Compare commits

...

57 Commits

Author SHA1 Message Date
psychedelicious
f3c6396339 fix(installer): remove errant echo 2024-03-25 22:02:47 +11:00
psychedelicious
c77eff8500 docs: add missing MALLOC_MMAP_THRESHOLD_ docs 2024-03-25 18:08:55 +11:00
psychedelicious
6d366fb519 feat(installer): add --malloc_threshold arg
Most systems do best with an explicit value for this the `MALLOC_MMAP_THRESHOLD_` env var, but some may want to change or unset this variable.

Valid values are a positive integer or "unset" to unset the variable.

Closes #6007.
2024-03-25 17:41:54 +11:00
Lincoln Stein
0f02a72cb9 allow deletion of symlinked models in models dir 2024-03-22 18:29:24 -07:00
skunkworxdark
37fd57d4d9 Update probe.py
Minor case-sensitive typo. `ModelType.Lora` should be `ModelType.LoRA`
2024-03-22 09:09:56 -07:00
psychedelicious
cf0c7d66ed chore: v4.0.0rc5 2024-03-22 02:35:16 -07:00
psychedelicious
5b016bf376 fix(nodes): esrgan model name typo 2024-03-22 02:22:19 -07:00
psychedelicious
e7a096dec1 fix(mm): remove proteus model
This model is SDXL and relies on CLIP Skip. We don't support that yet.
2024-03-22 02:22:03 -07:00
psychedelicious
281ecd5a9a chore(nodes): update default workflows for v4
All workflows updated and tested
2024-03-22 02:21:33 -07:00
Lincoln Stein
9cbf78542c remove dangling comment 2024-03-22 16:35:42 +11:00
Lincoln Stein
34f5259980 catch ^C at startup time while models are being scanned 2024-03-22 16:35:42 +11:00
psychedelicious
2ecbb9f720 fix(ui): model dependency parsing 2024-03-22 14:59:33 +11:00
psychedelicious
ab36d7c0f2 chore(ui): typegen 2024-03-22 14:59:33 +11:00
psychedelicious
05d6661877 feat(mm): revised list of starter models
- Enriched dependencies to not just be a string - allows reuse of a dependency as a starter model _and_ dependency of another model. For example, all the SDXL models have the fp16 VAE as a dependency, but you can also download it on its own.
- Looked at popular models on the major model sites to select the list. No SD2 models. All hosted on HF.
2024-03-22 14:59:33 +11:00
Lincoln Stein
eb558d72d8 Fix minor bugs involving model manager handling of model paths (#6024)
* Fix minor bugs involving model manager handling of model paths

- Leave models found in the `autoimport` directory there. Do not move them
  into the `models` hierarchy.
- If model name, type or base is updated and model is in the `models` directory,
  update its path as appropriate.
- On startup during model scanning, if a model's path is a symbolic link, then resolve
  to an absolute path before deciding it is a new model that must be hashed and
  registered. (This prevents needless hashing at startup time).

* fix issue with dropped suffix

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-03-22 01:14:45 +00:00
blessedcoolant
4687739319 ui: Update rgbaToHex to optionally return alpha value or not 2024-03-22 06:23:51 +05:30
blessedcoolant
168b35f86d fix: make the styling of the hex code component consistent with others 2024-03-22 06:23:51 +05:30
blessedcoolant
07fe0e8dc8 chore: Move color transformers to new file 2024-03-22 06:23:51 +05:30
blessedcoolant
45fc7d8054 feat: add Hex Code to ColorField Component 2024-03-22 06:23:51 +05:30
blessedcoolant
eafc85cfe3 feat: Add Mask from ID Node 2024-03-22 06:23:51 +05:30
Васянатор
ddf917f68c translationBot(ui): update translation (Russian)
Currently translated at 99.5% (1117 of 1122 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-03-22 10:57:47 +11:00
Riccardo Giovanetti
c90807ba33 translationBot(ui): update translation (Italian)
Currently translated at 98.2% (1102 of 1122 strings)

translationBot(ui): update translation (Italian)

Currently translated at 97.9% (1099 of 1122 strings)

translationBot(ui): update translation (Italian)

Currently translated at 97.9% (1099 of 1122 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-03-22 10:57:47 +11:00
psychedelicious
842b57e57c tests: update config tests
- Add patched rootdir fixture to all config tests. I think this isn't strictly necessary but it does ensure that any config tests that need to write files don't accidentally write to user data locations.
- Be more careful when calling `get_config()` in the tests, by clearing the LRU cache before and after. This ensures a test doesn't reference the singleton config created by a previously run test.
- Add test for env var parsing.
- Add test for config writing in the context of `get_config()`. This is effectively a mini e2e test for the config lifecycle.
2024-03-22 09:53:02 +11:00
psychedelicious
f538ed54fb fix(config): do not write env vars to config files
Add class `DefaultInvokeAIAppConfig`, which inherits from `InvokeAIAppConfig`. When instantiated, this class does not parse environment variables, so it outputs a "clean" default config. That's the only difference.

Then, we can use this new class in the 3 places:
- When creating the example config file (no env vars should be here)
- When migrating a v3 config (we want to instantiate the migrated config without env vars, so that when we write it out, they are not written to disk)
- When creating a fresh config file (i.e. on first run with an uninitialized root or new config file path - no env vars here!)
2024-03-22 09:53:02 +11:00
psychedelicious
d0a936ebd4 fix(mm): do not write config file when migrating models.yaml 2024-03-22 09:53:02 +11:00
Lincoln Stein
27622dfd5e allow checkpoint config files to use root-relative paths 2024-03-22 08:57:45 +11:00
psychedelicious
72b44f7ebc feat(mm): rename "blake3" to "blake3_multi"
Just make it clearer which is which.
2024-03-22 08:26:36 +11:00
psychedelicious
7726d312e1 feat(mm): default hashing algo to blake3_single
For SSDs, `blake3` is about 10x faster than `blake3_single` - 3 files/second vs 30 files/second.

For spinning HDDs, `blake3` is about 100x slower than `blake3_single` - 300 seconds/file vs 3 seconds/file.

For external drives, `blake3` is always worse, but the difference is highly variable. For external spinning drives, it's probably way worse than internal.

The least offensive algorithm is `blake3_single`, and it's still _much_ faster than any other algorithm.
2024-03-22 08:26:36 +11:00
psychedelicious
61520dfb86 gh: update pr template
Minor tweaks
2024-03-22 07:56:37 +11:00
psychedelicious
6e869e6038 fix(ui): migrate redux state that has models
With the change to model identifiers from v3 to v4, if a user had persisted redux state with the old format, we could get unexpected runtime errors when rehydrating state if we try to access model attributes that no longer exist.

For example, the CLIP Skip component does this:

```ts
CLIP_SKIP_MAP[model.base].maxClip
```

In v3, models had a `base_type` attribute, but it is renamed to `base` in v4. This code therefore causes a runtime error:
- `model.base` is `undefined`
- `CLIP_SKIP_MAP[undefined]` is also undefined
- `undefined.maxClip` is a runtime error!

Resolved by adding a migration for the redux slices that have model identifiers. The migration simply resets the slice or the part of the slice that is affected, when it's simple to do a partial reset.

Closes #6000
2024-03-22 07:55:13 +11:00
psychedelicious
9eacc0c189 fix(ui): use the old combobox component for dropdowns
Closes #6011
2024-03-22 07:33:52 +11:00
psychedelicious
23606d9e83 pkg: pin version of ruff
If you switch between different branches, by the time you get back to `main`, a different version of `ruff` might be installed that has slightly different formatting rules. This leads to incorrect formatting changes.

Pinning `ruff` avoids this issue.
2024-03-22 07:27:06 +11:00
Lincoln Stein
d4d0fea078 [feature] Add probe for SDXL controlnet models (#5382)
* add probe for SDXL controlnet models

* Update invokeai/backend/model_management/model_probe.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* Update invokeai/backend/model_manager/probe.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-03-21 14:49:45 +00:00
Eugene Brodsky
a5771f6120 chore(docker): remove outdated comments from docker-compose 2024-03-21 10:34:52 -04:00
Eugene Brodsky
35f847d5b7 fix(docker): add env vars for host and port to the Dockerfile 2024-03-21 10:34:52 -04:00
Eugene Brodsky
3278497674 feat(docker): remove separate pre-installation of PyTorch in the image 2024-03-21 10:34:52 -04:00
Eugene Brodsky
c9350f71be feat(docker): improve directory handling and expand environment variable documentation 2024-03-21 10:34:52 -04:00
Eugene Brodsky
b00e27b022 fix(docker): ensure the container has write permission to the runtime directory 2024-03-21 10:34:52 -04:00
psychedelicious
a6283b9fb6 tidy: "fit_image_to_resolution" -> "resize_image_to_resolution" 2024-03-21 07:02:57 -07:00
psychedelicious
64fb15e117 chore: ruff 2024-03-21 07:02:57 -07:00
psychedelicious
7019d93ff0 feat(ui): add missing detect_resolution to processors 2024-03-21 07:02:57 -07:00
psychedelicious
7467768d48 chore(ui): typegen 2024-03-21 07:02:57 -07:00
psychedelicious
e2d7b514e0 tidy: correct attributions for controlnet processors 2024-03-21 07:02:57 -07:00
psychedelicious
c36d12a50f feat: adaptation of Lineart Anime processor
Adapted from https://github.com/huggingface/controlnet_aux
2024-03-21 07:02:57 -07:00
psychedelicious
c7f8fe4d5e feat: adaptation of Lineart processor
Adapted from https://github.com/huggingface/controlnet_aux
2024-03-21 07:02:57 -07:00
psychedelicious
ffb41c3616 feat: adaptation of HED processor
Adapted from controlnet repo
2024-03-21 07:02:57 -07:00
psychedelicious
611006b692 feat: adaptation of Canny processor
Adapted from controlnet processors package

fix: do final resize in canny processor

canny
2024-03-21 07:02:57 -07:00
psychedelicious
ca496f0380 feat: add image utils
These all support controlnet processors.

- `pil_to_cv2`
- `cv2_to_pil`
- `pil_to_np`
- `np_to_pil`
- `normalize_image_channel_count` (a readable version of `HWC3` from the controlnet repo)
- `fit_image_to_resolution` (a readable version of `resize_image` from the controlnet repo)
- `non_maximum_suppression` (a readable version of `nms` from the controlnet repo)
- `safe_step` (a readable version of `safe_step` from the controlnet repo)
2024-03-21 07:02:57 -07:00
psychedelicious
01d8ab04a5 feat(nodes): add missing detect_resolution to processors
Some processors, like Canny, didn't use `detect_resolution`. The resultant control images were then resized by the processors from 512x512 to the desired dimensions. The result is that the control images are the right size, but very low quality.

Using detect_resolution fixes this.
2024-03-21 07:02:57 -07:00
psychedelicious
7a4122235f feat(mm): display progress when hashing files 2024-03-21 17:24:48 +11:00
psychedelicious
75f4e27522 tidy(mm): clean up model download/install logs 2024-03-21 16:41:20 +11:00
psychedelicious
8ae757334e feat(mm): make installer thread logging stmts debug 2024-03-21 16:41:20 +11:00
Lincoln Stein
2038064a34 add timeouts to the download tests 2024-03-21 16:41:20 +11:00
Lincoln Stein
689cb9d31d after stopping install and download services, wait for thread exit 2024-03-21 16:41:20 +11:00
Lincoln Stein
0cab1d1e04 added debugging statements 2024-03-21 16:41:20 +11:00
Lincoln Stein
9bd7dabed3 refactor big _install_next_item() loop 2024-03-21 16:41:20 +11:00
psychedelicious
30283a4767 fix(ui): set aspect ratio to free when using default model settings
We need to use the `widthRecalled` and `heightRecalled` actions, which handle the aspect ratio.

Closes  #5974
2024-03-21 16:30:52 +11:00
63 changed files with 3999 additions and 8548 deletions

View File

@@ -1,12 +1,10 @@
<!--Thanks for contributing!-->
## Summary
<!--A description of the changes in this PR. Include the kind of change (fix, feature, docs, etc), the "why" and the "how". Screenshots or videos are useful for frontend changes.-->
## Related Issues / Discussions
<!--List any related issues or discussions on github or discord. If this PR closes an issue, please use the "Closes #1234" format, so that the issue will be automatically closed when the PR merges.-->
<!--WHEN APPLICABLE: List any related issues or discussions on github or discord. If this PR closes an issue, please use the "Closes #1234" format, so that the issue will be automatically closed when the PR merges.-->
## QA Instructions
@@ -18,8 +16,6 @@
## Checklist
<!--If any of these are not completed or not applicable to the change, please add a note.-->
- [ ] The PR has a short but descriptive title
- [ ] Tests added / updated
- [ ] Documentation added / updated
- [ ] _The PR has a short but descriptive title, suitable for a changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_

View File

@@ -2,17 +2,25 @@
## Any environment variables supported by InvokeAI can be specified here,
## in addition to the examples below.
# HOST_INVOKEAI_ROOT is the path on the docker host's filesystem where InvokeAI will store data.
# Outputs will also be stored here by default.
# If relative, it will be relative to the docker directory in which the docker-compose.yml file is located
#HOST_INVOKEAI_ROOT=../../invokeai-data
# INVOKEAI_ROOT is the path to the root of the InvokeAI repository within the container.
## INVOKEAI_ROOT is the path *on the host system* where Invoke will store its data.
## It is mounted into the container and allows both containerized and non-containerized usage of Invoke.
# Usually this is the only variable you need to set. It can be relative or absolute.
# INVOKEAI_ROOT=~/invokeai
# Get this value from your HuggingFace account settings page.
# HUGGING_FACE_HUB_TOKEN=
## HOST_INVOKEAI_ROOT and CONTAINER_INVOKEAI_ROOT can be used to control the on-host
## and in-container paths separately, if needed.
## HOST_INVOKEAI_ROOT is the path on the docker host's filesystem where Invoke will store data.
## If relative, it will be relative to the docker directory in which the docker-compose.yml file is located
## CONTAINER_INVOKEAI_ROOT is the path within the container where Invoke will expect to find the runtime directory.
## It MUST be absolute. There is usually no need to change this.
# HOST_INVOKEAI_ROOT=../../invokeai-data
# CONTAINER_INVOKEAI_ROOT=/invokeai
## optional variables specific to the docker setup.
## INVOKEAI_PORT is the port on which the InvokeAI web interface will be available
# INVOKEAI_PORT=9090
## GPU_DRIVER can be set to either `nvidia` or `rocm` to enable GPU support in the container accordingly.
# GPU_DRIVER=nvidia #| rocm
## CONTAINER_UID can be set to the UID of the user on the host system that should own the files in the container.
# CONTAINER_UID=1000

View File

@@ -18,8 +18,6 @@ ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
ARG TORCH_VERSION=2.1.2
ARG TORCHVISION_VERSION=0.16.2
ARG GPU_DRIVER=cuda
ARG TARGETPLATFORM="linux/amd64"
# unused but available
@@ -27,7 +25,12 @@ ARG BUILDPLATFORM
WORKDIR ${INVOKEAI_SRC}
# Install pytorch before all other pip packages
COPY invokeai ./invokeai
COPY pyproject.toml ./
# Editable mode helps use the same image for development:
# the local working copy can be bind-mounted into the image
# at path defined by ${INVOKEAI_SRC}
# NOTE: there are no pytorch builds for arm64 + cuda, only cpu
# x86_64/CUDA is default
RUN --mount=type=cache,target=/root/.cache/pip \
@@ -39,20 +42,10 @@ RUN --mount=type=cache,target=/root/.cache/pip \
else \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu121"; \
fi &&\
pip install $extra_index_url_arg \
torch==$TORCH_VERSION \
torchvision==$TORCHVISION_VERSION
# Install the local package.
# Editable mode helps use the same image for development:
# the local working copy can be bind-mounted into the image
# at path defined by ${INVOKEAI_SRC}
COPY invokeai ./invokeai
COPY pyproject.toml ./
RUN --mount=type=cache,target=/root/.cache/pip \
# xformers + triton fails to install on arm64
if [ "$GPU_DRIVER" = "cuda" ] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then \
pip install -e ".[xformers]"; \
pip install $extra_index_url_arg -e ".[xformers]"; \
else \
pip install $extra_index_url_arg -e "."; \
fi
@@ -101,6 +94,8 @@ RUN apt update && apt install -y --no-install-recommends \
ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV INVOKEAI_ROOT=/invokeai
ENV INVOKEAI_HOST=0.0.0.0
ENV INVOKEAI_PORT=9090
ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
ENV CONTAINER_UID=${CONTAINER_UID:-1000}
ENV CONTAINER_GID=${CONTAINER_GID:-1000}
@@ -125,4 +120,4 @@ RUN mkdir -p ${INVOKEAI_ROOT} && chown -R ${CONTAINER_UID}:${CONTAINER_GID} ${IN
COPY docker/docker-entrypoint.sh ./
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]
CMD ["invokeai-web", "--host", "0.0.0.0"]
CMD ["invokeai-web"]

View File

@@ -8,35 +8,28 @@ x-invokeai: &invokeai
context: ..
dockerfile: docker/Dockerfile
# variables without a default will automatically inherit from the host environment
environment:
- INVOKEAI_ROOT
- HF_HOME
# Create a .env file in the same directory as this docker-compose.yml file
# and populate it with environment variables. See .env.sample
env_file:
- .env
# variables without a default will automatically inherit from the host environment
environment:
# if set, CONTAINER_INVOKEAI_ROOT will override the Invoke runtime directory location *inside* the container
- INVOKEAI_ROOT=${CONTAINER_INVOKEAI_ROOT:-/invokeai}
- HF_HOME
ports:
- "${INVOKEAI_PORT:-9090}:9090"
- "${INVOKEAI_PORT:-9090}:${INVOKEAI_PORT:-9090}"
volumes:
- type: bind
source: ${HOST_INVOKEAI_ROOT:-${INVOKEAI_ROOT:-~/invokeai}}
target: ${INVOKEAI_ROOT:-/invokeai}
target: ${CONTAINER_INVOKEAI_ROOT:-/invokeai}
bind:
create_host_path: true
- ${HF_HOME:-~/.cache/huggingface}:${HF_HOME:-/invokeai/.cache/huggingface}
# - ${INVOKEAI_MODELS_DIR:-${INVOKEAI_ROOT:-/invokeai/models}}
# - ${INVOKEAI_MODELS_CONFIG_PATH:-${INVOKEAI_ROOT:-/invokeai/configs/models.yaml}}
tty: true
stdin_open: true
# # Example of running alternative commands/scripts in the container
# command:
# - bash
# - -c
# - |
# invokeai-model-install --yes --default-only --config_file ${INVOKEAI_ROOT}/config_custom.yaml
# invokeai-nodes-web --host 0.0.0.0
services:
invokeai-nvidia:

View File

@@ -33,7 +33,8 @@ if [[ -v "PUBLIC_KEY" ]] && [[ ! -d "${HOME}/.ssh" ]]; then
service ssh start
fi
mkdir -p "${INVOKEAI_ROOT}"
chown --recursive ${USER} "${INVOKEAI_ROOT}"
cd "${INVOKEAI_ROOT}"
# Run the CMD as the Container User (not root).

View File

@@ -119,21 +119,21 @@ The provided token will be added as a `Bearer` token to the network requests to
#### Model Hashing
Models are hashed during installation, providing a stable identifier for models across all platforms. The default algorithm is `blake3`, with a multi-threaded implementation.
If your models are stored on a spinning hard drive, we suggest using `blake3_single`, the single-threaded implementation. The hashes are the same, but it's much faster on spinning disks.
Models are hashed during installation, providing a stable identifier for models across all platforms. Hashing is a one-time operation.
```yaml
hashing_algorithm: blake3_single
hashing_algorithm: blake3_single # default value
```
Model hashing is a one-time operation, but it may take a couple minutes to hash a large model collection. You may opt out of model hashing entirely by setting the algorithm to `random`.
You might want to change this setting, depending on your system:
```yaml
hashing_algorithm: random
```
- `blake3_single` (default): Single-threaded - best for spinning HDDs, still OK for SSDs
- `blake3_multi`: Parallelized, memory-mapped implementation - best for SSDs, terrible for spinning disks
- `random`: Skip hashing entirely - fastest but of course no hash
Most common algorithms are supported, like `md5`, `sha256`, and `sha512`. These are typically much, much slower than `blake3`.
During the first startup after upgrading to v4, all of your models will be hashed. This can take a few minutes.
Most common algorithms are supported, like `md5`, `sha256`, and `sha512`. These are typically much, much slower than either of the BLAKE3 variants.
#### Path Settings
@@ -190,5 +190,48 @@ The `log_format` option provides several alternative formats:
- `syslog` - the log level and error message only, allowing the syslog system to attach the time and date
- `legacy` - a format similar to the one used by the legacy 2.3 InvokeAI releases.
### Model Cache
#### `glibc` Memory Allocator Fragmentation
Python (and PyTorch) relies on the memory allocator from the C Standard Library (`libc`). On linux, with the GNU C Standard Library implementation (`glibc`), our memory access patterns have been observed to cause severe memory fragmentation. This fragmentation results in large amounts of memory that has been freed but can't be released back to the OS. Loading models from disk and moving them between CPU/CUDA seem to be the operations that contribute most to the fragmentation. This memory fragmentation issue can result in OOM crashes during frequent model switching, even if `max_cache_size` is set to a reasonable value (e.g. a OOM crash with `max_cache_size=16` on a system with 32GB of RAM).
This problem may also exist on other OSes, and other `libc` implementations. But, at the time of writing, it has only been investigated on linux with `glibc`.
To better understand how the `glibc` memory allocator works, see these references:
- Basics: <https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html>
- Details: <https://sourceware.org/glibc/wiki/MallocInternals>
Note the differences between memory allocated as chunks in an arena vs. memory allocated with `mmap`. Under `glibc`'s default configuration, most model tensors get allocated as chunks in an arena making them vulnerable to the problem of fragmentation.
##### Workaround
We can work around this memory fragmentation issue by setting the following env var:
```bash
# Force blocks >1MB to be allocated with `mmap` so that they are released to the system immediately when they are freed.
MALLOC_MMAP_THRESHOLD_=1048576
```
If you use the `invoke.sh` launcher script, you do not need to set this env var, as we set it to `1048576` for you.
##### Manual Configuration
In case the default value causes performance issues, you can pass `--malloc_threshold` to the `invoke.sh`:
- Set the env var to a specific value: `./invoke.sh --malloc_threshold=0 # release _all_ blocks asap` or `./invoke.sh --malloc_threshold=16777216 # raise the limit to 16MB`
- Unset the env var (let the OS handle the value dynamically, may create a memory leak): `./invoke.sh --malloc_threshold=unset`
##### Supplementary Light Reading
See the following references for more information about the `malloc` tunable parameters:
- <https://www.gnu.org/software/libc/manual/html_node/Malloc-Tunable-Parameters.html>
- <https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-Tunables.html>
- <https://man7.org/linux/man-pages/man3/mallopt.3.html>
The model cache emits debug logs that provide visibility into the state of the `libc` memory allocator. See the `LibcUtil` class for more info on how these `libc` malloc stats are collected.
[basic guide to yaml files]: https://circleci.com/blog/what-is-yaml-a-beginner-s-guide/
[Model Marketplace API Keys]: #model-marketplace-api-keys

