Compare commits

...

451 Commits

Author SHA1 Message Date
Lincoln Stein
3c50448ccf Merge branch 'main' into dev/pytorch2 2023-04-06 21:47:46 -04:00
blessedcoolant
76bcd4d44f Fix typo (#3133)
'hotdot' to 'hotdog'; the world's least important PR :)
2023-04-07 12:38:05 +12:00
Steven Frank
50f5e1bc83 Fix typo
'hotdot' to 'hotdog'; the world's least important PR :)
2023-04-06 16:47:57 -07:00
Kyle Schouviller
85b020f76c [nodes] Add latent nodes, storage, and fix iteration bugs (#3091)
* Add latents nodes.
* Fix iteration expansion.
* Add collection generator nodes, math nodes.
* Add noise node.
* Add some graph debug commands to the CLI.
* Fix negative id linking in CLI.
* Fix a CLI bug with multiple links per node.
2023-04-06 04:06:05 +00:00
Kyle Schouviller
a7833cc9a9 [api] Add models router and list model API. 2023-04-05 23:59:07 -04:00
Matthias Wild
919294e977 fix build-container.yml (#3117)
Add permission go write packages to GITHUB_TOKEN
2023-04-06 00:25:00 +02:00
mauwii
7640acfb1f update build-container.yml
- add packages write permission
2023-04-05 15:44:26 +02:00
psychedelicious
aed9ecef2a feat(nodes): add thumbnail generation to DiskImageStorage 2023-04-05 08:22:23 +10:00
Lincoln Stein
18cddd7972 Right link on pytorch installer for linux rocm (#3084)
Right link on pytorch installer for linux rocm
2023-04-04 17:40:42 -04:00
Lincoln Stein
e6b25f4ae3 Merge branch 'main' into patch-1 2023-04-04 17:40:12 -04:00
Lincoln Stein
d1c0050e65 fix(nodes): fix typo in list_sessions handler (#3109)
The typo accidentally did not affect functionality; when `query==""`, it
`search()`ed but found everything due to empty query, then paginated
results, so it worked the same as `list()`.

Still fix it
2023-04-03 21:24:48 -04:00
psychedelicious
ecdfa136a0 fix(nodes): fix typo in list_sessions handler 2023-04-04 00:34:32 +10:00
blessedcoolant
5cd513ee63 [deps] bump compel version to fix crash on invalid (auto111) syntax (#3107)
currently if users input eg `happy (camper:0.3)` it gets parsed
incorrectly, which causes crashes if it's in the negative prompt. bump
to compel 1.0.5 fixes the parser to avoid this (note the weight is
parsed as plain text, it's not converted to proper invoke syntax)
2023-04-04 02:30:17 +12:00
blessedcoolant
ab45086546 Merge branch 'main' into deps_bump_compel 2023-04-04 02:05:40 +12:00
psychedelicious
77ba7359f4 fix(nodes): commit changes to db 2023-04-03 19:09:49 +10:00
Damian Stewart
8cbe2e14d9 bump compel version to fix on invalid (auto111) syntax 2023-04-03 10:37:01 +02:00
creachec
ee86eedf01 Right link on pytorch installer for linux rocm
Right link on pytorch installer for linux rocm
2023-03-31 17:22:00 -03:00
Lincoln Stein
c4e6511a59 Add support for yet another TI embedding format (main version) (#3050)
- This PR adds support for embedding files that contain a single key
"emb_params". The only example I know of this format is the
"EasyNegative" embedding on HuggingFace, but there are certainly others.

- This PR also adds support for loading embedding files that have been
saved in safetensors format.

- It also cleans up the code so that the logic of probing for and
selecting the right format parser is clear.

- This is the same as #3045, which is on the 2.3 branch.
2023-03-31 03:57:57 -04:00
Lincoln Stein
44843be4c8 Merge branch 'main' into enhance/support-another-embedding-format-main 2023-03-30 23:16:52 -04:00
Lincoln Stein
054e963bef add basic autocomplete functionality to node cli (#3035)
- Commands, invocations and their parameters will now autocomplete using
introspection.
- Two types of parameter *arguments* will also autocomplete:
  - --sampler_name  will autocomplete the scheduler name
  - --model will autocomplete the model name
- There don't seem to be commands for reading/writing image files yet,
so path autocompletion is not implemented
2023-03-30 08:25:36 -04:00
Lincoln Stein
afb66a7884 Merge branch 'main' into feat/node-cli-autocompleter 2023-03-30 07:51:51 -04:00
Lincoln Stein
b9df9e26f2 Merge branch 'main' into enhance/support-another-embedding-format-main 2023-03-30 07:51:23 -04:00
Lincoln Stein
25ae36ceb5 I18n build mode (#3051)
Add build mode option to bundle english translation with UI
2023-03-29 22:26:45 -04:00
Lincoln Stein
3ae8daedaa Merge branch 'main' into i18n-build-mode 2023-03-29 22:26:17 -04:00
Lincoln Stein
e11c1d66ab handle multiple tokens and embeddings in single file 2023-03-29 22:05:06 -04:00
Lincoln Stein
b913e1e11e improve importation and conversion of legacy checkpoint files (#3053)
A long-standing issue with importing legacy checkpoints (both ckpt and
safetensors) is that the user has to identify the correct config file,
either by providing its path or by selecting which type of model the
checkpoint is (e.g. "v1 inpainting"). In addition, some users wish to
provide custom VAEs for use with the model. Currently this is done in
the WebUI by importing the model, editing it, and then typing in the
path to the VAE.

## Model configuration file selection

To improve the user experience, the model manager's `heuristic_import()`
method has been enhanced as follows:

1. When initially called, the caller can pass a config file path, in
which case it will be used.

2. If no config file provided, the method looks for a .yaml file in the
same directory as the model which bears the same basename. e.g.
```
   my-new-model.safetensors
   my-new-model.yaml
```
The yaml file is then used as the configuration file for importation and
conversion.

3. If no such file is found, then the method opens up the checkpoint and
probes it to determine whether it is V1, V1-inpaint or V2. If it is a V1
format, then the appropriate v1-inference.yaml config file is used.
Unfortunately there are two V2 variants that cannot be distinguished by
introspection.

4. If the probe algorithm is unable to determine the model type, then
its last-ditch effort is to execute an optional callback function that
can be provided by the caller. This callback, named
`config_file_callback` receives the path to the legacy checkpoint and
returns the path to the config file to use. The CLI uses to put up a
multiple choice prompt to the user. The WebUI **could** use this to
prompt the user to choose from a radio-button selection.

5. If the config file cannot be determined, then the import is
abandoned.

## Custom VAE Selection

The user can attach a custom VAE to the imported and converted model by
copying the desired VAE into the same directory as the file to be
imported, and giving it the same basename. E.g.:

```
    my-new-model.safetensors
    my-new-model.vae.pt
```

For this to work, the VAE must end with ".vae.pt", ".vae.ckpt", or
".vae.safetensors". The indicated VAE will be converted into diffusers
format and stored with the converted models file, so the ".pt" file can
be deleted after conversion.

No facility is currently provided to swap a diffusers VAE at import
time, but this can be done after the fact using the WebUI and CLI's
model editing functions.

Note that this is the same fix that was applied to the 2.3 branch in
#3043 . This applies to `main`.
2023-03-29 17:22:15 -04:00
Lincoln Stein
3c4b6d5735 Merge branch 'main' into enhance/heuristic-import-improvements 2023-03-29 16:54:43 -04:00
Mary Hipp Rogers
e6123eac19 Merge branch 'main' into i18n-build-mode 2023-03-29 05:33:14 -07:00
Lincoln Stein
30ca25897e Fix bugs in online ckpt conversion of 2.0 models (#3057)
## Enable the on-the-fly conversion of models based on SD 2.0/2.1 into
diffusers

This commit fixes bugs related to the on-the-fly conversion and loading
of legacy checkpoint models built on SD-2.0 base.

- When legacy checkpoints built on SD-2.0 models were converted
on-the-fly using --ckpt_convert, generation would crash with a precision
incompatibility error. This problem has been found and fixed.
2023-03-28 23:34:53 -04:00
Lincoln Stein
abaee6b9ed Merge branch 'main' into feat/node-cli-autocompleter 2023-03-28 23:32:10 -04:00
Lincoln Stein
4d7c9e1ab7 Merge branch 'main' into bugfix/convert-2.0-models 2023-03-28 23:01:36 -04:00
Eugene
cc5687f26c [nodes] downgrade fastapi+uvicorn to fix openapi schema 2023-03-28 22:53:20 -04:00
Lincoln Stein
cdb3616dca Merge branch 'main' into enhance/support-another-embedding-format-main 2023-03-28 21:03:06 -04:00
Mary Hipp Rogers
78e76f26f9 Merge branch 'main' into i18n-build-mode 2023-03-28 11:04:32 -04:00
Lincoln Stein
9a7580dedd fix bugs in online ckpt conversion of 2.0 models
This commit fixes bugs related to the on-the-fly conversion and loading of
legacy checkpoint models built on SD-2.0 base.

- When legacy checkpoints built on SD-2.0 models were converted
  on-the-fly using --ckpt_convert, generation would crash with a
  precision incompatibility error.
2023-03-28 00:17:20 -04:00
Lincoln Stein
dc2da8cff4 Doc: updating ROCm version in documentation (#3041)
The Pytorch ROCm version in the documentation in outdated (`rocm5.2`)
which leads to errors during the installation of InvokeAI.

This PR updates the documentation with the latest Pytorch ROCm `5.4.2`
version.
2023-03-27 22:37:43 -04:00
Lincoln Stein
019a9f0329 address change requests in PR
1. Prompt has changed to "invoke> ".
2. Function to initialize the autocompleter has been renamed "set_autocompleter()"
2023-03-27 12:20:24 -04:00
Lincoln Stein
fe5d9ad171 improve importation and conversion of legacy checkpoint files
A long-standing issue with importing legacy checkpoints (both ckpt and
safetensors) is that the user has to identify the correct config file,
either by providing its path or by selecting which type of model the
checkpoint is (e.g. "v1 inpainting"). In addition, some users wish to
provide custom VAEs for use with the model. Currently this is done in
the WebUI by importing the model, editing it, and then typing in the
path to the VAE.

To improve the user experience, the model manager's
`heuristic_import()` method has been enhanced as follows:

1. When initially called, the caller can pass a config file path, in
which case it will be used.

2. If no config file provided, the method looks for a .yaml file in the
same directory as the model which bears the same basename. e.g.
```
   my-new-model.safetensors
   my-new-model.yaml
```
   The yaml file is then used as the configuration file for
   importation and conversion.

3. If no such file is found, then the method opens up the checkpoint
   and probes it to determine whether it is V1, V1-inpaint or V2.
   If it is a V1 format, then the appropriate v1-inference.yaml config
   file is used. Unfortunately there are two V2 variants that cannot be
   distinguished by introspection.

4. If the probe algorithm is unable to determine the model type, then its
   last-ditch effort is to execute an optional callback function that can
   be provided by the caller. This callback, named `config_file_callback`
   receives the path to the legacy checkpoint and returns the path to the
   config file to use. The CLI uses to put up a multiple choice prompt to
   the user. The WebUI **could** use this to prompt the user to choose
   from a radio-button selection.

5. If the config file cannot be determined, then the import is abandoned.

The user can attach a custom VAE to the imported and converted model
by copying the desired VAE into the same directory as the file to be
imported, and giving it the same basename. E.g.:

```
    my-new-model.safetensors
    my-new-model.vae.pt
```

For this to work, the VAE must end with ".vae.pt", ".vae.ckpt", or
".vae.safetensors". The indicated VAE will be converted into diffusers
format and stored with the converted models file, so the ".pt" file
can be deleted after conversion.

No facility is currently provided to swap a diffusers VAE at import
time, but this can be done after the fact using the WebUI and CLI's
model editing functions.
2023-03-27 11:27:45 -04:00
Mary Hipp
dbc0093b31 Merge remote-tracking branch 'origin' into i18n-build-mode 2023-03-27 10:57:41 -04:00
Mary Hipp
92e512b8b6 add package mode option for i18next 2023-03-27 10:49:52 -04:00
Lincoln Stein
abe4dc8ac1 Add support for yet another textual inversion embedding format
- This PR adds support for embedding files that contain a single key
  "emb_params". The only example I know of this format is the
  "EasyNegative" embedding on HuggingFace, but there are certainly
  others.

- This PR also adds support for loading embedding files that have been
  saved in safetensors format.

- It also cleans up the code so that the logic of probing for and
  selecting the right format parser is clear.
2023-03-27 09:39:03 -04:00
Lincoln Stein
dc14701d20 Merge branch 'main' into feat/node-cli-autocompleter 2023-03-26 23:46:10 -04:00
Tom Gouville
737e0f3085 doc: fixing error in rocm version 2023-03-26 12:40:20 +02:00
Tom Gouville
81b7ea4362 doc: updating ROCm version for pip install 2023-03-26 12:32:12 +02:00
blessedcoolant
09dfde0ba1 fix(ui): fix viewer tooltip localisation strings (#3037)
fixes #2923
2023-03-26 20:35:52 +13:00
blessedcoolant
3ba7e966b5 Merge branch 'main' into fix/ui/viewer-localisation 2023-03-26 20:35:12 +13:00
blessedcoolant
a1cd4834d1 nodes: add cancelation, updated progress callback, typing fixes (#3036)
keeping `main` up to date with my api nodes branch:
- bd7e515290: [nodes] Add cancelation to
the API @Kyle0654
- 5fe38f7: fix(backend): simple typing fixes
  - just picking some low-hanging fruit to improve IDE hinting
- c34ac91: fix(nodes): fix cancel; fix callback for img2img, inpaint
- makes nodes cancel immediate, use fix progress images on nodes, fix
callbacks for img2img/inpaint
- 4221cf7: fix(nodes): fix schema generation for output classes
- did this previously for some other class; needed to not have node
outputs be optional
2023-03-26 20:34:27 +13:00
psychedelicious
a724038dc6 fix(ui): fix viewer tooltip localisation strings
fixes #2923
2023-03-26 17:43:00 +11:00
psychedelicious
4221cf7731 fix(nodes): fix schema generation for output classes
All output classes need to have their properties flagged as `required` for the schema generation to work as needed.
2023-03-26 17:20:10 +11:00
psychedelicious
c34ac91ff0 fix(nodes): fix cancel; fix callback for img2img, inpaint 2023-03-26 17:07:40 +11:00
psychedelicious
5fe38f7c88 fix(backend): simple typing fixes 2023-03-26 17:07:03 +11:00
Kyle Schouviller
bd7e515290 [nodes] Add cancelation to the API 2023-03-26 15:47:32 +11:00
Lincoln Stein
076fac07eb feat[web]: use the predicted denoised image for previews (#2915)
Some schedulers report not only the noisy latents at the current
timestep, but also their estimate so far of what the de-noised latents
will be.

It makes for a more legible preview than the noisy latents do.

I think this is a huge improvement, but there are a few considerations:
- Need to not spook @JPPhoto by changing how previews look.
- Some schedulers (most notably **DPM Solver++**) don't provide this
data, and it falls back to the current behavior there. That's not
terrible, but seeing such a big difference in how _previews_ look from
one scheduler to the next might mislead people into thinking there's a
bigger difference in their overall effectiveness than there really is.

My fear of configuration-option-overwhelm leaves me inclined to _not_
add a configuration option for this, but we could.
2023-03-26 00:29:00 -04:00
Lincoln Stein
9348161600 add basic autocomplete functionality to node cli
- Commands, invocations and their parameters will now autocomplete
  using introspection.
- Two types of parameter *arguments* will also autocomplete:
  - --sampler_name  will autocomplete the scheduler name
  - --model will autocomplete the model name
- There don't seem to be commands for reading/writing image files yet, so
  path autocompletion is not implemented
2023-03-26 00:24:27 -04:00
Lincoln Stein
dac3c158a5 Merge branch 'main' into feat/preview_predicted_x0
- resolve conflicts with generate.py invocation
- remove unused symbols that pyflakes complains about
- add **untested** code for passing intermediate latent image to the
  step callback in the format expected.
2023-03-25 16:07:18 -04:00
Lincoln Stein
17d8bbf330 ask for escalated privileges in push workflows 2023-03-25 15:22:25 -04:00
Eugene Brodsky
9344687a56 installer: fix indentation in invoke.sh template (tabs -> spaces) 2023-03-25 13:57:09 -04:00
Lincoln Stein
cf534d735c duplicate of PR #3016, but based on main 2023-03-25 13:57:09 -04:00
Lincoln Stein
501924bc60 do not reexport PipelineIntermediateState 2023-03-25 13:57:09 -04:00
Lincoln Stein
d117251747 make step_callback work again in generate() call
This PR fixes #2951 and restores the step_callback argument in the
refactored generate() method. Note that this issue states that
"something is still wrong because steps and step are zero." However,
I think this is confusion over the call signature of the callback, which
since the diffusers merge has been `callback(state:PipelineIntermediateState)`

This is the test script that I used to determine that `step` is being passed
correctly:

```

from pathlib import Path
from invokeai.backend import ModelManager, PipelineIntermediateState
from invokeai.backend.globals import global_config_dir
from invokeai.backend.generator import Txt2Img

def my_callback(state:PipelineIntermediateState, total_steps:int):
    print(f'callback(step={state.step}/{total_steps})')

def main():
    manager = ModelManager(Path(global_config_dir()) / "models.yaml")
    model = manager.get_model('stable-diffusion-1.5')
    print ('=== TXT2IMG TEST ===')
    steps=30
    output = next(Txt2Img(model).generate(prompt='banana sushi',
                                          iterations=None,
                                          steps=steps,
                                          step_callback=lambda x: my_callback(x,steps)
                                          )
                  )
    print(f'image={output.image}, seed={output.seed}, steps={output.params.steps}')

if __name__=='__main__':
    main()
```
2023-03-25 13:57:09 -04:00
blessedcoolant
6ea61a8486 fix issue with embeddings being loaded twice (#3029)
This bug was causing a bunch of annoying warnings about not overwriting
previously loaded tokens.

- as noted by JPPhoto
2023-03-26 04:45:20 +13:00
blessedcoolant
e4d903af20 Merge branch 'main' into bugfix/load-embeddings-once 2023-03-26 04:19:43 +13:00
Lincoln Stein
2d9797da35 (fix)[docs] Fixed snippet/code formatting (#2918)
It was pasted as plain text, now it's a code fence.
2023-03-25 10:49:13 -04:00
Lincoln Stein
07ea806553 Merge branch 'main' into patch-1 2023-03-25 10:48:25 -04:00
Lincoln Stein
5ac0316c62 fix issue with embeddings being loaded twice
- as noted by JPPhoto
2023-03-25 10:45:03 -04:00
Lincoln Stein
9536ba22af Convert custom VAEs during legacy checkpoint loading (#3010)
- When a legacy checkpoint model is loaded via --convert_ckpt and its
models.yaml stanza refers to a custom VAE path (using the 'vae:' key),
the custom VAE will be converted and used within the diffusers model.
Otherwise the VAE contained within the legacy model will be used.
    
- Note that the checkpoint import functions in the CLI or Web UIs
continue to default to the standard stabilityai/sd-vae-ft-mse VAE. This
can be fixed after the fact by editing VAE key using either the CLI or
Web UI.
   
- Fixes issue #2917
2023-03-25 00:37:12 -04:00
blessedcoolant
5503749085 Merge branch 'main' into feat/use-custom-vaes 2023-03-25 17:09:38 +13:00
Lincoln Stein
9bfe2fa371 add github API token to mkdocs workflow (#3023)
The mkdocs-workflow has been failing over the past week due to
permission denied errors. I *think* this is the result of not passing
the GitHub API token to the workflow, and this is a speculative fix for
the issue.
2023-03-24 17:59:53 -04:00
Lincoln Stein
d8ce6e4426 Merge branch 'bugfix/mkdocs-workflow' of github.com:invoke-ai/InvokeAI into bugfix/mkdocs-workflow 2023-03-24 17:58:16 -04:00
Lincoln Stein
43d2d6d98c add blessedcoolant as backup to mauwii codeowner 2023-03-24 17:58:03 -04:00
Lincoln Stein
64c233efd4 Merge branch 'main' into bugfix/mkdocs-workflow 2023-03-24 17:47:14 -04:00
Lincoln Stein
2245a4e117 doc(readme): fix incorrect install command (#3024)
Hi, I am trying to install InvokeAI on my linux machine, the command in
README.md cannot install correct dependency
2023-03-24 17:46:58 -04:00
Lincoln Stein
9ceec40b76 Merge branch 'main' into feat/use-custom-vaes 2023-03-24 17:45:02 -04:00
Yeung Yiu Hung
0f13b90059 doc(readme): fix incorrect install command 2023-03-24 23:21:51 +08:00
Lincoln Stein
d91fc16ae4 add github API token to mkdocs workflow 2023-03-24 09:17:30 -04:00
Lincoln Stein
bc01a96f9d re-implement model scanning when loading legacy checkpoint files (#3012)
- This PR turns on pickle scanning before a legacy checkpoint file is
loaded from disk within the checkpoint_to_diffusers module.

- Also miscellaneous diagnostic message cleanup.

- See also #3011 for a similar patch to the 2.3 branch.
2023-03-24 08:57:07 -04:00
Lincoln Stein
85b2822f5e Merge branch 'main' into security/scan-ckpt-files-main 2023-03-24 08:39:59 -04:00
blessedcoolant
c33d8694bb build: do not run python tests on ui build (#2987)
`invokeai/frontend/web/dist/**` should not be triggering the full test
suite.
2023-03-25 00:54:40 +13:00
blessedcoolant
685bd027f0 Merge branch 'main' into build/no-test-on-ui-build 2023-03-25 00:51:26 +13:00
psychedelicious
f592d620d5 ui: translations update from weblate (#3021)
Translations update from [Hosted Weblate](https://hosted.weblate.org)
for [InvokeAI/Web
UI](https://hosted.weblate.org/projects/invokeai/web-ui/).



Current translation status:

![Weblate translation
status](https://hosted.weblate.org/widgets/invokeai/-/web-ui/horizontal-auto.svg)
2023-03-24 19:25:17 +11:00
Tom
2b127b73ac translationBot(ui): update translation (French)
Currently translated at 82.7% (417 of 504 strings)

Co-authored-by: Tom <tom.fouthier@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/fr/
Translation: InvokeAI/Web UI
2023-03-24 04:49:27 +01:00
gallegonovato
8855902cfe translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (504 of 504 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (501 of 501 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2023-03-24 04:49:27 +01:00
Hosted Weblate
9d8ddc6a08 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-03-24 04:49:27 +01:00
Riccardo Giovanetti
4ca5189e73 translationBot(ui): update translation (Italian)
Currently translated at 100.0% (504 of 504 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (501 of 501 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (500 of 500 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-03-24 04:49:27 +01:00
Lincoln Stein
873597cb84 Allow loading all types of dreambooth models - Fix issue #2932 (#2933)
Allows to load models with EMA using `model_ema.diffusion_model.xxxx` or
`model_ema.xxxx` weights.

