mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-16 16:57:58 -05:00
Compare commits
11 Commits
controlnet
...
ryan/dora
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6bfb4927c7 | ||
|
|
c15e9e23ca | ||
|
|
e1aa1ed6af | ||
|
|
4b68050c9b | ||
|
|
9e68a5c851 | ||
|
|
61a672cd81 | ||
|
|
c27a2e59da | ||
|
|
4e3f42e388 | ||
|
|
5d41157404 | ||
|
|
8db4ba252a | ||
|
|
6d9fb207f0 |
@@ -9,7 +9,8 @@ from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
|
|||||||
from invokeai.app.invocations.primitives import ConditioningOutput
|
from invokeai.app.invocations.primitives import ConditioningOutput
|
||||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||||
from invokeai.app.util.ti_utils import generate_ti_list
|
from invokeai.app.util.ti_utils import generate_ti_list
|
||||||
from invokeai.backend.lora import LoRAModelRaw
|
from invokeai.backend.lora.lora_model import LoRAModelRaw
|
||||||
|
from invokeai.backend.lora.lora_model_patcher import LoraModelPatcher
|
||||||
from invokeai.backend.model_patcher import ModelPatcher
|
from invokeai.backend.model_patcher import ModelPatcher
|
||||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||||
BasicConditioningInfo,
|
BasicConditioningInfo,
|
||||||
@@ -80,7 +81,7 @@ class CompelInvocation(BaseInvocation):
|
|||||||
),
|
),
|
||||||
text_encoder_info as text_encoder,
|
text_encoder_info as text_encoder,
|
||||||
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
||||||
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
|
LoraModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
|
||||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||||
ModelPatcher.apply_clip_skip(text_encoder_model, self.clip.skipped_layers),
|
ModelPatcher.apply_clip_skip(text_encoder_model, self.clip.skipped_layers),
|
||||||
):
|
):
|
||||||
@@ -181,7 +182,7 @@ class SDXLPromptInvocationBase:
|
|||||||
),
|
),
|
||||||
text_encoder_info as text_encoder,
|
text_encoder_info as text_encoder,
|
||||||
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
||||||
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
|
LoraModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
|
||||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||||
ModelPatcher.apply_clip_skip(text_encoder_model, clip_field.skipped_layers),
|
ModelPatcher.apply_clip_skip(text_encoder_model, clip_field.skipped_layers),
|
||||||
):
|
):
|
||||||
|
|||||||
@@ -48,7 +48,8 @@ from invokeai.app.invocations.t2i_adapter import T2IAdapterField
|
|||||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||||
from invokeai.app.util.controlnet_utils import prepare_control_image
|
from invokeai.app.util.controlnet_utils import prepare_control_image
|
||||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
|
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
|
||||||
from invokeai.backend.lora import LoRAModelRaw
|
from invokeai.backend.lora.lora_model import LoRAModelRaw
|
||||||
|
from invokeai.backend.lora.lora_model_patcher import LoraModelPatcher
|
||||||
from invokeai.backend.model_manager import BaseModelType, LoadedModel
|
from invokeai.backend.model_manager import BaseModelType, LoadedModel
|
||||||
from invokeai.backend.model_patcher import ModelPatcher
|
from invokeai.backend.model_patcher import ModelPatcher
|
||||||
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
|
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
|
||||||
@@ -730,7 +731,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
|||||||
set_seamless(unet_info.model, self.unet.seamless_axes), # FIXME
|
set_seamless(unet_info.model, self.unet.seamless_axes), # FIXME
|
||||||
unet_info as unet,
|
unet_info as unet,
|
||||||
# Apply the LoRA after unet has been moved to its target device for faster patching.
|
# Apply the LoRA after unet has been moved to its target device for faster patching.
|
||||||
ModelPatcher.apply_lora_unet(unet, _lora_loader()),
|
LoraModelPatcher.apply_lora_unet(unet, _lora_loader()),
|
||||||
):
|
):
|
||||||
assert isinstance(unet, UNet2DConditionModel)
|
assert isinstance(unet, UNet2DConditionModel)
|
||||||
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
|||||||
@@ -5,7 +5,8 @@ from abc import ABC, abstractmethod
|
|||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
from invokeai.app.services.shared.invocation_context import InvocationContextData
|
from invokeai.app.services.shared.invocation_context import InvocationContextData
|
||||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
|
from invokeai.backend.model_manager import AnyModelConfig, SubModelType
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.load import LoadedModel
|
from invokeai.backend.model_manager.load import LoadedModel
|
||||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
||||||
|
|||||||
@@ -6,7 +6,8 @@ from typing import Optional, Type
|
|||||||
from invokeai.app.services.config import InvokeAIAppConfig
|
from invokeai.app.services.config import InvokeAIAppConfig
|
||||||
from invokeai.app.services.invoker import Invoker
|
from invokeai.app.services.invoker import Invoker
|
||||||
from invokeai.app.services.shared.invocation_context import InvocationContextData
|
from invokeai.app.services.shared.invocation_context import InvocationContextData
|
||||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
|
from invokeai.backend.model_manager import AnyModelConfig, SubModelType
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.load import (
|
from invokeai.backend.model_manager.load import (
|
||||||
LoadedModel,
|
LoadedModel,
|
||||||
ModelLoaderRegistry,
|
ModelLoaderRegistry,
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
"""Initialization file for model manager service."""
|
"""Initialization file for model manager service."""
|
||||||
|
|
||||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, BaseModelType, ModelType, SubModelType
|
from invokeai.backend.model_manager import AnyModelConfig, BaseModelType, ModelType, SubModelType
|
||||||
from invokeai.backend.model_manager.load import LoadedModel
|
from invokeai.backend.model_manager.load import LoadedModel
|
||||||
|
|
||||||
from .model_manager_default import ModelManagerService, ModelManagerServiceBase
|
from .model_manager_default import ModelManagerService, ModelManagerServiceBase
|
||||||
@@ -8,7 +8,6 @@ from .model_manager_default import ModelManagerService, ModelManagerServiceBase
|
|||||||
__all__ = [
|
__all__ = [
|
||||||
"ModelManagerServiceBase",
|
"ModelManagerServiceBase",
|
||||||
"ModelManagerService",
|
"ModelManagerService",
|
||||||
"AnyModel",
|
|
||||||
"AnyModelConfig",
|
"AnyModelConfig",
|
||||||
"BaseModelType",
|
"BaseModelType",
|
||||||
"ModelType",
|
"ModelType",
|
||||||
|
|||||||
@@ -12,7 +12,6 @@ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
|||||||
|
|
||||||
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionWeights
|
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionWeights
|
||||||
|
|
||||||
from ..raw_model import RawModel
|
|
||||||
from .resampler import Resampler
|
from .resampler import Resampler
|
||||||
|
|
||||||
|
|
||||||
@@ -102,7 +101,7 @@ class MLPProjModel(torch.nn.Module):
|
|||||||
return clip_extra_context_tokens
|
return clip_extra_context_tokens
|
||||||
|
|
||||||
|
|
||||||
class IPAdapter(RawModel):
|
class IPAdapter(torch.nn.Module):
|
||||||
"""IP-Adapter: https://arxiv.org/pdf/2308.06721.pdf"""
|
"""IP-Adapter: https://arxiv.org/pdf/2308.06721.pdf"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
@@ -112,6 +111,7 @@ class IPAdapter(RawModel):
|
|||||||
dtype: torch.dtype = torch.float16,
|
dtype: torch.dtype = torch.float16,
|
||||||
num_tokens: int = 4,
|
num_tokens: int = 4,
|
||||||
):
|
):
|
||||||
|
super().__init__()
|
||||||
self.device = device
|
self.device = device
|
||||||
self.dtype = dtype
|
self.dtype = dtype
|
||||||
|
|
||||||
|
|||||||
@@ -1,624 +0,0 @@
|
|||||||
# Copyright (c) 2024 The InvokeAI Development team
|
|
||||||
"""LoRA model support."""
|
|
||||||
|
|
||||||
import bisect
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Dict, List, Optional, Tuple, Union
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from safetensors.torch import load_file
|
|
||||||
from typing_extensions import Self
|
|
||||||
|
|
||||||
from invokeai.backend.model_manager import BaseModelType
|
|
||||||
|
|
||||||
from .raw_model import RawModel
|
|
||||||
|
|
||||||
|
|
||||||
class LoRALayerBase:
|
|
||||||
# rank: Optional[int]
|
|
||||||
# alpha: Optional[float]
|
|
||||||
# bias: Optional[torch.Tensor]
|
|
||||||
# layer_key: str
|
|
||||||
|
|
||||||
# @property
|
|
||||||
# def scale(self):
|
|
||||||
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
layer_key: str,
|
|
||||||
values: Dict[str, torch.Tensor],
|
|
||||||
):
|
|
||||||
if "alpha" in values:
|
|
||||||
self.alpha = values["alpha"].item()
|
|
||||||
else:
|
|
||||||
self.alpha = None
|
|
||||||
|
|
||||||
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
|
|
||||||
self.bias: Optional[torch.Tensor] = torch.sparse_coo_tensor(
|
|
||||||
values["bias_indices"],
|
|
||||||
values["bias_values"],
|
|
||||||
tuple(values["bias_size"]),
|
|
||||||
)
|
|
||||||
|
|
||||||
else:
|
|
||||||
self.bias = None
|
|
||||||
|
|
||||||
self.rank = None # set in layer implementation
|
|
||||||
self.layer_key = layer_key
|
|
||||||
|
|
||||||
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
|
|
||||||
raise NotImplementedError()
|
|
||||||
|
|
||||||
def calc_size(self) -> int:
|
|
||||||
model_size = 0
|
|
||||||
for val in [self.bias]:
|
|
||||||
if val is not None:
|
|
||||||
model_size += val.nelement() * val.element_size()
|
|
||||||
return model_size
|
|
||||||
|
|
||||||
def to(
|
|
||||||
self,
|
|
||||||
device: Optional[torch.device] = None,
|
|
||||||
dtype: Optional[torch.dtype] = None,
|
|
||||||
) -> None:
|
|
||||||
if self.bias is not None:
|
|
||||||
self.bias = self.bias.to(device=device, dtype=dtype)
|
|
||||||
|
|
||||||
|
|
||||||
# TODO: find and debug lora/locon with bias
|
|
||||||
class LoRALayer(LoRALayerBase):
|
|
||||||
# up: torch.Tensor
|
|
||||||
# mid: Optional[torch.Tensor]
|
|
||||||
# down: torch.Tensor
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
layer_key: str,
|
|
||||||
values: Dict[str, torch.Tensor],
|
|
||||||
):
|
|
||||||
super().__init__(layer_key, values)
|
|
||||||
|
|
||||||
self.up = values["lora_up.weight"]
|
|
||||||
self.down = values["lora_down.weight"]
|
|
||||||
if "lora_mid.weight" in values:
|
|
||||||
self.mid: Optional[torch.Tensor] = values["lora_mid.weight"]
|
|
||||||
else:
|
|
||||||
self.mid = None
|
|
||||||
|
|
||||||
self.rank = self.down.shape[0]
|
|
||||||
|
|
||||||
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
|
|
||||||
if self.mid is not None:
|
|
||||||
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
|
|
||||||
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
|
|
||||||
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
|
|
||||||
else:
|
|
||||||
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
|
|
