Compare commits

...

35 Commits

Author SHA1 Message Date
Hosted Weblate
2c45697f3d translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-04-06 15:19:20 +11:00
psychedelicious
9a0a90e2a2 chore: v4.0.4 2024-04-06 15:15:16 +11:00
psychedelicious
69f17da1a2 fix(nodes): add WithBoard to public API 2024-04-06 15:02:28 +11:00
psychedelicious
4d0a49298c tidy(ui): remove extraneous zod schema 2024-04-06 14:54:12 +11:00
psychedelicious
55f7a7737a feat(ui): shift around init image recall logic
Retrieving the DTO happens as part of the metadata parsing, not recall. This way, we don't show the option to recall a nonexistent image.

This matches the flow for other metadata entities like models - we don't show the model recall button if the model isn't available.
2024-04-06 14:54:12 +11:00
Jennifer Player
adc30045a6 addressed pr feedback 2024-04-06 14:54:12 +11:00
Jennifer Player
fdd0e57976 actually use the schema 2024-04-06 14:54:12 +11:00
Jennifer Player
9ba5ec4b67 fix typo Params set set 2024-04-06 14:54:12 +11:00
Jennifer Player
8a17616bf4 recall initial image from metadata and set to image2image 2024-04-06 14:54:12 +11:00
Jennifer Player
f56b9537cd added initial image to metadata viewer 2024-04-06 14:54:12 +11:00
psychedelicious
a95756f3ed docs: update FAQ.md (shared GPU memory) 2024-04-06 14:35:36 +11:00
psychedelicious
4068e817d6 fix(mm): typing issues in model cache 2024-04-06 14:35:36 +11:00
psychedelicious
a09d705e4c fix(mm): remove vram check
This check prematurely reports insufficient VRAM on Windows. See #6106 for details.
2024-04-06 14:35:36 +11:00
blessedcoolant
540d506ec9 fix: Incorrect default clip vision opt in the node 2024-04-05 15:06:33 -04:00
psychedelicious
e330966020 chore: v4.0.3 2024-04-05 15:32:30 +11:00
symant233
b783679b9f fix: typo, change shouldFitImageSize default value 2024-04-05 15:23:58 +11:00
symant233
d32e557e50 fix: add roundDownToMultiple 2024-04-05 15:23:58 +11:00
symant233
90686c7f9c feat: Unified Canvas Fit Image Size on Drop 2024-04-05 15:23:58 +11:00
Lincoln Stein
4571986c63 fix misplaced lock call 2024-04-05 14:32:18 +11:00
Jennifer Player
fec989f015 navigate to workflow tab when clicking load workflow 2024-04-05 14:16:33 +11:00
Riccardo Giovanetti
b5c048d8bf translationBot(ui): update translation (Italian)
Currently translated at 98.4% (1108 of 1126 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-04-05 13:53:42 +11:00
Alexander Eichhorn
577469be55 translationBot(ui): update translation (German)
Currently translated at 73.3% (826 of 1126 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-04-05 13:53:42 +11:00
Lincoln Stein
812f10730f adjust free vram calculation for models that will be removed by lazy offloading (#6150)
Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-04-04 22:51:12 -04:00
psychedelicious
3006285d13 fix(ui): display refiner models in mm 2024-04-05 09:46:03 +11:00
psychedelicious
5d4a571778 feat(ui): disable mosaic infill in graph builders 2024-04-05 08:49:13 +11:00
psychedelicious
90bdd74f30 chore(ui): typegen 2024-04-05 08:49:13 +11:00
psychedelicious
d6ccd5bc81 feat(nodes): disable mosaic fill
Needs a bit of tweaking, leaving the code in just disabled/commented it out.
2024-04-05 08:49:13 +11:00
psychedelicious
f0b1bb0327 feat(nodes): redo tile infill
The previous algorithm errored if the image wasn't divisible by the tile size. I've reimplemented it from scratch to mitigate this issue.

The new algorithm is simpler. We create a pool of tiles, then use them to create an image composed completely of tiles. If there is any awkwardly sized space on the edge of the image, the tiles are cropped to fit.

Finally, paste the original image over the tile image.

I've added a jupyter notebook to do a smoke test of infilling methods, and 10 test images.

The other infill algorithms can be easily tested with the notebook on the same images, though I didn't set that up yet.

Tested and confirmed this gives results just as good as the earlier infill, though of course they aren't the same due to the change in the algorithm.
2024-04-05 08:49:13 +11:00
psychedelicious
b061db414f tidy(nodes): abstractmethod is noop 2024-04-05 08:49:13 +11:00
blessedcoolant
e55ab5b3a1 ui: Color Infill UI 2024-04-05 08:49:13 +11:00
blessedcoolant
adb7966bb3 ui: intial mosaic infill ui
Need to change color picking.
2024-04-05 08:49:13 +11:00
blessedcoolant
3c195d74a5 fix: bypass edge pixels which cannot transform to tile size
Still need to fix this somehow
2024-04-05 08:49:13 +11:00
blessedcoolant
32a6b758cd wip: Initial Infill Methods Refactor 2024-04-05 08:49:13 +11:00
Jonathan
3659219f46 Fix IdealSizeInvocation (#6145) 2024-04-05 08:38:40 +11:00
blessedcoolant
d284e0567a fix: ip adapter clip selection being broken 2024-04-05 07:49:04 +11:00
62 changed files with 911 additions and 303 deletions

View File

@@ -40,6 +40,25 @@ Follow the same steps to scan and import the missing models.
- Check the `ram` setting in `invokeai.yaml`. This setting tells Invoke how much of your system RAM can be used to cache models. Having this too high or too low can slow things down. That said, it's generally safest to not set this at all and instead let Invoke manage it.
- Check the `vram` setting in `invokeai.yaml`. This setting tells Invoke how much of your GPU VRAM can be used to cache models. Counter-intuitively, if this setting is too high, Invoke will need to do a lot of shuffling of models as it juggles the VRAM cache and the currently-loaded model. The default value of 0.25 is generally works well for GPUs without 16GB or more VRAM. Even on a 24GB card, the default works well.
- Check that your generations are happening on your GPU (if you have one). InvokeAI will log what is being used for generation upon startup. If your GPU isn't used, re-install to ensure the correct versions of torch get installed.
- If you are on Windows, you may have exceeded your GPU's VRAM capacity and are using slower [shared GPU memory](#shared-gpu-memory-windows). There's a guide to opt out of this behaviour in the linked FAQ entry.
## Shared GPU Memory (Windows)
!!! tip "Nvidia GPUs with driver 536.40"
This only applies to current Nvidia cards with driver 536.40 or later, released in June 2023.
When the GPU doesn't have enough VRAM for a task, Windows is able to allocate some of its CPU RAM to the GPU. This is much slower than VRAM, but it does allow the system to generate when it otherwise might no have enough VRAM.
When shared GPU memory is used, generation slows down dramatically - but at least it doesn't crash.
If you'd like to opt out of this behavior and instead get an error when you exceed your GPU's VRAM, follow [this guide from Nvidia](https://nvidia.custhelp.com/app/answers/detail/a_id/5490).
Here's how to get the python path required in the linked guide:
- Run `invoke.bat`.
- Select option 2 for developer console.
- At least one python path will be printed. Copy the path that includes your invoke installation directory (typically the first).
## Installer cannot find python (Windows)

View File

@@ -12,7 +12,7 @@ from pydantic import BaseModel, Field
from invokeai.app.invocations.upscale import ESRGAN_MODELS
from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus
from invokeai.backend.image_util.patchmatch import PatchMatch
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch
from invokeai.backend.image_util.safety_checker import SafetyChecker
from invokeai.backend.util.logging import logging
from invokeai.version import __version__
@@ -100,7 +100,7 @@ async def get_app_deps() -> AppDependencyVersions:
@app_router.get("/config", operation_id="get_config", status_code=200, response_model=AppConfig)
async def get_config() -> AppConfig:
infill_methods = ["tile", "lama", "cv2"]
infill_methods = ["tile", "lama", "cv2", "color"] # TODO: add mosaic back
if PatchMatch.patchmatch_available():
infill_methods.append("patchmatch")

