Compare commits

...

107 Commits

Author SHA1 Message Date
Hosted Weblate
2c45697f3d translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-04-06 15:19:20 +11:00
psychedelicious
9a0a90e2a2 chore: v4.0.4 2024-04-06 15:15:16 +11:00
psychedelicious
69f17da1a2 fix(nodes): add WithBoard to public API 2024-04-06 15:02:28 +11:00
psychedelicious
4d0a49298c tidy(ui): remove extraneous zod schema 2024-04-06 14:54:12 +11:00
psychedelicious
55f7a7737a feat(ui): shift around init image recall logic
Retrieving the DTO happens as part of the metadata parsing, not recall. This way, we don't show the option to recall a nonexistent image.

This matches the flow for other metadata entities like models - we don't show the model recall button if the model isn't available.
2024-04-06 14:54:12 +11:00
Jennifer Player
adc30045a6 addressed pr feedback 2024-04-06 14:54:12 +11:00
Jennifer Player
fdd0e57976 actually use the schema 2024-04-06 14:54:12 +11:00
Jennifer Player
9ba5ec4b67 fix typo Params set set 2024-04-06 14:54:12 +11:00
Jennifer Player
8a17616bf4 recall initial image from metadata and set to image2image 2024-04-06 14:54:12 +11:00
Jennifer Player
f56b9537cd added initial image to metadata viewer 2024-04-06 14:54:12 +11:00
psychedelicious
a95756f3ed docs: update FAQ.md (shared GPU memory) 2024-04-06 14:35:36 +11:00
psychedelicious
4068e817d6 fix(mm): typing issues in model cache 2024-04-06 14:35:36 +11:00
psychedelicious
a09d705e4c fix(mm): remove vram check
This check prematurely reports insufficient VRAM on Windows. See #6106 for details.
2024-04-06 14:35:36 +11:00
blessedcoolant
540d506ec9 fix: Incorrect default clip vision opt in the node 2024-04-05 15:06:33 -04:00
psychedelicious
e330966020 chore: v4.0.3 2024-04-05 15:32:30 +11:00
symant233
b783679b9f fix: typo, change shouldFitImageSize default value 2024-04-05 15:23:58 +11:00
symant233
d32e557e50 fix: add roundDownToMultiple 2024-04-05 15:23:58 +11:00
symant233
90686c7f9c feat: Unified Canvas Fit Image Size on Drop 2024-04-05 15:23:58 +11:00
Lincoln Stein
4571986c63 fix misplaced lock call 2024-04-05 14:32:18 +11:00
Jennifer Player
fec989f015 navigate to workflow tab when clicking load workflow 2024-04-05 14:16:33 +11:00
Riccardo Giovanetti
b5c048d8bf translationBot(ui): update translation (Italian)
Currently translated at 98.4% (1108 of 1126 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-04-05 13:53:42 +11:00
Alexander Eichhorn
577469be55 translationBot(ui): update translation (German)
Currently translated at 73.3% (826 of 1126 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-04-05 13:53:42 +11:00
Lincoln Stein
812f10730f adjust free vram calculation for models that will be removed by lazy offloading (#6150)
Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-04-04 22:51:12 -04:00
psychedelicious
3006285d13 fix(ui): display refiner models in mm 2024-04-05 09:46:03 +11:00
psychedelicious
5d4a571778 feat(ui): disable mosaic infill in graph builders 2024-04-05 08:49:13 +11:00
psychedelicious
90bdd74f30 chore(ui): typegen 2024-04-05 08:49:13 +11:00
psychedelicious
d6ccd5bc81 feat(nodes): disable mosaic fill
Needs a bit of tweaking, leaving the code in just disabled/commented it out.
2024-04-05 08:49:13 +11:00
psychedelicious
f0b1bb0327 feat(nodes): redo tile infill
The previous algorithm errored if the image wasn't divisible by the tile size. I've reimplemented it from scratch to mitigate this issue.

The new algorithm is simpler. We create a pool of tiles, then use them to create an image composed completely of tiles. If there is any awkwardly sized space on the edge of the image, the tiles are cropped to fit.

Finally, paste the original image over the tile image.

I've added a jupyter notebook to do a smoke test of infilling methods, and 10 test images.

The other infill algorithms can be easily tested with the notebook on the same images, though I didn't set that up yet.

Tested and confirmed this gives results just as good as the earlier infill, though of course they aren't the same due to the change in the algorithm.
2024-04-05 08:49:13 +11:00
psychedelicious
b061db414f tidy(nodes): abstractmethod is noop 2024-04-05 08:49:13 +11:00
blessedcoolant
e55ab5b3a1 ui: Color Infill UI 2024-04-05 08:49:13 +11:00
blessedcoolant
adb7966bb3 ui: intial mosaic infill ui
Need to change color picking.
2024-04-05 08:49:13 +11:00
blessedcoolant
3c195d74a5 fix: bypass edge pixels which cannot transform to tile size
Still need to fix this somehow
2024-04-05 08:49:13 +11:00
blessedcoolant
32a6b758cd wip: Initial Infill Methods Refactor 2024-04-05 08:49:13 +11:00
Jonathan
3659219f46 Fix IdealSizeInvocation (#6145) 2024-04-05 08:38:40 +11:00
blessedcoolant
d284e0567a fix: ip adapter clip selection being broken 2024-04-05 07:49:04 +11:00
psychedelicious
13027891d9 fix(ui): discarding last single canvas image breaks canvas
We need to reset the staging area if we are discarding the last image.
2024-04-04 08:00:08 -04:00
psychedelicious
8a32baf2dc chore: v4.0.2 2024-04-04 15:46:51 +11:00
psychedelicious
8c15d14099 fix: use locale encoding
We have had a few bugs with v4 related to file encodings, especially on Windows.

Windows uses its own character encodings instead of `utf-8`, often `cp1252`. Some characters cannot be decoded using `utf-8`, causing `UnicodeDecodeError`.

There are a couple places where this can cause problems:
- In the installer bootstrap, we install or upgrade `pip` and decode the result, using `subprocess`.

  The input to this includes the user's home dir. In #6105, the user had one of the problematic characters in their username. `subprocess` attempts and fails to decode the username, which crashes the installer.

  To fix this, we need to use `locale.getpreferredencoding()` when executing the command.
- Similarly, in the model install service and config class, we attempt to load a yaml config file. If a problematic character is in the path to the file (which often includes the user's home dir), we can get the same error.

  One example is  #6129 in which the models.yaml migration fails.

  To fix this, we need to open the file with `locale.getpreferredencoding()`.
2024-04-04 15:30:47 +11:00
psychedelicious
38718d8c65 docs: update 020_INSTALL_MANUAL.md, remove conda section 2024-04-04 11:28:09 +11:00
psychedelicious
98ab387e2b docs: update 020_INSTALL_MANUAL.md
Redo the install the package section. It was inaccurate with respect to extra index URLs.
2024-04-04 10:54:23 +11:00
psychedelicious
a0ae2f37d7 docs: update 020_INSTALL_MANUAL.md
Tidy verbiage around the invokeai root and how it is determined
2024-04-04 10:54:23 +11:00
psychedelicious
9c51abb46e fix(config): get root from venv
This logic was a bit wonky. It only selected the `venv` parent if there was already an `invokeai.yaml` file in it. Removed this constraint.
2024-04-04 10:54:23 +11:00
psychedelicious
f887e030bb docs: update 010_INSTALL_AUTOMATED.md
Remove reference to the autodetect GPU device option.
2024-04-04 08:43:17 +11:00
psychedelicious
52b58b4a80 feat(installer): remove extra GPU options
- Remove `CUDA_AND_DML`. This was for onnx, which we have since removed.
- Remove `AUTODETECT`. This option causes problems for windows users, as it falls back on default pypi index resulting in a non-CUDA torch being installed.
- Add more explicit settings for extra index URL, based on the torch website
- Fix bug where `xformers` wasn't installed on linux and/or windows when autodetect was selected
2024-04-04 08:43:17 +11:00
psychedelicious
9fdfd4267c fix(ui): fix model name overflow
Closes #3897
2024-04-04 08:03:30 +11:00
psychedelicious
c4a6d3ddc0 docs: update FAQ for missing models solution
This will be fairly common in v4 updates. The root cause is models not being added to the `models.yaml` file in v3, so we don't correctly migrate the models to the db.

The docs describe how to use `Scan Folder` to restore missing models.
2024-04-04 07:58:11 +11:00
psychedelicious
25bbaa73b9 feat(ui): add inplace option to scan folder install ui 2024-04-04 07:58:11 +11:00
psychedelicious
2383fb93c7 fix(ui): show model install progress as 100 if finished 2024-04-04 07:58:11 +11:00
psychedelicious
63c60e6d63 feat(ui): refresh model scan results on completed model install 2024-04-04 07:58:11 +11:00
psychedelicious
3a10062b53 feat(mm): more reliable mm scan folder
Compare the installed paths to determine if the model is already installed. Fixes an issue where installed models showed up as uninstalled or vice-versa. Related to relative vs absolute path handling.
2024-04-04 07:58:11 +11:00
brandonrising
51ca59c088 Update probe to always use cpu for loading models 2024-04-04 07:34:43 +11:00
psychedelicious
216b34ac44 tests: update model rename test 2024-04-04 07:17:38 +11:00
psychedelicious
7ff2371c07 fix(mm): do not rename model file if model record is renamed
Renaming the model file to the model name introduces unnecessary contraints on model names.

For example, a model name can technically be any length, but a model _filename_ cannot be too long.

There are also constraints on valid characters for filenames which shouldn't be applied to model record names.

I believe the old behaviour is a holdover from the old system.
2024-04-04 07:17:38 +11:00
Mary Hipp
4927d1b7c9 add some test IDs for accordion targeting 2024-04-04 06:35:11 +11:00
psychedelicious
85f53f94f8 feat(mm): include needed vs free in OOM
Gives us a bit more visibility into these errors, which seem to be popping up more frequently with the new MM.
2024-04-04 06:26:15 +11:00
blessedcoolant
7da04b8333 IP-Adapter Safetensor Support (#6041)
## Summary

This PR adds support for IP Adapter safetensor files for direct usage
inside InvokeAI.

# TEST

You can download the [Composition
Adapters](https://huggingface.co/ostris/ip-composition-adapter) which
weren't previously supported in Invoke and try them out. Every other IP
Adapter model should work too.

If you pick a Safetensor IP Adapter model, you will also need to set
ViT-H or ViT-G next to it. This is a raw implementation. Can refine it
further based on feedback.

Prompt: `Spiderman holding a bunny` -- Exact same composition as the
adapter image.

![opera_UHlo1IyXPT](https://github.com/invoke-ai/InvokeAI/assets/54517381/00bf9f0b-149f-478d-87ca-3252b68d1054)
2024-04-03 22:46:45 +05:30
blessedcoolant
be574cb764 fix: incorrect suffix check in ip adapter checkpoint file 2024-04-03 22:38:28 +05:30
blessedcoolant
5f01de1993 chore: ruff and lint fixes 2024-04-03 20:41:51 +05:30
blessedcoolant
cf88bd3294 Merge branch 'main' into checkpoint-ip-adapter 2024-04-03 20:30:02 +05:30
blessedcoolant
e574815413 chore: clean up merge conflicts 2024-04-03 20:28:00 +05:30
blessedcoolant
fb293dcd84 Merge branch 'checkpoint-ip-adapter' of https://github.com/blessedcoolant/InvokeAI into checkpoint-ip-adapter 2024-04-03 20:23:07 +05:30
blessedcoolant
414851f2f0 fix: raise and present the runtime error from the exception 2024-04-03 20:21:50 +05:30
blessedcoolant
2dcbb7223b fix: use Path for ip_adapter_ckpt_path instead of str 2024-04-03 20:21:03 +05:30
psychedelicious
132aadca15 fix(ui): cancel batch status button greyed out
Closes #6110
2024-04-03 08:23:31 -04:00
blessedcoolant
14a9f74b17 cleanup: use load_file of safetensors directly for loading ip adapters 2024-04-03 12:40:13 +05:30
blessedcoolant
1372ef15b3 fix: Fail when unexpected keys are found in IP Adapter models 2024-04-03 12:40:11 +05:30
blessedcoolant
dc1681a0de fix: clip vision model auto param
Setting to 'auto' works only for InvokeAI config and auto detects the SD model but will override if user explicitly sets it. If auto used with checkpoint models, we raise an error. Checkpoints will always need to set to non-auto.
2024-04-03 12:40:11 +05:30
blessedcoolant
be1212de9a fix: Raise a better error when incorrect CLIP Vision model is used 2024-04-03 12:40:10 +05:30
blessedcoolant
a14ce0edab chore: rename IPAdapterDiffusersConfig to IPAdapterInvokeAIConfig 2024-04-03 12:40:10 +05:30
blessedcoolant
4a0dfc3b2d ui: improve the clip vision model picker layout 2024-04-03 12:40:08 +05:30
blessedcoolant
91a70c8d07 feat: Let users pick CLIP Vision model for Checkpoint IP Adapters 2024-04-03 12:40:05 +05:30
blessedcoolant
936b99bd3c chore: improve types in ip_adapter backend file 2024-04-03 12:40:02 +05:30
blessedcoolant
9ff729a7e6 fix: Update ModelView to accommodate for the new config changes to IP Adapter 2024-04-03 12:40:01 +05:30
blessedcoolant
5829b87b8d ui: update the new ip adapter configs on the frontend 2024-04-03 12:40:01 +05:30
blessedcoolant
79f7b61dfe fix: cleanup across various ip adapter files 2024-04-03 12:39:52 +05:30
blessedcoolant
b1c8266e22 feat: add base model recognition for ip adapter safetensor files 2024-04-03 12:39:52 +05:30
blessedcoolant
67afb1763e wip: Initial implementation of safetensor support for IP Adapter 2024-04-03 12:39:52 +05:30
blessedcoolant
8584171a49 docs: fix broken link (#6116)
## Summary

Fix a broken link

## Related Issues / Discussions


https://discord.com/channels/1020123559063990373/1049495067846524939/1224970148058763376

## QA Instructions

n/a

## Merge Plan

n/a

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_ n/a
- [x] _Documentation added / updated (if applicable)_
2024-04-03 12:35:17 +05:30
psychedelicious
50951439bd docs: fix broken link 2024-04-03 17:36:15 +11:00
psychedelicious
7b93b554d7 fix(ui): add default coherence mode to generation slice migration
The valid values for this parameter changed when inpainting changed to gradient denoise. The generation slice's redux migration wasn't updated, resulting in a generation error until you change the setting or reset web UI.
2024-04-03 08:46:31 +11:00
brandonrising
21b9e96a45 Run typegen, bump version 2024-04-02 10:14:39 -04:00
psychedelicious
b6ad33ac1a perf(ui): reduce canvas max history to 100
This should further insulate canvas from excessive GCs.
2024-04-02 08:48:18 -04:00
psychedelicious
69ec14c7bb perf(ui): use rfdc for deep copying of objects
- Add and use more performant `deepClone` method for deep copying throughout the UI.

Benchmarks indicate the Really Fast Deep Clone library (`rfdc`) is the best all-around way to deep-clone large objects.

This is particularly relevant in canvas. When drawing or otherwise manipulating canvas objects, we need to do a lot of deep cloning of the canvas layer state objects.

Previously, we were using lodash's `cloneDeep`.

I did some fairly realistic benchmarks with a handful of deep-cloning algorithms/libraries (including the native `structuredClone`). I used a snapshot of the canvas state as the data to be copied:

On Chromium, `rfdc` is by far the fastest, over an order of magnitude faster than `cloneDeep`.

On FF, `fastest-json-copy` and `recursiveDeepCopy` are even faster, but are rather limited in data types. `rfdc`, while only half as fast as the former 2, is still nearly an order of magnitude faster than `cloneDeep`.

On Safari, `structuredClone` is the fastest, about 2x as fast as `cloneDeep`. `rfdc` is only 30% faster than `cloneDeep`.

`rfdc`'s peak memory usage is about 10% more than `cloneDeep` on Chrome. I couldn't get memory measurements from FF and Safari, but let's just assume the memory usage is similar relative to the other algos.

Overall, `rfdc` is the best choice for a single algo for all browsers. It's definitely the best for Chromium, by far the most popular desktop browser and thus our primary target.

A future enhancement might be to detect the browser and use that to determine which algorithm to use.
2024-04-02 08:48:18 -04:00
psychedelicious
a6c91979af fix(ui): prevent canvas history leak
There were two ways the canvas history could grow too large (past the `MAX_HISTORY` setting):
- Sometimes, when pushing to history, we didn't `shift` an item out when we exceeded the max history size.
- If the max history size was exceeded by more than one item, we still only `shift`, which removes one item.

These issue could appear after an extended canvas session, resulting in a memory leak and recurring major GCs/browser performance issues.

To fix these issues, a helper function is added for both past and future layer states, which uses slicing to ensure history never grows too large.
2024-04-02 08:48:18 -04:00
psychedelicious
e655399324 fix(config): handle windows paths in invokeai.yaml migration for legacy_conf_dir
The logic incorrectly set the `legacy_conf_dir` on windows, where the slashes go the other direction. Handle this case and update tests to catch it.
2024-04-02 08:06:59 -04:00
psychedelicious
f75de8a35c feat(db): add migration 9 - empty session queue
Empties the session queue. This is done to prevent any lingering session queue items from causing pydantic errors due to changed schemas.
2024-04-02 13:25:14 +11:00
psychedelicious
d4be945dde fix(nodes): gracefully handle custom nodes init error
Previously, exceptions raised as custom nodes are initialized were fatal errors, causing the app to exit.

With this change, any error on import is caught and the error message printed. App continues to start up without the node.

For example, a custom node that isn't updated for v4.0.0 may raise an error on import if it is attempting to import things that no longer exist.
2024-04-02 13:25:14 +11:00
Васянатор
ab33acad5c translationBot(ui): update translation (Russian)
Currently translated at 99.5% (1119 of 1124 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-04-02 13:15:11 +11:00
Riccardo Giovanetti
8f3d7b2946 translationBot(ui): update translation (Italian)
Currently translated at 98.3% (1106 of 1124 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.3% (1104 of 1122 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-04-02 13:15:11 +11:00
Alexander Eichhorn
54a30f66cb translationBot(ui): update translation (German)
Currently translated at 72.4% (813 of 1122 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-04-02 13:15:11 +11:00
psychedelicious
a105da6304 chore: v4.0.0 2024-04-02 09:10:53 +11:00
psychedelicious
4049217728 feat(db): back up database before running migrations
Just in case.
2024-04-02 09:10:53 +11:00
blessedcoolant
23390f1516 cleanup: use load_file of safetensors directly for loading ip adapters 2024-04-01 06:37:38 +05:30
blessedcoolant
298cae5bb9 Update schema.ts 2024-03-29 12:41:10 +05:30
blessedcoolant
cd52e99bb9 Merge branch 'main' into checkpoint-ip-adapter 2024-03-29 12:39:53 +05:30
blessedcoolant
6e4c2d3685 fix: Fail when unexpected keys are found in IP Adapter models 2024-03-29 12:34:56 +05:30
blessedcoolant
56ed697c23 fix: clip vision model auto param
Setting to 'auto' works only for InvokeAI config and auto detects the SD model but will override if user explicitly sets it. If auto used with checkpoint models, we raise an error. Checkpoints will always need to set to non-auto.
2024-03-29 12:12:16 +05:30
blessedcoolant
cd078b1865 fix: Raise a better error when incorrect CLIP Vision model is used 2024-03-29 11:58:10 +05:30
blessedcoolant
0d8b535131 chore: rename IPAdapterDiffusersConfig to IPAdapterInvokeAIConfig 2024-03-29 11:50:18 +05:30
blessedcoolant
1a93f56d06 ui: improve the clip vision model picker layout 2024-03-27 22:11:07 +05:30
blessedcoolant
16c366a060 feat: Let users pick CLIP Vision model for Checkpoint IP Adapters 2024-03-27 22:08:23 +05:30
blessedcoolant
688a0f30bb chore: improve types in ip_adapter backend file 2024-03-27 22:08:23 +05:30
blessedcoolant
318bc938fe fix: Update ModelView to accommodate for the new config changes to IP Adapter 2024-03-27 22:08:23 +05:30
blessedcoolant
c4a856de4a ui: update the new ip adapter configs on the frontend 2024-03-27 22:08:23 +05:30
blessedcoolant
4ed2bf53ca fix: cleanup across various ip adapter files 2024-03-27 22:08:14 +05:30
blessedcoolant
60bf0caca3 feat: add base model recognition for ip adapter safetensor files 2024-03-27 22:08:14 +05:30
blessedcoolant
b013d0e064 wip: Initial implementation of safetensor support for IP Adapter 2024-03-27 22:08:14 +05:30
116 changed files with 1710 additions and 707 deletions

