Compare commits

...

172 Commits

Author SHA1 Message Date
Lincoln Stein
dcb85b0097 rebuild frontend; bump version 2023-07-27 00:37:23 -04:00
Lincoln Stein
5956c601f7 Restore ability to convert SDXL checkpoints to diffusers (#4021)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X ] Not needed


## Description

This bugfix enables InvokeAI to convert sd-1, sd-2 and sdxl base model
checkpoints (.safetensors) to diffusers.
2023-07-27 00:29:13 -04:00
Lincoln Stein
b67041dd29 Merge branch 'main' into bugfix/convert-sdxl-models 2023-07-27 00:24:37 -04:00
Lincoln Stein
5b62d97a47 install SDXL "fixed" VAE (#4020)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ X] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X ] No


## Description

This PR causes the installer to install, by default, the fine-tuned
SDXL-1.0 VAE located at
https://huggingface.co/madebyollin/sdxl-vae-fp16-fix.

Although this VAE is supposed to run at fp16 resolution, currently it
only works in InvokeAI at fp32. However, because it is a fine tune, it
may have fewer of the watermark-related artifacts that we see with the
SDXL-1.0 VAE.
2023-07-27 00:14:58 -04:00
Lincoln Stein
c02b9db064 Merge branch 'main' into bugfix/convert-sdxl-models 2023-07-27 00:08:15 -04:00
Lincoln Stein
2e19b23eed Merge branch 'main' into feat/install-finetune-sdxl-vae 2023-07-27 00:06:00 -04:00
Lincoln Stein
f7f20fdfe4 Configure script should not overwrite models.yaml if it is well formed (#4019)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ X] Not necessary


## Description

When adding new core models to a 3.0.0 root directory needed to support
SDXL, the configure script was (under some conditions) overwriting
models.yaml. This PR corrects the problem.
2023-07-27 00:03:51 -04:00
Lincoln Stein
61aff8540c fix refiner conversion 2023-07-27 00:02:10 -04:00
Lincoln Stein
2b7807e6a0 Merge branch 'main' into fix/yaml-file-delete 2023-07-26 23:45:43 -04:00
Lincoln Stein
fc19624bd8 Rework configure/install TUI to require less space (#3989)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X ] Yes
- [ ] No


## Description

I have reworked the console TUIs for the configure and model install
scripts to require much less vertical space. In the event that the
"NEXT" button is still missing and "page 1/2" is displayed, scrolling
beyond the last checkbox will now automatically move to page 2 where the
buttons are displayed. This is not ideal, but will no longer block user
completely.

If users continue to have problems after this, I'll get rid of the TUI
altogether and replace with a web form.

## Added/updated tests?

- [ ] Yes
- [X ] No : not needed

## [optional] Are there any post deployment tasks we need to perform?
2023-07-26 23:44:50 -04:00
Lincoln Stein
77946bfea5 restore ability to convert SDXL checkpoints to diffusers 2023-07-26 23:28:58 -04:00
Lincoln Stein
d4d4d749f2 Merge branch 'release/invokeai-3-0-1' 2023-07-26 23:15:26 -04:00
Lincoln Stein
43fe8b1dda Merge branch 'main' into fix/reduce-configure-vertical 2023-07-26 23:12:25 -04:00
Lincoln Stein
3e441f773f Documentation updates for SDXL license terms, invisible watermark (#4012)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [X ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [X ] No, because they trust me

      
## Have you updated all relevant documentation?
- [ X] Yes
- [ ] No


## Description

* Added the RAIL++ license for SDXL
* Updated configure script with URLs for both the original RAIL-M and
RAIL++ licenses
* Added invisible watermark documentation and renamed doc file
* Updated documentation for installation
* Updated documentation on settings in invokeai.yaml
2023-07-26 23:11:58 -04:00
Lincoln Stein
9c4acb9d3f install SDXL "fixed" VAE 2023-07-26 23:06:27 -04:00
Lincoln Stein
451b8c96e5 do not overwrite models.yaml if it is well formed 2023-07-26 22:29:39 -04:00
Lincoln Stein
b8376a4932 Merge branch 'main' into fix/reduce-configure-vertical 2023-07-26 22:16:38 -04:00
Lincoln Stein
0d344872f1 fix: Metadata Not Being Saved (#4009)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description

Metadata was not getting saved coz the accumulator was not plugged in if
watermark or nsfw nodes were turned off.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-26 22:15:32 -04:00
psychedelicious
4bfbdb0d97 chore(ui): lint 2023-07-27 11:58:59 +10:00
psychedelicious
049e666412 fix(ui): revise metadata edges in linear graphs
- always add metadata to l2i nodes
- no metadata handling for inpaint, removed
2023-07-27 09:43:45 +10:00
Lincoln Stein
83a981b585 merge with main; fix SDXL repo_ids 2023-07-26 17:38:06 -04:00
Lincoln Stein
049645d66e updated LICENSE files and added information about watermarking 2023-07-26 17:27:33 -04:00
blessedcoolant
c90c4a32ee Merge branch 'main' into metadata-fix 2023-07-27 08:08:11 +12:00
Lincoln Stein
0100ac8f2d Merge branch 'main' into release/invokeai-3-0-1 2023-07-26 15:27:06 -04:00
Lincoln Stein
6a3a776f4e Bugfix/checkpoint conversion (#4010)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ x] No, because there was no time!

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X ] No


## Description

Hotfix for issue of SD1 and SD2 legacy safetensors models not converting
in 3.0.1rc1.
2023-07-26 15:21:16 -04:00
Lincoln Stein
020031f376 add all legacy model .yaml files to configs directory unconditionally 2023-07-26 15:17:00 -04:00
blessedcoolant
7053347559 fix: Metadata Not Being Saved 2023-07-27 07:09:51 +12:00
Lincoln Stein
bf1f6619df fix conversion for sd1 and sd2 models 2023-07-26 15:02:32 -04:00
Lincoln Stein
6bdcc32414 rebuild frontend for rc1 release (again) 2023-07-26 13:36:42 -04:00
Lincoln Stein
4f39c81dec Merge branch 'main' into release/invokeai-3-0-1 2023-07-26 13:33:15 -04:00
blessedcoolant
3376968cbb fix: Prompt Drawer Unpinned not having SDXL UI 2023-07-26 13:30:43 -04:00
blessedcoolant
0420d75d2b fix: Improve Styling of SDXL Prompt Area 2023-07-26 13:30:43 -04:00
blessedcoolant
3bd9c27a79 feat: Add SDXL Style Prompt Concat Toggle 2023-07-26 13:30:43 -04:00
blessedcoolant
b6522cf2cf fix: SDXL - Concat Prompt and Style for Style Prompt 2023-07-26 13:30:43 -04:00
blessedcoolant
13ac5c6899 enable hide localization toggle (#4004)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-27 03:01:52 +12:00
Lincoln Stein
05070304ff Merge branch 'release/invokeai-3-0-1' of github.com:invoke-ai/InvokeAI into release/invokeai-3-0-1
- fix log message
2023-07-26 11:00:57 -04:00
Lincoln Stein
af8fc6ff82 final polish before release candidate
- Fix issue that prevented web ui from starting if
  ROOT/databases/invokeai.db not found.

- Rebuild front end
2023-07-26 10:59:23 -04:00
Mary Hipp
f86d0d1b69 hide localization toggle 2023-07-26 10:55:38 -04:00
Lincoln Stein
e6741cee75 rebuid front end 2023-07-26 10:47:37 -04:00
Lincoln Stein
575ebaeb75 Merge PR #3944 2023-07-26 10:25:59 -04:00
Lincoln Stein
385483ff8e Download all model types. (#3944) 2023-07-26 10:24:37 -04:00
Lincoln Stein
c7f883d22a Merge branch 'main' into patch 2023-07-26 10:19:02 -04:00
Lincoln Stein
58ff5d3f5b Merge branch 'main' into release/invokeai-3-0-1
- this includes the final set of PRs going into 3.0.1
2023-07-26 10:17:32 -04:00
Lincoln Stein
f060e321eb NSFW checker and watermark nodes (#3923)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X ] Yes
- [] No

## Description

This PR adds NSFW checker and invisible watermark fields. The NSFW
checker takes an image input and produces an image output. If NSFW
content is detected, the output image will be blurred and a "caution"
icon pasted into its upper left corner. A boolean `active` field
controls whether the checker is active. If turned off it simply returns
a copy of the image.

The invisible watermark node adds an invisible text to the image,
defaulting to "InvokeAI". To decode the watermark use the
`invisible-watermark` command, which is part of the
`invisible-watermark` library:

```
$ invisible-watermark -v -a decode -t bytes -m dwtDct -l 64 ./bluebird-watermark.png 
decode time ms: 14.129877090454102
InvokeAI
```

Note that the `-l` (length) argument is mandatory. It is set to 64 here
because the watermark `InvokeAI` is 8 bytes/64 bits long. The length
must match in order for the watermark to be decoded correctly.

Both nodes are now incorporated into the linear Text2Image and
Image2Image UIs, including the canvas. They are not implemented for
inpaint currently.

The nodes can be disabled with configuration options:
```
invisible_watermark: false
nsfw_checker: false
```
or at launch time with `--no-invisible_watermark` and
`--no-nsfw_checker`.
2023-07-26 10:14:10 -04:00
psychedelicious
dc8c3d8073 feat(ui): tweak menu style, increase icon size
feat(ui) use `as` for menuitem links

I had requested this be done with the chakra `Link` component, but actually using `as` is correct according to the docs. For other components, you are supposed to use `Link` but looks like `MenuItem` has this built in.

Fixed in all places where we use it.

Also:
- fix github icon
- give menu hamburger button padding
- add menu motion props so it animates the same as other menus

feat(ui): restore ColorModeButton

@maryhipp

chore(ui): lint

feat(ui): remove colormodebutton again

sry
2023-07-27 00:12:23 +10:00
psychedelicious
819136c345 chore(ui): bump chakra versions
exposes more menu theming config
2023-07-27 00:12:23 +10:00
blessedcoolant
989b68c772 fix: Remove menu tooltip and fix incorrect issues page link 2023-07-27 00:12:23 +10:00
blessedcoolant
a6347a1d3c revert: Translation strings
These needs to be done through weblate. Only en.json needs to updated via the repo
2023-07-27 00:12:23 +10:00
blessedcoolant
a00d1e87e4 fix: Update Links to Links from Menu Items 2023-07-27 00:12:23 +10:00
blessedcoolant
c7d24081e2 fix: Scheduler list in Settings not displaying labels 2023-07-27 00:12:23 +10:00
blessedcoolant
17900e5140 fix: Fix Settings dropdown menu icons being too small 2023-07-27 00:12:23 +10:00
Josh Corbett
6fa42cb10c feat: consolidated app nav to settings & dropdown 2023-07-27 00:12:23 +10:00
Lincoln Stein
4bea846199 Merge branch 'main' into feat/safety-checker-node 2023-07-26 10:04:23 -04:00
blessedcoolant
3dccc4d61e Add support for controlnet & sdxl checkpoint conversion (#3905)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ X] No - not yet WIP


## Description

This PR adds support for loading and converting checkpoint-format
ControlNet and SDXL models. The SDXL and SDXL-refiner model conversions
are working; however saving the unet in safetensors format leads to
corrupted model files, so currently is saving in .bin format (after
scanning the input model).

ControlNet conversion seems to be working but needs further testing.

To use this PR, you will need to copy the files
`invokeai/configs/stable-diffusion/sd_xl_base.yaml` and
`invokeai/configs/stable-diffusion/sd_xl_refiner.yaml` into
`INVOKEAI/configs/stable-diffusion`. You will also need to run
`invokeai-configure --yes --skip-sd` in order to install additional core
model files needed by the converter.
2023-07-27 01:50:38 +12:00
Lincoln Stein
bf0587da5f set defaults for watermark and NSFW checker to FALSE 2023-07-26 09:09:46 -04:00
Lincoln Stein
58c0bee325 improved error message for running configure 2023-07-26 08:30:01 -04:00
Lincoln Stein
b8f43f444a implemented startup sanity checks on core models 2023-07-26 08:26:29 -04:00
Lincoln Stein
da76f6fee4 compress height needed by configure script 2023-07-26 08:00:19 -04:00
Lincoln Stein
c4f064bbf3 Merge branch 'main' into feat/controlnet-and-sdxl-convert 2023-07-26 07:30:22 -04:00
Lincoln Stein
0ce8472562 adjust unit test to account for nsfw always being true now 2023-07-26 07:29:33 -04:00
Lincoln Stein
3e206d4d6a removed nsfw/watermark from invokeai.yaml 2023-07-26 06:53:35 -04:00
Lincoln Stein
ce7fa96dbc Merge branch 'main' into feat/safety-checker-node 2023-07-26 06:39:46 -04:00
Lincoln Stein
a705461c04 merge with recent main changes 2023-07-26 06:39:21 -04:00
blessedcoolant
fda7e0a71a 3.0.1 - Pre-Release UI Fixes (#4001)
## What type of PR is this? (check all applicable)

- [x] Feature

## Have you discussed this change with the InvokeAI team?
- [x] Yes

      
## Description

- Update the Aspect Ratio tags to show the aspect ratio values rather
than Wide / Square and etc.
- Updated Lora Input to take values between -50 and 50 coz I found some
LoRA that are actually trained to work until -25 and +15 too. So these
input caps should mostly suffice. If there's ever a LoRA that goes
bonkers on that, we can change it.
- Fixed LoRA's being sorted the wrong way in Lora Select.
- Fixed Embeddings being sorted the wrong way in Embedding Select.


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-26 21:22:33 +12:00
psychedelicious
513b223ef6 fix(test): fix test_graph_subgraph_t2i
needed to be updated after adding the nsfw checker node to the graph
2023-07-26 18:49:29 +10:00
psychedelicious
db05445103 fix(tests): fix test_path
- assets path has changed
2023-07-26 18:48:43 +10:00
psychedelicious
30c3b7a6fc fix(ui): fix invoke button being disabled 2023-07-26 18:40:17 +10:00
blessedcoolant
9e9dce44b4 fix: Embeddings not being sorted alphabetically 2023-07-26 20:34:14 +12:00
blessedcoolant
6fd8543e69 fix: LoRA's not being sorted alphabetically 2023-07-26 20:33:59 +12:00
psychedelicious
db48f3230b feat(ui): add nsfw & watermark to linear ui
- add `addNSFWCheckerToGraph` and `addWatermarkerToGraph` functions
- use them in all linear graph creation
- add state & toggles to settings modal to enable these
- trigger queries for app config on socket connect
- disable the nsfw/watermark booleans if we get the app config and they are not available
2023-07-26 18:20:20 +10:00
blessedcoolant
397604a094 feat: Allow LoRA weights to be more than sliders via input
Found some LoRA's that need it.
2023-07-26 19:20:42 +12:00
blessedcoolant
f5139b174a fix(ui): Rename Aspect Ratio labels to their aspect ratios 2023-07-26 18:56:52 +12:00
blessedcoolant
050e5091db feat: Enable the Conversion button for SDXL Models 2023-07-26 17:32:50 +12:00
Lincoln Stein
2c5b539d3a esrgan and its models are now nested in app config route 2023-07-26 15:27:04 +10:00
Lincoln Stein
85ad5ef204 refactored code; added watermark and nsfw facilities to app config route 2023-07-26 15:27:04 +10:00
Lincoln Stein
5beb11f4e2 tweaks in response to psychedelicious review of PR 2023-07-26 15:27:04 +10:00
Lincoln Stein
844d37c642 rebuild schema 2023-07-26 15:27:04 +10:00
Lincoln Stein
b3723d1ccf update documentation 2023-07-26 15:27:04 +10:00
Lincoln Stein
bd43751323 update linear graphs to perform safety checking and watermarking 2023-07-26 15:27:04 +10:00
Lincoln Stein
e32cd794f7 add safetychecker and watermark nodes 2023-07-26 15:26:45 +10:00
mickr777
761fc4beb8 Temp fix for is intermediate switch for l2i 2023-07-26 15:17:59 +10:00
blessedcoolant
531bc40d3f feat: Add SDXL To Linear UI (#3973)
## What type of PR is this? (check all applicable)

- [x] Feature


## Have you discussed this change with the InvokeAI team?
- [x] Yes

## Description

This PR adds support for SDXL Models in the Linear UI

### DONE

- SDXL Base Text To Image Support
- SDXL Base Image To Image Support
- SDXL Refiner Support
- SDXL Relevant UI


## [optional] Are there any post deployment tasks we need to perform?

Double check to ensure nothing major changed with 1.0 -- In any case
those changes would be backend related mostly. If Refiner is scrapped
for 1.0 models, then we simply disable the Refiner Graph.
2023-07-26 17:05:39 +12:00
psychedelicious
676051edb9 fix(ui): fix missing args for model queries 2023-07-26 14:56:51 +10:00
blessedcoolant
de65b82569 chore: Fix lint errors 2023-07-26 16:51:58 +12:00
blessedcoolant
934f9afd7e feat(ui): Do not show SDXL Models in Canvas 2023-07-26 14:46:38 +10:00
psychedelicious
1c01a31ee8 feat(ui): setActiveTab only works with tab names 2023-07-26 14:46:38 +10:00
psychedelicious
c5389b3298 fix(ui): fix refiner steps math again 2023-07-26 14:46:38 +10:00
psychedelicious
fdbab5ffa9 feat(ui): hide sync models button if feature is disabled 2023-07-26 14:46:38 +10:00
psychedelicious
a6e544ebd5 fix(ui): fix refiner steps calculation for edge case of start = 1 2023-07-26 14:46:38 +10:00
psychedelicious
75b0507434 feat(nodes): change denoising start/end min/max to 0/1 2023-07-26 14:46:38 +10:00
blessedcoolant
59c2556e6b feat: Move SDXL Image Denoising to own component 2023-07-26 14:46:38 +10:00
blessedcoolant
4fe889bbf8 fix: Possible fix to image to image / refiner setting sync
The main goal is to avoid noisy output no matter what the slider values are.
2023-07-26 14:46:38 +10:00
psychedelicious
cbcd416b70 fix(ui): fix refiner missing from model manager
Rolled back the earlier split of the refiner model query.

Now, when you use `useGetMainModelsQuery()`, you must provide it an array of base model types.

They are provided as constants for simplicity:
- ALL_BASE_MODELS
- NON_REFINER_BASE_MODELS
- REFINER_BASE_MODELS

Opted to just use args for the hook instead of wrapping the hook in another hook, we can tidy this up later if desired.
2023-07-26 14:46:38 +10:00
psychedelicious
6fa244a343 feat(ui): add vae precision select 2023-07-26 14:46:38 +10:00
psychedelicious
e5a660930c feat(ui): add zod schemas for precision parameters 2023-07-26 14:46:38 +10:00
psychedelicious
61291ea105 feat: sdxl metadata
- update `CoreMetadata` class & `MetadataAccumulator` with fields for SDXL-specific metadata
- update the linear UI graphs to populate this metadata
2023-07-26 14:46:38 +10:00
psychedelicious
840205496a feat(nodes): fix model load events on sdxl nodes
they need the `context` to be provided to emit socket events
2023-07-26 14:46:38 +10:00
psychedelicious
016797c890 feat(ui): add vaePrecision setting
no UI element for it yet
2023-07-26 14:46:38 +10:00
psychedelicious
00e69d5d12 feat(ui): adjust seed param styling 2023-07-26 14:46:38 +10:00
psychedelicious
8e90f9024d feat(ui): remove isRefinerAvailable state, update refiner node
We can derive `isRefinerAvailable` from the query result (eg are there any refiner models installed). This is a piece of server state, so by using the list models response directly, we can avoid needing to manually keep the client in sync with the server.

Created a `useIsRefinerAvailable()` hook to return this boolean wherever it is needed.

Also updated the main models & refiner models endpoints to only return the appropriate models. Now we don't need to filter the data on these endpoints.
2023-07-26 14:46:38 +10:00
psychedelicious
751c4407e4 feat(ui): add node type to invocation started 2023-07-26 14:46:38 +10:00
blessedcoolant
6c46304eb8 fix: Replug Image To Latents VAE back in the Refiner graph for img2img 2023-07-26 14:46:38 +10:00
blessedcoolant
0eb31c5710 fix: Cyclic push in the graph 2023-07-26 14:46:38 +10:00
blessedcoolant
6295e56d96 feat: Add SDXL Refiner to Linear UI 2023-07-26 14:46:38 +10:00
blessedcoolant
5202610160 feat: Move SDXL Refiner to own route & set appropriate disabled statuses 2023-07-26 14:46:38 +10:00
blessedcoolant
8d1b8179af feat: Create UI for SDXL Refiner Options 2023-07-26 14:46:38 +10:00
blessedcoolant
3bdb059eb7 wip: SDXL Refiner UI Data 2023-07-26 14:46:38 +10:00
blessedcoolant
b0ebd148fa feat: Add Style Prompts to Linear UI 2023-07-26 14:46:38 +10:00
blessedcoolant
9f94d0e52a feat: Create SDXL Slice 2023-07-26 14:46:38 +10:00
blessedcoolant
9c180da58a feat: Add SDXL Image To Image to Linear UI 2023-07-26 14:46:38 +10:00
blessedcoolant
57d833035d feat: Add SDXL Base To Linear Text To Image 2023-07-26 14:46:38 +10:00
Lincoln Stein
c145681488 bump version number; add SDXL-1.0 to installer 2023-07-26 00:17:00 -04:00
Millun Atluri
3eaf8c3b2f Update stale issues action (#3960)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X] No


## Description
Updated script to close stale issues with the newest version of the
actions/stale

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [X] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
Not sure how this script gets kicked off
2023-07-26 14:08:22 +10:00
Millun Atluri
d9527bf445 Merge branch 'main' into main 2023-07-26 14:08:00 +10:00
Lincoln Stein
032e9c8165 Merge branch 'main' into patch 2023-07-25 22:24:36 -04:00
Lincoln Stein
dbc3d42afc install all recommended models with --yes; don't alter starter model screen 2023-07-25 22:24:03 -04:00
ymgenesis
d5998ad3ef update images to link from docs/assets/nodes/ 2023-07-25 21:48:48 -04:00
ymgenesis
a4c8d86faa add NODES.md image assets to docs/assets/nodes/ 2023-07-25 21:48:48 -04:00
ymgenesis
f4da66aa0f Update NODES.md 2023-07-25 21:48:48 -04:00
Mary Hipp
7f5a89f567 add option to disable model syncing in UI 2023-07-26 11:18:38 +10:00
Lincoln Stein
2db9b3b2ae Merge branch 'main' into patch 2023-07-25 16:27:10 -04:00
Lincoln Stein
77107dfcbc Merge branch 'main' into main 2023-07-25 16:26:37 -04:00
Lincoln Stein
e43e198102 rework configure/install TUI to require less space 2023-07-25 11:25:26 -04:00
Lincoln Stein
11e6ecc1bf Merge branch 'main' into feat/controlnet-and-sdxl-convert 2023-07-25 08:05:17 -04:00
Lincoln Stein
7d337dccc2 docs generation: fix typo and remove trailing white space (#3972)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [x] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because: This is a minor fix that I happened upon while
reading

      
## Have you updated all relevant documentation?
- [x] Yes
- [ ] No


## Description

Within the `mkdocs.yml` file, there's a typo where `Model Merging` is
spelled as `Model Mergeing`. I also found some unnecessary white space
that I removed.