View File

@@ -1,154 +1,91 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from abc import abstractmethod
from typing import Literal, get_args
import math
from typing import Literal, Optional, get_args
import numpy as np
from PIL import Image, ImageOps
from PIL import Image
from invokeai.app.invocations.fields import ColorField, ImageField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.app.util.misc import SEED_MAX
from invokeai.backend.image_util.cv2_inpaint import cv2_inpaint
from invokeai.backend.image_util.lama import LaMA
from invokeai.backend.image_util.patchmatch import PatchMatch
from invokeai.backend.image_util.infill_methods.cv2_inpaint import cv2_inpaint
from invokeai.backend.image_util.infill_methods.lama import LaMA
from invokeai.backend.image_util.infill_methods.mosaic import infill_mosaic
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch, infill_patchmatch
from invokeai.backend.image_util.infill_methods.tile import infill_tile
from invokeai.backend.util.logging import InvokeAILogger
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, WithBoard, WithMetadata
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
logger = InvokeAILogger.get_logger()
def infill_methods() -> list[str]:
methods = ["tile", "solid", "lama", "cv2"]
def get_infill_methods():
methods = Literal["tile", "color", "lama", "cv2"] # TODO: add mosaic back
if PatchMatch.patchmatch_available():
methods.insert(0, "patchmatch")
methods = Literal["patchmatch", "tile", "color", "lama", "cv2"] # TODO: add mosaic back
return methods
INFILL_METHODS = Literal[tuple(infill_methods())]
INFILL_METHODS = get_infill_methods()
DEFAULT_INFILL_METHOD = "patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
def infill_lama(im: Image.Image) -> Image.Image:
lama = LaMA()
return lama(im)
class InfillImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Base class for invocations that preprocess images for Infilling"""
image: ImageField = InputField(description="The image to process")
def infill_patchmatch(im: Image.Image) -> Image.Image:
if im.mode != "RGBA":
return im
@abstractmethod
def infill(self, image: Image.Image) -> Image.Image:
"""Infill the image with the specified method"""
pass
# Skip patchmatch if patchmatch isn't available
if not PatchMatch.patchmatch_available():
return im
def load_image(self, context: InvocationContext) -> tuple[Image.Image, bool]:
"""Process the image to have an alpha channel before being infilled"""
image = context.images.get_pil(self.image.image_name)
has_alpha = True if image.mode == "RGBA" else False
return image, has_alpha
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though)
im_patched_np = PatchMatch.inpaint(im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3)
im_patched = Image.fromarray(im_patched_np, mode="RGB")
return im_patched
def invoke(self, context: InvocationContext) -> ImageOutput:
# Retrieve and process image to be infilled
input_image, has_alpha = self.load_image(context)
# If the input image has no alpha channel, return it
if has_alpha is False:
return ImageOutput.build(context.images.get_dto(self.image.image_name))
def infill_cv2(im: Image.Image) -> Image.Image:
return cv2_inpaint(im)
# Perform Infill action
infilled_image = self.infill(input_image)
# Create ImageDTO for Infilled Image
infilled_image_dto = context.images.save(image=infilled_image)
def get_tile_images(image: np.ndarray, width=8, height=8):
_nrows, _ncols, depth = image.shape
_strides = image.strides
nrows, _m = divmod(_nrows, height)
ncols, _n = divmod(_ncols, width)
if _m != 0 or _n != 0:
return None
return np.lib.stride_tricks.as_strided(
np.ravel(image),
shape=(nrows, ncols, height, width, depth),
strides=(height * _strides[0], width * _strides[1], *_strides),
writeable=False,
)
def tile_fill_missing(im: Image.Image, tile_size: int = 16, seed: Optional[int] = None) -> Image.Image:
# Only fill if there's an alpha layer
if im.mode != "RGBA":
return im
a = np.asarray(im, dtype=np.uint8)
tile_size_tuple = (tile_size, tile_size)
# Get the image as tiles of a specified size
tiles = get_tile_images(a, *tile_size_tuple).copy()
# Get the mask as tiles
tiles_mask = tiles[:, :, :, :, 3]
# Find any mask tiles with any fully transparent pixels (we will be replacing these later)
tmask_shape = tiles_mask.shape
tiles_mask = tiles_mask.reshape(math.prod(tiles_mask.shape))
n, ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:])
tiles_mask = tiles_mask > 0
tiles_mask = tiles_mask.reshape((n, ny)).all(axis=1)
# Get RGB tiles in single array and filter by the mask
tshape = tiles.shape
tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), *tiles.shape[2:]))
filtered_tiles = tiles_all[tiles_mask]
if len(filtered_tiles) == 0:
return im
# Find all invalid tiles and replace with a random valid tile
replace_count = (tiles_mask == False).sum() # noqa: E712
rng = np.random.default_rng(seed=seed)
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[rng.choice(filtered_tiles.shape[0], replace_count), :, :, :]
# Convert back to an image
tiles_all = tiles_all.reshape(tshape)
tiles_all = tiles_all.swapaxes(1, 2)
st = tiles_all.reshape(
(
math.prod(tiles_all.shape[0:2]),
math.prod(tiles_all.shape[2:4]),
tiles_all.shape[4],
)
)
si = Image.fromarray(st, mode="RGBA")
return si
# Return Infilled Image
return ImageOutput.build(infilled_image_dto)
@invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2")
class InfillColorInvocation(BaseInvocation, WithMetadata, WithBoard):
class InfillColorInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image with a solid color"""
image: ImageField = InputField(description="The image to infill")
color: ColorField = InputField(
default=ColorField(r=127, g=127, b=127, a=255),
description="The color to use to infill",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name)
def infill(self, image: Image.Image):
solid_bg = Image.new("RGBA", image.size, self.color.tuple())
infilled = Image.alpha_composite(solid_bg, image.convert("RGBA"))
infilled.paste(image, (0, 0), image.split()[-1])
image_dto = context.images.save(image=infilled)
return ImageOutput.build(image_dto)
return infilled
@invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.3")
class InfillTileInvocation(BaseInvocation, WithMetadata, WithBoard):
class InfillTileInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image with tiles of the image"""
image: ImageField = InputField(description="The image to infill")
tile_size: int = InputField(default=32, ge=1, description="The tile size (px)")
seed: int = InputField(
default=0,
@@ -157,92 +94,74 @@ class InfillTileInvocation(BaseInvocation, WithMetadata, WithBoard):
description="The seed to use for tile generation (omit for random)",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name)
infilled = tile_fill_missing(image.copy(), seed=self.seed, tile_size=self.tile_size)
infilled.paste(image, (0, 0), image.split()[-1])
image_dto = context.images.save(image=infilled)
return ImageOutput.build(image_dto)
def infill(self, image: Image.Image):
output = infill_tile(image, seed=self.seed, tile_size=self.tile_size)
return output.infilled
@invocation(
"infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2"
)
class InfillPatchMatchInvocation(BaseInvocation, WithMetadata, WithBoard):
class InfillPatchMatchInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image using the PatchMatch algorithm"""
image: ImageField = InputField(description="The image to infill")
downscale: float = InputField(default=2.0, gt=0, description="Run patchmatch on downscaled image to speedup infill")
resample_mode: PIL_RESAMPLING_MODES = InputField(default="bicubic", description="The resampling mode")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name).convert("RGBA")
def infill(self, image: Image.Image):
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
infill_image = image.copy()
width = int(image.width / self.downscale)
height = int(image.height / self.downscale)
infill_image = infill_image.resize(
infilled = image.resize(
(width, height),
resample=resample_mode,
)
if PatchMatch.patchmatch_available():
infilled = infill_patchmatch(infill_image)
else:
raise ValueError("PatchMatch is not available on this system")
infilled = infill_patchmatch(image)
infilled = infilled.resize(
(image.width, image.height),
resample=resample_mode,
)
infilled.paste(image, (0, 0), mask=image.split()[-1])
# image.paste(infilled, (0, 0), mask=image.split()[-1])
image_dto = context.images.save(image=infilled)
return ImageOutput.build(image_dto)
return infilled
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2")
class LaMaInfillInvocation(BaseInvocation, WithMetadata, WithBoard):
class LaMaInfillInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image using the LaMa model"""
image: ImageField = InputField(description="The image to infill")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name)
# Downloads the LaMa model if it doesn't already exist
download_with_progress_bar(
name="LaMa Inpainting Model",
url="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
dest_path=context.config.get().models_path / "core/misc/lama/lama.pt",
)
infilled = infill_lama(image.copy())
image_dto = context.images.save(image=infilled)
return ImageOutput.build(image_dto)
def infill(self, image: Image.Image):
lama = LaMA()
return lama(image)
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2")
class CV2InfillInvocation(BaseInvocation, WithMetadata, WithBoard):
class CV2InfillInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image using OpenCV Inpainting"""
def infill(self, image: Image.Image):
return cv2_inpaint(image)
# @invocation(
# "infill_mosaic", title="Mosaic Infill", tags=["image", "inpaint", "outpaint"], category="inpaint", version="1.0.0"
# )
class MosaicInfillInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image with a mosaic pattern drawing colors from the rest of the image"""
image: ImageField = InputField(description="The image to infill")
tile_width: int = InputField(default=64, description="Width of the tile")
tile_height: int = InputField(default=64, description="Height of the tile")
min_color: ColorField = InputField(
default=ColorField(r=0, g=0, b=0, a=255),
description="The min threshold for color",
)
max_color: ColorField = InputField(
default=ColorField(r=255, g=255, b=255, a=255),
description="The max threshold for color",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name)
infilled = infill_cv2(image.copy())
image_dto = context.images.save(image=infilled)
return ImageOutput.build(image_dto)
def infill(self, image: Image.Image):
return infill_mosaic(image, (self.tile_width, self.tile_height), self.min_color.tuple(), self.max_color.tuple())

View File

@@ -65,9 +65,9 @@ class IPAdapterInvocation(BaseInvocation):
ui_order=-1,
ui_type=UIType.IPAdapterModel,
)
clip_vision_model: Literal["auto", "ViT-H", "ViT-G"] = InputField(
clip_vision_model: Literal["ViT-H", "ViT-G"] = InputField(
description="CLIP Vision model to use. Overrides model settings. Mandatory for checkpoint models.",
default="auto",
default="ViT-H",
ui_order=2,
)
weight: Union[float, List[float]] = InputField(
@@ -96,14 +96,9 @@ class IPAdapterInvocation(BaseInvocation):
ip_adapter_info = context.models.get_config(self.ip_adapter_model.key)
assert isinstance(ip_adapter_info, (IPAdapterInvokeAIConfig, IPAdapterCheckpointConfig))
if self.clip_vision_model == "auto":
if isinstance(ip_adapter_info, IPAdapterInvokeAIConfig):
image_encoder_model_id = ip_adapter_info.image_encoder_model_id
image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip()
else:
raise RuntimeError(
"You need to set the appropriate CLIP Vision model for checkpoint IP Adapter models."
)
if isinstance(ip_adapter_info, IPAdapterInvokeAIConfig):
image_encoder_model_id = ip_adapter_info.image_encoder_model_id
image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip()
else:
image_encoder_model_name = CLIP_VISION_MODEL_MAP[self.clip_vision_model]