Fixes #2932
2023-03-23 23:40:04 -04:00
Lincoln Stein
44d742f232 Merge branch 'main' into security/scan-ckpt-files-main 2023-03-23 23:33:49 -04:00
Lincoln Stein
5dec5b6f51 Merge branch 'main' into dev/pytorch2 2023-03-23 23:31:21 -04:00
Lincoln Stein
6e7dbf99f3 Merge branch 'main' into bugfix/dreambooth_ema 2023-03-23 23:24:15 -04:00
Lincoln Stein
1ba1076888 Tidy up Tests and Provide Documentation (#2869)
Bit of basic housekeeping and documentation to explain to people how to
get local development environment running (including the tests).
2023-03-23 23:23:20 -04:00
Lincoln Stein
cafa108f69 Merge branch 'main' into tests 2023-03-23 23:22:27 -04:00
Lincoln Stein
deeff36e16 Merge branch 'main' into security/scan-ckpt-files-main 2023-03-23 23:20:52 -04:00
Lincoln Stein
d770b14358 [deps] upgrade compel for better .swap defaults and a bugfix (#3014) 2023-03-23 19:01:12 -04:00
Lincoln Stein
20414ba4ad Merge branch 'main' into deps_upgrade_compel 2023-03-23 18:38:46 -04:00
Lincoln Stein
92721a1d45 do not reexport PipelineIntermediateState 2023-03-24 09:32:47 +11:00
Lincoln Stein
f329fddab9 make step_callback work again in generate() call
This PR fixes #2951 and restores the step_callback argument in the
refactored generate() method. Note that this issue states that
"something is still wrong because steps and step are zero." However,
I think this is confusion over the call signature of the callback, which
since the diffusers merge has been `callback(state:PipelineIntermediateState)`

This is the test script that I used to determine that `step` is being passed
correctly:

```

from pathlib import Path
from invokeai.backend import ModelManager, PipelineIntermediateState
from invokeai.backend.globals import global_config_dir
from invokeai.backend.generator import Txt2Img

def my_callback(state:PipelineIntermediateState, total_steps:int):
    print(f'callback(step={state.step}/{total_steps})')

def main():
    manager = ModelManager(Path(global_config_dir()) / "models.yaml")
    model = manager.get_model('stable-diffusion-1.5')
    print ('=== TXT2IMG TEST ===')
    steps=30
    output = next(Txt2Img(model).generate(prompt='banana sushi',
                                          iterations=None,
                                          steps=steps,
                                          step_callback=lambda x: my_callback(x,steps)
                                          )
                  )
    print(f'image={output.image}, seed={output.seed}, steps={output.params.steps}')

if __name__=='__main__':
    main()
```
2023-03-24 09:32:47 +11:00
Lincoln Stein
f2efde27f6 load embeddings after a ckpt legacy model is converted to diffusers (#3013)
This PR corrects a bug in which embeddings were not being applied when a
non-diffusers model was loaded.

- Fixes #2954
- Also improves diagnostic reporting during embedding loading.
2023-03-23 18:10:19 -04:00
Damian Stewart
02c58f22be upgrade compel for better .swap defaults and a bugfix 2023-03-23 22:34:54 +01:00
Lincoln Stein
f751dcd245 load embeddings after a ckpt legacy model is converted to diffusers
- Fixes #2954
- Also improves diagnostic reporting during embedding loading.
2023-03-23 15:21:58 -04:00
Lincoln Stein
a97107bd90 handle VAEs that do not have a "state_dict" key 2023-03-23 15:11:29 -04:00
Lincoln Stein
b2ce45a417 re-implement model scanning when loading legacy checkpoint files
- This PR turns on pickle scanning before a legacy checkpoint file
  is loaded from disk within the checkpoint_to_diffusers module.

- Also miscellaneous diagnostic message cleanup.
2023-03-23 15:03:30 -04:00
Lincoln Stein
4e0b5d85ba convert custom VAEs into diffusers
- When a legacy checkpoint model is loaded via --convert_ckpt and its
  models.yaml stanza refers to a custom VAE path (using the 'vae:'
  key), the custom VAE will be converted and used within the diffusers
  model. Otherwise the VAE contained within the legacy model will be
  used.

- Note that the heuristic_import() method, which imports arbitrary
  legacy files on disk and URLs, will continue to default to the
  the standard stabilityai/sd-vae-ft-mse VAE. This can be fixed after
  the fact by editing the models.yaml stanza using the Web or CLI
  UIs.

- Fixes issue #2917
2023-03-23 13:14:19 -04:00
Lincoln Stein
a958ae5e29 Merge branch 'main' into feat/use-custom-vaes 2023-03-23 10:32:56 -04:00
blessedcoolant
4d50fbf8dc Merge branch 'main' into build/no-test-on-ui-build 2023-03-23 01:08:24 +13:00
blessedcoolant
485f6e5954 Export more for header (#2996)
* export more items needed for dynamic header
* remove build mode that is no longer needed
2023-03-23 01:07:16 +13:00
Mary Hipp Rogers
1f6ce838ba Merge branch 'main' into export-more-for-header 2023-03-22 07:49:15 -04:00
blessedcoolant
0dc5773849 [nodes] Update fastapi packages to latest (except FastAPI, which has an annotation bug in the newest version) (#3004) 2023-03-22 19:12:45 +13:00
Kyle Schouviller
bc347f749c [nodes] Update fastapi packages to latest (except FastAPI, which has an annotation bug in the newest version) 2023-03-21 19:45:17 -07:00
Mary Hipp Rogers
1b215059e7 Merge branch 'main' into export-more-for-header 2023-03-21 16:29:53 -04:00
Mary Hipp
db079a2733 remove unneeded build:package code 2023-03-21 10:29:27 -04:00
Mary Hipp
26f71d3536 change back 2023-03-21 10:28:29 -04:00
Mary Hipp
eb7ae2588c unused var 2023-03-21 10:21:58 -04:00
Mary Hipp
278c14ba2e try jsx.element 2023-03-21 10:18:38 -04:00
Mary Hipp
74e83dda54 update type 2023-03-21 10:10:48 -04:00
blessedcoolant
28c1fca477 Merge branch 'main' into build/no-test-on-ui-build 2023-03-20 02:21:40 +13:00
psychedelicious
1f0324102a chore(ui): build 2023-03-19 23:16:29 +11:00
psychedelicious
a782ad092d feat(ui): localise iaialertdialog defaults 2023-03-19 23:16:29 +11:00
psychedelicious
eae4eb419a fix(ui): popovers trigger on click (accessibility) 2023-03-19 23:16:29 +11:00
psychedelicious
fb7f38f46e fix(ui): make alertdialogs centered 2023-03-19 23:16:29 +11:00
psychedelicious
93d0cae455 fix(ui): fix alertdialogs closing immediately 2023-03-19 23:16:29 +11:00
psychedelicious
35f6b5d562 fix(ui): make invoketabs not lazy 2023-03-19 23:16:29 +11:00
blessedcoolant
2aefa06ef1 fix(ui): Clean up manual add forms 2023-03-19 23:16:29 +11:00
psychedelicious
5906888477 feat(ui): add current image loading fallback 2023-03-19 23:16:29 +11:00
psychedelicious
f22c7d0da6 feat(ui): add more w/h options 2023-03-19 23:16:29 +11:00
psychedelicious
93b38707b2 feat(ui): tidy up model manager styling
fixes #2970
2023-03-19 23:16:29 +11:00
blessedcoolant
6ecf53078f fix(ui): Misalignment of model search entries 2023-03-19 23:16:29 +11:00
psychedelicious
9c93b7cb59 build: do not run python tests on ui build
`invokeai/frontend/web/dist/**` should not be triggering the full test suite.
2023-03-19 23:01:30 +11:00
blessedcoolant
7789e8319c Fix some text and a link (#2910)
- Fix link to `070_INSTALL_XFORMERS.md`.
- Fix some spelling.
2023-03-19 05:55:18 +13:00
Lincoln Stein
7d7a28beb3 Merge branch 'main' into main-text-fixup-PR 2023-03-18 09:54:41 -07:00
psychedelicious
27a113d872 nodes: api fixes (#2959)
- 86932469e76f1315ee18bfa2fc52b588241dace1 add image_to_dataURL util
- 0c2611059711b45bb6142d30b1d1343ac24268f3 make fast latents method
static
- this method doesn't really need `self` and should be able to be called
without instantiating `Generator`
- 2360bfb6558ea511e9c9576f3d4b5535870d84b4 fix schema gen for
GraphExecutionState
- `GraphExecutionState` uses `default_factory` in its fields; the result
is the OpenAPI schema marks those fields as optional, which propagates
to the generated API client, which means we need a lot of unnecessary
type guards to use this data type. the [simple
fix](https://github.com/pydantic/pydantic/discussions/4577) is to add
config to explicitly say all class properties are required. looks this
this will be resolved in a future pydantic release
- 3cd7319cfdb0f07c6bb12d62d7d02efe1ab12675 fix step callback and fast
latent generation on nodes. have this working in UI. depends on the
small change in #2957
2023-03-16 20:24:28 +11:00
psychedelicious
67f8f222d9 fix(nodes): fix step_callback + fast latents generation
this depends on the small change in #2957
2023-03-16 20:03:08 +11:00
psychedelicious
5347c12fed fix(nodes): fix schema gen for GraphExecutionState 2023-03-16 20:03:08 +11:00
psychedelicious
b194180f76 feat(backend): make fast latents method static 2023-03-16 20:03:08 +11:00
psychedelicious
fb30b7d17a feat(backend): add image_to_dataURL util 2023-03-16 20:03:08 +11:00
blessedcoolant
c341dcaa3d update compel to fix black screens and use new downweighting algorithm (#2961)
Update `compel` to 1.0.0.

This fixes #2832.

It also changes the way downweighting is applied. In particular,
downweighting should now be much better and more controllable.

From the [compel
changelog](https://github.com/damian0815/compel#changelog):

> Downweighting now works by applying an attention mask to remove the
downweighted tokens, rather than literally removing them from the
sequence. This behaviour is the default, but the old behaviour can be
re-enabled by passing `downweight_mode=DownweightMode.REMOVE` on init of
the `Compel` instance.
>
> Formerly, downweighting a token worked by both multiplying the
weighting of the token's embedding, and doing an inverse-weighted blend
with a copy of the token sequence that had the downweighted tokens
removed. The intuition is that as weight approaches zero, the tokens
being downweighted should be actually removed from the sequence.
However, removing the tokens resulted in the positioning of all
downstream tokens becoming messed up. The blend ended up blending a lot
more than just the tokens in question.
> 
> As of v1.0.0, taking advice from @keturn and @bonlime
(https://github.com/damian0815/compel/issues/7) the procedure is by
default different. Downweighting still involves a blend but what is
blended is a version of the token sequence with the downweighted tokens
masked out, rather than removed. This correctly preserves positioning
embeddings of the other tokens.
2023-03-16 17:49:47 +13:00
Damian Stewart
b695a2574b bump compel version 2023-03-16 01:55:39 +01:00
Kevin Turner
e158ad8534 deps: upgrade to PyTorch 2.0 (replaces xformers) 2023-03-15 15:45:48 -07:00
Damian Stewart
aa68a326c8 update compel 2023-03-15 23:05:55 +01:00
Mary Hipp
c2922d5991 add settingsmodal 2023-03-15 16:12:51 -04:00
Mary Hipp
85888030c3 more things needed for header 2023-03-15 14:38:22 -04:00
blessedcoolant
7cf59c1e60 Merge branch 'main' into main-text-fixup-PR 2023-03-16 04:43:22 +13:00
psychedelicious
9738b0ff69 [nodes] Add Edge data type (#2958)
Adds an `Edge` data type, replacing the current tuple used for edges.
2023-03-15 18:41:56 +11:00
Kyle Schouviller
3021c78390 [nodes] Add Edge data type 2023-03-14 23:09:30 -07:00
blessedcoolant
6eeaf8d9fb Allow for dynamic header (#2955)
* Update root component to allow optional children that will render as
dynamic header of UI
* Export additional components (logo & themeChanger) for use in said
dynamic header (more to come here)
2023-03-15 07:41:24 +13:00
Mary Hipp
fa9afec0c2 fix npm deps 2023-03-14 14:15:03 -04:00
Mary Hipp
d6862bf8c1 fix npm deps 2023-03-14 14:14:16 -04:00
Mary Hipp
de01c38bbe fresh build 2023-03-14 14:11:42 -04:00
Mary Hipp
7e811908e0 remove 2023-03-14 14:09:16 -04:00
Mary Hipp
5f59f24f92 cleanup 2023-03-14 14:08:42 -04:00
Mary Hipp
e414fcf3fb bump version 2023-03-14 13:26:49 -04:00
Mary Hipp
079ad8f35a fix props 2023-03-14 13:22:57 -04:00
Mary Hipp
a4d7e0c78e export other components 2023-03-14 12:37:28 -04:00
blessedcoolant
e9c2f173c5 fix(inpaint): Seam painting being broken (#2952)
After #2942, seed needs to be passed down from inpaint to seam_paint.
Not doing so breaks inpainting and outpainting. This PR fixes it.
2023-03-15 00:38:26 +13:00
Jonathan
44f489d581 Merge branch 'main' into fix-seampaint 2023-03-14 06:19:25 -05:00
blessedcoolant
cb48bbd806 Removed file-extension-based arbitrary code execution attack vector (#2946)
# The Problem
Pickle files (.pkl, .ckpt, etc) are extremely unsafe as they can be
trivially crafted to execute arbitrary code when parsed using
`torch.load`
Right now the conventional wisdom among ML researchers and users is to
simply `not run untrusted pickle files ever` and instead only use
Safetensor files, which cannot be injected with arbitrary code. This is
very good advice.

Unfortunately, **I have discovered a vulnerability inside of InvokeAI
that allows an attacker to disguise a pickle file as a safetensor and
have the payload execute within InvokeAI.**

# How It Works
Within `model_manager.py` and `convert_ckpt_to_diffusers.py` there are
if-statements that decide which `load` method to use based on the file
extension of the model file. The logic (written in a slightly more
readable format than it exists in the codebase) is as follows:
```
if Path(file).suffix == '.safetensors':
   safetensor_load(file)
else:
   unsafe_pickle_load(file)
```

A malicious actor would only need to create an infected .ckpt file, and
then rename the extension to something that does not pass the `==
'.safetensors'` check, but still appears to a user to be a safetensors
file.
For example, this might be something like `.Safetensors`,
`.SAFETENSORS`, `SafeTensors`, etc.

InvokeAI will happily import the file in the Model Manager and execute
the payload.

# Proof of Concept
1. Create a malicious pickle file.
(https://gist.github.com/CodeZombie/27baa20710d976f45fb93928cbcfe368)
2. Rename the `.ckpt` extension to some variation of `.Safetensors`,
ensuring there is a capital letter anywhere in the extension (eg.
`malicious_pickle.SAFETENSORS`)
3. Import the 'model' like you would normally with any other safetensors
file with the Model Manager.
4. Upon trying to select the model in the web ui, it will be loaded (or
attempt to be converted to a Diffuser) with `torch.load` and the payload
will execute.


![image](https://user-images.githubusercontent.com/466103/224835490-4cf97ff3-41b3-4a31-85df-922cc99042d2.png)


# The Fix
This pull request changes the logic InvokeAI uses to decide which model
loader to use so that the safe behavior is the default. Instead of
loading as a pickle if the extension is not exactly `.safetensors`, it
will now **always** load as a safetensors file unless the extension is
**exactly** `.ckpt`.

# Notes:
I think support for pickle files should be totally dropped ASAP as a
matter of security, but I understand that there are reasons this would
be difficult.

In the meantime, I think `RestrictedUnpickler` or something similar
should be implemented as a replacement for `torch.load`, as this
significantly reduces the amount of Python methods that an attacker has
to work with when crafting malicious payloads
inside a pickle file. 
Automatic1111 already uses this with some success.
(https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/master/modules/safe.py)
2023-03-15 00:09:17 +13:00
blessedcoolant
0a761d7c43 fix(inpaint): Seam painting being broken 2023-03-15 00:00:08 +13:00
Damian Stewart
a0f47aa72e Merge branch 'main' into main 2023-03-14 11:41:29 +01:00
blessedcoolant
f9abc6fc85 fix --png_compression command line argument (#2950)
- The value of png_compression was always 6, despite the value provided
to the --png_compression argument. This fixes the bug.
- It also fixes an inconsistency between the maximum range of
png_compression and the help text.

- Closes #2945
2023-03-14 18:20:17 +13:00
Lincoln Stein
d840c597b5 fix --png_compression command line argument
- The value of png_compression was always 6, despite the value provided to the
  --png_compression argument. This fixes the bug.
- It also fixes an inconsistency between the maximum range of png_compression
  and the help text.

- Closes #2945
2023-03-14 00:24:05 -04:00
Lincoln Stein
3ca654d256 speculative fix for alternative vaes 2023-03-13 23:27:29 -04:00
jeremy
e0e01f6c50 Reduced Pickle ACE attack surface
Prior to this commit, all models would be loaded with the extremely unsafe `torch.load` method, except those with the exact extension `.safetensors`. Even a change in casing (eg. `saFetensors`, `Safetensors`, etc) would cause the file to be loaded with torch.load instead of the much safer `safetensors.toch.load_file`.
If a malicious actor renamed an infected `.ckpt` to something like `.SafeTensors` or `.SAFETENSORS` an unsuspecting user would think they are loading a safe .safetensor, but would in fact be parsing an unsafe pickle file, and executing an attacker's payload. This commit fixes this vulnerability by reversing the loading-method decision logic to only use the unsafe `torch.load` when the file extension is exactly `.ckpt`.
2023-03-13 16:16:30 -04:00
Kent Keirsey
d9dab1b6c7 Update BUG_REPORT.yml 2023-03-13 11:17:38 -04:00
Kent Keirsey
3b2ef6e1a8 Update BUG_REPORT.yml 2023-03-13 11:14:53 -04:00
Kent Keirsey
c125a3871a Update BUG_REPORT.yml 2023-03-13 11:14:04 -04:00
blessedcoolant
0996bd5acf Merge branch 'main' into patch-1 2023-03-14 03:18:58 +13:00
blessedcoolant
ea77d557da add additional build mode (#2904)
*`yarn build:package` will build default component 
* moved some devDependencies to dependencies that are needed for
postinstall script
2023-03-14 03:15:51 +13:00
blessedcoolant
1b01161ea4 Merge branch 'main' into pr/2904 2023-03-14 03:14:35 +13:00
blessedcoolant
2230cb9562 chore(UI, accessibility): Icons. Header links & radio button (#2935)
# Overview
- Links should be parent of icon
- _Added style to link still so they still line up with sibling
components_
- Radio icon buttons
2023-03-14 03:13:19 +13:00
Mary Hipp Rogers
9e0c7c46a2 Merge branch 'main' into add-a-build-config 2023-03-13 09:58:17 -04:00
Mary Hipp
be305588d3 merged and rebuilt 2023-03-13 09:55:56 -04:00
blessedcoolant
9f994df814 Merge branch 'main' into chore/UI_more-accessibility-items 2023-03-14 02:49:47 +13:00
blessedcoolant
3062580006 Fix bug #2931 (#2942)
#2931 was caused by new code that held onto the PRNG in `get_make_image`
and used it in `make_image` for img2img and inpainting. This
functionality has been moved elsewhere so that we can generate multiple
images again.
2023-03-14 02:48:07 +13:00
JPPhoto
596ba754b1 Removed seed from get_make_image. 2023-03-13 08:15:46 -05:00
JPPhoto
b980e563b9 Fix bug #2931 2023-03-13 08:11:09 -05:00
blessedcoolant
7fe2606cb3 [nodes] Fixes calls into image to image and inpaint from nodes (#2940) 2023-03-13 19:05:32 +13:00
Kyle Schouviller
0c3b1fe3c4 [nodes] Fixes calls into image to image and inpaint from nodes 2023-03-12 22:12:42 -07:00
ElrikUnderlake
c9ee2e351c yarn build 2023-03-12 23:29:29 -05:00
ElrikUnderlake
e3aef20f42 chore(UI, accessibility): more items
- radio icon buttons
- links should be parent of icon
styled links to still line up with sibling components
2023-03-12 23:27:47 -05:00
blessedcoolant
60614badaf [nodes-api] Fix API generation to correctly reference outputs (#2939)
Correctly reference output types in node schemas
2023-03-13 17:02:55 +13:00
Kevin Turner
288cee9611 Merge remote-tracking branch 'origin/main' into feat/preview_predicted_x0
# Conflicts:
#	invokeai/app/invocations/generate.py
2023-03-12 20:56:02 -07:00
Kyle Schouviller
24aca37538 Just set output value in node schemas. Don't use additionalProperties, which would impact the schema. 2023-03-12 20:40:29 -07:00
Kyle Schouviller
b853ceea65 [nodes-api] Fix API generation to correctly reference outputs 2023-03-12 20:03:26 -07:00
Kyle Schouviller
3ee2798ede [fix] Get the model again if current model is empty 2023-03-12 22:26:11 -04:00
Fabio 'MrWHO' Torchetti
5c5106c14a Add keys when non EMA 2023-03-12 16:22:22 -05:00
Fabio 'MrWHO' Torchetti
c367b21c71 Fix issue #2932 2023-03-12 15:40:33 -05:00
blessedcoolant
2eef6df66a [ui]: add resizable pinnable drawer component (#2874)
wip

this is based off the branch in #2873
2023-03-12 22:46:48 +13:00
psychedelicious
300aa8d86c chore(ui): build 2023-03-12 20:13:58 +11:00
psychedelicious
727f1638d7 chore(ui): lint 2023-03-12 20:13:58 +11:00
psychedelicious
ee6df5852a fix(ui): fix lightbox 2023-03-12 20:13:38 +11:00
psychedelicious
90525b1c43 fix(ui): fix scrollable shadow 2023-03-12 20:13:38 +11:00
psychedelicious
bbb95dbc5b fix(ui): add color mode watcher 2023-03-12 20:13:38 +11:00
psychedelicious
f4b7f80d59 fix(ui): remove key prop 2023-03-12 20:13:38 +11:00
blessedcoolant
220f7373c8 feat(ui): Basic IAIOption Component & Fix Select Dropdown 2023-03-12 20:13:38 +11:00
blessedcoolant
4bb5785f29 fix(ui): Move Form Components to the correct folder 2023-03-12 20:13:38 +11:00
psychedelicious
f9a7a7d161 fix(ui): set colorMode to fix native selects 2023-03-12 20:13:38 +11:00
psychedelicious
de94c780d9 fix(ui): fix canvas status text bg 2023-03-12 20:13:38 +11:00
psychedelicious
0b9230380c fix(ui): default gallery category buttons to icon 2023-03-12 20:13:38 +11:00
psychedelicious
209a55b681 fix(ui): canvas rescale when toggle gallery 2023-03-12 20:13:38 +11:00
psychedelicious
dc2f69f5d1 fix(ui): process buttons display on canvas beta 2023-03-12 20:13:38 +11:00
psychedelicious
ad2f1b7b36 fix(ui): hack for hiding pinned panels 2023-03-12 20:13:38 +11:00
blessedcoolant
dd2d96a50f fix(ui): Bad styling on form elements 2023-03-12 20:13:38 +11:00
blessedcoolant
2bff28e305 fix(ui): Remove size limitation off the theme changer button 2023-03-12 20:13:38 +11:00
blessedcoolant
d68234d879 fix(ui): Gallery placeholder text not being centered 2023-03-12 20:13:38 +11:00
blessedcoolant
b3babf26a5 fix(ui): Fix current image buttons overflow 2023-03-12 20:13:38 +11:00
psychedelicious
ecca0eff31 fix(ui): hotkey accordion spacing 2023-03-12 20:13:38 +11:00
psychedelicious
28677f9621 fix(ui): process buttons display on canvas beta layout 2023-03-12 20:13:38 +11:00
psychedelicious
caecfadf11 fix(ui): fix shadow 2023-03-12 20:13:38 +11:00
psychedelicious
5cf8e3aa53 chore(ui): build 2023-03-12 20:13:38 +11:00
psychedelicious
76cf2c61db feat(ui): drawer almost done
TODO:
- hide while pinned
- lightbox interaction with gallery
2023-03-12 20:13:38 +11:00
psychedelicious
b4d976f2db fix(ui): fix flash of mini preview image
Restored the code that fixes this after having ripped it out thinking it didn't do anything. Spotted in #2915
2023-03-12 20:13:38 +11:00
psychedelicious
777d127c74 feat(ui): wip drawer component and build 2023-03-12 20:13:38 +11:00
psychedelicious
0678803803 lang(ui): update show canvas debug info string 2023-03-12 20:13:37 +11:00
blessedcoolant
d2fbc9f5e3 feat(ui): Add ThemeTypes & Move Grid Line Color 2023-03-12 20:13:37 +11:00
psychedelicious
d81088dff7 feat(ui): wip resizable pinnable drawer
fix(ui): remove old scrollbar css

fix(ui): make guidepopover lazy

feat(ui): wip resizable drawer

feat(ui): wip resizable drawer

feat(ui): add scroll-linked shadow

feat(ui): organize files

Align Scrollbar next to content

Move resizable drawer underneath the progress bar

Add InvokeLogo to unpinned & align

Adds Invoke Logo to Unpinned Parameters panel and aligns to make it feel seamless.
2023-03-12 20:13:37 +11:00
Lincoln Stein
1aaad9336f Remove image generation node dependencies on generate.py (#2902)
# Remove node dependencies on generate.py

