Compare commits

...

10 Commits

Author SHA1 Message Date
Ryan Dick
6bfb4927c7 WIP - not working 2024-04-08 10:06:11 -04:00
Ryan Dick
c15e9e23ca Tidy types in LoraModelPatcher. 2024-04-05 16:05:31 -04:00
Ryan Dick
e1aa1ed6af Split LoraModelPatcher out from ModelPatcher monolith. 2024-04-05 15:57:46 -04:00
Ryan Dick
4b68050c9b Minor cleanup of LoRAModelRaw. 2024-04-05 15:30:01 -04:00
Ryan Dick
9e68a5c851 Use load_state_dict() util in LoRAModelRaw. 2024-04-05 15:20:07 -04:00
Ryan Dick
61a672cd81 Tidy types in sdxl_state_dict_utils.py. 2024-04-05 15:16:36 -04:00
Ryan Dick
c27a2e59da Copy convert_sdxl_keys_to_diffusers_format() to sdxl_state_dict_utils.py. 2024-04-05 15:12:22 -04:00
Ryan Dick
4e3f42e388 Split lora.py monolith into separate files. 2024-04-05 15:04:14 -04:00
Ryan Dick
5d41157404 Add LayerNorm to list of modules optimized by skip_torch_weight_init() 2024-04-05 14:39:57 -04:00
Ryan Dick
8db4ba252a Add util function for loading state_dicts from disk. 2024-04-05 14:39:57 -04:00
19 changed files with 860 additions and 776 deletions

View File

@@ -9,7 +9,8 @@ from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
from invokeai.app.invocations.primitives import ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.ti_utils import generate_ti_list
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.lora.lora_model import LoRAModelRaw
from invokeai.backend.lora.lora_model_patcher import LoraModelPatcher
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
@@ -80,7 +81,7 @@ class CompelInvocation(BaseInvocation):
),
text_encoder_info as text_encoder,
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
LoraModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder_model, self.clip.skipped_layers),
):
@@ -181,7 +182,7 @@ class SDXLPromptInvocationBase:
),
text_encoder_info as text_encoder,
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
LoraModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder_model, clip_field.skipped_layers),
):

View File

@@ -48,7 +48,8 @@ from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.lora.lora_model import LoRAModelRaw
from invokeai.backend.lora.lora_model_patcher import LoraModelPatcher
from invokeai.backend.model_manager import BaseModelType, LoadedModel
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
@@ -730,7 +731,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
set_seamless(unet_info.model, self.unet.seamless_axes), # FIXME
unet_info as unet,
# Apply the LoRA after unet has been moved to its target device for faster patching.
ModelPatcher.apply_lora_unet(unet, _lora_loader()),
LoraModelPatcher.apply_lora_unet(unet, _lora_loader()),
):
assert isinstance(unet, UNet2DConditionModel)
latents = latents.to(device=unet.device, dtype=unet.dtype)

