Compare commits

...

239 Commits

Author SHA1 Message Date
Lincoln Stein
ac22652686 rebuild front end 2023-07-28 18:21:05 -04:00
Lincoln Stein
77cfec5cc8 Release 3.0.1 release candidate 3 (#4025)
Branch used to rebuild front end and make minor doc changes during
release process. Merge before next release.
2023-07-28 18:03:44 -04:00
Lincoln Stein
3e4420c1ae bugfix: Float64 error for mps devices on set_timesteps (#4040)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because: minor fix, let me know your thoughts

      
## Have you updated all relevant documentation?
- [x] Yes
- [ ] No

## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue # https://github.com/invoke-ai/InvokeAI/issues/4017
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [x] No : Requires mps device

## [optional] Are there any post deployment tasks we need to perform?

Please test on an MPS (M1/M2) device. 

Relevant code causing the error in #4017 


01b6ec21fa/src/diffusers/schedulers/scheduling_euler_discrete.py (L263C3-L268C75)

```
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
        else:
            self.timesteps = torch.from_numpy(timesteps).to(device=device)
```
2023-07-28 18:02:39 -04:00
Lincoln Stein
f8181ab1b3 fix: Concat Link Styling (#4048)
## What type of PR is this? (check all applicable)

- [x] Bug Fix

## Description

- Fix SDXL Concat Link animation not considering the fact that prompt
boxes can be resized.
- Also fixed a minor issue where the overlaying animation box would
block the prompt input resize slightly. Should be good now.
2023-07-28 18:02:22 -04:00
Lincoln Stein
3dfeead9b8 Update troubleshooting guide with ~ydantic and SDXL unet issue advice (#4054)
## What type of PR is this? (check all applicable)


- [X ] Documentation Update


## Have you discussed this change with the InvokeAI team?
- [X ] Yes

      
## Have you updated all relevant documentation?
- [X ] Yes

## Description

Added solutions for installation issues related to large SDXL files and
Windows dependency glitches.
2023-07-28 18:02:04 -04:00
Lincoln Stein
3da0be7eb9 update troubleshooting guide with ~ydantic and SDXL unet issue workarounds 2023-07-28 16:42:57 -04:00
ZachNagengast
31e5f4bb0e Merge branch 'main' into set-timestep-mps-fix 2023-07-28 08:58:12 -07:00
ZachNagengast
2164674b01 Black format 2023-07-28 07:49:29 -07:00
blessedcoolant
8f2a646286 fix: Lint errors 2023-07-29 02:37:59 +12:00
blessedcoolant
5ff4dd26bb fix: Concat Link Styling 2023-07-29 02:30:10 +12:00
Lincoln Stein
e342ca872f fix to work on non-MPS systems 2023-07-28 10:27:49 -04:00
blessedcoolant
062a369044 feat: Unify Promp Area Styling (#4033)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description

Making the prompt area styling match across all tabs / models and move
all prompt related components into a parent components for quick add.

Cherry picked stuff from the Styles PR coz we ain't gonna merge that.


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-28 22:10:08 +12:00
psychedelicious
e4a2f56ad1 feat(ui): tweak link colors
- make the `SDXLConcatLink` icon match existing colors in light mode
- make the link toggle button accent color when active (its not super obvious but at least there is *some* visual difference for the button)
2023-07-28 19:57:05 +10:00
blessedcoolant
1df30f7260 feat: Pulse Animate SDXL Concat Link 2023-07-28 20:45:39 +12:00
blessedcoolant
14c4650801 fix: Lint Errors (returning possible null component) 2023-07-28 19:03:29 +12:00
blessedcoolant
f155b03eee feat: New animation for Concat Link 2023-07-28 18:55:59 +12:00
ZachNagengast
ddaf753f7b Merge branch 'set-timestep-mps-fix' of ssh://github.com/ZachNagengast/InvokeAI into set-timestep-mps-fix 2023-07-27 23:40:44 -07:00
ZachNagengast
e6d14c708c Fix variable name 2023-07-27 23:40:23 -07:00
Millun Atluri
7f81a95b20 Merge branch 'main' into set-timestep-mps-fix 2023-07-28 16:12:07 +10:00
blessedcoolant
6a49eec606 feat: Add Concat Link Animation
Might remove the lines. Just pushing to save changes for now.
2023-07-28 15:01:40 +12:00
blessedcoolant
fd67b18c9a Merge branch 'main' into unify-prompt 2023-07-28 14:48:13 +12:00
psychedelicious
9affdbbaad chore: black 2023-07-28 11:38:52 +10:00
psychedelicious
8d300bddd0 feat(ui): alias existing type for UpdateLoRAModelResponse 2023-07-28 11:38:52 +10:00
Lincoln Stein
aa2c94be9e make LoRAs editable 2023-07-28 11:38:52 +10:00
Lincoln Stein
4c79350300 persist LoRA model info in models.yaml 2023-07-28 11:38:52 +10:00
Alexandre Macabies
10e1d623c3 Add LoRAs to the model manager. 2023-07-28 11:38:52 +10:00
ZachNagengast
aa1f827271 Fix unet_info location, can have no device prop 2023-07-27 14:47:09 -07:00
Lincoln Stein
fb113b9077 Merge branch 'main' into release/invokeai-3-0-1 2023-07-27 16:24:29 -04:00
Lincoln Stein
bb9460d278 Unify uvicorn and backend logging (#4034)
## What type of PR is this? (check all applicable)

- [ X] Feature

## Have you discussed this change with the InvokeAI team?
- [ X] Yes

      
## Have you updated all relevant documentation?
- [ X] Yes - this makes invokeai behave the way it is described in
LOGGING.md

## Description

Prior to this PR, the uvicorn embedded web server did all its logging
independently of the InvokeAI logging infrastructure, and none of the
command-line or `invokeai.yaml` configuration directives, such as
`log_level` had any effect on its output. This PR replaces the uvicorn
logger with InvokeAI's, simultaneously creating a more uniform output
experience, as well as a unified way to control the amount and
destination of the logs.

Here's what we used to see at startup:
```
[2023-07-27 07:29:48,027]::[InvokeAI]::INFO --> InvokeAI version 3.0.1rc2                                                                                                                               
[2023-07-27 07:29:48,027]::[InvokeAI]::INFO --> Root directory = /home/lstein/invokeai-main                                                                                                             
[2023-07-27 07:29:48,028]::[InvokeAI]::INFO --> GPU device = cuda NVIDIA GeForce RTX 4070                                                                                                               
[2023-07-27 07:29:48,040]::[InvokeAI]::INFO --> Scanning /home/lstein/invokeai-main/models for new models                                                                                               
[2023-07-27 07:29:49,263]::[InvokeAI]::INFO --> Scanned 22 files and directories, imported 10 models                                                                                                    
[2023-07-27 07:29:49,271]::[InvokeAI]::INFO --> Model manager service initialized                                                                                                                       
INFO:     Application startup complete.                                                                                                                                                                 
INFO:     Uvicorn running on http://127.0.0.1:9090 (Press CTRL+C to quit)                                                                                                                               
INFO:     127.0.0.1:44404 - "GET /socket.io/?EIO=4&transport=polling&t=OcN7Pvd HTTP/1.1" 200 OK                                                                                                         
INFO:     127.0.0.1:44404 - "POST /socket.io/?EIO=4&transport=polling&t=OcN7Pw6&sid=SB-NsBKLSrW7YtM0AAAA HTTP/1.1" 200 OK                                                                               
INFO:     ('127.0.0.1', 44418) - "WebSocket /socket.io/?EIO=4&transport=websocket&sid=SB-NsBKLSrW7YtM0AAAA" [accepted]                                                                                  
INFO:     connection open                                                                                                                                                                               
INFO:     127.0.0.1:44430 - "GET /socket.io/?EIO=4&transport=polling&t=OcN7Pw9&sid=SB-NsBKLSrW7YtM0AAAA HTTP/1.1" 200 OK                                                                                
INFO:     127.0.0.1:44404 - "GET /socket.io/?EIO=4&transport=polling&t=OcN7PwU&sid=SB-NsBKLSrW7YtM0AAAA HTTP/1.1" 200 OK                                                                                
INFO:     127.0.0.1:44404 - "GET /api/v1/images/?is_intermediate=true HTTP/1.1" 200 OK                                                                                                                  
INFO:     127.0.0.1:43448 - "GET / HTTP/1.1" 200 OK                                                                                                                                                     
INFO:     connection closed                                                                                                                                                                             
INFO:     127.0.0.1:43448 - "GET /assets/index-5a784cdd.js HTTP/1.1" 200 OK                                                                                                                             
INFO:     127.0.0.1:43458 - "GET /assets/favicon-0d253ced.ico HTTP/1.1" 304 Not Modified                                                                                                                
INFO:     127.0.0.1:43448 - "GET /locales/en.json HTTP/1.1" 200 OK                                                                                                                                      
```

And here's what we see with the new implementation:
```
[2023-07-27 12:05:28,810]::[uvicorn.error]::INFO --> Started server process [875161]
[2023-07-27 12:05:28,810]::[uvicorn.error]::INFO --> Waiting for application startup.
[2023-07-27 12:05:28,810]::[InvokeAI]::INFO --> InvokeAI version 3.0.1rc2
[2023-07-27 12:05:28,810]::[InvokeAI]::INFO --> Root directory = /home/lstein/invokeai-main
[2023-07-27 12:05:28,811]::[InvokeAI]::INFO --> GPU device = cuda NVIDIA GeForce RTX 4070
[2023-07-27 12:05:28,823]::[InvokeAI]::INFO --> Scanning /home/lstein/invokeai-main/models for new models
[2023-07-27 12:05:29,970]::[InvokeAI]::INFO --> Scanned 22 files and directories, imported 10 models
[2023-07-27 12:05:29,977]::[InvokeAI]::INFO --> Model manager service initialized
[2023-07-27 12:05:29,980]::[uvicorn.error]::INFO --> Application startup complete.
[2023-07-27 12:05:29,981]::[uvicorn.error]::INFO --> Uvicorn running on http://127.0.0.1:9090 (Press CTRL+C to quit)
[2023-07-27 12:05:32,140]::[uvicorn.access]::INFO --> 127.0.0.1:45236 - "GET /socket.io/?EIO=4&transport=polling&t=OcO6ILb HTTP/1.1" 200
[2023-07-27 12:05:32,142]::[uvicorn.access]::INFO --> 127.0.0.1:45248 - "GET /socket.io/?EIO=4&transport=polling&t=OcO6ILb HTTP/1.1" 200
[2023-07-27 12:05:32,154]::[uvicorn.access]::INFO --> 127.0.0.1:45236 - "POST /socket.io/?EIO=4&transport=polling&t=OcO6ILr&sid=13O4-5uLx5eP-NuqAAAA HTTP/1.1" 200
[2023-07-27 12:05:32,168]::[uvicorn.access]::INFO --> 127.0.0.1:45252 - "POST /socket.io/?EIO=4&transport=polling&t=OcO6IM0&sid=0KRqxmh7JLc8t7wZAAAB HTTP/1.1" 200
[2023-07-27 12:05:32,171]::[uvicorn.error]::INFO --> ('127.0.0.1', 45264) - "WebSocket /socket.io/?EIO=4&transport=websocket&sid=0KRqxmh7JLc8t7wZAAAB" [accepted]
[2023-07-27 12:05:32,172]::[uvicorn.error]::INFO --> connection open
[2023-07-27 12:05:32,174]::[uvicorn.access]::INFO --> 127.0.0.1:45276 - "GET /socket.io/?EIO=4&transport=polling&t=OcO6IM3&sid=0KRqxmh7JLc8t7wZAAAB HTTP/1.1" 200

```

You can also divert everything to a file with a `invokeai.yaml` entry
like this:
```
  Logging:
    log_handlers:
    - file=/home/lstein/invokeai/logs/access_log
    log_format: plain
    log_level: info
```

This works with syslog and other log handlers as well.
2023-07-27 15:56:42 -04:00
ZachNagengast
6edeb4e072 Pass device to set_timestep to avoid float64 error 2023-07-27 12:52:18 -07:00
Lincoln Stein
2bb4e6d5aa Merge branch 'main' into feat/unify-logging 2023-07-27 15:48:06 -04:00
Lincoln Stein
53028feb83 feat: Upgrade Diffusers to 0.19.0 (#4011)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description

https://github.com/huggingface/diffusers/releases/tag/v0.19.0


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-27 15:39:02 -04:00
Lincoln Stein
d983dd371c Merge branch 'diffusers-upgrade' of github.com:blessedcoolant/InvokeAI into diffusers-upgrade 2023-07-27 15:30:01 -04:00
Lincoln Stein
17ee17a789 merge with main;resolve conflicts 2023-07-27 15:29:34 -04:00
Lincoln Stein
6b3ec29480 Merge branch 'main' into diffusers-upgrade 2023-07-27 15:27:55 -04:00
Lincoln Stein
4a30773d09 Merge branch 'main' into feat/unify-logging 2023-07-27 15:25:56 -04:00
Lincoln Stein
006075483d Merge branch 'main' into release/invokeai-3-0-1 2023-07-27 15:21:08 -04:00
Lincoln Stein
64bd11541a Merge branch 'main' into feat/unify-logging 2023-07-27 15:20:07 -04:00
Lincoln Stein
52bd29d484 Merge branch 'main' into release/invokeai-3-0-1 2023-07-27 15:19:05 -04:00
Lincoln Stein
41b13e83a5 Support Python 3.11 (#3966)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [X ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X ] Yes
- [ ] No

## Description

This updates InvokeAI's pyproject.toml to the minimum library versions
needed to support Python 3.11. It updates the installer to find and
allow for 3.11, and the documentation.

Between 3.10 and 3.11 there was a change to the handling of `enum`
interpolation into strings that caused the model manager to break. I
think I have fixed the places where this was a problem, but there may be
other instances in which this will cause problems. Please be alert for
errors involving `ModelType` or `BaseModelType`.

I also took the opportunity to add a `SilenceWarnings()` context to the
t2i and i2i invocations. This quenches nags from diffusers about the
HuggingFace NSFW library.

I have tested basic functionality (t2i, i2i, inpaint, lora, controlnet,
nodes) on 3.10 and 3.11 and all seems good. Please test more
extensively!

## Added/updated tests?

- [ X ] Yes - existing tests run to completion
- [ ] No

## [optional] Are there any post deployment tasks we need to perform?

Should be a drop-in replacement.
2023-07-27 15:18:21 -04:00
Lincoln Stein
0d8f9cbe55 resolved conflicts with main 2023-07-27 15:11:25 -04:00
Lincoln Stein
fd75a1dd10 reformat with black 2023-07-27 15:01:00 -04:00
blessedcoolant
3bb81bedbd Merge branch 'main' into unify-prompt 2023-07-28 05:36:04 +12:00
Mary Hipp Rogers
e191f6d4b2 prevent resize error (#4031)
* add upper bound for minWidth to prevent crash with cypress

* add fallback so UI doesnt crash when backend isnt running

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-07-27 17:30:31 +00:00
Eugene Brodsky
00988e4972 (installer) check that the found Python executable is actually operational
when multiple python versions are installed with `pyenv`, the executable
(shim) exists, but returns an error when trying to run it
unless activated with `pyenv`. This commit ensures the python
executable is usable.
2023-07-27 13:28:00 -04:00
Kent Keirsey
7d458eb1ac Dev/black (#3840)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature (dev feature and reformatting)
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Description
Introducing black to the code base as a first step towards this:
https://github.com/invoke-ai/InvokeAI/discussions/3721

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [x] No : Not applicable

## [optional] Are there any post deployment tasks we need to perform?
All active branches will be affected by this and will need to be
updated.

This PR adds a new github workflow for black as well as config for
pre-commit hooks to those who wish to use it
2023-07-27 12:59:47 -04:00
blessedcoolant
b8b46aec09 Revert "fix: Lint Errors"
This reverts commit f057d5c85b.
2023-07-28 04:34:41 +12:00
psychedelicious
4d2b87ea01 fix(ui): fix types for controlnet models
`ControlNetModelConfig` was split into `ControlNetModelCheckpointConfig` and `ControlNetModelDiffusersConfig`, need to update the UI types
2023-07-28 04:34:29 +12:00
Lincoln Stein
8023a23cec beat uvicorn access log into submission 2023-07-27 12:05:17 -04:00
Lincoln Stein
e4c0102b3c unified uvicorn access log entries too 2023-07-27 11:59:29 -04:00
Eugene Brodsky
16d044336f (meta) hide the 'black' formatting commit from git blame
also remove lib/ from gitignore as it is hiding the installer code
from 'black'
2023-07-27 11:29:22 -04:00
Lincoln Stein
c4a2808a4b use same logging infrastructure for uvicorn and backend 2023-07-27 11:24:07 -04:00
blessedcoolant
611f31c057 fix: Adjust embedding button on PositivePrompt for new changes 2023-07-28 03:07:50 +12:00
blessedcoolant
b60adc31d0 feat: Unify Prompt Area Design Between SDXL and Regular Models 2023-07-28 03:07:50 +12:00
blessedcoolant
a98ed3a5ba fix: TextArea Resizer styling when disabled 2023-07-28 03:06:31 +12:00
blessedcoolant
f057d5c85b fix: Lint Errors 2023-07-28 03:06:31 +12:00
Martin Kristiansen
218b6d0546 Apply black 2023-07-27 10:54:01 -04:00
Martin Kristiansen
2183dba5c5 Remove whitespace and commented out pre-commit hooks 2023-07-27 10:53:27 -04:00
Martin Kristiansen
fc9dacd082 Black/flake8 line length 100->120 2023-07-27 10:12:25 -04:00
Martin Kristiansen
8b4af69d87 Black config, pre-commit and GHA 2023-07-27 10:09:04 -04:00
psychedelicious
6f54fe9003 fix(ui): fix types for controlnet models
`ControlNetModelConfig` was split into `ControlNetModelCheckpointConfig` and `ControlNetModelDiffusersConfig`, need to update the UI types
2023-07-27 15:46:50 +10:00
Lincoln Stein
895917c3ab Merge branch 'main' into release/invokeai-3-0-1 2023-07-27 01:02:38 -04:00
Lincoln Stein
be00a837cc hotfix to remove duplicate key in INITIAL_MODELS 2023-07-27 00:38:18 -04:00
Lincoln Stein
dcb85b0097 rebuild frontend; bump version 2023-07-27 00:37:23 -04:00
Lincoln Stein
5956c601f7 Restore ability to convert SDXL checkpoints to diffusers (#4021)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X ] Not needed


## Description

This bugfix enables InvokeAI to convert sd-1, sd-2 and sdxl base model
checkpoints (.safetensors) to diffusers.
2023-07-27 00:29:13 -04:00
Lincoln Stein
b67041dd29 Merge branch 'main' into bugfix/convert-sdxl-models 2023-07-27 00:24:37 -04:00
Lincoln Stein
5b62d97a47 install SDXL "fixed" VAE (#4020)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ X] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X ] No


## Description

This PR causes the installer to install, by default, the fine-tuned
SDXL-1.0 VAE located at
https://huggingface.co/madebyollin/sdxl-vae-fp16-fix.

Although this VAE is supposed to run at fp16 resolution, currently it
only works in InvokeAI at fp32. However, because it is a fine tune, it
may have fewer of the watermark-related artifacts that we see with the
SDXL-1.0 VAE.
2023-07-27 00:14:58 -04:00
Lincoln Stein
c02b9db064 Merge branch 'main' into bugfix/convert-sdxl-models 2023-07-27 00:08:15 -04:00
Lincoln Stein
2e19b23eed Merge branch 'main' into feat/install-finetune-sdxl-vae 2023-07-27 00:06:00 -04:00
Lincoln Stein
f7f20fdfe4 Configure script should not overwrite models.yaml if it is well formed (#4019)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ X] Not necessary


## Description

When adding new core models to a 3.0.0 root directory needed to support
SDXL, the configure script was (under some conditions) overwriting
models.yaml. This PR corrects the problem.
2023-07-27 00:03:51 -04:00
Lincoln Stein
61aff8540c fix refiner conversion 2023-07-27 00:02:10 -04:00
Lincoln Stein
2b7807e6a0 Merge branch 'main' into fix/yaml-file-delete 2023-07-26 23:45:43 -04:00
Lincoln Stein
fc19624bd8 Rework configure/install TUI to require less space (#3989)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X ] Yes
- [ ] No


## Description

I have reworked the console TUIs for the configure and model install
scripts to require much less vertical space. In the event that the
"NEXT" button is still missing and "page 1/2" is displayed, scrolling
beyond the last checkbox will now automatically move to page 2 where the
buttons are displayed. This is not ideal, but will no longer block user
completely.

If users continue to have problems after this, I'll get rid of the TUI
altogether and replace with a web form.

## Added/updated tests?

- [ ] Yes
- [X ] No : not needed

## [optional] Are there any post deployment tasks we need to perform?
2023-07-26 23:44:50 -04:00
Lincoln Stein
77946bfea5 restore ability to convert SDXL checkpoints to diffusers 2023-07-26 23:28:58 -04:00
Lincoln Stein
d4d4d749f2 Merge branch 'release/invokeai-3-0-1' 2023-07-26 23:15:26 -04:00
Lincoln Stein
43fe8b1dda Merge branch 'main' into fix/reduce-configure-vertical 2023-07-26 23:12:25 -04:00
Lincoln Stein
3e441f773f Documentation updates for SDXL license terms, invisible watermark (#4012)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [X ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [X ] No, because they trust me

      
## Have you updated all relevant documentation?
- [ X] Yes
- [ ] No


## Description

* Added the RAIL++ license for SDXL
* Updated configure script with URLs for both the original RAIL-M and
RAIL++ licenses
* Added invisible watermark documentation and renamed doc file
* Updated documentation for installation
* Updated documentation on settings in invokeai.yaml
2023-07-26 23:11:58 -04:00
Lincoln Stein
9c4acb9d3f install SDXL "fixed" VAE 2023-07-26 23:06:27 -04:00
Lincoln Stein
451b8c96e5 do not overwrite models.yaml if it is well formed 2023-07-26 22:29:39 -04:00
Lincoln Stein
b8376a4932 Merge branch 'main' into fix/reduce-configure-vertical 2023-07-26 22:16:38 -04:00
Lincoln Stein
0d344872f1 fix: Metadata Not Being Saved (#4009)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description

Metadata was not getting saved coz the accumulator was not plugged in if
watermark or nsfw nodes were turned off.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-26 22:15:32 -04:00
psychedelicious
4bfbdb0d97 chore(ui): lint 2023-07-27 11:58:59 +10:00
psychedelicious
049e666412 fix(ui): revise metadata edges in linear graphs
- always add metadata to l2i nodes
- no metadata handling for inpaint, removed
2023-07-27 09:43:45 +10:00
Lincoln Stein
83a981b585 merge with main; fix SDXL repo_ids 2023-07-26 17:38:06 -04:00
Lincoln Stein
049645d66e updated LICENSE files and added information about watermarking 2023-07-26 17:27:33 -04:00
blessedcoolant
c90c4a32ee Merge branch 'main' into metadata-fix 2023-07-27 08:08:11 +12:00
blessedcoolant
3ff8c87c09 feat: Upgrade Diffusers to 0.19.0 2023-07-27 08:00:12 +12:00
Lincoln Stein
0100ac8f2d Merge branch 'main' into release/invokeai-3-0-1 2023-07-26 15:27:06 -04:00
Lincoln Stein
6a3a776f4e Bugfix/checkpoint conversion (#4010)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ x] No, because there was no time!

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X ] No


## Description

Hotfix for issue of SD1 and SD2 legacy safetensors models not converting
in 3.0.1rc1.
2023-07-26 15:21:16 -04:00
Lincoln Stein
020031f376 add all legacy model .yaml files to configs directory unconditionally 2023-07-26 15:17:00 -04:00
blessedcoolant
7053347559 fix: Metadata Not Being Saved 2023-07-27 07:09:51 +12:00
Lincoln Stein
bf1f6619df fix conversion for sd1 and sd2 models 2023-07-26 15:02:32 -04:00
Lincoln Stein
6bdcc32414 rebuild frontend for rc1 release (again) 2023-07-26 13:36:42 -04:00
Lincoln Stein
4f39c81dec Merge branch 'main' into release/invokeai-3-0-1 2023-07-26 13:33:15 -04:00
blessedcoolant
3376968cbb fix: Prompt Drawer Unpinned not having SDXL UI 2023-07-26 13:30:43 -04:00
blessedcoolant
0420d75d2b fix: Improve Styling of SDXL Prompt Area 2023-07-26 13:30:43 -04:00
blessedcoolant
3bd9c27a79 feat: Add SDXL Style Prompt Concat Toggle 2023-07-26 13:30:43 -04:00
blessedcoolant
b6522cf2cf fix: SDXL - Concat Prompt and Style for Style Prompt 2023-07-26 13:30:43 -04:00
blessedcoolant
13ac5c6899 enable hide localization toggle (#4004)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-27 03:01:52 +12:00
Lincoln Stein
05070304ff Merge branch 'release/invokeai-3-0-1' of github.com:invoke-ai/InvokeAI into release/invokeai-3-0-1
- fix log message
2023-07-26 11:00:57 -04:00
Lincoln Stein
af8fc6ff82 final polish before release candidate
- Fix issue that prevented web ui from starting if
  ROOT/databases/invokeai.db not found.

- Rebuild front end
2023-07-26 10:59:23 -04:00
Mary Hipp
f86d0d1b69 hide localization toggle 2023-07-26 10:55:38 -04:00
Lincoln Stein
e6741cee75 rebuid front end 2023-07-26 10:47:37 -04:00
Lincoln Stein
575ebaeb75 Merge PR #3944 2023-07-26 10:25:59 -04:00
Lincoln Stein
385483ff8e Download all model types. (#3944) 2023-07-26 10:24:37 -04:00
Lincoln Stein
c7f883d22a Merge branch 'main' into patch 2023-07-26 10:19:02 -04:00
Lincoln Stein
58ff5d3f5b Merge branch 'main' into release/invokeai-3-0-1
- this includes the final set of PRs going into 3.0.1
2023-07-26 10:17:32 -04:00
Lincoln Stein
f060e321eb NSFW checker and watermark nodes (#3923)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X ] Yes
- [] No

## Description

This PR adds NSFW checker and invisible watermark fields. The NSFW
checker takes an image input and produces an image output. If NSFW
content is detected, the output image will be blurred and a "caution"
icon pasted into its upper left corner. A boolean `active` field
controls whether the checker is active. If turned off it simply returns
a copy of the image.

The invisible watermark node adds an invisible text to the image,
defaulting to "InvokeAI". To decode the watermark use the
`invisible-watermark` command, which is part of the
`invisible-watermark` library:

```
$ invisible-watermark -v -a decode -t bytes -m dwtDct -l 64 ./bluebird-watermark.png 
decode time ms: 14.129877090454102
InvokeAI
```

Note that the `-l` (length) argument is mandatory. It is set to 64 here
because the watermark `InvokeAI` is 8 bytes/64 bits long. The length
must match in order for the watermark to be decoded correctly.

Both nodes are now incorporated into the linear Text2Image and
Image2Image UIs, including the canvas. They are not implemented for
inpaint currently.

The nodes can be disabled with configuration options:
```
invisible_watermark: false
nsfw_checker: false
```
or at launch time with `--no-invisible_watermark` and
`--no-nsfw_checker`.
2023-07-26 10:14:10 -04:00
psychedelicious
dc8c3d8073 feat(ui): tweak menu style, increase icon size
feat(ui) use `as` for menuitem links

I had requested this be done with the chakra `Link` component, but actually using `as` is correct according to the docs. For other components, you are supposed to use `Link` but looks like `MenuItem` has this built in.

Fixed in all places where we use it.

Also:
- fix github icon
- give menu hamburger button padding
- add menu motion props so it animates the same as other menus

feat(ui): restore ColorModeButton

@maryhipp

chore(ui): lint

feat(ui): remove colormodebutton again

sry
2023-07-27 00:12:23 +10:00
psychedelicious
819136c345 chore(ui): bump chakra versions
exposes more menu theming config
2023-07-27 00:12:23 +10:00
blessedcoolant
989b68c772 fix: Remove menu tooltip and fix incorrect issues page link 2023-07-27 00:12:23 +10:00
blessedcoolant
a6347a1d3c revert: Translation strings
These needs to be done through weblate. Only en.json needs to updated via the repo
2023-07-27 00:12:23 +10:00
blessedcoolant
a00d1e87e4 fix: Update Links to Links from Menu Items 2023-07-27 00:12:23 +10:00
blessedcoolant
c7d24081e2 fix: Scheduler list in Settings not displaying labels 2023-07-27 00:12:23 +10:00
blessedcoolant
17900e5140 fix: Fix Settings dropdown menu icons being too small 2023-07-27 00:12:23 +10:00
Josh Corbett
6fa42cb10c feat: consolidated app nav to settings & dropdown 2023-07-27 00:12:23 +10:00
Lincoln Stein
4bea846199 Merge branch 'main' into feat/safety-checker-node 2023-07-26 10:04:23 -04:00
blessedcoolant
3dccc4d61e Add support for controlnet & sdxl checkpoint conversion (#3905)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ X] No - not yet WIP


## Description

This PR adds support for loading and converting checkpoint-format
ControlNet and SDXL models. The SDXL and SDXL-refiner model conversions
are working; however saving the unet in safetensors format leads to
corrupted model files, so currently is saving in .bin format (after
scanning the input model).

ControlNet conversion seems to be working but needs further testing.

To use this PR, you will need to copy the files
`invokeai/configs/stable-diffusion/sd_xl_base.yaml` and
`invokeai/configs/stable-diffusion/sd_xl_refiner.yaml` into
`INVOKEAI/configs/stable-diffusion`. You will also need to run
`invokeai-configure --yes --skip-sd` in order to install additional core
model files needed by the converter.
2023-07-27 01:50:38 +12:00
Lincoln Stein
bf0587da5f set defaults for watermark and NSFW checker to FALSE 2023-07-26 09:09:46 -04:00
Lincoln Stein
58c0bee325 improved error message for running configure 2023-07-26 08:30:01 -04:00
Lincoln Stein
b8f43f444a implemented startup sanity checks on core models 2023-07-26 08:26:29 -04:00
Lincoln Stein
da76f6fee4 compress height needed by configure script 2023-07-26 08:00:19 -04:00
Lincoln Stein
c4f064bbf3 Merge branch 'main' into feat/controlnet-and-sdxl-convert 2023-07-26 07:30:22 -04:00
Lincoln Stein
0ce8472562 adjust unit test to account for nsfw always being true now 2023-07-26 07:29:33 -04:00
Lincoln Stein
3e206d4d6a removed nsfw/watermark from invokeai.yaml 2023-07-26 06:53:35 -04:00
Lincoln Stein
ce7fa96dbc Merge branch 'main' into feat/safety-checker-node 2023-07-26 06:39:46 -04:00
Lincoln Stein
a705461c04 merge with recent main changes 2023-07-26 06:39:21 -04:00
blessedcoolant
fda7e0a71a 3.0.1 - Pre-Release UI Fixes (#4001)
## What type of PR is this? (check all applicable)

- [x] Feature

## Have you discussed this change with the InvokeAI team?
- [x] Yes

      
## Description

- Update the Aspect Ratio tags to show the aspect ratio values rather
than Wide / Square and etc.
- Updated Lora Input to take values between -50 and 50 coz I found some
LoRA that are actually trained to work until -25 and +15 too. So these
input caps should mostly suffice. If there's ever a LoRA that goes
bonkers on that, we can change it.
- Fixed LoRA's being sorted the wrong way in Lora Select.
- Fixed Embeddings being sorted the wrong way in Embedding Select.


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-26 21:22:33 +12:00
psychedelicious
513b223ef6 fix(test): fix test_graph_subgraph_t2i
needed to be updated after adding the nsfw checker node to the graph
2023-07-26 18:49:29 +10:00
psychedelicious
db05445103 fix(tests): fix test_path
- assets path has changed
2023-07-26 18:48:43 +10:00
psychedelicious
30c3b7a6fc fix(ui): fix invoke button being disabled 2023-07-26 18:40:17 +10:00
blessedcoolant
9e9dce44b4 fix: Embeddings not being sorted alphabetically 2023-07-26 20:34:14 +12:00
blessedcoolant
6fd8543e69 fix: LoRA's not being sorted alphabetically 2023-07-26 20:33:59 +12:00
psychedelicious
db48f3230b feat(ui): add nsfw & watermark to linear ui
- add `addNSFWCheckerToGraph` and `addWatermarkerToGraph` functions
- use them in all linear graph creation
- add state & toggles to settings modal to enable these
- trigger queries for app config on socket connect
- disable the nsfw/watermark booleans if we get the app config and they are not available
2023-07-26 18:20:20 +10:00
blessedcoolant
397604a094 feat: Allow LoRA weights to be more than sliders via input
Found some LoRA's that need it.
2023-07-26 19:20:42 +12:00
blessedcoolant
f5139b174a fix(ui): Rename Aspect Ratio labels to their aspect ratios 2023-07-26 18:56:52 +12:00
blessedcoolant
050e5091db feat: Enable the Conversion button for SDXL Models 2023-07-26 17:32:50 +12:00
Lincoln Stein
2c5b539d3a esrgan and its models are now nested in app config route 2023-07-26 15:27:04 +10:00
Lincoln Stein
85ad5ef204 refactored code; added watermark and nsfw facilities to app config route 2023-07-26 15:27:04 +10:00
Lincoln Stein
5beb11f4e2 tweaks in response to psychedelicious review of PR 2023-07-26 15:27:04 +10:00
Lincoln Stein
844d37c642 rebuild schema 2023-07-26 15:27:04 +10:00
Lincoln Stein
b3723d1ccf update documentation 2023-07-26 15:27:04 +10:00
Lincoln Stein
bd43751323 update linear graphs to perform safety checking and watermarking 2023-07-26 15:27:04 +10:00
Lincoln Stein
e32cd794f7 add safetychecker and watermark nodes 2023-07-26 15:26:45 +10:00
mickr777
761fc4beb8 Temp fix for is intermediate switch for l2i 2023-07-26 15:17:59 +10:00
blessedcoolant
531bc40d3f feat: Add SDXL To Linear UI (#3973)
## What type of PR is this? (check all applicable)

- [x] Feature


## Have you discussed this change with the InvokeAI team?
- [x] Yes

## Description

This PR adds support for SDXL Models in the Linear UI

### DONE

- SDXL Base Text To Image Support
- SDXL Base Image To Image Support
- SDXL Refiner Support
- SDXL Relevant UI


## [optional] Are there any post deployment tasks we need to perform?

Double check to ensure nothing major changed with 1.0 -- In any case
those changes would be backend related mostly. If Refiner is scrapped
for 1.0 models, then we simply disable the Refiner Graph.
2023-07-26 17:05:39 +12:00
psychedelicious
676051edb9 fix(ui): fix missing args for model queries 2023-07-26 14:56:51 +10:00
blessedcoolant
de65b82569 chore: Fix lint errors 2023-07-26 16:51:58 +12:00
blessedcoolant
934f9afd7e feat(ui): Do not show SDXL Models in Canvas 2023-07-26 14:46:38 +10:00
psychedelicious
1c01a31ee8 feat(ui): setActiveTab only works with tab names 2023-07-26 14:46:38 +10:00
psychedelicious
c5389b3298 fix(ui): fix refiner steps math again 2023-07-26 14:46:38 +10:00
psychedelicious
fdbab5ffa9 feat(ui): hide sync models button if feature is disabled 2023-07-26 14:46:38 +10:00
psychedelicious
a6e544ebd5 fix(ui): fix refiner steps calculation for edge case of start = 1 2023-07-26 14:46:38 +10:00
psychedelicious
75b0507434 feat(nodes): change denoising start/end min/max to 0/1 2023-07-26 14:46:38 +10:00
blessedcoolant
59c2556e6b feat: Move SDXL Image Denoising to own component 2023-07-26 14:46:38 +10:00
blessedcoolant
4fe889bbf8 fix: Possible fix to image to image / refiner setting sync
The main goal is to avoid noisy output no matter what the slider values are.
2023-07-26 14:46:38 +10:00
psychedelicious
cbcd416b70 fix(ui): fix refiner missing from model manager
Rolled back the earlier split of the refiner model query.

Now, when you use `useGetMainModelsQuery()`, you must provide it an array of base model types.

They are provided as constants for simplicity:
- ALL_BASE_MODELS
- NON_REFINER_BASE_MODELS
- REFINER_BASE_MODELS

Opted to just use args for the hook instead of wrapping the hook in another hook, we can tidy this up later if desired.
2023-07-26 14:46:38 +10:00
psychedelicious
6fa244a343 feat(ui): add vae precision select 2023-07-26 14:46:38 +10:00
psychedelicious
e5a660930c feat(ui): add zod schemas for precision parameters 2023-07-26 14:46:38 +10:00
psychedelicious
61291ea105 feat: sdxl metadata
- update `CoreMetadata` class & `MetadataAccumulator` with fields for SDXL-specific metadata
- update the linear UI graphs to populate this metadata
2023-07-26 14:46:38 +10:00
psychedelicious
840205496a feat(nodes): fix model load events on sdxl nodes
they need the `context` to be provided to emit socket events
2023-07-26 14:46:38 +10:00
psychedelicious
016797c890 feat(ui): add vaePrecision setting
no UI element for it yet
2023-07-26 14:46:38 +10:00
psychedelicious
00e69d5d12 feat(ui): adjust seed param styling 2023-07-26 14:46:38 +10:00
psychedelicious
8e90f9024d feat(ui): remove isRefinerAvailable state, update refiner node
We can derive `isRefinerAvailable` from the query result (eg are there any refiner models installed). This is a piece of server state, so by using the list models response directly, we can avoid needing to manually keep the client in sync with the server.

Created a `useIsRefinerAvailable()` hook to return this boolean wherever it is needed.

Also updated the main models & refiner models endpoints to only return the appropriate models. Now we don't need to filter the data on these endpoints.
2023-07-26 14:46:38 +10:00
psychedelicious
751c4407e4 feat(ui): add node type to invocation started 2023-07-26 14:46:38 +10:00
blessedcoolant
6c46304eb8 fix: Replug Image To Latents VAE back in the Refiner graph for img2img 2023-07-26 14:46:38 +10:00
blessedcoolant
0eb31c5710 fix: Cyclic push in the graph 2023-07-26 14:46:38 +10:00
blessedcoolant
6295e56d96 feat: Add SDXL Refiner to Linear UI 2023-07-26 14:46:38 +10:00
blessedcoolant
5202610160 feat: Move SDXL Refiner to own route & set appropriate disabled statuses 2023-07-26 14:46:38 +10:00
blessedcoolant
8d1b8179af feat: Create UI for SDXL Refiner Options 2023-07-26 14:46:38 +10:00
blessedcoolant
3bdb059eb7 wip: SDXL Refiner UI Data 2023-07-26 14:46:38 +10:00
blessedcoolant
b0ebd148fa feat: Add Style Prompts to Linear UI 2023-07-26 14:46:38 +10:00
blessedcoolant
9f94d0e52a feat: Create SDXL Slice 2023-07-26 14:46:38 +10:00
blessedcoolant
9c180da58a feat: Add SDXL Image To Image to Linear UI 2023-07-26 14:46:38 +10:00
blessedcoolant
57d833035d feat: Add SDXL Base To Linear Text To Image 2023-07-26 14:46:38 +10:00
Lincoln Stein
c145681488 bump version number; add SDXL-1.0 to installer 2023-07-26 00:17:00 -04:00
Millun Atluri
3eaf8c3b2f Update stale issues action (#3960)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X] No


## Description
Updated script to close stale issues with the newest version of the
actions/stale

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [X] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
Not sure how this script gets kicked off
2023-07-26 14:08:22 +10:00
Millun Atluri
d9527bf445 Merge branch 'main' into main 2023-07-26 14:08:00 +10:00
Lincoln Stein
032e9c8165 Merge branch 'main' into patch 2023-07-25 22:24:36 -04:00
Lincoln Stein
dbc3d42afc install all recommended models with --yes; don't alter starter model screen 2023-07-25 22:24:03 -04:00
ymgenesis
d5998ad3ef update images to link from docs/assets/nodes/ 2023-07-25 21:48:48 -04:00
ymgenesis
a4c8d86faa add NODES.md image assets to docs/assets/nodes/ 2023-07-25 21:48:48 -04:00
ymgenesis
f4da66aa0f Update NODES.md 2023-07-25 21:48:48 -04:00
Mary Hipp
7f5a89f567 add option to disable model syncing in UI 2023-07-26 11:18:38 +10:00
Lincoln Stein
2db9b3b2ae Merge branch 'main' into patch 2023-07-25 16:27:10 -04:00
Lincoln Stein
77107dfcbc Merge branch 'main' into main 2023-07-25 16:26:37 -04:00
Lincoln Stein
e43e198102 rework configure/install TUI to require less space 2023-07-25 11:25:26 -04:00
Lincoln Stein
2aefa921fe fix "unknown model type" error when rebasing a model with API
- Add command-line model probing script for dev use
- Minor documentation tweak
2023-07-25 08:36:57 -04:00
Lincoln Stein
11e6ecc1bf Merge branch 'main' into feat/controlnet-and-sdxl-convert 2023-07-25 08:05:17 -04:00
Lincoln Stein
7d337dccc2 docs generation: fix typo and remove trailing white space (#3972)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [x] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because: This is a minor fix that I happened upon while
reading

      
## Have you updated all relevant documentation?
- [x] Yes
- [ ] No


## Description

Within the `mkdocs.yml` file, there's a typo where `Model Merging` is
spelled as `Model Mergeing`. I also found some unnecessary white space
that I removed.


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [x] No : Not big enough of a change to require tests (unless it is)

## [optional] Are there any post deployment tasks we need to perform?
Might need to re-run the yml file for docs to regenerate, but I'm hardly
familiar with the codebase so 🤷
2023-07-24 23:11:37 -04:00
Lincoln Stein
91e903c8ab esrgan and its models are now nested in app config route 2023-07-24 22:17:22 -04:00
Lincoln Stein
efa615a8fd refactored code; added watermark and nsfw facilities to app config route 2023-07-24 22:02:57 -04:00
Millun Atluri
cf10852ee3 uses v8 actions/stale@v8 2023-07-25 11:23:00 +10:00
Josh Corbett
437532f2f9 fix: ✏️ fix docs generation typo and remove trailing white space 2023-07-24 17:42:01 -06:00
Lincoln Stein
8c449c4756 update documentation and installer to accept 3.11 2023-07-24 17:21:56 -04:00
Lincoln Stein
fc4e104c61 tested on 3.11 and 3.10 2023-07-24 17:13:32 -04:00
Lincoln Stein
4194a0ed99 tweaks in response to psychedelicious review of PR 2023-07-24 09:23:51 -04:00
Lincoln Stein
7ce5b6504f rebuild schema 2023-07-24 08:25:39 -04:00
Millun Atluri
aea8ad5670 Update close-inactive-issues.yml with latest stale version 2023-07-24 20:52:34 +10:00
Millun Atluri
97f4475fdf Update close-inactive-issues.yml 2023-07-24 20:50:33 +10:00
blessedcoolant
4f9c728db0 feat(ui): display canvas generation mode in status text (#3915)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because: n/a

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No n/a


## Description

Add a generation mode indicator to canvas.

- use the existing logic to determine if generation is txt2img, img2img,
inpaint or outpaint
- technically `outpaint` and `inpaint` are the same, just display
"Inpaint" if its either
- debounce this by 1s to prevent jank

I was going to disable controlnet conditionally when the mode is inpaint
but that involves a lot of fiddly changes to the controlnet UI
components. Instead, I'm hoping we can get inpaint moved over to latents
by next release, at which point controlnet will work.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->


https://github.com/invoke-ai/InvokeAI/assets/4822129/87464ae9-4136-4367-b992-e243ff0d05b4

## Added/updated tests?

- [ ] Yes
- [x] No : n/a

## [optional] Are there any post deployment tasks we need to perform?

n/a
2023-07-24 20:37:45 +12:00
blessedcoolant
7ea477abef Merge branch 'main' into feat/canvas-generation-mode 2023-07-24 20:34:25 +12:00
blessedcoolant
d42c394ab7 feat(nodes,ui): fix soft locks on session/invocation retrieval (#3910)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No, n/a


## Description

When a queue item is popped for processing, we need to retrieve its
session from the DB. Pydantic serializes the graph at this stage.

It's possible for a graph to have been made invalid during the graph
preparation stage (e.g. an ancestor node executes, and its output is not
valid for its successor node's input field).

When this occurs, the session in the DB will fail validation, but we
don't have a chance to find out until it is retrieved and parsed by
pydantic.

This logic was previously not wrapped in any exception handling.

Just after retrieving a session, we retrieve the specific invocation to
execute from the session. It's possible that this could also have some
sort of error, though it should be impossible for it to be a pydantic
validation error (that would have been caught during session
validation). There was also no exception handling here.

When either of these processes fail, the processor gets soft-locked
because the processor's cleanup logic is never run. (I didn't dig deeper
into exactly what cleanup is not happening, because the fix is to just
handle the exceptions.)

This PR adds exception handling to both the session retrieval and node
retrieval and events for each: `session_retrieval_error` and
`invocation_retrieval_error`.

These events are caught and displayed in the UI as toasts, along with
the type of the python exception (e.g. `Validation Error`). The events
are also logged to the browser console.


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

Closes #3860 , #3412

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

Create an valid graph that will become invalid during execution. Here's
an example:

![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/50aa824c-fb0c-4bd9-82f4-38a4c89436f9)

This is valid before execution, but the `width` field of the `Noise`
node will end up with an invalid value (`0`). Previously, this would
soft-lock the app and you'd have to restart it.

Now, with this graph, you will get an error toast, and the app will not
get locked up.

## Added/updated tests?

- [x] Yes (ish)
- [ ] No

@Kyle0654  @brandonrising 
It seems because the processor runs in its own thread, `pytest` cannot
catch exceptions raised in the processor.

I added a test that does work, insofar as it does recreate the issue.
But, because the exception occurs in a separate thread, the test doesn't
see it. The result is that the test passes even without the fix.

So when running the test, we see the exception:
```py
Exception in thread invoker_processor:
Traceback (most recent call last):
  File "/usr/lib/python3.10/threading.py", line 1016, in _bootstrap_inner
    self.run()
  File "/usr/lib/python3.10/threading.py", line 953, in run
    self._target(*self._args, **self._kwargs)
  File "/home/bat/Documents/Code/InvokeAI/invokeai/app/services/processor.py", line 50, in __process
    self.__invoker.services.graph_execution_manager.get(
  File "/home/bat/Documents/Code/InvokeAI/invokeai/app/services/sqlite.py", line 79, in get
    return self._parse_item(result[0])

  File "/home/bat/Documents/Code/InvokeAI/invokeai/app/services/sqlite.py", line 52, in _parse_item
    return parse_raw_as(item_type, item)
  File "pydantic/tools.py", line 82, in pydantic.tools.parse_raw_as
  File "pydantic/tools.py", line 38, in pydantic.tools.parse_obj_as
  File "pydantic/main.py", line 341, in pydantic.main.BaseModel.__init__
```

But `pytest` doesn't actually see it as an exception. Not sure how to
fix this, it's a bit beyond me.