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [x] No : Not big enough of a change to require tests (unless it is)

## [optional] Are there any post deployment tasks we need to perform?
Might need to re-run the yml file for docs to regenerate, but I'm hardly
familiar with the codebase so 🤷
2023-07-24 23:11:37 -04:00
Lincoln Stein
91e903c8ab esrgan and its models are now nested in app config route 2023-07-24 22:17:22 -04:00
Lincoln Stein
efa615a8fd refactored code; added watermark and nsfw facilities to app config route 2023-07-24 22:02:57 -04:00
Millun Atluri
cf10852ee3 uses v8 actions/stale@v8 2023-07-25 11:23:00 +10:00
Josh Corbett
437532f2f9 fix: ✏️ fix docs generation typo and remove trailing white space 2023-07-24 17:42:01 -06:00
Lincoln Stein
4194a0ed99 tweaks in response to psychedelicious review of PR 2023-07-24 09:23:51 -04:00
Lincoln Stein
7ce5b6504f rebuild schema 2023-07-24 08:25:39 -04:00
Millun Atluri
aea8ad5670 Update close-inactive-issues.yml with latest stale version 2023-07-24 20:52:34 +10:00
Millun Atluri
97f4475fdf Update close-inactive-issues.yml 2023-07-24 20:50:33 +10:00
blessedcoolant
4f9c728db0 feat(ui): display canvas generation mode in status text (#3915)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because: n/a

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No n/a


## Description

Add a generation mode indicator to canvas.

- use the existing logic to determine if generation is txt2img, img2img,
inpaint or outpaint
- technically `outpaint` and `inpaint` are the same, just display
"Inpaint" if its either
- debounce this by 1s to prevent jank

I was going to disable controlnet conditionally when the mode is inpaint
but that involves a lot of fiddly changes to the controlnet UI
components. Instead, I'm hoping we can get inpaint moved over to latents
by next release, at which point controlnet will work.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->


https://github.com/invoke-ai/InvokeAI/assets/4822129/87464ae9-4136-4367-b992-e243ff0d05b4

## Added/updated tests?

- [ ] Yes
- [x] No : n/a

## [optional] Are there any post deployment tasks we need to perform?

n/a
2023-07-24 20:37:45 +12:00
blessedcoolant
7ea477abef Merge branch 'main' into feat/canvas-generation-mode 2023-07-24 20:34:25 +12:00
blessedcoolant
d42c394ab7 feat(nodes,ui): fix soft locks on session/invocation retrieval (#3910)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No, n/a


## Description

When a queue item is popped for processing, we need to retrieve its
session from the DB. Pydantic serializes the graph at this stage.

It's possible for a graph to have been made invalid during the graph
preparation stage (e.g. an ancestor node executes, and its output is not
valid for its successor node's input field).

When this occurs, the session in the DB will fail validation, but we
don't have a chance to find out until it is retrieved and parsed by
pydantic.

This logic was previously not wrapped in any exception handling.

Just after retrieving a session, we retrieve the specific invocation to
execute from the session. It's possible that this could also have some
sort of error, though it should be impossible for it to be a pydantic
validation error (that would have been caught during session
validation). There was also no exception handling here.

When either of these processes fail, the processor gets soft-locked
because the processor's cleanup logic is never run. (I didn't dig deeper
into exactly what cleanup is not happening, because the fix is to just
handle the exceptions.)

This PR adds exception handling to both the session retrieval and node
retrieval and events for each: `session_retrieval_error` and
`invocation_retrieval_error`.

These events are caught and displayed in the UI as toasts, along with
the type of the python exception (e.g. `Validation Error`). The events
are also logged to the browser console.


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

Closes #3860 , #3412

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

Create an valid graph that will become invalid during execution. Here's
an example:

![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/50aa824c-fb0c-4bd9-82f4-38a4c89436f9)

This is valid before execution, but the `width` field of the `Noise`
node will end up with an invalid value (`0`). Previously, this would
soft-lock the app and you'd have to restart it.

Now, with this graph, you will get an error toast, and the app will not
get locked up.

## Added/updated tests?

- [x] Yes (ish)
- [ ] No

@Kyle0654  @brandonrising 
It seems because the processor runs in its own thread, `pytest` cannot
catch exceptions raised in the processor.

I added a test that does work, insofar as it does recreate the issue.
But, because the exception occurs in a separate thread, the test doesn't
see it. The result is that the test passes even without the fix.

So when running the test, we see the exception:
```py
Exception in thread invoker_processor:
Traceback (most recent call last):
  File "/usr/lib/python3.10/threading.py", line 1016, in _bootstrap_inner
    self.run()
  File "/usr/lib/python3.10/threading.py", line 953, in run
    self._target(*self._args, **self._kwargs)
  File "/home/bat/Documents/Code/InvokeAI/invokeai/app/services/processor.py", line 50, in __process
    self.__invoker.services.graph_execution_manager.get(
  File "/home/bat/Documents/Code/InvokeAI/invokeai/app/services/sqlite.py", line 79, in get
    return self._parse_item(result[0])

  File "/home/bat/Documents/Code/InvokeAI/invokeai/app/services/sqlite.py", line 52, in _parse_item
    return parse_raw_as(item_type, item)
  File "pydantic/tools.py", line 82, in pydantic.tools.parse_raw_as
  File "pydantic/tools.py", line 38, in pydantic.tools.parse_obj_as
  File "pydantic/main.py", line 341, in pydantic.main.BaseModel.__init__
```

But `pytest` doesn't actually see it as an exception. Not sure how to
fix this, it's a bit beyond me.

## [optional] Are there any post deployment tasks we need to perform?

nope don't think so
2023-07-24 20:17:39 +12:00
psychedelicious
61fa960a18 feat(ui): make generation mode calculation more granular 2023-07-24 18:16:15 +10:00
blessedcoolant
1969afd038 Merge branch 'main' into feat/fix-soft-locks 2023-07-24 20:12:10 +12:00
blessedcoolant
2b65e40896 Fix incorrect use of a singleton list (#3914)
## What type of PR is this? (check all applicable)

- [x] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission
      
## Description

`search_for_models` is explicitly typed as taking a singular `Path` but
was given a list because some later function in the stack expects a
list. Fixed that to be compatible with the paths. This is the only use
of that function.

The `list()` call is unrelated but removes a type warning since it's
supposed to return a list, not a set. I can revert it if requested.

This was found through pylance type errors. Go types!
2023-07-24 20:08:21 +12:00
blessedcoolant
d6bf6513ef Merge branch 'main' into fix-types-2 2023-07-24 20:01:48 +12:00
blessedcoolant
14659277e7 Add missing import (#3917)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

This import is missing and used later in the file.
2023-07-24 20:01:12 +12:00
camenduru
cbb90cbdbb Download all model types. 2023-07-24 10:59:59 +03:00
blessedcoolant
9c59083406 Merge branch 'main' into fix-types-1 2023-07-24 19:52:46 +12:00
blessedcoolant
86b62cfccc fix: Generate random seed using the generator instead of RandomState (#3940)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-24 19:52:04 +12:00
blessedcoolant
e766ddbcf4 fix: Generate random seed using the generator instead of RandomState 2023-07-24 19:38:21 +12:00
blessedcoolant
374b4a1b12 Merge branch 'main' into pr/3917 2023-07-24 18:58:34 +12:00
blessedcoolant
0cf7a10c5c fix: Other lora missing type 2023-07-24 18:58:24 +12:00
blessedcoolant
1c44a0feba feat: increase seed from int32 to uint32 (#3933)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No: n/a


## Description

At some point I typo'd this and set the max seed to signed int32 max. It
should be *un*signed int32 max.

This restored the seed range to what it was in v2.3.

Also fixed a bug in the Noise node which resulted in the max valid seed
being one less than intended.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issues
#2843 is against v2.3 and increases the range of valid seeds
substantially. Maybe we can explore this in the future but as of v3.0,
we use numpy for a RNG in a few places, and it maxes out at the max
`uint32`. I will close this PR as this supersedes it.
- Closes #3866

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

You should be able to use seeds up to and including `4294967295`.

## Added/updated tests?

- [ ] Yes
- [x] No : don't think we have any relevant tests

## [optional] Are there any post deployment tasks we need to perform?

nope!
2023-07-24 18:55:35 +12:00
psychedelicious
66cdeba8a1 fix(nodes): fix seed modulus operation
This was incorect and resulted in the max seed being one less than intended.
2023-07-24 16:44:32 +10:00
psychedelicious
d5a75eb833 feat: increase seed from int32 to uint32
At some point I typo'd this and set the max seed to signed int32 max. It should be *un*signed int32 max.

This restored the seed range to what it was in v2.3.
2023-07-24 16:34:50 +10:00
Lincoln Stein
8eab96c441 update documentation 2023-07-23 23:41:44 -04:00
Lincoln Stein
4754a94102 update linear graphs to perform safety checking and watermarking 2023-07-23 23:32:08 -04:00
Lincoln Stein
5c6f417471 add safetychecker and watermark nodes 2023-07-23 16:24:34 -04:00
Alexandre Macabies
0beec08d38 Add missing import. 2023-07-23 16:40:05 +02:00
blessedcoolant
02618a701d fix: Fix app crashing when you upload an incorrect JSON to node editor (#3911)
## What type of PR is this? (check all applicable)

- [x] Bug Fix


## Have you discussed this change with the InvokeAI team?
- [x] Yes, we feel very passionate about this.     

## Description

Uploading an incorrect JSON file to the Node Editor would crash the app.

While this is a much larger problem that we will tackle while refining
the Node Editor, this is a fix that should address 99% of the cases out
there.

When saving an InvokeAI node graph, there are three primary keys.

1. `nodes` - which has all the node related data.
2. `edges` - which has all the edges related data
3. `viewport` - which has all the viewport related data.

So when we load back the JSON, we now check if all three of these keys
exist in the retrieved JSON object. While the `viewport` itself is not a
mandatory key to repopulate the graph, checking for it will allow us to
treat it as an additional check to ensure that the graph was saved from
InvokeAI.

As a result ...

- If you upload an invalid JSON file, the app now warns you that the
JSON is invalid.
- If you upload a JSON of a graph editor that is not InvokeAI, it simply
warns you that you are uploading a non InvokeAI graph.

So effectively, you should not be able to load any graph that is not
generated by ReactFlow.

Here are the edge cases:

- What happens if a user maintains the above key structure but tampers
with the data inside them? Well tested it. Turns out because we validate
and build the graph based on the JSON data, if you tamper with any data
that is needed to rebuild that node, it simply will skip that and load
the rest of the graph with valid data.
- What happens if a user uploads a graph that was made by some other
random ReactFlow app? Well, same as above. Because we do not have to
parse that in our setup, it simply will skip it and only display what
are setup to do.

I think that just about covers 99% of the cases where this could go
wrong. If there's any other edges cases, can add checks if need be. But
can't think of any at the moment.

## Related Tickets & Documents

### Closes
- #3893 
- #3881

## [optional] Are there any post deployment tasks we need to perform?

Yes. Making @psychedelicious a little bit happier. :P
2023-07-24 02:15:46 +12:00
Lincoln Stein
f2a6f0cf21 SDXL & SDXL-refiner models convert correctly 2023-07-23 09:31:14 -04:00
Alexandre Macabies
07a90c0198 Fix incorrect use of a singleton list.
This was found through pylance type errors. Go types!
2023-07-23 15:28:05 +02:00
psychedelicious
28031ead70 feat(ui): display canvas generation mode in status text
- use the existing logic to determine if generation is txt2img, img2img, inpaint or outpaint
- technically `outpaint` and `inpaint` are the same, just display
"Inpaint" if its either
- debounce this by 1s to prevent jank
2023-07-23 23:22:59 +10:00
psychedelicious
4b334be7d0 feat(nodes,ui): fix soft locks on session/invocation retrieval
When a queue item is popped for processing, we need to retrieve its session from the DB. Pydantic serializes the graph at this stage.

It's possible for a graph to have been made invalid during the graph preparation stage (e.g. an ancestor node executes, and its output is not valid for its successor node's input field).

When this occurs, the session in the DB will fail validation, but we don't have a chance to find out until it is retrieved and parsed by pydantic.

This logic was previously not wrapped in any exception handling.

Just after retrieving a session, we retrieve the specific invocation to execute from the session. It's possible that this could also have some sort of error, though it should be impossible for it to be a pydantic validation error (that would have been caught during session validation). There was also no exception handling here.

When either of these processes fail, the processor gets soft-locked because the processor's cleanup logic is never run. (I didn't dig deeper into exactly what cleanup is not happening, because the fix is to just handle the exceptions.)

This PR adds exception handling to both the session retrieval and node retrieval and events for each: `session_retrieval_error` and `invocation_retrieval_error`.

These events are caught and displayed in the UI as toasts, along with the type of the python exception (e.g. `Validation Error`). The events are also logged to the browser console.
2023-07-23 21:41:01 +10:00
blessedcoolant
af4579b4d4 feat: Add more sanity checks for graph loading 2023-07-23 18:12:25 +12:00
blessedcoolant
35acb5de76 Merge branch 'main' into json-crash-fix 2023-07-23 16:50:36 +12:00
blessedcoolant
225f608556 fix: Add more sanity checks & rename buttons to Graphs 2023-07-23 16:49:52 +12:00
Alexandre Macabies
00d3cd4aed Fix 'Del' hotkey to delete current image. 2023-07-23 14:16:32 +10:00
Lincoln Stein
5e59edfaf1 SDXL checkpoint models now convert and load; needs refactor 2023-07-23 00:00:31 -04:00
blessedcoolant
fdc444ed61 fix: Fix app crashing when you upload an incorrect JSON to node editor 2023-07-23 15:24:04 +12:00
blessedcoolant
075f9b3a7a ui: pay back tech debt (#3896)
## What type of PR is this? (check all applicable)

- [x] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because: n/a

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No n/a


## Description

Big cleanup:
- improve & simplify the app logging
- resolve all TS issues
- resolve all circular dependencies
- fix all lint/format issues

## QA Instructions, Screenshots, Recordings

`yarn lint` passes:


![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/7b763922-f00c-4b17-be23-2432da50f816)
<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [x] No : n/a

## [optional] Are there any post deployment tasks we need to perform?

bask in the glory of what *should* be a fully-passing frontend lint on
this PR
2023-07-23 13:57:43 +12:00
Lincoln Stein
b1d7c9b306 save text_encoder_2 config, not whole model 2023-07-22 21:33:40 -04:00
Lincoln Stein
5607794dbb add support for controlnet & sdxl conversion - not fully working 2023-07-22 20:12:16 -04:00
psychedelicious
c5147d0f57 fix(ui): fix all eslint & prettier issues 2023-07-22 23:45:24 +10:00
psychedelicious
6452d0fc28 fix(ui): fix all circular dependencies 2023-07-22 22:48:39 +10:00
psychedelicious
5468d9a9fc fix(ui): resolve all typescript issues 2023-07-22 21:38:50 +10:00
psychedelicious
75863e7181 feat(ui): logging cleanup
- simplify access to app logger
- spruce up and make consistent log format
- improve messaging
2023-07-22 21:12:51 +10:00
373 changed files with 8854 additions and 5585 deletions

View File

@@ -1,11 +1,11 @@
name: Close inactive issues
on:
schedule:
- cron: "00 6 * * *"
- cron: "00 4 * * *"
env:
DAYS_BEFORE_ISSUE_STALE: 14
DAYS_BEFORE_ISSUE_CLOSE: 28
DAYS_BEFORE_ISSUE_STALE: 30
DAYS_BEFORE_ISSUE_CLOSE: 14
jobs:
close-issues:
@@ -14,7 +14,7 @@ jobs:
issues: write
pull-requests: write
steps:
- uses: actions/stale@v5
- uses: actions/stale@v8
with:
days-before-issue-stale: ${{ env.DAYS_BEFORE_ISSUE_STALE }}
days-before-issue-close: ${{ env.DAYS_BEFORE_ISSUE_CLOSE }}
@@ -23,5 +23,6 @@ jobs:
close-issue-message: "Due to inactivity, this issue was automatically closed. If you are still experiencing the issue, please recreate the issue."
days-before-pr-stale: -1
days-before-pr-close: -1
exempt-issue-labels: "Active Issue"
repo-token: ${{ secrets.GITHUB_TOKEN }}
operations-per-run: 500

