_filename)
|
||||
final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
|
||||
|
||||
# 5) Return either path or data URI
|
||||
# 5) Return output - for_block_output returns workspace:// if available, else data URI
|
||||
video_out = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=output_filename,
|
||||
user_id=user_id,
|
||||
return_content=input_data.output_return_type == "data_uri",
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
|
||||
yield "video_out", video_out
|
||||
|
||||
@@ -11,6 +11,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -112,8 +113,7 @@ class ScreenshotWebPageBlock(Block):
|
||||
@staticmethod
|
||||
async def take_screenshot(
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
url: str,
|
||||
viewport_width: int,
|
||||
viewport_height: int,
|
||||
@@ -155,12 +155,11 @@ class ScreenshotWebPageBlock(Block):
|
||||
|
||||
return {
|
||||
"image": await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=MediaFileType(
|
||||
f"data:image/{format.value};base64,{b64encode(content).decode('utf-8')}"
|
||||
),
|
||||
user_id=user_id,
|
||||
return_content=True,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
}
|
||||
|
||||
@@ -169,15 +168,13 @@ class ScreenshotWebPageBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
screenshot_data = await self.take_screenshot(
|
||||
credentials=credentials,
|
||||
graph_exec_id=graph_exec_id,
|
||||
user_id=user_id,
|
||||
execution_context=execution_context,
|
||||
url=input_data.url,
|
||||
viewport_width=input_data.viewport_width,
|
||||
viewport_height=input_data.viewport_height,
|
||||
|
||||
@@ -7,6 +7,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import ContributorDetails, SchemaField
|
||||
from backend.util.file import get_exec_file_path, store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
@@ -98,7 +99,7 @@ class ReadSpreadsheetBlock(Block):
|
||||
)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
|
||||
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
|
||||
) -> BlockOutput:
|
||||
import csv
|
||||
from io import StringIO
|
||||
@@ -106,14 +107,16 @@ class ReadSpreadsheetBlock(Block):
|
||||
# Determine data source - prefer file_input if provided, otherwise use contents
|
||||
if input_data.file_input:
|
||||
stored_file_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.file_input,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
# Get full file path
|
||||
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
file_path = get_exec_file_path(
|
||||
execution_context.graph_exec_id, stored_file_path
|
||||
)
|
||||
if not Path(file_path).exists():
|
||||
raise ValueError(f"File does not exist: {file_path}")
|
||||
|
||||
|
||||
@@ -83,7 +83,7 @@ class StagehandRecommendedLlmModel(str, Enum):
|
||||
GPT41_MINI = "gpt-4.1-mini-2025-04-14"
|
||||
|
||||
# Anthropic
|
||||
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
|
||||
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
|
||||
|
||||
@property
|
||||
def provider_name(self) -> str:
|
||||
@@ -137,7 +137,7 @@ class StagehandObserveBlock(Block):
|
||||
model: StagehandRecommendedLlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
description="LLM to use for Stagehand (provider is inferred)",
|
||||
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
|
||||
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
|
||||
advanced=False,
|
||||
)
|
||||
model_credentials: AICredentials = AICredentialsField()
|
||||
@@ -230,7 +230,7 @@ class StagehandActBlock(Block):
|
||||
model: StagehandRecommendedLlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
description="LLM to use for Stagehand (provider is inferred)",
|
||||
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
|
||||
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
|
||||
advanced=False,
|
||||
)
|
||||
model_credentials: AICredentials = AICredentialsField()
|
||||
@@ -330,7 +330,7 @@ class StagehandExtractBlock(Block):
|
||||
model: StagehandRecommendedLlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
description="LLM to use for Stagehand (provider is inferred)",
|
||||
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
|
||||
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
|
||||
advanced=False,
|
||||
)
|
||||
model_credentials: AICredentials = AICredentialsField()
|
||||
|
||||
@@ -10,6 +10,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -17,7 +18,9 @@ from backend.data.model import (
|
||||
SchemaField,
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import Requests
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
TEST_CREDENTIALS = APIKeyCredentials(
|
||||
id="01234567-89ab-cdef-0123-456789abcdef",
|
||||
@@ -102,7 +105,7 @@ class CreateTalkingAvatarVideoBlock(Block):
|
||||
test_output=[
|
||||
(
|
||||
"video_url",
|
||||
"https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
],
|
||||
test_mock={
|
||||
@@ -110,9 +113,10 @@ class CreateTalkingAvatarVideoBlock(Block):
|
||||
"id": "abcd1234-5678-efgh-ijkl-mnopqrstuvwx",
|
||||
"status": "created",
|
||||
},
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"get_clip_status": lambda *args, **kwargs: {
|
||||
"status": "done",
|
||||
"result_url": "https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
|
||||
"result_url": "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
@@ -138,7 +142,12 @@ class CreateTalkingAvatarVideoBlock(Block):
|
||||
return response.json()
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Create the clip
|
||||
payload = {
|
||||
@@ -165,7 +174,14 @@ class CreateTalkingAvatarVideoBlock(Block):
|
||||
for _ in range(input_data.max_polling_attempts):
|
||||
status_response = await self.get_clip_status(credentials.api_key, clip_id)
|
||||
if status_response["status"] == "done":
|
||||
yield "video_url", status_response["result_url"]
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
video_url = status_response["result_url"]
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
return
|
||||
elif status_response["status"] == "error":
|
||||
raise RuntimeError(
|
||||
|
||||
@@ -12,6 +12,7 @@ from backend.blocks.iteration import StepThroughItemsBlock
|
||||
from backend.blocks.llm import AITextSummarizerBlock
|
||||
from backend.blocks.text import ExtractTextInformationBlock
|
||||
from backend.blocks.xml_parser import XMLParserBlock
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
@@ -233,9 +234,12 @@ class TestStoreMediaFileSecurity:
|
||||
|
||||
with pytest.raises(ValueError, match="File too large"):
|
||||
await store_media_file(
|
||||
graph_exec_id="test",
|
||||
file=MediaFileType(large_data_uri),
|
||||
user_id="test_user",
|
||||
execution_context=ExecutionContext(
|
||||
user_id="test_user",
|
||||
graph_exec_id="test",
|
||||
),
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
@patch("backend.util.file.Path")
|
||||
@@ -270,9 +274,12 @@ class TestStoreMediaFileSecurity:
|
||||
# Should raise an error when directory size exceeds limit
|
||||
with pytest.raises(ValueError, match="Disk usage limit exceeded"):
|
||||
await store_media_file(
|
||||
graph_exec_id="test",
|
||||
file=MediaFileType(
|
||||
"data:text/plain;base64,dGVzdA=="
|
||||
), # Small test file
|
||||
user_id="test_user",
|
||||
execution_context=ExecutionContext(
|
||||
user_id="test_user",
|
||||
graph_exec_id="test",
|
||||
),
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
@@ -11,10 +11,22 @@ from backend.blocks.http import (
|
||||
HttpMethod,
|
||||
SendAuthenticatedWebRequestBlock,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import HostScopedCredentials
|
||||
from backend.util.request import Response
|
||||
|
||||
|
||||
def make_test_context(
|
||||
graph_exec_id: str = "test-exec-id",
|
||||
user_id: str = "test-user-id",
|
||||
) -> ExecutionContext:
|
||||
"""Helper to create test ExecutionContext."""
|
||||
return ExecutionContext(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
)
|
||||
|
||||
|
||||
class TestHttpBlockWithHostScopedCredentials:
|
||||
"""Test suite for HTTP block integration with HostScopedCredentials."""
|
||||
|
||||
@@ -105,8 +117,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=exact_match_credentials,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -161,8 +172,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=wildcard_credentials,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -208,8 +218,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=non_matching_credentials,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -258,8 +267,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=exact_match_credentials,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -318,8 +326,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=auto_discovered_creds, # Execution manager found these
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -382,8 +389,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=multi_header_creds,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -471,8 +477,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=test_creds,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
|
||||
@@ -11,6 +11,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util import json, text
|
||||
from backend.util.file import get_exec_file_path, store_media_file
|
||||
@@ -444,18 +445,21 @@ class FileReadBlock(Block):
|
||||
)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
|
||||
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
|
||||
) -> BlockOutput:
|
||||
# Store the media file properly (handles URLs, data URIs, etc.)
|
||||
stored_file_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.file_input,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
# Get full file path
|
||||
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
|
||||
# Get full file path (graph_exec_id validated by store_media_file above)
|
||||
if not execution_context.graph_exec_id:
|
||||
raise ValueError("execution_context.graph_exec_id is required")
|
||||
file_path = get_exec_file_path(
|
||||
execution_context.graph_exec_id, stored_file_path
|
||||
)
|
||||
|
||||
if not Path(file_path).exists():
|
||||
raise ValueError(f"File does not exist: {file_path}")
|
||||
|
||||
@@ -81,7 +81,6 @@ MODEL_COST: dict[LlmModel, int] = {
|
||||
LlmModel.CLAUDE_4_5_HAIKU: 4,
|
||||
LlmModel.CLAUDE_4_5_OPUS: 14,
|
||||
LlmModel.CLAUDE_4_5_SONNET: 9,
|
||||
LlmModel.CLAUDE_3_7_SONNET: 5,
|
||||
LlmModel.CLAUDE_3_HAIKU: 1,
|
||||
LlmModel.AIML_API_QWEN2_5_72B: 1,
|
||||
LlmModel.AIML_API_LLAMA3_1_70B: 1,
|
||||
|
||||
@@ -83,12 +83,29 @@ class ExecutionContext(BaseModel):
|
||||
|
||||
model_config = {"extra": "ignore"}
|
||||
|
||||
# Execution identity
|
||||
user_id: Optional[str] = None
|
||||
graph_id: Optional[str] = None
|
||||
graph_exec_id: Optional[str] = None
|
||||
graph_version: Optional[int] = None
|
||||
node_id: Optional[str] = None
|
||||
node_exec_id: Optional[str] = None
|
||||
|
||||
# Safety settings
|
||||
human_in_the_loop_safe_mode: bool = True
|
||||
sensitive_action_safe_mode: bool = False
|
||||
|
||||
# User settings
|
||||
user_timezone: str = "UTC"
|
||||
|
||||
# Execution hierarchy
|
||||
root_execution_id: Optional[str] = None
|
||||
parent_execution_id: Optional[str] = None
|
||||
|
||||
# Workspace
|
||||
workspace_id: Optional[str] = None
|
||||
session_id: Optional[str] = None
|
||||
|
||||
|
||||
# -------------------------- Models -------------------------- #
|
||||
|
||||
|
||||
@@ -666,10 +666,16 @@ class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
|
||||
if not (self.discriminator and self.discriminator_mapping):
|
||||
return self
|
||||
|
||||
try:
|
||||
provider = self.discriminator_mapping[discriminator_value]
|
||||
except KeyError:
|
||||
raise ValueError(
|
||||
f"Model '{discriminator_value}' is not supported. "
|
||||
"It may have been deprecated. Please update your agent configuration."
|
||||
)
|
||||
|
||||
return CredentialsFieldInfo(
|
||||
credentials_provider=frozenset(
|
||||
[self.discriminator_mapping[discriminator_value]]
|
||||
),
|
||||
credentials_provider=frozenset([provider]),
|
||||
credentials_types=self.supported_types,
|
||||
credentials_scopes=self.required_scopes,
|
||||
discriminator=self.discriminator,
|
||||
|
||||
276
autogpt_platform/backend/backend/data/workspace.py
Normal file
276
autogpt_platform/backend/backend/data/workspace.py
Normal file
@@ -0,0 +1,276 @@
|
||||
"""
|
||||
Database CRUD operations for User Workspace.
|
||||
|
||||
This module provides functions for managing user workspaces and workspace files.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from typing import Optional
|
||||
|
||||
from prisma.models import UserWorkspace, UserWorkspaceFile
|
||||
from prisma.types import UserWorkspaceFileWhereInput
|
||||
|
||||
from backend.util.json import SafeJson
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def get_or_create_workspace(user_id: str) -> UserWorkspace:
|
||||
"""
|
||||
Get user's workspace, creating one if it doesn't exist.
|
||||
|
||||
Uses upsert to handle race conditions when multiple concurrent requests
|
||||
attempt to create a workspace for the same user.
|
||||
|
||||
Args:
|
||||
user_id: The user's ID
|
||||
|
||||
Returns:
|
||||
UserWorkspace instance
|
||||
"""
|
||||
workspace = await UserWorkspace.prisma().upsert(
|
||||
where={"userId": user_id},
|
||||
data={
|
||||
"create": {"userId": user_id},
|
||||
"update": {}, # No updates needed if exists
|
||||
},
|
||||
)
|
||||
|
||||
return workspace
|
||||
|
||||
|
||||
async def get_workspace(user_id: str) -> Optional[UserWorkspace]:
|
||||
"""
|
||||
Get user's workspace if it exists.
|
||||
|
||||
Args:
|
||||
user_id: The user's ID
|
||||
|
||||
Returns:
|
||||
UserWorkspace instance or None
|
||||
"""
|
||||
return await UserWorkspace.prisma().find_unique(where={"userId": user_id})
|
||||
|
||||
|
||||
async def create_workspace_file(
|
||||
workspace_id: str,
|
||||
file_id: str,
|
||||
name: str,
|
||||
path: str,
|
||||
storage_path: str,
|
||||
mime_type: str,
|
||||
size_bytes: int,
|
||||
checksum: Optional[str] = None,
|
||||
metadata: Optional[dict] = None,
|
||||
) -> UserWorkspaceFile:
|
||||
"""
|
||||
Create a new workspace file record.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
file_id: The file ID (same as used in storage path for consistency)
|
||||
name: User-visible filename
|
||||
path: Virtual path (e.g., "/documents/report.pdf")
|
||||
storage_path: Actual storage path (GCS or local)
|
||||
mime_type: MIME type of the file
|
||||
size_bytes: File size in bytes
|
||||
checksum: Optional SHA256 checksum
|
||||
metadata: Optional additional metadata
|
||||
|
||||
Returns:
|
||||
Created UserWorkspaceFile instance
|
||||
"""
|
||||
# Normalize path to start with /
|
||||
if not path.startswith("/"):
|
||||
path = f"/{path}"
|
||||
|
||||
file = await UserWorkspaceFile.prisma().create(
|
||||
data={
|
||||
"id": file_id,
|
||||
"workspaceId": workspace_id,
|
||||
"name": name,
|
||||
"path": path,
|
||||
"storagePath": storage_path,
|
||||
"mimeType": mime_type,
|
||||
"sizeBytes": size_bytes,
|
||||
"checksum": checksum,
|
||||
"metadata": SafeJson(metadata or {}),
|
||||
}
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Created workspace file {file.id} at path {path} "
|
||||
f"in workspace {workspace_id}"
|
||||
)
|
||||
return file
|
||||
|
||||
|
||||
async def get_workspace_file(
|
||||
file_id: str,
|
||||
workspace_id: Optional[str] = None,
|
||||
) -> Optional[UserWorkspaceFile]:
|
||||
"""
|
||||
Get a workspace file by ID.
|
||||
|
||||
Args:
|
||||
file_id: The file ID
|
||||
workspace_id: Optional workspace ID for validation
|
||||
|
||||
Returns:
|
||||
UserWorkspaceFile instance or None
|
||||
"""
|
||||
where_clause: dict = {"id": file_id, "isDeleted": False}
|
||||
if workspace_id:
|
||||
where_clause["workspaceId"] = workspace_id
|
||||
|
||||
return await UserWorkspaceFile.prisma().find_first(where=where_clause)
|
||||
|
||||
|
||||
async def get_workspace_file_by_path(
|
||||
workspace_id: str,
|
||||
path: str,
|
||||
) -> Optional[UserWorkspaceFile]:
|
||||
"""
|
||||
Get a workspace file by its virtual path.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
path: Virtual path
|
||||
|
||||
Returns:
|
||||
UserWorkspaceFile instance or None
|
||||
"""
|
||||
# Normalize path
|
||||
if not path.startswith("/"):
|
||||
path = f"/{path}"
|
||||
|
||||
return await UserWorkspaceFile.prisma().find_first(
|
||||
where={
|
||||
"workspaceId": workspace_id,
|
||||
"path": path,
|
||||
"isDeleted": False,
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
async def list_workspace_files(
|
||||
workspace_id: str,
|
||||
path_prefix: Optional[str] = None,
|
||||
include_deleted: bool = False,
|
||||
limit: Optional[int] = None,
|
||||
offset: int = 0,
|
||||
) -> list[UserWorkspaceFile]:
|
||||
"""
|
||||
List files in a workspace.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
path_prefix: Optional path prefix to filter (e.g., "/documents/")
|
||||
include_deleted: Whether to include soft-deleted files
|
||||
limit: Maximum number of files to return
|
||||
offset: Number of files to skip
|
||||
|
||||
Returns:
|
||||
List of UserWorkspaceFile instances
|
||||
"""
|
||||
where_clause: UserWorkspaceFileWhereInput = {"workspaceId": workspace_id}
|
||||
|
||||
if not include_deleted:
|
||||
where_clause["isDeleted"] = False
|
||||
|
||||
if path_prefix:
|
||||
# Normalize prefix
|
||||
if not path_prefix.startswith("/"):
|
||||
path_prefix = f"/{path_prefix}"
|
||||
where_clause["path"] = {"startswith": path_prefix}
|
||||
|
||||
return await UserWorkspaceFile.prisma().find_many(
|
||||
where=where_clause,
|
||||
order={"createdAt": "desc"},
|
||||
take=limit,
|
||||
skip=offset,
|
||||
)
|
||||
|
||||
|
||||
async def count_workspace_files(
|
||||
workspace_id: str,
|
||||
path_prefix: Optional[str] = None,
|
||||
include_deleted: bool = False,
|
||||
) -> int:
|
||||
"""
|
||||
Count files in a workspace.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
path_prefix: Optional path prefix to filter (e.g., "/sessions/abc123/")
|
||||
include_deleted: Whether to include soft-deleted files
|
||||
|
||||
Returns:
|
||||
Number of files
|
||||
"""
|
||||
where_clause: dict = {"workspaceId": workspace_id}
|
||||
if not include_deleted:
|
||||
where_clause["isDeleted"] = False
|
||||
|
||||
if path_prefix:
|
||||
# Normalize prefix
|
||||
if not path_prefix.startswith("/"):
|
||||
path_prefix = f"/{path_prefix}"
|
||||
where_clause["path"] = {"startswith": path_prefix}
|
||||
|
||||
return await UserWorkspaceFile.prisma().count(where=where_clause)
|
||||
|
||||
|
||||
async def soft_delete_workspace_file(
|
||||
file_id: str,
|
||||
workspace_id: Optional[str] = None,
|
||||
) -> Optional[UserWorkspaceFile]:
|
||||
"""
|
||||
Soft-delete a workspace file.
|
||||
|
||||
The path is modified to include a deletion timestamp to free up the original
|
||||
path for new files while preserving the record for potential recovery.