View File

@@ -18,12 +18,47 @@ Note that any releases marked as _pre-release_ are in a beta state. You may expe
The Model Manager tab in the UI provides a few ways to install models, including using your already-downloaded models. You'll see a popup directing you there on first startup. For more information, see the [model install docs].
## Missing models after updating to v4
If you find some models are missing after updating to v4, it's likely they weren't correctly registered before the update and didn't get picked up in the migration.
You can use the `Scan Folder` tab in the Model Manager UI to fix this. The models will either be in the old, now-unused `autoimport` folder, or your `models` folder.
- Find and copy your install's old `autoimport` folder path, install the main install folder.
- Go to the Model Manager and click `Scan Folder`.
- Paste the path and scan.
- IMPORTANT: Uncheck `Inplace install`.
- Click `Install All` to install all found models, or just install the models you want.
Next, find and copy your install's `models` folder path (this could be your custom models folder path, or the `models` folder inside the main install folder).
Follow the same steps to scan and import the missing models.
## Slow generation
- Check the [system requirements] to ensure that your system is capable of generating images.
- Check the `ram` setting in `invokeai.yaml`. This setting tells Invoke how much of your system RAM can be used to cache models. Having this too high or too low can slow things down. That said, it's generally safest to not set this at all and instead let Invoke manage it.
- Check the `vram` setting in `invokeai.yaml`. This setting tells Invoke how much of your GPU VRAM can be used to cache models. Counter-intuitively, if this setting is too high, Invoke will need to do a lot of shuffling of models as it juggles the VRAM cache and the currently-loaded model. The default value of 0.25 is generally works well for GPUs without 16GB or more VRAM. Even on a 24GB card, the default works well.
- Check that your generations are happening on your GPU (if you have one). InvokeAI will log what is being used for generation upon startup. If your GPU isn't used, re-install to ensure the correct versions of torch get installed.
- If you are on Windows, you may have exceeded your GPU's VRAM capacity and are using slower [shared GPU memory](#shared-gpu-memory-windows). There's a guide to opt out of this behaviour in the linked FAQ entry.
## Shared GPU Memory (Windows)
!!! tip "Nvidia GPUs with driver 536.40"
This only applies to current Nvidia cards with driver 536.40 or later, released in June 2023.
When the GPU doesn't have enough VRAM for a task, Windows is able to allocate some of its CPU RAM to the GPU. This is much slower than VRAM, but it does allow the system to generate when it otherwise might no have enough VRAM.
When shared GPU memory is used, generation slows down dramatically - but at least it doesn't crash.
If you'd like to opt out of this behavior and instead get an error when you exceed your GPU's VRAM, follow [this guide from Nvidia](https://nvidia.custhelp.com/app/answers/detail/a_id/5490).
Here's how to get the python path required in the linked guide:
- Run `invoke.bat`.
- Select option 2 for developer console.
- At least one python path will be printed. Copy the path that includes your invoke installation directory (typically the first).
## Installer cannot find python (Windows)

View File

@@ -44,7 +44,7 @@ The installation process is simple, with a few prompts:
- Select the version to install. Unless you have a specific reason to install a specific version, select the default (the latest version).
- Select location for the install. Be sure you have enough space in this folder for the base application, as described in the [installation requirements].
- Select a GPU device. If you are unsure, you can let the installer figure it out.
- Select a GPU device.
!!! info "Slow Installation"

View File

@@ -6,11 +6,7 @@
## Introduction
!!! tip "Conda"
As of InvokeAI v2.3.0 installation using the `conda` package manager is no longer being supported. It will likely still work, but we are not testing this installation method.
InvokeAI is distributed as a python package on PyPI, installable with `pip`. There are a few things that are handled by the installer that you'll need to manage manually, described in this guide.
InvokeAI is distributed as a python package on PyPI, installable with `pip`. There are a few things that are handled by the installer and launcher that you'll need to manage manually, described in this guide.
### Requirements
@@ -40,11 +36,11 @@ Before you start, go through the [installation requirements].
1. Enter the root (invokeai) directory and create a virtual Python environment within it named `.venv`.
!!! info "Virtual Environment Location"
!!! warning "Virtual Environment Location"
While you may create the virtual environment anywhere in the file system, we recommend that you create it within the root directory as shown here. This allows the application to automatically detect its data directories.
If you choose a different location for the venv, then you must set the `INVOKEAI_ROOT` environment variable or pass the directory using the `--root` CLI arg.
If you choose a different location for the venv, then you _must_ set the `INVOKEAI_ROOT` environment variable or specify the root directory using the `--root` CLI arg.
```terminal
cd $INVOKEAI_ROOT
@@ -81,31 +77,23 @@ Before you start, go through the [installation requirements].
python3 -m pip install --upgrade pip
```
1. Install the InvokeAI Package. The `--extra-index-url` option is used to select the correct `torch` backend:
1. Install the InvokeAI Package. The base command is `pip install InvokeAI --use-pep517`, but you may need to change this depending on your system and the desired features.
=== "CUDA (NVidia)"
- You may need to provide an [extra index URL]. Select your platform configuration using [this tool on the PyTorch website]. Copy the `--extra-index-url` string from this and append it to your install command.
```bash
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
!!! example "Install with an extra index URL"
=== "ROCm (AMD)"
```bash
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
```bash
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6
```
- If you have a CUDA GPU and want to install with `xformers`, you need to add an option to the package name. Note that `xformers` is not necessary. PyTorch includes an implementation of the SDP attention algorithm with the same performance.
=== "CPU (Intel Macs & non-GPU systems)"
!!! example "Install with `xformers`"
```bash
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
```
=== "MPS (Apple Silicon)"
```bash
pip install InvokeAI --use-pep517
```
```bash
pip install "InvokeAI[xformers]" --use-pep517
```
1. Deactivate and reactivate your runtime directory so that the invokeai-specific commands become available in the environment:
@@ -126,37 +114,6 @@ Before you start, go through the [installation requirements].
Run `invokeai-web` to start the UI. You must activate the virtual environment before running the app.
If the virtual environment you selected is NOT inside `INVOKEAI_ROOT`, then you must specify the path to the root directory by adding
`--root_dir \path\to\invokeai`.
!!! warning
!!! tip
You can permanently set the location of the runtime directory
by setting the environment variable `INVOKEAI_ROOT` to the
path of the directory. As mentioned previously, this is
recommended if your virtual environment is located outside of
your runtime directory.
## Unsupported Conda Install
Congratulations, you found the "secret" Conda installation instructions. If you really **really** want to use Conda with InvokeAI, you can do so using this unsupported recipe:
```sh
mkdir ~/invokeai
conda create -n invokeai python=3.11
conda activate invokeai
# Adjust this as described above for the appropriate torch backend
pip install InvokeAI[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
invokeai-web --root ~/invokeai
```
The `pip install` command shown in this recipe is for Linux/Windows
systems with an NVIDIA GPU. See step (6) above for the command to use
with other platforms/GPU combinations. If you don't wish to pass the
`--root` argument to `invokeai` with each launch, you may set the
environment variable `INVOKEAI_ROOT` to point to the installation directory.
Note that if you run into problems with the Conda installation, the InvokeAI
staff will **not** be able to help you out. Caveat Emptor!
[installation requirements]: INSTALL_REQUIREMENTS.md
If the virtual environment is _not_ inside the root directory, then you _must_ specify the path to the root directory with `--root_dir \path\to\invokeai` or the `INVOKEAI_ROOT` environment variable.

View File

@@ -32,5 +32,5 @@ As described in the [frontend dev toolchain] docs, you can run the UI using a de
[Fork and clone]: https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo
[InvokeAI repo]: https://github.com/invoke-ai/InvokeAI
[frontend dev toolchain]: ../contributing/frontend/OVERVIEW.md
[manual installation]: installation/020_INSTALL_MANUAL.md
[manual installation]: ./020_INSTALL_MANUAL.md
[editable install]: https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-e

View File

@@ -3,6 +3,7 @@
InvokeAI installer script
"""
import locale
import os
import platform
import re
@@ -316,7 +317,9 @@ def upgrade_pip(venv_path: Path) -> str | None:
python = str(venv_path.expanduser().resolve() / python)
try:
result = subprocess.check_output([python, "-m", "pip", "install", "--upgrade", "pip"]).decode()
result = subprocess.check_output([python, "-m", "pip", "install", "--upgrade", "pip"]).decode(
encoding=locale.getpreferredencoding()
)
except subprocess.CalledProcessError as e:
print(e)
result = None
@@ -404,22 +407,29 @@ def get_torch_source() -> Tuple[str | None, str | None]:
# device can be one of: "cuda", "rocm", "cpu", "cuda_and_dml, autodetect"
device = select_gpu()
# The correct extra index URLs for torch are inconsistent, see https://pytorch.org/get-started/locally/#start-locally
url = None
optional_modules = "[onnx]"
optional_modules: str | None = None
if OS == "Linux":
if device.value == "rocm":
url = "https://download.pytorch.org/whl/rocm5.6"
elif device.value == "cpu":
url = "https://download.pytorch.org/whl/cpu"
elif device.value == "cuda":
# CUDA uses the default PyPi index
optional_modules = "[xformers,onnx-cuda]"
elif OS == "Windows":
if device.value == "cuda":
url = "https://download.pytorch.org/whl/cu121"
optional_modules = "[xformers,onnx-cuda]"
if device.value == "cuda_and_dml":
url = "https://download.pytorch.org/whl/cu121"
optional_modules = "[xformers,onnx-directml]"
elif device.value == "cpu":
# CPU uses the default PyPi index, no optional modules
pass
elif OS == "Darwin":
# macOS uses the default PyPi index, no optional modules
pass
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13
# Fall back to defaults
return (url, optional_modules)

View File

@@ -207,10 +207,8 @@ def dest_path(dest: Optional[str | Path] = None) -> Path | None:
class GpuType(Enum):
CUDA = "cuda"
CUDA_AND_DML = "cuda_and_dml"
ROCM = "rocm"
CPU = "cpu"
AUTODETECT = "autodetect"
def select_gpu() -> GpuType:
@@ -226,10 +224,6 @@ def select_gpu() -> GpuType:
"an [gold1 b]NVIDIA[/] GPU (using CUDA™)",
GpuType.CUDA,
)
nvidia_with_dml = (
"an [gold1 b]NVIDIA[/] GPU (using CUDA™, and DirectML™ for ONNX) -- ALPHA",
GpuType.CUDA_AND_DML,
)
amd = (
"an [gold1 b]AMD[/] GPU (using ROCm™)",
GpuType.ROCM,
@@ -238,27 +232,19 @@ def select_gpu() -> GpuType:
"Do not install any GPU support, use CPU for generation (slow)",
GpuType.CPU,
)
autodetect = (
"I'm not sure what to choose",
GpuType.AUTODETECT,
)
options = []
if OS == "Windows":
options = [nvidia, nvidia_with_dml, cpu]
options = [nvidia, cpu]
if OS == "Linux":
options = [nvidia, amd, cpu]
elif OS == "Darwin":
options = [cpu]
# future CoreML?
if len(options) == 1:
print(f'Your platform [gold1]{OS}-{ARCH}[/] only supports the "{options[0][1]}" driver. Proceeding with that.')
return options[0][1]
# "I don't know" is always added the last option
options.append(autodetect) # type: ignore
options = {str(i): opt for i, opt in enumerate(options, 1)}
console.rule(":space_invader: GPU (Graphics Card) selection :space_invader:")
@@ -292,11 +278,6 @@ def select_gpu() -> GpuType:
),
)
if options[choice][1] is GpuType.AUTODETECT:
console.print(
"No problem. We will install CUDA support first :crossed_fingers: If Invoke does not detect a GPU, please re-run the installer and select one of the other GPU types."
)
return options[choice][1]

View File

@@ -12,7 +12,7 @@ from pydantic import BaseModel, Field
from invokeai.app.invocations.upscale import ESRGAN_MODELS
from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus
from invokeai.backend.image_util.patchmatch import PatchMatch
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch
from invokeai.backend.image_util.safety_checker import SafetyChecker
from invokeai.backend.util.logging import logging
from invokeai.version import __version__
@@ -100,7 +100,7 @@ async def get_app_deps() -> AppDependencyVersions:
@app_router.get("/config", operation_id="get_config", status_code=200, response_model=AppConfig)
async def get_config() -> AppConfig:
infill_methods = ["tile", "lama", "cv2"]
infill_methods = ["tile", "lama", "cv2", "color"] # TODO: add mosaic back
if PatchMatch.patchmatch_available():
infill_methods.append("patchmatch")

View File

@@ -219,28 +219,13 @@ async def scan_for_models(
non_core_model_paths = [p for p in found_model_paths if not p.is_relative_to(core_models_path)]
installed_models = ApiDependencies.invoker.services.model_manager.store.search_by_attr()
resolved_installed_model_paths: list[str] = []
installed_model_sources: list[str] = []
# This call lists all installed models.
for model in installed_models:
path = pathlib.Path(model.path)
# If the model has a source, we need to add it to the list of installed sources.
if model.source:
installed_model_sources.append(model.source)
# If the path is not absolute, that means it is in the app models directory, and we need to join it with
# the models path before resolving.
if not path.is_absolute():
resolved_installed_model_paths.append(str(pathlib.Path(models_path, path).resolve()))
continue
resolved_installed_model_paths.append(str(path.resolve()))
scan_results: list[FoundModel] = []
# Check if the model is installed by comparing the resolved paths, appending to the scan result.
# Check if the model is installed by comparing paths, appending to the scan result.
for p in non_core_model_paths:
path = str(p)
is_installed = path in resolved_installed_model_paths or path in installed_model_sources
is_installed = any(str(models_path / m.path) == path for m in installed_models)
found_model = FoundModel(path=path, is_installed=is_installed)
scan_results.append(found_model)
except Exception as e:

View File

@@ -3,6 +3,7 @@ Invoke-managed custom node loader. See README.md for more information.
"""
import sys
import traceback
from importlib.util import module_from_spec, spec_from_file_location
from pathlib import Path
@@ -41,11 +42,15 @@ for d in Path(__file__).parent.iterdir():
logger.info(f"Loading node pack {module_name}")
module = module_from_spec(spec)
sys.modules[spec.name] = module
spec.loader.exec_module(module)
try:
module = module_from_spec(spec)
sys.modules[spec.name] = module
spec.loader.exec_module(module)
loaded_count += 1
loaded_count += 1
except Exception:
full_error = traceback.format_exc()
logger.error(f"Failed to load node pack {module_name}:\n{full_error}")
del init, module_name

View File

@@ -1,154 +1,91 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from abc import abstractmethod
from typing import Literal, get_args
import math
from typing import Literal, Optional, get_args
import numpy as np
from PIL import Image, ImageOps
from PIL import Image
from invokeai.app.invocations.fields import ColorField, ImageField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.app.util.misc import SEED_MAX
from invokeai.backend.image_util.cv2_inpaint import cv2_inpaint
from invokeai.backend.image_util.lama import LaMA
from invokeai.backend.image_util.patchmatch import PatchMatch
from invokeai.backend.image_util.infill_methods.cv2_inpaint import cv2_inpaint
from invokeai.backend.image_util.infill_methods.lama import LaMA
from invokeai.backend.image_util.infill_methods.mosaic import infill_mosaic
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch, infill_patchmatch
from invokeai.backend.image_util.infill_methods.tile import infill_tile
from invokeai.backend.util.logging import InvokeAILogger
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, WithBoard, WithMetadata
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
logger = InvokeAILogger.get_logger()
def infill_methods() -> list[str]:
methods = ["tile", "solid", "lama", "cv2"]
def get_infill_methods():
methods = Literal["tile", "color", "lama", "cv2"] # TODO: add mosaic back
if PatchMatch.patchmatch_available():
methods.insert(0, "patchmatch")
methods = Literal["patchmatch", "tile", "color", "lama", "cv2"] # TODO: add mosaic back
return methods
INFILL_METHODS = Literal[tuple(infill_methods())]
INFILL_METHODS = get_infill_methods()
DEFAULT_INFILL_METHOD = "patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
def infill_lama(im: Image.Image) -> Image.Image:
lama = LaMA()
return lama(im)
class InfillImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Base class for invocations that preprocess images for Infilling"""
image: ImageField = InputField(description="The image to process")
def infill_patchmatch(im: Image.Image) -> Image.Image:
if im.mode != "RGBA":
return im
@abstractmethod
def infill(self, image: Image.Image) -> Image.Image:
"""Infill the image with the specified method"""
pass
# Skip patchmatch if patchmatch isn't available
if not PatchMatch.patchmatch_available():
return im
def load_image(self, context: InvocationContext) -> tuple[Image.Image, bool]:
"""Process the image to have an alpha channel before being infilled"""
image = context.images.get_pil(self.image.image_name)
has_alpha = True if image.mode == "RGBA" else False
return image, has_alpha
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though)
im_patched_np = PatchMatch.inpaint(im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3)
im_patched = Image.fromarray(im_patched_np, mode="RGB")
return im_patched
def invoke(self, context: InvocationContext) -> ImageOutput:
# Retrieve and process image to be infilled
input_image, has_alpha = self.load_image(context)
# If the input image has no alpha channel, return it
if has_alpha is False:
return ImageOutput.build(context.images.get_dto(self.image.image_name))
def infill_cv2(im: Image.Image) -> Image.Image:
return cv2_inpaint(im)
# Perform Infill action
infilled_image = self.infill(input_image)
# Create ImageDTO for Infilled Image
infilled_image_dto = context.images.save(image=infilled_image)
def get_tile_images(image: np.ndarray, width=8, height=8):
_nrows, _ncols, depth = image.shape
_strides = image.strides
nrows, _m = divmod(_nrows, height)
ncols, _n = divmod(_ncols, width)
if _m != 0 or _n != 0:
return None
return np.lib.stride_tricks.as_strided(
np.ravel(image),
shape=(nrows, ncols, height, width, depth),
strides=(height * _strides[0], width * _strides[1], *_strides),
writeable=False,
)
def tile_fill_missing(im: Image.Image, tile_size: int = 16, seed: Optional[int] = None) -> Image.Image:
# Only fill if there's an alpha layer
if im.mode != "RGBA":
return im
a = np.asarray(im, dtype=np.uint8)
tile_size_tuple = (tile_size, tile_size)
# Get the image as tiles of a specified size
tiles = get_tile_images(a, *tile_size_tuple).copy()
# Get the mask as tiles
tiles_mask = tiles[:, :, :, :, 3]
# Find any mask tiles with any fully transparent pixels (we will be replacing these later)
tmask_shape = tiles_mask.shape
tiles_mask = tiles_mask.reshape(math.prod(tiles_mask.shape))
n, ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:])
tiles_mask = tiles_mask > 0
tiles_mask = tiles_mask.reshape((n, ny)).all(axis=1)
# Get RGB tiles in single array and filter by the mask
tshape = tiles.shape
tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), *tiles.shape[2:]))
filtered_tiles = tiles_all[tiles_mask]
if len(filtered_tiles) == 0:
return im
# Find all invalid tiles and replace with a random valid tile
replace_count = (tiles_mask == False).sum() # noqa: E712
rng = np.random.default_rng(seed=seed)
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[rng.choice(filtered_tiles.shape[0], replace_count), :, :, :]
# Convert back to an image
tiles_all = tiles_all.reshape(tshape)
tiles_all = tiles_all.swapaxes(1, 2)
st = tiles_all.reshape(
(
math.prod(tiles_all.shape[0:2]),
math.prod(tiles_all.shape[2:4]),
tiles_all.shape[4],
)
)
si = Image.fromarray(st, mode="RGBA")
return si
# Return Infilled Image
return ImageOutput.build(infilled_image_dto)
@invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2")
class InfillColorInvocation(BaseInvocation, WithMetadata, WithBoard):
class InfillColorInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image with a solid color"""
image: ImageField = InputField(description="The image to infill")
color: ColorField = InputField(
default=ColorField(r=127, g=127, b=127, a=255),
description="The color to use to infill",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name)
def infill(self, image: Image.Image):
solid_bg = Image.new("RGBA", image.size, self.color.tuple())
infilled = Image.alpha_composite(solid_bg, image.convert("RGBA"))
infilled.paste(image, (0, 0), image.split()[-1])
image_dto = context.images.save(image=infilled)
return ImageOutput.build(image_dto)
return infilled
@invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.3")
class InfillTileInvocation(BaseInvocation, WithMetadata, WithBoard):
class InfillTileInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image with tiles of the image"""
image: ImageField = InputField(description="The image to infill")
tile_size: int = InputField(default=32, ge=1, description="The tile size (px)")
seed: int = InputField(
default=0,
@@ -157,92 +94,74 @@ class InfillTileInvocation(BaseInvocation, WithMetadata, WithBoard):
description="The seed to use for tile generation (omit for random)",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name)
infilled = tile_fill_missing(image.copy(), seed=self.seed, tile_size=self.tile_size)
infilled.paste(image, (0, 0), image.split()[-1])
image_dto = context.images.save(image=infilled)
return ImageOutput.build(image_dto)
def infill(self, image: Image.Image):
output = infill_tile(image, seed=self.seed, tile_size=self.tile_size)
return output.infilled
@invocation(
"infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2"
)
class InfillPatchMatchInvocation(BaseInvocation, WithMetadata, WithBoard):
class InfillPatchMatchInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image using the PatchMatch algorithm"""
image: ImageField = InputField(description="The image to infill")
downscale: float = InputField(default=2.0, gt=0, description="Run patchmatch on downscaled image to speedup infill")
resample_mode: PIL_RESAMPLING_MODES = InputField(default="bicubic", description="The resampling mode")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name).convert("RGBA")
def infill(self, image: Image.Image):
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
infill_image = image.copy()
width = int(image.width / self.downscale)
height = int(image.height / self.downscale)
infill_image = infill_image.resize(
infilled = image.resize(
(width, height),
resample=resample_mode,
)
if PatchMatch.patchmatch_available():
infilled = infill_patchmatch(infill_image)
else:
raise ValueError("PatchMatch is not available on this system")
infilled = infill_patchmatch(image)
infilled = infilled.resize(
(image.width, image.height),
resample=resample_mode,
)
infilled.paste(image, (0, 0), mask=image.split()[-1])
# image.paste(infilled, (0, 0), mask=image.split()[-1])
image_dto = context.images.save(image=infilled)
return ImageOutput.build(image_dto)
return infilled
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2")
class LaMaInfillInvocation(BaseInvocation, WithMetadata, WithBoard):
class LaMaInfillInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image using the LaMa model"""
image: ImageField = InputField(description="The image to infill")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name)
# Downloads the LaMa model if it doesn't already exist
download_with_progress_bar(
name="LaMa Inpainting Model",
url="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
dest_path=context.config.get().models_path / "core/misc/lama/lama.pt",
)
infilled = infill_lama(image.copy())
image_dto = context.images.save(image=infilled)
return ImageOutput.build(image_dto)
def infill(self, image: Image.Image):
lama = LaMA()
return lama(image)
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2")
class CV2InfillInvocation(BaseInvocation, WithMetadata, WithBoard):
class CV2InfillInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image using OpenCV Inpainting"""
def infill(self, image: Image.Image):
return cv2_inpaint(image)
# @invocation(
# "infill_mosaic", title="Mosaic Infill", tags=["image", "inpaint", "outpaint"], category="inpaint", version="1.0.0"
# )
class MosaicInfillInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image with a mosaic pattern drawing colors from the rest of the image"""
image: ImageField = InputField(description="The image to infill")
tile_width: int = InputField(default=64, description="Width of the tile")
tile_height: int = InputField(default=64, description="Height of the tile")
min_color: ColorField = InputField(
default=ColorField(r=0, g=0, b=0, a=255),
description="The min threshold for color",
)
max_color: ColorField = InputField(
default=ColorField(r=255, g=255, b=255, a=255),
description="The max threshold for color",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name)
infilled = infill_cv2(image.copy())
image_dto = context.images.save(image=infilled)
return ImageOutput.build(image_dto)
def infill(self, image: Image.Image):
return infill_mosaic(image, (self.tile_width, self.tile_height), self.min_color.tuple(), self.max_color.tuple())