290
LICENSE-SDXL.txt Normal file
View File

@@ -0,0 +1,290 @@
Copyright (c) 2023 Stability AI
CreativeML Open RAIL++-M License dated July 26, 2023
Section I: PREAMBLE
Multimodal generative models are being widely adopted and used, and
have the potential to transform the way artists, among other
individuals, conceive and benefit from AI or ML technologies as a tool
for content creation.
Notwithstanding the current and potential benefits that these
artifacts can bring to society at large, there are also concerns about
potential misuses of them, either due to their technical limitations
or ethical considerations.
In short, this license strives for both the open and responsible
downstream use of the accompanying model. When it comes to the open
character, we took inspiration from open source permissive licenses
regarding the grant of IP rights. Referring to the downstream
responsible use, we added use-based restrictions not permitting the
use of the model in very specific scenarios, in order for the licensor
to be able to enforce the license in case potential misuses of the
Model may occur. At the same time, we strive to promote open and
responsible research on generative models for art and content
generation.
Even though downstream derivative versions of the model could be
released under different licensing terms, the latter will always have
to include - at minimum - the same use-based restrictions as the ones
in the original license (this license). We believe in the intersection
between open and responsible AI development; thus, this agreement aims
to strike a balance between both in order to enable responsible
open-science in the field of AI.
This CreativeML Open RAIL++-M License governs the use of the model
(and its derivatives) and is informed by the model card associated
with the model.
NOW THEREFORE, You and Licensor agree as follows:
Definitions
"License" means the terms and conditions for use, reproduction, and
Distribution as defined in this document.
"Data" means a collection of information and/or content extracted from
the dataset used with the Model, including to train, pretrain, or
otherwise evaluate the Model. The Data is not licensed under this
License.
"Output" means the results of operating a Model as embodied in
informational content resulting therefrom.
"Model" means any accompanying machine-learning based assemblies
(including checkpoints), consisting of learnt weights, parameters
(including optimizer states), corresponding to the model architecture
as embodied in the Complementary Material, that have been trained or
tuned, in whole or in part on the Data, using the Complementary
Material.
"Derivatives of the Model" means all modifications to the Model, works
based on the Model, or any other model which is created or initialized
by transfer of patterns of the weights, parameters, activations or
output of the Model, to the other model, in order to cause the other
model to perform similarly to the Model, including - but not limited
to - distillation methods entailing the use of intermediate data
representations or methods based on the generation of synthetic data
by the Model for training the other model.
"Complementary Material" means the accompanying source code and
scripts used to define, run, load, benchmark or evaluate the Model,
and used to prepare data for training or evaluation, if any. This
includes any accompanying documentation, tutorials, examples, etc, if
any.
"Distribution" means any transmission, reproduction, publication or
other sharing of the Model or Derivatives of the Model to a third
party, including providing the Model as a hosted service made
available by electronic or other remote means - e.g. API-based or web
access.
"Licensor" means the copyright owner or entity authorized by the
copyright owner that is granting the License, including the persons or
entities that may have rights in the Model and/or distributing the
Model.
"You" (or "Your") means an individual or Legal Entity exercising
permissions granted by this License and/or making use of the Model for
whichever purpose and in any field of use, including usage of the
Model in an end-use application - e.g. chatbot, translator, image
generator.
"Third Parties" means individuals or legal entities that are not under
common control with Licensor or You.
"Contribution" means any work of authorship, including the original
version of the Model and any modifications or additions to that Model
or Derivatives of the Model thereof, that is intentionally submitted
to Licensor for inclusion in the Model by the copyright owner or by an
individual or Legal Entity authorized to submit on behalf of the
copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control
systems, and issue tracking systems that are managed by, or on behalf
of, the Licensor for the purpose of discussing and improving the
Model, but excluding communication that is conspicuously marked or
otherwise designated in writing by the copyright owner as "Not a
Contribution."
"Contributor" means Licensor and any individual or Legal Entity on
behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Model.
Section II: INTELLECTUAL PROPERTY RIGHTS
Both copyright and patent grants apply to the Model, Derivatives of
the Model and Complementary Material. The Model and Derivatives of the
Model are subject to additional terms as described in
Section III.
Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare, publicly display, publicly
perform, sublicense, and distribute the Complementary Material, the
Model, and Derivatives of the Model.
Grant of Patent License. Subject to the terms and conditions of this
License and where and as applicable, each Contributor hereby grants to
You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this paragraph) patent license to
make, have made, use, offer to sell, sell, import, and otherwise
transfer the Model and the Complementary Material, where such license
applies only to those patent claims licensable by such Contributor
that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Model to which such
Contribution(s) was submitted. If You institute patent litigation
against any entity (including a cross-claim or counterclaim in a
lawsuit) alleging that the Model and/or Complementary Material or a
Contribution incorporated within the Model and/or Complementary
Material constitutes direct or contributory patent infringement, then
any patent licenses granted to You under this License for the Model
and/or Work shall terminate as of the date such litigation is asserted
or filed.
Section III: CONDITIONS OF USAGE, DISTRIBUTION AND REDISTRIBUTION
Distribution and Redistribution. You may host for Third Party remote
access purposes (e.g. software-as-a-service), reproduce and distribute
copies of the Model or Derivatives of the Model thereof in any medium,
with or without modifications, provided that You meet the following
conditions: Use-based restrictions as referenced in paragraph 5 MUST
be included as an enforceable provision by You in any type of legal
agreement (e.g. a license) governing the use and/or distribution of
the Model or Derivatives of the Model, and You shall give notice to
subsequent users You Distribute to, that the Model or Derivatives of
the Model are subject to paragraph 5. This provision does not apply to
the use of Complementary Material. You must give any Third Party
recipients of the Model or Derivatives of the Model a copy of this
License; You must cause any modified files to carry prominent notices
stating that You changed the files; You must retain all copyright,
patent, trademark, and attribution notices excluding those notices
that do not pertain to any part of the Model, Derivatives of the
Model. You may add Your own copyright statement to Your modifications
and may provide additional or different license terms and conditions -
respecting paragraph 4.a. - for use, reproduction, or Distribution of
Your modifications, or for any such Derivatives of the Model as a
whole, provided Your use, reproduction, and Distribution of the Model
otherwise complies with the conditions stated in this License.
Use-based restrictions. The restrictions set forth in Attachment A are
considered Use-based restrictions. Therefore You cannot use the Model
and the Derivatives of the Model for the specified restricted
uses. You may use the Model subject to this License, including only
for lawful purposes and in accordance with the License. Use may
include creating any content with, finetuning, updating, running,
training, evaluating and/or reparametrizing the Model. You shall
require all of Your users who use the Model or a Derivative of the
Model to comply with the terms of this paragraph (paragraph 5).
The Output You Generate. Except as set forth herein, Licensor claims
no rights in the Output You generate using the Model. You are
accountable for the Output you generate and its subsequent uses. No
use of the output can contravene any provision as stated in the
License.
Section IV: OTHER PROVISIONS
Updates and Runtime Restrictions. To the maximum extent permitted by
law, Licensor reserves the right to restrict (remotely or otherwise)
usage of the Model in violation of this License.
Trademarks and related. Nothing in this License permits You to make
use of Licensors trademarks, trade names, logos or to otherwise
suggest endorsement or misrepresent the relationship between the
parties; and any rights not expressly granted herein are reserved by
the Licensors.
Disclaimer of Warranty. Unless required by applicable law or agreed to
in writing, Licensor provides the Model and the Complementary Material
(and each Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Model, Derivatives of
the Model, and the Complementary Material and assume any risks
associated with Your exercise of permissions under this License.
Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise, unless
required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You
for damages, including any direct, indirect, special, incidental, or
consequential damages of any character arising as a result of this
License or out of the use or inability to use the Model and the
Complementary Material (including but not limited to damages for loss
of goodwill, work stoppage, computer failure or malfunction, or any
and all other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
Accepting Warranty or Additional Liability. While redistributing the
Model, Derivatives of the Model and the Complementary Material
thereof, You may choose to offer, and charge a fee for, acceptance of
support, warranty, indemnity, or other liability obligations and/or
rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole
responsibility, not on behalf of any other Contributor, and only if
You agree to indemnify, defend, and hold each Contributor harmless for
any liability incurred by, or claims asserted against, such
Contributor by reason of your accepting any such warranty or
additional liability.
If any provision of this License is held to be invalid, illegal or
unenforceable, the remaining provisions shall be unaffected thereby
and remain valid as if such provision had not been set forth herein.
END OF TERMS AND CONDITIONS
Attachment A
Use Restrictions
You agree not to use the Model or Derivatives of the Model:
* In any way that violates any applicable national, federal, state,
local or international law or regulation;
* For the purpose of exploiting, harming or attempting to exploit or
harm minors in any way;
* To generate or disseminate verifiably false information and/or
content with the purpose of harming others;
* To generate or disseminate personal identifiable information that
can be used to harm an individual;
* To defame, disparage or otherwise harass others;
* For fully automated decision making that adversely impacts an
individuals legal rights or otherwise creates or modifies a
binding, enforceable obligation;
* For any use intended to or which has the effect of discriminating
against or harming individuals or groups based on online or offline
social behavior or known or predicted personal or personality
characteristics;
* To exploit any of the vulnerabilities of a specific group of persons
based on their age, social, physical or mental characteristics, in
order to materially distort the behavior of a person pertaining to
that group in a manner that causes or is likely to cause that person
or another person physical or psychological harm;
* For any use intended to or which has the effect of discriminating
against individuals or groups based on legally protected
characteristics or categories;
* To provide medical advice and medical results interpretation;
* To generate or disseminate information for the purpose to be used
for administration of justice, law enforcement, immigration or
asylum processes, such as predicting an individual will commit
fraud/crime commitment (e.g. by text profiling, drawing causal
relationships between assertions made in documents, indiscriminate
and arbitrarily-targeted use).

Binary file not shown.

After

Width:  |  Height:  |  Size: 490 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 335 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 217 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 244 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 948 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 292 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 420 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 179 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 216 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 439 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 563 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 353 KiB

View File

@@ -65,7 +65,6 @@ InvokeAI:
esrgan: true
internet_available: true
log_tokenization: false
nsfw_checker: false
patchmatch: true
restore: true
...
@@ -136,19 +135,16 @@ command-line options by giving the `--help` argument:
```
(.venv) > invokeai-web --help
usage: InvokeAI [-h] [--host HOST] [--port PORT] [--allow_origins [ALLOW_ORIGINS ...]] [--allow_credentials | --no-allow_credentials]
[--allow_methods [ALLOW_METHODS ...]] [--allow_headers [ALLOW_HEADERS ...]] [--esrgan | --no-esrgan]
[--internet_available | --no-internet_available] [--log_tokenization | --no-log_tokenization]
[--nsfw_checker | --no-nsfw_checker] [--patchmatch | --no-patchmatch] [--restore | --no-restore]
[--always_use_cpu | --no-always_use_cpu] [--free_gpu_mem | --no-free_gpu_mem] [--max_cache_size MAX_CACHE_SIZE]
[--max_vram_cache_size MAX_VRAM_CACHE_SIZE] [--precision {auto,float16,float32,autocast}]
[--sequential_guidance | --no-sequential_guidance] [--xformers_enabled | --no-xformers_enabled]
[--tiled_decode | --no-tiled_decode] [--root ROOT] [--autoimport_dir AUTOIMPORT_DIR] [--lora_dir LORA_DIR]
[--embedding_dir EMBEDDING_DIR] [--controlnet_dir CONTROLNET_DIR] [--conf_path CONF_PATH] [--models_dir MODELS_DIR]
[--legacy_conf_dir LEGACY_CONF_DIR] [--db_dir DB_DIR] [--outdir OUTDIR] [--from_file FROM_FILE]
[--use_memory_db | --no-use_memory_db] [--model MODEL] [--log_handlers [LOG_HANDLERS ...]]
[--log_format {plain,color,syslog,legacy}] [--log_level {debug,info,warning,error,critical}]
...
usage: InvokeAI [-h] [--host HOST] [--port PORT] [--allow_origins [ALLOW_ORIGINS ...]] [--allow_credentials | --no-allow_credentials] [--allow_methods [ALLOW_METHODS ...]]
[--allow_headers [ALLOW_HEADERS ...]] [--esrgan | --no-esrgan] [--internet_available | --no-internet_available] [--log_tokenization | --no-log_tokenization]
[--patchmatch | --no-patchmatch] [--restore | --no-restore]
[--always_use_cpu | --no-always_use_cpu] [--free_gpu_mem | --no-free_gpu_mem] [--max_loaded_models MAX_LOADED_MODELS] [--max_cache_size MAX_CACHE_SIZE]
[--max_vram_cache_size MAX_VRAM_CACHE_SIZE] [--gpu_mem_reserved GPU_MEM_RESERVED] [--precision {auto,float16,float32,autocast}]
[--sequential_guidance | --no-sequential_guidance] [--xformers_enabled | --no-xformers_enabled] [--tiled_decode | --no-tiled_decode] [--root ROOT]
[--autoimport_dir AUTOIMPORT_DIR] [--lora_dir LORA_DIR] [--embedding_dir EMBEDDING_DIR] [--controlnet_dir CONTROLNET_DIR] [--conf_path CONF_PATH]
[--models_dir MODELS_DIR] [--legacy_conf_dir LEGACY_CONF_DIR] [--db_dir DB_DIR] [--outdir OUTDIR] [--from_file FROM_FILE]
[--use_memory_db | --no-use_memory_db] [--model MODEL] [--log_handlers [LOG_HANDLERS ...]] [--log_format {plain,color,syslog,legacy}]
[--log_level {debug,info,warning,error,critical}] [--version | --no-version]
```
## The Configuration Settings
@@ -178,7 +174,6 @@ These configuration settings allow you to enable and disable various InvokeAI fe
| `esrgan` | `true` | Activate the ESRGAN upscaling options|
| `internet_available` | `true` | When a resource is not available locally, try to fetch it via the internet |
| `log_tokenization` | `false` | Before each text2image generation, print a color-coded representation of the prompt to the console; this can help understand why a prompt is not working as expected |
| `nsfw_checker` | `true` | Activate the NSFW checker to blur out risque images |
| `patchmatch` | `true` | Activate the "patchmatch" algorithm for improved inpainting |
| `restore` | `true` | Activate the facial restoration features (DEPRECATED; restoration features will be removed in 3.0.0) |

View File

@@ -61,11 +61,13 @@ A noise scheduler (eg. DPM++ 2M Karras) schedules the subtraction of noise from
| ImageInverseLerp | Inverse linear interpolation of all pixels of an image |
| ImageLerp | Linear interpolation of all pixels of an image |
| ImageMultiply | Multiplies two images together using `PIL.ImageChops.Multiply()` |
| ImageNSFWBlurInvocation | Detects and blurs images that may contain sexually explicit content |
| ImagePaste | Pastes an image into another image |
| ImageProcessor | Base class for invocations that reprocess images for ControlNet |
| ImageResize | Resizes an image to specific dimensions |
| ImageScale | Scales an image by a factor |
| ImageToLatents | Scales latents by a given factor |
| ImageWatermarkInvocation | Adds an invisible watermark to images |
| InfillColor | Infills transparent areas of an image with a solid color |
| InfillPatchMatch | Infills transparent areas of an image using the PatchMatch algorithm |
| InfillTile | Infills transparent areas of an image with tiles of the image |
@@ -116,49 +118,49 @@ There are several node grouping concepts that can be examined with a narrow focu
As described, an initial noise tensor is necessary for the latent diffusion process. As a result, all non-image *ToLatents nodes require a noise node input.
<img width="654" alt="groupsnoise" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/2e8d297e-ad55-4d27-bc93-c119dad2a2c5">
![groupsnoise](../assets/nodes/groupsnoise.png)
### Conditioning
As described, conditioning is necessary for the latent diffusion process, whether empty or not. As a result, all non-image *ToLatents nodes require positive and negative conditioning inputs. Conditioning is reliant on a CLIP tokenizer provided by the Model Loader node.
<img width="1024" alt="groupsconditioning" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/f8f7ad8a-8d9c-418e-b5ad-1437b774b27e">
![groupsconditioning](../assets/nodes/groupsconditioning.png)
### Image Space & VAE
The ImageToLatents node doesn't require a noise node input, but requires a VAE input to convert the image from image space into latent space. In reverse, the LatentsToImage node requires a VAE input to convert from latent space back into image space.
<img width="637" alt="groupsimgvae" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/dd99969c-e0a8-4f78-9b17-3ffe179cef9a">
![groupsimgvae](../assets/nodes/groupsimgvae.png)
### Defined & Random Seeds
It is common to want to use both the same seed (for continuity) and random seeds (for variance). To define a seed, simply enter it into the 'Seed' field on a noise node. Conversely, the RandomInt node generates a random integer between 'Low' and 'High', and can be used as input to the 'Seed' edge point on a noise node to randomize your seed.
<img width="922" alt="groupsrandseed" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/af55bc20-60f6-438e-aba5-3ec871443710">
![groupsrandseed](../assets/nodes/groupsrandseed.png)
### Control
Control means to guide the diffusion process to adhere to a defined input or structure. Control can be provided as input to non-image *ToLatents nodes from ControlNet nodes. ControlNet nodes usually require an image processor which converts an input image for use with ControlNet.
<img width="805" alt="groupscontrol" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/cc9c5de7-23a7-46c8-bbad-1f3609d999a6">
![groupscontrol](../assets/nodes/groupscontrol.png)
### LoRA
The Lora Loader node lets you load a LoRA (say that ten times fast) and pass it as output to both the Prompt (Compel) and non-image *ToLatents nodes. A model's CLIP tokenizer is passed through the LoRA into Prompt (Compel), where it affects conditioning. A model's U-Net is also passed through the LoRA into a non-image *ToLatents node, where it affects noise prediction.
<img width="993" alt="groupslora" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/630962b0-d914-4505-b3ea-ccae9b0269da">
![groupslora](../assets/nodes/groupslora.png)
### Scaling
Use the ImageScale, ScaleLatents, and Upscale nodes to upscale images and/or latent images. The chosen method differs across contexts. However, be aware that latents are already noisy and compressed at their original resolution; scaling an image could produce more detailed results.
<img width="644" alt="groupsallscale" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/99314f05-dd9f-4b6d-b378-31de55346a13">
![groupsallscale](../assets/nodes/groupsallscale.png)
### Iteration + Multiple Images as Input
Iteration is a common concept in any processing, and means to repeat a process with given input. In nodes, you're able to use the Iterate node to iterate through collections usually gathered by the Collect node. The Iterate node has many potential uses, from processing a collection of images one after another, to varying seeds across multiple image generations and more. This screenshot demonstrates how to collect several images and pass them out one at a time.
<img width="788" alt="groupsiterate" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/4af5ca27-82c9-4018-8c5b-024d3ee0a121">
![groupsiterate](../assets/nodes/groupsiterate.png)
### Multiple Image Generation + Random Seeds
@@ -166,7 +168,7 @@ Multiple image generation in the node editor is done using the RandomRange node.
To control seeds across generations takes some care. The first row in the screenshot will generate multiple images with different seeds, but using the same RandomRange parameters across invocations will result in the same group of random seeds being used across the images, producing repeatable results. In the second row, adding the RandomInt node as input to RandomRange's 'Seed' edge point will ensure that seeds are varied across all images across invocations, producing varied results.
<img width="1027" alt="groupsmultigenseeding" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/518d1b2b-fed1-416b-a052-ab06552521b3">
![groupsmultigenseeding](../assets/nodes/groupsmultigenseeding.png)
## Examples
@@ -174,7 +176,7 @@ With our knowledge of node grouping and the diffusion process, lets break dow
### Basic text-to-image Node Graph
<img width="875" alt="nodest2i" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/17c67720-c376-4db8-94f0-5e00381a61ee">
![nodest2i](../assets/nodes/nodest2i.png)
- Model Loader: A necessity to generating images (as weve read above). We choose our model from the dropdown. It outputs a U-Net, CLIP tokenizer, and VAE.
- Prompt (Compel): Another necessity. Two prompt nodes are created. One will output positive conditioning (what you want, dog), one will output negative (what you dont want, cat). They both input the CLIP tokenizer that the Model Loader node outputs.
@@ -184,7 +186,7 @@ With our knowledge of node grouping and the diffusion process, lets break dow
### Basic image-to-image Node Graph
<img width="998" alt="nodesi2i" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/3f2c95d5-cee7-4415-9b79-b46ee60a92fe">
![nodesi2i](../assets/nodes/nodesi2i.png)
- Model Loader: Choose a model from the dropdown.
- Prompt (Compel): Two prompt nodes. One positive (dog), one negative (dog). Same CLIP inputs from the Model Loader node as before.
@@ -195,7 +197,7 @@ With our knowledge of node grouping and the diffusion process, lets break dow
### Basic ControlNet Node Graph
<img width="703" alt="nodescontrol" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/b02ded86-ceb4-44a2-9910-e19ad184d471">
![nodescontrol](../assets/nodes/nodescontrol.png)
- Model Loader
- Prompt (Compel)

View File

@@ -16,21 +16,24 @@ Output Example:
---
## **Seamless Tiling**
## **Invisible Watermark**
The seamless tiling mode causes generated images to seamlessly tile
with itself creating repetitive wallpaper-like patterns. To use it,
activate the Seamless Tiling option in the Web GUI and then select
whether to tile on the X (horizontal) and/or Y (vertical) axes. Tiling
will then be active for the next set of generations.
In keeping with the principles for responsible AI generation, and to
help AI researchers avoid synthetic images contaminating their
training sets, InvokeAI adds an invisible watermark to each of the
final images it generates. The watermark consists of the text
"InvokeAI" and can be viewed using the
[invisible-watermarks](https://github.com/ShieldMnt/invisible-watermark)
tool.
A nice prompt to test seamless tiling with is:
Watermarking is controlled using the `invisible-watermark` setting in
`invokeai.yaml`. To turn it off, add the following line under the `Features`
category.
```
pond garden with lotus by claude monet"
invisible_watermark: false
```
---
## **Weighted Prompts**
@@ -39,34 +42,10 @@ priority to them, by adding `:<percent>` to the end of the section you wish to u
example consider this prompt:
```bash
tabby cat:0.25 white duck:0.75 hybrid
(tabby cat):0.25 (white duck):0.75 hybrid
```
This will tell the sampler to invest 25% of its effort on the tabby cat aspect of the image and 75%
on the white duck aspect (surprisingly, this example actually works). The prompt weights can use any
combination of integers and floating point numbers, and they do not need to add up to 1.
## **Thresholding and Perlin Noise Initialization Options**
Under the Noise section of the Web UI, you will find two options named
Perlin Noise and Noise Threshold. [Perlin
noise](https://en.wikipedia.org/wiki/Perlin_noise) is a type of
structured noise used to simulate terrain and other natural
textures. The slider controls the percentage of perlin noise that will
be mixed into the image at the beginning of generation. Adding a little
perlin noise to a generation will alter the image substantially.
The noise threshold limits the range of the latent values during
sampling and helps combat the oversharpening seem with higher CFG
scale values.
For better intuition into what these options do in practice:
![here is a graphic demonstrating them both](../assets/truncation_comparison.jpg)
In generating this graphic, perlin noise at initialization was
programmatically varied going across on the diagram by values 0.0,
0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9, 1.0; and the threshold was varied
going down from 0, 1, 2, 3, 4, 5, 10, 20, 100. The other options are
fixed using the prompt "a portrait of a beautiful young lady" a CFG of
20, 100 steps, and a seed of 1950357039.

View File

@@ -1,12 +1,40 @@
---
title: The NSFW Checker
title: Watermarking, NSFW Image Checking
---
# :material-image-off: NSFW Checker
# :material-image-off: Invisible Watermark and the NSFW Checker
## Watermarking
InvokeAI does not apply watermarking to images by default. However,
many computer scientists working in the field of generative AI worry
that a flood of computer-generated imagery will contaminate the image
data sets needed to train future generations of generative models.
InvokeAI offers an optional watermarking mode that writes a small bit
of text, **InvokeAI**, into each image that it generates using an
"invisible" watermarking library that spreads the information
throughout the image in a way that is not perceptible to the human
eye. If you are planning to share your generated images on
internet-accessible services, we encourage you to activate the
invisible watermark mode in order to help preserve the digital image
environment.
The downside of watermarking is that it increases the size of the
image moderately, and has been reported by some individuals to degrade
image quality. Your mileage may vary.
To read the watermark in an image, activate the InvokeAI virtual
environment (called the "developer's console" in the launcher) and run
the command:
```
invisible-watermark -a decode -t bytes -m dwtDct -l 64 /path/to/image.png
```
## The NSFW ("Safety") Checker
The Stable Diffusion image generation models will produce sexual
Stable Diffusion 1.5-based image generation models will produce sexual
imagery if deliberately prompted, and will occasionally produce such
images when this is not intended. Such images are colloquially known
as "Not Safe for Work" (NSFW). This behavior is due to the nature of
@@ -18,35 +46,17 @@ jurisdictions it may be illegal to publicly distribute such imagery,
including mounting a publicly-available server that provides
unfiltered images to the public. Furthermore, the [Stable Diffusion
weights
License](https://github.com/invoke-ai/InvokeAI/blob/main/LICENSE-ModelWeights.txt)
forbids the model from being used to "exploit any of the
License](https://github.com/invoke-ai/InvokeAI/blob/main/LICENSE-SD1+SD2.txt),
and the [Stable Diffusion XL
License][https://github.com/invoke-ai/InvokeAI/blob/main/LICENSE-SDXL.txt]
both forbid the models from being used to "exploit any of the
vulnerabilities of a specific group of persons."
For these reasons Stable Diffusion offers a "safety checker," a
machine learning model trained to recognize potentially disturbing
imagery. When a potentially NSFW image is detected, the checker will
blur the image and paste a warning icon on top. The checker can be
turned on and off on the command line using `--nsfw_checker` and
`--no-nsfw_checker`.
At installation time, InvokeAI will ask whether the checker should be
activated by default (neither argument given on the command line). The
response is stored in the InvokeAI initialization file
(`invokeai.yaml` in the InvokeAI root directory). You can change the
default at any time by opening this file in a text editor and
changing the line `nsfw_checker:` from true to false or vice-versa:
```
...
Features:
esrgan: true
internet_available: true
log_tokenization: false
nsfw_checker: true
patchmatch: true
restore: true
```
turned on and off in the Web interface under Settings.
## Caveats
@@ -84,10 +94,3 @@ are encouraged to turn **off** intermediate image rendering when you
are using the checker. Future versions of InvokeAI will apply
additional blurring to intermediate images when the checker is active.
### Watermarking
InvokeAI does not apply any sort of watermark to images it
generates. However, it does write metadata into the PNG data area,
including the prompt used to generate the image and relevant parameter
settings. These fields can be examined using the `sd-metadata.py`
script that comes with the InvokeAI package.

