Compare commits

...

14 Commits

Author SHA1 Message Date
Hosted Weblate
2c45697f3d translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-04-06 15:19:20 +11:00
psychedelicious
9a0a90e2a2 chore: v4.0.4 2024-04-06 15:15:16 +11:00
psychedelicious
69f17da1a2 fix(nodes): add WithBoard to public API 2024-04-06 15:02:28 +11:00
psychedelicious
4d0a49298c tidy(ui): remove extraneous zod schema 2024-04-06 14:54:12 +11:00
psychedelicious
55f7a7737a feat(ui): shift around init image recall logic
Retrieving the DTO happens as part of the metadata parsing, not recall. This way, we don't show the option to recall a nonexistent image.

This matches the flow for other metadata entities like models - we don't show the model recall button if the model isn't available.
2024-04-06 14:54:12 +11:00
Jennifer Player
adc30045a6 addressed pr feedback 2024-04-06 14:54:12 +11:00
Jennifer Player
fdd0e57976 actually use the schema 2024-04-06 14:54:12 +11:00
Jennifer Player
9ba5ec4b67 fix typo Params set set 2024-04-06 14:54:12 +11:00
Jennifer Player
8a17616bf4 recall initial image from metadata and set to image2image 2024-04-06 14:54:12 +11:00
Jennifer Player
f56b9537cd added initial image to metadata viewer 2024-04-06 14:54:12 +11:00
psychedelicious
a95756f3ed docs: update FAQ.md (shared GPU memory) 2024-04-06 14:35:36 +11:00
psychedelicious
4068e817d6 fix(mm): typing issues in model cache 2024-04-06 14:35:36 +11:00
psychedelicious
a09d705e4c fix(mm): remove vram check
This check prematurely reports insufficient VRAM on Windows. See #6106 for details.
2024-04-06 14:35:36 +11:00
blessedcoolant
540d506ec9 fix: Incorrect default clip vision opt in the node 2024-04-05 15:06:33 -04:00
25 changed files with 58 additions and 48 deletions

View File

@@ -40,6 +40,25 @@ Follow the same steps to scan and import the missing models.
- Check the `ram` setting in `invokeai.yaml`. This setting tells Invoke how much of your system RAM can be used to cache models. Having this too high or too low can slow things down. That said, it's generally safest to not set this at all and instead let Invoke manage it.
- Check the `vram` setting in `invokeai.yaml`. This setting tells Invoke how much of your GPU VRAM can be used to cache models. Counter-intuitively, if this setting is too high, Invoke will need to do a lot of shuffling of models as it juggles the VRAM cache and the currently-loaded model. The default value of 0.25 is generally works well for GPUs without 16GB or more VRAM. Even on a 24GB card, the default works well.
- Check that your generations are happening on your GPU (if you have one). InvokeAI will log what is being used for generation upon startup. If your GPU isn't used, re-install to ensure the correct versions of torch get installed.
- If you are on Windows, you may have exceeded your GPU's VRAM capacity and are using slower [shared GPU memory](#shared-gpu-memory-windows). There's a guide to opt out of this behaviour in the linked FAQ entry.
## Shared GPU Memory (Windows)
!!! tip "Nvidia GPUs with driver 536.40"
This only applies to current Nvidia cards with driver 536.40 or later, released in June 2023.
When the GPU doesn't have enough VRAM for a task, Windows is able to allocate some of its CPU RAM to the GPU. This is much slower than VRAM, but it does allow the system to generate when it otherwise might no have enough VRAM.
When shared GPU memory is used, generation slows down dramatically - but at least it doesn't crash.
If you'd like to opt out of this behavior and instead get an error when you exceed your GPU's VRAM, follow [this guide from Nvidia](https://nvidia.custhelp.com/app/answers/detail/a_id/5490).
Here's how to get the python path required in the linked guide:
- Run `invoke.bat`.
- Select option 2 for developer console.
- At least one python path will be printed. Copy the path that includes your invoke installation directory (typically the first).
## Installer cannot find python (Windows)

View File

@@ -67,7 +67,7 @@ class IPAdapterInvocation(BaseInvocation):
)
clip_vision_model: Literal["ViT-H", "ViT-G"] = InputField(
description="CLIP Vision model to use. Overrides model settings. Mandatory for checkpoint models.",
default="auto",
default="ViT-H",
ui_order=2,
)
weight: Union[float, List[float]] = InputField(

View File

@@ -117,7 +117,7 @@ class ModelCacheBase(ABC, Generic[T]):
@property
@abstractmethod
def stats(self) -> CacheStats:
def stats(self) -> Optional[CacheStats]:
"""Return collected CacheStats object."""
pass