View File

@@ -1,21 +1,22 @@
from builtins import float
from typing import List, Union
from typing import List, Literal, Union
from pydantic import BaseModel, Field, field_validator, model_validator
from typing_extensions import Self
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, IPAdapterConfig, ModelType
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
IPAdapterCheckpointConfig,
IPAdapterInvokeAIConfig,
ModelType,
)
class IPAdapterField(BaseModel):
@@ -48,12 +49,15 @@ class IPAdapterOutput(BaseInvocationOutput):
ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter")
CLIP_VISION_MODEL_MAP = {"ViT-H": "ip_adapter_sd_image_encoder", "ViT-G": "ip_adapter_sdxl_image_encoder"}
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.2.2")
class IPAdapterInvocation(BaseInvocation):
"""Collects IP-Adapter info to pass to other nodes."""
# Inputs
image: Union[ImageField, List[ImageField]] = InputField(description="The IP-Adapter image prompt(s).")
image: Union[ImageField, List[ImageField]] = InputField(description="The IP-Adapter image prompt(s).", ui_order=1)
ip_adapter_model: ModelIdentifierField = InputField(
description="The IP-Adapter model.",
title="IP-Adapter Model",
@@ -61,7 +65,11 @@ class IPAdapterInvocation(BaseInvocation):
ui_order=-1,
ui_type=UIType.IPAdapterModel,
)
clip_vision_model: Literal["ViT-H", "ViT-G"] = InputField(
description="CLIP Vision model to use. Overrides model settings. Mandatory for checkpoint models.",
default="ViT-H",
ui_order=2,
)
weight: Union[float, List[float]] = InputField(
default=1, description="The weight given to the IP-Adapter", title="Weight"
)
@@ -86,10 +94,16 @@ class IPAdapterInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> IPAdapterOutput:
# Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model.
ip_adapter_info = context.models.get_config(self.ip_adapter_model.key)
assert isinstance(ip_adapter_info, IPAdapterConfig)
image_encoder_model_id = ip_adapter_info.image_encoder_model_id
image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip()
assert isinstance(ip_adapter_info, (IPAdapterInvokeAIConfig, IPAdapterCheckpointConfig))
if isinstance(ip_adapter_info, IPAdapterInvokeAIConfig):
image_encoder_model_id = ip_adapter_info.image_encoder_model_id
image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip()
else:
image_encoder_model_name = CLIP_VISION_MODEL_MAP[self.clip_vision_model]
image_encoder_model = self._get_image_encoder(context, image_encoder_model_name)
return IPAdapterOutput(
ip_adapter=IPAdapterField(
image=self.image,
@@ -102,19 +116,25 @@ class IPAdapterInvocation(BaseInvocation):
)
def _get_image_encoder(self, context: InvocationContext, image_encoder_model_name: str) -> AnyModelConfig:
found = False
while not found:
image_encoder_models = context.models.search_by_attrs(
name=image_encoder_model_name, base=BaseModelType.Any, type=ModelType.CLIPVision
)
if not len(image_encoder_models) > 0:
context.logger.warning(
f"The image encoder required by this IP Adapter ({image_encoder_model_name}) is not installed. \
Downloading and installing now. This may take a while."
)
installer = context._services.model_manager.install
job = installer.heuristic_import(f"InvokeAI/{image_encoder_model_name}")
installer.wait_for_job(job, timeout=600) # Wait for up to 10 minutes
image_encoder_models = context.models.search_by_attrs(
name=image_encoder_model_name, base=BaseModelType.Any, type=ModelType.CLIPVision
)
found = len(image_encoder_models) > 0
if not found:
context.logger.warning(
f"The image encoder required by this IP Adapter ({image_encoder_model_name}) is not installed."
)
context.logger.warning("Downloading and installing now. This may take a while.")
installer = context._services.model_manager.install
job = installer.heuristic_import(f"InvokeAI/{image_encoder_model_name}")
installer.wait_for_job(job, timeout=600) # wait up to 10 minutes - then raise a TimeoutException
assert len(image_encoder_models) == 1
if len(image_encoder_models) == 0:
context.logger.error("Error while fetching CLIP Vision Image Encoder")
assert len(image_encoder_models) == 1
return image_encoder_models[0]

View File

@@ -43,11 +43,7 @@ from invokeai.app.invocations.fields import (
WithMetadata,
)
from invokeai.app.invocations.ip_adapter import IPAdapterField
from invokeai.app.invocations.primitives import (
DenoiseMaskOutput,
ImageOutput,
LatentsOutput,
)
from invokeai.app.invocations.primitives import DenoiseMaskOutput, ImageOutput, LatentsOutput
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image
@@ -68,12 +64,7 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
)
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import choose_precision, choose_torch_device
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from .controlnet_image_processors import ControlField
from .model import ModelIdentifierField, UNetField, VAEField
@@ -1263,7 +1254,7 @@ class IdealSizeInvocation(BaseInvocation):
return tuple((x - x % multiple_of) for x in args)
def invoke(self, context: InvocationContext) -> IdealSizeOutput:
unet_config = context.models.get_config(**self.unet.unet.model_dump())
unet_config = context.models.get_config(self.unet.unet.key)
aspect = self.width / self.height
dimension: float = 512
if unet_config.base == BaseModelType.StableDiffusion2:

View File

@@ -2,16 +2,8 @@ from typing import Any, Literal, Optional, Union
from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from invokeai.app.invocations.controlnet_image_processors import (
CONTROLNET_MODE_VALUES,
CONTROLNET_RESIZE_VALUES,
)
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
@@ -43,6 +35,7 @@ class IPAdapterMetadataField(BaseModel):
image: ImageField = Field(description="The IP-Adapter image prompt.")
ip_adapter_model: ModelIdentifierField = Field(description="The IP-Adapter model.")
clip_vision_model: Literal["ViT-H", "ViT-G"] = Field(description="The CLIP Vision model")
weight: Union[float, list[float]] = Field(description="The weight given to the IP-Adapter")
begin_step_percent: float = Field(description="When the IP-Adapter is first applied (% of total steps)")
end_step_percent: float = Field(description="When the IP-Adapter is last applied (% of total steps)")

View File

@@ -3,6 +3,7 @@
from __future__ import annotations
import locale
import os
import re
import shutil
@@ -317,11 +318,10 @@ class InvokeAIAppConfig(BaseSettings):
@staticmethod
def find_root() -> Path:
"""Choose the runtime root directory when not specified on command line or init file."""
venv = Path(os.environ.get("VIRTUAL_ENV") or ".")
if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ["INVOKEAI_ROOT"])
elif any((venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE]):
root = (venv.parent).resolve()
elif venv := os.environ.get("VIRTUAL_ENV", None):
root = Path(venv).parent.resolve()
else:
root = Path("~/invokeai").expanduser().resolve()
return root
@@ -373,13 +373,16 @@ def migrate_v3_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
if k == "conf_path":
parsed_config_dict["legacy_models_yaml_path"] = v
if k == "legacy_conf_dir":
# The old default for this was "configs/stable-diffusion". If if the incoming config has that as the value, we won't set it.
# Else if the path ends in "stable-diffusion", we assume the parent is the new correct path.
# Else we do not attempt to migrate this setting
if v != "configs/stable-diffusion":
parsed_config_dict["legacy_conf_dir"] = v
# The old default for this was "configs/stable-diffusion" ("configs\stable-diffusion" on Windows).
if v == "configs/stable-diffusion" or v == "configs\\stable-diffusion":
# If if the incoming config has the default value, skip
continue
elif Path(v).name == "stable-diffusion":
# Else if the path ends in "stable-diffusion", we assume the parent is the new correct path.
parsed_config_dict["legacy_conf_dir"] = str(Path(v).parent)
else:
# Else we do not attempt to migrate this setting
parsed_config_dict["legacy_conf_dir"] = v
elif k in InvokeAIAppConfig.model_fields:
# skip unknown fields
parsed_config_dict[k] = v
@@ -399,7 +402,7 @@ def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
An instance of `InvokeAIAppConfig` with the loaded and migrated settings.
"""
assert config_path.suffix == ".yaml"
with open(config_path) as file:
with open(config_path, "rt", encoding=locale.getpreferredencoding()) as file:
loaded_config_dict = yaml.safe_load(file)
assert isinstance(loaded_config_dict, dict)

View File

@@ -1,5 +1,6 @@
"""Model installation class."""
import locale
import os
import re
import signal
@@ -323,7 +324,8 @@ class ModelInstallService(ModelInstallServiceBase):
legacy_models_yaml_path = Path(self._app_config.root_path, legacy_models_yaml_path)
if legacy_models_yaml_path.exists():
legacy_models_yaml = yaml.safe_load(legacy_models_yaml_path.read_text())
with open(legacy_models_yaml_path, "rt", encoding=locale.getpreferredencoding()) as file:
legacy_models_yaml = yaml.safe_load(file)
yaml_metadata = legacy_models_yaml.pop("__metadata__")
yaml_version = yaml_metadata.get("version")
@@ -564,7 +566,7 @@ class ModelInstallService(ModelInstallServiceBase):
# The model is not in the models directory - we don't need to move it.
return model
new_path = (models_dir / model.base.value / model.type.value / model.name).with_suffix(old_path.suffix)
new_path = models_dir / model.base.value / model.type.value / old_path.name
if old_path == new_path or new_path.exists() and old_path == new_path.resolve():
return model

View File

@@ -80,6 +80,7 @@ class ModelManagerService(ModelManagerServiceBase):
ram_cache = ModelCache(
max_cache_size=app_config.ram,
max_vram_cache_size=app_config.vram,
lazy_offloading=app_config.lazy_offload,
logger=logger,
execution_device=execution_device,
)

View File

@@ -11,6 +11,7 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_5 import
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_6 import build_migration_6
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_7 import build_migration_7
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_8 import build_migration_8
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_9 import build_migration_9
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
@@ -39,6 +40,7 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
migrator.register_migration(build_migration_6())
migrator.register_migration(build_migration_7())
migrator.register_migration(build_migration_8(app_config=config))
migrator.register_migration(build_migration_9())
migrator.run_migrations()
return db

View File

@@ -0,0 +1,29 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration9Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._empty_session_queue(cursor)
def _empty_session_queue(self, cursor: sqlite3.Cursor) -> None:
"""Empties the session queue. This is done to prevent any lingering session queue items from causing pydantic errors due to changed schemas."""
cursor.execute("DELETE FROM session_queue;")
def build_migration_9() -> Migration:
"""
Build the migration from database version 8 to 9.
This migration does the following:
- Empties the session queue. This is done to prevent any lingering session queue items from causing pydantic errors due to changed schemas.
"""
migration_9 = Migration(
from_version=8,
to_version=9,
callback=Migration9Callback(),
)
return migration_9

View File

@@ -1,4 +1,6 @@
import sqlite3
from contextlib import closing
from datetime import datetime
from pathlib import Path
from typing import Optional
@@ -32,6 +34,7 @@ class SqliteMigrator:
self._db = db
self._logger = db.logger
self._migration_set = MigrationSet()
self._backup_path: Optional[Path] = None
def register_migration(self, migration: Migration) -> None:
"""Registers a migration."""
@@ -55,6 +58,18 @@ class SqliteMigrator:
return False
self._logger.info("Database update needed")
# Make a backup of the db if it needs to be updated and is a file db
if self._db.db_path is not None:
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
self._backup_path = self._db.db_path.parent / f"{self._db.db_path.stem}_backup_{timestamp}.db"
self._logger.info(f"Backing up database to {str(self._backup_path)}")
# Use SQLite to do the backup
with closing(sqlite3.connect(self._backup_path)) as backup_conn:
self._db.conn.backup(backup_conn)
else:
self._logger.info("Using in-memory database, no backup needed")
next_migration = self._migration_set.get(from_version=self._get_current_version(cursor))
while next_migration is not None:
self._run_migration(next_migration)

View File

@@ -2,7 +2,7 @@
Initialization file for invokeai.backend.image_util methods.
"""
from .patchmatch import PatchMatch # noqa: F401
from .infill_methods.patchmatch import PatchMatch # noqa: F401
from .pngwriter import PngWriter, PromptFormatter, retrieve_metadata, write_metadata # noqa: F401
from .seamless import configure_model_padding # noqa: F401
from .util import InitImageResizer, make_grid # noqa: F401

View File

@@ -7,6 +7,7 @@ from PIL import Image
import invokeai.backend.util.logging as logger
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.util.devices import choose_torch_device
@@ -30,6 +31,14 @@ class LaMA:
def __call__(self, input_image: Image.Image, *args: Any, **kwds: Any) -> Any:
device = choose_torch_device()
model_location = get_config().models_path / "core/misc/lama/lama.pt"
if not model_location.exists():
download_with_progress_bar(
name="LaMa Inpainting Model",
url="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
dest_path=model_location,
)
model = load_jit_model(model_location, device)
image = np.asarray(input_image.convert("RGB"))

View File

@@ -0,0 +1,60 @@
from typing import Tuple
import numpy as np
from PIL import Image
def infill_mosaic(
image: Image.Image,
tile_shape: Tuple[int, int] = (64, 64),
min_color: Tuple[int, int, int, int] = (0, 0, 0, 0),
max_color: Tuple[int, int, int, int] = (255, 255, 255, 0),
) -> Image.Image:
"""
image:PIL - A PIL Image
tile_shape: Tuple[int,int] - Tile width & Tile Height
min_color: Tuple[int,int,int] - RGB values for the lowest color to clip to (0-255)
max_color: Tuple[int,int,int] - RGB values for the highest color to clip to (0-255)
"""
np_image = np.array(image) # Convert image to np array
alpha = np_image[:, :, 3] # Get the mask from the alpha channel of the image
non_transparent_pixels = np_image[alpha != 0, :3] # List of non-transparent pixels
# Create color tiles to paste in the empty areas of the image
tile_width, tile_height = tile_shape
# Clip the range of colors in the image to a particular spectrum only
r_min, g_min, b_min, _ = min_color
r_max, g_max, b_max, _ = max_color
non_transparent_pixels[:, 0] = np.clip(non_transparent_pixels[:, 0], r_min, r_max)
non_transparent_pixels[:, 1] = np.clip(non_transparent_pixels[:, 1], g_min, g_max)
non_transparent_pixels[:, 2] = np.clip(non_transparent_pixels[:, 2], b_min, b_max)
tiles = []
for _ in range(256):
color = non_transparent_pixels[np.random.randint(len(non_transparent_pixels))]
tile = np.zeros((tile_height, tile_width, 3), dtype=np.uint8)
tile[:, :] = color
tiles.append(tile)
# Fill the transparent area with tiles
filled_image = np.zeros((image.height, image.width, 3), dtype=np.uint8)
for x in range(image.width):
for y in range(image.height):
tile = tiles[np.random.randint(len(tiles))]
try:
filled_image[
y - (y % tile_height) : y - (y % tile_height) + tile_height,
x - (x % tile_width) : x - (x % tile_width) + tile_width,
] = tile
except ValueError:
# Need to handle edge cases - literally
pass
filled_image = Image.fromarray(filled_image) # Convert the filled tiles image to PIL
image = Image.composite(
image, filled_image, image.split()[-1]
) # Composite the original image on top of the filled tiles
return image

View File

@@ -0,0 +1,67 @@
"""
This module defines a singleton object, "patchmatch" that
wraps the actual patchmatch object. It respects the global
"try_patchmatch" attribute, so that patchmatch loading can
be suppressed or deferred
"""
import numpy as np
from PIL import Image
import invokeai.backend.util.logging as logger
from invokeai.app.services.config.config_default import get_config
class PatchMatch:
"""
Thin class wrapper around the patchmatch function.
"""
patch_match = None
tried_load: bool = False
def __init__(self):
super().__init__()
@classmethod
def _load_patch_match(cls):
if cls.tried_load:
return
if get_config().patchmatch:
from patchmatch import patch_match as pm
if pm.patchmatch_available:
logger.info("Patchmatch initialized")
cls.patch_match = pm
else:
logger.info("Patchmatch not loaded (nonfatal)")
else:
logger.info("Patchmatch loading disabled")
cls.tried_load = True
@classmethod
def patchmatch_available(cls) -> bool:
cls._load_patch_match()
if not cls.patch_match:
return False
return cls.patch_match.patchmatch_available
@classmethod
def inpaint(cls, image: Image.Image) -> Image.Image:
if cls.patch_match is None or not cls.patchmatch_available():
return image
np_image = np.array(image)
mask = 255 - np_image[:, :, 3]
infilled = cls.patch_match.inpaint(np_image[:, :, :3], mask, patch_size=3)
return Image.fromarray(infilled, mode="RGB")
def infill_patchmatch(image: Image.Image) -> Image.Image:
IS_PATCHMATCH_AVAILABLE = PatchMatch.patchmatch_available()
if not IS_PATCHMATCH_AVAILABLE:
logger.warning("PatchMatch is not available on this system")
return image
return PatchMatch.inpaint(image)