View File

@@ -1254,7 +1254,7 @@ class IdealSizeInvocation(BaseInvocation):
return tuple((x - x % multiple_of) for x in args)
def invoke(self, context: InvocationContext) -> IdealSizeOutput:
unet_config = context.models.get_config(**self.unet.unet.model_dump())
unet_config = context.models.get_config(self.unet.unet.key)
aspect = self.width / self.height
dimension: float = 512
if unet_config.base == BaseModelType.StableDiffusion2:

View File

@@ -80,6 +80,7 @@ class ModelManagerService(ModelManagerServiceBase):
ram_cache = ModelCache(
max_cache_size=app_config.ram,
max_vram_cache_size=app_config.vram,
lazy_offloading=app_config.lazy_offload,
logger=logger,
execution_device=execution_device,
)

View File

@@ -2,7 +2,7 @@
Initialization file for invokeai.backend.image_util methods.
"""
from .patchmatch import PatchMatch # noqa: F401
from .infill_methods.patchmatch import PatchMatch # noqa: F401
from .pngwriter import PngWriter, PromptFormatter, retrieve_metadata, write_metadata # noqa: F401
from .seamless import configure_model_padding # noqa: F401
from .util import InitImageResizer, make_grid # noqa: F401

View File

@@ -7,6 +7,7 @@ from PIL import Image
import invokeai.backend.util.logging as logger
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.util.devices import choose_torch_device
@@ -30,6 +31,14 @@ class LaMA:
def __call__(self, input_image: Image.Image, *args: Any, **kwds: Any) -> Any:
device = choose_torch_device()
model_location = get_config().models_path / "core/misc/lama/lama.pt"
if not model_location.exists():
download_with_progress_bar(
name="LaMa Inpainting Model",
url="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
dest_path=model_location,
)
model = load_jit_model(model_location, device)
image = np.asarray(input_image.convert("RGB"))

View File

@@ -0,0 +1,60 @@
from typing import Tuple
import numpy as np
from PIL import Image
def infill_mosaic(
image: Image.Image,
tile_shape: Tuple[int, int] = (64, 64),
min_color: Tuple[int, int, int, int] = (0, 0, 0, 0),
max_color: Tuple[int, int, int, int] = (255, 255, 255, 0),
) -> Image.Image:
"""
image:PIL - A PIL Image
tile_shape: Tuple[int,int] - Tile width & Tile Height
min_color: Tuple[int,int,int] - RGB values for the lowest color to clip to (0-255)
max_color: Tuple[int,int,int] - RGB values for the highest color to clip to (0-255)
"""
np_image = np.array(image) # Convert image to np array
alpha = np_image[:, :, 3] # Get the mask from the alpha channel of the image
non_transparent_pixels = np_image[alpha != 0, :3] # List of non-transparent pixels
# Create color tiles to paste in the empty areas of the image
tile_width, tile_height = tile_shape
# Clip the range of colors in the image to a particular spectrum only
r_min, g_min, b_min, _ = min_color
r_max, g_max, b_max, _ = max_color
non_transparent_pixels[:, 0] = np.clip(non_transparent_pixels[:, 0], r_min, r_max)
non_transparent_pixels[:, 1] = np.clip(non_transparent_pixels[:, 1], g_min, g_max)
non_transparent_pixels[:, 2] = np.clip(non_transparent_pixels[:, 2], b_min, b_max)
tiles = []
for _ in range(256):
color = non_transparent_pixels[np.random.randint(len(non_transparent_pixels))]
tile = np.zeros((tile_height, tile_width, 3), dtype=np.uint8)
tile[:, :] = color
tiles.append(tile)
# Fill the transparent area with tiles
filled_image = np.zeros((image.height, image.width, 3), dtype=np.uint8)
for x in range(image.width):
for y in range(image.height):
tile = tiles[np.random.randint(len(tiles))]
try:
filled_image[
y - (y % tile_height) : y - (y % tile_height) + tile_height,
x - (x % tile_width) : x - (x % tile_width) + tile_width,
] = tile
except ValueError:
# Need to handle edge cases - literally
pass
filled_image = Image.fromarray(filled_image) # Convert the filled tiles image to PIL
image = Image.composite(
image, filled_image, image.split()[-1]
) # Composite the original image on top of the filled tiles
return image

View File

@@ -0,0 +1,67 @@
"""
This module defines a singleton object, "patchmatch" that
wraps the actual patchmatch object. It respects the global
"try_patchmatch" attribute, so that patchmatch loading can
be suppressed or deferred
"""
import numpy as np
from PIL import Image
import invokeai.backend.util.logging as logger
from invokeai.app.services.config.config_default import get_config
class PatchMatch:
"""
Thin class wrapper around the patchmatch function.
"""
patch_match = None
tried_load: bool = False
def __init__(self):
super().__init__()
@classmethod
def _load_patch_match(cls):
if cls.tried_load:
return
if get_config().patchmatch:
from patchmatch import patch_match as pm
if pm.patchmatch_available:
logger.info("Patchmatch initialized")
cls.patch_match = pm
else:
logger.info("Patchmatch not loaded (nonfatal)")
else:
logger.info("Patchmatch loading disabled")
cls.tried_load = True
@classmethod
def patchmatch_available(cls) -> bool:
cls._load_patch_match()
if not cls.patch_match:
return False
return cls.patch_match.patchmatch_available
@classmethod
def inpaint(cls, image: Image.Image) -> Image.Image:
if cls.patch_match is None or not cls.patchmatch_available():
return image
np_image = np.array(image)
mask = 255 - np_image[:, :, 3]
infilled = cls.patch_match.inpaint(np_image[:, :, :3], mask, patch_size=3)
return Image.fromarray(infilled, mode="RGB")
def infill_patchmatch(image: Image.Image) -> Image.Image:
IS_PATCHMATCH_AVAILABLE = PatchMatch.patchmatch_available()
if not IS_PATCHMATCH_AVAILABLE:
logger.warning("PatchMatch is not available on this system")
return image
return PatchMatch.inpaint(image)

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

View File

@@ -0,0 +1,95 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\"\"\"Smoke test for the tile infill\"\"\"\n",
"\n",
"from pathlib import Path\n",
"from typing import Optional\n",
"from PIL import Image\n",
"from invokeai.backend.image_util.infill_methods.tile import infill_tile\n",
"\n",
"images: list[tuple[str, Image.Image]] = []\n",
"\n",
"for i in sorted(Path(\"./test_images/\").glob(\"*.webp\")):\n",
" images.append((i.name, Image.open(i)))\n",
" images.append((i.name, Image.open(i).transpose(Image.FLIP_LEFT_RIGHT)))\n",
" images.append((i.name, Image.open(i).transpose(Image.FLIP_TOP_BOTTOM)))\n",
" images.append((i.name, Image.open(i).resize((512, 512))))\n",
" images.append((i.name, Image.open(i).resize((1234, 461))))\n",
"\n",
"outputs: list[tuple[str, Image.Image, Image.Image, Optional[Image.Image]]] = []\n",
"\n",
"for name, image in images:\n",
" try:\n",
" output = infill_tile(image, seed=0, tile_size=32)\n",
" outputs.append((name, image, output.infilled, output.tile_image))\n",
" except ValueError as e:\n",
" print(f\"Skipping image {name}: {e}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Display the images in jupyter notebook\n",
"import matplotlib.pyplot as plt\n",
"from PIL import ImageOps\n",
"\n",
"fig, axes = plt.subplots(len(outputs), 3, figsize=(10, 3 * len(outputs)))\n",
"plt.subplots_adjust(hspace=0)\n",
"\n",
"for i, (name, original, infilled, tile_image) in enumerate(outputs):\n",
" # Add a border to each image, helps to see the edges\n",
" size = original.size\n",
" original = ImageOps.expand(original, border=5, fill=\"red\")\n",
" filled = ImageOps.expand(infilled, border=5, fill=\"red\")\n",
" if tile_image:\n",
" tile_image = ImageOps.expand(tile_image, border=5, fill=\"red\")\n",
"\n",
" axes[i, 0].imshow(original)\n",
" axes[i, 0].axis(\"off\")\n",
" axes[i, 0].set_title(f\"Original ({name} - {size})\")\n",
"\n",
" if tile_image:\n",
" axes[i, 1].imshow(tile_image)\n",
" axes[i, 1].axis(\"off\")\n",
" axes[i, 1].set_title(\"Tile Image\")\n",
" else:\n",
" axes[i, 1].axis(\"off\")\n",
" axes[i, 1].set_title(\"NO TILES GENERATED (NO TRANSPARENCY)\")\n",
"\n",
" axes[i, 2].imshow(filled)\n",
" axes[i, 2].axis(\"off\")\n",
" axes[i, 2].set_title(\"Filled\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".invokeai",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,122 @@
from dataclasses import dataclass
from typing import Optional
import numpy as np
from PIL import Image
def create_tile_pool(img_array: np.ndarray, tile_size: tuple[int, int]) -> list[np.ndarray]:
"""
Create a pool of tiles from non-transparent areas of the image by systematically walking through the image.
Args:
img_array: numpy array of the image.
tile_size: tuple (tile_width, tile_height) specifying the size of each tile.
Returns:
A list of numpy arrays, each representing a tile.
"""
tiles: list[np.ndarray] = []
rows, cols = img_array.shape[:2]
tile_width, tile_height = tile_size
for y in range(0, rows - tile_height + 1, tile_height):
for x in range(0, cols - tile_width + 1, tile_width):
tile = img_array[y : y + tile_height, x : x + tile_width]
# Check if the image has an alpha channel and the tile is completely opaque
if img_array.shape[2] == 4 and np.all(tile[:, :, 3] == 255):
tiles.append(tile)
elif img_array.shape[2] == 3: # If no alpha channel, append the tile
tiles.append(tile)
if not tiles:
raise ValueError(
"Not enough opaque pixels to generate any tiles. Use a smaller tile size or a different image."
)
return tiles
def create_filled_image(
img_array: np.ndarray, tile_pool: list[np.ndarray], tile_size: tuple[int, int], seed: int
) -> np.ndarray:
"""
Create an image of the same dimensions as the original, filled entirely with tiles from the pool.
Args:
img_array: numpy array of the original image.
tile_pool: A list of numpy arrays, each representing a tile.
tile_size: tuple (tile_width, tile_height) specifying the size of each tile.
Returns:
A numpy array representing the filled image.
"""
rows, cols, _ = img_array.shape
tile_width, tile_height = tile_size
# Prep an empty RGB image
filled_img_array = np.zeros((rows, cols, 3), dtype=img_array.dtype)
# Make the random tile selection reproducible
rng = np.random.default_rng(seed)
for y in range(0, rows, tile_height):
for x in range(0, cols, tile_width):
# Pick a random tile from the pool
tile = tile_pool[rng.integers(len(tile_pool))]
# Calculate the space available (may be less than tile size near the edges)
space_y = min(tile_height, rows - y)
space_x = min(tile_width, cols - x)
# Crop the tile if necessary to fit into the available space
cropped_tile = tile[:space_y, :space_x, :3]
# Fill the available space with the (possibly cropped) tile
filled_img_array[y : y + space_y, x : x + space_x, :3] = cropped_tile
return filled_img_array
@dataclass
class InfillTileOutput:
infilled: Image.Image
tile_image: Optional[Image.Image] = None
def infill_tile(image_to_infill: Image.Image, seed: int, tile_size: int) -> InfillTileOutput:
"""Infills an image with random tiles from the image itself.
If the image is not an RGBA image, it is returned untouched.
Args:
image: The image to infill.
tile_size: The size of the tiles to use for infilling.
Raises:
ValueError: If there are not enough opaque pixels to generate any tiles.
"""
if image_to_infill.mode != "RGBA":
return InfillTileOutput(infilled=image_to_infill)
# Internally, we want a tuple of (tile_width, tile_height). In the future, the tile size can be any rectangle.
_tile_size = (tile_size, tile_size)
np_image = np.array(image_to_infill, dtype=np.uint8)
# Create the pool of tiles that we will use to infill
tile_pool = create_tile_pool(np_image, _tile_size)
# Create an image from the tiles, same size as the original
tile_np_image = create_filled_image(np_image, tile_pool, _tile_size, seed)
# Paste the OG image over the tile image, effectively infilling the area
tile_image = Image.fromarray(tile_np_image, "RGB")
infilled = tile_image.copy()
infilled.paste(image_to_infill, (0, 0), image_to_infill.split()[-1])
# I think we want this to be "RGBA"?
infilled.convert("RGBA")
return InfillTileOutput(infilled=infilled, tile_image=tile_image)