View File

@@ -1,620 +0,0 @@
# Copyright (c) 2024 The InvokeAI Development team
"""LoRA model support."""
import bisect
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
import torch
from safetensors.torch import load_file
from typing_extensions import Self
from invokeai.backend.model_manager import BaseModelType
class LoRALayerBase:
# rank: Optional[int]
# alpha: Optional[float]
# bias: Optional[torch.Tensor]
# layer_key: str
# @property
# def scale(self):
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
if "alpha" in values:
self.alpha = values["alpha"].item()
else:
self.alpha = None
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
self.bias: Optional[torch.Tensor] = torch.sparse_coo_tensor(
values["bias_indices"],
values["bias_values"],
tuple(values["bias_size"]),
)
else:
self.bias = None
self.rank = None # set in layer implementation
self.layer_key = layer_key
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
raise NotImplementedError()
def calc_size(self) -> int:
model_size = 0
for val in [self.bias]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype)
# TODO: find and debug lora/locon with bias
class LoRALayer(LoRALayerBase):
# up: torch.Tensor
# mid: Optional[torch.Tensor]
# down: torch.Tensor
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.up = values["lora_up.weight"]
self.down = values["lora_down.weight"]
if "lora_mid.weight" in values:
self.mid: Optional[torch.Tensor] = values["lora_mid.weight"]
else:
self.mid = None
self.rank = self.down.shape[0]
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
if self.mid is not None:
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
else:
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.up, self.mid, self.down]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
super().to(device=device, dtype=dtype)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)
if self.mid is not None:
self.mid = self.mid.to(device=device, dtype=dtype)
class LoHALayer(LoRALayerBase):
# w1_a: torch.Tensor
# w1_b: torch.Tensor
# w2_a: torch.Tensor
# w2_b: torch.Tensor
# t1: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
def __init__(self, layer_key: str, values: Dict[str, torch.Tensor]):
super().__init__(layer_key, values)
self.w1_a = values["hada_w1_a"]
self.w1_b = values["hada_w1_b"]
self.w2_a = values["hada_w2_a"]
self.w2_b = values["hada_w2_b"]
if "hada_t1" in values:
self.t1: Optional[torch.Tensor] = values["hada_t1"]
else:
self.t1 = None
if "hada_t2" in values:
self.t2: Optional[torch.Tensor] = values["hada_t2"]
else:
self.t2 = None
self.rank = self.w1_b.shape[0]
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
if self.t1 is None:
weight: torch.Tensor = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
else:
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
weight = rebuild1 * rebuild2
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
super().to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.t1 is not None:
self.t1 = self.t1.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class LoKRLayer(LoRALayerBase):
# w1: Optional[torch.Tensor] = None
# w1_a: Optional[torch.Tensor] = None
# w1_b: Optional[torch.Tensor] = None
# w2: Optional[torch.Tensor] = None
# w2_a: Optional[torch.Tensor] = None
# w2_b: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
if "lokr_w1" in values:
self.w1: Optional[torch.Tensor] = values["lokr_w1"]
self.w1_a = None
self.w1_b = None
else:
self.w1 = None
self.w1_a = values["lokr_w1_a"]
self.w1_b = values["lokr_w1_b"]
if "lokr_w2" in values:
self.w2: Optional[torch.Tensor] = values["lokr_w2"]
self.w2_a = None
self.w2_b = None
else:
self.w2 = None
self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"]
if "lokr_t2" in values:
self.t2: Optional[torch.Tensor] = values["lokr_t2"]
else:
self.t2 = None
if "lokr_w1_b" in values:
self.rank = values["lokr_w1_b"].shape[0]
elif "lokr_w2_b" in values:
self.rank = values["lokr_w2_b"].shape[0]
else:
self.rank = None # unscaled
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
w1: Optional[torch.Tensor] = self.w1
if w1 is None:
assert self.w1_a is not None
assert self.w1_b is not None
w1 = self.w1_a @ self.w1_b
w2 = self.w2
if w2 is None:
if self.t2 is None:
assert self.w2_a is not None
assert self.w2_b is not None
w2 = self.w2_a @ self.w2_b
else:
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
assert w1 is not None
assert w2 is not None
weight = torch.kron(w1, w2)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
super().to(device=device, dtype=dtype)
if self.w1 is not None:
self.w1 = self.w1.to(device=device, dtype=dtype)
else:
assert self.w1_a is not None
assert self.w1_b is not None
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.w2 is not None:
self.w2 = self.w2.to(device=device, dtype=dtype)
else:
assert self.w2_a is not None
assert self.w2_b is not None
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class FullLayer(LoRALayerBase):
# weight: torch.Tensor
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.weight = values["diff"]
if len(values.keys()) > 1:
_keys = list(values.keys())
_keys.remove("diff")
raise NotImplementedError(f"Unexpected keys in lora diff layer: {_keys}")
self.rank = None # unscaled
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
return self.weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
class IA3Layer(LoRALayerBase):
# weight: torch.Tensor
# on_input: torch.Tensor
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.weight = values["weight"]
self.on_input = values["on_input"]
self.rank = None # unscaled
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
weight = self.weight
if not self.on_input:
weight = weight.reshape(-1, 1)