This is a draft PR in which I am replacing `generate.py` with a cleaner,
more structured interface to the underlying image generation routines.
The basic code pattern to generate an image using the new API is this:

```
from invokeai.backend import ModelManager, Txt2Img, Img2Img

manager = ModelManager('/data/lstein/invokeai-main/configs/models.yaml')
model = manager.get_model('stable-diffusion-1.5')
txt2img = Txt2Img(model)
outputs = txt2img.generate(prompt='banana sushi', steps=12, scheduler='k_euler_a', iterations=5)

# generate() returns an iterator
for next_output in outputs:
    print(next_output.image, next_output.seed)

outputs = Img2Img(model).generate(prompt='strawberry` sushi', init_img='./banana_sushi.png')
output = next(outputs)
output.image.save('strawberries.png')
```

### model management

The `ModelManager` handles model selection and initialization. Its
`get_model()` method will return a `dict` with the following keys:
`model`, `model_name`,`hash`, `width`, and `height`, where `model` is
the actual StableDiffusionGeneratorPIpeline. If `get_model()` is called
without a model name, it will return whatever is defined as the default
in `models.yaml`, or the first entry if no default is designated.

### InvokeAIGenerator

The abstract base class `InvokeAIGenerator` is subclassed into into
`Txt2Img`, `Img2Img`, `Inpaint` and `Embiggen`. The constructor for
these classes takes the model dict returned by
`model_manager.get_model()` and optionally an
`InvokeAIGeneratorBasicParams` object, which encapsulates all the
parameters in common among `Txt2Img`, `Img2Img` etc. If you don't
provide the basic params, a reasonable set of defaults will be chosen.
Any of these parameters can be overridden at `generate()` time.

These classes are defined in `invokeai.backend.generator`, but they are
also exported by `invokeai.backend` as shown in the example below.

```
from invokeai.backend import InvokeAIGeneratorBasicParams, Img2Img
params = InvokeAIGeneratorBasicParams(
    perlin = 0.15
    steps = 30
   scheduler = 'k_lms'
)
img2img = Img2Img(model, params)
outputs = img2img.generate(scheduler='k_heun')
```

Note that we were able to override the basic params in the call to
`generate()`

The `generate()` method will returns an iterator over a series of
`InvokeAIGeneratorOutput` objects. These objects contain the PIL image,
the seed, the model name and hash, and attributes for all the parameters
used to generate the object (you can also get these as a dict). The
`iterations` argument controls how many objects will be returned,
defaulting to 1. Pass `None` to get an infinite iterator.

Given the proposed use of `compel` to generate a templated series of
prompts, I thought the API would benefit from a style that lets you loop
over the output results indefinitely. I did consider returning a single
`InvokeAIGeneratorOutput` object in the event that `iterations=1`, but I
think it's dangerous for a method to return different types of result
under different circumstances.

Changing the model is as easy as this:
```
model = manager.get_model('inkspot-2.0`)
txt2img = Txt2Img(model)
```

### Node and legacy support

With respect to `Nodes`, I have written `model_manager_initializer` and
`restoration_services` modules that return `model_manager` and
`restoration` services respectively. The latter is used by the face
reconstruction and upscaling nodes. There is no longer any reference to
`Generate` in the `app` tree.

I have confirmed that `txt2img` and `img2img` work in the nodes client.
I have not tested `embiggen` or `inpaint` yet. pytests are passing, with
some warnings that I don't think are related to what I did.

The legacy WebUI and CLI are still working off `Generate` (which has not
yet been removed from the source tree) and fully functional.

I've finished all the tasks on my TODO list:

- [x] Update the pytests, which are failing due to dangling references
to `generate`
- [x] Rewrite the `reconstruct.py` and `upscale.py` nodes to call
directly into the postprocessing modules rather than going through
`Generate`
- [x] Update the pytests, which are failing due to dangling references
to `generate`
2023-03-11 21:48:23 -05:00
Lincoln Stein
1f3c024d9d Merge branch 'main' into refactor/nodes-on-generator 2023-03-11 21:31:42 -05:00
Lincoln Stein
74a480f94e add back static web directory 2023-03-11 21:23:41 -05:00
blessedcoolant
c6e8d3269c build: exclude ui from test-invoke-pip (#2892)
Prior to the folder restructure, the `paths` for `test-invoke-pip` did
not include the UI's path `invokeai/frontend/`:

```yaml
    paths:
      - 'pyproject.toml'
      - 'ldm/**'
      - 'invokeai/backend/**'
      - 'invokeai/configs/**'
      - 'invokeai/frontend/dist/**'
```

After the restructure, more code was moved into the `invokeai/frontend/`
folder, and `paths` was updated:

```yaml
    paths:
      - 'pyproject.toml'
      - 'invokeai/**'
      - 'invokeai/backend/**'
      - 'invokeai/configs/**'
      - 'invokeai/frontend/web/dist/**'
```

Now, the second path includes the UI. The UI now needs to be excluded,
and must be excluded prior to `invokeai/frontend/web/dist/**` being
included.

On `test-invoke-pip-skip`, we need to do a bit of logic juggling to
invert the folder selection. First, include the web folder, then exclude
everying around it and finally exclude the `dist/` folder
2023-03-12 14:18:51 +13:00
blessedcoolant
dcb5a3a740 Merge branch 'main' into build/exclude-ui-actions 2023-03-12 14:18:03 +13:00
Lincoln Stein
c0ef546b02 Merge branch 'refactor/nodes-on-generator' of github.com:invoke-ai/InvokeAI into refactor/nodes-on-generator 2023-03-11 18:31:47 -05:00
Matthias Wild
7a78a83651 raise operations-per-run for issue workflow to 500 (#2925)
- default value is 30
- limit per hour is 1000

This should help getting the count of open issues down.
2023-03-12 00:10:55 +01:00
Lincoln Stein
10cbf99310 add TODO comments 2023-03-11 18:08:45 -05:00
Jonathan
b63aefcda9 Merge branch 'main' into refactor/nodes-on-generator 2023-03-11 16:22:29 -06:00
Lincoln Stein
6a77634b34 remove unneeded generate initializer routines 2023-03-11 17:14:03 -05:00
Lincoln Stein
8ca91b1774 add restoration services to nodes 2023-03-11 17:00:00 -05:00
mauwii
1c9d9e79d5 raise operations-per-run to 500
- default value is 30
- limit per hour is 1000
2023-03-11 22:32:13 +01:00
Lincoln Stein
3aa1ee1218 restore NSFW checker 2023-03-11 16:16:44 -05:00
Jonathan
06aa5a8120 Merge branch 'main' into feat/preview_predicted_x0 2023-03-11 14:50:30 -06:00
Lincoln Stein
580f9ecded simplify passing of config options 2023-03-11 11:32:57 -05:00
psychedelicious
270032670a build: exclude ui from test-invoke-pip 2023-03-12 03:27:49 +11:00
psychedelicious
4f056cdb55 ui: translations update from weblate (#2922)
Translations update from [Hosted Weblate](https://hosted.weblate.org)
for [InvokeAI/Web
UI](https://hosted.weblate.org/projects/invokeai/web-ui/).



Current translation status:

![Weblate translation
status](https://hosted.weblate.org/widgets/invokeai/-/web-ui/horizontal-auto.svg)
2023-03-12 03:18:23 +11:00
Lincoln Stein
c14241436b move ModelManager initialization into its own module and restore embedding support 2023-03-11 10:56:53 -05:00
ssantos
50b56d6088 translationBot(ui): update translation (Portuguese)
Currently translated at 99.2% (496 of 500 strings)

Co-authored-by: ssantos <ssantos@web.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/pt/
Translation: InvokeAI/Web UI
2023-03-11 16:56:06 +01:00
Sergey Krashevich
8ec2ae7954 translationBot(ui): update translation (Russian)
Currently translated at 86.3% (416 of 482 strings)

Co-authored-by: Sergey Krashevich <svk@svk.su>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2023-03-11 16:56:05 +01:00
wa.code
40d82b29cf translationBot(ui): update translation (Chinese (Traditional))
Currently translated at 7.0% (34 of 480 strings)

Co-authored-by: wa.code <adt107118@gm.ntcu.edu.tw>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hant/
Translation: InvokeAI/Web UI
2023-03-11 16:56:05 +01:00
Felipe Nogueira
0b953d98f5 translationBot(ui): update translation (Portuguese (Brazil))
Currently translated at 98.1% (471 of 480 strings)

Co-authored-by: Felipe Nogueira <contato.fnog@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/pt_BR/
Translation: InvokeAI/Web UI
2023-03-11 16:56:04 +01:00
Riccardo Giovanetti
8833d76709 translationBot(ui): update translation (Italian)
Currently translated at 100.0% (500 of 500 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (500 of 500 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (482 of 482 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (480 of 480 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-03-11 16:56:04 +01:00
gallegonovato
027b316fd2 translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (500 of 500 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (482 of 482 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (480 of 480 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2023-03-11 16:56:03 +01:00
Lincoln Stein
d612f11c11 initialize InvokeAIGenerator object with model, not manager 2023-03-11 09:06:46 -05:00
Lincoln Stein
250b0ab182 add seamless tiling support 2023-03-11 08:33:23 -05:00
Lincoln Stein
675dd12b6c add attention map images to output object 2023-03-11 08:07:01 -05:00
Lincoln Stein
7e76eea059 add embiggen, remove complicated constructor 2023-03-11 07:50:39 -05:00
Jonathan
f45483e519 Merge branch 'main' into feat/preview_predicted_x0 2023-03-10 22:25:26 -06:00
blessedcoolant
65047bf976 Chore/accessibility add all aria labels to translation (#2919)
# Overview
Setting up the `aria-label` props as translations
2023-03-11 16:16:02 +13:00
ElrikUnderlake
d586a82a53 yarn build 2023-03-10 20:54:59 -06:00
ElrikUnderlake
28709961e9 add import 2023-03-10 20:53:42 -06:00
ElrikUnderlake
e9f237f39d chore(accessibility): add all aria-labels 2023-03-10 20:49:16 -06:00
Félix Sanz
4156bfd810 Fixed snippet/code formatting
It was pasted as plain text, now it's a code fence.
2023-03-11 02:08:59 +01:00
Lincoln Stein
fe75b95464 Merge branch 'refactor/nodes-on-generator' of github.com:invoke-ai/InvokeAI into refactor/nodes-on-generator 2023-03-10 19:36:40 -05:00
Lincoln Stein
95954188b2 remove factory pattern
Factory pattern is now removed. Typical usage of the InvokeAIGenerator is now:

```
from invokeai.backend.generator import (
    InvokeAIGeneratorBasicParams,
    Txt2Img,
    Img2Img,
    Inpaint,
)
    params = InvokeAIGeneratorBasicParams(
        model_name = 'stable-diffusion-1.5',
        steps = 30,
        scheduler = 'k_lms',
        cfg_scale = 8.0,
        height = 640,
        width = 640
        )
    print ('=== TXT2IMG TEST ===')
    txt2img = Txt2Img(manager, params)
    outputs = txt2img.generate(prompt='banana sushi', iterations=2)

    for i in outputs:
        print(f'image={output.image}, seed={output.seed}, model={output.params.model_name}, hash={output.model_hash}, steps={output.params.steps}')
```

The `params` argument is optional, so if you wish to accept default
parameters and selectively override them, just do this:

```
    outputs = Txt2Img(manager).generate(prompt='banana sushi',
                                        steps=50,
					scheduler='k_heun',
					model_name='stable-diffusion-2.1'
					)
```
2023-03-10 19:33:04 -05:00
Jonathan
63f59201f8 Merge branch 'main' into feat/preview_predicted_x0 2023-03-10 12:34:07 -06:00
Jonathan
370e8281b3 Merge branch 'main' into refactor/nodes-on-generator 2023-03-10 12:34:00 -06:00
Lincoln Stein
685df33584 fix bug that caused black images when converting ckpts to diffusers in RAM (#2914)
Cause of the problem was inadvertent activation of the safety checker.

When conversion occurs on disk, the safety checker is disabled during loading.
However, when converting in RAM, the safety checker was not removed, resulting
in it activating even when user specified --no-nsfw_checker.

This PR fixes the problem by detecting when the caller has requested the InvokeAi
StableDiffusionGeneratorPipeline class to be returned and setting safety checker
to None. Do not do this with diffusers models destined for disk because then they
will be incompatible with the merge script!!

Closes #2836
2023-03-10 18:11:32 +00:00
Mary Hipp
4332c9c7a6 add generic jsx type definition for default export 2023-03-10 12:14:49 -05:00
Jonathan
4a00f1cc74 Merge branch 'main' into feat/preview_predicted_x0 2023-03-10 09:20:01 -06:00
blessedcoolant
7ff77504cb Make sure command also works with Oh-my-zsh (#2905)
Many people use oh-my-zsh for their command line: https://ohmyz.sh/ 

Adding `""` should work both on ohmyzsh and native bash
2023-03-10 19:05:22 +13:00
blessedcoolant
0d1854e44a Merge branch 'main' into patch-1 2023-03-10 19:04:42 +13:00
Kevin Turner
fe6858f2d9 feat: use the predicted denoised image for previews
Some schedulers report not only the noisy latents at the current timestep,
but also their estimate so far of what the de-noised latents will be.

It makes for a more legible preview than the noisy latents do.
2023-03-09 20:28:06 -08:00
Lincoln Stein
12c7db3a16 backend: more post-ldm-removal cleanup (#2911) 2023-03-09 23:11:10 -05:00
Lincoln Stein
3ecdec02bf Merge branch 'main' into cleanup/more_ldm_cleanup 2023-03-09 22:49:09 -05:00
Lincoln Stein
d6c24d59b0 Revert "Remove label from stale issues on comment event" (#2912)
Reverts invoke-ai/InvokeAI#2903

@mauwii has a point here. It looks like triggering on a comment results
in an action for each of the stale issues, even ones that have been
previously dealt with. I'd like to revert this back to the original
behavior of running once every time the cron job executes.

What's the original motivation for having more frequent labeling of the
issues?
2023-03-09 22:28:49 -05:00
Lincoln Stein
bb3d1bb6cb Revert "Remove label from stale issues on comment event" 2023-03-09 22:24:43 -05:00
Lincoln Stein
14c8738a71 fix dangling reference to _model_to_cpu and missing variable model_description 2023-03-09 21:41:45 -05:00
Kevin Turner
1a829bb998 pipeline: remove code for legacy model 2023-03-09 18:15:12 -08:00
Kevin Turner
9d339e94f2 backend..conditioning: remove code for legacy model 2023-03-09 18:15:12 -08:00
Kevin Turner
ad7b1fa6fb model_manager: model to/from CPU methods are implemented on the Pipeline 2023-03-09 18:15:12 -08:00
Kevin Turner
42355b70c2 fix(Pipeline.debug_latents): fix import for moved utility function 2023-03-09 18:15:12 -08:00
Kevin Turner
faa2558e2f chore: add new argument to overridden method to match new signature upstream 2023-03-09 18:15:12 -08:00
Kevin Turner
081397737b typo: docstring spelling fixes
looks like they've already been corrected in the upstream copy
2023-03-09 18:15:12 -08:00
Kevin Turner
55d36eaf4f fix: image_resized_to_grid_as_tensor: reconnect dropped multiple_of argument 2023-03-09 18:15:12 -08:00
Scott Lahteine
26cd1728ac Fix some text and a link 2023-03-09 20:03:11 -06:00
Lincoln Stein
a0065da4a4 Remove label from stale issues on comment event (#2903)
I found it to be a chore to remove labels manually in order to
"un-stale" issues. This is contrary to the bot message which says
commenting should remove "stale" status. On the current `cron` schedule,
there may be a delay of up to 24 hours before the label is removed. This
PR will trigger the workflow on issue comments in addition to the
schedule.

Also adds a condition to not run this job on PRs (Github treats issues
and PRs equivalently in this respect), and rewords the messages for
clarity.
2023-03-09 20:17:54 -05:00
Lincoln Stein
c11e823ff3 remove unused _wrap_results 2023-03-09 16:30:06 -05:00
Mary Hipp
197e50a298 unstage some changes 2023-03-09 15:33:18 -05:00
Patrick von Platen
507e12520e Make sure command also works with Oh-my-zsh
Many people use oh-my-zsh for their command line: https://ohmyz.sh/ 

Adding `""` should work both on ohmyzsh and native bash
2023-03-09 19:21:57 +01:00
Mary Hipp
2cc04de397 dont care about linting build 2023-03-09 11:46:20 -05:00
Mary Hipp
f4150a7829 add new build command for building package 2023-03-09 11:10:18 -05:00
Eugene Brodsky
5418bd3b24 (ci) unlabel stale issues when commented 2023-03-09 09:22:29 -05:00
blessedcoolant
76d5fa4694 Bypass the 77 token limit (#2896)
This ought to be working but i don't know how it's supposed to behave so
i haven't been able to verify. At least, I know the numbers are getting
pushed all the way to the SD unet, i just have been unable to verify if
what's coming out is what is expected. Please test.

You'll `need to pip install -e .` after switching to the branch, because
it's currently pulling from a non-main `compel` branch. Once it's
verified as working as intended i'll promote the compel branch to pypi.
2023-03-09 23:52:28 +13:00
blessedcoolant
386dda8233 Merge branch 'main' into feat_longer_prompts 2023-03-09 22:37:10 +13:00
Damian Stewart
8076c1697c Merge branch 'feat_longer_prompts' of github.com:damian0815/InvokeAI into feat_longer_prompts 2023-03-09 10:28:13 +01:00
Damian Stewart
65fc9a6e0e bump compel version to address issues 2023-03-09 10:28:07 +01:00
Lincoln Stein
cde0b6ae8d Merge branch 'main' into refactor/nodes-on-generator 2023-03-09 01:52:45 -05:00
blessedcoolant
b12760b976 [ui] chore(Accessibility): various additions (#2888)
# Overview
Adding a few accessibility items (I think 9 total items). Mostly
`aria-label`, but also a `<VisuallyHidden>` to the left-side nav tab
icons. Tried to match existing copy that was being used. Feedback
welcome
2023-03-09 19:14:42 +13:00
Lincoln Stein
b679a6ba37 model manager defaults to consistent values of device and precision 2023-03-09 01:09:54 -05:00
ElrikUnderlake
2f5f08c35d yarn build 2023-03-08 23:51:46 -06:00
Elrik
8f48c14ed4 Merge branch 'main' into chore/accessability_various-additions 2023-03-08 23:49:08 -06:00
Lincoln Stein
5d37fa6e36 node-based txt2img working without generate 2023-03-09 00:18:29 -05:00
Jonathan
f51581bd1b Merge branch 'main' into feat_longer_prompts 2023-03-08 23:08:49 -06:00
blessedcoolant
50ca6b6ffc add back pytorch-lightning dependency (#2899)
- Closes #2893
2023-03-09 17:22:17 +13:00
blessedcoolant
63b9ec4c5e Merge branch 'main' into bugfix/restore-pytorch-lightning 2023-03-09 16:57:14 +13:00
blessedcoolant
b115bc4247 [cli] Execute commands in-order with nodes (#2901)
Executes piped commands in the order they were provided (instead of
executing CLI commands immediately).
2023-03-09 16:55:23 +13:00
blessedcoolant
dadc30f795 Merge branch 'main' into bugfix/restore-pytorch-lightning 2023-03-09 16:46:08 +13:00
blessedcoolant
111d8391e2 Merge branch 'main' into kyle0654/cli_execution_order 2023-03-09 16:37:15 +13:00
blessedcoolant
1157b454b2 decouple default component from react root (#2897)
Decouple default component from react root
2023-03-09 16:34:47 +13:00
Kyle Schouviller
8a6473610b [cli] Execute commands in-order with nodes 2023-03-08 19:25:03 -08:00
Elrik
ea7911be89 Merge branch 'main' into chore/accessability_various-additions 2023-03-08 17:15:28 -06:00
Damian Stewart
9ee648e0c3 Merge branch 'main' into feat_longer_prompts 2023-03-09 00:13:01 +01:00
Damian Stewart
543682fd3b Merge branch 'feat_longer_prompts' of github.com:damian0815/InvokeAI into feat_longer_prompts 2023-03-08 23:24:41 +01:00
Damian Stewart
88cb63e4a1 pin new compel version 2023-03-08 23:24:30 +01:00
Lincoln Stein
76212d1cca Merge branch 'main' into bugfix/restore-pytorch-lightning 2023-03-08 17:05:11 -05:00
Mary Hipp Rogers
a8df9e5122 Merge branch 'main' into decouple-component-from-root 2023-03-08 16:58:34 -05:00
Jonathan
2db180d909 Make img2img strength 1 behave the same as txt2img (#2895)
* Fix img2img and inpainting code so a strength of 1 behaves the same as txt2img.

