mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-16 08:28:11 -05:00
Compare commits
5 Commits
ryan/dora
...
ryan/peft-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
bfd5cdb311 | ||
|
|
24950dea8c | ||
|
|
8260252aeb | ||
|
|
74fe74721a | ||
|
|
3e1af51737 |
@@ -17,7 +17,7 @@ def skip_torch_weight_init() -> Generator[None, None, None]:
|
||||
completely unnecessary if the intent is to load checkpoint weights from disk for the layer. This context manager
|
||||
monkey-patches common torch layers to skip the weight initialization step.
|
||||
"""
|
||||
torch_modules = [torch.nn.Linear, torch.nn.modules.conv._ConvNd, torch.nn.Embedding]
|
||||
torch_modules = [torch.nn.Linear, torch.nn.modules.conv._ConvNd, torch.nn.Embedding, torch.nn.LayerNorm]
|
||||
saved_functions = [hasattr(m, "reset_parameters") and m.reset_parameters for m in torch_modules]
|
||||
|
||||
try:
|
||||
|
||||
50
invokeai/backend/peft/peft_model.py
Normal file
50
invokeai/backend/peft/peft_model.py
Normal file
@@ -0,0 +1,50 @@
|
||||
from pathlib import Path
|
||||
from typing import Optional, Union
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.model_manager.config import BaseModelType
|
||||
from invokeai.backend.peft.sdxl_format_utils import convert_sdxl_keys_to_diffusers_format
|
||||
from invokeai.backend.util.serialization import load_state_dict
|
||||
|
||||
|
||||
class PeftModel:
|
||||
"""A class for loading and managing parameter-efficient fine-tuning models."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
name: str,
|
||||
state_dict: dict[str, torch.Tensor],
|
||||
network_alphas: dict[str, torch.Tensor],
|
||||
):
|
||||
self.name = name
|
||||
self.state_dict = state_dict
|
||||
self.network_alphas = network_alphas
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = 0
|
||||
for tensor in self.state_dict.values():
|
||||
model_size += tensor.nelement() * tensor.element_size()
|
||||
return model_size
|
||||
|
||||
@classmethod
|
||||
def from_checkpoint(
|
||||
cls,
|
||||
file_path: Union[str, Path],
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
base_model: Optional[BaseModelType] = None,
|
||||
):
|
||||
device = device or torch.device("cpu")
|
||||
dtype = dtype or torch.float32
|
||||
|
||||
file_path = Path(file_path)
|
||||
|
||||
state_dict = load_state_dict(file_path, device=str(device))
|
||||
if base_model == BaseModelType.StableDiffusionXL:
|
||||
state_dict = convert_sdxl_keys_to_diffusers_format(state_dict)
|
||||
|
||||
# TODO(ryand): We shouldn't be using an unexported function from diffusers here. Consider opening an upstream PR
|
||||
# to move this function to state_dict_utils.py.
|
||||
# state_dict, network_alphas = _convert_kohya_lora_to_diffusers(state_dict)
|
||||
return cls(name=file_path.stem, state_dict=state_dict, network_alphas=network_alphas)
|
||||
155
invokeai/backend/peft/sdxl_format_utils.py
Normal file
155
invokeai/backend/peft/sdxl_format_utils.py
Normal file
@@ -0,0 +1,155 @@
|
||||
import bisect
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def make_sdxl_unet_conversion_map() -> list[tuple[str, str]]:
|
||||
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format.
|
||||
|
||||
Ported from:
|
||||
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
|
||||
"""
|
||||
unet_conversion_map_layer: list[tuple[str, str]] = []
|
||||
|
||||
for i in range(3): # num_blocks is 3 in sdxl
|
||||
# loop over downblocks/upblocks
|
||||
for j in range(2):
|
||||
# loop over resnets/attentions for downblocks
|
||||
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
||||
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
||||
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no attention layers in down_blocks.3
|
||||
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
||||
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
||||
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
||||
|
||||
for j in range(3):
|
||||
# loop over resnets/attentions for upblocks
|
||||
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
||||
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
||||
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
||||
|
||||
# if i > 0: commentout for sdxl
|
||||
# no attention layers in up_blocks.0
|
||||
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
||||
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
||||
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no downsample in down_blocks.3
|
||||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
||||
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
||||
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
||||
|
||||
# no upsample in up_blocks.3
|
||||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||||
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
|
||||
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
||||
|
||||
hf_mid_atn_prefix = "mid_block.attentions.0."
|
||||
sd_mid_atn_prefix = "middle_block.1."
|
||||
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
||||
|
||||
for j in range(2):
|
||||
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
||||
sd_mid_res_prefix = f"middle_block.{2*j}."