View File

@@ -148,7 +148,7 @@ images in full-precision mode:
- [Model Merging](features/MODEL_MERGING.md)
- [ControlNet Models](features/CONTROLNET.md)
- [Style/Subject Concepts and Embeddings](features/CONCEPTS.md)
- [Not Safe for Work (NSFW) Checker](features/NSFW.md)
- [Watermarking and the Not Safe for Work (NSFW) Checker](features/WATERMARK+NSFW.md)
<!-- seperator -->
### Prompt Engineering
- [Prompt Syntax](features/PROMPTS.md)

View File

@@ -215,17 +215,6 @@ experimental versions later.
Generally the defaults are fine, and you can come back to this screen at
any time to tweak your system. Here are the options you can adjust:
- ***Output directory for images***
This is the path to a directory in which InvokeAI will store all its
generated images.
- ***NSFW checker***
If checked, InvokeAI will test images for potential sexual content
and blur them out if found. Note that the NSFW checker consumes
an additional 0.6 GB of VRAM on top of the 2-3 GB of VRAM used
by most image models. If you have a low VRAM GPU (4-6 GB), you
can reduce out of memory errors by disabling the checker.
- ***HuggingFace Access Token***
InvokeAI has the ability to download embedded styles and subjects
from the HuggingFace Concept Library on-demand. However, some of
@@ -257,20 +246,30 @@ experimental versions later.
and graphics cards. The "autocast" option is deprecated and
shouldn't be used unless you are asked to by a member of the team.
- ***Number of models to cache in CPU memory***
- **Size of the RAM cache used for fast model switching***
This allows you to keep models in memory and switch rapidly among
them rather than having them load from disk each time. This slider
controls how many models to keep loaded at once. Each
model will use 2-4 GB of RAM, so use this cautiously
controls how many models to keep loaded at once. A typical SD-1 or SD-2 model
uses 2-3 GB of memory. A typical SDXL model uses 6-7 GB. Providing more
RAM will allow more models to be co-resident.
- ***Directory containing embedding/textual inversion files***
This is the directory in which you can place custom embedding
files (.pt or .bin). During startup, this directory will be
scanned and InvokeAI will print out the text terms that
are available to trigger the embeddings.
- ***Output directory for images***
This is the path to a directory in which InvokeAI will store all its
generated images.
- ***Autoimport Folder***
This is the directory in which you can place models you have
downloaded and wish to load into InvokeAI. You can place a variety
of models in this directory, including diffusers folders, .ckpt files,
.safetensors files, as well as LoRAs, ControlNet and Textual Inversion
files (both folder and file versions). To help organize this folder,
you can create several levels of subfolders and drop your models into
whichever ones you want.
- ***Autoimport FolderLICENSE***
At the bottom of the screen you will see a checkbox for accepting
the CreativeML Responsible AI License. You need to accept the license
the CreativeML Responsible AI Licenses. You need to accept the license
in order to download Stable Diffusion models from the next screen.
_You can come back to the startup options form_ as many times as you like.

View File

@@ -1,9 +1,15 @@
import typing
from enum import Enum
from fastapi import Body
from fastapi.routing import APIRouter
from pathlib import Path
from pydantic import BaseModel, Field
from invokeai.backend.image_util.patchmatch import PatchMatch
from invokeai.backend.image_util.safety_checker import SafetyChecker
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.app.invocations.upscale import ESRGAN_MODELS
from invokeai.version import __version__
from ..dependencies import ApiDependencies
@@ -16,6 +22,10 @@ class LogLevel(int, Enum):
Warning = logging.WARNING
Error = logging.ERROR
Critical = logging.CRITICAL
class Upscaler(BaseModel):
upscaling_method: str = Field(description="Name of upscaling method")
upscaling_models: list[str] = Field(description="List of upscaling models for this method")
app_router = APIRouter(prefix="/v1/app", tags=["app"])
@@ -30,6 +40,9 @@ class AppConfig(BaseModel):
"""App Config Response"""
infill_methods: list[str] = Field(description="List of available infill methods")
upscaling_methods: list[Upscaler] = Field(description="List of upscaling methods")
nsfw_methods: list[str] = Field(description="List of NSFW checking methods")
watermarking_methods: list[str] = Field(description="List of invisible watermark methods")
@app_router.get(
@@ -46,7 +59,30 @@ async def get_config() -> AppConfig:
infill_methods = ['tile']
if PatchMatch.patchmatch_available():
infill_methods.append('patchmatch')
return AppConfig(infill_methods=infill_methods)
upscaling_models = []
for model in typing.get_args(ESRGAN_MODELS):
upscaling_models.append(str(Path(model).stem))
upscaler = Upscaler(
upscaling_method = 'esrgan',
upscaling_models = upscaling_models
)
nsfw_methods = []
if SafetyChecker.safety_checker_available():
nsfw_methods.append('nsfw_checker')
watermarking_methods = []
if InvisibleWatermark.invisible_watermark_available():
watermarking_methods.append('invisible_watermark')
return AppConfig(
infill_methods=infill_methods,
upscaling_methods=[upscaler],
nsfw_methods=nsfw_methods,
watermarking_methods=watermarking_methods,
)
@app_router.get(
"/logging",

View File

@@ -298,7 +298,7 @@ async def search_for_models(
)->List[pathlib.Path]:
if not search_path.is_dir():
raise HTTPException(status_code=404, detail=f"The search path '{search_path}' does not exist or is not directory")
return ApiDependencies.invoker.services.model_manager.search_for_models([search_path])
return ApiDependencies.invoker.services.model_manager.search_for_models(search_path)
@models_router.get(
"/ckpt_confs",

View File

@@ -203,7 +203,10 @@ def invoke_api():
return find_port(port=port + 1)
else:
return port
from invokeai.backend.install.check_root import check_invokeai_root
check_invokeai_root(app_config) # note, may exit with an exception if root not set up
port = find_port(app_config.port)
if port != app_config.port:
logger.warn(f"Port {app_config.port} in use, using port {port}")

View File

Before

Width:  |  Height:  |  Size: 33 KiB

After

Width:  |  Height:  |  Size: 33 KiB

View File

@@ -95,7 +95,7 @@ class CompelInvocation(BaseInvocation):
def _lora_loader():
for lora in self.clip.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
**lora.dict(exclude={"weight"}), context=context)
yield (lora_info.context.model, lora.weight)
del lora_info
return
@@ -171,16 +171,16 @@ class CompelInvocation(BaseInvocation):
class SDXLPromptInvocationBase:
def run_clip_raw(self, context, clip_field, prompt, get_pooled):
tokenizer_info = context.services.model_manager.get_model(
**clip_field.tokenizer.dict(),
**clip_field.tokenizer.dict(), context=context,
)
text_encoder_info = context.services.model_manager.get_model(
**clip_field.text_encoder.dict(),
**clip_field.text_encoder.dict(), context=context,
)
def _lora_loader():
for lora in clip_field.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
**lora.dict(exclude={"weight"}), context=context)
yield (lora_info.context.model, lora.weight)
del lora_info
return
@@ -196,6 +196,7 @@ class SDXLPromptInvocationBase:
model_name=name,
base_model=clip_field.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model
)
except ModelNotFoundException:
@@ -240,16 +241,16 @@ class SDXLPromptInvocationBase:
def run_clip_compel(self, context, clip_field, prompt, get_pooled):
tokenizer_info = context.services.model_manager.get_model(
**clip_field.tokenizer.dict(),
**clip_field.tokenizer.dict(), context=context,
)
text_encoder_info = context.services.model_manager.get_model(
**clip_field.text_encoder.dict(),
**clip_field.text_encoder.dict(), context=context,
)
def _lora_loader():
for lora in clip_field.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
**lora.dict(exclude={"weight"}), context=context)
yield (lora_info.context.model, lora.weight)
del lora_info
return
@@ -265,6 +266,7 @@ class SDXLPromptInvocationBase:
model_name=name,
base_model=clip_field.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model
)
except ModelNotFoundException:

View File

@@ -20,7 +20,7 @@ from ...backend.model_management import BaseModelType, ModelType
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .image import ImageOutput, PILInvocationConfig
from ..models.image import ImageOutput, PILInvocationConfig
CONTROLNET_DEFAULT_MODELS = [
###########################################

View File

@@ -4,61 +4,21 @@ from typing import Literal, Optional
import numpy
from PIL import Image, ImageFilter, ImageOps, ImageChops
from pydantic import BaseModel, Field
from pydantic import Field
from pathlib import Path
from typing import Union
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from invokeai.app.invocations.metadata import CoreMetadata
from ..models.image import (
ImageCategory, ImageField, ResourceOrigin,
PILInvocationConfig, ImageOutput, MaskOutput,
)
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
class PILInvocationConfig(BaseModel):
"""Helper class to provide all PIL invocations with additional config"""
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["PIL", "image"],
},
}
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
class Config:
schema_extra = {"required": ["type", "image", "width", "height"]}
class MaskOutput(BaseInvocationOutput):
"""Base class for invocations that output a mask"""
# fmt: off
type: Literal["mask"] = "mask"
mask: ImageField = Field(default=None, description="The output mask")
width: int = Field(description="The width of the mask in pixels")
height: int = Field(description="The height of the mask in pixels")
# fmt: on
class Config:
schema_extra = {
"required": [
"type",
"mask",
]
}
from invokeai.backend.image_util.safety_checker import SafetyChecker
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
class LoadImageInvocation(BaseInvocation):
"""Load an image and provide it as output."""
@@ -397,7 +357,6 @@ class ImageConvertInvocation(BaseInvocation, PILInvocationConfig):
height=image_dto.height,
)
class ImageBlurInvocation(BaseInvocation, PILInvocationConfig):
"""Blurs an image"""
@@ -602,7 +561,6 @@ class ImageLerpInvocation(BaseInvocation, PILInvocationConfig):
height=image_dto.height,
)
class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
"""Inverse linear interpolation of all pixels of an image"""
@@ -650,3 +608,97 @@ class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
width=image_dto.width,
height=image_dto.height,
)
class ImageNSFWBlurInvocation(BaseInvocation, PILInvocationConfig):
"""Add blur to NSFW-flagged images"""
# fmt: off
type: Literal["img_nsfw"] = "img_nsfw"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to check")
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Blur NSFW Images",
"tags": ["image", "nsfw", "checker"]
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
logger = context.services.logger
logger.debug("Running NSFW checker")
if SafetyChecker.has_nsfw_concept(image):
logger.info("A potentially NSFW image has been detected. Image will be blurred.")
blurry_image = image.filter(filter=ImageFilter.GaussianBlur(radius=32))
caution = self._get_caution_img()
blurry_image.paste(caution,(0,0),caution)
image = blurry_image
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
def _get_caution_img(self)->Image:
import invokeai.app.assets.images as image_assets
caution = Image.open(Path(image_assets.__path__[0]) / 'caution.png')
return caution.resize((caution.width // 2, caution.height //2))
class ImageWatermarkInvocation(BaseInvocation, PILInvocationConfig):
""" Add an invisible watermark to an image """
# fmt: off
type: Literal["img_watermark"] = "img_watermark"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to check")
text: str = Field(default='InvokeAI', description="Watermark text")
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Add Invisible Watermark",
"tags": ["image", "watermark", "invisible"]
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
new_image = InvisibleWatermark.add_watermark(image, self.text)
image_dto = context.services.images.create(
image=new_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@@ -501,7 +501,7 @@ class LatentsToImageInvocation(BaseInvocation):
vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field(
default=False,
description="Decode latents by overlaping tiles(less memory consumption)")
description="Decode latents by overlapping tiles(less memory consumption)")
fp32: bool = Field(DEFAULT_PRECISION=='float32', description="Decode in full precision")
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")

View File

@@ -2,16 +2,18 @@ from typing import Literal, Optional, Union
from pydantic import BaseModel, Field
from invokeai.app.invocations.baseinvocation import (BaseInvocation,
BaseInvocationOutput, InvocationConfig,
InvocationContext)
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationConfig,
InvocationContext,
)
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.model import (LoRAModelField, MainModelField,
VAEModelField)
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
class LoRAMetadataField(BaseModel):
"""LoRA metadata for an image generated in InvokeAI."""
lora: LoRAModelField = Field(description="The LoRA model")
weight: float = Field(description="The weight of the LoRA model")
@@ -19,7 +21,9 @@ class LoRAMetadataField(BaseModel):
class CoreMetadata(BaseModel):
"""Core generation metadata for an image generated in InvokeAI."""
generation_mode: str = Field(description="The generation mode that output this image",)
generation_mode: str = Field(
description="The generation mode that output this image",
)
positive_prompt: str = Field(description="The positive prompt parameter")
negative_prompt: str = Field(description="The negative prompt parameter")
width: int = Field(description="The width parameter")
@@ -29,10 +33,20 @@ class CoreMetadata(BaseModel):
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
steps: int = Field(description="The number of steps used for inference")
scheduler: str = Field(description="The scheduler used for inference")
clip_skip: int = Field(description="The number of skipped CLIP layers",)
clip_skip: int = Field(
description="The number of skipped CLIP layers",
)
model: MainModelField = Field(description="The main model used for inference")
controlnets: list[ControlField]= Field(description="The ControlNets used for inference")
controlnets: list[ControlField] = Field(
description="The ControlNets used for inference"
)
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
vae: Union[VAEModelField, None] = Field(
default=None,
description="The VAE used for decoding, if the main model's default was not used",
)
# Latents-to-Latents
strength: Union[float, None] = Field(
default=None,
description="The strength used for latents-to-latents",
@@ -40,9 +54,34 @@ class CoreMetadata(BaseModel):
init_image: Union[str, None] = Field(
default=None, description="The name of the initial image"
)
vae: Union[VAEModelField, None] = Field(
# SDXL
positive_style_prompt: Union[str, None] = Field(
default=None, description="The positive style prompt parameter"
)
negative_style_prompt: Union[str, None] = Field(
default=None, description="The negative style prompt parameter"
)
# SDXL Refiner
refiner_model: Union[MainModelField, None] = Field(
default=None, description="The SDXL Refiner model used"
)
refiner_cfg_scale: Union[float, None] = Field(
default=None,
description="The VAE used for decoding, if the main model's default was not used",
description="The classifier-free guidance scale parameter used for the refiner",
)
refiner_steps: Union[int, None] = Field(
default=None, description="The number of steps used for the refiner"
)
refiner_scheduler: Union[str, None] = Field(
default=None, description="The scheduler used for the refiner"
)
refiner_aesthetic_store: Union[float, None] = Field(
default=None, description="The aesthetic score used for the refiner"
)
refiner_start: Union[float, None] = Field(
default=None, description="The start value used for refiner denoising"
)
@@ -71,7 +110,9 @@ class MetadataAccumulatorInvocation(BaseInvocation):
type: Literal["metadata_accumulator"] = "metadata_accumulator"
generation_mode: str = Field(description="The generation mode that output this image",)
generation_mode: str = Field(
description="The generation mode that output this image",
)
positive_prompt: str = Field(description="The positive prompt parameter")
negative_prompt: str = Field(description="The negative prompt parameter")
width: int = Field(description="The width parameter")
@@ -81,9 +122,13 @@ class MetadataAccumulatorInvocation(BaseInvocation):
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
steps: int = Field(description="The number of steps used for inference")
scheduler: str = Field(description="The scheduler used for inference")
clip_skip: int = Field(description="The number of skipped CLIP layers",)
clip_skip: int = Field(
description="The number of skipped CLIP layers",
)
model: MainModelField = Field(description="The main model used for inference")
controlnets: list[ControlField]= Field(description="The ControlNets used for inference")
controlnets: list[ControlField] = Field(
description="The ControlNets used for inference"
)
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
strength: Union[float, None] = Field(
default=None,
@@ -97,36 +142,44 @@ class MetadataAccumulatorInvocation(BaseInvocation):
description="The VAE used for decoding, if the main model's default was not used",
)
# SDXL
positive_style_prompt: Union[str, None] = Field(
default=None, description="The positive style prompt parameter"
)
negative_style_prompt: Union[str, None] = Field(
default=None, description="The negative style prompt parameter"
)
# SDXL Refiner
refiner_model: Union[MainModelField, None] = Field(
default=None, description="The SDXL Refiner model used"
)
refiner_cfg_scale: Union[float, None] = Field(
default=None,
description="The classifier-free guidance scale parameter used for the refiner",
)
refiner_steps: Union[int, None] = Field(
default=None, description="The number of steps used for the refiner"
)
refiner_scheduler: Union[str, None] = Field(
default=None, description="The scheduler used for the refiner"
)
refiner_aesthetic_store: Union[float, None] = Field(
default=None, description="The aesthetic score used for the refiner"
)
refiner_start: Union[float, None] = Field(
default=None, description="The start value used for refiner denoising"
)
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Metadata Accumulator",
"tags": ["image", "metadata", "generation"]
"tags": ["image", "metadata", "generation"],
},
}
def invoke(self, context: InvocationContext) -> MetadataAccumulatorOutput:
"""Collects and outputs a CoreMetadata object"""
return MetadataAccumulatorOutput(
metadata=CoreMetadata(
generation_mode=self.generation_mode,
positive_prompt=self.positive_prompt,
negative_prompt=self.negative_prompt,
width=self.width,
height=self.height,
seed=self.seed,
rand_device=self.rand_device,
cfg_scale=self.cfg_scale,
steps=self.steps,
scheduler=self.scheduler,
model=self.model,
strength=self.strength,
init_image=self.init_image,
vae=self.vae,
controlnets=self.controlnets,
loras=self.loras,
clip_skip=self.clip_skip,
)
)
return MetadataAccumulatorOutput(metadata=CoreMetadata(**self.dict()))

View File

@@ -119,8 +119,8 @@ class NoiseInvocation(BaseInvocation):
@validator("seed", pre=True)
def modulo_seed(cls, v):
"""Returns the seed modulo SEED_MAX to ensure it is within the valid range."""
return v % SEED_MAX
"""Returns the seed modulo (SEED_MAX + 1) to ensure it is within the valid range."""
return v % (SEED_MAX + 1)
def invoke(self, context: InvocationContext) -> NoiseOutput:
noise = get_noise(

View File

@@ -138,7 +138,7 @@ class SDXLRefinerModelLoaderInvocation(BaseInvocation):
"ui": {
"title": "SDXL Refiner Model Loader",
"tags": ["model", "loader", "sdxl_refiner"],
"type_hints": {"model": "model"},
"type_hints": {"model": "refiner_model"},
},
}
@@ -295,7 +295,7 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict()
**self.unet.unet.dict(), context=context
)
do_classifier_free_guidance = True
cross_attention_kwargs = None
@@ -463,8 +463,8 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
unet: UNetField = Field(default=None, description="UNet submodel")
latents: Optional[LatentsField] = Field(description="Initial latents")
denoising_start: float = Field(default=0.0, ge=0, lt=1, description="")
denoising_end: float = Field(default=1.0, gt=0, le=1, description="")
denoising_start: float = Field(default=0.0, ge=0, le=1, description="")
denoising_end: float = Field(default=1.0, ge=0, le=1, description="")
#control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
@@ -549,13 +549,13 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
num_inference_steps = num_inference_steps - t_start
# apply noise(if provided)
if self.noise is not None:
if self.noise is not None and timesteps.shape[0] > 0:
noise = context.services.latents.get(self.noise.latents_name)
latents = scheduler.add_noise(latents, noise, timesteps[:1])
del noise
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict()
**self.unet.unet.dict(), context=context,
)
do_classifier_free_guidance = True
cross_attention_kwargs = None