|
||||
|
||||
Args:
|
||||
file_id: The file ID
|
||||
workspace_id: Optional workspace ID for validation
|
||||
|
||||
Returns:
|
||||
Updated UserWorkspaceFile instance or None if not found
|
||||
"""
|
||||
# First verify the file exists and belongs to workspace
|
||||
file = await get_workspace_file(file_id, workspace_id)
|
||||
if file is None:
|
||||
return None
|
||||
|
||||
deleted_at = datetime.now(timezone.utc)
|
||||
# Modify path to free up the unique constraint for new files at original path
|
||||
# Format: {original_path}__deleted__{timestamp}
|
||||
deleted_path = f"{file.path}__deleted__{int(deleted_at.timestamp())}"
|
||||
|
||||
updated = await UserWorkspaceFile.prisma().update(
|
||||
where={"id": file_id},
|
||||
data={
|
||||
"isDeleted": True,
|
||||
"deletedAt": deleted_at,
|
||||
"path": deleted_path,
|
||||
},
|
||||
)
|
||||
|
||||
logger.info(f"Soft-deleted workspace file {file_id}")
|
||||
return updated
|
||||
|
||||
|
||||
async def get_workspace_total_size(workspace_id: str) -> int:
|
||||
"""
|
||||
Get the total size of all files in a workspace.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
|
||||
Returns:
|
||||
Total size in bytes
|
||||
"""
|
||||
files = await list_workspace_files(workspace_id)
|
||||
return sum(file.sizeBytes for file in files)
|
||||
@@ -236,7 +236,14 @@ async def execute_node(
|
||||
input_size = len(input_data_str)
|
||||
log_metadata.debug("Executed node with input", input=input_data_str)
|
||||
|
||||
# Create node-specific execution context to avoid race conditions
|
||||
# (multiple nodes can execute concurrently and would otherwise mutate shared state)
|
||||
execution_context = execution_context.model_copy(
|
||||
update={"node_id": node_id, "node_exec_id": node_exec_id}
|
||||
)
|
||||
|
||||
# Inject extra execution arguments for the blocks via kwargs
|
||||
# Keep individual kwargs for backwards compatibility with existing blocks
|
||||
extra_exec_kwargs: dict = {
|
||||
"graph_id": graph_id,
|
||||
"graph_version": graph_version,
|
||||
|
||||
@@ -892,11 +892,19 @@ async def add_graph_execution(
|
||||
settings = await gdb.get_graph_settings(user_id=user_id, graph_id=graph_id)
|
||||
|
||||
execution_context = ExecutionContext(
|
||||
# Execution identity
|
||||
user_id=user_id,
|
||||
graph_id=graph_id,
|
||||
graph_exec_id=graph_exec.id,
|
||||
graph_version=graph_exec.graph_version,
|
||||
# Safety settings
|
||||
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
|
||||
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
|
||||
# User settings
|
||||
user_timezone=(
|
||||
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
|
||||
),
|
||||
# Execution hierarchy
|
||||
root_execution_id=graph_exec.id,
|
||||
)
|
||||
|
||||
|
||||
@@ -348,6 +348,7 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
||||
mock_graph_exec.id = "execution-id-123"
|
||||
mock_graph_exec.node_executions = [] # Add this to avoid AttributeError
|
||||
mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check
|
||||
mock_graph_exec.graph_version = graph_version
|
||||
mock_graph_exec.to_graph_execution_entry.return_value = mocker.MagicMock()
|
||||
|
||||
# Mock the queue and event bus
|
||||
@@ -434,6 +435,9 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
||||
# Create a second mock execution for the sanity check
|
||||
mock_graph_exec_2 = mocker.MagicMock(spec=GraphExecutionWithNodes)
|
||||
mock_graph_exec_2.id = "execution-id-456"
|
||||
mock_graph_exec_2.node_executions = []
|
||||
mock_graph_exec_2.status = ExecutionStatus.QUEUED
|
||||
mock_graph_exec_2.graph_version = graph_version
|
||||
mock_graph_exec_2.to_graph_execution_entry.return_value = mocker.MagicMock()
|
||||
|
||||
# Reset mocks and set up for second call
|
||||
@@ -614,6 +618,7 @@ async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
|
||||
mock_graph_exec.id = "execution-id-123"
|
||||
mock_graph_exec.node_executions = []
|
||||
mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check
|
||||
mock_graph_exec.graph_version = graph_version
|
||||
|
||||
# Track what's passed to to_graph_execution_entry
|
||||
captured_kwargs = {}
|
||||
|
||||
@@ -13,6 +13,7 @@ import aiohttp
|
||||
from gcloud.aio import storage as async_gcs_storage
|
||||
from google.cloud import storage as gcs_storage
|
||||
|
||||
from backend.util.gcs_utils import download_with_fresh_session, generate_signed_url
|
||||
from backend.util.settings import Config
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -251,7 +252,7 @@ class CloudStorageHandler:
|
||||
f"in_task: {current_task is not None}"
|
||||
)
|
||||
|
||||
# Parse bucket and blob name from path
|
||||
# Parse bucket and blob name from path (path already has gcs:// prefix removed)
|
||||
parts = path.split("/", 1)
|
||||
if len(parts) != 2:
|
||||
raise ValueError(f"Invalid GCS path: {path}")
|
||||
@@ -261,50 +262,19 @@ class CloudStorageHandler:
|
||||
# Authorization check
|
||||
self._validate_file_access(blob_name, user_id, graph_exec_id)
|
||||
|
||||
# Use a fresh client for each download to avoid session issues
|
||||
# This is less efficient but more reliable with the executor's event loop
|
||||
logger.info("[CloudStorage] Creating fresh GCS client for download")
|
||||
|
||||
# Create a new session specifically for this download
|
||||
session = aiohttp.ClientSession(
|
||||
connector=aiohttp.TCPConnector(limit=10, force_close=True)
|
||||
logger.info(
|
||||
f"[CloudStorage] About to download from GCS - bucket: {bucket_name}, blob: {blob_name}"
|
||||
)
|
||||
|
||||
async_client = None
|
||||
try:
|
||||
# Create a new GCS client with the fresh session
|
||||
async_client = async_gcs_storage.Storage(session=session)
|
||||
|
||||
logger.info(
|
||||
f"[CloudStorage] About to download from GCS - bucket: {bucket_name}, blob: {blob_name}"
|
||||
)
|
||||
|
||||
# Download content using the fresh client
|
||||
content = await async_client.download(bucket_name, blob_name)
|
||||
content = await download_with_fresh_session(bucket_name, blob_name)
|
||||
logger.info(
|
||||
f"[CloudStorage] GCS download successful - size: {len(content)} bytes"
|
||||
)
|
||||
|
||||
# Clean up
|
||||
await async_client.close()
|
||||
await session.close()
|
||||
|
||||
return content
|
||||
|
||||
except FileNotFoundError:
|
||||
raise
|
||||
except Exception as e:
|
||||
# Always try to clean up
|
||||
if async_client is not None:
|
||||
try:
|
||||
await async_client.close()
|
||||
except Exception as cleanup_error:
|
||||
logger.warning(
|
||||
f"[CloudStorage] Error closing GCS client: {cleanup_error}"
|
||||
)
|
||||
try:
|
||||
await session.close()
|
||||
except Exception as cleanup_error:
|
||||
logger.warning(f"[CloudStorage] Error closing session: {cleanup_error}")
|
||||
|
||||
# Log the specific error for debugging
|
||||
logger.error(
|
||||
f"[CloudStorage] GCS download failed - error: {str(e)}, "
|
||||
@@ -319,10 +289,6 @@ class CloudStorageHandler:
|
||||
f"current_task: {current_task}, "
|
||||
f"bucket: {bucket_name}, blob: redacted for privacy"
|
||||
)
|
||||
|
||||
# Convert gcloud-aio exceptions to standard ones
|
||||
if "404" in str(e) or "Not Found" in str(e):
|
||||
raise FileNotFoundError(f"File not found: gcs://{path}")
|
||||
raise
|
||||
|
||||
def _validate_file_access(
|
||||
@@ -445,8 +411,7 @@ class CloudStorageHandler:
|
||||
graph_exec_id: str | None = None,
|
||||
) -> str:
|
||||
"""Generate signed URL for GCS with authorization."""
|
||||
|
||||
# Parse bucket and blob name from path
|
||||
# Parse bucket and blob name from path (path already has gcs:// prefix removed)
|
||||
parts = path.split("/", 1)
|
||||
if len(parts) != 2:
|
||||
raise ValueError(f"Invalid GCS path: {path}")
|
||||
@@ -456,21 +421,11 @@ class CloudStorageHandler:
|
||||
# Authorization check
|
||||
self._validate_file_access(blob_name, user_id, graph_exec_id)
|
||||
|
||||
# Use sync client for signed URLs since gcloud-aio doesn't support them
|
||||
sync_client = self._get_sync_gcs_client()
|
||||
bucket = sync_client.bucket(bucket_name)
|
||||
blob = bucket.blob(blob_name)
|
||||
|
||||
# Generate signed URL asynchronously using sync client
|
||||
url = await asyncio.to_thread(
|
||||
blob.generate_signed_url,
|
||||
version="v4",
|
||||
expiration=datetime.now(timezone.utc) + timedelta(hours=expiration_hours),
|
||||
method="GET",
|
||||
return await generate_signed_url(
|
||||
sync_client, bucket_name, blob_name, expiration_hours * 3600
|
||||
)
|
||||
|
||||
return url
|
||||
|
||||
async def delete_expired_files(self, provider: str = "gcs") -> int:
|
||||
"""
|
||||
Delete files that have passed their expiration time.
|
||||
|
||||
@@ -135,6 +135,12 @@ class GraphValidationError(ValueError):
|
||||
)
|
||||
|
||||
|
||||
class InvalidInputError(ValueError):
|
||||
"""Raised when user input validation fails (e.g., search term too long)"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class DatabaseError(Exception):
|
||||
"""Raised when there is an error interacting with the database"""
|
||||
|
||||
|
||||
@@ -5,13 +5,26 @@ import shutil
|
||||
import tempfile
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Literal
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from backend.util.cloud_storage import get_cloud_storage_handler
|
||||
from backend.util.request import Requests
|
||||
from backend.util.settings import Config
|
||||
from backend.util.type import MediaFileType
|
||||
from backend.util.virus_scanner import scan_content_safe
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.data.execution import ExecutionContext
|
||||
|
||||
# Return format options for store_media_file
|
||||
# - "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
|
||||
# - "for_external_api": Returns data URI (base64) - use when sending content to external APIs
|
||||
# - "for_block_output": Returns best format for output - workspace:// in CoPilot, data URI in graphs
|
||||
MediaReturnFormat = Literal[
|
||||
"for_local_processing", "for_external_api", "for_block_output"
|
||||
]
|
||||
|
||||
TEMP_DIR = Path(tempfile.gettempdir()).resolve()
|
||||
|
||||
# Maximum filename length (conservative limit for most filesystems)
|
||||
@@ -67,42 +80,56 @@ def clean_exec_files(graph_exec_id: str, file: str = "") -> None:
|
||||
|
||||
|
||||
async def store_media_file(
|
||||
graph_exec_id: str,
|
||||
file: MediaFileType,
|
||||
user_id: str,
|
||||
return_content: bool = False,
|
||||
execution_context: "ExecutionContext",
|
||||
*,
|
||||
return_format: MediaReturnFormat,
|
||||
) -> MediaFileType:
|
||||
"""
|
||||
Safely handle 'file' (a data URI, a URL, or a local path relative to {temp}/exec_file/{exec_id}),
|
||||
placing or verifying it under:
|
||||
Safely handle 'file' (a data URI, a URL, a workspace:// reference, or a local path
|
||||
relative to {temp}/exec_file/{exec_id}), placing or verifying it under:
|
||||
{tempdir}/exec_file/{exec_id}/...
|
||||
|
||||
If 'return_content=True', return a data URI (data:<mime>;base64,<content>).
|
||||
Otherwise, returns the file media path relative to the exec_id folder.
|
||||
For each MediaFileType input:
|
||||
- Data URI: decode and store locally
|
||||
- URL: download and store locally
|
||||
- workspace:// reference: read from workspace, store locally
|
||||
- Local path: verify it exists in exec_file directory
|
||||
|
||||
For each MediaFileType type:
|
||||
- Data URI:
|
||||
-> decode and store in a new random file in that folder
|
||||
- URL:
|
||||
-> download and store in that folder
|
||||
- Local path:
|
||||
-> interpret as relative to that folder; verify it exists
|
||||
(no copying, as it's presumably already there).
|
||||
We realpath-check so no symlink or '..' can escape the folder.
|
||||
Return format options:
|
||||
- "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
|
||||
- "for_external_api": Returns data URI (base64) - use when sending to external APIs
|
||||
- "for_block_output": Returns best format for output - workspace:// in CoPilot, data URI in graphs
|
||||
|
||||
|
||||
:param graph_exec_id: The unique ID of the graph execution.
|
||||
:param file: Data URI, URL, or local (relative) path.
|
||||
:param return_content: If True, return a data URI of the file content.
|
||||
If False, return the *relative* path inside the exec_id folder.
|
||||
:return: The requested result: data URI or relative path of the media.
|
||||
:param file: Data URI, URL, workspace://, or local (relative) path.
|
||||
:param execution_context: ExecutionContext with user_id, graph_exec_id, workspace_id.
|
||||
:param return_format: What to return: "for_local_processing", "for_external_api", or "for_block_output".
|
||||
:return: The requested result based on return_format.
|
||||
"""
|
||||
# Extract values from execution_context
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
user_id = execution_context.user_id
|
||||
|
||||
if not graph_exec_id:
|
||||
raise ValueError("execution_context.graph_exec_id is required")
|
||||
if not user_id:
|
||||
raise ValueError("execution_context.user_id is required")
|
||||
|
||||
# Create workspace_manager if we have workspace_id (with session scoping)
|
||||
# Import here to avoid circular import (file.py → workspace.py → data → blocks → file.py)
|
||||
from backend.util.workspace import WorkspaceManager
|
||||
|
||||
workspace_manager: WorkspaceManager | None = None
|
||||
if execution_context.workspace_id:
|
||||
workspace_manager = WorkspaceManager(
|
||||
user_id, execution_context.workspace_id, execution_context.session_id
|
||||
)
|
||||
# Build base path
|
||||
base_path = Path(get_exec_file_path(graph_exec_id, ""))
|
||||
base_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Security fix: Add disk space limits to prevent DoS
|
||||
MAX_FILE_SIZE = 100 * 1024 * 1024 # 100MB per file
|
||||
MAX_FILE_SIZE_BYTES = Config().max_file_size_mb * 1024 * 1024
|
||||
MAX_TOTAL_DISK_USAGE = 1024 * 1024 * 1024 # 1GB total per execution directory
|
||||
|
||||
# Check total disk usage in base_path
|
||||
@@ -142,9 +169,57 @@ async def store_media_file(
|
||||
"""
|
||||
return str(absolute_path.relative_to(base))
|
||||
|
||||
# Check if this is a cloud storage path
|
||||
# Get cloud storage handler for checking cloud paths
|
||||
cloud_storage = await get_cloud_storage_handler()
|
||||
if cloud_storage.is_cloud_path(file):
|
||||
|
||||
# Track if the input came from workspace (don't re-save it)
|
||||
is_from_workspace = file.startswith("workspace://")
|
||||
|
||||
# Check if this is a workspace file reference
|
||||
if is_from_workspace:
|
||||
if workspace_manager is None:
|
||||
raise ValueError(
|
||||
"Workspace file reference requires workspace context. "
|
||||
"This file type is only available in CoPilot sessions."
|
||||
)
|
||||
|
||||
# Parse workspace reference
|
||||
# workspace://abc123 - by file ID
|
||||
# workspace:///path/to/file.txt - by virtual path
|
||||
file_ref = file[12:] # Remove "workspace://"
|
||||
|
||||
if file_ref.startswith("/"):
|
||||
# Path reference
|
||||
workspace_content = await workspace_manager.read_file(file_ref)
|
||||
file_info = await workspace_manager.get_file_info_by_path(file_ref)
|
||||
filename = sanitize_filename(
|
||||
file_info.name if file_info else f"{uuid.uuid4()}.bin"
|
||||
)
|
||||
else:
|
||||
# ID reference
|
||||
workspace_content = await workspace_manager.read_file_by_id(file_ref)
|
||||
file_info = await workspace_manager.get_file_info(file_ref)
|
||||
filename = sanitize_filename(
|
||||
file_info.name if file_info else f"{uuid.uuid4()}.bin"
|
||||
)
|
||||
|
||||
try:
|
||||
target_path = _ensure_inside_base(base_path / filename, base_path)
|
||||
except OSError as e:
|
||||
raise ValueError(f"Invalid file path '{filename}': {e}") from e
|
||||
|
||||
# Check file size limit
|
||||
if len(workspace_content) > MAX_FILE_SIZE_BYTES:
|
||||
raise ValueError(
|
||||
f"File too large: {len(workspace_content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
|
||||
)
|
||||
|
||||
# Virus scan the workspace content before writing locally
|
||||
await scan_content_safe(workspace_content, filename=filename)
|
||||
target_path.write_bytes(workspace_content)
|
||||
|
||||
# Check if this is a cloud storage path
|
||||
elif cloud_storage.is_cloud_path(file):
|
||||
# Download from cloud storage and store locally
|
||||
cloud_content = await cloud_storage.retrieve_file(
|
||||
file, user_id=user_id, graph_exec_id=graph_exec_id
|
||||
@@ -159,9 +234,9 @@ async def store_media_file(
|
||||
raise ValueError(f"Invalid file path '{filename}': {e}") from e
|
||||
|
||||
# Check file size limit
|
||||
if len(cloud_content) > MAX_FILE_SIZE:
|
||||
if len(cloud_content) > MAX_FILE_SIZE_BYTES:
|
||||
raise ValueError(
|
||||
f"File too large: {len(cloud_content)} bytes > {MAX_FILE_SIZE} bytes"
|
||||
f"File too large: {len(cloud_content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
|
||||
)
|
||||
|
||||
# Virus scan the cloud content before writing locally
|
||||
@@ -189,9 +264,9 @@ async def store_media_file(
|
||||
content = base64.b64decode(b64_content)
|
||||
|
||||
# Check file size limit
|
||||
if len(content) > MAX_FILE_SIZE:
|
||||
if len(content) > MAX_FILE_SIZE_BYTES:
|
||||
raise ValueError(
|
||||
f"File too large: {len(content)} bytes > {MAX_FILE_SIZE} bytes"
|
||||
f"File too large: {len(content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
|
||||
)
|
||||
|
||||
# Virus scan the base64 content before writing
|
||||
@@ -199,23 +274,31 @@ async def store_media_file(
|
||||
target_path.write_bytes(content)
|
||||
|
||||
elif file.startswith(("http://", "https://")):
|
||||
# URL
|
||||
# URL - download first to get Content-Type header
|
||||
resp = await Requests().get(file)
|
||||
|
||||
# Check file size limit
|
||||
if len(resp.content) > MAX_FILE_SIZE_BYTES:
|
||||
raise ValueError(
|
||||
f"File too large: {len(resp.content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
|
||||
)
|
||||
|
||||
# Extract filename from URL path
|
||||
parsed_url = urlparse(file)
|
||||
filename = sanitize_filename(Path(parsed_url.path).name or f"{uuid.uuid4()}")
|
||||
|
||||
# If filename lacks extension, add one from Content-Type header
|
||||
if "." not in filename:
|
||||
content_type = resp.headers.get("Content-Type", "").split(";")[0].strip()
|
||||
if content_type:
|
||||
ext = _extension_from_mime(content_type)
|
||||
filename = f"{filename}{ext}"
|
||||
|
||||
try:
|
||||
target_path = _ensure_inside_base(base_path / filename, base_path)
|
||||
except OSError as e:
|
||||
raise ValueError(f"Invalid file path '{filename}': {e}") from e
|
||||
|
||||
# Download and save
|
||||
resp = await Requests().get(file)
|
||||
|
||||
# Check file size limit
|
||||
if len(resp.content) > MAX_FILE_SIZE:
|
||||
raise ValueError(
|
||||
f"File too large: {len(resp.content)} bytes > {MAX_FILE_SIZE} bytes"
|
||||
)
|
||||
|
||||
# Virus scan the downloaded content before writing
|
||||
await scan_content_safe(resp.content, filename=filename)
|
||||
target_path.write_bytes(resp.content)
|
||||
@@ -230,12 +313,44 @@ async def store_media_file(
|
||||
if not target_path.is_file():
|
||||
raise ValueError(f"Local file does not exist: {target_path}")
|
||||
|
||||
# Return result
|
||||
if return_content:
|
||||
return MediaFileType(_file_to_data_uri(target_path))
|
||||
else:
|
||||
# Return based on requested format
|
||||
if return_format == "for_local_processing":
|
||||
# Use when processing files locally with tools like ffmpeg, MoviePy, PIL
|
||||
# Returns: relative path in exec_file directory (e.g., "image.png")
|
||||
return MediaFileType(_strip_base_prefix(target_path, base_path))
|
||||
|
||||
elif return_format == "for_external_api":
|
||||
# Use when sending content to external APIs that need base64
|
||||
# Returns: data URI (e.g., "...")
|
||||
return MediaFileType(_file_to_data_uri(target_path))
|
||||
|
||||
elif return_format == "for_block_output":
|
||||
# Use when returning output from a block to user/next block
|
||||
# Returns: workspace:// ref (CoPilot) or data URI (graph execution)
|
||||
if workspace_manager is None:
|
||||
# No workspace available (graph execution without CoPilot)
|
||||
# Fallback to data URI so the content can still be used/displayed
|
||||
return MediaFileType(_file_to_data_uri(target_path))
|
||||
|
||||
# Don't re-save if input was already from workspace
|
||||
if is_from_workspace:
|
||||
# Return original workspace reference
|
||||
return MediaFileType(file)
|
||||
|
||||
# Save new content to workspace
|
||||
content = target_path.read_bytes()
|
||||
filename = target_path.name
|
||||
|
||||
file_record = await workspace_manager.write_file(
|
||||
content=content,
|
||||
filename=filename,
|
||||
overwrite=True,
|
||||
)
|
||||
return MediaFileType(f"workspace://{file_record.id}")
|
||||
|
||||
else:
|
||||
raise ValueError(f"Invalid return_format: {return_format}")
|
||||
|
||||
|
||||
def get_dir_size(path: Path) -> int:
|
||||
"""Get total size of directory."""
|
||||
|
||||
@@ -7,10 +7,22 @@ from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
|
||||
def make_test_context(
|
||||
graph_exec_id: str = "test-exec-123",
|
||||
user_id: str = "test-user-123",
|
||||
) -> ExecutionContext:
|
||||
"""Helper to create test ExecutionContext."""
|
||||
return ExecutionContext(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
)
|
||||
|
||||
|
||||
class TestFileCloudIntegration:
|
||||
"""Test cases for cloud storage integration in file utilities."""
|
||||
|
||||
@@ -70,10 +82,9 @@ class TestFileCloudIntegration:
|
||||
mock_path_class.side_effect = path_constructor
|
||||
|
||||
result = await store_media_file(
|
||||
graph_exec_id,
|
||||
MediaFileType(cloud_path),
|
||||
"test-user-123",
|
||||
return_content=False,
|
||||
file=MediaFileType(cloud_path),
|
||||
execution_context=make_test_context(graph_exec_id=graph_exec_id),
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
# Verify cloud storage operations
|
||||
@@ -144,10 +155,9 @@ class TestFileCloudIntegration:
|
||||
mock_path_obj.name = "image.png"
|
||||
with patch("backend.util.file.Path", return_value=mock_path_obj):
|
||||
result = await store_media_file(
|
||||
graph_exec_id,
|
||||
MediaFileType(cloud_path),
|
||||
"test-user-123",
|
||||
return_content=True,
|
||||
file=MediaFileType(cloud_path),
|
||||
execution_context=make_test_context(graph_exec_id=graph_exec_id),
|
||||
return_format="for_external_api",
|
||||
)
|
||||
|
||||
# Verify result is a data URI
|
||||
@@ -198,10 +208,9 @@ class TestFileCloudIntegration:
|
||||
mock_resolved_path.relative_to.return_value = Path("test-uuid-789.txt")
|
||||
|
||||
await store_media_file(
|
||||
graph_exec_id,
|
||||
MediaFileType(data_uri),
|
||||
"test-user-123",
|
||||
return_content=False,
|
||||
file=MediaFileType(data_uri),
|
||||
execution_context=make_test_context(graph_exec_id=graph_exec_id),
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
# Verify cloud handler was checked but not used for retrieval
|
||||
@@ -234,5 +243,7 @@ class TestFileCloudIntegration:
|
||||
FileNotFoundError, match="File not found in cloud storage"
|
||||
):
|
||||
await store_media_file(
|
||||
graph_exec_id, MediaFileType(cloud_path), "test-user-123"
|
||||
file=MediaFileType(cloud_path),
|
||||
execution_context=make_test_context(graph_exec_id=graph_exec_id),
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
108
autogpt_platform/backend/backend/util/gcs_utils.py
Normal file
108
autogpt_platform/backend/backend/util/gcs_utils.py
Normal file
@@ -0,0 +1,108 @@
|
||||
"""
|
||||
Shared GCS utilities for workspace and cloud storage backends.
|
||||
|
||||
This module provides common functionality for working with Google Cloud Storage,
|
||||
including path parsing, client management, and signed URL generation.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from datetime import datetime, timedelta, timezone
|
||||
|
||||
import aiohttp
|
||||
from gcloud.aio import storage as async_gcs_storage
|
||||
from google.cloud import storage as gcs_storage
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def parse_gcs_path(path: str) -> tuple[str, str]:
|
||||
"""
|
||||
Parse a GCS path in the format 'gcs://bucket/blob' to (bucket, blob).