View File

@@ -46,8 +46,31 @@ if [ "$(uname -s)" == "Darwin" ]; then
export PYTORCH_ENABLE_MPS_FALLBACK=1
fi
# Avoid glibc memory fragmentation. See invokeai/backend/model_management/README.md for details.
export MALLOC_MMAP_THRESHOLD_=1048576
# Avoid glibc memory fragmentation. See #6007, #4784 and docs/features/CONFIGURATION.md for details.
# Some systems may need this to be set to a different value, so we may override this via command-line argument below.
export MALLOC_MMAP_THRESHOLD_=1048576 # 1MB
# This will be passed on to `invokeai-web`
PARAMS=()
# Parse command-line arguments
for arg in "$@"; do
if [[ $arg == --malloc_threshold=* ]]; then
# Re-set MALLOC_MMAP_THRESHOLD_ from the argument if provided
value="${arg#*=}"
if [[ $value == "unset" ]]; then
unset MALLOC_MMAP_THRESHOLD_
elif [[ $value =~ ^[0-9]+$ ]]; then
export MALLOC_MMAP_THRESHOLD_="$value"
else
echo "Invalid value for --malloc_threshold. Please provide a valid positive integer or 'unset'."
exit 1
fi
else
# Add other arguments to PARAMS
PARAMS+=("$arg")
fi
done
# Primary function for the case statement to determine user input
do_choice() {
@@ -55,7 +78,7 @@ do_choice() {
1)
clear
printf "Generate images with a browser-based interface\n"
invokeai-web $PARAMS
invokeai-web "${PARAMS[@]}"
;;
2)
clear

View File

@@ -21,10 +21,11 @@ from typing_extensions import Annotated
from invokeai.app.services.model_install import ModelInstallJob
from invokeai.app.services.model_records import (
DuplicateModelException,
InvalidModelException,
ModelRecordChanges,
UnknownModelException,
)
from invokeai.app.services.model_records.model_records_base import DuplicateModelException, ModelRecordChanges
from invokeai.app.util.suppress_output import SuppressOutput
from invokeai.backend.model_manager.config import (
AnyModelConfig,
@@ -37,7 +38,7 @@ from invokeai.backend.model_manager.config import (
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
from invokeai.backend.model_manager.metadata.metadata_base import ModelMetadataWithFiles, UnknownMetadataException
from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.model_manager.starter_models import STARTER_MODELS, StarterModel
from invokeai.backend.model_manager.starter_models import STARTER_MODELS, StarterModel, StarterModelWithoutDependencies
from ..dependencies import ApiDependencies
@@ -309,8 +310,10 @@ async def update_model_record(
"""Update a model's config."""
logger = ApiDependencies.invoker.services.logger
record_store = ApiDependencies.invoker.services.model_manager.store
installer = ApiDependencies.invoker.services.model_manager.install
try:
model_response: AnyModelConfig = record_store.update_model(key, changes=changes)
record_store.update_model(key, changes=changes)
model_response: AnyModelConfig = installer.sync_model_path(key)
logger.info(f"Updated model: {key}")
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
@@ -797,9 +800,9 @@ async def get_starter_models() -> list[StarterModel]:
if model.source in installed_model_sources:
model.is_installed = True
# Remove already-installed dependencies
missing_deps: list[str] = []
missing_deps: list[StarterModelWithoutDependencies] = []
for dep in model.dependencies or []:
if dep not in installed_model_sources:
if dep.source not in installed_model_sources:
missing_deps.append(dep)
model.dependencies = missing_deps

View File

@@ -7,12 +7,8 @@ from typing import Dict, List, Literal, Union
import cv2
import numpy as np
from controlnet_aux import (
CannyDetector,
ContentShuffleDetector,
HEDdetector,
LeresDetector,
LineartAnimeDetector,
LineartDetector,
MediapipeFaceDetector,
MidasDetector,
MLSDdetector,
@@ -39,8 +35,12 @@ from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.canny import get_canny_edges
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
from invokeai.backend.image_util.hed import HEDProcessor
from invokeai.backend.image_util.lineart import LineartProcessor
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
@@ -171,11 +171,12 @@ class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
title="Canny Processor",
tags=["controlnet", "canny"],
category="controlnet",
version="1.3.1",
version="1.3.2",
)
class CannyImageProcessorInvocation(ImageProcessorInvocation):
"""Canny edge detection for ControlNet"""
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
low_threshold: int = InputField(
default=100, ge=0, le=255, description="The low threshold of the Canny pixel gradient (0-255)"
@@ -188,12 +189,12 @@ class CannyImageProcessorInvocation(ImageProcessorInvocation):
# Keep alpha channel for Canny processing to detect edges of transparent areas
return context.images.get_pil(self.image.image_name, "RGBA")
def run_processor(self, image):
canny_processor = CannyDetector()
processed_image = canny_processor(
def run_processor(self, image: Image.Image) -> Image.Image:
processed_image = get_canny_edges(
image,
self.low_threshold,
self.high_threshold,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
)
return processed_image
@@ -215,9 +216,9 @@ class HedImageProcessorInvocation(ImageProcessorInvocation):
# safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
def run_processor(self, image):
hed_processor = HEDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = hed_processor(
def run_processor(self, image: Image.Image) -> Image.Image:
hed_processor = HEDProcessor()
processed_image = hed_processor.run(
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
@@ -242,9 +243,9 @@ class LineartImageProcessorInvocation(ImageProcessorInvocation):
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
coarse: bool = InputField(default=False, description="Whether to use coarse mode")
def run_processor(self, image):
lineart_processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
processed_image = lineart_processor(
def run_processor(self, image: Image.Image) -> Image.Image:
lineart_processor = LineartProcessor()
processed_image = lineart_processor.run(
image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, coarse=self.coarse
)
return processed_image
@@ -263,9 +264,9 @@ class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
def run_processor(self, image):
processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = processor(
def run_processor(self, image: Image.Image) -> Image.Image:
processor = LineartAnimeProcessor()
processed_image = processor.run(
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
@@ -278,13 +279,14 @@ class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
title="Midas Depth Processor",
tags=["controlnet", "midas"],
category="controlnet",
version="1.2.2",
version="1.2.3",
)
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Midas depth processing to image"""
a_mult: float = InputField(default=2.0, ge=0, description="Midas parameter `a_mult` (a = a_mult * PI)")
bg_th: float = InputField(default=0.1, ge=0, description="Midas parameter `bg_th`")
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
# depth_and_normal not supported in controlnet_aux v0.0.3
# depth_and_normal: bool = InputField(default=False, description="whether to use depth and normal mode")
@@ -296,6 +298,7 @@ class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
a=np.pi * self.a_mult,
bg_th=self.bg_th,
image_resolution=self.image_resolution,
detect_resolution=self.detect_resolution,
# dept_and_normal not supported in controlnet_aux v0.0.3
# depth_and_normal=self.depth_and_normal,
)
@@ -420,19 +423,24 @@ class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
title="Mediapipe Face Processor",
tags=["controlnet", "mediapipe", "face"],
category="controlnet",
version="1.2.2",
version="1.2.3",
)
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
"""Applies mediapipe face processing to image"""
max_faces: int = InputField(default=1, ge=1, description="Maximum number of faces to detect")
min_confidence: float = InputField(default=0.5, ge=0, le=1, description="Minimum confidence for face detection")
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
def run_processor(self, image):
mediapipe_face_processor = MediapipeFaceDetector()
processed_image = mediapipe_face_processor(
image, max_faces=self.max_faces, min_confidence=self.min_confidence, image_resolution=self.image_resolution
image,
max_faces=self.max_faces,
min_confidence=self.min_confidence,
image_resolution=self.image_resolution,
detect_resolution=self.detect_resolution,
)
return processed_image
@@ -511,11 +519,12 @@ class TileResamplerProcessorInvocation(ImageProcessorInvocation):
title="Segment Anything Processor",
tags=["controlnet", "segmentanything"],
category="controlnet",
version="1.2.2",
version="1.2.3",
)
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
"""Applies segment anything processing to image"""
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
def run_processor(self, image):
@@ -524,7 +533,9 @@ class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
"ybelkada/segment-anything", subfolder="checkpoints"
)
np_img = np.array(image, dtype=np.uint8)
processed_image = segment_anything_processor(np_img, image_resolution=self.image_resolution)
processed_image = segment_anything_processor(
np_img, image_resolution=self.image_resolution, detect_resolution=self.detect_resolution
)
return processed_image

View File

@@ -967,3 +967,56 @@ class CanvasPasteBackInvocation(BaseInvocation, WithMetadata, WithBoard):
image_dto = context.images.save(image=source_image)
return ImageOutput.build(image_dto)
@invocation(
"mask_from_id",
title="Mask from ID",
tags=["image", "mask", "id"],
category="image",
version="1.0.0",
)
class MaskFromIDInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generate a mask for a particular color in an ID Map"""
image: ImageField = InputField(description="The image to create the mask from")
color: ColorField = InputField(description="ID color to mask")
threshold: int = InputField(default=100, description="Threshold for color detection")
invert: bool = InputField(default=False, description="Whether or not to invert the mask")
def rgba_to_hex(self, rgba_color: tuple[int, int, int, int]):
r, g, b, a = rgba_color
hex_code = "#{:02X}{:02X}{:02X}{:02X}".format(r, g, b, int(a * 255))
return hex_code
def id_to_mask(self, id_mask: Image.Image, color: tuple[int, int, int, int], threshold: int = 100):
if id_mask.mode != "RGB":
id_mask = id_mask.convert("RGB")
# Can directly just use the tuple but I'll leave this rgba_to_hex here
# incase anyone prefers using hex codes directly instead of the color picker
hex_color_str = self.rgba_to_hex(color)
rgb_color = numpy.array([int(hex_color_str[i : i + 2], 16) for i in (1, 3, 5)])
# Maybe there's a faster way to calculate this distance but I can't think of any right now.
color_distance = numpy.linalg.norm(id_mask - rgb_color, axis=-1)
# Create a mask based on the threshold and the distance calculated above
binary_mask = (color_distance < threshold).astype(numpy.uint8) * 255
# Convert the mask back to PIL
binary_mask_pil = Image.fromarray(binary_mask)
return binary_mask_pil
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name)
mask = self.id_to_mask(image, self.color.tuple(), self.threshold)
if self.invert:
mask = ImageOps.invert(mask)
image_dto = context.images.save(image=mask, image_category=ImageCategory.MASK)
return ImageOutput.build(image_dto)

View File

@@ -31,7 +31,7 @@ ESRGAN_MODELS = Literal[
ESRGAN_MODEL_URLS: dict[str, str] = {
"RealESRGAN_x4plus.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
"RealESRGAN_x4plus_anime_6B.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
"ESRGAN_SRx4_DF2KOST_official.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
"ESRGAN_SRx4_DF2KOST_official-ff704c30.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
"RealESRGAN_x2plus.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
}

View File

@@ -13,7 +13,7 @@ from typing import Any, Literal, Optional
import psutil
import yaml
from pydantic import BaseModel, Field, PrivateAttr, field_validator
from pydantic_settings import BaseSettings, SettingsConfigDict
from pydantic_settings import BaseSettings, PydanticBaseSettingsSource, SettingsConfigDict
import invokeai.configs as model_configs
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS
@@ -115,7 +115,7 @@ class InvokeAIAppConfig(BaseSettings):
allow_nodes: List of nodes to allow. Omit to allow all.
deny_nodes: List of nodes to deny. Omit to deny none.
node_cache_size: How many cached nodes to keep in memory.
hashing_algorithm: Model hashing algorthim for model installs. 'blake3' is best for SSDs. 'blake3_single' is best for spinning disk HDDs. 'random' disables hashing, instead assigning a UUID to models. Useful when using a memory db to reduce model installation time, or if you don't care about storing stable hashes for models. Alternatively, any other hashlib algorithm is accepted, though these are not nearly as performant as blake3.<br>Valid values: `md5`, `sha1`, `sha224`, `sha256`, `sha384`, `sha512`, `blake2b`, `blake2s`, `sha3_224`, `sha3_256`, `sha3_384`, `sha3_512`, `shake_128`, `shake_256`, `blake3`, `blake3_single`, `random`
hashing_algorithm: Model hashing algorthim for model installs. 'blake3_multi' is best for SSDs. 'blake3_single' is best for spinning disk HDDs. 'random' disables hashing, instead assigning a UUID to models. Useful when using a memory db to reduce model installation time, or if you don't care about storing stable hashes for models. Alternatively, any other hashlib algorithm is accepted, though these are not nearly as performant as blake3.<br>Valid values: `blake3_multi`, `blake3_single`, `random`, `md5`, `sha1`, `sha224`, `sha256`, `sha384`, `sha512`, `blake2b`, `blake2s`, `sha3_224`, `sha3_256`, `sha3_384`, `sha3_512`, `shake_128`, `shake_256`
remote_api_tokens: List of regular expression and token pairs used when downloading models from URLs. The download URL is tested against the regex, and if it matches, the token is provided in as a Bearer token.
"""
@@ -191,7 +191,7 @@ class InvokeAIAppConfig(BaseSettings):
node_cache_size: int = Field(default=512, description="How many cached nodes to keep in memory.")
# MODEL INSTALL
hashing_algorithm: HASHING_ALGORITHMS = Field(default="blake3", description="Model hashing algorthim for model installs. 'blake3' is best for SSDs. 'blake3_single' is best for spinning disk HDDs. 'random' disables hashing, instead assigning a UUID to models. Useful when using a memory db to reduce model installation time, or if you don't care about storing stable hashes for models. Alternatively, any other hashlib algorithm is accepted, though these are not nearly as performant as blake3.")
hashing_algorithm: HASHING_ALGORITHMS = Field(default="blake3_single", description="Model hashing algorthim for model installs. 'blake3_multi' is best for SSDs. 'blake3_single' is best for spinning disk HDDs. 'random' disables hashing, instead assigning a UUID to models. Useful when using a memory db to reduce model installation time, or if you don't care about storing stable hashes for models. Alternatively, any other hashlib algorithm is accepted, though these are not nearly as performant as blake3.")
remote_api_tokens: Optional[list[URLRegexTokenPair]] = Field(default=None, description="List of regular expression and token pairs used when downloading models from URLs. The download URL is tested against the regex, and if it matches, the token is provided in as a Bearer token.")
# fmt: on
@@ -332,6 +332,27 @@ class InvokeAIAppConfig(BaseSettings):
return root
class DefaultInvokeAIAppConfig(InvokeAIAppConfig):
"""A version of `InvokeAIAppConfig` that does not automatically parse any settings from environment variables
or any file.
This is useful for writing out a default config file.
Note that init settings are set if provided.
"""
@classmethod
def settings_customise_sources(
cls,
settings_cls: type[BaseSettings],
init_settings: PydanticBaseSettingsSource,
env_settings: PydanticBaseSettingsSource,
dotenv_settings: PydanticBaseSettingsSource,
file_secret_settings: PydanticBaseSettingsSource,
) -> tuple[PydanticBaseSettingsSource, ...]:
return (init_settings,)
def migrate_v3_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
"""Migrate a v3 config dictionary to a current config object.
@@ -367,7 +388,8 @@ def migrate_v3_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
elif k in InvokeAIAppConfig.model_fields:
# skip unknown fields
parsed_config_dict[k] = v
config = InvokeAIAppConfig.model_validate(parsed_config_dict)
# When migrating the config file, we should not include currently-set environment variables.
config = DefaultInvokeAIAppConfig.model_validate(parsed_config_dict)
return config
@@ -391,14 +413,13 @@ def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
# This is a v3 config file, attempt to migrate it
shutil.copy(config_path, config_path.with_suffix(".yaml.bak"))
try:
# This could be the wrong shape, but we will catch all exceptions below
config = migrate_v3_config_dict(loaded_config_dict) # pyright: ignore [reportUnknownArgumentType]
# loaded_config_dict could be the wrong shape, but we will catch all exceptions below
migrated_config = migrate_v3_config_dict(loaded_config_dict) # pyright: ignore [reportUnknownArgumentType]
except Exception as e:
shutil.copy(config_path.with_suffix(".yaml.bak"), config_path)
raise RuntimeError(f"Failed to load and migrate v3 config file {config_path}: {e}") from e
# By excluding defaults, we ensure that the new config file only contains the settings that were explicitly set
config.write_file(config_path)
return config
migrated_config.write_file(config_path)
return migrated_config
else:
# Attempt to load as a v4 config file
try:
@@ -426,6 +447,7 @@ def get_config() -> InvokeAIAppConfig:
On subsequent calls, the object is returned from the cache.
"""
# This object includes environment variables, as parsed by pydantic-settings
config = InvokeAIAppConfig()
args = InvokeAIArgs.args
@@ -441,8 +463,8 @@ def get_config() -> InvokeAIAppConfig:
if config_file := getattr(args, "config_file", None):
config._config_file = Path(config_file)
# Create the example file from a deep copy, with some extra values provided
example_config = config.model_copy(deep=True)
# Create the example config file, with some extra example values provided
example_config = DefaultInvokeAIAppConfig()
example_config.remote_api_tokens = [
URLRegexTokenPair(url_regex="cool-models.com", token="my_secret_token"),
URLRegexTokenPair(url_regex="nifty-models.com", token="some_other_token"),
@@ -454,10 +476,12 @@ def get_config() -> InvokeAIAppConfig:
shutil.copytree(configs_src, config.legacy_conf_path, dirs_exist_ok=True)
if config.config_file_path.exists():
incoming_config = load_and_migrate_config(config.config_file_path)
config_from_file = load_and_migrate_config(config.config_file_path)
# Clobbering here will overwrite any settings that were set via environment variables
config.update_config(incoming_config, clobber=False)
config.update_config(config_from_file, clobber=False)
else:
config.write_file(config.config_file_path)
# We should never write env vars to the config file
default_config = DefaultInvokeAIAppConfig()
default_config.write_file(config.config_file_path, as_example=False)
return config

View File

@@ -85,8 +85,10 @@ class DownloadQueueService(DownloadQueueServiceBase):
self._logger.info(f"Waiting for {len(active_jobs)} active download jobs to complete")
with self._queue.mutex:
self._queue.queue.clear()
self.join() # wait for all active jobs to finish
self.cancel_all_jobs()
self._stop_event.set()
for thread in self._worker_pool:
thread.join()
self._worker_pool.clear()
def submit_download_job(

View File

@@ -468,6 +468,19 @@ class ModelInstallServiceBase(ABC):
def sync_to_config(self) -> None:
"""Synchronize models on disk to those in the model record database."""
@abstractmethod
def sync_model_path(self, key: str) -> AnyModelConfig:
"""
Move model into the location indicated by its basetype, type and name.
Call this after updating a model's attributes in order to move
the model's path into the location indicated by its basetype, type and
name. Applies only to models whose paths are within the root `models_dir`
directory.
May raise an UnknownModelException.
"""
@abstractmethod
def download_and_cache(self, source: Union[str, AnyHttpUrl], access_token: Optional[str] = None) -> Path:
"""