||||||
|
|
||||||
return weight
|
|
||||||
|
|
||||||
def calc_size(self) -> int:
|
|
||||||
model_size = super().calc_size()
|
|
||||||
for val in [self.up, self.mid, self.down]:
|
|
||||||
if val is not None:
|
|
||||||
model_size += val.nelement() * val.element_size()
|
|
||||||
return model_size
|
|
||||||
|
|
||||||
def to(
|
|
||||||
self,
|
|
||||||
device: Optional[torch.device] = None,
|
|
||||||
dtype: Optional[torch.dtype] = None,
|
|
||||||
) -> None:
|
|
||||||
super().to(device=device, dtype=dtype)
|
|
||||||
|
|
||||||
self.up = self.up.to(device=device, dtype=dtype)
|
|
||||||
self.down = self.down.to(device=device, dtype=dtype)
|
|
||||||
|
|
||||||
if self.mid is not None:
|
|
||||||
self.mid = self.mid.to(device=device, dtype=dtype)
|
|
||||||
|
|
||||||
|
|
||||||
class LoHALayer(LoRALayerBase):
|
|
||||||
# w1_a: torch.Tensor
|
|
||||||
# w1_b: torch.Tensor
|
|
||||||
# w2_a: torch.Tensor
|
|
||||||
# w2_b: torch.Tensor
|
|
||||||
# t1: Optional[torch.Tensor] = None
|
|
||||||
# t2: Optional[torch.Tensor] = None
|
|
||||||
|
|
||||||
def __init__(self, layer_key: str, values: Dict[str, torch.Tensor]):
|
|
||||||
super().__init__(layer_key, values)
|
|
||||||
|
|
||||||
self.w1_a = values["hada_w1_a"]
|
|
||||||
self.w1_b = values["hada_w1_b"]
|
|
||||||
self.w2_a = values["hada_w2_a"]
|
|
||||||
self.w2_b = values["hada_w2_b"]
|
|
||||||
|
|
||||||
if "hada_t1" in values:
|
|
||||||
self.t1: Optional[torch.Tensor] = values["hada_t1"]
|
|
||||||
else:
|
|
||||||
self.t1 = None
|
|
||||||
|
|
||||||
if "hada_t2" in values:
|
|
||||||
self.t2: Optional[torch.Tensor] = values["hada_t2"]
|
|
||||||
else:
|
|
||||||
self.t2 = None
|
|
||||||
|
|
||||||
self.rank = self.w1_b.shape[0]
|
|
||||||
|
|
||||||
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
|
|
||||||
if self.t1 is None:
|
|
||||||
weight: torch.Tensor = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
|
|
||||||
|
|
||||||
else:
|
|
||||||
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
|
|
||||||
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
|
|
||||||
weight = rebuild1 * rebuild2
|
|
||||||
|
|
||||||
return weight
|
|
||||||
|
|
||||||
def calc_size(self) -> int:
|
|
||||||
model_size = super().calc_size()
|
|
||||||
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
|
|
||||||
if val is not None:
|
|
||||||
model_size += val.nelement() * val.element_size()
|
|
||||||
return model_size
|
|
||||||
|
|
||||||
def to(
|
|
||||||
self,
|
|
||||||
device: Optional[torch.device] = None,
|
|
||||||
dtype: Optional[torch.dtype] = None,
|
|
||||||
) -> None:
|
|
||||||
super().to(device=device, dtype=dtype)
|
|
||||||
|
|
||||||
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
|
||||||
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
|
||||||
if self.t1 is not None:
|
|
||||||
self.t1 = self.t1.to(device=device, dtype=dtype)
|
|
||||||
|
|
||||||
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
|
||||||
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
|
||||||
if self.t2 is not None:
|
|
||||||
self.t2 = self.t2.to(device=device, dtype=dtype)
|
|
||||||
|
|
||||||
|
|
||||||
class LoKRLayer(LoRALayerBase):
|
|
||||||
# w1: Optional[torch.Tensor] = None
|
|
||||||
# w1_a: Optional[torch.Tensor] = None
|
|
||||||
# w1_b: Optional[torch.Tensor] = None
|
|
||||||
# w2: Optional[torch.Tensor] = None
|
|
||||||
# w2_a: Optional[torch.Tensor] = None
|
|
||||||
# w2_b: Optional[torch.Tensor] = None
|
|
||||||
# t2: Optional[torch.Tensor] = None
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
layer_key: str,
|
|
||||||
values: Dict[str, torch.Tensor],
|
|
||||||
):
|
|
||||||
super().__init__(layer_key, values)
|
|
||||||
|
|
||||||
if "lokr_w1" in values:
|
|
||||||
self.w1: Optional[torch.Tensor] = values["lokr_w1"]
|
|
||||||
self.w1_a = None
|
|
||||||
self.w1_b = None
|
|
||||||
else:
|
|
||||||
self.w1 = None
|
|
||||||
self.w1_a = values["lokr_w1_a"]
|
|
||||||
self.w1_b = values["lokr_w1_b"]
|
|
||||||
|
|
||||||
if "lokr_w2" in values:
|
|
||||||
self.w2: Optional[torch.Tensor] = values["lokr_w2"]
|
|
||||||
self.w2_a = None
|
|
||||||
self.w2_b = None
|
|
||||||
else:
|
|
||||||
self.w2 = None
|
|
||||||
self.w2_a = values["lokr_w2_a"]
|
|
||||||
self.w2_b = values["lokr_w2_b"]
|
|
||||||
|
|
||||||
if "lokr_t2" in values:
|
|
||||||
self.t2: Optional[torch.Tensor] = values["lokr_t2"]
|
|
||||||
else:
|
|
||||||
self.t2 = None
|
|
||||||
|
|
||||||
if "lokr_w1_b" in values:
|
|
||||||
self.rank = values["lokr_w1_b"].shape[0]
|
|
||||||
elif "lokr_w2_b" in values:
|
|
||||||
self.rank = values["lokr_w2_b"].shape[0]
|
|
||||||
else:
|
|
||||||
self.rank = None # unscaled
|
|
||||||
|
|
||||||
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
|
|
||||||
w1: Optional[torch.Tensor] = self.w1
|
|
||||||
if w1 is None:
|
|
||||||
assert self.w1_a is not None
|
|
||||||
assert self.w1_b is not None
|
|
||||||
w1 = self.w1_a @ self.w1_b
|
|
||||||
|
|
||||||
w2 = self.w2
|
|
||||||
if w2 is None:
|
|
||||||
if self.t2 is None:
|
|
||||||
assert self.w2_a is not None
|
|
||||||
assert self.w2_b is not None
|
|
||||||
w2 = self.w2_a @ self.w2_b
|
|
||||||
else:
|
|
||||||
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
|
|
||||||
|
|
||||||
if len(w2.shape) == 4:
|
|
||||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
|
||||||
w2 = w2.contiguous()
|
|
||||||
assert w1 is not None
|
|
||||||
assert w2 is not None
|
|
||||||
weight = torch.kron(w1, w2)
|
|
||||||
|
|
||||||
return weight
|
|
||||||
|
|
||||||
def calc_size(self) -> int:
|
|
||||||
model_size = super().calc_size()
|
|
||||||
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
|
|
||||||
if val is not None:
|
|
||||||
model_size += val.nelement() * val.element_size()
|
|
||||||
return model_size
|
|
||||||
|
|
||||||
def to(
|
|
||||||
self,
|
|
||||||
device: Optional[torch.device] = None,
|
|
||||||
dtype: Optional[torch.dtype] = None,
|
|
||||||
) -> None:
|
|
||||||
super().to(device=device, dtype=dtype)
|
|
||||||
|
|
||||||
if self.w1 is not None:
|
|
||||||
self.w1 = self.w1.to(device=device, dtype=dtype)
|
|
||||||
else:
|
|
||||||
assert self.w1_a is not None
|
|
||||||
assert self.w1_b is not None
|
|
||||||
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
|
||||||
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
|
||||||
|
|
||||||
if self.w2 is not None:
|
|
||||||
self.w2 = self.w2.to(device=device, dtype=dtype)
|
|
||||||
else:
|
|
||||||
assert self.w2_a is not None
|
|
||||||
assert self.w2_b is not None
|
|
||||||
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
|
||||||
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
|
||||||
|
|
||||||
if self.t2 is not None:
|
|
||||||
self.t2 = self.t2.to(device=device, dtype=dtype)
|
|
||||||
|
|
||||||
|
|
||||||
class FullLayer(LoRALayerBase):
|
|
||||||
# weight: torch.Tensor
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
layer_key: str,
|
|
||||||
values: Dict[str, torch.Tensor],
|
|
||||||
):
|
|
||||||
super().__init__(layer_key, values)
|
|
||||||
|
|
||||||
self.weight = values["diff"]
|
|
||||||
|
|
||||||
if len(values.keys()) > 1:
|
|
||||||
_keys = list(values.keys())
|
|
||||||
_keys.remove("diff")
|
|
||||||
raise NotImplementedError(f"Unexpected keys in lora diff layer: {_keys}")
|
|
||||||
|
|
||||||
self.rank = None # unscaled
|
|
||||||
|
|
||||||
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
|
|
||||||
return self.weight
|
|
||||||
|
|
||||||
def calc_size(self) -> int:
|
|
||||||
model_size = super().calc_size()
|
|
||||||
model_size += self.weight.nelement() * self.weight.element_size()
|
|
||||||
return model_size
|
|
||||||
|
|
||||||
def to(
|
|
||||||
self,
|
|
||||||
device: Optional[torch.device] = None,
|
|
||||||
dtype: Optional[torch.dtype] = None,
|
|
||||||
) -> None:
|
|
||||||
super().to(device=device, dtype=dtype)
|
|
||||||
|
|
||||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
|
||||||
|
|
||||||
|
|
||||||
class IA3Layer(LoRALayerBase):
|
|
||||||
# weight: torch.Tensor
|
|
||||||
# on_input: torch.Tensor
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
layer_key: str,
|
|
||||||
values: Dict[str, torch.Tensor],
|
|
||||||
):
|
|
||||||
super().__init__(layer_key, values)
|
|
||||||
|
|
||||||
self.weight = values["weight"]
|
|
||||||
self.on_input = values["on_input"]
|
|
||||||
|
|
||||||
self.rank = None # unscaled
|
|
||||||
|
|
||||||
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
|
|
||||||
weight = self.weight
|
|
||||||
if not self.on_input:
|
|
||||||
weight = weight.reshape(-1, 1)
|
|
||||||
assert orig_weight is not None
|
|
||||||
return orig_weight * weight
|
|
||||||
|
|
||||||
def calc_size(self) -> int:
|
|
||||||
model_size = super().calc_size()
|
|
||||||
model_size += self.weight.nelement() * self.weight.element_size()
|
|
||||||
model_size += self.on_input.nelement() * self.on_input.element_size()
|
|
||||||
return model_size
|
|
||||||
|
|
||||||
def to(
|
|
||||||
self,
|
|
||||||
device: Optional[torch.device] = None,
|
|
||||||
dtype: Optional[torch.dtype] = None,
|
|
||||||
):
|
|
||||||
super().to(device=device, dtype=dtype)
|
|
||||||
|
|
||||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
|
||||||
self.on_input = self.on_input.to(device=device, dtype=dtype)
|
|
||||||
|
|
||||||
|
|
||||||
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
|
|
||||||
|
|
||||||
|
|
||||||
class LoRAModelRaw(RawModel): # (torch.nn.Module):
|
|
||||||
_name: str
|
|
||||||
layers: Dict[str, AnyLoRALayer]
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
name: str,
|
|
||||||
layers: Dict[str, AnyLoRALayer],
|
|
||||||
):
|
|
||||||
self._name = name
|
|
||||||
self.layers = layers
|
|
||||||
|
|
||||||
@property
|
|
||||||
def name(self) -> str:
|
|
||||||
return self._name
|
|
||||||
|
|
||||||
def to(
|
|
||||||
self,
|
|
||||||
device: Optional[torch.device] = None,
|
|
||||||
dtype: Optional[torch.dtype] = None,
|
|
||||||
) -> None:
|
|
||||||
# TODO: try revert if exception?
|
|
||||||
for _key, layer in self.layers.items():
|
|
||||||
layer.to(device=device, dtype=dtype)
|
|
||||||
|
|
||||||
def calc_size(self) -> int:
|
|
||||||
model_size = 0
|
|
||||||
for _, layer in self.layers.items():
|
|
||||||
model_size += layer.calc_size()
|
|
||||||
return model_size
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def _convert_sdxl_keys_to_diffusers_format(cls, state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
|
||||||
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
|
|
||||||
|
|
||||||
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
|
|
||||||
diffusers format, then this function will have no effect.
|
|
||||||
|
|
||||||
This function is adapted from:
|
|
||||||
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
|
|
||||||
|
|
||||||
Args:
|
|
||||||
state_dict (Dict[str, Tensor]): The SDXL LoRA state_dict.
|
|
||||||
|
|
||||||
Raises:
|
|
||||||
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Dict[str, Tensor]: The diffusers-format state_dict.