|
||||
|
||||
Args:
|
||||
path: GCS path string (e.g., "gcs://my-bucket/path/to/file")
|
||||
|
||||
Returns:
|
||||
Tuple of (bucket_name, blob_name)
|
||||
|
||||
Raises:
|
||||
ValueError: If the path format is invalid
|
||||
"""
|
||||
if not path.startswith("gcs://"):
|
||||
raise ValueError(f"Invalid GCS path: {path}")
|
||||
|
||||
path_without_prefix = path[6:] # Remove "gcs://"
|
||||
parts = path_without_prefix.split("/", 1)
|
||||
if len(parts) != 2:
|
||||
raise ValueError(f"Invalid GCS path format: {path}")
|
||||
|
||||
return parts[0], parts[1]
|
||||
|
||||
|
||||
async def download_with_fresh_session(bucket: str, blob: str) -> bytes:
|
||||
"""
|
||||
Download file content using a fresh session.
|
||||
|
||||
This approach avoids event loop issues that can occur when reusing
|
||||
sessions across different async contexts (e.g., in executors).
|
||||
|
||||
Args:
|
||||
bucket: GCS bucket name
|
||||
blob: Blob path within the bucket
|
||||
|
||||
Returns:
|
||||
File content as bytes
|
||||
|
||||
Raises:
|
||||
FileNotFoundError: If the file doesn't exist
|
||||
"""
|
||||
session = aiohttp.ClientSession(
|
||||
connector=aiohttp.TCPConnector(limit=10, force_close=True)
|
||||
)
|
||||
client: async_gcs_storage.Storage | None = None
|
||||
try:
|
||||
client = async_gcs_storage.Storage(session=session)
|
||||
content = await client.download(bucket, blob)
|
||||
return content
|
||||
except Exception as e:
|
||||
if "404" in str(e) or "Not Found" in str(e):
|
||||
raise FileNotFoundError(f"File not found: gcs://{bucket}/{blob}")
|
||||
raise
|
||||
finally:
|
||||
if client:
|
||||
try:
|
||||
await client.close()
|
||||
except Exception:
|
||||
pass # Best-effort cleanup
|
||||
await session.close()
|
||||
|
||||
|
||||
async def generate_signed_url(
|
||||
sync_client: gcs_storage.Client,
|
||||
bucket_name: str,
|
||||
blob_name: str,
|
||||
expires_in: int,
|
||||
) -> str:
|
||||
"""
|
||||
Generate a signed URL for temporary access to a GCS file.
|
||||
|
||||
Uses asyncio.to_thread() to run the sync operation without blocking.
|
||||
|
||||
Args:
|
||||
sync_client: Sync GCS client with service account credentials
|
||||
bucket_name: GCS bucket name
|
||||
blob_name: Blob path within the bucket
|
||||
expires_in: URL expiration time in seconds
|
||||
|
||||
Returns:
|
||||
Signed URL string
|
||||
"""
|
||||
bucket = sync_client.bucket(bucket_name)
|
||||
blob = bucket.blob(blob_name)
|
||||
return await asyncio.to_thread(
|
||||
blob.generate_signed_url,
|
||||
version="v4",
|
||||
expiration=datetime.now(timezone.utc) + timedelta(seconds=expires_in),
|
||||
method="GET",
|
||||
)
|
||||
@@ -263,6 +263,12 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
|
||||
description="The name of the Google Cloud Storage bucket for media files",
|
||||
)
|
||||
|
||||
workspace_storage_dir: str = Field(
|
||||
default="",
|
||||
description="Local directory for workspace file storage when GCS is not configured. "
|
||||
"If empty, defaults to {app_data}/workspaces. Used for self-hosted deployments.",
|
||||
)
|
||||
|
||||
reddit_user_agent: str = Field(
|
||||
default="web:AutoGPT:v0.6.0 (by /u/autogpt)",
|
||||
description="The user agent for the Reddit API",
|
||||
@@ -389,6 +395,13 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
|
||||
description="Maximum file size in MB for file uploads (1-1024 MB)",
|
||||
)
|
||||
|
||||
max_file_size_mb: int = Field(
|
||||
default=100,
|
||||
ge=1,
|
||||
le=1024,
|
||||
description="Maximum file size in MB for workspace files (1-1024 MB)",
|
||||
)
|
||||
|
||||
# AutoMod configuration
|
||||
automod_enabled: bool = Field(
|
||||
default=False,
|
||||
|
||||
@@ -140,14 +140,29 @@ async def execute_block_test(block: Block):
|
||||
setattr(block, mock_name, mock_obj)
|
||||
|
||||
# Populate credentials argument(s)
|
||||
# Generate IDs for execution context
|
||||
graph_id = str(uuid.uuid4())
|
||||
node_id = str(uuid.uuid4())
|
||||
graph_exec_id = str(uuid.uuid4())
|
||||
node_exec_id = str(uuid.uuid4())
|
||||
user_id = str(uuid.uuid4())
|
||||
graph_version = 1 # Default version for tests
|
||||
|
||||
extra_exec_kwargs: dict = {
|
||||
"graph_id": str(uuid.uuid4()),
|
||||
"node_id": str(uuid.uuid4()),
|
||||
"graph_exec_id": str(uuid.uuid4()),
|
||||
"node_exec_id": str(uuid.uuid4()),
|
||||
"user_id": str(uuid.uuid4()),
|
||||
"graph_version": 1, # Default version for tests
|
||||
"execution_context": ExecutionContext(),
|
||||
"graph_id": graph_id,
|
||||
"node_id": node_id,
|
||||
"graph_exec_id": graph_exec_id,
|
||||
"node_exec_id": node_exec_id,
|
||||
"user_id": user_id,
|
||||
"graph_version": graph_version,
|
||||
"execution_context": ExecutionContext(
|
||||
user_id=user_id,
|
||||
graph_id=graph_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_version=graph_version,
|
||||
node_id=node_id,
|
||||
node_exec_id=node_exec_id,
|
||||
),
|
||||
}
|
||||
input_model = cast(type[BlockSchema], block.input_schema)
|
||||
|
||||
|
||||
419
autogpt_platform/backend/backend/util/workspace.py
Normal file
419
autogpt_platform/backend/backend/util/workspace.py
Normal file
@@ -0,0 +1,419 @@
|
||||
"""
|
||||
WorkspaceManager for managing user workspace file operations.
|
||||
|
||||
This module provides a high-level interface for workspace file operations,
|
||||
combining the storage backend and database layer.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import mimetypes
|
||||
import uuid
|
||||
from typing import Optional
|
||||
|
||||
from prisma.errors import UniqueViolationError
|
||||
from prisma.models import UserWorkspaceFile
|
||||
|
||||
from backend.data.workspace import (
|
||||
count_workspace_files,
|
||||
create_workspace_file,
|
||||
get_workspace_file,
|
||||
get_workspace_file_by_path,
|
||||
list_workspace_files,
|
||||
soft_delete_workspace_file,
|
||||
)
|
||||
from backend.util.settings import Config
|
||||
from backend.util.workspace_storage import compute_file_checksum, get_workspace_storage
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkspaceManager:
|
||||
"""
|
||||
Manages workspace file operations.
|
||||
|
||||
Combines storage backend operations with database record management.
|
||||
Supports session-scoped file segmentation where files are stored in
|
||||
session-specific virtual paths: /sessions/{session_id}/{filename}
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, user_id: str, workspace_id: str, session_id: Optional[str] = None
|
||||
):
|
||||
"""
|
||||
Initialize WorkspaceManager.
|
||||
|
||||
Args:
|
||||
user_id: The user's ID
|
||||
workspace_id: The workspace ID
|
||||
session_id: Optional session ID for session-scoped file access
|
||||
"""
|
||||
self.user_id = user_id
|
||||
self.workspace_id = workspace_id
|
||||
self.session_id = session_id
|
||||
# Session path prefix for file isolation
|
||||
self.session_path = f"/sessions/{session_id}" if session_id else ""
|
||||
|
||||
def _resolve_path(self, path: str) -> str:
|
||||
"""
|
||||
Resolve a path, defaulting to session folder if session_id is set.
|
||||
|
||||
Cross-session access is allowed by explicitly using /sessions/other-session-id/...
|
||||
|
||||
Args:
|
||||
path: Virtual path (e.g., "/file.txt" or "/sessions/abc123/file.txt")
|
||||
|
||||
Returns:
|
||||
Resolved path with session prefix if applicable
|
||||
"""
|
||||
# If path explicitly references a session folder, use it as-is
|
||||
if path.startswith("/sessions/"):
|
||||
return path
|
||||
|
||||
# If we have a session context, prepend session path
|
||||
if self.session_path:
|
||||
# Normalize the path
|
||||
if not path.startswith("/"):
|
||||
path = f"/{path}"
|
||||
return f"{self.session_path}{path}"
|
||||
|
||||
# No session context, use path as-is
|
||||
return path if path.startswith("/") else f"/{path}"
|
||||
|
||||
def _get_effective_path(
|
||||
self, path: Optional[str], include_all_sessions: bool
|
||||
) -> Optional[str]:
|
||||
"""
|
||||
Get effective path for list/count operations based on session context.
|
||||
|
||||
Args:
|
||||
path: Optional path prefix to filter
|
||||
include_all_sessions: If True, don't apply session scoping
|
||||
|
||||
Returns:
|
||||
Effective path prefix for database query
|
||||
"""
|
||||
if include_all_sessions:
|
||||
# Normalize path to ensure leading slash (stored paths are normalized)
|
||||
if path is not None and not path.startswith("/"):
|
||||
return f"/{path}"
|
||||
return path
|
||||
elif path is not None:
|
||||
# Resolve the provided path with session scoping
|
||||
return self._resolve_path(path)
|
||||
elif self.session_path:
|
||||
# Default to session folder with trailing slash to prevent prefix collisions
|
||||
# e.g., "/sessions/abc" should not match "/sessions/abc123"
|
||||
return self.session_path.rstrip("/") + "/"
|
||||
else:
|
||||
# No session context, use path as-is
|
||||
return path
|
||||
|
||||
async def read_file(self, path: str) -> bytes:
|
||||
"""
|
||||
Read file from workspace by virtual path.
|
||||
|
||||
When session_id is set, paths are resolved relative to the session folder
|
||||
unless they explicitly reference /sessions/...
|
||||
|
||||
Args:
|
||||
path: Virtual path (e.g., "/documents/report.pdf")
|
||||
|
||||
Returns:
|
||||
File content as bytes
|
||||
|
||||
Raises:
|
||||
FileNotFoundError: If file doesn't exist
|
||||
"""
|
||||
resolved_path = self._resolve_path(path)
|
||||
file = await get_workspace_file_by_path(self.workspace_id, resolved_path)
|
||||
if file is None:
|
||||
raise FileNotFoundError(f"File not found at path: {resolved_path}")
|
||||
|
||||
storage = await get_workspace_storage()
|
||||
return await storage.retrieve(file.storagePath)
|
||||
|
||||
async def read_file_by_id(self, file_id: str) -> bytes:
|
||||
"""
|
||||
Read file from workspace by file ID.
|
||||
|
||||
Args:
|
||||
file_id: The file's ID
|
||||
|
||||
Returns:
|
||||
File content as bytes
|
||||
|
||||
Raises:
|
||||
FileNotFoundError: If file doesn't exist
|
||||
"""
|
||||
file = await get_workspace_file(file_id, self.workspace_id)
|
||||
if file is None:
|
||||
raise FileNotFoundError(f"File not found: {file_id}")
|
||||
|
||||
storage = await get_workspace_storage()
|
||||
return await storage.retrieve(file.storagePath)
|
||||
|
||||
async def write_file(
|
||||
self,
|
||||
content: bytes,
|
||||
filename: str,
|
||||
path: Optional[str] = None,
|
||||
mime_type: Optional[str] = None,
|
||||
overwrite: bool = False,
|
||||
) -> UserWorkspaceFile:
|
||||
"""
|
||||
Write file to workspace.
|
||||
|
||||
When session_id is set, files are written to /sessions/{session_id}/...
|
||||
by default. Use explicit /sessions/... paths for cross-session access.
|
||||
|
||||
Args:
|
||||
content: File content as bytes
|
||||
filename: Filename for the file
|
||||
path: Virtual path (defaults to "/{filename}", session-scoped if session_id set)
|
||||
mime_type: MIME type (auto-detected if not provided)
|
||||
overwrite: Whether to overwrite existing file at path
|
||||
|
||||
Returns:
|
||||
Created UserWorkspaceFile instance
|
||||
|
||||
Raises:
|
||||
ValueError: If file exceeds size limit or path already exists
|
||||
"""
|
||||
# Enforce file size limit
|
||||
max_file_size = Config().max_file_size_mb * 1024 * 1024
|
||||
if len(content) > max_file_size:
|
||||
raise ValueError(
|
||||
f"File too large: {len(content)} bytes exceeds "
|
||||
f"{Config().max_file_size_mb}MB limit"
|
||||
)
|
||||
|
||||
# Determine path with session scoping
|
||||
if path is None:
|
||||
path = f"/{filename}"
|
||||
elif not path.startswith("/"):
|
||||
path = f"/{path}"
|
||||
|
||||
# Resolve path with session prefix
|
||||
path = self._resolve_path(path)
|
||||
|
||||
# Check if file exists at path (only error for non-overwrite case)
|
||||
# For overwrite=True, we let the write proceed and handle via UniqueViolationError
|
||||
# This ensures the new file is written to storage BEFORE the old one is deleted,
|
||||
# preventing data loss if the new write fails
|
||||
if not overwrite:
|
||||
existing = await get_workspace_file_by_path(self.workspace_id, path)
|
||||
if existing is not None:
|
||||
raise ValueError(f"File already exists at path: {path}")
|
||||
|
||||
# Auto-detect MIME type if not provided
|
||||
if mime_type is None:
|
||||
mime_type, _ = mimetypes.guess_type(filename)
|
||||
mime_type = mime_type or "application/octet-stream"
|
||||
|
||||
# Compute checksum
|
||||
checksum = compute_file_checksum(content)
|
||||
|
||||
# Generate unique file ID for storage
|
||||
file_id = str(uuid.uuid4())
|
||||
|
||||
# Store file in storage backend
|
||||
storage = await get_workspace_storage()
|
||||
storage_path = await storage.store(
|
||||
workspace_id=self.workspace_id,
|
||||
file_id=file_id,
|
||||
filename=filename,
|
||||
content=content,
|
||||
)
|
||||
|
||||
# Create database record - handle race condition where another request
|
||||
# created a file at the same path between our check and create
|
||||
try:
|
||||
file = await create_workspace_file(
|
||||
workspace_id=self.workspace_id,
|
||||
file_id=file_id,
|
||||
name=filename,
|
||||
path=path,
|
||||
storage_path=storage_path,
|
||||
mime_type=mime_type,
|
||||
size_bytes=len(content),
|
||||
checksum=checksum,
|
||||
)
|
||||
except UniqueViolationError:
|
||||
# Race condition: another request created a file at this path
|
||||
if overwrite:
|
||||
# Re-fetch and delete the conflicting file, then retry
|
||||
existing = await get_workspace_file_by_path(self.workspace_id, path)
|
||||
if existing:
|
||||
await self.delete_file(existing.id)
|
||||
# Retry the create - if this also fails, clean up storage file
|
||||
try:
|
||||
file = await create_workspace_file(
|
||||
workspace_id=self.workspace_id,
|
||||
file_id=file_id,
|
||||
name=filename,
|
||||
path=path,
|
||||
storage_path=storage_path,
|
||||
mime_type=mime_type,
|
||||
size_bytes=len(content),
|
||||
checksum=checksum,
|
||||
)
|
||||
except Exception:
|
||||
# Clean up orphaned storage file on retry failure
|
||||
try:
|
||||
await storage.delete(storage_path)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to clean up orphaned storage file: {e}")
|
||||
raise
|
||||
else:
|
||||
# Clean up the orphaned storage file before raising
|
||||
try:
|
||||
await storage.delete(storage_path)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to clean up orphaned storage file: {e}")
|
||||
raise ValueError(f"File already exists at path: {path}")
|
||||
except Exception:
|
||||
# Any other database error (connection, validation, etc.) - clean up storage
|
||||
try:
|
||||
await storage.delete(storage_path)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to clean up orphaned storage file: {e}")
|
||||
raise
|
||||
|
||||
logger.info(
|
||||
f"Wrote file {file.id} ({filename}) to workspace {self.workspace_id} "
|
||||
f"at path {path}, size={len(content)} bytes"
|
||||
)
|
||||
|
||||
return file
|
||||
|
||||
async def list_files(
|
||||
self,
|
||||
path: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
offset: int = 0,
|
||||
include_all_sessions: bool = False,
|
||||
) -> list[UserWorkspaceFile]:
|
||||
"""
|
||||
List files in workspace.
|
||||
|
||||
When session_id is set and include_all_sessions is False (default),
|
||||
only files in the current session's folder are listed.
|
||||
|
||||
Args:
|
||||
path: Optional path prefix to filter (e.g., "/documents/")
|
||||
limit: Maximum number of files to return
|
||||
offset: Number of files to skip
|
||||
include_all_sessions: If True, list files from all sessions.
|
||||
If False (default), only list current session's files.
|
||||
|
||||
Returns:
|
||||
List of UserWorkspaceFile instances
|
||||
"""
|
||||
effective_path = self._get_effective_path(path, include_all_sessions)
|
||||
|
||||
return await list_workspace_files(
|
||||
workspace_id=self.workspace_id,
|
||||
path_prefix=effective_path,
|
||||
limit=limit,
|
||||
offset=offset,
|
||||
)
|
||||
|
||||
async def delete_file(self, file_id: str) -> bool:
|
||||
"""
|
||||
Delete a file (soft-delete).
|
||||
|
||||
Args:
|
||||
file_id: The file's ID
|
||||
|
||||
Returns:
|
||||
True if deleted, False if not found
|
||||
"""
|
||||
file = await get_workspace_file(file_id, self.workspace_id)
|
||||
if file is None:
|
||||
return False
|
||||
|
||||
# Delete from storage
|
||||
storage = await get_workspace_storage()
|
||||
try:
|
||||
await storage.delete(file.storagePath)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to delete file from storage: {e}")
|
||||
# Continue with database soft-delete even if storage delete fails
|
||||
|
||||
# Soft-delete database record
|
||||
result = await soft_delete_workspace_file(file_id, self.workspace_id)
|
||||
return result is not None
|
||||
|
||||
async def get_download_url(self, file_id: str, expires_in: int = 3600) -> str:
|
||||
"""
|
||||
Get download URL for a file.
|
||||
|
||||
Args:
|
||||
file_id: The file's ID
|
||||
expires_in: URL expiration in seconds (default 1 hour)
|
||||
|
||||
Returns:
|
||||
Download URL (signed URL for GCS, API endpoint for local)
|
||||
|
||||
Raises:
|
||||
FileNotFoundError: If file doesn't exist
|
||||
"""
|
||||
file = await get_workspace_file(file_id, self.workspace_id)
|
||||
if file is None:
|
||||
raise FileNotFoundError(f"File not found: {file_id}")
|
||||
|
||||
storage = await get_workspace_storage()
|
||||
return await storage.get_download_url(file.storagePath, expires_in)
|
||||
|
||||
async def get_file_info(self, file_id: str) -> Optional[UserWorkspaceFile]:
|
||||
"""
|
||||
Get file metadata.
|
||||
|
||||
Args:
|
||||
file_id: The file's ID
|
||||
|
||||
Returns:
|
||||
UserWorkspaceFile instance or None
|
||||
"""
|
||||
return await get_workspace_file(file_id, self.workspace_id)
|
||||
|
||||
async def get_file_info_by_path(self, path: str) -> Optional[UserWorkspaceFile]:
|
||||
"""
|
||||
Get file metadata by path.
|
||||
|
||||
When session_id is set, paths are resolved relative to the session folder
|
||||
unless they explicitly reference /sessions/...
|
||||
|
||||
Args:
|
||||
path: Virtual path
|
||||
|
||||
Returns:
|
||||
UserWorkspaceFile instance or None
|
||||
"""
|
||||
resolved_path = self._resolve_path(path)
|
||||
return await get_workspace_file_by_path(self.workspace_id, resolved_path)
|
||||
|
||||
async def get_file_count(
|
||||
self,
|
||||
path: Optional[str] = None,
|
||||
include_all_sessions: bool = False,
|
||||
) -> int:
|
||||
"""
|
||||
Get number of files in workspace.
|
||||
|
||||
When session_id is set and include_all_sessions is False (default),
|
||||
only counts files in the current session's folder.
|
||||
|
||||
Args:
|
||||
path: Optional path prefix to filter (e.g., "/documents/")
|
||||
include_all_sessions: If True, count all files in workspace.
|
||||
If False (default), only count current session's files.
|
||||
|
||||
Returns:
|
||||
Number of files
|
||||
"""
|
||||
effective_path = self._get_effective_path(path, include_all_sessions)
|
||||
|
||||
return await count_workspace_files(
|
||||
self.workspace_id, path_prefix=effective_path
|
||||
)
|
||||
398
autogpt_platform/backend/backend/util/workspace_storage.py
Normal file
398
autogpt_platform/backend/backend/util/workspace_storage.py
Normal file
@@ -0,0 +1,398 @@
|
||||
"""
|
||||
Workspace storage backend abstraction for supporting both cloud and local deployments.
|
||||
|
||||
This module provides a unified interface for storing workspace files, with implementations
|
||||
for Google Cloud Storage (cloud deployments) and local filesystem (self-hosted deployments).