* Make generated images identical to their txt2img counterparts when strength is 1.
2023-03-08 22:50:16 +01:00
Lincoln Stein
b716fe8f06 add pytorch-lightning dependency back in
- Closes #2893
2023-03-08 16:48:39 -05:00
damian
69e2dc0404 update for compel changes 2023-03-08 20:45:01 +01:00
Damian Stewart
a38b75572f don't log excess tokens as truncated 2023-03-08 20:00:18 +01:00
Mary Hipp Rogers
e18de761b6 Merge branch 'main' into decouple-component-from-root 2023-03-08 13:13:43 -05:00
Mary Hipp
816ea39827 decouple default component from react root 2023-03-08 12:48:49 -05:00
Lincoln Stein
1cd4cdd0e5 Merge branch 'main' into tests 2023-03-08 12:19:04 -05:00
damian
768e969c90 cleanup and fix kwarg 2023-03-08 18:00:54 +01:00
Damian Stewart
57db66634d longer prompts wip 2023-03-08 14:25:48 +01:00
Lincoln Stein
87789c1de8 add InvokeAIGenerator and InvokeAIGeneratorFactory classes 2023-03-07 23:52:53 -05:00
ElrikUnderlake
c3c1511ec6 add accessibility to localization
only set fallback english values
implement on ModelSelect and ProgressBar
2023-03-07 21:30:51 -06:00
Elrik
6b41127421 Merge branch 'main' into chore/accessability_various-additions 2023-03-07 17:44:55 -06:00
blessedcoolant
d232a439f7 build: update actions (#2883)
- Updates triggers for UI workflow `lint-frontend`
- Corrects UI paths for `test-invoke-pip` and `test-invoke-pip-skip`
2023-03-08 11:51:32 +13:00
blessedcoolant
c04f21e83e Merge branch 'main' into build/update-actions 2023-03-08 11:50:50 +13:00
blessedcoolant
8762069b37 ui: update readme & scripts (#2884)
- Update ui readme
- Update scripts to use `yarn` instead of `npm` and use `concurrently`
to watch/build the theme token types along with SPA
2023-03-08 00:20:46 +13:00
psychedelicious
d9ebdd2684 build(ui): use concurrently to run dev 2023-03-07 21:58:46 +11:00
psychedelicious
3e4c10ef9c docs(ui): update readme 2023-03-07 21:58:42 +11:00
psychedelicious
17eb2ca5a2 build: update actions
- Updates triggers for UI workflow `lint-frontend`
- Corrects UI paths for `test-invoke-pip` and `test-invoke-pip-skip`
2023-03-07 21:25:43 +11:00
mastercaster9000
63725d7534 add .pytest.ini to .gitignore 2023-03-07 09:08:27 +00:00
mastercaster
00f30ea457 Merge branch 'main' into tests 2023-03-07 09:03:18 +00:00
blessedcoolant
1b2a3c7144 ui: translations update from weblate (#2882)
Translations update from [Hosted Weblate](https://hosted.weblate.org)
for [InvokeAI/Web
UI](https://hosted.weblate.org/projects/invokeai/web-ui/).



Current translation status:

![Weblate translation
status](https://hosted.weblate.org/widgets/invokeai/-/web-ui/horizontal-auto.svg)
2023-03-07 21:51:09 +13:00
psychedelicious
01a1777370 translationBot(ui): update translation (Chinese (Traditional))
Currently translated at 4.1% (20 of 480 strings)

translationBot(ui): update translation (Portuguese (Brazil))

Currently translated at 97.2% (467 of 480 strings)

translationBot(ui): update translation (Dutch)

Currently translated at 97.2% (467 of 480 strings)

translationBot(ui): update translation (French)

Currently translated at 83.1% (399 of 480 strings)

Co-authored-by: psychedelicious <mabianfu@icloud.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/fr/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/nl/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/pt_BR/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hant/
Translation: InvokeAI/Web UI
2023-03-07 09:09:42 +01:00
Hosted Weblate
32945c7f45 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-03-07 09:09:42 +01:00
ElrikUnderlake
b0b8846430 Add aria-label to icon variant of IAISimpleMenu
Uses whatever the iconTooltip copy is
2023-03-06 22:43:41 -06:00
ElrikUnderlake
fdb146a43a add aria-label to UnifiedCanvasLayerSelect
matching tooltip copy
2023-03-06 22:42:39 -06:00
ElrikUnderlake
42c1f1fc9d add VisuallyHidden tab text to InvokeTabs 2023-03-06 22:42:04 -06:00
ElrikUnderlake
89a8ef86b5 add an aria-label to ProgressBar 2023-03-06 22:41:45 -06:00
ElrikUnderlake
f0fb767f57 add aria-label to ModelSelect 2023-03-06 22:39:08 -06:00
blessedcoolant
4bd93464bf [cli] Update CLI to define commands as Pydantic objects (#2861)
Updates the CLI to define CLI commands as Pydantic objects, similar to
how Invocations (nodes) work. For example:

```py
class HelpCommand(BaseCommand):
    """Shows help"""
    type: Literal['help'] = 'help'

    def run(self, context: CliContext) -> None:
        context.parser.print_help()
```
2023-03-07 13:25:06 +13:00
blessedcoolant
3d3de82ca9 Merge branch 'main' into kyle/cli_commands 2023-03-07 12:56:30 +13:00
Jonathan
c3ff9e6be8 Fixed startup issues with the web UI. (#2876) 2023-03-06 18:29:28 -05:00
blessedcoolant
21f79e5919 add missing package (#2878)
Added missing dependency declaration `@chakra-ui/styled-system`
2023-03-07 10:34:50 +13:00
Mary Hipp
0342e25c74 add missing package 2023-03-06 16:13:17 -05:00
blessedcoolant
91f982fb0b feat(ui): migrate theming to chakra ui (#2873)
*looks like this #2814 was reverted accidentally. instead of trying to
revert the revert, this PR can simply be re-accepted and will fix the
ui.*

- Migrate UI from SCSS to Chakra's CSS-in-JS system 
  - better dx
  - more capable theming 
  - full RTL language support (we now have Arabic and Hebrew)
  - general cleanup of the whole UI's styling
- Tidy npm packages and update scripts, necessitates update to github
actions

To test this PR in dev mode, you will need to do a `yarn install` as a
lot has changed.

thanks to @blessedcoolant for helping out on this, it was a big effort.
2023-03-07 08:43:26 +13:00
blessedcoolant
b9ab43a4bb build(ui): clean build chakra migration 2023-03-07 08:39:44 +13:00
blessedcoolant
6e0e48bf8a Merge branch 'main' into pr/2873 2023-03-07 08:36:09 +13:00
Lincoln Stein
dcc8313dbf support both epsilon and v-prediction v2 inference (#2870)
There are actually two Stable Diffusion v2 legacy checkpoint
configurations:

1. "epsilon" prediction type for Stable Diffusion v2 Base 
2. "v-prediction" type for Stable Diffusion v2-768

This commit adds the configuration file needed for epsilon prediction
type models as well as the UI that prompts the user to select the
appropriate configuration file when the code can't do so automatically.
2023-03-06 14:29:35 -05:00
Lincoln Stein
bf5831faa3 Merge branch 'main' into kyle/cli_commands 2023-03-06 08:52:38 -05:00
Lincoln Stein
5eff035f55 Merge branch 'main' into tests 2023-03-06 08:37:07 -05:00
Lincoln Stein
7c60068388 Merge branch 'main' into bugfix/fix-convert-sd-to-diffusers-error 2023-03-06 08:20:29 -05:00
psychedelicious
d843fb078a feat(ui): remove references to dark mode 2023-03-06 20:40:59 +11:00
psychedelicious
41b2e4633f chore(ui): remove unused scss files 2023-03-06 20:06:23 +11:00
psychedelicious
57144ac0cf feat(ui): migrate theming to chakra ui 2023-03-06 20:03:39 +11:00
Lincoln Stein
a305b6adbf fix call signature of import_diffuser_model() (#2871)
This fixes the borked #2867 PR.
2023-03-05 23:58:08 -05:00
Lincoln Stein
94daaa4abf fix call signature of import_diffuser_model() 2023-03-05 23:37:59 -05:00
Lincoln Stein
901337186d add .git-blame-ignore-revs file to maintain provenance (#2855)
To avoid `git blame` recording all the autoformatting changes under the
name 'lstein', this PR adds a `.git-blame-ignore-revs` that will ignore
any provenance changes that occurred during the recent refactor merge.
2023-03-05 22:58:34 -05:00
Lincoln Stein
7e2f64f60b Merge branch 'main' into refactor/maintain-blame-provenance 2023-03-05 22:57:50 -05:00
Lincoln Stein
126cba2324 Bugfix/reenable ckpt conversion to ram (#2868)
This fixes the crash that was occurring when trying to load a legacy
checkpoint file.

Note that this PR includes commits from #2867 to avoid diffusers files
from re-downloading at startup time.
2023-03-05 22:57:19 -05:00
Lincoln Stein
2f9dcd7906 support both epsilon and v-prediction v2 inference
There are actually two Stable Diffusion v2 legacy checkpoint
configurations:

1) "epsilon" prediction type for Stable Diffusion v2 Base
2) "v-prediction" type for Stable Diffusion v2-768

This commit adds the configuration file needed for epsilon prediction
type models as well as the UI that prompts the user to select the
appropriate configuration file when the code can't do so
automatically.
2023-03-05 22:51:40 -05:00
blessedcoolant
e537b5d8e1 Revert "Merge branch 'main' into bugfix/reenable-ckpt-conversion-to-ram"
This reverts commit e0e70c9222, reversing
changes made to 0b184913b9.
2023-03-06 14:29:39 +13:00
blessedcoolant
e0e70c9222 Merge branch 'main' into bugfix/reenable-ckpt-conversion-to-ram 2023-03-06 14:27:30 +13:00
blessedcoolant
1b21e5df54 Migrate to new HF diffusers cache location (#2867)
# Migrate to new HF diffusers cache location

This PR adjusts the model cache directory to use the layout of
`diffusers 0.14`. This will automatically migrate any diffusers models
located in `INVOKEAI_ROOT/models/diffusers` to
`INVOKEAI_ROOT/models/hub`, and cache new downloaded diffusers files
into the same location.

As before, if environment variable `HF_HOME` is set, then both
HuggingFace `from_pretrained()` calls as well as all InvokeAI methods
will use `HF_HOME/hub` as their cache.
2023-03-06 13:05:13 +13:00
blessedcoolant
4b76af37ae Merge branch 'main' into enhance/use-new-diffusers-path 2023-03-06 12:42:30 +13:00
mastercaster9000
486c445afb fix typos and replace frontend REAMDE content 2023-03-05 21:05:09 +00:00
mastercaster9000
4547c48013 add docs for local development including tests 2023-03-05 19:59:06 +00:00
blessedcoolant
8f21201c91 [ui]: migrate all styling to chakra-ui theme (#2814)
- Migrate UI from SCSS to Chakra's CSS-in-JS system 
  - better dx
  - more capable theming 
  - full RTL language support (we now have Arabic and Hebrew)
  - general cleanup of the whole UI's styling
- Tidy npm packages and update scripts, necessitates update to github
actions

To test this PR in dev mode, you will need to do a `yarn install` as a
lot has changed.

thanks to @blessedcoolant for helping out on this, it was a big effort.
2023-03-06 07:23:59 +13:00
blessedcoolant
532b74a206 Merge branch 'main' into feat/ui/chakra-theme 2023-03-06 06:54:33 +13:00
Lincoln Stein
0b184913b9 Merge branch 'main' into bugfix/reenable-ckpt-conversion-to-ram 2023-03-05 12:37:43 -05:00
Matthias Wild
97719e40e4 fix Dockerfile after restructure (#2863)
this PR should close #2862
2023-03-05 18:33:00 +01:00
Lincoln Stein
5ad3062b66 Merge branch 'main' into fix/broken-dockerfile-2862 2023-03-05 12:32:25 -05:00
Lincoln Stein
92d012a92d Merge branch 'main' into enhance/use-new-diffusers-path 2023-03-05 12:30:24 -05:00
Lincoln Stein
fc187f263e deal with non-directories in diffusers/ 2023-03-05 12:29:52 -05:00
Lincoln Stein
fd94f85abe remove legacy ldm code (#2866)
This removes modules that appear to be no longer used by any code under
the `invokeai` package now that the `ckpt_generator` is gone.

There are a few small changes in here to code that was referencing code
in a conditional branch for ckpt, or to swap out a  function for a
🤗 one, but only as much was strictly necessary to get things to
run. We'll follow with more clean-up to get lingering `if isinstance` or
`except AttributeError` branches later.
2023-03-05 12:10:38 -05:00
Lincoln Stein
4e9e1b660d respect HF_HOME setting when migrating 2023-03-05 12:08:29 -05:00
Lincoln Stein
d01adedff5 give user chance to back out before migration 2023-03-05 12:04:31 -05:00
mastercaster9000
c247f430f7 combine pytest.ini with pyproject.toml 2023-03-05 17:00:08 +00:00
mastercaster9000
3d6a358042 remove .coveragerc from source contrl 2023-03-05 16:59:12 +00:00
Lincoln Stein
4d1dcd11de Merge branch 'main' into dev/rm_legacy_deps 2023-03-05 11:50:53 -05:00
Lincoln Stein
b33655b0d6 restore automatic conversion of legacy files to diffusers pipelines 2023-03-05 11:45:25 -05:00
Lincoln Stein
81dee04dc9 during migration do not overwrite symlinks 2023-03-05 08:40:12 -05:00
Jonathan
114018e3e6 Unified spelling of Hugging Face 2023-03-05 07:30:35 -06:00
Lincoln Stein
ef8cf83b28 migrate to new HF diffusers cache location 2023-03-05 08:20:24 -05:00
blessedcoolant
633857b0e3 build(ui): Migrate UI to Chakra 2023-03-05 21:50:50 +13:00
blessedcoolant
214574d11f Merge branch 'feat/ui/chakra-theme' of https://github.com/psychedelicious/InvokeAI into pr/2814 2023-03-05 21:48:08 +13:00
psychedelicious
8584665ade feat(ui): migrate theming to chakra 2023-03-05 19:41:57 +11:00
blessedcoolant
516c56d0c5 feat(ui): Model Manager Cleanup 2023-03-05 21:41:55 +13:00
blessedcoolant
5891b43ce2 Merge branch 'feat/ui/chakra-theme' of https://github.com/psychedelicious/InvokeAI into pr/2814 2023-03-05 21:41:12 +13:00
psychedelicious
62e75f95aa feat(ui): migrate theming to chakra 2023-03-05 19:39:51 +11:00
psychedelicious
b07621e27e chore(ui): build frontend 2023-03-05 19:30:28 +11:00
psychedelicious
545d8968fd feat(ui): migrated theming to chakra
build(ui): fix husky path

build(ui): fix hmr issue, remove emotion cache

build(ui): clean up package.json

build(ui): update gh action and npm scripts

feat(ui): wip port lightbox to chakra theme

feat(ui): wip use chakra theme tokens

feat(ui): Add status text to main loading spinner

feat(ui): wip chakra theme tweaking

feat(ui): simply iaisimplemenu button

feat(ui): wip chakra theming

feat(ui): Theme Management

feat(ui): Add Ocean Blue Theme

feat(ui): wip lightbox

fix(ui): fix lightbox mouse

feat(ui): set default theme variants

feat(ui): model manager chakra theme

chore(ui): lint

feat(ui): remove last scss

feat(ui): fix switch theme

feat(ui): Theme Cleanup

feat(ui): Stylize Search Models Found List

feat(ui): hide scrollbars

feat(ui): fix floating button position

feat(ui): Scrollbar Styling

fix broken scripts

This PR fixes the following scripts:

1) Scripts that can be executed within the repo's scripts directory.
   Note that these are for development testing and are not intended
   to be exposed to the user.

   configure_invokeai.py - configuration
   dream.py              - the legacy CLI
   images2prompt.py      - legacy "dream prompt" retriever
   invoke-new.py         - new nodes-based CLI
   invoke.py             - the legacy CLI under another name
   make_models_markdown_table.py - a utility used during the release/doc process
   pypi_helper.py        - another utility used during the release process
   sd-metadata.py        - retrieve JSON-formatted metadata from a PNG file

2) Scripts that are installed by pip install. They get placed into the venv's
   PATH and are intended to be the official entry points:

   invokeai-node-cli      - new nodes-based CLI
   invokeai-node-web      - new nodes-based web server
   invokeai               - legacy CLI
   invokeai-configure     - install time configuration script
   invokeai-merge         - model merging script
   invokeai-ti            - textual inversion script
   invokeai-model-install - model installer
   invokeai-update        - update script
   invokeai-metadata"     - retrieve JSON-formatted metadata from PNG files

protect invocations against black autoformatting

deps: upgrade to diffusers 0.14, safetensors 0.3, transformers 4.26, accelerate 0.16
2023-03-05 19:30:02 +11:00
Lincoln Stein
7cf2f58513 deps: upgrade to diffusers 0.14, safetensors 0.3, transformers 4.26, accelerate 0.16 (#2865)
Things to check for in this version:

- `diffusers` cache location is now more consistent with other
huggingface-hub using code (i.e. `transformers`) as of
https://github.com/huggingface/diffusers/pull/2005. I think ultimately
this should make @damian0815 (and other folks with multiple
diffusers-using projects) happier, but it's worth taking a look to make
sure the way @lstein set things up to respect `HF_HOME` is still
functioning as intended.
- I've gone ahead and updated `transformers` to the current version
(4.26), but I have a vague memory that we were holding it back at some
point? Need to look that up and see if that's the case and why.
2023-03-05 01:53:01 -05:00
Kevin Turner
618e3e5e91 deps: add explicitly dependency to rich
was previously pulled in as a secondary dependency of something else.
2023-03-04 18:37:39 -08:00
Kevin Turner
c703b60986 remove legacy ldm code 2023-03-04 18:16:59 -08:00
mauwii
7c0ce5c282 fix push expression
- make use of `github.ref_type`
2023-03-05 02:58:13 +01:00
mauwii
82fe34b1f7 update build-container workflow
- switch versioning from semver to pep440
- remove unecesarry paths
- include `.dockerignore` in paths
2023-03-05 02:13:57 +01:00
Kevin Turner
65f9aae81d deps: upgrade to diffusers 0.14, safetensors 0.3, transformers 4.26, accelerate 0.16 2023-03-04 16:32:16 -08:00
mauwii
2d9fac23e7 fix Dockerfile
- update broken paths after restructure
2023-03-04 23:51:07 +01:00
Kyle Schouviller
ebc4b52f41 [cli] Update CLI to define commands as Pydantic objects 2023-03-04 14:46:02 -08:00
Lincoln Stein
c4e6d4b348 fix broken scripts (#2857)
This PR fixes the following scripts:

1) Scripts that can be executed within the repo's scripts directory.
   Note that these are for development testing and are not intended
   to be exposed to the user.
```
   configure_invokeai.py - configuration
   dream.py              - the legacy CLI
   images2prompt.py      - legacy "dream prompt" retriever
   invoke-new.py         - new nodes-based CLI
   invoke.py             - the legacy CLI under another name
   make_models_markdown_table.py - a utility used during the release/doc process
   pypi_helper.py        - another utility used during the release process
   sd-metadata.py        - retrieve JSON-formatted metadata from a PNG file
```

2) Scripts that are installed by pip install. They get placed into the
venv's
   PATH and are intended to be the official entry points:
```
   invokeai-node-cli      - new nodes-based CLI
   invokeai-node-web      - new nodes-based web server
   invokeai               - legacy CLI
   invokeai-configure     - install time configuration script
   invokeai-merge         - model merging script
   invokeai-ti            - textual inversion script
   invokeai-model-install - model installer
   invokeai-update        - update script
   invokeai-metadata"     - retrieve JSON-formatted metadata from PNG files
```
2023-03-04 16:57:45 -05:00
Jonathan
eab32bce6c Merge branch 'main' into bugfix/fix-scripts 2023-03-04 13:19:02 -06:00
Lincoln Stein
55d2094094 Protect invocations against black autoformatting (#2854)
This places `#fmt: off` and `#fmt: on` blocks around sections of the
invocation code that shouldn't be reformatted by Black.
2023-03-04 12:26:43 -05:00
Lincoln Stein
a0d50a2b23 Merge branch 'main' into formatting/undo-black-formatting-of-invocations 2023-03-04 12:05:11 -05:00
Jonathan
9efeb1b2ec Merge branch 'main' into bugfix/fix-scripts 2023-03-03 20:36:29 -06:00
blessedcoolant
86e2cb0428 Fix for txt2img2img.py (#2856)
Fix error when using txt2img 
ModuleNotFoundError: No module named 'invokeai.backend.models'
and
ModuleNotFoundError: No module named
'invokeai.backend.generator.diffusers_pipeline'
2023-03-04 15:24:39 +13:00
mickr777
53c2c0f91d Update txt2img2img.py 2023-03-04 12:58:33 +11:00
Lincoln Stein
bdc7b8b75a fix broken scripts
This PR fixes the following scripts:

1) Scripts that can be executed within the repo's scripts directory.
   Note that these are for development testing and are not intended
   to be exposed to the user.

   configure_invokeai.py - configuration
   dream.py              - the legacy CLI
   images2prompt.py      - legacy "dream prompt" retriever
   invoke-new.py         - new nodes-based CLI
   invoke.py             - the legacy CLI under another name
   make_models_markdown_table.py - a utility used during the release/doc process
   pypi_helper.py        - another utility used during the release process
   sd-metadata.py        - retrieve JSON-formatted metadata from a PNG file

2) Scripts that are installed by pip install. They get placed into the venv's
   PATH and are intended to be the official entry points:

   invokeai-node-cli      - new nodes-based CLI
   invokeai-node-web      - new nodes-based web server
   invokeai               - legacy CLI
   invokeai-configure     - install time configuration script
   invokeai-merge         - model merging script
   invokeai-ti            - textual inversion script
   invokeai-model-install - model installer
   invokeai-update        - update script
   invokeai-metadata"     - retrieve JSON-formatted metadata from PNG files
2023-03-03 20:19:37 -05:00
mickr777
1bfdd54810 Update txt2img2img.py 2023-03-04 11:23:21 +11:00
Lincoln Stein
b4bf6c12a5 add .git-blame-ignore-revs file to maintain provenance
To avoid `git blame` recording all the autoformatting changes
under the name 'lstein', this PR adds a `.git-blame-ignore-revs`
that will ignore any provenance changes that occurred during the
recent refactor merge.
2023-03-03 16:23:48 -05:00
Lincoln Stein
ab35c241c2 protect invocations against black autoformatting 2023-03-03 15:25:08 -05:00
Lincoln Stein
b3dccfaeb6 Final phase of source tree restructure (#2833)
# All python code has been moved under `invokeai`. All vestiges of `ldm`
and `ldm.invoke` are now gone.