View File

@@ -1,49 +0,0 @@
"""
This module defines a singleton object, "patchmatch" that
wraps the actual patchmatch object. It respects the global
"try_patchmatch" attribute, so that patchmatch loading can
be suppressed or deferred
"""
import numpy as np
import invokeai.backend.util.logging as logger
from invokeai.app.services.config.config_default import get_config
class PatchMatch:
"""
Thin class wrapper around the patchmatch function.
"""
patch_match = None
tried_load: bool = False
def __init__(self):
super().__init__()
@classmethod
def _load_patch_match(self):
if self.tried_load:
return
if get_config().patchmatch:
from patchmatch import patch_match as pm
if pm.patchmatch_available:
logger.info("Patchmatch initialized")
else:
logger.info("Patchmatch not loaded (nonfatal)")
self.patch_match = pm
else:
logger.info("Patchmatch loading disabled")
self.tried_load = True
@classmethod
def patchmatch_available(self) -> bool:
self._load_patch_match()
return self.patch_match and self.patch_match.patchmatch_available
@classmethod
def inpaint(self, *args, **kwargs) -> np.ndarray:
if self.patchmatch_available():
return self.patch_match.inpaint(*args, **kwargs)

View File

@@ -117,7 +117,7 @@ class ModelCacheBase(ABC, Generic[T]):
@property
@abstractmethod
def stats(self) -> CacheStats:
def stats(self) -> Optional[CacheStats]:
"""Return collected CacheStats object."""
pass

View File

@@ -269,9 +269,6 @@ class ModelCache(ModelCacheBase[AnyModel]):
if torch.device(source_device).type == torch.device(target_device).type:
return
# may raise an exception here if insufficient GPU VRAM
self._check_free_vram(target_device, cache_entry.size)
start_model_to_time = time.time()
snapshot_before = self._capture_memory_snapshot()
cache_entry.model.to(target_device)
@@ -329,11 +326,11 @@ class ModelCache(ModelCacheBase[AnyModel]):
f" {in_ram_models}/{in_vram_models}({locked_in_vram_models})"
)
def make_room(self, model_size: int) -> None:
def make_room(self, size: int) -> None:
"""Make enough room in the cache to accommodate a new model of indicated size."""
# calculate how much memory this model will require
# multiplier = 2 if self.precision==torch.float32 else 1
bytes_needed = model_size
bytes_needed = size
maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes
current_size = self.cache_size()
@@ -388,7 +385,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
# 1 from onnx runtime object
if not cache_entry.locked and refs <= (3 if "onnx" in model_key else 2):
self.logger.debug(
f"Removing {model_key} from RAM cache to free at least {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
f"Removing {model_key} from RAM cache to free at least {(size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
)
current_size -= cache_entry.size
models_cleared += 1
@@ -420,17 +417,3 @@ class ModelCache(ModelCacheBase[AnyModel]):
mps.empty_cache()
self.logger.debug(f"After making room: cached_models={len(self._cached_models)}")
def _check_free_vram(self, target_device: torch.device, needed_size: int) -> None:
if target_device.type != "cuda":
return
vram_device = ( # mem_get_info() needs an indexed device
target_device if target_device.index is not None else torch.device(str(target_device), index=0)
)
free_mem, _ = torch.cuda.mem_get_info(torch.device(vram_device))
if needed_size > free_mem:
needed_gb = round(needed_size / GIG, 2)
free_gb = round(free_mem / GIG, 2)
raise torch.cuda.OutOfMemoryError(
f"Insufficient VRAM to load model, requested {needed_gb}GB but only had {free_gb}GB free"
)

View File

@@ -34,7 +34,6 @@ class ModelLocker(ModelLockerBase):
# NOTE that the model has to have the to() method in order for this code to move it into GPU!
self._cache_entry.lock()
try:
if self._cache.lazy_offloading:
self._cache.offload_unlocked_models(self._cache_entry.size)
@@ -51,6 +50,7 @@ class ModelLocker(ModelLockerBase):
except Exception:
self._cache_entry.unlock()
raise
return self.model
def unlock(self) -> None:

View File

@@ -291,7 +291,6 @@
"canvasMerged": "تم دمج الخط",
"sentToImageToImage": "تم إرسال إلى صورة إلى صورة",
"sentToUnifiedCanvas": "تم إرسال إلى لوحة موحدة",
"parametersSet": "تم تعيين المعلمات",
"parametersNotSet": "لم يتم تعيين المعلمات",
"metadataLoadFailed": "فشل تحميل البيانات الوصفية"
},

View File

@@ -75,7 +75,8 @@
"copy": "Kopieren",
"aboutHeading": "Nutzen Sie Ihre kreative Energie",
"toResolve": "Lösen",
"add": "Hinzufügen"
"add": "Hinzufügen",
"loglevel": "Protokoll Stufe"
},
"gallery": {
"galleryImageSize": "Bildgröße",
@@ -388,7 +389,14 @@
"vaePrecision": "VAE-Präzision",
"variant": "Variante",
"modelDeleteFailed": "Modell konnte nicht gelöscht werden",
"noModelSelected": "Kein Modell ausgewählt"
"noModelSelected": "Kein Modell ausgewählt",
"huggingFace": "HuggingFace",
"defaultSettings": "Standardeinstellungen",
"edit": "Bearbeiten",
"cancel": "Stornieren",
"defaultSettingsSaved": "Standardeinstellungen gespeichert",
"addModels": "Model hinzufügen",
"deleteModelImage": "Lösche Model Bild"
},
"parameters": {
"images": "Bilder",
@@ -472,7 +480,6 @@
"canvasMerged": "Leinwand zusammengeführt",
"sentToImageToImage": "Gesendet an Bild zu Bild",
"sentToUnifiedCanvas": "Gesendet an Leinwand",
"parametersSet": "Parameter festlegen",
"parametersNotSet": "Parameter nicht festgelegt",
"metadataLoadFailed": "Metadaten konnten nicht geladen werden",
"setCanvasInitialImage": "Ausgangsbild setzen",
@@ -677,7 +684,8 @@
"body": "Körper",
"hands": "Hände",
"dwOpenpose": "DW Openpose",
"dwOpenposeDescription": "Posenschätzung mit DW Openpose"
"dwOpenposeDescription": "Posenschätzung mit DW Openpose",
"selectCLIPVisionModel": "Wähle ein CLIP Vision Model aus"
},
"queue": {
"status": "Status",
@@ -765,7 +773,10 @@
"recallParameters": "Parameter wiederherstellen",
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)",
"allPrompts": "Alle Prompts",
"imageDimensions": "Bilder Auslösungen"
"imageDimensions": "Bilder Auslösungen",
"parameterSet": "Parameter {{parameter}} setzen",
"recallParameter": "{{label}} Abrufen",
"parsingFailed": "Parsing Fehlgeschlagen"
},
"popovers": {
"noiseUseCPU": {
@@ -1030,7 +1041,8 @@
"title": "Bild"
},
"advanced": {
"title": "Erweitert"
"title": "Erweitert",
"options": "$t(accordions.advanced.title) Optionen"
},
"control": {
"title": "Kontrolle"