|
|
||||||
"""
|
|
||||||
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
|
|
||||||
not_converted_count = 0 # The number of keys that were not converted.
|
|
||||||
|
|
||||||
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
|
|
||||||
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
|
|
||||||
# `input_blocks_4_1_proj_in`.
|
|
||||||
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
|
|
||||||
stability_unet_keys.sort()
|
|
||||||
|
|
||||||
new_state_dict = {}
|
|
||||||
for full_key, value in state_dict.items():
|
|
||||||
if full_key.startswith("lora_unet_"):
|
|
||||||
search_key = full_key.replace("lora_unet_", "")
|
|
||||||
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
|
|
||||||
position = bisect.bisect_right(stability_unet_keys, search_key)
|
|
||||||
map_key = stability_unet_keys[position - 1]
|
|
||||||
# Now, check if the map_key *actually* matches the search_key.
|
|
||||||
if search_key.startswith(map_key):
|
|
||||||
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
|
|
||||||
new_state_dict[new_key] = value
|
|
||||||
converted_count += 1
|
|
||||||
else:
|
|
||||||
new_state_dict[full_key] = value
|
|
||||||
not_converted_count += 1
|
|
||||||
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
|
|
||||||
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
|
|
||||||
new_state_dict[full_key] = value
|
|
||||||
continue
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
|
|
||||||
|
|
||||||
if converted_count > 0 and not_converted_count > 0:
|
|
||||||
raise ValueError(
|
|
||||||
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
|
|
||||||
f" not_converted={not_converted_count}"
|
|
||||||
)
|
|
||||||
|
|
||||||
return new_state_dict
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def from_checkpoint(
|
|
||||||
cls,
|
|
||||||
file_path: Union[str, Path],
|
|
||||||
device: Optional[torch.device] = None,
|
|
||||||
dtype: Optional[torch.dtype] = None,
|
|
||||||
base_model: Optional[BaseModelType] = None,
|
|
||||||
) -> Self:
|
|
||||||
device = device or torch.device("cpu")
|
|
||||||
dtype = dtype or torch.float32
|
|
||||||
|
|
||||||
if isinstance(file_path, str):
|
|
||||||
file_path = Path(file_path)
|
|
||||||
|
|
||||||
model = cls(
|
|
||||||
name=file_path.stem,
|
|
||||||
layers={},
|
|
||||||
)
|
|
||||||
|
|
||||||
if file_path.suffix == ".safetensors":
|
|
||||||
sd = load_file(file_path.absolute().as_posix(), device="cpu")
|
|
||||||
else:
|
|
||||||
sd = torch.load(file_path, map_location="cpu")
|
|
||||||
|
|
||||||
state_dict = cls._group_state(sd)
|
|
||||||
|
|
||||||
if base_model == BaseModelType.StableDiffusionXL:
|
|
||||||
state_dict = cls._convert_sdxl_keys_to_diffusers_format(state_dict)
|
|
||||||
|
|
||||||
for layer_key, values in state_dict.items():
|
|
||||||
# lora and locon
|
|
||||||
if "lora_down.weight" in values:
|
|
||||||
layer: AnyLoRALayer = LoRALayer(layer_key, values)
|
|
||||||
|
|
||||||
# loha
|
|
||||||
elif "hada_w1_b" in values:
|
|
||||||
layer = LoHALayer(layer_key, values)
|
|
||||||
|
|
||||||
# lokr
|
|
||||||
elif "lokr_w1_b" in values or "lokr_w1" in values:
|
|
||||||
layer = LoKRLayer(layer_key, values)
|
|
||||||
|
|
||||||
# diff
|
|
||||||
elif "diff" in values:
|
|
||||||
layer = FullLayer(layer_key, values)
|
|
||||||
|
|
||||||
# ia3
|
|
||||||
elif "weight" in values and "on_input" in values:
|
|
||||||
layer = IA3Layer(layer_key, values)
|
|
||||||
|
|
||||||
else:
|
|
||||||
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key} - {list(values.keys())}")
|
|
||||||
raise Exception("Unknown lora format!")
|
|
||||||
|
|
||||||
# lower memory consumption by removing already parsed layer values
|
|
||||||
state_dict[layer_key].clear()
|
|
||||||
|
|
||||||
layer.to(device=device, dtype=dtype)
|
|
||||||
model.layers[layer_key] = layer
|
|
||||||
|
|
||||||
return model
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _group_state(state_dict: Dict[str, torch.Tensor]) -> Dict[str, Dict[str, torch.Tensor]]:
|
|
||||||
state_dict_groupped: Dict[str, Dict[str, torch.Tensor]] = {}
|
|
||||||
|
|
||||||
for key, value in state_dict.items():
|
|
||||||
stem, leaf = key.split(".", 1)
|
|
||||||
if stem not in state_dict_groupped:
|
|
||||||
state_dict_groupped[stem] = {}
|
|
||||||
state_dict_groupped[stem][leaf] = value
|
|
||||||
|
|
||||||
return state_dict_groupped
|
|
||||||
|
|
||||||
|
|
||||||
# code from
|
|
||||||
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
|
|
||||||
def make_sdxl_unet_conversion_map() -> List[Tuple[str, str]]:
|
|
||||||
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format."""
|
|
||||||
unet_conversion_map_layer = []
|
|
||||||
|
|
||||||
for i in range(3): # num_blocks is 3 in sdxl
|
|
||||||
# loop over downblocks/upblocks
|
|
||||||
for j in range(2):
|
|
||||||
# loop over resnets/attentions for downblocks
|
|
||||||
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
|
||||||
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
|
||||||
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
|
||||||
|
|
||||||
if i < 3:
|
|
||||||
# no attention layers in down_blocks.3
|
|
||||||
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
|
||||||
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
|
||||||
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
|
||||||
|
|
||||||
for j in range(3):
|
|
||||||
# loop over resnets/attentions for upblocks
|
|
||||||
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
|
||||||
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
|
||||||
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
|
||||||
|
|
||||||
# if i > 0: commentout for sdxl
|
|
||||||
# no attention layers in up_blocks.0
|
|
||||||
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
|
||||||
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
|
||||||
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
|
||||||
|
|
||||||
if i < 3:
|
|
||||||
# no downsample in down_blocks.3
|
|
||||||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
|
||||||
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
|
||||||
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
|
||||||
|
|
||||||
# no upsample in up_blocks.3
|
|
||||||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
|
||||||
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
|
|
||||||
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
|
||||||
|
|
||||||
hf_mid_atn_prefix = "mid_block.attentions.0."
|
|
||||||
sd_mid_atn_prefix = "middle_block.1."
|
|
||||||
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
|
||||||
|
|
||||||
for j in range(2):
|
|
||||||
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
|
||||||
sd_mid_res_prefix = f"middle_block.{2*j}."
|
|
||||||
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
|
||||||
|
|
||||||
unet_conversion_map_resnet = [
|
|
||||||
# (stable-diffusion, HF Diffusers)
|
|
||||||
("in_layers.0.", "norm1."),
|
|
||||||
("in_layers.2.", "conv1."),
|
|
||||||
("out_layers.0.", "norm2."),
|
|
||||||
("out_layers.3.", "conv2."),
|
|
||||||
("emb_layers.1.", "time_emb_proj."),
|
|
||||||
("skip_connection.", "conv_shortcut."),
|
|
||||||
]
|
|
||||||
|
|
||||||
unet_conversion_map = []
|
|
||||||
for sd, hf in unet_conversion_map_layer:
|
|
||||||
if "resnets" in hf:
|
|
||||||
for sd_res, hf_res in unet_conversion_map_resnet:
|
|
||||||
unet_conversion_map.append((sd + sd_res, hf + hf_res))
|
|
||||||
else:
|
|
||||||
unet_conversion_map.append((sd, hf))
|
|
||||||
|
|
||||||
for j in range(2):
|
|
||||||
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
|
|
||||||
sd_time_embed_prefix = f"time_embed.{j*2}."
|
|
||||||
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
|
|
||||||
|
|
||||||
for j in range(2):
|
|
||||||
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
|
|
||||||
sd_label_embed_prefix = f"label_emb.0.{j*2}."
|
|
||||||
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
|
|
||||||
|
|
||||||
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
|
|
||||||
unet_conversion_map.append(("out.0.", "conv_norm_out."))
|
|
||||||
unet_conversion_map.append(("out.2.", "conv_out."))
|
|
||||||
|
|
||||||
return unet_conversion_map
|
|
||||||
|
|
||||||
|
|
||||||
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
|
|
||||||
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()
|
|
||||||
}
|
|
||||||
0
invokeai/backend/lora/__init__.py
Normal file
0
invokeai/backend/lora/__init__.py
Normal file
42
invokeai/backend/lora/full_layer.py
Normal file
42
invokeai/backend/lora/full_layer.py
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
from typing import Dict, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from invokeai.backend.lora.lora_layer_base import LoRALayerBase
|
||||||
|
|
||||||
|
|
||||||
|
class FullLayer(LoRALayerBase):
|
||||||
|
# weight: torch.Tensor
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
layer_key: str,
|
||||||
|
values: Dict[str, torch.Tensor],
|
||||||
|
):
|
||||||
|
super().__init__(layer_key, values)
|
||||||
|
|
||||||
|
self.weight = values["diff"]
|
||||||
|
|
||||||
|
if len(values.keys()) > 1:
|
||||||
|
_keys = list(values.keys())
|
||||||
|
_keys.remove("diff")
|
||||||
|
raise NotImplementedError(f"Unexpected keys in lora diff layer: {_keys}")
|
||||||
|
|
||||||
|
self.rank = None # unscaled
|
||||||
|
|
||||||
|
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
|
||||||
|
return self.weight
|
||||||
|
|
||||||
|
def calc_size(self) -> int:
|
||||||
|
model_size = super().calc_size()
|
||||||
|
model_size += self.weight.nelement() * self.weight.element_size()
|
||||||
|
return model_size
|
||||||
|
|
||||||
|
def to(
|
||||||
|
self,
|
||||||
|
device: Optional[torch.device] = None,
|
||||||
|
dtype: Optional[torch.dtype] = None,
|
||||||
|
) -> None:
|
||||||
|
super().to(device=device, dtype=dtype)