***You will need to run `pip install -e .` before the code will work
again!***

Everything seems to be functional, but extensive testing is advised.

A guide to where the files have gone is forthcoming.
2023-03-03 15:05:41 -05:00
Lincoln Stein
6477e31c1e revert and disable auto-formatting of invocations 2023-03-03 14:59:17 -05:00
Lincoln Stein
dd4a1c998b merge localisation files that were added in main 2023-03-03 14:47:01 -05:00
Lincoln Stein
70203e6e5a CODEOWNERS coarse draft 2023-03-03 14:36:43 -05:00
psychedelicious
d778a7c5ca ui: translations update from weblate (#2850)
Translations update from [Hosted Weblate](https://hosted.weblate.org)
for [InvokeAI/Web
UI](https://hosted.weblate.org/projects/invokeai/web-ui/).



Current translation status:

![Weblate translation
status](https://hosted.weblate.org/widgets/invokeai/-/web-ui/horizontal-auto.svg)
2023-03-03 20:07:34 +11:00
LemonDouble
f8e59636cd translationBot(ui): update translation (Korean)
Currently translated at 15.5% (73 of 469 strings)

translationBot(ui): added translation (Korean)

Co-authored-by: LemonDouble <lemondouble2@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ko/
Translation: InvokeAI/Web UI
2023-03-03 10:06:13 +01:00
Airton Silva
2d1a0b0a05 translationBot(ui): update translation (Portuguese)
Currently translated at 12.7% (60 of 469 strings)

Co-authored-by: Airton Silva <airtonsilva2009@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/pt/
Translation: InvokeAI/Web UI
2023-03-03 10:06:13 +01:00
Dennis
c9b2234d90 translationBot(ui): update translation (Dutch)
Currently translated at 100.0% (469 of 469 strings)

Co-authored-by: Dennis <dennis@vanzoerlandt.nl>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/nl/
Translation: InvokeAI/Web UI
2023-03-03 10:06:12 +01:00
Netzer R
82b224539b translationBot(ui): update translation (Hebrew)
Currently translated at 100.0% (469 of 469 strings)

translationBot(ui): added translation (Hebrew)

Co-authored-by: Netz <pixi@pixelabs.net>
Co-authored-by: Netzer R <pixi@pixelabs.net>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/he/
Translation: InvokeAI/Web UI
2023-03-03 10:06:12 +01:00
Gabriel Mackievicz Telles
0b15ffb95b translationBot(ui): update translation (Portuguese)
Currently translated at 12.5% (59 of 469 strings)

translationBot(ui): added translation (Portuguese)

Co-authored-by: Gabriel Mackievicz Telles <telles.gabriel@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/pt/
Translation: InvokeAI/Web UI
2023-03-03 10:06:11 +01:00
psychedelicious
ce9aaab22f translationBot(ui): added translation (Chinese (Traditional))
Co-authored-by: psychedelicious <mabianfu@icloud.com>
2023-03-03 10:06:11 +01:00
Lincoln Stein
3f53f1186d move diagnostic message to stderr; was confusing CI 2023-03-03 01:54:48 -05:00
Lincoln Stein
c0aff396d2 fix ldm->invokeai pathnames in workflows 2023-03-03 01:44:55 -05:00
Lincoln Stein
955900507f fix issue with invokeai.version 2023-03-03 01:34:38 -05:00
Lincoln Stein
d606abc544 fix weblint call 2023-03-03 01:09:56 -05:00
Lincoln Stein
44400d2a66 fix incorrect import of merge code 2023-03-03 01:07:31 -05:00
Lincoln Stein
60a98cacef all vestiges of ldm.invoke removed 2023-03-03 01:02:00 -05:00
Lincoln Stein
6a990565ff all files migrated; tweaks needed 2023-03-03 00:02:15 -05:00
Lincoln Stein
3f0b0f3250 almost all of backend migrated; restoration next 2023-03-02 13:28:17 -05:00
Lincoln Stein
1a7371ea17 remove unused embeddings code 2023-03-01 21:09:22 -05:00
Lincoln Stein
850d1ee984 move models and modules under invokeai/backend/ldm 2023-03-01 18:24:18 -05:00
Lincoln Stein
2c7928b163 remove pycaches from repo 2023-02-28 23:25:35 -05:00
Lincoln Stein
87d1ec6a4c Merge branch 'main' into refactor/move-models-and-generators 2023-02-28 17:34:05 -05:00
Lincoln Stein
53c62537f7 fix newlines causing negative prompt to be parsed incorrectly (#2837)
closes #2753
2023-02-28 17:29:46 -05:00
Damian Stewart
418d93fdfd fix newlines causing negative prompt to be parsed incorrectly 2023-02-28 22:37:28 +01:00
Lincoln Stein
f2ce2f1778 fix import of moved model_manager module 2023-02-28 08:38:14 -05:00
Lincoln Stein
5b6c61fc75 move models and generator into backend 2023-02-28 08:32:11 -05:00
Lincoln Stein
1d77581d96 restore behavior of !import_model; fix initial models bug 2023-02-28 00:45:56 -05:00
Lincoln Stein
3b921cf393 add more missing files 2023-02-28 00:37:13 -05:00
Lincoln Stein
d334f7f1f6 add missing files 2023-02-28 00:31:15 -05:00
Lincoln Stein
8c9764476c first phase of source tree restructure
This is the first phase of a big shifting of files and directories
in the source tree.

You will need to run `pip install -e .` before the code will work again!

Here's what's in the current commit:

1) Remove a lot of dead code that dealt with checkpoint and safetensor loading.
2) Entire ckpt_generator hierarchy is now gone!
3) ldm.invoke.generator.*   => invokeai.generator.*
4) ldm.model.*              => invokeai.model.*
5) ldm.invoke.model_manager => invokeai.model.model_manager

6) In addition, a number of frequently-accessed classes can be imported
   from the invokeai.model and invokeai.generator modules:

   from invokeai.generator import ( Generator, PipelineIntermediateState,
                                    StableDiffusionGeneratorPipeline, infill_methods)

   from invokeai.models import ( ModelManager, SDLegacyType
                                 InvokeAIDiffuserComponent, AttentionMapSaver,
                                 DDIMSampler, KSampler, PLMSSampler,
                                 PostprocessingSettings )
2023-02-27 23:52:46 -05:00
Kyle Schouviller
b7d5a3e0b5 [nodes] Add better error handling to processor and CLI (#2828)
* [nodes] Add better error handling to processor and CLI

* [nodes] Use more explicit name for marking node execution error

* [nodes] Update the processor call to error
2023-02-27 10:01:07 -08:00
Lincoln Stein
e0405031a7 add a workflow to close stale issues (#2808)
with values set as discussed in discord
2023-02-26 16:14:42 -05:00
Lincoln Stein
ee24b686b3 Merge branch 'main' into dev/ci/add-close-inactive-issues 2023-02-26 16:14:03 -05:00
Lincoln Stein
835eb14c79 Split requirements / pyproject installation in Dockerfile (#2815)
This should make caching way easier and therefore speed up the image
(re-)creation a lot.

Other small improvements:
- reorder .dockerignore
- rename amd flavor to rocm to align with cuda flavor
- use `user:group` for definitions
- add `--platform=${TARGETPLATFORM}` to base
2023-02-26 13:48:32 -05:00
Lincoln Stein
9aadf7abc1 Merge branch 'main' into dev/ci/add-close-inactive-issues 2023-02-26 13:13:42 -05:00
Lincoln Stein
243f9e8377 Merge branch 'main' into dev/docker/separate-req-inst 2023-02-26 13:13:07 -05:00
blessedcoolant
6e0c6d9cc9 perf(invoke_ai_web_server): encode intermediate result previews as jpeg (#2817)
For size savings of about 80%, and jpeg encoding is still plenty fast.
2023-02-26 18:47:51 +13:00
Kevin Turner
a3076cf951 perf(invoke_ai_web_server): encode intermediate result previews as jpeg
For size savings of about 80%, and jpeg encoding is still plenty fast.
2023-02-25 21:23:25 -08:00
blessedcoolant
6696882c71 doc(invoke_ai_web_server): put docstrings inside their functions (#2816)
Documentation strings are the first thing inside the function body.
https://docs.python.org/3/tutorial/controlflow.html#defining-functions
2023-02-26 18:20:10 +13:00
Kevin Turner
17b039e85d doc(invoke_ai_web_server): put docstrings inside their functions
Documentation strings are the first thing inside the function body.
https://docs.python.org/3/tutorial/controlflow.html#defining-functions
2023-02-25 20:21:47 -08:00
mauwii
81539e6ab4 Merge remote-tracking branch 'upstream/main' into dev/docker/separate-req-inst 2023-02-26 00:55:03 +01:00
mauwii
92304b9f8a remove pip-tools, still split requirements install
- also use user:group for definitions
- add `--platform=${TARGETPLATFORM}` to base
2023-02-26 00:53:43 +01:00
mauwii
ec1de5ae8b more detailed volume parameters 2023-02-26 00:51:30 +01:00
mauwii
49198a61ef enable BuildKit in env.sh 2023-02-26 00:50:13 +01:00
blessedcoolant
c22d529528 Add node-based invocation system (#1650)
This PR adds the core of the node-based invocation system first
discussed in https://github.com/invoke-ai/InvokeAI/discussions/597 and
implements it through a basic CLI and API. This supersedes #1047, which
was too far behind to rebase.

## Architecture

### Invocations
The core of the new system is **invocations**, found in
`/ldm/invoke/app/invocations`. These represent individual nodes of
execution, each with inputs and outputs. Core invocations are already
implemented (`txt2img`, `img2img`, `upscale`, `face_restore`) as well as
a debug invocation (`show_image`). To implement a new invocation, all
that is required is to add a new implementation in this folder (there is
a markdown document describing the specifics, though it is slightly
out-of-date).

### Sessions
Invocations and links between them are maintained in a **session**.
These can be queued for invocation (either the next ready node, or all
nodes). Some notes:
* Sessions may be added to at any time (including after invocation), but
may not be modified.
* Links are always added with a node, and are always links from existing
nodes to the new node. These links can be relative "history" links, e.g.
`-1` to link from a previously executed node, and can link either
specific outputs, or can opportunistically link all matching outputs by
name and type by using `*`.
* There are no iteration/looping constructs. Most needs for this could
be solved by either duplicating nodes or cloning sessions. This is open
for discussion, but is a difficult problem to solve in a way that
doesn't make the code even more complex/confusing (especially regarding
node ids and history).

### Services
These make up the core the invocation system, found in
`/ldm/invoke/app/services`. One of the key design philosophies here is
that most components should be replaceable when possible. For example,
if someone wants to use cloud storage for their images, they should be
able to replace the image storage service easily.

The services are broken down as follows (several of these are
intentionally implemented with an initial simple/naïve approach):
* Invoker: Responsible for creating and executing **sessions** and
managing services used to do so.
* Session Manager: Manages session history. An on-disk implementation is
provided, which stores sessions as json files on disk, and caches
recently used sessions for quick access.
* Image Storage: Stores images of multiple types. An on-disk
implementation is provided, which stores images on disk and retains
recently used images in an in-memory cache.
* Invocation Queue: Used to queue invocations for execution. An
in-memory implementation is provided.
* Events: An event system, primarily used with socket.io to support
future web UI integration.

## Apps

Apps are available through the `/scripts/invoke-new.py` script (to-be
integrated/renamed).

### CLI
```
python scripts/invoke-new.py
```

Implements a simple CLI. The CLI creates a single session, and
automatically links all inputs to the previous node's output. Commands
are automatically generated from all invocations, with command options
being automatically generated from invocation inputs. Help is also
available for the cli and for each command, and is very verbose.
Additionally, the CLI supports command piping for single-line entry of
multiple commands. Example:

```
> txt2img --prompt "a cat eating sushi" --steps 20 --seed 1234 | upscale | show_image
```

### API
```
python scripts/invoke-new.py --api --host 0.0.0.0
```

Implements an API using FastAPI with Socket.io support for signaling.
API documentation is available at `http://localhost:9090/docs` or
`http://localhost:9090/redoc`. This includes OpenAPI schema for all
available invocations, session interaction APIs, and image APIs.
Socket.io signals are per-session, and can be subscribed to by session
id. These aren't currently auto-documented, though the code for event
emission is centralized in `/ldm/invoke/app/services/events.py`.

A very simple test html and script are available at
`http://localhost:9090/static/test.html` This demonstrates creating a
session from a graph, invoking it, and receiving signals from Socket.io.

## What's left?

* There are a number of features not currently covered by invocations. I
kept the set of invocations small during core development in order to
simplify refactoring as I went. Now that the invocation code has
stabilized, I'd love some help filling those out!
* There's no image metadata generated. It would be fairly
straightforward (and would make good sense) to serialize either a
session and node reference into an image, or the entire node into the
image. There are a lot of questions to answer around source images,
linked images, etc. though. This history is all stored in the session as
well, and with complex sessions, the metadata in an image may lose its
value. This needs some further discussion.
* We need a list of features (both current and future) that would be
difficult to implement without looping constructs so we can have a good
conversation around it. I'm really hoping we can avoid needing
looping/iteration in the graph execution, since it'll necessitate
separating an execution of a graph into its own concept/system, and will
further complicate the system.
* The API likely needs further filling out to support the UI. I think
using the new API for the current UI is possible, and potentially
interesting, since it could work like the new/demo CLI in a "single
operation at a time" workflow. I don't know how compatible that will be
with our UI goals though. It would be nice to support only a single API
though.
* Deeper separation of systems. I intentionally tried to not touch
Generate or other systems too much, but a lot could be gained by
breaking those apart. Even breaking apart Args into two pieces (command
line arguments and the parser for the current CLI) would make it easier
to maintain. This is probably in the future though.
2023-02-26 12:25:41 +13:00
mauwii
8c5773abc1 add a workflow to close stale issues
with values set as discussed in discord
2023-02-25 13:20:05 +01:00
mauwii
01f8c37bd3 rename amd flavor to rocm 2023-02-24 06:20:44 +01:00
mauwii
b7718985d5 update build-container.yml
- add branches 'dev/ci/docker/*' and 'dev/docker/*'
2023-02-24 03:58:22 +01:00
mauwii
90cda11868 separate installation of requirements and source
this should highly increase rebuilding of the image when:
- version did not change
- requirements didn't change
2023-02-24 03:51:18 +01:00
mauwii
5cb877e096 reorder .dockerignore 2023-02-24 02:53:27 +01:00
806 changed files with 30652 additions and 35691 deletions

View File

@@ -1,6 +0,0 @@
[run]
omit='.env/*'
source='.'
[report]
show_missing = true

View File

@@ -4,22 +4,22 @@
!ldm
!pyproject.toml
# Guard against pulling in any models that might exist in the directory tree
**/*.pt*
**/*.ckpt
# ignore frontend but whitelist dist
invokeai/frontend/
!invokeai/frontend/dist/
# ignore frontend/web but whitelist dist
invokeai/frontend/web/
!invokeai/frontend/web/dist/
# ignore invokeai/assets but whitelist invokeai/assets/web
invokeai/assets/
!invokeai/assets/web/
# Guard against pulling in any models that might exist in the directory tree
**/*.pt*
**/*.ckpt
# Byte-compiled / optimized / DLL files
**/__pycache__/
**/*.py[cod]
# Distribution / packaging
*.egg-info/
*.egg
**/*.egg-info/
**/*.egg

1
.git-blame-ignore-revs Normal file
View File

@@ -0,0 +1 @@
b3dccfaeb636599c02effc377cdd8a87d658256c

53
.github/CODEOWNERS vendored
View File

@@ -3,49 +3,32 @@
# documentation
/docs/ @lstein @mauwii @tildebyte @blessedcoolant
mkdocs.yml @lstein @mauwii @blessedcoolant
/mkdocs.yml @lstein @mauwii @blessedcoolant
# nodes
/invokeai/app/ @Kyle0654 @blessedcoolant
# installation and configuration
/pyproject.toml @mauwii @lstein @ebr @blessedcoolant
/pyproject.toml @mauwii @lstein @blessedcoolant
/docker/ @mauwii @lstein @blessedcoolant
/scripts/ @ebr @lstein @blessedcoolant
/installer/ @ebr @lstein @tildebyte @blessedcoolant
ldm/invoke/config @lstein @ebr @blessedcoolant
invokeai/assets @lstein @ebr @blessedcoolant
invokeai/configs @lstein @ebr @blessedcoolant
/ldm/invoke/_version.py @lstein @blessedcoolant
/scripts/ @ebr @lstein
/installer/ @lstein @ebr
/invokeai/assets @lstein @ebr
/invokeai/configs @lstein
/invokeai/version @lstein @blessedcoolant
# web ui
/invokeai/frontend @blessedcoolant @psychedelicious @lstein
/invokeai/backend @blessedcoolant @psychedelicious @lstein
# generation and model management
/ldm/*.py @lstein @blessedcoolant
/ldm/generate.py @lstein @keturn @blessedcoolant
/ldm/invoke/args.py @lstein @blessedcoolant
/ldm/invoke/ckpt* @lstein @blessedcoolant
/ldm/invoke/ckpt_generator @lstein @blessedcoolant
/ldm/invoke/CLI.py @lstein @blessedcoolant
/ldm/invoke/config @lstein @ebr @mauwii @blessedcoolant
/ldm/invoke/generator @keturn @damian0815 @blessedcoolant
/ldm/invoke/globals.py @lstein @blessedcoolant
/ldm/invoke/merge_diffusers.py @lstein @blessedcoolant
/ldm/invoke/model_manager.py @lstein @blessedcoolant
/ldm/invoke/txt2mask.py @lstein @blessedcoolant
/ldm/invoke/patchmatch.py @Kyle0654 @blessedcoolant @lstein
/ldm/invoke/restoration @lstein @blessedcoolant
# generation, model management, postprocessing
/invokeai/backend @keturn @damian0815 @lstein @blessedcoolant @jpphoto
# attention, textual inversion, model configuration
/ldm/models @damian0815 @keturn @lstein @blessedcoolant
/ldm/modules @damian0815 @keturn @lstein @blessedcoolant
# front ends
/invokeai/frontend/CLI @lstein
/invokeai/frontend/install @lstein @ebr @mauwii
/invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/training @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/web @psychedelicious @blessedcoolant
# Nodes
apps/ @Kyle0654 @lstein @blessedcoolant
# legacy REST API
# is CapableWeb still engaged?
/ldm/invoke/pngwriter.py @CapableWeb @lstein @blessedcoolant
/ldm/invoke/server_legacy.py @CapableWeb @lstein @blessedcoolant
/scripts/legacy_api.py @CapableWeb @lstein @blessedcoolant
/tests/legacy_tests.sh @CapableWeb @lstein @blessedcoolant

View File

@@ -65,6 +65,16 @@ body:
placeholder: 8GB
validations:
required: false
- type: input
id: version-number
attributes:
label: What version did you experience this issue on?
description: |
Please share the version of Invoke AI that you experienced the issue on. If this is not the latest version, please update first to confirm the issue still exists. If you are testing main, please include the commit hash instead.
placeholder: X.X.X
validations:
required: true
- type: textarea
id: what-happened

View File

@@ -5,17 +5,20 @@ on:
- 'main'
- 'update/ci/docker/*'
- 'update/docker/*'
- 'dev/ci/docker/*'
- 'dev/docker/*'
paths:
- 'pyproject.toml'
- 'ldm/**'
- 'invokeai/backend/**'
- 'invokeai/configs/**'
- 'invokeai/frontend/dist/**'
- '.dockerignore'
- 'invokeai/**'
- 'docker/Dockerfile'
tags:
- 'v*.*.*'
workflow_dispatch:
permissions:
contents: write
packages: write
jobs:
docker:
@@ -24,11 +27,11 @@ jobs:
fail-fast: false
matrix:
flavor:
- amd
- rocm
- cuda
- cpu
include:
- flavor: amd
- flavor: rocm
pip-extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
- flavor: cuda
pip-extra-index-url: ''
@@ -54,9 +57,9 @@ jobs:
tags: |
type=ref,event=branch
type=ref,event=tag
type=semver,pattern={{version}}
type=semver,pattern={{major}}.{{minor}}
type=semver,pattern={{major}}
type=pep440,pattern={{version}}
type=pep440,pattern={{major}}.{{minor}}
type=pep440,pattern={{major}}
type=sha,enable=true,prefix=sha-,format=short
flavor: |
latest=${{ matrix.flavor == 'cuda' && github.ref == 'refs/heads/main' }}
@@ -92,7 +95,7 @@ jobs:
context: .
file: ${{ env.DOCKERFILE }}
platforms: ${{ env.PLATFORMS }}
push: ${{ github.ref == 'refs/heads/main' || github.ref == 'refs/tags/*' }}
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
build-args: PIP_EXTRA_INDEX_URL=${{ matrix.pip-extra-index-url }}

View File

@@ -0,0 +1,27 @@
name: Close inactive issues
on:
schedule:
- cron: "00 6 * * *"
env:
DAYS_BEFORE_ISSUE_STALE: 14
DAYS_BEFORE_ISSUE_CLOSE: 28
jobs:
close-issues:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: write
steps:
- uses: actions/stale@v5
with:
days-before-issue-stale: ${{ env.DAYS_BEFORE_ISSUE_STALE }}
days-before-issue-close: ${{ env.DAYS_BEFORE_ISSUE_CLOSE }}
stale-issue-label: "Inactive Issue"
stale-issue-message: "There has been no activity in this issue for ${{ env.DAYS_BEFORE_ISSUE_STALE }} days. If this issue is still being experienced, please reply with an updated confirmation that the issue is still being experienced with the latest release."
close-issue-message: "Due to inactivity, this issue was automatically closed. If you are still experiencing the issue, please recreate the issue."
days-before-pr-stale: -1
days-before-pr-close: -1
repo-token: ${{ secrets.GITHUB_TOKEN }}
operations-per-run: 500