## [optional] Are there any post deployment tasks we need to perform?

nope don't think so
2023-07-24 20:17:39 +12:00
psychedelicious
61fa960a18 feat(ui): make generation mode calculation more granular 2023-07-24 18:16:15 +10:00
blessedcoolant
1969afd038 Merge branch 'main' into feat/fix-soft-locks 2023-07-24 20:12:10 +12:00
blessedcoolant
2b65e40896 Fix incorrect use of a singleton list (#3914)
## What type of PR is this? (check all applicable)

- [x] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission
      
## Description

`search_for_models` is explicitly typed as taking a singular `Path` but
was given a list because some later function in the stack expects a
list. Fixed that to be compatible with the paths. This is the only use
of that function.

The `list()` call is unrelated but removes a type warning since it's
supposed to return a list, not a set. I can revert it if requested.

This was found through pylance type errors. Go types!
2023-07-24 20:08:21 +12:00
blessedcoolant
d6bf6513ef Merge branch 'main' into fix-types-2 2023-07-24 20:01:48 +12:00
blessedcoolant
14659277e7 Add missing import (#3917)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

This import is missing and used later in the file.
2023-07-24 20:01:12 +12:00
camenduru
cbb90cbdbb Download all model types. 2023-07-24 10:59:59 +03:00
blessedcoolant
9c59083406 Merge branch 'main' into fix-types-1 2023-07-24 19:52:46 +12:00
blessedcoolant
86b62cfccc fix: Generate random seed using the generator instead of RandomState (#3940)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-24 19:52:04 +12:00
blessedcoolant
e766ddbcf4 fix: Generate random seed using the generator instead of RandomState 2023-07-24 19:38:21 +12:00
blessedcoolant
374b4a1b12 Merge branch 'main' into pr/3917 2023-07-24 18:58:34 +12:00
blessedcoolant
0cf7a10c5c fix: Other lora missing type 2023-07-24 18:58:24 +12:00
blessedcoolant
1c44a0feba feat: increase seed from int32 to uint32 (#3933)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No: n/a


## Description

At some point I typo'd this and set the max seed to signed int32 max. It
should be *un*signed int32 max.

This restored the seed range to what it was in v2.3.

Also fixed a bug in the Noise node which resulted in the max valid seed
being one less than intended.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issues
#2843 is against v2.3 and increases the range of valid seeds
substantially. Maybe we can explore this in the future but as of v3.0,
we use numpy for a RNG in a few places, and it maxes out at the max
`uint32`. I will close this PR as this supersedes it.
- Closes #3866

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

You should be able to use seeds up to and including `4294967295`.

## Added/updated tests?

- [ ] Yes
- [x] No : don't think we have any relevant tests

## [optional] Are there any post deployment tasks we need to perform?

nope!
2023-07-24 18:55:35 +12:00
psychedelicious
66cdeba8a1 fix(nodes): fix seed modulus operation
This was incorect and resulted in the max seed being one less than intended.
2023-07-24 16:44:32 +10:00
psychedelicious
d5a75eb833 feat: increase seed from int32 to uint32
At some point I typo'd this and set the max seed to signed int32 max. It should be *un*signed int32 max.

This restored the seed range to what it was in v2.3.
2023-07-24 16:34:50 +10:00
Lincoln Stein
8eab96c441 update documentation 2023-07-23 23:41:44 -04:00
Lincoln Stein
4754a94102 update linear graphs to perform safety checking and watermarking 2023-07-23 23:32:08 -04:00
Lincoln Stein
5c6f417471 add safetychecker and watermark nodes 2023-07-23 16:24:34 -04:00
Alexandre Macabies
0beec08d38 Add missing import. 2023-07-23 16:40:05 +02:00
blessedcoolant
02618a701d fix: Fix app crashing when you upload an incorrect JSON to node editor (#3911)
## What type of PR is this? (check all applicable)

- [x] Bug Fix


## Have you discussed this change with the InvokeAI team?
- [x] Yes, we feel very passionate about this.     

## Description

Uploading an incorrect JSON file to the Node Editor would crash the app.

While this is a much larger problem that we will tackle while refining
the Node Editor, this is a fix that should address 99% of the cases out
there.

When saving an InvokeAI node graph, there are three primary keys.

1. `nodes` - which has all the node related data.
2. `edges` - which has all the edges related data
3. `viewport` - which has all the viewport related data.

So when we load back the JSON, we now check if all three of these keys
exist in the retrieved JSON object. While the `viewport` itself is not a
mandatory key to repopulate the graph, checking for it will allow us to
treat it as an additional check to ensure that the graph was saved from
InvokeAI.

As a result ...

- If you upload an invalid JSON file, the app now warns you that the
JSON is invalid.
- If you upload a JSON of a graph editor that is not InvokeAI, it simply
warns you that you are uploading a non InvokeAI graph.

So effectively, you should not be able to load any graph that is not
generated by ReactFlow.

Here are the edge cases:

- What happens if a user maintains the above key structure but tampers
with the data inside them? Well tested it. Turns out because we validate
and build the graph based on the JSON data, if you tamper with any data
that is needed to rebuild that node, it simply will skip that and load
the rest of the graph with valid data.
- What happens if a user uploads a graph that was made by some other
random ReactFlow app? Well, same as above. Because we do not have to
parse that in our setup, it simply will skip it and only display what
are setup to do.

I think that just about covers 99% of the cases where this could go
wrong. If there's any other edges cases, can add checks if need be. But
can't think of any at the moment.

## Related Tickets & Documents

### Closes
- #3893 
- #3881

## [optional] Are there any post deployment tasks we need to perform?

Yes. Making @psychedelicious a little bit happier. :P
2023-07-24 02:15:46 +12:00
Lincoln Stein
f2a6f0cf21 SDXL & SDXL-refiner models convert correctly 2023-07-23 09:31:14 -04:00
Alexandre Macabies
07a90c0198 Fix incorrect use of a singleton list.
This was found through pylance type errors. Go types!
2023-07-23 15:28:05 +02:00
psychedelicious
28031ead70 feat(ui): display canvas generation mode in status text
- use the existing logic to determine if generation is txt2img, img2img, inpaint or outpaint
- technically `outpaint` and `inpaint` are the same, just display
"Inpaint" if its either
- debounce this by 1s to prevent jank
2023-07-23 23:22:59 +10:00
psychedelicious
4b334be7d0 feat(nodes,ui): fix soft locks on session/invocation retrieval
When a queue item is popped for processing, we need to retrieve its session from the DB. Pydantic serializes the graph at this stage.

It's possible for a graph to have been made invalid during the graph preparation stage (e.g. an ancestor node executes, and its output is not valid for its successor node's input field).

When this occurs, the session in the DB will fail validation, but we don't have a chance to find out until it is retrieved and parsed by pydantic.

This logic was previously not wrapped in any exception handling.

Just after retrieving a session, we retrieve the specific invocation to execute from the session. It's possible that this could also have some sort of error, though it should be impossible for it to be a pydantic validation error (that would have been caught during session validation). There was also no exception handling here.

When either of these processes fail, the processor gets soft-locked because the processor's cleanup logic is never run. (I didn't dig deeper into exactly what cleanup is not happening, because the fix is to just handle the exceptions.)

This PR adds exception handling to both the session retrieval and node retrieval and events for each: `session_retrieval_error` and `invocation_retrieval_error`.

These events are caught and displayed in the UI as toasts, along with the type of the python exception (e.g. `Validation Error`). The events are also logged to the browser console.
2023-07-23 21:41:01 +10:00
blessedcoolant
af4579b4d4 feat: Add more sanity checks for graph loading 2023-07-23 18:12:25 +12:00
blessedcoolant
35acb5de76 Merge branch 'main' into json-crash-fix 2023-07-23 16:50:36 +12:00
blessedcoolant
225f608556 fix: Add more sanity checks & rename buttons to Graphs 2023-07-23 16:49:52 +12:00
Alexandre Macabies
00d3cd4aed Fix 'Del' hotkey to delete current image. 2023-07-23 14:16:32 +10:00
Lincoln Stein
5e59edfaf1 SDXL checkpoint models now convert and load; needs refactor 2023-07-23 00:00:31 -04:00
blessedcoolant
fdc444ed61 fix: Fix app crashing when you upload an incorrect JSON to node editor 2023-07-23 15:24:04 +12:00
blessedcoolant
075f9b3a7a ui: pay back tech debt (#3896)
## What type of PR is this? (check all applicable)

- [x] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because: n/a

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No n/a


## Description

Big cleanup:
- improve & simplify the app logging
- resolve all TS issues
- resolve all circular dependencies
- fix all lint/format issues

## QA Instructions, Screenshots, Recordings

`yarn lint` passes:


![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/7b763922-f00c-4b17-be23-2432da50f816)
<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [x] No : n/a

## [optional] Are there any post deployment tasks we need to perform?

bask in the glory of what *should* be a fully-passing frontend lint on
this PR
2023-07-23 13:57:43 +12:00
Lincoln Stein
b1d7c9b306 save text_encoder_2 config, not whole model 2023-07-22 21:33:40 -04:00
Lincoln Stein
5607794dbb add support for controlnet & sdxl conversion - not fully working 2023-07-22 20:12:16 -04:00
psychedelicious
c5147d0f57 fix(ui): fix all eslint & prettier issues 2023-07-22 23:45:24 +10:00
psychedelicious
6452d0fc28 fix(ui): fix all circular dependencies 2023-07-22 22:48:39 +10:00
psychedelicious
5468d9a9fc fix(ui): resolve all typescript issues 2023-07-22 21:38:50 +10:00
psychedelicious
75863e7181 feat(ui): logging cleanup
- simplify access to app logger
- spruce up and make consistent log format
- improve messaging
2023-07-22 21:12:51 +10:00
498 changed files with 15080 additions and 12028 deletions

View File

@@ -20,13 +20,13 @@ def calc_images_mean_L1(image1_path, image2_path):
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('image1_path')
parser.add_argument('image2_path')
parser.add_argument("image1_path")
parser.add_argument("image2_path")
args = parser.parse_args()
return args
if __name__ == '__main__':
if __name__ == "__main__":
args = parse_args()
mean_L1 = calc_images_mean_L1(args.image1_path, args.image2_path)
print(mean_L1)

View File

@@ -1 +1,2 @@
b3dccfaeb636599c02effc377cdd8a87d658256c
218b6d0546b990fc449c876fb99f44b50c4daa35

View File

@@ -1,11 +1,11 @@
name: Close inactive issues
on:
schedule:
- cron: "00 6 * * *"
- cron: "00 4 * * *"
env:
DAYS_BEFORE_ISSUE_STALE: 14
DAYS_BEFORE_ISSUE_CLOSE: 28
DAYS_BEFORE_ISSUE_STALE: 30
DAYS_BEFORE_ISSUE_CLOSE: 14
jobs:
close-issues:
@@ -14,7 +14,7 @@ jobs:
issues: write
pull-requests: write
steps:
- uses: actions/stale@v5
- uses: actions/stale@v8
with:
days-before-issue-stale: ${{ env.DAYS_BEFORE_ISSUE_STALE }}
days-before-issue-close: ${{ env.DAYS_BEFORE_ISSUE_CLOSE }}
@@ -23,5 +23,6 @@ jobs:
close-issue-message: "Due to inactivity, this issue was automatically closed. If you are still experiencing the issue, please recreate the issue."
days-before-pr-stale: -1
days-before-pr-close: -1
exempt-issue-labels: "Active Issue"
repo-token: ${{ secrets.GITHUB_TOKEN }}
operations-per-run: 500

27
.github/workflows/style-checks.yml vendored Normal file
View File

@@ -0,0 +1,27 @@
name: Black # TODO: add isort and flake8 later
on:
pull_request: {}
push:
branches: master
tags: "*"
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install dependencies with pip
run: |
pip install --upgrade pip wheel
pip install .[test]
# - run: isort --check-only .
- run: black --check .
# - run: flake8

1
.gitignore vendored
View File

@@ -38,7 +38,6 @@ develop-eggs/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/

10
.pre-commit-config.yaml Normal file
View File

@@ -0,0 +1,10 @@
# See https://pre-commit.com/ for usage and config
repos:
- repo: local
hooks:
- id: black
name: black
stages: [commit]
language: system
entry: black
types: [python]

290
LICENSE-SDXL.txt Normal file
View File

@@ -0,0 +1,290 @@
Copyright (c) 2023 Stability AI
CreativeML Open RAIL++-M License dated July 26, 2023
Section I: PREAMBLE
Multimodal generative models are being widely adopted and used, and
have the potential to transform the way artists, among other
individuals, conceive and benefit from AI or ML technologies as a tool
for content creation.
Notwithstanding the current and potential benefits that these
artifacts can bring to society at large, there are also concerns about
potential misuses of them, either due to their technical limitations
or ethical considerations.
In short, this license strives for both the open and responsible
downstream use of the accompanying model. When it comes to the open
character, we took inspiration from open source permissive licenses
regarding the grant of IP rights. Referring to the downstream
responsible use, we added use-based restrictions not permitting the
use of the model in very specific scenarios, in order for the licensor
to be able to enforce the license in case potential misuses of the
Model may occur. At the same time, we strive to promote open and
responsible research on generative models for art and content
generation.
Even though downstream derivative versions of the model could be
released under different licensing terms, the latter will always have
to include - at minimum - the same use-based restrictions as the ones
in the original license (this license). We believe in the intersection
between open and responsible AI development; thus, this agreement aims
to strike a balance between both in order to enable responsible
open-science in the field of AI.
This CreativeML Open RAIL++-M License governs the use of the model
(and its derivatives) and is informed by the model card associated
with the model.
NOW THEREFORE, You and Licensor agree as follows:
Definitions
"License" means the terms and conditions for use, reproduction, and
Distribution as defined in this document.
"Data" means a collection of information and/or content extracted from
the dataset used with the Model, including to train, pretrain, or
otherwise evaluate the Model. The Data is not licensed under this
License.
"Output" means the results of operating a Model as embodied in
informational content resulting therefrom.
"Model" means any accompanying machine-learning based assemblies
(including checkpoints), consisting of learnt weights, parameters
(including optimizer states), corresponding to the model architecture
as embodied in the Complementary Material, that have been trained or
tuned, in whole or in part on the Data, using the Complementary
Material.
"Derivatives of the Model" means all modifications to the Model, works
based on the Model, or any other model which is created or initialized
by transfer of patterns of the weights, parameters, activations or
output of the Model, to the other model, in order to cause the other
model to perform similarly to the Model, including - but not limited
to - distillation methods entailing the use of intermediate data
representations or methods based on the generation of synthetic data
by the Model for training the other model.
"Complementary Material" means the accompanying source code and
scripts used to define, run, load, benchmark or evaluate the Model,
and used to prepare data for training or evaluation, if any. This
includes any accompanying documentation, tutorials, examples, etc, if
any.
"Distribution" means any transmission, reproduction, publication or
other sharing of the Model or Derivatives of the Model to a third
party, including providing the Model as a hosted service made
available by electronic or other remote means - e.g. API-based or web
access.
"Licensor" means the copyright owner or entity authorized by the
copyright owner that is granting the License, including the persons or
entities that may have rights in the Model and/or distributing the
Model.
"You" (or "Your") means an individual or Legal Entity exercising
permissions granted by this License and/or making use of the Model for
whichever purpose and in any field of use, including usage of the
Model in an end-use application - e.g. chatbot, translator, image
generator.
"Third Parties" means individuals or legal entities that are not under
common control with Licensor or You.
"Contribution" means any work of authorship, including the original
version of the Model and any modifications or additions to that Model
or Derivatives of the Model thereof, that is intentionally submitted
to Licensor for inclusion in the Model by the copyright owner or by an
individual or Legal Entity authorized to submit on behalf of the
copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control
systems, and issue tracking systems that are managed by, or on behalf
of, the Licensor for the purpose of discussing and improving the
Model, but excluding communication that is conspicuously marked or
otherwise designated in writing by the copyright owner as "Not a
Contribution."
"Contributor" means Licensor and any individual or Legal Entity on
behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Model.
Section II: INTELLECTUAL PROPERTY RIGHTS
Both copyright and patent grants apply to the Model, Derivatives of
the Model and Complementary Material. The Model and Derivatives of the
Model are subject to additional terms as described in
Section III.
Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare, publicly display, publicly
perform, sublicense, and distribute the Complementary Material, the
Model, and Derivatives of the Model.
Grant of Patent License. Subject to the terms and conditions of this
License and where and as applicable, each Contributor hereby grants to
You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this paragraph) patent license to
make, have made, use, offer to sell, sell, import, and otherwise
transfer the Model and the Complementary Material, where such license
applies only to those patent claims licensable by such Contributor
that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Model to which such
Contribution(s) was submitted. If You institute patent litigation
against any entity (including a cross-claim or counterclaim in a
lawsuit) alleging that the Model and/or Complementary Material or a
Contribution incorporated within the Model and/or Complementary
Material constitutes direct or contributory patent infringement, then
any patent licenses granted to You under this License for the Model
and/or Work shall terminate as of the date such litigation is asserted
or filed.
Section III: CONDITIONS OF USAGE, DISTRIBUTION AND REDISTRIBUTION
Distribution and Redistribution. You may host for Third Party remote
access purposes (e.g. software-as-a-service), reproduce and distribute
copies of the Model or Derivatives of the Model thereof in any medium,
with or without modifications, provided that You meet the following
conditions: Use-based restrictions as referenced in paragraph 5 MUST
be included as an enforceable provision by You in any type of legal
agreement (e.g. a license) governing the use and/or distribution of
the Model or Derivatives of the Model, and You shall give notice to
subsequent users You Distribute to, that the Model or Derivatives of
the Model are subject to paragraph 5. This provision does not apply to
the use of Complementary Material. You must give any Third Party
recipients of the Model or Derivatives of the Model a copy of this
License; You must cause any modified files to carry prominent notices
stating that You changed the files; You must retain all copyright,
patent, trademark, and attribution notices excluding those notices
that do not pertain to any part of the Model, Derivatives of the
Model. You may add Your own copyright statement to Your modifications
and may provide additional or different license terms and conditions -
respecting paragraph 4.a. - for use, reproduction, or Distribution of
Your modifications, or for any such Derivatives of the Model as a
whole, provided Your use, reproduction, and Distribution of the Model
otherwise complies with the conditions stated in this License.
Use-based restrictions. The restrictions set forth in Attachment A are
considered Use-based restrictions. Therefore You cannot use the Model
and the Derivatives of the Model for the specified restricted
uses. You may use the Model subject to this License, including only
for lawful purposes and in accordance with the License. Use may
include creating any content with, finetuning, updating, running,
training, evaluating and/or reparametrizing the Model. You shall
require all of Your users who use the Model or a Derivative of the
Model to comply with the terms of this paragraph (paragraph 5).
The Output You Generate. Except as set forth herein, Licensor claims
no rights in the Output You generate using the Model. You are
accountable for the Output you generate and its subsequent uses. No
use of the output can contravene any provision as stated in the
License.
Section IV: OTHER PROVISIONS
Updates and Runtime Restrictions. To the maximum extent permitted by
law, Licensor reserves the right to restrict (remotely or otherwise)
usage of the Model in violation of this License.
Trademarks and related. Nothing in this License permits You to make
use of Licensors trademarks, trade names, logos or to otherwise
suggest endorsement or misrepresent the relationship between the
parties; and any rights not expressly granted herein are reserved by
the Licensors.
Disclaimer of Warranty. Unless required by applicable law or agreed to
in writing, Licensor provides the Model and the Complementary Material
(and each Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Model, Derivatives of
the Model, and the Complementary Material and assume any risks
associated with Your exercise of permissions under this License.
Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise, unless
required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You
for damages, including any direct, indirect, special, incidental, or
consequential damages of any character arising as a result of this
License or out of the use or inability to use the Model and the
Complementary Material (including but not limited to damages for loss
of goodwill, work stoppage, computer failure or malfunction, or any
and all other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
Accepting Warranty or Additional Liability. While redistributing the
Model, Derivatives of the Model and the Complementary Material
thereof, You may choose to offer, and charge a fee for, acceptance of
support, warranty, indemnity, or other liability obligations and/or
rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole
responsibility, not on behalf of any other Contributor, and only if
You agree to indemnify, defend, and hold each Contributor harmless for
any liability incurred by, or claims asserted against, such
Contributor by reason of your accepting any such warranty or
additional liability.
If any provision of this License is held to be invalid, illegal or
unenforceable, the remaining provisions shall be unaffected thereby
and remain valid as if such provision had not been set forth herein.
END OF TERMS AND CONDITIONS
Attachment A
Use Restrictions
You agree not to use the Model or Derivatives of the Model:
* In any way that violates any applicable national, federal, state,
local or international law or regulation;
* For the purpose of exploiting, harming or attempting to exploit or
harm minors in any way;
* To generate or disseminate verifiably false information and/or
content with the purpose of harming others;
* To generate or disseminate personal identifiable information that
can be used to harm an individual;
* To defame, disparage or otherwise harass others;
* For fully automated decision making that adversely impacts an
individuals legal rights or otherwise creates or modifies a
binding, enforceable obligation;
* For any use intended to or which has the effect of discriminating
against or harming individuals or groups based on online or offline
social behavior or known or predicted personal or personality
characteristics;
* To exploit any of the vulnerabilities of a specific group of persons
based on their age, social, physical or mental characteristics, in
order to materially distort the behavior of a person pertaining to
that group in a manner that causes or is likely to cause that person
or another person physical or psychological harm;
* For any use intended to or which has the effect of discriminating
against individuals or groups based on legally protected
characteristics or categories;
* To provide medical advice and medical results interpretation;
* To generate or disseminate information for the purpose to be used
for administration of justice, law enforcement, immigration or
asylum processes, such as predicting an individual will commit
fraud/crime commitment (e.g. by text profiling, drawing causal
relationships between assertions made in documents, indiscriminate
and arbitrarily-targeted use).

View File

@@ -123,7 +123,7 @@ and go to http://localhost:9090.
### Command-Line Installation (for developers and users familiar with Terminals)
You must have Python 3.9 or 3.10 installed on your machine. Earlier or
You must have Python 3.9 through 3.11 installed on your machine. Earlier or
later versions are not supported.
Node.js also needs to be installed along with yarn (can be installed with
the command `npm install -g yarn` if needed)

Binary file not shown.

After

Width:  |  Height:  |  Size: 490 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 335 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 217 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 244 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 948 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 292 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 420 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 179 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 216 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 439 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 563 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 353 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 131 KiB

View File

@@ -65,7 +65,6 @@ InvokeAI:
esrgan: true
internet_available: true
log_tokenization: false
nsfw_checker: false
patchmatch: true
restore: true
...
@@ -136,19 +135,16 @@ command-line options by giving the `--help` argument:
```
(.venv) > invokeai-web --help
usage: InvokeAI [-h] [--host HOST] [--port PORT] [--allow_origins [ALLOW_ORIGINS ...]] [--allow_credentials | --no-allow_credentials]
[--allow_methods [ALLOW_METHODS ...]] [--allow_headers [ALLOW_HEADERS ...]] [--esrgan | --no-esrgan]
[--internet_available | --no-internet_available] [--log_tokenization | --no-log_tokenization]
[--nsfw_checker | --no-nsfw_checker] [--patchmatch | --no-patchmatch] [--restore | --no-restore]
[--always_use_cpu | --no-always_use_cpu] [--free_gpu_mem | --no-free_gpu_mem] [--max_cache_size MAX_CACHE_SIZE]
[--max_vram_cache_size MAX_VRAM_CACHE_SIZE] [--precision {auto,float16,float32,autocast}]
[--sequential_guidance | --no-sequential_guidance] [--xformers_enabled | --no-xformers_enabled]
[--tiled_decode | --no-tiled_decode] [--root ROOT] [--autoimport_dir AUTOIMPORT_DIR] [--lora_dir LORA_DIR]
[--embedding_dir EMBEDDING_DIR] [--controlnet_dir CONTROLNET_DIR] [--conf_path CONF_PATH] [--models_dir MODELS_DIR]
[--legacy_conf_dir LEGACY_CONF_DIR] [--db_dir DB_DIR] [--outdir OUTDIR] [--from_file FROM_FILE]
[--use_memory_db | --no-use_memory_db] [--model MODEL] [--log_handlers [LOG_HANDLERS ...]]
[--log_format {plain,color,syslog,legacy}] [--log_level {debug,info,warning,error,critical}]
...
usage: InvokeAI [-h] [--host HOST] [--port PORT] [--allow_origins [ALLOW_ORIGINS ...]] [--allow_credentials | --no-allow_credentials] [--allow_methods [ALLOW_METHODS ...]]
[--allow_headers [ALLOW_HEADERS ...]] [--esrgan | --no-esrgan] [--internet_available | --no-internet_available] [--log_tokenization | --no-log_tokenization]
[--patchmatch | --no-patchmatch] [--restore | --no-restore]
[--always_use_cpu | --no-always_use_cpu] [--free_gpu_mem | --no-free_gpu_mem] [--max_loaded_models MAX_LOADED_MODELS] [--max_cache_size MAX_CACHE_SIZE]
[--max_vram_cache_size MAX_VRAM_CACHE_SIZE] [--gpu_mem_reserved GPU_MEM_RESERVED] [--precision {auto,float16,float32,autocast}]
[--sequential_guidance | --no-sequential_guidance] [--xformers_enabled | --no-xformers_enabled] [--tiled_decode | --no-tiled_decode] [--root ROOT]
[--autoimport_dir AUTOIMPORT_DIR] [--lora_dir LORA_DIR] [--embedding_dir EMBEDDING_DIR] [--controlnet_dir CONTROLNET_DIR] [--conf_path CONF_PATH]
[--models_dir MODELS_DIR] [--legacy_conf_dir LEGACY_CONF_DIR] [--db_dir DB_DIR] [--outdir OUTDIR] [--from_file FROM_FILE]
[--use_memory_db | --no-use_memory_db] [--model MODEL] [--log_handlers [LOG_HANDLERS ...]] [--log_format {plain,color,syslog,legacy}]
[--log_level {debug,info,warning,error,critical}] [--version | --no-version]
```
## The Configuration Settings
@@ -178,7 +174,6 @@ These configuration settings allow you to enable and disable various InvokeAI fe
| `esrgan` | `true` | Activate the ESRGAN upscaling options|
| `internet_available` | `true` | When a resource is not available locally, try to fetch it via the internet |
| `log_tokenization` | `false` | Before each text2image generation, print a color-coded representation of the prompt to the console; this can help understand why a prompt is not working as expected |
| `nsfw_checker` | `true` | Activate the NSFW checker to blur out risque images |
| `patchmatch` | `true` | Activate the "patchmatch" algorithm for improved inpainting |
| `restore` | `true` | Activate the facial restoration features (DEPRECATED; restoration features will be removed in 3.0.0) |

View File

@@ -61,11 +61,13 @@ A noise scheduler (eg. DPM++ 2M Karras) schedules the subtraction of noise from
| ImageInverseLerp | Inverse linear interpolation of all pixels of an image |
| ImageLerp | Linear interpolation of all pixels of an image |
| ImageMultiply | Multiplies two images together using `PIL.ImageChops.Multiply()` |
| ImageNSFWBlurInvocation | Detects and blurs images that may contain sexually explicit content |
| ImagePaste | Pastes an image into another image |
| ImageProcessor | Base class for invocations that reprocess images for ControlNet |
| ImageResize | Resizes an image to specific dimensions |
| ImageScale | Scales an image by a factor |
| ImageToLatents | Scales latents by a given factor |
| ImageWatermarkInvocation | Adds an invisible watermark to images |
| InfillColor | Infills transparent areas of an image with a solid color |
| InfillPatchMatch | Infills transparent areas of an image using the PatchMatch algorithm |
| InfillTile | Infills transparent areas of an image with tiles of the image |
@@ -116,49 +118,49 @@ There are several node grouping concepts that can be examined with a narrow focu
As described, an initial noise tensor is necessary for the latent diffusion process. As a result, all non-image *ToLatents nodes require a noise node input.
<img width="654" alt="groupsnoise" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/2e8d297e-ad55-4d27-bc93-c119dad2a2c5">
![groupsnoise](../assets/nodes/groupsnoise.png)
### Conditioning
As described, conditioning is necessary for the latent diffusion process, whether empty or not. As a result, all non-image *ToLatents nodes require positive and negative conditioning inputs. Conditioning is reliant on a CLIP tokenizer provided by the Model Loader node.
<img width="1024" alt="groupsconditioning" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/f8f7ad8a-8d9c-418e-b5ad-1437b774b27e">
![groupsconditioning](../assets/nodes/groupsconditioning.png)
### Image Space & VAE
The ImageToLatents node doesn't require a noise node input, but requires a VAE input to convert the image from image space into latent space. In reverse, the LatentsToImage node requires a VAE input to convert from latent space back into image space.
<img width="637" alt="groupsimgvae" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/dd99969c-e0a8-4f78-9b17-3ffe179cef9a">
![groupsimgvae](../assets/nodes/groupsimgvae.png)
### Defined & Random Seeds
It is common to want to use both the same seed (for continuity) and random seeds (for variance). To define a seed, simply enter it into the 'Seed' field on a noise node. Conversely, the RandomInt node generates a random integer between 'Low' and 'High', and can be used as input to the 'Seed' edge point on a noise node to randomize your seed.
<img width="922" alt="groupsrandseed" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/af55bc20-60f6-438e-aba5-3ec871443710">
![groupsrandseed](../assets/nodes/groupsrandseed.png)
### Control
Control means to guide the diffusion process to adhere to a defined input or structure. Control can be provided as input to non-image *ToLatents nodes from ControlNet nodes. ControlNet nodes usually require an image processor which converts an input image for use with ControlNet.
<img width="805" alt="groupscontrol" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/cc9c5de7-23a7-46c8-bbad-1f3609d999a6">
![groupscontrol](../assets/nodes/groupscontrol.png)
### LoRA
The Lora Loader node lets you load a LoRA (say that ten times fast) and pass it as output to both the Prompt (Compel) and non-image *ToLatents nodes. A model's CLIP tokenizer is passed through the LoRA into Prompt (Compel), where it affects conditioning. A model's U-Net is also passed through the LoRA into a non-image *ToLatents node, where it affects noise prediction.
<img width="993" alt="groupslora" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/630962b0-d914-4505-b3ea-ccae9b0269da">
![groupslora](../assets/nodes/groupslora.png)
### Scaling
Use the ImageScale, ScaleLatents, and Upscale nodes to upscale images and/or latent images. The chosen method differs across contexts. However, be aware that latents are already noisy and compressed at their original resolution; scaling an image could produce more detailed results.
<img width="644" alt="groupsallscale" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/99314f05-dd9f-4b6d-b378-31de55346a13">
![groupsallscale](../assets/nodes/groupsallscale.png)
### Iteration + Multiple Images as Input
Iteration is a common concept in any processing, and means to repeat a process with given input. In nodes, you're able to use the Iterate node to iterate through collections usually gathered by the Collect node. The Iterate node has many potential uses, from processing a collection of images one after another, to varying seeds across multiple image generations and more. This screenshot demonstrates how to collect several images and pass them out one at a time.
<img width="788" alt="groupsiterate" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/4af5ca27-82c9-4018-8c5b-024d3ee0a121">
![groupsiterate](../assets/nodes/groupsiterate.png)
### Multiple Image Generation + Random Seeds
@@ -166,7 +168,7 @@ Multiple image generation in the node editor is done using the RandomRange node.
To control seeds across generations takes some care. The first row in the screenshot will generate multiple images with different seeds, but using the same RandomRange parameters across invocations will result in the same group of random seeds being used across the images, producing repeatable results. In the second row, adding the RandomInt node as input to RandomRange's 'Seed' edge point will ensure that seeds are varied across all images across invocations, producing varied results.
<img width="1027" alt="groupsmultigenseeding" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/518d1b2b-fed1-416b-a052-ab06552521b3">
![groupsmultigenseeding](../assets/nodes/groupsmultigenseeding.png)
## Examples
@@ -174,7 +176,7 @@ With our knowledge of node grouping and the diffusion process, lets break dow
### Basic text-to-image Node Graph
<img width="875" alt="nodest2i" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/17c67720-c376-4db8-94f0-5e00381a61ee">
![nodest2i](../assets/nodes/nodest2i.png)
- Model Loader: A necessity to generating images (as weve read above). We choose our model from the dropdown. It outputs a U-Net, CLIP tokenizer, and VAE.
- Prompt (Compel): Another necessity. Two prompt nodes are created. One will output positive conditioning (what you want, dog), one will output negative (what you dont want, cat). They both input the CLIP tokenizer that the Model Loader node outputs.
@@ -184,7 +186,7 @@ With our knowledge of node grouping and the diffusion process, lets break dow
### Basic image-to-image Node Graph
<img width="998" alt="nodesi2i" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/3f2c95d5-cee7-4415-9b79-b46ee60a92fe">
![nodesi2i](../assets/nodes/nodesi2i.png)
- Model Loader: Choose a model from the dropdown.
- Prompt (Compel): Two prompt nodes. One positive (dog), one negative (dog). Same CLIP inputs from the Model Loader node as before.
@@ -195,7 +197,7 @@ With our knowledge of node grouping and the diffusion process, lets break dow
### Basic ControlNet Node Graph
<img width="703" alt="nodescontrol" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/b02ded86-ceb4-44a2-9910-e19ad184d471">
![nodescontrol](../assets/nodes/nodescontrol.png)
- Model Loader
- Prompt (Compel)

View File

@@ -16,21 +16,24 @@ Output Example:
---
## **Seamless Tiling**
## **Invisible Watermark**
The seamless tiling mode causes generated images to seamlessly tile
with itself creating repetitive wallpaper-like patterns. To use it,
activate the Seamless Tiling option in the Web GUI and then select
whether to tile on the X (horizontal) and/or Y (vertical) axes. Tiling
will then be active for the next set of generations.
In keeping with the principles for responsible AI generation, and to
help AI researchers avoid synthetic images contaminating their
training sets, InvokeAI adds an invisible watermark to each of the
final images it generates. The watermark consists of the text
"InvokeAI" and can be viewed using the
[invisible-watermarks](https://github.com/ShieldMnt/invisible-watermark)
tool.
A nice prompt to test seamless tiling with is:
Watermarking is controlled using the `invisible-watermark` setting in
`invokeai.yaml`. To turn it off, add the following line under the `Features`
category.
```
pond garden with lotus by claude monet"
invisible_watermark: false
```
---
## **Weighted Prompts**
@@ -39,34 +42,10 @@ priority to them, by adding `:<percent>` to the end of the section you wish to u
example consider this prompt:
```bash
tabby cat:0.25 white duck:0.75 hybrid
(tabby cat):0.25 (white duck):0.75 hybrid
```
This will tell the sampler to invest 25% of its effort on the tabby cat aspect of the image and 75%
on the white duck aspect (surprisingly, this example actually works). The prompt weights can use any
combination of integers and floating point numbers, and they do not need to add up to 1.
## **Thresholding and Perlin Noise Initialization Options**
Under the Noise section of the Web UI, you will find two options named
Perlin Noise and Noise Threshold. [Perlin
noise](https://en.wikipedia.org/wiki/Perlin_noise) is a type of
structured noise used to simulate terrain and other natural
textures. The slider controls the percentage of perlin noise that will
be mixed into the image at the beginning of generation. Adding a little
perlin noise to a generation will alter the image substantially.
The noise threshold limits the range of the latent values during
sampling and helps combat the oversharpening seem with higher CFG
scale values.
For better intuition into what these options do in practice:
![here is a graphic demonstrating them both](../assets/truncation_comparison.jpg)
In generating this graphic, perlin noise at initialization was
programmatically varied going across on the diagram by values 0.0,
0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9, 1.0; and the threshold was varied
going down from 0, 1, 2, 3, 4, 5, 10, 20, 100. The other options are
fixed using the prompt "a portrait of a beautiful young lady" a CFG of
20, 100 steps, and a seed of 1950357039.

View File

@@ -1,12 +1,40 @@
---
title: The NSFW Checker
title: Watermarking, NSFW Image Checking
---
# :material-image-off: NSFW Checker
# :material-image-off: Invisible Watermark and the NSFW Checker
## Watermarking
InvokeAI does not apply watermarking to images by default. However,
many computer scientists working in the field of generative AI worry
that a flood of computer-generated imagery will contaminate the image
data sets needed to train future generations of generative models.
InvokeAI offers an optional watermarking mode that writes a small bit
of text, **InvokeAI**, into each image that it generates using an
"invisible" watermarking library that spreads the information
throughout the image in a way that is not perceptible to the human
eye. If you are planning to share your generated images on
internet-accessible services, we encourage you to activate the
invisible watermark mode in order to help preserve the digital image
environment.
The downside of watermarking is that it increases the size of the
image moderately, and has been reported by some individuals to degrade
image quality. Your mileage may vary.
To read the watermark in an image, activate the InvokeAI virtual
environment (called the "developer's console" in the launcher) and run
the command:
```
invisible-watermark -a decode -t bytes -m dwtDct -l 64 /path/to/image.png
```
## The NSFW ("Safety") Checker
The Stable Diffusion image generation models will produce sexual
Stable Diffusion 1.5-based image generation models will produce sexual
imagery if deliberately prompted, and will occasionally produce such
images when this is not intended. Such images are colloquially known
as "Not Safe for Work" (NSFW). This behavior is due to the nature of
@@ -18,35 +46,17 @@ jurisdictions it may be illegal to publicly distribute such imagery,
including mounting a publicly-available server that provides
unfiltered images to the public. Furthermore, the [Stable Diffusion
weights
License](https://github.com/invoke-ai/InvokeAI/blob/main/LICENSE-ModelWeights.txt)
forbids the model from being used to "exploit any of the
License](https://github.com/invoke-ai/InvokeAI/blob/main/LICENSE-SD1+SD2.txt),
and the [Stable Diffusion XL
License][https://github.com/invoke-ai/InvokeAI/blob/main/LICENSE-SDXL.txt]
both forbid the models from being used to "exploit any of the
vulnerabilities of a specific group of persons."
For these reasons Stable Diffusion offers a "safety checker," a
machine learning model trained to recognize potentially disturbing
imagery. When a potentially NSFW image is detected, the checker will
blur the image and paste a warning icon on top. The checker can be
turned on and off on the command line using `--nsfw_checker` and
`--no-nsfw_checker`.
At installation time, InvokeAI will ask whether the checker should be
activated by default (neither argument given on the command line). The
response is stored in the InvokeAI initialization file
(`invokeai.yaml` in the InvokeAI root directory). You can change the
default at any time by opening this file in a text editor and
changing the line `nsfw_checker:` from true to false or vice-versa:
```
...
Features:
esrgan: true
internet_available: true
log_tokenization: false
nsfw_checker: true
patchmatch: true
restore: true
```
turned on and off in the Web interface under Settings.
## Caveats
@@ -84,10 +94,3 @@ are encouraged to turn **off** intermediate image rendering when you
are using the checker. Future versions of InvokeAI will apply
additional blurring to intermediate images when the checker is active.
### Watermarking
InvokeAI does not apply any sort of watermark to images it
generates. However, it does write metadata into the PNG data area,
including the prompt used to generate the image and relevant parameter
settings. These fields can be examined using the `sd-metadata.py`
script that comes with the InvokeAI package.

View File

@@ -80,11 +80,11 @@ Q&A</a>]
!!! note
This fork is rapidly evolving. Please use the [Issues tab](https://github.com/invoke-ai/InvokeAI/issues) to report bugs and make feature requests. Be sure to use the provided templates. They will help aid diagnose issues faster.
This software is rapidly evolving. Please use the [Issues tab](https://github.com/invoke-ai/InvokeAI/issues) to report bugs and make feature requests. Be sure to use the provided templates. They will help aid diagnose issues faster.
## :octicons-package-dependencies-24: Installation
This fork is supported across Linux, Windows and Macintosh. Linux users can use
This software is supported across Linux, Windows and Macintosh. Linux users can use
either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm
driver).
@@ -95,6 +95,8 @@ driver).
This method is recommended for experienced users and developers
#### [Docker Installation](installation/040_INSTALL_DOCKER.md)
This method is recommended for those familiar with running Docker containers
#### [Installation Troubleshooting](installation/010_INSTALL_AUTOMATED.md#troubleshooting)
Installation troubleshooting guide.
### Other Installation Guides
- [PyPatchMatch](installation/060_INSTALL_PATCHMATCH.md)
- [XFormers](installation/070_INSTALL_XFORMERS.md)
@@ -148,7 +150,7 @@ images in full-precision mode:
- [Model Merging](features/MODEL_MERGING.md)
- [ControlNet Models](features/CONTROLNET.md)
- [Style/Subject Concepts and Embeddings](features/CONCEPTS.md)
- [Not Safe for Work (NSFW) Checker](features/NSFW.md)
- [Watermarking and the Not Safe for Work (NSFW) Checker](features/WATERMARK+NSFW.md)
<!-- seperator -->
### Prompt Engineering
- [Prompt Syntax](features/PROMPTS.md)
@@ -230,7 +232,7 @@ encouraged to do so.
## :octicons-person-24: Contributors
This fork is a combined effort of various people from across the world.
This software is a combined effort of various people from across the world.
[Check out the list of all these amazing people](other/CONTRIBUTORS.md). We
thank them for their time, hard work and effort.