|
||||||
|
|
||||||
|
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||||
45
invokeai/backend/lora/ia3_layer.py
Normal file
45
invokeai/backend/lora/ia3_layer.py
Normal file
@@ -0,0 +1,45 @@
|
|||||||
|
from typing import Dict, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from invokeai.backend.lora.lora_layer_base import LoRALayerBase
|
||||||
|
|
||||||
|
|
||||||
|
class IA3Layer(LoRALayerBase):
|
||||||
|
# weight: torch.Tensor
|
||||||
|
# on_input: torch.Tensor
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
layer_key: str,
|
||||||
|
values: Dict[str, torch.Tensor],
|
||||||
|
):
|
||||||
|
super().__init__(layer_key, values)
|
||||||
|
|
||||||
|
self.weight = values["weight"]
|
||||||
|
self.on_input = values["on_input"]
|
||||||
|
|
||||||
|
self.rank = None # unscaled
|
||||||
|
|
||||||
|
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
|
||||||
|
weight = self.weight
|
||||||
|
if not self.on_input:
|
||||||
|
weight = weight.reshape(-1, 1)
|
||||||
|
assert orig_weight is not None
|
||||||
|
return orig_weight * weight
|
||||||
|
|
||||||
|
def calc_size(self) -> int:
|
||||||
|
model_size = super().calc_size()
|
||||||
|
model_size += self.weight.nelement() * self.weight.element_size()
|
||||||
|
model_size += self.on_input.nelement() * self.on_input.element_size()
|
||||||
|
return model_size
|
||||||
|
|
||||||
|
def to(
|
||||||
|
self,
|
||||||
|
device: Optional[torch.device] = None,
|
||||||
|
dtype: Optional[torch.dtype] = None,
|
||||||
|
):
|
||||||
|
super().to(device=device, dtype=dtype)
|
||||||
|
|
||||||
|
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||||
|
self.on_input = self.on_input.to(device=device, dtype=dtype)
|
||||||
69
invokeai/backend/lora/loha_layer.py
Normal file
69
invokeai/backend/lora/loha_layer.py
Normal file
@@ -0,0 +1,69 @@
|
|||||||
|
from typing import Dict, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from invokeai.backend.lora.lora_layer_base import LoRALayerBase
|
||||||
|
|
||||||
|
|
||||||
|
class LoHALayer(LoRALayerBase):
|
||||||
|
# w1_a: torch.Tensor
|
||||||
|
# w1_b: torch.Tensor
|
||||||
|
# w2_a: torch.Tensor
|
||||||
|
# w2_b: torch.Tensor
|
||||||
|
# t1: Optional[torch.Tensor] = None
|
||||||
|
# t2: Optional[torch.Tensor] = None
|
||||||
|
|
||||||
|
def __init__(self, layer_key: str, values: Dict[str, torch.Tensor]):
|
||||||
|
super().__init__(layer_key, values)
|
||||||
|
|
||||||
|
self.w1_a = values["hada_w1_a"]
|
||||||
|
self.w1_b = values["hada_w1_b"]
|
||||||
|
self.w2_a = values["hada_w2_a"]
|
||||||
|
self.w2_b = values["hada_w2_b"]
|
||||||
|
|
||||||
|
if "hada_t1" in values:
|
||||||
|
self.t1: Optional[torch.Tensor] = values["hada_t1"]
|
||||||
|
else:
|
||||||
|
self.t1 = None
|
||||||
|
|
||||||
|
if "hada_t2" in values:
|
||||||
|
self.t2: Optional[torch.Tensor] = values["hada_t2"]
|
||||||
|
else:
|
||||||
|
self.t2 = None
|
||||||
|
|
||||||
|
self.rank = self.w1_b.shape[0]
|
||||||
|
|
||||||
|
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
|
||||||
|
if self.t1 is None:
|
||||||
|
weight: torch.Tensor = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
|
||||||
|
|
||||||
|
else:
|
||||||
|
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
|
||||||
|
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
|
||||||
|
weight = rebuild1 * rebuild2
|
||||||
|
|
||||||
|
return weight
|
||||||
|
|
||||||
|
def calc_size(self) -> int:
|
||||||
|
model_size = super().calc_size()
|
||||||
|
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
|
||||||
|
if val is not None:
|
||||||
|
model_size += val.nelement() * val.element_size()
|
||||||
|
return model_size
|
||||||
|
|
||||||
|
def to(
|
||||||
|
self,
|
||||||
|
device: Optional[torch.device] = None,
|
||||||
|
dtype: Optional[torch.dtype] = None,
|
||||||
|
) -> None:
|
||||||
|
super().to(device=device, dtype=dtype)
|
||||||
|
|
||||||
|
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
||||||
|
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
||||||
|
if self.t1 is not None:
|
||||||
|
self.t1 = self.t1.to(device=device, dtype=dtype)
|
||||||
|
|
||||||
|
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
||||||
|
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
||||||
|
if self.t2 is not None:
|
||||||
|
self.t2 = self.t2.to(device=device, dtype=dtype)
|
||||||
110
invokeai/backend/lora/lokr_layer.py
Normal file
110
invokeai/backend/lora/lokr_layer.py
Normal file
@@ -0,0 +1,110 @@
|
|||||||
|
from typing import Dict, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from invokeai.backend.lora.lora_layer_base import LoRALayerBase
|
||||||
|
|
||||||
|
|
||||||
|
class LoKRLayer(LoRALayerBase):
|
||||||
|
# w1: Optional[torch.Tensor] = None
|
||||||
|
# w1_a: Optional[torch.Tensor] = None
|
||||||
|
# w1_b: Optional[torch.Tensor] = None
|
||||||
|
# w2: Optional[torch.Tensor] = None
|
||||||
|
# w2_a: Optional[torch.Tensor] = None
|
||||||
|
# w2_b: Optional[torch.Tensor] = None
|
||||||
|
# t2: Optional[torch.Tensor] = None
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
layer_key: str,
|
||||||
|
values: Dict[str, torch.Tensor],
|
||||||
|
):
|
||||||
|
super().__init__(layer_key, values)
|
||||||
|
|
||||||
|
if "lokr_w1" in values:
|
||||||
|
self.w1: Optional[torch.Tensor] = values["lokr_w1"]
|
||||||
|
self.w1_a = None
|
||||||
|
self.w1_b = None
|
||||||
|
else:
|
||||||
|
self.w1 = None
|
||||||
|
self.w1_a = values["lokr_w1_a"]
|
||||||
|
self.w1_b = values["lokr_w1_b"]
|
||||||
|
|
||||||
|
if "lokr_w2" in values:
|
||||||
|
self.w2: Optional[torch.Tensor] = values["lokr_w2"]
|
||||||
|
self.w2_a = None
|
||||||
|
self.w2_b = None
|
||||||
|
else:
|
||||||
|
self.w2 = None
|
||||||
|
self.w2_a = values["lokr_w2_a"]
|
||||||
|
self.w2_b = values["lokr_w2_b"]
|
||||||
|
|
||||||
|
if "lokr_t2" in values:
|
||||||
|
self.t2: Optional[torch.Tensor] = values["lokr_t2"]
|
||||||
|
else:
|
||||||
|
self.t2 = None
|
||||||
|
|
||||||
|
if "lokr_w1_b" in values:
|
||||||
|
self.rank = values["lokr_w1_b"].shape[0]
|
||||||
|
elif "lokr_w2_b" in values:
|
||||||
|
self.rank = values["lokr_w2_b"].shape[0]
|
||||||
|
else:
|
||||||
|
self.rank = None # unscaled
|
||||||
|
|
||||||
|
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
|
||||||
|
w1: Optional[torch.Tensor] = self.w1
|
||||||
|
if w1 is None:
|
||||||
|
assert self.w1_a is not None
|
||||||
|
assert self.w1_b is not None
|
||||||
|
w1 = self.w1_a @ self.w1_b
|
||||||
|
|
||||||
|
w2 = self.w2
|
||||||
|
if w2 is None:
|
||||||
|
if self.t2 is None:
|
||||||
|
assert self.w2_a is not None
|
||||||
|
assert self.w2_b is not None
|
||||||
|
w2 = self.w2_a @ self.w2_b
|
||||||
|
else:
|
||||||
|
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
|
||||||
|
|
||||||
|
if len(w2.shape) == 4:
|
||||||
|
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||||
|
w2 = w2.contiguous()
|
||||||
|
assert w1 is not None
|
||||||
|
assert w2 is not None
|
||||||
|
weight = torch.kron(w1, w2)
|
||||||
|
|
||||||
|
return weight
|
||||||
|
|
||||||
|
def calc_size(self) -> int:
|
||||||
|
model_size = super().calc_size()
|
||||||
|
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
|
||||||
|
if val is not None:
|
||||||
|
model_size += val.nelement() * val.element_size()
|
||||||
|
return model_size
|
||||||
|
|
||||||
|
def to(
|
||||||
|
self,
|
||||||
|
device: Optional[torch.device] = None,
|
||||||
|
dtype: Optional[torch.dtype] = None,
|
||||||
|
) -> None:
|
||||||
|
super().to(device=device, dtype=dtype)
|
||||||
|
|
||||||
|
if self.w1 is not None:
|
||||||
|
self.w1 = self.w1.to(device=device, dtype=dtype)
|
||||||
|
else:
|
||||||
|
assert self.w1_a is not None
|
||||||
|
assert self.w1_b is not None
|
||||||
|
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
||||||
|
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
||||||
|
|
||||||
|
if self.w2 is not None:
|
||||||
|
self.w2 = self.w2.to(device=device, dtype=dtype)
|
||||||
|
else:
|
||||||
|
assert self.w2_a is not None
|
||||||
|
assert self.w2_b is not None
|
||||||
|
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
||||||
|
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
||||||
|
|
||||||
|
if self.t2 is not None:
|
||||||
|
self.t2 = self.t2.to(device=device, dtype=dtype)
|
||||||
81
invokeai/backend/lora/lora_layer.py
Normal file
81
invokeai/backend/lora/lora_layer.py
Normal file
@@ -0,0 +1,81 @@
|
|||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from invokeai.backend.lora.lora_layer_base import LoRALayerBase
|
||||||
|
|
||||||
|
|
||||||
|
class LoRALayer(LoRALayerBase):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
layer_key: str,
|
||||||
|
values: dict[str, torch.Tensor],
|
||||||
|
):
|
||||||
|
super().__init__(layer_key, values)
|
||||||
|
|
||||||
|
self.up = values["lora_up.weight"]
|
||||||
|
self.down = values["lora_down.weight"]
|
||||||
|
|
||||||
|
self.mid: Optional[torch.Tensor] = values.get("lora_mid.weight", None)
|
||||||
|
self.dora_scale: Optional[torch.Tensor] = values.get("dora_scale", None)
|
||||||
|
self.rank = self.down.shape[0]
|
||||||
|
|
||||||
|
def _apply_dora(self, orig_weight: torch.Tensor, lora_weight: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Apply DoRA to the weight matrix.
|
||||||
|
|
||||||
|
This function is based roughly on the reference implementation in PEFT, but handles scaling in a slightly
|
||||||
|
different way:
|
||||||
|
https://github.com/huggingface/peft/blob/26726bf1ddee6ca75ed4e1bfd292094526707a78/src/peft/tuners/lora/layer.py#L421-L433
|
||||||
|
|
||||||
|
"""
|
||||||
|
# Merge the original weight with the LoRA weight.
|
||||||
|
merged_weight = orig_weight + lora_weight
|
||||||
|
|
||||||
|
# Calculate the vector-wise L2 norm of the weight matrix across each column vector.
|
||||||
|
weight_norm: torch.Tensor = torch.linalg.norm(merged_weight, dim=1)