View File

@@ -1,9 +1,80 @@
from enum import Enum
from typing import Optional, Tuple
from typing import Optional, Tuple, Literal
from pydantic import BaseModel, Field
from invokeai.app.util.metaenum import MetaEnum
from ..invocations.baseinvocation import (
BaseInvocationOutput,
InvocationConfig,
)
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
image_name: Optional[str] = Field(default=None, description="The name of the image")
class Config:
schema_extra = {"required": ["image_name"]}
class ColorField(BaseModel):
r: int = Field(ge=0, le=255, description="The red component")
g: int = Field(ge=0, le=255, description="The green component")
b: int = Field(ge=0, le=255, description="The blue component")
a: int = Field(ge=0, le=255, description="The alpha component")
def tuple(self) -> Tuple[int, int, int, int]:
return (self.r, self.g, self.b, self.a)
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")
class PILInvocationConfig(BaseModel):
"""Helper class to provide all PIL invocations with additional config"""
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["PIL", "image"],
},
}
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
class Config:
schema_extra = {"required": ["type", "image", "width", "height"]}
class MaskOutput(BaseInvocationOutput):
"""Base class for invocations that output a mask"""
# fmt: off
type: Literal["mask"] = "mask"
mask: ImageField = Field(default=None, description="The output mask")
width: int = Field(description="The width of the mask in pixels")
height: int = Field(description="The height of the mask in pixels")
# fmt: on
class Config:
schema_extra = {
"required": [
"type",
"mask",
]
}
class ResourceOrigin(str, Enum, metaclass=MetaEnum):
"""The origin of a resource (eg image).
@@ -63,28 +134,3 @@ class InvalidImageCategoryException(ValueError):
super().__init__(message)
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
image_name: Optional[str] = Field(default=None, description="The name of the image")
class Config:
schema_extra = {"required": ["image_name"]}
class ColorField(BaseModel):
r: int = Field(ge=0, le=255, description="The red component")
g: int = Field(ge=0, le=255, description="The green component")
b: int = Field(ge=0, le=255, description="The blue component")
a: int = Field(ge=0, le=255, description="The alpha component")
def tuple(self) -> Tuple[int, int, int, int]:
return (self.r, self.g, self.b, self.a)
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")

View File

@@ -28,7 +28,6 @@ InvokeAI:
always_use_cpu: false
free_gpu_mem: false
Features:
nsfw_checker: true
restore: true
esrgan: true
patchmatch: true
@@ -92,18 +91,18 @@ Typical usage at the top level file:
from invokeai.app.services.config import InvokeAIAppConfig
# get global configuration and print its nsfw_checker value
# get global configuration and print its cache size
conf = InvokeAIAppConfig.get_config()
conf.parse_args()
print(conf.nsfw_checker)
print(conf.max_cache_size)
Typical usage in a backend module:
from invokeai.app.services.config import InvokeAIAppConfig
# get global configuration and print its nsfw_checker value
# get global configuration and print its cache size value
conf = InvokeAIAppConfig.get_config()
print(conf.nsfw_checker)
print(conf.max_cache_size)
Computed properties:
@@ -277,7 +276,7 @@ class InvokeAISettings(BaseSettings):
@classmethod
def _excluded_from_yaml(self)->List[str]:
# combination of deprecated parameters and internal ones that shouldn't be exposed as invokeai.yaml options
return ['type','initconf', 'gpu_mem_reserved', 'max_loaded_models', 'version', 'from_file', 'model', 'restore', 'root']
return ['type','initconf', 'gpu_mem_reserved', 'max_loaded_models', 'version', 'from_file', 'model', 'restore', 'root', 'nsfw_checker']
class Config:
env_file_encoding = 'utf-8'
@@ -364,7 +363,6 @@ setting environment variables INVOKEAI_<setting>.
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", category='Features')
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features')
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features')
nsfw_checker : bool = Field(default=True, description="Enable/disable the NSFW checker", category='Features')
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features')
restore : bool = Field(default=True, description="Enable/disable face restoration code (DEPRECATED)", category='DEPRECATED')
@@ -374,6 +372,7 @@ setting environment variables INVOKEAI_<setting>.
max_cache_size : float = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance')
max_vram_cache_size : float = Field(default=2.75, ge=0, description="Amount of VRAM reserved for model storage", category='Memory/Performance')
gpu_mem_reserved : float = Field(default=2.75, ge=0, description="DEPRECATED: use max_vram_cache_size. Amount of VRAM reserved for model storage", category='DEPRECATED')
nsfw_checker : bool = Field(default=True, description="DEPRECATED: use Web settings to enable/disable", category='DEPRECATED')
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='auto',description='Floating point precision', category='Memory/Performance')
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
@@ -525,6 +524,16 @@ setting environment variables INVOKEAI_<setting>.
"""Return true if patchmatch true"""
return self.patchmatch
@property
def nsfw_checker(self)->bool:
""" NSFW node is always active and disabled from Web UIe"""
return True
@property
def invisible_watermark(self)->bool:
""" invisible watermark node is always active and disabled from Web UIe"""
return True
@staticmethod
def find_root()->Path:
'''

View File

@@ -1,4 +1,5 @@
from ..invocations.latent import LatentsToImageInvocation, TextToLatentsInvocation
from ..invocations.image import ImageNSFWBlurInvocation
from ..invocations.noise import NoiseInvocation
from ..invocations.compel import CompelInvocation
from ..invocations.params import ParamIntInvocation
@@ -24,6 +25,7 @@ def create_text_to_image() -> LibraryGraph:
'5': CompelInvocation(id='5'),
'6': TextToLatentsInvocation(id='6'),
'7': LatentsToImageInvocation(id='7'),
'8': ImageNSFWBlurInvocation(id='8'),
},
edges=[
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='3', field='width')),
@@ -33,6 +35,7 @@ def create_text_to_image() -> LibraryGraph:
Edge(source=EdgeConnection(node_id='6', field='latents'), destination=EdgeConnection(node_id='7', field='latents')),
Edge(source=EdgeConnection(node_id='4', field='conditioning'), destination=EdgeConnection(node_id='6', field='positive_conditioning')),
Edge(source=EdgeConnection(node_id='5', field='conditioning'), destination=EdgeConnection(node_id='6', field='negative_conditioning')),
Edge(source=EdgeConnection(node_id='7', field='image'), destination=EdgeConnection(node_id='8', field='image')),
]
),
exposed_inputs=[
@@ -43,7 +46,7 @@ def create_text_to_image() -> LibraryGraph:
ExposedNodeInput(node_path='seed', field='a', alias='seed'),
],
exposed_outputs=[
ExposedNodeOutput(node_path='7', field='image', alias='image')
ExposedNodeOutput(node_path='8', field='image', alias='image')
])

View File

@@ -3,7 +3,13 @@
from typing import Any, Optional
from invokeai.app.models.image import ProgressImage
from invokeai.app.util.misc import get_timestamp
from invokeai.app.services.model_manager_service import BaseModelType, ModelType, SubModelType, ModelInfo
from invokeai.app.services.model_manager_service import (
BaseModelType,
ModelType,
SubModelType,
ModelInfo,
)
class EventServiceBase:
session_event: str = "session_event"
@@ -38,7 +44,9 @@ class EventServiceBase:
graph_execution_state_id=graph_execution_state_id,
node=node,
source_node_id=source_node_id,
progress_image=progress_image.dict() if progress_image is not None else None,
progress_image=progress_image.dict()
if progress_image is not None
else None,
step=step,
total_steps=total_steps,
),
@@ -67,6 +75,7 @@ class EventServiceBase:
graph_execution_state_id: str,
node: dict,
source_node_id: str,
error_type: str,
error: str,
) -> None:
"""Emitted when an invocation has completed"""
@@ -76,6 +85,7 @@ class EventServiceBase:
graph_execution_state_id=graph_execution_state_id,
node=node,
source_node_id=source_node_id,
error_type=error_type,
error=error,
),
)
@@ -102,13 +112,13 @@ class EventServiceBase:
),
)
def emit_model_load_started (
self,
graph_execution_state_id: str,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
def emit_model_load_started(
self,
graph_execution_state_id: str,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
) -> None:
"""Emitted when a model is requested"""
self.__emit_session_event(
@@ -123,13 +133,13 @@ class EventServiceBase:
)
def emit_model_load_completed(
self,
graph_execution_state_id: str,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
model_info: ModelInfo,
self,
graph_execution_state_id: str,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
model_info: ModelInfo,
) -> None:
"""Emitted when a model is correctly loaded (returns model info)"""
self.__emit_session_event(
@@ -145,3 +155,37 @@ class EventServiceBase:
precision=str(model_info.precision),
),
)
def emit_session_retrieval_error(
self,
graph_execution_state_id: str,
error_type: str,
error: str,
) -> None:
"""Emitted when session retrieval fails"""
self.__emit_session_event(
event_name="session_retrieval_error",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
error_type=error_type,
error=error,
),
)
def emit_invocation_retrieval_error(
self,
graph_execution_state_id: str,
node_id: str,
error_type: str,
error: str,
) -> None:
"""Emitted when invocation retrieval fails"""
self.__emit_session_event(
event_name="invocation_retrieval_error",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
node_id=node_id,
error_type=error_type,
error=error,
),
)

View File

@@ -216,16 +216,13 @@ class ImageService(ImageServiceABC):
metadata=metadata,
session_id=session_id,
)
if board_id is not None:
self._services.board_image_records.add_image_to_board(
board_id=board_id, image_name=image_name
)
self._services.image_files.save(
image_name=image_name, image=image, metadata=metadata, graph=graph
)
image_dto = self.get_dto(image_name)
return image_dto
@@ -236,7 +233,7 @@ class ImageService(ImageServiceABC):
self._services.logger.error("Failed to save image file")
raise
except Exception as e:
self._services.logger.error("Problem saving image record and file")
self._services.logger.error(f"Problem saving image record and file: {str(e)}")
raise e
def update(

View File

@@ -600,7 +600,7 @@ class ModelManagerService(ModelManagerServiceBase):
"""
Return list of all models found in the designated directory.
"""
search = FindModels(directory,self.logger)
search = FindModels([directory], self.logger)
return search.list_models()
def sync_to_config(self):

View File

@@ -39,21 +39,41 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
try:
queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
except Exception as e:
logger.debug("Exception while getting from queue: %s" % e)
self.__invoker.services.logger.error("Exception while getting from queue:\n%s" % e)
if not queue_item: # Probably stopping
# do not hammer the queue
time.sleep(0.5)
continue
graph_execution_state = (
self.__invoker.services.graph_execution_manager.get(
queue_item.graph_execution_state_id
try:
graph_execution_state = (
self.__invoker.services.graph_execution_manager.get(
queue_item.graph_execution_state_id
)
)
)
invocation = graph_execution_state.execution_graph.get_node(
queue_item.invocation_id
)
except Exception as e:
self.__invoker.services.logger.error("Exception while retrieving session:\n%s" % e)
self.__invoker.services.events.emit_session_retrieval_error(
graph_execution_state_id=queue_item.graph_execution_state_id,
error_type=e.__class__.__name__,
error=traceback.format_exc(),
)
continue
try:
invocation = graph_execution_state.execution_graph.get_node(
queue_item.invocation_id
)
except Exception as e:
self.__invoker.services.logger.error("Exception while retrieving invocation:\n%s" % e)
self.__invoker.services.events.emit_invocation_retrieval_error(
graph_execution_state_id=queue_item.graph_execution_state_id,
node_id=queue_item.invocation_id,
error_type=e.__class__.__name__,
error=traceback.format_exc(),
)
continue
# get the source node id to provide to clients (the prepared node id is not as useful)
source_node_id = graph_execution_state.prepared_source_mapping[invocation.id]
@@ -114,11 +134,13 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
graph_execution_state
)
self.__invoker.services.logger.error("Error while invoking:\n%s" % e)
# Send error event
self.__invoker.services.events.emit_invocation_error(
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
source_node_id=source_node_id,
error_type=e.__class__.__name__,
error=error,
)
@@ -136,11 +158,12 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
try:
self.__invoker.invoke(graph_execution_state, invoke_all=True)
except Exception as e:
logger.error("Error while invoking: %s" % e)
self.__invoker.services.logger.error("Error while invoking:\n%s" % e)
self.__invoker.services.events.emit_invocation_error(
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
source_node_id=source_node_id,
error_type=e.__class__.__name__,
error=traceback.format_exc()
)
elif is_complete:

View File

@@ -14,8 +14,9 @@ def get_datetime_from_iso_timestamp(iso_timestamp: str) -> datetime.datetime:
return datetime.datetime.fromisoformat(iso_timestamp)
SEED_MAX = np.iinfo(np.int32).max
SEED_MAX = np.iinfo(np.uint32).max
def get_random_seed():
return np.random.randint(0, SEED_MAX)
rng = np.random.default_rng(seed=0)
return int(rng.integers(0, SEED_MAX))

View File

@@ -12,4 +12,4 @@ from .model_management import (
ModelManager, ModelCache, BaseModelType,
ModelType, SubModelType, ModelInfo
)
from .safety_checker import SafetyChecker
from .model_management.models import SilenceWarnings

View File

@@ -28,7 +28,6 @@ from diffusers.schedulers import SchedulerMixin as Scheduler
import invokeai.backend.util.logging as logger
from ..image_util import configure_model_padding
from ..util.util import rand_perlin_2d
from ..safety_checker import SafetyChecker
from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
from ..stable_diffusion.schedulers import SCHEDULER_MAP
@@ -52,7 +51,6 @@ class InvokeAIGeneratorBasicParams:
v_symmetry_time_pct: Optional[float]=None
variation_amount: float = 0.0
with_variations: list=field(default_factory=list)
safety_checker: Optional[SafetyChecker]=None
@dataclass
class InvokeAIGeneratorOutput:
@@ -240,7 +238,6 @@ class Generator:
self.seed = None
self.latent_channels = model.unet.config.in_channels
self.downsampling_factor = downsampling # BUG: should come from model or config
self.safety_checker = None
self.perlin = 0.0
self.threshold = 0
self.variation_amount = 0
@@ -277,12 +274,10 @@ class Generator:
perlin=0.0,
h_symmetry_time_pct=None,
v_symmetry_time_pct=None,
safety_checker: SafetyChecker=None,
free_gpu_mem: bool = False,
**kwargs,
):
scope = nullcontext
self.safety_checker = safety_checker
self.free_gpu_mem = free_gpu_mem
attention_maps_images = []
attention_maps_callback = lambda saver: attention_maps_images.append(
@@ -329,9 +324,6 @@ class Generator:
# Pass on the seed in case a layer beneath us needs to generate noise on its own.
image = make_image(x_T, seed)
if self.safety_checker is not None:
image = self.safety_checker.check(image)
results.append([image, seed, attention_maps_images])
if image_callback is not None:

View File

@@ -0,0 +1,34 @@
"""
This module defines a singleton object, "invisible_watermark" that
wraps the invisible watermark model. It respects the global "invisible_watermark"
configuration variable, that allows the watermarking to be supressed.
"""
import numpy as np
import cv2
from PIL import Image
from imwatermark import WatermarkEncoder
from invokeai.app.services.config import InvokeAIAppConfig
import invokeai.backend.util.logging as logger
config = InvokeAIAppConfig.get_config()
class InvisibleWatermark:
"""
Wrapper around InvisibleWatermark module.
"""
@classmethod
def invisible_watermark_available(self) -> bool:
return config.invisible_watermark
@classmethod
def add_watermark(self, image: Image, watermark_text:str) -> Image:
if not self.invisible_watermark_available():
return image
logger.debug(f'Applying invisible watermark "{watermark_text}"')
bgr = cv2.cvtColor(np.array(image.convert("RGB")), cv2.COLOR_RGB2BGR)
encoder = WatermarkEncoder()
encoder.set_watermark('bytes', watermark_text.encode('utf-8'))
bgr_encoded = encoder.encode(bgr, 'dwtDct')
return Image.fromarray(
cv2.cvtColor(bgr_encoded, cv2.COLOR_BGR2RGB)
).convert("RGBA")

View File

@@ -0,0 +1,63 @@
"""
This module defines a singleton object, "safety_checker" that
wraps the safety_checker model. It respects the global "nsfw_checker"
configuration variable, that allows the checker to be supressed.
"""
import numpy as np
from PIL import Image
from invokeai.backend import SilenceWarnings
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.util.devices import choose_torch_device
import invokeai.backend.util.logging as logger
config = InvokeAIAppConfig.get_config()
CHECKER_PATH = 'core/convert/stable-diffusion-safety-checker'
class SafetyChecker:
"""
Wrapper around SafetyChecker model.
"""
safety_checker = None
feature_extractor = None
tried_load: bool = False
@classmethod
def _load_safety_checker(self):
if self.tried_load:
return
if config.nsfw_checker:
try:
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
config.models_path / CHECKER_PATH
)
self.feature_extractor = AutoFeatureExtractor.from_pretrained(
config.models_path / CHECKER_PATH)
logger.info('NSFW checker initialized')
except Exception as e:
logger.warning(f'Could not load NSFW checker: {str(e)}')
else:
logger.info('NSFW checker loading disabled')
self.tried_load = True
@classmethod
def safety_checker_available(self) -> bool:
self._load_safety_checker()
return self.safety_checker is not None
@classmethod
def has_nsfw_concept(self, image: Image) -> bool:
if not self.safety_checker_available():
return False
device = choose_torch_device()
features = self.feature_extractor([image], return_tensors="pt")
features.to(device)
self.safety_checker.to(device)
x_image = np.array(image).astype(np.float32) / 255.0
x_image = x_image[None].transpose(0, 3, 1, 2)
with SilenceWarnings():
checked_image, has_nsfw_concept = self.safety_checker(images=x_image, clip_input=features.pixel_values)
return has_nsfw_concept[0]

View File

@@ -0,0 +1,33 @@
"""
Check that the invokeai_root is correctly configured and exit if not.
"""
import sys
from invokeai.app.services.config import (
InvokeAIAppConfig,
)
def check_invokeai_root(config: InvokeAIAppConfig):
try:
assert config.model_conf_path.exists(), f'{config.model_conf_path} not found'
assert config.db_path.parent.exists(), f'{config.db_path.parent} not found'
assert config.models_path.exists(), f'{config.models_path} not found'
for model in [
'CLIP-ViT-bigG-14-laion2B-39B-b160k',
'bert-base-uncased',
'clip-vit-large-patch14',
'sd-vae-ft-mse',
'stable-diffusion-2-clip',
'stable-diffusion-safety-checker']:
path = config.models_path / f'core/convert/{model}'
assert path.exists(), f'{path} is missing'
except Exception as e:
print()
print(f'An exception has occurred: {str(e)}')
print('== STARTUP ABORTED ==')
print('** One or more necessary files is missing from your InvokeAI root directory **')
print('** Please rerun the configuration script to fix this problem. **')
print('** From the launcher, selection option [7]. **')
print('** From the command line, activate the virtual environment and run "invokeai-configure --yes --skip-sd-weights" **')
input('Press any key to continue...')
sys.exit(0)