View File

@@ -2,6 +2,7 @@
import os
import re
import signal
import threading
import time
from hashlib import sha256
@@ -34,6 +35,7 @@ from invokeai.backend.model_manager.config import (
from invokeai.backend.model_manager.metadata import (
AnyModelRepoMetadata,
HuggingFaceMetadataFetch,
ModelMetadataFetchBase,
ModelMetadataWithFiles,
RemoteModelFile,
)
@@ -92,6 +94,7 @@ class ModelInstallService(ModelInstallServiceBase):
self._download_cache: Dict[AnyHttpUrl, ModelInstallJob] = {}
self._running = False
self._session = session
self._install_thread: Optional[threading.Thread] = None
self._next_job_id = 0
@property
@@ -110,6 +113,18 @@ class ModelInstallService(ModelInstallServiceBase):
# makes the installer harder to use outside the web app
def start(self, invoker: Optional[Invoker] = None) -> None:
"""Start the installer thread."""
# Yes, this is weird. When the installer thread is running, the
# thread masks the ^C signal. When we receive a
# sigINT, we stop the thread, reset sigINT, and send a new
# sigINT to the parent process.
def sigint_handler(signum, frame):
self.stop()
signal.signal(signal.SIGINT, signal.SIG_DFL)
signal.raise_signal(signal.SIGINT)
signal.signal(signal.SIGINT, sigint_handler)
with self._lock:
if self._running:
raise Exception("Attempt to start the installer service twice")
@@ -120,13 +135,15 @@ class ModelInstallService(ModelInstallServiceBase):
def stop(self, invoker: Optional[Invoker] = None) -> None:
"""Stop the installer thread; after this the object can be deleted and garbage collected."""
with self._lock:
if not self._running:
raise Exception("Attempt to stop the install service before it was started")
self._stop_event.set()
self._clear_pending_jobs()
self._download_cache.clear()
self._running = False
if not self._running:
raise Exception("Attempt to stop the install service before it was started")
self._logger.debug("calling stop_event.set()")
self._stop_event.set()
self._clear_pending_jobs()
self._download_cache.clear()
assert self._install_thread is not None
self._install_thread.join()
self._running = False
def _clear_pending_jobs(self) -> None:
for job in self.list_jobs():
@@ -275,6 +292,7 @@ class ModelInstallService(ModelInstallServiceBase):
if timeout > 0 and time.time() - start > timeout:
raise TimeoutError("Timeout exceeded")
self._install_queue.join()
return self._install_jobs
def cancel_job(self, job: ModelInstallJob) -> None:
@@ -345,9 +363,8 @@ class ModelInstallService(ModelInstallServiceBase):
# Rename `models.yaml` to `models.yaml.bak` to prevent re-migration
legacy_models_yaml_path.rename(legacy_models_yaml_path.with_suffix(".yaml.bak"))
# Remove `legacy_models_yaml_path` from the config file - we are done with it either way
# Unset the path - we are done with it either way
self._app_config.legacy_models_yaml_path = None
self._app_config.write_file(self._app_config.config_file_path)
def scan_directory(self, scan_dir: Path, install: bool = False) -> List[str]: # noqa D102
self._cached_model_paths = {Path(x.path).resolve() for x in self.record_store.all_models()}
@@ -373,10 +390,10 @@ class ModelInstallService(ModelInstallServiceBase):
def unconditionally_delete(self, key: str) -> None: # noqa D102
model = self.record_store.get_model(key)
model_path = self.app_config.models_path / model.path
if model_path.is_dir():
rmtree(model_path)
else:
if model_path.is_file() or model_path.is_symlink():
model_path.unlink()
elif model_path.is_dir():
rmtree(model_path)
self.unregister(key)
def download_and_cache(
@@ -415,15 +432,16 @@ class ModelInstallService(ModelInstallServiceBase):
# Internal functions that manage the installer threads
# --------------------------------------------------------------------------------------------
def _start_installer_thread(self) -> None:
threading.Thread(target=self._install_next_item, daemon=True).start()
self._install_thread = threading.Thread(target=self._install_next_item, daemon=True)
self._install_thread.start()
self._running = True
def _install_next_item(self) -> None:
done = False
while not done:
self._logger.debug(f"Installer thread {threading.get_ident()} starting")
while True:
if self._stop_event.is_set():
done = True
continue
break
self._logger.debug(f"Installer thread {threading.get_ident()} polling")
try:
job = self._install_queue.get(timeout=1)
except Empty:
@@ -436,39 +454,14 @@ class ModelInstallService(ModelInstallServiceBase):
elif job.errored:
self._signal_job_errored(job)
elif (
job.waiting or job.downloads_done
): # local jobs will be in waiting state, remote jobs will be downloading state
job.total_bytes = self._stat_size(job.local_path)
job.bytes = job.total_bytes
self._signal_job_running(job)
job.config_in["source"] = str(job.source)
job.config_in["source_type"] = MODEL_SOURCE_TO_TYPE_MAP[job.source.__class__]
# enter the metadata, if there is any
if isinstance(job.source_metadata, (HuggingFaceMetadata)):
job.config_in["source_api_response"] = job.source_metadata.api_response
if job.inplace:
key = self.register_path(job.local_path, job.config_in)
else:
key = self.install_path(job.local_path, job.config_in)
job.config_out = self.record_store.get_model(key)
self._signal_job_completed(job)
elif job.waiting or job.downloads_done:
self._register_or_install(job)
except InvalidModelConfigException as excp:
if any(x.content_type is not None and "text/html" in x.content_type for x in job.download_parts):
job.set_error(
InvalidModelConfigException(
f"At least one file in {job.local_path} is an HTML page, not a model. This can happen when an access token is required to download."
)
)
else:
job.set_error(excp)
self._signal_job_errored(job)
self._set_error(job, excp)
except (OSError, DuplicateModelException) as excp:
job.set_error(excp)
self._signal_job_errored(job)
self._set_error(job, excp)
finally:
# if this is an install of a remote file, then clean up the temporary directory
@@ -476,6 +469,36 @@ class ModelInstallService(ModelInstallServiceBase):
rmtree(job._install_tmpdir)
self._install_completed_event.set()
self._install_queue.task_done()
self._logger.info(f"Installer thread {threading.get_ident()} exiting")
def _register_or_install(self, job: ModelInstallJob) -> None:
# local jobs will be in waiting state, remote jobs will be downloading state
job.total_bytes = self._stat_size(job.local_path)
job.bytes = job.total_bytes
self._signal_job_running(job)
job.config_in["source"] = str(job.source)
job.config_in["source_type"] = MODEL_SOURCE_TO_TYPE_MAP[job.source.__class__]
# enter the metadata, if there is any
if isinstance(job.source_metadata, (HuggingFaceMetadata)):
job.config_in["source_api_response"] = job.source_metadata.api_response
if job.inplace:
key = self.register_path(job.local_path, job.config_in)
else:
key = self.install_path(job.local_path, job.config_in)
job.config_out = self.record_store.get_model(key)
self._signal_job_completed(job)
def _set_error(self, job: ModelInstallJob, excp: Exception) -> None:
if any(x.content_type is not None and "text/html" in x.content_type for x in job.download_parts):
job.set_error(
InvalidModelConfigException(
f"At least one file in {job.local_path} is an HTML page, not a model. This can happen when an access token is required to download."
)
)
else:
job.set_error(excp)
self._signal_job_errored(job)
# --------------------------------------------------------------------------------------------
# Internal functions that manage the models directory
@@ -516,7 +539,7 @@ class ModelInstallService(ModelInstallServiceBase):
installed.update(self.scan_directory(models_dir))
self._logger.info(f"{len(installed)} new models registered; {len(defunct_models)} unregistered")
def _sync_model_path(self, key: str) -> AnyModelConfig:
def sync_model_path(self, key: str) -> AnyModelConfig:
"""
Move model into the location indicated by its basetype, type and name.
@@ -528,16 +551,13 @@ class ModelInstallService(ModelInstallServiceBase):
May raise an UnknownModelException.
"""
model = self.record_store.get_model(key)
old_path = Path(model.path)
models_dir = self.app_config.models_path
old_path = Path(model.path).resolve()
models_dir = self.app_config.models_path.resolve()
try:
old_path.relative_to(models_dir)
if not old_path.is_relative_to(models_dir):
return model
except ValueError:
pass
new_path = models_dir / model.base.value / model.type.value / old_path.name
new_path = (models_dir / model.base.value / model.type.value / model.name).with_suffix(old_path.suffix)
if old_path == new_path or new_path.exists() and old_path == new_path.resolve():
return model
@@ -549,11 +569,11 @@ class ModelInstallService(ModelInstallServiceBase):
return model
def _scan_register(self, model: Path) -> bool:
if model in self._cached_model_paths:
if model.resolve() in self._cached_model_paths:
return True
try:
id = self.register_path(model)
self._sync_model_path(id) # possibly move it to right place in `models`
self.sync_model_path(id) # possibly move it to right place in `models`
self._logger.info(f"Registered {model.name} with id {id}")
self._models_installed.add(id)
except DuplicateModelException:
@@ -722,12 +742,13 @@ class ModelInstallService(ModelInstallServiceBase):
install_job._install_tmpdir = tmpdir
assert install_job.total_bytes is not None # to avoid type checking complaints in the loop below
self._logger.info(f"Queuing {source} for downloading")
files_string = "file" if len(remote_files) == 1 else "file"
self._logger.info(f"Queuing model install: {source} ({len(remote_files)} {files_string})")
self._logger.debug(f"remote_files={remote_files}")
for model_file in remote_files:
url = model_file.url
path = root / model_file.path.relative_to(subfolder)
self._logger.info(f"Downloading {url} => {path}")
self._logger.debug(f"Downloading {url} => {path}")
install_job.total_bytes += model_file.size
assert hasattr(source, "access_token")
dest = tmpdir / path.parent
@@ -763,7 +784,7 @@ class ModelInstallService(ModelInstallServiceBase):
# Callbacks are executed by the download queue in a separate thread
# ------------------------------------------------------------------
def _download_started_callback(self, download_job: DownloadJob) -> None:
self._logger.info(f"{download_job.source}: model download started")
self._logger.info(f"Model download started: {download_job.source}")
with self._lock:
install_job = self._download_cache[download_job.source]
install_job.status = InstallStatus.DOWNLOADING
@@ -789,7 +810,7 @@ class ModelInstallService(ModelInstallServiceBase):
self._signal_job_downloading(install_job)
def _download_complete_callback(self, download_job: DownloadJob) -> None:
self._logger.info(f"{download_job.source}: model download complete")
self._logger.info(f"Model download complete: {download_job.source}")
with self._lock:
install_job = self._download_cache[download_job.source]
@@ -822,7 +843,7 @@ class ModelInstallService(ModelInstallServiceBase):
if not install_job:
return
self._downloads_changed_event.set()
self._logger.warning(f"{download_job.source}: model download cancelled")
self._logger.warning(f"Model download canceled: {download_job.source}")
# if install job has already registered an error, then do not replace its status with cancelled
if not install_job.errored:
install_job.cancel()
@@ -846,7 +867,7 @@ class ModelInstallService(ModelInstallServiceBase):
# ------------------------------------------------------------------------------------------------
def _signal_job_running(self, job: ModelInstallJob) -> None:
job.status = InstallStatus.RUNNING
self._logger.info(f"{job.source}: model installation started")
self._logger.info(f"Model install started: {job.source}")
if self._event_bus:
self._event_bus.emit_model_install_running(str(job.source))
@@ -874,16 +895,15 @@ class ModelInstallService(ModelInstallServiceBase):
def _signal_job_downloads_done(self, job: ModelInstallJob) -> None:
job.status = InstallStatus.DOWNLOADS_DONE
self._logger.info(f"{job.source}: all parts of this model are downloaded")
self._logger.info(f"Model download complete: {job.source}")
if self._event_bus:
self._event_bus.emit_model_install_downloads_done(str(job.source))
def _signal_job_completed(self, job: ModelInstallJob) -> None:
job.status = InstallStatus.COMPLETED
assert job.config_out
self._logger.info(
f"{job.source}: model installation completed. {job.local_path} registered key {job.config_out.key}"
)
self._logger.info(f"Model install complete: {job.source}")
self._logger.debug(f"{job.local_path} registered key {job.config_out.key}")
if self._event_bus:
assert job.local_path is not None
assert job.config_out is not None
@@ -891,7 +911,7 @@ class ModelInstallService(ModelInstallServiceBase):
self._event_bus.emit_model_install_completed(str(job.source), key, id=job.id)
def _signal_job_errored(self, job: ModelInstallJob) -> None:
self._logger.info(f"{job.source}: model installation encountered an exception: {job.error_type}\n{job.error}")
self._logger.info(f"Model install error: {job.source}, {job.error_type}\n{job.error}")
if self._event_bus:
error_type = job.error_type
error = job.error
@@ -900,12 +920,12 @@ class ModelInstallService(ModelInstallServiceBase):
self._event_bus.emit_model_install_error(str(job.source), error_type, error, id=job.id)
def _signal_job_cancelled(self, job: ModelInstallJob) -> None:
self._logger.info(f"{job.source}: model installation was cancelled")
self._logger.info(f"Model install canceled: {job.source}")
if self._event_bus:
self._event_bus.emit_model_install_cancelled(str(job.source), id=job.id)
@staticmethod
def get_fetcher_from_url(url: str):
def get_fetcher_from_url(url: str) -> ModelMetadataFetchBase:
if re.match(r"^https?://huggingface.co/[^/]+/[^/]+$", url.lower()):
return HuggingFaceMetadataFetch
raise ValueError(f"Unsupported model source: '{url}'")

View File

@@ -6,6 +6,7 @@ from .model_records_base import ( # noqa F401
ModelRecordServiceBase,
UnknownModelException,
ModelSummary,
ModelRecordChanges,
ModelRecordOrderBy,
)
from .model_records_sql import ModelRecordServiceSQL # noqa F401
@@ -17,5 +18,6 @@ __all__ = [
"InvalidModelException",
"UnknownModelException",
"ModelSummary",
"ModelRecordChanges",
"ModelRecordOrderBy",
]

View File

@@ -2,7 +2,7 @@
"name": "Prompt from File",
"author": "InvokeAI",
"description": "Sample workflow using Prompt from File node",
"version": "0.1.0",
"version": "2.0.0",
"contact": "invoke@invoke.ai",
"tags": "text2image, prompt from file, default",
"notes": "",
@@ -14,11 +14,31 @@
{
"nodeId": "1b7e0df8-8589-4915-a4ea-c0088f15d642",
"fieldName": "file_path"
},
{
"nodeId": "1b7e0df8-8589-4915-a4ea-c0088f15d642",
"fieldName": "pre_prompt"
},
{
"nodeId": "1b7e0df8-8589-4915-a4ea-c0088f15d642",
"fieldName": "post_prompt"
},
{
"nodeId": "0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77",
"fieldName": "width"
},
{
"nodeId": "0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77",
"fieldName": "height"
},
{
"nodeId": "491ec988-3c77-4c37-af8a-39a0c4e7a2a1",
"fieldName": "board"
}
],
"meta": {
"category": "default",
"version": "2.0.0"
"version": "3.0.0"
},
"nodes": [
{
@@ -26,847 +46,361 @@
"type": "invocation",
"data": {
"id": "c2eaf1ba-5708-4679-9e15-945b8b432692",
"type": "compel",
"label": "",
"isOpen": false,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"id": "dcdf3f6d-9b96-4bcd-9b8d-f992fefe4f62",
"name": "prompt",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "StringField"
},
"value": ""
},
"clip": {
"id": "3f1981c9-d8a9-42eb-a739-4f120eb80745",
"name": "clip",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
"label": ""
}
},
"outputs": {
"conditioning": {
"id": "46205e6c-c5e2-44cb-9c82-1cd20b95674a",
"name": "conditioning",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
}
}
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 925,
"y": -200
},
"width": 320,
"height": 24
}
},
{
"id": "1b7e0df8-8589-4915-a4ea-c0088f15d642",
"type": "invocation",
"data": {
"id": "1b7e0df8-8589-4915-a4ea-c0088f15d642",
"type": "prompt_from_file",
"label": "Prompts from File",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.1",
"version": "1.0.2",
"nodePack": "invokeai",
"label": "Prompts from File",
"notes": "",
"type": "prompt_from_file",
"inputs": {
"file_path": {
"id": "37e37684-4f30-4ec8-beae-b333e550f904",
"name": "file_path",
"fieldKind": "input",
"label": "Prompts File Path",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "StringField"
},
"value": ""
},
"pre_prompt": {
"id": "7de02feb-819a-4992-bad3-72a30920ddea",
"name": "pre_prompt",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "StringField"
},
"value": ""
},
"post_prompt": {
"id": "95f191d8-a282-428e-bd65-de8cb9b7513a",
"name": "post_prompt",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "StringField"
},
"value": ""
},
"start_line": {
"id": "efee9a48-05ab-4829-8429-becfa64a0782",
"name": "start_line",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 1
},
"max_prompts": {
"id": "abebb428-3d3d-49fd-a482-4e96a16fff08",
"name": "max_prompts",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 1
}
},
"outputs": {
"collection": {
"id": "77d5d7f1-9877-4ab1-9a8c-33e9ffa9abf3",
"name": "collection",
"fieldKind": "output",
"type": {
"isCollection": true,
"isCollectionOrScalar": false,
"name": "StringField"
}
}
}
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 475,
"y": -400
},
"width": 320,
"height": 506
}
},
{
"id": "1b89067c-3f6b-42c8-991f-e3055789b251",
"type": "invocation",
"data": {
"id": "1b89067c-3f6b-42c8-991f-e3055789b251",
"type": "iterate",
"label": "",
"isOpen": false,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.1.0",
"label": "",
"notes": "",
"type": "iterate",
"inputs": {
"collection": {
"id": "4c564bf8-5ed6-441e-ad2c-dda265d5785f",
"name": "collection",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": true,
"isCollectionOrScalar": false,
"name": "CollectionField"
}
"label": ""
}
},
"outputs": {
"item": {
"id": "36340f9a-e7a5-4afa-b4b5-313f4e292380",
"name": "item",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "CollectionItemField"
}
},
"index": {
"id": "1beca95a-2159-460f-97ff-c8bab7d89336",
"name": "index",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
},
"total": {
"id": "ead597b8-108e-4eda-88a8-5c29fa2f8df9",
"name": "total",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
}
}
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 925,
"y": -400
},
"width": 320,
"height": 24
}
},
{
"id": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
"type": "invocation",
"data": {
"id": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
"type": "main_model_loader",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"version": "1.0.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "main_model_loader",
"inputs": {
"model": {
"id": "3f264259-3418-47d5-b90d-b6600e36ae46",
"name": "model",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "MainModelField"
},
"value": {
"model_name": "stable-diffusion-v1-5",
"base_model": "sd-1",
"model_type": "main"
}
"label": ""
}
},
"outputs": {
"unet": {
"id": "8e182ea2-9d0a-4c02-9407-27819288d4b5",
"name": "unet",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "UNetField"
}
},
"clip": {
"id": "d67d9d30-058c-46d5-bded-3d09d6d1aa39",
"name": "clip",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
},
"vae": {
"id": "89641601-0429-4448-98d5-190822d920d8",
"name": "vae",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "VaeField"
}
}
}
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 0,
"y": -375
},
"width": 320,
"height": 193
}
},
{
"id": "fc9d0e35-a6de-4a19-84e1-c72497c823f6",
"type": "invocation",
"data": {
"id": "fc9d0e35-a6de-4a19-84e1-c72497c823f6",
"type": "compel",
"label": "",
"isOpen": false,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"id": "dcdf3f6d-9b96-4bcd-9b8d-f992fefe4f62",
"name": "prompt",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "StringField"
},
"value": ""
},
"clip": {
"id": "3f1981c9-d8a9-42eb-a739-4f120eb80745",
"name": "clip",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
"label": ""
}
},
"outputs": {
"conditioning": {
"id": "46205e6c-c5e2-44cb-9c82-1cd20b95674a",
"name": "conditioning",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
}
}
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 925,
"y": -275
},
"width": 320,
"height": 24
}
},
{
"id": "0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77",
"type": "invocation",
"data": {
"id": "0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77",
"type": "noise",
"label": "",
"isOpen": false,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.1",
"version": "1.0.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "noise",
"inputs": {
"seed": {
"id": "b722d84a-eeee-484f-bef2-0250c027cb67",
"name": "seed",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 0
},
"width": {
"id": "d5f8ce11-0502-4bfc-9a30-5757dddf1f94",
"name": "width",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 512
},
"height": {
"id": "f187d5ff-38a5-4c3f-b780-fc5801ef34af",
"name": "height",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 512
},
"use_cpu": {
"id": "12f112b8-8b76-4816-b79e-662edc9f9aa5",
"name": "use_cpu",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "BooleanField"
},
"value": true
}
},
"outputs": {
"noise": {
"id": "08576ad1-96d9-42d2-96ef-6f5c1961933f",
"name": "noise",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
},
"width": {
"id": "f3e1f94a-258d-41ff-9789-bd999bd9f40d",
"name": "width",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
},
"height": {
"id": "6cefc357-4339-415e-a951-49b9c2be32f4",
"name": "height",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
}
}
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 925,
"y": 25
},
"width": 320,
"height": 24
}
},
{
"id": "dfc20e07-7aef-4fc0-a3a1-7bf68ec6a4e5",
"type": "invocation",
"data": {
"id": "dfc20e07-7aef-4fc0-a3a1-7bf68ec6a4e5",
"type": "rand_int",
"label": "",
"isOpen": false,
"notes": "",
"isIntermediate": true,
"useCache": false,
"version": "1.0.0",
"version": "1.0.1",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "rand_int",
"inputs": {
"low": {
"id": "b9fc6cf1-469c-4037-9bf0-04836965826f",
"name": "low",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 0
},
"high": {
"id": "06eac725-0f60-4ba2-b8cd-7ad9f757488c",
"name": "high",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 2147483647
}
},
"outputs": {
"value": {
"id": "df08c84e-7346-4e92-9042-9e5cb773aaff",
"name": "value",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
}
}
"isOpen": false,
"isIntermediate": true,
"useCache": false
},
"position": {
"x": 925,
"y": -50
},
"width": 320,
"height": 24
}
},
{
"id": "491ec988-3c77-4c37-af8a-39a0c4e7a2a1",
"type": "invocation",
"data": {
"id": "491ec988-3c77-4c37-af8a-39a0c4e7a2a1",
"type": "l2i",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.2.0",
"version": "1.2.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"id": "022e4b33-562b-438d-b7df-41c3fd931f40",
"name": "metadata",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "MetadataField"
}
"label": ""
},
"latents": {
"id": "67cb6c77-a394-4a66-a6a9-a0a7dcca69ec",
"name": "latents",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"label": ""
},
"vae": {
"id": "7b3fd9ad-a4ef-4e04-89fa-3832a9902dbd",
"name": "vae",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "VaeField"
}
"label": ""
},
"tiled": {
"id": "5ac5680d-3add-4115-8ec0-9ef5bb87493b",
"name": "tiled",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "BooleanField"
},
"value": false
},
"fp32": {
"id": "db8297f5-55f8-452f-98cf-6572c2582152",
"name": "fp32",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "BooleanField"
},
"value": false
}
},
"outputs": {
"image": {
"id": "d8778d0c-592a-4960-9280-4e77e00a7f33",
"name": "image",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ImageField"
}
},
"width": {
"id": "c8b0a75a-f5de-4ff2-9227-f25bb2b97bec",
"name": "width",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
},
"height": {
"id": "83c05fbf-76b9-49ab-93c4-fa4b10e793e4",
"name": "height",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
}
}
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 2037.861329274915,
"y": -329.8393457509562
},
"width": 320,
"height": 224
}
},
{
"id": "2fb1577f-0a56-4f12-8711-8afcaaaf1d5e",
"type": "invocation",
"data": {
"id": "2fb1577f-0a56-4f12-8711-8afcaaaf1d5e",
"type": "denoise_latents",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.5.1",
"version": "1.5.3",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "denoise_latents",
"inputs": {
"positive_conditioning": {
"id": "751fb35b-3f23-45ce-af1c-053e74251337",
"name": "positive_conditioning",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
"label": ""
},
"negative_conditioning": {
"id": "b9dc06b6-7481-4db1-a8c2-39d22a5eacff",
"name": "negative_conditioning",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
"label": ""
},
"noise": {
"id": "6e15e439-3390-48a4-8031-01e0e19f0e1d",
"name": "noise",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"label": ""
},
"steps": {
"id": "bfdfb3df-760b-4d51-b17b-0abb38b976c2",
"name": "steps",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 10
"value": 30
},
"cfg_scale": {
"id": "47770858-322e-41af-8494-d8b63ed735f3",
"name": "cfg_scale",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "FloatField"
},
"value": 7.5
},
"denoising_start": {
"id": "2ba78720-ee02-4130-a348-7bc3531f790b",
"name": "denoising_start",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 0
},
"denoising_end": {
"id": "a874dffb-d433-4d1a-9f59-af4367bb05e4",
"name": "denoising_end",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 1
},
"scheduler": {
"id": "36e021ad-b762-4fe4-ad4d-17f0291c40b2",
"name": "scheduler",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "SchedulerField"
},
"value": "euler"
},
"unet": {
"id": "98d3282d-f9f6-4b5e-b9e8-58658f1cac78",
"name": "unet",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "UNetField"
}
"label": ""
},
"control": {
"id": "f2ea3216-43d5-42b4-887f-36e8f7166d53",
"name": "control",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "ControlField"
}
"label": ""
},
"ip_adapter": {
"id": "d0780610-a298-47c8-a54e-70e769e0dfe2",
"name": "ip_adapter",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "IPAdapterField"
}
"label": ""
},
"t2i_adapter": {
"id": "fdb40970-185e-4ea8-8bb5-88f06f91f46a",
"name": "t2i_adapter",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "T2IAdapterField"
}
"label": ""
},
"cfg_rescale_multiplier": {
"id": "3af2d8c5-de83-425c-a100-49cb0f1f4385",
"name": "cfg_rescale_multiplier",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 0
},
"latents": {
"id": "e05b538a-1b5a-4aa5-84b1-fd2361289a81",
"name": "latents",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"label": ""
},
"denoise_mask": {
"id": "463a419e-df30-4382-8ffb-b25b25abe425",
"name": "denoise_mask",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "DenoiseMaskField"
}
"label": ""
}
},
"outputs": {
"latents": {
"id": "559ee688-66cf-4139-8b82-3d3aa69995ce",
"name": "latents",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
},
"width": {
"id": "0b4285c2-e8b9-48e5-98f6-0a49d3f98fd2",
"name": "width",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
},
"height": {
"id": "8b0881b9-45e5-47d5-b526-24b6661de0ee",
"name": "height",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
}
}
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 1570.9941088179146,
"y": -407.6505491604564
},
"width": 320,
"height": 612
}
}
],
"edges": [
@@ -876,12 +410,6 @@
"source": "1b89067c-3f6b-42c8-991f-e3055789b251",
"target": "fc9d0e35-a6de-4a19-84e1-c72497c823f6"
},
{
"id": "dfc20e07-7aef-4fc0-a3a1-7bf68ec6a4e5-0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77-collapsed",
"type": "collapsed",
"source": "dfc20e07-7aef-4fc0-a3a1-7bf68ec6a4e5",
"target": "0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77"
},
{
"id": "reactflow__edge-1b7e0df8-8589-4915-a4ea-c0088f15d642collection-1b89067c-3f6b-42c8-991f-e3055789b251collection",
"type": "default",