|
||||||
|
|
||||||
|
dora_factor = self.dora_scale / weight_norm
|
||||||
|
new_weight = dora_factor * merged_weight
|
||||||
|
|
||||||
|
# TODO(ryand): This is wasteful. We already have the final weight, but we calculate the diff, because that is
|
||||||
|
# what the `get_weight()` API is expected to return. If we do refactor this, we'll have to give some thought to
|
||||||
|
# how lora weight scaling should be applied - having the full weight diff makes this easy.
|
||||||
|
weight_diff = new_weight - orig_weight
|
||||||
|
return weight_diff
|
||||||
|
|
||||||
|
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
|
||||||
|
if self.mid is not None:
|
||||||
|
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
|
||||||
|
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
|
||||||
|
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
|
||||||
|
else:
|
||||||
|
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
|
||||||
|
|
||||||
|
if self.dora_scale is not None:
|
||||||
|
assert orig_weight is not None
|
||||||
|
weight = self._apply_dora(orig_weight, weight)
|
||||||
|
|
||||||
|
return weight
|
||||||
|
|
||||||
|
def calc_size(self) -> int:
|
||||||
|
model_size = super().calc_size()
|
||||||
|
for val in [self.up, self.mid, self.down]:
|
||||||
|
if val is not None:
|
||||||
|
model_size += val.nelement() * val.element_size()
|
||||||
|
return model_size
|
||||||
|
|
||||||
|
def to(
|
||||||
|
self,
|
||||||
|
device: Optional[torch.device] = None,
|
||||||
|
dtype: Optional[torch.dtype] = None,
|
||||||
|
) -> None:
|
||||||
|
super().to(device=device, dtype=dtype)
|
||||||
|
|
||||||
|
self.up = self.up.to(device=device, dtype=dtype)
|
||||||
|
self.down = self.down.to(device=device, dtype=dtype)
|
||||||
|
|
||||||
|
if self.mid is not None:
|
||||||
|
self.mid = self.mid.to(device=device, dtype=dtype)
|
||||||
|
|
||||||
|
if self.dora_scale is not None:
|
||||||
|
self.dora_scale = self.dora_scale.to(device=device, dtype=dtype)
|
||||||
55
invokeai/backend/lora/lora_layer_base.py
Normal file
55
invokeai/backend/lora/lora_layer_base.py
Normal file
@@ -0,0 +1,55 @@
|
|||||||
|
from typing import Dict, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class LoRALayerBase:
|
||||||
|
# rank: Optional[int]
|
||||||
|
# alpha: Optional[float]
|
||||||
|
# bias: Optional[torch.Tensor]
|
||||||
|
# layer_key: str
|
||||||
|
|
||||||
|
# @property
|
||||||
|
# def scale(self):
|
||||||
|
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
layer_key: str,
|
||||||
|
values: Dict[str, torch.Tensor],
|
||||||
|
):
|
||||||
|
if "alpha" in values:
|
||||||
|
self.alpha = values["alpha"].item()
|
||||||
|
else:
|
||||||
|
self.alpha = None
|
||||||
|
|
||||||
|
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
|
||||||
|
self.bias: Optional[torch.Tensor] = torch.sparse_coo_tensor(
|
||||||
|
values["bias_indices"],
|
||||||
|
values["bias_values"],
|
||||||
|
tuple(values["bias_size"]),
|
||||||
|
)
|
||||||
|
|
||||||
|
else:
|
||||||
|
self.bias = None
|
||||||
|
|
||||||
|
self.rank = None # set in layer implementation
|
||||||
|
self.layer_key = layer_key
|
||||||
|
|
||||||
|
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
def calc_size(self) -> int:
|
||||||
|
model_size = 0
|
||||||
|
for val in [self.bias]:
|
||||||
|
if val is not None:
|
||||||
|
model_size += val.nelement() * val.element_size()
|
||||||
|
return model_size
|
||||||
|
|
||||||
|
def to(
|
||||||
|
self,
|
||||||
|
device: Optional[torch.device] = None,
|
||||||
|
dtype: Optional[torch.dtype] = None,
|
||||||
|
) -> None:
|
||||||
|
if self.bias is not None:
|
||||||
|
self.bias = self.bias.to(device=device, dtype=dtype)
|
||||||
111
invokeai/backend/lora/lora_model.py
Normal file
111
invokeai/backend/lora/lora_model.py
Normal file
@@ -0,0 +1,111 @@
|
|||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from invokeai.backend.lora.full_layer import FullLayer
|
||||||
|
from invokeai.backend.lora.ia3_layer import IA3Layer
|
||||||
|
from invokeai.backend.lora.loha_layer import LoHALayer
|
||||||
|
from invokeai.backend.lora.lokr_layer import LoKRLayer
|
||||||
|
from invokeai.backend.lora.lora_layer import LoRALayer
|
||||||
|
from invokeai.backend.lora.sdxl_state_dict_utils import convert_sdxl_keys_to_diffusers_format
|
||||||
|
from invokeai.backend.model_manager import BaseModelType
|
||||||
|
from invokeai.backend.util.serialization import load_state_dict
|
||||||
|
|
||||||
|
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
|
||||||
|
|
||||||
|
|
||||||
|
class LoRAModelRaw(torch.nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
name: str,
|
||||||
|
layers: dict[str, AnyLoRALayer],
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self._name = name
|
||||||
|
self.layers = layers
|
||||||
|
|
||||||
|
@property
|
||||||
|
def name(self) -> str:
|
||||||
|
return self._name
|
||||||
|
|
||||||
|
def to(
|
||||||
|
self,
|
||||||
|
device: Optional[torch.device] = None,
|
||||||
|
dtype: Optional[torch.dtype] = None,
|
||||||
|
) -> None:
|
||||||
|
# TODO: try revert if exception?
|
||||||
|
for _key, layer in self.layers.items():
|
||||||
|
layer.to(device=device, dtype=dtype)
|
||||||
|
|
||||||
|
def calc_size(self) -> int:
|
||||||
|
model_size = 0
|
||||||
|
for _, layer in self.layers.items():
|
||||||
|
model_size += layer.calc_size()
|
||||||
|
return model_size
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_checkpoint(
|
||||||
|
cls,
|
||||||
|
file_path: Union[str, Path],
|
||||||
|
device: Optional[torch.device] = None,
|
||||||
|
dtype: Optional[torch.dtype] = None,
|
||||||
|
base_model: Optional[BaseModelType] = None,
|
||||||
|
):
|
||||||
|
device = device or torch.device("cpu")
|
||||||
|
dtype = dtype or torch.float32
|
||||||
|
|
||||||
|
file_path = Path(file_path)
|
||||||
|
|
||||||
|
model_name = file_path.stem
|
||||||
|
|
||||||
|
sd = load_state_dict(file_path, device=str(device))
|
||||||
|
state_dict = cls._group_state(sd)
|
||||||
|
|
||||||
|
if base_model == BaseModelType.StableDiffusionXL:
|
||||||
|
state_dict = convert_sdxl_keys_to_diffusers_format(state_dict)
|
||||||
|
|
||||||
|
layers: dict[str, AnyLoRALayer] = {}
|
||||||
|
for layer_key, values in state_dict.items():
|
||||||
|
# lora and locon
|
||||||
|
if "lora_down.weight" in values:
|
||||||
|
layer: AnyLoRALayer = LoRALayer(layer_key, values)
|
||||||
|
|
||||||
|
# loha
|
||||||
|
elif "hada_w1_b" in values:
|
||||||
|
layer = LoHALayer(layer_key, values)
|
||||||
|
|
||||||
|
# lokr
|
||||||
|
elif "lokr_w1_b" in values or "lokr_w1" in values:
|
||||||
|
layer = LoKRLayer(layer_key, values)
|
||||||
|
|
||||||
|
# diff
|
||||||
|
elif "diff" in values:
|
||||||
|
layer = FullLayer(layer_key, values)
|
||||||
|
|
||||||
|
# ia3
|
||||||
|
elif "weight" in values and "on_input" in values:
|
||||||
|
layer = IA3Layer(layer_key, values)
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown lora layer module in {model_name}: {layer_key}: {list(values.keys())}")
|
||||||
|
|
||||||
|
# lower memory consumption by removing already parsed layer values
|
||||||
|
state_dict[layer_key].clear()
|
||||||
|
|
||||||
|
layer.to(device=device, dtype=dtype)
|
||||||
|
layers[layer_key] = layer
|
||||||
|
|
||||||
|
return cls(name=model_name, layers=layers)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _group_state(state_dict: dict[str, torch.Tensor]) -> dict[str, dict[str, torch.Tensor]]:
|
||||||
|
state_dict_groupped: dict[str, dict[str, torch.Tensor]] = {}
|
||||||
|
|
||||||
|
for key, value in state_dict.items():
|
||||||
|
stem, leaf = key.split(".", 1)
|
||||||
|
if stem not in state_dict_groupped:
|
||||||
|
state_dict_groupped[stem] = {}
|
||||||
|
state_dict_groupped[stem][leaf] = value
|
||||||
|
|
||||||
|
return state_dict_groupped
|
||||||
137
invokeai/backend/lora/lora_model_patcher.py
Normal file
137
invokeai/backend/lora/lora_model_patcher.py
Normal file
@@ -0,0 +1,137 @@
|
|||||||
|
from contextlib import contextmanager
|
||||||
|
from typing import Iterator, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
||||||
|
from transformers import CLIPTextModel
|
||||||
|
|
||||||
|
from invokeai.backend.lora.lora_model import LoRAModelRaw
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
|
|
||||||
|
|
||||||
|
class LoraModelPatcher:
|
||||||
|
@staticmethod
|
||||||
|
def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]:
|
||||||
|
assert "." not in lora_key
|
||||||
|
|
||||||
|
if not lora_key.startswith(prefix):
|
||||||
|
raise Exception(f"lora_key with invalid prefix: {lora_key}, {prefix}")
|
||||||
|
|
||||||
|
module = model
|
||||||
|
module_key = ""
|
||||||
|
key_parts = lora_key[len(prefix) :].split("_")
|
||||||
|
|
||||||
|
submodule_name = key_parts.pop(0)
|
||||||
|
|
||||||
|
while len(key_parts) > 0:
|
||||||
|
try:
|
||||||
|
module = module.get_submodule(submodule_name)
|
||||||
|
module_key += "." + submodule_name
|
||||||
|
submodule_name = key_parts.pop(0)
|
||||||
|
except Exception:
|
||||||
|
submodule_name += "_" + key_parts.pop(0)
|
||||||
|
|
||||||
|
module = module.get_submodule(submodule_name)
|
||||||
|
module_key = (module_key + "." + submodule_name).lstrip(".")
|
||||||
|
|
||||||
|
return (module_key, module)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@contextmanager
|
||||||
|
def apply_lora_unet(
|
||||||
|
cls,
|
||||||
|
unet: UNet2DConditionModel,
|
||||||
|
loras: Iterator[Tuple[LoRAModelRaw, float]],
|
||||||
|
):
|
||||||
|
with cls.apply_lora(unet, loras, "lora_unet_"):
|
||||||
|
yield
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@contextmanager
|
||||||
|
def apply_lora_text_encoder(
|
||||||
|
cls,
|
||||||
|
text_encoder: CLIPTextModel,
|
||||||
|
loras: Iterator[Tuple[LoRAModelRaw, float]],
|
||||||
|
):
|
||||||
|
with cls.apply_lora(text_encoder, loras, "lora_te_"):
|
||||||
|
yield
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@contextmanager
|
||||||
|
def apply_sdxl_lora_text_encoder(
|
||||||
|
cls,
|
||||||
|
text_encoder: CLIPTextModel,
|
||||||
|
loras: Iterator[Tuple[LoRAModelRaw, float]],
|
||||||
|
):
|
||||||
|
with cls.apply_lora(text_encoder, loras, "lora_te1_"):
|
||||||
|
yield
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@contextmanager
|
||||||
|
def apply_sdxl_lora_text_encoder2(
|
||||||
|
cls,
|
||||||
|
text_encoder: CLIPTextModel,
|
||||||
|
loras: Iterator[Tuple[LoRAModelRaw, float]],
|
||||||
|
):
|
||||||
|
with cls.apply_lora(text_encoder, loras, "lora_te2_"):
|
||||||
|
yield
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@contextmanager
|
||||||
|
def apply_lora(
|
||||||
|
cls,
|
||||||
|
model: AnyModel,
|
||||||
|
loras: Iterator[Tuple[LoRAModelRaw, float]],
|
||||||
|
prefix: str,
|
||||||
|
):
|
||||||
|
original_weights = {}
|
||||||
|
try:
|
||||||
|
with torch.no_grad():
|
||||||
|
for lora, lora_weight in loras:
|
||||||
|
# assert lora.device.type == "cpu"
|
||||||
|
for layer_key, layer in lora.layers.items():
|
||||||
|
if not layer_key.startswith(prefix):
|
||||||
|
continue
|
||||||
|
|
||||||
|
# TODO(ryand): A non-negligible amount of time is currently spent resolving LoRA keys. This
|
||||||
|
# should be improved in the following ways:
|
||||||
|
# 1. The key mapping could be more-efficiently pre-computed. This would save time every time a
|
||||||
|
# LoRA model is applied.
|
||||||
|
# 2. From an API perspective, there's no reason that the `LoraModelPatcher` should be aware of
|
||||||
|
# the intricacies of Stable Diffusion key resolution. It should just expect the input LoRA
|
||||||
|
# weights to have valid keys.
|
||||||
|
assert isinstance(model, torch.nn.Module)
|
||||||
|
module_key, module = cls._resolve_lora_key(model, layer_key, prefix)
|
||||||
|
|
||||||
|
# All of the LoRA weight calculations will be done on the same device as the module weight.
|
||||||
|
# (Performance will be best if this is a CUDA device.)
|
||||||
|
device = module.weight.device
|
||||||
|
dtype = module.weight.dtype
|
||||||
|
|
||||||
|
if module_key not in original_weights:
|
||||||
|
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
|
||||||
|
|
||||||
|
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
|
||||||
|
|
||||||
|
# We intentionally move to the target device first, then cast. Experimentally, this was found to
|
||||||
|
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
|
||||||
|
# same thing in a single call to '.to(...)'.
|
||||||
|
layer.to(device=device)
|
||||||
|
layer.to(dtype=torch.float32)
|
||||||
|
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
|
||||||
|
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
|
||||||
|
layer_weight = layer.get_weight(module.weight) * (lora_weight * layer_scale)
|
||||||
|
layer.to(device=torch.device("cpu"))
|
||||||
|
|
||||||
|
if module.weight.shape != layer_weight.shape:
|
||||||
|
layer_weight = layer_weight.reshape(module.weight.shape)
|
||||||
|
|
||||||
|
module.weight += layer_weight.to(dtype=dtype)
|
||||||
|
|
||||||
|
yield # wait for context manager exit
|
||||||
|
|
||||||
|
finally:
|
||||||
|
assert hasattr(model, "get_submodule") # mypy not picking up fact that torch.nn.Module has get_submodule()
|
||||||
|
with torch.no_grad():
|
||||||
|
for module_key, weight in original_weights.items():
|
||||||
|
model.get_submodule(module_key).weight.copy_(weight)
|
||||||
157
invokeai/backend/lora/sdxl_state_dict_utils.py
Normal file
157
invokeai/backend/lora/sdxl_state_dict_utils.py
Normal file
@@ -0,0 +1,157 @@
|
|||||||
|
import bisect
|
||||||
|
from typing import TypeVar
|
||||||
|
|
||||||
|
|
||||||
|
def make_sdxl_unet_conversion_map() -> list[tuple[str, str]]:
|
||||||
|
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format.