View File

@@ -13,8 +13,8 @@ import os
import shutil
import textwrap
import traceback
import warnings
import yaml
import warnings
from argparse import Namespace
from pathlib import Path
from shutil import get_terminal_size
@@ -32,6 +32,7 @@ from omegaconf import OmegaConf
from tqdm import tqdm
from transformers import (
CLIPTextModel,
CLIPTextConfig,
CLIPTokenizer,
AutoFeatureExtractor,
BertTokenizerFast,
@@ -44,6 +45,7 @@ from invokeai.app.services.config import (
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.frontend.install.model_install import addModelsForm, process_and_execute
from invokeai.frontend.install.widgets import (
SingleSelectColumns,
CenteredButtonPress,
FileBox,
IntTitleSlider,
@@ -204,6 +206,15 @@ def download_conversion_models():
pipeline = CLIPTextModel.from_pretrained(repo_id, subfolder="text_encoder", **kwargs)
pipeline.save_pretrained(target_dir / 'stable-diffusion-2-clip' / 'text_encoder', safe_serialization=True)
# sd-xl - tokenizer_2
repo_id = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
_, model_name = repo_id.split('/')
pipeline = CLIPTokenizer.from_pretrained(repo_id, **kwargs)
pipeline.save_pretrained(target_dir / model_name, safe_serialization=True)
pipeline = CLIPTextConfig.from_pretrained(repo_id, **kwargs)
pipeline.save_pretrained(target_dir / model_name, safe_serialization=True)
# VAE
logger.info('Downloading stable diffusion VAE')
vae = AutoencoderKL.from_pretrained('stabilityai/sd-vae-ft-mse', **kwargs)
@@ -287,47 +298,6 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
color="CONTROL",
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="== BASIC OPTIONS ==",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 1
self.add_widget_intelligent(
npyscreen.FixedText,
value="Select an output directory for images:",
editable=False,
color="CONTROL",
)
self.outdir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name="(<tab> autocompletes, ctrl-N advances):",
value=str(default_output_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor="GOOD",
begin_entry_at=40,
scroll_exit=True,
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.FixedText,
value="Activate the NSFW checker to blur images showing potential sexual imagery:",
editable=False,
color="CONTROL",
)
self.nsfw_checker = self.add_widget_intelligent(
npyscreen.Checkbox,
name="NSFW checker",
value=old_opts.nsfw_checker,
relx=5,
scroll_exit=True,
)
self.nextrely += 1
label = """HuggingFace access token (OPTIONAL) for automatic model downloads. See https://huggingface.co/settings/tokens."""
for line in textwrap.wrap(label,width=window_width-6):
@@ -347,15 +317,6 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
scroll_exit=True,
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="== ADVANCED OPTIONS ==",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="GPU Management",
@@ -369,34 +330,49 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
npyscreen.Checkbox,
name="Free GPU memory after each generation",
value=old_opts.free_gpu_mem,
max_width=45,
relx=5,
scroll_exit=True,
)
self.nextrely -= 1
self.xformers_enabled = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Enable xformers support if available",
name="Enable xformers support",
value=old_opts.xformers_enabled,
relx=5,
max_width=30,
relx=50,
scroll_exit=True,
)
self.nextrely -=1
self.always_use_cpu = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Force CPU to be used on GPU systems",
value=old_opts.always_use_cpu,
relx=5,
relx=80,
scroll_exit=True,
)
precision = old_opts.precision or (
"float32" if program_opts.full_precision else "auto"
)
self.nextrely +=1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="Floating Point Precision",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -=1
self.precision = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
columns = 2,
SingleSelectColumns,
columns = 3,
name="Precision",
values=PRECISION_CHOICES,
value=PRECISION_CHOICES.index(precision),
begin_entry_at=3,
max_height=len(PRECISION_CHOICES) + 1,
max_height=2,
max_width=80,
scroll_exit=True,
)
self.max_cache_size = self.add_widget_intelligent(
@@ -409,16 +385,22 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
scroll_exit=True,
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.FixedText,
value="Folder to recursively scan for new checkpoints, ControlNets, LoRAs and TI models (<tab> autocompletes, ctrl-N advances):",
editable=False,
color="CONTROL",
self.outdir = self.add_widget_intelligent(
FileBox,
name="Output directory for images (<tab> autocompletes, ctrl-N advances):",
value=str(default_output_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor="GOOD",
begin_entry_at=40,
max_height=3,
scroll_exit=True,
)
self.autoimport_dirs = {}
self.autoimport_dirs['autoimport_dir'] = self.add_widget_intelligent(
FileBox,
name=f'Autoimport Folder',
name=f'Folder to recursively scan for new checkpoints, ControlNets, LoRAs and TI models',
value=str(config.root_path / config.autoimport_dir),
select_dir=True,
must_exist=False,
@@ -429,18 +411,10 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
scroll_exit=True
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="== LICENSE ==",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 1
label = """BY DOWNLOADING THE STABLE DIFFUSION WEIGHT FILES, YOU AGREE TO HAVE READ
AND ACCEPTED THE CREATIVEML RESPONSIBLE AI LICENSE LOCATED AT
https://huggingface.co/spaces/CompVis/stable-diffusion-license
AND ACCEPTED THE CREATIVEML RESPONSIBLE AI LICENSES LOCATED AT
https://huggingface.co/spaces/CompVis/stable-diffusion-license and
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md
"""
for i in textwrap.wrap(label,width=window_width-6):
self.add_widget_intelligent(
@@ -451,7 +425,7 @@ https://huggingface.co/spaces/CompVis/stable-diffusion-license
)
self.license_acceptance = self.add_widget_intelligent(
npyscreen.Checkbox,
name="I accept the CreativeML Responsible AI License",
name="I accept the CreativeML Responsible AI Licenses",
value=not first_time,
relx=2,
scroll_exit=True,
@@ -466,7 +440,6 @@ https://huggingface.co/spaces/CompVis/stable-diffusion-license
CenteredButtonPress,
name=label,
relx=(window_width - len(label)) // 2,
rely=-3,
when_pressed_function=self.on_ok,
)
@@ -506,7 +479,6 @@ https://huggingface.co/spaces/CompVis/stable-diffusion-license
for attr in [
"outdir",
"nsfw_checker",
"free_gpu_mem",
"max_cache_size",
"xformers_enabled",
@@ -542,7 +514,7 @@ class EditOptApplication(npyscreen.NPSAppManaged):
"MAIN",
editOptsForm,
name="InvokeAI Startup Options",
cycle_widgets=True,
cycle_widgets=False,
)
if not (self.program_opts.skip_sd_weights or self.program_opts.default_only):
self.model_select = self.addForm(
@@ -550,7 +522,7 @@ class EditOptApplication(npyscreen.NPSAppManaged):
addModelsForm,
name="Install Stable Diffusion Models",
multipage=True,
cycle_widgets=True,
cycle_widgets=False,
)
def new_opts(self):
@@ -564,8 +536,6 @@ def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Nam
def default_startup_options(init_file: Path) -> Namespace:
opts = InvokeAIAppConfig.get_config()
if not init_file.exists():
opts.nsfw_checker = True
return opts
def default_user_selections(program_opts: Namespace) -> InstallSelections:
@@ -588,7 +558,7 @@ def default_user_selections(program_opts: Namespace) -> InstallSelections:
# -------------------------------------
def initialize_rootdir(root: Path, yes_to_all: bool = False):
logger.info("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **")
logger.info("Initializing InvokeAI runtime directory")
for name in (
"models",
"databases",
@@ -613,7 +583,18 @@ def initialize_rootdir(root: Path, yes_to_all: bool = False):
path = dest / 'core'
path.mkdir(parents=True, exist_ok=True)
with open(root / 'configs' / 'models.yaml','w') as yaml_file:
maybe_create_models_yaml(root)
def maybe_create_models_yaml(root: Path):
models_yaml = root / 'configs' / 'models.yaml'
if models_yaml.exists():
if OmegaConf.load(models_yaml).get('__metadata__'): # up to date
return
else:
logger.info('Creating new models.yaml, original saved as models.yaml.orig')
models_yaml.rename(models_yaml.parent / 'models.yaml.orig')
with open(models_yaml,'w') as yaml_file:
yaml_file.write(yaml.dump({'__metadata__':
{'version':'3.0.0'}
}
@@ -689,7 +670,6 @@ def migrate_init_file(legacy_format:Path):
# a few places where the field names have changed and we have to
# manually add in the new names/values
new.nsfw_checker = old.safety_checker
new.xformers_enabled = old.xformers
new.conf_path = old.conf
new.root = legacy_format.parent.resolve()
@@ -798,8 +778,8 @@ def main():
if migrate_if_needed(opt, config.root_path):
sys.exit(0)
if not config.model_conf_path.exists():
initialize_rootdir(config.root_path, opt.yes_to_all)
# run this unconditionally in case new directories need to be added
initialize_rootdir(config.root_path, opt.yes_to_all)
models_to_download = default_user_selections(opt)
new_init_file = config.root_path / 'invokeai.yaml'
@@ -819,15 +799,14 @@ def main():
sys.exit(0)
if opt.skip_support_models:
logger.info("SKIPPING SUPPORT MODEL DOWNLOADS PER USER REQUEST")
logger.info("Skipping support models at user's request")
else:
logger.info("CHECKING/UPDATING SUPPORT MODELS")
logger.info("Installing support models")
download_support_models()
if opt.skip_sd_weights:
logger.warning("SKIPPING DIFFUSION WEIGHTS DOWNLOAD PER USER REQUEST")
logger.warning("Skipping diffusion weights download per user request")
elif models_to_download:
logger.info("DOWNLOADING DIFFUSION WEIGHTS")
process_and_execute(opt, models_to_download)
postscript(errors=errors)

View File

@@ -58,7 +58,15 @@ LEGACY_CONFIGS = {
SchedulerPredictionType.Epsilon: 'v2-inpainting-inference.yaml',
SchedulerPredictionType.VPrediction: 'v2-inpainting-inference-v.yaml',
}
}
},
BaseModelType.StableDiffusionXL: {
ModelVariantType.Normal: 'sd_xl_base.yaml',
},
BaseModelType.StableDiffusionXLRefiner: {
ModelVariantType.Normal: 'sd_xl_refiner.yaml',
},
}
@dataclass
@@ -141,16 +149,17 @@ class ModelInstall(object):
for i in installed:
print(f"{i['model_name']}\t{i['base_model']}\t{i['path']}")
def starter_models(self)->Set[str]:
# logic here a little reversed to maintain backward compatibility
def starter_models(self, all_models: bool=False)->Set[str]:
models = set()
for key, value in self.datasets.items():
name,base,model_type = ModelManager.parse_key(key)
if model_type==ModelType.Main:
if all_models or model_type in [ModelType.Main, ModelType.Vae]:
models.add(key)
return models
def recommended_models(self)->Set[str]:
starters = self.starter_models()
starters = self.starter_models(all_models=True)
return set([x for x in starters if self.datasets[x].get('recommended',False)])
def default_model(self)->str:
@@ -329,6 +338,7 @@ class ModelInstall(object):
description = str(description),
model_format = info.format,
)
legacy_conf = None
if info.model_type == ModelType.Main:
attributes.update(dict(variant = info.variant_type,))
if info.format=="checkpoint":
@@ -343,11 +353,17 @@ class ModelInstall(object):
except KeyError:
legacy_conf = Path(self.config.legacy_conf_dir, 'v1-inference.yaml') # best guess
attributes.update(
dict(
config = str(legacy_conf)
)
if info.model_type == ModelType.ControlNet and info.format=="checkpoint":
possible_conf = path.with_suffix('.yaml')
if possible_conf.exists():
legacy_conf = str(self.relative_to_root(possible_conf))
if legacy_conf:
attributes.update(
dict(
config = str(legacy_conf)
)
)
return attributes
def relative_to_root(self, path: Path)->Path:

File diff suppressed because it is too large Load Diff

View File

@@ -474,7 +474,7 @@ class ModelPatcher:
@staticmethod
def _lora_forward_hook(
applied_loras: List[Tuple[LoraModel, float]],
applied_loras: List[Tuple[LoRAModel, float]],
layer_name: str,
):
@@ -519,7 +519,7 @@ class ModelPatcher:
def apply_lora(
cls,
model: torch.nn.Module,
loras: List[Tuple[LoraModel, float]],
loras: List[Tuple[LoRAModel, float]],
prefix: str,
):
original_weights = dict()

View File

@@ -673,6 +673,7 @@ class ModelManager(object):
self.models[model_key] = model_config
self.commit()
return AddModelResult(
name = model_name,
model_type = model_type,
@@ -753,7 +754,7 @@ class ModelManager(object):
# We are taking advantage of a side effect of get_model() that converts check points
# into cached diffusers directories stored at `location`. It doesn't matter
# what submodeltype we request here, so we get the smallest.
submodel = {"submodel_type": SubModelType.Tokenizer} if model_type==ModelType.Main else {}
submodel = {"submodel_type": SubModelType.Scheduler} if model_type==ModelType.Main else {}
model = self.get_model(model_name,
base_model,
model_type,
@@ -840,7 +841,7 @@ class ModelManager(object):
Returns the preamble for the config file.
"""
return textwrap.dedent(
"""\
"""
# This file describes the alternative machine learning models
# available to InvokeAI script.
#

View File

@@ -253,10 +253,13 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
return BaseModelType.StableDiffusion1
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
return BaseModelType.StableDiffusion2
# TODO: Verify that this is correct! Need an XL checkpoint file for this.
key_name = 'model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight'
if key_name in state_dict and state_dict[key_name].shape[-1] == 2048:
return BaseModelType.StableDiffusionXL
raise InvalidModelException("Cannot determine base type")
elif key_name in state_dict and state_dict[key_name].shape[-1] == 1280:
return BaseModelType.StableDiffusionXLRefiner
else:
raise InvalidModelException("Cannot determine base type")
def get_scheduler_prediction_type(self)->SchedulerPredictionType:
type = self.get_base_type()
@@ -413,7 +416,14 @@ class PipelineFolderProbe(FolderProbeBase):
class VaeFolderProbe(FolderProbeBase):
def get_base_type(self)->BaseModelType:
return BaseModelType.StableDiffusion1
config_file = self.folder_path / 'config.json'
if not config_file.exists():
raise InvalidModelException(f"Cannot determine base type for {self.folder_path}")
with open(config_file,'r') as file:
config = json.load(file)
return BaseModelType.StableDiffusionXL \
if config.get('scaling_factor',0)==0.13025 and config.get('sample_size') in [512, 1024] \
else BaseModelType.StableDiffusion1
class TextualInversionFolderProbe(FolderProbeBase):
def get_format(self)->str:

View File

@@ -98,6 +98,6 @@ class FindModels(ModelSearch):
def list_models(self) -> List[Path]:
self.search()
return self.models_found
return list(self.models_found)

View File

@@ -1,7 +1,8 @@
import os
import torch
from enum import Enum
from typing import Optional
from pathlib import Path
from typing import Optional, Literal
from .base import (
ModelBase,
ModelConfigBase,
@@ -15,6 +16,7 @@ from .base import (
InvalidModelException,
ModelNotFoundException,
)
from invokeai.app.services.config import InvokeAIAppConfig
class ControlNetModelFormat(str, Enum):
Checkpoint = "checkpoint"
@@ -24,8 +26,12 @@ class ControlNetModel(ModelBase):
#model_class: Type
#model_size: int
class Config(ModelConfigBase):
model_format: ControlNetModelFormat
class DiffusersConfig(ModelConfigBase):
model_format: Literal[ControlNetModelFormat.Diffusers]
class CheckpointConfig(ModelConfigBase):
model_format: Literal[ControlNetModelFormat.Checkpoint]
config: str
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert model_type == ModelType.ControlNet
@@ -99,13 +105,51 @@ class ControlNetModel(ModelBase):
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
if cls.detect_format(model_path) == ControlNetModelFormat.Checkpoint:
return _convert_controlnet_ckpt_and_cache(
model_path = model_path,
model_config = config.config,
output_path = output_path,
base_model = base_model,
)
else:
return model_path
@classmethod
def _convert_controlnet_ckpt_and_cache(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase, # empty config or config of parent model
base_model: BaseModelType,
) -> str:
if cls.detect_format(model_path) != ControlNetModelFormat.Diffusers:
raise NotImplementedError("Checkpoint controlnet models currently unsupported")
else:
return model_path
model_config: ControlNetModel.CheckpointConfig,
) -> str:
"""
Convert the controlnet from checkpoint format to diffusers format,
cache it to disk, and return Path to converted
file. If already on disk then just returns Path.
"""
app_config = InvokeAIAppConfig.get_config()
weights = app_config.root_path / model_path
output_path = Path(output_path)
# return cached version if it exists
if output_path.exists():
return output_path
# to avoid circular import errors
from ..convert_ckpt_to_diffusers import convert_controlnet_to_diffusers
convert_controlnet_to_diffusers(
weights,
output_path,
original_config_file = app_config.root_path / model_config,
image_size = 512,
scan_needed = True,
from_safetensors = weights.suffix == ".safetensors"
)
return output_path

View File

@@ -10,6 +10,7 @@ from .base import (
SubModelType,
classproperty,
InvalidModelException,
ModelNotFoundException,
)
# TODO: naming
from ..lora import LoRAModel as LoRAModelRaw

View File

@@ -1,5 +1,6 @@
import os
import json
import invokeai.backend.util.logging as logger
from enum import Enum
from pydantic import Field
from typing import Literal, Optional
@@ -48,7 +49,7 @@ class StableDiffusionXLModel(DiffusersModel):
if model_format == StableDiffusionXLModelFormat.Checkpoint:
if ckpt_config_path:
ckpt_config = OmegaConf.load(ckpt_config_path)
ckpt_config["model"]["params"]["unet_config"]["params"]["in_channels"]
in_channels = ckpt_config["model"]["params"]["unet_config"]["params"]["in_channels"]
else:
checkpoint = read_checkpoint_meta(path)
@@ -108,7 +109,16 @@ class StableDiffusionXLModel(DiffusersModel):
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
# The convert script adapted from the diffusers package uses
# strings for the base model type. To avoid making too many
# source code changes, we simply translate here
if isinstance(config, cls.CheckpointConfig):
raise NotImplementedError('conversion of SDXL checkpoint models to diffusers format is not yet supported')
from invokeai.backend.model_management.models.stable_diffusion import _convert_ckpt_and_cache
return _convert_ckpt_and_cache(
version=base_model,
model_config=config,
output_path=output_path,
use_safetensors=False, # corrupts sdxl models for some reason
)
else:
return model_path

View File

@@ -14,10 +14,14 @@ from .base import (
read_checkpoint_meta,
classproperty,
InvalidModelException,
ModelNotFoundException,
)
from .sdxl import StableDiffusionXLModel
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
from omegaconf import OmegaConf
class StableDiffusion1ModelFormat(str, Enum):
Checkpoint = "checkpoint"
Diffusers = "diffusers"
@@ -235,42 +239,17 @@ class StableDiffusion2Model(DiffusersModel):
else:
return model_path
def _select_ckpt_config(version: BaseModelType, variant: ModelVariantType):
ckpt_configs = {
BaseModelType.StableDiffusion1: {
ModelVariantType.Normal: "v1-inference.yaml",
ModelVariantType.Inpaint: "v1-inpainting-inference.yaml",
},
BaseModelType.StableDiffusion2: {
ModelVariantType.Normal: "v2-inference-v.yaml", # best guess, as we can't differentiate with base(512)
ModelVariantType.Inpaint: "v2-inpainting-inference.yaml",
ModelVariantType.Depth: "v2-midas-inference.yaml",
},
# note that these .yaml files don't yet exist!
BaseModelType.StableDiffusionXL: {
ModelVariantType.Normal: "xl-inference-v.yaml",
ModelVariantType.Inpaint: "xl-inpainting-inference.yaml",
ModelVariantType.Depth: "xl-midas-inference.yaml",
}
}
app_config = InvokeAIAppConfig.get_config()
try:
config_path = app_config.legacy_conf_path / ckpt_configs[version][variant]
if config_path.is_relative_to(app_config.root_path):
config_path = config_path.relative_to(app_config.root_path)
return str(config_path)
except:
return None
# TODO: rework
# Note that convert_ckpt_to_diffuses does not currently support conversion of SDXL models
# pass precision - currently defaulting to fp16
def _convert_ckpt_and_cache(
version: BaseModelType,
model_config: Union[StableDiffusion1Model.CheckpointConfig, StableDiffusion2Model.CheckpointConfig],
output_path: str,
version: BaseModelType,
model_config: Union[StableDiffusion1Model.CheckpointConfig,
StableDiffusion2Model.CheckpointConfig,
StableDiffusionXLModel.CheckpointConfig,
],
output_path: str,
use_save_model: bool=False,
**kwargs,
) -> str:
"""
Convert the checkpoint model indicated in mconfig into a
@@ -289,14 +268,61 @@ def _convert_ckpt_and_cache(
# to avoid circular import errors
from ..convert_ckpt_to_diffusers import convert_ckpt_to_diffusers
from ...util.devices import choose_torch_device, torch_dtype
model_base_to_model_type = {BaseModelType.StableDiffusion1: 'FrozenCLIPEmbedder',
BaseModelType.StableDiffusion2: 'FrozenOpenCLIPEmbedder',
BaseModelType.StableDiffusionXL: 'SDXL',
BaseModelType.StableDiffusionXLRefiner: 'SDXL-Refiner',
}
logger.info(f'Converting {weights} to diffusers format')
with SilenceWarnings():
convert_ckpt_to_diffusers(
weights,
output_path,
model_type=model_base_to_model_type[version],
model_version=version,
model_variant=model_config.variant,
original_config_file=config_file,
extract_ema=True,
scan_needed=True,
from_safetensors = weights.suffix == ".safetensors",
precision = torch_dtype(choose_torch_device()),
**kwargs,
)
return output_path
def _select_ckpt_config(version: BaseModelType, variant: ModelVariantType):
ckpt_configs = {
BaseModelType.StableDiffusion1: {
ModelVariantType.Normal: "v1-inference.yaml",
ModelVariantType.Inpaint: "v1-inpainting-inference.yaml",
},
BaseModelType.StableDiffusion2: {
ModelVariantType.Normal: "v2-inference-v.yaml", # best guess, as we can't differentiate with base(512)
ModelVariantType.Inpaint: "v2-inpainting-inference.yaml",
ModelVariantType.Depth: "v2-midas-inference.yaml",
},
BaseModelType.StableDiffusionXL: {
ModelVariantType.Normal: "sd_xl_base.yaml",
ModelVariantType.Inpaint: None,
ModelVariantType.Depth: None,
},
BaseModelType.StableDiffusionXLRefiner: {
ModelVariantType.Normal: "sd_xl_refiner.yaml",
ModelVariantType.Inpaint: None,
ModelVariantType.Depth: None,
},
}
app_config = InvokeAIAppConfig.get_config()
try:
config_path = app_config.legacy_conf_path / ckpt_configs[version][variant]
if config_path.is_relative_to(app_config.root_path):
config_path = config_path.relative_to(app_config.root_path)
return str(config_path)
except:
return None

View File

@@ -1,77 +0,0 @@
'''
SafetyChecker class - checks images against the StabilityAI NSFW filter
and blurs images that contain potential NSFW content.
'''
import diffusers
import numpy as np
import torch
import traceback
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from pathlib import Path
from PIL import Image, ImageFilter
from transformers import AutoFeatureExtractor
import invokeai.assets.web as web_assets
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
from .util import CPU_DEVICE
config = InvokeAIAppConfig.get_config()
class SafetyChecker(object):
CAUTION_IMG = "caution.png"
def __init__(self, device: torch.device):
path = Path(web_assets.__path__[0]) / self.CAUTION_IMG
caution = Image.open(path)
self.caution_img = caution.resize((caution.width // 2, caution.height // 2))
self.device = device
try:
safety_model_id = config.models_path / 'core/convert/stable-diffusion-safety-checker'
feature_extractor_id = config.models_path / 'core/convert/stable-diffusion-safety-checker-extractor'
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
self.safety_feature_extractor = AutoFeatureExtractor.from_pretrained(feature_extractor_id)
except Exception:
logger.error(
"An error was encountered while installing the safety checker:"
)
print(traceback.format_exc())
def check(self, image: Image.Image):
"""
Check provided image against the StabilityAI safety checker and return
"""
self.safety_checker.to(self.device)
features = self.safety_feature_extractor([image], return_tensors="pt")
features.to(self.device)
# unfortunately checker requires the numpy version, so we have to convert back
x_image = np.array(image).astype(np.float32) / 255.0
x_image = x_image[None].transpose(0, 3, 1, 2)
diffusers.logging.set_verbosity_error()
checked_image, has_nsfw_concept = self.safety_checker(
images=x_image, clip_input=features.pixel_values
)
self.safety_checker.to(CPU_DEVICE) # offload
if has_nsfw_concept[0]:
logger.warning(
"An image with potential non-safe content has been detected. A blurred image will be returned."
)
return self.blur(image)
else:
return image
def blur(self, input):
blurry = input.filter(filter=ImageFilter.GaussianBlur(radius=32))
try:
if caution := self.caution_img:
blurry.paste(caution, (0, 0), caution)
except FileNotFoundError:
pass
return blurry