assert orig_weight is not None
return orig_weight * weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
model_size += self.on_input.nelement() * self.on_input.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
self.on_input = self.on_input.to(device=device, dtype=dtype)
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
class LoRAModelRaw(torch.nn.Module):
def __init__(
self,
name: str,
layers: Dict[str, AnyLoRALayer],
):
super().__init__()
self._name = name
self.layers = layers
@property
def name(self) -> str:
return self._name
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
# TODO: try revert if exception?
for _key, layer in self.layers.items():
layer.to(device=device, dtype=dtype)
def calc_size(self) -> int:
model_size = 0
for _, layer in self.layers.items():
model_size += layer.calc_size()
return model_size
@classmethod
def _convert_sdxl_keys_to_diffusers_format(cls, state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
diffusers format, then this function will have no effect.
This function is adapted from:
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
Args:
state_dict (Dict[str, Tensor]): The SDXL LoRA state_dict.
Raises:
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
Returns:
Dict[str, Tensor]: The diffusers-format state_dict.
"""
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
not_converted_count = 0 # The number of keys that were not converted.
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
# `input_blocks_4_1_proj_in`.
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
stability_unet_keys.sort()
new_state_dict = {}
for full_key, value in state_dict.items():
if full_key.startswith("lora_unet_"):
search_key = full_key.replace("lora_unet_", "")
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
position = bisect.bisect_right(stability_unet_keys, search_key)
map_key = stability_unet_keys[position - 1]
# Now, check if the map_key *actually* matches the search_key.
if search_key.startswith(map_key):
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
new_state_dict[new_key] = value
converted_count += 1
else:
new_state_dict[full_key] = value
not_converted_count += 1
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
new_state_dict[full_key] = value
continue
else:
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
if converted_count > 0 and not_converted_count > 0:
raise ValueError(
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
f" not_converted={not_converted_count}"
)
return new_state_dict
@classmethod
def from_checkpoint(
cls,
file_path: Union[str, Path],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
base_model: Optional[BaseModelType] = None,
) -> Self:
device = device or torch.device("cpu")
dtype = dtype or torch.float32
if isinstance(file_path, str):
file_path = Path(file_path)
model = cls(
name=file_path.stem,
layers={},
)
if file_path.suffix == ".safetensors":
sd = load_file(file_path.absolute().as_posix(), device="cpu")
else:
sd = torch.load(file_path, map_location="cpu")
state_dict = cls._group_state(sd)
if base_model == BaseModelType.StableDiffusionXL:
state_dict = cls._convert_sdxl_keys_to_diffusers_format(state_dict)
for layer_key, values in state_dict.items():
# lora and locon
if "lora_down.weight" in values:
layer: AnyLoRALayer = LoRALayer(layer_key, values)
# loha
elif "hada_w1_b" in values:
layer = LoHALayer(layer_key, values)
# lokr
elif "lokr_w1_b" in values or "lokr_w1" in values:
layer = LoKRLayer(layer_key, values)
# diff
elif "diff" in values:
layer = FullLayer(layer_key, values)
# ia3
elif "weight" in values and "on_input" in values:
layer = IA3Layer(layer_key, values)
else:
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key} - {list(values.keys())}")
raise Exception("Unknown lora format!")
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype)
model.layers[layer_key] = layer
return model
@staticmethod
def _group_state(state_dict: Dict[str, torch.Tensor]) -> Dict[str, Dict[str, torch.Tensor]]:
state_dict_groupped: Dict[str, Dict[str, torch.Tensor]] = {}
for key, value in state_dict.items():
stem, leaf = key.split(".", 1)
if stem not in state_dict_groupped:
state_dict_groupped[stem] = {}
state_dict_groupped[stem][leaf] = value
return state_dict_groupped
# code from
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
def make_sdxl_unet_conversion_map() -> List[Tuple[str, str]]:
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format."""
unet_conversion_map_layer = []
for i in range(3): # num_blocks is 3 in sdxl
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
# if i > 0: commentout for sdxl
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2*j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0.", "norm1."),
("in_layers.2.", "conv1."),
("out_layers.0.", "norm2."),
("out_layers.3.", "conv2."),
("emb_layers.1.", "time_emb_proj."),
("skip_connection.", "conv_shortcut."),
]
unet_conversion_map = []
for sd, hf in unet_conversion_map_layer:
if "resnets" in hf:
for sd_res, hf_res in unet_conversion_map_resnet:
unet_conversion_map.append((sd + sd_res, hf + hf_res))
else:
unet_conversion_map.append((sd, hf))
for j in range(2):
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
sd_time_embed_prefix = f"time_embed.{j*2}."
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
for j in range(2):
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
sd_label_embed_prefix = f"label_emb.0.{j*2}."
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
unet_conversion_map.append(("out.0.", "conv_norm_out."))
unet_conversion_map.append(("out.2.", "conv_out."))
return unet_conversion_map
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()
}