|
||||||
|
|
||||||
|
Ported from:
|
||||||
|
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
|
||||||
|
"""
|
||||||
|
unet_conversion_map_layer: list[tuple[str, str]] = []
|
||||||
|
|
||||||
|
for i in range(3): # num_blocks is 3 in sdxl
|
||||||
|
# loop over downblocks/upblocks
|
||||||
|
for j in range(2):
|
||||||
|
# loop over resnets/attentions for downblocks
|
||||||
|
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
||||||
|
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
||||||
|
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
||||||
|
|
||||||
|
if i < 3:
|
||||||
|
# no attention layers in down_blocks.3
|
||||||
|
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
||||||
|
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
||||||
|
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
||||||
|
|
||||||
|
for j in range(3):
|
||||||
|
# loop over resnets/attentions for upblocks
|
||||||
|
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
||||||
|
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
||||||
|
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
||||||
|
|
||||||
|
# if i > 0: commentout for sdxl
|
||||||
|
# no attention layers in up_blocks.0
|
||||||
|
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
||||||
|
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
||||||
|
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
||||||
|
|
||||||
|
if i < 3:
|
||||||
|
# no downsample in down_blocks.3
|
||||||
|
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
||||||
|
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
||||||
|
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
||||||
|
|
||||||
|
# no upsample in up_blocks.3
|
||||||
|
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||||||
|
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
|
||||||
|
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
||||||
|
|
||||||
|
hf_mid_atn_prefix = "mid_block.attentions.0."
|
||||||
|
sd_mid_atn_prefix = "middle_block.1."
|
||||||
|
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
||||||
|
|
||||||
|
for j in range(2):
|
||||||
|
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
||||||
|
sd_mid_res_prefix = f"middle_block.{2*j}."
|
||||||
|
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||||||
|
|
||||||
|
unet_conversion_map_resnet = [
|
||||||
|
# (stable-diffusion, HF Diffusers)
|
||||||
|
("in_layers.0.", "norm1."),
|
||||||
|
("in_layers.2.", "conv1."),
|
||||||
|
("out_layers.0.", "norm2."),
|
||||||
|
("out_layers.3.", "conv2."),
|
||||||
|
("emb_layers.1.", "time_emb_proj."),
|
||||||
|
("skip_connection.", "conv_shortcut."),
|
||||||
|
]
|
||||||
|
|
||||||
|
unet_conversion_map: list[tuple[str, str]] = []
|
||||||
|
for sd, hf in unet_conversion_map_layer:
|
||||||
|
if "resnets" in hf:
|
||||||
|
for sd_res, hf_res in unet_conversion_map_resnet:
|
||||||
|
unet_conversion_map.append((sd + sd_res, hf + hf_res))
|
||||||
|
else:
|
||||||
|
unet_conversion_map.append((sd, hf))
|
||||||
|
|
||||||
|
for j in range(2):
|
||||||
|
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
|
||||||
|
sd_time_embed_prefix = f"time_embed.{j*2}."
|
||||||
|
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
|
||||||
|
|
||||||
|
for j in range(2):
|
||||||
|
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
|
||||||
|
sd_label_embed_prefix = f"label_emb.0.{j*2}."
|
||||||
|
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
|
||||||
|
|
||||||
|
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
|
||||||
|
unet_conversion_map.append(("out.0.", "conv_norm_out."))
|
||||||
|
unet_conversion_map.append(("out.2.", "conv_out."))
|
||||||
|
|
||||||
|
return unet_conversion_map
|
||||||
|
|
||||||
|
|
||||||
|
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
|
||||||
|
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
T = TypeVar("T")
|
||||||
|
|
||||||
|
|
||||||
|
def convert_sdxl_keys_to_diffusers_format(state_dict: dict[str, T]) -> dict[str, T]:
|
||||||
|
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
|
||||||
|
|
||||||
|
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
|
||||||
|
diffusers format, then this function will have no effect.
|
||||||
|
|
||||||
|
This function is adapted from:
|
||||||
|
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state_dict (dict[str, Tensor]): The SDXL LoRA state_dict.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
dict[str, Tensor]: The diffusers-format state_dict.
|
||||||
|
"""
|
||||||
|
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
|
||||||
|
not_converted_count = 0 # The number of keys that were not converted.
|
||||||
|
|
||||||
|
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
|
||||||
|
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
|
||||||
|
# `input_blocks_4_1_proj_in`.
|
||||||
|
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
|
||||||
|
stability_unet_keys.sort()
|
||||||
|
|
||||||
|
new_state_dict: dict[str, T] = {}
|
||||||
|
for full_key, value in state_dict.items():
|
||||||
|
if full_key.startswith("lora_unet_"):
|
||||||
|
search_key = full_key.replace("lora_unet_", "")
|
||||||
|
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
|
||||||
|
position = bisect.bisect_right(stability_unet_keys, search_key)
|
||||||
|
map_key = stability_unet_keys[position - 1]
|
||||||
|
# Now, check if the map_key *actually* matches the search_key.
|
||||||
|
if search_key.startswith(map_key):
|
||||||
|
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
|
||||||
|
new_state_dict[new_key] = value
|
||||||
|
converted_count += 1
|
||||||
|
else:
|
||||||
|
new_state_dict[full_key] = value
|
||||||
|
not_converted_count += 1
|
||||||
|
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
|
||||||
|
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
|
||||||
|
new_state_dict[full_key] = value
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
|
||||||
|
|
||||||
|
if converted_count > 0 and not_converted_count > 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
|
||||||
|
f" not_converted={not_converted_count}"
|
||||||
|
)
|
||||||
|
|
||||||
|
return new_state_dict
|
||||||
@@ -1,7 +1,6 @@
|
|||||||
"""Re-export frequently-used symbols from the Model Manager backend."""
|
"""Re-export frequently-used symbols from the Model Manager backend."""
|
||||||
|
|
||||||
from .config import (
|
from .config import (
|
||||||
AnyModel,
|
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
BaseModelType,
|
BaseModelType,
|
||||||
InvalidModelConfigException,
|
InvalidModelConfigException,
|
||||||
@@ -18,7 +17,6 @@ from .probe import ModelProbe
|
|||||||
from .search import ModelSearch
|
from .search import ModelSearch
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
"AnyModel",
|
|
||||||
"AnyModelConfig",
|
"AnyModelConfig",
|
||||||
"BaseModelType",
|
"BaseModelType",
|
||||||
"ModelRepoVariant",
|
"ModelRepoVariant",
|
||||||
|
|||||||
12
invokeai/backend/model_manager/any_model_type.py
Normal file
12
invokeai/backend/model_manager/any_model_type.py
Normal file
@@ -0,0 +1,12 @@
|
|||||||
|
from typing import Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from diffusers.models.modeling_utils import ModelMixin
|
||||||
|
|
||||||
|
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
|
||||||
|
from invokeai.backend.lora.lora_model import LoRAModelRaw
|
||||||
|
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
||||||
|
from invokeai.backend.textual_inversion import TextualInversionModelRaw
|
||||||
|
|
||||||
|
# ModelMixin is the base class for all diffusers and transformers models
|
||||||
|
AnyModel = Union[ModelMixin, torch.nn.Module, IPAdapter, LoRAModelRaw, TextualInversionModelRaw, IAIOnnxRuntimeModel]
|
||||||
@@ -24,20 +24,12 @@ import time
|
|||||||
from enum import Enum
|
from enum import Enum
|
||||||
from typing import Literal, Optional, Type, TypeAlias, Union
|
from typing import Literal, Optional, Type, TypeAlias, Union
|
||||||
|
|
||||||
import torch
|
|
||||||
from diffusers.models.modeling_utils import ModelMixin
|
|
||||||
from pydantic import BaseModel, ConfigDict, Discriminator, Field, Tag, TypeAdapter
|
from pydantic import BaseModel, ConfigDict, Discriminator, Field, Tag, TypeAdapter
|
||||||
from typing_extensions import Annotated, Any, Dict
|
from typing_extensions import Annotated, Any, Dict
|
||||||
|
|
||||||
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
|
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
|
||||||
from invokeai.app.util.misc import uuid_string
|
from invokeai.app.util.misc import uuid_string
|
||||||
|
|
||||||
from ..raw_model import RawModel
|
|
||||||
|
|
||||||
# ModelMixin is the base class for all diffusers and transformers models
|
|
||||||
# RawModel is the InvokeAI wrapper class for ip_adapters, loras, textual_inversion and onnx runtime
|
|
||||||
AnyModel = Union[ModelMixin, RawModel, torch.nn.Module]
|
|
||||||
|
|
||||||
|
|
||||||
class InvalidModelConfigException(Exception):
|
class InvalidModelConfigException(Exception):
|
||||||
"""Exception for when config parser doesn't recognized this combination of model type and format."""
|
"""Exception for when config parser doesn't recognized this combination of model type and format."""
|
||||||
|
|||||||
@@ -15,7 +15,7 @@ from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
|
|||||||
)
|
)
|
||||||
from omegaconf import DictConfig
|
from omegaconf import DictConfig
|
||||||
|
|
||||||
from . import AnyModel
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
|
|
||||||
|
|
||||||
def convert_ldm_vae_to_diffusers(
|
def convert_ldm_vae_to_diffusers(
|
||||||
|
|||||||
@@ -10,8 +10,8 @@ from pathlib import Path
|
|||||||
from typing import Any, Optional
|
from typing import Any, Optional
|
||||||
|
|
||||||
from invokeai.app.services.config import InvokeAIAppConfig
|
from invokeai.app.services.config import InvokeAIAppConfig
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.config import (
|
from invokeai.backend.model_manager.config import (
|
||||||
AnyModel,
|
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
SubModelType,
|
SubModelType,
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -7,11 +7,11 @@ from typing import Optional
|
|||||||
|
|
||||||
from invokeai.app.services.config import InvokeAIAppConfig
|
from invokeai.app.services.config import InvokeAIAppConfig
|
||||||
from invokeai.backend.model_manager import (
|
from invokeai.backend.model_manager import (
|
||||||
AnyModel,
|
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
InvalidModelConfigException,
|
InvalidModelConfigException,
|
||||||
SubModelType,
|
SubModelType,
|
||||||
)
|
)
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.config import DiffusersConfigBase, ModelType
|
from invokeai.backend.model_manager.config import DiffusersConfigBase, ModelType
|
||||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||||
from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoaderBase
|
from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoaderBase
|
||||||
|
|||||||
@@ -14,7 +14,8 @@ from typing import Dict, Generic, Optional, TypeVar
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from invokeai.backend.model_manager.config import AnyModel, SubModelType
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
|
from invokeai.backend.model_manager.config import SubModelType
|
||||||
|
|
||||||
|
|
||||||
class ModelLockerBase(ABC):
|
class ModelLockerBase(ABC):
|
||||||
|
|||||||
@@ -28,7 +28,8 @@ from typing import Dict, List, Optional
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from invokeai.backend.model_manager import AnyModel, SubModelType
|
from invokeai.backend.model_manager import SubModelType
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff
|
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff
|
||||||
from invokeai.backend.util.devices import choose_torch_device
|
from invokeai.backend.util.devices import choose_torch_device
|
||||||
from invokeai.backend.util.logging import InvokeAILogger
|
from invokeai.backend.util.logging import InvokeAILogger
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ Base class and implementation of a class that moves models in and out of VRAM.