View File

@@ -1,7 +1,7 @@
# Copyright (c) 2023 Lincoln D. Stein and The InvokeAI Development Team
"""
invokeai.util.logging
invokeai.backend.util.logging
Logging class for InvokeAI that produces console messages

View File

@@ -16,14 +16,18 @@ sd-2/main/stable-diffusion-2-inpainting:
description: Stable Diffusion version 2.0 inpainting model (5.21 GB)
repo_id: stabilityai/stable-diffusion-2-inpainting
recommended: False
sdxl/main/stable-diffusion-xl-base-0-9:
description: Stable Diffusion XL base model (12 GB; access token required)
repo_id: stabilityai/stable-diffusion-xl-base-0.9
recommended: False
sdxl-refiner/main/stable-diffusion-xl-refiner-0-9:
description: Stable Diffusion XL refiner model (12 GB; access token required)
repo_id: stabilityai/stable-diffusion-xl-refiner-0.9
sdxl/main/stable-diffusion-xl-base-1-0:
description: Stable Diffusion XL base model (12 GB)
repo_id: stabilityai/stable-diffusion-xl-base-1.0
recommended: False
sdxl-refiner/main/stable-diffusion-xl-refiner-1-0:
description: Stable Diffusion XL refiner model (12 GB)
repo_id: stabilityai/stable-diffusion-xl-refiner-1.0
recommended: false
sdxl/vae/sdxl-1-0-vae-fix:
description: Fine tuned version of the SDXL-1.0 VAE
repo_id: madebyollin/sdxl-vae-fp16-fix
recommended: true
sd-1/main/Analog-Diffusion:
description: An SD-1.5 model trained on diverse analog photographs (2.13 GB)
repo_id: wavymulder/Analog-Diffusion
@@ -48,10 +52,6 @@ sd-1/main/openjourney:
description: An SD 1.5 model fine tuned on Midjourney; prompt with "mdjrny-v4 style" (2.13 GB)
repo_id: prompthero/openjourney
recommended: False
sd-1/main/portraitplus:
description: An SD-1.5 model trained on close range portraits of people; prompt with "portrait+" (2.13 GB)
repo_id: wavymulder/portraitplus
recommended: False
sd-1/main/seek.art_MEGA:
repo_id: coreco/seek.art_MEGA
description: A general use SD-1.5 "anything" model that supports multiple styles (2.1 GB)
@@ -60,10 +60,6 @@ sd-1/main/trinart_stable_diffusion_v2:
description: An SD-1.5 model finetuned with ~40K assorted high resolution manga/anime-style images (2.13 GB)
repo_id: naclbit/trinart_stable_diffusion_v2
recommended: False
sd-1/main/waifu-diffusion:
description: An SD-1.5 model trained on 680k anime/manga-style images (2.13 GB)
repo_id: hakurei/waifu-diffusion
recommended: False
sd-1/controlnet/canny:
repo_id: lllyasviel/control_v11p_sd15_canny
recommended: True

View File

@@ -0,0 +1,98 @@
model:
target: sgm.models.diffusion.DiffusionEngine
params:
scale_factor: 0.13025
disable_first_stage_autocast: True
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
params:
num_idx: 1000
weighting_config:
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
network_config:
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
params:
adm_in_channels: 2816
num_classes: sequential
use_checkpoint: True
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [4, 2]
num_res_blocks: 2
channel_mult: [1, 2, 4]
num_head_channels: 64
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: [1, 2, 10] # note: the first is unused (due to attn_res starting at 2) 32, 16, 8 --> 64, 32, 16
context_dim: 2048
spatial_transformer_attn_type: softmax-xformers
legacy: False
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
# crossattn cond
- is_trainable: False
input_key: txt
target: sgm.modules.encoders.modules.FrozenCLIPEmbedder
params:
layer: hidden
layer_idx: 11
# crossattn and vector cond
- is_trainable: False
input_key: txt
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder2
params:
arch: ViT-bigG-14
version: laion2b_s39b_b160k
freeze: True
layer: penultimate
always_return_pooled: True
legacy: False
# vector cond
- is_trainable: False
input_key: original_size_as_tuple
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
# vector cond
- is_trainable: False
input_key: crop_coords_top_left
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
# vector cond
- is_trainable: False
input_key: target_size_as_tuple
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
first_stage_config:
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
attn_type: vanilla-xformers
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity

View File

@@ -0,0 +1,91 @@
model:
target: sgm.models.diffusion.DiffusionEngine
params:
scale_factor: 0.13025
disable_first_stage_autocast: True
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
params:
num_idx: 1000
weighting_config:
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
network_config:
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
params:
adm_in_channels: 2560
num_classes: sequential
use_checkpoint: True
in_channels: 4
out_channels: 4
model_channels: 384
attention_resolutions: [4, 2]
num_res_blocks: 2
channel_mult: [1, 2, 4, 4]
num_head_channels: 64
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: 4
context_dim: [1280, 1280, 1280, 1280] # 1280
spatial_transformer_attn_type: softmax-xformers
legacy: False
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
# crossattn and vector cond
- is_trainable: False
input_key: txt
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder2
params:
arch: ViT-bigG-14
version: laion2b_s39b_b160k
legacy: False
freeze: True
layer: penultimate
always_return_pooled: True
# vector cond
- is_trainable: False
input_key: original_size_as_tuple
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
# vector cond
- is_trainable: False
input_key: crop_coords_top_left
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
# vector cond
- is_trainable: False
input_key: aesthetic_score
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by one
first_stage_config:
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
attn_type: vanilla-xformers
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity

View File

@@ -93,13 +93,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
self.nextrely -= 1
self.add_widget_intelligent(
npyscreen.FixedText,
value="Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields,",
editable=False,
color="CAUTION",
)
self.add_widget_intelligent(
npyscreen.FixedText,
value="Use cursor arrows to make a selection, and space to toggle checkboxes.",
value="Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields. Cursor keys navigate, and <space> selects.",
editable=False,
color="CAUTION",
)
@@ -161,33 +155,40 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
BufferBox,
name='Log Messages',
editable=False,
max_height = 10,
max_height = 8,
)
self.nextrely += 1
done_label = "APPLY CHANGES"
back_label = "BACK"
cancel_label = "CANCEL"
current_position = self.nextrely
if self.multipage:
self.back_button = self.add_widget_intelligent(
npyscreen.ButtonPress,
name=back_label,
rely=-3,
when_pressed_function=self.on_back,
)
else:
self.nextrely = current_position
self.cancel_button = self.add_widget_intelligent(
npyscreen.ButtonPress,
name=cancel_label,
when_pressed_function=self.on_cancel
)
self.nextrely = current_position
self.ok_button = self.add_widget_intelligent(
npyscreen.ButtonPress,
name=done_label,
relx=(window_width - len(done_label)) // 2,
rely=-3,
when_pressed_function=self.on_execute
when_pressed_function=self.on_execute
)
label = "APPLY CHANGES & EXIT"
self.nextrely = current_position
self.done = self.add_widget_intelligent(
npyscreen.ButtonPress,
name=label,
rely=-3,
relx=window_width-len(label)-15,
when_pressed_function=self.on_done,
)
@@ -553,7 +554,7 @@ class AddModelApplication(npyscreen.NPSAppManaged):
def onStart(self):
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
self.main_form = self.addForm(
"MAIN", addModelsForm, name="Install Stable Diffusion Models", cycle_widgets=True,
"MAIN", addModelsForm, name="Install Stable Diffusion Models", cycle_widgets=False,
)
class StderrToMessage():

View File

@@ -17,8 +17,8 @@ from shutil import get_terminal_size
from curses import BUTTON2_CLICKED,BUTTON3_CLICKED
# minimum size for UIs
MIN_COLS = 136
MIN_LINES = 45
MIN_COLS = 130
MIN_LINES = 38
# -------------------------------------
def set_terminal_size(columns: int, lines: int):
@@ -38,13 +38,13 @@ def set_terminal_size(columns: int, lines: int):
ts = get_terminal_size()
pause = False
if ts.columns < columns:
print('\033[1mThis window is too narrow for the user interface. Please make it wider.\033[0m')
print('\033[1mThis window is too narrow for the user interface.\033[0m')
pause = True
if ts.lines < lines:
print('\033[1mThis window is too short for the user interface. Please make it taller.\033[0m')
print('\033[1mThis window is too short for the user interface.\033[0m')
pause = True
if pause:
input('Press any key to continue..')
input('Maximize the window then press any key to continue..')
def _set_terminal_size_powershell(width: int, height: int):
script=f'''

View File

@@ -5,6 +5,10 @@ patches/
stats.html
index.html
.yarn/
.yalc/
*.scss
src/services/api/
src/services/fixtures/*
docs/
static/
src/theme/css/overlayscrollbars.css

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -12,7 +12,7 @@
margin: 0;
}
</style>
<script type="module" crossorigin src="./assets/index-e2437518.js"></script>
<script type="module" crossorigin src="./assets/index-5a784cdd.js"></script>
</head>
<body dir="ltr">

View File

@@ -23,6 +23,7 @@
"menu": "Menu"
},
"common": {
"communityLabel": "Community",
"hotkeysLabel": "Hotkeys",
"darkMode": "Dark Mode",
"lightMode": "Light Mode",
@@ -102,8 +103,7 @@
"openInNewTab": "Open in New Tab",
"dontAskMeAgain": "Don't ask me again",
"areYouSure": "Are you sure?",
"imagePrompt": "Image Prompt",
"clearNodes": "Are you sure you want to clear all nodes?"
"imagePrompt": "Image Prompt"
},
"gallery": {
"generations": "Generations",
@@ -615,6 +615,11 @@
"initialImageNotSetDesc": "Could not load initial image",
"nodesSaved": "Nodes Saved",
"nodesLoaded": "Nodes Loaded",
"nodesNotValidGraph": "Not a valid InvokeAI Node Graph",
"nodesNotValidJSON": "Not a valid JSON",
"nodesCorruptedGraph": "Cannot load. Graph seems to be corrupted.",
"nodesUnrecognizedTypes": "Cannot load. Graph has unrecognized types",
"nodesBrokenConnections": "Cannot load. Some connections are broken.",
"nodesLoadedFailed": "Failed To Load Nodes",
"nodesCleared": "Nodes Cleared"
},
@@ -700,9 +705,10 @@
},
"nodes": {
"reloadSchema": "Reload Schema",
"saveNodes": "Save Nodes",
"loadNodes": "Load Nodes",
"clearNodes": "Clear Nodes",
"saveGraph": "Save Graph",
"loadGraph": "Load Graph (saved from Node Editor) (Do not copy-paste metadata)",
"clearGraph": "Clear Graph",
"clearGraphDesc": "Are you sure you want to clear all nodes?",
"zoomInNodes": "Zoom In",
"zoomOutNodes": "Zoom Out",
"fitViewportNodes": "Fit View",

View File

@@ -53,11 +53,11 @@
]
},
"dependencies": {
"@chakra-ui/anatomy": "^2.1.1",
"@chakra-ui/anatomy": "^2.2.0",
"@chakra-ui/icons": "^2.0.19",
"@chakra-ui/react": "^2.7.1",
"@chakra-ui/react": "^2.8.0",
"@chakra-ui/styled-system": "^2.9.1",
"@chakra-ui/theme-tools": "^2.0.18",
"@chakra-ui/theme-tools": "^2.1.0",
"@dagrejs/graphlib": "^2.1.13",
"@dnd-kit/core": "^6.0.8",
"@dnd-kit/modifiers": "^6.0.1",
@@ -69,6 +69,7 @@
"@mantine/core": "^6.0.14",
"@mantine/form": "^6.0.15",
"@mantine/hooks": "^6.0.14",
"@nanostores/react": "^0.7.1",
"@reduxjs/toolkit": "^1.9.5",
"@roarr/browser-log-writer": "^1.1.5",
"chakra-ui-contextmenu": "^1.0.5",

View File

@@ -23,6 +23,7 @@
"menu": "Menu"
},
"common": {
"communityLabel": "Community",
"hotkeysLabel": "Hotkeys",
"darkMode": "Dark Mode",
"lightMode": "Light Mode",
@@ -102,8 +103,7 @@
"openInNewTab": "Open in New Tab",
"dontAskMeAgain": "Don't ask me again",
"areYouSure": "Are you sure?",
"imagePrompt": "Image Prompt",
"clearNodes": "Are you sure you want to clear all nodes?"
"imagePrompt": "Image Prompt"
},
"gallery": {
"generations": "Generations",
@@ -615,6 +615,11 @@
"initialImageNotSetDesc": "Could not load initial image",
"nodesSaved": "Nodes Saved",
"nodesLoaded": "Nodes Loaded",
"nodesNotValidGraph": "Not a valid InvokeAI Node Graph",
"nodesNotValidJSON": "Not a valid JSON",
"nodesCorruptedGraph": "Cannot load. Graph seems to be corrupted.",
"nodesUnrecognizedTypes": "Cannot load. Graph has unrecognized types",
"nodesBrokenConnections": "Cannot load. Some connections are broken.",
"nodesLoadedFailed": "Failed To Load Nodes",
"nodesCleared": "Nodes Cleared"
},
@@ -700,9 +705,10 @@
},
"nodes": {
"reloadSchema": "Reload Schema",
"saveNodes": "Save Nodes",
"loadNodes": "Load Nodes",
"clearNodes": "Clear Nodes",
"saveGraph": "Save Graph",
"loadGraph": "Load Graph (saved from Node Editor) (Do not copy-paste metadata)",
"clearGraph": "Clear Graph",
"clearGraphDesc": "Are you sure you want to clear all nodes?",
"zoomInNodes": "Zoom In",
"zoomOutNodes": "Zoom Out",
"fitViewportNodes": "Fit View",

View File

@@ -10,7 +10,7 @@ async function main() {
);
const types = await openapiTS(OPENAPI_URL, {
exportType: true,
transform: (schemaObject, metadata) => {
transform: (schemaObject) => {
if ('format' in schemaObject && schemaObject.format === 'binary') {
return schemaObject.nullable ? 'Blob | null' : 'Blob';
}

View File

@@ -14,6 +14,7 @@ import FloatingParametersPanelButtons from 'features/ui/components/FloatingParam
import InvokeTabs from 'features/ui/components/InvokeTabs';
import ParametersDrawer from 'features/ui/components/ParametersDrawer';
import i18n from 'i18n';
import { size } from 'lodash-es';
import { ReactNode, memo, useEffect } from 'react';
import UpdateImageBoardModal from '../../features/gallery/components/Boards/UpdateImageBoardModal';
import GlobalHotkeys from './GlobalHotkeys';
@@ -29,8 +30,7 @@ interface Props {
const App = ({ config = DEFAULT_CONFIG, headerComponent }: Props) => {
const language = useAppSelector(languageSelector);
const log = useLogger();
const logger = useLogger();
const dispatch = useAppDispatch();
useEffect(() => {
@@ -38,9 +38,11 @@ const App = ({ config = DEFAULT_CONFIG, headerComponent }: Props) => {
}, [language]);
useEffect(() => {
log.info({ namespace: 'App', data: config }, 'Received config');
dispatch(configChanged(config));
}, [dispatch, config, log]);
if (size(config)) {
logger.info({ namespace: 'App', config }, 'Received config');
dispatch(configChanged(config));
}
}, [dispatch, config, logger]);
useEffect(() => {
dispatch(appStarted());

View File

@@ -27,7 +27,7 @@ const STYLES: ChakraProps['sx'] = {
const DragPreview = (props: OverlayDragImageProps) => {
if (!props.dragData) {
return;
return null;
}
if (props.dragData.payloadType === 'IMAGE_DTO') {

View File

@@ -39,7 +39,6 @@ const ImageDndContext = (props: ImageDndContextProps) => {
const handleDragEnd = useCallback(
(event: DragEndEvent) => {
console.log('dragEnd', event.active.data.current);
const activeData = event.active.data.current;
const overData = event.over?.data.current;
if (!activeDragData || !overData) {
return;

View File

@@ -11,7 +11,7 @@ import {
useDraggable as useOriginalDraggable,
useDroppable as useOriginalDroppable,
} from '@dnd-kit/core';
import { BoardId } from 'features/gallery/store/gallerySlice';
import { BoardId } from 'features/gallery/store/types';
import { ImageDTO } from 'services/api/types';
type BaseDropData = {

View File

@@ -1,28 +1,10 @@
import { useToast, UseToastOptions } from '@chakra-ui/react';
import { useToast } from '@chakra-ui/react';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { toastQueueSelector } from 'features/system/store/systemSelectors';
import { addToast, clearToastQueue } from 'features/system/store/systemSlice';
import { MakeToastArg, makeToast } from 'features/system/util/makeToast';
import { useCallback, useEffect } from 'react';
export type MakeToastArg = string | UseToastOptions;
/**
* Makes a toast from a string or a UseToastOptions object.
* If a string is passed, the toast will have the status 'info' and will be closable with a duration of 2500ms.
*/
export const makeToast = (arg: MakeToastArg): UseToastOptions => {
if (typeof arg === 'string') {
return {
title: arg,
status: 'info',
isClosable: true,
duration: 2500,
};
}
return { status: 'info', isClosable: true, duration: 2500, ...arg };
};
/**
* Logical component. Watches the toast queue and makes toasts when the queue is not empty.
* @returns null

View File

@@ -1,66 +1,2 @@
// zod needs the array to be `as const` to infer the type correctly
import { SchedulerParam } from 'features/parameters/types/parameterSchemas';
// this is the source of the `SchedulerParam` type, which is generated by zod
export const SCHEDULER_NAMES_AS_CONST = [
'euler',
'deis',
'ddim',
'ddpm',
'dpmpp_2s',
'dpmpp_2m',
'dpmpp_2m_sde',
'dpmpp_sde',
'heun',
'kdpm_2',
'lms',
'pndm',
'unipc',
'euler_k',
'dpmpp_2s_k',
'dpmpp_2m_k',
'dpmpp_2m_sde_k',
'dpmpp_sde_k',
'heun_k',
'lms_k',
'euler_a',
'kdpm_2_a',
] as const;
export const DEFAULT_SCHEDULER_NAME = 'euler';
export const SCHEDULER_NAMES: SchedulerParam[] = [...SCHEDULER_NAMES_AS_CONST];
export const SCHEDULER_LABEL_MAP: Record<SchedulerParam, string> = {
euler: 'Euler',
deis: 'DEIS',
ddim: 'DDIM',
ddpm: 'DDPM',
dpmpp_sde: 'DPM++ SDE',
dpmpp_2s: 'DPM++ 2S',
dpmpp_2m: 'DPM++ 2M',
dpmpp_2m_sde: 'DPM++ 2M SDE',
heun: 'Heun',
kdpm_2: 'KDPM 2',
lms: 'LMS',
pndm: 'PNDM',
unipc: 'UniPC',
euler_k: 'Euler Karras',
dpmpp_sde_k: 'DPM++ SDE Karras',
dpmpp_2s_k: 'DPM++ 2S Karras',
dpmpp_2m_k: 'DPM++ 2M Karras',
dpmpp_2m_sde_k: 'DPM++ 2M SDE Karras',
heun_k: 'Heun Karras',
lms_k: 'LMS Karras',
euler_a: 'Euler Ancestral',
kdpm_2_a: 'KDPM 2 Ancestral',
};
export type Scheduler = (typeof SCHEDULER_NAMES)[number];
export const NUMPY_RAND_MIN = 0;
export const NUMPY_RAND_MAX = 2147483647;
export const NODE_MIN_WIDTH = 250;
export const NUMPY_RAND_MAX = 4294967295;

View File

@@ -0,0 +1,46 @@
import { createLogWriter } from '@roarr/browser-log-writer';
import { atom } from 'nanostores';
import { Logger, ROARR, Roarr } from 'roarr';
ROARR.write = createLogWriter();
export const BASE_CONTEXT = {};
export const log = Roarr.child(BASE_CONTEXT);
export const $logger = atom<Logger>(Roarr.child(BASE_CONTEXT));
type LoggerNamespace =
| 'images'
| 'models'
| 'config'
| 'canvas'
| 'txt2img'
| 'img2img'
| 'nodes'
| 'system'
| 'socketio'
| 'session';
export const logger = (namespace: LoggerNamespace) =>
$logger.get().child({ namespace });
export const VALID_LOG_LEVELS = [
'trace',
'debug',
'info',
'warn',
'error',
'fatal',
] as const;
export type InvokeLogLevel = (typeof VALID_LOG_LEVELS)[number];
// Translate human-readable log levels to numbers, used for log filtering
export const LOG_LEVEL_MAP: Record<InvokeLogLevel, number> = {
trace: 10,
debug: 20,
info: 30,
warn: 40,
error: 50,
fatal: 60,
};