View File

@@ -2,7 +2,7 @@
"name": "Text to Image - SD1.5",
"author": "InvokeAI",
"description": "Sample text to image workflow for Stable Diffusion 1.5/2",
"version": "1.1.0",
"version": "2.0.0",
"contact": "invoke@invoke.ai",
"tags": "text2image, SD1.5, SD2, default",
"notes": "",
@@ -26,11 +26,15 @@
{
"nodeId": "55705012-79b9-4aac-9f26-c0b10309785b",
"fieldName": "height"
},
{
"nodeId": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"fieldName": "board"
}
],
"meta": {
"category": "default",
"version": "2.0.0"
"version": "3.0.0"
},
"nodes": [
{
@@ -38,687 +42,291 @@
"type": "invocation",
"data": {
"id": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"type": "compel",
"label": "Negative Compel Prompt",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "Negative Compel Prompt",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"id": "7739aff6-26cb-4016-8897-5a1fb2305e4e",
"name": "prompt",
"fieldKind": "input",
"label": "Negative Prompt",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "StringField"
},
"value": ""
},
"clip": {
"id": "48d23dce-a6ae-472a-9f8c-22a714ea5ce0",
"name": "clip",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
"label": ""
}
},
"outputs": {
"conditioning": {
"id": "37cf3a9d-f6b7-4b64-8ff6-2558c5ecc447",
"name": "conditioning",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
}
}
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 1000,
"y": 350
},
"width": 320,
"height": 219
}
},
{
"id": "55705012-79b9-4aac-9f26-c0b10309785b",
"type": "invocation",
"data": {
"id": "55705012-79b9-4aac-9f26-c0b10309785b",
"type": "noise",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.1",
"version": "1.0.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "noise",
"inputs": {
"seed": {
"id": "6431737c-918a-425d-a3b4-5d57e2f35d4d",
"name": "seed",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 0
},
"width": {
"id": "38fc5b66-fe6e-47c8-bba9-daf58e454ed7",
"name": "width",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 512
},
"height": {
"id": "16298330-e2bf-4872-a514-d6923df53cbb",
"name": "height",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 512
"value": 768
},
"use_cpu": {
"id": "c7c436d3-7a7a-4e76-91e4-c6deb271623c",
"name": "use_cpu",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "BooleanField"
},
"value": true
}
},
"outputs": {
"noise": {
"id": "50f650dc-0184-4e23-a927-0497a96fe954",
"name": "noise",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
},
"width": {
"id": "bb8a452b-133d-42d1-ae4a-3843d7e4109a",
"name": "width",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
},
"height": {
"id": "35cfaa12-3b8b-4b7a-a884-327ff3abddd9",
"name": "height",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
}
}
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 600,
"y": 325
},
"width": 320,
"height": 388
}
},
{
"id": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"type": "invocation",
"data": {
"id": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"type": "main_model_loader",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"version": "1.0.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "main_model_loader",
"inputs": {
"model": {
"id": "993eabd2-40fd-44fe-bce7-5d0c7075ddab",
"name": "model",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "MainModelField"
},
"value": {
"model_name": "stable-diffusion-v1-5",
"base_model": "sd-1",
"model_type": "main"
}
"label": ""
}
},
"outputs": {
"unet": {
"id": "5c18c9db-328d-46d0-8cb9-143391c410be",
"name": "unet",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "UNetField"
}
},
"clip": {
"id": "6effcac0-ec2f-4bf5-a49e-a2c29cf921f4",
"name": "clip",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
},
"vae": {
"id": "57683ba3-f5f5-4f58-b9a2-4b83dacad4a1",
"name": "vae",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "VaeField"
}
}
}
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 600,
"y": 25
},
"width": 320,
"height": 193
}
},
{
"id": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
"type": "invocation",
"data": {
"id": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
"type": "compel",
"label": "Positive Compel Prompt",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "Positive Compel Prompt",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"id": "7739aff6-26cb-4016-8897-5a1fb2305e4e",
"name": "prompt",
"fieldKind": "input",
"label": "Positive Prompt",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "StringField"
},
"value": "Super cute tiger cub, national geographic award-winning photograph"
},
"clip": {
"id": "48d23dce-a6ae-472a-9f8c-22a714ea5ce0",
"name": "clip",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
"label": ""
}
},
"outputs": {
"conditioning": {
"id": "37cf3a9d-f6b7-4b64-8ff6-2558c5ecc447",
"name": "conditioning",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
}
}
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 1000,
"y": 25
},
"width": 320,
"height": 219
}
},
{
"id": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
"type": "invocation",
"data": {
"id": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
"type": "rand_int",
"label": "Random Seed",
"isOpen": false,
"notes": "",
"isIntermediate": true,
"useCache": false,
"version": "1.0.0",
"version": "1.0.1",
"nodePack": "invokeai",
"label": "Random Seed",
"notes": "",
"type": "rand_int",
"inputs": {
"low": {
"id": "3ec65a37-60ba-4b6c-a0b2-553dd7a84b84",
"name": "low",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 0
},
"high": {
"id": "085f853a-1a5f-494d-8bec-e4ba29a3f2d1",
"name": "high",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 2147483647
}
},
"outputs": {
"value": {
"id": "812ade4d-7699-4261-b9fc-a6c9d2ab55ee",
"name": "value",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
}
}
"isOpen": false,
"isIntermediate": true,
"useCache": false
},
"position": {
"x": 600,
"y": 275
},
"width": 320,
"height": 32
}
},
{
"id": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"type": "invocation",
"data": {
"id": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"type": "denoise_latents",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.5.1",
"version": "1.5.3",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "denoise_latents",
"inputs": {
"positive_conditioning": {
"id": "90b7f4f8-ada7-4028-8100-d2e54f192052",
"name": "positive_conditioning",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
"label": ""
},
"negative_conditioning": {
"id": "9393779e-796c-4f64-b740-902a1177bf53",
"name": "negative_conditioning",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
"label": ""
},
"noise": {
"id": "8e17f1e5-4f98-40b1-b7f4-86aeeb4554c1",
"name": "noise",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"label": ""
},
"steps": {
"id": "9b63302d-6bd2-42c9-ac13-9b1afb51af88",
"name": "steps",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 50
"value": 30
},
"cfg_scale": {
"id": "87dd04d3-870e-49e1-98bf-af003a810109",
"name": "cfg_scale",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "FloatField"
},
"value": 7.5
},
"denoising_start": {
"id": "f369d80f-4931-4740-9bcd-9f0620719fab",
"name": "denoising_start",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 0
},
"denoising_end": {
"id": "747d10e5-6f02-445c-994c-0604d814de8c",
"name": "denoising_end",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 1
},
"scheduler": {
"id": "1de84a4e-3a24-4ec8-862b-16ce49633b9b",
"name": "scheduler",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "SchedulerField"
},
"value": "unipc"
"value": "dpmpp_sde_k"
},
"unet": {
"id": "ffa6fef4-3ce2-4bdb-9296-9a834849489b",
"name": "unet",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "UNetField"
}
"label": ""
},
"control": {
"id": "077b64cb-34be-4fcc-83f2-e399807a02bd",
"name": "control",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "ControlField"
}
"label": ""
},
"ip_adapter": {
"id": "1d6948f7-3a65-4a65-a20c-768b287251aa",
"name": "ip_adapter",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "IPAdapterField"
}
"label": ""
},
"t2i_adapter": {
"id": "75e67b09-952f-4083-aaf4-6b804d690412",
"name": "t2i_adapter",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "T2IAdapterField"
}
"label": ""
},
"cfg_rescale_multiplier": {
"id": "9101f0a6-5fe0-4826-b7b3-47e5d506826c",
"name": "cfg_rescale_multiplier",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 0
},
"latents": {
"id": "334d4ba3-5a99-4195-82c5-86fb3f4f7d43",
"name": "latents",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"label": ""
},
"denoise_mask": {
"id": "0d3dbdbf-b014-4e95-8b18-ff2ff9cb0bfa",
"name": "denoise_mask",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "DenoiseMaskField"
}
"label": ""
}
},
"outputs": {
"latents": {
"id": "70fa5bbc-0c38-41bb-861a-74d6d78d2f38",
"name": "latents",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
},
"width": {
"id": "98ee0e6c-82aa-4e8f-8be5-dc5f00ee47f0",
"name": "width",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
},
"height": {
"id": "e8cb184a-5e1a-47c8-9695-4b8979564f5d",
"name": "height",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
}
}
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 1400,
"y": 25
},
"width": 320,
"height": 612
}
},
{
"id": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"type": "invocation",
"data": {
"id": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"type": "l2i",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": false,
"useCache": true,
"version": "1.2.0",
"version": "1.2.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"id": "ab375f12-0042-4410-9182-29e30db82c85",
"name": "metadata",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "MetadataField"
}
"label": ""
},
"latents": {
"id": "3a7e7efd-bff5-47d7-9d48-615127afee78",
"name": "latents",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"label": ""
},
"vae": {
"id": "a1f5f7a1-0795-4d58-b036-7820c0b0ef2b",
"name": "vae",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "VaeField"
}
"label": ""
},
"tiled": {
"id": "da52059a-0cee-4668-942f-519aa794d739",
"name": "tiled",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "BooleanField"
},
"value": false
},
"fp32": {
"id": "c4841df3-b24e-4140-be3b-ccd454c2522c",
"name": "fp32",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "BooleanField"
},
"value": true
}
},
"outputs": {
"image": {
"id": "72d667d0-cf85-459d-abf2-28bd8b823fe7",
"name": "image",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ImageField"
}
},
"width": {
"id": "c8c907d8-1066-49d1-b9a6-83bdcd53addc",
"name": "width",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
},
"height": {
"id": "230f359c-b4ea-436c-b372-332d7dcdca85",
"name": "height",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
}
}
"isOpen": true,
"isIntermediate": false,
"useCache": true
},
"position": {
"x": 1800,
"y": 25
},
"width": 320,
"height": 224
}
}
],
"edges": [

View File

@@ -0,0 +1,704 @@
{
"name": "Text to Image - SDXL",
"author": "InvokeAI",
"description": "Sample text to image workflow for SDXL",
"version": "2.0.0",
"contact": "invoke@invoke.ai",
"tags": "text2image, SDXL, default",
"notes": "",
"exposedFields": [
{
"nodeId": "ade2c0d3-0384-4157-b39b-29ce429cfa15",
"fieldName": "value"
},
{
"nodeId": "719dabe8-8297-4749-aea1-37be301cd425",
"fieldName": "value"
},
{
"nodeId": "30d3289c-773c-4152-a9d2-bd8a99c8fd22",
"fieldName": "model"
},
{
"nodeId": "0093692f-9cf4-454d-a5b8-62f0e3eb3bb8",
"fieldName": "vae_model"
},
{
"nodeId": "63e91020-83b2-4f35-b174-ad9692aabb48",
"fieldName": "board"
}
],
"meta": {
"category": "default",
"version": "3.0.0"
},
"nodes": [
{
"id": "3774ec24-a69e-4254-864c-097d07a6256f",
"type": "invocation",
"data": {
"id": "3774ec24-a69e-4254-864c-097d07a6256f",
"version": "1.0.1",
"label": "Positive Style Concat",
"notes": "",
"type": "string_join",
"inputs": {
"string_left": {
"name": "string_left",
"label": "",
"value": ""
},
"string_right": {
"name": "string_right",
"label": "Positive Style Concat",
"value": ""
}
},
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 750,
"y": -225
}
},
{
"id": "719dabe8-8297-4749-aea1-37be301cd425",
"type": "invocation",
"data": {
"id": "719dabe8-8297-4749-aea1-37be301cd425",
"version": "1.0.1",
"label": "Negative Prompt",
"notes": "",
"type": "string",
"inputs": {
"value": {
"name": "value",
"label": "Negative Prompt",
"value": "photograph"
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 750,
"y": -125
}
},
{
"id": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204",
"type": "invocation",
"data": {
"id": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "SDXL Negative Compel Prompt",
"notes": "",
"type": "sdxl_compel_prompt",
"inputs": {
"prompt": {
"name": "prompt",
"label": "Negative Prompt",
"value": ""
},
"style": {
"name": "style",
"label": "Negative Style",
"value": ""
},
"original_width": {
"name": "original_width",
"label": "",
"value": 1024
},
"original_height": {
"name": "original_height",
"label": "",
"value": 1024
},
"crop_top": {
"name": "crop_top",
"label": "",
"value": 0
},
"crop_left": {
"name": "crop_left",
"label": "",
"value": 0
},
"target_width": {
"name": "target_width",
"label": "",
"value": 1024
},
"target_height": {
"name": "target_height",
"label": "",
"value": 1024
},
"clip": {
"name": "clip",
"label": ""
},
"clip2": {
"name": "clip2",
"label": ""
}
},
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 750,
"y": 200
}
},
{
"id": "55705012-79b9-4aac-9f26-c0b10309785b",
"type": "invocation",
"data": {
"id": "55705012-79b9-4aac-9f26-c0b10309785b",
"version": "1.0.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "noise",
"inputs": {
"seed": {
"name": "seed",
"label": "",
"value": 0
},
"width": {
"name": "width",
"label": "",
"value": 1024
},
"height": {
"name": "height",
"label": "",
"value": 1024
},
"use_cpu": {
"name": "use_cpu",
"label": "",
"value": true
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 375,
"y": 0
}
},
{
"id": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
"type": "invocation",
"data": {
"id": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
"version": "1.0.1",
"nodePack": "invokeai",
"label": "Random Seed",
"notes": "",
"type": "rand_int",
"inputs": {
"low": {
"name": "low",
"label": "",
"value": 0
},
"high": {
"name": "high",
"label": "",
"value": 2147483647
}
},
"isOpen": false,
"isIntermediate": true,
"useCache": false
},
"position": {
"x": 375,
"y": -50
}
},
{
"id": "30d3289c-773c-4152-a9d2-bd8a99c8fd22",
"type": "invocation",
"data": {
"id": "30d3289c-773c-4152-a9d2-bd8a99c8fd22",
"version": "1.0.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "sdxl_model_loader",
"inputs": {
"model": {
"name": "model",
"label": "",
"value": {
"key": "4a63b226-e8ff-4da4-854e-0b9f04b562ba",
"hash": "blake3:d279309ea6e5ee6e8fd52504275865cc280dac71cbf528c5b07c98b888bddaba",
"name": "dreamshaper-xl-v2-turbo",
"base": "sdxl",
"type": "main"
}
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 375,
"y": -500
}
},
{
"id": "faf965a4-7530-427b-b1f3-4ba6505c2a08",
"type": "invocation",
"data": {
"id": "faf965a4-7530-427b-b1f3-4ba6505c2a08",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "SDXL Positive Compel Prompt",
"notes": "",
"type": "sdxl_compel_prompt",
"inputs": {
"prompt": {
"name": "prompt",
"label": "Positive Prompt",
"value": ""
},
"style": {
"name": "style",
"label": "Positive Style",
"value": ""
},
"original_width": {
"name": "original_width",
"label": "",
"value": 1024
},
"original_height": {
"name": "original_height",
"label": "",
"value": 1024
},
"crop_top": {
"name": "crop_top",
"label": "",
"value": 0
},
"crop_left": {
"name": "crop_left",
"label": "",
"value": 0
},
"target_width": {
"name": "target_width",
"label": "",
"value": 1024
},
"target_height": {
"name": "target_height",
"label": "",
"value": 1024
},
"clip": {
"name": "clip",
"label": ""
},
"clip2": {
"name": "clip2",
"label": ""
}
},
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 750,
"y": -175
}
},
{
"id": "63e91020-83b2-4f35-b174-ad9692aabb48",
"type": "invocation",
"data": {
"id": "63e91020-83b2-4f35-b174-ad9692aabb48",
"version": "1.2.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"fp32": {
"name": "fp32",
"label": "",
"value": false
}
},
"isOpen": true,
"isIntermediate": false,
"useCache": false
},
"position": {
"x": 1475,
"y": -500
}
},
{
"id": "50a36525-3c0a-4cc5-977c-e4bfc3fd6dfb",
"type": "invocation",
"data": {
"id": "50a36525-3c0a-4cc5-977c-e4bfc3fd6dfb",
"version": "1.5.3",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "denoise_latents",
"inputs": {
"positive_conditioning": {
"name": "positive_conditioning",
"label": ""
},
"negative_conditioning": {
"name": "negative_conditioning",
"label": ""
},
"noise": {
"name": "noise",
"label": ""
},
"steps": {
"name": "steps",
"label": "",
"value": 32
},
"cfg_scale": {
"name": "cfg_scale",
"label": "",
"value": 6
},
"denoising_start": {
"name": "denoising_start",
"label": "",
"value": 0
},
"denoising_end": {
"name": "denoising_end",
"label": "",
"value": 1
},
"scheduler": {
"name": "scheduler",
"label": "",
"value": "dpmpp_2m_sde_k"
},
"unet": {
"name": "unet",
"label": ""
},
"control": {
"name": "control",
"label": ""
},
"ip_adapter": {
"name": "ip_adapter",
"label": ""
},
"t2i_adapter": {
"name": "t2i_adapter",
"label": ""
},
"cfg_rescale_multiplier": {
"name": "cfg_rescale_multiplier",
"label": "",
"value": 0
},
"latents": {
"name": "latents",
"label": ""
},
"denoise_mask": {
"name": "denoise_mask",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 1125,
"y": -500
}
},
{
"id": "0093692f-9cf4-454d-a5b8-62f0e3eb3bb8",
"type": "invocation",
"data": {
"id": "0093692f-9cf4-454d-a5b8-62f0e3eb3bb8",
"version": "1.0.2",
"label": "",
"notes": "",
"type": "vae_loader",
"inputs": {
"vae_model": {
"name": "vae_model",
"label": "VAE (use the FP16 model)",
"value": {
"key": "f20f9e5c-1bce-4c46-a84d-34ebfa7df069",
"hash": "blake3:9705ab1c31fa96b308734214fb7571a958621c7a9247eed82b7d277145f8d9fa",
"name": "sdxl-vae-fp16-fix",
"base": "sdxl",
"type": "vae"
}
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 375,
"y": -225
}
},
{
"id": "ade2c0d3-0384-4157-b39b-29ce429cfa15",
"type": "invocation",
"data": {
"id": "ade2c0d3-0384-4157-b39b-29ce429cfa15",
"version": "1.0.1",
"label": "Positive Prompt",
"notes": "",
"type": "string",
"inputs": {
"value": {
"name": "value",
"label": "Positive Prompt",
"value": "Super cute tiger cub, fierce, traditional chinese watercolor"
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 750,
"y": -500
}
},
{
"id": "ad8fa655-3a76-43d0-9c02-4d7644dea650",
"type": "invocation",
"data": {
"id": "ad8fa655-3a76-43d0-9c02-4d7644dea650",
"version": "1.0.1",
"label": "Negative Style Concat",
"notes": "",
"type": "string_join",
"inputs": {
"string_left": {
"name": "string_left",
"label": "",
"value": ""
},
"string_right": {
"name": "string_right",
"label": "Negative Style Prompt",
"value": ""
}
},
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 750,
"y": 150
}
}
],
"edges": [
{
"id": "3774ec24-a69e-4254-864c-097d07a6256f-faf965a4-7530-427b-b1f3-4ba6505c2a08-collapsed",
"type": "collapsed",
"source": "3774ec24-a69e-4254-864c-097d07a6256f",
"target": "faf965a4-7530-427b-b1f3-4ba6505c2a08"
},
{
"id": "ad8fa655-3a76-43d0-9c02-4d7644dea650-3193ad09-a7c2-4bf4-a3a9-1c61cc33a204-collapsed",
"type": "collapsed",
"source": "ad8fa655-3a76-43d0-9c02-4d7644dea650",
"target": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204"
},
{
"id": "reactflow__edge-ea94bc37-d995-4a83-aa99-4af42479f2f2value-55705012-79b9-4aac-9f26-c0b10309785bseed",
"type": "default",
"source": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
"target": "55705012-79b9-4aac-9f26-c0b10309785b",
"sourceHandle": "value",
"targetHandle": "seed"
},
{
"id": "reactflow__edge-30d3289c-773c-4152-a9d2-bd8a99c8fd22clip-faf965a4-7530-427b-b1f3-4ba6505c2a08clip",
"type": "default",
"source": "30d3289c-773c-4152-a9d2-bd8a99c8fd22",
"target": "faf965a4-7530-427b-b1f3-4ba6505c2a08",
"sourceHandle": "clip",
"targetHandle": "clip"
},
{
"id": "reactflow__edge-30d3289c-773c-4152-a9d2-bd8a99c8fd22clip2-faf965a4-7530-427b-b1f3-4ba6505c2a08clip2",
"type": "default",
"source": "30d3289c-773c-4152-a9d2-bd8a99c8fd22",
"target": "faf965a4-7530-427b-b1f3-4ba6505c2a08",
"sourceHandle": "clip2",
"targetHandle": "clip2"
},
{
"id": "reactflow__edge-30d3289c-773c-4152-a9d2-bd8a99c8fd22clip-3193ad09-a7c2-4bf4-a3a9-1c61cc33a204clip",
"type": "default",
"source": "30d3289c-773c-4152-a9d2-bd8a99c8fd22",
"target": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204",
"sourceHandle": "clip",
"targetHandle": "clip"
},
{
"id": "reactflow__edge-30d3289c-773c-4152-a9d2-bd8a99c8fd22clip2-3193ad09-a7c2-4bf4-a3a9-1c61cc33a204clip2",
"type": "default",
"source": "30d3289c-773c-4152-a9d2-bd8a99c8fd22",
"target": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204",
"sourceHandle": "clip2",
"targetHandle": "clip2"
},
{
"id": "reactflow__edge-30d3289c-773c-4152-a9d2-bd8a99c8fd22unet-50a36525-3c0a-4cc5-977c-e4bfc3fd6dfbunet",
"type": "default",
"source": "30d3289c-773c-4152-a9d2-bd8a99c8fd22",
"target": "50a36525-3c0a-4cc5-977c-e4bfc3fd6dfb",
"sourceHandle": "unet",
"targetHandle": "unet"
},
{
"id": "reactflow__edge-faf965a4-7530-427b-b1f3-4ba6505c2a08conditioning-50a36525-3c0a-4cc5-977c-e4bfc3fd6dfbpositive_conditioning",
"type": "default",
"source": "faf965a4-7530-427b-b1f3-4ba6505c2a08",
"target": "50a36525-3c0a-4cc5-977c-e4bfc3fd6dfb",
"sourceHandle": "conditioning",
"targetHandle": "positive_conditioning"
},
{
"id": "reactflow__edge-3193ad09-a7c2-4bf4-a3a9-1c61cc33a204conditioning-50a36525-3c0a-4cc5-977c-e4bfc3fd6dfbnegative_conditioning",
"type": "default",
"source": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204",
"target": "50a36525-3c0a-4cc5-977c-e4bfc3fd6dfb",
"sourceHandle": "conditioning",
"targetHandle": "negative_conditioning"
},
{
"id": "reactflow__edge-55705012-79b9-4aac-9f26-c0b10309785bnoise-50a36525-3c0a-4cc5-977c-e4bfc3fd6dfbnoise",
"type": "default",
"source": "55705012-79b9-4aac-9f26-c0b10309785b",
"target": "50a36525-3c0a-4cc5-977c-e4bfc3fd6dfb",
"sourceHandle": "noise",
"targetHandle": "noise"
},
{
"id": "reactflow__edge-50a36525-3c0a-4cc5-977c-e4bfc3fd6dfblatents-63e91020-83b2-4f35-b174-ad9692aabb48latents",
"type": "default",
"source": "50a36525-3c0a-4cc5-977c-e4bfc3fd6dfb",
"target": "63e91020-83b2-4f35-b174-ad9692aabb48",
"sourceHandle": "latents",
"targetHandle": "latents"
},
{
"id": "reactflow__edge-0093692f-9cf4-454d-a5b8-62f0e3eb3bb8vae-63e91020-83b2-4f35-b174-ad9692aabb48vae",
"type": "default",
"source": "0093692f-9cf4-454d-a5b8-62f0e3eb3bb8",
"target": "63e91020-83b2-4f35-b174-ad9692aabb48",
"sourceHandle": "vae",
"targetHandle": "vae"
},
{
"id": "reactflow__edge-ade2c0d3-0384-4157-b39b-29ce429cfa15value-faf965a4-7530-427b-b1f3-4ba6505c2a08prompt",
"type": "default",
"source": "ade2c0d3-0384-4157-b39b-29ce429cfa15",
"target": "faf965a4-7530-427b-b1f3-4ba6505c2a08",
"sourceHandle": "value",
"targetHandle": "prompt"
},
{
"id": "reactflow__edge-719dabe8-8297-4749-aea1-37be301cd425value-3193ad09-a7c2-4bf4-a3a9-1c61cc33a204prompt",
"type": "default",
"source": "719dabe8-8297-4749-aea1-37be301cd425",
"target": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204",
"sourceHandle": "value",
"targetHandle": "prompt"
},
{
"id": "reactflow__edge-719dabe8-8297-4749-aea1-37be301cd425value-ad8fa655-3a76-43d0-9c02-4d7644dea650string_left",
"type": "default",
"source": "719dabe8-8297-4749-aea1-37be301cd425",
"target": "ad8fa655-3a76-43d0-9c02-4d7644dea650",
"sourceHandle": "value",
"targetHandle": "string_left"
},
{
"id": "reactflow__edge-ad8fa655-3a76-43d0-9c02-4d7644dea650value-3193ad09-a7c2-4bf4-a3a9-1c61cc33a204style",
"type": "default",
"source": "ad8fa655-3a76-43d0-9c02-4d7644dea650",
"target": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204",
"sourceHandle": "value",
"targetHandle": "style"
},
{
"id": "reactflow__edge-ade2c0d3-0384-4157-b39b-29ce429cfa15value-3774ec24-a69e-4254-864c-097d07a6256fstring_left",
"type": "default",
"source": "ade2c0d3-0384-4157-b39b-29ce429cfa15",
"target": "3774ec24-a69e-4254-864c-097d07a6256f",
"sourceHandle": "value",
"targetHandle": "string_left"
},
{
"id": "reactflow__edge-3774ec24-a69e-4254-864c-097d07a6256fvalue-faf965a4-7530-427b-b1f3-4ba6505c2a08style",
"type": "default",
"source": "3774ec24-a69e-4254-864c-097d07a6256f",
"target": "faf965a4-7530-427b-b1f3-4ba6505c2a08",
"sourceHandle": "value",
"targetHandle": "style"
}
]
}