View File

@@ -269,9 +269,6 @@ class ModelCache(ModelCacheBase[AnyModel]):
if torch.device(source_device).type == torch.device(target_device).type:
return
# may raise an exception here if insufficient GPU VRAM
self._check_free_vram(target_device, cache_entry.size)
start_model_to_time = time.time()
snapshot_before = self._capture_memory_snapshot()
cache_entry.model.to(target_device)
@@ -329,11 +326,11 @@ class ModelCache(ModelCacheBase[AnyModel]):
f" {in_ram_models}/{in_vram_models}({locked_in_vram_models})"
)
def make_room(self, model_size: int) -> None:
def make_room(self, size: int) -> None:
"""Make enough room in the cache to accommodate a new model of indicated size."""
# calculate how much memory this model will require
# multiplier = 2 if self.precision==torch.float32 else 1
bytes_needed = model_size
bytes_needed = size
maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes
current_size = self.cache_size()
@@ -388,7 +385,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
# 1 from onnx runtime object
if not cache_entry.locked and refs <= (3 if "onnx" in model_key else 2):
self.logger.debug(
f"Removing {model_key} from RAM cache to free at least {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
f"Removing {model_key} from RAM cache to free at least {(size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
)
current_size -= cache_entry.size
models_cleared += 1
@@ -420,24 +417,3 @@ class ModelCache(ModelCacheBase[AnyModel]):
mps.empty_cache()
self.logger.debug(f"After making room: cached_models={len(self._cached_models)}")
def _free_vram(self, device: torch.device) -> int:
vram_device = ( # mem_get_info() needs an indexed device
device if device.index is not None else torch.device(str(device), index=0)
)
free_mem, _ = torch.cuda.mem_get_info(vram_device)
for _, cache_entry in self._cached_models.items():
if cache_entry.loaded and not cache_entry.locked:
free_mem += cache_entry.size
return free_mem
def _check_free_vram(self, target_device: torch.device, needed_size: int) -> None:
if target_device.type != "cuda":
return
free_mem = self._free_vram(target_device)
if needed_size > free_mem:
needed_gb = round(needed_size / GIG, 2)
free_gb = round(free_mem / GIG, 2)
raise torch.cuda.OutOfMemoryError(
f"Insufficient VRAM to load model, requested {needed_gb}GB but only had {free_gb}GB free"
)

View File

@@ -291,7 +291,6 @@
"canvasMerged": "تم دمج الخط",
"sentToImageToImage": "تم إرسال إلى صورة إلى صورة",
"sentToUnifiedCanvas": "تم إرسال إلى لوحة موحدة",
"parametersSet": "تم تعيين المعلمات",
"parametersNotSet": "لم يتم تعيين المعلمات",
"metadataLoadFailed": "فشل تحميل البيانات الوصفية"
},

View File

@@ -480,7 +480,6 @@
"canvasMerged": "Leinwand zusammengeführt",
"sentToImageToImage": "Gesendet an Bild zu Bild",
"sentToUnifiedCanvas": "Gesendet an Leinwand",
"parametersSet": "Parameter festlegen",
"parametersNotSet": "Parameter nicht festgelegt",
"metadataLoadFailed": "Metadaten konnten nicht geladen werden",
"setCanvasInitialImage": "Ausgangsbild setzen",

View File

@@ -1041,10 +1041,10 @@
"metadataLoadFailed": "Failed to load metadata",
"modelAddedSimple": "Model Added to Queue",
"modelImportCanceled": "Model Import Canceled",
"parameters": "Parameters",
"parameterNotSet": "{{parameter}} not set",
"parameterSet": "{{parameter}} set",
"parametersNotSet": "Parameters Not Set",
"parametersSet": "Parameters Set",
"problemCopyingCanvas": "Problem Copying Canvas",
"problemCopyingCanvasDesc": "Unable to export base layer",
"problemCopyingImage": "Unable to Copy Image",

View File

@@ -363,7 +363,6 @@
"canvasMerged": "Lienzo consolidado",
"sentToImageToImage": "Enviar hacia Imagen a Imagen",
"sentToUnifiedCanvas": "Enviar hacia Lienzo Consolidado",
"parametersSet": "Parámetros establecidos",
"parametersNotSet": "Parámetros no establecidos",
"metadataLoadFailed": "Error al cargar metadatos",
"serverError": "Error en el servidor",

View File

@@ -298,7 +298,6 @@
"canvasMerged": "Canvas fusionné",
"sentToImageToImage": "Envoyé à Image à Image",
"sentToUnifiedCanvas": "Envoyé à Canvas unifié",
"parametersSet": "Paramètres définis",
"parametersNotSet": "Paramètres non définis",
"metadataLoadFailed": "Échec du chargement des métadonnées"
},