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import hashlib
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import aiofiles
|
||||
import aiohttp
|
||||
from gcloud.aio import storage as async_gcs_storage
|
||||
from google.cloud import storage as gcs_storage
|
||||
|
||||
from backend.util.data import get_data_path
|
||||
from backend.util.gcs_utils import (
|
||||
download_with_fresh_session,
|
||||
generate_signed_url,
|
||||
parse_gcs_path,
|
||||
)
|
||||
from backend.util.settings import Config
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkspaceStorageBackend(ABC):
|
||||
"""Abstract interface for workspace file storage."""
|
||||
|
||||
@abstractmethod
|
||||
async def store(
|
||||
self,
|
||||
workspace_id: str,
|
||||
file_id: str,
|
||||
filename: str,
|
||||
content: bytes,
|
||||
) -> str:
|
||||
"""
|
||||
Store file content, return storage path.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
file_id: Unique file ID for storage
|
||||
filename: Original filename
|
||||
content: File content as bytes
|
||||
|
||||
Returns:
|
||||
Storage path string (cloud path or local path)
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def retrieve(self, storage_path: str) -> bytes:
|
||||
"""
|
||||
Retrieve file content from storage.
|
||||
|
||||
Args:
|
||||
storage_path: The storage path returned from store()
|
||||
|
||||
Returns:
|
||||
File content as bytes
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def delete(self, storage_path: str) -> None:
|
||||
"""
|
||||
Delete file from storage.
|
||||
|
||||
Args:
|
||||
storage_path: The storage path to delete
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
|
||||
"""
|
||||
Get URL for downloading the file.
|
||||
|
||||
Args:
|
||||
storage_path: The storage path
|
||||
expires_in: URL expiration time in seconds (default 1 hour)
|
||||
|
||||
Returns:
|
||||
Download URL (signed URL for GCS, direct API path for local)
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class GCSWorkspaceStorage(WorkspaceStorageBackend):
|
||||
"""Google Cloud Storage implementation for workspace storage."""
|
||||
|
||||
def __init__(self, bucket_name: str):
|
||||
self.bucket_name = bucket_name
|
||||
self._async_client: Optional[async_gcs_storage.Storage] = None
|
||||
self._sync_client: Optional[gcs_storage.Client] = None
|
||||
self._session: Optional[aiohttp.ClientSession] = None
|
||||
|
||||
async def _get_async_client(self) -> async_gcs_storage.Storage:
|
||||
"""Get or create async GCS client."""
|
||||
if self._async_client is None:
|
||||
self._session = aiohttp.ClientSession(
|
||||
connector=aiohttp.TCPConnector(limit=100, force_close=False)
|
||||
)
|
||||
self._async_client = async_gcs_storage.Storage(session=self._session)
|
||||
return self._async_client
|
||||
|
||||
def _get_sync_client(self) -> gcs_storage.Client:
|
||||
"""Get or create sync GCS client (for signed URLs)."""
|
||||
if self._sync_client is None:
|
||||
self._sync_client = gcs_storage.Client()
|
||||
return self._sync_client
|
||||
|
||||
async def close(self) -> None:
|
||||
"""Close all client connections."""
|
||||
if self._async_client is not None:
|
||||
try:
|
||||
await self._async_client.close()
|
||||
except Exception as e:
|
||||
logger.warning(f"Error closing GCS client: {e}")
|
||||
self._async_client = None
|
||||
|
||||
if self._session is not None:
|
||||
try:
|
||||
await self._session.close()
|
||||
except Exception as e:
|
||||
logger.warning(f"Error closing session: {e}")
|
||||
self._session = None
|
||||
|
||||
def _build_blob_name(self, workspace_id: str, file_id: str, filename: str) -> str:
|
||||
"""Build the blob path for workspace files."""
|
||||
return f"workspaces/{workspace_id}/{file_id}/{filename}"
|
||||
|
||||
async def store(
|
||||
self,
|
||||
workspace_id: str,
|
||||
file_id: str,
|
||||
filename: str,
|
||||
content: bytes,
|
||||
) -> str:
|
||||
"""Store file in GCS."""
|
||||
client = await self._get_async_client()
|
||||
blob_name = self._build_blob_name(workspace_id, file_id, filename)
|
||||
|
||||
# Upload with metadata
|
||||
upload_time = datetime.now(timezone.utc)
|
||||
await client.upload(
|
||||
self.bucket_name,
|
||||
blob_name,
|
||||
content,
|
||||
metadata={
|
||||
"uploaded_at": upload_time.isoformat(),
|
||||
"workspace_id": workspace_id,
|
||||
"file_id": file_id,
|
||||
},
|
||||
)
|
||||
|
||||
return f"gcs://{self.bucket_name}/{blob_name}"
|
||||
|
||||
async def retrieve(self, storage_path: str) -> bytes:
|
||||
"""Retrieve file from GCS."""
|
||||
bucket_name, blob_name = parse_gcs_path(storage_path)
|
||||
return await download_with_fresh_session(bucket_name, blob_name)
|
||||
|
||||
async def delete(self, storage_path: str) -> None:
|
||||
"""Delete file from GCS."""
|
||||
bucket_name, blob_name = parse_gcs_path(storage_path)
|
||||
client = await self._get_async_client()
|
||||
|
||||
try:
|
||||
await client.delete(bucket_name, blob_name)
|
||||
except Exception as e:
|
||||
if "404" not in str(e) and "Not Found" not in str(e):
|
||||
raise
|
||||
# File already deleted, that's fine
|
||||
|
||||
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
|
||||
"""
|
||||
Generate download URL for GCS file.
|
||||
|
||||
Attempts to generate a signed URL if running with service account credentials.
|
||||
Falls back to an API proxy endpoint if signed URL generation fails
|
||||
(e.g., when running locally with user OAuth credentials).
|
||||
"""
|
||||
bucket_name, blob_name = parse_gcs_path(storage_path)
|
||||
|
||||
# Extract file_id from blob_name for fallback: workspaces/{workspace_id}/{file_id}/{filename}
|
||||
blob_parts = blob_name.split("/")
|
||||
file_id = blob_parts[2] if len(blob_parts) >= 3 else None
|
||||
|
||||
# Try to generate signed URL (requires service account credentials)
|
||||
try:
|
||||
sync_client = self._get_sync_client()
|
||||
return await generate_signed_url(
|
||||
sync_client, bucket_name, blob_name, expires_in
|
||||
)
|
||||
except AttributeError as e:
|
||||
# Signed URL generation requires service account with private key.
|
||||
# When running with user OAuth credentials, fall back to API proxy.
|
||||
if "private key" in str(e) and file_id:
|
||||
logger.debug(
|
||||
"Cannot generate signed URL (no service account credentials), "
|
||||
"falling back to API proxy endpoint"
|
||||
)
|
||||
return f"/api/workspace/files/{file_id}/download"
|
||||
raise
|
||||
|
||||
|
||||
class LocalWorkspaceStorage(WorkspaceStorageBackend):
|
||||
"""Local filesystem implementation for workspace storage (self-hosted deployments)."""
|
||||
|
||||
def __init__(self, base_dir: Optional[str] = None):
|
||||
"""
|
||||
Initialize local storage backend.
|
||||
|
||||
Args:
|
||||
base_dir: Base directory for workspace storage.
|
||||
If None, defaults to {app_data}/workspaces
|
||||
"""
|
||||
if base_dir:
|
||||
self.base_dir = Path(base_dir)
|
||||
else:
|
||||
self.base_dir = Path(get_data_path()) / "workspaces"
|
||||
|
||||
# Ensure base directory exists
|
||||
self.base_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def _build_file_path(self, workspace_id: str, file_id: str, filename: str) -> Path:
|
||||
"""Build the local file path with path traversal protection."""
|
||||
# Import here to avoid circular import
|
||||
# (file.py imports workspace.py which imports workspace_storage.py)
|
||||
from backend.util.file import sanitize_filename
|
||||
|
||||
# Sanitize filename to prevent path traversal (removes / and \ among others)
|
||||
safe_filename = sanitize_filename(filename)
|
||||
file_path = (self.base_dir / workspace_id / file_id / safe_filename).resolve()
|
||||
|
||||
# Verify the resolved path is still under base_dir
|
||||
if not file_path.is_relative_to(self.base_dir.resolve()):
|
||||
raise ValueError("Invalid filename: path traversal detected")
|
||||
|
||||
return file_path
|
||||
|
||||
def _parse_storage_path(self, storage_path: str) -> Path:
|
||||
"""Parse local storage path to filesystem path."""
|
||||
if storage_path.startswith("local://"):
|
||||
relative_path = storage_path[8:] # Remove "local://"
|
||||
else:
|
||||
relative_path = storage_path
|
||||
|
||||
full_path = (self.base_dir / relative_path).resolve()
|
||||
|
||||
# Security check: ensure path is under base_dir
|
||||
# Use is_relative_to() for robust path containment check
|
||||
# (handles case-insensitive filesystems and edge cases)
|
||||
if not full_path.is_relative_to(self.base_dir.resolve()):
|
||||
raise ValueError("Invalid storage path: path traversal detected")
|
||||
|
||||
return full_path
|
||||
|
||||
async def store(
|
||||
self,
|
||||
workspace_id: str,
|
||||
file_id: str,
|
||||
filename: str,
|
||||
content: bytes,
|
||||
) -> str:
|
||||
"""Store file locally."""
|
||||
file_path = self._build_file_path(workspace_id, file_id, filename)
|
||||
|
||||
# Create parent directories
|
||||
file_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Write file asynchronously
|
||||
async with aiofiles.open(file_path, "wb") as f:
|
||||
await f.write(content)
|
||||
|
||||
# Return relative path as storage path
|
||||
relative_path = file_path.relative_to(self.base_dir)
|
||||
return f"local://{relative_path}"
|
||||
|
||||
async def retrieve(self, storage_path: str) -> bytes:
|
||||
"""Retrieve file from local storage."""
|
||||
file_path = self._parse_storage_path(storage_path)
|
||||
|
||||
if not file_path.exists():
|
||||
raise FileNotFoundError(f"File not found: {storage_path}")
|
||||
|
||||
async with aiofiles.open(file_path, "rb") as f:
|
||||
return await f.read()
|
||||
|
||||
async def delete(self, storage_path: str) -> None:
|
||||
"""Delete file from local storage."""
|
||||
file_path = self._parse_storage_path(storage_path)
|
||||
|
||||
if file_path.exists():
|
||||
# Remove file
|
||||
file_path.unlink()
|
||||
|
||||
# Clean up empty parent directories
|
||||
parent = file_path.parent
|
||||
while parent != self.base_dir:
|
||||
try:
|
||||
if parent.exists() and not any(parent.iterdir()):
|
||||
parent.rmdir()
|
||||
else:
|
||||
break
|
||||
except OSError:
|
||||
break
|
||||
parent = parent.parent
|
||||
|
||||
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
|
||||
"""
|
||||
Get download URL for local file.
|
||||
|
||||
For local storage, this returns an API endpoint path.
|
||||
The actual serving is handled by the API layer.
|
||||
"""
|
||||
# Parse the storage path to get the components
|
||||
if storage_path.startswith("local://"):
|
||||
relative_path = storage_path[8:]
|
||||
else:
|
||||
relative_path = storage_path
|
||||
|
||||
# Return the API endpoint for downloading
|
||||
# The file_id is extracted from the path: {workspace_id}/{file_id}/{filename}
|
||||
parts = relative_path.split("/")
|
||||
if len(parts) >= 2:
|
||||
file_id = parts[1] # Second component is file_id
|
||||
return f"/api/workspace/files/{file_id}/download"
|
||||
else:
|
||||
raise ValueError(f"Invalid storage path format: {storage_path}")
|
||||
|
||||
|
||||
# Global storage backend instance
|
||||
_workspace_storage: Optional[WorkspaceStorageBackend] = None
|
||||
_storage_lock = asyncio.Lock()
|
||||
|
||||
|
||||
async def get_workspace_storage() -> WorkspaceStorageBackend:
|
||||
"""
|
||||
Get the workspace storage backend instance.
|
||||
|
||||
Uses GCS if media_gcs_bucket_name is configured, otherwise uses local storage.
|
||||
"""
|
||||
global _workspace_storage
|
||||
|
||||
if _workspace_storage is None:
|
||||
async with _storage_lock:
|
||||
if _workspace_storage is None:
|
||||
config = Config()
|
||||
|
||||
if config.media_gcs_bucket_name:
|
||||
logger.info(
|
||||
f"Using GCS workspace storage: {config.media_gcs_bucket_name}"
|
||||
)
|
||||
_workspace_storage = GCSWorkspaceStorage(
|
||||
config.media_gcs_bucket_name
|
||||
)
|
||||
else:
|
||||
storage_dir = (
|
||||
config.workspace_storage_dir
|
||||
if config.workspace_storage_dir
|
||||
else None
|
||||
)
|
||||
logger.info(
|
||||
f"Using local workspace storage: {storage_dir or 'default'}"
|
||||
)
|
||||
_workspace_storage = LocalWorkspaceStorage(storage_dir)
|
||||
|
||||
return _workspace_storage
|
||||
|
||||
|
||||
async def shutdown_workspace_storage() -> None:
|
||||
"""
|
||||
Properly shutdown the global workspace storage backend.
|
||||
|
||||
Closes aiohttp sessions and other resources for GCS backend.
|
||||
Should be called during application shutdown.
|
||||
"""
|
||||
global _workspace_storage
|
||||
|
||||
if _workspace_storage is not None:
|
||||
async with _storage_lock:
|
||||
if _workspace_storage is not None:
|
||||
if isinstance(_workspace_storage, GCSWorkspaceStorage):
|
||||
await _workspace_storage.close()
|
||||
_workspace_storage = None
|
||||
|
||||
|
||||
def compute_file_checksum(content: bytes) -> str:
|
||||
"""Compute SHA256 checksum of file content."""
|
||||
return hashlib.sha256(content).hexdigest()
|
||||
@@ -0,0 +1,22 @@
|
||||
-- Migrate Claude 3.7 Sonnet to Claude 4.5 Sonnet
|
||||
-- This updates all AgentNode blocks that use the deprecated Claude 3.7 Sonnet model
|
||||
-- Anthropic is retiring claude-3-7-sonnet-20250219 on February 19, 2026
|
||||
|
||||
-- Update AgentNode constant inputs
|
||||
UPDATE "AgentNode"
|
||||
SET "constantInput" = JSONB_SET(
|
||||
"constantInput"::jsonb,
|
||||
'{model}',
|
||||
'"claude-sonnet-4-5-20250929"'::jsonb
|
||||
)
|
||||
WHERE "constantInput"::jsonb->>'model' = 'claude-3-7-sonnet-20250219';
|
||||
|
||||
-- Update AgentPreset input overrides (stored in AgentNodeExecutionInputOutput)
|
||||
UPDATE "AgentNodeExecutionInputOutput"
|
||||
SET "data" = JSONB_SET(
|
||||
"data"::jsonb,
|
||||
'{model}',
|
||||
'"claude-sonnet-4-5-20250929"'::jsonb
|
||||
)
|
||||
WHERE "agentPresetId" IS NOT NULL
|
||||
AND "data"::jsonb->>'model' = 'claude-3-7-sonnet-20250219';
|
||||
@@ -0,0 +1,52 @@
|
||||
-- CreateEnum
|
||||
CREATE TYPE "WorkspaceFileSource" AS ENUM ('UPLOAD', 'EXECUTION', 'COPILOT', 'IMPORT');
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "UserWorkspace" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL,
|
||||
"userId" TEXT NOT NULL,
|
||||
|
||||
CONSTRAINT "UserWorkspace_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "UserWorkspaceFile" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL,
|
||||
"workspaceId" TEXT NOT NULL,
|
||||
"name" TEXT NOT NULL,
|
||||
"path" TEXT NOT NULL,
|
||||
"storagePath" TEXT NOT NULL,
|
||||
"mimeType" TEXT NOT NULL,
|
||||
"sizeBytes" BIGINT NOT NULL,
|
||||
"checksum" TEXT,
|
||||
"isDeleted" BOOLEAN NOT NULL DEFAULT false,
|
||||
"deletedAt" TIMESTAMP(3),
|
||||
"source" "WorkspaceFileSource" NOT NULL DEFAULT 'UPLOAD',
|
||||
"sourceExecId" TEXT,
|
||||
"sourceSessionId" TEXT,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}',
|
||||
|
||||
CONSTRAINT "UserWorkspaceFile_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateIndex
|
||||
CREATE UNIQUE INDEX "UserWorkspace_userId_key" ON "UserWorkspace"("userId");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "UserWorkspace_userId_idx" ON "UserWorkspace"("userId");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "UserWorkspaceFile_workspaceId_isDeleted_idx" ON "UserWorkspaceFile"("workspaceId", "isDeleted");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE UNIQUE INDEX "UserWorkspaceFile_workspaceId_path_key" ON "UserWorkspaceFile"("workspaceId", "path");
|
||||
|
||||
-- AddForeignKey
|
||||
ALTER TABLE "UserWorkspace" ADD CONSTRAINT "UserWorkspace_userId_fkey" FOREIGN KEY ("userId") REFERENCES "User"("id") ON DELETE CASCADE ON UPDATE CASCADE;
|
||||
|
||||
-- AddForeignKey
|
||||
ALTER TABLE "UserWorkspaceFile" ADD CONSTRAINT "UserWorkspaceFile_workspaceId_fkey" FOREIGN KEY ("workspaceId") REFERENCES "UserWorkspace"("id") ON DELETE CASCADE ON UPDATE CASCADE;
|
||||
@@ -0,0 +1,16 @@
|
||||
/*
|
||||
Warnings:
|
||||
|
||||
- You are about to drop the column `source` on the `UserWorkspaceFile` table. All the data in the column will be lost.
|
||||
- You are about to drop the column `sourceExecId` on the `UserWorkspaceFile` table. All the data in the column will be lost.
|
||||
- You are about to drop the column `sourceSessionId` on the `UserWorkspaceFile` table. All the data in the column will be lost.
|
||||
|
||||
*/
|
||||
|
||||
-- AlterTable
|
||||
ALTER TABLE "UserWorkspaceFile" DROP COLUMN "source",
|
||||
DROP COLUMN "sourceExecId",
|
||||
DROP COLUMN "sourceSessionId";
|
||||
|
||||
-- DropEnum
|
||||
DROP TYPE "WorkspaceFileSource";
|
||||
@@ -63,6 +63,7 @@ model User {
|
||||
IntegrationWebhooks IntegrationWebhook[]
|
||||
NotificationBatches UserNotificationBatch[]
|
||||
PendingHumanReviews PendingHumanReview[]
|
||||
Workspace UserWorkspace?
|
||||
|
||||
// OAuth Provider relations
|
||||
OAuthApplications OAuthApplication[]
|
||||
@@ -137,6 +138,53 @@ model CoPilotUnderstanding {
|
||||
@@index([userId])
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
//////////////// USER WORKSPACE TABLES /////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
// User's persistent file storage workspace
|
||||
model UserWorkspace {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
userId String @unique
|
||||
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
|
||||
|
||||
Files UserWorkspaceFile[]
|
||||
|
||||
@@index([userId])
|
||||
}
|
||||
|
||||
// Individual files in a user's workspace
|
||||
model UserWorkspaceFile {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
workspaceId String
|
||||
Workspace UserWorkspace @relation(fields: [workspaceId], references: [id], onDelete: Cascade)
|
||||
|
||||
// File metadata
|
||||
name String // User-visible filename
|
||||
path String // Virtual path (e.g., "/documents/report.pdf")
|
||||
storagePath String // Actual GCS or local storage path
|
||||
mimeType String
|
||||
sizeBytes BigInt
|
||||
checksum String? // SHA256 for integrity
|
||||
|
||||
// File state
|
||||
isDeleted Boolean @default(false)
|
||||
deletedAt DateTime?
|
||||
|
||||
metadata Json @default("{}")
|
||||
|
||||
@@unique([workspaceId, path])
|
||||
@@index([workspaceId, isDeleted])
|
||||
}
|
||||
|
||||
model BuilderSearchHistory {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
|
||||
@@ -151,15 +151,20 @@ class TestDecomposeGoalExternal:
|
||||
@pytest.mark.asyncio
|
||||
async def test_decompose_goal_handles_http_error(self):
|
||||
"""Test decomposition handles HTTP errors gracefully."""
|
||||
mock_response = MagicMock()
|
||||
mock_response.status_code = 500
|
||||
mock_client = AsyncMock()
|
||||
mock_client.post.side_effect = httpx.HTTPStatusError(
|
||||
"Server error", request=MagicMock(), response=MagicMock()
|
||||
"Server error", request=MagicMock(), response=mock_response
|
||||
)
|
||||
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.decompose_goal_external("Build a chatbot")
|
||||
|
||||
assert result is None
|
||||
assert result is not None
|
||||
assert result.get("type") == "error"
|
||||
assert result.get("error_type") == "http_error"
|
||||
assert "Server error" in result.get("error", "")
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_decompose_goal_handles_request_error(self):
|
||||
@@ -170,7 +175,10 @@ class TestDecomposeGoalExternal:
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.decompose_goal_external("Build a chatbot")
|
||||
|
||||
assert result is None
|
||||
assert result is not None
|
||||
assert result.get("type") == "error"
|
||||
assert result.get("error_type") == "connection_error"
|
||||
assert "Connection failed" in result.get("error", "")
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_decompose_goal_handles_service_error(self):
|
||||
@@ -179,6 +187,7 @@ class TestDecomposeGoalExternal:
|
||||
mock_response.json.return_value = {
|
||||
"success": False,
|
||||
"error": "Internal error",
|
||||
"error_type": "internal_error",
|
||||
}
|
||||
mock_response.raise_for_status = MagicMock()
|
||||
|
||||
@@ -188,7 +197,10 @@ class TestDecomposeGoalExternal:
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.decompose_goal_external("Build a chatbot")
|
||||
|
||||
assert result is None
|
||||
assert result is not None
|
||||
assert result.get("type") == "error"
|
||||
assert result.get("error") == "Internal error"
|
||||
assert result.get("error_type") == "internal_error"
|
||||
|
||||
|
||||
class TestGenerateAgentExternal:
|
||||
@@ -236,7 +248,10 @@ class TestGenerateAgentExternal:
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.generate_agent_external({"steps": []})
|
||||
|
||||
assert result is None
|
||||
assert result is not None
|
||||
assert result.get("type") == "error"
|
||||
assert result.get("error_type") == "connection_error"
|
||||
assert "Connection failed" in result.get("error", "")
|
||||
|
||||
|
||||
class TestGenerateAgentPatchExternal:
|
||||
|
||||
@@ -43,19 +43,24 @@ faker = Faker()
|
||||
# Constants for data generation limits (reduced for E2E tests)
|
||||
NUM_USERS = 15
|
||||
NUM_AGENT_BLOCKS = 30
|
||||
MIN_GRAPHS_PER_USER = 15
|
||||
MAX_GRAPHS_PER_USER = 15
|
||||
MIN_GRAPHS_PER_USER = 25
|
||||
MAX_GRAPHS_PER_USER = 25
|
||||
MIN_NODES_PER_GRAPH = 3
|
||||
MAX_NODES_PER_GRAPH = 6
|
||||
MIN_PRESETS_PER_USER = 2
|
||||
MAX_PRESETS_PER_USER = 3
|
||||
MIN_AGENTS_PER_USER = 15
|
||||
MAX_AGENTS_PER_USER = 15
|
||||
MIN_AGENTS_PER_USER = 25
|
||||
MAX_AGENTS_PER_USER = 25
|
||||
MIN_EXECUTIONS_PER_GRAPH = 2
|
||||
MAX_EXECUTIONS_PER_GRAPH = 8
|
||||
MIN_REVIEWS_PER_VERSION = 2
|
||||
MAX_REVIEWS_PER_VERSION = 5
|
||||
|
||||
# Guaranteed minimums for marketplace tests (deterministic)
|
||||
GUARANTEED_FEATURED_AGENTS = 8
|
||||
GUARANTEED_FEATURED_CREATORS = 5
|
||||
GUARANTEED_TOP_AGENTS = 10
|
||||
|
||||
|
||||
def get_image():
|
||||
"""Generate a consistent image URL using picsum.photos service."""