View File

@@ -1,48 +1,19 @@
import { useStore } from '@nanostores/react';
import { createSelector } from '@reduxjs/toolkit';
import { createLogWriter } from '@roarr/browser-log-writer';
import { useAppSelector } from 'app/store/storeHooks';
import { systemSelector } from 'features/system/store/systemSelectors';
import { isEqual } from 'lodash-es';
import { useEffect } from 'react';
import { LogLevelName, ROARR, Roarr } from 'roarr';
import { createLogWriter } from '@roarr/browser-log-writer';
// Base logging context includes only the package name
const baseContext = { package: '@invoke-ai/invoke-ai-ui' };
// Create browser log writer
ROARR.write = createLogWriter();
// Module-scoped logger - can be imported and used anywhere
export let log = Roarr.child(baseContext);
// Translate human-readable log levels to numbers, used for log filtering
export const LOG_LEVEL_MAP: Record<LogLevelName, number> = {
trace: 10,
debug: 20,
info: 30,
warn: 40,
error: 50,
fatal: 60,
};
export const VALID_LOG_LEVELS = [
'trace',
'debug',
'info',
'warn',
'error',
'fatal',
] as const;
export type InvokeLogLevel = (typeof VALID_LOG_LEVELS)[number];
import { ROARR, Roarr } from 'roarr';
import { $logger, BASE_CONTEXT, LOG_LEVEL_MAP } from './logger';
const selector = createSelector(
systemSelector,
(system) => {
const { app_version, consoleLogLevel, shouldLogToConsole } = system;
const { consoleLogLevel, shouldLogToConsole } = system;
return {
version: app_version,
consoleLogLevel,
shouldLogToConsole,
};
@@ -55,8 +26,7 @@ const selector = createSelector(
);
export const useLogger = () => {
const { version, consoleLogLevel, shouldLogToConsole } =
useAppSelector(selector);
const { consoleLogLevel, shouldLogToConsole } = useAppSelector(selector);
// The provided Roarr browser log writer uses localStorage to config logging to console
useEffect(() => {
@@ -78,17 +48,16 @@ export const useLogger = () => {
// Update the module-scoped logger context as needed
useEffect(() => {
// TODO: type this properly
//eslint-disable-next-line @typescript-eslint/no-explicit-any
const newContext: Record<string, any> = {
...baseContext,
...BASE_CONTEXT,
};
if (version) {
newContext.version = version;
}
$logger.set(Roarr.child(newContext));
}, []);
log = Roarr.child(newContext);
}, [version]);
const logger = useStore($logger);
// Use the logger within components - no different than just importing it directly
return log;
return logger;
};

View File

@@ -12,7 +12,7 @@ import { defaultsDeep } from 'lodash-es';
import { UnserializeFunction } from 'redux-remember';
const initialStates: {
[key: string]: any;
[key: string]: object; // TODO: type this properly
} = {
canvas: initialCanvasState,
gallery: initialGalleryState,

View File

@@ -8,10 +8,11 @@ import {
import type { AppDispatch, RootState } from '../../store';
import { addCommitStagingAreaImageListener } from './listeners/addCommitStagingAreaImageListener';
import { addFirstListImagesListener } from './listeners/addFirstListImagesListener.ts';
import { addAppConfigReceivedListener } from './listeners/appConfigReceived';
import { addAppStartedListener } from './listeners/appStarted';
import { addBoardIdSelectedListener } from './listeners/boardIdSelected';
import { addDeleteBoardAndImagesFulfilledListener } from './listeners/boardAndImagesDeleted';
import { addBoardIdSelectedListener } from './listeners/boardIdSelected';
import { addCanvasCopiedToClipboardListener } from './listeners/canvasCopiedToClipboard';
import { addCanvasDownloadedAsImageListener } from './listeners/canvasDownloadedAsImage';
import { addCanvasMergedListener } from './listeners/canvasMerged';
@@ -34,10 +35,6 @@ import {
addImageRemovedFromBoardRejectedListener,
} from './listeners/imageRemovedFromBoard';
import { addImageToDeleteSelectedListener } from './listeners/imageToDeleteSelected';
import {
addImageUpdatedFulfilledListener,
addImageUpdatedRejectedListener,
} from './listeners/imageUpdated';
import {
addImageUploadedFulfilledListener,
addImageUploadedRejectedListener,
@@ -68,18 +65,19 @@ import { addGeneratorProgressEventListener as addGeneratorProgressListener } fro
import { addGraphExecutionStateCompleteEventListener as addGraphExecutionStateCompleteListener } from './listeners/socketio/socketGraphExecutionStateComplete';
import { addInvocationCompleteEventListener as addInvocationCompleteListener } from './listeners/socketio/socketInvocationComplete';
import { addInvocationErrorEventListener as addInvocationErrorListener } from './listeners/socketio/socketInvocationError';
import { addInvocationRetrievalErrorEventListener } from './listeners/socketio/socketInvocationRetrievalError';
import { addInvocationStartedEventListener as addInvocationStartedListener } from './listeners/socketio/socketInvocationStarted';
import { addModelLoadEventListener } from './listeners/socketio/socketModelLoad';
import { addSessionRetrievalErrorEventListener } from './listeners/socketio/socketSessionRetrievalError';
import { addSocketSubscribedEventListener as addSocketSubscribedListener } from './listeners/socketio/socketSubscribed';
import { addSocketUnsubscribedEventListener as addSocketUnsubscribedListener } from './listeners/socketio/socketUnsubscribed';
import { addStagingAreaImageSavedListener } from './listeners/stagingAreaImageSaved';
import { addTabChangedListener } from './listeners/tabChanged';
import { addUpscaleRequestedListener } from './listeners/upscaleRequested';
import { addUserInvokedCanvasListener } from './listeners/userInvokedCanvas';
import { addUserInvokedImageToImageListener } from './listeners/userInvokedImageToImage';
import { addUserInvokedNodesListener } from './listeners/userInvokedNodes';
import { addUserInvokedTextToImageListener } from './listeners/userInvokedTextToImage';
import { addModelLoadStartedEventListener } from './listeners/socketio/socketModelLoadStarted';
import { addModelLoadCompletedEventListener } from './listeners/socketio/socketModelLoadCompleted';
import { addUpscaleRequestedListener } from './listeners/upscaleRequested';
import { addFirstListImagesListener } from './listeners/addFirstListImagesListener.ts';
export const listenerMiddleware = createListenerMiddleware();
@@ -109,10 +107,6 @@ export type AppListenerEffect = ListenerEffect<
addImageUploadedFulfilledListener();
addImageUploadedRejectedListener();
// Image updated
addImageUpdatedFulfilledListener();
addImageUpdatedRejectedListener();
// Image selected
addInitialImageSelectedListener();
@@ -161,8 +155,9 @@ addSocketConnectedListener();
addSocketDisconnectedListener();
addSocketSubscribedListener();
addSocketUnsubscribedListener();
addModelLoadStartedEventListener();
addModelLoadCompletedEventListener();
addModelLoadEventListener();
addSessionRetrievalErrorEventListener();
addInvocationRetrievalErrorEventListener();
// Session Created
addSessionCreatedPendingListener();
@@ -207,3 +202,6 @@ addFirstListImagesListener();
// Ad-hoc upscale workflwo
addUpscaleRequestedListener();
// Tab Change
addTabChangedListener();

View File

@@ -1,14 +1,13 @@
import { startAppListening } from '..';
import { log } from 'app/logging/useLogger';
import { logger } from 'app/logging/logger';
import { commitStagingAreaImage } from 'features/canvas/store/canvasSlice';
import { sessionCanceled } from 'services/api/thunks/session';
const moduleLog = log.child({ namespace: 'canvas' });
import { startAppListening } from '..';
export const addCommitStagingAreaImageListener = () => {
startAppListening({
actionCreator: commitStagingAreaImage,
effect: async (action, { dispatch, getState }) => {
const log = logger('canvas');
const state = getState();
const { sessionId: session_id, isProcessing } = state.system;
const canvasSessionId = action.payload;
@@ -19,17 +18,15 @@ export const addCommitStagingAreaImageListener = () => {
}
if (!canvasSessionId) {
moduleLog.debug('No canvas session, skipping cancel');
log.debug('No canvas session, skipping cancel');
return;
}
if (canvasSessionId !== session_id) {
moduleLog.debug(
log.debug(
{
data: {
canvasSessionId,
session_id,
},
canvasSessionId,
session_id,
},
'Canvas session does not match global session, skipping cancel'
);

View File

@@ -1,8 +1,6 @@
import { createAction } from '@reduxjs/toolkit';
import {
IMAGE_CATEGORIES,
imageSelected,
} from 'features/gallery/store/gallerySlice';
import { imageSelected } from 'features/gallery/store/gallerySlice';
import { IMAGE_CATEGORIES } from 'features/gallery/store/types';
import {
ImageCache,
getListImagesUrl,
@@ -17,7 +15,7 @@ export const addFirstListImagesListener = () => {
matcher: imagesApi.endpoints.listImages.matchFulfilled,
effect: async (
action,
{ getState, dispatch, unsubscribe, cancelActiveListeners }
{ dispatch, unsubscribe, cancelActiveListeners }
) => {
// Only run this listener on the first listImages request for no-board images
if (

View File

@@ -1,4 +1,8 @@
import { setInfillMethod } from 'features/parameters/store/generationSlice';
import {
shouldUseNSFWCheckerChanged,
shouldUseWatermarkerChanged,
} from 'features/system/store/systemSlice';
import { appInfoApi } from 'services/api/endpoints/appInfo';
import { startAppListening } from '..';
@@ -6,12 +10,21 @@ export const addAppConfigReceivedListener = () => {
startAppListening({
matcher: appInfoApi.endpoints.getAppConfig.matchFulfilled,
effect: async (action, { getState, dispatch }) => {
const { infill_methods } = action.payload;
const { infill_methods, nsfw_methods, watermarking_methods } =
action.payload;
const infillMethod = getState().generation.infillMethod;
if (!infill_methods.includes(infillMethod)) {
dispatch(setInfillMethod(infill_methods[0]));
}
if (!nsfw_methods.includes('nsfw_checker')) {
dispatch(shouldUseNSFWCheckerChanged(false));
}
if (!watermarking_methods.includes('invisible_watermark')) {
dispatch(shouldUseWatermarkerChanged(false));
}
},
});
};

View File

@@ -6,10 +6,7 @@ export const appStarted = createAction('app/appStarted');
export const addAppStartedListener = () => {
startAppListening({
actionCreator: appStarted,
effect: async (
action,
{ getState, dispatch, unsubscribe, cancelActiveListeners }
) => {
effect: async (action, { unsubscribe, cancelActiveListeners }) => {
// this should only run once
cancelActiveListeners();
unsubscribe();

View File

@@ -1,6 +1,6 @@
import { resetCanvas } from 'features/canvas/store/canvasSlice';
import { controlNetReset } from 'features/controlNet/store/controlNetSlice';
import { getImageUsage } from 'features/imageDeletion/store/imageDeletionSlice';
import { getImageUsage } from 'features/imageDeletion/store/imageDeletionSelectors';
import { nodeEditorReset } from 'features/nodes/store/nodesSlice';
import { clearInitialImage } from 'features/parameters/store/generationSlice';
import { startAppListening } from '..';
@@ -9,8 +9,8 @@ import { boardsApi } from '../../../../../services/api/endpoints/boards';
export const addDeleteBoardAndImagesFulfilledListener = () => {
startAppListening({
matcher: boardsApi.endpoints.deleteBoardAndImages.matchFulfilled,
effect: async (action, { dispatch, getState, condition }) => {
const { board_id, deleted_board_images, deleted_images } = action.payload;
effect: async (action, { dispatch, getState }) => {
const { deleted_images } = action.payload;
// Remove all deleted images from the UI

View File

@@ -1,16 +1,15 @@
import { log } from 'app/logging/useLogger';
import { isAnyOf } from '@reduxjs/toolkit';
import {
ASSETS_CATEGORIES,
IMAGE_CATEGORIES,
boardIdSelected,
galleryViewChanged,
imageSelected,
} from 'features/gallery/store/gallerySlice';
import {
ASSETS_CATEGORIES,
IMAGE_CATEGORIES,
} from 'features/gallery/store/types';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
import { isAnyOf } from '@reduxjs/toolkit';
const moduleLog = log.child({ namespace: 'boards' });
export const addBoardIdSelectedListener = () => {
startAppListening({

View File

@@ -1,16 +1,17 @@
import { canvasCopiedToClipboard } from 'features/canvas/store/actions';
import { startAppListening } from '..';
import { log } from 'app/logging/useLogger';
import { $logger } from 'app/logging/logger';
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
import { addToast } from 'features/system/store/systemSlice';
import { copyBlobToClipboard } from 'features/canvas/util/copyBlobToClipboard';
const moduleLog = log.child({ namespace: 'canvasCopiedToClipboardListener' });
export const addCanvasCopiedToClipboardListener = () => {
startAppListening({
actionCreator: canvasCopiedToClipboard,
effect: async (action, { dispatch, getState }) => {
const moduleLog = $logger
.get()
.child({ namespace: 'canvasCopiedToClipboardListener' });
const state = getState();
const blob = await getBaseLayerBlob(state);

View File

@@ -1,16 +1,17 @@
import { canvasDownloadedAsImage } from 'features/canvas/store/actions';
import { startAppListening } from '..';
import { log } from 'app/logging/useLogger';
import { $logger } from 'app/logging/logger';
import { downloadBlob } from 'features/canvas/util/downloadBlob';
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
import { addToast } from 'features/system/store/systemSlice';
const moduleLog = log.child({ namespace: 'canvasSavedToGalleryListener' });
export const addCanvasDownloadedAsImageListener = () => {
startAppListening({
actionCreator: canvasDownloadedAsImage,
effect: async (action, { dispatch, getState }) => {
const moduleLog = $logger
.get()
.child({ namespace: 'canvasSavedToGalleryListener' });
const state = getState();
const blob = await getBaseLayerBlob(state);

View File

@@ -1,4 +1,4 @@
import { log } from 'app/logging/useLogger';
import { $logger } from 'app/logging/logger';
import { canvasMerged } from 'features/canvas/store/actions';
import { setMergedCanvas } from 'features/canvas/store/canvasSlice';
import { getFullBaseLayerBlob } from 'features/canvas/util/getFullBaseLayerBlob';
@@ -7,12 +7,13 @@ import { addToast } from 'features/system/store/systemSlice';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
const moduleLog = log.child({ namespace: 'canvasCopiedToClipboardListener' });
export const addCanvasMergedListener = () => {
startAppListening({
actionCreator: canvasMerged,
effect: async (action, { dispatch, getState, take }) => {
effect: async (action, { dispatch }) => {
const moduleLog = $logger
.get()
.child({ namespace: 'canvasCopiedToClipboardListener' });
const blob = await getFullBaseLayerBlob();
if (!blob) {

View File

@@ -1,22 +1,21 @@
import { log } from 'app/logging/useLogger';
import { logger } from 'app/logging/logger';
import { canvasSavedToGallery } from 'features/canvas/store/actions';
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
import { addToast } from 'features/system/store/systemSlice';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
const moduleLog = log.child({ namespace: 'canvasSavedToGalleryListener' });
export const addCanvasSavedToGalleryListener = () => {
startAppListening({
actionCreator: canvasSavedToGallery,
effect: async (action, { dispatch, getState, take }) => {
effect: async (action, { dispatch, getState }) => {
const log = logger('canvas');
const state = getState();
const blob = await getBaseLayerBlob(state);
if (!blob) {
moduleLog.error('Problem getting base layer blob');
log.error('Problem getting base layer blob');
dispatch(
addToast({
title: 'Problem Saving Canvas',

View File

@@ -1,6 +1,6 @@
import { AnyListenerPredicate } from '@reduxjs/toolkit';
import { startAppListening } from '..';
import { log } from 'app/logging/useLogger';
import { logger } from 'app/logging/logger';
import { RootState } from 'app/store/store';
import { controlNetImageProcessed } from 'features/controlNet/store/actions';
import {
controlNetAutoConfigToggled,
@@ -9,9 +9,7 @@ import {
controlNetProcessorParamsChanged,
controlNetProcessorTypeChanged,
} from 'features/controlNet/store/controlNetSlice';
import { RootState } from 'app/store/store';
const moduleLog = log.child({ namespace: 'controlNet' });
import { startAppListening } from '..';
const predicate: AnyListenerPredicate<RootState> = (
action,
@@ -64,18 +62,13 @@ const predicate: AnyListenerPredicate<RootState> = (
export const addControlNetAutoProcessListener = () => {
startAppListening({
predicate,
effect: async (
action,
{ dispatch, getState, cancelActiveListeners, delay }
) => {
effect: async (action, { dispatch, cancelActiveListeners, delay }) => {
const log = logger('session');
const { controlNetId } = action.payload;
// Cancel any in-progress instances of this listener
cancelActiveListeners();
moduleLog.trace(
{ data: action.payload },
'ControlNet auto-process triggered'
);
log.trace('ControlNet auto-process triggered');
// Delay before starting actual work
await delay(300);

View File

@@ -1,4 +1,4 @@
import { log } from 'app/logging/useLogger';
import { logger } from 'app/logging/logger';
import { controlNetImageProcessed } from 'features/controlNet/store/actions';
import { controlNetProcessedImageChanged } from 'features/controlNet/store/controlNetSlice';
import { sessionReadyToInvoke } from 'features/system/store/actions';
@@ -9,20 +9,16 @@ import { Graph, ImageDTO } from 'services/api/types';
import { socketInvocationComplete } from 'services/events/actions';
import { startAppListening } from '..';
const moduleLog = log.child({ namespace: 'controlNet' });
export const addControlNetImageProcessedListener = () => {
startAppListening({
actionCreator: controlNetImageProcessed,
effect: async (
action,
{ dispatch, getState, take, unsubscribe, subscribe }
) => {
effect: async (action, { dispatch, getState, take }) => {
const log = logger('session');
const { controlNetId } = action.payload;
const controlNet = getState().controlNet.controlNets[controlNetId];
if (!controlNet.controlImage) {
moduleLog.error('Unable to process ControlNet image');
log.error('Unable to process ControlNet image');
return;
}
@@ -70,8 +66,8 @@ export const addControlNetImageProcessedListener = () => {
const processedControlImage = payload as ImageDTO;
moduleLog.debug(
{ data: { arg: action.payload, processedControlImage } },
log.debug(
{ controlNetId: action.payload, processedControlImage },
'ControlNet image processed'
);

View File

@@ -1,18 +1,17 @@
import { log } from 'app/logging/useLogger';
import { logger } from 'app/logging/logger';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
const moduleLog = log.child({ namespace: 'boards' });
export const addImageAddedToBoardFulfilledListener = () => {
startAppListening({
matcher: imagesApi.endpoints.addImageToBoard.matchFulfilled,
effect: (action, { getState, dispatch }) => {
effect: (action) => {
const log = logger('images');
const { board_id, imageDTO } = action.meta.arg.originalArgs;
// TODO: update listImages cache for this board
moduleLog.debug({ data: { board_id, imageDTO } }, 'Image added to board');
log.debug({ board_id, imageDTO }, 'Image added to board');
},
});
};
@@ -20,13 +19,11 @@ export const addImageAddedToBoardFulfilledListener = () => {
export const addImageAddedToBoardRejectedListener = () => {
startAppListening({
matcher: imagesApi.endpoints.addImageToBoard.matchRejected,
effect: (action, { getState, dispatch }) => {
effect: (action) => {
const log = logger('images');
const { board_id, imageDTO } = action.meta.arg.originalArgs;
moduleLog.debug(
{ data: { board_id, imageDTO } },
'Problem adding image to board'
);
log.debug({ board_id, imageDTO }, 'Problem adding image to board');
},
});
};

View File

@@ -1,12 +1,10 @@
import { log } from 'app/logging/useLogger';
import { logger } from 'app/logging/logger';
import { resetCanvas } from 'features/canvas/store/canvasSlice';
import { controlNetReset } from 'features/controlNet/store/controlNetSlice';
import { selectListImagesBaseQueryArgs } from 'features/gallery/store/gallerySelectors';
import { imageSelected } from 'features/gallery/store/gallerySlice';
import {
imageDeletionConfirmed,
isModalOpenChanged,
} from 'features/imageDeletion/store/imageDeletionSlice';
import { imageDeletionConfirmed } from 'features/imageDeletion/store/actions';
import { isModalOpenChanged } from 'features/imageDeletion/store/imageDeletionSlice';
import { nodeEditorReset } from 'features/nodes/store/nodesSlice';
import { clearInitialImage } from 'features/parameters/store/generationSlice';
import { clamp } from 'lodash-es';
@@ -14,8 +12,6 @@ import { api } from 'services/api';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
const moduleLog = log.child({ namespace: 'image' });
/**
* Called when the user requests an image deletion
*/
@@ -107,7 +103,7 @@ export const addRequestedImageDeletionListener = () => {
export const addImageDeletedPendingListener = () => {
startAppListening({
matcher: imagesApi.endpoints.deleteImage.matchPending,
effect: (action, { dispatch, getState }) => {
effect: () => {
//
},
});
@@ -119,11 +115,9 @@ export const addImageDeletedPendingListener = () => {
export const addImageDeletedFulfilledListener = () => {
startAppListening({
matcher: imagesApi.endpoints.deleteImage.matchFulfilled,
effect: (action, { dispatch, getState }) => {
moduleLog.debug(
{ data: { image: action.meta.arg.originalArgs } },
'Image deleted'
);
effect: (action) => {
const log = logger('images');
log.debug({ imageDTO: action.meta.arg.originalArgs }, 'Image deleted');
},
});
};
@@ -134,9 +128,10 @@ export const addImageDeletedFulfilledListener = () => {
export const addImageDeletedRejectedListener = () => {
startAppListening({
matcher: imagesApi.endpoints.deleteImage.matchRejected,
effect: (action, { dispatch, getState }) => {
moduleLog.debug(
{ data: { image: action.meta.arg.originalArgs } },
effect: (action) => {
const log = logger('images');
log.debug(
{ imageDTO: action.meta.arg.originalArgs },
'Unable to delete image'
);
},

Some files were not shown because too many files have changed in this diff Show More