View File

@@ -684,6 +684,7 @@
"noModelsInstalled": "No Models Installed",
"noModelsInstalledDesc1": "Install models with the",
"noModelSelected": "No Model Selected",
"noMatchingModels": "No matching Models",
"none": "none",
"path": "Path",
"pathToConfig": "Path To Config",
@@ -887,6 +888,11 @@
"imageFit": "Fit Initial Image To Output Size",
"images": "Images",
"infillMethod": "Infill Method",
"infillMosaicTileWidth": "Tile Width",
"infillMosaicTileHeight": "Tile Height",
"infillMosaicMinColor": "Min Color",
"infillMosaicMaxColor": "Max Color",
"infillColorValue": "Fill Color",
"info": "Info",
"invoke": {
"addingImagesTo": "Adding images to",
@@ -1035,10 +1041,10 @@
"metadataLoadFailed": "Failed to load metadata",
"modelAddedSimple": "Model Added to Queue",
"modelImportCanceled": "Model Import Canceled",
"parameters": "Parameters",
"parameterNotSet": "{{parameter}} not set",
"parameterSet": "{{parameter}} set",
"parametersNotSet": "Parameters Not Set",
"parametersSet": "Parameters Set",
"problemCopyingCanvas": "Problem Copying Canvas",
"problemCopyingCanvasDesc": "Unable to export base layer",
"problemCopyingImage": "Unable to Copy Image",
@@ -1417,6 +1423,7 @@
"eraseBoundingBox": "Erase Bounding Box",
"eraser": "Eraser",
"fillBoundingBox": "Fill Bounding Box",
"initialFitImageSize": "Fit Image Size on Drop",
"invertBrushSizeScrollDirection": "Invert Scroll for Brush Size",
"layer": "Layer",
"limitStrokesToBox": "Limit Strokes to Box",

View File

@@ -363,7 +363,6 @@
"canvasMerged": "Lienzo consolidado",
"sentToImageToImage": "Enviar hacia Imagen a Imagen",
"sentToUnifiedCanvas": "Enviar hacia Lienzo Consolidado",
"parametersSet": "Parámetros establecidos",
"parametersNotSet": "Parámetros no establecidos",
"metadataLoadFailed": "Error al cargar metadatos",
"serverError": "Error en el servidor",

View File

@@ -298,7 +298,6 @@
"canvasMerged": "Canvas fusionné",
"sentToImageToImage": "Envoyé à Image à Image",
"sentToUnifiedCanvas": "Envoyé à Canvas unifié",
"parametersSet": "Paramètres définis",
"parametersNotSet": "Paramètres non définis",
"metadataLoadFailed": "Échec du chargement des métadonnées"
},

View File

@@ -306,7 +306,6 @@
"canvasMerged": "קנבס מוזג",
"sentToImageToImage": "נשלח לתמונה לתמונה",
"sentToUnifiedCanvas": "נשלח אל קנבס מאוחד",
"parametersSet": "הגדרת פרמטרים",
"parametersNotSet": "פרמטרים לא הוגדרו",
"metadataLoadFailed": "טעינת מטא-נתונים נכשלה"
},

View File

@@ -366,7 +366,7 @@
"modelConverted": "Modello convertito",
"alpha": "Alpha",
"convertToDiffusersHelpText1": "Questo modello verrà convertito nel formato 🧨 Diffusori.",
"convertToDiffusersHelpText3": "Il file Checkpoint su disco verrà eliminato se si trova nella cartella principale di InvokeAI. Se si trova invece in una posizione personalizzata, NON verrà eliminato.",
"convertToDiffusersHelpText3": "Il file del modello su disco verrà eliminato se si trova nella cartella principale di InvokeAI. Se si trova invece in una posizione personalizzata, NON verrà eliminato.",
"v2_base": "v2 (512px)",
"v2_768": "v2 (768px)",
"none": "nessuno",
@@ -443,7 +443,8 @@
"noModelsInstalled": "Nessun modello installato",
"hfTokenInvalidErrorMessage2": "Aggiornalo in ",
"main": "Principali",
"noModelsInstalledDesc1": "Installa i modelli con"
"noModelsInstalledDesc1": "Installa i modelli con",
"ipAdapters": "Adattatori IP"
},
"parameters": {
"images": "Immagini",
@@ -568,7 +569,6 @@
"canvasMerged": "Tela unita",
"sentToImageToImage": "Inviato a Immagine a Immagine",
"sentToUnifiedCanvas": "Inviato a Tela Unificata",
"parametersSet": "Parametri impostati",
"parametersNotSet": "Parametri non impostati",
"metadataLoadFailed": "Impossibile caricare i metadati",
"serverError": "Errore del Server",
@@ -937,7 +937,8 @@
"controlnet": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.controlNet))",
"mediapipeFace": "Mediapipe Volto",
"ip_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.ipAdapter))",
"t2i_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.t2iAdapter))"
"t2i_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.t2iAdapter))",
"selectCLIPVisionModel": "Seleziona un modello CLIP Vision"
},
"queue": {
"queueFront": "Aggiungi all'inizio della coda",

View File

@@ -420,7 +420,6 @@
"canvasMerged": "Canvas samengevoegd",
"sentToImageToImage": "Gestuurd naar Afbeelding naar afbeelding",
"sentToUnifiedCanvas": "Gestuurd naar Centraal canvas",
"parametersSet": "Parameters ingesteld",
"parametersNotSet": "Parameters niet ingesteld",
"metadataLoadFailed": "Fout bij laden metagegevens",
"serverError": "Serverfout",

View File

@@ -267,7 +267,6 @@
"canvasMerged": "Scalono widoczne warstwy",
"sentToImageToImage": "Wysłano do Obraz na obraz",
"sentToUnifiedCanvas": "Wysłano do trybu uniwersalnego",
"parametersSet": "Ustawiono parametry",
"parametersNotSet": "Nie ustawiono parametrów",
"metadataLoadFailed": "Błąd wczytywania metadanych"
},

View File

@@ -310,7 +310,6 @@
"canvasMerged": "Tela Fundida",
"sentToImageToImage": "Mandar Para Imagem Para Imagem",
"sentToUnifiedCanvas": "Enviada para a Tela Unificada",
"parametersSet": "Parâmetros Definidos",
"parametersNotSet": "Parâmetros Não Definidos",
"metadataLoadFailed": "Falha ao tentar carregar metadados"
},

View File

@@ -307,7 +307,6 @@
"canvasMerged": "Tela Fundida",
"sentToImageToImage": "Mandar Para Imagem Para Imagem",
"sentToUnifiedCanvas": "Enviada para a Tela Unificada",
"parametersSet": "Parâmetros Definidos",
"parametersNotSet": "Parâmetros Não Definidos",
"metadataLoadFailed": "Falha ao tentar carregar metadados"
},

View File

@@ -575,7 +575,6 @@
"canvasMerged": "Холст объединен",
"sentToImageToImage": "Отправить в img2img",
"sentToUnifiedCanvas": "Отправлено на Единый холст",
"parametersSet": "Параметры заданы",
"parametersNotSet": "Параметры не заданы",
"metadataLoadFailed": "Не удалось загрузить метаданные",
"serverError": "Ошибка сервера",

View File

@@ -315,7 +315,6 @@
"canvasMerged": "Полотно об'єднане",
"sentToImageToImage": "Надіслати до img2img",
"sentToUnifiedCanvas": "Надіслати на полотно",
"parametersSet": "Параметри задані",
"parametersNotSet": "Параметри не задані",
"metadataLoadFailed": "Не вдалося завантажити метадані",
"serverError": "Помилка сервера",

View File

@@ -487,7 +487,6 @@
"canvasMerged": "画布已合并",
"sentToImageToImage": "已发送到图生图",
"sentToUnifiedCanvas": "已发送到统一画布",
"parametersSet": "参数已设定",
"parametersNotSet": "参数未设定",
"metadataLoadFailed": "加载元数据失败",
"uploadFailedInvalidUploadDesc": "必须是单张的 PNG 或 JPEG 图片",

View File

@@ -18,6 +18,7 @@ import {
setShouldAutoSave,
setShouldCropToBoundingBoxOnSave,
setShouldDarkenOutsideBoundingBox,
setShouldFitImageSize,
setShouldInvertBrushSizeScrollDirection,
setShouldRestrictStrokesToBox,
setShouldShowCanvasDebugInfo,
@@ -48,6 +49,7 @@ const IAICanvasSettingsButtonPopover = () => {
const shouldSnapToGrid = useAppSelector((s) => s.canvas.shouldSnapToGrid);
const shouldRestrictStrokesToBox = useAppSelector((s) => s.canvas.shouldRestrictStrokesToBox);
const shouldAntialias = useAppSelector((s) => s.canvas.shouldAntialias);
const shouldFitImageSize = useAppSelector((s) => s.canvas.shouldFitImageSize);
useHotkeys(
['n'],
@@ -102,6 +104,10 @@ const IAICanvasSettingsButtonPopover = () => {
(e: ChangeEvent<HTMLInputElement>) => dispatch(setShouldAntialias(e.target.checked)),
[dispatch]
);
const handleChangeShouldFitImageSize = useCallback(
(e: ChangeEvent<HTMLInputElement>) => dispatch(setShouldFitImageSize(e.target.checked)),
[dispatch]
);
return (
<Popover>
@@ -165,6 +171,10 @@ const IAICanvasSettingsButtonPopover = () => {
<FormLabel>{t('unifiedCanvas.antialiasing')}</FormLabel>
<Checkbox isChecked={shouldAntialias} onChange={handleChangeShouldAntialias} />
</FormControl>
<FormControl>
<FormLabel>{t('unifiedCanvas.initialFitImageSize')}</FormLabel>
<Checkbox isChecked={shouldFitImageSize} onChange={handleChangeShouldFitImageSize} />
</FormControl>
</FormControlGroup>
<ClearCanvasHistoryButtonModal />
</Flex>