View File

@@ -40,10 +40,8 @@ experimental versions later.
this, open up a command-line window ("Terminal" on Linux and
Macintosh, "Command" or "Powershell" on Windows) and type `python
--version`. If Python is installed, it will print out the version
number. If it is version `3.9.*` or `3.10.*`, you meet
requirements. We do not recommend using Python 3.11 or higher,
as not all the libraries that InvokeAI depends on work properly
with this version.
number. If it is version `3.9.*`, `3.10.*` or `3.11.*` you meet
requirements.
!!! warning "What to do if you have an unsupported version"
@@ -215,17 +213,6 @@ experimental versions later.
Generally the defaults are fine, and you can come back to this screen at
any time to tweak your system. Here are the options you can adjust:
- ***Output directory for images***
This is the path to a directory in which InvokeAI will store all its
generated images.
- ***NSFW checker***
If checked, InvokeAI will test images for potential sexual content
and blur them out if found. Note that the NSFW checker consumes
an additional 0.6 GB of VRAM on top of the 2-3 GB of VRAM used
by most image models. If you have a low VRAM GPU (4-6 GB), you
can reduce out of memory errors by disabling the checker.
- ***HuggingFace Access Token***
InvokeAI has the ability to download embedded styles and subjects
from the HuggingFace Concept Library on-demand. However, some of
@@ -257,20 +244,30 @@ experimental versions later.
and graphics cards. The "autocast" option is deprecated and
shouldn't be used unless you are asked to by a member of the team.
- ***Number of models to cache in CPU memory***
- **Size of the RAM cache used for fast model switching***
This allows you to keep models in memory and switch rapidly among
them rather than having them load from disk each time. This slider
controls how many models to keep loaded at once. Each
model will use 2-4 GB of RAM, so use this cautiously
controls how many models to keep loaded at once. A typical SD-1 or SD-2 model
uses 2-3 GB of memory. A typical SDXL model uses 6-7 GB. Providing more
RAM will allow more models to be co-resident.
- ***Directory containing embedding/textual inversion files***
This is the directory in which you can place custom embedding
files (.pt or .bin). During startup, this directory will be
scanned and InvokeAI will print out the text terms that
are available to trigger the embeddings.
- ***Output directory for images***
This is the path to a directory in which InvokeAI will store all its
generated images.
- ***Autoimport Folder***
This is the directory in which you can place models you have
downloaded and wish to load into InvokeAI. You can place a variety
of models in this directory, including diffusers folders, .ckpt files,
.safetensors files, as well as LoRAs, ControlNet and Textual Inversion
files (both folder and file versions). To help organize this folder,
you can create several levels of subfolders and drop your models into
whichever ones you want.
- ***Autoimport FolderLICENSE***
At the bottom of the screen you will see a checkbox for accepting
the CreativeML Responsible AI License. You need to accept the license
the CreativeML Responsible AI Licenses. You need to accept the license
in order to download Stable Diffusion models from the next screen.
_You can come back to the startup options form_ as many times as you like.
@@ -375,8 +372,71 @@ experimental versions later.
Once InvokeAI is installed, do not move or remove this directory."
<a name="troubleshooting"></a>
## Troubleshooting
### _OSErrors on Windows while installing dependencies_
During a zip file installation or an online update, installation stops
with an error like this:
![broken-dependency-screenshot](../assets/troubleshooting/broken-dependency.png){:width="800px"}
This seems to happen particularly often with the `pydantic` and
`numpy` packages. The most reliable solution requires several manual
steps to complete installation.
Open up a Powershell window and navigate to the `invokeai` directory
created by the installer. Then give the following series of commands:
```cmd
rm .\.venv -r -force
python -mvenv .venv
.\.venv\Scripts\activate
pip install invokeai
invokeai-configure --root .
```
If you see anything marked as an error during this process please stop
and seek help on the Discord [installation support
channel](https://discord.com/channels/1020123559063990373/1041391462190956654). A
few warning messages are OK.
If you are updating from a previous version, this should restore your
system to a working state. If you are installing from scratch, there
is one additional command to give:
```cmd
wget -O invoke.bat https://raw.githubusercontent.com/invoke-ai/InvokeAI/main/installer/templates/invoke.bat.in
```
This will create the `invoke.bat` script needed to launch InvokeAI and
its related programs.
### _Stable Diffusion XL Generation Fails after Trying to Load unet_
InvokeAI is working in other respects, but when trying to generate
images with Stable Diffusion XL you get a "Server Error". The text log
in the launch window contains this log line above several more lines of
error messages:
```INFO --> Loading model:D:\LONG\PATH\TO\MODEL, type sdxl:main:unet```
This failure mode occurs when there is a network glitch during
downloading the very large SDXL model.
To address this, first go to the Web Model Manager and delete the
Stable-Diffusion-XL-base-1.X model. Then navigate to HuggingFace and
manually download the .safetensors version of the model. The 1.0
version is located at
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/tree/main
and the file is named `sd_xl_base_1.0.safetensors`.
Save this file to disk and then reenter the Model Manager. Navigate to
Import Models->Add Model, then type (or drag-and-drop) the path to the
.safetensors file. Press "Add Model".
### _Package dependency conflicts_
If you have previously installed InvokeAI or another Stable Diffusion

View File

@@ -32,7 +32,7 @@ gaming):
* **Python**
version 3.9 or 3.10 (3.11 is not recommended).
version 3.9 through 3.11
* **CUDA Tools**
@@ -65,7 +65,7 @@ gaming):
To install InvokeAI with virtual environments and the PIP package
manager, please follow these steps:
1. Please make sure you are using Python 3.9 or 3.10. The rest of the install
1. Please make sure you are using Python 3.9 through 3.11. The rest of the install
procedure depends on this and will not work with other versions:
```bash

View File

@@ -9,16 +9,20 @@ cd $scriptdir
function version { echo "$@" | awk -F. '{ printf("%d%03d%03d%03d\n", $1,$2,$3,$4); }'; }
MINIMUM_PYTHON_VERSION=3.9.0
MAXIMUM_PYTHON_VERSION=3.11.0
MAXIMUM_PYTHON_VERSION=3.11.100
PYTHON=""
for candidate in python3.10 python3.9 python3 python ; do
for candidate in python3.11 python3.10 python3.9 python3 python ; do
if ppath=`which $candidate`; then
# when using `pyenv`, the executable for an inactive Python version will exist but will not be operational
# we check that this found executable can actually run
if [ $($candidate --version &>/dev/null; echo ${PIPESTATUS}) -gt 0 ]; then continue; fi
python_version=$($ppath -V | awk '{ print $2 }')
if [ $(version $python_version) -ge $(version "$MINIMUM_PYTHON_VERSION") ]; then
if [ $(version $python_version) -lt $(version "$MAXIMUM_PYTHON_VERSION") ]; then
PYTHON=$ppath
break
fi
if [ $(version $python_version) -le $(version "$MAXIMUM_PYTHON_VERSION") ]; then
PYTHON=$ppath
break
fi
fi
fi
done

View File

@@ -141,15 +141,16 @@ class Installer:
# upgrade pip in Python 3.9 environments
if int(platform.python_version_tuple()[1]) == 9:
from plumbum import FG, local
pip = local[get_pip_from_venv(venv_dir)]
pip[ "install", "--upgrade", "pip"] & FG
pip["install", "--upgrade", "pip"] & FG
return venv_dir
def install(self, root: str = "~/invokeai-3", version: str = "latest", yes_to_all=False, find_links: Path = None) -> None:
def install(
self, root: str = "~/invokeai-3", version: str = "latest", yes_to_all=False, find_links: Path = None
) -> None:
"""
Install the InvokeAI application into the given runtime path
@@ -175,7 +176,7 @@ class Installer:
self.instance = InvokeAiInstance(runtime=self.dest, venv=self.venv, version=version)
# install dependencies and the InvokeAI application
(extra_index_url,optional_modules) = get_torch_source() if not yes_to_all else (None,None)
(extra_index_url, optional_modules) = get_torch_source() if not yes_to_all else (None, None)
self.instance.install(
extra_index_url,
optional_modules,
@@ -188,6 +189,7 @@ class Installer:
# run through the configuration flow
self.instance.configure()
class InvokeAiInstance:
"""
Manages an installed instance of InvokeAI, comprising a virtual environment and a runtime directory.
@@ -196,7 +198,6 @@ class InvokeAiInstance:
"""
def __init__(self, runtime: Path, venv: Path, version: str) -> None:
self.runtime = runtime
self.venv = venv
self.pip = get_pip_from_venv(venv)
@@ -312,7 +313,7 @@ class InvokeAiInstance:
"install",
"--require-virtualenv",
"--use-pep517",
str(src)+(optional_modules if optional_modules else ''),
str(src) + (optional_modules if optional_modules else ""),
"--find-links" if find_links is not None else None,
find_links,
"--extra-index-url" if extra_index_url is not None else None,
@@ -329,15 +330,15 @@ class InvokeAiInstance:
# set sys.argv to a consistent state
new_argv = [sys.argv[0]]
for i in range(1,len(sys.argv)):
for i in range(1, len(sys.argv)):
el = sys.argv[i]
if el in ['-r','--root']:
if el in ["-r", "--root"]:
new_argv.append(el)
new_argv.append(sys.argv[i+1])
elif el in ['-y','--yes','--yes-to-all']:
new_argv.append(sys.argv[i + 1])
elif el in ["-y", "--yes", "--yes-to-all"]:
new_argv.append(el)
sys.argv = new_argv
import requests # to catch download exceptions
from messages import introduction
@@ -353,16 +354,16 @@ class InvokeAiInstance:
invokeai_configure()
succeeded = True
except requests.exceptions.ConnectionError as e:
print(f'\nA network error was encountered during configuration and download: {str(e)}')
print(f"\nA network error was encountered during configuration and download: {str(e)}")
except OSError as e:
print(f'\nAn OS error was encountered during configuration and download: {str(e)}')
print(f"\nAn OS error was encountered during configuration and download: {str(e)}")
except Exception as e:
print(f'\nA problem was encountered during the configuration and download steps: {str(e)}')
print(f"\nA problem was encountered during the configuration and download steps: {str(e)}")
finally:
if not succeeded:
print('To try again, find the "invokeai" directory, run the script "invoke.sh" or "invoke.bat"')
print('and choose option 7 to fix a broken install, optionally followed by option 5 to install models.')
print('Alternatively you can relaunch the installer.')
print("and choose option 7 to fix a broken install, optionally followed by option 5 to install models.")
print("Alternatively you can relaunch the installer.")
def install_user_scripts(self):
"""
@@ -371,11 +372,11 @@ class InvokeAiInstance:
ext = "bat" if OS == "Windows" else "sh"
#scripts = ['invoke', 'update']
scripts = ['invoke']
# scripts = ['invoke', 'update']
scripts = ["invoke"]
for script in scripts:
src = Path(__file__).parent / '..' / "templates" / f"{script}.{ext}.in"
src = Path(__file__).parent / ".." / "templates" / f"{script}.{ext}.in"
dest = self.runtime / f"{script}.{ext}"
shutil.copy(src, dest)
os.chmod(dest, 0o0755)
@@ -420,11 +421,7 @@ def set_sys_path(venv_path: Path) -> None:
# filter out any paths in sys.path that may be system- or user-wide
# but leave the temporary bootstrap virtualenv as it contains packages we
# temporarily need at install time
sys.path = list(filter(
lambda p: not p.endswith("-packages")
or p.find(BOOTSTRAP_VENV_PREFIX) != -1,
sys.path
))
sys.path = list(filter(lambda p: not p.endswith("-packages") or p.find(BOOTSTRAP_VENV_PREFIX) != -1, sys.path))
# determine site-packages/lib directory location for the venv
lib = "Lib" if OS == "Windows" else f"lib/python{sys.version_info.major}.{sys.version_info.minor}"
@@ -433,7 +430,7 @@ def set_sys_path(venv_path: Path) -> None:
sys.path.append(str(Path(venv_path, lib, "site-packages").expanduser().resolve()))
def get_torch_source() -> (Union[str, None],str):
def get_torch_source() -> (Union[str, None], str):
"""
Determine the extra index URL for pip to use for torch installation.
This depends on the OS and the graphics accelerator in use.
@@ -461,9 +458,9 @@ def get_torch_source() -> (Union[str, None],str):
elif device == "cpu":
url = "https://download.pytorch.org/whl/cpu"
if device == 'cuda':
url = 'https://download.pytorch.org/whl/cu117'
optional_modules = '[xformers]'
if device == "cuda":
url = "https://download.pytorch.org/whl/cu117"
optional_modules = "[xformers]"
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13

View File

@@ -41,7 +41,7 @@ if __name__ == "__main__":
type=Path,
default=None,
)
args = parser.parse_args()
inst = Installer()

View File

@@ -36,13 +36,15 @@ else:
def welcome():
@group()
def text():
if (platform_specific := _platform_specific_help()) != "":
yield platform_specific
yield ""
yield Text.from_markup("Some of the installation steps take a long time to run. Please be patient. If the script appears to hang for more than 10 minutes, please interrupt with [i]Control-C[/] and retry.", justify="center")
yield Text.from_markup(
"Some of the installation steps take a long time to run. Please be patient. If the script appears to hang for more than 10 minutes, please interrupt with [i]Control-C[/] and retry.",
justify="center",
)
console.rule()
print(
@@ -58,6 +60,7 @@ def welcome():
)
console.line()
def confirm_install(dest: Path) -> bool:
if dest.exists():
print(f":exclamation: Directory {dest} already exists :exclamation:")
@@ -92,7 +95,6 @@ def dest_path(dest=None) -> Path:
dest_confirmed = confirm_install(dest)
while not dest_confirmed:
# if the given destination already exists, the starting point for browsing is its parent directory.
# the user may have made a typo, or otherwise wants to place the root dir next to an existing one.
# if the destination dir does NOT exist, then the user must have changed their mind about the selection.
@@ -300,15 +302,20 @@ def introduction() -> None:
)
console.line(2)
def _platform_specific_help()->str:
def _platform_specific_help() -> str:
if OS == "Darwin":
text = Text.from_markup("""[b wheat1]macOS Users![/]\n\nPlease be sure you have the [b wheat1]Xcode command-line tools[/] installed before continuing.\nIf not, cancel with [i]Control-C[/] and follow the Xcode install instructions at [deep_sky_blue1]https://www.freecodecamp.org/news/install-xcode-command-line-tools/[/].""")
text = Text.from_markup(
"""[b wheat1]macOS Users![/]\n\nPlease be sure you have the [b wheat1]Xcode command-line tools[/] installed before continuing.\nIf not, cancel with [i]Control-C[/] and follow the Xcode install instructions at [deep_sky_blue1]https://www.freecodecamp.org/news/install-xcode-command-line-tools/[/]."""
)
elif OS == "Windows":
text = Text.from_markup("""[b wheat1]Windows Users![/]\n\nBefore you start, please do the following:
text = Text.from_markup(
"""[b wheat1]Windows Users![/]\n\nBefore you start, please do the following:
1. Double-click on the file [b wheat1]WinLongPathsEnabled.reg[/] in order to
enable long path support on your system.
2. Make sure you have the [b wheat1]Visual C++ core libraries[/] installed. If not, install from
[deep_sky_blue1]https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170[/]""")
[deep_sky_blue1]https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170[/]"""
)
else:
text = ""
return text

View File

@@ -78,9 +78,7 @@ class ApiDependencies:
image_record_storage = SqliteImageRecordStorage(db_location)
image_file_storage = DiskImageFileStorage(f"{output_folder}/images")
names = SimpleNameService()
latents = ForwardCacheLatentsStorage(
DiskLatentsStorage(f"{output_folder}/latents")
)
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents"))
board_record_storage = SqliteBoardRecordStorage(db_location)
board_image_record_storage = SqliteBoardImageRecordStorage(db_location)
@@ -125,9 +123,7 @@ class ApiDependencies:
boards=boards,
board_images=board_images,
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
),
graph_library=SqliteItemStorage[LibraryGraph](filename=db_location, table_name="graphs"),
graph_execution_manager=graph_execution_manager,
processor=DefaultInvocationProcessor(),
configuration=config,

View File

@@ -1,14 +1,21 @@
import typing
from enum import Enum
from fastapi import Body
from fastapi.routing import APIRouter
from pathlib import Path
from pydantic import BaseModel, Field
from invokeai.backend.image_util.patchmatch import PatchMatch
from invokeai.backend.image_util.safety_checker import SafetyChecker
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.app.invocations.upscale import ESRGAN_MODELS
from invokeai.version import __version__
from ..dependencies import ApiDependencies
from invokeai.backend.util.logging import logging
class LogLevel(int, Enum):
NotSet = logging.NOTSET
Debug = logging.DEBUG
@@ -16,7 +23,13 @@ class LogLevel(int, Enum):
Warning = logging.WARNING
Error = logging.ERROR
Critical = logging.CRITICAL
class Upscaler(BaseModel):
upscaling_method: str = Field(description="Name of upscaling method")
upscaling_models: list[str] = Field(description="List of upscaling models for this method")
app_router = APIRouter(prefix="/v1/app", tags=["app"])
@@ -30,43 +43,62 @@ class AppConfig(BaseModel):
"""App Config Response"""
infill_methods: list[str] = Field(description="List of available infill methods")
upscaling_methods: list[Upscaler] = Field(description="List of upscaling methods")
nsfw_methods: list[str] = Field(description="List of NSFW checking methods")
watermarking_methods: list[str] = Field(description="List of invisible watermark methods")
@app_router.get(
"/version", operation_id="app_version", status_code=200, response_model=AppVersion
)
@app_router.get("/version", operation_id="app_version", status_code=200, response_model=AppVersion)
async def get_version() -> AppVersion:
return AppVersion(version=__version__)
@app_router.get(
"/config", operation_id="get_config", status_code=200, response_model=AppConfig
)
@app_router.get("/config", operation_id="get_config", status_code=200, response_model=AppConfig)
async def get_config() -> AppConfig:
infill_methods = ['tile']
infill_methods = ["tile"]
if PatchMatch.patchmatch_available():
infill_methods.append('patchmatch')
return AppConfig(infill_methods=infill_methods)
infill_methods.append("patchmatch")
upscaling_models = []
for model in typing.get_args(ESRGAN_MODELS):
upscaling_models.append(str(Path(model).stem))
upscaler = Upscaler(upscaling_method="esrgan", upscaling_models=upscaling_models)
nsfw_methods = []
if SafetyChecker.safety_checker_available():
nsfw_methods.append("nsfw_checker")
watermarking_methods = []
if InvisibleWatermark.invisible_watermark_available():
watermarking_methods.append("invisible_watermark")
return AppConfig(
infill_methods=infill_methods,
upscaling_methods=[upscaler],
nsfw_methods=nsfw_methods,
watermarking_methods=watermarking_methods,
)
@app_router.get(
"/logging",
operation_id="get_log_level",
responses={200: {"description" : "The operation was successful"}},
response_model = LogLevel,
responses={200: {"description": "The operation was successful"}},
response_model=LogLevel,
)
async def get_log_level(
) -> LogLevel:
async def get_log_level() -> LogLevel:
"""Returns the log level"""
return LogLevel(ApiDependencies.invoker.services.logger.level)
@app_router.post(
"/logging",
operation_id="set_log_level",
responses={200: {"description" : "The operation was successful"}},
response_model = LogLevel,
responses={200: {"description": "The operation was successful"}},
response_model=LogLevel,
)
async def set_log_level(
level: LogLevel = Body(description="New log verbosity level"),
level: LogLevel = Body(description="New log verbosity level"),
) -> LogLevel:
"""Sets the log verbosity level"""
ApiDependencies.invoker.services.logger.setLevel(level)

View File

@@ -52,4 +52,3 @@ async def remove_board_image(
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to update board")

View File

@@ -18,9 +18,7 @@ class DeleteBoardResult(BaseModel):
deleted_board_images: list[str] = Field(
description="The image names of the board-images relationships that were deleted."
)
deleted_images: list[str] = Field(
description="The names of the images that were deleted."
)
deleted_images: list[str] = Field(description="The names of the images that were deleted.")
@boards_router.post(
@@ -73,22 +71,16 @@ async def update_board(
) -> BoardDTO:
"""Updates a board"""
try:
result = ApiDependencies.invoker.services.boards.update(
board_id=board_id, changes=changes
)
result = ApiDependencies.invoker.services.boards.update(board_id=board_id, changes=changes)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to update board")
@boards_router.delete(
"/{board_id}", operation_id="delete_board", response_model=DeleteBoardResult
)
@boards_router.delete("/{board_id}", operation_id="delete_board", response_model=DeleteBoardResult)
async def delete_board(
board_id: str = Path(description="The id of board to delete"),
include_images: Optional[bool] = Query(
description="Permanently delete all images on the board", default=False
),
include_images: Optional[bool] = Query(description="Permanently delete all images on the board", default=False),
) -> DeleteBoardResult:
"""Deletes a board"""
try:
@@ -96,9 +88,7 @@ async def delete_board(
deleted_images = ApiDependencies.invoker.services.board_images.get_all_board_image_names_for_board(
board_id=board_id
)
ApiDependencies.invoker.services.images.delete_images_on_board(
board_id=board_id
)
ApiDependencies.invoker.services.images.delete_images_on_board(board_id=board_id)
ApiDependencies.invoker.services.boards.delete(board_id=board_id)
return DeleteBoardResult(
board_id=board_id,
@@ -127,9 +117,7 @@ async def delete_board(
async def list_boards(
all: Optional[bool] = Query(default=None, description="Whether to list all boards"),
offset: Optional[int] = Query(default=None, description="The page offset"),
limit: Optional[int] = Query(
default=None, description="The number of boards per page"
),
limit: Optional[int] = Query(default=None, description="The number of boards per page"),
) -> Union[OffsetPaginatedResults[BoardDTO], list[BoardDTO]]:
"""Gets a list of boards"""
if all:

View File

@@ -40,15 +40,9 @@ async def upload_image(
response: Response,
image_category: ImageCategory = Query(description="The category of the image"),
is_intermediate: bool = Query(description="Whether this is an intermediate image"),
board_id: Optional[str] = Query(
default=None, description="The board to add this image to, if any"
),
session_id: Optional[str] = Query(
default=None, description="The session ID associated with this upload, if any"
),
crop_visible: Optional[bool] = Query(
default=False, description="Whether to crop the image"
),
board_id: Optional[str] = Query(default=None, description="The board to add this image to, if any"),
session_id: Optional[str] = Query(default=None, description="The session ID associated with this upload, if any"),
crop_visible: Optional[bool] = Query(default=False, description="Whether to crop the image"),
) -> ImageDTO:
"""Uploads an image"""
if not file.content_type.startswith("image"):
@@ -115,9 +109,7 @@ async def clear_intermediates() -> int:
)
async def update_image(
image_name: str = Path(description="The name of the image to update"),
image_changes: ImageRecordChanges = Body(
description="The changes to apply to the image"
),
image_changes: ImageRecordChanges = Body(description="The changes to apply to the image"),
) -> ImageDTO:
"""Updates an image"""
@@ -212,15 +204,11 @@ async def get_image_thumbnail(
"""Gets a thumbnail image file"""
try:
path = ApiDependencies.invoker.services.images.get_path(
image_name, thumbnail=True
)
path = ApiDependencies.invoker.services.images.get_path(image_name, thumbnail=True)
if not ApiDependencies.invoker.services.images.validate_path(path):
raise HTTPException(status_code=404)
response = FileResponse(
path, media_type="image/webp", content_disposition_type="inline"
)
response = FileResponse(path, media_type="image/webp", content_disposition_type="inline")
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
return response
except Exception as e:
@@ -239,9 +227,7 @@ async def get_image_urls(
try:
image_url = ApiDependencies.invoker.services.images.get_url(image_name)
thumbnail_url = ApiDependencies.invoker.services.images.get_url(
image_name, thumbnail=True
)
thumbnail_url = ApiDependencies.invoker.services.images.get_url(image_name, thumbnail=True)
return ImageUrlsDTO(
image_name=image_name,
image_url=image_url,
@@ -257,15 +243,9 @@ async def get_image_urls(
response_model=OffsetPaginatedResults[ImageDTO],
)
async def list_image_dtos(
image_origin: Optional[ResourceOrigin] = Query(
default=None, description="The origin of images to list."
),
categories: Optional[list[ImageCategory]] = Query(
default=None, description="The categories of image to include."
),
is_intermediate: Optional[bool] = Query(
default=None, description="Whether to list intermediate images."
),
image_origin: Optional[ResourceOrigin] = Query(default=None, description="The origin of images to list."),
categories: Optional[list[ImageCategory]] = Query(default=None, description="The categories of image to include."),
is_intermediate: Optional[bool] = Query(default=None, description="Whether to list intermediate images."),
board_id: Optional[str] = Query(
default=None,
description="The board id to filter by. Use 'none' to find images without a board.",

View File

@@ -28,49 +28,52 @@ ConvertModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
MergeModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ImportModelAttributes = Union[tuple(OPENAPI_MODEL_CONFIGS)]
class ModelsList(BaseModel):
models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]]
@models_router.get(
"/",
operation_id="list_models",
responses={200: {"model": ModelsList }},
responses={200: {"model": ModelsList}},
)
async def list_models(
base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"),
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
) -> ModelsList:
"""Gets a list of models"""
if base_models and len(base_models)>0:
if base_models and len(base_models) > 0:
models_raw = list()
for base_model in base_models:
models_raw.extend(ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type))
else:
models_raw = ApiDependencies.invoker.services.model_manager.list_models(None, model_type)
models = parse_obj_as(ModelsList, { "models": models_raw })
models = parse_obj_as(ModelsList, {"models": models_raw})
return models
@models_router.patch(
"/{base_model}/{model_type}/{model_name}",
operation_id="update_model",
responses={200: {"description" : "The model was updated successfully"},
400: {"description" : "Bad request"},
404: {"description" : "The model could not be found"},
409: {"description" : "There is already a model corresponding to the new name"},
},
status_code = 200,
response_model = UpdateModelResponse,
responses={
200: {"description": "The model was updated successfully"},
400: {"description": "Bad request"},
404: {"description": "The model could not be found"},
409: {"description": "There is already a model corresponding to the new name"},
},
status_code=200,
response_model=UpdateModelResponse,
)
async def update_model(
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"),
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"),
) -> UpdateModelResponse:
""" Update model contents with a new config. If the model name or base fields are changed, then the model is renamed. """
"""Update model contents with a new config. If the model name or base fields are changed, then the model is renamed."""
logger = ApiDependencies.invoker.services.logger
try:
previous_info = ApiDependencies.invoker.services.model_manager.list_model(
model_name=model_name,
@@ -81,13 +84,13 @@ async def update_model(
# rename operation requested
if info.model_name != model_name or info.base_model != base_model:
ApiDependencies.invoker.services.model_manager.rename_model(
base_model = base_model,
model_type = model_type,
model_name = model_name,
new_name = info.model_name,
new_base = info.base_model,
base_model=base_model,
model_type=model_type,
model_name=model_name,
new_name=info.model_name,
new_base=info.base_model,
)
logger.info(f'Successfully renamed {base_model}/{model_name}=>{info.base_model}/{info.model_name}')
logger.info(f"Successfully renamed {base_model.value}/{model_name}=>{info.base_model}/{info.model_name}")
# update information to support an update of attributes
model_name = info.model_name
base_model = info.base_model
@@ -96,16 +99,15 @@ async def update_model(
base_model=base_model,
model_type=model_type,
)
if new_info.get('path') != previous_info.get('path'): # model manager moved model path during rename - don't overwrite it
info.path = new_info.get('path')
if new_info.get("path") != previous_info.get(
"path"
): # model manager moved model path during rename - don't overwrite it
info.path = new_info.get("path")
ApiDependencies.invoker.services.model_manager.update_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
model_attributes=info.dict()
model_name=model_name, base_model=base_model, model_type=model_type, model_attributes=info.dict()
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=model_name,
base_model=base_model,
@@ -123,49 +125,48 @@ async def update_model(
return model_response
@models_router.post(
"/import",
operation_id="import_model",
responses= {
201: {"description" : "The model imported successfully"},
404: {"description" : "The model could not be found"},
415: {"description" : "Unrecognized file/folder format"},
424: {"description" : "The model appeared to import successfully, but could not be found in the model manager"},
409: {"description" : "There is already a model corresponding to this path or repo_id"},
responses={
201: {"description": "The model imported successfully"},
404: {"description": "The model could not be found"},
415: {"description": "Unrecognized file/folder format"},
424: {"description": "The model appeared to import successfully, but could not be found in the model manager"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
response_model=ImportModelResponse
response_model=ImportModelResponse,
)
async def import_model(
location: str = Body(description="A model path, repo_id or URL to import"),
prediction_type: Optional[Literal['v_prediction','epsilon','sample']] = \
Body(description='Prediction type for SDv2 checkpoint files', default="v_prediction"),
location: str = Body(description="A model path, repo_id or URL to import"),
prediction_type: Optional[Literal["v_prediction", "epsilon", "sample"]] = Body(
description="Prediction type for SDv2 checkpoint files", default="v_prediction"
),
) -> ImportModelResponse:
""" Add a model using its local path, repo_id, or remote URL. Model characteristics will be probed and configured automatically """
"""Add a model using its local path, repo_id, or remote URL. Model characteristics will be probed and configured automatically"""
items_to_import = {location}
prediction_types = { x.value: x for x in SchedulerPredictionType }
prediction_types = {x.value: x for x in SchedulerPredictionType}
logger = ApiDependencies.invoker.services.logger
try:
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import(
items_to_import = items_to_import,
prediction_type_helper = lambda x: prediction_types.get(prediction_type)
items_to_import=items_to_import, prediction_type_helper=lambda x: prediction_types.get(prediction_type)
)
info = installed_models.get(location)
if not info:
logger.error("Import failed")
raise HTTPException(status_code=415)
logger.info(f'Successfully imported {location}, got {info}')
logger.info(f"Successfully imported {location}, got {info}")
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=info.name,
base_model=info.base_model,
model_type=info.model_type
model_name=info.name, base_model=info.base_model, model_type=info.model_type
)
return parse_obj_as(ImportModelResponse, model_raw)
except ModelNotFoundException as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
@@ -175,38 +176,34 @@ async def import_model(
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
@models_router.post(
"/add",
operation_id="add_model",
responses= {
201: {"description" : "The model added successfully"},
404: {"description" : "The model could not be found"},
424: {"description" : "The model appeared to add successfully, but could not be found in the model manager"},
409: {"description" : "There is already a model corresponding to this path or repo_id"},
responses={
201: {"description": "The model added successfully"},
404: {"description": "The model could not be found"},
424: {"description": "The model appeared to add successfully, but could not be found in the model manager"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
response_model=ImportModelResponse
response_model=ImportModelResponse,
)
async def add_model(
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"),
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"),
) -> ImportModelResponse:
""" Add a model using the configuration information appropriate for its type. Only local models can be added by path"""
"""Add a model using the configuration information appropriate for its type. Only local models can be added by path"""
logger = ApiDependencies.invoker.services.logger
try:
ApiDependencies.invoker.services.model_manager.add_model(
info.model_name,
info.base_model,
info.model_type,
model_attributes = info.dict()
info.model_name, info.base_model, info.model_type, model_attributes=info.dict()
)
logger.info(f'Successfully added {info.model_name}')
logger.info(f"Successfully added {info.model_name}")
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=info.model_name,
base_model=info.base_model,
model_type=info.model_type
model_name=info.model_name, base_model=info.base_model, model_type=info.model_type
)
return parse_obj_as(ImportModelResponse, model_raw)
except ModelNotFoundException as e:
@@ -216,66 +213,66 @@ async def add_model(
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
@models_router.delete(
"/{base_model}/{model_type}/{model_name}",
operation_id="del_model",
responses={
204: { "description": "Model deleted successfully" },
404: { "description": "Model not found" }
},
status_code = 204,
response_model = None,
responses={204: {"description": "Model deleted successfully"}, 404: {"description": "Model not found"}},
status_code=204,
response_model=None,
)
async def delete_model(
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
) -> Response:
"""Delete Model"""
logger = ApiDependencies.invoker.services.logger
try:
ApiDependencies.invoker.services.model_manager.del_model(model_name,
base_model = base_model,
model_type = model_type
)
ApiDependencies.invoker.services.model_manager.del_model(
model_name, base_model=base_model, model_type=model_type
)
logger.info(f"Deleted model: {model_name}")
return Response(status_code=204)
except ModelNotFoundException as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
@models_router.put(
"/convert/{base_model}/{model_type}/{model_name}",
operation_id="convert_model",
responses={
200: { "description": "Model converted successfully" },
400: {"description" : "Bad request" },
404: { "description": "Model not found" },
200: {"description": "Model converted successfully"},
400: {"description": "Bad request"},
404: {"description": "Model not found"},
},
status_code = 200,
response_model = ConvertModelResponse,
status_code=200,
response_model=ConvertModelResponse,
)
async def convert_model(
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
convert_dest_directory: Optional[str] = Query(default=None, description="Save the converted model to the designated directory"),
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
convert_dest_directory: Optional[str] = Query(
default=None, description="Save the converted model to the designated directory"
),
) -> ConvertModelResponse:
"""Convert a checkpoint model into a diffusers model, optionally saving to the indicated destination directory, or `models` if none."""
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Converting model: {model_name}")
dest = pathlib.Path(convert_dest_directory) if convert_dest_directory else None
ApiDependencies.invoker.services.model_manager.convert_model(model_name,
base_model = base_model,
model_type = model_type,
convert_dest_directory = dest,
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(model_name,
base_model = base_model,
model_type = model_type)
ApiDependencies.invoker.services.model_manager.convert_model(
model_name,
base_model=base_model,
model_type=model_type,
convert_dest_directory=dest,
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name, base_model=base_model, model_type=model_type
)
response = parse_obj_as(ConvertModelResponse, model_raw)
except ModelNotFoundException as e:
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found: {str(e)}")
@@ -283,91 +280,101 @@ async def convert_model(
raise HTTPException(status_code=400, detail=str(e))
return response
@models_router.get(
"/search",
operation_id="search_for_models",
responses={
200: { "description": "Directory searched successfully" },
404: { "description": "Invalid directory path" },
200: {"description": "Directory searched successfully"},
404: {"description": "Invalid directory path"},
},
status_code = 200,
response_model = List[pathlib.Path]
status_code=200,
response_model=List[pathlib.Path],
)
async def search_for_models(
search_path: pathlib.Path = Query(description="Directory path to search for models")
)->List[pathlib.Path]:
search_path: pathlib.Path = Query(description="Directory path to search for models"),
) -> List[pathlib.Path]:
if not search_path.is_dir():
raise HTTPException(status_code=404, detail=f"The search path '{search_path}' does not exist or is not directory")
return ApiDependencies.invoker.services.model_manager.search_for_models([search_path])
raise HTTPException(
status_code=404, detail=f"The search path '{search_path}' does not exist or is not directory"
)
return ApiDependencies.invoker.services.model_manager.search_for_models(search_path)
@models_router.get(
"/ckpt_confs",
operation_id="list_ckpt_configs",
responses={
200: { "description" : "paths retrieved successfully" },
200: {"description": "paths retrieved successfully"},
},
status_code = 200,
response_model = List[pathlib.Path]
status_code=200,
response_model=List[pathlib.Path],
)
async def list_ckpt_configs(
)->List[pathlib.Path]:
async def list_ckpt_configs() -> List[pathlib.Path]:
"""Return a list of the legacy checkpoint configuration files stored in `ROOT/configs/stable-diffusion`, relative to ROOT."""
return ApiDependencies.invoker.services.model_manager.list_checkpoint_configs()
@models_router.post(
"/sync",
operation_id="sync_to_config",
responses={
201: { "description": "synchronization successful" },
201: {"description": "synchronization successful"},
},
status_code = 201,
response_model = bool
status_code=201,
response_model=bool,
)
async def sync_to_config(
)->bool:
async def sync_to_config() -> bool:
"""Call after making changes to models.yaml, autoimport directories or models directory to synchronize
in-memory data structures with disk data structures."""
ApiDependencies.invoker.services.model_manager.sync_to_config()
return True
@models_router.put(
"/merge/{base_model}",
operation_id="merge_models",
responses={
200: { "description": "Model converted successfully" },
400: { "description": "Incompatible models" },
404: { "description": "One or more models not found" },
200: {"description": "Model converted successfully"},
400: {"description": "Incompatible models"},
404: {"description": "One or more models not found"},
},
status_code = 200,
response_model = MergeModelResponse,
status_code=200,
response_model=MergeModelResponse,
)
async def merge_models(
base_model: BaseModelType = Path(description="Base model"),
model_names: List[str] = Body(description="model name", min_items=2, max_items=3),
merged_model_name: Optional[str] = Body(description="Name of destination model"),
alpha: Optional[float] = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method"),
force: Optional[bool] = Body(description="Force merging of models created with different versions of diffusers", default=False),
merge_dest_directory: Optional[str] = Body(description="Save the merged model to the designated directory (with 'merged_model_name' appended)", default=None)
base_model: BaseModelType = Path(description="Base model"),
model_names: List[str] = Body(description="model name", min_items=2, max_items=3),
merged_model_name: Optional[str] = Body(description="Name of destination model"),
alpha: Optional[float] = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method"),
force: Optional[bool] = Body(
description="Force merging of models created with different versions of diffusers", default=False
),
merge_dest_directory: Optional[str] = Body(
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
default=None,
),
) -> MergeModelResponse:
"""Convert a checkpoint model into a diffusers model"""
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Merging models: {model_names} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}")
dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None
result = ApiDependencies.invoker.services.model_manager.merge_models(model_names,
base_model,
merged_model_name=merged_model_name or "+".join(model_names),
alpha=alpha,
interp=interp,
force=force,
merge_dest_directory = dest
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(result.name,
base_model = base_model,
model_type = ModelType.Main,
)
result = ApiDependencies.invoker.services.model_manager.merge_models(
model_names,
base_model,
merged_model_name=merged_model_name or "+".join(model_names),
alpha=alpha,
interp=interp,
force=force,
merge_dest_directory=dest,
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
result.name,
base_model=base_model,
model_type=ModelType.Main,
)
response = parse_obj_as(ConvertModelResponse, model_raw)
except ModelNotFoundException:
raise HTTPException(status_code=404, detail=f"One or more of the models '{model_names}' not found")

View File

@@ -30,9 +30,7 @@ session_router = APIRouter(prefix="/v1/sessions", tags=["sessions"])
},
)
async def create_session(
graph: Optional[Graph] = Body(
default=None, description="The graph to initialize the session with"
)
graph: Optional[Graph] = Body(default=None, description="The graph to initialize the session with")
) -> GraphExecutionState:
"""Creates a new session, optionally initializing it with an invocation graph"""
session = ApiDependencies.invoker.create_execution_state(graph)
@@ -51,13 +49,9 @@ async def list_sessions(
) -> PaginatedResults[GraphExecutionState]:
"""Gets a list of sessions, optionally searching"""
if query == "":
result = ApiDependencies.invoker.services.graph_execution_manager.list(
page, per_page
)
result = ApiDependencies.invoker.services.graph_execution_manager.list(page, per_page)
else:
result = ApiDependencies.invoker.services.graph_execution_manager.search(
query, page, per_page
)
result = ApiDependencies.invoker.services.graph_execution_manager.search(query, page, per_page)
return result
@@ -91,9 +85,9 @@ async def get_session(
)
async def add_node(
session_id: str = Path(description="The id of the session"),
node: Annotated[
Union[BaseInvocation.get_invocations()], Field(discriminator="type") # type: ignore
] = Body(description="The node to add"),
node: Annotated[Union[BaseInvocation.get_invocations()], Field(discriminator="type")] = Body( # type: ignore
description="The node to add"
),
) -> str:
"""Adds a node to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
@@ -124,9 +118,9 @@ async def add_node(
async def update_node(
session_id: str = Path(description="The id of the session"),
node_path: str = Path(description="The path to the node in the graph"),
node: Annotated[
Union[BaseInvocation.get_invocations()], Field(discriminator="type") # type: ignore
] = Body(description="The new node"),
node: Annotated[Union[BaseInvocation.get_invocations()], Field(discriminator="type")] = Body( # type: ignore
description="The new node"
),
) -> GraphExecutionState:
"""Updates a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
@@ -230,7 +224,7 @@ async def delete_edge(
try:
edge = Edge(
source=EdgeConnection(node_id=from_node_id, field=from_field),
destination=EdgeConnection(node_id=to_node_id, field=to_field)
destination=EdgeConnection(node_id=to_node_id, field=to_field),
)
session.delete_edge(edge)
ApiDependencies.invoker.services.graph_execution_manager.set(
@@ -255,9 +249,7 @@ async def delete_edge(
)
async def invoke_session(
session_id: str = Path(description="The id of the session to invoke"),
all: bool = Query(
default=False, description="Whether or not to invoke all remaining invocations"
),
all: bool = Query(default=False, description="Whether or not to invoke all remaining invocations"),
) -> Response:
"""Invokes a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
@@ -274,9 +266,7 @@ async def invoke_session(
@session_router.delete(
"/{session_id}/invoke",
operation_id="cancel_session_invoke",
responses={
202: {"description": "The invocation is canceled"}
},
responses={202: {"description": "The invocation is canceled"}},
)
async def cancel_session_invoke(
session_id: str = Path(description="The id of the session to cancel"),

View File

@@ -16,9 +16,7 @@ class SocketIO:
self.__sio.on("subscribe", handler=self._handle_sub)
self.__sio.on("unsubscribe", handler=self._handle_unsub)
local_handler.register(
event_name=EventServiceBase.session_event, _func=self._handle_session_event
)
local_handler.register(event_name=EventServiceBase.session_event, _func=self._handle_session_event)
async def _handle_session_event(self, event: Event):
await self.__sio.emit(

View File

@@ -3,6 +3,7 @@ import asyncio
import sys
from inspect import signature
import logging
import uvicorn
import socket
@@ -16,9 +17,10 @@ from fastapi_events.middleware import EventHandlerASGIMiddleware
from pathlib import Path
from pydantic.schema import schema
#This should come early so that modules can log their initialization properly
# This should come early so that modules can log their initialization properly
from .services.config import InvokeAIAppConfig
from ..backend.util.logging import InvokeAILogger
app_config = InvokeAIAppConfig.get_config()
app_config.parse_args()
logger = InvokeAILogger.getLogger(config=app_config)
@@ -27,7 +29,7 @@ from invokeai.version.invokeai_version import __version__
# we call this early so that the message appears before
# other invokeai initialization messages
if app_config.version:
print(f'InvokeAI version {__version__}')
print(f"InvokeAI version {__version__}")
sys.exit(0)
import invokeai.frontend.web as web_dir
@@ -37,17 +39,18 @@ from .api.dependencies import ApiDependencies
from .api.routers import sessions, models, images, boards, board_images, app_info
from .api.sockets import SocketIO
from .invocations.baseinvocation import BaseInvocation
import torch
import invokeai.backend.util.hotfixes
if torch.backends.mps.is_available():
import invokeai.backend.util.mps_fixes
# fix for windows mimetypes registry entries being borked
# see https://github.com/invoke-ai/InvokeAI/discussions/3684#discussioncomment-6391352
mimetypes.add_type('application/javascript', '.js')
mimetypes.add_type('text/css', '.css')
mimetypes.add_type("application/javascript", ".js")
mimetypes.add_type("text/css", ".css")
# Create the app
# TODO: create this all in a method so configuration/etc. can be passed in?
@@ -57,14 +60,13 @@ app = FastAPI(title="Invoke AI", docs_url=None, redoc_url=None)
event_handler_id: int = id(app)
app.add_middleware(
EventHandlerASGIMiddleware,
handlers=[
local_handler
], # TODO: consider doing this in services to support different configurations
handlers=[local_handler], # TODO: consider doing this in services to support different configurations
middleware_id=event_handler_id,
)
socket_io = SocketIO(app)
# Add startup event to load dependencies
@app.on_event("startup")
async def startup_event():
@@ -76,9 +78,7 @@ async def startup_event():
allow_headers=app_config.allow_headers,
)
ApiDependencies.initialize(
config=app_config, event_handler_id=event_handler_id, logger=logger
)
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger)
# Shut down threads
@@ -103,7 +103,8 @@ app.include_router(boards.boards_router, prefix="/api")
app.include_router(board_images.board_images_router, prefix="/api")
app.include_router(app_info.app_router, prefix='/api')
app.include_router(app_info.app_router, prefix="/api")
# Build a custom OpenAPI to include all outputs
# TODO: can outputs be included on metadata of invocation schemas somehow?
@@ -144,6 +145,7 @@ def custom_openapi():
invoker_schema["output"] = outputs_ref
from invokeai.backend.model_management.models import get_model_config_enums
for model_config_format_enum in set(get_model_config_enums()):
name = model_config_format_enum.__qualname__
@@ -166,7 +168,8 @@ def custom_openapi():
app.openapi = custom_openapi
# Override API doc favicons
app.mount("/static", StaticFiles(directory=Path(web_dir.__path__[0], 'static/dream_web')), name="static")
app.mount("/static", StaticFiles(directory=Path(web_dir.__path__[0], "static/dream_web")), name="static")
@app.get("/docs", include_in_schema=False)
def overridden_swagger():
@@ -187,11 +190,8 @@ def overridden_redoc():
# Must mount *after* the other routes else it borks em
app.mount("/",
StaticFiles(directory=Path(web_dir.__path__[0],"dist"),
html=True
), name="ui"
)
app.mount("/", StaticFiles(directory=Path(web_dir.__path__[0], "dist"), html=True), name="ui")
def invoke_api():
def find_port(port: int):
@@ -204,15 +204,34 @@ def invoke_api():
else:
return port
from invokeai.backend.install.check_root import check_invokeai_root
check_invokeai_root(app_config) # note, may exit with an exception if root not set up
port = find_port(app_config.port)
if port != app_config.port:
logger.warn(f"Port {app_config.port} in use, using port {port}")
# Start our own event loop for eventing usage
loop = asyncio.new_event_loop()
config = uvicorn.Config(app=app, host=app_config.host, port=port, loop=loop)
# Use access_log to turn off logging
config = uvicorn.Config(
app=app,
host=app_config.host,
port=port,
loop=loop,
log_level=app_config.log_level,
)
server = uvicorn.Server(config)
# replace uvicorn's loggers with InvokeAI's for consistent appearance
for logname in ["uvicorn.access", "uvicorn"]:
l = logging.getLogger(logname)
l.handlers.clear()
for ch in logger.handlers:
l.addHandler(ch)
loop.run_until_complete(server.serve())
if __name__ == "__main__":
invoke_api()

View File

Before

Width:  |  Height:  |  Size: 33 KiB

After

Width:  |  Height:  |  Size: 33 KiB

View File

@@ -14,8 +14,14 @@ from ..services.graph import GraphExecutionState, LibraryGraph, Edge
from ..services.invoker import Invoker
def add_field_argument(command_parser, name: str, field, default_override = None):
default = default_override if default_override is not None else field.default if field.default_factory is None else field.default_factory()
def add_field_argument(command_parser, name: str, field, default_override=None):
default = (
default_override
if default_override is not None
else field.default
if field.default_factory is None
else field.default_factory()
)
if get_origin(field.type_) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
@@ -47,8 +53,8 @@ def add_parsers(
commands: list[type],
command_field: str = "type",
exclude_fields: list[str] = ["id", "type"],
add_arguments: Union[Callable[[argparse.ArgumentParser], None],None] = None
):
add_arguments: Union[Callable[[argparse.ArgumentParser], None], None] = None,
):
"""Adds parsers for each command to the subparsers"""
# Create subparsers for each command
@@ -61,7 +67,7 @@ def add_parsers(
add_arguments(command_parser)
# Convert all fields to arguments
fields = command.__fields__ # type: ignore
fields = command.__fields__ # type: ignore
for name, field in fields.items():
if name in exclude_fields:
continue
@@ -70,13 +76,11 @@ def add_parsers(
def add_graph_parsers(
subparsers,
graphs: list[LibraryGraph],
add_arguments: Union[Callable[[argparse.ArgumentParser], None], None] = None
subparsers, graphs: list[LibraryGraph], add_arguments: Union[Callable[[argparse.ArgumentParser], None], None] = None
):
for graph in graphs:
command_parser = subparsers.add_parser(graph.name, help=graph.description)
if add_arguments is not None:
add_arguments(command_parser)
@@ -128,6 +132,7 @@ class CliContext:
class ExitCli(Exception):
"""Exception to exit the CLI"""
pass
@@ -155,7 +160,7 @@ class BaseCommand(ABC, BaseModel):
@classmethod
def get_commands_map(cls):
# Get the type strings out of the literals and into a dictionary
return dict(map(lambda t: (get_args(get_type_hints(t)['type'])[0], t),BaseCommand.get_all_subclasses()))
return dict(map(lambda t: (get_args(get_type_hints(t)["type"])[0], t), BaseCommand.get_all_subclasses()))
@abstractmethod
def run(self, context: CliContext) -> None:
@@ -165,7 +170,8 @@ class BaseCommand(ABC, BaseModel):
class ExitCommand(BaseCommand):
"""Exits the CLI"""
type: Literal['exit'] = 'exit'
type: Literal["exit"] = "exit"
def run(self, context: CliContext) -> None:
raise ExitCli()
@@ -173,7 +179,8 @@ class ExitCommand(BaseCommand):
class HelpCommand(BaseCommand):
"""Shows help"""
type: Literal['help'] = 'help'
type: Literal["help"] = "help"
def run(self, context: CliContext) -> None:
context.parser.print_help()
@@ -183,11 +190,7 @@ def get_graph_execution_history(
graph_execution_state: GraphExecutionState,
) -> Iterable[str]:
"""Gets the history of fully-executed invocations for a graph execution"""
return (
n
for n in reversed(graph_execution_state.executed_history)
if n in graph_execution_state.graph.nodes
)
return (n for n in reversed(graph_execution_state.executed_history) if n in graph_execution_state.graph.nodes)
def get_invocation_command(invocation) -> str:
@@ -218,7 +221,8 @@ def get_invocation_command(invocation) -> str:
class HistoryCommand(BaseCommand):
"""Shows the invocation history"""
type: Literal['history'] = 'history'
type: Literal["history"] = "history"
# Inputs
# fmt: off
@@ -235,7 +239,8 @@ class HistoryCommand(BaseCommand):
class SetDefaultCommand(BaseCommand):
"""Sets a default value for a field"""
type: Literal['default'] = 'default'
type: Literal["default"] = "default"
# Inputs
# fmt: off
@@ -253,7 +258,8 @@ class SetDefaultCommand(BaseCommand):
class DrawGraphCommand(BaseCommand):
"""Debugs a graph"""
type: Literal['draw_graph'] = 'draw_graph'
type: Literal["draw_graph"] = "draw_graph"
def run(self, context: CliContext) -> None:
session: GraphExecutionState = context.invoker.services.graph_execution_manager.get(context.session.id)
@@ -271,7 +277,8 @@ class DrawGraphCommand(BaseCommand):
class DrawExecutionGraphCommand(BaseCommand):
"""Debugs an execution graph"""
type: Literal['draw_xgraph'] = 'draw_xgraph'
type: Literal["draw_xgraph"] = "draw_xgraph"
def run(self, context: CliContext) -> None:
session: GraphExecutionState = context.invoker.services.graph_execution_manager.get(context.session.id)
@@ -286,6 +293,7 @@ class DrawExecutionGraphCommand(BaseCommand):
plt.axis("off")
plt.show()
class SortedHelpFormatter(argparse.HelpFormatter):
def _iter_indented_subactions(self, action):
try:

View File

@@ -19,8 +19,8 @@ from ..services.invocation_services import InvocationServices
# singleton object, class variable
completer = None
class Completer(object):
def __init__(self, model_manager: ModelManager):
self.commands = self.get_commands()
self.matches = None
@@ -43,7 +43,7 @@ class Completer(object):
except IndexError:
pass
options = options or list(self.parse_commands().keys())
if not text: # first time
self.matches = options
else:
@@ -56,17 +56,17 @@ class Completer(object):
return match
@classmethod
def get_commands(self)->List[object]:
def get_commands(self) -> List[object]:
"""
Return a list of all the client commands and invocations.
"""
return BaseCommand.get_commands() + BaseInvocation.get_invocations()
def get_current_command(self, buffer: str)->tuple[str, str]:
def get_current_command(self, buffer: str) -> tuple[str, str]:
"""
Parse the readline buffer to find the most recent command and its switch.
"""
if len(buffer)==0:
if len(buffer) == 0:
return None, None
tokens = shlex.split(buffer)
command = None
@@ -78,11 +78,11 @@ class Completer(object):
else:
switch = t
# don't try to autocomplete switches that are already complete
if switch and buffer.endswith(' '):
switch=None
return command or '', switch or ''
if switch and buffer.endswith(" "):
switch = None
return command or "", switch or ""
def parse_commands(self)->Dict[str, List[str]]:
def parse_commands(self) -> Dict[str, List[str]]:
"""
Return a dict in which the keys are the command name
and the values are the parameters the command takes.
@@ -90,11 +90,11 @@ class Completer(object):
result = dict()
for command in self.commands:
hints = get_type_hints(command)
name = get_args(hints['type'])[0]
result.update({name:hints})
name = get_args(hints["type"])[0]
result.update({name: hints})
return result
def get_command_options(self, command: str, switch: str)->List[str]:
def get_command_options(self, command: str, switch: str) -> List[str]:
"""
Return all the parameters that can be passed to the command as
command-line switches. Returns None if the command is unrecognized.
@@ -102,42 +102,46 @@ class Completer(object):
parsed_commands = self.parse_commands()
if command not in parsed_commands:
return None
# handle switches in the format "-foo=bar"
argument = None
if switch and '=' in switch:
switch, argument = switch.split('=')
parameter = switch.strip('-')
if switch and "=" in switch:
switch, argument = switch.split("=")
parameter = switch.strip("-")
if parameter in parsed_commands[command]:
if argument is None:
return self.get_parameter_options(parameter, parsed_commands[command][parameter])
else:
return [f"--{parameter}={x}" for x in self.get_parameter_options(parameter, parsed_commands[command][parameter])]
return [
f"--{parameter}={x}"
for x in self.get_parameter_options(parameter, parsed_commands[command][parameter])
]
else:
return [f"--{x}" for x in parsed_commands[command].keys()]
def get_parameter_options(self, parameter: str, typehint)->List[str]:
def get_parameter_options(self, parameter: str, typehint) -> List[str]:
"""
Given a parameter type (such as Literal), offers autocompletions.
"""
if get_origin(typehint) == Literal:
return get_args(typehint)
if parameter == 'model':
if parameter == "model":
return self.manager.model_names()
def _pre_input_hook(self):
if self.linebuffer:
readline.insert_text(self.linebuffer)
readline.redisplay()
self.linebuffer = None
def set_autocompleter(services: InvocationServices) -> Completer:
global completer
if completer:
return completer
completer = Completer(services.model_manager)
readline.set_completer(completer.complete)
@@ -162,8 +166,6 @@ def set_autocompleter(services: InvocationServices) -> Completer:
pass
except OSError: # file likely corrupted
newname = f"{histfile}.old"
logger.error(
f"Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
)
logger.error(f"Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}")
histfile.replace(Path(newname))
atexit.register(readline.write_history_file, histfile)

View File

@@ -13,6 +13,7 @@ from pydantic.fields import Field
# This should come early so that the logger can pick up its configuration options
from .services.config import InvokeAIAppConfig
from invokeai.backend.util.logging import InvokeAILogger
config = InvokeAIAppConfig.get_config()
config.parse_args()
logger = InvokeAILogger().getLogger(config=config)
@@ -20,7 +21,7 @@ from invokeai.version.invokeai_version import __version__
# we call this early so that the message appears before other invokeai initialization messages
if config.version:
print(f'InvokeAI version {__version__}')
print(f"InvokeAI version {__version__}")
sys.exit(0)
from invokeai.app.services.board_image_record_storage import (
@@ -36,18 +37,21 @@ from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
from invokeai.app.services.images import ImageService, ImageServiceDependencies
from invokeai.app.services.resource_name import SimpleNameService
from invokeai.app.services.urls import LocalUrlService
from .services.default_graphs import (default_text_to_image_graph_id,
create_system_graphs)
from .services.default_graphs import default_text_to_image_graph_id, create_system_graphs
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from .cli.commands import (BaseCommand, CliContext, ExitCli,
SortedHelpFormatter, add_graph_parsers, add_parsers)
from .cli.commands import BaseCommand, CliContext, ExitCli, SortedHelpFormatter, add_graph_parsers, add_parsers
from .cli.completer import set_autocompleter
from .invocations.baseinvocation import BaseInvocation
from .services.events import EventServiceBase
from .services.graph import (Edge, EdgeConnection, GraphExecutionState,
GraphInvocation, LibraryGraph,
are_connection_types_compatible)
from .services.graph import (
Edge,
EdgeConnection,
GraphExecutionState,
GraphInvocation,
LibraryGraph,
are_connection_types_compatible,
)
from .services.image_file_storage import DiskImageFileStorage
from .services.invocation_queue import MemoryInvocationQueue
from .services.invocation_services import InvocationServices
@@ -58,6 +62,7 @@ from .services.sqlite import SqliteItemStorage
import torch
import invokeai.backend.util.hotfixes
if torch.backends.mps.is_available():
import invokeai.backend.util.mps_fixes
@@ -69,6 +74,7 @@ class CliCommand(BaseModel):
class InvalidArgs(Exception):
pass
def add_invocation_args(command_parser):
# Add linking capability
command_parser.add_argument(
@@ -113,7 +119,7 @@ def get_command_parser(services: InvocationServices) -> argparse.ArgumentParser:
return parser
class NodeField():
class NodeField:
alias: str
node_path: str
field: str
@@ -126,15 +132,20 @@ class NodeField():
self.field_type = field_type
def fields_from_type_hints(hints: dict[str, type], node_path: str) -> dict[str,NodeField]:
return {k:NodeField(alias=k, node_path=node_path, field=k, field_type=v) for k, v in hints.items()}
def fields_from_type_hints(hints: dict[str, type], node_path: str) -> dict[str, NodeField]:
return {k: NodeField(alias=k, node_path=node_path, field=k, field_type=v) for k, v in hints.items()}
def get_node_input_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
"""Gets the node field for the specified field alias"""
exposed_input = next(e for e in graph.exposed_inputs if e.alias == field_alias)
node_type = type(graph.graph.get_node(exposed_input.node_path))
return NodeField(alias=exposed_input.alias, node_path=f'{node_id}.{exposed_input.node_path}', field=exposed_input.field, field_type=get_type_hints(node_type)[exposed_input.field])
return NodeField(
alias=exposed_input.alias,
node_path=f"{node_id}.{exposed_input.node_path}",
field=exposed_input.field,
field_type=get_type_hints(node_type)[exposed_input.field],
)
def get_node_output_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
@@ -142,7 +153,12 @@ def get_node_output_field(graph: LibraryGraph, field_alias: str, node_id: str) -
exposed_output = next(e for e in graph.exposed_outputs if e.alias == field_alias)
node_type = type(graph.graph.get_node(exposed_output.node_path))
node_output_type = node_type.get_output_type()
return NodeField(alias=exposed_output.alias, node_path=f'{node_id}.{exposed_output.node_path}', field=exposed_output.field, field_type=get_type_hints(node_output_type)[exposed_output.field])
return NodeField(
alias=exposed_output.alias,
node_path=f"{node_id}.{exposed_output.node_path}",
field=exposed_output.field,
field_type=get_type_hints(node_output_type)[exposed_output.field],
)
def get_node_inputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]:
@@ -165,9 +181,7 @@ def get_node_outputs(invocation: BaseInvocation, context: CliContext) -> dict[st
return {e.alias: get_node_output_field(graph, e.alias, invocation.id) for e in graph.exposed_outputs}
def generate_matching_edges(
a: BaseInvocation, b: BaseInvocation, context: CliContext
) -> list[Edge]:
def generate_matching_edges(a: BaseInvocation, b: BaseInvocation, context: CliContext) -> list[Edge]:
"""Generates all possible edges between two invocations"""
afields = get_node_outputs(a, context)
bfields = get_node_inputs(b, context)
@@ -179,12 +193,14 @@ def generate_matching_edges(
matching_fields = matching_fields.difference(invalid_fields)
# Validate types
matching_fields = [f for f in matching_fields if are_connection_types_compatible(afields[f].field_type, bfields[f].field_type)]
matching_fields = [
f for f in matching_fields if are_connection_types_compatible(afields[f].field_type, bfields[f].field_type)
]
edges = [
Edge(
source=EdgeConnection(node_id=afields[alias].node_path, field=afields[alias].field),
destination=EdgeConnection(node_id=bfields[alias].node_path, field=bfields[alias].field)
destination=EdgeConnection(node_id=bfields[alias].node_path, field=bfields[alias].field),
)
for alias in matching_fields
]
@@ -193,6 +209,7 @@ def generate_matching_edges(
class SessionError(Exception):
"""Raised when a session error has occurred"""
pass
@@ -209,22 +226,23 @@ def invoke_all(context: CliContext):
context.invoker.services.logger.error(
f"Error in node {n} (source node {context.session.prepared_source_mapping[n]}): {context.session.errors[n]}"
)
raise SessionError()
def invoke_cli():
logger.info(f'InvokeAI version {__version__}')
logger.info(f"InvokeAI version {__version__}")
# get the optional list of invocations to execute on the command line
parser = config.get_parser()
parser.add_argument('commands',nargs='*')
parser.add_argument("commands", nargs="*")
invocation_commands = parser.parse_args().commands
# get the optional file to read commands from.
# Simplest is to use it for STDIN
if infile := config.from_file:
sys.stdin = open(infile,"r")
model_manager = ModelManagerService(config,logger)
sys.stdin = open(infile, "r")
model_manager = ModelManagerService(config, logger)
events = EventServiceBase()
output_folder = config.output_path
@@ -234,13 +252,13 @@ def invoke_cli():
db_location = ":memory:"
else:
db_location = config.db_path
db_location.parent.mkdir(parents=True,exist_ok=True)
db_location.parent.mkdir(parents=True, exist_ok=True)
logger.info(f'InvokeAI database location is "{db_location}"')
graph_execution_manager = SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
)
filename=db_location, table_name="graph_executions"
)
urls = LocalUrlService()
image_record_storage = SqliteImageRecordStorage(db_location)
@@ -281,24 +299,21 @@ def invoke_cli():
graph_execution_manager=graph_execution_manager,
)
)
services = InvocationServices(
model_manager=model_manager,
events=events,
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')),
latents=ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents")),
images=images,
boards=boards,
board_images=board_images,
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
),
graph_library=SqliteItemStorage[LibraryGraph](filename=db_location, table_name="graphs"),
graph_execution_manager=graph_execution_manager,
processor=DefaultInvocationProcessor(),
logger=logger,
configuration=config,
)
system_graphs = create_system_graphs(services.graph_library)
system_graph_names = set([g.name for g in system_graphs])
@@ -308,7 +323,7 @@ def invoke_cli():
session: GraphExecutionState = invoker.create_execution_state()
parser = get_command_parser(services)
re_negid = re.compile('^-[0-9]+$')
re_negid = re.compile("^-[0-9]+$")
# Uncomment to print out previous sessions at startup
# print(services.session_manager.list())
@@ -318,7 +333,7 @@ def invoke_cli():
command_line_args_exist = len(invocation_commands) > 0
done = False
while not done:
try:
if command_line_args_exist:
@@ -332,7 +347,7 @@ def invoke_cli():
try:
# Refresh the state of the session
#history = list(get_graph_execution_history(context.session))
# history = list(get_graph_execution_history(context.session))
history = list(reversed(context.nodes_added))
# Split the command for piping
@@ -353,17 +368,17 @@ def invoke_cli():
args[field_name] = field_default
# Parse invocation
command: CliCommand = None # type:ignore
command: CliCommand = None # type:ignore
system_graph: Optional[LibraryGraph] = None
if args['type'] in system_graph_names:
system_graph = next(filter(lambda g: g.name == args['type'], system_graphs))
if args["type"] in system_graph_names:
system_graph = next(filter(lambda g: g.name == args["type"], system_graphs))
invocation = GraphInvocation(graph=system_graph.graph, id=str(current_id))
for exposed_input in system_graph.exposed_inputs:
if exposed_input.alias in args:
node = invocation.graph.get_node(exposed_input.node_path)
field = exposed_input.field
setattr(node, field, args[exposed_input.alias])
command = CliCommand(command = invocation)
command = CliCommand(command=invocation)
context.graph_nodes[invocation.id] = system_graph.id
else:
args["id"] = current_id
@@ -385,17 +400,13 @@ def invoke_cli():
# Pipe previous command output (if there was a previous command)
edges: list[Edge] = list()
if len(history) > 0 or current_id != start_id:
from_id = (
history[0] if current_id == start_id else str(current_id - 1)
)
from_id = history[0] if current_id == start_id else str(current_id - 1)
from_node = (
next(filter(lambda n: n[0].id == from_id, new_invocations))[0]
if current_id != start_id
else context.session.graph.get_node(from_id)
)
matching_edges = generate_matching_edges(
from_node, command.command, context
)
matching_edges = generate_matching_edges(from_node, command.command, context)
edges.extend(matching_edges)
# Parse provided links
@@ -406,16 +417,18 @@ def invoke_cli():
node_id = str(current_id + int(node_id))
link_node = context.session.graph.get_node(node_id)
matching_edges = generate_matching_edges(
link_node, command.command, context
)
matching_edges = generate_matching_edges(link_node, command.command, context)
matching_destinations = [e.destination for e in matching_edges]
edges = [e for e in edges if e.destination not in matching_destinations]
edges.extend(matching_edges)
if "link" in args and args["link"]:
for link in args["link"]:
edges = [e for e in edges if e.destination.node_id != command.command.id or e.destination.field != link[2]]
edges = [
e
for e in edges
if e.destination.node_id != command.command.id or e.destination.field != link[2]
]
node_id = link[0]
if re_negid.match(node_id):
@@ -428,7 +441,7 @@ def invoke_cli():
edges.append(
Edge(
source=EdgeConnection(node_id=node_output.node_path, field=node_output.field),
destination=EdgeConnection(node_id=node_input.node_path, field=node_input.field)
destination=EdgeConnection(node_id=node_input.node_path, field=node_input.field),
)
)

View File

@@ -4,9 +4,5 @@ __all__ = []
dirname = os.path.dirname(os.path.abspath(__file__))
for f in os.listdir(dirname):
if (
f != "__init__.py"
and os.path.isfile("%s/%s" % (dirname, f))
and f[-3:] == ".py"
):
if f != "__init__.py" and os.path.isfile("%s/%s" % (dirname, f)) and f[-3:] == ".py":
__all__.append(f[:-3])

View File

@@ -4,8 +4,7 @@ from __future__ import annotations
from abc import ABC, abstractmethod
from inspect import signature
from typing import (TYPE_CHECKING, Dict, List, Literal, TypedDict, get_args,
get_type_hints)
from typing import TYPE_CHECKING, Dict, List, Literal, TypedDict, get_args, get_type_hints
from pydantic import BaseConfig, BaseModel, Field

View File

@@ -8,8 +8,7 @@ from pydantic import Field, validator
from invokeai.app.models.image import ImageField
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext, UIConfig)
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext, UIConfig
class IntCollectionOutput(BaseInvocationOutput):
@@ -27,8 +26,7 @@ class FloatCollectionOutput(BaseInvocationOutput):
type: Literal["float_collection"] = "float_collection"
# Outputs
collection: list[float] = Field(
default=[], description="The float collection")
collection: list[float] = Field(default=[], description="The float collection")
class ImageCollectionOutput(BaseInvocationOutput):
@@ -37,8 +35,7 @@ class ImageCollectionOutput(BaseInvocationOutput):
type: Literal["image_collection"] = "image_collection"
# Outputs
collection: list[ImageField] = Field(
default=[], description="The output images")
collection: list[ImageField] = Field(default=[], description="The output images")
class Config:
schema_extra = {"required": ["type", "collection"]}
@@ -56,10 +53,7 @@ class RangeInvocation(BaseInvocation):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Range",
"tags": ["range", "integer", "collection"]
},
"ui": {"title": "Range", "tags": ["range", "integer", "collection"]},
}
@validator("stop")
@@ -69,9 +63,7 @@ class RangeInvocation(BaseInvocation):
return v
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(
collection=list(range(self.start, self.stop, self.step))
)
return IntCollectionOutput(collection=list(range(self.start, self.stop, self.step)))
class RangeOfSizeInvocation(BaseInvocation):
@@ -86,18 +78,11 @@ class RangeOfSizeInvocation(BaseInvocation):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Sized Range",
"tags": ["range", "integer", "size", "collection"]
},
"ui": {"title": "Sized Range", "tags": ["range", "integer", "size", "collection"]},
}
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(
collection=list(
range(
self.start, self.start + self.size,
self.step)))
return IntCollectionOutput(collection=list(range(self.start, self.start + self.size, self.step)))
class RandomRangeInvocation(BaseInvocation):
@@ -107,9 +92,7 @@ class RandomRangeInvocation(BaseInvocation):
# Inputs
low: int = Field(default=0, description="The inclusive low value")
high: int = Field(
default=np.iinfo(np.int32).max, description="The exclusive high value"
)
high: int = Field(default=np.iinfo(np.int32).max, description="The exclusive high value")
size: int = Field(default=1, description="The number of values to generate")
seed: int = Field(
ge=0,
@@ -120,19 +103,12 @@ class RandomRangeInvocation(BaseInvocation):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Random Range",
"tags": ["range", "integer", "random", "collection"]
},
"ui": {"title": "Random Range", "tags": ["range", "integer", "random", "collection"]},
}
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
rng = np.random.default_rng(self.seed)
return IntCollectionOutput(
collection=list(
rng.integers(
low=self.low, high=self.high,
size=self.size)))
return IntCollectionOutput(collection=list(rng.integers(low=self.low, high=self.high, size=self.size)))
class ImageCollectionInvocation(BaseInvocation):

View File

@@ -3,64 +3,63 @@ from pydantic import BaseModel, Field
import re
import torch
from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import (Blend, Conjunction,
CrossAttentionControlSubstitute,
FlattenedPrompt, Fragment)
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
from ...backend.util.devices import torch_dtype
from ...backend.model_management import ModelType
from ...backend.model_management.models import ModelNotFoundException
from ...backend.model_management.lora import ModelPatcher
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from .model import ClipField
from dataclasses import dataclass
class ConditioningField(BaseModel):
conditioning_name: Optional[str] = Field(
default=None, description="The name of conditioning data")
conditioning_name: Optional[str] = Field(default=None, description="The name of conditioning data")
class Config:
schema_extra = {"required": ["conditioning_name"]}
@dataclass
class BasicConditioningInfo:
#type: Literal["basic_conditioning"] = "basic_conditioning"
# type: Literal["basic_conditioning"] = "basic_conditioning"
embeds: torch.Tensor
extra_conditioning: Optional[InvokeAIDiffuserComponent.ExtraConditioningInfo]
# weight: float
# mode: ConditioningAlgo
@dataclass
class SDXLConditioningInfo(BasicConditioningInfo):
#type: Literal["sdxl_conditioning"] = "sdxl_conditioning"
# type: Literal["sdxl_conditioning"] = "sdxl_conditioning"
pooled_embeds: torch.Tensor
add_time_ids: torch.Tensor
ConditioningInfoType = Annotated[
Union[BasicConditioningInfo, SDXLConditioningInfo],
Field(discriminator="type")
]
ConditioningInfoType = Annotated[Union[BasicConditioningInfo, SDXLConditioningInfo], Field(discriminator="type")]
@dataclass
class ConditioningFieldData:
conditionings: List[Union[BasicConditioningInfo, SDXLConditioningInfo]]
#unconditioned: Optional[torch.Tensor]
# unconditioned: Optional[torch.Tensor]
#class ConditioningAlgo(str, Enum):
# class ConditioningAlgo(str, Enum):
# Compose = "compose"
# ComposeEx = "compose_ex"
# PerpNeg = "perp_neg"
class CompelOutput(BaseInvocationOutput):
"""Compel parser output"""
#fmt: off
# fmt: off
type: Literal["compel_output"] = "compel_output"
conditioning: ConditioningField = Field(default=None, description="Conditioning")
#fmt: on
# fmt: on
class CompelInvocation(BaseInvocation):
@@ -74,33 +73,28 @@ class CompelInvocation(BaseInvocation):
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Prompt (Compel)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
},
"ui": {"title": "Prompt (Compel)", "tags": ["prompt", "compel"], "type_hints": {"model": "model"}},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.dict(), context=context,
**self.clip.tokenizer.dict(),
context=context,
)
text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.dict(), context=context,
**self.clip.text_encoder.dict(),
context=context,
)
def _lora_loader():
for lora in self.clip.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
lora_info = context.services.model_manager.get_model(**lora.dict(exclude={"weight"}), context=context)
yield (lora_info.context.model, lora.weight)
del lora_info
return
#loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
@@ -116,15 +110,18 @@ class CompelInvocation(BaseInvocation):
)
except ModelNotFoundException:
# print(e)
#import traceback
#print(traceback.format_exc())
print(f"Warn: trigger: \"{trigger}\" not found")
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (tokenizer, ti_manager),\
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers),\
text_encoder_info as text_encoder:
# import traceback
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
with ModelPatcher.apply_lora_text_encoder(
text_encoder_info.context.model, _lora_loader()
), ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
tokenizer,
ti_manager,
), ModelPatcher.apply_clip_skip(
text_encoder_info.context.model, self.clip.skipped_layers
), text_encoder_info as text_encoder:
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
@@ -139,14 +136,12 @@ class CompelInvocation(BaseInvocation):
if context.services.configuration.log_tokenization:
log_tokenization_for_prompt_object(prompt, tokenizer)
c, options = compel.build_conditioning_tensor_for_prompt_object(
prompt)
c, options = compel.build_conditioning_tensor_for_prompt_object(prompt)
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(
tokenizer, conjunction),
cross_attention_control_args=options.get(
"cross_attention_control", None),)
tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction),
cross_attention_control_args=options.get("cross_attention_control", None),
)
c = c.detach().to("cpu")
@@ -168,24 +163,26 @@ class CompelInvocation(BaseInvocation):
),
)
class SDXLPromptInvocationBase:
def run_clip_raw(self, context, clip_field, prompt, get_pooled):
tokenizer_info = context.services.model_manager.get_model(
**clip_field.tokenizer.dict(),
context=context,
)
text_encoder_info = context.services.model_manager.get_model(
**clip_field.text_encoder.dict(),
context=context,
)
def _lora_loader():
for lora in clip_field.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
lora_info = context.services.model_manager.get_model(**lora.dict(exclude={"weight"}), context=context)
yield (lora_info.context.model, lora.weight)
del lora_info
return
#loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
@@ -196,19 +193,23 @@ class SDXLPromptInvocationBase:
model_name=name,
base_model=clip_field.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model
)
except ModelNotFoundException:
# print(e)
#import traceback
#print(traceback.format_exc())
print(f"Warn: trigger: \"{trigger}\" not found")
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (tokenizer, ti_manager),\
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),\
text_encoder_info as text_encoder:
# import traceback
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
with ModelPatcher.apply_lora_text_encoder(
text_encoder_info.context.model, _lora_loader()
), ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
tokenizer,
ti_manager,
), ModelPatcher.apply_clip_skip(
text_encoder_info.context.model, clip_field.skipped_layers
), text_encoder_info as text_encoder:
text_inputs = tokenizer(
prompt,
padding="max_length",
@@ -241,20 +242,21 @@ class SDXLPromptInvocationBase:
def run_clip_compel(self, context, clip_field, prompt, get_pooled):
tokenizer_info = context.services.model_manager.get_model(
**clip_field.tokenizer.dict(),
context=context,
)
text_encoder_info = context.services.model_manager.get_model(
**clip_field.text_encoder.dict(),
context=context,
)
def _lora_loader():
for lora in clip_field.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
lora_info = context.services.model_manager.get_model(**lora.dict(exclude={"weight"}), context=context)
yield (lora_info.context.model, lora.weight)
del lora_info
return
#loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
@@ -265,26 +267,30 @@ class SDXLPromptInvocationBase:
model_name=name,
base_model=clip_field.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model
)
except ModelNotFoundException:
# print(e)
#import traceback
#print(traceback.format_exc())
print(f"Warn: trigger: \"{trigger}\" not found")
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (tokenizer, ti_manager),\
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),\
text_encoder_info as text_encoder:
# import traceback
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
with ModelPatcher.apply_lora_text_encoder(
text_encoder_info.context.model, _lora_loader()
), ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
tokenizer,
ti_manager,
), ModelPatcher.apply_clip_skip(
text_encoder_info.context.model, clip_field.skipped_layers
), text_encoder_info as text_encoder:
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True, # TODO:
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
requires_pooled=True,
)
@@ -318,6 +324,7 @@ class SDXLPromptInvocationBase:
return c, c_pooled, ec
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
@@ -337,13 +344,7 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "SDXL Prompt (Compel)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
},
"ui": {"title": "SDXL Prompt (Compel)", "tags": ["prompt", "compel"], "type_hints": {"model": "model"}},
}
@torch.no_grad()
@@ -358,9 +359,7 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
crop_coords = (self.crop_top, self.crop_left)
target_size = (self.target_height, self.target_width)
add_time_ids = torch.tensor([
original_size + crop_coords + target_size
])
add_time_ids = torch.tensor([original_size + crop_coords + target_size])
conditioning_data = ConditioningFieldData(
conditionings=[
@@ -382,12 +381,13 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
),
)
class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
type: Literal["sdxl_refiner_compel_prompt"] = "sdxl_refiner_compel_prompt"
style: str = Field(default="", description="Style prompt") # TODO: ?
style: str = Field(default="", description="Style prompt") # TODO: ?
original_width: int = Field(1024, description="")
original_height: int = Field(1024, description="")
crop_top: int = Field(0, description="")
@@ -401,9 +401,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
"ui": {
"title": "SDXL Refiner Prompt (Compel)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
"type_hints": {"model": "model"},
},
}
@@ -414,9 +412,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left)
add_time_ids = torch.tensor([
original_size + crop_coords + (self.aesthetic_score,)
])
add_time_ids = torch.tensor([original_size + crop_coords + (self.aesthetic_score,)])
conditioning_data = ConditioningFieldData(
conditionings=[
@@ -424,7 +420,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
embeds=c2,
pooled_embeds=c2_pooled,
add_time_ids=add_time_ids,
extra_conditioning=ec2, # or None
extra_conditioning=ec2, # or None
)
]
)
@@ -438,6 +434,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
),
)
class SDXLRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Pass unmodified prompt to conditioning without compel processing."""
@@ -457,13 +454,7 @@ class SDXLRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "SDXL Prompt (Raw)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
},
"ui": {"title": "SDXL Prompt (Raw)", "tags": ["prompt", "compel"], "type_hints": {"model": "model"}},
}
@torch.no_grad()
@@ -478,9 +469,7 @@ class SDXLRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
crop_coords = (self.crop_top, self.crop_left)
target_size = (self.target_height, self.target_width)
add_time_ids = torch.tensor([
original_size + crop_coords + target_size
])
add_time_ids = torch.tensor([original_size + crop_coords + target_size])
conditioning_data = ConditioningFieldData(
conditionings=[
@@ -502,12 +491,13 @@ class SDXLRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
),
)
class SDXLRefinerRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
type: Literal["sdxl_refiner_raw_prompt"] = "sdxl_refiner_raw_prompt"
style: str = Field(default="", description="Style prompt") # TODO: ?
style: str = Field(default="", description="Style prompt") # TODO: ?
original_width: int = Field(1024, description="")
original_height: int = Field(1024, description="")
crop_top: int = Field(0, description="")
@@ -521,9 +511,7 @@ class SDXLRefinerRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"ui": {
"title": "SDXL Refiner Prompt (Raw)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
"type_hints": {"model": "model"},
},
}
@@ -534,9 +522,7 @@ class SDXLRefinerRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left)
add_time_ids = torch.tensor([
original_size + crop_coords + (self.aesthetic_score,)
])
add_time_ids = torch.tensor([original_size + crop_coords + (self.aesthetic_score,)])
conditioning_data = ConditioningFieldData(
conditionings=[
@@ -544,7 +530,7 @@ class SDXLRefinerRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
embeds=c2,
pooled_embeds=c2_pooled,
add_time_ids=add_time_ids,
extra_conditioning=ec2, # or None
extra_conditioning=ec2, # or None
)
]
)
@@ -561,11 +547,14 @@ class SDXLRefinerRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
class ClipSkipInvocationOutput(BaseInvocationOutput):
"""Clip skip node output"""
type: Literal["clip_skip_output"] = "clip_skip_output"
clip: ClipField = Field(None, description="Clip with skipped layers")
class ClipSkipInvocation(BaseInvocation):
"""Skip layers in clip text_encoder model."""
type: Literal["clip_skip"] = "clip_skip"
clip: ClipField = Field(None, description="Clip to use")
@@ -573,10 +562,7 @@ class ClipSkipInvocation(BaseInvocation):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "CLIP Skip",
"tags": ["clip", "skip"]
},
"ui": {"title": "CLIP Skip", "tags": ["clip", "skip"]},
}
def invoke(self, context: InvocationContext) -> ClipSkipInvocationOutput:
@@ -587,46 +573,26 @@ class ClipSkipInvocation(BaseInvocation):
def get_max_token_count(
tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction],
truncate_if_too_long=False) -> int:
tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction], truncate_if_too_long=False
) -> int:
if type(prompt) is Blend:
blend: Blend = prompt
return max(
[
get_max_token_count(tokenizer, p, truncate_if_too_long)
for p in blend.prompts
]
)
return max([get_max_token_count(tokenizer, p, truncate_if_too_long) for p in blend.prompts])
elif type(prompt) is Conjunction:
conjunction: Conjunction = prompt
return sum(
[
get_max_token_count(tokenizer, p, truncate_if_too_long)
for p in conjunction.prompts
]
)
return sum([get_max_token_count(tokenizer, p, truncate_if_too_long) for p in conjunction.prompts])
else:
return len(
get_tokens_for_prompt_object(
tokenizer, prompt, truncate_if_too_long))
return len(get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long))
def get_tokens_for_prompt_object(
tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True
) -> List[str]:
def get_tokens_for_prompt_object(tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True) -> List[str]:
if type(parsed_prompt) is Blend:
raise ValueError(
"Blend is not supported here - you need to get tokens for each of its .children"
)
raise ValueError("Blend is not supported here - you need to get tokens for each of its .children")
text_fragments = [
x.text
if type(x) is Fragment
else (
" ".join([f.text for f in x.original])
if type(x) is CrossAttentionControlSubstitute
else str(x)
)
else (" ".join([f.text for f in x.original]) if type(x) is CrossAttentionControlSubstitute else str(x))
for x in parsed_prompt.children
]
text = " ".join(text_fragments)
@@ -637,25 +603,17 @@ def get_tokens_for_prompt_object(
return tokens
def log_tokenization_for_conjunction(
c: Conjunction, tokenizer, display_label_prefix=None
):
def log_tokenization_for_conjunction(c: Conjunction, tokenizer, display_label_prefix=None):
display_label_prefix = display_label_prefix or ""
for i, p in enumerate(c.prompts):
if len(c.prompts) > 1:
this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})"
else:
this_display_label_prefix = display_label_prefix
log_tokenization_for_prompt_object(
p,
tokenizer,
display_label_prefix=this_display_label_prefix
)
log_tokenization_for_prompt_object(p, tokenizer, display_label_prefix=this_display_label_prefix)
def log_tokenization_for_prompt_object(
p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None
):
def log_tokenization_for_prompt_object(p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None):
display_label_prefix = display_label_prefix or ""
if type(p) is Blend:
blend: Blend = p
@@ -692,13 +650,10 @@ def log_tokenization_for_prompt_object(
)
else:
text = " ".join([x.text for x in flattened_prompt.children])
log_tokenization_for_text(
text, tokenizer, display_label=display_label_prefix
)
log_tokenization_for_text(text, tokenizer, display_label=display_label_prefix)
def log_tokenization_for_text(
text, tokenizer, display_label=None, truncate_if_too_long=False):
def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
"""shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '

View File

@@ -6,21 +6,30 @@ from typing import Dict, List, Literal, Optional, Union
import cv2
import numpy as np
from controlnet_aux import (CannyDetector, ContentShuffleDetector, HEDdetector,
LeresDetector, LineartAnimeDetector,
LineartDetector, MediapipeFaceDetector,
MidasDetector, MLSDdetector, NormalBaeDetector,
OpenposeDetector, PidiNetDetector, SamDetector,
ZoeDetector)
from controlnet_aux import (
CannyDetector,
ContentShuffleDetector,
HEDdetector,
LeresDetector,
LineartAnimeDetector,
LineartDetector,
MediapipeFaceDetector,
MidasDetector,
MLSDdetector,
NormalBaeDetector,
OpenposeDetector,
PidiNetDetector,
SamDetector,
ZoeDetector,
)
from controlnet_aux.util import HWC3, ade_palette
from PIL import Image
from pydantic import BaseModel, Field, validator
from ...backend.model_management import BaseModelType, ModelType
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .image import ImageOutput, PILInvocationConfig
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from ..models.image import ImageOutput, PILInvocationConfig
CONTROLNET_DEFAULT_MODELS = [
###########################################
@@ -34,7 +43,6 @@ CONTROLNET_DEFAULT_MODELS = [
"lllyasviel/sd-controlnet-scribble",
"lllyasviel/sd-controlnet-normal",
"lllyasviel/sd-controlnet-mlsd",
#############################################
# lllyasviel sd v1.5, ControlNet v1.1 models
#############################################
@@ -56,7 +64,6 @@ CONTROLNET_DEFAULT_MODELS = [
"lllyasviel/control_v11e_sd15_shuffle",
"lllyasviel/control_v11e_sd15_ip2p",
"lllyasviel/control_v11f1e_sd15_tile",
#################################################
# thibaud sd v2.1 models (ControlNet v1.0? or v1.1?
##################################################
@@ -71,7 +78,6 @@ CONTROLNET_DEFAULT_MODELS = [
"thibaud/controlnet-sd21-lineart-diffusers",
"thibaud/controlnet-sd21-normalbae-diffusers",
"thibaud/controlnet-sd21-ade20k-diffusers",
##############################################
# ControlNetMediaPipeface, ControlNet v1.1
##############################################
@@ -83,10 +89,17 @@ CONTROLNET_DEFAULT_MODELS = [
]
CONTROLNET_NAME_VALUES = Literal[tuple(CONTROLNET_DEFAULT_MODELS)]
CONTROLNET_MODE_VALUES = Literal[tuple(
["balanced", "more_prompt", "more_control", "unbalanced"])]
CONTROLNET_RESIZE_VALUES = Literal[tuple(
["just_resize", "crop_resize", "fill_resize", "just_resize_simple",])]
CONTROLNET_MODE_VALUES = Literal[tuple(["balanced", "more_prompt", "more_control", "unbalanced"])]
CONTROLNET_RESIZE_VALUES = Literal[
tuple(
[
"just_resize",
"crop_resize",
"fill_resize",
"just_resize_simple",
]
)
]
class ControlNetModelField(BaseModel):
@@ -98,21 +111,17 @@ class ControlNetModelField(BaseModel):
class ControlField(BaseModel):
image: ImageField = Field(default=None, description="The control image")
control_model: Optional[ControlNetModelField] = Field(
default=None, description="The ControlNet model to use")
control_model: Optional[ControlNetModelField] = Field(default=None, description="The ControlNet model to use")
# control_weight: Optional[float] = Field(default=1, description="weight given to controlnet")
control_weight: Union[float, List[float]] = Field(
default=1, description="The weight given to the ControlNet")
control_weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(
default=0, ge=0, le=1,
description="When the ControlNet is first applied (% of total steps)")
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = Field(
default=1, ge=0, le=1,
description="When the ControlNet is last applied (% of total steps)")
control_mode: CONTROLNET_MODE_VALUES = Field(
default="balanced", description="The control mode to use")
resize_mode: CONTROLNET_RESIZE_VALUES = Field(
default="just_resize", description="The resize mode to use")
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
)
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@validator("control_weight")
def validate_control_weight(cls, v):
@@ -120,11 +129,10 @@ class ControlField(BaseModel):
if isinstance(v, list):
for i in v:
if i < -1 or i > 2:
raise ValueError(
'Control weights must be within -1 to 2 range')
raise ValueError("Control weights must be within -1 to 2 range")
else:
if v < -1 or v > 2:
raise ValueError('Control weights must be within -1 to 2 range')
raise ValueError("Control weights must be within -1 to 2 range")
return v
class Config:
@@ -136,12 +144,13 @@ class ControlField(BaseModel):
"control_model": "controlnet_model",
# "control_weight": "number",
}
}
},
}
class ControlOutput(BaseInvocationOutput):
"""node output for ControlNet info"""
# fmt: off
type: Literal["control_output"] = "control_output"
control: ControlField = Field(default=None, description="The control info")
@@ -150,6 +159,7 @@ class ControlOutput(BaseInvocationOutput):
class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
# fmt: off
type: Literal["controlnet"] = "controlnet"
# Inputs
@@ -176,7 +186,7 @@ class ControlNetInvocation(BaseInvocation):
# "cfg_scale": "float",
"cfg_scale": "number",
"control_weight": "float",
}
},
},
}
@@ -205,10 +215,7 @@ class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Image Processor",
"tags": ["image", "processor"]
},
"ui": {"title": "Image Processor", "tags": ["image", "processor"]},
}
def run_processor(self, image):
@@ -233,7 +240,7 @@ class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
image_category=ImageCategory.CONTROL,
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate
is_intermediate=self.is_intermediate,
)
"""Builds an ImageOutput and its ImageField"""
@@ -248,9 +255,9 @@ class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
)
class CannyImageProcessorInvocation(
ImageProcessorInvocation, PILInvocationConfig):
class CannyImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Canny edge detection for ControlNet"""
# fmt: off
type: Literal["canny_image_processor"] = "canny_image_processor"
# Input
@@ -260,22 +267,18 @@ class CannyImageProcessorInvocation(
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Canny Processor",
"tags": ["controlnet", "canny", "image", "processor"]
},
"ui": {"title": "Canny Processor", "tags": ["controlnet", "canny", "image", "processor"]},
}
def run_processor(self, image):
canny_processor = CannyDetector()
processed_image = canny_processor(
image, self.low_threshold, self.high_threshold)
processed_image = canny_processor(image, self.low_threshold, self.high_threshold)
return processed_image
class HedImageProcessorInvocation(
ImageProcessorInvocation, PILInvocationConfig):
class HedImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies HED edge detection to image"""
# fmt: off
type: Literal["hed_image_processor"] = "hed_image_processor"
# Inputs
@@ -288,27 +291,25 @@ class HedImageProcessorInvocation(
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Softedge(HED) Processor",
"tags": ["controlnet", "softedge", "hed", "image", "processor"]
},
"ui": {"title": "Softedge(HED) Processor", "tags": ["controlnet", "softedge", "hed", "image", "processor"]},
}
def run_processor(self, image):
hed_processor = HEDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = hed_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
# safe not supported in controlnet_aux v0.0.3
# safe=self.safe,
scribble=self.scribble,
)
processed_image = hed_processor(
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
# safe not supported in controlnet_aux v0.0.3
# safe=self.safe,
scribble=self.scribble,
)
return processed_image
class LineartImageProcessorInvocation(
ImageProcessorInvocation, PILInvocationConfig):
class LineartImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies line art processing to image"""
# fmt: off
type: Literal["lineart_image_processor"] = "lineart_image_processor"
# Inputs
@@ -319,24 +320,20 @@ class LineartImageProcessorInvocation(
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Lineart Processor",
"tags": ["controlnet", "lineart", "image", "processor"]
},
"ui": {"title": "Lineart Processor", "tags": ["controlnet", "lineart", "image", "processor"]},
}
def run_processor(self, image):
lineart_processor = LineartDetector.from_pretrained(
"lllyasviel/Annotators")
lineart_processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
processed_image = lineart_processor(
image, detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution, coarse=self.coarse)
image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, coarse=self.coarse
)
return processed_image
class LineartAnimeImageProcessorInvocation(
ImageProcessorInvocation, PILInvocationConfig):
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies line art anime processing to image"""
# fmt: off
type: Literal["lineart_anime_image_processor"] = "lineart_anime_image_processor"
# Inputs
@@ -348,23 +345,23 @@ class LineartAnimeImageProcessorInvocation(
schema_extra = {
"ui": {
"title": "Lineart Anime Processor",
"tags": ["controlnet", "lineart", "anime", "image", "processor"]
"tags": ["controlnet", "lineart", "anime", "image", "processor"],
},
}
def run_processor(self, image):
processor = LineartAnimeDetector.from_pretrained(
"lllyasviel/Annotators")
processed_image = processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
)
processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = processor(
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
)
return processed_image
class OpenposeImageProcessorInvocation(
ImageProcessorInvocation, PILInvocationConfig):
class OpenposeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies Openpose processing to image"""
# fmt: off
type: Literal["openpose_image_processor"] = "openpose_image_processor"
# Inputs
@@ -375,25 +372,23 @@ class OpenposeImageProcessorInvocation(
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Openpose Processor",
"tags": ["controlnet", "openpose", "image", "processor"]
},
"ui": {"title": "Openpose Processor", "tags": ["controlnet", "openpose", "image", "processor"]},
}
def run_processor(self, image):
openpose_processor = OpenposeDetector.from_pretrained(
"lllyasviel/Annotators")
openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = openpose_processor(
image, detect_resolution=self.detect_resolution,
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
hand_and_face=self.hand_and_face,)
hand_and_face=self.hand_and_face,
)
return processed_image
class MidasDepthImageProcessorInvocation(
ImageProcessorInvocation, PILInvocationConfig):
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies Midas depth processing to image"""
# fmt: off
type: Literal["midas_depth_image_processor"] = "midas_depth_image_processor"
# Inputs
@@ -405,26 +400,24 @@ class MidasDepthImageProcessorInvocation(
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Midas (Depth) Processor",
"tags": ["controlnet", "midas", "depth", "image", "processor"]
},
"ui": {"title": "Midas (Depth) Processor", "tags": ["controlnet", "midas", "depth", "image", "processor"]},
}
def run_processor(self, image):
midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators")
processed_image = midas_processor(image,
a=np.pi * self.a_mult,
bg_th=self.bg_th,
# dept_and_normal not supported in controlnet_aux v0.0.3
# depth_and_normal=self.depth_and_normal,
)
processed_image = midas_processor(
image,
a=np.pi * self.a_mult,
bg_th=self.bg_th,
# dept_and_normal not supported in controlnet_aux v0.0.3
# depth_and_normal=self.depth_and_normal,
)
return processed_image
class NormalbaeImageProcessorInvocation(
ImageProcessorInvocation, PILInvocationConfig):
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies NormalBae processing to image"""
# fmt: off
type: Literal["normalbae_image_processor"] = "normalbae_image_processor"
# Inputs
@@ -434,24 +427,20 @@ class NormalbaeImageProcessorInvocation(
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Normal BAE Processor",
"tags": ["controlnet", "normal", "bae", "image", "processor"]
},
"ui": {"title": "Normal BAE Processor", "tags": ["controlnet", "normal", "bae", "image", "processor"]},
}
def run_processor(self, image):
normalbae_processor = NormalBaeDetector.from_pretrained(
"lllyasviel/Annotators")
normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = normalbae_processor(
image, detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution)
image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution
)
return processed_image
class MlsdImageProcessorInvocation(
ImageProcessorInvocation, PILInvocationConfig):
class MlsdImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies MLSD processing to image"""
# fmt: off
type: Literal["mlsd_image_processor"] = "mlsd_image_processor"
# Inputs
@@ -463,24 +452,24 @@ class MlsdImageProcessorInvocation(
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "MLSD Processor",
"tags": ["controlnet", "mlsd", "image", "processor"]
},
"ui": {"title": "MLSD Processor", "tags": ["controlnet", "mlsd", "image", "processor"]},
}
def run_processor(self, image):
mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = mlsd_processor(
image, detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution, thr_v=self.thr_v,
thr_d=self.thr_d)
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
thr_v=self.thr_v,
thr_d=self.thr_d,
)
return processed_image
class PidiImageProcessorInvocation(
ImageProcessorInvocation, PILInvocationConfig):
class PidiImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies PIDI processing to image"""
# fmt: off
type: Literal["pidi_image_processor"] = "pidi_image_processor"
# Inputs
@@ -492,25 +481,24 @@ class PidiImageProcessorInvocation(
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "PIDI Processor",
"tags": ["controlnet", "pidi", "image", "processor"]
},
"ui": {"title": "PIDI Processor", "tags": ["controlnet", "pidi", "image", "processor"]},
}
def run_processor(self, image):
pidi_processor = PidiNetDetector.from_pretrained(
"lllyasviel/Annotators")
pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
processed_image = pidi_processor(
image, detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution, safe=self.safe,
scribble=self.scribble)
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
safe=self.safe,
scribble=self.scribble,
)
return processed_image
class ContentShuffleImageProcessorInvocation(
ImageProcessorInvocation, PILInvocationConfig):
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies content shuffle processing to image"""
# fmt: off
type: Literal["content_shuffle_image_processor"] = "content_shuffle_image_processor"
# Inputs
@@ -525,48 +513,45 @@ class ContentShuffleImageProcessorInvocation(
schema_extra = {
"ui": {
"title": "Content Shuffle Processor",
"tags": ["controlnet", "contentshuffle", "image", "processor"]
"tags": ["controlnet", "contentshuffle", "image", "processor"],
},
}
def run_processor(self, image):
content_shuffle_processor = ContentShuffleDetector()
processed_image = content_shuffle_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
h=self.h,
w=self.w,
f=self.f
)
processed_image = content_shuffle_processor(
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
h=self.h,
w=self.w,
f=self.f,
)
return processed_image
# should work with controlnet_aux >= 0.0.4 and timm <= 0.6.13
class ZoeDepthImageProcessorInvocation(
ImageProcessorInvocation, PILInvocationConfig):
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies Zoe depth processing to image"""
# fmt: off
type: Literal["zoe_depth_image_processor"] = "zoe_depth_image_processor"
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Zoe (Depth) Processor",
"tags": ["controlnet", "zoe", "depth", "image", "processor"]
},
"ui": {"title": "Zoe (Depth) Processor", "tags": ["controlnet", "zoe", "depth", "image", "processor"]},
}
def run_processor(self, image):
zoe_depth_processor = ZoeDetector.from_pretrained(
"lllyasviel/Annotators")
zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = zoe_depth_processor(image)
return processed_image
class MediapipeFaceProcessorInvocation(
ImageProcessorInvocation, PILInvocationConfig):
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies mediapipe face processing to image"""
# fmt: off
type: Literal["mediapipe_face_processor"] = "mediapipe_face_processor"
# Inputs
@@ -576,26 +561,22 @@ class MediapipeFaceProcessorInvocation(
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Mediapipe Processor",
"tags": ["controlnet", "mediapipe", "image", "processor"]
},
"ui": {"title": "Mediapipe Processor", "tags": ["controlnet", "mediapipe", "image", "processor"]},
}
def run_processor(self, image):
# MediaPipeFaceDetector throws an error if image has alpha channel
# so convert to RGB if needed
if image.mode == 'RGBA':
image = image.convert('RGB')
if image.mode == "RGBA":
image = image.convert("RGB")
mediapipe_face_processor = MediapipeFaceDetector()
processed_image = mediapipe_face_processor(
image, max_faces=self.max_faces, min_confidence=self.min_confidence)
processed_image = mediapipe_face_processor(image, max_faces=self.max_faces, min_confidence=self.min_confidence)
return processed_image
class LeresImageProcessorInvocation(
ImageProcessorInvocation, PILInvocationConfig):
class LeresImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies leres processing to image"""
# fmt: off
type: Literal["leres_image_processor"] = "leres_image_processor"
# Inputs
@@ -608,24 +589,23 @@ class LeresImageProcessorInvocation(
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Leres (Depth) Processor",
"tags": ["controlnet", "leres", "depth", "image", "processor"]
},
"ui": {"title": "Leres (Depth) Processor", "tags": ["controlnet", "leres", "depth", "image", "processor"]},
}
def run_processor(self, image):
leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators")
processed_image = leres_processor(
image, thr_a=self.thr_a, thr_b=self.thr_b, boost=self.boost,
image,
thr_a=self.thr_a,
thr_b=self.thr_b,
boost=self.boost,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution)
image_resolution=self.image_resolution,
)
return processed_image
class TileResamplerProcessorInvocation(
ImageProcessorInvocation, PILInvocationConfig):
class TileResamplerProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
# fmt: off
type: Literal["tile_image_processor"] = "tile_image_processor"
# Inputs
@@ -637,16 +617,17 @@ class TileResamplerProcessorInvocation(
schema_extra = {
"ui": {
"title": "Tile Resample Processor",
"tags": ["controlnet", "tile", "resample", "image", "processor"]
"tags": ["controlnet", "tile", "resample", "image", "processor"],
},
}
# tile_resample copied from sd-webui-controlnet/scripts/processor.py
def tile_resample(self,
np_img: np.ndarray,
res=512, # never used?
down_sampling_rate=1.0,
):
def tile_resample(
self,
np_img: np.ndarray,
res=512, # never used?
down_sampling_rate=1.0,
):
np_img = HWC3(np_img)
if down_sampling_rate < 1.1:
return np_img
@@ -658,36 +639,41 @@ class TileResamplerProcessorInvocation(
def run_processor(self, img):
np_img = np.array(img, dtype=np.uint8)
processed_np_image = self.tile_resample(np_img,
# res=self.tile_size,
down_sampling_rate=self.down_sampling_rate
)
processed_np_image = self.tile_resample(
np_img,
# res=self.tile_size,
down_sampling_rate=self.down_sampling_rate,
)
processed_image = Image.fromarray(processed_np_image)
return processed_image
class SegmentAnythingProcessorInvocation(
ImageProcessorInvocation, PILInvocationConfig):
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies segment anything processing to image"""
# fmt: off
type: Literal["segment_anything_processor"] = "segment_anything_processor"
# fmt: on
class Config(InvocationConfig):
schema_extra = {"ui": {"title": "Segment Anything Processor", "tags": [
"controlnet", "segment", "anything", "sam", "image", "processor"]}, }
schema_extra = {
"ui": {
"title": "Segment Anything Processor",
"tags": ["controlnet", "segment", "anything", "sam", "image", "processor"],
},
}
def run_processor(self, image):
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
segment_anything_processor = SamDetectorReproducibleColors.from_pretrained(
"ybelkada/segment-anything", subfolder="checkpoints")
"ybelkada/segment-anything", subfolder="checkpoints"
)
np_img = np.array(image, dtype=np.uint8)
processed_image = segment_anything_processor(np_img)
return processed_image
class SamDetectorReproducibleColors(SamDetector):
# overriding SamDetector.show_anns() method to use reproducible colors for segmentation image
# base class show_anns() method randomizes colors,
# which seems to also lead to non-reproducible image generation
@@ -695,19 +681,15 @@ class SamDetectorReproducibleColors(SamDetector):
def show_anns(self, anns: List[Dict]):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
h, w = anns[0]['segmentation'].shape
final_img = Image.fromarray(
np.zeros((h, w, 3), dtype=np.uint8), mode="RGB")
sorted_anns = sorted(anns, key=(lambda x: x["area"]), reverse=True)
h, w = anns[0]["segmentation"].shape
final_img = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8), mode="RGB")
palette = ade_palette()
for i, ann in enumerate(sorted_anns):
m = ann['segmentation']
m = ann["segmentation"]
img = np.empty((m.shape[0], m.shape[1], 3), dtype=np.uint8)
# doing modulo just in case number of annotated regions exceeds number of colors in palette
ann_color = palette[i % len(palette)]
img[:, :] = ann_color
final_img.paste(
Image.fromarray(img, mode="RGB"),
(0, 0),
Image.fromarray(np.uint8(m * 255)))
final_img.paste(Image.fromarray(img, mode="RGB"), (0, 0), Image.fromarray(np.uint8(m * 255)))
return np.array(final_img, dtype=np.uint8)