View File

View File

@@ -0,0 +1,42 @@
from typing import Dict, Optional
import torch
from invokeai.backend.lora.lora_layer_base import LoRALayerBase
class FullLayer(LoRALayerBase):
# weight: torch.Tensor
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.weight = values["diff"]
if len(values.keys()) > 1:
_keys = list(values.keys())
_keys.remove("diff")
raise NotImplementedError(f"Unexpected keys in lora diff layer: {_keys}")
self.rank = None # unscaled
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
return self.weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)

View File

@@ -0,0 +1,45 @@
from typing import Dict, Optional
import torch
from invokeai.backend.lora.lora_layer_base import LoRALayerBase
class IA3Layer(LoRALayerBase):
# weight: torch.Tensor
# on_input: torch.Tensor
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.weight = values["weight"]
self.on_input = values["on_input"]
self.rank = None # unscaled
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
weight = self.weight
if not self.on_input:
weight = weight.reshape(-1, 1)
assert orig_weight is not None
return orig_weight * weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
model_size += self.on_input.nelement() * self.on_input.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
self.on_input = self.on_input.to(device=device, dtype=dtype)

View File

@@ -0,0 +1,69 @@
from typing import Dict, Optional
import torch
from invokeai.backend.lora.lora_layer_base import LoRALayerBase
class LoHALayer(LoRALayerBase):
# w1_a: torch.Tensor
# w1_b: torch.Tensor
# w2_a: torch.Tensor
# w2_b: torch.Tensor
# t1: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
def __init__(self, layer_key: str, values: Dict[str, torch.Tensor]):
super().__init__(layer_key, values)
self.w1_a = values["hada_w1_a"]
self.w1_b = values["hada_w1_b"]
self.w2_a = values["hada_w2_a"]
self.w2_b = values["hada_w2_b"]
if "hada_t1" in values:
self.t1: Optional[torch.Tensor] = values["hada_t1"]
else:
self.t1 = None
if "hada_t2" in values:
self.t2: Optional[torch.Tensor] = values["hada_t2"]
else:
self.t2 = None
self.rank = self.w1_b.shape[0]
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
if self.t1 is None:
weight: torch.Tensor = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
else:
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
weight = rebuild1 * rebuild2
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
super().to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.t1 is not None:
self.t1 = self.t1.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)

View File

@@ -0,0 +1,110 @@
from typing import Dict, Optional
import torch
from invokeai.backend.lora.lora_layer_base import LoRALayerBase
class LoKRLayer(LoRALayerBase):
# w1: Optional[torch.Tensor] = None
# w1_a: Optional[torch.Tensor] = None
# w1_b: Optional[torch.Tensor] = None
# w2: Optional[torch.Tensor] = None
# w2_a: Optional[torch.Tensor] = None
# w2_b: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
if "lokr_w1" in values:
self.w1: Optional[torch.Tensor] = values["lokr_w1"]
self.w1_a = None
self.w1_b = None
else:
self.w1 = None
self.w1_a = values["lokr_w1_a"]
self.w1_b = values["lokr_w1_b"]
if "lokr_w2" in values:
self.w2: Optional[torch.Tensor] = values["lokr_w2"]
self.w2_a = None
self.w2_b = None
else:
self.w2 = None
self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"]
if "lokr_t2" in values:
self.t2: Optional[torch.Tensor] = values["lokr_t2"]
else:
self.t2 = None
if "lokr_w1_b" in values:
self.rank = values["lokr_w1_b"].shape[0]
elif "lokr_w2_b" in values:
self.rank = values["lokr_w2_b"].shape[0]
else:
self.rank = None # unscaled
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
w1: Optional[torch.Tensor] = self.w1
if w1 is None:
assert self.w1_a is not None
assert self.w1_b is not None
w1 = self.w1_a @ self.w1_b
w2 = self.w2
if w2 is None:
if self.t2 is None:
assert self.w2_a is not None
assert self.w2_b is not None
w2 = self.w2_a @ self.w2_b
else:
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
assert w1 is not None
assert w2 is not None
weight = torch.kron(w1, w2)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
super().to(device=device, dtype=dtype)
if self.w1 is not None:
self.w1 = self.w1.to(device=device, dtype=dtype)
else:
assert self.w1_a is not None
assert self.w1_b is not None
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.w2 is not None:
self.w2 = self.w2.to(device=device, dtype=dtype)
else:
assert self.w2_a is not None
assert self.w2_b is not None
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)

View File

@@ -0,0 +1,81 @@
from typing import Optional
import torch
from invokeai.backend.lora.lora_layer_base import LoRALayerBase
class LoRALayer(LoRALayerBase):
def __init__(
self,
layer_key: str,
values: dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.up = values["lora_up.weight"]
self.down = values["lora_down.weight"]
self.mid: Optional[torch.Tensor] = values.get("lora_mid.weight", None)
self.dora_scale: Optional[torch.Tensor] = values.get("dora_scale", None)
self.rank = self.down.shape[0]
def _apply_dora(self, orig_weight: torch.Tensor, lora_weight: torch.Tensor) -> torch.Tensor:
"""Apply DoRA to the weight matrix.
This function is based roughly on the reference implementation in PEFT, but handles scaling in a slightly
different way:
https://github.com/huggingface/peft/blob/26726bf1ddee6ca75ed4e1bfd292094526707a78/src/peft/tuners/lora/layer.py#L421-L433
"""
# Merge the original weight with the LoRA weight.
merged_weight = orig_weight + lora_weight
# Calculate the vector-wise L2 norm of the weight matrix across each column vector.
weight_norm: torch.Tensor = torch.linalg.norm(merged_weight, dim=1)
dora_factor = self.dora_scale / weight_norm
new_weight = dora_factor * merged_weight
# TODO(ryand): This is wasteful. We already have the final weight, but we calculate the diff, because that is
# what the `get_weight()` API is expected to return. If we do refactor this, we'll have to give some thought to
# how lora weight scaling should be applied - having the full weight diff makes this easy.
weight_diff = new_weight - orig_weight
return weight_diff
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
if self.mid is not None:
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
else:
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
if self.dora_scale is not None:
assert orig_weight is not None
weight = self._apply_dora(orig_weight, weight)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.up, self.mid, self.down]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
super().to(device=device, dtype=dtype)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)
if self.mid is not None:
self.mid = self.mid.to(device=device, dtype=dtype)
if self.dora_scale is not None:
self.dora_scale = self.dora_scale.to(device=device, dtype=dtype)

