## Summary
This PR adds support for the FLUX LoRA model format produced by
OneTrainer.
Specifically, this PR adds:
- Support for DoRA patches
- Support for patch models that modify the FLUX T5 encoder
- Probing / loading support for OneTrainer models
## Known limitations
- DoRA patches cannot currently be applied to base weights that are
quantized with `bitsandbytes`. The DoRA algorithm requires accessing the
original model weight in order to compute the patch diff, and the
bitsandbytes quantization layers make this difficult. DoRA patches can
be applied to non-quantized and GGUF-quantized layers without issue.
- This PR results in a slight speed regression for a very particular
inference combination: quantized base model + LoRA with diffusers keys
(i.e. uses the `MergedLayerPatch`). Now that more LoRA formats are using
the `MergedLayerPatch`, it was becoming too much work to maintain this
optimization. Regression from ~1.7 it/s to ~1.4 it/s.
## Future Notes
- We may want to consider dropping support for bitsandbytes
quantization. It is very difficult to maintain compatibility for across
features like partial-loading and LoRA patching.
- At a future time, we should refactor the LoRA parsing logic to be more
generalized rather than handling each format independently.
- There are some redundant device casts and dequantizations in
`autocast_linear_forward_sidecar_patches(...)` (and its sub-calls).
Optimizing this is left for future work.
## Related Issues / Discussions
- This PR should address a handful of the LoRAs reported in
https://github.com/invoke-ai/InvokeAI/issues/7131 (specifically, most of
the `envy*` LoRAs).
- This PR should address the example in
https://github.com/invoke-ai/InvokeAI/issues/6912 (though the intended
effect of that LoRA is not totally clear, so its hard to verify with
full confidence).
## QA Instructions
OneTrainer test models:
-
https://civitai.com/models/844821/envy-flux-dark-watercolor-01?modelVersionId=945159
(DoRA, transformer only)
-
https://civitai.com/models/836757/envy-flux-digital-brush-01?modelVersionId=936167
(hada, transformer only)
- ball_flux from https://github.com/invoke-ai/InvokeAI/issues/6912
(DoRA, transformer/clip/t5)
The following tests were repeated with each of the OneTrainer test
models:
- [x] Test with non-quantized base model
- [x] Test with GGUF-quantized base model
- [x] Test with BnB-quantized base model
- [x] Test with non-quantized base model that is partially-loaded onto
the GPU
Other regression test:
- [x] Test some SD1 LoRAs
- [x] Test some SDXL LoRAs
- [x] Test a variety of existing FLUX LoRA formats
- [x] Test a FLUX Control LoRA on all base model quantization formats.
## Merge Plan
No special instructions.
## Checklist
- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
## Summary
This PR fixes an issue with mask dimension consistency. Prior to this
change, the following workflow would fail with `tuple out of range`
error:
<img width="1072" alt="image"
src="https://github.com/user-attachments/assets/d0a9e658-1d64-4db4-adee-973bbdaca745"
/>
### Before this PR
Dimension compatibility for invocations that take a mask input:
- `ApplyMaskTensorToImageInvocation`: 2 or 3
- `MaskTensorToImageInvocation`: 2 or 3
- `InvertTensorMaskInvocation`: 3
Mask dimension for invocations that produce a MaskOutput:
- `RectangleMaskInvocation`: 3
- `AlphaMaskToTensorInvocation`: 3
- `InvertTensorMaskInvocation`: 3
- `ImageMaskToTensorInvocation`: 3
- `SegmentAnythingInvocation`: 2
### After this PR (changes in bold)
Dimension compatibility for invocations that take a mask input:
- `ApplyMaskTensorToImageInvocation`: 2 or 3
- `MaskTensorToImageInvocation`: 2 or 3
- `InvertTensorMaskInvocation`: **2 or 3** <----------------
Mask dimension for invocations that produce a MaskOutput:
- `RectangleMaskInvocation`: 3
- `AlphaMaskToTensorInvocation`: 3
- `InvertTensorMaskInvocation`: 3
- `ImageMaskToTensorInvocation`: 3
- `SegmentAnythingInvocation`: **3** <-------------------
## QA Instructions
I tested the workflow in the PR description and this workflow:
<img width="872" alt="image"
src="https://github.com/user-attachments/assets/20496860-ce81-47c0-a46a-a611b73faa22"
/>
## Merge Plan
No special instructions.
## Checklist
- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
Currently translated at 100.0% (1697 of 1697 strings)
translationBot(ui): update translation (Vietnamese)
Currently translated at 99.2% (1684 of 1697 strings)
translationBot(ui): update translation (Vietnamese)
Currently translated at 99.7% (1676 of 1681 strings)
translationBot(ui): update translation (Vietnamese)
Currently translated at 99.3% (1670 of 1681 strings)
translationBot(ui): update translation (Vietnamese)
Currently translated at 99.5% (1658 of 1666 strings)
translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1652 of 1652 strings)
Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
Dynamic prompts string generators can cause an infinite feedback loop when added to the linear view.
The root cause is how these generators handle "resolving" their collections. They hit the dynamic prompts HTTP API within the view component to get the prompts, then set the batch node's internal state with those values.
When the same generator is rendered in both the node editor view and linear view and the timing is just right, that state update causes an infinite feedback loop between the two components as they respond to the state updates from the other component.
The other generators never store the generated values in the batch node's internal state. The values are "resolved" just-in-time as they are needed.
To fix this, the batch value "resolver" utilities could be made async and hit the API. But there's a problem - the resolver utilities are used within the "are we ready to invoke? are there any problems with the current settings?" redux selectors, which are strictly synchronous. To fix that, we can refactor that "are we ready to invoke?" logic to not use redux selectors, so the whole thing could be async.
It's not a big change but I'm not going to spend time on it at the moment.
So, until I address this, the dynamic prompts generators are disabled.