View File

@@ -37,10 +37,7 @@ class CvInpaintInvocation(BaseInvocation, CvInvocationConfig):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "OpenCV Inpaint",
"tags": ["opencv", "inpaint"]
},
"ui": {"title": "OpenCV Inpaint", "tags": ["opencv", "inpaint"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:

View File

@@ -6,8 +6,7 @@ from typing import Literal, Optional, get_args
import torch
from pydantic import Field
from invokeai.app.models.image import (ColorField, ImageCategory, ImageField,
ResourceOrigin)
from invokeai.app.models.image import ColorField, ImageCategory, ImageField, ResourceOrigin
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.backend.generator.inpaint import infill_methods
@@ -25,13 +24,12 @@ from contextlib import contextmanager, ExitStack, ContextDecorator
SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())]
INFILL_METHODS = Literal[tuple(infill_methods())]
DEFAULT_INFILL_METHOD = (
"patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
)
DEFAULT_INFILL_METHOD = "patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
from .latent import get_scheduler
class OldModelContext(ContextDecorator):
model: StableDiffusionGeneratorPipeline
@@ -44,6 +42,7 @@ class OldModelContext(ContextDecorator):
def __exit__(self, *exc):
return False
class OldModelInfo:
name: str
hash: str
@@ -64,20 +63,34 @@ class InpaintInvocation(BaseInvocation):
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
seed: int = Field(ge=0, le=SEED_MAX, description="The seed to use (omit for random)", default_factory=get_random_seed)
steps: int = Field(default=30, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
seed: int = Field(
ge=0, le=SEED_MAX, description="The seed to use (omit for random)", default_factory=get_random_seed
)
steps: int = Field(default=30, gt=0, description="The number of steps to use to generate the image")
width: int = Field(
default=512,
multiple_of=8,
gt=0,
description="The width of the resulting image",
)
height: int = Field(
default=512,
multiple_of=8,
gt=0,
description="The height of the resulting image",
)
cfg_scale: float = Field(
default=7.5,
ge=1,
description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt",
)
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use")
unet: UNetField = Field(default=None, description="UNet model")
vae: VaeField = Field(default=None, description="Vae model")
# Inputs
image: Optional[ImageField] = Field(description="The input image")
strength: float = Field(
default=0.75, gt=0, le=1, description="The strength of the original image"
)
strength: float = Field(default=0.75, gt=0, le=1, description="The strength of the original image")
fit: bool = Field(
default=True,
description="Whether or not the result should be fit to the aspect ratio of the input image",
@@ -86,18 +99,10 @@ class InpaintInvocation(BaseInvocation):
# Inputs
mask: Optional[ImageField] = Field(description="The mask")
seam_size: int = Field(default=96, ge=1, description="The seam inpaint size (px)")
seam_blur: int = Field(
default=16, ge=0, description="The seam inpaint blur radius (px)"
)
seam_strength: float = Field(
default=0.75, gt=0, le=1, description="The seam inpaint strength"
)
seam_steps: int = Field(
default=30, ge=1, description="The number of steps to use for seam inpaint"
)
tile_size: int = Field(
default=32, ge=1, description="The tile infill method size (px)"
)
seam_blur: int = Field(default=16, ge=0, description="The seam inpaint blur radius (px)")
seam_strength: float = Field(default=0.75, gt=0, le=1, description="The seam inpaint strength")
seam_steps: int = Field(default=30, ge=1, description="The number of steps to use for seam inpaint")
tile_size: int = Field(default=32, ge=1, description="The tile infill method size (px)")
infill_method: INFILL_METHODS = Field(
default=DEFAULT_INFILL_METHOD,
description="The method used to infill empty regions (px)",
@@ -128,10 +133,7 @@ class InpaintInvocation(BaseInvocation):
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["stable-diffusion", "image"],
"title": "Inpaint"
},
"ui": {"tags": ["stable-diffusion", "image"], "title": "Inpaint"},
}
def dispatch_progress(
@@ -162,18 +164,23 @@ class InpaintInvocation(BaseInvocation):
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}), context=context,)
**lora.dict(exclude={"weight"}),
context=context,
)
yield (lora_info.context.model, lora.weight)
del lora_info
return
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict(), context=context,)
vae_info = context.services.model_manager.get_model(**self.vae.vae.dict(), context=context,)
with vae_info as vae,\
ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
unet_info as unet:
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict(),
context=context,
)
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
context=context,
)
with vae_info as vae, ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()), unet_info as unet:
device = context.services.model_manager.mgr.cache.execution_device
dtype = context.services.model_manager.mgr.cache.precision
@@ -197,21 +204,11 @@ class InpaintInvocation(BaseInvocation):
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
None
if self.image is None
else context.services.images.get_pil_image(self.image.image_name)
)
mask = (
None
if self.mask is None
else context.services.images.get_pil_image(self.mask.image_name)
)
image = None if self.image is None else context.services.images.get_pil_image(self.image.image_name)
mask = None if self.mask is None else context.services.images.get_pil_image(self.mask.image_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
scheduler = get_scheduler(

View File

@@ -4,60 +4,25 @@ from typing import Literal, Optional
import numpy
from PIL import Image, ImageFilter, ImageOps, ImageChops
from pydantic import BaseModel, Field
from pydantic import Field
from pathlib import Path
from typing import Union
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from invokeai.app.invocations.metadata import CoreMetadata
from ..models.image import (
ImageCategory,
ImageField,
ResourceOrigin,
PILInvocationConfig,
ImageOutput,
MaskOutput,
)
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
class PILInvocationConfig(BaseModel):
"""Helper class to provide all PIL invocations with additional config"""
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["PIL", "image"],
},
}
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
class Config:
schema_extra = {"required": ["type", "image", "width", "height"]}
class MaskOutput(BaseInvocationOutput):
"""Base class for invocations that output a mask"""
# fmt: off
type: Literal["mask"] = "mask"
mask: ImageField = Field(default=None, description="The output mask")
width: int = Field(description="The width of the mask in pixels")
height: int = Field(description="The height of the mask in pixels")
# fmt: on
class Config:
schema_extra = {
"required": [
"type",
"mask",
]
}
from invokeai.backend.image_util.safety_checker import SafetyChecker
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
class LoadImageInvocation(BaseInvocation):
@@ -74,10 +39,7 @@ class LoadImageInvocation(BaseInvocation):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Load Image",
"tags": ["image", "load"]
},
"ui": {"title": "Load Image", "tags": ["image", "load"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
@@ -96,16 +58,11 @@ class ShowImageInvocation(BaseInvocation):
type: Literal["show_image"] = "show_image"
# Inputs
image: Optional[ImageField] = Field(
default=None, description="The image to show"
)
image: Optional[ImageField] = Field(default=None, description="The image to show")
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Show Image",
"tags": ["image", "show"]
},
"ui": {"title": "Show Image", "tags": ["image", "show"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
@@ -138,18 +95,13 @@ class ImageCropInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Crop Image",
"tags": ["image", "crop"]
},
"ui": {"title": "Crop Image", "tags": ["image", "crop"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image_crop = Image.new(
mode="RGBA", size=(self.width, self.height), color=(0, 0, 0, 0)
)
image_crop = Image.new(mode="RGBA", size=(self.width, self.height), color=(0, 0, 0, 0))
image_crop.paste(image, (-self.x, -self.y))
image_dto = context.services.images.create(
@@ -184,21 +136,14 @@ class ImagePasteInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Paste Image",
"tags": ["image", "paste"]
},
"ui": {"title": "Paste Image", "tags": ["image", "paste"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
base_image = context.services.images.get_pil_image(self.base_image.image_name)
image = context.services.images.get_pil_image(self.image.image_name)
mask = (
None
if self.mask is None
else ImageOps.invert(
context.services.images.get_pil_image(self.mask.image_name)
)
None if self.mask is None else ImageOps.invert(context.services.images.get_pil_image(self.mask.image_name))
)
# TODO: probably shouldn't invert mask here... should user be required to do it?
@@ -207,9 +152,7 @@ class ImagePasteInvocation(BaseInvocation, PILInvocationConfig):
max_x = max(base_image.width, image.width + self.x)
max_y = max(base_image.height, image.height + self.y)
new_image = Image.new(
mode="RGBA", size=(max_x - min_x, max_y - min_y), color=(0, 0, 0, 0)
)
new_image = Image.new(mode="RGBA", size=(max_x - min_x, max_y - min_y), color=(0, 0, 0, 0))
new_image.paste(base_image, (abs(min_x), abs(min_y)))
new_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask)
@@ -242,10 +185,7 @@ class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Mask From Alpha",
"tags": ["image", "mask", "alpha"]
},
"ui": {"title": "Mask From Alpha", "tags": ["image", "mask", "alpha"]},
}
def invoke(self, context: InvocationContext) -> MaskOutput:
@@ -284,10 +224,7 @@ class ImageMultiplyInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Multiply Images",
"tags": ["image", "multiply"]
},
"ui": {"title": "Multiply Images", "tags": ["image", "multiply"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
@@ -328,10 +265,7 @@ class ImageChannelInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Image Channel",
"tags": ["image", "channel"]
},
"ui": {"title": "Image Channel", "tags": ["image", "channel"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
@@ -371,10 +305,7 @@ class ImageConvertInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Convert Image",
"tags": ["image", "convert"]
},
"ui": {"title": "Convert Image", "tags": ["image", "convert"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
@@ -412,19 +343,14 @@ class ImageBlurInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Blur Image",
"tags": ["image", "blur"]
},
"ui": {"title": "Blur Image", "tags": ["image", "blur"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
blur = (
ImageFilter.GaussianBlur(self.radius)
if self.blur_type == "gaussian"
else ImageFilter.BoxBlur(self.radius)
ImageFilter.GaussianBlur(self.radius) if self.blur_type == "gaussian" else ImageFilter.BoxBlur(self.radius)
)
blur_image = image.filter(blur)
@@ -479,10 +405,7 @@ class ImageResizeInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Resize Image",
"tags": ["image", "resize"]
},
"ui": {"title": "Resize Image", "tags": ["image", "resize"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
@@ -525,10 +448,7 @@ class ImageScaleInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Scale Image",
"tags": ["image", "scale"]
},
"ui": {"title": "Scale Image", "tags": ["image", "scale"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
@@ -573,10 +493,7 @@ class ImageLerpInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Image Linear Interpolation",
"tags": ["image", "linear", "interpolation", "lerp"]
},
"ui": {"title": "Image Linear Interpolation", "tags": ["image", "linear", "interpolation", "lerp"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
@@ -619,7 +536,7 @@ class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
schema_extra = {
"ui": {
"title": "Image Inverse Linear Interpolation",
"tags": ["image", "linear", "interpolation", "inverse"]
"tags": ["image", "linear", "interpolation", "inverse"],
},
}
@@ -627,12 +544,7 @@ class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
image = context.services.images.get_pil_image(self.image.image_name)
image_arr = numpy.asarray(image, dtype=numpy.float32)
image_arr = (
numpy.minimum(
numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1
)
* 255
)
image_arr = numpy.minimum(numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1) * 255
ilerp_image = Image.fromarray(numpy.uint8(image_arr))
@@ -650,3 +562,91 @@ class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
width=image_dto.width,
height=image_dto.height,
)
class ImageNSFWBlurInvocation(BaseInvocation, PILInvocationConfig):
"""Add blur to NSFW-flagged images"""
# fmt: off
type: Literal["img_nsfw"] = "img_nsfw"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to check")
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Blur NSFW Images", "tags": ["image", "nsfw", "checker"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
logger = context.services.logger
logger.debug("Running NSFW checker")
if SafetyChecker.has_nsfw_concept(image):
logger.info("A potentially NSFW image has been detected. Image will be blurred.")
blurry_image = image.filter(filter=ImageFilter.GaussianBlur(radius=32))
caution = self._get_caution_img()
blurry_image.paste(caution, (0, 0), caution)
image = blurry_image
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
def _get_caution_img(self) -> Image:
import invokeai.app.assets.images as image_assets
caution = Image.open(Path(image_assets.__path__[0]) / "caution.png")
return caution.resize((caution.width // 2, caution.height // 2))
class ImageWatermarkInvocation(BaseInvocation, PILInvocationConfig):
"""Add an invisible watermark to an image"""
# fmt: off
type: Literal["img_watermark"] = "img_watermark"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to check")
text: str = Field(default='InvokeAI', description="Watermark text")
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Add Invisible Watermark", "tags": ["image", "watermark", "invisible"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
new_image = InvisibleWatermark.add_watermark(image, self.text)
image_dto = context.services.images.create(
image=new_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@@ -30,9 +30,7 @@ def infill_methods() -> list[str]:
INFILL_METHODS = Literal[tuple(infill_methods())]
DEFAULT_INFILL_METHOD = (
"patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
)
DEFAULT_INFILL_METHOD = "patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
def infill_patchmatch(im: Image.Image) -> Image.Image:
@@ -44,9 +42,7 @@ def infill_patchmatch(im: Image.Image) -> Image.Image:
return im
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though)
im_patched_np = PatchMatch.inpaint(
im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3
)
im_patched_np = PatchMatch.inpaint(im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3)
im_patched = Image.fromarray(im_patched_np, mode="RGB")
return im_patched
@@ -68,9 +64,7 @@ def get_tile_images(image: np.ndarray, width=8, height=8):
)
def tile_fill_missing(
im: Image.Image, tile_size: int = 16, seed: Optional[int] = None
) -> Image.Image:
def tile_fill_missing(im: Image.Image, tile_size: int = 16, seed: Optional[int] = None) -> Image.Image:
# Only fill if there's an alpha layer
if im.mode != "RGBA":
return im
@@ -103,9 +97,7 @@ def tile_fill_missing(
# Find all invalid tiles and replace with a random valid tile
replace_count = (tiles_mask == False).sum()
rng = np.random.default_rng(seed=seed)
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[
rng.choice(filtered_tiles.shape[0], replace_count), :, :, :
]
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[rng.choice(filtered_tiles.shape[0], replace_count), :, :, :]
# Convert back to an image
tiles_all = tiles_all.reshape(tshape)
@@ -126,9 +118,7 @@ class InfillColorInvocation(BaseInvocation):
"""Infills transparent areas of an image with a solid color"""
type: Literal["infill_rgba"] = "infill_rgba"
image: Optional[ImageField] = Field(
default=None, description="The image to infill"
)
image: Optional[ImageField] = Field(default=None, description="The image to infill")
color: ColorField = Field(
default=ColorField(r=127, g=127, b=127, a=255),
description="The color to use to infill",
@@ -136,10 +126,7 @@ class InfillColorInvocation(BaseInvocation):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Color Infill",
"tags": ["image", "inpaint", "color", "infill"]
},
"ui": {"title": "Color Infill", "tags": ["image", "inpaint", "color", "infill"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
@@ -171,9 +158,7 @@ class InfillTileInvocation(BaseInvocation):
type: Literal["infill_tile"] = "infill_tile"
image: Optional[ImageField] = Field(
default=None, description="The image to infill"
)
image: Optional[ImageField] = Field(default=None, description="The image to infill")
tile_size: int = Field(default=32, ge=1, description="The tile size (px)")
seed: int = Field(
ge=0,
@@ -184,18 +169,13 @@ class InfillTileInvocation(BaseInvocation):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Tile Infill",
"tags": ["image", "inpaint", "tile", "infill"]
},
"ui": {"title": "Tile Infill", "tags": ["image", "inpaint", "tile", "infill"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
infilled = tile_fill_missing(
image.copy(), seed=self.seed, tile_size=self.tile_size
)
infilled = tile_fill_missing(image.copy(), seed=self.seed, tile_size=self.tile_size)
infilled.paste(image, (0, 0), image.split()[-1])
image_dto = context.services.images.create(
@@ -219,16 +199,11 @@ class InfillPatchMatchInvocation(BaseInvocation):
type: Literal["infill_patchmatch"] = "infill_patchmatch"
image: Optional[ImageField] = Field(
default=None, description="The image to infill"
)
image: Optional[ImageField] = Field(default=None, description="The image to infill")
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Patch Match Infill",
"tags": ["image", "inpaint", "patchmatch", "infill"]
},
"ui": {"title": "Patch Match Infill", "tags": ["image", "inpaint", "patchmatch", "infill"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:

View File

@@ -12,20 +12,21 @@ from pydantic import BaseModel, Field, validator
from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.model_management.models.base import ModelType
from invokeai.backend.model_management.models import ModelType, SilenceWarnings
from ...backend.model_management.lora import ModelPatcher
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.stable_diffusion.diffusers_pipeline import (
ConditioningData, ControlNetData, StableDiffusionGeneratorPipeline,
image_resized_to_grid_as_tensor)
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \
PostprocessingSettings
ConditioningData,
ControlNetData,
StableDiffusionGeneratorPipeline,
image_resized_to_grid_as_tensor,
)
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import choose_torch_device, torch_dtype, choose_precision
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from .compel import ConditioningField
from .controlnet_image_processors import ControlField
from .image import ImageOutput
@@ -46,8 +47,7 @@ DEFAULT_PRECISION = choose_precision(choose_torch_device())
class LatentsField(BaseModel):
"""A latents field used for passing latents between invocations"""
latents_name: Optional[str] = Field(
default=None, description="The name of the latents")
latents_name: Optional[str] = Field(default=None, description="The name of the latents")
class Config:
schema_extra = {"required": ["latents_name"]}
@@ -55,14 +55,15 @@ class LatentsField(BaseModel):
class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents"""
#fmt: off
# fmt: off
type: Literal["latents_output"] = "latents_output"
# Inputs
latents: LatentsField = Field(default=None, description="The output latents")
width: int = Field(description="The width of the latents in pixels")
height: int = Field(description="The height of the latents in pixels")
#fmt: on
# fmt: on
def build_latents_output(latents_name: str, latents: torch.Tensor):
@@ -73,9 +74,7 @@ def build_latents_output(latents_name: str, latents: torch.Tensor):
)
SAMPLER_NAME_VALUES = Literal[
tuple(list(SCHEDULER_MAP.keys()))
]
SAMPLER_NAME_VALUES = Literal[tuple(list(SCHEDULER_MAP.keys()))]
def get_scheduler(
@@ -83,11 +82,10 @@ def get_scheduler(
scheduler_info: ModelInfo,
scheduler_name: str,
) -> Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(
scheduler_name, SCHEDULER_MAP['ddim']
)
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
orig_scheduler_info = context.services.model_manager.get_model(
**scheduler_info.dict(), context=context,
**scheduler_info.dict(),
context=context,
)
with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config
@@ -102,7 +100,7 @@ def get_scheduler(
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
if not hasattr(scheduler, 'uses_inpainting_model'):
if not hasattr(scheduler, "uses_inpainting_model"):
scheduler.uses_inpainting_model = lambda: False
return scheduler
@@ -123,8 +121,8 @@ class TextToLatentsInvocation(BaseInvocation):
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
unet: UNetField = Field(default=None, description="UNet submodel")
control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
# seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on
@validator("cfg_scale")
@@ -133,10 +131,10 @@ class TextToLatentsInvocation(BaseInvocation):
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError('cfg_scale must be greater than 1')
raise ValueError("cfg_scale must be greater than 1")
else:
if v < 1:
raise ValueError('cfg_scale must be greater than 1')
raise ValueError("cfg_scale must be greater than 1")
return v
# Schema customisation
@@ -149,8 +147,8 @@ class TextToLatentsInvocation(BaseInvocation):
"model": "model",
"control": "control",
# "cfg_scale": "float",
"cfg_scale": "number"
}
"cfg_scale": "number",
},
},
}
@@ -190,16 +188,14 @@ class TextToLatentsInvocation(BaseInvocation):
threshold=0.0, # threshold,
warmup=0.2, # warmup,
h_symmetry_time_pct=None, # h_symmetry_time_pct,
v_symmetry_time_pct=None # v_symmetry_time_pct,
v_symmetry_time_pct=None, # v_symmetry_time_pct,
),
)
conditioning_data = conditioning_data.add_scheduler_args_if_applicable(
scheduler,
# for ddim scheduler
eta=0.0, # ddim_eta
# for ancestral and sde schedulers
generator=torch.Generator(device=unet.device).manual_seed(0),
)
@@ -247,7 +243,6 @@ class TextToLatentsInvocation(BaseInvocation):
exit_stack: ExitStack,
do_classifier_free_guidance: bool = True,
) -> List[ControlNetData]:
# assuming fixed dimensional scaling of 8:1 for image:latents
control_height_resize = latents_shape[2] * 8
control_width_resize = latents_shape[3] * 8
@@ -261,7 +256,7 @@ class TextToLatentsInvocation(BaseInvocation):
control_list = control_input
else:
control_list = None
if (control_list is None):
if control_list is None:
control_data = None
# from above handling, any control that is not None should now be of type list[ControlField]
else:
@@ -281,9 +276,7 @@ class TextToLatentsInvocation(BaseInvocation):
control_models.append(control_model)
control_image_field = control_info.image
input_image = context.services.images.get_pil_image(
control_image_field.image_name
)
input_image = context.services.images.get_pil_image(control_image_field.image_name)
# self.image.image_type, self.image.image_name
# FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt?
@@ -318,69 +311,71 @@ class TextToLatentsInvocation(BaseInvocation):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
with SilenceWarnings():
noise = context.services.latents.get(self.noise.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}), context=context,
)
yield (lora_info.context.model, lora.weight)
del lora_info
return
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}),
context=context,
)
yield (lora_info.context.model, lora.weight)
del lora_info
return
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict(), context=context,
)
with ExitStack() as exit_stack,\
ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
unet_info as unet:
noise = noise.to(device=unet.device, dtype=unet.dtype)
scheduler = get_scheduler(
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict(),
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
)
with ExitStack() as exit_stack, ModelPatcher.apply_lora_unet(
unet_info.context.model, _lora_loader()
), unet_info as unet:
noise = noise.to(device=unet.device, dtype=unet.dtype)
pipeline = self.create_pipeline(unet, scheduler)
conditioning_data = self.get_conditioning_data(context, scheduler, unet)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
)
control_data = self.prep_control_data(
model=pipeline, context=context, control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
exit_stack=exit_stack,
)
pipeline = self.create_pipeline(unet, scheduler)
conditioning_data = self.get_conditioning_data(context, scheduler, unet)
# TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(unet.device)),
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback,
)
control_data = self.prep_control_data(
model=pipeline,
context=context,
control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
exit_stack=exit_stack,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
result_latents = result_latents.to("cpu")
torch.cuda.empty_cache()
# TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(unet.device)),
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback,
)
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
result_latents = result_latents.to("cpu")
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents)
class LatentsToLatentsInvocation(TextToLatentsInvocation):
@@ -389,11 +384,8 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
type: Literal["l2l"] = "l2l"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to use as a base image")
strength: float = Field(
default=0.7, ge=0, le=1,
description="The strength of the latents to use")
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
strength: float = Field(default=0.7, ge=0, le=1, description="The strength of the latents to use")
# Schema customisation
class Config(InvocationConfig):
@@ -405,87 +397,89 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
"model": "model",
"control": "control",
"cfg_scale": "number",
}
},
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name)
with SilenceWarnings(): # this quenches NSFW nag from diffusers
noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}), context=context,
)
yield (lora_info.context.model, lora.weight)
del lora_info
return
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}),
context=context,
)
yield (lora_info.context.model, lora.weight)
del lora_info
return
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict(), context=context,
)
with ExitStack() as exit_stack,\
ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
unet_info as unet:
noise = noise.to(device=unet.device, dtype=unet.dtype)
latent = latent.to(device=unet.device, dtype=unet.dtype)
scheduler = get_scheduler(
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict(),
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
)
with ExitStack() as exit_stack, ModelPatcher.apply_lora_unet(
unet_info.context.model, _lora_loader()
), unet_info as unet:
noise = noise.to(device=unet.device, dtype=unet.dtype)
latent = latent.to(device=unet.device, dtype=unet.dtype)
pipeline = self.create_pipeline(unet, scheduler)
conditioning_data = self.get_conditioning_data(context, scheduler, unet)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
)
control_data = self.prep_control_data(
model=pipeline, context=context, control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
exit_stack=exit_stack,
)
pipeline = self.create_pipeline(unet, scheduler)
conditioning_data = self.get_conditioning_data(context, scheduler, unet)
# TODO: Verify the noise is the right size
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=unet.device, dtype=latent.dtype
)
control_data = self.prep_control_data(
model=pipeline,
context=context,
control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
exit_stack=exit_stack,
)
timesteps, _ = pipeline.get_img2img_timesteps(
self.steps,
self.strength,
device=unet.device,
)
# TODO: Verify the noise is the right size
initial_latents = (
latent if self.strength < 1.0 else torch.zeros_like(latent, device=unet.device, dtype=latent.dtype)
)
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
latents=initial_latents,
timesteps=timesteps,
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback
)
timesteps, _ = pipeline.get_img2img_timesteps(
self.steps,
self.strength,
device=unet.device,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
result_latents = result_latents.to("cpu")
torch.cuda.empty_cache()
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
latents=initial_latents,
timesteps=timesteps,
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback,
)
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.save(name, result_latents)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
result_latents = result_latents.to("cpu")
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents)
@@ -496,14 +490,13 @@ class LatentsToImageInvocation(BaseInvocation):
type: Literal["l2i"] = "l2i"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to generate an image from")
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field(
default=False,
description="Decode latents by overlaping tiles(less memory consumption)")
fp32: bool = Field(DEFAULT_PRECISION=='float32', description="Decode in full precision")
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")
tiled: bool = Field(default=False, description="Decode latents by overlaping tiles (less memory consumption)")
fp32: bool = Field(DEFAULT_PRECISION == "float32", description="Decode in full precision")
metadata: Optional[CoreMetadata] = Field(
default=None, description="Optional core metadata to be written to the image"
)
# Schema customisation
class Config(InvocationConfig):
@@ -519,7 +512,8 @@ class LatentsToImageInvocation(BaseInvocation):
latents = context.services.latents.get(self.latents.latents_name)
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(), context=context,
**self.vae.vae.dict(),
context=context,
)
with vae_info as vae:
@@ -586,8 +580,7 @@ class LatentsToImageInvocation(BaseInvocation):
)
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear",
"bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
class ResizeLatentsInvocation(BaseInvocation):
@@ -596,36 +589,30 @@ class ResizeLatentsInvocation(BaseInvocation):
type: Literal["lresize"] = "lresize"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to resize")
width: Union[int, None] = Field(default=512,
ge=64, multiple_of=8, description="The width to resize to (px)")
height: Union[int, None] = Field(default=512,
ge=64, multiple_of=8, description="The height to resize to (px)")
mode: LATENTS_INTERPOLATION_MODE = Field(
default="bilinear", description="The interpolation mode")
latents: Optional[LatentsField] = Field(description="The latents to resize")
width: Union[int, None] = Field(default=512, ge=64, multiple_of=8, description="The width to resize to (px)")
height: Union[int, None] = Field(default=512, ge=64, multiple_of=8, description="The height to resize to (px)")
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
antialias: bool = Field(
default=False,
description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)"
)
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Resize Latents",
"tags": ["latents", "resize"]
},
"ui": {"title": "Resize Latents", "tags": ["latents", "resize"]},
}
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
# TODO:
device=choose_torch_device()
device = choose_torch_device()
resized_latents = torch.nn.functional.interpolate(
latents.to(device), size=(self.height // 8, self.width // 8),
mode=self.mode, antialias=self.antialias
if self.mode in ["bilinear", "bicubic"] else False,
latents.to(device),
size=(self.height // 8, self.width // 8),
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
@@ -644,35 +631,30 @@ class ScaleLatentsInvocation(BaseInvocation):
type: Literal["lscale"] = "lscale"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to scale")
scale_factor: float = Field(
gt=0, description="The factor by which to scale the latents")
mode: LATENTS_INTERPOLATION_MODE = Field(
default="bilinear", description="The interpolation mode")
latents: Optional[LatentsField] = Field(description="The latents to scale")
scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
antialias: bool = Field(
default=False,
description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)"
)
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Scale Latents",
"tags": ["latents", "scale"]
},
"ui": {"title": "Scale Latents", "tags": ["latents", "scale"]},
}
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
# TODO:
device=choose_torch_device()
device = choose_torch_device()
# resizing
resized_latents = torch.nn.functional.interpolate(
latents.to(device), scale_factor=self.scale_factor, mode=self.mode,
antialias=self.antialias
if self.mode in ["bilinear", "bicubic"] else False,
latents.to(device),
scale_factor=self.scale_factor,
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
@@ -693,19 +675,13 @@ class ImageToLatentsInvocation(BaseInvocation):
# Inputs
image: Optional[ImageField] = Field(description="The image to encode")
vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field(
default=False,
description="Encode latents by overlaping tiles(less memory consumption)")
fp32: bool = Field(DEFAULT_PRECISION=='float32', description="Decode in full precision")
tiled: bool = Field(default=False, description="Encode latents by overlaping tiles(less memory consumption)")
fp32: bool = Field(DEFAULT_PRECISION == "float32", description="Decode in full precision")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Image To Latents",
"tags": ["latents", "image"]
},
"ui": {"title": "Image To Latents", "tags": ["latents", "image"]},
}
@torch.no_grad()
@@ -715,9 +691,10 @@ class ImageToLatentsInvocation(BaseInvocation):
# )
image = context.services.images.get_pil_image(self.image.image_name)
#vae_info = context.services.model_manager.get_model(**self.vae.vae.dict())
# vae_info = context.services.model_manager.get_model(**self.vae.vae.dict())
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(), context=context,
**self.vae.vae.dict(),
context=context,
)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
@@ -744,12 +721,12 @@ class ImageToLatentsInvocation(BaseInvocation):
vae.post_quant_conv.to(orig_dtype)
vae.decoder.conv_in.to(orig_dtype)
vae.decoder.mid_block.to(orig_dtype)
#else:
# else:
# latents = latents.float()
else:
vae.to(dtype=torch.float16)
#latents = latents.half()
# latents = latents.half()
if self.tiled:
vae.enable_tiling()
@@ -760,9 +737,7 @@ class ImageToLatentsInvocation(BaseInvocation):
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
with torch.inference_mode():
image_tensor_dist = vae.encode(image_tensor).latent_dist
latents = image_tensor_dist.sample().to(
dtype=vae.dtype
) # FIXME: uses torch.randn. make reproducible!
latents = image_tensor_dist.sample().to(dtype=vae.dtype) # FIXME: uses torch.randn. make reproducible!
latents = vae.config.scaling_factor * latents
latents = latents.to(dtype=orig_dtype)

View File

@@ -54,10 +54,7 @@ class AddInvocation(BaseInvocation, MathInvocationConfig):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Add",
"tags": ["math", "add"]
},
"ui": {"title": "Add", "tags": ["math", "add"]},
}
def invoke(self, context: InvocationContext) -> IntOutput:
@@ -75,10 +72,7 @@ class SubtractInvocation(BaseInvocation, MathInvocationConfig):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Subtract",
"tags": ["math", "subtract"]
},
"ui": {"title": "Subtract", "tags": ["math", "subtract"]},
}
def invoke(self, context: InvocationContext) -> IntOutput:
@@ -96,10 +90,7 @@ class MultiplyInvocation(BaseInvocation, MathInvocationConfig):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Multiply",
"tags": ["math", "multiply"]
},
"ui": {"title": "Multiply", "tags": ["math", "multiply"]},
}
def invoke(self, context: InvocationContext) -> IntOutput:
@@ -117,10 +108,7 @@ class DivideInvocation(BaseInvocation, MathInvocationConfig):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Divide",
"tags": ["math", "divide"]
},
"ui": {"title": "Divide", "tags": ["math", "divide"]},
}
def invoke(self, context: InvocationContext) -> IntOutput:
@@ -140,10 +128,7 @@ class RandomIntInvocation(BaseInvocation):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Random Integer",
"tags": ["math", "random", "integer"]
},
"ui": {"title": "Random Integer", "tags": ["math", "random", "integer"]},
}
def invoke(self, context: InvocationContext) -> IntOutput:

View File

@@ -2,16 +2,19 @@ from typing import Literal, Optional, Union
from pydantic import BaseModel, Field
from invokeai.app.invocations.baseinvocation import (BaseInvocation,
BaseInvocationOutput, InvocationConfig,
InvocationContext)
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationConfig,
InvocationContext,
)
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.model import (LoRAModelField, MainModelField,
VAEModelField)
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
class LoRAMetadataField(BaseModel):
"""LoRA metadata for an image generated in InvokeAI."""
lora: LoRAModelField = Field(description="The LoRA model")
weight: float = Field(description="The weight of the LoRA model")
@@ -19,7 +22,9 @@ class LoRAMetadataField(BaseModel):
class CoreMetadata(BaseModel):
"""Core generation metadata for an image generated in InvokeAI."""
generation_mode: str = Field(description="The generation mode that output this image",)
generation_mode: str = Field(
description="The generation mode that output this image",
)
positive_prompt: str = Field(description="The positive prompt parameter")
negative_prompt: str = Field(description="The negative prompt parameter")
width: int = Field(description="The width parameter")
@@ -29,22 +34,41 @@ class CoreMetadata(BaseModel):
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
steps: int = Field(description="The number of steps used for inference")
scheduler: str = Field(description="The scheduler used for inference")
clip_skip: int = Field(description="The number of skipped CLIP layers",)
clip_skip: int = Field(
description="The number of skipped CLIP layers",
)
model: MainModelField = Field(description="The main model used for inference")
controlnets: list[ControlField]= Field(description="The ControlNets used for inference")
controlnets: list[ControlField] = Field(description="The ControlNets used for inference")
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
strength: Union[float, None] = Field(
default=None,
description="The strength used for latents-to-latents",
)
init_image: Union[str, None] = Field(
default=None, description="The name of the initial image"
)
vae: Union[VAEModelField, None] = Field(
default=None,
description="The VAE used for decoding, if the main model's default was not used",
)
# Latents-to-Latents
strength: Union[float, None] = Field(
default=None,
description="The strength used for latents-to-latents",
)
init_image: Union[str, None] = Field(default=None, description="The name of the initial image")
# SDXL
positive_style_prompt: Union[str, None] = Field(default=None, description="The positive style prompt parameter")
negative_style_prompt: Union[str, None] = Field(default=None, description="The negative style prompt parameter")
# SDXL Refiner
refiner_model: Union[MainModelField, None] = Field(default=None, description="The SDXL Refiner model used")
refiner_cfg_scale: Union[float, None] = Field(
default=None,
description="The classifier-free guidance scale parameter used for the refiner",
)
refiner_steps: Union[int, None] = Field(default=None, description="The number of steps used for the refiner")
refiner_scheduler: Union[str, None] = Field(default=None, description="The scheduler used for the refiner")
refiner_aesthetic_store: Union[float, None] = Field(
default=None, description="The aesthetic score used for the refiner"
)
refiner_start: Union[float, None] = Field(default=None, description="The start value used for refiner denoising")
class ImageMetadata(BaseModel):
"""An image's generation metadata"""
@@ -53,9 +77,7 @@ class ImageMetadata(BaseModel):
default=None,
description="The image's core metadata, if it was created in the Linear or Canvas UI",
)
graph: Optional[dict] = Field(
default=None, description="The graph that created the image"
)
graph: Optional[dict] = Field(default=None, description="The graph that created the image")
class MetadataAccumulatorOutput(BaseInvocationOutput):
@@ -71,7 +93,9 @@ class MetadataAccumulatorInvocation(BaseInvocation):
type: Literal["metadata_accumulator"] = "metadata_accumulator"
generation_mode: str = Field(description="The generation mode that output this image",)
generation_mode: str = Field(
description="The generation mode that output this image",
)
positive_prompt: str = Field(description="The positive prompt parameter")
negative_prompt: str = Field(description="The negative prompt parameter")
width: int = Field(description="The width parameter")
@@ -81,52 +105,48 @@ class MetadataAccumulatorInvocation(BaseInvocation):
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
steps: int = Field(description="The number of steps used for inference")
scheduler: str = Field(description="The scheduler used for inference")
clip_skip: int = Field(description="The number of skipped CLIP layers",)
clip_skip: int = Field(
description="The number of skipped CLIP layers",
)
model: MainModelField = Field(description="The main model used for inference")
controlnets: list[ControlField]= Field(description="The ControlNets used for inference")
controlnets: list[ControlField] = Field(description="The ControlNets used for inference")
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
strength: Union[float, None] = Field(
default=None,
description="The strength used for latents-to-latents",
)
init_image: Union[str, None] = Field(
default=None, description="The name of the initial image"
)
init_image: Union[str, None] = Field(default=None, description="The name of the initial image")
vae: Union[VAEModelField, None] = Field(
default=None,
description="The VAE used for decoding, if the main model's default was not used",
)
# SDXL
positive_style_prompt: Union[str, None] = Field(default=None, description="The positive style prompt parameter")
negative_style_prompt: Union[str, None] = Field(default=None, description="The negative style prompt parameter")
# SDXL Refiner
refiner_model: Union[MainModelField, None] = Field(default=None, description="The SDXL Refiner model used")
refiner_cfg_scale: Union[float, None] = Field(
default=None,
description="The classifier-free guidance scale parameter used for the refiner",
)
refiner_steps: Union[int, None] = Field(default=None, description="The number of steps used for the refiner")
refiner_scheduler: Union[str, None] = Field(default=None, description="The scheduler used for the refiner")
refiner_aesthetic_store: Union[float, None] = Field(
default=None, description="The aesthetic score used for the refiner"
)
refiner_start: Union[float, None] = Field(default=None, description="The start value used for refiner denoising")
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Metadata Accumulator",
"tags": ["image", "metadata", "generation"]
"tags": ["image", "metadata", "generation"],
},
}
def invoke(self, context: InvocationContext) -> MetadataAccumulatorOutput:
"""Collects and outputs a CoreMetadata object"""
return MetadataAccumulatorOutput(
metadata=CoreMetadata(
generation_mode=self.generation_mode,
positive_prompt=self.positive_prompt,
negative_prompt=self.negative_prompt,
width=self.width,
height=self.height,
seed=self.seed,
rand_device=self.rand_device,
cfg_scale=self.cfg_scale,
steps=self.steps,
scheduler=self.scheduler,
model=self.model,
strength=self.strength,
init_image=self.init_image,
vae=self.vae,
controlnets=self.controlnets,
loras=self.loras,
clip_skip=self.clip_skip,
)
)
return MetadataAccumulatorOutput(metadata=CoreMetadata(**self.dict()))

View File

@@ -4,17 +4,14 @@ from typing import List, Literal, Optional, Union
from pydantic import BaseModel, Field
from ...backend.model_management import BaseModelType, ModelType, SubModelType
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
class ModelInfo(BaseModel):
model_name: str = Field(description="Info to load submodel")
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Info to load submodel")
submodel: Optional[SubModelType] = Field(
default=None, description="Info to load submodel"
)
submodel: Optional[SubModelType] = Field(default=None, description="Info to load submodel")
class LoraInfo(ModelInfo):
@@ -33,6 +30,7 @@ class ClipField(BaseModel):
skipped_layers: int = Field(description="Number of skipped layers in text_encoder")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
class VaeField(BaseModel):
# TODO: better naming?
vae: ModelInfo = Field(description="Info to load vae submodel")
@@ -49,6 +47,7 @@ class ModelLoaderOutput(BaseInvocationOutput):
vae: VaeField = Field(default=None, description="Vae submodel")
# fmt: on
class MainModelField(BaseModel):
"""Main model field"""
@@ -62,6 +61,7 @@ class LoRAModelField(BaseModel):
model_name: str = Field(description="Name of the LoRA model")
base_model: BaseModelType = Field(description="Base model")
class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
@@ -180,7 +180,7 @@ class MainModelLoaderInvocation(BaseInvocation):
),
)
class LoraLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
@@ -197,9 +197,7 @@ class LoraLoaderInvocation(BaseInvocation):
type: Literal["lora_loader"] = "lora_loader"
lora: Union[LoRAModelField, None] = Field(
default=None, description="Lora model name"
)
lora: Union[LoRAModelField, None] = Field(default=None, description="Lora model name")
weight: float = Field(default=0.75, description="With what weight to apply lora")
unet: Optional[UNetField] = Field(description="UNet model for applying lora")
@@ -228,14 +226,10 @@ class LoraLoaderInvocation(BaseInvocation):
):
raise Exception(f"Unkown lora name: {lora_name}!")
if self.unet is not None and any(
lora.model_name == lora_name for lora in self.unet.loras
):
if self.unet is not None and any(lora.model_name == lora_name for lora in self.unet.loras):
raise Exception(f'Lora "{lora_name}" already applied to unet')
if self.clip is not None and any(
lora.model_name == lora_name for lora in self.clip.loras
):
if self.clip is not None and any(lora.model_name == lora_name for lora in self.clip.loras):
raise Exception(f'Lora "{lora_name}" already applied to clip')
output = LoraLoaderOutput()

View File

@@ -119,8 +119,8 @@ class NoiseInvocation(BaseInvocation):
@validator("seed", pre=True)
def modulo_seed(cls, v):
"""Returns the seed modulo SEED_MAX to ensure it is within the valid range."""
return v % SEED_MAX
"""Returns the seed modulo (SEED_MAX + 1) to ensure it is within the valid range."""
return v % (SEED_MAX + 1)
def invoke(self, context: InvocationContext) -> NoiseOutput:
noise = get_noise(