View File

@@ -3,14 +3,22 @@ name: Lint frontend
on:
pull_request:
paths:
- 'invokeai/frontend/**'
- 'invokeai/frontend/web/**'
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
push:
branches:
- 'main'
paths:
- 'invokeai/frontend/**'
- 'invokeai/frontend/web/**'
merge_group:
workflow_dispatch:
defaults:
run:
working-directory: invokeai/frontend
working-directory: invokeai/frontend/web
jobs:
lint-frontend:
@@ -23,7 +31,7 @@ jobs:
node-version: '18'
- uses: actions/checkout@v3
- run: 'yarn install --frozen-lockfile'
- run: 'yarn tsc'
- run: 'yarn run madge'
- run: 'yarn run lint --max-warnings=0'
- run: 'yarn run prettier --check'
- run: 'yarn run lint:tsc'
- run: 'yarn run lint:madge'
- run: 'yarn run lint:eslint'
- run: 'yarn run lint:prettier'

View File

@@ -5,6 +5,9 @@ on:
- 'main'
- 'development'
permissions:
contents: write
jobs:
mkdocs-material:
if: github.event.pull_request.draft == false

View File

@@ -3,7 +3,7 @@ name: PyPI Release
on:
push:
paths:
- 'ldm/invoke/_version.py'
- 'invokeai/version/invokeai_version.py'
workflow_dispatch:
jobs:

View File

@@ -1,12 +1,11 @@
name: Test invoke.py pip
on:
pull_request:
paths-ignore:
- 'pyproject.toml'
- 'ldm/**'
- 'invokeai/backend/**'
- 'invokeai/configs/**'
- 'invokeai/frontend/dist/**'
paths:
- '**'
- '!pyproject.toml'
- '!invokeai/**'
- 'invokeai/frontend/web/**'
merge_group:
workflow_dispatch:

View File

@@ -5,17 +5,13 @@ on:
- 'main'
paths:
- 'pyproject.toml'
- 'ldm/**'
- 'invokeai/backend/**'
- 'invokeai/configs/**'
- 'invokeai/frontend/dist/**'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
pull_request:
paths:
- 'pyproject.toml'
- 'ldm/**'
- 'invokeai/backend/**'
- 'invokeai/configs/**'
- 'invokeai/frontend/dist/**'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
types:
- 'ready_for_review'
- 'opened'
@@ -112,7 +108,7 @@ jobs:
- name: set INVOKEAI_OUTDIR
run: >
python -c
"import os;from ldm.invoke.globals import Globals;OUTDIR=os.path.join(Globals.root,str('outputs'));print(f'INVOKEAI_OUTDIR={OUTDIR}')"
"import os;from invokeai.backend.globals import Globals;OUTDIR=os.path.join(Globals.root,str('outputs'));print(f'INVOKEAI_OUTDIR={OUTDIR}')"
>> ${{ matrix.github-env }}
- name: run invokeai-configure

12
.gitignore vendored
View File

@@ -63,6 +63,7 @@ pip-delete-this-directory.txt
htmlcov/
.tox/
.nox/
.coveragerc
.coverage
.coverage.*
.cache
@@ -73,6 +74,7 @@ cov.xml
*.py,cover
.hypothesis/
.pytest_cache/
.pytest.ini
cover/
junit/
@@ -198,7 +200,7 @@ checkpoints
.DS_Store
# Let the frontend manage its own gitignore
!invokeai/frontend/*
!invokeai/frontend/web/*
# Scratch folder
.scratch/
@@ -213,11 +215,6 @@ gfpgan/
# config file (will be created by installer)
configs/models.yaml
# weights (will be created by installer)
models/ldm/stable-diffusion-v1/*.ckpt
models/clipseg
models/gfpgan
# ignore initfile
.invokeai
@@ -232,6 +229,3 @@ installer/install.bat
installer/install.sh
installer/update.bat
installer/update.sh
# no longer stored in source directory
models

View File

@@ -1,5 +0,0 @@
[pytest]
DJANGO_SETTINGS_MODULE = webtas.settings
; python_files = tests.py test_*.py *_tests.py
addopts = --cov=. --cov-config=.coveragerc --cov-report xml:cov.xml

View File

@@ -139,13 +139,13 @@ not supported.
_For Windows/Linux with an NVIDIA GPU:_
```terminal
pip install InvokeAI[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu117
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu117
```
_For Linux with an AMD GPU:_
```sh
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.2
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
_For Macintoshes, either Intel or M1/M2:_

4
coverage/.gitignore vendored Normal file
View File

@@ -0,0 +1,4 @@
# Ignore everything in this directory
*
# Except this file
!.gitignore

View File

@@ -4,15 +4,15 @@ ARG PYTHON_VERSION=3.9
##################
## base image ##
##################
FROM python:${PYTHON_VERSION}-slim AS python-base
FROM --platform=${TARGETPLATFORM} python:${PYTHON_VERSION}-slim AS python-base
LABEL org.opencontainers.image.authors="mauwii@outlook.de"
# prepare for buildkit cache
# Prepare apt for buildkit cache
RUN rm -f /etc/apt/apt.conf.d/docker-clean \
&& echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' >/etc/apt/apt.conf.d/keep-cache
# Install necessary packages
# Install dependencies
RUN \
--mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
@@ -23,7 +23,7 @@ RUN \
libglib2.0-0=2.66.* \
libopencv-dev=4.5.*
# set working directory and env
# Set working directory and env
ARG APPDIR=/usr/src
ARG APPNAME=InvokeAI
WORKDIR ${APPDIR}
@@ -32,7 +32,7 @@ ENV PATH ${APPDIR}/${APPNAME}/bin:$PATH
ENV PYTHONDONTWRITEBYTECODE 1
# Turns off buffering for easier container logging
ENV PYTHONUNBUFFERED 1
# don't fall back to legacy build system
# Don't fall back to legacy build system
ENV PIP_USE_PEP517=1
#######################
@@ -40,7 +40,7 @@ ENV PIP_USE_PEP517=1
#######################
FROM python-base AS pyproject-builder
# Install dependencies
# Install build dependencies
RUN \
--mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
@@ -51,26 +51,30 @@ RUN \
gcc=4:10.2.* \
python3-dev=3.9.*
# prepare pip for buildkit cache
# Prepare pip for buildkit cache
ARG PIP_CACHE_DIR=/var/cache/buildkit/pip
ENV PIP_CACHE_DIR ${PIP_CACHE_DIR}
RUN mkdir -p ${PIP_CACHE_DIR}
# create virtual environment
RUN --mount=type=cache,target=${PIP_CACHE_DIR},sharing=locked \
# Create virtual environment
RUN --mount=type=cache,target=${PIP_CACHE_DIR} \
python3 -m venv "${APPNAME}" \
--upgrade-deps
# copy sources
COPY --link . .
# install pyproject.toml
# Install requirements
COPY --link pyproject.toml .
COPY --link invokeai/version/invokeai_version.py invokeai/version/__init__.py invokeai/version/
ARG PIP_EXTRA_INDEX_URL
ENV PIP_EXTRA_INDEX_URL ${PIP_EXTRA_INDEX_URL}
RUN --mount=type=cache,target=${PIP_CACHE_DIR},sharing=locked \
RUN --mount=type=cache,target=${PIP_CACHE_DIR} \
"${APPNAME}"/bin/pip install .
# Install pyproject.toml
COPY --link . .
RUN --mount=type=cache,target=${PIP_CACHE_DIR} \
"${APPNAME}/bin/pip" install .
# build patchmatch
# Build patchmatch
RUN python3 -c "from patchmatch import patch_match"
#####################
@@ -86,14 +90,14 @@ RUN useradd \
-U \
"${UNAME}"
# create volume directory
# Create volume directory
ARG VOLUME_DIR=/data
RUN mkdir -p "${VOLUME_DIR}" \
&& chown -R "${UNAME}" "${VOLUME_DIR}"
&& chown -hR "${UNAME}:${UNAME}" "${VOLUME_DIR}"
# setup runtime environment
USER ${UNAME}
COPY --chown=${UNAME} --from=pyproject-builder ${APPDIR}/${APPNAME} ${APPNAME}
# Setup runtime environment
USER ${UNAME}:${UNAME}
COPY --chown=${UNAME}:${UNAME} --from=pyproject-builder ${APPDIR}/${APPNAME} ${APPNAME}
ENV INVOKEAI_ROOT ${VOLUME_DIR}
ENV TRANSFORMERS_CACHE ${VOLUME_DIR}/.cache
ENV INVOKE_MODEL_RECONFIGURE "--yes --default_only"

View File

@@ -41,7 +41,7 @@ else
fi
# Build Container
DOCKER_BUILDKIT=1 docker build \
docker build \
--platform="${PLATFORM:-linux/amd64}" \
--tag="${CONTAINER_IMAGE:-invokeai}" \
${CONTAINER_FLAVOR:+--build-arg="CONTAINER_FLAVOR=${CONTAINER_FLAVOR}"} \

View File

@@ -49,3 +49,6 @@ CONTAINER_FLAVOR="${CONTAINER_FLAVOR-cuda}"
CONTAINER_TAG="${CONTAINER_TAG-"${INVOKEAI_BRANCH##*/}-${CONTAINER_FLAVOR}"}"
CONTAINER_IMAGE="${CONTAINER_REGISTRY}/${CONTAINER_REPOSITORY}:${CONTAINER_TAG}"
CONTAINER_IMAGE="${CONTAINER_IMAGE,,}"
# enable docker buildkit
export DOCKER_BUILDKIT=1

View File

@@ -21,10 +21,10 @@ docker run \
--tty \
--rm \
--platform="${PLATFORM}" \
--name="${REPOSITORY_NAME,,}" \
--hostname="${REPOSITORY_NAME,,}" \
--mount=source="${VOLUMENAME}",target=/data \
--mount type=bind,source="$(pwd)"/outputs,target=/data/outputs \
--name="${REPOSITORY_NAME}" \
--hostname="${REPOSITORY_NAME}" \
--mount type=volume,volume-driver=local,source="${VOLUMENAME}",target=/data \
--mount type=bind,source="$(pwd)"/outputs/,target=/data/outputs/ \
${MODELSPATH:+--mount="type=bind,source=${MODELSPATH},target=/data/models"} \
${HUGGING_FACE_HUB_TOKEN:+--env="HUGGING_FACE_HUB_TOKEN=${HUGGING_FACE_HUB_TOKEN}"} \
--publish=9090:9090 \
@@ -32,7 +32,7 @@ docker run \
${GPU_FLAGS:+--gpus="${GPU_FLAGS}"} \
"${CONTAINER_IMAGE}" ${@:+$@}
# Remove Trash folder
echo -e "\nCleaning trash folder ..."
for f in outputs/.Trash*; do
if [ -e "$f" ]; then
rm -Rf "$f"

Binary file not shown.

After

Width:  |  Height:  |  Size: 470 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 457 KiB

View File

@@ -0,0 +1,83 @@
# Local Development
If you are looking to contribute you will need to have a local development
environment. See the
[Developer Install](../installation/020_INSTALL_MANUAL.md#developer-install) for
full details.
Broadly this involves cloning the repository, installing the pre-reqs, and
InvokeAI (in editable form). Assuming this is working, choose your area of
focus.
## Documentation
We use [mkdocs](https://www.mkdocs.org) for our documentation with the
[material theme](https://squidfunk.github.io/mkdocs-material/). Documentation is
written in markdown files under the `./docs` folder and then built into a static
website for hosting with GitHub Pages at
[invoke-ai.github.io/InvokeAI](https://invoke-ai.github.io/InvokeAI).
To contribute to the documentation you'll need to install the dependencies. Note
the use of `"`.
```zsh
pip install ".[docs]"
```
Now, to run the documentation locally with hot-reloading for changes made.
```zsh
mkdocs serve
```
You'll then be prompted to connect to `http://127.0.0.1:8080` in order to
access.
## Backend
The backend is contained within the `./invokeai/backend` folder structure. To
get started however please install the development dependencies.
From the root of the repository run the following command. Note the use of `"`.
```zsh
pip install ".[test]"
```
This in an optional group of packages which is defined within the
`pyproject.toml` and will be required for testing the changes you make the the
code.
### Running Tests
We use [pytest](https://docs.pytest.org/en/7.2.x/) for our test suite. Tests can
be found under the `./tests` folder and can be run with a single `pytest`
command. Optionally, to review test coverage you can append `--cov`.
```zsh
pytest --cov
```
Test outcomes and coverage will be reported in the terminal. In addition a more
detailed report is created in both XML and HTML format in the `./coverage`
folder. The HTML one in particular can help identify missing statements
requiring tests to ensure coverage. This can be run by opening
`./coverage/html/index.html`.
For example.
```zsh
pytest --cov; open ./coverage/html/index.html
```
??? info "HTML coverage report output"
![html-overview](../assets/contributing/html-overview.png)
![html-detail](../assets/contributing/html-detail.png)
## Front End
<!--#TODO: get input from blessedcoolant here, for the moment inserted the frontend README via snippets extension.-->
--8<-- "invokeai/frontend/web/README.md"

View File

@@ -168,11 +168,15 @@ used by Stable Diffusion 1.4 and 1.5.
After installation, your `models.yaml` should contain an entry that looks like
this one:
inpainting-1.5: weights: models/ldm/stable-diffusion-v1/sd-v1-5-inpainting.ckpt
description: SD inpainting v1.5 config:
configs/stable-diffusion/v1-inpainting-inference.yaml vae:
models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt width: 512
height: 512
```yml
inpainting-1.5:
weights: models/ldm/stable-diffusion-v1/sd-v1-5-inpainting.ckpt
description: SD inpainting v1.5
config: configs/stable-diffusion/v1-inpainting-inference.yaml
vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
width: 512
height: 512
```
As shown in the example, you may include a VAE fine-tuning weights file as well.
This is strongly recommended.

View File

@@ -268,7 +268,7 @@ model is so good at inpainting, a good substitute is to use the `clipseg` text
masking option:
```bash
invoke> a fluffy cat eating a hotdot
invoke> a fluffy cat eating a hotdog
Outputs:
[1010] outputs/000025.2182095108.png: a fluffy cat eating a hotdog
invoke> a smiling dog eating a hotdog -I 000025.2182095108.png -tm cat

View File

@@ -17,7 +17,7 @@ notebooks.
You will need a GPU to perform training in a reasonable length of
time, and at least 12 GB of VRAM. We recommend using the [`xformers`
library](../installation/070_INSTALL_XFORMERS) to accelerate the
library](../installation/070_INSTALL_XFORMERS.md) to accelerate the
training process further. During training, about ~8 GB is temporarily
needed in order to store intermediate models, checkpoints and logs.