View File

@@ -2,7 +2,7 @@
"name": "Text to Image with LoRA",
"author": "InvokeAI",
"description": "Simple text to image workflow with a LoRA",
"version": "1.0.0",
"version": "2.0.0",
"contact": "invoke@invoke.ai",
"tags": "text to image, lora, default",
"notes": "",
@@ -22,11 +22,23 @@
{
"nodeId": "c3fa6872-2599-4a82-a596-b3446a66cf8b",
"fieldName": "prompt"
},
{
"nodeId": "ea18915f-2c5b-4569-b725-8e9e9122e8d3",
"fieldName": "width"
},
{
"nodeId": "ea18915f-2c5b-4569-b725-8e9e9122e8d3",
"fieldName": "height"
},
{
"nodeId": "a9683c0a-6b1f-4a5e-8187-c57e764b3400",
"fieldName": "board"
}
],
"meta": {
"category": "default",
"version": "2.0.0"
"version": "3.0.0"
},
"nodes": [
{
@@ -34,773 +46,321 @@
"type": "invocation",
"data": {
"id": "85b77bb2-c67a-416a-b3e8-291abe746c44",
"type": "compel",
"version": "1.1.1",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"type": "compel",
"inputs": {
"prompt": {
"id": "39fe92c4-38eb-4cc7-bf5e-cbcd31847b11",
"name": "prompt",
"fieldKind": "input",
"label": "Negative Prompt",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "StringField"
},
"value": ""
},
"clip": {
"id": "14313164-e5c4-4e40-a599-41b614fe3690",
"name": "clip",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
"label": ""
}
},
"outputs": {
"conditioning": {
"id": "02140b9d-50f3-470b-a0b7-01fc6ed2dcd6",
"name": "conditioning",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
}
}
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 3425,
"y": -300
},
"width": 320,
"height": 219
}
},
{
"id": "24e9d7ed-4836-4ec4-8f9e-e747721f9818",
"type": "invocation",
"data": {
"id": "24e9d7ed-4836-4ec4-8f9e-e747721f9818",
"type": "main_model_loader",
"version": "1.0.2",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"type": "main_model_loader",
"inputs": {
"model": {
"id": "e2e1c177-ae39-4244-920e-d621fa156a24",
"name": "model",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "MainModelField"
},
"value": {
"model_name": "Analog-Diffusion",
"base_model": "sd-1",
"model_type": "main"
}
"label": ""
}
},
"outputs": {
"vae": {
"id": "f91410e8-9378-4298-b285-f0f40ffd9825",
"name": "vae",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "VaeField"
}
},
"clip": {
"id": "928d91bf-de0c-44a8-b0c8-4de0e2e5b438",
"name": "clip",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
},
"unet": {
"id": "eacaf530-4e7e-472e-b904-462192189fc1",
"name": "unet",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "UNetField"
}
}
}
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 2500,
"y": -600
},
"width": 320,
"height": 193
}
},
{
"id": "c41e705b-f2e3-4d1a-83c4-e34bb9344966",
"type": "invocation",
"data": {
"id": "c41e705b-f2e3-4d1a-83c4-e34bb9344966",
"type": "lora_loader",
"version": "1.0.2",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"type": "lora_loader",
"inputs": {
"lora": {
"id": "36d867e8-92ea-4c3f-9ad5-ba05c64cf326",
"name": "lora",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LoRAModelField"
},
"value": {
"model_name": "Ink scenery",
"base_model": "sd-1"
}
"label": ""
},
"weight": {
"id": "8be86540-ba81-49b3-b394-2b18fa70b867",
"name": "weight",
"fieldKind": "input",
"label": "LoRA Weight",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 0.75
"value": 1
},
"unet": {
"id": "9c4d5668-e9e1-411b-8f4b-e71115bc4a01",
"name": "unet",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "UNetField"
}
"label": ""
},
"clip": {
"id": "918ec00e-e76f-4ad0-aee1-3927298cf03b",
"name": "clip",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
"label": ""
}
},
"outputs": {
"unet": {
"id": "c63f7825-1bcf-451d-b7a7-aa79f5c77416",
"name": "unet",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "UNetField"
}
},
"clip": {
"id": "6f79ef2d-00f7-4917-bee3-53e845bf4192",
"name": "clip",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
}
}
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 2975,
"y": -600
},
"width": 320,
"height": 218
}
},
{
"id": "c3fa6872-2599-4a82-a596-b3446a66cf8b",
"type": "invocation",
"data": {
"id": "c3fa6872-2599-4a82-a596-b3446a66cf8b",
"type": "compel",
"version": "1.1.1",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"type": "compel",
"inputs": {
"prompt": {
"id": "39fe92c4-38eb-4cc7-bf5e-cbcd31847b11",
"name": "prompt",
"fieldKind": "input",
"label": "Positive Prompt",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "StringField"
},
"value": "cute tiger cub"
"value": "super cute tiger cub"
},
"clip": {
"id": "14313164-e5c4-4e40-a599-41b614fe3690",
"name": "clip",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
"label": ""
}
},
"outputs": {
"conditioning": {
"id": "02140b9d-50f3-470b-a0b7-01fc6ed2dcd6",
"name": "conditioning",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
}
}
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 3425,
"y": -575
},
"width": 320,
"height": 219
}
},
{
"id": "ad487d0c-dcbb-49c5-bb8e-b28d4cbc5a63",
"type": "invocation",
"data": {
"id": "ad487d0c-dcbb-49c5-bb8e-b28d4cbc5a63",
"type": "denoise_latents",
"version": "1.5.3",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.5.1",
"type": "denoise_latents",
"inputs": {
"positive_conditioning": {
"id": "025ff44b-c4c6-4339-91b4-5f461e2cadc5",
"name": "positive_conditioning",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
"label": ""
},
"negative_conditioning": {
"id": "2d92b45a-a7fb-4541-9a47-7c7495f50f54",
"name": "negative_conditioning",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
"label": ""
},
"noise": {
"id": "4d0deeff-24ed-4562-a1ca-7833c0649377",
"name": "noise",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"label": ""
},
"steps": {
"id": "c9907328-aece-4af9-8a95-211b4f99a325",
"name": "steps",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 10
"value": 30
},
"cfg_scale": {
"id": "7cf0f031-2078-49f4-9273-bb3a64ad7130",
"name": "cfg_scale",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "FloatField"
},
"value": 7.5
},
"denoising_start": {
"id": "44cec3ba-b404-4b51-ba98-add9d783279e",
"name": "denoising_start",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 0
},
"denoising_end": {
"id": "3e7975f3-e438-4a13-8a14-395eba1fb7cd",
"name": "denoising_end",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 1
},
"scheduler": {
"id": "a6f6509b-7bb4-477d-b5fb-74baefa38111",
"name": "scheduler",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "SchedulerField"
},
"value": "euler"
},
"unet": {
"id": "5a87617a-b09f-417b-9b75-0cea4c255227",
"name": "unet",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "UNetField"
}
"label": ""
},
"control": {
"id": "db87aace-ace8-4f2a-8f2b-1f752389fa9b",
"name": "control",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "ControlField"
}
"label": ""
},
"ip_adapter": {
"id": "f0c133ed-4d6d-4567-bb9a-b1779810993c",
"name": "ip_adapter",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "IPAdapterField"
}
"label": ""
},
"t2i_adapter": {
"id": "59ee1233-887f-45e7-aa14-cbad5f6cb77f",
"name": "t2i_adapter",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "T2IAdapterField"
}
"label": ""
},
"cfg_rescale_multiplier": {
"id": "1a12e781-4b30-4707-b432-18c31866b5c3",
"name": "cfg_rescale_multiplier",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 0
},
"latents": {
"id": "d0e593ae-305c-424b-9acd-3af830085832",
"name": "latents",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"label": ""
},
"denoise_mask": {
"id": "b81b5a79-fc2b-4011-aae6-64c92bae59a7",
"name": "denoise_mask",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "DenoiseMaskField"
}
"label": ""
}
},
"outputs": {
"latents": {
"id": "9ae4022a-548e-407e-90cf-cc5ca5ff8a21",
"name": "latents",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
},
"width": {
"id": "730ba4bd-2c52-46bb-8c87-9b3aec155576",
"name": "width",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
},
"height": {
"id": "52b98f0b-b5ff-41b5-acc7-d0b1d1011a6f",
"name": "height",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
}
}
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 3975,
"y": -575
},
"width": 320,
"height": 612
}
},
{
"id": "ea18915f-2c5b-4569-b725-8e9e9122e8d3",
"type": "invocation",
"data": {
"id": "ea18915f-2c5b-4569-b725-8e9e9122e8d3",
"type": "noise",
"version": "1.0.2",
"label": "",
"isOpen": false,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.1",
"type": "noise",
"inputs": {
"seed": {
"id": "446ac80c-ba0a-4fea-a2d7-21128f52e5bf",
"name": "seed",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 0
},
"width": {
"id": "779831b3-20b4-4f5f-9de7-d17de57288d8",
"name": "width",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 512
},
"height": {
"id": "08959766-6d67-4276-b122-e54b911f2316",
"name": "height",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 512
"value": 768
},
"use_cpu": {
"id": "53b36a98-00c4-4dc5-97a4-ef3432c0a805",
"name": "use_cpu",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "BooleanField"
},
"value": true
}
},
"outputs": {
"noise": {
"id": "eed95824-580b-442f-aa35-c073733cecce",
"name": "noise",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
},
"width": {
"id": "7985a261-dfee-47a8-908a-c5a8754f5dc4",
"name": "width",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
},
"height": {
"id": "3d00f6c1-84b0-4262-83d9-3bf755babeea",
"name": "height",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
}
}
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 3425,
"y": 75
},
"width": 320,
"height": 24
}
},
{
"id": "6fd74a17-6065-47a5-b48b-f4e2b8fa7953",
"type": "invocation",
"data": {
"id": "6fd74a17-6065-47a5-b48b-f4e2b8fa7953",
"type": "rand_int",
"version": "1.0.1",
"label": "",
"isOpen": false,
"notes": "",
"isIntermediate": true,
"useCache": false,
"version": "1.0.0",
"type": "rand_int",
"inputs": {
"low": {
"id": "d25305f3-bfd6-446c-8e2c-0b025ec9e9ad",
"name": "low",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 0
},
"high": {
"id": "10376a3d-b8fe-4a51-b81a-ea46d8c12c78",
"name": "high",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 2147483647
}
},
"outputs": {
"value": {
"id": "c64878fa-53b1-4202-b88a-cfb854216a57",
"name": "value",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
}
}
"isOpen": false,
"isIntermediate": true,
"useCache": false
},
"position": {
"x": 3425,
"y": 0
},
"width": 320,
"height": 24
}
},
{
"id": "a9683c0a-6b1f-4a5e-8187-c57e764b3400",
"type": "invocation",
"data": {
"id": "a9683c0a-6b1f-4a5e-8187-c57e764b3400",
"type": "l2i",
"version": "1.2.2",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": false,
"useCache": true,
"version": "1.2.0",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"id": "b1982e8a-14ad-4029-a697-beb30af8340f",
"name": "metadata",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "MetadataField"
}
"label": ""
},
"latents": {
"id": "f7669388-9f91-46cc-94fc-301fa7041c3e",
"name": "latents",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"label": ""
},
"vae": {
"id": "c6f2d4db-4d0a-4e3d-acb4-b5c5a228a3e2",
"name": "vae",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "VaeField"
}
"label": ""
},
"tiled": {
"id": "19ef7d31-d96f-4e94-b7e5-95914e9076fc",
"name": "tiled",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "BooleanField"
},
"value": false
},
"fp32": {
"id": "a9454533-8ab7-4225-b411-646dc5e76d00",
"name": "fp32",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "BooleanField"
},
"value": false
}
},
"outputs": {
"image": {
"id": "4f81274e-e216-47f3-9fb6-f97493a40e6f",
"name": "image",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ImageField"
}
},
"width": {
"id": "61a9acfb-1547-4f1e-8214-e89bd3855ee5",
"name": "width",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
},
"height": {
"id": "b15cc793-4172-4b07-bcf4-5627bbc7d0d7",
"name": "height",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
}
}
"isOpen": true,
"isIntermediate": false,
"useCache": true
},
"position": {
"x": 4450,
"y": -550
},
"width": 320,
"height": 224
}
}
],
"edges": [

View File

@@ -0,0 +1,41 @@
import cv2
from PIL import Image
from invokeai.backend.image_util.util import (
cv2_to_pil,
normalize_image_channel_count,
pil_to_cv2,
resize_image_to_resolution,
)
def get_canny_edges(
image: Image.Image, low_threshold: int, high_threshold: int, detect_resolution: int, image_resolution: int
) -> Image.Image:
"""Returns the edges of an image using the Canny edge detection algorithm.
Adapted from https://github.com/huggingface/controlnet_aux (Apache-2.0 license).
Args:
image: The input image.
low_threshold: The lower threshold for the hysteresis procedure.
high_threshold: The upper threshold for the hysteresis procedure.
input_resolution: The resolution of the input image. The image will be resized to this resolution before edge detection.
output_resolution: The resolution of the output image. The edges will be resized to this resolution before returning.
Returns:
The Canny edges of the input image.
"""
if image.mode != "RGB":
image = image.convert("RGB")
np_image = pil_to_cv2(image)
np_image = normalize_image_channel_count(np_image)
np_image = resize_image_to_resolution(np_image, detect_resolution)
edge_map = cv2.Canny(np_image, low_threshold, high_threshold)
edge_map = normalize_image_channel_count(edge_map)
edge_map = resize_image_to_resolution(edge_map, image_resolution)
return cv2_to_pil(edge_map)

View File

@@ -0,0 +1,142 @@
"""Adapted from https://github.com/huggingface/controlnet_aux (Apache-2.0 license)."""
import cv2
import numpy as np
import torch
from einops import rearrange
from huggingface_hub import hf_hub_download
from PIL import Image
from invokeai.backend.image_util.util import (
non_maximum_suppression,
normalize_image_channel_count,
np_to_pil,
pil_to_np,
resize_image_to_resolution,
safe_step,
)
class DoubleConvBlock(torch.nn.Module):
def __init__(self, input_channel, output_channel, layer_number):
super().__init__()
self.convs = torch.nn.Sequential()
self.convs.append(
torch.nn.Conv2d(
in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1
)
)
for _i in range(1, layer_number):
self.convs.append(
torch.nn.Conv2d(
in_channels=output_channel,
out_channels=output_channel,
kernel_size=(3, 3),
stride=(1, 1),
padding=1,
)
)
self.projection = torch.nn.Conv2d(
in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0
)
def __call__(self, x, down_sampling=False):
h = x
if down_sampling:
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2))
for conv in self.convs:
h = conv(h)
h = torch.nn.functional.relu(h)
return h, self.projection(h)
class ControlNetHED_Apache2(torch.nn.Module):
def __init__(self):
super().__init__()
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1)))
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2)
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2)
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3)
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3)
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3)
def __call__(self, x):
h = x - self.norm
h, projection1 = self.block1(h)
h, projection2 = self.block2(h, down_sampling=True)
h, projection3 = self.block3(h, down_sampling=True)
h, projection4 = self.block4(h, down_sampling=True)
h, projection5 = self.block5(h, down_sampling=True)
return projection1, projection2, projection3, projection4, projection5
class HEDProcessor:
"""Holistically-Nested Edge Detection.
On instantiation, loads the HED model from the HuggingFace Hub.
"""
def __init__(self):
model_path = hf_hub_download("lllyasviel/Annotators", "ControlNetHED.pth")
self.network = ControlNetHED_Apache2()
self.network.load_state_dict(torch.load(model_path, map_location="cpu"))
self.network.float().eval()
def to(self, device: torch.device):
self.network.to(device)
return self
def run(
self,
input_image: Image.Image,
detect_resolution: int = 512,
image_resolution: int = 512,
safe: bool = False,
scribble: bool = False,
) -> Image.Image:
"""Processes an image and returns the detected edges.
Args:
input_image: The input image.
detect_resolution: The resolution to fit the image to before edge detection.
image_resolution: The resolution to fit the edges to before returning.
safe: Whether to apply safe step to the detected edges.
scribble: Whether to apply non-maximum suppression and Gaussian blur to the detected edges.
Returns:
The detected edges.
"""
device = next(iter(self.network.parameters())).device
np_image = pil_to_np(input_image)
np_image = normalize_image_channel_count(np_image)
np_image = resize_image_to_resolution(np_image, detect_resolution)
assert np_image.ndim == 3
height, width, _channels = np_image.shape
with torch.no_grad():
image_hed = torch.from_numpy(np_image.copy()).float().to(device)
image_hed = rearrange(image_hed, "h w c -> 1 c h w")
edges = self.network(image_hed)
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
edges = [cv2.resize(e, (width, height), interpolation=cv2.INTER_LINEAR) for e in edges]
edges = np.stack(edges, axis=2)
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
if safe:
edge = safe_step(edge)
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
detected_map = edge
detected_map = normalize_image_channel_count(detected_map)
img = resize_image_to_resolution(np_image, image_resolution)
height, width, _channels = img.shape
detected_map = cv2.resize(detected_map, (width, height), interpolation=cv2.INTER_LINEAR)
if scribble:
detected_map = non_maximum_suppression(detected_map, 127, 3.0)
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
detected_map[detected_map > 4] = 255
detected_map[detected_map < 255] = 0
return np_to_pil(detected_map)

View File

@@ -0,0 +1,158 @@
"""Adapted from https://github.com/huggingface/controlnet_aux (Apache-2.0 license)."""
import cv2
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from huggingface_hub import hf_hub_download
from PIL import Image
from invokeai.backend.image_util.util import (
normalize_image_channel_count,
np_to_pil,
pil_to_np,
resize_image_to_resolution,
)
class ResidualBlock(nn.Module):
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
conv_block = [
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
nn.InstanceNorm2d(in_features),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
nn.InstanceNorm2d(in_features),
]
self.conv_block = nn.Sequential(*conv_block)
def forward(self, x):
return x + self.conv_block(x)
class Generator(nn.Module):
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
super(Generator, self).__init__()
# Initial convolution block
model0 = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, 7), nn.InstanceNorm2d(64), nn.ReLU(inplace=True)]
self.model0 = nn.Sequential(*model0)
# Downsampling
model1 = []
in_features = 64
out_features = in_features * 2
for _ in range(2):
model1 += [
nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True),
]
in_features = out_features
out_features = in_features * 2
self.model1 = nn.Sequential(*model1)
model2 = []
# Residual blocks
for _ in range(n_residual_blocks):
model2 += [ResidualBlock(in_features)]
self.model2 = nn.Sequential(*model2)
# Upsampling
model3 = []
out_features = in_features // 2
for _ in range(2):
model3 += [
nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True),
]
in_features = out_features
out_features = in_features // 2
self.model3 = nn.Sequential(*model3)
# Output layer
model4 = [nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)]
if sigmoid:
model4 += [nn.Sigmoid()]
self.model4 = nn.Sequential(*model4)
def forward(self, x, cond=None):
out = self.model0(x)
out = self.model1(out)
out = self.model2(out)
out = self.model3(out)
out = self.model4(out)
return out
class LineartProcessor:
"""Processor for lineart detection."""
def __init__(self):
model_path = hf_hub_download("lllyasviel/Annotators", "sk_model.pth")
self.model = Generator(3, 1, 3)
self.model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
self.model.eval()
coarse_model_path = hf_hub_download("lllyasviel/Annotators", "sk_model2.pth")
self.model_coarse = Generator(3, 1, 3)
self.model_coarse.load_state_dict(torch.load(coarse_model_path, map_location=torch.device("cpu")))
self.model_coarse.eval()
def to(self, device: torch.device):
self.model.to(device)
self.model_coarse.to(device)
return self
def run(
self, input_image: Image.Image, coarse: bool = False, detect_resolution: int = 512, image_resolution: int = 512
) -> Image.Image:
"""Processes an image to detect lineart.
Args:
input_image: The input image.
coarse: Whether to use the coarse model.
detect_resolution: The resolution to fit the image to before edge detection.
image_resolution: The resolution of the output image.
Returns:
The detected lineart.
"""
device = next(iter(self.model.parameters())).device
np_image = pil_to_np(input_image)
np_image = normalize_image_channel_count(np_image)
np_image = resize_image_to_resolution(np_image, detect_resolution)
model = self.model_coarse if coarse else self.model
assert np_image.ndim == 3
image = np_image
with torch.no_grad():
image = torch.from_numpy(image).float().to(device)
image = image / 255.0
image = rearrange(image, "h w c -> 1 c h w")
line = model(image)[0][0]
line = line.cpu().numpy()
line = (line * 255.0).clip(0, 255).astype(np.uint8)
detected_map = line
detected_map = normalize_image_channel_count(detected_map)
img = resize_image_to_resolution(np_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
detected_map = 255 - detected_map
return np_to_pil(detected_map)