View File

@@ -306,7 +306,6 @@
"canvasMerged": "קנבס מוזג",
"sentToImageToImage": "נשלח לתמונה לתמונה",
"sentToUnifiedCanvas": "נשלח אל קנבס מאוחד",
"parametersSet": "הגדרת פרמטרים",
"parametersNotSet": "פרמטרים לא הוגדרו",
"metadataLoadFailed": "טעינת מטא-נתונים נכשלה"
},

View File

@@ -569,7 +569,6 @@
"canvasMerged": "Tela unita",
"sentToImageToImage": "Inviato a Immagine a Immagine",
"sentToUnifiedCanvas": "Inviato a Tela Unificata",
"parametersSet": "Parametri impostati",
"parametersNotSet": "Parametri non impostati",
"metadataLoadFailed": "Impossibile caricare i metadati",
"serverError": "Errore del Server",

View File

@@ -420,7 +420,6 @@
"canvasMerged": "Canvas samengevoegd",
"sentToImageToImage": "Gestuurd naar Afbeelding naar afbeelding",
"sentToUnifiedCanvas": "Gestuurd naar Centraal canvas",
"parametersSet": "Parameters ingesteld",
"parametersNotSet": "Parameters niet ingesteld",
"metadataLoadFailed": "Fout bij laden metagegevens",
"serverError": "Serverfout",

View File

@@ -267,7 +267,6 @@
"canvasMerged": "Scalono widoczne warstwy",
"sentToImageToImage": "Wysłano do Obraz na obraz",
"sentToUnifiedCanvas": "Wysłano do trybu uniwersalnego",
"parametersSet": "Ustawiono parametry",
"parametersNotSet": "Nie ustawiono parametrów",
"metadataLoadFailed": "Błąd wczytywania metadanych"
},

View File

@@ -310,7 +310,6 @@
"canvasMerged": "Tela Fundida",
"sentToImageToImage": "Mandar Para Imagem Para Imagem",
"sentToUnifiedCanvas": "Enviada para a Tela Unificada",
"parametersSet": "Parâmetros Definidos",
"parametersNotSet": "Parâmetros Não Definidos",
"metadataLoadFailed": "Falha ao tentar carregar metadados"
},

View File

@@ -307,7 +307,6 @@
"canvasMerged": "Tela Fundida",
"sentToImageToImage": "Mandar Para Imagem Para Imagem",
"sentToUnifiedCanvas": "Enviada para a Tela Unificada",
"parametersSet": "Parâmetros Definidos",
"parametersNotSet": "Parâmetros Não Definidos",
"metadataLoadFailed": "Falha ao tentar carregar metadados"
},

View File

@@ -575,7 +575,6 @@
"canvasMerged": "Холст объединен",
"sentToImageToImage": "Отправить в img2img",
"sentToUnifiedCanvas": "Отправлено на Единый холст",
"parametersSet": "Параметры заданы",
"parametersNotSet": "Параметры не заданы",
"metadataLoadFailed": "Не удалось загрузить метаданные",
"serverError": "Ошибка сервера",

View File

@@ -315,7 +315,6 @@
"canvasMerged": "Полотно об'єднане",
"sentToImageToImage": "Надіслати до img2img",
"sentToUnifiedCanvas": "Надіслати на полотно",
"parametersSet": "Параметри задані",
"parametersNotSet": "Параметри не задані",
"metadataLoadFailed": "Не вдалося завантажити метадані",
"serverError": "Помилка сервера",

View File

@@ -487,7 +487,6 @@
"canvasMerged": "画布已合并",
"sentToImageToImage": "已发送到图生图",
"sentToUnifiedCanvas": "已发送到统一画布",
"parametersSet": "参数已设定",
"parametersNotSet": "参数未设定",
"metadataLoadFailed": "加载元数据失败",
"uploadFailedInvalidUploadDesc": "必须是单张的 PNG 或 JPEG 图片",

View File

@@ -33,6 +33,7 @@ const ImageMetadataActions = (props: Props) => {
<MetadataItem metadata={metadata} handlers={handlers.scheduler} />
<MetadataItem metadata={metadata} handlers={handlers.cfgScale} />
<MetadataItem metadata={metadata} handlers={handlers.cfgRescaleMultiplier} />
<MetadataItem metadata={metadata} handlers={handlers.initialImage} />
<MetadataItem metadata={metadata} handlers={handlers.strength} />
<MetadataItem metadata={metadata} handlers={handlers.hrfEnabled} />
<MetadataItem metadata={metadata} handlers={handlers.hrfMethod} />