View File

@@ -0,0 +1,55 @@
from typing import Dict, Optional
import torch
class LoRALayerBase:
# rank: Optional[int]
# alpha: Optional[float]
# bias: Optional[torch.Tensor]
# layer_key: str
# @property
# def scale(self):
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
if "alpha" in values:
self.alpha = values["alpha"].item()
else:
self.alpha = None
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
self.bias: Optional[torch.Tensor] = torch.sparse_coo_tensor(
values["bias_indices"],
values["bias_values"],
tuple(values["bias_size"]),
)
else:
self.bias = None
self.rank = None # set in layer implementation
self.layer_key = layer_key
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
raise NotImplementedError()
def calc_size(self) -> int:
model_size = 0
for val in [self.bias]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype)

View File

@@ -0,0 +1,111 @@
from pathlib import Path
from typing import Optional, Union
import torch
from invokeai.backend.lora.full_layer import FullLayer
from invokeai.backend.lora.ia3_layer import IA3Layer
from invokeai.backend.lora.loha_layer import LoHALayer
from invokeai.backend.lora.lokr_layer import LoKRLayer
from invokeai.backend.lora.lora_layer import LoRALayer
from invokeai.backend.lora.sdxl_state_dict_utils import convert_sdxl_keys_to_diffusers_format
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.util.serialization import load_state_dict
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
class LoRAModelRaw(torch.nn.Module):
def __init__(
self,
name: str,
layers: dict[str, AnyLoRALayer],
):
super().__init__()
self._name = name
self.layers = layers
@property
def name(self) -> str:
return self._name
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
# TODO: try revert if exception?
for _key, layer in self.layers.items():
layer.to(device=device, dtype=dtype)
def calc_size(self) -> int:
model_size = 0
for _, layer in self.layers.items():
model_size += layer.calc_size()
return model_size
@classmethod
def from_checkpoint(
cls,
file_path: Union[str, Path],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
base_model: Optional[BaseModelType] = None,
):
device = device or torch.device("cpu")
dtype = dtype or torch.float32
file_path = Path(file_path)
model_name = file_path.stem
sd = load_state_dict(file_path, device=str(device))
state_dict = cls._group_state(sd)
if base_model == BaseModelType.StableDiffusionXL:
state_dict = convert_sdxl_keys_to_diffusers_format(state_dict)
layers: dict[str, AnyLoRALayer] = {}
for layer_key, values in state_dict.items():
# lora and locon
if "lora_down.weight" in values:
layer: AnyLoRALayer = LoRALayer(layer_key, values)
# loha
elif "hada_w1_b" in values:
layer = LoHALayer(layer_key, values)
# lokr
elif "lokr_w1_b" in values or "lokr_w1" in values:
layer = LoKRLayer(layer_key, values)
# diff
elif "diff" in values:
layer = FullLayer(layer_key, values)
# ia3
elif "weight" in values and "on_input" in values:
layer = IA3Layer(layer_key, values)
else:
raise ValueError(f"Unknown lora layer module in {model_name}: {layer_key}: {list(values.keys())}")
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype)
layers[layer_key] = layer
return cls(name=model_name, layers=layers)
@staticmethod
def _group_state(state_dict: dict[str, torch.Tensor]) -> dict[str, dict[str, torch.Tensor]]:
state_dict_groupped: dict[str, dict[str, torch.Tensor]] = {}
for key, value in state_dict.items():
stem, leaf = key.split(".", 1)
if stem not in state_dict_groupped:
state_dict_groupped[stem] = {}
state_dict_groupped[stem][leaf] = value
return state_dict_groupped