|
||||
@@ -385,7 +390,7 @@ class TestDataCreator:
|
||||
|
||||
library_agents = []
|
||||
for user in self.users:
|
||||
num_agents = 10 # Create exactly 10 agents per user
|
||||
num_agents = random.randint(MIN_AGENTS_PER_USER, MAX_AGENTS_PER_USER)
|
||||
|
||||
# Get available graphs for this user
|
||||
user_graphs = [
|
||||
@@ -507,14 +512,17 @@ class TestDataCreator:
|
||||
existing_profiles, min(num_creators, len(existing_profiles))
|
||||
)
|
||||
|
||||
# Mark about 50% of creators as featured (more for testing)
|
||||
num_featured = max(2, int(num_creators * 0.5))
|
||||
# Guarantee at least GUARANTEED_FEATURED_CREATORS featured creators
|
||||
num_featured = max(GUARANTEED_FEATURED_CREATORS, int(num_creators * 0.5))
|
||||
num_featured = min(
|
||||
num_featured, len(selected_profiles)
|
||||
) # Don't exceed available profiles
|
||||
featured_profile_ids = set(
|
||||
random.sample([p.id for p in selected_profiles], num_featured)
|
||||
)
|
||||
print(
|
||||
f"🎯 Creating {num_featured} featured creators (min: {GUARANTEED_FEATURED_CREATORS})"
|
||||
)
|
||||
|
||||
for profile in selected_profiles:
|
||||
try:
|
||||
@@ -545,21 +553,25 @@ class TestDataCreator:
|
||||
return profiles
|
||||
|
||||
async def create_test_store_submissions(self) -> List[Dict[str, Any]]:
|
||||
"""Create test store submissions using the API function."""
|
||||
"""Create test store submissions using the API function.
|
||||
|
||||
DETERMINISTIC: Guarantees minimum featured agents for E2E tests.
|
||||
"""
|
||||
print("Creating test store submissions...")
|
||||
|
||||
submissions = []
|
||||
approved_submissions = []
|
||||
featured_count = 0
|
||||
submission_counter = 0
|
||||
|
||||
# Create a special test submission for test123@gmail.com
|
||||
# Create a special test submission for test123@gmail.com (ALWAYS approved + featured)
|
||||
test_user = next(
|
||||
(user for user in self.users if user["email"] == "test123@gmail.com"), None
|
||||
)
|
||||
if test_user:
|
||||
# Special test data for consistent testing
|
||||
if test_user and self.agent_graphs:
|
||||
test_submission_data = {
|
||||
"user_id": test_user["id"],
|
||||
"agent_id": self.agent_graphs[0]["id"], # Use first available graph
|
||||
"agent_id": self.agent_graphs[0]["id"],
|
||||
"agent_version": 1,
|
||||
"slug": "test-agent-submission",
|
||||
"name": "Test Agent Submission",
|
||||
@@ -580,37 +592,24 @@ class TestDataCreator:
|
||||
submissions.append(test_submission.model_dump())
|
||||
print("✅ Created special test store submission for test123@gmail.com")
|
||||
|
||||
# Randomly approve, reject, or leave pending the test submission
|
||||
# ALWAYS approve and feature the test submission
|
||||
if test_submission.store_listing_version_id:
|
||||
random_value = random.random()
|
||||
if random_value < 0.4: # 40% chance to approve
|
||||
approved_submission = await review_store_submission(
|
||||
store_listing_version_id=test_submission.store_listing_version_id,
|
||||
is_approved=True,
|
||||
external_comments="Test submission approved",
|
||||
internal_comments="Auto-approved test submission",
|
||||
reviewer_id=test_user["id"],
|
||||
)
|
||||
approved_submissions.append(approved_submission.model_dump())
|
||||
print("✅ Approved test store submission")
|
||||
approved_submission = await review_store_submission(
|
||||
store_listing_version_id=test_submission.store_listing_version_id,
|
||||
is_approved=True,
|
||||
external_comments="Test submission approved",
|
||||
internal_comments="Auto-approved test submission",
|
||||
reviewer_id=test_user["id"],
|
||||
)
|
||||
approved_submissions.append(approved_submission.model_dump())
|
||||
print("✅ Approved test store submission")
|
||||
|
||||
# Mark approved submission as featured
|
||||
await prisma.storelistingversion.update(
|
||||
where={"id": test_submission.store_listing_version_id},
|
||||
data={"isFeatured": True},
|
||||
)
|
||||
print("🌟 Marked test agent as FEATURED")
|
||||
elif random_value < 0.7: # 30% chance to reject (40% to 70%)
|
||||
await review_store_submission(
|
||||
store_listing_version_id=test_submission.store_listing_version_id,
|
||||
is_approved=False,
|
||||
external_comments="Test submission rejected - needs improvements",
|
||||
internal_comments="Auto-rejected test submission for E2E testing",
|
||||
reviewer_id=test_user["id"],
|
||||
)
|
||||
print("❌ Rejected test store submission")
|
||||
else: # 30% chance to leave pending (70% to 100%)
|
||||
print("⏳ Left test submission pending for review")
|
||||
await prisma.storelistingversion.update(
|
||||
where={"id": test_submission.store_listing_version_id},
|
||||
data={"isFeatured": True},
|
||||
)
|
||||
featured_count += 1
|
||||
print("🌟 Marked test agent as FEATURED")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error creating test store submission: {e}")
|
||||
@@ -620,7 +619,6 @@ class TestDataCreator:
|
||||
|
||||
# Create regular submissions for all users
|
||||
for user in self.users:
|
||||
# Get available graphs for this specific user
|
||||
user_graphs = [
|
||||
g for g in self.agent_graphs if g.get("userId") == user["id"]
|
||||
]
|
||||
@@ -631,18 +629,17 @@ class TestDataCreator:
|
||||
)
|
||||
continue
|
||||
|
||||
# Create exactly 4 store submissions per user
|
||||
for submission_index in range(4):
|
||||
graph = random.choice(user_graphs)
|
||||
submission_counter += 1
|
||||
|
||||
try:
|
||||
print(
|
||||
f"Creating store submission for user {user['id']} with graph {graph['id']} (owner: {graph.get('userId')})"
|
||||
f"Creating store submission for user {user['id']} with graph {graph['id']}"
|
||||
)
|
||||
|
||||
# Use the API function to create store submission with correct parameters
|
||||
submission = await create_store_submission(
|
||||
user_id=user["id"], # Must match graph's userId
|
||||
user_id=user["id"],
|
||||
agent_id=graph["id"],
|
||||
agent_version=graph.get("version", 1),
|
||||
slug=faker.slug(),
|
||||
@@ -651,22 +648,24 @@ class TestDataCreator:
|
||||
video_url=get_video_url() if random.random() < 0.3 else None,
|
||||
image_urls=[get_image() for _ in range(3)],
|
||||
description=faker.text(),
|
||||
categories=[
|
||||
get_category()
|
||||
], # Single category from predefined list
|
||||
categories=[get_category()],
|
||||
changes_summary="Initial E2E test submission",
|
||||
)
|
||||
submissions.append(submission.model_dump())
|
||||
print(f"✅ Created store submission: {submission.name}")
|
||||
|
||||
# Randomly approve, reject, or leave pending the submission
|
||||
if submission.store_listing_version_id:
|
||||
random_value = random.random()
|
||||
if random_value < 0.4: # 40% chance to approve
|
||||
try:
|
||||
# Pick a random user as the reviewer (admin)
|
||||
reviewer_id = random.choice(self.users)["id"]
|
||||
# DETERMINISTIC: First N submissions are always approved
|
||||
# First GUARANTEED_FEATURED_AGENTS of those are always featured
|
||||
should_approve = (
|
||||
submission_counter <= GUARANTEED_TOP_AGENTS
|
||||
or random.random() < 0.4
|
||||
)
|
||||
should_feature = featured_count < GUARANTEED_FEATURED_AGENTS
|
||||
|
||||
if should_approve:
|
||||
try:
|
||||
reviewer_id = random.choice(self.users)["id"]
|
||||
approved_submission = await review_store_submission(
|
||||
store_listing_version_id=submission.store_listing_version_id,
|
||||
is_approved=True,
|
||||
@@ -681,16 +680,7 @@ class TestDataCreator:
|
||||
f"✅ Approved store submission: {submission.name}"
|
||||
)
|
||||
|
||||
# Mark some agents as featured during creation (30% chance)
|
||||
# More likely for creators and first submissions
|
||||
is_creator = user["id"] in [
|
||||
p.get("userId") for p in self.profiles
|
||||
]
|
||||
feature_chance = (
|
||||
0.5 if is_creator else 0.2
|
||||
) # 50% for creators, 20% for others
|
||||
|
||||
if random.random() < feature_chance:
|
||||
if should_feature:
|
||||
try:
|
||||
await prisma.storelistingversion.update(
|
||||
where={
|
||||
@@ -698,8 +688,25 @@ class TestDataCreator:
|
||||
},
|
||||
data={"isFeatured": True},
|
||||
)
|
||||
featured_count += 1
|
||||
print(
|
||||
f"🌟 Marked agent as FEATURED: {submission.name}"
|
||||
f"🌟 Marked agent as FEATURED ({featured_count}/{GUARANTEED_FEATURED_AGENTS}): {submission.name}"
|
||||
)
|
||||
except Exception as e:
|
||||
print(
|
||||
f"Warning: Could not mark submission as featured: {e}"
|
||||
)
|
||||
elif random.random() < 0.2:
|
||||
try:
|
||||
await prisma.storelistingversion.update(
|
||||
where={
|
||||
"id": submission.store_listing_version_id
|
||||
},
|
||||
data={"isFeatured": True},
|
||||
)
|
||||
featured_count += 1
|
||||
print(
|
||||
f"🌟 Marked agent as FEATURED (bonus): {submission.name}"
|
||||
)
|
||||
except Exception as e:
|
||||
print(
|
||||
@@ -710,11 +717,9 @@ class TestDataCreator:
|
||||
print(
|
||||
f"Warning: Could not approve submission {submission.name}: {e}"
|
||||
)
|
||||
elif random_value < 0.7: # 30% chance to reject (40% to 70%)
|
||||
elif random.random() < 0.5:
|
||||
try:
|
||||
# Pick a random user as the reviewer (admin)
|
||||
reviewer_id = random.choice(self.users)["id"]
|
||||
|
||||
await review_store_submission(
|
||||
store_listing_version_id=submission.store_listing_version_id,
|
||||
is_approved=False,
|
||||
@@ -729,7 +734,7 @@ class TestDataCreator:
|
||||
print(
|
||||
f"Warning: Could not reject submission {submission.name}: {e}"
|
||||
)
|
||||
else: # 30% chance to leave pending (70% to 100%)
|
||||
else:
|
||||
print(
|
||||
f"⏳ Left submission pending for review: {submission.name}"
|
||||
)
|
||||
@@ -743,9 +748,13 @@ class TestDataCreator:
|
||||
traceback.print_exc()
|
||||
continue
|
||||
|
||||
print("\n📊 Store Submissions Summary:")
|
||||
print(f" Created: {len(submissions)}")
|
||||
print(f" Approved: {len(approved_submissions)}")
|
||||
print(
|
||||
f"Created {len(submissions)} store submissions, approved {len(approved_submissions)}"
|
||||
f" Featured: {featured_count} (guaranteed min: {GUARANTEED_FEATURED_AGENTS})"
|
||||
)
|
||||
|
||||
self.store_submissions = submissions
|
||||
return submissions
|
||||
|
||||
@@ -825,12 +834,15 @@ class TestDataCreator:
|
||||
print(f"✅ Agent blocks available: {len(self.agent_blocks)}")
|
||||
print(f"✅ Agent graphs created: {len(self.agent_graphs)}")
|
||||
print(f"✅ Library agents created: {len(self.library_agents)}")
|
||||
print(f"✅ Creator profiles updated: {len(self.profiles)} (some featured)")
|
||||
print(
|
||||
f"✅ Store submissions created: {len(self.store_submissions)} (some marked as featured during creation)"
|
||||
)
|
||||
print(f"✅ Creator profiles updated: {len(self.profiles)}")
|
||||
print(f"✅ Store submissions created: {len(self.store_submissions)}")
|
||||
print(f"✅ API keys created: {len(self.api_keys)}")
|
||||
print(f"✅ Presets created: {len(self.presets)}")
|
||||
print("\n🎯 Deterministic Guarantees:")
|
||||
print(f" • Featured agents: >= {GUARANTEED_FEATURED_AGENTS}")
|
||||
print(f" • Featured creators: >= {GUARANTEED_FEATURED_CREATORS}")
|
||||
print(f" • Top agents (approved): >= {GUARANTEED_TOP_AGENTS}")
|
||||
print(f" • Library agents per user: >= {MIN_AGENTS_PER_USER}")
|
||||
print("\n🚀 Your E2E test database is ready to use!")
|
||||
|
||||
|
||||
|
||||
@@ -34,3 +34,6 @@ NEXT_PUBLIC_PREVIEW_STEALING_DEV=
|
||||
# PostHog Analytics
|
||||
NEXT_PUBLIC_POSTHOG_KEY=
|
||||
NEXT_PUBLIC_POSTHOG_HOST=https://eu.i.posthog.com
|
||||
|
||||
# OpenAI (for voice transcription)
|
||||
OPENAI_API_KEY=
|
||||
|
||||
76
autogpt_platform/frontend/CLAUDE.md
Normal file
76
autogpt_platform/frontend/CLAUDE.md
Normal file
@@ -0,0 +1,76 @@
|
||||
# CLAUDE.md - Frontend
|
||||
|
||||
This file provides guidance to Claude Code when working with the frontend.
|
||||
|
||||
## Essential Commands
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
pnpm i
|
||||
|
||||
# Generate API client from OpenAPI spec
|
||||
pnpm generate:api
|
||||
|
||||
# Start development server
|
||||
pnpm dev
|
||||
|
||||
# Run E2E tests
|
||||
pnpm test
|
||||
|
||||
# Run Storybook for component development
|
||||
pnpm storybook
|
||||
|
||||
# Build production
|
||||
pnpm build
|
||||
|
||||
# Format and lint
|
||||
pnpm format
|
||||
|
||||
# Type checking
|
||||
pnpm types
|
||||
```
|
||||
|
||||
### Code Style
|
||||
|
||||
- Fully capitalize acronyms in symbols, e.g. `graphID`, `useBackendAPI`
|
||||
- Use function declarations (not arrow functions) for components/handlers
|
||||
|
||||
## Architecture
|
||||
|
||||
- **Framework**: Next.js 15 App Router (client-first approach)
|
||||
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
|
||||
- **State Management**: React Query for server state, co-located UI state in components/hooks
|
||||
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
|
||||
- **Workflow Builder**: Visual graph editor using @xyflow/react
|
||||
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
|
||||
- **Icons**: Phosphor Icons only
|
||||
- **Feature Flags**: LaunchDarkly integration
|
||||
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
|
||||
- **Testing**: Playwright for E2E, Storybook for component development
|
||||
|
||||
## Environment Configuration
|
||||
|
||||
`.env.default` (defaults) → `.env` (user overrides)
|
||||
|
||||
## Feature Development
|
||||
|
||||
See @CONTRIBUTING.md for complete patterns. Quick reference:
|
||||
|
||||
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
|
||||
- Extract component logic into custom hooks grouped by concern, not by component. Each hook should represent a cohesive domain of functionality (e.g., useSearch, useFilters, usePagination) rather than bundling all state into one useComponentState hook.