View File

@@ -0,0 +1,203 @@
"""Adapted from https://github.com/huggingface/controlnet_aux (Apache-2.0 license)."""
import functools
from typing import Optional
import cv2
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from huggingface_hub import hf_hub_download
from PIL import Image
from invokeai.backend.image_util.util import (
normalize_image_channel_count,
np_to_pil,
pil_to_np,
resize_image_to_resolution,
)
class UnetGenerator(nn.Module):
"""Create a Unet-based generator"""
def __init__(
self,
input_nc: int,
output_nc: int,
num_downs: int,
ngf: int = 64,
norm_layer=nn.BatchNorm2d,
use_dropout: bool = False,
):
"""Construct a Unet generator
Parameters:
input_nc (int) -- the number of channels in input images
output_nc (int) -- the number of channels in output images
num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
image of size 128x128 will become of size 1x1 # at the bottleneck
ngf (int) -- the number of filters in the last conv layer
norm_layer -- normalization layer
We construct the U-Net from the innermost layer to the outermost layer.
It is a recursive process.
"""
super(UnetGenerator, self).__init__()
# construct unet structure
unet_block = UnetSkipConnectionBlock(
ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True
) # add the innermost layer
for _ in range(num_downs - 5): # add intermediate layers with ngf * 8 filters
unet_block = UnetSkipConnectionBlock(
ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout
)
# gradually reduce the number of filters from ngf * 8 to ngf
unet_block = UnetSkipConnectionBlock(
ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer
)
unet_block = UnetSkipConnectionBlock(
ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer
)
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
self.model = UnetSkipConnectionBlock(
output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer
) # add the outermost layer
def forward(self, input):
"""Standard forward"""
return self.model(input)
class UnetSkipConnectionBlock(nn.Module):
"""Defines the Unet submodule with skip connection.
X -------------------identity----------------------
|-- downsampling -- |submodule| -- upsampling --|
"""
def __init__(
self,
outer_nc: int,
inner_nc: int,
input_nc: Optional[int] = None,
submodule=None,
outermost: bool = False,
innermost: bool = False,
norm_layer=nn.BatchNorm2d,
use_dropout: bool = False,
):
"""Construct a Unet submodule with skip connections.
Parameters:
outer_nc (int) -- the number of filters in the outer conv layer
inner_nc (int) -- the number of filters in the inner conv layer
input_nc (int) -- the number of channels in input images/features
submodule (UnetSkipConnectionBlock) -- previously defined submodules
outermost (bool) -- if this module is the outermost module
innermost (bool) -- if this module is the innermost module
norm_layer -- normalization layer
use_dropout (bool) -- if use dropout layers.
"""
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
upnorm = norm_layer(outer_nc)
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
if use_dropout:
model = down + [submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else: # add skip connections
return torch.cat([x, self.model(x)], 1)
class LineartAnimeProcessor:
"""Processes an image to detect lineart."""
def __init__(self):
model_path = hf_hub_download("lllyasviel/Annotators", "netG.pth")
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
self.model = UnetGenerator(3, 1, 8, 64, norm_layer=norm_layer, use_dropout=False)
ckpt = torch.load(model_path)
for key in list(ckpt.keys()):
if "module." in key:
ckpt[key.replace("module.", "")] = ckpt[key]
del ckpt[key]
self.model.load_state_dict(ckpt)
self.model.eval()
def to(self, device: torch.device):
self.model.to(device)
return self
def run(self, input_image: Image.Image, detect_resolution: int = 512, image_resolution: int = 512) -> Image.Image:
"""Processes an image to detect lineart.
Args:
input_image: The input image.
detect_resolution: The resolution to use for detection.
image_resolution: The resolution to use for the output image.
Returns:
The detected lineart.
"""
device = next(iter(self.model.parameters())).device
np_image = pil_to_np(input_image)
np_image = normalize_image_channel_count(np_image)
np_image = resize_image_to_resolution(np_image, detect_resolution)
H, W, C = np_image.shape
Hn = 256 * int(np.ceil(float(H) / 256.0))
Wn = 256 * int(np.ceil(float(W) / 256.0))
img = cv2.resize(np_image, (Wn, Hn), interpolation=cv2.INTER_CUBIC)
with torch.no_grad():
image_feed = torch.from_numpy(img).float().to(device)
image_feed = image_feed / 127.5 - 1.0
image_feed = rearrange(image_feed, "h w c -> 1 c h w")
line = self.model(image_feed)[0, 0] * 127.5 + 127.5
line = line.cpu().numpy()
line = cv2.resize(line, (W, H), interpolation=cv2.INTER_CUBIC)
line = line.clip(0, 255).astype(np.uint8)
detected_map = line
detected_map = normalize_image_channel_count(detected_map)
img = resize_image_to_resolution(np_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
detected_map = 255 - detected_map
return np_to_pil(detected_map)

View File

@@ -1,5 +1,7 @@
from math import ceil, floor, sqrt
import cv2
import numpy as np
from PIL import Image
@@ -69,3 +71,134 @@ def make_grid(image_list, rows=None, cols=None):
i = i + 1
return grid_img
def pil_to_np(image: Image.Image) -> np.ndarray:
"""Converts a PIL image to a numpy array."""
return np.array(image, dtype=np.uint8)
def np_to_pil(image: np.ndarray) -> Image.Image:
"""Converts a numpy array to a PIL image."""
return Image.fromarray(image)
def pil_to_cv2(image: Image.Image) -> np.ndarray:
"""Converts a PIL image to a CV2 image."""
return cv2.cvtColor(np.array(image, dtype=np.uint8), cv2.COLOR_RGB2BGR)
def cv2_to_pil(image: np.ndarray) -> Image.Image:
"""Converts a CV2 image to a PIL image."""
return Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
def normalize_image_channel_count(image: np.ndarray) -> np.ndarray:
"""Normalizes an image to have 3 channels.
If the image has 1 channel, it will be duplicated 3 times.
If the image has 1 channel, a third empty channel will be added.
If the image has 4 channels, the alpha channel will be used to blend the image with a white background.
Adapted from https://github.com/huggingface/controlnet_aux (Apache-2.0 license).
Args:
image: The input image.
Returns:
The normalized image.
"""
assert image.dtype == np.uint8
if image.ndim == 2:
image = image[:, :, None]
assert image.ndim == 3
_height, _width, channels = image.shape
assert channels == 1 or channels == 3 or channels == 4
if channels == 3:
return image
if channels == 1:
return np.concatenate([image, image, image], axis=2)
if channels == 4:
color = image[:, :, 0:3].astype(np.float32)
alpha = image[:, :, 3:4].astype(np.float32) / 255.0
normalized = color * alpha + 255.0 * (1.0 - alpha)
normalized = normalized.clip(0, 255).astype(np.uint8)
return normalized
raise ValueError("Invalid number of channels.")
def resize_image_to_resolution(input_image: np.ndarray, resolution: int) -> np.ndarray:
"""Resizes an image, fitting it to the given resolution.
Adapted from https://github.com/huggingface/controlnet_aux (Apache-2.0 license).
Args:
input_image: The input image.
resolution: The resolution to fit the image to.
Returns:
The resized image.
"""
h = float(input_image.shape[0])
w = float(input_image.shape[1])
scaling_factor = float(resolution) / min(h, w)
h *= scaling_factor
w *= scaling_factor
h = int(np.round(h / 64.0)) * 64
w = int(np.round(w / 64.0)) * 64
if scaling_factor > 1:
return cv2.resize(input_image, (w, h), interpolation=cv2.INTER_LANCZOS4)
else:
return cv2.resize(input_image, (w, h), interpolation=cv2.INTER_AREA)
def non_maximum_suppression(image: np.ndarray, threshold: int, sigma: float):
"""
Apply non-maximum suppression to an image.
This function is adapted from https://github.com/lllyasviel/ControlNet.
Args:
image: The input image.
threshold: The threshold value for the suppression. Pixels with values greater than this will be set to 255.
sigma: The standard deviation for the Gaussian blur applied to the image.
Returns:
The image after non-maximum suppression.
"""
image = cv2.GaussianBlur(image.astype(np.float32), (0, 0), sigma)
filter_1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
filter_2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
filter_3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
filter_4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(image)
for f in [filter_1, filter_2, filter_3, filter_4]:
np.putmask(y, cv2.dilate(image, kernel=f) == image, image)
z = np.zeros_like(y, dtype=np.uint8)
z[y > threshold] = 255
return z
def safe_step(x: np.ndarray, step: int = 2) -> np.ndarray:
"""Apply the safe step operation to an array.
I don't fully understand the purpose of this function, but it appears to be normalizing/quantizing the array.
Adapted from https://github.com/huggingface/controlnet_aux (Apache-2.0 license).
Args:
x: The input array.
step: The step value.
Returns:
The array after the safe step operation.
"""
y = x.astype(np.float32) * float(step + 1)
y = y.astype(np.int32).astype(np.float32) / float(step)
return y

View File

@@ -6,10 +6,14 @@ from pathlib import Path
from typing import Callable, Literal, Optional, Union
from blake3 import blake3
from tqdm import tqdm
from invokeai.app.util.misc import uuid_string
HASHING_ALGORITHMS = Literal[
"blake3_multi",
"blake3_single",
"random",
"md5",
"sha1",
"sha224",
@@ -24,9 +28,6 @@ HASHING_ALGORITHMS = Literal[
"sha3_512",
"shake_128",
"shake_256",
"blake3",
"blake3_single",
"random",
]
MODEL_FILE_EXTENSIONS = (".ckpt", ".safetensors", ".bin", ".pt", ".pth")
@@ -60,10 +61,10 @@ class ModelHash:
"""
def __init__(
self, algorithm: HASHING_ALGORITHMS = "blake3", file_filter: Optional[Callable[[str], bool]] = None
self, algorithm: HASHING_ALGORITHMS = "blake3_single", file_filter: Optional[Callable[[str], bool]] = None
) -> None:
self.algorithm: HASHING_ALGORITHMS = algorithm
if algorithm == "blake3":
if algorithm == "blake3_multi":
self._hash_file = self._blake3
elif algorithm == "blake3_single":
self._hash_file = self._blake3_single
@@ -94,7 +95,14 @@ class ModelHash:
# blake3_single is a single-threaded version of blake3, prefix should still be "blake3:"
prefix = self._get_prefix(self.algorithm)
if model_path.is_file():
return prefix + self._hash_file(model_path)
hash_ = None
# To give a similar user experience for single files and directories, we use a progress bar even for single files
pbar = tqdm([model_path], desc=f"Hashing {model_path.name}", unit="file")
for component in pbar:
pbar.set_description(f"Hashing {component.name}")
hash_ = prefix + self._hash_file(model_path)
assert hash_ is not None
return hash_
elif model_path.is_dir():
return prefix + self._hash_dir(model_path)
else:
@@ -112,7 +120,9 @@ class ModelHash:
model_component_paths = self._get_file_paths(dir, self._file_filter)
component_hashes: list[str] = []
for component in sorted(model_component_paths):
pbar = tqdm(sorted(model_component_paths), desc=f"Hashing {dir.name}", unit="file")
for component in pbar:
pbar.set_description(f"Hashing {component.name}")
component_hashes.append(self._hash_file(component))
# BLAKE3 is cryptographically secure. We may as well fall back on a secure algorithm
@@ -216,4 +226,4 @@ class ModelHash:
def _get_prefix(algorithm: HASHING_ALGORITHMS) -> str:
"""Return the prefix for the given algorithm, e.g. \"blake3:\" or \"md5:\"."""
# blake3_single is a single-threaded version of blake3, prefix should still be "blake3:"
return "blake3:" if algorithm == "blake3_single" else f"{algorithm}:"
return "blake3:" if algorithm == "blake3_single" or algorithm == "blake3_multi" else f"{algorithm}:"

View File

@@ -44,7 +44,7 @@ class ControlNetLoader(GenericDiffusersLoader):
)
self._logger.info(f"Converting {model_path} to diffusers format")
with open(config.config_path, "r") as config_stream:
with open(self._app_config.root_path / config.config_path, "r") as config_stream:
convert_controlnet_to_diffusers(
model_path,
output_path,

View File

@@ -91,7 +91,7 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
model_path,
output_path,
model_type=self.model_base_to_model_type[base],
original_config_file=config.config_path,
original_config_file=self._app_config.root_path / config.config_path,
extract_ema=True,
from_safetensors=model_path.suffix == ".safetensors",
precision=self._torch_dtype,

View File

@@ -44,7 +44,7 @@ class VAELoader(GenericDiffusersLoader):
raise Exception(f"VAE conversion not supported for model type: {config.base}")
else:
assert isinstance(config, CheckpointConfigBase)
config_file = config.config_path
config_file = self._app_config.root_path / config.config_path
if model_path.suffix == ".safetensors":
checkpoint = safetensors_load_file(model_path, device="cpu")
@@ -55,7 +55,7 @@ class VAELoader(GenericDiffusersLoader):
if "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
ckpt_config = OmegaConf.load(self._app_config.root_path / config_file)
ckpt_config = OmegaConf.load(config_file)
assert isinstance(ckpt_config, DictConfig)
self._logger.info(f"Converting {model_path} to diffusers format")
vae_model = convert_ldm_vae_to_diffusers(

View File

@@ -114,7 +114,7 @@ class ModelProbe(object):
@classmethod
def probe(
cls, model_path: Path, fields: Optional[Dict[str, Any]] = None, hash_algo: HASHING_ALGORITHMS = "blake3"
cls, model_path: Path, fields: Optional[Dict[str, Any]] = None, hash_algo: HASHING_ALGORITHMS = "blake3_single"
) -> AnyModelConfig:
"""
Probe the model at model_path and return its configuration record.
@@ -228,7 +228,7 @@ class ModelProbe(object):
return ModelType.LoRA
elif any(key.endswith(v) for v in {"to_k_lora.up.weight", "to_q_lora.down.weight"}):
return ModelType.LoRA
elif any(key.startswith(v) for v in {"control_model", "input_blocks"}):
elif any(key.startswith(v) for v in {"controlnet", "control_model", "input_blocks"}):
return ModelType.ControlNet
elif key in {"emb_params", "string_to_param"}:
return ModelType.TextualInversion
@@ -508,15 +508,22 @@ class ControlNetCheckpointProbe(CheckpointProbeBase):
checkpoint = self.checkpoint
for key_name in (
"control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight",
"controlnet_mid_block.bias",
"input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight",
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.to_k.weight",
):
if key_name not in checkpoint:
continue
if checkpoint[key_name].shape[-1] == 768:
width = checkpoint[key_name].shape[-1]
if width == 768:
return BaseModelType.StableDiffusion1
elif checkpoint[key_name].shape[-1] == 1024:
elif width == 1024:
return BaseModelType.StableDiffusion2
raise InvalidModelConfigException("{self.model_path}: Unable to determine base type")
elif width == 2048:
return BaseModelType.StableDiffusionXL
elif width == 1280:
return BaseModelType.StableDiffusionXL
raise InvalidModelConfigException(f"{self.model_path}: Unable to determine base type")
class IPAdapterCheckpointProbe(CheckpointProbeBase):

View File

@@ -1,149 +1,156 @@
from dataclasses import dataclass
from typing import Optional
from pydantic import BaseModel
from invokeai.backend.model_manager.config import BaseModelType, ModelType
@dataclass
class StarterModel:
class StarterModelWithoutDependencies(BaseModel):
description: str
source: str
name: str
base: BaseModelType
type: ModelType
# Optional list of model source dependencies that need to be installed before this model can be used
dependencies: Optional[list[str]] = None
is_installed: bool = False
class StarterModel(StarterModelWithoutDependencies):
# Optional list of model source dependencies that need to be installed before this model can be used
dependencies: Optional[list[StarterModelWithoutDependencies]] = None
sdxl_fp16_vae_fix = StarterModel(
name="sdxl-vae-fp16-fix",
base=BaseModelType.StableDiffusionXL,
source="madebyollin/sdxl-vae-fp16-fix",
description="SDXL VAE that works with FP16.",
type=ModelType.VAE,
)
ip_adapter_sd_image_encoder = StarterModel(
name="IP Adapter SD1.5 Image Encoder",
base=BaseModelType.StableDiffusion1,
source="InvokeAI/ip_adapter_sd_image_encoder",
description="IP Adapter SD Image Encoder",
type=ModelType.CLIPVision,
)
ip_adapter_sdxl_image_encoder = StarterModel(
name="IP Adapter SDXL Image Encoder",
base=BaseModelType.StableDiffusionXL,
source="InvokeAI/ip_adapter_sdxl_image_encoder",
description="IP Adapter SDXL Image Encoder",
type=ModelType.CLIPVision,
)
cyberrealistic_negative = StarterModel(
name="CyberRealistic Negative v3",
base=BaseModelType.StableDiffusion1,
source="https://huggingface.co/cyberdelia/CyberRealistic_Negative/resolve/main/CyberRealistic_Negative_v3.pt",
description="Negative embedding specifically for use with CyberRealistic.",
type=ModelType.TextualInversion,
)
# List of starter models, displayed on the frontend.
# The order/sort of this list is not changed by the frontend - set it how you want it here.
STARTER_MODELS: list[StarterModel] = [
# region: Main
StarterModel(
name="SD 1.5 (base)",
name="CyberRealistic v4.1",
base=BaseModelType.StableDiffusion1,
source="runwayml/stable-diffusion-v1-5",
description="Stable Diffusion version 1.5 diffusers model (4.27 GB)",
source="https://huggingface.co/cyberdelia/CyberRealistic/resolve/main/CyberRealistic_V4.1_FP16.safetensors",
description="Photorealistic model. See other variants in HF repo 'cyberdelia/CyberRealistic'.",
type=ModelType.Main,
dependencies=[cyberrealistic_negative],
),
StarterModel(
name="ReV Animated",
base=BaseModelType.StableDiffusion1,
source="stablediffusionapi/rev-animated",
description="Fantasy and anime style images.",
type=ModelType.Main,
),
StarterModel(
name="SD 1.5 (inpainting)",
name="Dreamshaper 8",
base=BaseModelType.StableDiffusion1,
source="runwayml/stable-diffusion-inpainting",
description="RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)",
source="Lykon/dreamshaper-8",
description="Popular versatile model.",
type=ModelType.Main,
),
StarterModel(
name="Analog Diffusion",
name="Dreamshaper 8 (inpainting)",
base=BaseModelType.StableDiffusion1,
source="wavymulder/Analog-Diffusion",
description="An SD-1.5 model trained on diverse analog photographs (2.13 GB)",
source="Lykon/dreamshaper-8-inpainting",
description="Inpainting version of Dreamshaper 8.",
type=ModelType.Main,
),
StarterModel(
name="Deliberate v5",
base=BaseModelType.StableDiffusion1,
source="https://huggingface.co/XpucT/Deliberate/resolve/main/Deliberate_v5.safetensors",
description="Versatile model that produces detailed images up to 768px (4.27 GB)",
description="Popular versatile model",
type=ModelType.Main,
),
StarterModel(
name="Dungeons and Diffusion",
name="Deliberate v5 (inpainting)",
base=BaseModelType.StableDiffusion1,
source="0xJustin/Dungeons-and-Diffusion",
description="Dungeons & Dragons characters (2.13 GB)",
source="https://huggingface.co/XpucT/Deliberate/resolve/main/Deliberate_v5-inpainting.safetensors",
description="Inpainting version of Deliberate v5.",
type=ModelType.Main,
),
StarterModel(
name="dreamlike photoreal v2",
base=BaseModelType.StableDiffusion1,
source="dreamlike-art/dreamlike-photoreal-2.0",
description="A photorealistic model trained on 768 pixel images based on SD 1.5 (2.13 GB)",
type=ModelType.Main,
),
StarterModel(
name="Inkpunk Diffusion",
base=BaseModelType.StableDiffusion1,
source="Envvi/Inkpunk-Diffusion",
description='Stylized illustrations inspired by Gorillaz, FLCL and Shinkawa; prompt with "nvinkpunk" (4.27 GB)',
type=ModelType.Main,
),
StarterModel(
name="OpenJourney",
base=BaseModelType.StableDiffusion1,
source="prompthero/openjourney",
description='An SD 1.5 model fine tuned on Midjourney; prompt with "mdjrny-v4 style" (2.13 GB)',
type=ModelType.Main,
),
StarterModel(
name="seek.art MEGA",
base=BaseModelType.StableDiffusion1,
source="coreco/seek.art_MEGA",
description='A general use SD-1.5 "anything" model that supports multiple styles (2.1 GB)',
type=ModelType.Main,
),
StarterModel(
name="TrinArt v2",
base=BaseModelType.StableDiffusion1,
source="naclbit/trinart_stable_diffusion_v2",
description="An SD-1.5 model finetuned with ~40K assorted high resolution manga/anime-style images (2.13 GB)",
type=ModelType.Main,
),
StarterModel(
name="SD 2.1 (base)",
base=BaseModelType.StableDiffusion2,
source="stabilityai/stable-diffusion-2-1",
description="Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)",
type=ModelType.Main,
),
StarterModel(
name="SD 2.0 (inpainting)",
base=BaseModelType.StableDiffusion2,
source="stabilityai/stable-diffusion-2-inpainting",
description="Stable Diffusion version 2.0 inpainting model (5.21 GB)",
type=ModelType.Main,
),
StarterModel(
name="SDXL (base)",
name="Juggernaut XL v9",
base=BaseModelType.StableDiffusionXL,
source="stabilityai/stable-diffusion-xl-base-1.0",
description="Stable Diffusion XL base model (12 GB)",
source="RunDiffusion/Juggernaut-XL-v9",
description="Photograph-focused model.",
type=ModelType.Main,
dependencies=[sdxl_fp16_vae_fix],
),
StarterModel(
name="Dreamshaper XL v2 Turbo",
base=BaseModelType.StableDiffusionXL,
source="Lykon/dreamshaper-xl-v2-turbo",
description="For turbo, use CFG Scale 2, 4-8 steps, DPM++ SDE Karras. For non-turbo, use CFG Scale 6, 20-40 steps, DPM++ 2M SDE Karras.",
type=ModelType.Main,
dependencies=[sdxl_fp16_vae_fix],
),
StarterModel(
name="SDXL Refiner",
base=BaseModelType.StableDiffusionXLRefiner,
source="stabilityai/stable-diffusion-xl-refiner-1.0",
description="Stable Diffusion XL refiner model (12 GB)",
description="The OG Stable Diffusion XL refiner model.",
type=ModelType.Main,
dependencies=[sdxl_fp16_vae_fix],
),
# endregion
# region VAE
StarterModel(
name="sdxl-vae-fp16-fix",
base=BaseModelType.StableDiffusionXL,
source="madebyollin/sdxl-vae-fp16-fix",
description="Version of the SDXL-1.0 VAE that works in half precision mode",
type=ModelType.VAE,
),
sdxl_fp16_vae_fix,
# endregion
# region LoRA
StarterModel(
name="FlatColor",
base=BaseModelType.StableDiffusion1,
source="https://civitai.com/models/6433/loraflatcolor",
description="A LoRA that generates scenery using solid blocks of color",
name="Alien Style",
base=BaseModelType.StableDiffusionXL,
source="https://huggingface.co/RalFinger/alien-style-lora-sdxl/resolve/main/alienzkin-sdxl.safetensors",
description="Futuristic, intricate alien styles. Trigger with 'alienzkin'.",
type=ModelType.LoRA,
),
StarterModel(
name="Ink scenery",
base=BaseModelType.StableDiffusion1,
source="https://civitai.com/api/download/models/83390",
description="Generate india ink-like landscapes",
name="Noodles Style",
base=BaseModelType.StableDiffusionXL,
source="https://huggingface.co/RalFinger/noodles-lora-sdxl/resolve/main/noodlez-sdxl.safetensors",
description="Never-ending, no-holds-barred, noodle nightmare. Trigger with 'noodlez'.",
type=ModelType.LoRA,
),
# endregion
# region TI
StarterModel(
name="EasyNegative",
base=BaseModelType.StableDiffusion1,
source="https://huggingface.co/embed/EasyNegative/resolve/main/EasyNegative.safetensors",
description="A textual inversion to use in the negative prompt to reduce bad anatomy",
type=ModelType.TextualInversion,
),
# endregion
# region IP Adapter
StarterModel(
name="IP Adapter",
@@ -151,7 +158,7 @@ STARTER_MODELS: list[StarterModel] = [
source="InvokeAI/ip_adapter_sd15",
description="IP-Adapter for SD 1.5 models",
type=ModelType.IPAdapter,
dependencies=["InvokeAI/ip_adapter_sd_image_encoder"],
dependencies=[ip_adapter_sd_image_encoder],
),
StarterModel(
name="IP Adapter Plus",
@@ -159,7 +166,7 @@ STARTER_MODELS: list[StarterModel] = [
source="InvokeAI/ip_adapter_plus_sd15",
description="Refined IP-Adapter for SD 1.5 models",
type=ModelType.IPAdapter,
dependencies=["InvokeAI/ip_adapter_sd_image_encoder"],
dependencies=[ip_adapter_sd_image_encoder],
),
StarterModel(
name="IP Adapter Plus Face",
@@ -167,7 +174,7 @@ STARTER_MODELS: list[StarterModel] = [
source="InvokeAI/ip_adapter_plus_face_sd15",
description="Refined IP-Adapter for SD 1.5 models, adapted for faces",
type=ModelType.IPAdapter,
dependencies=["InvokeAI/ip_adapter_sd_image_encoder"],
dependencies=[ip_adapter_sd_image_encoder],
),
StarterModel(
name="IP Adapter SDXL",
@@ -175,7 +182,7 @@ STARTER_MODELS: list[StarterModel] = [
source="InvokeAI/ip_adapter_sdxl",
description="IP-Adapter for SDXL models",
type=ModelType.IPAdapter,
dependencies=["InvokeAI/ip_adapter_sdxl_image_encoder"],
dependencies=[ip_adapter_sdxl_image_encoder],
),
# endregion
# region ControlNet
@@ -378,15 +385,6 @@ STARTER_MODELS: list[StarterModel] = [
type=ModelType.T2IAdapter,
),
# endregion
# region TI
StarterModel(
name="EasyNegative",
base=BaseModelType.StableDiffusion1,
source="https://huggingface.co/embed/EasyNegative/resolve/main/EasyNegative.safetensors",
description="A textual inversion to use in the negative prompt to reduce bad anatomy",
type=ModelType.TextualInversion,
),
# endregion
]
assert len(STARTER_MODELS) == len({m.source for m in STARTER_MODELS}), "Duplicate starter models"