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from invokeai.backend.model_manager import AnyModel
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
|
|
||||||
from .model_cache_base import CacheRecord, ModelCacheBase, ModelLockerBase
|
from .model_cache_base import CacheRecord, ModelCacheBase, ModelLockerBase
|
||||||
|
|
||||||
|
|||||||
@@ -5,12 +5,12 @@ from pathlib import Path
|
|||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
from invokeai.backend.model_manager import (
|
from invokeai.backend.model_manager import (
|
||||||
AnyModel,
|
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
BaseModelType,
|
BaseModelType,
|
||||||
ModelFormat,
|
ModelFormat,
|
||||||
ModelType,
|
ModelType,
|
||||||
)
|
)
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.config import CheckpointConfigBase
|
from invokeai.backend.model_manager.config import CheckpointConfigBase
|
||||||
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_controlnet_to_diffusers
|
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_controlnet_to_diffusers
|
||||||
|
|
||||||
|
|||||||
@@ -9,7 +9,6 @@ from diffusers.configuration_utils import ConfigMixin
|
|||||||
from diffusers.models.modeling_utils import ModelMixin
|
from diffusers.models.modeling_utils import ModelMixin
|
||||||
|
|
||||||
from invokeai.backend.model_manager import (
|
from invokeai.backend.model_manager import (
|
||||||
AnyModel,
|
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
BaseModelType,
|
BaseModelType,
|
||||||
InvalidModelConfigException,
|
InvalidModelConfigException,
|
||||||
@@ -17,6 +16,7 @@ from invokeai.backend.model_manager import (
|
|||||||
ModelType,
|
ModelType,
|
||||||
SubModelType,
|
SubModelType,
|
||||||
)
|
)
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.config import DiffusersConfigBase
|
from invokeai.backend.model_manager.config import DiffusersConfigBase
|
||||||
|
|
||||||
from .. import ModelLoader, ModelLoaderRegistry
|
from .. import ModelLoader, ModelLoaderRegistry
|
||||||
|
|||||||
@@ -7,9 +7,9 @@ from typing import Optional
|
|||||||
import torch
|
import torch
|
||||||
|
|
||||||
from invokeai.backend.ip_adapter.ip_adapter import build_ip_adapter
|
from invokeai.backend.ip_adapter.ip_adapter import build_ip_adapter
|
||||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, BaseModelType, ModelFormat, ModelType, SubModelType
|
from invokeai.backend.model_manager import AnyModelConfig, BaseModelType, ModelFormat, ModelType, SubModelType
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.load import ModelLoader, ModelLoaderRegistry
|
from invokeai.backend.model_manager.load import ModelLoader, ModelLoaderRegistry
|
||||||
from invokeai.backend.raw_model import RawModel
|
|
||||||
|
|
||||||
|
|
||||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.IPAdapter, format=ModelFormat.InvokeAI)
|
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.IPAdapter, format=ModelFormat.InvokeAI)
|
||||||
@@ -25,7 +25,7 @@ class IPAdapterInvokeAILoader(ModelLoader):
|
|||||||
if submodel_type is not None:
|
if submodel_type is not None:
|
||||||
raise ValueError("There are no submodels in an IP-Adapter model.")
|
raise ValueError("There are no submodels in an IP-Adapter model.")
|
||||||
model_path = Path(config.path)
|
model_path = Path(config.path)
|
||||||
model: RawModel = build_ip_adapter(
|
model = build_ip_adapter(
|
||||||
ip_adapter_ckpt_path=model_path,
|
ip_adapter_ckpt_path=model_path,
|
||||||
device=torch.device("cpu"),
|
device=torch.device("cpu"),
|
||||||
dtype=self._torch_dtype,
|
dtype=self._torch_dtype,
|
||||||
|
|||||||
@@ -6,15 +6,15 @@ from pathlib import Path
|
|||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
from invokeai.app.services.config import InvokeAIAppConfig
|
from invokeai.app.services.config import InvokeAIAppConfig
|
||||||
from invokeai.backend.lora import LoRAModelRaw
|
from invokeai.backend.lora.lora_model import LoRAModelRaw
|
||||||
from invokeai.backend.model_manager import (
|
from invokeai.backend.model_manager import (
|
||||||
AnyModel,
|
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
BaseModelType,
|
BaseModelType,
|
||||||
ModelFormat,
|
ModelFormat,
|
||||||
ModelType,
|
ModelType,
|
||||||
SubModelType,
|
SubModelType,
|
||||||
)
|
)
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
||||||
|
|
||||||
|
|||||||
@@ -6,13 +6,13 @@ from pathlib import Path
|
|||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
from invokeai.backend.model_manager import (
|
from invokeai.backend.model_manager import (
|
||||||
AnyModel,
|
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
BaseModelType,
|
BaseModelType,
|
||||||
ModelFormat,
|
ModelFormat,
|
||||||
ModelType,
|
ModelType,
|
||||||
SubModelType,
|
SubModelType,
|
||||||
)
|
)
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
|
|
||||||
from .. import ModelLoaderRegistry
|
from .. import ModelLoaderRegistry
|
||||||
from .generic_diffusers import GenericDiffusersLoader
|
from .generic_diffusers import GenericDiffusersLoader
|
||||||
|
|||||||
@@ -5,7 +5,6 @@ from pathlib import Path
|
|||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
from invokeai.backend.model_manager import (
|
from invokeai.backend.model_manager import (
|
||||||
AnyModel,
|
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
BaseModelType,
|
BaseModelType,
|
||||||
ModelFormat,
|
ModelFormat,
|
||||||
@@ -13,6 +12,7 @@ from invokeai.backend.model_manager import (
|
|||||||
SchedulerPredictionType,
|
SchedulerPredictionType,
|
||||||
SubModelType,
|
SubModelType,
|
||||||
)
|
)
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.config import (
|
from invokeai.backend.model_manager.config import (
|
||||||
CheckpointConfigBase,
|
CheckpointConfigBase,
|
||||||
DiffusersConfigBase,
|
DiffusersConfigBase,
|
||||||
|
|||||||
@@ -5,13 +5,13 @@ from pathlib import Path
|
|||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
from invokeai.backend.model_manager import (
|
from invokeai.backend.model_manager import (
|
||||||
AnyModel,
|
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
BaseModelType,
|
BaseModelType,
|
||||||
ModelFormat,
|
ModelFormat,
|
||||||
ModelType,
|
ModelType,
|
||||||
SubModelType,
|
SubModelType,
|
||||||
)
|
)
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.textual_inversion import TextualInversionModelRaw
|
from invokeai.backend.textual_inversion import TextualInversionModelRaw
|
||||||
|
|
||||||
from .. import ModelLoader, ModelLoaderRegistry
|
from .. import ModelLoader, ModelLoaderRegistry
|
||||||
|
|||||||
@@ -14,7 +14,8 @@ from invokeai.backend.model_manager import (
|
|||||||
ModelFormat,
|
ModelFormat,
|
||||||
ModelType,
|
ModelType,
|
||||||
)
|
)
|
||||||
from invokeai.backend.model_manager.config import AnyModel, CheckpointConfigBase
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
|
from invokeai.backend.model_manager.config import CheckpointConfigBase
|
||||||
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers
|
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers
|
||||||
|
|
||||||
from .. import ModelLoaderRegistry
|
from .. import ModelLoaderRegistry
|
||||||
|
|||||||
@@ -8,7 +8,7 @@ from typing import Optional
|
|||||||
import torch
|
import torch
|
||||||
from diffusers import DiffusionPipeline
|
from diffusers import DiffusionPipeline
|
||||||
|
|
||||||
from invokeai.backend.model_manager.config import AnyModel
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -17,7 +17,7 @@ def skip_torch_weight_init() -> Generator[None, None, None]:
|
|||||||
completely unnecessary if the intent is to load checkpoint weights from disk for the layer. This context manager
|
completely unnecessary if the intent is to load checkpoint weights from disk for the layer. This context manager
|
||||||
monkey-patches common torch layers to skip the weight initialization step.
|
monkey-patches common torch layers to skip the weight initialization step.
|
||||||
"""
|
"""
|
||||||
torch_modules = [torch.nn.Linear, torch.nn.modules.conv._ConvNd, torch.nn.Embedding]
|
torch_modules = [torch.nn.Linear, torch.nn.modules.conv._ConvNd, torch.nn.Embedding, torch.nn.LayerNorm]
|
||||||
saved_functions = [hasattr(m, "reset_parameters") and m.reset_parameters for m in torch_modules]
|
saved_functions = [hasattr(m, "reset_parameters") and m.reset_parameters for m in torch_modules]
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
|||||||
@@ -13,157 +13,14 @@ from diffusers import OnnxRuntimeModel, UNet2DConditionModel
|
|||||||
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
||||||
|
|
||||||
from invokeai.app.shared.models import FreeUConfig
|
from invokeai.app.shared.models import FreeUConfig
|
||||||
from invokeai.backend.model_manager import AnyModel
|
from invokeai.backend.lora.lora_model import LoRAModelRaw
|
||||||
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
|
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
|
||||||
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
||||||
|
|
||||||
from .lora import LoRAModelRaw
|
|
||||||
from .textual_inversion import TextualInversionManager, TextualInversionModelRaw
|
from .textual_inversion import TextualInversionManager, TextualInversionModelRaw
|
||||||
|
|
||||||
"""
|
|
||||||
loras = [
|
|
||||||
(lora_model1, 0.7),
|
|
||||||
(lora_model2, 0.4),
|
|
||||||
]
|
|
||||||
with LoRAHelper.apply_lora_unet(unet, loras):
|
|
||||||
# unet with applied loras
|
|
||||||
# unmodified unet
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
# TODO: rename smth like ModelPatcher and add TI method?
|
|
||||||
class ModelPatcher:
|
class ModelPatcher:
|
||||||
@staticmethod
|
|
||||||
def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]:
|
|
||||||
assert "." not in lora_key
|
|
||||||
|
|
||||||
if not lora_key.startswith(prefix):
|
|
||||||
raise Exception(f"lora_key with invalid prefix: {lora_key}, {prefix}")
|
|
||||||
|
|
||||||
module = model
|
|
||||||
module_key = ""
|
|
||||||
key_parts = lora_key[len(prefix) :].split("_")
|
|
||||||
|
|
||||||
submodule_name = key_parts.pop(0)
|
|
||||||
|
|
||||||
while len(key_parts) > 0:
|
|
||||||
try:
|
|
||||||
module = module.get_submodule(submodule_name)
|
|
||||||
module_key += "." + submodule_name
|
|
||||||
submodule_name = key_parts.pop(0)
|
|
||||||
except Exception:
|
|
||||||
submodule_name += "_" + key_parts.pop(0)
|
|
||||||
|
|
||||||
module = module.get_submodule(submodule_name)
|
|
||||||
module_key = (module_key + "." + submodule_name).lstrip(".")