View File

@@ -417,7 +417,7 @@ Then type the following commands:
=== "AMD System"
```bash
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/rocm5.2
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
### Corrupted configuration file

View File

@@ -148,13 +148,13 @@ manager, please follow these steps:
=== "CUDA (NVidia)"
```bash
pip install InvokeAI[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu117
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu117
```
=== "ROCm (AMD)"
```bash
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.2
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
=== "CPU (Intel Macs & non-GPU systems)"
@@ -315,7 +315,7 @@ installation protocol (important!)
=== "ROCm (AMD)"
```bash
pip install -e . --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.2
pip install -e . --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
=== "CPU (Intel Macs & non-GPU systems)"

View File

@@ -110,7 +110,7 @@ recipes are available
When installing torch and torchvision manually with `pip`, remember to provide
the argument `--extra-index-url
https://download.pytorch.org/whl/rocm5.2` as described in the [Manual
https://download.pytorch.org/whl/rocm5.4.2` as described in the [Manual
Installation Guide](020_INSTALL_MANUAL.md).
This will be done automatically for you if you use the installer

View File

@@ -24,7 +24,7 @@ You need to have opencv installed so that pypatchmatch can be built:
brew install opencv
```
The next time you start `invoke`, after sucesfully installing opencv, pypatchmatch will be built.
The next time you start `invoke`, after successfully installing opencv, pypatchmatch will be built.
## Linux
@@ -56,7 +56,7 @@ Prior to installing PyPatchMatch, you need to take the following steps:
5. Confirm that pypatchmatch is installed. At the command-line prompt enter
`python`, and then at the `>>>` line type
`from patchmatch import patch_match`: It should look like the follwing:
`from patchmatch import patch_match`: It should look like the following:
```py
Python 3.9.5 (default, Nov 23 2021, 15:27:38)
@@ -108,4 +108,4 @@ Prior to installing PyPatchMatch, you need to take the following steps:
[**Next, Follow Steps 4-6 from the Debian Section above**](#linux)
If you see no errors, then you're ready to go!
If you see no errors you're ready to go!

View File

@@ -11,10 +11,10 @@ if [[ -v "VIRTUAL_ENV" ]]; then
exit -1
fi
VERSION=$(cd ..; python -c "from ldm.invoke import __version__ as version; print(version)")
VERSION=$(cd ..; python -c "from invokeai.version import __version__ as version; print(version)")
PATCH=""
VERSION="v${VERSION}${PATCH}"
LATEST_TAG="v2.3-latest"
LATEST_TAG="v3.0-latest"
echo Building installer for version $VERSION
echo "Be certain that you're in the 'installer' directory before continuing."

View File

@@ -291,7 +291,7 @@ class InvokeAiInstance:
src = Path(__file__).parents[1].expanduser().resolve()
# if the above directory contains one of these files, we'll do a source install
next(src.glob("pyproject.toml"))
next(src.glob("ldm"))
next(src.glob("invokeai"))
except StopIteration:
print("Unable to find a wheel or perform a source install. Giving up.")
@@ -342,14 +342,14 @@ class InvokeAiInstance:
introduction()
from ldm.invoke.config import invokeai_configure
from invokeai.frontend.install import invokeai_configure
# NOTE: currently the config script does its own arg parsing! this means the command-line switches
# from the installer will also automatically propagate down to the config script.
# this may change in the future with config refactoring!
succeeded = False
try:
invokeai_configure.main()
invokeai_configure()
succeeded = True
except requests.exceptions.ConnectionError as e:
print(f'\nA network error was encountered during configuration and download: {str(e)}')
@@ -456,13 +456,12 @@ def get_torch_source() -> (Union[str, None],str):
optional_modules = None
if OS == "Linux":
if device == "rocm":
url = "https://download.pytorch.org/whl/rocm5.2"
url = "https://download.pytorch.org/whl/rocm5.4.2"
elif device == "cpu":
url = "https://download.pytorch.org/whl/cpu"
if device == 'cuda':
url = 'https://download.pytorch.org/whl/cu117'
optional_modules = '[xformers]'
url = 'https://download.pytorch.org/whl/cu118'
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13

View File

@@ -24,9 +24,9 @@ if [ "$(uname -s)" == "Darwin" ]; then
export PYTORCH_ENABLE_MPS_FALLBACK=1
fi
while true
do
if [ "$0" != "bash" ]; then
while true
do
echo "Do you want to generate images using the"
echo "1. command-line interface"
echo "2. browser-based UI"
@@ -67,29 +67,29 @@ if [ "$0" != "bash" ]; then
;;
7)
invokeai-configure --root ${INVOKEAI_ROOT} --yes --default_only
;;
8)
echo "Developer Console:"
;;
8)
echo "Developer Console:"
file_name=$(basename "${BASH_SOURCE[0]}")
bash --init-file "$file_name"
;;
9)
echo "Update:"
echo "Update:"
invokeai-update
;;
10)
invokeai --help
;;
[qQ])
[qQ])
exit 0
;;
*)
echo "Invalid selection"
exit;;
esac
done
else # in developer console
python --version
echo "Press ^D to exit"
export PS1="(InvokeAI) \u@\h \w> "
fi
done

View File

@@ -1,3 +1,11 @@
After version 2.3 is released, the ldm/invoke modules will be migrated to this location
so that we have a proper invokeai distribution. Currently it is only being used for
data files.
Organization of the source tree:
app -- Home of nodes invocations and services
assets -- Images and other data files used by InvokeAI
backend -- Non-user facing libraries, including the rendering
core.
configs -- Configuration files used at install and run times
frontend -- User-facing scripts, including the CLI and the WebUI
version -- Current InvokeAI version string, stored
in version/invokeai_version.py

View File

@@ -0,0 +1,84 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import os
from argparse import Namespace
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ...backend import Globals
from ..services.model_manager_initializer import get_model_manager
from ..services.restoration_services import RestorationServices
from ..services.graph import GraphExecutionState
from ..services.image_storage import DiskImageStorage
from ..services.invocation_queue import MemoryInvocationQueue
from ..services.invocation_services import InvocationServices
from ..services.invoker import Invoker
from ..services.processor import DefaultInvocationProcessor
from ..services.sqlite import SqliteItemStorage
from .events import FastAPIEventService
# TODO: is there a better way to achieve this?
def check_internet() -> bool:
"""
Return true if the internet is reachable.
It does this by pinging huggingface.co.
"""
import urllib.request
host = "http://huggingface.co"
try:
urllib.request.urlopen(host, timeout=1)
return True
except:
return False
class ApiDependencies:
"""Contains and initializes all dependencies for the API"""
invoker: Invoker = None
@staticmethod
def initialize(config, event_handler_id: int):
Globals.try_patchmatch = config.patchmatch
Globals.always_use_cpu = config.always_use_cpu
Globals.internet_available = config.internet_available and check_internet()
Globals.disable_xformers = not config.xformers
Globals.ckpt_convert = config.ckpt_convert
# TODO: Use a logger
print(f">> Internet connectivity is {Globals.internet_available}")
events = FastAPIEventService(event_handler_id)
output_folder = os.path.abspath(
os.path.join(os.path.dirname(__file__), "../../../../outputs")
)
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents'))
images = DiskImageStorage(f'{output_folder}/images')
# TODO: build a file/path manager?
db_location = os.path.join(output_folder, "invokeai.db")
services = InvocationServices(
model_manager=get_model_manager(config),
events=events,
latents=latents,
images=images,
queue=MemoryInvocationQueue(),
graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
),
processor=DefaultInvocationProcessor(),
restoration=RestorationServices(config),
)
ApiDependencies.invoker = Invoker(services)
@staticmethod
def shutdown():
if ApiDependencies.invoker:
ApiDependencies.invoker.stop()

View File

@@ -1,11 +1,14 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import asyncio
import threading
from queue import Empty, Queue
from typing import Any
from fastapi_events.dispatcher import dispatch
from ..services.events import EventServiceBase
import threading
class FastAPIEventService(EventServiceBase):
event_handler_id: int
@@ -16,39 +19,34 @@ class FastAPIEventService(EventServiceBase):
self.event_handler_id = event_handler_id
self.__queue = Queue()
self.__stop_event = threading.Event()
asyncio.create_task(self.__dispatch_from_queue(stop_event = self.__stop_event))
asyncio.create_task(self.__dispatch_from_queue(stop_event=self.__stop_event))
super().__init__()
def stop(self, *args, **kwargs):
self.__stop_event.set()
self.__queue.put(None)
def dispatch(self, event_name: str, payload: Any) -> None:
self.__queue.put(dict(
event_name = event_name,
payload = payload
))
self.__queue.put(dict(event_name=event_name, payload=payload))
async def __dispatch_from_queue(self, stop_event: threading.Event):
"""Get events on from the queue and dispatch them, from the correct thread"""
while not stop_event.is_set():
try:
event = self.__queue.get(block = False)
if not event: # Probably stopping
event = self.__queue.get(block=False)
if not event: # Probably stopping
continue
dispatch(
event.get('event_name'),
payload = event.get('payload'),
middleware_id = self.event_handler_id)
event.get("event_name"),
payload=event.get("payload"),
middleware_id=self.event_handler_id,
)
except Empty:
await asyncio.sleep(0.001)
pass
except asyncio.CancelledError as e:
raise e # Raise a proper error
raise e # Raise a proper error

View File

@@ -0,0 +1,66 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from fastapi import Path, Request, UploadFile
from fastapi.responses import FileResponse, Response
from fastapi.routing import APIRouter
from PIL import Image
from ...services.image_storage import ImageType
from ..dependencies import ApiDependencies
images_router = APIRouter(prefix="/v1/images", tags=["images"])
@images_router.get("/{image_type}/{image_name}", operation_id="get_image")
async def get_image(
image_type: ImageType = Path(description="The type of image to get"),
image_name: str = Path(description="The name of the image to get"),
):
"""Gets a result"""
# TODO: This is not really secure at all. At least make sure only output results are served
filename = ApiDependencies.invoker.services.images.get_path(image_type, image_name)
return FileResponse(filename)
@images_router.get("/{image_type}/thumbnails/{image_name}", operation_id="get_thumbnail")
async def get_thumbnail(
image_type: ImageType = Path(description="The type of image to get"),
image_name: str = Path(description="The name of the image to get"),
):
"""Gets a thumbnail"""
# TODO: This is not really secure at all. At least make sure only output results are served
filename = ApiDependencies.invoker.services.images.get_path(image_type, 'thumbnails/' + image_name)
return FileResponse(filename)
@images_router.post(
"/uploads/",
operation_id="upload_image",
responses={
201: {"description": "The image was uploaded successfully"},
404: {"description": "Session not found"},
},
)
async def upload_image(file: UploadFile, request: Request):
if not file.content_type.startswith("image"):
return Response(status_code=415)
contents = await file.read()
try:
im = Image.open(contents)
except:
# Error opening the image
return Response(status_code=415)
filename = f"{str(int(datetime.now(timezone.utc).timestamp()))}.png"
ApiDependencies.invoker.services.images.save(ImageType.UPLOAD, filename, im)
return Response(
status_code=201,
headers={
"Location": request.url_for(
"get_image", image_type=ImageType.UPLOAD, image_name=filename
)
},
)

View File

@@ -0,0 +1,279 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Annotated, Any, List, Literal, Optional, Union
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field, parse_obj_as
from ..dependencies import ApiDependencies
models_router = APIRouter(prefix="/v1/models", tags=["models"])
class VaeRepo(BaseModel):
repo_id: str = Field(description="The repo ID to use for this VAE")
path: Optional[str] = Field(description="The path to the VAE")
subfolder: Optional[str] = Field(description="The subfolder to use for this VAE")
class ModelInfo(BaseModel):
description: Optional[str] = Field(description="A description of the model")
class CkptModelInfo(ModelInfo):
format: Literal['ckpt'] = 'ckpt'
config: str = Field(description="The path to the model config")
weights: str = Field(description="The path to the model weights")
vae: str = Field(description="The path to the model VAE")
width: Optional[int] = Field(description="The width of the model")
height: Optional[int] = Field(description="The height of the model")
class DiffusersModelInfo(ModelInfo):
format: Literal['diffusers'] = 'diffusers'
vae: Optional[VaeRepo] = Field(description="The VAE repo to use for this model")
repo_id: Optional[str] = Field(description="The repo ID to use for this model")
path: Optional[str] = Field(description="The path to the model")
class ModelsList(BaseModel):
models: dict[str, Annotated[Union[(CkptModelInfo,DiffusersModelInfo)], Field(discriminator="format")]]
@models_router.get(
"/",
operation_id="list_models",
responses={200: {"model": ModelsList }},
)
async def list_models() -> ModelsList:
"""Gets a list of models"""
models_raw = ApiDependencies.invoker.services.model_manager.list_models()
models = parse_obj_as(ModelsList, { "models": models_raw })
return models
# @socketio.on("requestSystemConfig")
# def handle_request_capabilities():
# print(">> System config requested")
# config = self.get_system_config()
# config["model_list"] = self.generate.model_manager.list_models()
# config["infill_methods"] = infill_methods()
# socketio.emit("systemConfig", config)
# @socketio.on("searchForModels")
# def handle_search_models(search_folder: str):
# try:
# if not search_folder:
# socketio.emit(
# "foundModels",
# {"search_folder": None, "found_models": None},
# )
# else:
# (
# search_folder,
# found_models,
# ) = self.generate.model_manager.search_models(search_folder)
# socketio.emit(
# "foundModels",
# {"search_folder": search_folder, "found_models": found_models},
# )
# except Exception as e:
# self.handle_exceptions(e)
# print("\n")
# @socketio.on("addNewModel")
# def handle_add_model(new_model_config: dict):
# try:
# model_name = new_model_config["name"]
# del new_model_config["name"]
# model_attributes = new_model_config
# if len(model_attributes["vae"]) == 0:
# del model_attributes["vae"]
# update = False
# current_model_list = self.generate.model_manager.list_models()
# if model_name in current_model_list:
# update = True
# print(f">> Adding New Model: {model_name}")
# self.generate.model_manager.add_model(
# model_name=model_name,
# model_attributes=model_attributes,
# clobber=True,
# )
# self.generate.model_manager.commit(opt.conf)
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "newModelAdded",
# {
# "new_model_name": model_name,
# "model_list": new_model_list,
# "update": update,
# },
# )
# print(f">> New Model Added: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("deleteModel")
# def handle_delete_model(model_name: str):
# try:
# print(f">> Deleting Model: {model_name}")
# self.generate.model_manager.del_model(model_name)
# self.generate.model_manager.commit(opt.conf)
# updated_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelDeleted",
# {
# "deleted_model_name": model_name,
# "model_list": updated_model_list,
# },
# )
# print(f">> Model Deleted: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("requestModelChange")
# def handle_set_model(model_name: str):
# try:
# print(f">> Model change requested: {model_name}")
# model = self.generate.set_model(model_name)
# model_list = self.generate.model_manager.list_models()
# if model is None:
# socketio.emit(
# "modelChangeFailed",
# {"model_name": model_name, "model_list": model_list},
# )
# else:
# socketio.emit(
# "modelChanged",
# {"model_name": model_name, "model_list": model_list},
# )
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("convertToDiffusers")
# def convert_to_diffusers(model_to_convert: dict):
# try:
# if model_info := self.generate.model_manager.model_info(
# model_name=model_to_convert["model_name"]
# ):
# if "weights" in model_info:
# ckpt_path = Path(model_info["weights"])
# original_config_file = Path(model_info["config"])
# model_name = model_to_convert["model_name"]
# model_description = model_info["description"]
# else:
# self.socketio.emit(
# "error", {"message": "Model is not a valid checkpoint file"}
# )
# else:
# self.socketio.emit(
# "error", {"message": "Could not retrieve model info."}
# )
# if not ckpt_path.is_absolute():
# ckpt_path = Path(Globals.root, ckpt_path)
# if original_config_file and not original_config_file.is_absolute():
# original_config_file = Path(Globals.root, original_config_file)
# diffusers_path = Path(
# ckpt_path.parent.absolute(), f"{model_name}_diffusers"
# )
# if model_to_convert["save_location"] == "root":
# diffusers_path = Path(
# global_converted_ckpts_dir(), f"{model_name}_diffusers"
# )
# if (
# model_to_convert["save_location"] == "custom"
# and model_to_convert["custom_location"] is not None
# ):
# diffusers_path = Path(
# model_to_convert["custom_location"], f"{model_name}_diffusers"
# )
# if diffusers_path.exists():
# shutil.rmtree(diffusers_path)
# self.generate.model_manager.convert_and_import(
# ckpt_path,
# diffusers_path,
# model_name=model_name,
# model_description=model_description,
# vae=None,
# original_config_file=original_config_file,
# commit_to_conf=opt.conf,
# )
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelConverted",
# {
# "new_model_name": model_name,
# "model_list": new_model_list,
# "update": True,
# },
# )
# print(f">> Model Converted: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("mergeDiffusersModels")
# def merge_diffusers_models(model_merge_info: dict):
# try:
# models_to_merge = model_merge_info["models_to_merge"]
# model_ids_or_paths = [
# self.generate.model_manager.model_name_or_path(x)
# for x in models_to_merge
# ]
# merged_pipe = merge_diffusion_models(
# model_ids_or_paths,
# model_merge_info["alpha"],
# model_merge_info["interp"],
# model_merge_info["force"],
# )
# dump_path = global_models_dir() / "merged_models"
# if model_merge_info["model_merge_save_path"] is not None:
# dump_path = Path(model_merge_info["model_merge_save_path"])
# os.makedirs(dump_path, exist_ok=True)
# dump_path = dump_path / model_merge_info["merged_model_name"]
# merged_pipe.save_pretrained(dump_path, safe_serialization=1)
# merged_model_config = dict(
# model_name=model_merge_info["merged_model_name"],
# description=f'Merge of models {", ".join(models_to_merge)}',
# commit_to_conf=opt.conf,
# )
# if vae := self.generate.model_manager.config[models_to_merge[0]].get(
# "vae", None
# ):
# print(f">> Using configured VAE assigned to {models_to_merge[0]}")
# merged_model_config.update(vae=vae)
# self.generate.model_manager.import_diffuser_model(
# dump_path, **merged_model_config
# )
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelsMerged",
# {
# "merged_models": models_to_merge,
# "merged_model_name": model_merge_info["merged_model_name"],
# "model_list": new_model_list,
# "update": True,
# },
# )
# print(f">> Models Merged: {models_to_merge}")
# print(f">> New Model Added: {model_merge_info['merged_model_name']}")
# except Exception as e:
# self.handle_exceptions(e)

View File

@@ -0,0 +1,287 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Annotated, List, Optional, Union
from fastapi import Body, Path, Query
from fastapi.responses import Response
from fastapi.routing import APIRouter
from pydantic.fields import Field
from ...invocations import *
from ...invocations.baseinvocation import BaseInvocation
from ...services.graph import (
Edge,
EdgeConnection,
Graph,
GraphExecutionState,
NodeAlreadyExecutedError,
)
from ...services.item_storage import PaginatedResults
from ..dependencies import ApiDependencies
session_router = APIRouter(prefix="/v1/sessions", tags=["sessions"])
@session_router.post(
"/",
operation_id="create_session",
responses={
200: {"model": GraphExecutionState},
400: {"description": "Invalid json"},
},
)
async def create_session(
graph: Optional[Graph] = Body(
default=None, description="The graph to initialize the session with"
)
) -> GraphExecutionState:
"""Creates a new session, optionally initializing it with an invocation graph"""
session = ApiDependencies.invoker.create_execution_state(graph)
return session
@session_router.get(
"/",
operation_id="list_sessions",
responses={200: {"model": PaginatedResults[GraphExecutionState]}},
)
async def list_sessions(
page: int = Query(default=0, description="The page of results to get"),
per_page: int = Query(default=10, description="The number of results per page"),
query: str = Query(default="", description="The query string to search for"),
) -> PaginatedResults[GraphExecutionState]:
"""Gets a list of sessions, optionally searching"""
if query == "":
result = ApiDependencies.invoker.services.graph_execution_manager.list(
page, per_page
)
else:
result = ApiDependencies.invoker.services.graph_execution_manager.search(
query, page, per_page
)
return result
@session_router.get(
"/{session_id}",
operation_id="get_session",
responses={
200: {"model": GraphExecutionState},
404: {"description": "Session not found"},
},
)
async def get_session(
session_id: str = Path(description="The id of the session to get"),
) -> GraphExecutionState:
"""Gets a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
else:
return session
@session_router.post(
"/{session_id}/nodes",
operation_id="add_node",
responses={
200: {"model": str},
400: {"description": "Invalid node or link"},
404: {"description": "Session not found"},
},
)
async def add_node(
session_id: str = Path(description="The id of the session"),
node: Annotated[
Union[BaseInvocation.get_invocations()], Field(discriminator="type") # type: ignore
] = Body(description="The node to add"),
) -> str:
"""Adds a node to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
try:
session.add_node(node)
ApiDependencies.invoker.services.graph_execution_manager.set(
session
) # TODO: can this be done automatically, or add node through an API?
return session.id
except NodeAlreadyExecutedError:
return Response(status_code=400)
except IndexError:
return Response(status_code=400)
@session_router.put(
"/{session_id}/nodes/{node_path}",
operation_id="update_node",
responses={
200: {"model": GraphExecutionState},
400: {"description": "Invalid node or link"},
404: {"description": "Session not found"},
},
)
async def update_node(
session_id: str = Path(description="The id of the session"),
node_path: str = Path(description="The path to the node in the graph"),
node: Annotated[
Union[BaseInvocation.get_invocations()], Field(discriminator="type") # type: ignore
] = Body(description="The new node"),
) -> GraphExecutionState:
"""Updates a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
try:
session.update_node(node_path, node)
ApiDependencies.invoker.services.graph_execution_manager.set(
session
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
except IndexError:
return Response(status_code=400)
@session_router.delete(
"/{session_id}/nodes/{node_path}",
operation_id="delete_node",
responses={
200: {"model": GraphExecutionState},
400: {"description": "Invalid node or link"},
404: {"description": "Session not found"},
},
)
async def delete_node(
session_id: str = Path(description="The id of the session"),
node_path: str = Path(description="The path to the node to delete"),
) -> GraphExecutionState:
"""Deletes a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
try:
session.delete_node(node_path)
ApiDependencies.invoker.services.graph_execution_manager.set(
session
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
except IndexError:
return Response(status_code=400)
@session_router.post(
"/{session_id}/edges",
operation_id="add_edge",
responses={
200: {"model": GraphExecutionState},
400: {"description": "Invalid node or link"},
404: {"description": "Session not found"},
},
)
async def add_edge(
session_id: str = Path(description="The id of the session"),
edge: Edge = Body(description="The edge to add"),
) -> GraphExecutionState:
"""Adds an edge to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
try:
session.add_edge(edge)
ApiDependencies.invoker.services.graph_execution_manager.set(
session
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
except IndexError:
return Response(status_code=400)
# TODO: the edge being in the path here is really ugly, find a better solution
@session_router.delete(
"/{session_id}/edges/{from_node_id}/{from_field}/{to_node_id}/{to_field}",
operation_id="delete_edge",
responses={
200: {"model": GraphExecutionState},
400: {"description": "Invalid node or link"},
404: {"description": "Session not found"},
},
)
async def delete_edge(
session_id: str = Path(description="The id of the session"),
from_node_id: str = Path(description="The id of the node the edge is coming from"),
from_field: str = Path(description="The field of the node the edge is coming from"),
to_node_id: str = Path(description="The id of the node the edge is going to"),
to_field: str = Path(description="The field of the node the edge is going to"),
) -> GraphExecutionState:
"""Deletes an edge from the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
try:
edge = Edge(
source=EdgeConnection(node_id=from_node_id, field=from_field),
destination=EdgeConnection(node_id=to_node_id, field=to_field)
)
session.delete_edge(edge)
ApiDependencies.invoker.services.graph_execution_manager.set(
session
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
except IndexError:
return Response(status_code=400)
@session_router.put(
"/{session_id}/invoke",
operation_id="invoke_session",
responses={
200: {"model": None},
202: {"description": "The invocation is queued"},
400: {"description": "The session has no invocations ready to invoke"},
404: {"description": "Session not found"},
},
)
async def invoke_session(
session_id: str = Path(description="The id of the session to invoke"),
all: bool = Query(
default=False, description="Whether or not to invoke all remaining invocations"
),
) -> None:
"""Invokes a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
if session.is_complete():
return Response(status_code=400)
ApiDependencies.invoker.invoke(session, invoke_all=all)
return Response(status_code=202)
@session_router.delete(
"/{session_id}/invoke",
operation_id="cancel_session_invoke",
responses={
202: {"description": "The invocation is canceled"}
},
)
async def cancel_session_invoke(
session_id: str = Path(description="The id of the session to cancel"),
) -> None:
"""Invokes a session"""
ApiDependencies.invoker.cancel(session_id)
return Response(status_code=202)

View File

@@ -1,36 +1,38 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from fastapi import FastAPI
from fastapi_socketio import SocketManager
from fastapi_events.handlers.local import local_handler
from fastapi_events.typing import Event
from fastapi_socketio import SocketManager
from ..services.events import EventServiceBase
class SocketIO:
__sio: SocketManager
def __init__(self, app: FastAPI):
self.__sio = SocketManager(app = app)
self.__sio.on('subscribe', handler=self._handle_sub)
self.__sio.on('unsubscribe', handler=self._handle_unsub)
self.__sio = SocketManager(app=app)
self.__sio.on("subscribe", handler=self._handle_sub)
self.__sio.on("unsubscribe", handler=self._handle_unsub)
local_handler.register(
event_name = EventServiceBase.session_event,
_func=self._handle_session_event
event_name=EventServiceBase.session_event, _func=self._handle_session_event
)
async def _handle_session_event(self, event: Event):
await self.__sio.emit(
event = event[1]['event'],
data = event[1]['data'],
room = event[1]['data']['graph_execution_state_id']
event=event[1]["event"],
data=event[1]["data"],
room=event[1]["data"]["graph_execution_state_id"],
)
async def _handle_sub(self, sid, data, *args, **kwargs):
if 'session' in data:
self.__sio.enter_room(sid, data['session'])
if "session" in data:
self.__sio.enter_room(sid, data["session"])
# @app.sio.on('unsubscribe')
async def _handle_unsub(self, sid, data, *args, **kwargs):
if 'session' in data:
self.__sio.leave_room(sid, data['session'])
if "session" in data:
self.__sio.leave_room(sid, data["session"])

View File

@@ -1,37 +1,37 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import asyncio
from inspect import signature
from fastapi import FastAPI
from fastapi.openapi.utils import get_openapi