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

View File

@@ -0,0 +1,95 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\"\"\"Smoke test for the tile infill\"\"\"\n",
"\n",
"from pathlib import Path\n",
"from typing import Optional\n",
"from PIL import Image\n",
"from invokeai.backend.image_util.infill_methods.tile import infill_tile\n",
"\n",
"images: list[tuple[str, Image.Image]] = []\n",
"\n",
"for i in sorted(Path(\"./test_images/\").glob(\"*.webp\")):\n",
" images.append((i.name, Image.open(i)))\n",
" images.append((i.name, Image.open(i).transpose(Image.FLIP_LEFT_RIGHT)))\n",
" images.append((i.name, Image.open(i).transpose(Image.FLIP_TOP_BOTTOM)))\n",
" images.append((i.name, Image.open(i).resize((512, 512))))\n",
" images.append((i.name, Image.open(i).resize((1234, 461))))\n",
"\n",
"outputs: list[tuple[str, Image.Image, Image.Image, Optional[Image.Image]]] = []\n",
"\n",
"for name, image in images:\n",
" try:\n",
" output = infill_tile(image, seed=0, tile_size=32)\n",
" outputs.append((name, image, output.infilled, output.tile_image))\n",
" except ValueError as e:\n",
" print(f\"Skipping image {name}: {e}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Display the images in jupyter notebook\n",
"import matplotlib.pyplot as plt\n",
"from PIL import ImageOps\n",
"\n",
"fig, axes = plt.subplots(len(outputs), 3, figsize=(10, 3 * len(outputs)))\n",
"plt.subplots_adjust(hspace=0)\n",
"\n",
"for i, (name, original, infilled, tile_image) in enumerate(outputs):\n",
" # Add a border to each image, helps to see the edges\n",
" size = original.size\n",
" original = ImageOps.expand(original, border=5, fill=\"red\")\n",
" filled = ImageOps.expand(infilled, border=5, fill=\"red\")\n",
" if tile_image:\n",
" tile_image = ImageOps.expand(tile_image, border=5, fill=\"red\")\n",
"\n",
" axes[i, 0].imshow(original)\n",
" axes[i, 0].axis(\"off\")\n",
" axes[i, 0].set_title(f\"Original ({name} - {size})\")\n",
"\n",
" if tile_image:\n",
" axes[i, 1].imshow(tile_image)\n",
" axes[i, 1].axis(\"off\")\n",
" axes[i, 1].set_title(\"Tile Image\")\n",
" else:\n",
" axes[i, 1].axis(\"off\")\n",
" axes[i, 1].set_title(\"NO TILES GENERATED (NO TRANSPARENCY)\")\n",
"\n",
" axes[i, 2].imshow(filled)\n",
" axes[i, 2].axis(\"off\")\n",
" axes[i, 2].set_title(\"Filled\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".invokeai",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,122 @@
from dataclasses import dataclass
from typing import Optional
import numpy as np
from PIL import Image
def create_tile_pool(img_array: np.ndarray, tile_size: tuple[int, int]) -> list[np.ndarray]:
"""
Create a pool of tiles from non-transparent areas of the image by systematically walking through the image.
Args:
img_array: numpy array of the image.
tile_size: tuple (tile_width, tile_height) specifying the size of each tile.
Returns:
A list of numpy arrays, each representing a tile.
"""
tiles: list[np.ndarray] = []
rows, cols = img_array.shape[:2]
tile_width, tile_height = tile_size
for y in range(0, rows - tile_height + 1, tile_height):
for x in range(0, cols - tile_width + 1, tile_width):
tile = img_array[y : y + tile_height, x : x + tile_width]
# Check if the image has an alpha channel and the tile is completely opaque
if img_array.shape[2] == 4 and np.all(tile[:, :, 3] == 255):
tiles.append(tile)
elif img_array.shape[2] == 3: # If no alpha channel, append the tile
tiles.append(tile)
if not tiles:
raise ValueError(
"Not enough opaque pixels to generate any tiles. Use a smaller tile size or a different image."
)
return tiles
def create_filled_image(
img_array: np.ndarray, tile_pool: list[np.ndarray], tile_size: tuple[int, int], seed: int
) -> np.ndarray:
"""
Create an image of the same dimensions as the original, filled entirely with tiles from the pool.
Args:
img_array: numpy array of the original image.
tile_pool: A list of numpy arrays, each representing a tile.
tile_size: tuple (tile_width, tile_height) specifying the size of each tile.
Returns:
A numpy array representing the filled image.
"""
rows, cols, _ = img_array.shape
tile_width, tile_height = tile_size
# Prep an empty RGB image
filled_img_array = np.zeros((rows, cols, 3), dtype=img_array.dtype)
# Make the random tile selection reproducible
rng = np.random.default_rng(seed)
for y in range(0, rows, tile_height):
for x in range(0, cols, tile_width):
# Pick a random tile from the pool
tile = tile_pool[rng.integers(len(tile_pool))]
# Calculate the space available (may be less than tile size near the edges)
space_y = min(tile_height, rows - y)
space_x = min(tile_width, cols - x)
# Crop the tile if necessary to fit into the available space
cropped_tile = tile[:space_y, :space_x, :3]
# Fill the available space with the (possibly cropped) tile
filled_img_array[y : y + space_y, x : x + space_x, :3] = cropped_tile
return filled_img_array
@dataclass
class InfillTileOutput:
infilled: Image.Image
tile_image: Optional[Image.Image] = None
def infill_tile(image_to_infill: Image.Image, seed: int, tile_size: int) -> InfillTileOutput:
"""Infills an image with random tiles from the image itself.
If the image is not an RGBA image, it is returned untouched.
Args:
image: The image to infill.
tile_size: The size of the tiles to use for infilling.
Raises:
ValueError: If there are not enough opaque pixels to generate any tiles.
"""
if image_to_infill.mode != "RGBA":
return InfillTileOutput(infilled=image_to_infill)
# Internally, we want a tuple of (tile_width, tile_height). In the future, the tile size can be any rectangle.
_tile_size = (tile_size, tile_size)
np_image = np.array(image_to_infill, dtype=np.uint8)
# Create the pool of tiles that we will use to infill
tile_pool = create_tile_pool(np_image, _tile_size)
# Create an image from the tiles, same size as the original
tile_np_image = create_filled_image(np_image, tile_pool, _tile_size, seed)
# Paste the OG image over the tile image, effectively infilling the area
tile_image = Image.fromarray(tile_np_image, "RGB")
infilled = tile_image.copy()
infilled.paste(image_to_infill, (0, 0), image_to_infill.split()[-1])
# I think we want this to be "RGBA"?
infilled.convert("RGBA")
return InfillTileOutput(infilled=infilled, tile_image=tile_image)

View File

@@ -1,49 +0,0 @@
"""
This module defines a singleton object, "patchmatch" that
wraps the actual patchmatch object. It respects the global
"try_patchmatch" attribute, so that patchmatch loading can
be suppressed or deferred
"""
import numpy as np
import invokeai.backend.util.logging as logger
from invokeai.app.services.config.config_default import get_config
class PatchMatch:
"""
Thin class wrapper around the patchmatch function.
"""
patch_match = None
tried_load: bool = False
def __init__(self):
super().__init__()
@classmethod
def _load_patch_match(self):
if self.tried_load:
return
if get_config().patchmatch:
from patchmatch import patch_match as pm
if pm.patchmatch_available:
logger.info("Patchmatch initialized")
else:
logger.info("Patchmatch not loaded (nonfatal)")
self.patch_match = pm
else:
logger.info("Patchmatch loading disabled")
self.tried_load = True
@classmethod
def patchmatch_available(self) -> bool:
self._load_patch_match()
return self.patch_match and self.patch_match.patchmatch_available
@classmethod
def inpaint(self, *args, **kwargs) -> np.ndarray:
if self.patchmatch_available():
return self.patch_match.inpaint(*args, **kwargs)

View File

@@ -1,8 +1,11 @@
# copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0)
# and modified as needed
from typing import Optional, Union
import pathlib
from typing import List, Optional, TypedDict, Union
import safetensors
import safetensors.torch
import torch
from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
@@ -13,10 +16,17 @@ from ..raw_model import RawModel
from .resampler import Resampler
class IPAdapterStateDict(TypedDict):
ip_adapter: dict[str, torch.Tensor]
image_proj: dict[str, torch.Tensor]
class ImageProjModel(torch.nn.Module):
"""Image Projection Model"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
def __init__(
self, cross_attention_dim: int = 1024, clip_embeddings_dim: int = 1024, clip_extra_context_tokens: int = 4
):
super().__init__()
self.cross_attention_dim = cross_attention_dim
@@ -25,7 +35,7 @@ class ImageProjModel(torch.nn.Module):
self.norm = torch.nn.LayerNorm(cross_attention_dim)
@classmethod
def from_state_dict(cls, state_dict: dict[torch.Tensor], clip_extra_context_tokens=4):
def from_state_dict(cls, state_dict: dict[str, torch.Tensor], clip_extra_context_tokens: int = 4):
"""Initialize an ImageProjModel from a state_dict.
The cross_attention_dim and clip_embeddings_dim are inferred from the shape of the tensors in the state_dict.
@@ -45,7 +55,7 @@ class ImageProjModel(torch.nn.Module):
model.load_state_dict(state_dict)
return model
def forward(self, image_embeds):
def forward(self, image_embeds: torch.Tensor):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(
-1, self.clip_extra_context_tokens, self.cross_attention_dim
@@ -57,7 +67,7 @@ class ImageProjModel(torch.nn.Module):
class MLPProjModel(torch.nn.Module):
"""SD model with image prompt"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
def __init__(self, cross_attention_dim: int = 1024, clip_embeddings_dim: int = 1024):
super().__init__()
self.proj = torch.nn.Sequential(
@@ -68,7 +78,7 @@ class MLPProjModel(torch.nn.Module):
)
@classmethod
def from_state_dict(cls, state_dict: dict[torch.Tensor]):
def from_state_dict(cls, state_dict: dict[str, torch.Tensor]):
"""Initialize an MLPProjModel from a state_dict.
The cross_attention_dim and clip_embeddings_dim are inferred from the shape of the tensors in the state_dict.
@@ -87,7 +97,7 @@ class MLPProjModel(torch.nn.Module):
model.load_state_dict(state_dict)
return model
def forward(self, image_embeds):
def forward(self, image_embeds: torch.Tensor):
clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens
@@ -97,7 +107,7 @@ class IPAdapter(RawModel):
def __init__(
self,
state_dict: dict[str, torch.Tensor],
state_dict: IPAdapterStateDict,
device: torch.device,
dtype: torch.dtype = torch.float16,
num_tokens: int = 4,
@@ -129,24 +139,27 @@ class IPAdapter(RawModel):
return calc_model_size_by_data(self._image_proj_model) + calc_model_size_by_data(self.attn_weights)
def _init_image_proj_model(self, state_dict):
def _init_image_proj_model(
self, state_dict: dict[str, torch.Tensor]
) -> Union[ImageProjModel, Resampler, MLPProjModel]:
return ImageProjModel.from_state_dict(state_dict, self._num_tokens).to(self.device, dtype=self.dtype)
@torch.inference_mode()
def get_image_embeds(self, pil_image, image_encoder: CLIPVisionModelWithProjection):
if isinstance(pil_image, Image.Image):
pil_image = [pil_image]
def get_image_embeds(self, pil_image: List[Image.Image], image_encoder: CLIPVisionModelWithProjection):
clip_image = self._clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image_embeds = image_encoder(clip_image.to(self.device, dtype=self.dtype)).image_embeds
image_prompt_embeds = self._image_proj_model(clip_image_embeds)
uncond_image_prompt_embeds = self._image_proj_model(torch.zeros_like(clip_image_embeds))
return image_prompt_embeds, uncond_image_prompt_embeds
try:
image_prompt_embeds = self._image_proj_model(clip_image_embeds)
uncond_image_prompt_embeds = self._image_proj_model(torch.zeros_like(clip_image_embeds))
return image_prompt_embeds, uncond_image_prompt_embeds
except RuntimeError as e:
raise RuntimeError("Selected CLIP Vision Model is incompatible with the current IP Adapter") from e
class IPAdapterPlus(IPAdapter):
"""IP-Adapter with fine-grained features"""
def _init_image_proj_model(self, state_dict):
def _init_image_proj_model(self, state_dict: dict[str, torch.Tensor]) -> Union[Resampler, MLPProjModel]:
return Resampler.from_state_dict(
state_dict=state_dict,
depth=4,
@@ -157,31 +170,32 @@ class IPAdapterPlus(IPAdapter):
).to(self.device, dtype=self.dtype)
@torch.inference_mode()
def get_image_embeds(self, pil_image, image_encoder: CLIPVisionModelWithProjection):
if isinstance(pil_image, Image.Image):
pil_image = [pil_image]
def get_image_embeds(self, pil_image: List[Image.Image], image_encoder: CLIPVisionModelWithProjection):
clip_image = self._clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image = clip_image.to(self.device, dtype=self.dtype)
clip_image_embeds = image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
image_prompt_embeds = self._image_proj_model(clip_image_embeds)
uncond_clip_image_embeds = image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[
-2
]
uncond_image_prompt_embeds = self._image_proj_model(uncond_clip_image_embeds)
return image_prompt_embeds, uncond_image_prompt_embeds
try:
image_prompt_embeds = self._image_proj_model(clip_image_embeds)
uncond_image_prompt_embeds = self._image_proj_model(uncond_clip_image_embeds)
return image_prompt_embeds, uncond_image_prompt_embeds
except RuntimeError as e:
raise RuntimeError("Selected CLIP Vision Model is incompatible with the current IP Adapter") from e
class IPAdapterFull(IPAdapterPlus):
"""IP-Adapter Plus with full features."""
def _init_image_proj_model(self, state_dict: dict[torch.Tensor]):
def _init_image_proj_model(self, state_dict: dict[str, torch.Tensor]):
return MLPProjModel.from_state_dict(state_dict).to(self.device, dtype=self.dtype)
class IPAdapterPlusXL(IPAdapterPlus):
"""IP-Adapter Plus for SDXL."""
def _init_image_proj_model(self, state_dict):
def _init_image_proj_model(self, state_dict: dict[str, torch.Tensor]):
return Resampler.from_state_dict(
state_dict=state_dict,
depth=4,
@@ -192,24 +206,48 @@ class IPAdapterPlusXL(IPAdapterPlus):
).to(self.device, dtype=self.dtype)
def build_ip_adapter(
ip_adapter_ckpt_path: str, device: torch.device, dtype: torch.dtype = torch.float16
) -> Union[IPAdapter, IPAdapterPlus]:
state_dict = torch.load(ip_adapter_ckpt_path, map_location="cpu")
def load_ip_adapter_tensors(ip_adapter_ckpt_path: pathlib.Path, device: str) -> IPAdapterStateDict:
state_dict: IPAdapterStateDict = {"ip_adapter": {}, "image_proj": {}}
if "proj.weight" in state_dict["image_proj"]: # IPAdapter (with ImageProjModel).
if ip_adapter_ckpt_path.suffix == ".safetensors":
model = safetensors.torch.load_file(ip_adapter_ckpt_path, device=device)
for key in model.keys():
if key.startswith("image_proj."):
state_dict["image_proj"][key.replace("image_proj.", "")] = model[key]
elif key.startswith("ip_adapter."):
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = model[key]
else:
raise RuntimeError(f"Encountered unexpected IP Adapter state dict key: '{key}'.")
else:
ip_adapter_diffusers_checkpoint_path = ip_adapter_ckpt_path / "ip_adapter.bin"
state_dict = torch.load(ip_adapter_diffusers_checkpoint_path, map_location="cpu")
return state_dict
def build_ip_adapter(
ip_adapter_ckpt_path: pathlib.Path, device: torch.device, dtype: torch.dtype = torch.float16
) -> Union[IPAdapter, IPAdapterPlus, IPAdapterPlusXL, IPAdapterPlus]:
state_dict = load_ip_adapter_tensors(ip_adapter_ckpt_path, device.type)
# IPAdapter (with ImageProjModel)
if "proj.weight" in state_dict["image_proj"]:
return IPAdapter(state_dict, device=device, dtype=dtype)
elif "proj_in.weight" in state_dict["image_proj"]: # IPAdaterPlus or IPAdapterPlusXL (with Resampler).
# IPAdaterPlus or IPAdapterPlusXL (with Resampler)
elif "proj_in.weight" in state_dict["image_proj"]:
cross_attention_dim = state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[-1]
if cross_attention_dim == 768:
# SD1 IP-Adapter Plus
return IPAdapterPlus(state_dict, device=device, dtype=dtype)
return IPAdapterPlus(state_dict, device=device, dtype=dtype) # SD1 IP-Adapter Plus
elif cross_attention_dim == 2048:
# SDXL IP-Adapter Plus
return IPAdapterPlusXL(state_dict, device=device, dtype=dtype)
return IPAdapterPlusXL(state_dict, device=device, dtype=dtype) # SDXL IP-Adapter Plus
else:
raise Exception(f"Unsupported IP-Adapter Plus cross-attention dimension: {cross_attention_dim}.")
elif "proj.0.weight" in state_dict["image_proj"]: # IPAdapterFull (with MLPProjModel).
# IPAdapterFull (with MLPProjModel)
elif "proj.0.weight" in state_dict["image_proj"]:
return IPAdapterFull(state_dict, device=device, dtype=dtype)
# Unrecognized IP Adapter Architectures
else:
raise ValueError(f"'{ip_adapter_ckpt_path}' has an unrecognized IP-Adapter model architecture.")

View File

@@ -9,8 +9,8 @@ import torch.nn as nn
# FFN
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
def FeedForward(dim: int, mult: int = 4):
inner_dim = dim * mult
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
@@ -19,8 +19,8 @@ def FeedForward(dim, mult=4):
)
def reshape_tensor(x, heads):
bs, length, width = x.shape
def reshape_tensor(x: torch.Tensor, heads: int):
bs, length, _ = x.shape
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, length, heads, -1)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
@@ -31,7 +31,7 @@ def reshape_tensor(x, heads):
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8):
def __init__(self, *, dim: int, dim_head: int = 64, heads: int = 8):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
@@ -45,7 +45,7 @@ class PerceiverAttention(nn.Module):
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
def forward(self, x: torch.Tensor, latents: torch.Tensor):
"""
Args:
x (torch.Tensor): image features
@@ -80,14 +80,14 @@ class PerceiverAttention(nn.Module):
class Resampler(nn.Module):
def __init__(
self,
dim=1024,
depth=8,
dim_head=64,
heads=16,
num_queries=8,
embedding_dim=768,
output_dim=1024,
ff_mult=4,
dim: int = 1024,
depth: int = 8,
dim_head: int = 64,
heads: int = 16,
num_queries: int = 8,
embedding_dim: int = 768,
output_dim: int = 1024,
ff_mult: int = 4,
):
super().__init__()
@@ -110,7 +110,15 @@ class Resampler(nn.Module):
)
@classmethod
def from_state_dict(cls, state_dict: dict[torch.Tensor], depth=8, dim_head=64, heads=16, num_queries=8, ff_mult=4):
def from_state_dict(
cls,
state_dict: dict[str, torch.Tensor],
depth: int = 8,
dim_head: int = 64,
heads: int = 16,
num_queries: int = 8,
ff_mult: int = 4,
):
"""A convenience function that initializes a Resampler from a state_dict.
Some of the shape parameters are inferred from the state_dict (e.g. dim, embedding_dim, etc.). At the time of
@@ -145,7 +153,7 @@ class Resampler(nn.Module):
model.load_state_dict(state_dict)
return model
def forward(self, x):
def forward(self, x: torch.Tensor):
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x)

View File

@@ -323,10 +323,13 @@ class MainDiffusersConfig(DiffusersConfigBase, MainConfigBase):
return Tag(f"{ModelType.Main.value}.{ModelFormat.Diffusers.value}")
class IPAdapterConfig(ModelConfigBase):
"""Model config for IP Adaptor format models."""
class IPAdapterBaseConfig(ModelConfigBase):
type: Literal[ModelType.IPAdapter] = ModelType.IPAdapter
class IPAdapterInvokeAIConfig(IPAdapterBaseConfig):
"""Model config for IP Adapter diffusers format models."""
image_encoder_model_id: str
format: Literal[ModelFormat.InvokeAI]
@@ -335,6 +338,16 @@ class IPAdapterConfig(ModelConfigBase):
return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.InvokeAI.value}")
class IPAdapterCheckpointConfig(IPAdapterBaseConfig):
"""Model config for IP Adapter checkpoint format models."""
format: Literal[ModelFormat.Checkpoint]
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.Checkpoint.value}")
class CLIPVisionDiffusersConfig(DiffusersConfigBase):
"""Model config for CLIPVision."""
@@ -390,7 +403,8 @@ AnyModelConfig = Annotated[
Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()],
Annotated[TextualInversionFileConfig, TextualInversionFileConfig.get_tag()],
Annotated[TextualInversionFolderConfig, TextualInversionFolderConfig.get_tag()],
Annotated[IPAdapterConfig, IPAdapterConfig.get_tag()],
Annotated[IPAdapterInvokeAIConfig, IPAdapterInvokeAIConfig.get_tag()],
Annotated[IPAdapterCheckpointConfig, IPAdapterCheckpointConfig.get_tag()],
Annotated[T2IAdapterConfig, T2IAdapterConfig.get_tag()],
Annotated[CLIPVisionDiffusersConfig, CLIPVisionDiffusersConfig.get_tag()],
],

View File

@@ -117,7 +117,7 @@ class ModelCacheBase(ABC, Generic[T]):
@property
@abstractmethod
def stats(self) -> CacheStats:
def stats(self) -> Optional[CacheStats]:
"""Return collected CacheStats object."""
pass

View File

@@ -269,9 +269,6 @@ class ModelCache(ModelCacheBase[AnyModel]):
if torch.device(source_device).type == torch.device(target_device).type:
return
# may raise an exception here if insufficient GPU VRAM
self._check_free_vram(target_device, cache_entry.size)
start_model_to_time = time.time()
snapshot_before = self._capture_memory_snapshot()
cache_entry.model.to(target_device)
@@ -329,11 +326,11 @@ class ModelCache(ModelCacheBase[AnyModel]):
f" {in_ram_models}/{in_vram_models}({locked_in_vram_models})"
)
def make_room(self, model_size: int) -> None:
def make_room(self, size: int) -> None:
"""Make enough room in the cache to accommodate a new model of indicated size."""
# calculate how much memory this model will require
# multiplier = 2 if self.precision==torch.float32 else 1
bytes_needed = model_size
bytes_needed = size
maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes
current_size = self.cache_size()
@@ -388,7 +385,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
# 1 from onnx runtime object
if not cache_entry.locked and refs <= (3 if "onnx" in model_key else 2):
self.logger.debug(
f"Removing {model_key} from RAM cache to free at least {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
f"Removing {model_key} from RAM cache to free at least {(size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
)
current_size -= cache_entry.size
models_cleared += 1
@@ -420,13 +417,3 @@ class ModelCache(ModelCacheBase[AnyModel]):
mps.empty_cache()
self.logger.debug(f"After making room: cached_models={len(self._cached_models)}")
def _check_free_vram(self, target_device: torch.device, needed_size: int) -> None:
if target_device.type != "cuda":
return
vram_device = ( # mem_get_info() needs an indexed device
target_device if target_device.index is not None else torch.device(str(target_device), index=0)
)
free_mem, _ = torch.cuda.mem_get_info(torch.device(vram_device))
if needed_size > free_mem:
raise torch.cuda.OutOfMemoryError

View File

@@ -34,7 +34,6 @@ class ModelLocker(ModelLockerBase):
# NOTE that the model has to have the to() method in order for this code to move it into GPU!
self._cache_entry.lock()
try:
if self._cache.lazy_offloading:
self._cache.offload_unlocked_models(self._cache_entry.size)
@@ -51,6 +50,7 @@ class ModelLocker(ModelLockerBase):
except Exception:
self._cache_entry.unlock()
raise
return self.model
def unlock(self) -> None:

View File

@@ -7,19 +7,13 @@ from typing import Optional
import torch
from invokeai.backend.ip_adapter.ip_adapter import build_ip_adapter
from invokeai.backend.model_manager import (
AnyModel,
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, BaseModelType, ModelFormat, ModelType, SubModelType
from invokeai.backend.model_manager.load import ModelLoader, ModelLoaderRegistry
from invokeai.backend.raw_model import RawModel
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.IPAdapter, format=ModelFormat.InvokeAI)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.IPAdapter, format=ModelFormat.Checkpoint)
class IPAdapterInvokeAILoader(ModelLoader):
"""Class to load IP Adapter diffusers models."""
@@ -32,7 +26,7 @@ class IPAdapterInvokeAILoader(ModelLoader):
raise ValueError("There are no submodels in an IP-Adapter model.")
model_path = Path(config.path)
model: RawModel = build_ip_adapter(
ip_adapter_ckpt_path=str(model_path / "ip_adapter.bin"),
ip_adapter_ckpt_path=model_path,
device=torch.device("cpu"),
dtype=self._torch_dtype,
)