View File

@@ -24,7 +24,7 @@
"areYouSure": "Sei sicuro?",
"dontAskMeAgain": "Non chiedermelo più",
"batch": "Gestione Lotto",
"modelManager": "Gestore Modelli",
"modelManager": "Gestione Modelli",
"communityLabel": "Comunità",
"nodeEditor": "Editor dei nodi",
"advanced": "Avanzate",
@@ -36,7 +36,7 @@
"auto": "Automatico",
"simple": "Semplice",
"details": "Dettagli",
"format": "formato",
"format": "Formato",
"unknown": "Sconosciuto",
"folder": "Cartella",
"error": "Errore",
@@ -336,8 +336,8 @@
"modelManager": {
"modelManager": "Gestione Modelli",
"model": "Modello",
"allModels": "Tutti i Modelli",
"modelUpdated": "Modello Aggiornato",
"allModels": "Tutti i modelli",
"modelUpdated": "Modello aggiornato",
"manual": "Manuale",
"name": "Nome",
"description": "Descrizione",
@@ -364,7 +364,7 @@
"convertToDiffusersHelpText6": "Vuoi convertire questo modello?",
"modelConverted": "Modello convertito",
"alpha": "Alpha",
"convertToDiffusersHelpText1": "Questo modello verrà convertito nel formato 🧨 Diffusore.",
"convertToDiffusersHelpText1": "Questo modello verrà convertito nel formato 🧨 Diffusori.",
"convertToDiffusersHelpText3": "Il file Checkpoint su disco verrà eliminato se si trova nella cartella principale di InvokeAI. Se si trova invece in una posizione personalizzata, NON verrà eliminato.",
"v2_base": "v2 (512px)",
"v2_768": "v2 (768px)",
@@ -381,7 +381,7 @@
"modelsSynced": "Modelli sincronizzati",
"modelSyncFailed": "Sincronizzazione modello non riuscita",
"settings": "Impostazioni",
"syncModels": "Sincronizza Modelli",
"syncModels": "Sincronizza modelli",
"predictionType": "Tipo di previsione",
"advanced": "Avanzate",
"modelType": "Tipo di modello",
@@ -421,7 +421,7 @@
"inplaceInstallDesc": "Installa i modelli senza copiare i file. Quando si utilizza il modello, verrà caricato da questa posizione. Se disabilitato, i file del modello verranno copiati nella directory dei modelli gestiti da Invoke durante l'installazione.",
"installQueue": "Coda di installazione",
"install": "Installa",
"installRepo": "Installa Repo",
"installRepo": "Installa Repository",
"huggingFacePlaceholder": "proprietario/nome-modello",
"huggingFaceHelper": "Se in questo repository vengono trovati più modelli, ti verrà richiesto di selezionarne uno da installare.",
"installAll": "Installa tutto",
@@ -429,7 +429,20 @@
"scanPlaceholder": "Percorso di una cartella locale",
"simpleModelPlaceholder": "URL o percorso di un file locale o di una cartella diffusori",
"urlOrLocalPath": "URL o percorso locale",
"urlOrLocalPathHelper": "Gli URL dovrebbero puntare a un singolo file. I percorsi locali possono puntare a un singolo file o cartella per un singolo modello di diffusore."
"urlOrLocalPathHelper": "Gli URL dovrebbero puntare a un singolo file. I percorsi locali possono puntare a un singolo file o cartella per un singolo modello di diffusore.",
"hfTokenHelperText": "Per utilizzare i modelli checkpoint è necessario un token HF. Clicca qui per creare o ottenere il tuo token.",
"hfTokenInvalid": "Token HF non valido o mancante",
"hfTokenInvalidErrorMessage": "Token HuggingFace non valido o mancante.",
"hfTokenUnableToVerify": "Impossibile verificare il token HF",
"hfTokenUnableToVerifyErrorMessage": "Impossibile verificare il token HuggingFace. Ciò è probabilmente dovuto a un errore di rete. Per favore riprova più tardi.",
"hfTokenSaved": "Token HF salvato",
"loraModels": "LoRA",
"starterModels": "Modelli iniziali",
"textualInversions": "Inversioni Testuali",
"noModelsInstalled": "Nessun modello installato",
"hfTokenInvalidErrorMessage2": "Aggiornalo in ",
"main": "Principali",
"noModelsInstalledDesc1": "Installa i modelli con"
},
"parameters": {
"images": "Immagini",
@@ -1381,7 +1394,8 @@
"refinermodel": "Modello Affinatore",
"posAestheticScore": "Punteggio estetico positivo",
"posStylePrompt": "Prompt Stile positivo",
"freePromptStyle": "Prompt di stile manuale"
"freePromptStyle": "Prompt di stile manuale",
"refinerSteps": "Passi Affinamento"
},
"metadata": {
"initImage": "Immagine iniziale",
@@ -1447,7 +1461,18 @@
"uploadWorkflow": "Carica da file",
"noWorkflows": "Nessun flusso di lavoro",
"workflowCleared": "Flusso di lavoro cancellato",
"saveWorkflowToProject": "Salva flusso di lavoro nel progetto"
"saveWorkflowToProject": "Salva flusso di lavoro nel progetto",
"noUserWorkflows": "Nessun flusso di lavoro utente",
"defaultWorkflows": "Flussi di lavoro predefiniti",
"userWorkflows": "I miei flussi di lavoro",
"descending": "Discendente",
"created": "Creato",
"ascending": "Ascendente",
"noRecentWorkflows": "Nessun flusso di lavoro recente",
"name": "Nome",
"updated": "Aggiornato",
"projectWorkflows": "Flussi di lavoro del progetto",
"opened": "Aperto"
},
"app": {
"storeNotInitialized": "Il negozio non è inizializzato"

View File

@@ -433,7 +433,21 @@
"scanPlaceholder": "Путь к локальной папке",
"simpleModelPlaceholder": "URL или путь к локальному файлу или папке diffusers",
"urlOrLocalPath": "URL или локальный путь",
"urlOrLocalPathHelper": "URL-адреса должны указывать на один файл. Локальные пути могут указывать на один файл или папку для одной модели диффузоров."
"urlOrLocalPathHelper": "URL-адреса должны указывать на один файл. Локальные пути могут указывать на один файл или папку для одной модели диффузоров.",
"hfToken": "Токен HuggingFace",
"hfTokenInvalid": "Недействительный или отсутствующий HF-токен",
"hfTokenInvalidErrorMessage2": "Обновите его в . ",
"hfTokenUnableToVerify": "Невозможно проверить HF-токен",
"hfTokenSaved": "HF-токен сохранен",
"starterModels": "Стартовые модели",
"textualInversions": "Текстовые инверсии",
"hfTokenHelperText": "Для использования моделей контрольных точек требуется токен HF. Нажмите здесь, чтобы создать или получить свой токен.",
"hfTokenInvalidErrorMessage": "Недействительный или отсутствующий HuggingFace токен.",
"hfTokenUnableToVerifyErrorMessage": "Невозможно проверить токен HuggingFace. Вероятно, это связано с сетевой ошибкой. Пожалуйста, повторите попытку позже.",
"loraModels": "LoRAs",
"main": "Основные",
"noModelsInstalled": "Нет установленных моделей",
"noModelsInstalledDesc1": "Установите модели с помощью"
},
"parameters": {
"images": "Изображения",
@@ -1395,7 +1409,8 @@
"loading": "Загрузка...",
"steps": "Шаги",
"posStylePrompt": "Запрос стиля",
"freePromptStyle": "Ручной запрос стиля"
"freePromptStyle": "Ручной запрос стиля",
"refinerSteps": "Шаги доработчика"
},
"invocationCache": {
"useCache": "Использовать кэш",
@@ -1437,7 +1452,18 @@
"newWorkflowCreated": "Создан новый рабочий процесс",
"saveWorkflowToProject": "Сохранить рабочий процесс в проект",
"workflowCleared": "Рабочий процесс очищен",
"noWorkflows": "Нет рабочих процессов"
"noWorkflows": "Нет рабочих процессов",
"opened": "Открыто",
"updated": "Обновлено",
"noUserWorkflows": "Нет рабочих процессов пользователя",
"ascending": "Восходящий",
"created": "Создано",
"descending": "Спуск",
"userWorkflows": "Мои рабочие процессы",
"projectWorkflows": "Рабочие процессы проекта",
"defaultWorkflows": "Стандартные рабочие процессы",
"name": "Имя",
"noRecentWorkflows": "Нет последних рабочих процессов"
},
"hrf": {
"enableHrf": "Включить исправление высокого разрешения",

View File

@@ -1,14 +1,14 @@
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { setDefaultSettings } from 'features/parameters/store/actions';
import {
heightChanged,
heightRecalled,
setCfgRescaleMultiplier,
setCfgScale,
setScheduler,
setSteps,
vaePrecisionChanged,
vaeSelected,
widthChanged,
widthRecalled,
} from 'features/parameters/store/generationSlice';
import {
isParameterCFGRescaleMultiplier,
@@ -100,13 +100,13 @@ export const addSetDefaultSettingsListener = (startAppListening: AppStartListeni
if (width) {
if (isParameterWidth(width)) {
dispatch(widthChanged(width));
dispatch(widthRecalled(width));
}
}
if (height) {
if (isParameterHeight(height)) {
dispatch(heightChanged(height));
dispatch(heightRecalled(height));
}
}

View File

@@ -0,0 +1,17 @@
import type { RgbaColor } from 'react-colorful';
export function rgbaToHex(color: RgbaColor, alpha: boolean = false): string {
const hex = ((1 << 24) + (color.r << 16) + (color.g << 8) + color.b).toString(16).slice(1);
const alphaHex = Math.round(color.a * 255)
.toString(16)
.padStart(2, '0');
return alpha ? `#${hex}${alphaHex}` : `#${hex}`;
}
export function hexToRGBA(hex: string, alpha: number) {
hex = hex.replace(/^#/, '');
const r = parseInt(hex.substring(0, 2), 16);
const g = parseInt(hex.substring(2, 4), 16);
const b = parseInt(hex.substring(4, 6), 16);
return { r, g, b, a: alpha };
}

View File

@@ -1,24 +1,36 @@
import { CustomSelect, FormControl } from '@invoke-ai/ui-library';
import { Combobox, FormControl, Tooltip } from '@invoke-ai/ui-library';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useModelCustomSelect } from 'common/hooks/useModelCustomSelect';
import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
import { useControlAdapterIsEnabled } from 'features/controlAdapters/hooks/useControlAdapterIsEnabled';
import { useControlAdapterModel } from 'features/controlAdapters/hooks/useControlAdapterModel';
import { useControlAdapterModels } from 'features/controlAdapters/hooks/useControlAdapterModels';
import { useControlAdapterType } from 'features/controlAdapters/hooks/useControlAdapterType';
import { controlAdapterModelChanged } from 'features/controlAdapters/store/controlAdaptersSlice';
import { selectGenerationSlice } from 'features/parameters/store/generationSlice';
import { memo, useCallback, useMemo } from 'react';
import type { ControlNetModelConfig, IPAdapterModelConfig, T2IAdapterModelConfig } from 'services/api/types';
import { useTranslation } from 'react-i18next';
import type {
AnyModelConfig,
ControlNetModelConfig,
IPAdapterModelConfig,
T2IAdapterModelConfig,
} from 'services/api/types';
type ParamControlAdapterModelProps = {
id: string;
};
const selectMainModel = createMemoizedSelector(selectGenerationSlice, (generation) => generation.model);
const ParamControlAdapterModel = ({ id }: ParamControlAdapterModelProps) => {
const isEnabled = useControlAdapterIsEnabled(id);
const controlAdapterType = useControlAdapterType(id);
const { modelConfig } = useControlAdapterModel(id);
const dispatch = useAppDispatch();
const currentBaseModel = useAppSelector((s) => s.generation.model?.base);
const mainModel = useAppSelector(selectMainModel);
const { t } = useTranslation();
const [modelConfigs, { isLoading }] = useControlAdapterModels(controlAdapterType);
@@ -42,24 +54,35 @@ const ParamControlAdapterModel = ({ id }: ParamControlAdapterModelProps) => {
[controlAdapterType, modelConfig]
);
const { items, selectedItem, onChange, placeholder } = useModelCustomSelect({
const getIsDisabled = useCallback(
(model: AnyModelConfig): boolean => {
const isCompatible = currentBaseModel === model.base;
const hasMainModel = Boolean(currentBaseModel);
return !hasMainModel || !isCompatible;
},
[currentBaseModel]
);
const { options, value, onChange, noOptionsMessage } = useGroupedModelCombobox({
modelConfigs,
isLoading,
selectedModel,
onChange: _onChange,
modelFilter: (model) => model.base === currentBaseModel,
selectedModel,
getIsDisabled,
isLoading,
});
return (
<FormControl isDisabled={!items.length || !isEnabled} isInvalid={!selectedItem || !items.length}>
<CustomSelect
key={items.length}
selectedItem={selectedItem}
placeholder={placeholder}
items={items}
onChange={onChange}
/>
</FormControl>
<Tooltip label={value?.description}>
<FormControl isDisabled={!isEnabled} isInvalid={!value || mainModel?.base !== modelConfig?.base}>
<Combobox
options={options}
placeholder={t('controlnet.selectModel')}
value={value}
onChange={onChange}
noOptionsMessage={noOptionsMessage}
/>
</FormControl>
</Tooltip>
);
};

View File

@@ -15,7 +15,7 @@ type CannyProcessorProps = {
const CannyProcessor = (props: CannyProcessorProps) => {
const { controlNetId, processorNode, isEnabled } = props;
const { low_threshold, high_threshold, image_resolution } = processorNode;
const { low_threshold, high_threshold, image_resolution, detect_resolution } = processorNode;
const processorChanged = useProcessorNodeChanged();
const { t } = useTranslation();
const defaults = useGetDefaultForControlnetProcessor(
@@ -43,6 +43,13 @@ const CannyProcessor = (props: CannyProcessorProps) => {
[controlNetId, processorChanged]
);
const handleDetectResolutionChanged = useCallback(
(v: number) => {
processorChanged(controlNetId, { detect_resolution: v });
},
[controlNetId, processorChanged]
);
return (
<ProcessorWrapper>
<FormControl isDisabled={!isEnabled}>
@@ -97,6 +104,24 @@ const CannyProcessor = (props: CannyProcessorProps) => {
max={4096}
/>
</FormControl>
<FormControl isDisabled={!isEnabled}>
<FormLabel>{t('controlnet.detectResolution')}</FormLabel>
<CompositeSlider
value={detect_resolution}
onChange={handleDetectResolutionChanged}
defaultValue={defaults.detect_resolution}
min={0}
max={4096}
marks
/>
<CompositeNumberInput
value={detect_resolution}
onChange={handleDetectResolutionChanged}
defaultValue={defaults.detect_resolution}
min={0}
max={4096}
/>
</FormControl>
</ProcessorWrapper>
);
};

View File

@@ -15,7 +15,7 @@ type Props = {
const MediapipeFaceProcessor = (props: Props) => {
const { controlNetId, processorNode, isEnabled } = props;
const { max_faces, min_confidence, image_resolution } = processorNode;
const { max_faces, min_confidence, image_resolution, detect_resolution } = processorNode;
const processorChanged = useProcessorNodeChanged();
const { t } = useTranslation();
@@ -44,6 +44,13 @@ const MediapipeFaceProcessor = (props: Props) => {
[controlNetId, processorChanged]
);
const handleDetectResolutionChanged = useCallback(
(v: number) => {
processorChanged(controlNetId, { detect_resolution: v });
},
[controlNetId, processorChanged]
);
return (
<ProcessorWrapper>
<FormControl isDisabled={!isEnabled}>
@@ -102,6 +109,24 @@ const MediapipeFaceProcessor = (props: Props) => {
max={4096}
/>
</FormControl>
<FormControl isDisabled={!isEnabled}>
<FormLabel>{t('controlnet.detectResolution')}</FormLabel>
<CompositeSlider
value={detect_resolution}
onChange={handleDetectResolutionChanged}
defaultValue={defaults.detect_resolution}
min={0}
max={4096}
marks
/>
<CompositeNumberInput
value={detect_resolution}
onChange={handleDetectResolutionChanged}
defaultValue={defaults.detect_resolution}
min={0}
max={4096}
/>
</FormControl>
</ProcessorWrapper>
);
};

View File

@@ -15,7 +15,7 @@ type Props = {
const MidasDepthProcessor = (props: Props) => {
const { controlNetId, processorNode, isEnabled } = props;
const { a_mult, bg_th, image_resolution } = processorNode;
const { a_mult, bg_th, image_resolution, detect_resolution } = processorNode;
const processorChanged = useProcessorNodeChanged();
const { t } = useTranslation();
@@ -44,6 +44,13 @@ const MidasDepthProcessor = (props: Props) => {
[controlNetId, processorChanged]
);
const handleDetectResolutionChanged = useCallback(
(v: number) => {
processorChanged(controlNetId, { detect_resolution: v });
},
[controlNetId, processorChanged]
);
return (
<ProcessorWrapper>
<FormControl isDisabled={!isEnabled}>
@@ -104,6 +111,24 @@ const MidasDepthProcessor = (props: Props) => {
max={4096}
/>
</FormControl>
<FormControl isDisabled={!isEnabled}>
<FormLabel>{t('controlnet.detectResolution')}</FormLabel>
<CompositeSlider
value={detect_resolution}
onChange={handleDetectResolutionChanged}
defaultValue={defaults.detect_resolution}
min={0}
max={4096}
marks
/>
<CompositeNumberInput
value={detect_resolution}
onChange={handleDetectResolutionChanged}
defaultValue={defaults.detect_resolution}
min={0}
max={4096}
/>
</FormControl>
</ProcessorWrapper>
);
};

View File

@@ -48,6 +48,7 @@ export const CONTROLNET_PROCESSORS: ControlNetProcessorsDict = {
low_threshold: 100,
high_threshold: 200,
image_resolution: baseModel === 'sdxl' ? 1024 : 512,
detect_resolution: baseModel === 'sdxl' ? 1024 : 512,
}),
},
color_map_image_processor: {
@@ -158,6 +159,7 @@ export const CONTROLNET_PROCESSORS: ControlNetProcessorsDict = {
max_faces: 1,
min_confidence: 0.5,
image_resolution: baseModel === 'sdxl' ? 1024 : 512,
detect_resolution: baseModel === 'sdxl' ? 1024 : 512,
}),
},
midas_depth_image_processor: {
@@ -174,6 +176,7 @@ export const CONTROLNET_PROCESSORS: ControlNetProcessorsDict = {
a_mult: 2,
bg_th: 0.1,
image_resolution: baseModel === 'sdxl' ? 1024 : 512,
detect_resolution: baseModel === 'sdxl' ? 1024 : 512,
}),
},
mlsd_image_processor: {

View File

@@ -37,10 +37,10 @@ export const {
} = caAdapterSelectors;
const initialControlAdaptersState: ControlAdaptersState = caAdapter.getInitialState<{
_version: 1;
_version: 2;
pendingControlImages: string[];
}>({
_version: 1,
_version: 2,
pendingControlImages: [],
});
@@ -405,6 +405,9 @@ const migrateControlAdaptersState = (state: any): any => {
if (!('_version' in state)) {
state._version = 1;
}
if (state._version === 1) {
state = cloneDeep(initialControlAdaptersState);
}
return state;
};

View File

@@ -72,7 +72,7 @@ export const isControlAdapterProcessorType = (v: unknown): v is ControlAdapterPr
*/
export type RequiredCannyImageProcessorInvocation = O.Required<
CannyImageProcessorInvocation,
'type' | 'low_threshold' | 'high_threshold' | 'image_resolution'
'type' | 'low_threshold' | 'high_threshold' | 'image_resolution' | 'detect_resolution'
>;
/**
@@ -133,7 +133,7 @@ export type RequiredLineartImageProcessorInvocation = O.Required<
*/
export type RequiredMediapipeFaceProcessorInvocation = O.Required<
MediapipeFaceProcessorInvocation,
'type' | 'max_faces' | 'min_confidence' | 'image_resolution'
'type' | 'max_faces' | 'min_confidence' | 'image_resolution' | 'detect_resolution'
>;
/**
@@ -141,7 +141,7 @@ export type RequiredMediapipeFaceProcessorInvocation = O.Required<
*/
export type RequiredMidasDepthImageProcessorInvocation = O.Required<
MidasDepthImageProcessorInvocation,
'type' | 'a_mult' | 'bg_th' | 'image_resolution'
'type' | 'a_mult' | 'bg_th' | 'image_resolution' | 'detect_resolution'
>;
/**

View File

@@ -18,12 +18,12 @@ export const defaultLoRAConfig: Pick<LoRA, 'weight' | 'isEnabled'> = {
};
type LoraState = {
_version: 1;
_version: 2;
loras: Record<string, LoRA>;
};
const initialLoraState: LoraState = {
_version: 1,
_version: 2,
loras: {},
};
@@ -72,6 +72,10 @@ const migrateLoRAState = (state: any): any => {
if (!('_version' in state)) {
state._version = 1;
}
if (state._version === 1) {
// Model type has changed, so we need to reset the state - too risky to migrate
state = cloneDeep(initialLoraState);
}
return state;
};

View File

@@ -18,7 +18,7 @@ export const StarterModelsResultItem = ({ result }: Props) => {
const allSources = useMemo(() => {
const _allSources = [result.source];
if (result.dependencies) {
_allSources.push(...result.dependencies);
_allSources.push(...result.dependencies.map((d) => d.source));
}
return _allSources;
}, [result]);