View File

@@ -12,16 +12,37 @@ import matplotlib.pyplot as plt
from easing_functions import (
LinearInOut,
QuadEaseInOut, QuadEaseIn, QuadEaseOut,
CubicEaseInOut, CubicEaseIn, CubicEaseOut,
QuarticEaseInOut, QuarticEaseIn, QuarticEaseOut,
QuinticEaseInOut, QuinticEaseIn, QuinticEaseOut,
SineEaseInOut, SineEaseIn, SineEaseOut,
CircularEaseIn, CircularEaseInOut, CircularEaseOut,
ExponentialEaseInOut, ExponentialEaseIn, ExponentialEaseOut,
ElasticEaseIn, ElasticEaseInOut, ElasticEaseOut,
BackEaseIn, BackEaseInOut, BackEaseOut,
BounceEaseIn, BounceEaseInOut, BounceEaseOut)
QuadEaseInOut,
QuadEaseIn,
QuadEaseOut,
CubicEaseInOut,
CubicEaseIn,
CubicEaseOut,
QuarticEaseInOut,
QuarticEaseIn,
QuarticEaseOut,
QuinticEaseInOut,
QuinticEaseIn,
QuinticEaseOut,
SineEaseInOut,
SineEaseIn,
SineEaseOut,
CircularEaseIn,
CircularEaseInOut,
CircularEaseOut,
ExponentialEaseInOut,
ExponentialEaseIn,
ExponentialEaseOut,
ElasticEaseIn,
ElasticEaseInOut,
ElasticEaseOut,
BackEaseIn,
BackEaseInOut,
BackEaseOut,
BounceEaseIn,
BounceEaseInOut,
BounceEaseOut,
)
from .baseinvocation import (
BaseInvocation,
@@ -45,17 +66,12 @@ class FloatLinearRangeInvocation(BaseInvocation):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Linear Range (Float)",
"tags": ["math", "float", "linear", "range"]
},
"ui": {"title": "Linear Range (Float)", "tags": ["math", "float", "linear", "range"]},
}
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
param_list = list(np.linspace(self.start, self.stop, self.steps))
return FloatCollectionOutput(
collection=param_list
)
return FloatCollectionOutput(collection=param_list)
EASING_FUNCTIONS_MAP = {
@@ -92,9 +108,7 @@ EASING_FUNCTIONS_MAP = {
"BounceInOut": BounceEaseInOut,
}
EASING_FUNCTION_KEYS: Any = Literal[
tuple(list(EASING_FUNCTIONS_MAP.keys()))
]
EASING_FUNCTION_KEYS: Any = Literal[tuple(list(EASING_FUNCTIONS_MAP.keys()))]
# actually I think for now could just use CollectionOutput (which is list[Any]
@@ -123,13 +137,9 @@ class StepParamEasingInvocation(BaseInvocation):
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Param Easing By Step",
"tags": ["param", "step", "easing"]
},
"ui": {"title": "Param Easing By Step", "tags": ["param", "step", "easing"]},
}
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
log_diagnostics = False
# convert from start_step_percent to nearest step <= (steps * start_step_percent)
@@ -170,12 +180,13 @@ class StepParamEasingInvocation(BaseInvocation):
# and create reverse copy of list[1:end-1]
# but if even then number_of_steps/2 === ceil(number_of_steps/2), so can just use ceil always
base_easing_duration = int(np.ceil(num_easing_steps/2.0))
if log_diagnostics: context.services.logger.debug("base easing duration: " + str(base_easing_duration))
even_num_steps = (num_easing_steps % 2 == 0) # even number of steps
easing_function = easing_class(start=self.start_value,
end=self.end_value,
duration=base_easing_duration - 1)
base_easing_duration = int(np.ceil(num_easing_steps / 2.0))
if log_diagnostics:
context.services.logger.debug("base easing duration: " + str(base_easing_duration))
even_num_steps = num_easing_steps % 2 == 0 # even number of steps
easing_function = easing_class(
start=self.start_value, end=self.end_value, duration=base_easing_duration - 1
)
base_easing_vals = list()
for step_index in range(base_easing_duration):
easing_val = easing_function.ease(step_index)
@@ -214,9 +225,7 @@ class StepParamEasingInvocation(BaseInvocation):
#
else: # no mirroring (default)
easing_function = easing_class(start=self.start_value,
end=self.end_value,
duration=num_easing_steps - 1)
easing_function = easing_class(start=self.start_value, end=self.end_value, duration=num_easing_steps - 1)
for step_index in range(num_easing_steps):
step_val = easing_function.ease(step_index)
easing_list.append(step_val)
@@ -240,13 +249,11 @@ class StepParamEasingInvocation(BaseInvocation):
ax = plt.gca()
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.savefig(buf, format="png")
buf.seek(0)
im = PIL.Image.open(buf)
im.show()
buf.close()
# output array of size steps, each entry list[i] is param value for step i
return FloatCollectionOutput(
collection=param_list
)
return FloatCollectionOutput(collection=param_list)

View File

@@ -4,67 +4,63 @@ from typing import Literal
from pydantic import Field
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from .math import FloatOutput, IntOutput
# Pass-through parameter nodes - used by subgraphs
class ParamIntInvocation(BaseInvocation):
"""An integer parameter"""
#fmt: off
# fmt: off
type: Literal["param_int"] = "param_int"
a: int = Field(default=0, description="The integer value")
#fmt: on
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["param", "integer"],
"title": "Integer Parameter"
},
}
schema_extra = {
"ui": {"tags": ["param", "integer"], "title": "Integer Parameter"},
}
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a)
class ParamFloatInvocation(BaseInvocation):
"""A float parameter"""
#fmt: off
# fmt: off
type: Literal["param_float"] = "param_float"
param: float = Field(default=0.0, description="The float value")
#fmt: on
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["param", "float"],
"title": "Float Parameter"
},
}
schema_extra = {
"ui": {"tags": ["param", "float"], "title": "Float Parameter"},
}
def invoke(self, context: InvocationContext) -> FloatOutput:
return FloatOutput(param=self.param)
class StringOutput(BaseInvocationOutput):
"""A string output"""
type: Literal["string_output"] = "string_output"
text: str = Field(default=None, description="The output string")
class ParamStringInvocation(BaseInvocation):
"""A string parameter"""
type: Literal['param_string'] = 'param_string'
text: str = Field(default='', description='The string value')
type: Literal["param_string"] = "param_string"
text: str = Field(default="", description="The string value")
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["param", "string"],
"title": "String Parameter"
},
}
schema_extra = {
"ui": {"tags": ["param", "string"], "title": "String Parameter"},
}
def invoke(self, context: InvocationContext) -> StringOutput:
return StringOutput(text=self.text)

View File

@@ -7,19 +7,21 @@ from pydantic import Field, validator
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from dynamicprompts.generators import RandomPromptGenerator, CombinatorialPromptGenerator
class PromptOutput(BaseInvocationOutput):
"""Base class for invocations that output a prompt"""
#fmt: off
# fmt: off
type: Literal["prompt"] = "prompt"
prompt: str = Field(default=None, description="The output prompt")
#fmt: on
# fmt: on
class Config:
schema_extra = {
'required': [
'type',
'prompt',
"required": [
"type",
"prompt",
]
}
@@ -44,16 +46,11 @@ class DynamicPromptInvocation(BaseInvocation):
type: Literal["dynamic_prompt"] = "dynamic_prompt"
prompt: str = Field(description="The prompt to parse with dynamicprompts")
max_prompts: int = Field(default=1, description="The number of prompts to generate")
combinatorial: bool = Field(
default=False, description="Whether to use the combinatorial generator"
)
combinatorial: bool = Field(default=False, description="Whether to use the combinatorial generator")
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Dynamic Prompt",
"tags": ["prompt", "dynamic"]
},
"ui": {"title": "Dynamic Prompt", "tags": ["prompt", "dynamic"]},
}
def invoke(self, context: InvocationContext) -> PromptCollectionOutput:
@@ -65,10 +62,11 @@ class DynamicPromptInvocation(BaseInvocation):
prompts = generator.generate(self.prompt, num_images=self.max_prompts)
return PromptCollectionOutput(prompt_collection=prompts, count=len(prompts))
class PromptsFromFileInvocation(BaseInvocation):
'''Loads prompts from a text file'''
"""Loads prompts from a text file"""
# fmt: off
type: Literal['prompt_from_file'] = 'prompt_from_file'
@@ -78,14 +76,11 @@ class PromptsFromFileInvocation(BaseInvocation):
post_prompt: Optional[str] = Field(description="String to append to each prompt")
start_line: int = Field(default=1, ge=1, description="Line in the file to start start from")
max_prompts: int = Field(default=1, ge=0, description="Max lines to read from file (0=all)")
#fmt: on
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Prompts From File",
"tags": ["prompt", "file"]
},
"ui": {"title": "Prompts From File", "tags": ["prompt", "file"]},
}
@validator("file_path")
@@ -103,11 +98,13 @@ class PromptsFromFileInvocation(BaseInvocation):
with open(file_path) as f:
for i, line in enumerate(f):
if i >= start_line and i < end_line:
prompts.append((pre_prompt or '') + line.strip() + (post_prompt or ''))
prompts.append((pre_prompt or "") + line.strip() + (post_prompt or ""))
if i >= end_line:
break
return prompts
def invoke(self, context: InvocationContext) -> PromptCollectionOutput:
prompts = self.promptsFromFile(self.file_path, self.pre_prompt, self.post_prompt, self.start_line, self.max_prompts)
prompts = self.promptsFromFile(
self.file_path, self.pre_prompt, self.post_prompt, self.start_line, self.max_prompts
)
return PromptCollectionOutput(prompt_collection=prompts, count=len(prompts))

View File

@@ -7,13 +7,13 @@ from pydantic import Field, validator
from ...backend.model_management import ModelType, SubModelType
from invokeai.app.util.step_callback import stable_diffusion_xl_step_callback
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from .model import UNetField, ClipField, VaeField, MainModelField, ModelInfo
from .compel import ConditioningField
from .latent import LatentsField, SAMPLER_NAME_VALUES, LatentsOutput, get_scheduler, build_latents_output
class SDXLModelLoaderOutput(BaseInvocationOutput):
"""SDXL base model loader output"""
@@ -26,16 +26,19 @@ class SDXLModelLoaderOutput(BaseInvocationOutput):
vae: VaeField = Field(default=None, description="Vae submodel")
# fmt: on
class SDXLRefinerModelLoaderOutput(BaseInvocationOutput):
"""SDXL refiner model loader output"""
# fmt: off
type: Literal["sdxl_refiner_model_loader_output"] = "sdxl_refiner_model_loader_output"
unet: UNetField = Field(default=None, description="UNet submodel")
clip2: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
vae: VaeField = Field(default=None, description="Vae submodel")
# fmt: on
#fmt: on
# fmt: on
class SDXLModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl base model, outputting its submodels."""
@@ -125,8 +128,10 @@ class SDXLModelLoaderInvocation(BaseInvocation):
),
)
class SDXLRefinerModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl refiner model, outputting its submodels."""
type: Literal["sdxl_refiner_model_loader"] = "sdxl_refiner_model_loader"
model: MainModelField = Field(description="The model to load")
@@ -138,7 +143,7 @@ class SDXLRefinerModelLoaderInvocation(BaseInvocation):
"ui": {
"title": "SDXL Refiner Model Loader",
"tags": ["model", "loader", "sdxl_refiner"],
"type_hints": {"model": "model"},
"type_hints": {"model": "refiner_model"},
},
}
@@ -196,7 +201,8 @@ class SDXLRefinerModelLoaderInvocation(BaseInvocation):
),
),
)
# Text to image
class SDXLTextToLatentsInvocation(BaseInvocation):
"""Generates latents from conditionings."""
@@ -213,9 +219,9 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
unet: UNetField = Field(default=None, description="UNet submodel")
denoising_end: float = Field(default=1.0, gt=0, le=1, description="")
#control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
# seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
# seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on
@validator("cfg_scale")
@@ -224,10 +230,10 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError('cfg_scale must be greater than 1')
raise ValueError("cfg_scale must be greater than 1")
else:
if v < 1:
raise ValueError('cfg_scale must be greater than 1')
raise ValueError("cfg_scale must be greater than 1")
return v
# Schema customisation
@@ -237,10 +243,10 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
"title": "SDXL Text To Latents",
"tags": ["latents"],
"type_hints": {
"model": "model",
# "cfg_scale": "float",
"cfg_scale": "number"
}
"model": "model",
# "cfg_scale": "float",
"cfg_scale": "number",
},
},
}
@@ -265,9 +271,7 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
latents = context.services.latents.get(self.noise.latents_name)
@@ -288,18 +292,15 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
)
num_inference_steps = self.steps
scheduler.set_timesteps(num_inference_steps)
timesteps = scheduler.timesteps
latents = latents * scheduler.init_noise_sigma
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict()
)
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict(), context=context)
do_classifier_free_guidance = True
cross_attention_kwargs = None
with unet_info as unet:
scheduler.set_timesteps(num_inference_steps, device=unet.device)
timesteps = scheduler.timesteps
latents = latents.to(device=unet.device, dtype=unet.dtype) * scheduler.init_noise_sigma
extra_step_kwargs = dict()
if "eta" in set(inspect.signature(scheduler.step).parameters.keys()):
@@ -350,10 +351,10 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
#del noise_pred_uncond
#del noise_pred_text
# del noise_pred_uncond
# del noise_pred_text
#if do_classifier_free_guidance and guidance_rescale > 0.0:
# if do_classifier_free_guidance and guidance_rescale > 0.0:
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
@@ -364,7 +365,7 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
progress_bar.update()
self.dispatch_progress(context, source_node_id, latents, i, num_inference_steps)
#if callback is not None and i % callback_steps == 0:
# if callback is not None and i % callback_steps == 0:
# callback(i, t, latents)
else:
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(device=unet.device, dtype=unet.dtype)
@@ -378,13 +379,13 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
with tqdm(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
#latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
# latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = scheduler.scale_model_input(latents, t)
#import gc
#gc.collect()
#torch.cuda.empty_cache()
# import gc
# gc.collect()
# torch.cuda.empty_cache()
# predict the noise residual
@@ -411,42 +412,41 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
# perform guidance
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
#del noise_pred_text
#del noise_pred_uncond
#import gc
#gc.collect()
#torch.cuda.empty_cache()
# del noise_pred_text
# del noise_pred_uncond
# import gc
# gc.collect()
# torch.cuda.empty_cache()
#if do_classifier_free_guidance and guidance_rescale > 0.0:
# if do_classifier_free_guidance and guidance_rescale > 0.0:
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
#del noise_pred
#import gc
#gc.collect()
#torch.cuda.empty_cache()
# del noise_pred
# import gc
# gc.collect()
# torch.cuda.empty_cache()
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
progress_bar.update()
self.dispatch_progress(context, source_node_id, latents, i, num_inference_steps)
#if callback is not None and i % callback_steps == 0:
# if callback is not None and i % callback_steps == 0:
# callback(i, t, latents)
#################
latents = latents.to("cpu")
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, latents)
return build_latents_output(latents_name=name, latents=latents)
class SDXLLatentsToLatentsInvocation(BaseInvocation):
"""Generates latents from conditionings."""
@@ -463,12 +463,12 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
unet: UNetField = Field(default=None, description="UNet submodel")
latents: Optional[LatentsField] = Field(description="Initial latents")
denoising_start: float = Field(default=0.0, ge=0, lt=1, description="")
denoising_end: float = Field(default=1.0, gt=0, le=1, description="")
denoising_start: float = Field(default=0.0, ge=0, le=1, description="")
denoising_end: float = Field(default=1.0, ge=0, le=1, description="")
#control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
# seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
# seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on
@validator("cfg_scale")
@@ -477,10 +477,10 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError('cfg_scale must be greater than 1')
raise ValueError("cfg_scale must be greater than 1")
else:
if v < 1:
raise ValueError('cfg_scale must be greater than 1')
raise ValueError("cfg_scale must be greater than 1")
return v
# Schema customisation
@@ -490,10 +490,10 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
"title": "SDXL Latents to Latents",
"tags": ["latents"],
"type_hints": {
"model": "model",
# "cfg_scale": "float",
"cfg_scale": "number"
}
"model": "model",
# "cfg_scale": "float",
"cfg_scale": "number",
},
},
}
@@ -518,9 +518,7 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
latents = context.services.latents.get(self.latents.latents_name)
@@ -540,26 +538,27 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
scheduler_name=self.scheduler,
)
# apply denoising_start
num_inference_steps = self.steps
scheduler.set_timesteps(num_inference_steps)
t_start = int(round(self.denoising_start * num_inference_steps))
timesteps = scheduler.timesteps[t_start * scheduler.order:]
num_inference_steps = num_inference_steps - t_start
# apply noise(if provided)
if self.noise is not None:
noise = context.services.latents.get(self.noise.latents_name)
latents = scheduler.add_noise(latents, noise, timesteps[:1])
del noise
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict()
**self.unet.unet.dict(),
context=context,
)
do_classifier_free_guidance = True
cross_attention_kwargs = None
with unet_info as unet:
# apply denoising_start
num_inference_steps = self.steps
scheduler.set_timesteps(num_inference_steps, device=unet.device)
t_start = int(round(self.denoising_start * num_inference_steps))
timesteps = scheduler.timesteps[t_start * scheduler.order :]
num_inference_steps = num_inference_steps - t_start
# apply noise(if provided)
if self.noise is not None and timesteps.shape[0] > 0:
noise = context.services.latents.get(self.noise.latents_name)
latents = scheduler.add_noise(latents, noise, timesteps[:1])
del noise
# apply scheduler extra args
extra_step_kwargs = dict()
@@ -611,10 +610,10 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
#del noise_pred_uncond
#del noise_pred_text
# del noise_pred_uncond
# del noise_pred_text
#if do_classifier_free_guidance and guidance_rescale > 0.0:
# if do_classifier_free_guidance and guidance_rescale > 0.0:
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
@@ -625,7 +624,7 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
progress_bar.update()
self.dispatch_progress(context, source_node_id, latents, i, num_inference_steps)
#if callback is not None and i % callback_steps == 0:
# if callback is not None and i % callback_steps == 0:
# callback(i, t, latents)
else:
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(device=unet.device, dtype=unet.dtype)
@@ -639,13 +638,13 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
with tqdm(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
#latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
# latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = scheduler.scale_model_input(latents, t)
#import gc
#gc.collect()
#torch.cuda.empty_cache()
# import gc
# gc.collect()
# torch.cuda.empty_cache()
# predict the noise residual
@@ -672,38 +671,36 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
# perform guidance
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
#del noise_pred_text
#del noise_pred_uncond
#import gc
#gc.collect()
#torch.cuda.empty_cache()
# del noise_pred_text
# del noise_pred_uncond
# import gc
# gc.collect()
# torch.cuda.empty_cache()
#if do_classifier_free_guidance and guidance_rescale > 0.0:
# if do_classifier_free_guidance and guidance_rescale > 0.0:
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
#del noise_pred
#import gc
#gc.collect()
#torch.cuda.empty_cache()
# del noise_pred
# import gc
# gc.collect()
# torch.cuda.empty_cache()
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
progress_bar.update()
self.dispatch_progress(context, source_node_id, latents, i, num_inference_steps)
#if callback is not None and i % callback_steps == 0:
# if callback is not None and i % callback_steps == 0:
# callback(i, t, latents)
#################
latents = latents.to("cpu")
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, latents)
return build_latents_output(latents_name=name, latents=latents)

View File

@@ -29,16 +29,11 @@ class ESRGANInvocation(BaseInvocation):
type: Literal["esrgan"] = "esrgan"
image: Union[ImageField, None] = Field(default=None, description="The input image")
model_name: ESRGAN_MODELS = Field(
default="RealESRGAN_x4plus.pth", description="The Real-ESRGAN model to use"
)
model_name: ESRGAN_MODELS = Field(default="RealESRGAN_x4plus.pth", description="The Real-ESRGAN model to use")
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Upscale (RealESRGAN)",
"tags": ["image", "upscale", "realesrgan"]
},
"ui": {"title": "Upscale (RealESRGAN)", "tags": ["image", "upscale", "realesrgan"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
@@ -108,9 +103,7 @@ class ESRGANInvocation(BaseInvocation):
upscaled_image, img_mode = upsampler.enhance(cv_image)
# back to PIL
pil_image = Image.fromarray(
cv.cvtColor(upscaled_image, cv.COLOR_BGR2RGB)
).convert("RGBA")
pil_image = Image.fromarray(cv.cvtColor(upscaled_image, cv.COLOR_BGR2RGB)).convert("RGBA")
image_dto = context.services.images.create(
image=pil_image,

View File

@@ -1,3 +1,4 @@
class CanceledException(Exception):
"""Execution canceled by user."""
pass

View File

@@ -1,8 +1,83 @@
from enum import Enum
from typing import Optional, Tuple
from typing import Optional, Tuple, Literal
from pydantic import BaseModel, Field
from invokeai.app.util.metaenum import MetaEnum
from ..invocations.baseinvocation import (
BaseInvocationOutput,
InvocationConfig,
)
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
image_name: Optional[str] = Field(default=None, description="The name of the image")
class Config:
schema_extra = {"required": ["image_name"]}
class ColorField(BaseModel):
r: int = Field(ge=0, le=255, description="The red component")
g: int = Field(ge=0, le=255, description="The green component")
b: int = Field(ge=0, le=255, description="The blue component")
a: int = Field(ge=0, le=255, description="The alpha component")
def tuple(self) -> Tuple[int, int, int, int]:
return (self.r, self.g, self.b, self.a)
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")
class PILInvocationConfig(BaseModel):
"""Helper class to provide all PIL invocations with additional config"""
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["PIL", "image"],
},
}
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
class Config:
schema_extra = {"required": ["type", "image", "width", "height"]}
class MaskOutput(BaseInvocationOutput):
"""Base class for invocations that output a mask"""
# fmt: off
type: Literal["mask"] = "mask"
mask: ImageField = Field(default=None, description="The output mask")
width: int = Field(description="The width of the mask in pixels")
height: int = Field(description="The height of the mask in pixels")
# fmt: on
class Config:
schema_extra = {
"required": [
"type",
"mask",
]
}
class ResourceOrigin(str, Enum, metaclass=MetaEnum):
@@ -61,30 +136,3 @@ class InvalidImageCategoryException(ValueError):
def __init__(self, message="Invalid image category."):
super().__init__(message)
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
image_name: Optional[str] = Field(default=None, description="The name of the image")
class Config:
schema_extra = {"required": ["image_name"]}
class ColorField(BaseModel):
r: int = Field(ge=0, le=255, description="The red component")
g: int = Field(ge=0, le=255, description="The green component")
b: int = Field(ge=0, le=255, description="The blue component")
a: int = Field(ge=0, le=255, description="The alpha component")
def tuple(self) -> Tuple[int, int, int, int]:
return (self.r, self.g, self.b, self.a)
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")

View File

@@ -207,9 +207,7 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
raise e
finally:
self._lock.release()
return OffsetPaginatedResults(
items=images, offset=offset, limit=limit, total=count
)
return OffsetPaginatedResults(items=images, offset=offset, limit=limit, total=count)
def get_all_board_image_names_for_board(self, board_id: str) -> list[str]:
try:

View File

@@ -102,9 +102,7 @@ class BoardImagesService(BoardImagesServiceABC):
self,
board_id: str,
) -> list[str]:
return self._services.board_image_records.get_all_board_image_names_for_board(
board_id
)
return self._services.board_image_records.get_all_board_image_names_for_board(board_id)
def get_board_for_image(
self,
@@ -114,9 +112,7 @@ class BoardImagesService(BoardImagesServiceABC):
return board_id
def board_record_to_dto(
board_record: BoardRecord, cover_image_name: Optional[str], image_count: int
) -> BoardDTO:
def board_record_to_dto(board_record: BoardRecord, cover_image_name: Optional[str], image_count: int) -> BoardDTO:
"""Converts a board record to a board DTO."""
return BoardDTO(
**board_record.dict(exclude={"cover_image_name"}),

View File

@@ -15,9 +15,7 @@ from pydantic import BaseModel, Field, Extra
class BoardChanges(BaseModel, extra=Extra.forbid):
board_name: Optional[str] = Field(description="The board's new name.")
cover_image_name: Optional[str] = Field(
description="The name of the board's new cover image."
)
cover_image_name: Optional[str] = Field(description="The name of the board's new cover image.")
class BoardRecordNotFoundException(Exception):
@@ -292,9 +290,7 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
count = cast(int, self._cursor.fetchone()[0])
return OffsetPaginatedResults[BoardRecord](
items=boards, offset=offset, limit=limit, total=count
)
return OffsetPaginatedResults[BoardRecord](items=boards, offset=offset, limit=limit, total=count)
except sqlite3.Error as e:
self._conn.rollback()

View File

@@ -108,16 +108,12 @@ class BoardService(BoardServiceABC):
def get_dto(self, board_id: str) -> BoardDTO:
board_record = self._services.board_records.get(board_id)
cover_image = self._services.image_records.get_most_recent_image_for_board(
board_record.board_id
)
cover_image = self._services.image_records.get_most_recent_image_for_board(board_record.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(
board_id
)
image_count = self._services.board_image_records.get_image_count_for_board(board_id)
return board_record_to_dto(board_record, cover_image_name, image_count)
def update(
@@ -126,60 +122,44 @@ class BoardService(BoardServiceABC):
changes: BoardChanges,
) -> BoardDTO:
board_record = self._services.board_records.update(board_id, changes)
cover_image = self._services.image_records.get_most_recent_image_for_board(
board_record.board_id
)
cover_image = self._services.image_records.get_most_recent_image_for_board(board_record.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(
board_id
)
image_count = self._services.board_image_records.get_image_count_for_board(board_id)
return board_record_to_dto(board_record, cover_image_name, image_count)
def delete(self, board_id: str) -> None:
self._services.board_records.delete(board_id)
def get_many(
self, offset: int = 0, limit: int = 10
) -> OffsetPaginatedResults[BoardDTO]:
def get_many(self, offset: int = 0, limit: int = 10) -> OffsetPaginatedResults[BoardDTO]:
board_records = self._services.board_records.get_many(offset, limit)
board_dtos = []
for r in board_records.items:
cover_image = self._services.image_records.get_most_recent_image_for_board(
r.board_id
)
cover_image = self._services.image_records.get_most_recent_image_for_board(r.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(
r.board_id
)
image_count = self._services.board_image_records.get_image_count_for_board(r.board_id)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return OffsetPaginatedResults[BoardDTO](
items=board_dtos, offset=offset, limit=limit, total=len(board_dtos)
)
return OffsetPaginatedResults[BoardDTO](items=board_dtos, offset=offset, limit=limit, total=len(board_dtos))
def get_all(self) -> list[BoardDTO]:
board_records = self._services.board_records.get_all()
board_dtos = []
for r in board_records:
cover_image = self._services.image_records.get_most_recent_image_for_board(
r.board_id
)
cover_image = self._services.image_records.get_most_recent_image_for_board(r.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(
r.board_id
)
image_count = self._services.board_image_records.get_image_count_for_board(r.board_id)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return board_dtos
return board_dtos

View File

@@ -1,6 +1,6 @@
# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team
'''Invokeai configuration system.
"""Invokeai configuration system.
Arguments and fields are taken from the pydantic definition of the
model. Defaults can be set by creating a yaml configuration file that
@@ -28,7 +28,6 @@ InvokeAI:
always_use_cpu: false
free_gpu_mem: false
Features:
nsfw_checker: true
restore: true
esrgan: true
patchmatch: true
@@ -92,18 +91,18 @@ Typical usage at the top level file:
from invokeai.app.services.config import InvokeAIAppConfig
# get global configuration and print its nsfw_checker value
# get global configuration and print its cache size
conf = InvokeAIAppConfig.get_config()
conf.parse_args()
print(conf.nsfw_checker)
print(conf.max_cache_size)
Typical usage in a backend module:
from invokeai.app.services.config import InvokeAIAppConfig
# get global configuration and print its nsfw_checker value
# get global configuration and print its cache size value
conf = InvokeAIAppConfig.get_config()
print(conf.nsfw_checker)
print(conf.max_cache_size)
Computed properties:
@@ -159,7 +158,7 @@ two configs are kept in separate sections of the config file:
outdir: outputs
...
'''
"""
from __future__ import annotations
import argparse
import pydoc
@@ -171,64 +170,68 @@ from pathlib import Path
from pydantic import BaseSettings, Field, parse_obj_as
from typing import ClassVar, Dict, List, Set, Literal, Union, get_origin, get_type_hints, get_args
INIT_FILE = Path('invokeai.yaml')
MODEL_CORE = Path('models/core')
DB_FILE = Path('invokeai.db')
LEGACY_INIT_FILE = Path('invokeai.init')
INIT_FILE = Path("invokeai.yaml")
MODEL_CORE = Path("models/core")
DB_FILE = Path("invokeai.db")
LEGACY_INIT_FILE = Path("invokeai.init")
class InvokeAISettings(BaseSettings):
'''
"""
Runtime configuration settings in which default values are
read from an omegaconf .yaml file.
'''
initconf : ClassVar[DictConfig] = None
argparse_groups : ClassVar[Dict] = {}
"""
def parse_args(self, argv: list=sys.argv[1:]):
initconf: ClassVar[DictConfig] = None
argparse_groups: ClassVar[Dict] = {}
def parse_args(self, argv: list = sys.argv[1:]):
parser = self.get_parser()
opt = parser.parse_args(argv)
for name in self.__fields__:
if name not in self._excluded():
setattr(self, name, getattr(opt,name))
setattr(self, name, getattr(opt, name))
def to_yaml(self)->str:
def to_yaml(self) -> str:
"""
Return a YAML string representing our settings. This can be used
as the contents of `invokeai.yaml` to restore settings later.
"""
cls = self.__class__
type = get_args(get_type_hints(cls)['type'])[0]
field_dict = dict({type:dict()})
for name,field in self.__fields__.items():
type = get_args(get_type_hints(cls)["type"])[0]
field_dict = dict({type: dict()})
for name, field in self.__fields__.items():
if name in cls._excluded_from_yaml():
continue
category = field.field_info.extra.get("category") or "Uncategorized"
value = getattr(self,name)
value = getattr(self, name)
if category not in field_dict[type]:
field_dict[type][category] = dict()
# keep paths as strings to make it easier to read
field_dict[type][category][name] = str(value) if isinstance(value,Path) else value
field_dict[type][category][name] = str(value) if isinstance(value, Path) else value
conf = OmegaConf.create(field_dict)
return OmegaConf.to_yaml(conf)
@classmethod
def add_parser_arguments(cls, parser):
if 'type' in get_type_hints(cls):
settings_stanza = get_args(get_type_hints(cls)['type'])[0]
if "type" in get_type_hints(cls):
settings_stanza = get_args(get_type_hints(cls)["type"])[0]
else:
settings_stanza = "Uncategorized"
env_prefix = cls.Config.env_prefix if hasattr(cls.Config,'env_prefix') else settings_stanza.upper()
env_prefix = cls.Config.env_prefix if hasattr(cls.Config, "env_prefix") else settings_stanza.upper()
initconf = cls.initconf.get(settings_stanza) \
if cls.initconf and settings_stanza in cls.initconf \
else OmegaConf.create()
initconf = (
cls.initconf.get(settings_stanza)
if cls.initconf and settings_stanza in cls.initconf
else OmegaConf.create()
)
# create an upcase version of the environment in
# order to achieve case-insensitive environment
# variables (the way Windows does)
upcase_environ = dict()
for key,value in os.environ.items():
for key, value in os.environ.items():
upcase_environ[key.upper()] = value
fields = cls.__fields__
@@ -238,8 +241,8 @@ class InvokeAISettings(BaseSettings):
if name not in cls._excluded():
current_default = field.default
category = field.field_info.extra.get("category","Uncategorized")
env_name = env_prefix + '_' + name
category = field.field_info.extra.get("category", "Uncategorized")
env_name = env_prefix + "_" + name
if category in initconf and name in initconf.get(category):
field.default = initconf.get(category).get(name)
if env_name.upper() in upcase_environ:
@@ -249,15 +252,15 @@ class InvokeAISettings(BaseSettings):
field.default = current_default
@classmethod
def cmd_name(self, command_field: str='type')->str:
def cmd_name(self, command_field: str = "type") -> str:
hints = get_type_hints(self)
if command_field in hints:
return get_args(hints[command_field])[0]
else:
return 'Uncategorized'
return "Uncategorized"
@classmethod
def get_parser(cls)->ArgumentParser:
def get_parser(cls) -> ArgumentParser:
parser = PagingArgumentParser(
prog=cls.cmd_name(),
description=cls.__doc__,
@@ -270,24 +273,41 @@ class InvokeAISettings(BaseSettings):
parser.add_parser(cls.cmd_name(), help=cls.__doc__)
@classmethod
def _excluded(self)->List[str]:
def _excluded(self) -> List[str]:
# internal fields that shouldn't be exposed as command line options
return ['type','initconf']
return ["type", "initconf"]
@classmethod
def _excluded_from_yaml(self)->List[str]:
def _excluded_from_yaml(self) -> List[str]:
# combination of deprecated parameters and internal ones that shouldn't be exposed as invokeai.yaml options
return ['type','initconf', 'gpu_mem_reserved', 'max_loaded_models', 'version', 'from_file', 'model', 'restore', 'root']
return [
"type",
"initconf",
"gpu_mem_reserved",
"max_loaded_models",
"version",
"from_file",
"model",
"restore",
"root",
"nsfw_checker",
]
class Config:
env_file_encoding = 'utf-8'
env_file_encoding = "utf-8"
arbitrary_types_allowed = True
case_sensitive = True
@classmethod
def add_field_argument(cls, command_parser, name: str, field, default_override = None):
def add_field_argument(cls, command_parser, name: str, field, default_override=None):
field_type = get_type_hints(cls).get(name)
default = default_override if default_override is not None else field.default if field.default_factory is None else field.default_factory()
default = (
default_override
if default_override is not None
else field.default
if field.default_factory is None
else field.default_factory()
)
if category := field.field_info.extra.get("category"):
if category not in cls.argparse_groups:
cls.argparse_groups[category] = command_parser.add_argument_group(category)
@@ -316,10 +336,10 @@ class InvokeAISettings(BaseSettings):
argparse_group.add_argument(
f"--{name}",
dest=name,
nargs='*',
nargs="*",
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_==bool else 'store',
action=argparse.BooleanOptionalAction if field.type_ == bool else "store",
help=field.field_info.description,
)
else:
@@ -328,31 +348,35 @@ class InvokeAISettings(BaseSettings):
dest=name,
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_==bool else 'store',
action=argparse.BooleanOptionalAction if field.type_ == bool else "store",
help=field.field_info.description,
)
def _find_root()->Path:
def _find_root() -> Path:
venv = Path(os.environ.get("VIRTUAL_ENV") or ".")
if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ.get("INVOKEAI_ROOT")).resolve()
elif any([(venv.parent/x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE, MODEL_CORE]]):
elif any([(venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE, MODEL_CORE]]):
root = (venv.parent).resolve()
else:
root = Path("~/invokeai").expanduser().resolve()
return root
class InvokeAIAppConfig(InvokeAISettings):
'''
Generate images using Stable Diffusion. Use "invokeai" to launch
the command-line client (recommended for experts only), or
"invokeai-web" to launch the web server. Global options
can be changed by editing the file "INVOKEAI_ROOT/invokeai.yaml" or by
setting environment variables INVOKEAI_<setting>.
'''
"""
Generate images using Stable Diffusion. Use "invokeai" to launch
the command-line client (recommended for experts only), or
"invokeai-web" to launch the web server. Global options
can be changed by editing the file "INVOKEAI_ROOT/invokeai.yaml" or by
setting environment variables INVOKEAI_<setting>.
"""
singleton_config: ClassVar[InvokeAIAppConfig] = None
singleton_init: ClassVar[Dict] = None
#fmt: off
# fmt: off
type: Literal["InvokeAI"] = "InvokeAI"
host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server')
port : int = Field(default=9090, description="Port to bind to", category='Web Server')
@@ -364,7 +388,6 @@ setting environment variables INVOKEAI_<setting>.
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", category='Features')
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features')
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features')
nsfw_checker : bool = Field(default=True, description="Enable/disable the NSFW checker", category='Features')
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features')
restore : bool = Field(default=True, description="Enable/disable face restoration code (DEPRECATED)", category='DEPRECATED')
@@ -374,6 +397,7 @@ setting environment variables INVOKEAI_<setting>.
max_cache_size : float = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance')
max_vram_cache_size : float = Field(default=2.75, ge=0, description="Amount of VRAM reserved for model storage", category='Memory/Performance')
gpu_mem_reserved : float = Field(default=2.75, ge=0, description="DEPRECATED: use max_vram_cache_size. Amount of VRAM reserved for model storage", category='DEPRECATED')
nsfw_checker : bool = Field(default=True, description="DEPRECATED: use Web settings to enable/disable", category='DEPRECATED')
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='auto',description='Floating point precision', category='Memory/Performance')
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
@@ -400,16 +424,16 @@ setting environment variables INVOKEAI_<setting>.
log_level : Literal[tuple(["debug","info","warning","error","critical"])] = Field(default="info", description="Emit logging messages at this level or higher", category="Logging")
version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other")
#fmt: on
# fmt: on
def parse_args(self, argv: List[str]=None, conf: DictConfig = None, clobber=False):
'''
def parse_args(self, argv: List[str] = None, conf: DictConfig = None, clobber=False):
"""
Update settings with contents of init file, environment, and
command-line settings.
:param conf: alternate Omegaconf dictionary object
:param argv: aternate sys.argv list
:param clobber: ovewrite any initialization parameters passed during initialization
'''
"""
# Set the runtime root directory. We parse command-line switches here
# in order to pick up the --root_dir option.
super().parse_args(argv)
@@ -426,125 +450,139 @@ setting environment variables INVOKEAI_<setting>.
if self.singleton_init and not clobber:
hints = get_type_hints(self.__class__)
for k in self.singleton_init:
setattr(self,k,parse_obj_as(hints[k],self.singleton_init[k]))
setattr(self, k, parse_obj_as(hints[k], self.singleton_init[k]))
@classmethod
def get_config(cls,**kwargs)->InvokeAIAppConfig:
'''
def get_config(cls, **kwargs) -> InvokeAIAppConfig:
"""
This returns a singleton InvokeAIAppConfig configuration object.
'''
if cls.singleton_config is None \
or type(cls.singleton_config)!=cls \
or (kwargs and cls.singleton_init != kwargs):
"""
if (
cls.singleton_config is None
or type(cls.singleton_config) != cls
or (kwargs and cls.singleton_init != kwargs)
):
cls.singleton_config = cls(**kwargs)
cls.singleton_init = kwargs
return cls.singleton_config
@property
def root_path(self)->Path:
'''
def root_path(self) -> Path:
"""
Path to the runtime root directory
'''
"""
if self.root:
return Path(self.root).expanduser().absolute()
else:
return self.find_root()
@property
def root_dir(self)->Path:
'''
def root_dir(self) -> Path:
"""
Alias for above.
'''
"""
return self.root_path
def _resolve(self,partial_path:Path)->Path:
def _resolve(self, partial_path: Path) -> Path:
return (self.root_path / partial_path).resolve()
@property
def init_file_path(self)->Path:
'''
def init_file_path(self) -> Path:
"""
Path to invokeai.yaml
'''
"""
return self._resolve(INIT_FILE)
@property
def output_path(self)->Path:
'''
def output_path(self) -> Path:
"""
Path to defaults outputs directory.
'''
"""
return self._resolve(self.outdir)
@property
def db_path(self)->Path:
'''
def db_path(self) -> Path:
"""
Path to the invokeai.db file.
'''
"""
return self._resolve(self.db_dir) / DB_FILE
@property
def model_conf_path(self)->Path:
'''
def model_conf_path(self) -> Path:
"""
Path to models configuration file.
'''
"""
return self._resolve(self.conf_path)
@property
def legacy_conf_path(self)->Path:
'''
def legacy_conf_path(self) -> Path:
"""
Path to directory of legacy configuration files (e.g. v1-inference.yaml)
'''
"""
return self._resolve(self.legacy_conf_dir)
@property
def models_path(self)->Path:
'''
def models_path(self) -> Path:
"""
Path to the models directory
'''
"""
return self._resolve(self.models_dir)
@property
def autoconvert_path(self)->Path:
'''
def autoconvert_path(self) -> Path:
"""
Path to the directory containing models to be imported automatically at startup.
'''
"""
return self._resolve(self.autoconvert_dir) if self.autoconvert_dir else None
# the following methods support legacy calls leftover from the Globals era
@property
def full_precision(self)->bool:
def full_precision(self) -> bool:
"""Return true if precision set to float32"""
return self.precision=='float32'
return self.precision == "float32"
@property
def disable_xformers(self)->bool:
def disable_xformers(self) -> bool:
"""Return true if xformers_enabled is false"""
return not self.xformers_enabled
@property
def try_patchmatch(self)->bool:
def try_patchmatch(self) -> bool:
"""Return true if patchmatch true"""
return self.patchmatch
@property
def nsfw_checker(self) -> bool:
"""NSFW node is always active and disabled from Web UIe"""
return True
@property
def invisible_watermark(self) -> bool:
"""invisible watermark node is always active and disabled from Web UIe"""
return True
@staticmethod
def find_root()->Path:
'''
def find_root() -> Path:
"""
Choose the runtime root directory when not specified on command line or
init file.
'''
"""
return _find_root()
class PagingArgumentParser(argparse.ArgumentParser):
'''
"""
A custom ArgumentParser that uses pydoc to page its output.
It also supports reading defaults from an init file.
'''
"""
def print_help(self, file=None):
text = self.format_help()
pydoc.pager(text)
def get_invokeai_config(**kwargs)->InvokeAIAppConfig:
'''
def get_invokeai_config(**kwargs) -> InvokeAIAppConfig:
"""
Legacy function which returns InvokeAIAppConfig.get_config()
'''
"""
return InvokeAIAppConfig.get_config(**kwargs)

View File

@@ -1,4 +1,5 @@
from ..invocations.latent import LatentsToImageInvocation, TextToLatentsInvocation
from ..invocations.image import ImageNSFWBlurInvocation
from ..invocations.noise import NoiseInvocation
from ..invocations.compel import CompelInvocation
from ..invocations.params import ParamIntInvocation
@@ -6,55 +7,80 @@ from .graph import Edge, EdgeConnection, ExposedNodeInput, ExposedNodeOutput, Gr
from .item_storage import ItemStorageABC
default_text_to_image_graph_id = '539b2af5-2b4d-4d8c-8071-e54a3255fc74'
default_text_to_image_graph_id = "539b2af5-2b4d-4d8c-8071-e54a3255fc74"
def create_text_to_image() -> LibraryGraph:
return LibraryGraph(
id=default_text_to_image_graph_id,
name='t2i',
description='Converts text to an image',
name="t2i",
description="Converts text to an image",
graph=Graph(
nodes={
'width': ParamIntInvocation(id='width', a=512),
'height': ParamIntInvocation(id='height', a=512),
'seed': ParamIntInvocation(id='seed', a=-1),
'3': NoiseInvocation(id='3'),
'4': CompelInvocation(id='4'),
'5': CompelInvocation(id='5'),
'6': TextToLatentsInvocation(id='6'),
'7': LatentsToImageInvocation(id='7'),
"width": ParamIntInvocation(id="width", a=512),
"height": ParamIntInvocation(id="height", a=512),
"seed": ParamIntInvocation(id="seed", a=-1),
"3": NoiseInvocation(id="3"),
"4": CompelInvocation(id="4"),
"5": CompelInvocation(id="5"),
"6": TextToLatentsInvocation(id="6"),
"7": LatentsToImageInvocation(id="7"),
"8": ImageNSFWBlurInvocation(id="8"),
},
edges=[
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='3', field='width')),
Edge(source=EdgeConnection(node_id='height', field='a'), destination=EdgeConnection(node_id='3', field='height')),
Edge(source=EdgeConnection(node_id='seed', field='a'), destination=EdgeConnection(node_id='3', field='seed')),
Edge(source=EdgeConnection(node_id='3', field='noise'), destination=EdgeConnection(node_id='6', field='noise')),
Edge(source=EdgeConnection(node_id='6', field='latents'), destination=EdgeConnection(node_id='7', field='latents')),
Edge(source=EdgeConnection(node_id='4', field='conditioning'), destination=EdgeConnection(node_id='6', field='positive_conditioning')),
Edge(source=EdgeConnection(node_id='5', field='conditioning'), destination=EdgeConnection(node_id='6', field='negative_conditioning')),
]
Edge(
source=EdgeConnection(node_id="width", field="a"),
destination=EdgeConnection(node_id="3", field="width"),
),
Edge(
source=EdgeConnection(node_id="height", field="a"),
destination=EdgeConnection(node_id="3", field="height"),
),
Edge(
source=EdgeConnection(node_id="seed", field="a"),
destination=EdgeConnection(node_id="3", field="seed"),
),
Edge(
source=EdgeConnection(node_id="3", field="noise"),
destination=EdgeConnection(node_id="6", field="noise"),
),
Edge(
source=EdgeConnection(node_id="6", field="latents"),
destination=EdgeConnection(node_id="7", field="latents"),
),
Edge(
source=EdgeConnection(node_id="4", field="conditioning"),
destination=EdgeConnection(node_id="6", field="positive_conditioning"),
),
Edge(
source=EdgeConnection(node_id="5", field="conditioning"),
destination=EdgeConnection(node_id="6", field="negative_conditioning"),
),
Edge(
source=EdgeConnection(node_id="7", field="image"),
destination=EdgeConnection(node_id="8", field="image"),
),
],
),
exposed_inputs=[
ExposedNodeInput(node_path='4', field='prompt', alias='positive_prompt'),
ExposedNodeInput(node_path='5', field='prompt', alias='negative_prompt'),
ExposedNodeInput(node_path='width', field='a', alias='width'),
ExposedNodeInput(node_path='height', field='a', alias='height'),
ExposedNodeInput(node_path='seed', field='a', alias='seed'),
ExposedNodeInput(node_path="4", field="prompt", alias="positive_prompt"),
ExposedNodeInput(node_path="5", field="prompt", alias="negative_prompt"),
ExposedNodeInput(node_path="width", field="a", alias="width"),
ExposedNodeInput(node_path="height", field="a", alias="height"),
ExposedNodeInput(node_path="seed", field="a", alias="seed"),
],
exposed_outputs=[
ExposedNodeOutput(node_path='7', field='image', alias='image')
])
exposed_outputs=[ExposedNodeOutput(node_path="8", field="image", alias="image")],
)
def create_system_graphs(graph_library: ItemStorageABC[LibraryGraph]) -> list[LibraryGraph]:
"""Creates the default system graphs, or adds new versions if the old ones don't match"""
# TODO: Uncomment this when we are ready to fix this up to prevent breaking changes
graphs: list[LibraryGraph] = list()
# text_to_image = graph_library.get(default_text_to_image_graph_id)
# # TODO: Check if the graph is the same as the default one, and if not, update it
# #if text_to_image is None:
text_to_image = create_text_to_image()