View File

@@ -0,0 +1,137 @@
from contextlib import contextmanager
from typing import Iterator, Tuple
import torch
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from transformers import CLIPTextModel
from invokeai.backend.lora.lora_model import LoRAModelRaw
from invokeai.backend.model_manager.any_model_type import AnyModel
class LoraModelPatcher:
@staticmethod
def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]:
assert "." not in lora_key
if not lora_key.startswith(prefix):
raise Exception(f"lora_key with invalid prefix: {lora_key}, {prefix}")
module = model
module_key = ""
key_parts = lora_key[len(prefix) :].split("_")
submodule_name = key_parts.pop(0)
while len(key_parts) > 0:
try:
module = module.get_submodule(submodule_name)
module_key += "." + submodule_name
submodule_name = key_parts.pop(0)
except Exception:
submodule_name += "_" + key_parts.pop(0)
module = module.get_submodule(submodule_name)
module_key = (module_key + "." + submodule_name).lstrip(".")
return (module_key, module)
@classmethod
@contextmanager
def apply_lora_unet(
cls,
unet: UNet2DConditionModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
):
with cls.apply_lora(unet, loras, "lora_unet_"):
yield
@classmethod
@contextmanager
def apply_lora_text_encoder(
cls,
text_encoder: CLIPTextModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
):
with cls.apply_lora(text_encoder, loras, "lora_te_"):
yield
@classmethod
@contextmanager
def apply_sdxl_lora_text_encoder(
cls,
text_encoder: CLIPTextModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
):
with cls.apply_lora(text_encoder, loras, "lora_te1_"):
yield
@classmethod
@contextmanager
def apply_sdxl_lora_text_encoder2(
cls,
text_encoder: CLIPTextModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
):
with cls.apply_lora(text_encoder, loras, "lora_te2_"):
yield
@classmethod
@contextmanager
def apply_lora(
cls,
model: AnyModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
prefix: str,
):
original_weights = {}
try:
with torch.no_grad():
for lora, lora_weight in loras:
# assert lora.device.type == "cpu"
for layer_key, layer in lora.layers.items():
if not layer_key.startswith(prefix):
continue
# TODO(ryand): A non-negligible amount of time is currently spent resolving LoRA keys. This
# should be improved in the following ways:
# 1. The key mapping could be more-efficiently pre-computed. This would save time every time a
# LoRA model is applied.
# 2. From an API perspective, there's no reason that the `LoraModelPatcher` should be aware of
# the intricacies of Stable Diffusion key resolution. It should just expect the input LoRA
# weights to have valid keys.
assert isinstance(model, torch.nn.Module)
module_key, module = cls._resolve_lora_key(model, layer_key, prefix)
# All of the LoRA weight calculations will be done on the same device as the module weight.
# (Performance will be best if this is a CUDA device.)
device = module.weight.device
dtype = module.weight.dtype
if module_key not in original_weights:
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
# We intentionally move to the target device first, then cast. Experimentally, this was found to
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
# same thing in a single call to '.to(...)'.
layer.to(device=device)
layer.to(dtype=torch.float32)
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
layer_weight = layer.get_weight(module.weight) * (lora_weight * layer_scale)
layer.to(device=torch.device("cpu"))
if module.weight.shape != layer_weight.shape:
layer_weight = layer_weight.reshape(module.weight.shape)
module.weight += layer_weight.to(dtype=dtype)
yield # wait for context manager exit
finally:
assert hasattr(model, "get_submodule") # mypy not picking up fact that torch.nn.Module has get_submodule()
with torch.no_grad():
for module_key, weight in original_weights.items():
model.get_submodule(module_key).weight.copy_(weight)

View File

@@ -0,0 +1,157 @@
import bisect
from typing import TypeVar
def make_sdxl_unet_conversion_map() -> list[tuple[str, str]]:
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format.
Ported from:
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
"""
unet_conversion_map_layer: list[tuple[str, str]] = []
for i in range(3): # num_blocks is 3 in sdxl
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
# if i > 0: commentout for sdxl
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2*j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0.", "norm1."),
("in_layers.2.", "conv1."),
("out_layers.0.", "norm2."),
("out_layers.3.", "conv2."),
("emb_layers.1.", "time_emb_proj."),
("skip_connection.", "conv_shortcut."),
]
unet_conversion_map: list[tuple[str, str]] = []
for sd, hf in unet_conversion_map_layer:
if "resnets" in hf:
for sd_res, hf_res in unet_conversion_map_resnet:
unet_conversion_map.append((sd + sd_res, hf + hf_res))
else:
unet_conversion_map.append((sd, hf))
for j in range(2):
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
sd_time_embed_prefix = f"time_embed.{j*2}."
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
for j in range(2):
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
sd_label_embed_prefix = f"label_emb.0.{j*2}."
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
unet_conversion_map.append(("out.0.", "conv_norm_out."))
unet_conversion_map.append(("out.2.", "conv_out."))
return unet_conversion_map
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()
}
T = TypeVar("T")
def convert_sdxl_keys_to_diffusers_format(state_dict: dict[str, T]) -> dict[str, T]:
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
diffusers format, then this function will have no effect.
This function is adapted from:
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
Args:
state_dict (dict[str, Tensor]): The SDXL LoRA state_dict.
Raises:
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
Returns:
dict[str, Tensor]: The diffusers-format state_dict.
"""
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
not_converted_count = 0 # The number of keys that were not converted.
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
# `input_blocks_4_1_proj_in`.
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
stability_unet_keys.sort()
new_state_dict: dict[str, T] = {}
for full_key, value in state_dict.items():
if full_key.startswith("lora_unet_"):
search_key = full_key.replace("lora_unet_", "")
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
position = bisect.bisect_right(stability_unet_keys, search_key)
map_key = stability_unet_keys[position - 1]
# Now, check if the map_key *actually* matches the search_key.
if search_key.startswith(map_key):
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
new_state_dict[new_key] = value
converted_count += 1
else:
new_state_dict[full_key] = value
not_converted_count += 1
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
new_state_dict[full_key] = value
continue
else:
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
if converted_count > 0 and not_converted_count > 0:
raise ValueError(
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
f" not_converted={not_converted_count}"
)
return new_state_dict