View File

@@ -1,9 +1,12 @@
import { Box } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { hexToRGBA, rgbaToHex } from 'common/util/colorCodeTransformers';
import { colorTokenToCssVar } from 'common/util/colorTokenToCssVar';
import { fieldColorValueChanged } from 'features/nodes/store/nodesSlice';
import type { ColorFieldInputInstance, ColorFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback, useMemo } from 'react';
import type { RgbaColor } from 'react-colorful';
import { RgbaColorPicker } from 'react-colorful';
import { HexColorInput, RgbaColorPicker } from 'react-colorful';
import type { FieldComponentProps } from './types';
@@ -26,8 +29,12 @@ const ColorFieldInputComponent = (props: FieldComponentProps<ColorFieldInputInst
}, [field.value]);
const handleValueChanged = useCallback(
(value: RgbaColor) => {
(value: RgbaColor | string) => {
// We need to multiply by 255 to convert from 0-1 to 0-255, which is what the backend needs
if (typeof value === 'string') {
value = hexToRGBA(value, 1);
}
const { r, g, b, a: _a } = value;
const a = Math.round(_a * 255);
dispatch(
@@ -41,7 +48,27 @@ const ColorFieldInputComponent = (props: FieldComponentProps<ColorFieldInputInst
[dispatch, field.name, nodeId]
);
return <RgbaColorPicker className="nodrag" color={color} onChange={handleValueChanged} />;
return (
<Box sx={{ display: 'flex', flexDirection: 'column', gap: 2 }}>
<HexColorInput
style={{
background: colorTokenToCssVar('base.700'),
color: colorTokenToCssVar('base.100'),
fontSize: 12,
paddingInlineStart: 10,
borderRadius: 4,
paddingBlock: 4,
outline: 'none',
}}
className="nodrag"
color={rgbaToHex(color, true)}
onChange={handleValueChanged}
prefixed
alpha
/>
<RgbaColorPicker className="nodrag" color={color} onChange={handleValueChanged} style={{ width: '100%' }} />
</Box>
);
};
export default memo(ColorFieldInputComponent);

View File

@@ -1,12 +1,12 @@
import { CustomSelect, FormControl, FormLabel } from '@invoke-ai/ui-library';
import { Combobox, FormControl, FormLabel, Tooltip } from '@invoke-ai/ui-library';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { InformationalPopover } from 'common/components/InformationalPopover/InformationalPopover';
import { useModelCustomSelect } from 'common/hooks/useModelCustomSelect';
import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
import { zModelIdentifierField } from 'features/nodes/types/common';
import { modelSelected } from 'features/parameters/store/actions';
import { selectGenerationSlice } from 'features/parameters/store/generationSlice';
import { memo, useCallback } from 'react';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { useMainModels } from 'services/api/hooks/modelsByType';
import type { MainModelConfig } from 'services/api/types';
@@ -18,7 +18,12 @@ const ParamMainModelSelect = () => {
const { t } = useTranslation();
const selectedModel = useAppSelector(selectModel);
const [modelConfigs, { isLoading }] = useMainModels();
const tooltipLabel = useMemo(() => {
if (!modelConfigs.length || !selectedModel) {
return;
}
return modelConfigs.find((m) => m.key === selectedModel?.key)?.description;
}, [modelConfigs, selectedModel]);
const _onChange = useCallback(
(model: MainModelConfig | null) => {
if (!model) {
@@ -33,26 +38,28 @@ const ParamMainModelSelect = () => {
[dispatch]
);
const { items, selectedItem, onChange, placeholder } = useModelCustomSelect({
const { options, value, onChange, placeholder, noOptionsMessage } = useGroupedModelCombobox({
modelConfigs,
isLoading,
selectedModel,
onChange: _onChange,
isLoading,
});
return (
<FormControl isDisabled={!items.length} isInvalid={!selectedItem || !items.length}>
<InformationalPopover feature="paramModel">
<FormLabel>{t('modelManager.model')}</FormLabel>
</InformationalPopover>
<CustomSelect
key={items.length}
selectedItem={selectedItem}
placeholder={placeholder}
items={items}
onChange={onChange}
/>
</FormControl>
<Tooltip label={tooltipLabel}>
<FormControl isDisabled={!modelConfigs.length} isInvalid={!value || !modelConfigs.length}>
<InformationalPopover feature="paramModel">
<FormLabel>{t('modelManager.model')}</FormLabel>
</InformationalPopover>
<Combobox
value={value}
placeholder={placeholder}
options={options}
onChange={onChange}
noOptionsMessage={noOptionsMessage}
/>
</FormControl>
</Tooltip>
);
};

View File

@@ -24,7 +24,7 @@ import type { ImageDTO } from 'services/api/types';
import type { GenerationState } from './types';
const initialGenerationState: GenerationState = {
_version: 1,
_version: 2,
cfgScale: 7.5,
cfgRescaleMultiplier: 0,
height: 512,
@@ -276,6 +276,11 @@ const migrateGenerationState = (state: any): GenerationState => {
state._version = 1;
state.aspectRatio = initialAspectRatioState;
}
if (state._version === 1) {
// The signature of the model has changed, so we need to reset it
state._version = 2;
state.model = null;
}
return state;
};

View File

@@ -19,7 +19,7 @@ import type {
} from 'features/parameters/types/parameterSchemas';
export interface GenerationState {
_version: 1;
_version: 2;
cfgScale: ParameterCFGScale;
cfgRescaleMultiplier: ParameterCFGRescaleMultiplier;
height: ParameterHeight;

View File

@@ -9,7 +9,7 @@ import type {
} from 'features/parameters/types/parameterSchemas';
type SDXLState = {
_version: 1;
_version: 2;
positiveStylePrompt: ParameterPositiveStylePromptSDXL;
negativeStylePrompt: ParameterNegativeStylePromptSDXL;
shouldConcatSDXLStylePrompt: boolean;
@@ -23,7 +23,7 @@ type SDXLState = {
};
const initialSDXLState: SDXLState = {
_version: 1,
_version: 2,
positiveStylePrompt: '',
negativeStylePrompt: '',
shouldConcatSDXLStylePrompt: true,
@@ -93,6 +93,11 @@ const migrateSDXLState = (state: any): any => {
if (!('_version' in state)) {
state._version = 1;
}
if (state._version === 1) {
// Model type has changed, so we need to reset the state - too risky to migrate
state._version = 2;
state.refinerModel = null;
}
return state;
};

File diff suppressed because one or more lines are too long

View File

@@ -1 +1 @@
__version__ = "4.0.0rc4"
__version__ = "4.0.0rc5"

View File

@@ -112,8 +112,8 @@ dependencies = [
]
"dev" = ["jurigged", "pudb", "snakeviz", "gprof2dot"]
"test" = [
"ruff",
"ruff-lsp",
"ruff>=0.3.3",
"ruff-lsp>=0.0.53",
"mypy",
"pre-commit",
"pytest>6.0.0",

View File

@@ -20,8 +20,8 @@ parser.add_argument(
parser.add_argument(
"--hash_algo",
type=str,
default="blake3",
help=f"Hashing algorithm to use (default: blake3), one of: {algos}",
default="blake3_single",
help=f"Hashing algorithm to use (default: blake3_single), one of: {algos}",
)
args = parser.parse_args()

View File

@@ -51,6 +51,7 @@ def session() -> Session:
return sess
@pytest.mark.timeout(timeout=20, method="thread")
def test_basic_queue_download(tmp_path: Path, session: Session) -> None:
events = set()
@@ -80,6 +81,7 @@ def test_basic_queue_download(tmp_path: Path, session: Session) -> None:
queue.stop()
@pytest.mark.timeout(timeout=20, method="thread")
def test_errors(tmp_path: Path, session: Session) -> None:
queue = DownloadQueueService(
requests_session=session,
@@ -101,6 +103,7 @@ def test_errors(tmp_path: Path, session: Session) -> None:
queue.stop()
@pytest.mark.timeout(timeout=20, method="thread")
def test_event_bus(tmp_path: Path, session: Session) -> None:
event_bus = TestEventService()
@@ -136,6 +139,7 @@ def test_event_bus(tmp_path: Path, session: Session) -> None:
queue.stop()
@pytest.mark.timeout(timeout=20, method="thread")
def test_broken_callbacks(tmp_path: Path, session: Session, capsys) -> None:
queue = DownloadQueueService(
requests_session=session,

View File

@@ -5,6 +5,7 @@ Test the model installer
import platform
import uuid
from pathlib import Path
from typing import Any, Dict
import pytest
from pydantic import ValidationError
@@ -19,7 +20,7 @@ from invokeai.app.services.model_install import (
ModelInstallServiceBase,
URLModelSource,
)
from invokeai.app.services.model_records import UnknownModelException
from invokeai.app.services.model_records import ModelRecordChanges, UnknownModelException
from invokeai.backend.model_manager.config import BaseModelType, InvalidModelConfigException, ModelFormat, ModelType
from tests.backend.model_manager.model_manager_fixtures import * # noqa F403
@@ -81,6 +82,18 @@ def test_install(
assert model_record.source == embedding_file.as_posix()
def test_rename(
mm2_installer: ModelInstallServiceBase, embedding_file: Path, mm2_app_config: InvokeAIAppConfig
) -> None:
store = mm2_installer.record_store
key = mm2_installer.install_path(embedding_file)
model_record = store.get_model(key)
assert model_record.path.endswith("sd-1/embedding/test_embedding.safetensors")
store.update_model(key, ModelRecordChanges(name="new_name.safetensors", base=BaseModelType("sd-2")))
new_model_record = mm2_installer.sync_model_path(key)
assert new_model_record.path.endswith("sd-2/embedding/new_name.safetensors")
@pytest.mark.parametrize(
"fixture_name,size,destination",
[
@@ -276,48 +289,48 @@ def test_404_download(mm2_installer: ModelInstallServiceBase, mm2_app_config: In
# TODO: Fix bug in model install causing jobs to get installed multiple times then uncomment this test
# @pytest.mark.parametrize(
# "model_params",
# [
# # SDXL, Lora
# {
# "repo_id": "InvokeAI-test/textual_inversion_tests::learned_embeds-steps-1000.safetensors",
# "name": "test_lora",
# "type": "embedding",
# },
# # SDXL, Lora - incorrect type
# {
# "repo_id": "InvokeAI-test/textual_inversion_tests::learned_embeds-steps-1000.safetensors",
# "name": "test_lora",
# "type": "lora",
# },
# ],
# )
# @pytest.mark.timeout(timeout=40, method="thread")
# def test_heuristic_import_with_type(mm2_installer: ModelInstallServiceBase, model_params: Dict[str, str]):
# """Test whether or not type is respected on configs when passed to heuristic import."""
# assert "name" in model_params and "type" in model_params
# config1: Dict[str, Any] = {
# "name": f"{model_params['name']}_1",
# "type": model_params["type"],
# "hash": "placeholder1",
# }
# config2: Dict[str, Any] = {
# "name": f"{model_params['name']}_2",
# "type": ModelType(model_params["type"]),
# "hash": "placeholder2",
# }
# assert "repo_id" in model_params
# install_job1 = mm2_installer.heuristic_import(source=model_params["repo_id"], config=config1)
# mm2_installer.wait_for_job(install_job1, timeout=20)
# if model_params["type"] != "embedding":
# assert install_job1.errored
# assert install_job1.error_type == "InvalidModelConfigException"
# return
# assert install_job1.complete
# assert install_job1.config_out if model_params["type"] == "embedding" else not install_job1.config_out
@pytest.mark.parametrize(
"model_params",
[
# SDXL, Lora
{
"repo_id": "InvokeAI-test/textual_inversion_tests::learned_embeds-steps-1000.safetensors",
"name": "test_lora",
"type": "embedding",
},
# SDXL, Lora - incorrect type
{
"repo_id": "InvokeAI-test/textual_inversion_tests::learned_embeds-steps-1000.safetensors",
"name": "test_lora",
"type": "lora",
},
],
)
@pytest.mark.timeout(timeout=40, method="thread")
def test_heuristic_import_with_type(mm2_installer: ModelInstallServiceBase, model_params: Dict[str, str]):
"""Test whether or not type is respected on configs when passed to heuristic import."""
assert "name" in model_params and "type" in model_params
config1: Dict[str, Any] = {
"name": f"{model_params['name']}_1",
"type": model_params["type"],
"hash": "placeholder1",
}
config2: Dict[str, Any] = {
"name": f"{model_params['name']}_2",
"type": ModelType(model_params["type"]),
"hash": "placeholder2",
}
assert "repo_id" in model_params
install_job1 = mm2_installer.heuristic_import(source=model_params["repo_id"], config=config1)
mm2_installer.wait_for_job(install_job1, timeout=20)
if model_params["type"] != "embedding":
assert install_job1.errored
assert install_job1.error_type == "InvalidModelConfigException"
return
assert install_job1.complete
assert install_job1.config_out if model_params["type"] == "embedding" else not install_job1.config_out
# install_job2 = mm2_installer.heuristic_import(source=model_params["repo_id"], config=config2)
# mm2_installer.wait_for_job(install_job2, timeout=20)
# assert install_job2.complete
# assert install_job2.config_out if model_params["type"] == "embedding" else not install_job2.config_out
install_job2 = mm2_installer.heuristic_import(source=model_params["repo_id"], config=config2)
mm2_installer.wait_for_job(install_job2, timeout=20)
assert install_job2.complete
assert install_job2.config_out if model_params["type"] == "embedding" else not install_job2.config_out

View File

@@ -2,13 +2,11 @@
import os
import shutil
import time
from pathlib import Path
from typing import Any, Dict, List
import pytest
from pydantic import BaseModel
from pytest import FixtureRequest
from requests.sessions import Session
from requests_testadapter import TestAdapter, TestSession
@@ -99,15 +97,11 @@ def mm2_app_config(mm2_root_dir: Path) -> InvokeAIAppConfig:
@pytest.fixture
def mm2_download_queue(mm2_session: Session, request: FixtureRequest) -> DownloadQueueServiceBase:
def mm2_download_queue(mm2_session: Session) -> DownloadQueueServiceBase:
download_queue = DownloadQueueService(requests_session=mm2_session)
download_queue.start()
def stop_queue() -> None:
download_queue.stop()
request.addfinalizer(stop_queue)
return download_queue
yield download_queue
download_queue.stop()
@pytest.fixture
@@ -130,7 +124,6 @@ def mm2_installer(
mm2_app_config: InvokeAIAppConfig,
mm2_download_queue: DownloadQueueServiceBase,
mm2_session: Session,
request: FixtureRequest,
) -> ModelInstallServiceBase:
logger = InvokeAILogger.get_logger()
db = create_mock_sqlite_database(mm2_app_config, logger)
@@ -145,13 +138,8 @@ def mm2_installer(
session=mm2_session,
)
installer.start()
def stop_installer() -> None:
installer.stop()
time.sleep(0.1) # avoid error message from the logger when it is closed before thread prints final message
request.addfinalizer(stop_installer)
return installer
yield installer
installer.stop()
@pytest.fixture

View File

@@ -6,7 +6,13 @@ import pytest
from omegaconf import OmegaConf
from pydantic import ValidationError
from invokeai.app.services.config.config_default import InvokeAIAppConfig, get_config, load_and_migrate_config
from invokeai.app.services.config.config_default import (
DefaultInvokeAIAppConfig,
InvokeAIAppConfig,
get_config,
load_and_migrate_config,
)
from invokeai.frontend.cli.arg_parser import InvokeAIArgs
v4_config = """
schema_version: 4.0.0
@@ -59,14 +65,14 @@ def patch_rootdir(tmp_path: Path, monkeypatch: Any) -> None:
monkeypatch.setenv("INVOKEAI_ROOT", str(tmp_path))
def test_path_resolution_root_not_set():
def test_path_resolution_root_not_set(patch_rootdir: None):
"""Test path resolutions when the root is not explicitly set."""
config = InvokeAIAppConfig()
expected_root = InvokeAIAppConfig.find_root()
assert config.root_path == expected_root
def test_read_config_from_file(tmp_path: Path):
def test_read_config_from_file(tmp_path: Path, patch_rootdir: None):
"""Test reading configuration from a file."""
temp_config_file = tmp_path / "temp_invokeai.yaml"
temp_config_file.write_text(v4_config)
@@ -76,7 +82,7 @@ def test_read_config_from_file(tmp_path: Path):
assert config.port == 8080
def test_migrate_v3_config_from_file(tmp_path: Path):
def test_migrate_v3_config_from_file(tmp_path: Path, patch_rootdir: None):
"""Test reading configuration from a file."""
temp_config_file = tmp_path / "temp_invokeai.yaml"
temp_config_file.write_text(v3_config)
@@ -92,7 +98,7 @@ def test_migrate_v3_config_from_file(tmp_path: Path):
assert not hasattr(config, "esrgan")
def test_migrate_v3_backup(tmp_path: Path):
def test_migrate_v3_backup(tmp_path: Path, patch_rootdir: None):
"""Test the backup of the config file."""
temp_config_file = tmp_path / "temp_invokeai.yaml"
temp_config_file.write_text(v3_config)
@@ -102,7 +108,7 @@ def test_migrate_v3_backup(tmp_path: Path):
assert temp_config_file.with_suffix(".yaml.bak").read_text() == v3_config
def test_failed_migrate_backup(tmp_path: Path):
def test_failed_migrate_backup(tmp_path: Path, patch_rootdir: None):
"""Test the failed migration of the config file."""
temp_config_file = tmp_path / "temp_invokeai.yaml"
temp_config_file.write_text(v3_config_with_bad_values)
@@ -115,7 +121,7 @@ def test_failed_migrate_backup(tmp_path: Path):
assert temp_config_file.read_text() == v3_config_with_bad_values
def test_bails_on_invalid_config(tmp_path: Path):
def test_bails_on_invalid_config(tmp_path: Path, patch_rootdir: None):
"""Test reading configuration from a file."""
temp_config_file = tmp_path / "temp_invokeai.yaml"
temp_config_file.write_text(invalid_config)
@@ -124,7 +130,7 @@ def test_bails_on_invalid_config(tmp_path: Path):
load_and_migrate_config(temp_config_file)
def test_bails_on_config_with_unsupported_version(tmp_path: Path):
def test_bails_on_config_with_unsupported_version(tmp_path: Path, patch_rootdir: None):
"""Test reading configuration from a file."""
temp_config_file = tmp_path / "temp_invokeai.yaml"
temp_config_file.write_text(invalid_v5_config)
@@ -133,7 +139,7 @@ def test_bails_on_config_with_unsupported_version(tmp_path: Path):
load_and_migrate_config(temp_config_file)
def test_write_config_to_file():
def test_write_config_to_file(patch_rootdir: None):
"""Test writing configuration to a file, checking for correct output."""
with TemporaryDirectory() as tmpdir:
temp_config_path = Path(tmpdir) / "invokeai.yaml"
@@ -148,7 +154,7 @@ def test_write_config_to_file():
assert "port: 8080" in content
def test_update_config_with_dict():
def test_update_config_with_dict(patch_rootdir: None):
"""Test updating the config with a dictionary."""
config = InvokeAIAppConfig()
update_dict = {"host": "10.10.10.10", "port": 6060}
@@ -157,7 +163,7 @@ def test_update_config_with_dict():
assert config.port == 6060
def test_update_config_with_object():
def test_update_config_with_object(patch_rootdir: None):
"""Test updating the config with another config object."""
config = InvokeAIAppConfig()
new_config = InvokeAIAppConfig(host="10.10.10.10", port=6060)
@@ -166,7 +172,7 @@ def test_update_config_with_object():
assert config.port == 6060
def test_set_and_resolve_paths():
def test_set_and_resolve_paths(patch_rootdir: None):
"""Test setting root and resolving paths based on it."""
with TemporaryDirectory() as tmpdir:
config = InvokeAIAppConfig()
@@ -175,11 +181,62 @@ def test_set_and_resolve_paths():
assert config.db_path == Path(tmpdir).resolve() / "databases" / "invokeai.db"
def test_singleton_behavior():
def test_singleton_behavior(patch_rootdir: None):
"""Test that get_config always returns the same instance."""
get_config.cache_clear()
config1 = get_config()
config2 = get_config()
assert config1 is config2
get_config.cache_clear()
def test_default_config(patch_rootdir: None):
"""Test that the default config is as expected."""
config = DefaultInvokeAIAppConfig()
assert config.host == "127.0.0.1"
def test_env_vars(patch_rootdir: None, monkeypatch: pytest.MonkeyPatch, tmp_path: Path):
"""Test that environment variables are merged into the config"""
monkeypatch.setenv("INVOKEAI_ROOT", str(tmp_path))
monkeypatch.setenv("INVOKEAI_HOST", "1.2.3.4")
monkeypatch.setenv("INVOKEAI_PORT", "1234")
config = InvokeAIAppConfig()
assert config.host == "1.2.3.4"
assert config.port == 1234
assert config.root_path == tmp_path
def test_get_config_writing(patch_rootdir: None, monkeypatch: pytest.MonkeyPatch, tmp_path: Path):
"""Test that get_config writes the appropriate files to disk"""
# Trick the config into thinking it has already parsed args - this triggers the writing of the config file
InvokeAIArgs.did_parse = True
monkeypatch.setenv("INVOKEAI_ROOT", str(tmp_path))
monkeypatch.setenv("INVOKEAI_HOST", "1.2.3.4")
get_config.cache_clear()
config = get_config()
get_config.cache_clear()
config_file_path = tmp_path / "invokeai.yaml"
example_file_path = config_file_path.with_suffix(".example.yaml")
assert config.config_file_path == config_file_path
assert config_file_path.exists()
assert example_file_path.exists()
# The example file should have the default values
example_file_content = example_file_path.read_text()
assert "host: 127.0.0.1" in example_file_content
assert "port: 9090" in example_file_content
# It should also have the `remote_api_tokens` key
assert "remote_api_tokens" in example_file_content
# Neither env vars nor default values should be written to the config file
config_file_content = config_file_path.read_text()
assert "host" not in config_file_content
# Undo our change to the singleton class
InvokeAIArgs.did_parse = False
@pytest.mark.xfail(
@@ -212,7 +269,9 @@ def test_deny_nodes(patch_rootdir):
"""
)
# must parse config before importing Graph, so its nodes union uses the config
get_config.cache_clear()
conf = get_config()
get_config.cache_clear()
conf.merge_from_file(conf=allow_deny_nodes_conf, argv=[])
from invokeai.app.services.shared.graph import Graph

View File

@@ -16,7 +16,7 @@ test_cases: list[tuple[HASHING_ALGORITHMS, str]] = [
"sha512",
"sha512:c4a10476b21e00042f638ad5755c561d91f2bb599d3504d25409495e1c7eda94543332a1a90fbb4efdaf9ee462c33e0336b5eae4acfb1fa0b186af452dd67dc6",
),
("blake3", "blake3:ce3f0c5f3c05d119f4a5dcaf209b50d3149046a0d3a9adee9fed4c83cad6b4d0"),
("blake3_multi", "blake3:ce3f0c5f3c05d119f4a5dcaf209b50d3149046a0d3a9adee9fed4c83cad6b4d0"),
("blake3_single", "blake3:ce3f0c5f3c05d119f4a5dcaf209b50d3149046a0d3a9adee9fed4c83cad6b4d0"),
]
@@ -29,7 +29,7 @@ def test_model_hash_hashes_file(tmp_path: Path, algorithm: HASHING_ALGORITHMS, e
assert hash_ == expected_hash
@pytest.mark.parametrize("algorithm", ["md5", "sha1", "sha256", "sha512", "blake3", "blake3_single"])
@pytest.mark.parametrize("algorithm", ["md5", "sha1", "sha256", "sha512", "blake3_multi", "blake3_single"])
def test_model_hash_hashes_dir(tmp_path: Path, algorithm: HASHING_ALGORITHMS):
model_hash = ModelHash(algorithm)
files = [Path(tmp_path, f"{i}.bin") for i in range(5)]
@@ -58,7 +58,7 @@ def test_model_hash_hashes_dir(tmp_path: Path, algorithm: HASHING_ALGORITHMS):
("sha1", "sha1:"),
("sha256", "sha256:"),
("sha512", "sha512:"),
("blake3", "blake3:"),
("blake3_multi", "blake3:"),
("blake3_single", "blake3:"),
],
)
@@ -67,7 +67,7 @@ def test_model_hash_gets_prefix(algorithm: HASHING_ALGORITHMS, expected_prefix:
def test_model_hash_blake3_matches_blake3_single(tmp_path: Path):
model_hash = ModelHash("blake3")
model_hash = ModelHash("blake3_multi")
model_hash_simple = ModelHash("blake3_single")
file = tmp_path / "test.bin"