View File

@@ -3,7 +3,13 @@
from typing import Any, Optional
from invokeai.app.models.image import ProgressImage
from invokeai.app.util.misc import get_timestamp
from invokeai.app.services.model_manager_service import BaseModelType, ModelType, SubModelType, ModelInfo
from invokeai.app.services.model_manager_service import (
BaseModelType,
ModelType,
SubModelType,
ModelInfo,
)
class EventServiceBase:
session_event: str = "session_event"
@@ -67,6 +73,7 @@ class EventServiceBase:
graph_execution_state_id: str,
node: dict,
source_node_id: str,
error_type: str,
error: str,
) -> None:
"""Emitted when an invocation has completed"""
@@ -76,13 +83,12 @@ class EventServiceBase:
graph_execution_state_id=graph_execution_state_id,
node=node,
source_node_id=source_node_id,
error_type=error_type,
error=error,
),
)
def emit_invocation_started(
self, graph_execution_state_id: str, node: dict, source_node_id: str
) -> None:
def emit_invocation_started(self, graph_execution_state_id: str, node: dict, source_node_id: str) -> None:
"""Emitted when an invocation has started"""
self.__emit_session_event(
event_name="invocation_started",
@@ -102,13 +108,13 @@ class EventServiceBase:
),
)
def emit_model_load_started (
self,
graph_execution_state_id: str,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
def emit_model_load_started(
self,
graph_execution_state_id: str,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
) -> None:
"""Emitted when a model is requested"""
self.__emit_session_event(
@@ -123,13 +129,13 @@ class EventServiceBase:
)
def emit_model_load_completed(
self,
graph_execution_state_id: str,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
model_info: ModelInfo,
self,
graph_execution_state_id: str,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
model_info: ModelInfo,
) -> None:
"""Emitted when a model is correctly loaded (returns model info)"""
self.__emit_session_event(
@@ -145,3 +151,37 @@ class EventServiceBase:
precision=str(model_info.precision),
),
)
def emit_session_retrieval_error(
self,
graph_execution_state_id: str,
error_type: str,
error: str,
) -> None:
"""Emitted when session retrieval fails"""
self.__emit_session_event(
event_name="session_retrieval_error",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
error_type=error_type,
error=error,
),
)
def emit_invocation_retrieval_error(
self,
graph_execution_state_id: str,
node_id: str,
error_type: str,
error: str,
) -> None:
"""Emitted when invocation retrieval fails"""
self.__emit_session_event(
event_name="invocation_retrieval_error",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
node_id=node_id,
error_type=error_type,
error=error,
),
)

View File

@@ -28,6 +28,7 @@ from ..invocations.baseinvocation import (
# in 3.10 this would be "from types import NoneType"
NoneType = type(None)
class EdgeConnection(BaseModel):
node_id: str = Field(description="The id of the node for this edge connection")
field: str = Field(description="The field for this connection")
@@ -61,6 +62,7 @@ def get_input_field(node: BaseInvocation, field: str) -> Any:
node_input_field = node_inputs.get(field) or None
return node_input_field
def is_union_subtype(t1, t2):
t1_args = get_args(t1)
t2_args = get_args(t2)
@@ -71,6 +73,7 @@ def is_union_subtype(t1, t2):
# t1 is a Union, check that all of its types are in t2_args
return all(arg in t2_args for arg in t1_args)
def is_list_or_contains_list(t):
t_args = get_args(t)
@@ -154,15 +157,17 @@ class GraphInvocationOutput(BaseInvocationOutput):
class Config:
schema_extra = {
'required': [
'type',
'image',
"required": [
"type",
"image",
]
}
# TODO: Fill this out and move to invocations
class GraphInvocation(BaseInvocation):
"""Execute a graph"""
type: Literal["graph"] = "graph"
# TODO: figure out how to create a default here
@@ -182,23 +187,21 @@ class IterateInvocationOutput(BaseInvocationOutput):
class Config:
schema_extra = {
'required': [
'type',
'item',
"required": [
"type",
"item",
]
}
# TODO: Fill this out and move to invocations
class IterateInvocation(BaseInvocation):
"""Iterates over a list of items"""
type: Literal["iterate"] = "iterate"
collection: list[Any] = Field(
description="The list of items to iterate over", default_factory=list
)
index: int = Field(
description="The index, will be provided on executed iterators", default=0
)
collection: list[Any] = Field(description="The list of items to iterate over", default_factory=list)
index: int = Field(description="The index, will be provided on executed iterators", default=0)
def invoke(self, context: InvocationContext) -> IterateInvocationOutput:
"""Produces the outputs as values"""
@@ -212,12 +215,13 @@ class CollectInvocationOutput(BaseInvocationOutput):
class Config:
schema_extra = {
'required': [
'type',
'collection',
"required": [
"type",
"collection",
]
}
class CollectInvocation(BaseInvocation):
"""Collects values into a collection"""
@@ -269,9 +273,7 @@ class Graph(BaseModel):
if node_path in self.nodes:
return (self, node_path)
node_id = (
node_path if "." not in node_path else node_path[: node_path.index(".")]
)
node_id = node_path if "." not in node_path else node_path[: node_path.index(".")]
if node_id not in self.nodes:
raise NodeNotFoundError(f"Node {node_path} not found in graph")
@@ -333,9 +335,7 @@ class Graph(BaseModel):
return False
# Validate all edges reference nodes in the graph
node_ids = set(
[e.source.node_id for e in self.edges] + [e.destination.node_id for e in self.edges]
)
node_ids = set([e.source.node_id for e in self.edges] + [e.destination.node_id for e in self.edges])
if not all((self.has_node(node_id) for node_id in node_ids)):
return False
@@ -361,22 +361,14 @@ class Graph(BaseModel):
# Validate all iterators
# TODO: may need to validate all iterators in subgraphs so edge connections in parent graphs will be available
if not all(
(
self._is_iterator_connection_valid(n.id)
for n in self.nodes.values()
if isinstance(n, IterateInvocation)
)
(self._is_iterator_connection_valid(n.id) for n in self.nodes.values() if isinstance(n, IterateInvocation))
):
return False
# Validate all collectors
# TODO: may need to validate all collectors in subgraphs so edge connections in parent graphs will be available
if not all(
(
self._is_collector_connection_valid(n.id)
for n in self.nodes.values()
if isinstance(n, CollectInvocation)
)
(self._is_collector_connection_valid(n.id) for n in self.nodes.values() if isinstance(n, CollectInvocation))
):
return False
@@ -395,48 +387,51 @@ class Graph(BaseModel):
# Validate that an edge to this node+field doesn't already exist
input_edges = self._get_input_edges(edge.destination.node_id, edge.destination.field)
if len(input_edges) > 0 and not isinstance(to_node, CollectInvocation):
raise InvalidEdgeError(f'Edge to node {edge.destination.node_id} field {edge.destination.field} already exists')
raise InvalidEdgeError(
f"Edge to node {edge.destination.node_id} field {edge.destination.field} already exists"
)
# Validate that no cycles would be created
g = self.nx_graph_flat()
g.add_edge(edge.source.node_id, edge.destination.node_id)
if not nx.is_directed_acyclic_graph(g):
raise InvalidEdgeError(f'Edge creates a cycle in the graph: {edge.source.node_id} -> {edge.destination.node_id}')
raise InvalidEdgeError(
f"Edge creates a cycle in the graph: {edge.source.node_id} -> {edge.destination.node_id}"
)
# Validate that the field types are compatible
if not are_connections_compatible(
from_node, edge.source.field, to_node, edge.destination.field
):
raise InvalidEdgeError(f'Fields are incompatible: cannot connect {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
if not are_connections_compatible(from_node, edge.source.field, to_node, edge.destination.field):
raise InvalidEdgeError(
f"Fields are incompatible: cannot connect {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
)
# Validate if iterator output type matches iterator input type (if this edge results in both being set)
if isinstance(to_node, IterateInvocation) and edge.destination.field == "collection":
if not self._is_iterator_connection_valid(
edge.destination.node_id, new_input=edge.source
):
raise InvalidEdgeError(f'Iterator input type does not match iterator output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
if not self._is_iterator_connection_valid(edge.destination.node_id, new_input=edge.source):
raise InvalidEdgeError(
f"Iterator input type does not match iterator output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
)
# Validate if iterator input type matches output type (if this edge results in both being set)
if isinstance(from_node, IterateInvocation) and edge.source.field == "item":
if not self._is_iterator_connection_valid(
edge.source.node_id, new_output=edge.destination
):
raise InvalidEdgeError(f'Iterator output type does not match iterator input type:, {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
if not self._is_iterator_connection_valid(edge.source.node_id, new_output=edge.destination):
raise InvalidEdgeError(
f"Iterator output type does not match iterator input type:, {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
)
# Validate if collector input type matches output type (if this edge results in both being set)
if isinstance(to_node, CollectInvocation) and edge.destination.field == "item":
if not self._is_collector_connection_valid(
edge.destination.node_id, new_input=edge.source
):
raise InvalidEdgeError(f'Collector output type does not match collector input type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
if not self._is_collector_connection_valid(edge.destination.node_id, new_input=edge.source):
raise InvalidEdgeError(
f"Collector output type does not match collector input type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
)
# Validate if collector output type matches input type (if this edge results in both being set)
if isinstance(from_node, CollectInvocation) and edge.source.field == "collection":
if not self._is_collector_connection_valid(
edge.source.node_id, new_output=edge.destination
):
raise InvalidEdgeError(f'Collector input type does not match collector output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
if not self._is_collector_connection_valid(edge.source.node_id, new_output=edge.destination):
raise InvalidEdgeError(
f"Collector input type does not match collector output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
)
def has_node(self, node_path: str) -> bool:
"""Determines whether or not a node exists in the graph."""
@@ -465,17 +460,13 @@ class Graph(BaseModel):
# Ensure the node type matches the new node
if type(node) != type(new_node):
raise TypeError(
f"Node {node_path} is type {type(node)} but new node is type {type(new_node)}"
)
raise TypeError(f"Node {node_path} is type {type(node)} but new node is type {type(new_node)}")
# Ensure the new id is either the same or is not in the graph
prefix = None if "." not in node_path else node_path[: node_path.rindex(".")]
new_path = self._get_node_path(new_node.id, prefix=prefix)
if new_node.id != node.id and self.has_node(new_path):
raise NodeAlreadyInGraphError(
"Node with id {new_node.id} already exists in graph"
)
raise NodeAlreadyInGraphError("Node with id {new_node.id} already exists in graph")
# Set the new node in the graph
graph.nodes[new_node.id] = new_node
@@ -497,9 +488,7 @@ class Graph(BaseModel):
graph.add_edge(
Edge(
source=edge.source,
destination=EdgeConnection(
node_id=new_graph_node_path, field=edge.destination.field
)
destination=EdgeConnection(node_id=new_graph_node_path, field=edge.destination.field),
)
)
@@ -512,16 +501,12 @@ class Graph(BaseModel):
)
graph.add_edge(
Edge(
source=EdgeConnection(
node_id=new_graph_node_path, field=edge.source.field
),
destination=edge.destination
source=EdgeConnection(node_id=new_graph_node_path, field=edge.source.field),
destination=edge.destination,
)
)
def _get_input_edges(
self, node_path: str, field: Optional[str] = None
) -> list[Edge]:
def _get_input_edges(self, node_path: str, field: Optional[str] = None) -> list[Edge]:
"""Gets all input edges for a node"""
edges = self._get_input_edges_and_graphs(node_path)
@@ -538,7 +523,7 @@ class Graph(BaseModel):
destination=EdgeConnection(
node_id=self._get_node_path(e.destination.node_id, prefix=prefix),
field=e.destination.field,
)
),
)
for _, prefix, e in filtered_edges
]
@@ -550,32 +535,20 @@ class Graph(BaseModel):
edges = list()
# Return any input edges that appear in this graph
edges.extend(
[(self, prefix, e) for e in self.edges if e.destination.node_id == node_path]
)
edges.extend([(self, prefix, e) for e in self.edges if e.destination.node_id == node_path])
node_id = (
node_path if "." not in node_path else node_path[: node_path.index(".")]
)
node_id = node_path if "." not in node_path else node_path[: node_path.index(".")]
node = self.nodes[node_id]
if isinstance(node, GraphInvocation):
graph = node.graph
graph_path = (
node.id
if prefix is None or prefix == ""
else self._get_node_path(node.id, prefix=prefix)
)
graph_edges = graph._get_input_edges_and_graphs(
node_path[(len(node_id) + 1) :], prefix=graph_path
)
graph_path = node.id if prefix is None or prefix == "" else self._get_node_path(node.id, prefix=prefix)
graph_edges = graph._get_input_edges_and_graphs(node_path[(len(node_id) + 1) :], prefix=graph_path)
edges.extend(graph_edges)
return edges
def _get_output_edges(
self, node_path: str, field: str
) -> list[Edge]:
def _get_output_edges(self, node_path: str, field: str) -> list[Edge]:
"""Gets all output edges for a node"""
edges = self._get_output_edges_and_graphs(node_path)
@@ -592,7 +565,7 @@ class Graph(BaseModel):
destination=EdgeConnection(
node_id=self._get_node_path(e.destination.node_id, prefix=prefix),
field=e.destination.field,
)
),
)
for _, prefix, e in filtered_edges
]
@@ -604,25 +577,15 @@ class Graph(BaseModel):
edges = list()
# Return any input edges that appear in this graph
edges.extend(
[(self, prefix, e) for e in self.edges if e.source.node_id == node_path]
)
edges.extend([(self, prefix, e) for e in self.edges if e.source.node_id == node_path])
node_id = (
node_path if "." not in node_path else node_path[: node_path.index(".")]
)
node_id = node_path if "." not in node_path else node_path[: node_path.index(".")]
node = self.nodes[node_id]
if isinstance(node, GraphInvocation):
graph = node.graph
graph_path = (
node.id
if prefix is None or prefix == ""
else self._get_node_path(node.id, prefix=prefix)
)
graph_edges = graph._get_output_edges_and_graphs(
node_path[(len(node_id) + 1) :], prefix=graph_path
)
graph_path = node.id if prefix is None or prefix == "" else self._get_node_path(node.id, prefix=prefix)
graph_edges = graph._get_output_edges_and_graphs(node_path[(len(node_id) + 1) :], prefix=graph_path)
edges.extend(graph_edges)
return edges
@@ -646,12 +609,8 @@ class Graph(BaseModel):
return False
# Get input and output fields (the fields linked to the iterator's input/output)
input_field = get_output_field(
self.get_node(inputs[0].node_id), inputs[0].field
)
output_fields = list(
[get_input_field(self.get_node(e.node_id), e.field) for e in outputs]
)
input_field = get_output_field(self.get_node(inputs[0].node_id), inputs[0].field)
output_fields = list([get_input_field(self.get_node(e.node_id), e.field) for e in outputs])
# Input type must be a list
if get_origin(input_field) != list:
@@ -659,12 +618,7 @@ class Graph(BaseModel):
# Validate that all outputs match the input type
input_field_item_type = get_args(input_field)[0]
if not all(
(
are_connection_types_compatible(input_field_item_type, f)
for f in output_fields
)
):
if not all((are_connection_types_compatible(input_field_item_type, f) for f in output_fields)):
return False
return True
@@ -684,35 +638,21 @@ class Graph(BaseModel):
outputs.append(new_output)
# Get input and output fields (the fields linked to the iterator's input/output)
input_fields = list(
[get_output_field(self.get_node(e.node_id), e.field) for e in inputs]
)
output_fields = list(
[get_input_field(self.get_node(e.node_id), e.field) for e in outputs]
)
input_fields = list([get_output_field(self.get_node(e.node_id), e.field) for e in inputs])
output_fields = list([get_input_field(self.get_node(e.node_id), e.field) for e in outputs])
# Validate that all inputs are derived from or match a single type
input_field_types = set(
[
t
for input_field in input_fields
for t in (
[input_field]
if get_origin(input_field) == None
else get_args(input_field)
)
for t in ([input_field] if get_origin(input_field) == None else get_args(input_field))
if t != NoneType
]
) # Get unique types
type_tree = nx.DiGraph()
type_tree.add_nodes_from(input_field_types)
type_tree.add_edges_from(
[
e
for e in itertools.permutations(input_field_types, 2)
if issubclass(e[1], e[0])
]
)
type_tree.add_edges_from([e for e in itertools.permutations(input_field_types, 2) if issubclass(e[1], e[0])])
type_degrees = type_tree.in_degree(type_tree.nodes)
if sum((t[1] == 0 for t in type_degrees)) != 1: # type: ignore
return False # There is more than one root type
@@ -729,9 +669,7 @@ class Graph(BaseModel):
return False
# Verify that all outputs match the input type (are a base class or the same class)
if not all(
(issubclass(input_root_type, get_args(f)[0]) for f in output_fields)
):
if not all((issubclass(input_root_type, get_args(f)[0]) for f in output_fields)):
return False
return True
@@ -751,9 +689,7 @@ class Graph(BaseModel):
g.add_edges_from(set([(e.source.node_id, e.destination.node_id) for e in self.edges]))
return g
def nx_graph_flat(
self, nx_graph: Optional[nx.DiGraph] = None, prefix: Optional[str] = None
) -> nx.DiGraph:
def nx_graph_flat(self, nx_graph: Optional[nx.DiGraph] = None, prefix: Optional[str] = None) -> nx.DiGraph:
"""Returns a flattened NetworkX DiGraph, including all subgraphs (but not with iterations expanded)"""
g = nx_graph or nx.DiGraph()
@@ -762,26 +698,18 @@ class Graph(BaseModel):
[
self._get_node_path(n.id, prefix)
for n in self.nodes.values()
if not isinstance(n, GraphInvocation)
and not isinstance(n, IterateInvocation)
if not isinstance(n, GraphInvocation) and not isinstance(n, IterateInvocation)
]
)
# Expand graph nodes
for sgn in (
gn for gn in self.nodes.values() if isinstance(gn, GraphInvocation)
):
for sgn in (gn for gn in self.nodes.values() if isinstance(gn, GraphInvocation)):
g = sgn.graph.nx_graph_flat(g, self._get_node_path(sgn.id, prefix))
# TODO: figure out if iteration nodes need to be expanded
unique_edges = set([(e.source.node_id, e.destination.node_id) for e in self.edges])
g.add_edges_from(
[
(self._get_node_path(e[0], prefix), self._get_node_path(e[1], prefix))
for e in unique_edges
]
)
g.add_edges_from([(self._get_node_path(e[0], prefix), self._get_node_path(e[1], prefix)) for e in unique_edges])
return g
@@ -800,23 +728,19 @@ class GraphExecutionState(BaseModel):
)
# Nodes that have been executed
executed: set[str] = Field(
description="The set of node ids that have been executed", default_factory=set
)
executed: set[str] = Field(description="The set of node ids that have been executed", default_factory=set)
executed_history: list[str] = Field(
description="The list of node ids that have been executed, in order of execution",
default_factory=list,
)
# The results of executed nodes
results: dict[
str, Annotated[InvocationOutputsUnion, Field(discriminator="type")]
] = Field(description="The results of node executions", default_factory=dict)
results: dict[str, Annotated[InvocationOutputsUnion, Field(discriminator="type")]] = Field(
description="The results of node executions", default_factory=dict
)
# Errors raised when executing nodes
errors: dict[str, str] = Field(
description="Errors raised when executing nodes", default_factory=dict
)
errors: dict[str, str] = Field(description="Errors raised when executing nodes", default_factory=dict)
# Map of prepared/executed nodes to their original nodes
prepared_source_mapping: dict[str, str] = Field(
@@ -832,16 +756,16 @@ class GraphExecutionState(BaseModel):
class Config:
schema_extra = {
'required': [
'id',
'graph',
'execution_graph',
'executed',
'executed_history',
'results',
'errors',
'prepared_source_mapping',
'source_prepared_mapping',
"required": [
"id",
"graph",
"execution_graph",
"executed",
"executed_history",
"results",
"errors",
"prepared_source_mapping",
"source_prepared_mapping",
]
}
@@ -899,9 +823,7 @@ class GraphExecutionState(BaseModel):
"""Returns true if the graph has any errors"""
return len(self.errors) > 0
def _create_execution_node(
self, node_path: str, iteration_node_map: list[tuple[str, str]]
) -> list[str]:
def _create_execution_node(self, node_path: str, iteration_node_map: list[tuple[str, str]]) -> list[str]:
"""Prepares an iteration node and connects all edges, returning the new node id"""
node = self.graph.get_node(node_path)
@@ -911,20 +833,12 @@ class GraphExecutionState(BaseModel):
# If this is an iterator node, we must create a copy for each iteration
if isinstance(node, IterateInvocation):
# Get input collection edge (should error if there are no inputs)
input_collection_edge = next(
iter(self.graph._get_input_edges(node_path, "collection"))
)
input_collection_edge = next(iter(self.graph._get_input_edges(node_path, "collection")))
input_collection_prepared_node_id = next(
n[1]
for n in iteration_node_map
if n[0] == input_collection_edge.source.node_id
)
input_collection_prepared_node_output = self.results[
input_collection_prepared_node_id
]
input_collection = getattr(
input_collection_prepared_node_output, input_collection_edge.source.field
n[1] for n in iteration_node_map if n[0] == input_collection_edge.source.node_id
)
input_collection_prepared_node_output = self.results[input_collection_prepared_node_id]
input_collection = getattr(input_collection_prepared_node_output, input_collection_edge.source.field)
self_iteration_count = len(input_collection)
new_nodes = list()
@@ -939,9 +853,7 @@ class GraphExecutionState(BaseModel):
# For collect nodes, this may contain multiple inputs to the same field
new_edges = list()
for edge in input_edges:
for input_node_id in (
n[1] for n in iteration_node_map if n[0] == edge.source.node_id
):
for input_node_id in (n[1] for n in iteration_node_map if n[0] == edge.source.node_id):
new_edge = Edge(
source=EdgeConnection(node_id=input_node_id, field=edge.source.field),
destination=EdgeConnection(node_id="", field=edge.destination.field),
@@ -982,11 +894,7 @@ class GraphExecutionState(BaseModel):
def _iterator_graph(self) -> nx.DiGraph:
"""Gets a DiGraph with edges to collectors removed so an ancestor search produces all active iterators for any node"""
g = self.graph.nx_graph_flat()
collectors = (
n
for n in self.graph.nodes
if isinstance(self.graph.get_node(n), CollectInvocation)
)
collectors = (n for n in self.graph.nodes if isinstance(self.graph.get_node(n), CollectInvocation))
for c in collectors:
g.remove_edges_from(list(g.in_edges(c)))
return g
@@ -994,11 +902,7 @@ class GraphExecutionState(BaseModel):
def _get_node_iterators(self, node_id: str) -> list[str]:
"""Gets iterators for a node"""
g = self._iterator_graph()
iterators = [
n
for n in nx.ancestors(g, node_id)
if isinstance(self.graph.get_node(n), IterateInvocation)
]
iterators = [n for n in nx.ancestors(g, node_id) if isinstance(self.graph.get_node(n), IterateInvocation)]
return iterators
def _prepare(self) -> Optional[str]:
@@ -1045,29 +949,18 @@ class GraphExecutionState(BaseModel):
if isinstance(next_node, CollectInvocation):
# Collapse all iterator input mappings and create a single execution node for the collect invocation
all_iteration_mappings = list(
itertools.chain(
*(
((s, p) for p in self.source_prepared_mapping[s])
for s in next_node_parents
)
)
itertools.chain(*(((s, p) for p in self.source_prepared_mapping[s]) for s in next_node_parents))
)
# all_iteration_mappings = list(set(itertools.chain(*prepared_parent_mappings)))
create_results = self._create_execution_node(
next_node_id, all_iteration_mappings
)
create_results = self._create_execution_node(next_node_id, all_iteration_mappings)
if create_results is not None:
new_node_ids.extend(create_results)
else: # Iterators or normal nodes
# Get all iterator combinations for this node
# Will produce a list of lists of prepared iterator nodes, from which results can be iterated
iterator_nodes = self._get_node_iterators(next_node_id)
iterator_nodes_prepared = [
list(self.source_prepared_mapping[n]) for n in iterator_nodes
]
iterator_node_prepared_combinations = list(
itertools.product(*iterator_nodes_prepared)
)
iterator_nodes_prepared = [list(self.source_prepared_mapping[n]) for n in iterator_nodes]
iterator_node_prepared_combinations = list(itertools.product(*iterator_nodes_prepared))
# Select the correct prepared parents for each iteration
# For every iterator, the parent must either not be a child of that iterator, or must match the prepared iteration for that iterator
@@ -1096,31 +989,16 @@ class GraphExecutionState(BaseModel):
return next(iter(prepared_nodes))
# Check if the requested node is an iterator
prepared_iterator = next(
(n for n in prepared_nodes if n in prepared_iterator_nodes), None
)
prepared_iterator = next((n for n in prepared_nodes if n in prepared_iterator_nodes), None)
if prepared_iterator is not None:
return prepared_iterator
# Filter to only iterator nodes that are a parent of the specified node, in tuple format (prepared, source)
iterator_source_node_mapping = [
(n, self.prepared_source_mapping[n]) for n in prepared_iterator_nodes
]
parent_iterators = [
itn
for itn in iterator_source_node_mapping
if nx.has_path(graph, itn[1], source_node_path)
]
iterator_source_node_mapping = [(n, self.prepared_source_mapping[n]) for n in prepared_iterator_nodes]
parent_iterators = [itn for itn in iterator_source_node_mapping if nx.has_path(graph, itn[1], source_node_path)]
return next(
(
n
for n in prepared_nodes
if all(
nx.has_path(execution_graph, pit[0], n)
for pit in parent_iterators
)
),
(n for n in prepared_nodes if all(nx.has_path(execution_graph, pit[0], n) for pit in parent_iterators)),
None,
)
@@ -1130,13 +1008,13 @@ class GraphExecutionState(BaseModel):
# Depth-first search with pre-order traversal is a depth-first topological sort
sorted_nodes = nx.dfs_preorder_nodes(g)
next_node = next(
(
n
for n in sorted_nodes
if n not in self.executed # the node must not already be executed...
and all((e[0] in self.executed for e in g.in_edges(n))) # ...and all its inputs must be executed
if n not in self.executed # the node must not already be executed...
and all((e[0] in self.executed for e in g.in_edges(n))) # ...and all its inputs must be executed
),
None,
)
@@ -1221,15 +1099,18 @@ class ExposedNodeOutput(BaseModel):
field: str = Field(description="The field name of the output")
alias: str = Field(description="The alias of the output")
class LibraryGraph(BaseModel):
id: str = Field(description="The unique identifier for this library graph", default_factory=uuid.uuid4)
graph: Graph = Field(description="The graph")
name: str = Field(description="The name of the graph")
description: str = Field(description="The description of the graph")
exposed_inputs: list[ExposedNodeInput] = Field(description="The inputs exposed by this graph", default_factory=list)
exposed_outputs: list[ExposedNodeOutput] = Field(description="The outputs exposed by this graph", default_factory=list)
exposed_outputs: list[ExposedNodeOutput] = Field(
description="The outputs exposed by this graph", default_factory=list
)
@validator('exposed_inputs', 'exposed_outputs')
@validator("exposed_inputs", "exposed_outputs")
def validate_exposed_aliases(cls, v):
if len(v) != len(set(i.alias for i in v)):
raise ValueError("Duplicate exposed alias")
@@ -1237,23 +1118,27 @@ class LibraryGraph(BaseModel):
@root_validator
def validate_exposed_nodes(cls, values):
graph = values['graph']
graph = values["graph"]
# Validate exposed inputs
for exposed_input in values['exposed_inputs']:
for exposed_input in values["exposed_inputs"]:
if not graph.has_node(exposed_input.node_path):
raise ValueError(f"Exposed input node {exposed_input.node_path} does not exist")
node = graph.get_node(exposed_input.node_path)
if get_input_field(node, exposed_input.field) is None:
raise ValueError(f"Exposed input field {exposed_input.field} does not exist on node {exposed_input.node_path}")
raise ValueError(
f"Exposed input field {exposed_input.field} does not exist on node {exposed_input.node_path}"
)
# Validate exposed outputs
for exposed_output in values['exposed_outputs']:
for exposed_output in values["exposed_outputs"]:
if not graph.has_node(exposed_output.node_path):
raise ValueError(f"Exposed output node {exposed_output.node_path} does not exist")
node = graph.get_node(exposed_output.node_path)
if get_output_field(node, exposed_output.field) is None:
raise ValueError(f"Exposed output field {exposed_output.field} does not exist on node {exposed_output.node_path}")
raise ValueError(
f"Exposed output field {exposed_output.field} does not exist on node {exposed_output.node_path}"
)
return values

View File

@@ -85,9 +85,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
self.__cache_ids = Queue()
self.__max_cache_size = 10 # TODO: get this from config
self.__output_folder: Path = (
output_folder if isinstance(output_folder, Path) else Path(output_folder)
)
self.__output_folder: Path = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__thumbnails_folder = self.__output_folder / "thumbnails"
# Validate required output folders at launch
@@ -120,7 +118,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
image_path = self.get_path(image_name)
pnginfo = PngImagePlugin.PngInfo()
if metadata is not None:
pnginfo.add_text("invokeai_metadata", json.dumps(metadata))
if graph is not None:
@@ -183,9 +181,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
def __set_cache(self, image_name: Path, image: PILImageType):
if not image_name in self.__cache:
self.__cache[image_name] = image
self.__cache_ids.put(
image_name
) # TODO: this should refresh position for LRU cache
self.__cache_ids.put(image_name) # TODO: this should refresh position for LRU cache
if len(self.__cache) > self.__max_cache_size:
cache_id = self.__cache_ids.get()
if cache_id in self.__cache:

View File

@@ -426,9 +426,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
finally:
self._lock.release()
return OffsetPaginatedResults(
items=images, offset=offset, limit=limit, total=count
)
return OffsetPaginatedResults(items=images, offset=offset, limit=limit, total=count)
def delete(self, image_name: str) -> None:
try:
@@ -466,7 +464,6 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
finally:
self._lock.release()
def delete_intermediates(self) -> list[str]:
try:
self._lock.acquire()
@@ -505,9 +502,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
is_intermediate: bool = False,
) -> datetime:
try:
metadata_json = (
None if metadata is None else json.dumps(metadata)
)
metadata_json = None if metadata is None else json.dumps(metadata)
self._lock.acquire()
self._cursor.execute(
"""--sql

View File

@@ -216,16 +216,9 @@ class ImageService(ImageServiceABC):
metadata=metadata,
session_id=session_id,
)
if board_id is not None:
self._services.board_image_records.add_image_to_board(
board_id=board_id, image_name=image_name
)
self._services.image_files.save(
image_name=image_name, image=image, metadata=metadata, graph=graph
)
self._services.board_image_records.add_image_to_board(board_id=board_id, image_name=image_name)
self._services.image_files.save(image_name=image_name, image=image, metadata=metadata, graph=graph)
image_dto = self.get_dto(image_name)
return image_dto
@@ -236,7 +229,7 @@ class ImageService(ImageServiceABC):
self._services.logger.error("Failed to save image file")
raise
except Exception as e:
self._services.logger.error("Problem saving image record and file")
self._services.logger.error(f"Problem saving image record and file: {str(e)}")
raise e
def update(
@@ -300,9 +293,7 @@ class ImageService(ImageServiceABC):
if not image_record.session_id:
return ImageMetadata()
session_raw = self._services.graph_execution_manager.get_raw(
image_record.session_id
)
session_raw = self._services.graph_execution_manager.get_raw(image_record.session_id)
graph = None
if session_raw:
@@ -367,9 +358,7 @@ class ImageService(ImageServiceABC):
r,
self._services.urls.get_image_url(r.image_name),
self._services.urls.get_image_url(r.image_name, True),
self._services.board_image_records.get_board_for_image(
r.image_name
),
self._services.board_image_records.get_board_for_image(r.image_name),
),
results.items,
)
@@ -401,11 +390,7 @@ class ImageService(ImageServiceABC):
def delete_images_on_board(self, board_id: str):
try:
image_names = (
self._services.board_image_records.get_all_board_image_names_for_board(
board_id
)
)
image_names = self._services.board_image_records.get_all_board_image_names_for_board(board_id)
for image_name in image_names:
self._services.image_files.delete(image_name)
self._services.image_records.delete_many(image_names)

View File

@@ -7,6 +7,7 @@ from queue import Queue
from pydantic import BaseModel, Field
from typing import Optional
class InvocationQueueItem(BaseModel):
graph_execution_state_id: str = Field(description="The ID of the graph execution state")
invocation_id: str = Field(description="The ID of the node being invoked")
@@ -45,9 +46,11 @@ class MemoryInvocationQueue(InvocationQueueABC):
def get(self) -> InvocationQueueItem:
item = self.__queue.get()
while isinstance(item, InvocationQueueItem) \
and item.graph_execution_state_id in self.__cancellations \
and self.__cancellations[item.graph_execution_state_id] > item.timestamp:
while (
isinstance(item, InvocationQueueItem)
and item.graph_execution_state_id in self.__cancellations
and self.__cancellations[item.graph_execution_state_id] > item.timestamp
):
item = self.__queue.get()
# Clear old items

View File

@@ -7,6 +7,7 @@ from .graph import Graph, GraphExecutionState
from .invocation_queue import InvocationQueueItem
from .invocation_services import InvocationServices
class Invoker:
"""The invoker, used to execute invocations"""
@@ -16,9 +17,7 @@ class Invoker:
self.services = services
self._start()
def invoke(
self, graph_execution_state: GraphExecutionState, invoke_all: bool = False
) -> Optional[str]:
def invoke(self, graph_execution_state: GraphExecutionState, invoke_all: bool = False) -> Optional[str]:
"""Determines the next node to invoke and enqueues it, preparing if needed.
Returns the id of the queued node, or `None` if there are no nodes left to enqueue."""

View File

@@ -9,13 +9,15 @@ T = TypeVar("T", bound=BaseModel)
class PaginatedResults(GenericModel, Generic[T]):
"""Paginated results"""
#fmt: off
# fmt: off
items: list[T] = Field(description="Items")
page: int = Field(description="Current Page")
pages: int = Field(description="Total number of pages")
per_page: int = Field(description="Number of items per page")
total: int = Field(description="Total number of items in result")
#fmt: on
# fmt: on
class ItemStorageABC(ABC, Generic[T]):
_on_changed_callbacks: list[Callable[[T], None]]
@@ -48,9 +50,7 @@ class ItemStorageABC(ABC, Generic[T]):
pass
@abstractmethod
def search(
self, query: str, page: int = 0, per_page: int = 10
) -> PaginatedResults[T]:
def search(self, query: str, page: int = 0, per_page: int = 10) -> PaginatedResults[T]:
pass
def on_changed(self, on_changed: Callable[[T], None]) -> None:

View File

@@ -7,6 +7,7 @@ from typing import Dict, Union, Optional
import torch
class LatentsStorageBase(ABC):
"""Responsible for storing and retrieving latents."""
@@ -25,7 +26,7 @@ class LatentsStorageBase(ABC):
class ForwardCacheLatentsStorage(LatentsStorageBase):
"""Caches the latest N latents in memory, writing-thorugh to and reading from underlying storage"""
__cache: Dict[str, torch.Tensor]
__cache_ids: Queue
__max_cache_size: int
@@ -87,8 +88,6 @@ class DiskLatentsStorage(LatentsStorageBase):
def delete(self, name: str) -> None:
latent_path = self.get_path(name)
latent_path.unlink()
def get_path(self, name: str) -> Path:
return self.__output_folder / name

View File

@@ -103,7 +103,7 @@ class ModelManagerServiceBase(ABC):
}
"""
pass
@abstractmethod
def list_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
@@ -125,7 +125,7 @@ class ModelManagerServiceBase(ABC):
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
clobber: bool = False
clobber: bool = False,
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with an
@@ -148,12 +148,12 @@ class ModelManagerServiceBase(ABC):
Update the named model with a dictionary of attributes. Will fail with a
ModelNotFoundException if the name does not already exist.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
pass
@abstractmethod
def del_model(
self,
@@ -169,21 +169,20 @@ class ModelManagerServiceBase(ABC):
pass
@abstractmethod
def rename_model(self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
new_name: str,
):
def rename_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
new_name: str,
):
"""
Rename the indicated model.
"""
pass
@abstractmethod
def list_checkpoint_configs(
self
)->List[Path]:
def list_checkpoint_configs(self) -> List[Path]:
"""
List the checkpoint config paths from ROOT/configs/stable-diffusion.
"""
@@ -194,7 +193,7 @@ class ModelManagerServiceBase(ABC):
self,
model_name: str,
base_model: BaseModelType,
model_type: Union[ModelType.Main,ModelType.Vae],
model_type: Union[ModelType.Main, ModelType.Vae],
) -> AddModelResult:
"""
Convert a checkpoint file into a diffusers folder, deleting the cached
@@ -211,11 +210,12 @@ class ModelManagerServiceBase(ABC):
pass
@abstractmethod
def heuristic_import(self,
items_to_import: set[str],
prediction_type_helper: Optional[Callable[[Path],SchedulerPredictionType]]=None,
)->dict[str, AddModelResult]:
'''Import a list of paths, repo_ids or URLs. Returns the set of
def heuristic_import(
self,
items_to_import: set[str],
prediction_type_helper: Optional[Callable[[Path], SchedulerPredictionType]] = None,
) -> dict[str, AddModelResult]:
"""Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items.
:param items_to_import: Set of strings corresponding to models to be imported.
:param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType.
@@ -230,19 +230,23 @@ class ModelManagerServiceBase(ABC):
The result is a set of successfully installed models. Each element
of the set is a dict corresponding to the newly-created OmegaConf stanza for
that model.
'''
"""
pass
@abstractmethod
def merge_models(
self,
model_names: List[str] = Field(default=None, min_items=2, max_items=3, description="List of model names to merge"),
base_model: Union[BaseModelType,str] = Field(default=None, description="Base model shared by all models to be merged"),
merged_model_name: str = Field(default=None, description="Name of destination model after merging"),
alpha: Optional[float] = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: Optional[bool] = False,
merge_dest_directory: Optional[Path] = None
self,
model_names: List[str] = Field(
default=None, min_items=2, max_items=3, description="List of model names to merge"
),
base_model: Union[BaseModelType, str] = Field(
default=None, description="Base model shared by all models to be merged"
),
merged_model_name: str = Field(default=None, description="Name of destination model after merging"),
alpha: Optional[float] = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: Optional[bool] = False,
merge_dest_directory: Optional[Path] = None,
) -> AddModelResult:
"""
Merge two to three diffusrs pipeline models and save as a new model.
@@ -250,27 +254,27 @@ class ModelManagerServiceBase(ABC):
:param base_model: Base model to use for all models
:param merged_model_name: Name of destination merged model
:param alpha: Alpha strength to apply to 2d and 3d model
:param interp: Interpolation method. None (default)
:param interp: Interpolation method. None (default)
:param merge_dest_directory: Save the merged model to the designated directory (with 'merged_model_name' appended)
"""
pass
@abstractmethod
def search_for_models(self, directory: Path)->List[Path]:
def search_for_models(self, directory: Path) -> List[Path]:
"""
Return list of all models found in the designated directory.
"""
pass
@abstractmethod
def sync_to_config(self):
"""
Re-read models.yaml, rescan the models directory, and reimport models
Re-read models.yaml, rescan the models directory, and reimport models
in the autoimport directories. Call after making changes outside the
model manager API.
"""
pass
@abstractmethod
def commit(self, conf_file: Optional[Path] = None) -> None:
"""
@@ -280,9 +284,11 @@ class ModelManagerServiceBase(ABC):
"""
pass
# simple implementation
class ModelManagerService(ModelManagerServiceBase):
"""Responsible for managing models on disk and in memory"""
def __init__(
self,
config: InvokeAIAppConfig,
@@ -298,17 +304,17 @@ class ModelManagerService(ModelManagerServiceBase):
config_file = config.model_conf_path
else:
config_file = config.root_dir / "configs/models.yaml"
logger.debug(f'Config file={config_file}')
logger.debug(f"Config file={config_file}")
device = torch.device(choose_torch_device())
device_name = torch.cuda.get_device_name() if device==torch.device('cuda') else ''
logger.info(f'GPU device = {device} {device_name}')
device_name = torch.cuda.get_device_name() if device == torch.device("cuda") else ""
logger.info(f"GPU device = {device} {device_name}")
precision = config.precision
if precision == "auto":
precision = choose_precision(device)
dtype = torch.float32 if precision == 'float32' else torch.float16
dtype = torch.float32 if precision == "float32" else torch.float16
# this is transitional backward compatibility
# support for the deprecated `max_loaded_models`
@@ -316,9 +322,7 @@ class ModelManagerService(ModelManagerServiceBase):
# cache size is set to 2.5 GB times
# the number of max_loaded_models. Otherwise
# use new `max_cache_size` config setting
max_cache_size = config.max_cache_size \
if hasattr(config,'max_cache_size') \
else config.max_loaded_models * 2.5
max_cache_size = config.max_cache_size if hasattr(config, "max_cache_size") else config.max_loaded_models * 2.5
logger.debug(f"Maximum RAM cache size: {max_cache_size} GiB")
@@ -332,7 +336,7 @@ class ModelManagerService(ModelManagerServiceBase):
sequential_offload=sequential_offload,
logger=logger,
)
logger.info('Model manager service initialized')
logger.info("Model manager service initialized")
def get_model(
self,
@@ -371,7 +375,7 @@ class ModelManagerService(ModelManagerServiceBase):
base_model=base_model,
model_type=model_type,
submodel=submodel,
model_info=model_info
model_info=model_info,
)
return model_info
@@ -405,9 +409,7 @@ class ModelManagerService(ModelManagerServiceBase):
return self.mgr.model_names()
def list_models(
self,
base_model: Optional[BaseModelType] = None,
model_type: Optional[ModelType] = None
self, base_model: Optional[BaseModelType] = None, model_type: Optional[ModelType] = None
) -> list[dict]:
"""
Return a list of models.
@@ -418,9 +420,7 @@ class ModelManagerService(ModelManagerServiceBase):
"""
Return information about the model using the same format as list_models()
"""
return self.mgr.list_model(model_name=model_name,
base_model=base_model,
model_type=model_type)
return self.mgr.list_model(model_name=model_name, base_model=base_model, model_type=model_type)
def add_model(
self,
@@ -429,7 +429,7 @@ class ModelManagerService(ModelManagerServiceBase):
model_type: ModelType,
model_attributes: dict,
clobber: bool = False,
)->None:
) -> None:
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
@@ -437,7 +437,7 @@ class ModelManagerService(ModelManagerServiceBase):
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
self.logger.debug(f'add/update model {model_name}')
self.logger.debug(f"add/update model {model_name}")
return self.mgr.add_model(model_name, base_model, model_type, model_attributes, clobber)
def update_model(
@@ -450,15 +450,15 @@ class ModelManagerService(ModelManagerServiceBase):
"""
Update the named model with a dictionary of attributes. Will fail with a
ModelNotFoundException exception if the name does not already exist.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
self.logger.debug(f'update model {model_name}')
self.logger.debug(f"update model {model_name}")
if not self.model_exists(model_name, base_model, model_type):
raise ModelNotFoundException(f"Unknown model {model_name}")
return self.add_model(model_name, base_model, model_type, model_attributes, clobber=True)
def del_model(
self,
model_name: str,
@@ -470,7 +470,7 @@ class ModelManagerService(ModelManagerServiceBase):
then the underlying weight file or diffusers directory will be deleted
as well.
"""
self.logger.debug(f'delete model {model_name}')
self.logger.debug(f"delete model {model_name}")
self.mgr.del_model(model_name, base_model, model_type)
self.mgr.commit()
@@ -478,8 +478,10 @@ class ModelManagerService(ModelManagerServiceBase):
self,
model_name: str,
base_model: BaseModelType,
model_type: Union[ModelType.Main,ModelType.Vae],
convert_dest_directory: Optional[Path] = Field(default=None, description="Optional directory location for merged model"),
model_type: Union[ModelType.Main, ModelType.Vae],
convert_dest_directory: Optional[Path] = Field(
default=None, description="Optional directory location for merged model"
),
) -> AddModelResult:
"""
Convert a checkpoint file into a diffusers folder, deleting the cached
@@ -494,10 +496,10 @@ class ModelManagerService(ModelManagerServiceBase):
also raise a ValueError in the event that there is a similarly-named diffusers
directory already in place.
"""
self.logger.debug(f'convert model {model_name}')
self.logger.debug(f"convert model {model_name}")
return self.mgr.convert_model(model_name, base_model, model_type, convert_dest_directory)
def commit(self, conf_file: Optional[Path]=None):
def commit(self, conf_file: Optional[Path] = None):
"""
Write current configuration out to the indicated file.
If no conf_file is provided, then replaces the
@@ -524,7 +526,7 @@ class ModelManagerService(ModelManagerServiceBase):
base_model=base_model,
model_type=model_type,
submodel=submodel,
model_info=model_info
model_info=model_info,
)
else:
context.services.events.emit_model_load_started(
@@ -535,16 +537,16 @@ class ModelManagerService(ModelManagerServiceBase):
submodel=submodel,
)
@property
def logger(self):
return self.mgr.logger
def heuristic_import(self,
items_to_import: set[str],
prediction_type_helper: Optional[Callable[[Path],SchedulerPredictionType]]=None,
)->dict[str, AddModelResult]:
'''Import a list of paths, repo_ids or URLs. Returns the set of
def heuristic_import(
self,
items_to_import: set[str],
prediction_type_helper: Optional[Callable[[Path], SchedulerPredictionType]] = None,
) -> dict[str, AddModelResult]:
"""Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items.
:param items_to_import: Set of strings corresponding to models to be imported.
:param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType.
@@ -559,18 +561,24 @@ class ModelManagerService(ModelManagerServiceBase):
The result is a set of successfully installed models. Each element
of the set is a dict corresponding to the newly-created OmegaConf stanza for
that model.
'''
return self.mgr.heuristic_import(items_to_import, prediction_type_helper)
"""
return self.mgr.heuristic_import(items_to_import, prediction_type_helper)
def merge_models(
self,
model_names: List[str] = Field(default=None, min_items=2, max_items=3, description="List of model names to merge"),
base_model: Union[BaseModelType,str] = Field(default=None, description="Base model shared by all models to be merged"),
merged_model_name: str = Field(default=None, description="Name of destination model after merging"),
alpha: Optional[float] = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: Optional[bool] = False,
merge_dest_directory: Optional[Path] = Field(default=None, description="Optional directory location for merged model"),
self,
model_names: List[str] = Field(
default=None, min_items=2, max_items=3, description="List of model names to merge"
),
base_model: Union[BaseModelType, str] = Field(
default=None, description="Base model shared by all models to be merged"
),
merged_model_name: str = Field(default=None, description="Name of destination model after merging"),
alpha: Optional[float] = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: Optional[bool] = False,
merge_dest_directory: Optional[Path] = Field(
default=None, description="Optional directory location for merged model"
),
) -> AddModelResult:
"""
Merge two to three diffusrs pipeline models and save as a new model.
@@ -578,55 +586,56 @@ class ModelManagerService(ModelManagerServiceBase):
:param base_model: Base model to use for all models
:param merged_model_name: Name of destination merged model
:param alpha: Alpha strength to apply to 2d and 3d model
:param interp: Interpolation method. None (default)
:param interp: Interpolation method. None (default)
:param merge_dest_directory: Save the merged model to the designated directory (with 'merged_model_name' appended)
"""
merger = ModelMerger(self.mgr)
try:
result = merger.merge_diffusion_models_and_save(
model_names = model_names,
base_model = base_model,
merged_model_name = merged_model_name,
alpha = alpha,
interp = interp,
force = force,
model_names=model_names,
base_model=base_model,
merged_model_name=merged_model_name,
alpha=alpha,
interp=interp,
force=force,
merge_dest_directory=merge_dest_directory,
)
except AssertionError as e:
raise ValueError(e)
return result
def search_for_models(self, directory: Path)->List[Path]:
def search_for_models(self, directory: Path) -> List[Path]:
"""
Return list of all models found in the designated directory.
"""
search = FindModels(directory,self.logger)
search = FindModels([directory], self.logger)
return search.list_models()
def sync_to_config(self):
"""
Re-read models.yaml, rescan the models directory, and reimport models
Re-read models.yaml, rescan the models directory, and reimport models
in the autoimport directories. Call after making changes outside the
model manager API.
"""
return self.mgr.sync_to_config()
def list_checkpoint_configs(self)->List[Path]:
def list_checkpoint_configs(self) -> List[Path]:
"""
List the checkpoint config paths from ROOT/configs/stable-diffusion.
"""
config = self.mgr.app_config
conf_path = config.legacy_conf_path
root_path = config.root_path
return [(conf_path / x).relative_to(root_path) for x in conf_path.glob('**/*.yaml')]
return [(conf_path / x).relative_to(root_path) for x in conf_path.glob("**/*.yaml")]
def rename_model(self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
new_name: str = None,
new_base: BaseModelType = None,
):
def rename_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
new_name: str = None,
new_base: BaseModelType = None,
):
"""
Rename the indicated model. Can provide a new name and/or a new base.
:param model_name: Current name of the model
@@ -635,10 +644,10 @@ class ModelManagerService(ModelManagerServiceBase):
:param new_name: New name for the model
:param new_base: New base for the model
"""
self.mgr.rename_model(base_model = base_model,
model_type = model_type,
model_name = model_name,
new_name = new_name,
new_base = new_base,
)
self.mgr.rename_model(
base_model=base_model,
model_type=model_type,
model_name=model_name,
new_name=new_name,
new_base=new_base,
)

View File

@@ -11,30 +11,20 @@ class BoardRecord(BaseModel):
"""The unique ID of the board."""
board_name: str = Field(description="The name of the board.")
"""The name of the board."""
created_at: Union[datetime, str] = Field(
description="The created timestamp of the board."
)
created_at: Union[datetime, str] = Field(description="The created timestamp of the board.")
"""The created timestamp of the image."""
updated_at: Union[datetime, str] = Field(
description="The updated timestamp of the board."
)
updated_at: Union[datetime, str] = Field(description="The updated timestamp of the board.")
"""The updated timestamp of the image."""
deleted_at: Union[datetime, str, None] = Field(
description="The deleted timestamp of the board."
)
deleted_at: Union[datetime, str, None] = Field(description="The deleted timestamp of the board.")
"""The updated timestamp of the image."""
cover_image_name: Optional[str] = Field(
description="The name of the cover image of the board."
)
cover_image_name: Optional[str] = Field(description="The name of the cover image of the board.")
"""The name of the cover image of the board."""
class BoardDTO(BoardRecord):
"""Deserialized board record with cover image URL and image count."""
cover_image_name: Optional[str] = Field(
description="The name of the board's cover image."
)
cover_image_name: Optional[str] = Field(description="The name of the board's cover image.")
"""The URL of the thumbnail of the most recent image in the board."""
image_count: int = Field(description="The number of images in the board.")
"""The number of images in the board."""