View File

@@ -230,9 +230,10 @@ class ModelProbe(object):
return ModelType.LoRA
elif any(key.startswith(v) for v in {"controlnet", "control_model", "input_blocks"}):
return ModelType.ControlNet
elif any(key.startswith(v) for v in {"image_proj.", "ip_adapter."}):
return ModelType.IPAdapter
elif key in {"emb_params", "string_to_param"}:
return ModelType.TextualInversion
else:
# diffusers-ti
if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()):
@@ -323,7 +324,7 @@ class ModelProbe(object):
with SilenceWarnings():
if model_path.suffix.endswith((".ckpt", ".pt", ".pth", ".bin")):
cls._scan_model(model_path.name, model_path)
model = torch.load(model_path)
model = torch.load(model_path, map_location="cpu")
assert isinstance(model, dict)
return model
else:
@@ -527,8 +528,25 @@ class ControlNetCheckpointProbe(CheckpointProbeBase):
class IPAdapterCheckpointProbe(CheckpointProbeBase):
"""Class for probing IP Adapters"""
def get_base_type(self) -> BaseModelType:
raise NotImplementedError()
checkpoint = self.checkpoint
for key in checkpoint.keys():
if not key.startswith(("image_proj.", "ip_adapter.")):
continue
cross_attention_dim = checkpoint["ip_adapter.1.to_k_ip.weight"].shape[-1]
if cross_attention_dim == 768:
return BaseModelType.StableDiffusion1
elif cross_attention_dim == 1024:
return BaseModelType.StableDiffusion2
elif cross_attention_dim == 2048:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException(
f"IP-Adapter had unexpected cross-attention dimension: {cross_attention_dim}."
)
raise InvalidModelConfigException(f"{self.model_path}: Unable to determine base type")
class CLIPVisionCheckpointProbe(CheckpointProbeBase):
@@ -768,7 +786,7 @@ class T2IAdapterFolderProbe(FolderProbeBase):
)
############## register probe classes ######
# Register probe classes
ModelProbe.register_probe("diffusers", ModelType.Main, PipelineFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.VAE, VaeFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.LoRA, LoRAFolderProbe)

View File

@@ -94,6 +94,7 @@
"reactflow": "^11.10.4",
"redux-dynamic-middlewares": "^2.2.0",
"redux-remember": "^5.1.0",
"rfdc": "^1.3.1",
"roarr": "^7.21.1",
"serialize-error": "^11.0.3",
"socket.io-client": "^4.7.5",

View File

@@ -137,6 +137,9 @@ dependencies:
redux-remember:
specifier: ^5.1.0
version: 5.1.0(redux@5.0.1)
rfdc:
specifier: ^1.3.1
version: 1.3.1
roarr:
specifier: ^7.21.1
version: 7.21.1
@@ -12128,6 +12131,10 @@ packages:
resolution: {integrity: sha512-/x8uIPdTafBqakK0TmPNJzgkLP+3H+yxpUJhCQHsLBg1rYEVNR2D8BRYNWQhVBjyOd7oo1dZRVzIkwMY2oqfYQ==}
dev: true
/rfdc@1.3.1:
resolution: {integrity: sha512-r5a3l5HzYlIC68TpmYKlxWjmOP6wiPJ1vWv2HeLhNsRZMrCkxeqxiHlQ21oXmQ4F3SiryXBHhAD7JZqvOJjFmg==}
dev: false
/rimraf@2.6.3:
resolution: {integrity: sha512-mwqeW5XsA2qAejG46gYdENaxXjx9onRNCfn7L0duuP4hCuTIi/QO7PDK07KJfp1d+izWPrzEJDcSqBa0OZQriA==}
hasBin: true

View File

@@ -291,7 +291,6 @@
"canvasMerged": "تم دمج الخط",
"sentToImageToImage": "تم إرسال إلى صورة إلى صورة",
"sentToUnifiedCanvas": "تم إرسال إلى لوحة موحدة",
"parametersSet": "تم تعيين المعلمات",
"parametersNotSet": "لم يتم تعيين المعلمات",
"metadataLoadFailed": "فشل تحميل البيانات الوصفية"
},

View File

@@ -4,7 +4,7 @@
"reportBugLabel": "Fehler melden",
"settingsLabel": "Einstellungen",
"img2img": "Bild zu Bild",
"nodes": "Knoten Editor",
"nodes": "Arbeitsabläufe",
"upload": "Hochladen",
"load": "Laden",
"statusDisconnected": "Getrennt",
@@ -74,7 +74,9 @@
"updated": "Aktualisiert",
"copy": "Kopieren",
"aboutHeading": "Nutzen Sie Ihre kreative Energie",
"toResolve": "Lösen"
"toResolve": "Lösen",
"add": "Hinzufügen",
"loglevel": "Protokoll Stufe"
},
"gallery": {
"galleryImageSize": "Bildgröße",
@@ -104,11 +106,16 @@
"dropToUpload": "$t(gallery.drop) zum hochladen",
"dropOrUpload": "$t(gallery.drop) oder hochladen",
"drop": "Ablegen",
"problemDeletingImages": "Problem beim Löschen der Bilder"
"problemDeletingImages": "Problem beim Löschen der Bilder",
"bulkDownloadRequested": "Download vorbereiten",
"bulkDownloadRequestedDesc": "Dein Download wird vorbereitet. Dies kann ein paar Momente dauern.",
"bulkDownloadRequestFailed": "Problem beim Download vorbereiten",
"bulkDownloadFailed": "Download fehlgeschlagen",
"alwaysShowImageSizeBadge": "Zeige immer Bilder Größe Abzeichen"
},
"hotkeys": {
"keyboardShortcuts": "Tastenkürzel",
"appHotkeys": "App-Tastenkombinationen",
"appHotkeys": "App",
"generalHotkeys": "Allgemein",
"galleryHotkeys": "Galerie",
"unifiedCanvasHotkeys": "Leinwand",
@@ -382,7 +389,14 @@
"vaePrecision": "VAE-Präzision",
"variant": "Variante",
"modelDeleteFailed": "Modell konnte nicht gelöscht werden",
"noModelSelected": "Kein Modell ausgewählt"
"noModelSelected": "Kein Modell ausgewählt",
"huggingFace": "HuggingFace",
"defaultSettings": "Standardeinstellungen",
"edit": "Bearbeiten",
"cancel": "Stornieren",
"defaultSettingsSaved": "Standardeinstellungen gespeichert",
"addModels": "Model hinzufügen",
"deleteModelImage": "Lösche Model Bild"
},
"parameters": {
"images": "Bilder",
@@ -466,7 +480,6 @@
"canvasMerged": "Leinwand zusammengeführt",
"sentToImageToImage": "Gesendet an Bild zu Bild",
"sentToUnifiedCanvas": "Gesendet an Leinwand",
"parametersSet": "Parameter festlegen",
"parametersNotSet": "Parameter nicht festgelegt",
"metadataLoadFailed": "Metadaten konnten nicht geladen werden",
"setCanvasInitialImage": "Ausgangsbild setzen",
@@ -671,7 +684,8 @@
"body": "Körper",
"hands": "Hände",
"dwOpenpose": "DW Openpose",
"dwOpenposeDescription": "Posenschätzung mit DW Openpose"
"dwOpenposeDescription": "Posenschätzung mit DW Openpose",
"selectCLIPVisionModel": "Wähle ein CLIP Vision Model aus"
},
"queue": {
"status": "Status",
@@ -757,7 +771,12 @@
"scheduler": "Planer",
"noRecallParameters": "Es wurden keine Parameter zum Abrufen gefunden",
"recallParameters": "Parameter wiederherstellen",
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)"
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)",
"allPrompts": "Alle Prompts",
"imageDimensions": "Bilder Auslösungen",
"parameterSet": "Parameter {{parameter}} setzen",
"recallParameter": "{{label}} Abrufen",
"parsingFailed": "Parsing Fehlgeschlagen"
},
"popovers": {
"noiseUseCPU": {
@@ -1022,7 +1041,8 @@
"title": "Bild"
},
"advanced": {
"title": "Erweitert"
"title": "Erweitert",
"options": "$t(accordions.advanced.title) Optionen"
},
"control": {
"title": "Kontrolle"
@@ -1068,5 +1088,10 @@
},
"dynamicPrompts": {
"showDynamicPrompts": "Dynamische Prompts anzeigen"
},
"prompt": {
"noMatchingTriggers": "Keine passenden Auslöser",
"addPromptTrigger": "Auslöse Text hinzufügen",
"compatibleEmbeddings": "Kompatible Einbettungen"
}
}

View File

@@ -217,6 +217,7 @@
"saveControlImage": "Save Control Image",
"scribble": "scribble",
"selectModel": "Select a model",
"selectCLIPVisionModel": "Select a CLIP Vision model",
"setControlImageDimensions": "Set Control Image Dimensions To W/H",
"showAdvanced": "Show Advanced",
"small": "Small",
@@ -655,6 +656,7 @@
"install": "Install",
"installAll": "Install All",
"installRepo": "Install Repo",
"ipAdapters": "IP Adapters",
"load": "Load",
"localOnly": "local only",
"manual": "Manual",
@@ -682,6 +684,7 @@
"noModelsInstalled": "No Models Installed",
"noModelsInstalledDesc1": "Install models with the",
"noModelSelected": "No Model Selected",
"noMatchingModels": "No matching Models",
"none": "none",
"path": "Path",
"pathToConfig": "Path To Config",
@@ -885,6 +888,11 @@
"imageFit": "Fit Initial Image To Output Size",
"images": "Images",
"infillMethod": "Infill Method",
"infillMosaicTileWidth": "Tile Width",
"infillMosaicTileHeight": "Tile Height",
"infillMosaicMinColor": "Min Color",
"infillMosaicMaxColor": "Max Color",
"infillColorValue": "Fill Color",
"info": "Info",
"invoke": {
"addingImagesTo": "Adding images to",
@@ -1033,10 +1041,10 @@
"metadataLoadFailed": "Failed to load metadata",
"modelAddedSimple": "Model Added to Queue",
"modelImportCanceled": "Model Import Canceled",
"parameters": "Parameters",
"parameterNotSet": "{{parameter}} not set",
"parameterSet": "{{parameter}} set",
"parametersNotSet": "Parameters Not Set",
"parametersSet": "Parameters Set",
"problemCopyingCanvas": "Problem Copying Canvas",
"problemCopyingCanvasDesc": "Unable to export base layer",
"problemCopyingImage": "Unable to Copy Image",
@@ -1415,6 +1423,7 @@
"eraseBoundingBox": "Erase Bounding Box",
"eraser": "Eraser",
"fillBoundingBox": "Fill Bounding Box",
"initialFitImageSize": "Fit Image Size on Drop",
"invertBrushSizeScrollDirection": "Invert Scroll for Brush Size",
"layer": "Layer",
"limitStrokesToBox": "Limit Strokes to Box",

View File

@@ -363,7 +363,6 @@
"canvasMerged": "Lienzo consolidado",
"sentToImageToImage": "Enviar hacia Imagen a Imagen",
"sentToUnifiedCanvas": "Enviar hacia Lienzo Consolidado",
"parametersSet": "Parámetros establecidos",
"parametersNotSet": "Parámetros no establecidos",
"metadataLoadFailed": "Error al cargar metadatos",
"serverError": "Error en el servidor",

View File

@@ -298,7 +298,6 @@
"canvasMerged": "Canvas fusionné",
"sentToImageToImage": "Envoyé à Image à Image",
"sentToUnifiedCanvas": "Envoyé à Canvas unifié",
"parametersSet": "Paramètres définis",
"parametersNotSet": "Paramètres non définis",
"metadataLoadFailed": "Échec du chargement des métadonnées"
},

View File

@@ -306,7 +306,6 @@
"canvasMerged": "קנבס מוזג",
"sentToImageToImage": "נשלח לתמונה לתמונה",
"sentToUnifiedCanvas": "נשלח אל קנבס מאוחד",
"parametersSet": "הגדרת פרמטרים",
"parametersNotSet": "פרמטרים לא הוגדרו",
"metadataLoadFailed": "טעינת מטא-נתונים נכשלה"
},

View File

@@ -73,7 +73,8 @@
"ai": "ia",
"file": "File",
"toResolve": "Da risolvere",
"add": "Aggiungi"
"add": "Aggiungi",
"loglevel": "Livello di log"
},
"gallery": {
"galleryImageSize": "Dimensione dell'immagine",
@@ -365,7 +366,7 @@
"modelConverted": "Modello convertito",
"alpha": "Alpha",
"convertToDiffusersHelpText1": "Questo modello verrà convertito nel formato 🧨 Diffusori.",
"convertToDiffusersHelpText3": "Il file Checkpoint su disco verrà eliminato se si trova nella cartella principale di InvokeAI. Se si trova invece in una posizione personalizzata, NON verrà eliminato.",
"convertToDiffusersHelpText3": "Il file del modello su disco verrà eliminato se si trova nella cartella principale di InvokeAI. Se si trova invece in una posizione personalizzata, NON verrà eliminato.",
"v2_base": "v2 (512px)",
"v2_768": "v2 (768px)",
"none": "nessuno",
@@ -442,7 +443,8 @@
"noModelsInstalled": "Nessun modello installato",
"hfTokenInvalidErrorMessage2": "Aggiornalo in ",
"main": "Principali",
"noModelsInstalledDesc1": "Installa i modelli con"
"noModelsInstalledDesc1": "Installa i modelli con",
"ipAdapters": "Adattatori IP"
},
"parameters": {
"images": "Immagini",
@@ -567,7 +569,6 @@
"canvasMerged": "Tela unita",
"sentToImageToImage": "Inviato a Immagine a Immagine",
"sentToUnifiedCanvas": "Inviato a Tela Unificata",
"parametersSet": "Parametri impostati",
"parametersNotSet": "Parametri non impostati",
"metadataLoadFailed": "Impossibile caricare i metadati",
"serverError": "Errore del Server",
@@ -934,7 +935,10 @@
"base": "Base",
"lineart": "Linea",
"controlnet": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.controlNet))",
"mediapipeFace": "Mediapipe Volto"
"mediapipeFace": "Mediapipe Volto",
"ip_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.ipAdapter))",
"t2i_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.t2iAdapter))",
"selectCLIPVisionModel": "Seleziona un modello CLIP Vision"
},
"queue": {
"queueFront": "Aggiungi all'inizio della coda",
@@ -1490,7 +1494,8 @@
"title": "Generazione"
},
"advanced": {
"title": "Avanzate"
"title": "Avanzate",
"options": "Opzioni $t(accordions.advanced.title)"
},
"image": {
"title": "Immagine"

View File

@@ -420,7 +420,6 @@
"canvasMerged": "Canvas samengevoegd",
"sentToImageToImage": "Gestuurd naar Afbeelding naar afbeelding",
"sentToUnifiedCanvas": "Gestuurd naar Centraal canvas",
"parametersSet": "Parameters ingesteld",
"parametersNotSet": "Parameters niet ingesteld",
"metadataLoadFailed": "Fout bij laden metagegevens",
"serverError": "Serverfout",

View File

@@ -267,7 +267,6 @@
"canvasMerged": "Scalono widoczne warstwy",
"sentToImageToImage": "Wysłano do Obraz na obraz",
"sentToUnifiedCanvas": "Wysłano do trybu uniwersalnego",
"parametersSet": "Ustawiono parametry",
"parametersNotSet": "Nie ustawiono parametrów",
"metadataLoadFailed": "Błąd wczytywania metadanych"
},

View File

@@ -310,7 +310,6 @@
"canvasMerged": "Tela Fundida",
"sentToImageToImage": "Mandar Para Imagem Para Imagem",
"sentToUnifiedCanvas": "Enviada para a Tela Unificada",
"parametersSet": "Parâmetros Definidos",
"parametersNotSet": "Parâmetros Não Definidos",
"metadataLoadFailed": "Falha ao tentar carregar metadados"
},

View File

@@ -307,7 +307,6 @@
"canvasMerged": "Tela Fundida",
"sentToImageToImage": "Mandar Para Imagem Para Imagem",
"sentToUnifiedCanvas": "Enviada para a Tela Unificada",
"parametersSet": "Parâmetros Definidos",
"parametersNotSet": "Parâmetros Não Definidos",
"metadataLoadFailed": "Falha ao tentar carregar metadados"
},

View File

@@ -75,7 +75,8 @@
"copy": "Копировать",
"localSystem": "Локальная система",
"aboutDesc": "Используя Invoke для работы? Проверьте это:",
"add": "Добавить"
"add": "Добавить",
"loglevel": "Уровень логов"
},
"gallery": {
"galleryImageSize": "Размер изображений",
@@ -574,7 +575,6 @@
"canvasMerged": "Холст объединен",
"sentToImageToImage": "Отправить в img2img",
"sentToUnifiedCanvas": "Отправлено на Единый холст",
"parametersSet": "Параметры заданы",
"parametersNotSet": "Параметры не заданы",
"metadataLoadFailed": "Не удалось загрузить метаданные",
"serverError": "Ошибка сервера",
@@ -1505,7 +1505,8 @@
"title": "Генерация"
},
"advanced": {
"title": "Расширенные"
"title": "Расширенные",
"options": "Опции $t(accordions.advanced.title)"
},
"image": {
"title": "Изображение"

View File

@@ -315,7 +315,6 @@
"canvasMerged": "Полотно об'єднане",
"sentToImageToImage": "Надіслати до img2img",
"sentToUnifiedCanvas": "Надіслати на полотно",
"parametersSet": "Параметри задані",
"parametersNotSet": "Параметри не задані",
"metadataLoadFailed": "Не вдалося завантажити метадані",
"serverError": "Помилка сервера",

View File

@@ -487,7 +487,6 @@
"canvasMerged": "画布已合并",
"sentToImageToImage": "已发送到图生图",
"sentToUnifiedCanvas": "已发送到统一画布",
"parametersSet": "参数已设定",
"parametersNotSet": "参数未设定",
"metadataLoadFailed": "加载元数据失败",
"uploadFailedInvalidUploadDesc": "必须是单张的 PNG 或 JPEG 图片",

View File

@@ -1,7 +1,7 @@
import type { UnknownAction } from '@reduxjs/toolkit';
import { deepClone } from 'common/util/deepClone';
import { isAnyGraphBuilt } from 'features/nodes/store/actions';
import { nodeTemplatesBuilt } from 'features/nodes/store/nodesSlice';
import { cloneDeep } from 'lodash-es';
import { appInfoApi } from 'services/api/endpoints/appInfo';
import type { Graph } from 'services/api/types';
import { socketGeneratorProgress } from 'services/events/actions';
@@ -33,7 +33,7 @@ export const actionSanitizer = <A extends UnknownAction>(action: A): A => {
}
if (socketGeneratorProgress.match(action)) {
const sanitized = cloneDeep(action);
const sanitized = deepClone(action);
if (sanitized.payload.data.progress_image) {
sanitized.payload.data.progress_image.dataURL = '<Progress image omitted>';
}

View File

@@ -43,6 +43,7 @@ export const addModelInstallEventListener = (startAppListening: AppStartListenin
})
);
dispatch(api.util.invalidateTags([{ type: 'ModelConfig', id: LIST_TAG }]));
dispatch(api.util.invalidateTags([{ type: 'ModelScanFolderResults', id: LIST_TAG }]));
},
});

View File

@@ -1,4 +1,5 @@
import { cloneDeep, merge } from 'lodash-es';
import { deepClone } from 'common/util/deepClone';
import { merge } from 'lodash-es';
import { ClickScrollPlugin, OverlayScrollbars } from 'overlayscrollbars';
import type { UseOverlayScrollbarsParams } from 'overlayscrollbars-react';
@@ -22,7 +23,7 @@ export const getOverlayScrollbarsParams = (
overflowX: 'hidden' | 'scroll' = 'hidden',
overflowY: 'hidden' | 'scroll' = 'scroll'
) => {
const params = cloneDeep(overlayScrollbarsParams);
const params = deepClone(overlayScrollbarsParams);
merge(params, { options: { overflow: { y: overflowY, x: overflowX } } });
return params;
};

View File

@@ -0,0 +1,15 @@
import rfdc from 'rfdc';
const _rfdc = rfdc();
/**
* Deep-clones an object using Really Fast Deep Clone.
* This is the fastest deep clone library on Chrome, but not the fastest on FF. Still, it's much faster than lodash
* and structuredClone, so it's the best all-around choice.
*
* Simple Benchmark: https://www.measurethat.net/Benchmarks/Show/30358/0/lodash-clonedeep-vs-jsonparsejsonstringify-vs-recursive
* Repo: https://github.com/davidmarkclements/rfdc
*
* @param obj The object to deep-clone
* @returns The cloned object
*/
export const deepClone = <T>(obj: T): T => _rfdc(obj);