View File

@@ -4,7 +4,7 @@ import torch
from diffusers.models.modeling_utils import ModelMixin
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.lora.lora_model import LoRAModelRaw
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
from invokeai.backend.textual_inversion import TextualInversionModelRaw

View File

@@ -6,7 +6,7 @@ from pathlib import Path
from typing import Optional
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.lora.lora_model import LoRAModelRaw
from invokeai.backend.model_manager import (
AnyModelConfig,
BaseModelType,

View File

@@ -17,7 +17,7 @@ def skip_torch_weight_init() -> Generator[None, None, None]:
completely unnecessary if the intent is to load checkpoint weights from disk for the layer. This context manager
monkey-patches common torch layers to skip the weight initialization step.
"""
torch_modules = [torch.nn.Linear, torch.nn.modules.conv._ConvNd, torch.nn.Embedding]
torch_modules = [torch.nn.Linear, torch.nn.modules.conv._ConvNd, torch.nn.Embedding, torch.nn.LayerNorm]
saved_functions = [hasattr(m, "reset_parameters") and m.reset_parameters for m in torch_modules]
try:

View File

@@ -13,157 +13,14 @@ from diffusers import OnnxRuntimeModel, UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.any_model_type import AnyModel
from invokeai.backend.lora.lora_model import LoRAModelRaw
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
from .lora import LoRAModelRaw
from .textual_inversion import TextualInversionManager, TextualInversionModelRaw
"""
loras = [
(lora_model1, 0.7),
(lora_model2, 0.4),
]
with LoRAHelper.apply_lora_unet(unet, loras):
# unet with applied loras
# unmodified unet
"""
# TODO: rename smth like ModelPatcher and add TI method?
class ModelPatcher:
@staticmethod
def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]:
assert "." not in lora_key
if not lora_key.startswith(prefix):
raise Exception(f"lora_key with invalid prefix: {lora_key}, {prefix}")
module = model
module_key = ""
key_parts = lora_key[len(prefix) :].split("_")
submodule_name = key_parts.pop(0)
while len(key_parts) > 0:
try:
module = module.get_submodule(submodule_name)
module_key += "." + submodule_name
submodule_name = key_parts.pop(0)
except Exception:
submodule_name += "_" + key_parts.pop(0)
module = module.get_submodule(submodule_name)
module_key = (module_key + "." + submodule_name).lstrip(".")
return (module_key, module)
@classmethod
@contextmanager
def apply_lora_unet(
cls,
unet: UNet2DConditionModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
) -> None:
with cls.apply_lora(unet, loras, "lora_unet_"):
yield
@classmethod
@contextmanager
def apply_lora_text_encoder(
cls,
text_encoder: CLIPTextModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
) -> None:
with cls.apply_lora(text_encoder, loras, "lora_te_"):
yield
@classmethod
@contextmanager
def apply_sdxl_lora_text_encoder(
cls,
text_encoder: CLIPTextModel,
loras: List[Tuple[LoRAModelRaw, float]],
) -> None:
with cls.apply_lora(text_encoder, loras, "lora_te1_"):
yield
@classmethod
@contextmanager
def apply_sdxl_lora_text_encoder2(
cls,
text_encoder: CLIPTextModel,
loras: List[Tuple[LoRAModelRaw, float]],
) -> None:
with cls.apply_lora(text_encoder, loras, "lora_te2_"):
yield
@classmethod
@contextmanager
def apply_lora(
cls,
model: AnyModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
prefix: str,
) -> None:
original_weights = {}
try:
with torch.no_grad():
for lora, lora_weight in loras:
# assert lora.device.type == "cpu"
for layer_key, layer in lora.layers.items():
if not layer_key.startswith(prefix):
continue
# TODO(ryand): A non-negligible amount of time is currently spent resolving LoRA keys. This
# should be improved in the following ways:
# 1. The key mapping could be more-efficiently pre-computed. This would save time every time a
# LoRA model is applied.
# 2. From an API perspective, there's no reason that the `ModelPatcher` should be aware of the
# intricacies of Stable Diffusion key resolution. It should just expect the input LoRA
# weights to have valid keys.
assert isinstance(model, torch.nn.Module)
module_key, module = cls._resolve_lora_key(model, layer_key, prefix)
# All of the LoRA weight calculations will be done on the same device as the module weight.
# (Performance will be best if this is a CUDA device.)
device = module.weight.device
dtype = module.weight.dtype
if module_key not in original_weights:
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
# We intentionally move to the target device first, then cast. Experimentally, this was found to
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
# same thing in a single call to '.to(...)'.
layer.to(device=device)
layer.to(dtype=torch.float32)
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
layer_weight = layer.get_weight(module.weight) * (lora_weight * layer_scale)
layer.to(device=torch.device("cpu"))
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
if module.weight.shape != layer_weight.shape:
# TODO: debug on lycoris
assert hasattr(layer_weight, "reshape")
layer_weight = layer_weight.reshape(module.weight.shape)
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
module.weight += layer_weight.to(dtype=dtype)
yield # wait for context manager exit
finally:
assert hasattr(model, "get_submodule") # mypy not picking up fact that torch.nn.Module has get_submodule()
with torch.no_grad():
for module_key, weight in original_weights.items():
model.get_submodule(module_key).weight.copy_(weight)
@classmethod
@contextmanager
def apply_ti(