View File

@@ -20,17 +20,11 @@ class ImageRecord(BaseModel):
"""The actual width of the image in px. This may be different from the width in metadata."""
height: int = Field(description="The height of the image in px.")
"""The actual height of the image in px. This may be different from the height in metadata."""
created_at: Union[datetime.datetime, str] = Field(
description="The created timestamp of the image."
)
created_at: Union[datetime.datetime, str] = Field(description="The created timestamp of the image.")
"""The created timestamp of the image."""
updated_at: Union[datetime.datetime, str] = Field(
description="The updated timestamp of the image."
)
updated_at: Union[datetime.datetime, str] = Field(description="The updated timestamp of the image.")
"""The updated timestamp of the image."""
deleted_at: Union[datetime.datetime, str, None] = Field(
description="The deleted timestamp of the image."
)
deleted_at: Union[datetime.datetime, str, None] = Field(description="The deleted timestamp of the image.")
"""The deleted timestamp of the image."""
is_intermediate: bool = Field(description="Whether this is an intermediate image.")
"""Whether this is an intermediate image."""
@@ -55,18 +49,14 @@ class ImageRecordChanges(BaseModel, extra=Extra.forbid):
- `is_intermediate`: change the image's `is_intermediate` flag
"""
image_category: Optional[ImageCategory] = Field(
description="The image's new category."
)
image_category: Optional[ImageCategory] = Field(description="The image's new category.")
"""The image's new category."""
session_id: Optional[StrictStr] = Field(
default=None,
description="The image's new session ID.",
)
"""The image's new session ID."""
is_intermediate: Optional[StrictBool] = Field(
default=None, description="The image's new `is_intermediate` flag."
)
is_intermediate: Optional[StrictBool] = Field(default=None, description="The image's new `is_intermediate` flag.")
"""The image's new `is_intermediate` flag."""
@@ -84,9 +74,7 @@ class ImageUrlsDTO(BaseModel):
class ImageDTO(ImageRecord, ImageUrlsDTO):
"""Deserialized image record, enriched for the frontend."""
board_id: Optional[str] = Field(
description="The id of the board the image belongs to, if one exists."
)
board_id: Optional[str] = Field(description="The id of the board the image belongs to, if one exists.")
"""The id of the board the image belongs to, if one exists."""
pass
@@ -110,12 +98,8 @@ def deserialize_image_record(image_dict: dict) -> ImageRecord:
# TODO: do we really need to handle default values here? ideally the data is the correct shape...
image_name = image_dict.get("image_name", "unknown")
image_origin = ResourceOrigin(
image_dict.get("image_origin", ResourceOrigin.INTERNAL.value)
)
image_category = ImageCategory(
image_dict.get("image_category", ImageCategory.GENERAL.value)
)
image_origin = ResourceOrigin(image_dict.get("image_origin", ResourceOrigin.INTERNAL.value))
image_category = ImageCategory(image_dict.get("image_category", ImageCategory.GENERAL.value))
width = image_dict.get("width", 0)
height = image_dict.get("height", 0)
session_id = image_dict.get("session_id", None)

View File

@@ -8,6 +8,8 @@ from .invoker import InvocationProcessorABC, Invoker
from ..models.exceptions import CanceledException
import invokeai.backend.util.logging as logger
class DefaultInvocationProcessor(InvocationProcessorABC):
__invoker_thread: Thread
__stop_event: Event
@@ -24,9 +26,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
target=self.__process,
kwargs=dict(stop_event=self.__stop_event),
)
self.__invoker_thread.daemon = (
True # TODO: make async and do not use threads
)
self.__invoker_thread.daemon = True # TODO: make async and do not use threads
self.__invoker_thread.start()
def stop(self, *args, **kwargs) -> None:
@@ -39,21 +39,37 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
try:
queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
except Exception as e:
logger.debug("Exception while getting from queue: %s" % e)
self.__invoker.services.logger.error("Exception while getting from queue:\n%s" % e)
if not queue_item: # Probably stopping
# do not hammer the queue
time.sleep(0.5)
continue
graph_execution_state = (
self.__invoker.services.graph_execution_manager.get(
try:
graph_execution_state = self.__invoker.services.graph_execution_manager.get(
queue_item.graph_execution_state_id
)
)
invocation = graph_execution_state.execution_graph.get_node(
queue_item.invocation_id
)
except Exception as e:
self.__invoker.services.logger.error("Exception while retrieving session:\n%s" % e)
self.__invoker.services.events.emit_session_retrieval_error(
graph_execution_state_id=queue_item.graph_execution_state_id,
error_type=e.__class__.__name__,
error=traceback.format_exc(),
)
continue
try:
invocation = graph_execution_state.execution_graph.get_node(queue_item.invocation_id)
except Exception as e:
self.__invoker.services.logger.error("Exception while retrieving invocation:\n%s" % e)
self.__invoker.services.events.emit_invocation_retrieval_error(
graph_execution_state_id=queue_item.graph_execution_state_id,
node_id=queue_item.invocation_id,
error_type=e.__class__.__name__,
error=traceback.format_exc(),
)
continue
# get the source node id to provide to clients (the prepared node id is not as useful)
source_node_id = graph_execution_state.prepared_source_mapping[invocation.id]
@@ -62,7 +78,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
self.__invoker.services.events.emit_invocation_started(
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
source_node_id=source_node_id
source_node_id=source_node_id,
)
# Invoke
@@ -75,18 +91,14 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
)
# Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled(
graph_execution_state.id
):
if self.__invoker.services.queue.is_canceled(graph_execution_state.id):
continue
# Save outputs and history
graph_execution_state.complete(invocation.id, outputs)
# Save the state changes
self.__invoker.services.graph_execution_manager.set(
graph_execution_state
)
self.__invoker.services.graph_execution_manager.set(graph_execution_state)
# Send complete event
self.__invoker.services.events.emit_invocation_complete(
@@ -110,24 +122,22 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
graph_execution_state.set_node_error(invocation.id, error)
# Save the state changes
self.__invoker.services.graph_execution_manager.set(
graph_execution_state
)
self.__invoker.services.graph_execution_manager.set(graph_execution_state)
self.__invoker.services.logger.error("Error while invoking:\n%s" % e)
# Send error event
self.__invoker.services.events.emit_invocation_error(
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
source_node_id=source_node_id,
error_type=e.__class__.__name__,
error=error,
)
pass
# Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled(
graph_execution_state.id
):
if self.__invoker.services.queue.is_canceled(graph_execution_state.id):
continue
# Queue any further commands if invoking all
@@ -136,17 +146,16 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
try:
self.__invoker.invoke(graph_execution_state, invoke_all=True)
except Exception as e:
logger.error("Error while invoking: %s" % e)
self.__invoker.services.logger.error("Error while invoking:\n%s" % e)
self.__invoker.services.events.emit_invocation_error(
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
source_node_id=source_node_id,
error=traceback.format_exc()
error_type=e.__class__.__name__,
error=traceback.format_exc(),
)
elif is_complete:
self.__invoker.services.events.emit_graph_execution_complete(
graph_execution_state.id
)
self.__invoker.services.events.emit_graph_execution_complete(graph_execution_state.id)
except KeyboardInterrupt:
pass # Log something? KeyboardInterrupt is probably not going to be seen by the processor

View File

@@ -66,9 +66,7 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
def get(self, id: str) -> Optional[T]:
try:
self._lock.acquire()
self._cursor.execute(
f"""SELECT item FROM {self._table_name} WHERE id = ?;""", (str(id),)
)
self._cursor.execute(f"""SELECT item FROM {self._table_name} WHERE id = ?;""", (str(id),))
result = self._cursor.fetchone()
finally:
self._lock.release()
@@ -81,9 +79,7 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
def get_raw(self, id: str) -> Optional[str]:
try:
self._lock.acquire()
self._cursor.execute(
f"""SELECT item FROM {self._table_name} WHERE id = ?;""", (str(id),)
)
self._cursor.execute(f"""SELECT item FROM {self._table_name} WHERE id = ?;""", (str(id),))
result = self._cursor.fetchone()
finally:
self._lock.release()
@@ -96,9 +92,7 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
def delete(self, id: str):
try:
self._lock.acquire()
self._cursor.execute(
f"""DELETE FROM {self._table_name} WHERE id = ?;""", (str(id),)
)
self._cursor.execute(f"""DELETE FROM {self._table_name} WHERE id = ?;""", (str(id),))
self._conn.commit()
finally:
self._lock.release()
@@ -122,13 +116,9 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
pageCount = int(count / per_page) + 1
return PaginatedResults[T](
items=items, page=page, pages=pageCount, per_page=per_page, total=count
)
return PaginatedResults[T](items=items, page=page, pages=pageCount, per_page=per_page, total=count)
def search(
self, query: str, page: int = 0, per_page: int = 10
) -> PaginatedResults[T]:
def search(self, query: str, page: int = 0, per_page: int = 10) -> PaginatedResults[T]:
try:
self._lock.acquire()
self._cursor.execute(
@@ -149,6 +139,4 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
pageCount = int(count / per_page) + 1
return PaginatedResults[T](
items=items, page=page, pages=pageCount, per_page=per_page, total=count
)
return PaginatedResults[T](items=items, page=page, pages=pageCount, per_page=per_page, total=count)

View File

@@ -17,16 +17,8 @@ from controlnet_aux.util import HWC3, resize_image
# If you use this, please Cite "High Quality Edge Thinning using Pure Python", Lvmin Zhang, In Mikubill/sd-webui-controlnet.
lvmin_kernels_raw = [
np.array([
[-1, -1, -1],
[0, 1, 0],
[1, 1, 1]
], dtype=np.int32),
np.array([
[0, -1, -1],
[1, 1, -1],
[0, 1, 0]
], dtype=np.int32)
np.array([[-1, -1, -1], [0, 1, 0], [1, 1, 1]], dtype=np.int32),
np.array([[0, -1, -1], [1, 1, -1], [0, 1, 0]], dtype=np.int32),
]
lvmin_kernels = []
@@ -36,16 +28,8 @@ lvmin_kernels += [np.rot90(x, k=2, axes=(0, 1)) for x in lvmin_kernels_raw]
lvmin_kernels += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_kernels_raw]
lvmin_prunings_raw = [
np.array([
[-1, -1, -1],
[-1, 1, -1],
[0, 0, -1]
], dtype=np.int32),
np.array([
[-1, -1, -1],
[-1, 1, -1],
[-1, 0, 0]
], dtype=np.int32)
np.array([[-1, -1, -1], [-1, 1, -1], [0, 0, -1]], dtype=np.int32),
np.array([[-1, -1, -1], [-1, 1, -1], [-1, 0, 0]], dtype=np.int32),
]
lvmin_prunings = []
@@ -99,10 +83,10 @@ def nake_nms(x):
################################################################################
# FIXME: not using yet, if used in the future will most likely require modification of preprocessors
def pixel_perfect_resolution(
image: np.ndarray,
target_H: int,
target_W: int,
resize_mode: str,
image: np.ndarray,
target_H: int,
target_W: int,
resize_mode: str,
) -> int:
"""
Calculate the estimated resolution for resizing an image while preserving aspect ratio.
@@ -135,7 +119,7 @@ def pixel_perfect_resolution(
if resize_mode == "fill_resize":
estimation = min(k0, k1) * float(min(raw_H, raw_W))
else: # "crop_resize" or "just_resize" (or possibly "just_resize_simple"?)
else: # "crop_resize" or "just_resize" (or possibly "just_resize_simple"?)
estimation = max(k0, k1) * float(min(raw_H, raw_W))
# print(f"Pixel Perfect Computation:")
@@ -154,13 +138,7 @@ def pixel_perfect_resolution(
# modified for InvokeAI
###########################################################################
# def detectmap_proc(detected_map, module, resize_mode, h, w):
def np_img_resize(
np_img: np.ndarray,
resize_mode: str,
h: int,
w: int,
device: torch.device = torch.device('cpu')
):
def np_img_resize(np_img: np.ndarray, resize_mode: str, h: int, w: int, device: torch.device = torch.device("cpu")):
# if 'inpaint' in module:
# np_img = np_img.astype(np.float32)
# else:
@@ -184,15 +162,14 @@ def np_img_resize(
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = torch.from_numpy(y)
y = y.float() / 255.0
y = rearrange(y, 'h w c -> 1 c h w')
y = rearrange(y, "h w c -> 1 c h w")
y = y.clone()
# y = y.to(devices.get_device_for("controlnet"))
y = y.to(device)
y = y.clone()
return y
def high_quality_resize(x: np.ndarray,
size):
def high_quality_resize(x: np.ndarray, size):
# Written by lvmin
# Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
inpaint_mask = None
@@ -244,7 +221,7 @@ def np_img_resize(
return y
# if resize_mode == external_code.ResizeMode.RESIZE:
if resize_mode == "just_resize": # RESIZE
if resize_mode == "just_resize": # RESIZE
np_img = high_quality_resize(np_img, (w, h))
np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img
@@ -270,20 +247,21 @@ def np_img_resize(
new_h, new_w, _ = np_img.shape
pad_h = max(0, (h - new_h) // 2)
pad_w = max(0, (w - new_w) // 2)
high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = np_img
high_quality_background[pad_h : pad_h + new_h, pad_w : pad_w + new_w] = np_img
np_img = high_quality_background
np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img
else: # resize_mode == "crop_resize" (INNER_FIT)
else: # resize_mode == "crop_resize" (INNER_FIT)
k = max(k0, k1)
np_img = high_quality_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = np_img.shape
pad_h = max(0, (new_h - h) // 2)
pad_w = max(0, (new_w - w) // 2)
np_img = np_img[pad_h:pad_h + h, pad_w:pad_w + w]
np_img = np_img[pad_h : pad_h + h, pad_w : pad_w + w]
np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img
def prepare_control_image(
# image used to be Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor, List[torch.Tensor]]
# but now should be able to assume that image is a single PIL.Image, which simplifies things
@@ -301,15 +279,17 @@ def prepare_control_image(
resize_mode="just_resize_simple",
):
# FIXME: implement "crop_resize_simple" and "fill_resize_simple", or pull them out
if (resize_mode == "just_resize_simple" or
resize_mode == "crop_resize_simple" or
resize_mode == "fill_resize_simple"):
if (
resize_mode == "just_resize_simple"
or resize_mode == "crop_resize_simple"
or resize_mode == "fill_resize_simple"
):
image = image.convert("RGB")
if (resize_mode == "just_resize_simple"):
if resize_mode == "just_resize_simple":
image = image.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
elif (resize_mode == "crop_resize_simple"): # not yet implemented
elif resize_mode == "crop_resize_simple": # not yet implemented
pass
elif (resize_mode == "fill_resize_simple"): # not yet implemented
elif resize_mode == "fill_resize_simple": # not yet implemented
pass
nimage = np.array(image)
nimage = nimage[None, :]
@@ -320,7 +300,7 @@ def prepare_control_image(
timage = torch.from_numpy(nimage)
# use fancy lvmin controlnet resizing
elif (resize_mode == "just_resize" or resize_mode == "crop_resize" or resize_mode == "fill_resize"):
elif resize_mode == "just_resize" or resize_mode == "crop_resize" or resize_mode == "fill_resize":
nimage = np.array(image)
timage, nimage = np_img_resize(
np_img=nimage,
@@ -336,7 +316,7 @@ def prepare_control_image(
exit(1)
timage = timage.to(device=device, dtype=dtype)
cfg_injection = (control_mode == "more_control" or control_mode == "unbalanced")
cfg_injection = control_mode == "more_control" or control_mode == "unbalanced"
if do_classifier_free_guidance and not cfg_injection:
timage = torch.cat([timage] * 2)
return timage

View File

@@ -14,8 +14,9 @@ def get_datetime_from_iso_timestamp(iso_timestamp: str) -> datetime.datetime:
return datetime.datetime.fromisoformat(iso_timestamp)
SEED_MAX = np.iinfo(np.int32).max
SEED_MAX = np.iinfo(np.uint32).max
def get_random_seed():
return np.random.randint(0, SEED_MAX)
rng = np.random.default_rng(seed=0)
return int(rng.integers(0, SEED_MAX))

View File

@@ -9,19 +9,16 @@ from ...backend.stable_diffusion import PipelineIntermediateState
from invokeai.app.services.config import InvokeAIAppConfig
def sample_to_lowres_estimated_image(samples, latent_rgb_factors, smooth_matrix = None):
def sample_to_lowres_estimated_image(samples, latent_rgb_factors, smooth_matrix=None):
latent_image = samples[0].permute(1, 2, 0) @ latent_rgb_factors
if smooth_matrix is not None:
latent_image = latent_image.unsqueeze(0).permute(3, 0, 1, 2)
latent_image = torch.nn.functional.conv2d(latent_image, smooth_matrix.reshape((1,1,3,3)), padding=1)
latent_image = torch.nn.functional.conv2d(latent_image, smooth_matrix.reshape((1, 1, 3, 3)), padding=1)
latent_image = latent_image.permute(1, 2, 3, 0).squeeze(0)
latents_ubyte = (
((latent_image + 1) / 2)
.clamp(0, 1) # change scale from -1..1 to 0..1
.mul(0xFF) # to 0..255
.byte()
((latent_image + 1) / 2).clamp(0, 1).mul(0xFF).byte() # change scale from -1..1 to 0..1 # to 0..255
).cpu()
return Image.fromarray(latents_ubyte.numpy())
@@ -92,6 +89,7 @@ def stable_diffusion_step_callback(
total_steps=node["steps"],
)
def stable_diffusion_xl_step_callback(
context: InvocationContext,
node: dict,
@@ -106,9 +104,9 @@ def stable_diffusion_xl_step_callback(
sdxl_latent_rgb_factors = torch.tensor(
[
# R G B
[ 0.3816, 0.4930, 0.5320],
[-0.3753, 0.1631, 0.1739],
[ 0.1770, 0.3588, -0.2048],
[0.3816, 0.4930, 0.5320],
[-0.3753, 0.1631, 0.1739],
[0.1770, 0.3588, -0.2048],
[-0.4350, -0.2644, -0.4289],
],
dtype=sample.dtype,
@@ -117,9 +115,9 @@ def stable_diffusion_xl_step_callback(
sdxl_smooth_matrix = torch.tensor(
[
#[ 0.0478, 0.1285, 0.0478],
#[ 0.1285, 0.2948, 0.1285],
#[ 0.0478, 0.1285, 0.0478],
# [ 0.0478, 0.1285, 0.0478],
# [ 0.1285, 0.2948, 0.1285],
# [ 0.0478, 0.1285, 0.0478],
[0.0358, 0.0964, 0.0358],
[0.0964, 0.4711, 0.0964],
[0.0358, 0.0964, 0.0358],
@@ -143,4 +141,4 @@ def stable_diffusion_xl_step_callback(
progress_image=ProgressImage(width=width, height=height, dataURL=dataURL),
step=step,
total_steps=total_steps,
)
)

View File

@@ -1,15 +1,6 @@
"""
Initialization file for invokeai.backend
"""
from .generator import (
InvokeAIGeneratorBasicParams,
InvokeAIGenerator,
InvokeAIGeneratorOutput,
Img2Img,
Inpaint
)
from .model_management import (
ModelManager, ModelCache, BaseModelType,
ModelType, SubModelType, ModelInfo
)
from .safety_checker import SafetyChecker
from .generator import InvokeAIGeneratorBasicParams, InvokeAIGenerator, InvokeAIGeneratorOutput, Img2Img, Inpaint
from .model_management import ModelManager, ModelCache, BaseModelType, ModelType, SubModelType, ModelInfo
from .model_management.models import SilenceWarnings

View File

@@ -28,68 +28,71 @@ from diffusers.schedulers import SchedulerMixin as Scheduler
import invokeai.backend.util.logging as logger
from ..image_util import configure_model_padding
from ..util.util import rand_perlin_2d
from ..safety_checker import SafetyChecker
from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
from ..stable_diffusion.schedulers import SCHEDULER_MAP
downsampling = 8
@dataclass
class InvokeAIGeneratorBasicParams:
seed: Optional[int]=None
width: int=512
height: int=512
cfg_scale: float=7.5
steps: int=20
ddim_eta: float=0.0
scheduler: str='ddim'
precision: str='float16'
perlin: float=0.0
threshold: float=0.0
seamless: bool=False
seamless_axes: List[str]=field(default_factory=lambda: ['x', 'y'])
h_symmetry_time_pct: Optional[float]=None
v_symmetry_time_pct: Optional[float]=None
seed: Optional[int] = None
width: int = 512
height: int = 512
cfg_scale: float = 7.5
steps: int = 20
ddim_eta: float = 0.0
scheduler: str = "ddim"
precision: str = "float16"
perlin: float = 0.0
threshold: float = 0.0
seamless: bool = False
seamless_axes: List[str] = field(default_factory=lambda: ["x", "y"])
h_symmetry_time_pct: Optional[float] = None
v_symmetry_time_pct: Optional[float] = None
variation_amount: float = 0.0
with_variations: list=field(default_factory=list)
safety_checker: Optional[SafetyChecker]=None
with_variations: list = field(default_factory=list)
@dataclass
class InvokeAIGeneratorOutput:
'''
"""
InvokeAIGeneratorOutput is a dataclass that contains the outputs of a generation
operation, including the image, its seed, the model name used to generate the image
and the model hash, as well as all the generate() parameters that went into
generating the image (in .params, also available as attributes)
'''
"""
image: Image.Image
seed: int
model_hash: str
attention_maps_images: List[Image.Image]
params: Namespace
# we are interposing a wrapper around the original Generator classes so that
# old code that calls Generate will continue to work.
class InvokeAIGenerator(metaclass=ABCMeta):
def __init__(self,
model_info: dict,
params: InvokeAIGeneratorBasicParams=InvokeAIGeneratorBasicParams(),
**kwargs,
):
self.model_info=model_info
self.params=params
def __init__(
self,
model_info: dict,
params: InvokeAIGeneratorBasicParams = InvokeAIGeneratorBasicParams(),
**kwargs,
):
self.model_info = model_info
self.params = params
self.kwargs = kwargs
def generate(
self,
conditioning: tuple,
scheduler,
callback: Optional[Callable]=None,
step_callback: Optional[Callable]=None,
iterations: int=1,
callback: Optional[Callable] = None,
step_callback: Optional[Callable] = None,
iterations: int = 1,
**keyword_args,
)->Iterator[InvokeAIGeneratorOutput]:
'''
) -> Iterator[InvokeAIGeneratorOutput]:
"""
Return an iterator across the indicated number of generations.
Each time the iterator is called it will return an InvokeAIGeneratorOutput
object. Use like this:
@@ -109,7 +112,7 @@ class InvokeAIGenerator(metaclass=ABCMeta):
for o in outputs:
print(o.image, o.seed)
'''
"""
generator_args = dataclasses.asdict(self.params)
generator_args.update(keyword_args)
@@ -120,22 +123,21 @@ class InvokeAIGenerator(metaclass=ABCMeta):
gen_class = self._generator_class()
generator = gen_class(model, self.params.precision, **self.kwargs)
if self.params.variation_amount > 0:
generator.set_variation(generator_args.get('seed'),
generator_args.get('variation_amount'),
generator_args.get('with_variations')
)
generator.set_variation(
generator_args.get("seed"),
generator_args.get("variation_amount"),
generator_args.get("with_variations"),
)
if isinstance(model, DiffusionPipeline):
for component in [model.unet, model.vae]:
configure_model_padding(component,
generator_args.get('seamless',False),
generator_args.get('seamless_axes')
)
configure_model_padding(
component, generator_args.get("seamless", False), generator_args.get("seamless_axes")
)
else:
configure_model_padding(model,
generator_args.get('seamless',False),
generator_args.get('seamless_axes')
)
configure_model_padding(
model, generator_args.get("seamless", False), generator_args.get("seamless_axes")
)
iteration_count = range(iterations) if iterations else itertools.count(start=0, step=1)
for i in iteration_count:
@@ -149,66 +151,66 @@ class InvokeAIGenerator(metaclass=ABCMeta):
image=results[0][0],
seed=results[0][1],
attention_maps_images=results[0][2],
model_hash = model_hash,
params=Namespace(model_name=model_name,**generator_args),
model_hash=model_hash,
params=Namespace(model_name=model_name, **generator_args),
)
if callback:
callback(output)
yield output
@classmethod
def schedulers(self)->List[str]:
'''
def schedulers(self) -> List[str]:
"""
Return list of all the schedulers that we currently handle.
'''
"""
return list(SCHEDULER_MAP.keys())
def load_generator(self, model: StableDiffusionGeneratorPipeline, generator_class: Type[Generator]):
return generator_class(model, self.params.precision)
@classmethod
def _generator_class(cls)->Type[Generator]:
'''
def _generator_class(cls) -> Type[Generator]:
"""
In derived classes return the name of the generator to apply.
If you don't override will return the name of the derived
class, which nicely parallels the generator class names.
'''
"""
return Generator
# ------------------------------------
class Img2Img(InvokeAIGenerator):
def generate(self,
init_image: Union[Image.Image, torch.FloatTensor],
strength: float=0.75,
**keyword_args
)->Iterator[InvokeAIGeneratorOutput]:
return super().generate(init_image=init_image,
strength=strength,
**keyword_args
)
def generate(
self, init_image: Union[Image.Image, torch.FloatTensor], strength: float = 0.75, **keyword_args
) -> Iterator[InvokeAIGeneratorOutput]:
return super().generate(init_image=init_image, strength=strength, **keyword_args)
@classmethod
def _generator_class(cls):
from .img2img import Img2Img
return Img2Img
# ------------------------------------
# Takes all the arguments of Img2Img and adds the mask image and the seam/infill stuff
class Inpaint(Img2Img):
def generate(self,
mask_image: Union[Image.Image, torch.FloatTensor],
# Seam settings - when 0, doesn't fill seam
seam_size: int = 96,
seam_blur: int = 16,
seam_strength: float = 0.7,
seam_steps: int = 30,
tile_size: int = 32,
inpaint_replace=False,
infill_method=None,
inpaint_width=None,
inpaint_height=None,
inpaint_fill: tuple(int) = (0x7F, 0x7F, 0x7F, 0xFF),
**keyword_args
)->Iterator[InvokeAIGeneratorOutput]:
def generate(
self,
mask_image: Union[Image.Image, torch.FloatTensor],
# Seam settings - when 0, doesn't fill seam
seam_size: int = 96,
seam_blur: int = 16,
seam_strength: float = 0.7,
seam_steps: int = 30,
tile_size: int = 32,
inpaint_replace=False,
infill_method=None,
inpaint_width=None,
inpaint_height=None,
inpaint_fill: tuple(int) = (0x7F, 0x7F, 0x7F, 0xFF),
**keyword_args,
) -> Iterator[InvokeAIGeneratorOutput]:
return super().generate(
mask_image=mask_image,
seam_size=seam_size,
@@ -221,13 +223,16 @@ class Inpaint(Img2Img):
inpaint_width=inpaint_width,
inpaint_height=inpaint_height,
inpaint_fill=inpaint_fill,
**keyword_args
**keyword_args,
)
@classmethod
def _generator_class(cls):
from .inpaint import Inpaint
return Inpaint
class Generator:
downsampling_factor: int
latent_channels: int
@@ -240,7 +245,6 @@ class Generator:
self.seed = None
self.latent_channels = model.unet.config.in_channels
self.downsampling_factor = downsampling # BUG: should come from model or config
self.safety_checker = None
self.perlin = 0.0
self.threshold = 0
self.variation_amount = 0
@@ -254,9 +258,7 @@ class Generator:
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
"""
raise NotImplementedError(
"image_iterator() must be implemented in a descendent class"
)
raise NotImplementedError("image_iterator() must be implemented in a descendent class")
def set_variation(self, seed, variation_amount, with_variations):
self.seed = seed
@@ -277,17 +279,13 @@ class Generator:
perlin=0.0,
h_symmetry_time_pct=None,
v_symmetry_time_pct=None,
safety_checker: SafetyChecker=None,
free_gpu_mem: bool = False,
**kwargs,
):
scope = nullcontext
self.safety_checker = safety_checker
self.free_gpu_mem = free_gpu_mem
attention_maps_images = []
attention_maps_callback = lambda saver: attention_maps_images.append(
saver.get_stacked_maps_image()
)
attention_maps_callback = lambda saver: attention_maps_images.append(saver.get_stacked_maps_image())
make_image = self.get_make_image(
sampler=sampler,
init_image=init_image,
@@ -329,17 +327,10 @@ class Generator:
# Pass on the seed in case a layer beneath us needs to generate noise on its own.
image = make_image(x_T, seed)
if self.safety_checker is not None:
image = self.safety_checker.check(image)
results.append([image, seed, attention_maps_images])
if image_callback is not None:
attention_maps_image = (
None
if len(attention_maps_images) == 0
else attention_maps_images[-1]
)
attention_maps_image = None if len(attention_maps_images) == 0 else attention_maps_images[-1]
image_callback(
image,
seed,
@@ -350,9 +341,7 @@ class Generator:
seed = self.new_seed()
# Free up memory from the last generation.
clear_cuda_cache = (
kwargs["clear_cuda_cache"] if "clear_cuda_cache" in kwargs else None
)
clear_cuda_cache = kwargs["clear_cuda_cache"] if "clear_cuda_cache" in kwargs else None
if clear_cuda_cache is not None:
clear_cuda_cache()
@@ -379,14 +368,8 @@ class Generator:
# Get the original alpha channel of the mask if there is one.
# Otherwise it is some other black/white image format ('1', 'L' or 'RGB')
pil_init_mask = (
init_mask.getchannel("A")
if init_mask.mode == "RGBA"
else init_mask.convert("L")
)
pil_init_image = init_image.convert(
"RGBA"
) # Add an alpha channel if one doesn't exist
pil_init_mask = init_mask.getchannel("A") if init_mask.mode == "RGBA" else init_mask.convert("L")
pil_init_image = init_image.convert("RGBA") # Add an alpha channel if one doesn't exist
# Build an image with only visible pixels from source to use as reference for color-matching.
init_rgb_pixels = np.asarray(init_image.convert("RGB"), dtype=np.uint8)
@@ -412,10 +395,7 @@ class Generator:
np_matched_result[:, :, :] = (
(
(
(
np_matched_result[:, :, :].astype(np.float32)
- gen_means[None, None, :]
)
(np_matched_result[:, :, :].astype(np.float32) - gen_means[None, None, :])
/ gen_std[None, None, :]
)
* init_std[None, None, :]
@@ -441,9 +421,7 @@ class Generator:
else:
blurred_init_mask = pil_init_mask
multiplied_blurred_init_mask = ImageChops.multiply(
blurred_init_mask, self.pil_image.split()[-1]
)
multiplied_blurred_init_mask = ImageChops.multiply(blurred_init_mask, self.pil_image.split()[-1])
# Paste original on color-corrected generation (using blurred mask)
matched_result.paste(init_image, (0, 0), mask=multiplied_blurred_init_mask)
@@ -469,10 +447,7 @@ class Generator:
latent_image = samples[0].permute(1, 2, 0) @ v1_5_latent_rgb_factors
latents_ubyte = (
((latent_image + 1) / 2)
.clamp(0, 1) # change scale from -1..1 to 0..1
.mul(0xFF) # to 0..255
.byte()
((latent_image + 1) / 2).clamp(0, 1).mul(0xFF).byte() # change scale from -1..1 to 0..1 # to 0..255
).cpu()
return Image.fromarray(latents_ubyte.numpy())
@@ -502,9 +477,7 @@ class Generator:
temp_height = int((height + 7) / 8) * 8
noise = torch.stack(
[
rand_perlin_2d(
(temp_height, temp_width), (8, 8), device=self.model.device
).to(fixdevice)
rand_perlin_2d((temp_height, temp_width), (8, 8), device=self.model.device).to(fixdevice)
for _ in range(input_channels)
],
dim=0,
@@ -581,8 +554,6 @@ class Generator:
device=device,
)
if self.perlin > 0.0:
perlin_noise = self.get_perlin_noise(
width // self.downsampling_factor, height // self.downsampling_factor
)
perlin_noise = self.get_perlin_noise(width // self.downsampling_factor, height // self.downsampling_factor)
x = (1 - self.perlin) * x + self.perlin * perlin_noise
return x

View File

@@ -77,10 +77,7 @@ class Img2Img(Generator):
callback=step_callback,
seed=seed,
)
if (
pipeline_output.attention_map_saver is not None
and attention_maps_callback is not None
):
if pipeline_output.attention_map_saver is not None and attention_maps_callback is not None:
attention_maps_callback(pipeline_output.attention_map_saver)
return pipeline.numpy_to_pil(pipeline_output.images)[0]
@@ -91,7 +88,5 @@ class Img2Img(Generator):
x = torch.randn_like(like, device=device)
if self.perlin > 0.0:
shape = like.shape
x = (1 - self.perlin) * x + self.perlin * self.get_perlin_noise(
shape[3], shape[2]
)
x = (1 - self.perlin) * x + self.perlin * self.get_perlin_noise(shape[3], shape[2])
return x

View File

@@ -68,15 +68,11 @@ class Inpaint(Img2Img):
return im
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though)
im_patched_np = PatchMatch.inpaint(
im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3
)
im_patched_np = PatchMatch.inpaint(im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3)
im_patched = Image.fromarray(im_patched_np, mode="RGB")
return im_patched
def tile_fill_missing(
self, im: Image.Image, tile_size: int = 16, seed: Optional[int] = None
) -> Image.Image:
def tile_fill_missing(self, im: Image.Image, tile_size: int = 16, seed: Optional[int] = None) -> Image.Image:
# Only fill if there's an alpha layer
if im.mode != "RGBA":
return im
@@ -127,15 +123,11 @@ class Inpaint(Img2Img):
return si
def mask_edge(
self, mask: Image.Image, edge_size: int, edge_blur: int
) -> Image.Image:
def mask_edge(self, mask: Image.Image, edge_size: int, edge_blur: int) -> Image.Image:
npimg = np.asarray(mask, dtype=np.uint8)
# Detect any partially transparent regions
npgradient = np.uint8(
255 * (1.0 - np.floor(np.abs(0.5 - np.float32(npimg) / 255.0) * 2.0))
)
npgradient = np.uint8(255 * (1.0 - np.floor(np.abs(0.5 - np.float32(npimg) / 255.0) * 2.0)))
# Detect hard edges
npedge = cv2.Canny(npimg, threshold1=100, threshold2=200)
@@ -144,9 +136,7 @@ class Inpaint(Img2Img):
npmask = npgradient + npedge
# Expand
npmask = cv2.dilate(
npmask, np.ones((3, 3), np.uint8), iterations=int(edge_size / 2)
)
npmask = cv2.dilate(npmask, np.ones((3, 3), np.uint8), iterations=int(edge_size / 2))
new_mask = Image.fromarray(npmask)
@@ -242,25 +232,19 @@ class Inpaint(Img2Img):
if infill_method == "patchmatch" and PatchMatch.patchmatch_available():
init_filled = self.infill_patchmatch(self.pil_image.copy())
elif infill_method == "tile":
init_filled = self.tile_fill_missing(
self.pil_image.copy(), seed=self.seed, tile_size=tile_size
)
init_filled = self.tile_fill_missing(self.pil_image.copy(), seed=self.seed, tile_size=tile_size)
elif infill_method == "solid":
solid_bg = Image.new("RGBA", init_image.size, inpaint_fill)
init_filled = Image.alpha_composite(solid_bg, init_image)
else:
raise ValueError(
f"Non-supported infill type {infill_method}", infill_method
)
raise ValueError(f"Non-supported infill type {infill_method}", infill_method)
init_filled.paste(init_image, (0, 0), init_image.split()[-1])
# Resize if requested for inpainting
if inpaint_width and inpaint_height:
init_filled = init_filled.resize((inpaint_width, inpaint_height))
debug_image(
init_filled, "init_filled", debug_status=self.enable_image_debugging
)
debug_image(init_filled, "init_filled", debug_status=self.enable_image_debugging)
# Create init tensor
init_image = image_resized_to_grid_as_tensor(init_filled.convert("RGB"))
@@ -289,9 +273,7 @@ class Inpaint(Img2Img):
"mask_image AFTER multiply with pil_image",
debug_status=self.enable_image_debugging,
)
mask: torch.FloatTensor = image_resized_to_grid_as_tensor(
mask_image, normalize=False
)
mask: torch.FloatTensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
else:
mask: torch.FloatTensor = mask_image
@@ -302,9 +284,9 @@ class Inpaint(Img2Img):
# todo: support cross-attention control
uc, c, _ = conditioning
conditioning_data = ConditioningData(
uc, c, cfg_scale
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta)
conditioning_data = ConditioningData(uc, c, cfg_scale).add_scheduler_args_if_applicable(
pipeline.scheduler, eta=ddim_eta
)
def make_image(x_T: torch.Tensor, seed: int):
pipeline_output = pipeline.inpaint_from_embeddings(
@@ -318,15 +300,10 @@ class Inpaint(Img2Img):
seed=seed,
)
if (
pipeline_output.attention_map_saver is not None
and attention_maps_callback is not None
):
if pipeline_output.attention_map_saver is not None and attention_maps_callback is not None:
attention_maps_callback(pipeline_output.attention_map_saver)
result = self.postprocess_size_and_mask(
pipeline.numpy_to_pil(pipeline_output.images)[0]
)
result = self.postprocess_size_and_mask(pipeline.numpy_to_pil(pipeline_output.images)[0])
# Seam paint if this is our first pass (seam_size set to 0 during seam painting)
if seam_size > 0:

View File

@@ -8,9 +8,7 @@ from .txt2mask import Txt2Mask
from .util import InitImageResizer, make_grid
def debug_image(
debug_image, debug_text, debug_show=True, debug_result=False, debug_status=False
):
def debug_image(debug_image, debug_text, debug_show=True, debug_result=False, debug_status=False):
if not debug_status:
return

View File

@@ -0,0 +1,34 @@
"""
This module defines a singleton object, "invisible_watermark" that
wraps the invisible watermark model. It respects the global "invisible_watermark"
configuration variable, that allows the watermarking to be supressed.
"""
import numpy as np
import cv2
from PIL import Image
from imwatermark import WatermarkEncoder
from invokeai.app.services.config import InvokeAIAppConfig
import invokeai.backend.util.logging as logger
config = InvokeAIAppConfig.get_config()
class InvisibleWatermark:
"""
Wrapper around InvisibleWatermark module.
"""
@classmethod
def invisible_watermark_available(self) -> bool:
return config.invisible_watermark
@classmethod
def add_watermark(self, image: Image, watermark_text: str) -> Image:
if not self.invisible_watermark_available():
return image
logger.debug(f'Applying invisible watermark "{watermark_text}"')
bgr = cv2.cvtColor(np.array(image.convert("RGB")), cv2.COLOR_RGB2BGR)
encoder = WatermarkEncoder()
encoder.set_watermark("bytes", watermark_text.encode("utf-8"))
bgr_encoded = encoder.encode(bgr, "dwtDct")
return Image.fromarray(cv2.cvtColor(bgr_encoded, cv2.COLOR_BGR2RGB)).convert("RGBA")

View File

@@ -7,8 +7,10 @@ be suppressed or deferred
import numpy as np
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
config = InvokeAIAppConfig.get_config()
class PatchMatch:
"""
Thin class wrapper around the patchmatch function.

View File

@@ -34,9 +34,7 @@ class PngWriter:
# saves image named _image_ to outdir/name, writing metadata from prompt
# returns full path of output
def save_image_and_prompt_to_png(
self, image, dream_prompt, name, metadata=None, compress_level=6
):
def save_image_and_prompt_to_png(self, image, dream_prompt, name, metadata=None, compress_level=6):
path = os.path.join(self.outdir, name)
info = PngImagePlugin.PngInfo()
info.add_text("Dream", dream_prompt)
@@ -114,8 +112,6 @@ class PromptFormatter:
if opt.variation_amount > 0:
switches.append(f"-v{opt.variation_amount}")
if opt.with_variations:
formatted_variations = ",".join(
f"{seed}:{weight}" for seed, weight in opt.with_variations
)
formatted_variations = ",".join(f"{seed}:{weight}" for seed, weight in opt.with_variations)
switches.append(f"-V{formatted_variations}")
return " ".join(switches)

View File

@@ -0,0 +1,64 @@
"""
This module defines a singleton object, "safety_checker" that
wraps the safety_checker model. It respects the global "nsfw_checker"
configuration variable, that allows the checker to be supressed.
"""
import numpy as np
from PIL import Image
from invokeai.backend import SilenceWarnings
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.util.devices import choose_torch_device
import invokeai.backend.util.logging as logger
config = InvokeAIAppConfig.get_config()
CHECKER_PATH = "core/convert/stable-diffusion-safety-checker"
class SafetyChecker:
"""
Wrapper around SafetyChecker model.
"""
safety_checker = None
feature_extractor = None
tried_load: bool = False
@classmethod
def _load_safety_checker(self):
if self.tried_load:
return
if config.nsfw_checker:
try:
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(config.models_path / CHECKER_PATH)
self.feature_extractor = AutoFeatureExtractor.from_pretrained(config.models_path / CHECKER_PATH)
logger.info("NSFW checker initialized")
except Exception as e:
logger.warning(f"Could not load NSFW checker: {str(e)}")
else:
logger.info("NSFW checker loading disabled")
self.tried_load = True
@classmethod
def safety_checker_available(self) -> bool:
self._load_safety_checker()
return self.safety_checker is not None
@classmethod
def has_nsfw_concept(self, image: Image) -> bool:
if not self.safety_checker_available():
return False
device = choose_torch_device()
features = self.feature_extractor([image], return_tensors="pt")
features.to(device)
self.safety_checker.to(device)
x_image = np.array(image).astype(np.float32) / 255.0
x_image = x_image[None].transpose(0, 3, 1, 2)
with SilenceWarnings():
checked_image, has_nsfw_concept = self.safety_checker(images=x_image, clip_input=features.pixel_values)
return has_nsfw_concept[0]

View File

@@ -5,12 +5,8 @@ def _conv_forward_asymmetric(self, input, weight, bias):
"""
Patch for Conv2d._conv_forward that supports asymmetric padding
"""
working = nn.functional.pad(
input, self.asymmetric_padding["x"], mode=self.asymmetric_padding_mode["x"]
)
working = nn.functional.pad(
working, self.asymmetric_padding["y"], mode=self.asymmetric_padding_mode["y"]
)
working = nn.functional.pad(input, self.asymmetric_padding["x"], mode=self.asymmetric_padding_mode["x"])
working = nn.functional.pad(working, self.asymmetric_padding["y"], mode=self.asymmetric_padding_mode["y"])
return nn.functional.conv2d(
working,
weight,
@@ -32,18 +28,14 @@ def configure_model_padding(model, seamless, seamless_axes):
if seamless:
m.asymmetric_padding_mode = {}
m.asymmetric_padding = {}
m.asymmetric_padding_mode["x"] = (
"circular" if ("x" in seamless_axes) else "constant"
)
m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant"
m.asymmetric_padding["x"] = (
m._reversed_padding_repeated_twice[0],
m._reversed_padding_repeated_twice[1],
0,
0,
)
m.asymmetric_padding_mode["y"] = (
"circular" if ("y" in seamless_axes) else "constant"
)
m.asymmetric_padding_mode["y"] = "circular" if ("y" in seamless_axes) else "constant"
m.asymmetric_padding["y"] = (
0,
0,

Some files were not shown because too many files have changed in this diff Show More