View File

@@ -66,6 +66,7 @@ const initialCanvasState: CanvasState = {
shouldAutoSave: false,
shouldCropToBoundingBoxOnSave: false,
shouldDarkenOutsideBoundingBox: false,
shouldFitImageSize: true,
shouldInvertBrushSizeScrollDirection: false,
shouldLockBoundingBox: false,
shouldPreserveMaskedArea: false,
@@ -144,12 +145,20 @@ export const canvasSlice = createSlice({
reducer: (state, action: PayloadActionWithOptimalDimension<ImageDTO>) => {
const { width, height, image_name } = action.payload;
const { optimalDimension } = action.meta;
const { stageDimensions } = state;
const { stageDimensions, shouldFitImageSize } = state;
const newBoundingBoxDimensions = {
width: roundDownToMultiple(clamp(width, CANVAS_GRID_SIZE_FINE, optimalDimension), CANVAS_GRID_SIZE_FINE),
height: roundDownToMultiple(clamp(height, CANVAS_GRID_SIZE_FINE, optimalDimension), CANVAS_GRID_SIZE_FINE),
};
const newBoundingBoxDimensions = shouldFitImageSize
? {
width: roundDownToMultiple(width, CANVAS_GRID_SIZE_FINE),
height: roundDownToMultiple(height, CANVAS_GRID_SIZE_FINE),
}
: {
width: roundDownToMultiple(clamp(width, CANVAS_GRID_SIZE_FINE, optimalDimension), CANVAS_GRID_SIZE_FINE),
height: roundDownToMultiple(
clamp(height, CANVAS_GRID_SIZE_FINE, optimalDimension),
CANVAS_GRID_SIZE_FINE
),
};
const newBoundingBoxCoordinates = {
x: roundToMultiple(width / 2 - newBoundingBoxDimensions.width / 2, CANVAS_GRID_SIZE_FINE),
@@ -582,6 +591,9 @@ export const canvasSlice = createSlice({
setShouldAntialias: (state, action: PayloadAction<boolean>) => {
state.shouldAntialias = action.payload;
},
setShouldFitImageSize: (state, action: PayloadAction<boolean>) => {
state.shouldFitImageSize = action.payload;
},
setShouldCropToBoundingBoxOnSave: (state, action: PayloadAction<boolean>) => {
state.shouldCropToBoundingBoxOnSave = action.payload;
},
@@ -692,6 +704,7 @@ export const {
setShouldRestrictStrokesToBox,
stagingAreaInitialized,
setShouldAntialias,
setShouldFitImageSize,
canvasResized,
canvasBatchIdAdded,
canvasBatchIdsReset,

View File

@@ -120,6 +120,7 @@ export interface CanvasState {
shouldAutoSave: boolean;
shouldCropToBoundingBoxOnSave: boolean;
shouldDarkenOutsideBoundingBox: boolean;
shouldFitImageSize: boolean;
shouldInvertBrushSizeScrollDirection: boolean;
shouldLockBoundingBox: boolean;
shouldPreserveMaskedArea: boolean;

View File

@@ -33,6 +33,7 @@ const ImageMetadataActions = (props: Props) => {
<MetadataItem metadata={metadata} handlers={handlers.scheduler} />
<MetadataItem metadata={metadata} handlers={handlers.cfgScale} />
<MetadataItem metadata={metadata} handlers={handlers.cfgRescaleMultiplier} />
<MetadataItem metadata={metadata} handlers={handlers.initialImage} />
<MetadataItem metadata={metadata} handlers={handlers.strength} />
<MetadataItem metadata={metadata} handlers={handlers.hrfEnabled} />
<MetadataItem metadata={metadata} handlers={handlers.hrfMethod} />

View File

@@ -189,6 +189,12 @@ export const handlers = {
recaller: recallers.cfgScale,
}),
height: buildHandlers({ getLabel: () => t('metadata.height'), parser: parsers.height, recaller: recallers.height }),
initialImage: buildHandlers({
getLabel: () => t('metadata.initImage'),
parser: parsers.initialImage,
recaller: recallers.initialImage,
renderValue: async (imageDTO) => imageDTO.image_name,
}),
negativePrompt: buildHandlers({
getLabel: () => t('metadata.negativePrompt'),
parser: parsers.negativePrompt,
@@ -405,6 +411,6 @@ export const parseAndRecallAllMetadata = async (metadata: unknown, skip: (keyof
})
);
if (results.some((result) => result.status === 'fulfilled')) {
parameterSetToast(t('toast.parametersSet'));
parameterSetToast(t('toast.parameters'));
}
};

View File

@@ -1,3 +1,4 @@
import { getStore } from 'app/store/nanostores/store';
import {
initialControlNet,
initialIPAdapter,
@@ -57,6 +58,8 @@ import {
isParameterWidth,
} from 'features/parameters/types/parameterSchemas';
import { get, isArray, isString } from 'lodash-es';
import { imagesApi } from 'services/api/endpoints/images';
import type { ImageDTO } from 'services/api/types';
import {
isControlNetModelConfig,
isIPAdapterModelConfig,
@@ -135,6 +138,14 @@ const parseCFGRescaleMultiplier: MetadataParseFunc<ParameterCFGRescaleMultiplier
const parseScheduler: MetadataParseFunc<ParameterScheduler> = (metadata) =>
getProperty(metadata, 'scheduler', isParameterScheduler);
const parseInitialImage: MetadataParseFunc<ImageDTO> = async (metadata) => {
const imageName = await getProperty(metadata, 'init_image', isString);
const imageDTORequest = getStore().dispatch(imagesApi.endpoints.getImageDTO.initiate(imageName));
const imageDTO = await imageDTORequest.unwrap();
imageDTORequest.unsubscribe();
return imageDTO;
};
const parseWidth: MetadataParseFunc<ParameterWidth> = (metadata) => getProperty(metadata, 'width', isParameterWidth);
const parseHeight: MetadataParseFunc<ParameterHeight> = (metadata) =>
@@ -402,6 +413,7 @@ export const parsers = {
cfgScale: parseCFGScale,
cfgRescaleMultiplier: parseCFGRescaleMultiplier,
scheduler: parseScheduler,
initialImage: parseInitialImage,
width: parseWidth,
height: parseHeight,
steps: parseSteps,

View File

@@ -17,6 +17,7 @@ import type {
import { modelSelected } from 'features/parameters/store/actions';
import {
heightRecalled,
initialImageChanged,
setCfgRescaleMultiplier,
setCfgScale,
setImg2imgStrength,
@@ -61,6 +62,7 @@ import {
setRefinerStart,
setRefinerSteps,
} from 'features/sdxl/store/sdxlSlice';
import type { ImageDTO } from 'services/api/types';
const recallPositivePrompt: MetadataRecallFunc<ParameterPositivePrompt> = (positivePrompt) => {
getStore().dispatch(setPositivePrompt(positivePrompt));
@@ -94,6 +96,10 @@ const recallScheduler: MetadataRecallFunc<ParameterScheduler> = (scheduler) => {
getStore().dispatch(setScheduler(scheduler));
};
const recallInitialImage: MetadataRecallFunc<ImageDTO> = async (imageDTO) => {
getStore().dispatch(initialImageChanged(imageDTO));
};
const recallWidth: MetadataRecallFunc<ParameterWidth> = (width) => {
getStore().dispatch(widthRecalled(width));
};
@@ -235,6 +241,7 @@ export const recallers = {
cfgScale: recallCFGScale,
cfgRescaleMultiplier: recallCFGRescaleMultiplier,
scheduler: recallScheduler,
initialImage: recallInitialImage,
width: recallWidth,
height: recallHeight,
steps: recallSteps,

View File

@@ -3,7 +3,7 @@ import { createSlice } from '@reduxjs/toolkit';
import type { PersistConfig } from 'app/store/store';
import type { ModelType } from 'services/api/types';
export type FilterableModelType = Exclude<ModelType, 'onnx' | 'clip_vision'>;
export type FilterableModelType = Exclude<ModelType, 'onnx' | 'clip_vision'> | 'refiner';
type ModelManagerState = {
_version: 1;