View File

@@ -18,6 +18,7 @@ import {
setShouldAutoSave,
setShouldCropToBoundingBoxOnSave,
setShouldDarkenOutsideBoundingBox,
setShouldFitImageSize,
setShouldInvertBrushSizeScrollDirection,
setShouldRestrictStrokesToBox,
setShouldShowCanvasDebugInfo,
@@ -48,6 +49,7 @@ const IAICanvasSettingsButtonPopover = () => {
const shouldSnapToGrid = useAppSelector((s) => s.canvas.shouldSnapToGrid);
const shouldRestrictStrokesToBox = useAppSelector((s) => s.canvas.shouldRestrictStrokesToBox);
const shouldAntialias = useAppSelector((s) => s.canvas.shouldAntialias);
const shouldFitImageSize = useAppSelector((s) => s.canvas.shouldFitImageSize);
useHotkeys(
['n'],
@@ -102,6 +104,10 @@ const IAICanvasSettingsButtonPopover = () => {
(e: ChangeEvent<HTMLInputElement>) => dispatch(setShouldAntialias(e.target.checked)),
[dispatch]
);
const handleChangeShouldFitImageSize = useCallback(
(e: ChangeEvent<HTMLInputElement>) => dispatch(setShouldFitImageSize(e.target.checked)),
[dispatch]
);
return (
<Popover>
@@ -165,6 +171,10 @@ const IAICanvasSettingsButtonPopover = () => {
<FormLabel>{t('unifiedCanvas.antialiasing')}</FormLabel>
<Checkbox isChecked={shouldAntialias} onChange={handleChangeShouldAntialias} />
</FormControl>
<FormControl>
<FormLabel>{t('unifiedCanvas.initialFitImageSize')}</FormLabel>
<Checkbox isChecked={shouldFitImageSize} onChange={handleChangeShouldFitImageSize} />
</FormControl>
</FormControlGroup>
<ClearCanvasHistoryButtonModal />
</Flex>

View File

@@ -1,6 +1,7 @@
import type { PayloadAction } from '@reduxjs/toolkit';
import { createSlice } from '@reduxjs/toolkit';
import type { PersistConfig, RootState } from 'app/store/store';
import { deepClone } from 'common/util/deepClone';
import { roundDownToMultiple, roundToMultiple } from 'common/util/roundDownToMultiple';
import calculateCoordinates from 'features/canvas/util/calculateCoordinates';
import calculateScale from 'features/canvas/util/calculateScale';
@@ -13,7 +14,7 @@ import { modelChanged } from 'features/parameters/store/generationSlice';
import type { PayloadActionWithOptimalDimension } from 'features/parameters/store/types';
import { getIsSizeOptimal, getOptimalDimension } from 'features/parameters/util/optimalDimension';
import type { IRect, Vector2d } from 'konva/lib/types';
import { clamp, cloneDeep } from 'lodash-es';
import { clamp } from 'lodash-es';
import type { RgbaColor } from 'react-colorful';
import { queueApi } from 'services/api/endpoints/queue';
import type { ImageDTO } from 'services/api/types';
@@ -36,7 +37,7 @@ import { CANVAS_GRID_SIZE_FINE } from './constants';
/**
* The maximum history length to keep in the past/future layer states.
*/
const MAX_HISTORY = 128;
const MAX_HISTORY = 100;
const initialLayerState: CanvasLayerState = {
objects: [],
@@ -65,6 +66,7 @@ const initialCanvasState: CanvasState = {
shouldAutoSave: false,
shouldCropToBoundingBoxOnSave: false,
shouldDarkenOutsideBoundingBox: false,
shouldFitImageSize: true,
shouldInvertBrushSizeScrollDirection: false,
shouldLockBoundingBox: false,
shouldPreserveMaskedArea: false,
@@ -121,7 +123,7 @@ export const canvasSlice = createSlice({
state.brushSize = action.payload;
},
clearMask: (state) => {
state.pastLayerStates.push(cloneDeep(state.layerState));
pushToPrevLayerStates(state);
state.layerState.objects = state.layerState.objects.filter((obj) => !isCanvasMaskLine(obj));
state.futureLayerStates = [];
state.shouldPreserveMaskedArea = false;
@@ -143,12 +145,20 @@ export const canvasSlice = createSlice({
reducer: (state, action: PayloadActionWithOptimalDimension<ImageDTO>) => {
const { width, height, image_name } = action.payload;
const { optimalDimension } = action.meta;
const { stageDimensions } = state;
const { stageDimensions, shouldFitImageSize } = state;
const newBoundingBoxDimensions = {
width: roundDownToMultiple(clamp(width, CANVAS_GRID_SIZE_FINE, optimalDimension), CANVAS_GRID_SIZE_FINE),
height: roundDownToMultiple(clamp(height, CANVAS_GRID_SIZE_FINE, optimalDimension), CANVAS_GRID_SIZE_FINE),
};
const newBoundingBoxDimensions = shouldFitImageSize
? {
width: roundDownToMultiple(width, CANVAS_GRID_SIZE_FINE),
height: roundDownToMultiple(height, CANVAS_GRID_SIZE_FINE),
}
: {
width: roundDownToMultiple(clamp(width, CANVAS_GRID_SIZE_FINE, optimalDimension), CANVAS_GRID_SIZE_FINE),
height: roundDownToMultiple(
clamp(height, CANVAS_GRID_SIZE_FINE, optimalDimension),
CANVAS_GRID_SIZE_FINE
),
};
const newBoundingBoxCoordinates = {
x: roundToMultiple(width / 2 - newBoundingBoxDimensions.width / 2, CANVAS_GRID_SIZE_FINE),
@@ -163,10 +173,10 @@ export const canvasSlice = createSlice({
state.boundingBoxDimensions = newBoundingBoxDimensions;
state.boundingBoxCoordinates = newBoundingBoxCoordinates;
state.pastLayerStates.push(cloneDeep(state.layerState));
pushToPrevLayerStates(state);
state.layerState = {
...cloneDeep(initialLayerState),
...deepClone(initialLayerState),
objects: [
{
kind: 'image',
@@ -261,11 +271,7 @@ export const canvasSlice = createSlice({
return;
}
state.pastLayerStates.push(cloneDeep(state.layerState));
if (state.pastLayerStates.length > MAX_HISTORY) {
state.pastLayerStates.shift();
}
pushToPrevLayerStates(state);
state.layerState.stagingArea.images.push({
kind: 'image',
@@ -279,13 +285,9 @@ export const canvasSlice = createSlice({
state.futureLayerStates = [];
},
discardStagedImages: (state) => {
state.pastLayerStates.push(cloneDeep(state.layerState));
pushToPrevLayerStates(state);
if (state.pastLayerStates.length > MAX_HISTORY) {
state.pastLayerStates.shift();
}
state.layerState.stagingArea = cloneDeep(cloneDeep(initialLayerState)).stagingArea;
state.layerState.stagingArea = deepClone(initialLayerState.stagingArea);
state.futureLayerStates = [];
state.shouldShowStagingOutline = true;
@@ -294,18 +296,21 @@ export const canvasSlice = createSlice({
},
discardStagedImage: (state) => {
const { images, selectedImageIndex } = state.layerState.stagingArea;
state.pastLayerStates.push(cloneDeep(state.layerState));
if (state.pastLayerStates.length > MAX_HISTORY) {
state.pastLayerStates.shift();
}
if (!images.length) {
return;
}
pushToPrevLayerStates(state);
images.splice(selectedImageIndex, 1);
if (images.length === 0) {
pushToPrevLayerStates(state);
state.layerState.stagingArea = deepClone(initialLayerState.stagingArea);
state.futureLayerStates = [];
state.shouldShowStagingOutline = true;
state.shouldShowStagingImage = true;
state.batchIds = [];
}
if (selectedImageIndex >= images.length) {
state.layerState.stagingArea.selectedImageIndex = images.length - 1;
}
@@ -320,11 +325,7 @@ export const canvasSlice = createSlice({
addFillRect: (state) => {
const { boundingBoxCoordinates, boundingBoxDimensions, brushColor } = state;
state.pastLayerStates.push(cloneDeep(state.layerState));
if (state.pastLayerStates.length > MAX_HISTORY) {
state.pastLayerStates.shift();
}
pushToPrevLayerStates(state);
state.layerState.objects.push({
kind: 'fillRect',
@@ -339,11 +340,7 @@ export const canvasSlice = createSlice({
addEraseRect: (state) => {
const { boundingBoxCoordinates, boundingBoxDimensions } = state;
state.pastLayerStates.push(cloneDeep(state.layerState));
if (state.pastLayerStates.length > MAX_HISTORY) {
state.pastLayerStates.shift();
}
pushToPrevLayerStates(state);
state.layerState.objects.push({
kind: 'eraseRect',
@@ -367,11 +364,7 @@ export const canvasSlice = createSlice({
// set & then spread this to only conditionally add the "color" key
const newColor = layer === 'base' && tool === 'brush' ? { color: brushColor } : {};
state.pastLayerStates.push(cloneDeep(state.layerState));
if (state.pastLayerStates.length > MAX_HISTORY) {
state.pastLayerStates.shift();
}
pushToPrevLayerStates(state);
const newLine: CanvasMaskLine | CanvasBaseLine = {
kind: 'line',
@@ -409,11 +402,7 @@ export const canvasSlice = createSlice({
return;
}
state.futureLayerStates.unshift(cloneDeep(state.layerState));
if (state.futureLayerStates.length > MAX_HISTORY) {
state.futureLayerStates.pop();
}
pushToFutureLayerStates(state);
state.layerState = targetState;
},
@@ -424,11 +413,7 @@ export const canvasSlice = createSlice({
return;
}
state.pastLayerStates.push(cloneDeep(state.layerState));
if (state.pastLayerStates.length > MAX_HISTORY) {
state.pastLayerStates.shift();
}
pushToPrevLayerStates(state);
state.layerState = targetState;
},
@@ -445,8 +430,8 @@ export const canvasSlice = createSlice({
state.shouldShowIntermediates = action.payload;
},
resetCanvas: (state) => {
state.pastLayerStates.push(cloneDeep(state.layerState));
state.layerState = cloneDeep(initialLayerState);
pushToPrevLayerStates(state);
state.layerState = deepClone(initialLayerState);
state.futureLayerStates = [];
state.batchIds = [];
state.boundingBoxCoordinates = {
@@ -540,11 +525,7 @@ export const canvasSlice = createSlice({
const { images, selectedImageIndex } = state.layerState.stagingArea;
state.pastLayerStates.push(cloneDeep(state.layerState));
if (state.pastLayerStates.length > MAX_HISTORY) {
state.pastLayerStates.shift();
}
pushToPrevLayerStates(state);
const imageToCommit = images[selectedImageIndex];
@@ -553,7 +534,7 @@ export const canvasSlice = createSlice({
...imageToCommit,
});
}
state.layerState.stagingArea = cloneDeep(initialLayerState).stagingArea;
state.layerState.stagingArea = deepClone(initialLayerState.stagingArea);
state.futureLayerStates = [];
state.shouldShowStagingOutline = true;
@@ -610,6 +591,9 @@ export const canvasSlice = createSlice({
setShouldAntialias: (state, action: PayloadAction<boolean>) => {
state.shouldAntialias = action.payload;
},
setShouldFitImageSize: (state, action: PayloadAction<boolean>) => {
state.shouldFitImageSize = action.payload;
},
setShouldCropToBoundingBoxOnSave: (state, action: PayloadAction<boolean>) => {
state.shouldCropToBoundingBoxOnSave = action.payload;
},
@@ -623,7 +607,7 @@ export const canvasSlice = createSlice({
};
},
setMergedCanvas: (state, action: PayloadAction<CanvasImage>) => {
state.pastLayerStates.push(cloneDeep(state.layerState));
pushToPrevLayerStates(state);
state.futureLayerStates = [];
@@ -720,6 +704,7 @@ export const {
setShouldRestrictStrokesToBox,
stagingAreaInitialized,
setShouldAntialias,
setShouldFitImageSize,
canvasResized,
canvasBatchIdAdded,
canvasBatchIdsReset,
@@ -743,3 +728,17 @@ export const canvasPersistConfig: PersistConfig<CanvasState> = {
migrate: migrateCanvasState,
persistDenylist: [],
};
const pushToPrevLayerStates = (state: CanvasState) => {
state.pastLayerStates.push(deepClone(state.layerState));
if (state.pastLayerStates.length > MAX_HISTORY) {
state.pastLayerStates = state.pastLayerStates.slice(-MAX_HISTORY);
}
};
const pushToFutureLayerStates = (state: CanvasState) => {
state.futureLayerStates.unshift(deepClone(state.layerState));
if (state.futureLayerStates.length > MAX_HISTORY) {
state.futureLayerStates = state.futureLayerStates.slice(0, MAX_HISTORY);
}
};

View File

@@ -120,6 +120,7 @@ export interface CanvasState {
shouldAutoSave: boolean;
shouldCropToBoundingBoxOnSave: boolean;
shouldDarkenOutsideBoundingBox: boolean;
shouldFitImageSize: boolean;
shouldInvertBrushSizeScrollDirection: boolean;
shouldLockBoundingBox: boolean;
shouldPreserveMaskedArea: boolean;

View File

@@ -1,12 +1,18 @@
import { Combobox, FormControl, Tooltip } from '@invoke-ai/ui-library';
import type { ComboboxOnChange, ComboboxOption } from '@invoke-ai/ui-library';
import { Combobox, Flex, FormControl, Tooltip } from '@invoke-ai/ui-library';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
import { useControlAdapterCLIPVisionModel } from 'features/controlAdapters/hooks/useControlAdapterCLIPVisionModel';
import { useControlAdapterIsEnabled } from 'features/controlAdapters/hooks/useControlAdapterIsEnabled';
import { useControlAdapterModel } from 'features/controlAdapters/hooks/useControlAdapterModel';
import { useControlAdapterModels } from 'features/controlAdapters/hooks/useControlAdapterModels';
import { useControlAdapterType } from 'features/controlAdapters/hooks/useControlAdapterType';
import { controlAdapterModelChanged } from 'features/controlAdapters/store/controlAdaptersSlice';
import {
controlAdapterCLIPVisionModelChanged,
controlAdapterModelChanged,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import type { CLIPVisionModel } from 'features/controlAdapters/store/types';
import { selectGenerationSlice } from 'features/parameters/store/generationSlice';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
@@ -29,6 +35,7 @@ const ParamControlAdapterModel = ({ id }: ParamControlAdapterModelProps) => {
const { modelConfig } = useControlAdapterModel(id);
const dispatch = useAppDispatch();
const currentBaseModel = useAppSelector((s) => s.generation.model?.base);
const currentCLIPVisionModel = useControlAdapterCLIPVisionModel(id);
const mainModel = useAppSelector(selectMainModel);
const { t } = useTranslation();
@@ -49,6 +56,16 @@ const ParamControlAdapterModel = ({ id }: ParamControlAdapterModelProps) => {
[dispatch, id]
);
const onCLIPVisionModelChange = useCallback<ComboboxOnChange>(
(v) => {
if (!v?.value) {
return;
}
dispatch(controlAdapterCLIPVisionModelChanged({ id, clipVisionModel: v.value as CLIPVisionModel }));
},
[dispatch, id]
);
const selectedModel = useMemo(
() => (modelConfig && controlAdapterType ? { ...modelConfig, model_type: controlAdapterType } : null),
[controlAdapterType, modelConfig]
@@ -71,18 +88,51 @@ const ParamControlAdapterModel = ({ id }: ParamControlAdapterModelProps) => {
isLoading,
});
const clipVisionOptions = useMemo<ComboboxOption[]>(
() => [
{ label: 'ViT-H', value: 'ViT-H' },
{ label: 'ViT-G', value: 'ViT-G' },
],
[]
);
const clipVisionModel = useMemo(
() => clipVisionOptions.find((o) => o.value === currentCLIPVisionModel),
[clipVisionOptions, currentCLIPVisionModel]
);
return (
<Tooltip label={value?.description}>
<FormControl isDisabled={!isEnabled} isInvalid={!value || mainModel?.base !== modelConfig?.base}>
<Combobox
options={options}
placeholder={t('controlnet.selectModel')}
value={value}
onChange={onChange}
noOptionsMessage={noOptionsMessage}
/>
</FormControl>
</Tooltip>
<Flex sx={{ gap: 2 }}>
<Tooltip label={value?.description}>
<FormControl
isDisabled={!isEnabled}
isInvalid={!value || mainModel?.base !== modelConfig?.base}
sx={{ width: '100%' }}
>
<Combobox
options={options}
placeholder={t('controlnet.selectModel')}
value={value}
onChange={onChange}
noOptionsMessage={noOptionsMessage}
/>
</FormControl>
</Tooltip>
{modelConfig?.type === 'ip_adapter' && modelConfig.format === 'checkpoint' && (
<FormControl
isDisabled={!isEnabled}
isInvalid={!value || mainModel?.base !== modelConfig?.base}
sx={{ width: 'max-content', minWidth: 28 }}
>
<Combobox
options={clipVisionOptions}
placeholder={t('controlnet.selectCLIPVisionModel')}
value={clipVisionModel}
onChange={onCLIPVisionModelChange}
/>
</FormControl>
)}
</Flex>
);
};

View File

@@ -0,0 +1,24 @@
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppSelector } from 'app/store/storeHooks';
import {
selectControlAdapterById,
selectControlAdaptersSlice,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { useMemo } from 'react';
export const useControlAdapterCLIPVisionModel = (id: string) => {
const selector = useMemo(
() =>
createMemoizedSelector(selectControlAdaptersSlice, (controlAdapters) => {
const cn = selectControlAdapterById(controlAdapters, id);
if (cn && cn?.type === 'ip_adapter') {
return cn.clipVisionModel;
}
}),
[id]
);
const clipVisionModel = useAppSelector(selector);
return clipVisionModel;
};

View File

@@ -2,10 +2,11 @@ import type { PayloadAction, Update } from '@reduxjs/toolkit';
import { createEntityAdapter, createSlice, isAnyOf } from '@reduxjs/toolkit';
import { getSelectorsOptions } from 'app/store/createMemoizedSelector';
import type { PersistConfig, RootState } from 'app/store/store';
import { deepClone } from 'common/util/deepClone';
import { buildControlAdapter } from 'features/controlAdapters/util/buildControlAdapter';
import { buildControlAdapterProcessor } from 'features/controlAdapters/util/buildControlAdapterProcessor';
import { zModelIdentifierField } from 'features/nodes/types/common';
import { cloneDeep, merge, uniq } from 'lodash-es';
import { merge, uniq } from 'lodash-es';
import type { ControlNetModelConfig, IPAdapterModelConfig, T2IAdapterModelConfig } from 'services/api/types';
import { socketInvocationError } from 'services/events/actions';
import { v4 as uuidv4 } from 'uuid';
@@ -13,6 +14,7 @@ import { v4 as uuidv4 } from 'uuid';
import { controlAdapterImageProcessed } from './actions';
import { CONTROLNET_PROCESSORS } from './constants';
import type {
CLIPVisionModel,
ControlAdapterConfig,
ControlAdapterProcessorType,
ControlAdaptersState,
@@ -114,7 +116,7 @@ export const controlAdaptersSlice = createSlice({
if (!controlAdapter) {
return;
}
const newControlAdapter = merge(cloneDeep(controlAdapter), {
const newControlAdapter = merge(deepClone(controlAdapter), {
id: newId,
isEnabled: true,
});
@@ -243,6 +245,13 @@ export const controlAdaptersSlice = createSlice({
}
caAdapter.updateOne(state, { id, changes: { controlMode } });
},
controlAdapterCLIPVisionModelChanged: (
state,
action: PayloadAction<{ id: string; clipVisionModel: CLIPVisionModel }>
) => {
const { id, clipVisionModel } = action.payload;
caAdapter.updateOne(state, { id, changes: { clipVisionModel } });
},
controlAdapterResizeModeChanged: (
state,
action: PayloadAction<{
@@ -270,7 +279,7 @@ export const controlAdaptersSlice = createSlice({
return;
}
const processorNode = merge(cloneDeep(cn.processorNode), params);
const processorNode = merge(deepClone(cn.processorNode), params);
caAdapter.updateOne(state, {
id,
@@ -293,7 +302,7 @@ export const controlAdaptersSlice = createSlice({
return;
}
const processorNode = cloneDeep(
const processorNode = deepClone(
CONTROLNET_PROCESSORS[processorType].buildDefaults(cn.model?.base)
) as RequiredControlAdapterProcessorNode;
@@ -333,7 +342,7 @@ export const controlAdaptersSlice = createSlice({
caAdapter.updateOne(state, update);
},
controlAdaptersReset: () => {
return cloneDeep(initialControlAdaptersState);
return deepClone(initialControlAdaptersState);
},
pendingControlImagesCleared: (state) => {
state.pendingControlImages = [];
@@ -380,6 +389,7 @@ export const {
controlAdapterProcessedImageChanged,
controlAdapterIsEnabledChanged,
controlAdapterModelChanged,
controlAdapterCLIPVisionModelChanged,
controlAdapterWeightChanged,
controlAdapterBeginStepPctChanged,
controlAdapterEndStepPctChanged,
@@ -406,7 +416,7 @@ const migrateControlAdaptersState = (state: any): any => {
state._version = 1;
}
if (state._version === 1) {
state = cloneDeep(initialControlAdaptersState);
state = deepClone(initialControlAdaptersState);
}
return state;
};

View File

@@ -243,12 +243,15 @@ export type T2IAdapterConfig = {
shouldAutoConfig: boolean;
};
export type CLIPVisionModel = 'ViT-H' | 'ViT-G';
export type IPAdapterConfig = {
type: 'ip_adapter';
id: string;
isEnabled: boolean;
controlImage: string | null;
model: ParameterIPAdapterModel | null;
clipVisionModel: CLIPVisionModel;
weight: number;
beginStepPct: number;
endStepPct: number;