View File

@@ -0,0 +1,37 @@
from pathlib import Path
from typing import Any, Optional, Union
import torch
from safetensors.torch import load_file
def state_dict_to(
state_dict: dict[str, torch.Tensor], device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None
) -> dict[str, torch.Tensor]:
new_state_dict: dict[str, torch.Tensor] = {}
for k, v in state_dict.items():
new_state_dict[k] = v.to(device=device, dtype=dtype, non_blocking=True)
return new_state_dict
def load_state_dict(file_path: Union[str, Path], device: str = "cpu") -> Any:
"""Load a state_dict from a file that may be in either PyTorch or safetensors format. The file format is inferred
from the file extension.
"""
file_path = Path(file_path)
if file_path.suffix == ".safetensors":
state_dict = load_file(
file_path,
device=device,
)
else:
# weights_only=True is used to address a security vulnerability that allows arbitrary code execution.
# This option was first introduced in https://github.com/pytorch/pytorch/pull/86812.
#
# mmap=True is used to both reduce memory usage and speed up loading. This setting causes torch.load() to more
# closely mirror the behaviour of safetensors.torch.load_file(). This option was first introduced in
# https://github.com/pytorch/pytorch/pull/102549. The discussion on that PR provides helpful context.
state_dict = torch.load(file_path, map_location=device, weights_only=True, mmap=True)
return state_dict

View File

@@ -5,8 +5,9 @@
import pytest
import torch
from invokeai.backend.lora import LoRALayer, LoRAModelRaw
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.lora.lora_layer import LoRALayer
from invokeai.backend.lora.lora_model import LoRAModelRaw
from invokeai.backend.lora.lora_model_patcher import LoraModelPatcher
@pytest.mark.parametrize(
@@ -44,7 +45,7 @@ def test_apply_lora(device):
orig_linear_weight = model["linear_layer_1"].weight.data.detach().clone()
expected_patched_linear_weight = orig_linear_weight + (lora_dim * lora_weight)
with ModelPatcher.apply_lora(model, [(lora, lora_weight)], prefix=""):
with LoraModelPatcher.apply_lora(model, [(lora, lora_weight)], prefix=""):
# After patching, all LoRA layer weights should have been moved back to the cpu.
assert lora_layers["linear_layer_1"].up.device.type == "cpu"
assert lora_layers["linear_layer_1"].down.device.type == "cpu"
@@ -86,7 +87,7 @@ def test_apply_lora_change_device():
orig_linear_weight = model["linear_layer_1"].weight.data.detach().clone()
with ModelPatcher.apply_lora(model, [(lora, 0.5)], prefix=""):
with LoraModelPatcher.apply_lora(model, [(lora, 0.5)], prefix=""):
# After patching, all LoRA layer weights should have been moved back to the cpu.
assert lora_layers["linear_layer_1"].up.device.type == "cpu"
assert lora_layers["linear_layer_1"].down.device.type == "cpu"