View File

@@ -1,6 +1,7 @@
import { Flex } from '@invoke-ai/ui-library';
import { Flex, Text } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import ScrollableContent from 'common/components/OverlayScrollbars/ScrollableContent';
import type { FilterableModelType } from 'features/modelManagerV2/store/modelManagerV2Slice';
import { memo, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import {
@@ -9,10 +10,11 @@ import {
useIPAdapterModels,
useLoRAModels,
useMainModels,
useRefinerModels,
useT2IAdapterModels,
useVAEModels,
} from 'services/api/hooks/modelsByType';
import type { AnyModelConfig, ModelType } from 'services/api/types';
import type { AnyModelConfig } from 'services/api/types';
import { FetchingModelsLoader } from './FetchingModelsLoader';
import { ModelListWrapper } from './ModelListWrapper';
@@ -27,6 +29,12 @@ const ModelList = () => {
[mainModels, searchTerm, filteredModelType]
);
const [refinerModels, { isLoading: isLoadingRefinerModels }] = useRefinerModels();
const filteredRefinerModels = useMemo(
() => modelsFilter(refinerModels, searchTerm, filteredModelType),
[refinerModels, searchTerm, filteredModelType]
);
const [loraModels, { isLoading: isLoadingLoRAModels }] = useLoRAModels();
const filteredLoRAModels = useMemo(
() => modelsFilter(loraModels, searchTerm, filteredModelType),
@@ -63,6 +71,28 @@ const ModelList = () => {
[vaeModels, searchTerm, filteredModelType]
);
const totalFilteredModels = useMemo(() => {
return (
filteredMainModels.length +
filteredRefinerModels.length +
filteredLoRAModels.length +
filteredEmbeddingModels.length +
filteredControlNetModels.length +
filteredT2IAdapterModels.length +
filteredIPAdapterModels.length +
filteredVAEModels.length
);
}, [
filteredControlNetModels.length,
filteredEmbeddingModels.length,
filteredIPAdapterModels.length,
filteredLoRAModels.length,
filteredMainModels.length,
filteredRefinerModels.length,
filteredT2IAdapterModels.length,
filteredVAEModels.length,
]);
return (
<ScrollableContent>
<Flex flexDirection="column" w="full" h="full" gap={4}>
@@ -71,6 +101,11 @@ const ModelList = () => {
{!isLoadingMainModels && filteredMainModels.length > 0 && (
<ModelListWrapper title={t('modelManager.main')} modelList={filteredMainModels} key="main" />
)}
{/* Refiner Model List */}
{isLoadingRefinerModels && <FetchingModelsLoader loadingMessage="Loading Refiner Models..." />}
{!isLoadingRefinerModels && filteredRefinerModels.length > 0 && (
<ModelListWrapper title={t('sdxl.refiner')} modelList={filteredRefinerModels} key="refiner" />
)}
{/* LoRAs List */}
{isLoadingLoRAModels && <FetchingModelsLoader loadingMessage="Loading LoRAs..." />}
{!isLoadingLoRAModels && filteredLoRAModels.length > 0 && (
@@ -108,6 +143,11 @@ const ModelList = () => {
{!isLoadingT2IAdapterModels && filteredT2IAdapterModels.length > 0 && (
<ModelListWrapper title={t('common.t2iAdapter')} modelList={filteredT2IAdapterModels} key="t2i-adapters" />
)}
{totalFilteredModels === 0 && (
<Flex w="full" h="full" alignItems="center" justifyContent="center">
<Text>{t('modelManager.noMatchingModels')}</Text>
</Flex>
)}
</Flex>
</ScrollableContent>
);
@@ -118,12 +158,24 @@ export default memo(ModelList);
const modelsFilter = <T extends AnyModelConfig>(
data: T[],
nameFilter: string,
filteredModelType: ModelType | null
filteredModelType: FilterableModelType | null
): T[] => {
return data.filter((model) => {
const matchesFilter = model.name.toLowerCase().includes(nameFilter.toLowerCase());
const matchesType = filteredModelType ? model.type === filteredModelType : true;
const matchesType = getMatchesType(model, filteredModelType);
return matchesFilter && matchesType;
});
};
const getMatchesType = (modelConfig: AnyModelConfig, filteredModelType: FilterableModelType | null): boolean => {
if (filteredModelType === 'refiner') {
return modelConfig.base === 'sdxl-refiner';
}
if (filteredModelType === 'main' && modelConfig.base === 'sdxl-refiner') {
return false;
}
return filteredModelType ? modelConfig.type === filteredModelType : true;
};

View File

@@ -13,6 +13,7 @@ export const ModelTypeFilter = () => {
const MODEL_TYPE_LABELS: Record<FilterableModelType, string> = useMemo(
() => ({
main: t('modelManager.main'),
refiner: t('sdxl.refiner'),
lora: 'LoRA',
embedding: t('modelManager.textualInversions'),
controlnet: 'ControlNet',

View File

@@ -65,6 +65,11 @@ export const buildCanvasOutpaintGraph = async (
infillTileSize,
infillPatchmatchDownscaleSize,
infillMethod,
// infillMosaicTileWidth,
// infillMosaicTileHeight,
// infillMosaicMinColor,
// infillMosaicMaxColor,
infillColorValue,
clipSkip,
seamlessXAxis,
seamlessYAxis,
@@ -356,6 +361,28 @@ export const buildCanvasOutpaintGraph = async (
};
}
// TODO: add mosaic back
// if (infillMethod === 'mosaic') {
// graph.nodes[INPAINT_INFILL] = {
// type: 'infill_mosaic',
// id: INPAINT_INFILL,
// is_intermediate,
// tile_width: infillMosaicTileWidth,
// tile_height: infillMosaicTileHeight,
// min_color: infillMosaicMinColor,
// max_color: infillMosaicMaxColor,
// };
// }
if (infillMethod === 'color') {
graph.nodes[INPAINT_INFILL] = {
type: 'infill_rgba',
id: INPAINT_INFILL,
color: infillColorValue,
is_intermediate,
};
}
// Handle Scale Before Processing
if (isUsingScaledDimensions) {
const scaledWidth: number = scaledBoundingBoxDimensions.width;

View File

@@ -66,6 +66,11 @@ export const buildCanvasSDXLOutpaintGraph = async (
infillTileSize,
infillPatchmatchDownscaleSize,
infillMethod,
// infillMosaicTileWidth,
// infillMosaicTileHeight,
// infillMosaicMinColor,
// infillMosaicMaxColor,
infillColorValue,
seamlessXAxis,
seamlessYAxis,
canvasCoherenceMode,
@@ -365,6 +370,28 @@ export const buildCanvasSDXLOutpaintGraph = async (
};
}
// TODO: add mosaic back
// if (infillMethod === 'mosaic') {
// graph.nodes[INPAINT_INFILL] = {
// type: 'infill_mosaic',
// id: INPAINT_INFILL,
// is_intermediate,
// tile_width: infillMosaicTileWidth,
// tile_height: infillMosaicTileHeight,
// min_color: infillMosaicMinColor,
// max_color: infillMosaicMaxColor,
// };
// }
if (infillMethod === 'color') {
graph.nodes[INPAINT_INFILL] = {
type: 'infill_rgba',
id: INPAINT_INFILL,
is_intermediate,
color: infillColorValue,
};
}
// Handle Scale Before Processing
if (isUsingScaledDimensions) {
const scaledWidth: number = scaledBoundingBoxDimensions.width;

View File

@@ -0,0 +1,46 @@
import { Box, Flex, FormControl, FormLabel } from '@invoke-ai/ui-library';
import { createSelector } from '@reduxjs/toolkit';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAIColorPicker from 'common/components/IAIColorPicker';
import { selectGenerationSlice, setInfillColorValue } from 'features/parameters/store/generationSlice';
import { memo, useCallback, useMemo } from 'react';
import type { RgbaColor } from 'react-colorful';
import { useTranslation } from 'react-i18next';
const ParamInfillColorOptions = () => {
const dispatch = useAppDispatch();
const selector = useMemo(
() =>
createSelector(selectGenerationSlice, (generation) => ({
infillColor: generation.infillColorValue,
})),
[]
);
const { infillColor } = useAppSelector(selector);
const infillMethod = useAppSelector((s) => s.generation.infillMethod);
const { t } = useTranslation();
const handleInfillColor = useCallback(
(v: RgbaColor) => {
dispatch(setInfillColorValue(v));
},
[dispatch]
);
return (
<Flex flexDir="column" gap={4}>
<FormControl isDisabled={infillMethod !== 'color'}>
<FormLabel>{t('parameters.infillColorValue')}</FormLabel>
<Box w="full" pt={2} pb={2}>
<IAIColorPicker color={infillColor} onChange={handleInfillColor} />
</Box>
</FormControl>
</Flex>
);
};
export default memo(ParamInfillColorOptions);