View File

@@ -1,3 +1,4 @@
import { deepClone } from 'common/util/deepClone';
import { CONTROLNET_PROCESSORS } from 'features/controlAdapters/store/constants';
import type {
ControlAdapterConfig,
@@ -7,7 +8,7 @@ import type {
RequiredCannyImageProcessorInvocation,
T2IAdapterConfig,
} from 'features/controlAdapters/store/types';
import { cloneDeep, merge } from 'lodash-es';
import { merge } from 'lodash-es';
export const initialControlNet: Omit<ControlNetConfig, 'id'> = {
type: 'controlnet',
@@ -45,6 +46,7 @@ export const initialIPAdapter: Omit<IPAdapterConfig, 'id'> = {
isEnabled: true,
controlImage: null,
model: null,
clipVisionModel: 'ViT-H',
weight: 1,
beginStepPct: 0,
endStepPct: 1,
@@ -57,11 +59,11 @@ export const buildControlAdapter = (
): ControlAdapterConfig => {
switch (type) {
case 'controlnet':
return merge(cloneDeep(initialControlNet), { id, ...overrides });
return merge(deepClone(initialControlNet), { id, ...overrides });
case 't2i_adapter':
return merge(cloneDeep(initialT2IAdapter), { id, ...overrides });
return merge(deepClone(initialT2IAdapter), { id, ...overrides });
case 'ip_adapter':
return merge(cloneDeep(initialIPAdapter), { id, ...overrides });
return merge(deepClone(initialIPAdapter), { id, ...overrides });
default:
throw new Error(`Unknown control adapter type: ${type}`);
}

View File

@@ -33,6 +33,7 @@ const ImageMetadataActions = (props: Props) => {
<MetadataItem metadata={metadata} handlers={handlers.scheduler} />
<MetadataItem metadata={metadata} handlers={handlers.cfgScale} />
<MetadataItem metadata={metadata} handlers={handlers.cfgRescaleMultiplier} />
<MetadataItem metadata={metadata} handlers={handlers.initialImage} />
<MetadataItem metadata={metadata} handlers={handlers.strength} />
<MetadataItem metadata={metadata} handlers={handlers.hrfEnabled} />
<MetadataItem metadata={metadata} handlers={handlers.hrfMethod} />

View File

@@ -1,9 +1,9 @@
import type { PayloadAction } from '@reduxjs/toolkit';
import { createSlice } from '@reduxjs/toolkit';
import type { PersistConfig, RootState } from 'app/store/store';
import { deepClone } from 'common/util/deepClone';
import { zModelIdentifierField } from 'features/nodes/types/common';
import type { ParameterLoRAModel } from 'features/parameters/types/parameterSchemas';
import { cloneDeep } from 'lodash-es';
import type { LoRAModelConfig } from 'services/api/types';
export type LoRA = {
@@ -58,7 +58,7 @@ export const loraSlice = createSlice({
}
lora.isEnabled = isEnabled;
},
lorasReset: () => cloneDeep(initialLoraState),
lorasReset: () => deepClone(initialLoraState),
},
});
@@ -74,7 +74,7 @@ const migrateLoRAState = (state: any): any => {
}
if (state._version === 1) {
// Model type has changed, so we need to reset the state - too risky to migrate
state = cloneDeep(initialLoraState);
state = deepClone(initialLoraState);
}
return state;
};

View File

@@ -189,6 +189,12 @@ export const handlers = {
recaller: recallers.cfgScale,
}),
height: buildHandlers({ getLabel: () => t('metadata.height'), parser: parsers.height, recaller: recallers.height }),
initialImage: buildHandlers({
getLabel: () => t('metadata.initImage'),
parser: parsers.initialImage,
recaller: recallers.initialImage,
renderValue: async (imageDTO) => imageDTO.image_name,
}),
negativePrompt: buildHandlers({
getLabel: () => t('metadata.negativePrompt'),
parser: parsers.negativePrompt,
@@ -405,6 +411,6 @@ export const parseAndRecallAllMetadata = async (metadata: unknown, skip: (keyof
})
);
if (results.some((result) => result.status === 'fulfilled')) {
parameterSetToast(t('toast.parametersSet'));
parameterSetToast(t('toast.parameters'));
}
};

View File

@@ -1,3 +1,4 @@
import { getStore } from 'app/store/nanostores/store';
import {
initialControlNet,
initialIPAdapter,
@@ -57,6 +58,8 @@ import {
isParameterWidth,
} from 'features/parameters/types/parameterSchemas';
import { get, isArray, isString } from 'lodash-es';
import { imagesApi } from 'services/api/endpoints/images';
import type { ImageDTO } from 'services/api/types';
import {
isControlNetModelConfig,
isIPAdapterModelConfig,
@@ -135,6 +138,14 @@ const parseCFGRescaleMultiplier: MetadataParseFunc<ParameterCFGRescaleMultiplier
const parseScheduler: MetadataParseFunc<ParameterScheduler> = (metadata) =>
getProperty(metadata, 'scheduler', isParameterScheduler);
const parseInitialImage: MetadataParseFunc<ImageDTO> = async (metadata) => {
const imageName = await getProperty(metadata, 'init_image', isString);
const imageDTORequest = getStore().dispatch(imagesApi.endpoints.getImageDTO.initiate(imageName));
const imageDTO = await imageDTORequest.unwrap();
imageDTORequest.unsubscribe();
return imageDTO;
};
const parseWidth: MetadataParseFunc<ParameterWidth> = (metadata) => getProperty(metadata, 'width', isParameterWidth);
const parseHeight: MetadataParseFunc<ParameterHeight> = (metadata) =>
@@ -372,6 +383,7 @@ const parseIPAdapter: MetadataParseFunc<IPAdapterConfigMetadata> = async (metada
type: 'ip_adapter',
isEnabled: true,
model: zModelIdentifierField.parse(ipAdapterModel),
clipVisionModel: 'ViT-H',
controlImage: image?.image_name ?? null,
weight: weight ?? initialIPAdapter.weight,
beginStepPct: begin_step_percent ?? initialIPAdapter.beginStepPct,
@@ -401,6 +413,7 @@ export const parsers = {
cfgScale: parseCFGScale,
cfgRescaleMultiplier: parseCFGRescaleMultiplier,
scheduler: parseScheduler,
initialImage: parseInitialImage,
width: parseWidth,
height: parseHeight,
steps: parseSteps,

View File

@@ -17,6 +17,7 @@ import type {
import { modelSelected } from 'features/parameters/store/actions';
import {
heightRecalled,
initialImageChanged,
setCfgRescaleMultiplier,
setCfgScale,
setImg2imgStrength,
@@ -61,6 +62,7 @@ import {
setRefinerStart,
setRefinerSteps,
} from 'features/sdxl/store/sdxlSlice';
import type { ImageDTO } from 'services/api/types';
const recallPositivePrompt: MetadataRecallFunc<ParameterPositivePrompt> = (positivePrompt) => {
getStore().dispatch(setPositivePrompt(positivePrompt));
@@ -94,6 +96,10 @@ const recallScheduler: MetadataRecallFunc<ParameterScheduler> = (scheduler) => {
getStore().dispatch(setScheduler(scheduler));
};
const recallInitialImage: MetadataRecallFunc<ImageDTO> = async (imageDTO) => {
getStore().dispatch(initialImageChanged(imageDTO));
};
const recallWidth: MetadataRecallFunc<ParameterWidth> = (width) => {
getStore().dispatch(widthRecalled(width));
};
@@ -235,6 +241,7 @@ export const recallers = {
cfgScale: recallCFGScale,
cfgRescaleMultiplier: recallCFGRescaleMultiplier,
scheduler: recallScheduler,
initialImage: recallInitialImage,
width: recallWidth,
height: recallHeight,
steps: recallSteps,

View File

@@ -3,7 +3,7 @@ import { createSlice } from '@reduxjs/toolkit';
import type { PersistConfig } from 'app/store/store';
import type { ModelType } from 'services/api/types';
export type FilterableModelType = Exclude<ModelType, 'onnx' | 'clip_vision'>;
export type FilterableModelType = Exclude<ModelType, 'onnx' | 'clip_vision'> | 'refiner';
type ModelManagerState = {
_version: 1;

View File

@@ -87,6 +87,10 @@ export const ModelInstallQueueItem = (props: ModelListItemProps) => {
}, [installJob.source]);
const progressValue = useMemo(() => {
if (installJob.status === 'completed' || installJob.status === 'error' || installJob.status === 'cancelled') {
return 100;
}
if (isNil(installJob.bytes) || isNil(installJob.total_bytes)) {
return null;
}
@@ -96,7 +100,7 @@ export const ModelInstallQueueItem = (props: ModelListItemProps) => {
}
return (installJob.bytes / installJob.total_bytes) * 100;
}, [installJob.bytes, installJob.total_bytes]);
}, [installJob.bytes, installJob.status, installJob.total_bytes]);
return (
<Flex gap={3} w="full" alignItems="center">

View File

@@ -1,48 +1,19 @@
import { Badge, Box, Flex, IconButton, Text } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { addToast } from 'features/system/store/systemSlice';
import { makeToast } from 'features/system/util/makeToast';
import { useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiPlusBold } from 'react-icons/pi';
import type { ScanFolderResponse } from 'services/api/endpoints/models';
import { useInstallModelMutation } from 'services/api/endpoints/models';
type Props = {
result: ScanFolderResponse[number];
installModel: (source: string) => void;
};
export const ScanModelResultItem = ({ result }: Props) => {
export const ScanModelResultItem = ({ result, installModel }: Props) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const [installModel] = useInstallModelMutation();
const handleQuickAdd = useCallback(() => {
installModel({ source: result.path })
.unwrap()
.then((_) => {
dispatch(
addToast(
makeToast({
title: t('toast.modelAddedSimple'),
status: 'success',
})
)
);
})
.catch((error) => {
if (error) {
dispatch(
addToast(
makeToast({
title: `${error.data.detail} `,
status: 'error',
})
)
);
}
});
}, [installModel, result, dispatch, t]);
const handleInstall = useCallback(() => {
installModel(result.path);
}, [installModel, result]);
return (
<Flex alignItems="center" justifyContent="space-between" w="100%" gap={3}>
@@ -54,7 +25,7 @@ export const ScanModelResultItem = ({ result }: Props) => {
{result.is_installed ? (
<Badge>{t('common.installed')}</Badge>
) : (
<IconButton aria-label={t('modelManager.install')} icon={<PiPlusBold />} onClick={handleQuickAdd} size="sm" />
<IconButton aria-label={t('modelManager.install')} icon={<PiPlusBold />} onClick={handleInstall} size="sm" />
)}
</Box>
</Flex>

View File

@@ -1,7 +1,10 @@
import {
Button,
Checkbox,
Divider,
Flex,
FormControl,
FormLabel,
Heading,
IconButton,
Input,
@@ -12,7 +15,7 @@ import { useAppDispatch } from 'app/store/storeHooks';
import ScrollableContent from 'common/components/OverlayScrollbars/ScrollableContent';
import { addToast } from 'features/system/store/systemSlice';
import { makeToast } from 'features/system/util/makeToast';
import type { ChangeEventHandler } from 'react';
import type { ChangeEvent, ChangeEventHandler } from 'react';
import { useCallback, useMemo, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { PiXBold } from 'react-icons/pi';
@@ -28,7 +31,7 @@ export const ScanModelsResults = ({ results }: ScanModelResultsProps) => {
const { t } = useTranslation();
const [searchTerm, setSearchTerm] = useState('');
const dispatch = useAppDispatch();
const [inplace, setInplace] = useState(true);
const [installModel] = useInstallModelMutation();
const filteredResults = useMemo(() => {
@@ -42,6 +45,10 @@ export const ScanModelsResults = ({ results }: ScanModelResultsProps) => {
setSearchTerm(e.target.value.trim());
}, []);
const onChangeInplace = useCallback((e: ChangeEvent<HTMLInputElement>) => {
setInplace(e.target.checked);
}, []);
const clearSearch = useCallback(() => {
setSearchTerm('');
}, []);
@@ -51,7 +58,7 @@ export const ScanModelsResults = ({ results }: ScanModelResultsProps) => {
if (result.is_installed) {
continue;
}
installModel({ source: result.path })
installModel({ source: result.path, inplace })
.unwrap()
.then((_) => {
dispatch(
@@ -76,7 +83,37 @@ export const ScanModelsResults = ({ results }: ScanModelResultsProps) => {
}
});
}
}, [installModel, filteredResults, dispatch, t]);
}, [filteredResults, installModel, inplace, dispatch, t]);
const handleInstallOne = useCallback(
(source: string) => {
installModel({ source, inplace })
.unwrap()
.then((_) => {
dispatch(
addToast(
makeToast({
title: t('toast.modelAddedSimple'),
status: 'success',
})
)
);
})
.catch((error) => {
if (error) {
dispatch(
addToast(
makeToast({
title: `${error.data.detail} `,
status: 'error',
})
)
);
}
});
},
[installModel, inplace, dispatch, t]
);
return (
<>
@@ -85,6 +122,10 @@ export const ScanModelsResults = ({ results }: ScanModelResultsProps) => {
<Flex justifyContent="space-between" alignItems="center">
<Heading size="sm">{t('modelManager.scanResults')}</Heading>
<Flex alignItems="center" gap={3}>
<FormControl w="min-content">
<FormLabel m={0}>{t('modelManager.inplaceInstall')}</FormLabel>
<Checkbox isChecked={inplace} onChange={onChangeInplace} size="md" />
</FormControl>
<Button size="sm" onClick={handleAddAll} isDisabled={filteredResults.length === 0}>
{t('modelManager.installAll')}
</Button>
@@ -116,7 +157,7 @@ export const ScanModelsResults = ({ results }: ScanModelResultsProps) => {
<ScrollableContent>
<Flex flexDir="column" gap={3}>
{filteredResults.map((result) => (
<ScanModelResultItem key={result.path} result={result} />
<ScanModelResultItem key={result.path} result={result} installModel={handleInstallOne} />
))}
</Flex>
</ScrollableContent>

View File

@@ -1,6 +1,7 @@
import { Flex } from '@invoke-ai/ui-library';
import { Flex, Text } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import ScrollableContent from 'common/components/OverlayScrollbars/ScrollableContent';
import type { FilterableModelType } from 'features/modelManagerV2/store/modelManagerV2Slice';
import { memo, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import {
@@ -9,10 +10,11 @@ import {
useIPAdapterModels,
useLoRAModels,
useMainModels,
useRefinerModels,
useT2IAdapterModels,
useVAEModels,
} from 'services/api/hooks/modelsByType';
import type { AnyModelConfig, ModelType } from 'services/api/types';
import type { AnyModelConfig } from 'services/api/types';
import { FetchingModelsLoader } from './FetchingModelsLoader';
import { ModelListWrapper } from './ModelListWrapper';
@@ -27,6 +29,12 @@ const ModelList = () => {
[mainModels, searchTerm, filteredModelType]
);
const [refinerModels, { isLoading: isLoadingRefinerModels }] = useRefinerModels();
const filteredRefinerModels = useMemo(
() => modelsFilter(refinerModels, searchTerm, filteredModelType),
[refinerModels, searchTerm, filteredModelType]
);
const [loraModels, { isLoading: isLoadingLoRAModels }] = useLoRAModels();
const filteredLoRAModels = useMemo(
() => modelsFilter(loraModels, searchTerm, filteredModelType),
@@ -63,6 +71,28 @@ const ModelList = () => {
[vaeModels, searchTerm, filteredModelType]
);
const totalFilteredModels = useMemo(() => {
return (
filteredMainModels.length +
filteredRefinerModels.length +
filteredLoRAModels.length +
filteredEmbeddingModels.length +
filteredControlNetModels.length +
filteredT2IAdapterModels.length +
filteredIPAdapterModels.length +
filteredVAEModels.length
);
}, [
filteredControlNetModels.length,
filteredEmbeddingModels.length,
filteredIPAdapterModels.length,
filteredLoRAModels.length,
filteredMainModels.length,
filteredRefinerModels.length,
filteredT2IAdapterModels.length,
filteredVAEModels.length,
]);
return (
<ScrollableContent>
<Flex flexDirection="column" w="full" h="full" gap={4}>
@@ -71,6 +101,11 @@ const ModelList = () => {
{!isLoadingMainModels && filteredMainModels.length > 0 && (
<ModelListWrapper title={t('modelManager.main')} modelList={filteredMainModels} key="main" />
)}
{/* Refiner Model List */}
{isLoadingRefinerModels && <FetchingModelsLoader loadingMessage="Loading Refiner Models..." />}
{!isLoadingRefinerModels && filteredRefinerModels.length > 0 && (
<ModelListWrapper title={t('sdxl.refiner')} modelList={filteredRefinerModels} key="refiner" />
)}
{/* LoRAs List */}
{isLoadingLoRAModels && <FetchingModelsLoader loadingMessage="Loading LoRAs..." />}
{!isLoadingLoRAModels && filteredLoRAModels.length > 0 && (
@@ -108,6 +143,11 @@ const ModelList = () => {
{!isLoadingT2IAdapterModels && filteredT2IAdapterModels.length > 0 && (
<ModelListWrapper title={t('common.t2iAdapter')} modelList={filteredT2IAdapterModels} key="t2i-adapters" />
)}
{totalFilteredModels === 0 && (
<Flex w="full" h="full" alignItems="center" justifyContent="center">
<Text>{t('modelManager.noMatchingModels')}</Text>
</Flex>
)}
</Flex>
</ScrollableContent>
);
@@ -118,12 +158,24 @@ export default memo(ModelList);
const modelsFilter = <T extends AnyModelConfig>(
data: T[],
nameFilter: string,
filteredModelType: ModelType | null
filteredModelType: FilterableModelType | null
): T[] => {
return data.filter((model) => {
const matchesFilter = model.name.toLowerCase().includes(nameFilter.toLowerCase());
const matchesType = filteredModelType ? model.type === filteredModelType : true;
const matchesType = getMatchesType(model, filteredModelType);
return matchesFilter && matchesType;
});
};
const getMatchesType = (modelConfig: AnyModelConfig, filteredModelType: FilterableModelType | null): boolean => {
if (filteredModelType === 'refiner') {
return modelConfig.base === 'sdxl-refiner';
}
if (filteredModelType === 'main' && modelConfig.base === 'sdxl-refiner') {
return false;
}
return filteredModelType ? modelConfig.type === filteredModelType : true;
};

View File

@@ -90,11 +90,13 @@ const ModelListItem = (props: ModelListItemProps) => {
cursor="pointer"
onClick={handleSelectModel}
>
<Flex gap={2} w="full" h="full">
<Flex gap={2} w="full" h="full" minW={0}>
<ModelImage image_url={model.cover_image} />
<Flex gap={1} alignItems="flex-start" flexDir="column" w="full">
<Flex gap={1} alignItems="flex-start" flexDir="column" w="full" minW={0}>
<Flex gap={2} w="full" alignItems="flex-start">
<Text fontWeight="semibold">{model.name}</Text>
<Text fontWeight="semibold" noOfLines={1} wordBreak="break-all">
{model.name}
</Text>
<Spacer />
</Flex>
<Text variant="subtext" noOfLines={1}>

View File

@@ -13,6 +13,7 @@ export const ModelTypeFilter = () => {
const MODEL_TYPE_LABELS: Record<FilterableModelType, string> = useMemo(
() => ({
main: t('modelManager.main'),
refiner: t('sdxl.refiner'),
lora: 'LoRA',
embedding: t('modelManager.textualInversions'),
controlnet: 'ControlNet',

View File

@@ -87,9 +87,9 @@ export const Model = () => {
<Flex flexDir="column" gap={4}>
<Flex alignItems="flex-start" gap={4}>
<ModelImageUpload model_key={selectedModelKey} model_image={data.cover_image} />
<Flex flexDir="column" gap={1} flexGrow={1}>
<Flex flexDir="column" gap={1} flexGrow={1} minW={0}>
<Flex gap={2}>
<Heading as="h2" fontSize="lg">
<Heading as="h2" fontSize="lg" noOfLines={1} wordBreak="break-all">
{data.name}
</Heading>
<Spacer />
@@ -114,7 +114,7 @@ export const Model = () => {
)}
</Flex>
{data.source && (
<Text variant="subtext">
<Text variant="subtext" noOfLines={1} wordBreak="break-all">
{t('modelManager.source')}: {data?.source}
</Text>
)}

View File

@@ -9,7 +9,9 @@ export const ModelAttrView = ({ label, value }: Props) => {
return (
<FormControl flexDir="column" alignItems="flex-start" gap={0}>
<FormLabel>{label}</FormLabel>
<Text fontSize="md">{value || '-'}</Text>
<Text fontSize="md" noOfLines={1} wordBreak="break-all">
{value || '-'}
</Text>
</FormControl>
);
};

View File

@@ -53,7 +53,7 @@ export const ModelView = () => {
</>
)}
{data.type === 'ip_adapter' && (
{data.type === 'ip_adapter' && data.format === 'invokeai' && (
<Flex gap={2}>
<ModelAttrView label={t('modelManager.imageEncoderModelId')} value={data.image_encoder_model_id} />
</Flex>