|
||||
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||||
|
||||
unet_conversion_map_resnet = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("in_layers.0.", "norm1."),
|
||||
("in_layers.2.", "conv1."),
|
||||
("out_layers.0.", "norm2."),
|
||||
("out_layers.3.", "conv2."),
|
||||
("emb_layers.1.", "time_emb_proj."),
|
||||
("skip_connection.", "conv_shortcut."),
|
||||
]
|
||||
|
||||
unet_conversion_map: list[tuple[str, str]] = []
|
||||
for sd, hf in unet_conversion_map_layer:
|
||||
if "resnets" in hf:
|
||||
for sd_res, hf_res in unet_conversion_map_resnet:
|
||||
unet_conversion_map.append((sd + sd_res, hf + hf_res))
|
||||
else:
|
||||
unet_conversion_map.append((sd, hf))
|
||||
|
||||
for j in range(2):
|
||||
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
|
||||
sd_time_embed_prefix = f"time_embed.{j*2}."
|
||||
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
|
||||
|
||||
for j in range(2):
|
||||
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
|
||||
sd_label_embed_prefix = f"label_emb.0.{j*2}."
|
||||
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
|
||||
|
||||
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
|
||||
unet_conversion_map.append(("out.0.", "conv_norm_out."))
|
||||
unet_conversion_map.append(("out.2.", "conv_out."))
|
||||
|
||||
return unet_conversion_map
|
||||
|
||||
|
||||
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
|
||||
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()
|
||||
}
|
||||
|
||||
|
||||
def convert_sdxl_keys_to_diffusers_format(state_dict: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
|
||||
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
|
||||
|
||||
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
|
||||
diffusers format, then this function will have no effect.
|
||||
|
||||
This function is adapted from:
|
||||
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
|
||||
|
||||
Args:
|
||||
state_dict (Dict[str, Tensor]): The SDXL LoRA state_dict.
|
||||
|
||||
Raises:
|
||||
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
|
||||
|
||||
Returns:
|
||||
Dict[str, Tensor]: The diffusers-format state_dict.
|
||||
"""
|
||||
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
|
||||
not_converted_count = 0 # The number of keys that were not converted.
|
||||
|
||||
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
|
||||
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
|
||||
# `input_blocks_4_1_proj_in`.
|
||||
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
|
||||
stability_unet_keys.sort()
|
||||
|
||||
new_state_dict: dict[str, torch.Tensor] = {}
|
||||
for full_key, value in state_dict.items():
|
||||
if full_key.startswith("lora_unet_"):
|
||||
search_key = full_key.replace("lora_unet_", "")
|
||||
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
|
||||
position = bisect.bisect_right(stability_unet_keys, search_key)
|
||||
map_key = stability_unet_keys[position - 1]
|
||||
# Now, check if the map_key *actually* matches the search_key.
|
||||
if search_key.startswith(map_key):
|
||||
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
|
||||
new_state_dict[new_key] = value
|
||||
converted_count += 1
|
||||
else:
|
||||
new_state_dict[full_key] = value
|
||||
not_converted_count += 1
|
||||
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
|
||||
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
|
||||
new_state_dict[full_key] = value
|
||||
continue
|
||||
else:
|
||||
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
|
||||
|
||||
if converted_count > 0 and not_converted_count > 0:
|
||||
raise ValueError(
|
||||
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
|
||||
f" not_converted={not_converted_count}"
|
||||
)
|
||||
|
||||
return new_state_dict
|
||||
37
invokeai/backend/util/serialization.py
Normal file
37
invokeai/backend/util/serialization.py
Normal file
@@ -0,0 +1,37 @@
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
|
||||
|
||||
def state_dict_to(
|
||||
state_dict: dict[str, torch.Tensor], device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None
|
||||
) -> dict[str, torch.Tensor]:
|
||||
new_state_dict: dict[str, torch.Tensor] = {}
|
||||
for k, v in state_dict.items():
|
||||
new_state_dict[k] = v.to(device=device, dtype=dtype, non_blocking=True)
|
||||
return new_state_dict
|
||||
|
||||
|
||||
def load_state_dict(file_path: Union[str, Path], device: str = "cpu") -> Any:
|
||||
"""Load a state_dict from a file that may be in either PyTorch or safetensors format. The file format is inferred
|
||||
from the file extension.
|
||||
"""
|
||||
file_path = Path(file_path)
|
||||
|
||||
if file_path.suffix == ".safetensors":
|
||||
state_dict = load_file(
|
||||
file_path,
|
||||
device=device,
|
||||
)
|
||||
else:
|
||||
# weights_only=True is used to address a security vulnerability that allows arbitrary code execution.
|
||||
# This option was first introduced in https://github.com/pytorch/pytorch/pull/86812.
|
||||
#
|
||||
# mmap=True is used to both reduce memory usage and speed up loading. This setting causes torch.load() to more
|
||||
# closely mirror the behaviour of safetensors.torch.load_file(). This option was first introduced in
|
||||
# https://github.com/pytorch/pytorch/pull/102549. The discussion on that PR provides helpful context.
|
||||
state_dict = torch.load(file_path, map_location=device, weights_only=True, mmap=True)
|
||||
|
||||
return state_dict
|
||||
Reference in New Issue
Block a user