|
||||
- Put each hook in its own `.ts` file
|
||||
- Put sub-components in local `components/` folder
|
||||
- Component props should be `type Props = { ... }` (not exported) unless it needs to be used outside the component
|
||||
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
|
||||
- Use design system components from `src/components/` (atoms, molecules, organisms)
|
||||
- Never use `src/components/__legacy__/*`
|
||||
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
|
||||
- Regenerate with `pnpm generate:api`
|
||||
- Pattern: `use{Method}{Version}{OperationName}`
|
||||
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
|
||||
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
|
||||
6. **Code conventions**:
|
||||
- Use function declarations (not arrow functions) for components/handlers
|
||||
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
|
||||
- Do not type hook returns, let Typescript infer as much as possible
|
||||
- Never type with `any` unless a variable/attribute can ACTUALLY be of any type
|
||||
@@ -2,8 +2,9 @@
|
||||
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
|
||||
import { useRouter } from "next/navigation";
|
||||
import { useEffect } from "react";
|
||||
import { resolveResponse, shouldShowOnboarding } from "@/app/api/helpers";
|
||||
import { resolveResponse, getOnboardingStatus } from "@/app/api/helpers";
|
||||
import { getV1OnboardingState } from "@/app/api/__generated__/endpoints/onboarding/onboarding";
|
||||
import { getHomepageRoute } from "@/lib/constants";
|
||||
|
||||
export default function OnboardingPage() {
|
||||
const router = useRouter();
|
||||
@@ -11,10 +12,13 @@ export default function OnboardingPage() {
|
||||
useEffect(() => {
|
||||
async function redirectToStep() {
|
||||
try {
|
||||
// Check if onboarding is enabled
|
||||
const isEnabled = await shouldShowOnboarding();
|
||||
if (!isEnabled) {
|
||||
router.replace("/");
|
||||
// Check if onboarding is enabled (also gets chat flag for redirect)
|
||||
const { shouldShowOnboarding, isChatEnabled } =
|
||||
await getOnboardingStatus();
|
||||
const homepageRoute = getHomepageRoute(isChatEnabled);
|
||||
|
||||
if (!shouldShowOnboarding) {
|
||||
router.replace(homepageRoute);
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -22,7 +26,7 @@ export default function OnboardingPage() {
|
||||
|
||||
// Handle completed onboarding
|
||||
if (onboarding.completedSteps.includes("GET_RESULTS")) {
|
||||
router.replace("/");
|
||||
router.replace(homepageRoute);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
import { getServerSupabase } from "@/lib/supabase/server/getServerSupabase";
|
||||
import { getHomepageRoute } from "@/lib/constants";
|
||||
import BackendAPI from "@/lib/autogpt-server-api";
|
||||
import { NextResponse } from "next/server";
|
||||
import { revalidatePath } from "next/cache";
|
||||
import { shouldShowOnboarding } from "@/app/api/helpers";
|
||||
import { getOnboardingStatus } from "@/app/api/helpers";
|
||||
|
||||
// Handle the callback to complete the user session login
|
||||
export async function GET(request: Request) {
|
||||
@@ -25,11 +26,15 @@ export async function GET(request: Request) {
|
||||
const api = new BackendAPI();
|
||||
await api.createUser();
|
||||
|
||||
if (await shouldShowOnboarding()) {
|
||||
// Get onboarding status from backend (includes chat flag evaluated for this user)
|
||||
const { shouldShowOnboarding, isChatEnabled } =
|
||||
await getOnboardingStatus();
|
||||
if (shouldShowOnboarding) {
|
||||
next = "/onboarding";
|
||||
revalidatePath("/onboarding", "layout");
|
||||
} else {
|
||||
revalidatePath("/", "layout");
|
||||
next = getHomepageRoute(isChatEnabled);
|
||||
revalidatePath(next, "layout");
|
||||
}
|
||||
} catch (createUserError) {
|
||||
console.error("Error creating user:", createUserError);
|
||||
|
||||
@@ -73,9 +73,9 @@ export function useSessionsPagination({ enabled }: UseSessionsPaginationArgs) {
|
||||
};
|
||||
|
||||
const reset = () => {
|
||||
// Only reset the offset - keep existing sessions visible during refetch
|
||||
// The effect will replace sessions when new data arrives at offset 0
|
||||
setOffset(0);
|
||||
setAccumulatedSessions([]);
|
||||
setTotalCount(null);
|
||||
};
|
||||
|
||||
return {
|
||||
|
||||
@@ -1,10 +1,11 @@
|
||||
"use server";
|
||||
|
||||
import { getHomepageRoute } from "@/lib/constants";
|
||||
import BackendAPI from "@/lib/autogpt-server-api";
|
||||
import { getServerSupabase } from "@/lib/supabase/server/getServerSupabase";
|
||||
import { loginFormSchema } from "@/types/auth";
|
||||
import * as Sentry from "@sentry/nextjs";
|
||||
import { shouldShowOnboarding } from "../../api/helpers";
|
||||
import { getOnboardingStatus } from "../../api/helpers";
|
||||
|
||||
export async function login(email: string, password: string) {
|
||||
try {
|
||||
@@ -36,11 +37,15 @@ export async function login(email: string, password: string) {
|
||||
const api = new BackendAPI();
|
||||
await api.createUser();
|
||||
|
||||
const onboarding = await shouldShowOnboarding();
|
||||
// Get onboarding status from backend (includes chat flag evaluated for this user)
|
||||
const { shouldShowOnboarding, isChatEnabled } = await getOnboardingStatus();
|
||||
const next = shouldShowOnboarding
|
||||
? "/onboarding"
|
||||
: getHomepageRoute(isChatEnabled);
|
||||
|
||||
return {
|
||||
success: true,
|
||||
onboarding,
|
||||
next,
|
||||
};
|
||||
} catch (err) {
|
||||
Sentry.captureException(err);
|
||||
|
||||
@@ -97,13 +97,8 @@ export function useLoginPage() {
|
||||
throw new Error(result.error || "Login failed");
|
||||
}
|
||||
|
||||
if (nextUrl) {
|
||||
router.replace(nextUrl);
|
||||
} else if (result.onboarding) {
|
||||
router.replace("/onboarding");
|
||||
} else {
|
||||
router.replace(homepageRoute);
|
||||
}
|
||||
// Prefer URL's next parameter, then use backend-determined route
|
||||
router.replace(nextUrl || result.next || homepageRoute);
|
||||
} catch (error) {
|
||||
toast({
|
||||
title:
|
||||
|
||||
@@ -5,14 +5,13 @@ import { getServerSupabase } from "@/lib/supabase/server/getServerSupabase";
|
||||
import { signupFormSchema } from "@/types/auth";
|
||||
import * as Sentry from "@sentry/nextjs";
|
||||
import { isWaitlistError, logWaitlistError } from "../../api/auth/utils";
|
||||
import { shouldShowOnboarding } from "../../api/helpers";
|
||||
import { getOnboardingStatus } from "../../api/helpers";
|
||||
|
||||
export async function signup(
|
||||
email: string,
|
||||
password: string,
|
||||
confirmPassword: string,
|
||||
agreeToTerms: boolean,
|
||||
isChatEnabled: boolean,
|
||||
) {
|
||||
try {
|
||||
const parsed = signupFormSchema.safeParse({
|
||||
@@ -59,8 +58,9 @@ export async function signup(
|
||||
await supabase.auth.setSession(data.session);
|
||||
}
|
||||
|
||||
const isOnboardingEnabled = await shouldShowOnboarding();
|
||||
const next = isOnboardingEnabled
|
||||
// Get onboarding status from backend (includes chat flag evaluated for this user)
|
||||
const { shouldShowOnboarding, isChatEnabled } = await getOnboardingStatus();
|
||||
const next = shouldShowOnboarding
|
||||
? "/onboarding"
|
||||
: getHomepageRoute(isChatEnabled);
|
||||
|
||||
|
||||
@@ -108,7 +108,6 @@ export function useSignupPage() {
|
||||
data.password,
|
||||
data.confirmPassword,
|
||||
data.agreeToTerms,
|
||||
isChatEnabled === true,
|
||||
);
|
||||
|
||||
setIsLoading(false);
|
||||
|
||||
@@ -175,9 +175,12 @@ export async function resolveResponse<
|
||||
return res.data;
|
||||
}
|
||||
|
||||
export async function shouldShowOnboarding() {
|
||||
const isEnabled = await resolveResponse(getV1IsOnboardingEnabled());
|
||||
export async function getOnboardingStatus() {
|
||||
const status = await resolveResponse(getV1IsOnboardingEnabled());
|
||||
const onboarding = await resolveResponse(getV1OnboardingState());
|
||||
const isCompleted = onboarding.completedSteps.includes("CONGRATS");
|
||||
return isEnabled && !isCompleted;
|
||||
return {
|
||||
shouldShowOnboarding: status.is_onboarding_enabled && !isCompleted,
|
||||
isChatEnabled: status.is_chat_enabled,
|
||||
};
|
||||
}
|
||||
|
||||
@@ -3339,7 +3339,7 @@
|
||||
"get": {
|
||||
"tags": ["v2", "library", "private"],
|
||||
"summary": "List Library Agents",
|
||||
"description": "Get all agents in the user's library (both created and saved).\n\nArgs:\n user_id: ID of the authenticated user.\n search_term: Optional search term to filter agents by name/description.\n filter_by: List of filters to apply (favorites, created by user).\n sort_by: List of sorting criteria (created date, updated date).\n page: Page number to retrieve.\n page_size: Number of agents per page.\n\nReturns:\n A LibraryAgentResponse containing agents and pagination metadata.\n\nRaises:\n HTTPException: If a server/database error occurs.",
|
||||
"description": "Get all agents in the user's library (both created and saved).",
|
||||
"operationId": "getV2List library agents",
|
||||
"security": [{ "HTTPBearerJWT": [] }],
|
||||
"parameters": [
|
||||
@@ -3394,7 +3394,7 @@
|
||||
],
|
||||
"responses": {
|
||||
"200": {
|
||||
"description": "List of library agents",
|
||||
"description": "Successful Response",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
@@ -3413,17 +3413,13 @@
|
||||
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
|
||||
}
|
||||
}
|
||||
},
|
||||
"500": {
|
||||
"description": "Server error",
|
||||
"content": { "application/json": {} }
|
||||
}
|
||||
}
|
||||
},
|
||||
"post": {
|
||||
"tags": ["v2", "library", "private"],
|
||||
"summary": "Add Marketplace Agent",
|
||||
"description": "Add an agent from the marketplace to the user's library.\n\nArgs:\n store_listing_version_id: ID of the store listing version to add.\n user_id: ID of the authenticated user.\n\nReturns:\n library_model.LibraryAgent: Agent added to the library\n\nRaises:\n HTTPException(404): If the listing version is not found.\n HTTPException(500): If a server/database error occurs.",
|
||||
"description": "Add an agent from the marketplace to the user's library.",
|
||||
"operationId": "postV2Add marketplace agent",
|
||||
"security": [{ "HTTPBearerJWT": [] }],
|
||||
"requestBody": {
|
||||
@@ -3438,7 +3434,7 @@
|
||||
},
|
||||
"responses": {
|
||||
"201": {
|
||||
"description": "Agent added successfully",
|
||||
"description": "Successful Response",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": { "$ref": "#/components/schemas/LibraryAgent" }
|
||||
@@ -3448,7 +3444,6 @@
|
||||
"401": {
|
||||
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
|
||||
},
|
||||
"404": { "description": "Store listing version not found" },
|
||||
"422": {
|
||||
"description": "Validation Error",
|
||||
"content": {
|
||||
@@ -3456,8 +3451,7 @@
|
||||
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
|
||||
}
|
||||
}
|
||||
},
|
||||
"500": { "description": "Server error" }
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
@@ -3511,7 +3505,7 @@
|
||||
"get": {
|
||||
"tags": ["v2", "library", "private"],
|
||||
"summary": "List Favorite Library Agents",
|
||||
"description": "Get all favorite agents in the user's library.\n\nArgs:\n user_id: ID of the authenticated user.\n page: Page number to retrieve.\n page_size: Number of agents per page.\n\nReturns:\n A LibraryAgentResponse containing favorite agents and pagination metadata.\n\nRaises:\n HTTPException: If a server/database error occurs.",
|
||||
"description": "Get all favorite agents in the user's library.",
|
||||
"operationId": "getV2List favorite library agents",
|
||||
"security": [{ "HTTPBearerJWT": [] }],
|
||||
"parameters": [
|
||||
@@ -3563,10 +3557,6 @@
|
||||
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
|
||||
}
|
||||
}
|
||||
},
|
||||
"500": {
|
||||
"description": "Server error",
|
||||
"content": { "application/json": {} }
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -3588,7 +3578,7 @@
|
||||
],
|
||||
"responses": {
|
||||
"200": {
|
||||
"description": "Library agent found",
|
||||
"description": "Successful Response",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
@@ -3604,7 +3594,6 @@
|
||||
"401": {
|
||||
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
|
||||
},
|
||||
"404": { "description": "Agent not found" },
|
||||
"422": {
|
||||
"description": "Validation Error",
|
||||
"content": {
|
||||
@@ -3620,7 +3609,7 @@
|
||||
"delete": {
|
||||
"tags": ["v2", "library", "private"],
|
||||
"summary": "Delete Library Agent",
|
||||
"description": "Soft-delete the specified library agent.\n\nArgs:\n library_agent_id: ID of the library agent to delete.\n user_id: ID of the authenticated user.\n\nReturns:\n 204 No Content if successful.\n\nRaises:\n HTTPException(404): If the agent does not exist.\n HTTPException(500): If a server/database error occurs.",
|
||||
"description": "Soft-delete the specified library agent.",
|
||||
"operationId": "deleteV2Delete library agent",
|
||||
"security": [{ "HTTPBearerJWT": [] }],
|
||||
"parameters": [
|
||||
@@ -3636,11 +3625,9 @@
|
||||
"description": "Successful Response",
|
||||
"content": { "application/json": { "schema": {} } }
|
||||
},
|
||||
"204": { "description": "Agent deleted successfully" },
|
||||
"401": {
|
||||
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
|
||||
},
|
||||
"404": { "description": "Agent not found" },
|
||||
"422": {
|
||||
"description": "Validation Error",
|
||||
"content": {
|
||||
@@ -3648,8 +3635,7 @@
|
||||
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
|
||||
}
|
||||
}
|
||||
},
|
||||
"500": { "description": "Server error" }
|
||||
}
|
||||
}
|
||||
},
|
||||
"get": {
|
||||
@@ -3690,7 +3676,7 @@
|
||||
"patch": {
|
||||
"tags": ["v2", "library", "private"],
|
||||
"summary": "Update Library Agent",
|
||||
"description": "Update the library agent with the given fields.\n\nArgs:\n library_agent_id: ID of the library agent to update.\n payload: Fields to update (auto_update_version, is_favorite, etc.).\n user_id: ID of the authenticated user.\n\nRaises:\n HTTPException(500): If a server/database error occurs.",
|
||||
"description": "Update the library agent with the given fields.",
|
||||
"operationId": "patchV2Update library agent",
|
||||
"security": [{ "HTTPBearerJWT": [] }],
|
||||
"parameters": [
|
||||
@@ -3713,7 +3699,7 @@
|
||||
},
|
||||
"responses": {
|
||||
"200": {
|
||||
"description": "Agent updated successfully",
|
||||
"description": "Successful Response",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": { "$ref": "#/components/schemas/LibraryAgent" }
|
||||
@@ -3730,8 +3716,7 @@
|
||||
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
|
||||
}
|
||||
}
|
||||
},
|
||||
"500": { "description": "Server error" }
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
@@ -4540,8 +4525,7 @@
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"type": "boolean",
|
||||
"title": "Response Getv1Is Onboarding Enabled"
|
||||
"$ref": "#/components/schemas/OnboardingStatusResponse"
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -5928,6 +5912,40 @@
|
||||
}
|
||||
}
|
||||
},
|
||||
"/api/workspace/files/{file_id}/download": {
|
||||
"get": {
|
||||
"tags": ["workspace"],
|
||||
"summary": "Download file by ID",
|
||||
"description": "Download a file by its ID.\n\nReturns the file content directly or redirects to a signed URL for GCS.",
|
||||
"operationId": "getWorkspaceDownload file by id",
|
||||
"security": [{ "HTTPBearerJWT": [] }],
|
||||
"parameters": [
|
||||
{
|
||||
"name": "file_id",
|
||||
"in": "path",
|
||||
"required": true,
|
||||
"schema": { "type": "string", "title": "File Id" }
|
||||
}
|
||||
],
|
||||
"responses": {
|
||||
"200": {
|
||||
"description": "Successful Response",
|
||||
"content": { "application/json": { "schema": {} } }
|
||||
},
|
||||
"401": {
|
||||
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
|
||||
},
|
||||
"422": {
|
||||
"description": "Validation Error",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"/health": {
|
||||
"get": {
|
||||
"tags": ["health"],
|
||||
@@ -8745,6 +8763,19 @@
|
||||
"title": "OAuthApplicationPublicInfo",
|
||||
"description": "Public information about an OAuth application (for consent screen)"
|
||||
},
|
||||
"OnboardingStatusResponse": {
|
||||
"properties": {
|
||||
"is_onboarding_enabled": {
|
||||
"type": "boolean",
|
||||
"title": "Is Onboarding Enabled"
|
||||
},
|
||||
"is_chat_enabled": { "type": "boolean", "title": "Is Chat Enabled" }
|
||||
},
|
||||
"type": "object",
|
||||
"required": ["is_onboarding_enabled", "is_chat_enabled"],
|
||||
"title": "OnboardingStatusResponse",
|
||||
"description": "Response for onboarding status check."
|
||||
},
|
||||
"OnboardingStep": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import {
|
||||
ApiError,
|
||||
getServerAuthToken,
|
||||
makeAuthenticatedFileUpload,
|
||||
makeAuthenticatedRequest,
|
||||
} from "@/lib/autogpt-server-api/helpers";
|
||||
@@ -15,6 +16,69 @@ function buildBackendUrl(path: string[], queryString: string): string {
|
||||
return `${environment.getAGPTServerBaseUrl()}/${backendPath}${queryString}`;
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if this is a workspace file download request that needs binary response handling.
|
||||
*/
|
||||
function isWorkspaceDownloadRequest(path: string[]): boolean {
|
||||
// Match pattern: api/workspace/files/{id}/download (5 segments)
|
||||
return (
|
||||
path.length == 5 &&
|
||||
path[0] === "api" &&
|
||||
path[1] === "workspace" &&
|
||||
path[2] === "files" &&
|
||||
path[path.length - 1] === "download"
|
||||
);
|
||||
}
|
||||
|
||||
/**
|
||||
* Handle workspace file download requests with proper binary response streaming.
|
||||
*/
|
||||
async function handleWorkspaceDownload(
|
||||
req: NextRequest,
|
||||
backendUrl: string,
|
||||
): Promise<NextResponse> {
|
||||
const token = await getServerAuthToken();
|
||||
|
||||
const headers: Record<string, string> = {};
|
||||
if (token && token !== "no-token-found") {
|
||||
headers["Authorization"] = `Bearer ${token}`;
|
||||
}
|
||||
|
||||
const response = await fetch(backendUrl, {
|
||||
method: "GET",
|
||||
headers,
|
||||
redirect: "follow", // Follow redirects to signed URLs
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
return NextResponse.json(
|
||||
{ error: `Failed to download file: ${response.statusText}` },
|
||||
{ status: response.status },
|
||||
);
|
||||
}
|
||||
|
||||
// Get the content type from the backend response
|
||||
const contentType =
|
||||
response.headers.get("Content-Type") || "application/octet-stream";
|
||||
const contentDisposition = response.headers.get("Content-Disposition");
|
||||
|
||||
// Stream the response body
|
||||
const responseHeaders: Record<string, string> = {
|
||||
"Content-Type": contentType,
|
||||
};
|
||||
|
||||
if (contentDisposition) {
|
||||
responseHeaders["Content-Disposition"] = contentDisposition;
|
||||
}
|
||||
|
||||
// Return the binary content
|
||||
const arrayBuffer = await response.arrayBuffer();
|
||||
return new NextResponse(arrayBuffer, {
|
||||
status: 200,
|
||||
headers: responseHeaders,
|
||||
});
|
||||
}
|
||||
|
||||
async function handleJsonRequest(
|
||||
req: NextRequest,
|
||||
method: string,
|
||||
@@ -180,6 +244,11 @@ async function handler(
|
||||
};
|
||||
|
||||
try {
|
||||
// Handle workspace file downloads separately (binary response)
|
||||
if (method === "GET" && isWorkspaceDownloadRequest(path)) {
|
||||
return await handleWorkspaceDownload(req, backendUrl);
|
||||
}
|
||||
|
||||
if (method === "GET" || method === "DELETE") {
|
||||
responseBody = await handleGetDeleteRequest(method, backendUrl, req);
|
||||
} else if (contentType?.includes("application/json")) {
|
||||
|
||||
77
autogpt_platform/frontend/src/app/api/transcribe/route.ts
Normal file
77
autogpt_platform/frontend/src/app/api/transcribe/route.ts
Normal file
@@ -0,0 +1,77 @@
|
||||
import { getServerAuthToken } from "@/lib/autogpt-server-api/helpers";
|
||||
import { NextRequest, NextResponse } from "next/server";
|
||||
|
||||
const WHISPER_API_URL = "https://api.openai.com/v1/audio/transcriptions";
|
||||
const MAX_FILE_SIZE = 25 * 1024 * 1024; // 25MB - Whisper's limit
|
||||
|
||||
function getExtensionFromMimeType(mimeType: string): string {
|
||||
const subtype = mimeType.split("/")[1]?.split(";")[0];
|
||||
return subtype || "webm";
|
||||
}
|
||||
|
||||
export async function POST(request: NextRequest) {
|
||||
const token = await getServerAuthToken();
|
||||
|
||||
if (!token || token === "no-token-found") {
|
||||
return NextResponse.json({ error: "Unauthorized" }, { status: 401 });
|
||||
}
|
||||
|
||||
const apiKey = process.env.OPENAI_API_KEY;
|
||||
|
||||
if (!apiKey) {
|
||||
return NextResponse.json(
|
||||
{ error: "OpenAI API key not configured" },
|
||||
{ status: 401 },
|
||||
);
|
||||
}
|
||||
|
||||
try {
|
||||
const formData = await request.formData();
|
||||
const audioFile = formData.get("audio");
|
||||
|
||||
if (!audioFile || !(audioFile instanceof Blob)) {
|
||||
return NextResponse.json(
|
||||
{ error: "No audio file provided" },
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
if (audioFile.size > MAX_FILE_SIZE) {
|
||||
return NextResponse.json(
|
||||
{ error: "File too large. Maximum size is 25MB." },
|
||||
{ status: 413 },
|
||||
);
|
||||
}
|
||||
|
||||
const ext = getExtensionFromMimeType(audioFile.type);
|
||||
const whisperFormData = new FormData();
|
||||
whisperFormData.append("file", audioFile, `recording.${ext}`);
|
||||
whisperFormData.append("model", "whisper-1");
|
||||
|
||||
const response = await fetch(WHISPER_API_URL, {
|
||||
method: "POST",
|
||||
headers: {
|
||||
Authorization: `Bearer ${apiKey}`,
|
||||
},
|
||||
body: whisperFormData,
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
const errorData = await response.json().catch(() => ({}));
|
||||
console.error("Whisper API error:", errorData);
|
||||
return NextResponse.json(
|
||||
{ error: errorData.error?.message || "Transcription failed" },
|
||||
{ status: response.status },
|
||||
);
|
||||
}
|
||||
|
||||
const result = await response.json();
|
||||
return NextResponse.json({ text: result.text });
|
||||
} catch (error) {
|
||||
console.error("Transcription error:", error);
|
||||
return NextResponse.json(
|
||||
{ error: "Failed to process audio" },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -1,7 +1,14 @@
|
||||
import { Button } from "@/components/atoms/Button/Button";
|
||||
import { cn } from "@/lib/utils";
|
||||
import { ArrowUpIcon, StopIcon } from "@phosphor-icons/react";
|
||||
import {
|
||||
ArrowUpIcon,
|
||||
CircleNotchIcon,
|
||||
MicrophoneIcon,
|
||||
StopIcon,
|
||||
} from "@phosphor-icons/react";
|
||||
import { RecordingIndicator } from "./components/RecordingIndicator";
|
||||
import { useChatInput } from "./useChatInput";
|
||||
import { useVoiceRecording } from "./useVoiceRecording";
|
||||
|
||||
export interface Props {
|
||||
onSend: (message: string) => void;
|
||||
@@ -21,13 +28,37 @@ export function ChatInput({
|
||||
className,
|
||||
}: Props) {
|
||||
const inputId = "chat-input";
|
||||
const { value, handleKeyDown, handleSubmit, handleChange, hasMultipleLines } =
|
||||
useChatInput({
|
||||
onSend,
|
||||
disabled: disabled || isStreaming,
|
||||
maxRows: 4,
|
||||
inputId,
|
||||
});
|
||||
const {
|
||||
value,
|
||||
setValue,
|
||||
handleKeyDown: baseHandleKeyDown,
|
||||
handleSubmit,
|
||||
handleChange,
|
||||
hasMultipleLines,
|
||||
} = useChatInput({
|
||||
onSend,
|
||||
disabled: disabled || isStreaming,
|
||||
maxRows: 4,
|
||||
inputId,
|
||||
});
|
||||
|
||||
const {
|
||||
isRecording,
|
||||
isTranscribing,
|
||||
elapsedTime,
|
||||
toggleRecording,
|
||||
handleKeyDown,
|
||||
showMicButton,
|
||||
isInputDisabled,
|
||||
audioStream,
|
||||
} = useVoiceRecording({
|
||||
setValue,
|
||||
disabled: disabled || isStreaming,
|
||||
isStreaming,
|
||||
value,
|
||||
baseHandleKeyDown,
|
||||
inputId,
|
||||
});
|
||||
|
||||
return (
|
||||
<form onSubmit={handleSubmit} className={cn("relative flex-1", className)}>
|
||||
@@ -35,8 +66,11 @@ export function ChatInput({
|
||||
<div
|
||||
id={`${inputId}-wrapper`}
|
||||
className={cn(
|
||||
"relative overflow-hidden border border-neutral-200 bg-white shadow-sm",
|
||||
"focus-within:border-zinc-400 focus-within:ring-1 focus-within:ring-zinc-400",
|
||||
"relative overflow-hidden border bg-white shadow-sm",
|
||||
"focus-within:ring-1",
|
||||
isRecording
|
||||
? "border-red-400 focus-within:border-red-400 focus-within:ring-red-400"
|
||||
: "border-neutral-200 focus-within:border-zinc-400 focus-within:ring-zinc-400",
|
||||
hasMultipleLines ? "rounded-xlarge" : "rounded-full",
|
||||
)}
|
||||
>
|
||||
@@ -46,48 +80,94 @@ export function ChatInput({
|
||||
value={value}
|
||||
onChange={handleChange}
|
||||
onKeyDown={handleKeyDown}
|
||||
placeholder={placeholder}
|
||||
disabled={disabled || isStreaming}
|
||||
placeholder={
|
||||
isTranscribing
|
||||
? "Transcribing..."