View File

@@ -1,6 +1,7 @@
import type { PayloadAction } from '@reduxjs/toolkit';
import { createSlice, isAnyOf } from '@reduxjs/toolkit';
import type { PersistConfig, RootState } from 'app/store/store';
import { deepClone } from 'common/util/deepClone';
import { workflowLoaded } from 'features/nodes/store/actions';
import { SHARED_NODE_PROPERTIES } from 'features/nodes/types/constants';
import type {
@@ -44,7 +45,7 @@ import {
} from 'features/nodes/types/field';
import type { AnyNode, InvocationTemplate, NodeExecutionState } from 'features/nodes/types/invocation';
import { isInvocationNode, isNotesNode, zNodeStatus } from 'features/nodes/types/invocation';
import { cloneDeep, forEach } from 'lodash-es';
import { forEach } from 'lodash-es';
import type {
Connection,
Edge,
@@ -571,8 +572,23 @@ export const nodesSlice = createSlice({
);
},
selectionCopied: (state) => {
state.nodesToCopy = state.nodes.filter((n) => n.selected).map(cloneDeep);
state.edgesToCopy = state.edges.filter((e) => e.selected).map(cloneDeep);
const nodesToCopy: AnyNode[] = [];
const edgesToCopy: Edge[] = [];
for (const node of state.nodes) {
if (node.selected) {
nodesToCopy.push(deepClone(node));
}
}
for (const edge of state.edges) {
if (edge.selected) {
edgesToCopy.push(deepClone(edge));
}
}
state.nodesToCopy = nodesToCopy;
state.edgesToCopy = edgesToCopy;
if (state.nodesToCopy.length > 0) {
const averagePosition = { x: 0, y: 0 };
@@ -594,11 +610,21 @@ export const nodesSlice = createSlice({
},
selectionPasted: (state, action: PayloadAction<{ cursorPosition?: XYPosition }>) => {
const { cursorPosition } = action.payload;
const newNodes = state.nodesToCopy.map(cloneDeep);
const newNodes: AnyNode[] = [];
for (const node of state.nodesToCopy) {
newNodes.push(deepClone(node));
}
const oldNodeIds = newNodes.map((n) => n.data.id);
const newEdges = state.edgesToCopy
.filter((e) => oldNodeIds.includes(e.source) && oldNodeIds.includes(e.target))
.map(cloneDeep);
const newEdges: Edge[] = [];
for (const edge of state.edgesToCopy) {
if (oldNodeIds.includes(edge.source) && oldNodeIds.includes(edge.target)) {
newEdges.push(deepClone(edge));
}
}
newEdges.forEach((e) => (e.selected = true));

View File

@@ -1,6 +1,7 @@
import type { PayloadAction } from '@reduxjs/toolkit';
import { createSlice } from '@reduxjs/toolkit';
import type { PersistConfig, RootState } from 'app/store/store';
import { deepClone } from 'common/util/deepClone';
import { workflowLoaded } from 'features/nodes/store/actions';
import { isAnyNodeOrEdgeMutation, nodeEditorReset, nodesChanged, nodesDeleted } from 'features/nodes/store/nodesSlice';
import type {
@@ -11,7 +12,7 @@ import type {
import type { FieldIdentifier } from 'features/nodes/types/field';
import { isInvocationNode } from 'features/nodes/types/invocation';
import type { WorkflowCategory, WorkflowV3 } from 'features/nodes/types/workflow';
import { cloneDeep, isEqual, omit, uniqBy } from 'lodash-es';
import { isEqual, omit, uniqBy } from 'lodash-es';
const blankWorkflow: Omit<WorkflowV3, 'nodes' | 'edges'> = {
name: '',
@@ -131,8 +132,8 @@ export const workflowSlice = createSlice({
});
return {
...cloneDeep(initialWorkflowState),
...cloneDeep(workflowExtra),
...deepClone(initialWorkflowState),
...deepClone(workflowExtra),
originalExposedFieldValues,
mode: state.mode,
};
@@ -144,7 +145,7 @@ export const workflowSlice = createSlice({
});
});
builder.addCase(nodeEditorReset, () => cloneDeep(initialWorkflowState));
builder.addCase(nodeEditorReset, () => deepClone(initialWorkflowState));
builder.addCase(nodesChanged, (state, action) => {
// Not all changes to nodes should result in the workflow being marked touched

View File

@@ -48,7 +48,7 @@ export const addIPAdapterToLinearGraph = async (
if (!ipAdapter.model) {
return;
}
const { id, weight, model, beginStepPct, endStepPct, controlImage } = ipAdapter;
const { id, weight, model, clipVisionModel, beginStepPct, endStepPct, controlImage } = ipAdapter;
assert(controlImage, 'IP Adapter image is required');
@@ -58,6 +58,7 @@ export const addIPAdapterToLinearGraph = async (
is_intermediate: true,
weight: weight,
ip_adapter_model: model,
clip_vision_model: clipVisionModel,
begin_step_percent: beginStepPct,
end_step_percent: endStepPct,
image: {
@@ -83,7 +84,7 @@ export const addIPAdapterToLinearGraph = async (
};
const buildIPAdapterMetadata = (ipAdapter: IPAdapterConfig): S['IPAdapterMetadataField'] => {
const { controlImage, beginStepPct, endStepPct, model, weight } = ipAdapter;
const { controlImage, beginStepPct, endStepPct, model, clipVisionModel, weight } = ipAdapter;
assert(model, 'IP Adapter model is required');
@@ -99,6 +100,7 @@ const buildIPAdapterMetadata = (ipAdapter: IPAdapterConfig): S['IPAdapterMetadat
return {
ip_adapter_model: model,
clip_vision_model: clipVisionModel,
weight,
begin_step_percent: beginStepPct,
end_step_percent: endStepPct,

View File

@@ -65,6 +65,11 @@ export const buildCanvasOutpaintGraph = async (
infillTileSize,
infillPatchmatchDownscaleSize,
infillMethod,
// infillMosaicTileWidth,
// infillMosaicTileHeight,
// infillMosaicMinColor,
// infillMosaicMaxColor,
infillColorValue,
clipSkip,
seamlessXAxis,
seamlessYAxis,
@@ -356,6 +361,28 @@ export const buildCanvasOutpaintGraph = async (
};
}
// TODO: add mosaic back
// if (infillMethod === 'mosaic') {
// graph.nodes[INPAINT_INFILL] = {
// type: 'infill_mosaic',
// id: INPAINT_INFILL,
// is_intermediate,
// tile_width: infillMosaicTileWidth,
// tile_height: infillMosaicTileHeight,
// min_color: infillMosaicMinColor,
// max_color: infillMosaicMaxColor,
// };
// }
if (infillMethod === 'color') {
graph.nodes[INPAINT_INFILL] = {
type: 'infill_rgba',
id: INPAINT_INFILL,
color: infillColorValue,
is_intermediate,
};
}
// Handle Scale Before Processing
if (isUsingScaledDimensions) {
const scaledWidth: number = scaledBoundingBoxDimensions.width;

View File

@@ -66,6 +66,11 @@ export const buildCanvasSDXLOutpaintGraph = async (
infillTileSize,
infillPatchmatchDownscaleSize,
infillMethod,
// infillMosaicTileWidth,
// infillMosaicTileHeight,
// infillMosaicMinColor,
// infillMosaicMaxColor,
infillColorValue,
seamlessXAxis,
seamlessYAxis,
canvasCoherenceMode,
@@ -365,6 +370,28 @@ export const buildCanvasSDXLOutpaintGraph = async (
};
}
// TODO: add mosaic back
// if (infillMethod === 'mosaic') {
// graph.nodes[INPAINT_INFILL] = {
// type: 'infill_mosaic',
// id: INPAINT_INFILL,
// is_intermediate,
// tile_width: infillMosaicTileWidth,
// tile_height: infillMosaicTileHeight,
// min_color: infillMosaicMinColor,
// max_color: infillMosaicMaxColor,
// };
// }
if (infillMethod === 'color') {
graph.nodes[INPAINT_INFILL] = {
type: 'infill_rgba',
id: INPAINT_INFILL,
is_intermediate,
color: infillColorValue,
};
}
// Handle Scale Before Processing
if (isUsingScaledDimensions) {
const scaledWidth: number = scaledBoundingBoxDimensions.width;

View File

@@ -1,8 +1,9 @@
import { deepClone } from 'common/util/deepClone';
import { satisfies } from 'compare-versions';
import { NodeUpdateError } from 'features/nodes/types/error';
import type { InvocationNode, InvocationTemplate } from 'features/nodes/types/invocation';
import { zParsedSemver } from 'features/nodes/types/semver';
import { cloneDeep, defaultsDeep, keys, pick } from 'lodash-es';
import { defaultsDeep, keys, pick } from 'lodash-es';
import { buildInvocationNode } from './buildInvocationNode';
@@ -50,7 +51,7 @@ export const updateNode = (node: InvocationNode, template: InvocationTemplate):
// The updateability of a node, via semver comparison, relies on the this kind of recursive merge
// being valid. We rely on the template's major version to be majorly incremented if this kind of
// merge would result in an invalid node.
const clone = cloneDeep(node);
const clone = deepClone(node);
clone.data.version = template.version;
defaultsDeep(clone, defaults); // mutates!

View File

@@ -1,11 +1,12 @@
import { logger } from 'app/logging/logger';
import { deepClone } from 'common/util/deepClone';
import { parseify } from 'common/util/serialize';
import type { NodesState, WorkflowsState } from 'features/nodes/store/types';
import { isInvocationNode, isNotesNode } from 'features/nodes/types/invocation';
import type { WorkflowV3 } from 'features/nodes/types/workflow';
import { zWorkflowV3 } from 'features/nodes/types/workflow';
import i18n from 'i18n';
import { cloneDeep, pick } from 'lodash-es';
import { pick } from 'lodash-es';
import { fromZodError } from 'zod-validation-error';
export type BuildWorkflowArg = {
@@ -30,7 +31,7 @@ const workflowKeys = [
type BuildWorkflowFunction = (arg: BuildWorkflowArg) => WorkflowV3;
export const buildWorkflowFast: BuildWorkflowFunction = ({ nodes, edges, workflow }: BuildWorkflowArg): WorkflowV3 => {
const clonedWorkflow = pick(cloneDeep(workflow), workflowKeys);
const clonedWorkflow = pick(deepClone(workflow), workflowKeys);
const newWorkflow: WorkflowV3 = {
...clonedWorkflow,
@@ -43,14 +44,14 @@ export const buildWorkflowFast: BuildWorkflowFunction = ({ nodes, edges, workflo
newWorkflow.nodes.push({
id: node.id,
type: node.type,
data: cloneDeep(node.data),
data: deepClone(node.data),
position: { ...node.position },
});
} else if (isNotesNode(node) && node.type) {
newWorkflow.nodes.push({
id: node.id,
type: node.type,
data: cloneDeep(node.data),
data: deepClone(node.data),
position: { ...node.position },
});
}

View File

@@ -1,4 +1,5 @@
import { $store } from 'app/store/nanostores/store';
import { deepClone } from 'common/util/deepClone';
import { WorkflowMigrationError, WorkflowVersionError } from 'features/nodes/types/error';
import type { FieldType } from 'features/nodes/types/field';
import type { InvocationNodeData } from 'features/nodes/types/invocation';
@@ -11,7 +12,7 @@ import { zWorkflowV2 } from 'features/nodes/types/v2/workflow';
import type { WorkflowV3 } from 'features/nodes/types/workflow';
import { zWorkflowV3 } from 'features/nodes/types/workflow';
import { t } from 'i18next';
import { cloneDeep, forEach } from 'lodash-es';
import { forEach } from 'lodash-es';
import { z } from 'zod';
/**
@@ -89,7 +90,7 @@ export const parseAndMigrateWorkflow = (data: unknown): WorkflowV3 => {
throw new WorkflowVersionError(t('nodes.unableToGetWorkflowVersion'));
}
let workflow = cloneDeep(data) as WorkflowV1 | WorkflowV2 | WorkflowV3;
let workflow = deepClone(data) as WorkflowV1 | WorkflowV2 | WorkflowV3;
if (workflow.meta.version === '1.0.0') {
const v1 = zWorkflowV1.parse(workflow);

View File

@@ -0,0 +1,46 @@
import { Box, Flex, FormControl, FormLabel } from '@invoke-ai/ui-library';
import { createSelector } from '@reduxjs/toolkit';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAIColorPicker from 'common/components/IAIColorPicker';
import { selectGenerationSlice, setInfillColorValue } from 'features/parameters/store/generationSlice';
import { memo, useCallback, useMemo } from 'react';
import type { RgbaColor } from 'react-colorful';
import { useTranslation } from 'react-i18next';
const ParamInfillColorOptions = () => {
const dispatch = useAppDispatch();
const selector = useMemo(
() =>
createSelector(selectGenerationSlice, (generation) => ({
infillColor: generation.infillColorValue,
})),
[]
);
const { infillColor } = useAppSelector(selector);
const infillMethod = useAppSelector((s) => s.generation.infillMethod);
const { t } = useTranslation();
const handleInfillColor = useCallback(
(v: RgbaColor) => {
dispatch(setInfillColorValue(v));
},
[dispatch]
);
return (
<Flex flexDir="column" gap={4}>
<FormControl isDisabled={infillMethod !== 'color'}>
<FormLabel>{t('parameters.infillColorValue')}</FormLabel>
<Box w="full" pt={2} pb={2}>
<IAIColorPicker color={infillColor} onChange={handleInfillColor} />
</Box>
</FormControl>
</Flex>
);
};
export default memo(ParamInfillColorOptions);

View File

@@ -0,0 +1,127 @@
import { Box, CompositeNumberInput, CompositeSlider, Flex, FormControl, FormLabel } from '@invoke-ai/ui-library';
import { createSelector } from '@reduxjs/toolkit';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAIColorPicker from 'common/components/IAIColorPicker';
import {
selectGenerationSlice,
setInfillMosaicMaxColor,
setInfillMosaicMinColor,
setInfillMosaicTileHeight,
setInfillMosaicTileWidth,
} from 'features/parameters/store/generationSlice';
import { memo, useCallback, useMemo } from 'react';
import type { RgbaColor } from 'react-colorful';
import { useTranslation } from 'react-i18next';
const ParamInfillMosaicTileSize = () => {
const dispatch = useAppDispatch();
const selector = useMemo(
() =>
createSelector(selectGenerationSlice, (generation) => ({
infillMosaicTileWidth: generation.infillMosaicTileWidth,
infillMosaicTileHeight: generation.infillMosaicTileHeight,
infillMosaicMinColor: generation.infillMosaicMinColor,
infillMosaicMaxColor: generation.infillMosaicMaxColor,
})),
[]
);
const { infillMosaicTileWidth, infillMosaicTileHeight, infillMosaicMinColor, infillMosaicMaxColor } =
useAppSelector(selector);
const infillMethod = useAppSelector((s) => s.generation.infillMethod);
const { t } = useTranslation();
const handleInfillMosaicTileWidthChange = useCallback(
(v: number) => {
dispatch(setInfillMosaicTileWidth(v));
},
[dispatch]
);
const handleInfillMosaicTileHeightChange = useCallback(
(v: number) => {
dispatch(setInfillMosaicTileHeight(v));
},
[dispatch]
);
const handleInfillMosaicMinColor = useCallback(
(v: RgbaColor) => {
dispatch(setInfillMosaicMinColor(v));
},
[dispatch]
);
const handleInfillMosaicMaxColor = useCallback(
(v: RgbaColor) => {
dispatch(setInfillMosaicMaxColor(v));
},
[dispatch]
);
return (
<Flex flexDir="column" gap={4}>
<FormControl isDisabled={infillMethod !== 'mosaic'}>
<FormLabel>{t('parameters.infillMosaicTileWidth')}</FormLabel>
<CompositeSlider
min={8}
max={256}
value={infillMosaicTileWidth}
defaultValue={64}
onChange={handleInfillMosaicTileWidthChange}
step={8}
fineStep={8}
marks
/>
<CompositeNumberInput
min={8}
max={1024}
value={infillMosaicTileWidth}
defaultValue={64}
onChange={handleInfillMosaicTileWidthChange}
step={8}
fineStep={8}
/>
</FormControl>
<FormControl isDisabled={infillMethod !== 'mosaic'}>
<FormLabel>{t('parameters.infillMosaicTileHeight')}</FormLabel>
<CompositeSlider
min={8}
max={256}
value={infillMosaicTileHeight}
defaultValue={64}
onChange={handleInfillMosaicTileHeightChange}
step={8}
fineStep={8}
marks
/>
<CompositeNumberInput
min={8}
max={1024}
value={infillMosaicTileHeight}
defaultValue={64}
onChange={handleInfillMosaicTileHeightChange}
step={8}
fineStep={8}
/>
</FormControl>
<FormControl isDisabled={infillMethod !== 'mosaic'}>
<FormLabel>{t('parameters.infillMosaicMinColor')}</FormLabel>
<Box w="full" pt={2} pb={2}>
<IAIColorPicker color={infillMosaicMinColor} onChange={handleInfillMosaicMinColor} />
</Box>
</FormControl>
<FormControl isDisabled={infillMethod !== 'mosaic'}>
<FormLabel>{t('parameters.infillMosaicMaxColor')}</FormLabel>
<Box w="full" pt={2} pb={2}>
<IAIColorPicker color={infillMosaicMaxColor} onChange={handleInfillMosaicMaxColor} />
</Box>
</FormControl>
</Flex>
);
};
export default memo(ParamInfillMosaicTileSize);

View File

@@ -1,6 +1,8 @@
import { useAppSelector } from 'app/store/storeHooks';
import { memo } from 'react';
import ParamInfillColorOptions from './ParamInfillColorOptions';
import ParamInfillMosaicOptions from './ParamInfillMosaicOptions';
import ParamInfillPatchmatchDownscaleSize from './ParamInfillPatchmatchDownscaleSize';
import ParamInfillTilesize from './ParamInfillTilesize';
@@ -14,6 +16,14 @@ const ParamInfillOptions = () => {
return <ParamInfillPatchmatchDownscaleSize />;
}
if (infillMethod === 'mosaic') {
return <ParamInfillMosaicOptions />;
}
if (infillMethod === 'color') {
return <ParamInfillColorOptions />;
}
return null;
};

View File

@@ -19,6 +19,7 @@ import type {
import { getIsSizeOptimal, getOptimalDimension } from 'features/parameters/util/optimalDimension';
import { configChanged } from 'features/system/store/configSlice';
import { clamp } from 'lodash-es';
import type { RgbaColor } from 'react-colorful';
import type { ImageDTO } from 'services/api/types';
import type { GenerationState } from './types';
@@ -43,8 +44,6 @@ const initialGenerationState: GenerationState = {
shouldFitToWidthHeight: true,
shouldRandomizeSeed: true,
steps: 50,
infillTileSize: 32,
infillPatchmatchDownscaleSize: 1,
width: 512,
model: null,
vae: null,
@@ -55,6 +54,13 @@ const initialGenerationState: GenerationState = {
shouldUseCpuNoise: true,
shouldShowAdvancedOptions: false,
aspectRatio: { ...initialAspectRatioState },
infillTileSize: 32,
infillPatchmatchDownscaleSize: 1,
infillMosaicTileWidth: 64,
infillMosaicTileHeight: 64,
infillMosaicMinColor: { r: 0, g: 0, b: 0, a: 1 },
infillMosaicMaxColor: { r: 255, g: 255, b: 255, a: 1 },
infillColorValue: { r: 0, g: 0, b: 0, a: 1 },
};
export const generationSlice = createSlice({
@@ -116,15 +122,6 @@ export const generationSlice = createSlice({
setCanvasCoherenceMinDenoise: (state, action: PayloadAction<number>) => {
state.canvasCoherenceMinDenoise = action.payload;
},
setInfillMethod: (state, action: PayloadAction<string>) => {
state.infillMethod = action.payload;
},
setInfillTileSize: (state, action: PayloadAction<number>) => {
state.infillTileSize = action.payload;
},
setInfillPatchmatchDownscaleSize: (state, action: PayloadAction<number>) => {
state.infillPatchmatchDownscaleSize = action.payload;
},
initialImageChanged: (state, action: PayloadAction<ImageDTO>) => {
const { image_name, width, height } = action.payload;
state.initialImage = { imageName: image_name, width, height };
@@ -206,6 +203,30 @@ export const generationSlice = createSlice({
aspectRatioChanged: (state, action: PayloadAction<AspectRatioState>) => {
state.aspectRatio = action.payload;
},
setInfillMethod: (state, action: PayloadAction<string>) => {
state.infillMethod = action.payload;
},
setInfillTileSize: (state, action: PayloadAction<number>) => {
state.infillTileSize = action.payload;
},
setInfillPatchmatchDownscaleSize: (state, action: PayloadAction<number>) => {
state.infillPatchmatchDownscaleSize = action.payload;
},
setInfillMosaicTileWidth: (state, action: PayloadAction<number>) => {
state.infillMosaicTileWidth = action.payload;
},
setInfillMosaicTileHeight: (state, action: PayloadAction<number>) => {
state.infillMosaicTileHeight = action.payload;
},
setInfillMosaicMinColor: (state, action: PayloadAction<RgbaColor>) => {
state.infillMosaicMinColor = action.payload;
},
setInfillMosaicMaxColor: (state, action: PayloadAction<RgbaColor>) => {
state.infillMosaicMaxColor = action.payload;
},
setInfillColorValue: (state, action: PayloadAction<RgbaColor>) => {
state.infillColorValue = action.payload;
},
},
extraReducers: (builder) => {
builder.addCase(configChanged, (state, action) => {
@@ -249,8 +270,6 @@ export const {
setShouldFitToWidthHeight,
setShouldRandomizeSeed,
setSteps,
setInfillTileSize,
setInfillPatchmatchDownscaleSize,
initialImageChanged,
modelChanged,
vaeSelected,
@@ -264,6 +283,13 @@ export const {
heightChanged,
widthRecalled,
heightRecalled,
setInfillTileSize,
setInfillPatchmatchDownscaleSize,
setInfillMosaicTileWidth,
setInfillMosaicTileHeight,
setInfillMosaicMinColor,
setInfillMosaicMaxColor,
setInfillColorValue,
} = generationSlice.actions;
export const { selectOptimalDimension } = generationSlice.selectors;
@@ -280,6 +306,7 @@ const migrateGenerationState = (state: any): GenerationState => {
// The signature of the model has changed, so we need to reset it
state._version = 2;
state.model = null;
state.canvasCoherenceMode = initialGenerationState.canvasCoherenceMode;
}
return state;
};

Some files were not shown because too many files have changed in this diff Show More