View File

@@ -0,0 +1,127 @@
import { Box, CompositeNumberInput, CompositeSlider, Flex, FormControl, FormLabel } from '@invoke-ai/ui-library';
import { createSelector } from '@reduxjs/toolkit';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAIColorPicker from 'common/components/IAIColorPicker';
import {
selectGenerationSlice,
setInfillMosaicMaxColor,
setInfillMosaicMinColor,
setInfillMosaicTileHeight,
setInfillMosaicTileWidth,
} from 'features/parameters/store/generationSlice';
import { memo, useCallback, useMemo } from 'react';
import type { RgbaColor } from 'react-colorful';
import { useTranslation } from 'react-i18next';
const ParamInfillMosaicTileSize = () => {
const dispatch = useAppDispatch();
const selector = useMemo(
() =>
createSelector(selectGenerationSlice, (generation) => ({
infillMosaicTileWidth: generation.infillMosaicTileWidth,
infillMosaicTileHeight: generation.infillMosaicTileHeight,
infillMosaicMinColor: generation.infillMosaicMinColor,
infillMosaicMaxColor: generation.infillMosaicMaxColor,
})),
[]
);
const { infillMosaicTileWidth, infillMosaicTileHeight, infillMosaicMinColor, infillMosaicMaxColor } =
useAppSelector(selector);
const infillMethod = useAppSelector((s) => s.generation.infillMethod);
const { t } = useTranslation();
const handleInfillMosaicTileWidthChange = useCallback(
(v: number) => {
dispatch(setInfillMosaicTileWidth(v));
},
[dispatch]
);
const handleInfillMosaicTileHeightChange = useCallback(
(v: number) => {
dispatch(setInfillMosaicTileHeight(v));
},
[dispatch]
);
const handleInfillMosaicMinColor = useCallback(
(v: RgbaColor) => {
dispatch(setInfillMosaicMinColor(v));
},
[dispatch]
);
const handleInfillMosaicMaxColor = useCallback(
(v: RgbaColor) => {
dispatch(setInfillMosaicMaxColor(v));
},
[dispatch]
);
return (
<Flex flexDir="column" gap={4}>
<FormControl isDisabled={infillMethod !== 'mosaic'}>
<FormLabel>{t('parameters.infillMosaicTileWidth')}</FormLabel>
<CompositeSlider
min={8}
max={256}
value={infillMosaicTileWidth}
defaultValue={64}
onChange={handleInfillMosaicTileWidthChange}
step={8}
fineStep={8}
marks
/>
<CompositeNumberInput
min={8}
max={1024}
value={infillMosaicTileWidth}
defaultValue={64}
onChange={handleInfillMosaicTileWidthChange}
step={8}
fineStep={8}
/>
</FormControl>
<FormControl isDisabled={infillMethod !== 'mosaic'}>
<FormLabel>{t('parameters.infillMosaicTileHeight')}</FormLabel>
<CompositeSlider
min={8}
max={256}
value={infillMosaicTileHeight}
defaultValue={64}
onChange={handleInfillMosaicTileHeightChange}
step={8}
fineStep={8}
marks
/>
<CompositeNumberInput
min={8}
max={1024}
value={infillMosaicTileHeight}
defaultValue={64}
onChange={handleInfillMosaicTileHeightChange}
step={8}
fineStep={8}
/>
</FormControl>
<FormControl isDisabled={infillMethod !== 'mosaic'}>
<FormLabel>{t('parameters.infillMosaicMinColor')}</FormLabel>
<Box w="full" pt={2} pb={2}>
<IAIColorPicker color={infillMosaicMinColor} onChange={handleInfillMosaicMinColor} />
</Box>
</FormControl>
<FormControl isDisabled={infillMethod !== 'mosaic'}>
<FormLabel>{t('parameters.infillMosaicMaxColor')}</FormLabel>
<Box w="full" pt={2} pb={2}>
<IAIColorPicker color={infillMosaicMaxColor} onChange={handleInfillMosaicMaxColor} />
</Box>
</FormControl>
</Flex>
);
};
export default memo(ParamInfillMosaicTileSize);

View File

@@ -1,6 +1,8 @@
import { useAppSelector } from 'app/store/storeHooks';
import { memo } from 'react';
import ParamInfillColorOptions from './ParamInfillColorOptions';
import ParamInfillMosaicOptions from './ParamInfillMosaicOptions';
import ParamInfillPatchmatchDownscaleSize from './ParamInfillPatchmatchDownscaleSize';
import ParamInfillTilesize from './ParamInfillTilesize';
@@ -14,6 +16,14 @@ const ParamInfillOptions = () => {
return <ParamInfillPatchmatchDownscaleSize />;
}
if (infillMethod === 'mosaic') {
return <ParamInfillMosaicOptions />;
}
if (infillMethod === 'color') {
return <ParamInfillColorOptions />;
}
return null;
};

View File

@@ -19,6 +19,7 @@ import type {
import { getIsSizeOptimal, getOptimalDimension } from 'features/parameters/util/optimalDimension';
import { configChanged } from 'features/system/store/configSlice';
import { clamp } from 'lodash-es';
import type { RgbaColor } from 'react-colorful';
import type { ImageDTO } from 'services/api/types';
import type { GenerationState } from './types';
@@ -43,8 +44,6 @@ const initialGenerationState: GenerationState = {
shouldFitToWidthHeight: true,
shouldRandomizeSeed: true,
steps: 50,
infillTileSize: 32,
infillPatchmatchDownscaleSize: 1,
width: 512,
model: null,
vae: null,
@@ -55,6 +54,13 @@ const initialGenerationState: GenerationState = {
shouldUseCpuNoise: true,
shouldShowAdvancedOptions: false,
aspectRatio: { ...initialAspectRatioState },
infillTileSize: 32,
infillPatchmatchDownscaleSize: 1,
infillMosaicTileWidth: 64,
infillMosaicTileHeight: 64,
infillMosaicMinColor: { r: 0, g: 0, b: 0, a: 1 },
infillMosaicMaxColor: { r: 255, g: 255, b: 255, a: 1 },
infillColorValue: { r: 0, g: 0, b: 0, a: 1 },
};
export const generationSlice = createSlice({
@@ -116,15 +122,6 @@ export const generationSlice = createSlice({
setCanvasCoherenceMinDenoise: (state, action: PayloadAction<number>) => {
state.canvasCoherenceMinDenoise = action.payload;
},
setInfillMethod: (state, action: PayloadAction<string>) => {
state.infillMethod = action.payload;
},
setInfillTileSize: (state, action: PayloadAction<number>) => {
state.infillTileSize = action.payload;
},
setInfillPatchmatchDownscaleSize: (state, action: PayloadAction<number>) => {
state.infillPatchmatchDownscaleSize = action.payload;
},
initialImageChanged: (state, action: PayloadAction<ImageDTO>) => {
const { image_name, width, height } = action.payload;
state.initialImage = { imageName: image_name, width, height };
@@ -206,6 +203,30 @@ export const generationSlice = createSlice({
aspectRatioChanged: (state, action: PayloadAction<AspectRatioState>) => {
state.aspectRatio = action.payload;
},
setInfillMethod: (state, action: PayloadAction<string>) => {
state.infillMethod = action.payload;
},
setInfillTileSize: (state, action: PayloadAction<number>) => {
state.infillTileSize = action.payload;
},
setInfillPatchmatchDownscaleSize: (state, action: PayloadAction<number>) => {
state.infillPatchmatchDownscaleSize = action.payload;
},
setInfillMosaicTileWidth: (state, action: PayloadAction<number>) => {
state.infillMosaicTileWidth = action.payload;
},
setInfillMosaicTileHeight: (state, action: PayloadAction<number>) => {
state.infillMosaicTileHeight = action.payload;
},
setInfillMosaicMinColor: (state, action: PayloadAction<RgbaColor>) => {
state.infillMosaicMinColor = action.payload;
},
setInfillMosaicMaxColor: (state, action: PayloadAction<RgbaColor>) => {
state.infillMosaicMaxColor = action.payload;
},
setInfillColorValue: (state, action: PayloadAction<RgbaColor>) => {
state.infillColorValue = action.payload;
},
},
extraReducers: (builder) => {
builder.addCase(configChanged, (state, action) => {
@@ -249,8 +270,6 @@ export const {
setShouldFitToWidthHeight,
setShouldRandomizeSeed,
setSteps,
setInfillTileSize,
setInfillPatchmatchDownscaleSize,
initialImageChanged,
modelChanged,
vaeSelected,
@@ -264,6 +283,13 @@ export const {
heightChanged,
widthRecalled,
heightRecalled,
setInfillTileSize,
setInfillPatchmatchDownscaleSize,
setInfillMosaicTileWidth,
setInfillMosaicTileHeight,
setInfillMosaicMinColor,
setInfillMosaicMaxColor,
setInfillColorValue,
} = generationSlice.actions;
export const { selectOptimalDimension } = generationSlice.selectors;

View File

@@ -17,6 +17,7 @@ import type {
ParameterVAEModel,
ParameterWidth,
} from 'features/parameters/types/parameterSchemas';
import type { RgbaColor } from 'react-colorful';
export interface GenerationState {
_version: 2;
@@ -39,8 +40,6 @@ export interface GenerationState {
shouldFitToWidthHeight: boolean;
shouldRandomizeSeed: boolean;
steps: ParameterSteps;
infillTileSize: number;
infillPatchmatchDownscaleSize: number;
width: ParameterWidth;
model: ParameterModel | null;
vae: ParameterVAEModel | null;
@@ -51,6 +50,13 @@ export interface GenerationState {
shouldUseCpuNoise: boolean;
shouldShowAdvancedOptions: boolean;
aspectRatio: AspectRatioState;
infillTileSize: number;
infillPatchmatchDownscaleSize: number;
infillMosaicTileWidth: number;
infillMosaicTileHeight: number;
infillMosaicMinColor: RgbaColor;
infillMosaicMaxColor: RgbaColor;
infillColorValue: RgbaColor;
}
export type PayloadActionWithOptimalDimension<T = void> = PayloadAction<T, string, { optimalDimension: number }>;

View File

@@ -1,6 +1,7 @@
import type { PayloadAction } from '@reduxjs/toolkit';
import { createSlice } from '@reduxjs/toolkit';
import type { PersistConfig, RootState } from 'app/store/store';
import { workflowLoadRequested } from 'features/nodes/store/actions';
import { initialImageChanged } from 'features/parameters/store/generationSlice';
import type { InvokeTabName } from './tabMap';
@@ -45,6 +46,9 @@ export const uiSlice = createSlice({
builder.addCase(initialImageChanged, (state) => {
state.activeTab = 'img2img';
});
builder.addCase(workflowLoadRequested, (state) => {
state.activeTab = 'nodes';
});
},
});

File diff suppressed because one or more lines are too long

View File

@@ -27,6 +27,7 @@ from invokeai.app.invocations.fields import (
OutputField,
UIComponent,
UIType,
WithBoard,
WithMetadata,
WithWorkflow,
)
@@ -105,6 +106,7 @@ __all__ = [
"OutputField",
"UIComponent",
"UIType",
"WithBoard",
"WithMetadata",
"WithWorkflow",
# invokeai.app.invocations.latent

View File

@@ -1 +1 @@
__version__ = "4.0.2"
__version__ = "4.0.4"