|
||||
: isRecording
|
||||
? ""
|
||||
: placeholder
|
||||
}
|
||||
disabled={isInputDisabled}
|
||||
rows={1}
|
||||
className={cn(
|
||||
"w-full resize-none overflow-y-auto border-0 bg-transparent text-[1rem] leading-6 text-black",
|
||||
"placeholder:text-zinc-400",
|
||||
"focus:outline-none focus:ring-0",
|
||||
"disabled:text-zinc-500",
|
||||
hasMultipleLines ? "pb-6 pl-4 pr-4 pt-2" : "pb-4 pl-4 pr-14 pt-4",
|
||||
hasMultipleLines
|
||||
? "pb-6 pl-4 pr-4 pt-2"
|
||||
: showMicButton
|
||||
? "pb-4 pl-14 pr-14 pt-4"
|
||||
: "pb-4 pl-4 pr-14 pt-4",
|
||||
)}
|
||||
/>
|
||||
{isRecording && !value && (
|
||||
<div className="pointer-events-none absolute inset-0 flex items-center justify-center">
|
||||
<RecordingIndicator
|
||||
elapsedTime={elapsedTime}
|
||||
audioStream={audioStream}
|
||||
/>
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
<span id="chat-input-hint" className="sr-only">
|
||||
Press Enter to send, Shift+Enter for new line
|
||||
Press Enter to send, Shift+Enter for new line, Space to record voice
|
||||
</span>
|
||||
|
||||
{isStreaming ? (
|
||||
<Button
|
||||
type="button"
|
||||
variant="icon"
|
||||
size="icon"
|
||||
aria-label="Stop generating"
|
||||
onClick={onStop}
|
||||
className="absolute bottom-[7px] right-2 border-red-600 bg-red-600 text-white hover:border-red-800 hover:bg-red-800"
|
||||
>
|
||||
<StopIcon className="h-4 w-4" weight="bold" />
|
||||
</Button>
|
||||
) : (
|
||||
<Button
|
||||
type="submit"
|
||||
variant="icon"
|
||||
size="icon"
|
||||
aria-label="Send message"
|
||||
className={cn(
|
||||
"absolute bottom-[7px] right-2 border-zinc-800 bg-zinc-800 text-white hover:border-zinc-900 hover:bg-zinc-900",
|
||||
(disabled || !value.trim()) && "opacity-20",
|
||||
)}
|
||||
disabled={disabled || !value.trim()}
|
||||
>
|
||||
<ArrowUpIcon className="h-4 w-4" weight="bold" />
|
||||
</Button>
|
||||
{showMicButton && (
|
||||
<div className="absolute bottom-[7px] left-2 flex items-center gap-1">
|
||||
<Button
|
||||
type="button"
|
||||
variant="icon"
|
||||
size="icon"
|
||||
aria-label={isRecording ? "Stop recording" : "Start recording"}
|
||||
onClick={toggleRecording}
|
||||
disabled={disabled || isTranscribing}
|
||||
className={cn(
|
||||
isRecording
|
||||
? "animate-pulse border-red-500 bg-red-500 text-white hover:border-red-600 hover:bg-red-600"
|
||||
: isTranscribing
|
||||
? "border-zinc-300 bg-zinc-100 text-zinc-400"
|
||||
: "border-zinc-300 bg-white text-zinc-500 hover:border-zinc-400 hover:bg-zinc-50 hover:text-zinc-700",
|
||||
)}
|
||||
>
|
||||
{isTranscribing ? (
|
||||
<CircleNotchIcon className="h-4 w-4 animate-spin" />
|
||||
) : (
|
||||
<MicrophoneIcon className="h-4 w-4" weight="bold" />
|
||||
)}
|
||||
</Button>
|
||||
</div>
|
||||
)}
|
||||
|
||||
<div className="absolute bottom-[7px] right-2 flex items-center gap-1">
|
||||
{isStreaming ? (
|
||||
<Button
|
||||
type="button"
|
||||
variant="icon"
|
||||
size="icon"
|
||||
aria-label="Stop generating"
|
||||
onClick={onStop}
|
||||
className="border-red-600 bg-red-600 text-white hover:border-red-800 hover:bg-red-800"
|
||||
>
|
||||
<StopIcon className="h-4 w-4" weight="bold" />
|
||||
</Button>
|
||||
) : (
|
||||
<Button
|
||||
type="submit"
|
||||
variant="icon"
|
||||
size="icon"
|
||||
aria-label="Send message"
|
||||
className={cn(
|
||||
"border-zinc-800 bg-zinc-800 text-white hover:border-zinc-900 hover:bg-zinc-900",
|
||||
(disabled || !value.trim() || isRecording) && "opacity-20",
|
||||
)}
|
||||
disabled={disabled || !value.trim() || isRecording}
|
||||
>
|
||||
<ArrowUpIcon className="h-4 w-4" weight="bold" />
|
||||
</Button>
|
||||
)}
|
||||
</div>
|
||||
</div>
|
||||
</form>
|
||||
);
|
||||
|
||||
@@ -0,0 +1,142 @@
|
||||
"use client";
|
||||
|
||||
import { useEffect, useRef, useState } from "react";
|
||||
|
||||
interface Props {
|
||||
stream: MediaStream | null;
|
||||
barCount?: number;
|
||||
barWidth?: number;
|
||||
barGap?: number;
|
||||
barColor?: string;
|
||||
minBarHeight?: number;
|
||||
maxBarHeight?: number;
|
||||
}
|
||||
|
||||
export function AudioWaveform({
|
||||
stream,
|
||||
barCount = 24,
|
||||
barWidth = 3,
|
||||
barGap = 2,
|
||||
barColor = "#ef4444", // red-500
|
||||
minBarHeight = 4,
|
||||
maxBarHeight = 32,
|
||||
}: Props) {
|
||||
const [bars, setBars] = useState<number[]>(() =>
|
||||
Array(barCount).fill(minBarHeight),
|
||||
);
|
||||
const analyserRef = useRef<AnalyserNode | null>(null);
|
||||
const audioContextRef = useRef<AudioContext | null>(null);
|
||||
const sourceRef = useRef<MediaStreamAudioSourceNode | null>(null);
|
||||
const animationRef = useRef<number | null>(null);
|
||||
|
||||
useEffect(() => {
|
||||
if (!stream) {
|
||||
setBars(Array(barCount).fill(minBarHeight));
|
||||
return;
|
||||
}
|
||||
|
||||
// Create audio context and analyser
|
||||
const audioContext = new AudioContext();
|
||||
const analyser = audioContext.createAnalyser();
|
||||
analyser.fftSize = 512;
|
||||
analyser.smoothingTimeConstant = 0.8;
|
||||
|
||||
// Connect the stream to the analyser
|
||||
const source = audioContext.createMediaStreamSource(stream);
|
||||
source.connect(analyser);
|
||||
|
||||
audioContextRef.current = audioContext;
|
||||
analyserRef.current = analyser;
|
||||
sourceRef.current = source;
|
||||
|
||||
const timeData = new Uint8Array(analyser.frequencyBinCount);
|
||||
|
||||
const updateBars = () => {
|
||||
if (!analyserRef.current) return;
|
||||
|
||||
analyserRef.current.getByteTimeDomainData(timeData);
|
||||
|
||||
// Distribute time-domain data across bars
|
||||
// This shows waveform amplitude, making all bars respond to audio
|
||||
const newBars: number[] = [];
|
||||
const samplesPerBar = timeData.length / barCount;
|
||||
|
||||
for (let i = 0; i < barCount; i++) {
|
||||
// Sample waveform data for this bar
|
||||
let maxAmplitude = 0;
|
||||
const startIdx = Math.floor(i * samplesPerBar);
|
||||
const endIdx = Math.floor((i + 1) * samplesPerBar);
|
||||
|
||||
for (let j = startIdx; j < endIdx && j < timeData.length; j++) {
|
||||
// Convert to amplitude (distance from center 128)
|
||||
const amplitude = Math.abs(timeData[j] - 128);
|
||||
maxAmplitude = Math.max(maxAmplitude, amplitude);
|
||||
}
|
||||
|
||||
// Map amplitude (0-128) to bar height
|
||||
const normalized = (maxAmplitude / 128) * 255;
|
||||
const height =
|
||||
minBarHeight + (normalized / 255) * (maxBarHeight - minBarHeight);
|
||||
newBars.push(height);
|
||||
}
|
||||
|
||||
setBars(newBars);
|
||||
animationRef.current = requestAnimationFrame(updateBars);
|
||||
};
|
||||
|
||||
updateBars();
|
||||
|
||||
return () => {
|
||||
if (animationRef.current) {
|
||||
cancelAnimationFrame(animationRef.current);
|
||||
}
|
||||
if (sourceRef.current) {
|
||||
sourceRef.current.disconnect();
|
||||
}
|
||||
if (audioContextRef.current) {
|
||||
audioContextRef.current.close();
|
||||
}
|
||||
analyserRef.current = null;
|
||||
audioContextRef.current = null;
|
||||
sourceRef.current = null;
|
||||
};
|
||||
}, [stream, barCount, minBarHeight, maxBarHeight]);
|
||||
|
||||
const totalWidth = barCount * barWidth + (barCount - 1) * barGap;
|
||||
|
||||
return (
|
||||
<div
|
||||
className="flex items-center justify-center"
|
||||
style={{
|
||||
width: totalWidth,
|
||||
height: maxBarHeight,
|
||||
gap: barGap,
|
||||
}}
|
||||
>
|
||||
{bars.map((height, i) => {
|
||||
const barHeight = Math.max(minBarHeight, height);
|
||||
return (
|
||||
<div
|
||||
key={i}
|
||||
className="relative"
|
||||
style={{
|
||||
width: barWidth,
|
||||
height: maxBarHeight,
|
||||
}}
|
||||
>
|
||||
<div
|
||||
className="absolute left-0 rounded-full transition-[height] duration-75"
|
||||
style={{
|
||||
width: barWidth,
|
||||
height: barHeight,
|
||||
top: "50%",
|
||||
transform: "translateY(-50%)",
|
||||
backgroundColor: barColor,
|
||||
}}
|
||||
/>
|
||||
</div>
|
||||
);
|
||||
})}
|
||||
</div>
|
||||
);
|
||||
}
|
||||
@@ -0,0 +1,26 @@
|
||||
import { formatElapsedTime } from "../helpers";
|
||||
import { AudioWaveform } from "./AudioWaveform";
|
||||
|
||||
type Props = {
|
||||
elapsedTime: number;
|
||||
audioStream: MediaStream | null;
|
||||
};
|
||||
|
||||
export function RecordingIndicator({ elapsedTime, audioStream }: Props) {
|
||||
return (
|
||||
<div className="flex items-center gap-3">
|
||||
<AudioWaveform
|
||||
stream={audioStream}
|
||||
barCount={20}
|
||||
barWidth={3}
|
||||
barGap={2}
|
||||
barColor="#ef4444"
|
||||
minBarHeight={4}
|
||||
maxBarHeight={24}
|
||||
/>
|
||||
<span className="min-w-[3ch] text-sm font-medium text-red-500">
|
||||
{formatElapsedTime(elapsedTime)}
|
||||
</span>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
@@ -0,0 +1,6 @@
|
||||
export function formatElapsedTime(ms: number): string {
|
||||
const seconds = Math.floor(ms / 1000);
|
||||
const minutes = Math.floor(seconds / 60);
|
||||
const remainingSeconds = seconds % 60;
|
||||
return `${minutes}:${remainingSeconds.toString().padStart(2, "0")}`;
|
||||
}
|
||||
@@ -6,7 +6,7 @@ import {
|
||||
useState,
|
||||
} from "react";
|
||||
|
||||
interface UseChatInputArgs {
|
||||
interface Args {
|
||||
onSend: (message: string) => void;
|
||||
disabled?: boolean;
|
||||
maxRows?: number;
|
||||
@@ -18,7 +18,7 @@ export function useChatInput({
|
||||
disabled = false,
|
||||
maxRows = 5,
|
||||
inputId = "chat-input",
|
||||
}: UseChatInputArgs) {
|
||||
}: Args) {
|
||||
const [value, setValue] = useState("");
|
||||
const [hasMultipleLines, setHasMultipleLines] = useState(false);
|
||||
|
||||
|
||||
@@ -0,0 +1,251 @@
|
||||
import { useToast } from "@/components/molecules/Toast/use-toast";
|
||||
import React, {
|
||||
KeyboardEvent,
|
||||
useCallback,
|
||||
useEffect,
|
||||
useRef,
|
||||
useState,
|
||||
} from "react";
|
||||
|
||||
const MAX_RECORDING_DURATION = 2 * 60 * 1000; // 2 minutes in ms
|
||||
|
||||
interface Args {
|
||||
setValue: React.Dispatch<React.SetStateAction<string>>;
|
||||
disabled?: boolean;
|
||||
isStreaming?: boolean;
|
||||
value: string;
|
||||
baseHandleKeyDown: (event: KeyboardEvent<HTMLTextAreaElement>) => void;
|
||||
inputId?: string;
|
||||
}
|
||||
|
||||
export function useVoiceRecording({
|
||||
setValue,
|
||||
disabled = false,
|
||||
isStreaming = false,
|
||||
value,
|
||||
baseHandleKeyDown,
|
||||
inputId,
|
||||
}: Args) {
|
||||
const [isRecording, setIsRecording] = useState(false);
|
||||
const [isTranscribing, setIsTranscribing] = useState(false);
|
||||
const [error, setError] = useState<string | null>(null);
|
||||
const [elapsedTime, setElapsedTime] = useState(0);
|
||||
|
||||
const mediaRecorderRef = useRef<MediaRecorder | null>(null);
|
||||
const chunksRef = useRef<Blob[]>([]);
|
||||
const timerRef = useRef<NodeJS.Timeout | null>(null);
|
||||
const startTimeRef = useRef<number>(0);
|
||||
const streamRef = useRef<MediaStream | null>(null);
|
||||
const isRecordingRef = useRef(false);
|
||||
|
||||
const isSupported =
|
||||
typeof window !== "undefined" &&
|
||||
!!(navigator.mediaDevices && navigator.mediaDevices.getUserMedia);
|
||||
|
||||
const clearTimer = useCallback(() => {
|
||||
if (timerRef.current) {
|
||||
clearInterval(timerRef.current);
|
||||
timerRef.current = null;
|
||||
}
|
||||
}, []);
|
||||
|
||||
const cleanup = useCallback(() => {
|
||||
clearTimer();
|
||||
if (streamRef.current) {
|
||||
streamRef.current.getTracks().forEach((track) => track.stop());
|
||||
streamRef.current = null;
|
||||
}
|
||||
mediaRecorderRef.current = null;
|
||||
chunksRef.current = [];
|
||||
setElapsedTime(0);
|
||||
}, [clearTimer]);
|
||||
|
||||
const handleTranscription = useCallback(
|
||||
(text: string) => {
|
||||
setValue((prev) => {
|
||||
const trimmedPrev = prev.trim();
|
||||
if (trimmedPrev) {
|
||||
return `${trimmedPrev} ${text}`;
|
||||
}
|
||||
return text;
|
||||
});
|
||||
},
|
||||
[setValue],
|
||||
);
|
||||
|
||||
const transcribeAudio = useCallback(
|
||||
async (audioBlob: Blob) => {
|
||||
setIsTranscribing(true);
|
||||
setError(null);
|
||||
|
||||
try {
|
||||
const formData = new FormData();
|
||||
formData.append("audio", audioBlob);
|
||||
|
||||
const response = await fetch("/api/transcribe", {
|
||||
method: "POST",
|
||||
body: formData,
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
const data = await response.json().catch(() => ({}));
|
||||
throw new Error(data.error || "Transcription failed");
|
||||
}
|
||||
|
||||
const data = await response.json();
|
||||
if (data.text) {
|
||||
handleTranscription(data.text);
|
||||
}
|
||||
} catch (err) {
|
||||
const message =
|
||||
err instanceof Error ? err.message : "Transcription failed";
|
||||
setError(message);
|
||||
console.error("Transcription error:", err);
|
||||
} finally {
|
||||
setIsTranscribing(false);
|
||||
}
|
||||
},
|
||||
[handleTranscription, inputId],
|
||||
);
|
||||
|
||||
const stopRecording = useCallback(() => {
|
||||
if (mediaRecorderRef.current && isRecordingRef.current) {
|
||||
mediaRecorderRef.current.stop();
|
||||
isRecordingRef.current = false;
|
||||
setIsRecording(false);
|
||||
clearTimer();
|
||||
}
|
||||
}, [clearTimer]);
|
||||
|
||||
const startRecording = useCallback(async () => {
|
||||
if (disabled || isRecordingRef.current || isTranscribing) return;
|
||||
|
||||
setError(null);
|
||||
chunksRef.current = [];
|
||||
|
||||
try {
|
||||
const stream = await navigator.mediaDevices.getUserMedia({ audio: true });
|
||||
streamRef.current = stream;
|
||||
|
||||
const mediaRecorder = new MediaRecorder(stream, {
|
||||
mimeType: MediaRecorder.isTypeSupported("audio/webm")
|
||||
? "audio/webm"
|
||||
: "audio/mp4",
|
||||
});
|
||||
|
||||
mediaRecorderRef.current = mediaRecorder;
|
||||
|
||||
mediaRecorder.ondataavailable = (event) => {
|
||||
if (event.data.size > 0) {
|
||||
chunksRef.current.push(event.data);
|
||||
}
|
||||
};
|
||||
|
||||
mediaRecorder.onstop = async () => {
|
||||
const audioBlob = new Blob(chunksRef.current, {
|
||||
type: mediaRecorder.mimeType,
|
||||
});
|
||||
|
||||
// Cleanup stream
|
||||
if (streamRef.current) {
|
||||
streamRef.current.getTracks().forEach((track) => track.stop());
|
||||
streamRef.current = null;
|
||||
}
|
||||
|
||||
if (audioBlob.size > 0) {
|
||||
await transcribeAudio(audioBlob);
|
||||
}
|
||||
};
|
||||
|
||||
mediaRecorder.start(1000); // Collect data every second
|
||||
isRecordingRef.current = true;
|
||||
setIsRecording(true);
|
||||
startTimeRef.current = Date.now();
|
||||
|
||||
// Start elapsed time timer
|
||||
timerRef.current = setInterval(() => {
|
||||
const elapsed = Date.now() - startTimeRef.current;
|
||||
setElapsedTime(elapsed);
|
||||
|
||||
// Auto-stop at max duration
|
||||
if (elapsed >= MAX_RECORDING_DURATION) {
|
||||
stopRecording();
|
||||
}
|
||||
}, 100);
|
||||
} catch (err) {
|
||||
console.error("Failed to start recording:", err);
|
||||
if (err instanceof DOMException && err.name === "NotAllowedError") {
|
||||
setError("Microphone permission denied");
|
||||
} else {
|
||||
setError("Failed to access microphone");
|
||||
}
|
||||
cleanup();
|
||||
}
|
||||
}, [disabled, isTranscribing, stopRecording, transcribeAudio, cleanup]);
|
||||
|
||||
const toggleRecording = useCallback(() => {
|
||||
if (isRecording) {
|
||||
stopRecording();
|
||||
} else {
|
||||
startRecording();
|
||||
}
|
||||
}, [isRecording, startRecording, stopRecording]);
|
||||
|
||||
const { toast } = useToast();
|
||||
|
||||
useEffect(() => {
|
||||
if (error) {
|
||||
toast({
|
||||
title: "Voice recording failed",
|
||||
description: error,
|
||||
variant: "destructive",
|
||||
});
|
||||
}
|
||||
}, [error, toast]);
|
||||
|
||||
useEffect(() => {
|
||||
if (!isTranscribing && inputId) {
|
||||
const inputElement = document.getElementById(inputId);
|
||||
if (inputElement) {
|
||||
inputElement.focus();
|
||||
}
|
||||
}
|
||||
}, [isTranscribing, inputId]);
|
||||
|
||||
const handleKeyDown = useCallback(
|
||||
(event: KeyboardEvent<HTMLTextAreaElement>) => {
|
||||
if (event.key === " " && !value.trim() && !isTranscribing) {
|
||||
event.preventDefault();
|
||||
toggleRecording();
|
||||
return;
|
||||
}
|
||||
baseHandleKeyDown(event);
|
||||
},
|
||||
[value, isTranscribing, toggleRecording, baseHandleKeyDown],
|
||||
);
|
||||
|
||||
const showMicButton = isSupported && !isStreaming;
|
||||
const isInputDisabled = disabled || isStreaming || isTranscribing;
|
||||
|
||||
// Cleanup on unmount
|
||||
useEffect(() => {
|
||||
return () => {
|
||||
cleanup();
|
||||
};
|
||||
}, [cleanup]);
|
||||
|
||||
return {
|
||||
isRecording,
|
||||
isTranscribing,
|
||||
error,
|
||||
elapsedTime,
|
||||
startRecording,
|
||||
stopRecording,
|
||||
toggleRecording,
|
||||
isSupported,
|
||||
handleKeyDown,
|
||||
showMicButton,
|
||||
isInputDisabled,
|
||||
audioStream: streamRef.current,
|
||||
};
|
||||
}
|
||||
@@ -1,6 +1,8 @@
|
||||
"use client";
|
||||
|
||||
import { getGetWorkspaceDownloadFileByIdUrl } from "@/app/api/__generated__/endpoints/workspace/workspace";
|
||||
import { cn } from "@/lib/utils";
|
||||
import { EyeSlash } from "@phosphor-icons/react";
|
||||
import React from "react";
|
||||
import ReactMarkdown from "react-markdown";
|
||||
import remarkGfm from "remark-gfm";
|
||||
@@ -29,12 +31,88 @@ interface InputProps extends React.InputHTMLAttributes<HTMLInputElement> {
|
||||
type?: string;
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts a workspace:// URL to a proxy URL that routes through Next.js to the backend.
|
||||
* workspace://abc123 -> /api/proxy/api/workspace/files/abc123/download
|
||||
*
|
||||
* Uses the generated API URL helper and routes through the Next.js proxy
|
||||
* which handles authentication and proper backend routing.
|
||||
*/
|
||||
/**
|
||||
* URL transformer for ReactMarkdown.
|
||||
* Converts workspace:// URLs to proxy URLs that route through Next.js to the backend.
|
||||
* workspace://abc123 -> /api/proxy/api/workspace/files/abc123/download
|
||||
*
|
||||
* This is needed because ReactMarkdown sanitizes URLs and only allows
|
||||
* http, https, mailto, and tel protocols by default.
|
||||
*/
|
||||
function resolveWorkspaceUrl(src: string): string {
|
||||
if (src.startsWith("workspace://")) {
|
||||
const fileId = src.replace("workspace://", "");
|
||||
// Use the generated API URL helper to get the correct path
|
||||
const apiPath = getGetWorkspaceDownloadFileByIdUrl(fileId);
|
||||
// Route through the Next.js proxy (same pattern as customMutator for client-side)
|
||||
return `/api/proxy${apiPath}`;
|
||||
}
|
||||
return src;
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if the image URL is a workspace file (AI cannot see these yet).
|
||||
* After URL transformation, workspace files have URLs like /api/proxy/api/workspace/files/...