|
|
||||||
|
|
||||||
return (module_key, module)
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
@contextmanager
|
|
||||||
def apply_lora_unet(
|
|
||||||
cls,
|
|
||||||
unet: UNet2DConditionModel,
|
|
||||||
loras: Iterator[Tuple[LoRAModelRaw, float]],
|
|
||||||
) -> None:
|
|
||||||
with cls.apply_lora(unet, loras, "lora_unet_"):
|
|
||||||
yield
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
@contextmanager
|
|
||||||
def apply_lora_text_encoder(
|
|
||||||
cls,
|
|
||||||
text_encoder: CLIPTextModel,
|
|
||||||
loras: Iterator[Tuple[LoRAModelRaw, float]],
|
|
||||||
) -> None:
|
|
||||||
with cls.apply_lora(text_encoder, loras, "lora_te_"):
|
|
||||||
yield
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
@contextmanager
|
|
||||||
def apply_sdxl_lora_text_encoder(
|
|
||||||
cls,
|
|
||||||
text_encoder: CLIPTextModel,
|
|
||||||
loras: List[Tuple[LoRAModelRaw, float]],
|
|
||||||
) -> None:
|
|
||||||
with cls.apply_lora(text_encoder, loras, "lora_te1_"):
|
|
||||||
yield
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
@contextmanager
|
|
||||||
def apply_sdxl_lora_text_encoder2(
|
|
||||||
cls,
|
|
||||||
text_encoder: CLIPTextModel,
|
|
||||||
loras: List[Tuple[LoRAModelRaw, float]],
|
|
||||||
) -> None:
|
|
||||||
with cls.apply_lora(text_encoder, loras, "lora_te2_"):
|
|
||||||
yield
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
@contextmanager
|
|
||||||
def apply_lora(
|
|
||||||
cls,
|
|
||||||
model: AnyModel,
|
|
||||||
loras: Iterator[Tuple[LoRAModelRaw, float]],
|
|
||||||
prefix: str,
|
|
||||||
) -> None:
|
|
||||||
original_weights = {}
|
|
||||||
try:
|
|
||||||
with torch.no_grad():
|
|
||||||
for lora, lora_weight in loras:
|
|
||||||
# assert lora.device.type == "cpu"
|
|
||||||
for layer_key, layer in lora.layers.items():
|
|
||||||
if not layer_key.startswith(prefix):
|
|
||||||
continue
|
|
||||||
|
|
||||||
# TODO(ryand): A non-negligible amount of time is currently spent resolving LoRA keys. This
|
|
||||||
# should be improved in the following ways:
|
|
||||||
# 1. The key mapping could be more-efficiently pre-computed. This would save time every time a
|
|
||||||
# LoRA model is applied.
|
|
||||||
# 2. From an API perspective, there's no reason that the `ModelPatcher` should be aware of the
|
|
||||||
# intricacies of Stable Diffusion key resolution. It should just expect the input LoRA
|
|
||||||
# weights to have valid keys.
|
|
||||||
assert isinstance(model, torch.nn.Module)
|
|
||||||
module_key, module = cls._resolve_lora_key(model, layer_key, prefix)
|
|
||||||
|
|
||||||
# All of the LoRA weight calculations will be done on the same device as the module weight.
|
|
||||||
# (Performance will be best if this is a CUDA device.)
|
|
||||||
device = module.weight.device
|
|
||||||
dtype = module.weight.dtype
|
|
||||||
|
|
||||||
if module_key not in original_weights:
|
|
||||||
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
|
|
||||||
|
|
||||||
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
|
|
||||||
|
|
||||||
# We intentionally move to the target device first, then cast. Experimentally, this was found to
|
|
||||||
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
|
|
||||||
# same thing in a single call to '.to(...)'.
|
|
||||||
layer.to(device=device)
|
|
||||||
layer.to(dtype=torch.float32)
|
|
||||||
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
|
|
||||||
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
|
|
||||||
layer_weight = layer.get_weight(module.weight) * (lora_weight * layer_scale)
|
|
||||||
layer.to(device=torch.device("cpu"))
|
|
||||||
|
|
||||||
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
|
|
||||||
if module.weight.shape != layer_weight.shape:
|
|
||||||
# TODO: debug on lycoris
|
|
||||||
assert hasattr(layer_weight, "reshape")
|
|
||||||
layer_weight = layer_weight.reshape(module.weight.shape)
|
|
||||||
|
|
||||||
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
|
|
||||||
module.weight += layer_weight.to(dtype=dtype)
|
|
||||||
|
|
||||||
yield # wait for context manager exit
|
|
||||||
|
|
||||||
finally:
|
|
||||||
assert hasattr(model, "get_submodule") # mypy not picking up fact that torch.nn.Module has get_submodule()
|
|
||||||
with torch.no_grad():
|
|
||||||
for module_key, weight in original_weights.items():
|
|
||||||
model.get_submodule(module_key).weight.copy_(weight)
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
@contextmanager
|
@contextmanager
|
||||||
def apply_ti(
|
def apply_ti(
|
||||||
|
|||||||
@@ -6,17 +6,16 @@ from typing import Any, List, Optional, Tuple, Union
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import onnx
|
import onnx
|
||||||
|
import torch
|
||||||
from onnx import numpy_helper
|
from onnx import numpy_helper
|
||||||
from onnxruntime import InferenceSession, SessionOptions, get_available_providers
|
from onnxruntime import InferenceSession, SessionOptions, get_available_providers
|
||||||
|
|
||||||
from ..raw_model import RawModel
|
|
||||||
|
|
||||||
ONNX_WEIGHTS_NAME = "model.onnx"
|
ONNX_WEIGHTS_NAME = "model.onnx"
|
||||||
|
|
||||||
|
|
||||||
# NOTE FROM LS: This was copied from Stalker's original implementation.
|
# NOTE FROM LS: This was copied from Stalker's original implementation.
|
||||||
# I have not yet gone through and fixed all the type hints
|
# I have not yet gone through and fixed all the type hints
|
||||||
class IAIOnnxRuntimeModel(RawModel):
|
class IAIOnnxRuntimeModel(torch.nn.Module):
|
||||||
class _tensor_access:
|
class _tensor_access:
|
||||||
def __init__(self, model): # type: ignore
|
def __init__(self, model): # type: ignore
|
||||||
self.model = model
|
self.model = model
|
||||||
@@ -103,7 +102,7 @@ class IAIOnnxRuntimeModel(RawModel):
|
|||||||
|
|
||||||
self.proto = onnx.load(model_path, load_external_data=False)
|
self.proto = onnx.load(model_path, load_external_data=False)
|
||||||
"""
|
"""
|
||||||
|
super().__init__()
|
||||||
self.proto = onnx.load(model_path, load_external_data=True)
|
self.proto = onnx.load(model_path, load_external_data=True)
|
||||||
# self.data = dict()
|
# self.data = dict()
|
||||||
# for tensor in self.proto.graph.initializer:
|
# for tensor in self.proto.graph.initializer:
|
||||||
|
|||||||
@@ -1,15 +0,0 @@
|
|||||||
"""Base class for 'Raw' models.
|
|
||||||
|
|
||||||
The RawModel class is the base class of LoRAModelRaw and TextualInversionModelRaw,
|
|
||||||
and is used for type checking of calls to the model patcher. Its main purpose
|
|
||||||
is to avoid a circular import issues when lora.py tries to import BaseModelType
|
|
||||||
from invokeai.backend.model_manager.config, and the latter tries to import LoRAModelRaw
|
|
||||||
from lora.py.
|
|
||||||
|
|
||||||
The term 'raw' was introduced to describe a wrapper around a torch.nn.Module
|
|
||||||
that adds additional methods and attributes.
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
class RawModel:
|
|
||||||
"""Base class for 'Raw' model wrappers."""
|
|
||||||
@@ -9,10 +9,8 @@ from safetensors.torch import load_file
|
|||||||
from transformers import CLIPTokenizer
|
from transformers import CLIPTokenizer
|
||||||
from typing_extensions import Self
|
from typing_extensions import Self
|
||||||
|
|
||||||
from .raw_model import RawModel
|
|
||||||
|
|
||||||
|
class TextualInversionModelRaw(torch.nn.Module):
|
||||||
class TextualInversionModelRaw(RawModel):
|
|
||||||
embedding: torch.Tensor # [n, 768]|[n, 1280]
|
embedding: torch.Tensor # [n, 768]|[n, 1280]
|
||||||
embedding_2: Optional[torch.Tensor] = None # [n, 768]|[n, 1280] - for SDXL models
|
embedding_2: Optional[torch.Tensor] = None # [n, 768]|[n, 1280] - for SDXL models
|
||||||
|
|
||||||
|
|||||||
37
invokeai/backend/util/serialization.py
Normal file
37
invokeai/backend/util/serialization.py
Normal file
@@ -0,0 +1,37 @@
|
|||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Optional, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from safetensors.torch import load_file
|
||||||
|
|
||||||
|
|
||||||
|
def state_dict_to(
|
||||||
|
state_dict: dict[str, torch.Tensor], device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None
|
||||||
|
) -> dict[str, torch.Tensor]:
|
||||||
|
new_state_dict: dict[str, torch.Tensor] = {}
|
||||||
|
for k, v in state_dict.items():
|
||||||
|
new_state_dict[k] = v.to(device=device, dtype=dtype, non_blocking=True)
|
||||||
|
return new_state_dict
|
||||||
|
|
||||||
|
|
||||||
|
def load_state_dict(file_path: Union[str, Path], device: str = "cpu") -> Any:
|
||||||
|
"""Load a state_dict from a file that may be in either PyTorch or safetensors format. The file format is inferred
|
||||||
|
from the file extension.
|
||||||
|
"""
|
||||||
|
file_path = Path(file_path)
|
||||||
|
|
||||||
|
if file_path.suffix == ".safetensors":
|
||||||
|
state_dict = load_file(
|
||||||
|
file_path,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# weights_only=True is used to address a security vulnerability that allows arbitrary code execution.
|
||||||
|
# This option was first introduced in https://github.com/pytorch/pytorch/pull/86812.
|
||||||
|
#
|
||||||
|
# mmap=True is used to both reduce memory usage and speed up loading. This setting causes torch.load() to more
|
||||||
|
# closely mirror the behaviour of safetensors.torch.load_file(). This option was first introduced in
|
||||||
|
# https://github.com/pytorch/pytorch/pull/102549. The discussion on that PR provides helpful context.
|
||||||
|
state_dict = torch.load(file_path, map_location=device, weights_only=True, mmap=True)
|
||||||
|
|
||||||
|
return state_dict
|
||||||
@@ -5,8 +5,9 @@
|
|||||||
import pytest
|
import pytest
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from invokeai.backend.lora import LoRALayer, LoRAModelRaw
|
from invokeai.backend.lora.lora_layer import LoRALayer
|
||||||
from invokeai.backend.model_patcher import ModelPatcher
|
from invokeai.backend.lora.lora_model import LoRAModelRaw
|
||||||
|
from invokeai.backend.lora.lora_model_patcher import LoraModelPatcher
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
@pytest.mark.parametrize(
|
||||||
@@ -44,7 +45,7 @@ def test_apply_lora(device):
|
|||||||
orig_linear_weight = model["linear_layer_1"].weight.data.detach().clone()
|
orig_linear_weight = model["linear_layer_1"].weight.data.detach().clone()
|
||||||
expected_patched_linear_weight = orig_linear_weight + (lora_dim * lora_weight)
|
expected_patched_linear_weight = orig_linear_weight + (lora_dim * lora_weight)
|
||||||
|
|
||||||
with ModelPatcher.apply_lora(model, [(lora, lora_weight)], prefix=""):
|
with LoraModelPatcher.apply_lora(model, [(lora, lora_weight)], prefix=""):
|
||||||
# After patching, all LoRA layer weights should have been moved back to the cpu.
|
# After patching, all LoRA layer weights should have been moved back to the cpu.
|
||||||
assert lora_layers["linear_layer_1"].up.device.type == "cpu"
|
assert lora_layers["linear_layer_1"].up.device.type == "cpu"
|
||||||
assert lora_layers["linear_layer_1"].down.device.type == "cpu"
|
assert lora_layers["linear_layer_1"].down.device.type == "cpu"
|
||||||
@@ -86,7 +87,7 @@ def test_apply_lora_change_device():
|
|||||||
|
|
||||||
orig_linear_weight = model["linear_layer_1"].weight.data.detach().clone()
|
orig_linear_weight = model["linear_layer_1"].weight.data.detach().clone()
|
||||||
|
|
||||||
with ModelPatcher.apply_lora(model, [(lora, 0.5)], prefix=""):
|
with LoraModelPatcher.apply_lora(model, [(lora, 0.5)], prefix=""):
|
||||||
# After patching, all LoRA layer weights should have been moved back to the cpu.
|
# After patching, all LoRA layer weights should have been moved back to the cpu.
|
||||||
assert lora_layers["linear_layer_1"].up.device.type == "cpu"
|
assert lora_layers["linear_layer_1"].up.device.type == "cpu"
|
||||||
assert lora_layers["linear_layer_1"].down.device.type == "cpu"
|
assert lora_layers["linear_layer_1"].down.device.type == "cpu"
|
||||||
|
|||||||
Reference in New Issue
Block a user