View File

@@ -189,6 +189,12 @@ export const handlers = {
recaller: recallers.cfgScale,
}),
height: buildHandlers({ getLabel: () => t('metadata.height'), parser: parsers.height, recaller: recallers.height }),
initialImage: buildHandlers({
getLabel: () => t('metadata.initImage'),
parser: parsers.initialImage,
recaller: recallers.initialImage,
renderValue: async (imageDTO) => imageDTO.image_name,
}),
negativePrompt: buildHandlers({
getLabel: () => t('metadata.negativePrompt'),
parser: parsers.negativePrompt,
@@ -405,6 +411,6 @@ export const parseAndRecallAllMetadata = async (metadata: unknown, skip: (keyof
})
);
if (results.some((result) => result.status === 'fulfilled')) {
parameterSetToast(t('toast.parametersSet'));
parameterSetToast(t('toast.parameters'));
}
};

View File

@@ -1,3 +1,4 @@
import { getStore } from 'app/store/nanostores/store';
import {
initialControlNet,
initialIPAdapter,
@@ -57,6 +58,8 @@ import {
isParameterWidth,
} from 'features/parameters/types/parameterSchemas';
import { get, isArray, isString } from 'lodash-es';
import { imagesApi } from 'services/api/endpoints/images';
import type { ImageDTO } from 'services/api/types';
import {
isControlNetModelConfig,
isIPAdapterModelConfig,
@@ -135,6 +138,14 @@ const parseCFGRescaleMultiplier: MetadataParseFunc<ParameterCFGRescaleMultiplier
const parseScheduler: MetadataParseFunc<ParameterScheduler> = (metadata) =>
getProperty(metadata, 'scheduler', isParameterScheduler);
const parseInitialImage: MetadataParseFunc<ImageDTO> = async (metadata) => {
const imageName = await getProperty(metadata, 'init_image', isString);
const imageDTORequest = getStore().dispatch(imagesApi.endpoints.getImageDTO.initiate(imageName));
const imageDTO = await imageDTORequest.unwrap();
imageDTORequest.unsubscribe();
return imageDTO;
};
const parseWidth: MetadataParseFunc<ParameterWidth> = (metadata) => getProperty(metadata, 'width', isParameterWidth);
const parseHeight: MetadataParseFunc<ParameterHeight> = (metadata) =>
@@ -402,6 +413,7 @@ export const parsers = {
cfgScale: parseCFGScale,
cfgRescaleMultiplier: parseCFGRescaleMultiplier,
scheduler: parseScheduler,
initialImage: parseInitialImage,
width: parseWidth,
height: parseHeight,
steps: parseSteps,

View File

@@ -17,6 +17,7 @@ import type {
import { modelSelected } from 'features/parameters/store/actions';
import {
heightRecalled,
initialImageChanged,
setCfgRescaleMultiplier,
setCfgScale,
setImg2imgStrength,
@@ -61,6 +62,7 @@ import {
setRefinerStart,
setRefinerSteps,
} from 'features/sdxl/store/sdxlSlice';
import type { ImageDTO } from 'services/api/types';
const recallPositivePrompt: MetadataRecallFunc<ParameterPositivePrompt> = (positivePrompt) => {
getStore().dispatch(setPositivePrompt(positivePrompt));
@@ -94,6 +96,10 @@ const recallScheduler: MetadataRecallFunc<ParameterScheduler> = (scheduler) => {
getStore().dispatch(setScheduler(scheduler));
};
const recallInitialImage: MetadataRecallFunc<ImageDTO> = async (imageDTO) => {
getStore().dispatch(initialImageChanged(imageDTO));
};
const recallWidth: MetadataRecallFunc<ParameterWidth> = (width) => {
getStore().dispatch(widthRecalled(width));
};
@@ -235,6 +241,7 @@ export const recallers = {
cfgScale: recallCFGScale,
cfgRescaleMultiplier: recallCFGRescaleMultiplier,
scheduler: recallScheduler,
initialImage: recallInitialImage,
width: recallWidth,
height: recallHeight,
steps: recallSteps,

File diff suppressed because one or more lines are too long

View File

@@ -27,6 +27,7 @@ from invokeai.app.invocations.fields import (
OutputField,
UIComponent,
UIType,
WithBoard,
WithMetadata,
WithWorkflow,
)
@@ -105,6 +106,7 @@ __all__ = [
"OutputField",
"UIComponent",
"UIType",
"WithBoard",
"WithMetadata",
"WithWorkflow",
# invokeai.app.invocations.latent

View File

@@ -1 +1 @@
__version__ = "4.0.3"
__version__ = "4.0.4"