|
||||
*/
|
||||
function isWorkspaceImage(src: string | undefined): boolean {
|
||||
return src?.includes("/workspace/files/") ?? false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Custom image component that shows an indicator when the AI cannot see the image.
|
||||
* Note: src is already transformed by urlTransform, so workspace:// is now /api/workspace/...
|
||||
*/
|
||||
function MarkdownImage(props: Record<string, unknown>) {
|
||||
const src = props.src as string | undefined;
|
||||
const alt = props.alt as string | undefined;
|
||||
|
||||
const aiCannotSee = isWorkspaceImage(src);
|
||||
|
||||
// If no src, show a placeholder
|
||||
if (!src) {
|
||||
return (
|
||||
<span className="my-2 inline-block rounded border border-amber-200 bg-amber-50 px-2 py-1 text-sm text-amber-700">
|
||||
[Image: {alt || "missing src"}]
|
||||
</span>
|
||||
);
|
||||
}
|
||||
|
||||
return (
|
||||
<span className="relative my-2 inline-block">
|
||||
{/* eslint-disable-next-line @next/next/no-img-element */}
|
||||
<img
|
||||
src={src}
|
||||
alt={alt || "Image"}
|
||||
className="h-auto max-w-full rounded-md border border-zinc-200"
|
||||
loading="lazy"
|
||||
/>
|
||||
{aiCannotSee && (
|
||||
<span
|
||||
className="absolute bottom-2 right-2 flex items-center gap-1 rounded bg-black/70 px-2 py-1 text-xs text-white"
|
||||
title="The AI cannot see this image"
|
||||
>
|
||||
<EyeSlash size={14} />
|
||||
<span>AI cannot see this image</span>
|
||||
</span>
|
||||
)}
|
||||
</span>
|
||||
);
|
||||
}
|
||||
|
||||
export function MarkdownContent({ content, className }: MarkdownContentProps) {
|
||||
return (
|
||||
<div className={cn("markdown-content", className)}>
|
||||
<ReactMarkdown
|
||||
skipHtml={true}
|
||||
remarkPlugins={[remarkGfm]}
|
||||
urlTransform={resolveWorkspaceUrl}
|
||||
components={{
|
||||
code: ({ children, className, ...props }: CodeProps) => {
|
||||
const isInline = !className?.includes("language-");
|
||||
@@ -206,6 +284,9 @@ export function MarkdownContent({ content, className }: MarkdownContentProps) {
|
||||
{children}
|
||||
</td>
|
||||
),
|
||||
img: ({ src, alt, ...props }) => (
|
||||
<MarkdownImage src={src} alt={alt} {...props} />
|
||||
),
|
||||
}}
|
||||
>
|
||||
{content}
|
||||
|
||||
@@ -37,6 +37,87 @@ export function getErrorMessage(result: unknown): string {
|
||||
return "An error occurred";
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if a value is a workspace file reference.
|
||||
*/
|
||||
function isWorkspaceRef(value: unknown): value is string {
|
||||
return typeof value === "string" && value.startsWith("workspace://");
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if a workspace reference appears to be an image based on common patterns.
|
||||
* Since workspace refs don't have extensions, we check the context or assume image
|
||||
* for certain block types.
|
||||
*
|
||||
* TODO: Replace keyword matching with MIME type encoded in workspace ref.
|
||||
* e.g., workspace://abc123#image/png or workspace://abc123#video/mp4
|
||||
* This would let frontend render correctly without fragile keyword matching.
|
||||
*/
|
||||
function isLikelyImageRef(value: string, outputKey?: string): boolean {
|
||||
if (!isWorkspaceRef(value)) return false;
|
||||
|
||||
// Check output key name for video-related hints (these are NOT images)
|
||||
const videoKeywords = ["video", "mp4", "mov", "avi", "webm", "movie", "clip"];
|
||||
if (outputKey) {
|
||||
const lowerKey = outputKey.toLowerCase();
|
||||
if (videoKeywords.some((kw) => lowerKey.includes(kw))) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Check output key name for image-related hints
|
||||
const imageKeywords = [
|
||||
"image",
|
||||
"img",
|
||||
"photo",
|
||||
"picture",
|
||||
"thumbnail",
|
||||
"avatar",
|
||||
"icon",
|
||||
"screenshot",
|
||||
];
|
||||
if (outputKey) {
|
||||
const lowerKey = outputKey.toLowerCase();
|
||||
if (imageKeywords.some((kw) => lowerKey.includes(kw))) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// Default to treating workspace refs as potential images
|
||||
// since that's the most common case for generated content
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Format a single output value, converting workspace refs to markdown images.
|
||||
*/
|
||||
function formatOutputValue(value: unknown, outputKey?: string): string {
|
||||
if (isWorkspaceRef(value) && isLikelyImageRef(value, outputKey)) {
|
||||
// Format as markdown image
|
||||
return ``;
|
||||
}
|
||||
|
||||
if (typeof value === "string") {
|
||||
// Check for data URIs (images)
|
||||
if (value.startsWith("data:image/")) {
|
||||
return ``;
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
if (Array.isArray(value)) {
|
||||
return value
|
||||
.map((item, idx) => formatOutputValue(item, `${outputKey}_${idx}`))
|
||||
.join("\n\n");
|
||||
}
|
||||
|
||||
if (typeof value === "object" && value !== null) {
|
||||
return JSON.stringify(value, null, 2);
|
||||
}
|
||||
|
||||
return String(value);
|
||||
}
|
||||
|
||||
function getToolCompletionPhrase(toolName: string): string {
|
||||
const toolCompletionPhrases: Record<string, string> = {
|
||||
add_understanding: "Updated your business information",
|
||||
@@ -127,10 +208,26 @@ export function formatToolResponse(result: unknown, toolName: string): string {
|
||||
|
||||
case "block_output":
|
||||
const blockName = (response.block_name as string) || "Block";
|
||||
const outputs = response.outputs as Record<string, unknown> | undefined;
|
||||
const outputs = response.outputs as Record<string, unknown[]> | undefined;
|
||||
if (outputs && Object.keys(outputs).length > 0) {
|
||||
const outputKeys = Object.keys(outputs);
|
||||
return `${blockName} executed successfully. Outputs: ${outputKeys.join(", ")}`;
|
||||
const formattedOutputs: string[] = [];
|
||||
|
||||
for (const [key, values] of Object.entries(outputs)) {
|
||||
if (!Array.isArray(values) || values.length === 0) continue;
|
||||
|
||||
// Format each value in the output array
|
||||
for (const value of values) {
|
||||
const formatted = formatOutputValue(value, key);
|
||||
if (formatted) {
|
||||
formattedOutputs.push(formatted);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (formattedOutputs.length > 0) {
|
||||
return `${blockName} executed successfully.\n\n${formattedOutputs.join("\n\n")}`;
|
||||
}
|
||||
return `${blockName} executed successfully.`;
|
||||
}
|
||||
return `${blockName} executed successfully.`;
|
||||
|
||||
|
||||
@@ -516,7 +516,7 @@ export type GraphValidationErrorResponse = {
|
||||
|
||||
/* *** LIBRARY *** */
|
||||
|
||||
/* Mirror of backend/server/v2/library/model.py:LibraryAgent */
|
||||
/* Mirror of backend/api/features/library/model.py:LibraryAgent */
|
||||
export type LibraryAgent = {
|
||||
id: LibraryAgentID;
|
||||
graph_id: GraphID;
|
||||
@@ -616,7 +616,7 @@ export enum LibraryAgentSortEnum {
|
||||
|
||||
/* *** CREDENTIALS *** */
|
||||
|
||||
/* Mirror of backend/server/integrations/router.py:CredentialsMetaResponse */
|
||||
/* Mirror of backend/api/features/integrations/router.py:CredentialsMetaResponse */
|
||||
export type CredentialsMetaResponse = {
|
||||
id: string;
|
||||
provider: CredentialsProviderName;
|
||||
@@ -628,13 +628,13 @@ export type CredentialsMetaResponse = {
|
||||
is_system?: boolean;
|
||||
};
|
||||
|
||||
/* Mirror of backend/server/integrations/router.py:CredentialsDeletionResponse */
|
||||
/* Mirror of backend/api/features/integrations/router.py:CredentialsDeletionResponse */
|
||||
export type CredentialsDeleteResponse = {
|
||||
deleted: true;
|
||||
revoked: boolean | null;
|
||||
};
|
||||
|
||||
/* Mirror of backend/server/integrations/router.py:CredentialsDeletionNeedsConfirmationResponse */
|
||||
/* Mirror of backend/api/features/integrations/router.py:CredentialsDeletionNeedsConfirmationResponse */
|
||||
export type CredentialsDeleteNeedConfirmationResponse = {
|
||||
deleted: false;
|
||||
need_confirmation: true;
|
||||
@@ -888,7 +888,7 @@ export type Schedule = {
|
||||
|
||||
export type ScheduleID = Brand<string, "ScheduleID">;
|
||||
|
||||
/* Mirror of backend/server/routers/v1.py:ScheduleCreationRequest */
|
||||
/* Mirror of backend/api/features/v1.py:ScheduleCreationRequest */
|
||||
export type ScheduleCreatable = {
|
||||
graph_id: GraphID;
|
||||
graph_version: number;
|
||||
|
||||
@@ -59,12 +59,13 @@ test.describe("Library", () => {
|
||||
});
|
||||
|
||||
test("pagination works correctly", async ({ page }, testInfo) => {
|
||||
test.setTimeout(testInfo.timeout * 3); // Increase timeout for pagination operations
|
||||
test.setTimeout(testInfo.timeout * 3);
|
||||
await page.goto("/library");
|
||||
|
||||
const PAGE_SIZE = 20;
|
||||
const paginationResult = await libraryPage.testPagination();
|
||||
|
||||
if (paginationResult.initialCount >= 10) {
|
||||
if (paginationResult.initialCount >= PAGE_SIZE) {
|
||||
expect(paginationResult.finalCount).toBeGreaterThanOrEqual(
|
||||
paginationResult.initialCount,
|
||||
);
|
||||
@@ -133,7 +134,10 @@ test.describe("Library", () => {
|
||||
test.expect(clearedSearchValue).toBe("");
|
||||
});
|
||||
|
||||
test("pagination while searching works correctly", async ({ page }) => {
|
||||
test("pagination while searching works correctly", async ({
|
||||
page,
|
||||
}, testInfo) => {
|
||||
test.setTimeout(testInfo.timeout * 3);
|
||||
await page.goto("/library");
|
||||
|
||||
const allAgents = await libraryPage.getAgents();
|
||||
@@ -152,9 +156,10 @@ test.describe("Library", () => {
|
||||
);
|
||||
expect(matchingResults.length).toEqual(initialSearchResults.length);
|
||||
|
||||
const PAGE_SIZE = 20;
|
||||
const searchPaginationResult = await libraryPage.testPagination();
|
||||
|
||||
if (searchPaginationResult.initialCount >= 10) {
|
||||
if (searchPaginationResult.initialCount >= PAGE_SIZE) {
|
||||
expect(searchPaginationResult.finalCount).toBeGreaterThanOrEqual(
|
||||
searchPaginationResult.initialCount,
|
||||
);
|
||||
|
||||
@@ -69,9 +69,12 @@ test.describe("Marketplace Creator Page – Basic Functionality", () => {
|
||||
await marketplacePage.getFirstCreatorProfile(page);
|
||||
await firstCreatorProfile.click();
|
||||
await page.waitForURL("**/marketplace/creator/**");
|
||||
await page.waitForLoadState("networkidle").catch(() => {});
|
||||
|
||||
const firstAgent = page
|
||||
.locator('[data-testid="store-card"]:visible')
|
||||
.first();
|
||||
await firstAgent.waitFor({ state: "visible", timeout: 30000 });
|
||||
|
||||
await firstAgent.click();
|
||||
await page.waitForURL("**/marketplace/agent/**");
|
||||
|
||||
@@ -77,7 +77,6 @@ test.describe("Marketplace – Basic Functionality", () => {
|
||||
|
||||
const firstFeaturedAgent =
|
||||
await marketplacePage.getFirstFeaturedAgent(page);
|
||||
await firstFeaturedAgent.waitFor({ state: "visible" });
|
||||
await firstFeaturedAgent.click();
|
||||
await page.waitForURL("**/marketplace/agent/**");
|
||||
await matchesUrl(page, /\/marketplace\/agent\/.+/);
|
||||
@@ -116,7 +115,15 @@ test.describe("Marketplace – Basic Functionality", () => {
|
||||
const searchTerm = page.getByText("DummyInput").first();
|
||||
await isVisible(searchTerm);
|
||||
|
||||
await page.waitForTimeout(10000);
|
||||
await page.waitForLoadState("networkidle").catch(() => {});
|
||||
|
||||
await page
|
||||
.waitForFunction(
|
||||
() =>
|
||||
document.querySelectorAll('[data-testid="store-card"]').length > 0,
|
||||
{ timeout: 15000 },
|
||||
)
|
||||
.catch(() => console.log("No search results appeared within timeout"));
|
||||
|
||||
const results = await marketplacePage.getSearchResultsCount(page);
|
||||
expect(results).toBeGreaterThan(0);
|
||||
|
||||
@@ -300,21 +300,27 @@ export class LibraryPage extends BasePage {
|
||||
async scrollToLoadMore(): Promise<void> {
|
||||
console.log(`scrolling to load more agents`);
|
||||
|
||||
// Get initial agent count
|
||||
const initialCount = await this.getAgentCount();
|
||||
console.log(`Initial agent count: ${initialCount}`);
|
||||
const initialCount = await this.getAgentCountByListLength();
|
||||
console.log(`Initial agent count (DOM cards): ${initialCount}`);
|
||||
|
||||
// Scroll down to trigger pagination
|
||||
await this.scrollToBottom();
|
||||
|
||||
// Wait for potential new agents to load
|
||||
await this.page.waitForTimeout(2000);
|
||||
await this.page
|
||||
.waitForLoadState("networkidle", { timeout: 10000 })
|
||||
.catch(() => console.log("Network idle timeout, continuing..."));
|
||||
|
||||
// Check if more agents loaded
|
||||
const newCount = await this.getAgentCount();
|
||||
console.log(`New agent count after scroll: ${newCount}`);
|
||||
await this.page
|
||||
.waitForFunction(
|
||||
(prevCount) =>
|
||||
document.querySelectorAll('[data-testid="library-agent-card"]')
|
||||
.length > prevCount,
|
||||
initialCount,
|
||||
{ timeout: 5000 },
|
||||
)
|
||||
.catch(() => {});
|
||||
|
||||
return;
|
||||
const newCount = await this.getAgentCountByListLength();
|
||||
console.log(`New agent count after scroll (DOM cards): ${newCount}`);
|
||||
}
|
||||
|
||||
async testPagination(): Promise<{
|
||||
|
||||
@@ -9,6 +9,7 @@ export class MarketplacePage extends BasePage {
|
||||
|
||||
async goto(page: Page) {
|
||||
await page.goto("/marketplace");
|
||||
await page.waitForLoadState("networkidle").catch(() => {});
|
||||
}
|
||||
|
||||
async getMarketplaceTitle(page: Page) {
|
||||
@@ -109,16 +110,24 @@ export class MarketplacePage extends BasePage {
|
||||
|
||||
async getFirstFeaturedAgent(page: Page) {
|
||||
const { getId } = getSelectors(page);
|
||||
return getId("featured-store-card").first();
|
||||
const card = getId("featured-store-card").first();
|
||||
await card.waitFor({ state: "visible", timeout: 30000 });
|
||||
return card;
|
||||
}
|
||||
|
||||
async getFirstTopAgent() {
|
||||
return this.page.locator('[data-testid="store-card"]:visible').first();
|
||||
const card = this.page
|
||||
.locator('[data-testid="store-card"]:visible')
|
||||
.first();
|
||||
await card.waitFor({ state: "visible", timeout: 30000 });
|
||||
return card;
|
||||
}
|
||||
|
||||
async getFirstCreatorProfile(page: Page) {
|
||||
const { getId } = getSelectors(page);
|
||||
return getId("creator-card").first();
|
||||
const card = getId("creator-card").first();
|
||||
await card.waitFor({ state: "visible", timeout: 30000 });
|
||||
return card;
|
||||
}
|
||||
|
||||
async getSearchResultsCount(page: Page) {
|
||||
|
||||
@@ -53,7 +53,7 @@ Below is a comprehensive list of all available blocks, categorized by their prim
|
||||
| [Block Installation](block-integrations/basic.md#block-installation) | Given a code string, this block allows the verification and installation of a block code into the system |
|
||||
| [Concatenate Lists](block-integrations/basic.md#concatenate-lists) | Concatenates multiple lists into a single list |
|
||||
| [Dictionary Is Empty](block-integrations/basic.md#dictionary-is-empty) | Checks if a dictionary is empty |
|
||||
| [File Store](block-integrations/basic.md#file-store) | Stores the input file in the temporary directory |
|
||||
| [File Store](block-integrations/basic.md#file-store) | Downloads and stores a file from a URL, data URI, or local path |
|
||||
| [Find In Dictionary](block-integrations/basic.md#find-in-dictionary) | A block that looks up a value in a dictionary, list, or object by key or index and returns the corresponding value |
|
||||
| [Find In List](block-integrations/basic.md#find-in-list) | Finds the index of the value in the list |
|
||||
| [Get All Memories](block-integrations/basic.md#get-all-memories) | Retrieve all memories from Mem0 with optional conversation filtering |
|
||||
|
||||
@@ -709,7 +709,7 @@ This is useful for conditional logic where you need to verify if data was return
|
||||
## File Store
|
||||
|
||||
### What it is
|
||||
Stores the input file in the temporary directory.
|
||||
Downloads and stores a file from a URL, data URI, or local path. Use this to fetch images, documents, or other files for processing. In CoPilot: saves to workspace (use list_workspace_files to see it). In graphs: outputs a data URI to pass to other blocks.
|
||||
|
||||
### How it works
|
||||
<!-- MANUAL: how_it_works -->
|
||||
@@ -722,15 +722,15 @@ The block outputs a file path that other blocks can use to access the stored fil
|
||||
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| file_in | The file to store in the temporary directory, it can be a URL, data URI, or local path. | str (file) | Yes |
|
||||
| base_64 | Whether produce an output in base64 format (not recommended, you can pass the string path just fine accross blocks). | bool | No |
|
||||
| file_in | The file to download and store. Can be a URL (https://...), data URI, or local path. | str (file) | Yes |
|
||||
| base_64 | Whether to produce output in base64 format (not recommended, you can pass the file reference across blocks). | bool | No |
|
||||
|
||||
### Outputs
|
||||
|
||||
| Output | Description | Type |
|
||||
|--------|-------------|------|
|
||||
| error | Error message if the operation failed | str |
|
||||
| file_out | The relative path to the stored file in the temporary directory. | str (file) |
|
||||
| file_out | Reference to the stored file. In CoPilot: workspace:// URI (visible in list_workspace_files). In graphs: data URI for passing to other blocks. | str (file) |
|
||||
|
||||
### Possible use case
|
||||
<!-- MANUAL: use_case -->
|
||||
|
||||
@@ -65,7 +65,7 @@ The result routes data to yes_output or no_output, enabling intelligent branchin
|
||||
| condition | A plaintext English description of the condition to evaluate | str | Yes |
|
||||
| yes_value | (Optional) Value to output if the condition is true. If not provided, input_value will be used. | Yes Value | No |
|
||||
| no_value | (Optional) Value to output if the condition is false. If not provided, input_value will be used. | No Value | No |
|
||||
| model | The language model to use for evaluating the condition. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for evaluating the condition. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
|
||||
### Outputs
|
||||
|
||||
@@ -103,7 +103,7 @@ The block sends the entire conversation history to the chosen LLM, including sys
|
||||
|-------|-------------|------|----------|
|
||||
| prompt | The prompt to send to the language model. | str | No |
|
||||
| messages | List of messages in the conversation. | List[Any] | Yes |
|
||||
| model | The language model to use for the conversation. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for the conversation. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
|
||||
| ollama_host | Ollama host for local models | str | No |
|
||||
|
||||
@@ -257,7 +257,7 @@ The block formulates a prompt based on the given focus or source data, sends it
|
||||
|-------|-------------|------|----------|
|
||||
| focus | The focus of the list to generate. | str | No |
|
||||
| source_data | The data to generate the list from. | str | No |
|
||||
| model | The language model to use for generating the list. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for generating the list. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| max_retries | Maximum number of retries for generating a valid list. | int | No |
|
||||
| force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No |
|
||||
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
|
||||
@@ -424,7 +424,7 @@ The block sends the input prompt to a chosen LLM, along with any system prompts
|
||||
| prompt | The prompt to send to the language model. | str | Yes |
|
||||
| expected_format | Expected format of the response. If provided, the response will be validated against this format. The keys should be the expected fields in the response, and the values should be the description of the field. | Dict[str, str] | Yes |
|
||||
| list_result | Whether the response should be a list of objects in the expected format. | bool | No |
|
||||
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No |
|
||||
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
|
||||
| conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No |
|
||||
@@ -464,7 +464,7 @@ The block sends the input prompt to a chosen LLM, processes the response, and re
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| prompt | The prompt to send to the language model. You can use any of the {keys} from Prompt Values to fill in the prompt with values from the prompt values dictionary by putting them in curly braces. | str | Yes |
|
||||
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
|
||||
| retry | Number of times to retry the LLM call if the response does not match the expected format. | int | No |
|
||||
| prompt_values | Values used to fill in the prompt. The values can be used in the prompt by putting them in a double curly braces, e.g. {{variable_name}}. | Dict[str, str] | No |
|
||||
@@ -501,7 +501,7 @@ The block splits the input text into smaller chunks, sends each chunk to an LLM
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| text | The text to summarize. | str | Yes |
|
||||
| model | The language model to use for summarizing the text. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for summarizing the text. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| focus | The topic to focus on in the summary | str | No |
|
||||
| style | The style of the summary to generate. | "concise" \| "detailed" \| "bullet points" \| "numbered list" | No |
|
||||
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
|
||||
@@ -763,7 +763,7 @@ Configure agent_mode_max_iterations to control loop behavior: 0 for single decis
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| prompt | The prompt to send to the language model. | str | Yes |
|
||||
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| multiple_tool_calls | Whether to allow multiple tool calls in a single response. | bool | No |
|
||||
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
|
||||
| conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No |
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user