from fastapi.openapi.docs import get_swagger_ui_html, get_redoc_html
from fastapi.staticfiles import StaticFiles
from fastapi_events.middleware import EventHandlerASGIMiddleware
from fastapi_events.handlers.local import local_handler
from fastapi.middleware.cors import CORSMiddleware
from pydantic.schema import schema
import uvicorn
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
from fastapi.openapi.utils import get_openapi
from fastapi.staticfiles import StaticFiles
from fastapi_events.handlers.local import local_handler
from fastapi_events.middleware import EventHandlerASGIMiddleware
from pydantic.schema import schema
from ..backend import Args
from .api.dependencies import ApiDependencies
from .api.routers import images, sessions, models
from .api.sockets import SocketIO
from .invocations import *
from .invocations.baseinvocation import BaseInvocation
from .api.routers import images, sessions
from .api.dependencies import ApiDependencies
from ..args import Args
# Create the app
# TODO: create this all in a method so configuration/etc. can be passed in?
app = FastAPI(
title = "Invoke AI",
docs_url = None,
redoc_url = None
)
app = FastAPI(title="Invoke AI", docs_url=None, redoc_url=None)
# Add event handler
event_handler_id: int = id(app)
app.add_middleware(
EventHandlerASGIMiddleware,
handlers = [local_handler], # TODO: consider doing this in services to support different configurations
middleware_id = event_handler_id)
handlers=[
local_handler
], # TODO: consider doing this in services to support different configurations
middleware_id=event_handler_id,
)
# Add CORS
# TODO: use configuration for this
@@ -48,38 +48,36 @@ socket_io = SocketIO(app)
config = {}
# Add startup event to load dependencies
@app.on_event('startup')
@app.on_event("startup")
async def startup_event():
args = Args()
config = args.parse_args()
config = Args()
config.parse_args()
ApiDependencies.initialize(
args = args,
config = config,
event_handler_id = event_handler_id
config=config, event_handler_id=event_handler_id
)
# Shut down threads
@app.on_event('shutdown')
@app.on_event("shutdown")
async def shutdown_event():
ApiDependencies.shutdown()
# Include all routers
# TODO: REMOVE
# app.include_router(
# invocation.invocation_router,
# prefix = '/api')
app.include_router(
sessions.session_router,
prefix = '/api'
)
app.include_router(sessions.session_router, prefix="/api")
app.include_router(images.images_router, prefix="/api")
app.include_router(models.models_router, prefix="/api")
app.include_router(
images.images_router,
prefix = '/api'
)
# Build a custom OpenAPI to include all outputs
# TODO: can outputs be included on metadata of invocation schemas somehow?
@@ -87,10 +85,10 @@ def custom_openapi():
if app.openapi_schema:
return app.openapi_schema
openapi_schema = get_openapi(
title = app.title,
description = "An API for invoking AI image operations",
version = "1.0.0",
routes = app.routes
title=app.title,
description="An API for invoking AI image operations",
version="1.0.0",
routes=app.routes,
)
# Add all outputs
@@ -102,12 +100,12 @@ def custom_openapi():
output_types.add(output_type)
output_schemas = schema(output_types, ref_prefix="#/components/schemas/")
for schema_key, output_schema in output_schemas['definitions'].items():
for schema_key, output_schema in output_schemas["definitions"].items():
openapi_schema["components"]["schemas"][schema_key] = output_schema
# TODO: note that we assume the schema_key here is the TYPE.__name__
# This could break in some cases, figure out a better way to do it
output_type_titles[schema_key] = output_schema['title']
output_type_titles[schema_key] = output_schema["title"]
# Add a reference to the output type to additionalProperties of the invoker schema
for invoker in all_invocations:
@@ -115,47 +113,45 @@ def custom_openapi():
output_type = signature(invoker.invoke).return_annotation
output_type_title = output_type_titles[output_type.__name__]
invoker_schema = openapi_schema["components"]["schemas"][invoker_name]
outputs_ref = { '$ref': f'#/components/schemas/{output_type_title}' }
if 'additionalProperties' not in invoker_schema:
invoker_schema['additionalProperties'] = {}
outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"}
invoker_schema["output"] = outputs_ref
invoker_schema['additionalProperties']['outputs'] = outputs_ref
app.openapi_schema = openapi_schema
return app.openapi_schema
app.openapi = custom_openapi
# Override API doc favicons
app.mount('/static', StaticFiles(directory='static/dream_web'), name='static')
app.mount("/static", StaticFiles(directory="static/dream_web"), name="static")
@app.get("/docs", include_in_schema=False)
def overridden_swagger():
return get_swagger_ui_html(
return get_swagger_ui_html(
openapi_url=app.openapi_url,
title=app.title,
swagger_favicon_url="/static/favicon.ico"
swagger_favicon_url="/static/favicon.ico",
)
@app.get("/redoc", include_in_schema=False)
def overridden_redoc():
return get_redoc_html(
return get_redoc_html(
openapi_url=app.openapi_url,
title=app.title,
redoc_favicon_url="/static/favicon.ico"
redoc_favicon_url="/static/favicon.ico",
)
def invoke_api():
# Start our own event loop for eventing usage
# TODO: determine if there's a better way to do this
loop = asyncio.new_event_loop()
config = uvicorn.Config(
app = app,
host = "0.0.0.0",
port = 9090,
loop = loop)
# Use access_log to turn off logging
config = uvicorn.Config(app=app, host="0.0.0.0", port=9090, loop=loop)
# Use access_log to turn off logging
server = uvicorn.Server(config)
loop.run_until_complete(server.serve())

View File

@@ -0,0 +1,239 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC, abstractmethod
import argparse
from typing import Any, Callable, Iterable, Literal, get_args, get_origin, get_type_hints
from pydantic import BaseModel, Field
import networkx as nx
import matplotlib.pyplot as plt
from ..invocations.image import ImageField
from ..services.graph import GraphExecutionState
from ..services.invoker import Invoker
def add_parsers(
subparsers,
commands: list[type],
command_field: str = "type",
exclude_fields: list[str] = ["id", "type"],
add_arguments: Callable[[argparse.ArgumentParser], None]|None = None
):
"""Adds parsers for each command to the subparsers"""
# Create subparsers for each command
for command in commands:
hints = get_type_hints(command)
cmd_name = get_args(hints[command_field])[0]
command_parser = subparsers.add_parser(cmd_name, help=command.__doc__)
if add_arguments is not None:
add_arguments(command_parser)
# Convert all fields to arguments
fields = command.__fields__ # type: ignore
for name, field in fields.items():
if name in exclude_fields:
continue
if get_origin(field.type_) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
command_parser.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=field.default if field.default_factory is None else field.default_factory(),
choices=allowed_values,
help=field.field_info.description,
)
else:
command_parser.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=field.default if field.default_factory is None else field.default_factory(),
help=field.field_info.description,
)
class CliContext:
invoker: Invoker
session: GraphExecutionState
parser: argparse.ArgumentParser
defaults: dict[str, Any]
def __init__(self, invoker: Invoker, session: GraphExecutionState, parser: argparse.ArgumentParser):
self.invoker = invoker
self.session = session
self.parser = parser
self.defaults = dict()
def get_session(self):
self.session = self.invoker.services.graph_execution_manager.get(self.session.id)
return self.session
class ExitCli(Exception):
"""Exception to exit the CLI"""
pass
class BaseCommand(ABC, BaseModel):
"""A CLI command"""
# All commands must include a type name like this:
# type: Literal['your_command_name'] = 'your_command_name'
@classmethod
def get_all_subclasses(cls):
subclasses = []
toprocess = [cls]
while len(toprocess) > 0:
next = toprocess.pop(0)
next_subclasses = next.__subclasses__()
subclasses.extend(next_subclasses)
toprocess.extend(next_subclasses)
return subclasses
@classmethod
def get_commands(cls):
return tuple(BaseCommand.get_all_subclasses())
@classmethod
def get_commands_map(cls):
# Get the type strings out of the literals and into a dictionary
return dict(map(lambda t: (get_args(get_type_hints(t)['type'])[0], t),BaseCommand.get_all_subclasses()))
@abstractmethod
def run(self, context: CliContext) -> None:
"""Run the command. Raise ExitCli to exit."""
pass
class ExitCommand(BaseCommand):
"""Exits the CLI"""
type: Literal['exit'] = 'exit'
def run(self, context: CliContext) -> None:
raise ExitCli()
class HelpCommand(BaseCommand):
"""Shows help"""
type: Literal['help'] = 'help'
def run(self, context: CliContext) -> None:
context.parser.print_help()
def get_graph_execution_history(
graph_execution_state: GraphExecutionState,
) -> Iterable[str]:
"""Gets the history of fully-executed invocations for a graph execution"""
return (
n
for n in reversed(graph_execution_state.executed_history)
if n in graph_execution_state.graph.nodes
)
def get_invocation_command(invocation) -> str:
fields = invocation.__fields__.items()
type_hints = get_type_hints(type(invocation))
command = [invocation.type]
for name, field in fields:
if name in ["id", "type"]:
continue
# TODO: add links
# Skip image fields when serializing command
type_hint = type_hints.get(name) or None
if type_hint is ImageField or ImageField in get_args(type_hint):
continue
field_value = getattr(invocation, name)
field_default = field.default
if field_value != field_default:
if type_hint is str or str in get_args(type_hint):
command.append(f'--{name} "{field_value}"')
else:
command.append(f"--{name} {field_value}")
return " ".join(command)
class HistoryCommand(BaseCommand):
"""Shows the invocation history"""
type: Literal['history'] = 'history'
# Inputs
# fmt: off
count: int = Field(default=5, gt=0, description="The number of history entries to show")
# fmt: on
def run(self, context: CliContext) -> None:
history = list(get_graph_execution_history(context.get_session()))
for i in range(min(self.count, len(history))):
entry_id = history[-1 - i]
entry = context.get_session().graph.get_node(entry_id)
print(f"{entry_id}: {get_invocation_command(entry)}")
class SetDefaultCommand(BaseCommand):
"""Sets a default value for a field"""
type: Literal['default'] = 'default'
# Inputs
# fmt: off
field: str = Field(description="The field to set the default for")
value: str = Field(description="The value to set the default to, or None to clear the default")
# fmt: on
def run(self, context: CliContext) -> None:
if self.value is None:
if self.field in context.defaults:
del context.defaults[self.field]
else:
context.defaults[self.field] = self.value
class DrawGraphCommand(BaseCommand):
"""Debugs a graph"""
type: Literal['draw_graph'] = 'draw_graph'
def run(self, context: CliContext) -> None:
session: GraphExecutionState = context.invoker.services.graph_execution_manager.get(context.session.id)
nxgraph = session.graph.nx_graph_flat()
# Draw the networkx graph
plt.figure(figsize=(20, 20))
pos = nx.spectral_layout(nxgraph)
nx.draw_networkx_nodes(nxgraph, pos, node_size=1000)
nx.draw_networkx_edges(nxgraph, pos, width=2)
nx.draw_networkx_labels(nxgraph, pos, font_size=20, font_family="sans-serif")
plt.axis("off")
plt.show()
class DrawExecutionGraphCommand(BaseCommand):
"""Debugs an execution graph"""
type: Literal['draw_xgraph'] = 'draw_xgraph'
def run(self, context: CliContext) -> None:
session: GraphExecutionState = context.invoker.services.graph_execution_manager.get(context.session.id)
nxgraph = session.execution_graph.nx_graph_flat()
# Draw the networkx graph
plt.figure(figsize=(20, 20))
pos = nx.spectral_layout(nxgraph)
nx.draw_networkx_nodes(nxgraph, pos, node_size=1000)
nx.draw_networkx_edges(nxgraph, pos, width=2)
nx.draw_networkx_labels(nxgraph, pos, font_size=20, font_family="sans-serif")
plt.axis("off")
plt.show()

View File

@@ -0,0 +1,167 @@
"""
Readline helper functions for cli_app.py
You may import the global singleton `completer` to get access to the
completer object.
"""
import atexit
import readline
import shlex
from pathlib import Path
from typing import List, Dict, Literal, get_args, get_type_hints, get_origin
from ...backend import ModelManager, Globals
from ..invocations.baseinvocation import BaseInvocation
from .commands import BaseCommand
# singleton object, class variable
completer = None
class Completer(object):
def __init__(self, model_manager: ModelManager):
self.commands = self.get_commands()
self.matches = None
self.linebuffer = None
self.manager = model_manager
return
def complete(self, text, state):
"""
Complete commands and switches fromm the node CLI command line.
Switches are determined in a context-specific manner.
"""
buffer = readline.get_line_buffer()
if state == 0:
options = None
try:
current_command, current_switch = self.get_current_command(buffer)
options = self.get_command_options(current_command, current_switch)
except IndexError:
pass
options = options or list(self.parse_commands().keys())
if not text: # first time
self.matches = options
else:
self.matches = [s for s in options if s and s.startswith(text)]
try:
match = self.matches[state]
except IndexError:
match = None
return match
@classmethod
def get_commands(self)->List[object]:
"""
Return a list of all the client commands and invocations.
"""
return BaseCommand.get_commands() + BaseInvocation.get_invocations()
def get_current_command(self, buffer: str)->tuple[str, str]:
"""
Parse the readline buffer to find the most recent command and its switch.
"""
if len(buffer)==0:
return None, None
tokens = shlex.split(buffer)
command = None
switch = None
for t in tokens:
if t[0].isalpha():
if switch is None:
command = t
else:
switch = t
# don't try to autocomplete switches that are already complete
if switch and buffer.endswith(' '):
switch=None
return command or '', switch or ''
def parse_commands(self)->Dict[str, List[str]]:
"""
Return a dict in which the keys are the command name
and the values are the parameters the command takes.
"""
result = dict()
for command in self.commands:
hints = get_type_hints(command)
name = get_args(hints['type'])[0]
result.update({name:hints})
return result
def get_command_options(self, command: str, switch: str)->List[str]:
"""
Return all the parameters that can be passed to the command as
command-line switches. Returns None if the command is unrecognized.
"""
parsed_commands = self.parse_commands()
if command not in parsed_commands:
return None
# handle switches in the format "-foo=bar"
argument = None
if switch and '=' in switch:
switch, argument = switch.split('=')
parameter = switch.strip('-')
if parameter in parsed_commands[command]:
if argument is None:
return self.get_parameter_options(parameter, parsed_commands[command][parameter])
else:
return [f"--{parameter}={x}" for x in self.get_parameter_options(parameter, parsed_commands[command][parameter])]
else:
return [f"--{x}" for x in parsed_commands[command].keys()]
def get_parameter_options(self, parameter: str, typehint)->List[str]:
"""
Given a parameter type (such as Literal), offers autocompletions.
"""
if get_origin(typehint) == Literal:
return get_args(typehint)
if parameter == 'model':
return self.manager.model_names()
def _pre_input_hook(self):
if self.linebuffer:
readline.insert_text(self.linebuffer)
readline.redisplay()
self.linebuffer = None
def set_autocompleter(model_manager: ModelManager) -> Completer:
global completer
if completer:
return completer
completer = Completer(model_manager)
readline.set_completer(completer.complete)
# pyreadline3 does not have a set_auto_history() method
try:
readline.set_auto_history(True)
except:
pass
readline.set_pre_input_hook(completer._pre_input_hook)
readline.set_completer_delims(" ")
readline.parse_and_bind("tab: complete")
readline.parse_and_bind("set print-completions-horizontally off")
readline.parse_and_bind("set page-completions on")
readline.parse_and_bind("set skip-completed-text on")
readline.parse_and_bind("set show-all-if-ambiguous on")
histfile = Path(Globals.root, ".invoke_history")
try:
readline.read_history_file(histfile)
readline.set_history_length(1000)
except FileNotFoundError:
pass
except OSError: # file likely corrupted
newname = f"{histfile}.old"
print(
f"## Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
)
histfile.replace(Path(newname))
atexit.register(readline.write_history_file, histfile)

300
invokeai/app/cli_app.py Normal file
View File

@@ -0,0 +1,300 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import argparse
import os
import re
import shlex
import time
from typing import (
Union,
get_type_hints,
)
from pydantic import BaseModel
from pydantic.fields import Field
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ..backend import Args
from .cli.commands import BaseCommand, CliContext, ExitCli, add_parsers, get_graph_execution_history
from .cli.completer import set_autocompleter
from .invocations import *
from .invocations.baseinvocation import BaseInvocation
from .services.events import EventServiceBase
from .services.model_manager_initializer import get_model_manager
from .services.restoration_services import RestorationServices
from .services.graph import Edge, EdgeConnection, GraphExecutionState, are_connection_types_compatible
from .services.image_storage import DiskImageStorage
from .services.invocation_queue import MemoryInvocationQueue
from .services.invocation_services import InvocationServices
from .services.invoker import Invoker
from .services.processor import DefaultInvocationProcessor
from .services.sqlite import SqliteItemStorage
class CliCommand(BaseModel):
command: Union[BaseCommand.get_commands() + BaseInvocation.get_invocations()] = Field(discriminator="type") # type: ignore
class InvalidArgs(Exception):
pass
def add_invocation_args(command_parser):
# Add linking capability
command_parser.add_argument(
"--link",
"-l",
action="append",
nargs=3,
help="A link in the format 'source_node source_field dest_field'. source_node can be relative to history (e.g. -1)",
)
command_parser.add_argument(
"--link_node",
"-ln",
action="append",
help="A link from all fields in the specified node. Node can be relative to history (e.g. -1)",
)
def get_command_parser() -> argparse.ArgumentParser:
# Create invocation parser
parser = argparse.ArgumentParser()
def exit(*args, **kwargs):
raise InvalidArgs
parser.exit = exit
subparsers = parser.add_subparsers(dest="type")
# Create subparsers for each invocation
invocations = BaseInvocation.get_all_subclasses()
add_parsers(subparsers, invocations, add_arguments=add_invocation_args)
# Create subparsers for each command
commands = BaseCommand.get_all_subclasses()
add_parsers(subparsers, commands, exclude_fields=["type"])
return parser
def generate_matching_edges(
a: BaseInvocation, b: BaseInvocation
) -> list[Edge]:
"""Generates all possible edges between two invocations"""
atype = type(a)
btype = type(b)
aoutputtype = atype.get_output_type()
afields = get_type_hints(aoutputtype)
bfields = get_type_hints(btype)
matching_fields = set(afields.keys()).intersection(bfields.keys())
# Remove invalid fields
invalid_fields = set(["type", "id"])
matching_fields = matching_fields.difference(invalid_fields)
# Validate types
matching_fields = [f for f in matching_fields if are_connection_types_compatible(afields[f], bfields[f])]
edges = [
Edge(
source=EdgeConnection(node_id=a.id, field=field),
destination=EdgeConnection(node_id=b.id, field=field)
)
for field in matching_fields
]
return edges
class SessionError(Exception):
"""Raised when a session error has occurred"""
pass
def invoke_all(context: CliContext):
"""Runs all invocations in the specified session"""
context.invoker.invoke(context.session, invoke_all=True)
while not context.get_session().is_complete():
# Wait some time
time.sleep(0.1)
# Print any errors
if context.session.has_error():
for n in context.session.errors:
print(
f"Error in node {n} (source node {context.session.prepared_source_mapping[n]}): {context.session.errors[n]}"
)
raise SessionError()
def invoke_cli():
config = Args()
config.parse_args()
model_manager = get_model_manager(config)
# This initializes the autocompleter and returns it.
# Currently nothing is done with the returned Completer
# object, but the object can be used to change autocompletion
# behavior on the fly, if desired.
completer = set_autocompleter(model_manager)
events = EventServiceBase()
output_folder = os.path.abspath(
os.path.join(os.path.dirname(__file__), "../../../outputs")
)
# TODO: build a file/path manager?
db_location = os.path.join(output_folder, "invokeai.db")
services = InvocationServices(
model_manager=model_manager,
events=events,
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')),
images=DiskImageStorage(f'{output_folder}/images'),
queue=MemoryInvocationQueue(),
graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
),
processor=DefaultInvocationProcessor(),
restoration=RestorationServices(config),
)
invoker = Invoker(services)
session: GraphExecutionState = invoker.create_execution_state()
parser = get_command_parser()
re_negid = re.compile('^-[0-9]+$')
# Uncomment to print out previous sessions at startup
# print(services.session_manager.list())
context = CliContext(invoker, session, parser)
while True:
try:
cmd_input = input("invoke> ")
except (KeyboardInterrupt, EOFError):
# Ctrl-c exits
break
try:
# Refresh the state of the session
history = list(get_graph_execution_history(context.session))
# Split the command for piping
cmds = cmd_input.split("|")
start_id = len(history)
current_id = start_id
new_invocations = list()
for cmd in cmds:
if cmd is None or cmd.strip() == "":
raise InvalidArgs("Empty command")
# Parse args to create invocation
args = vars(context.parser.parse_args(shlex.split(cmd.strip())))
# Override defaults
for field_name, field_default in context.defaults.items():
if field_name in args:
args[field_name] = field_default
# Parse invocation
args["id"] = current_id
command = CliCommand(command=args)
# Run any CLI commands immediately
if isinstance(command.command, BaseCommand):
# Invoke all current nodes to preserve operation order
invoke_all(context)
# Run the command
command.command.run(context)
continue
# Pipe previous command output (if there was a previous command)
edges: list[Edge] = list()
if len(history) > 0 or current_id != start_id:
from_id = (
history[0] if current_id == start_id else str(current_id - 1)
)
from_node = (
next(filter(lambda n: n[0].id == from_id, new_invocations))[0]
if current_id != start_id
else context.session.graph.get_node(from_id)
)
matching_edges = generate_matching_edges(
from_node, command.command
)
edges.extend(matching_edges)
# Parse provided links
if "link_node" in args and args["link_node"]:
for link in args["link_node"]:
node_id = link
if re_negid.match(node_id):
node_id = str(current_id + int(node_id))
link_node = context.session.graph.get_node(node_id)
matching_edges = generate_matching_edges(
link_node, command.command
)
matching_destinations = [e.destination for e in matching_edges]
edges = [e for e in edges if e.destination not in matching_destinations]
edges.extend(matching_edges)
if "link" in args and args["link"]:
for link in args["link"]:
edges = [e for e in edges if e.destination.node_id != command.command.id or e.destination.field != link[2]]
node_id = link[0]
if re_negid.match(node_id):
node_id = str(current_id + int(node_id))
edges.append(
Edge(
source=EdgeConnection(node_id=node_id, field=link[1]),
destination=EdgeConnection(
node_id=command.command.id, field=link[2]
)
)
)
new_invocations.append((command.command, edges))
current_id = current_id + 1
# Add the node to the session
context.session.add_node(command.command)
for edge in edges:
print(edge)
context.session.add_edge(edge)
# Execute all remaining nodes
invoke_all(context)
except InvalidArgs:
print('Invalid command, use "help" to list commands')
continue
except SessionError:
# Start a new session
print("Session error: creating a new session")
context.session = context.invoker.create_execution_state()
except ExitCli:
break
except SystemExit:
continue
invoker.stop()
if __name__ == "__main__":
invoke_cli()

View File

@@ -4,5 +4,9 @@ __all__ = []
dirname = os.path.dirname(os.path.abspath(__file__))
for f in os.listdir(dirname):
if f != "__init__.py" and os.path.isfile("%s/%s" % (dirname, f)) and f[-3:] == ".py":
if (
f != "__init__.py"
and os.path.isfile("%s/%s" % (dirname, f))
and f[-3:] == ".py"
):
__all__.append(f[:-3])

View File

@@ -3,7 +3,9 @@
from abc import ABC, abstractmethod
from inspect import signature
from typing import get_args, get_type_hints
from pydantic import BaseModel, Field
from ..services.invocation_services import InvocationServices
@@ -70,5 +72,7 @@ class BaseInvocation(ABC, BaseModel):
def invoke(self, context: InvocationContext) -> BaseInvocationOutput:
"""Invoke with provided context and return outputs."""
pass
#fmt: off
id: str = Field(description="The id of this node. Must be unique among all nodes.")
#fmt: on

View File

@@ -0,0 +1,50 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal
import cv2 as cv
import numpy as np
import numpy.random
from PIL import Image, ImageOps
from pydantic import Field
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext, BaseInvocationOutput
from .image import ImageField, ImageOutput
class IntCollectionOutput(BaseInvocationOutput):
"""A collection of integers"""
type: Literal["int_collection"] = "int_collection"
# Outputs
collection: list[int] = Field(default=[], description="The int collection")
class RangeInvocation(BaseInvocation):
"""Creates a range"""
type: Literal["range"] = "range"
# Inputs
start: int = Field(default=0, description="The start of the range")
stop: int = Field(default=10, description="The stop of the range")
step: int = Field(default=1, description="The step of the range")
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(collection=list(range(self.start, self.stop, self.step)))
class RandomRangeInvocation(BaseInvocation):
"""Creates a collection of random numbers"""
type: Literal["random_range"] = "random_range"
# Inputs
low: int = Field(default=0, description="The inclusive low value")
high: int = Field(default=np.iinfo(np.int32).max, description="The exclusive high value")
size: int = Field(default=1, description="The number of values to generate")
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(collection=list(numpy.random.randint(self.low, self.high, size=self.size)))

View File

@@ -1,30 +1,36 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal
import numpy
from pydantic import Field
from PIL import Image, ImageOps
import cv2 as cv
from .image import ImageField, ImageOutput
from .baseinvocation import BaseInvocation, InvocationContext
import numpy
from PIL import Image, ImageOps
from pydantic import Field
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
class CvInpaintInvocation(BaseInvocation):
"""Simple inpaint using opencv."""
type: Literal['cv_inpaint'] = 'cv_inpaint'
#fmt: off
type: Literal["cv_inpaint"] = "cv_inpaint"
# Inputs
image: ImageField = Field(default=None, description="The image to inpaint")
mask: ImageField = Field(default=None, description="The mask to use when inpainting")
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(self.image.image_type, self.image.image_name)
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
mask = context.services.images.get(self.mask.image_type, self.mask.image_name)
# Convert to cv image/mask
# TODO: consider making these utility functions
cv_image = cv.cvtColor(numpy.array(image.convert('RGB')), cv.COLOR_RGB2BGR)
cv_image = cv.cvtColor(numpy.array(image.convert("RGB")), cv.COLOR_RGB2BGR)
cv_mask = numpy.array(ImageOps.invert(mask))
# Inpaint
@@ -35,8 +41,10 @@ class CvInpaintInvocation(BaseInvocation):
image_inpainted = Image.fromarray(cv.cvtColor(cv_inpainted, cv.COLOR_BGR2RGB))
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(context.graph_execution_state_id, self.id)
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image_inpainted)
return ImageOutput(
image = ImageField(image_type = image_type, image_name = image_name)
image=ImageField(image_type=image_type, image_name=image_name)
)

View File

@@ -0,0 +1,242 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from functools import partial
from typing import Literal, Optional, Union
import numpy as np
from torch import Tensor
from pydantic import Field
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator
from ...backend.stable_diffusion import PipelineIntermediateState
from ..util.util import diffusers_step_callback_adapter, CanceledException
SAMPLER_NAME_VALUES = Literal[
tuple(InvokeAIGenerator.schedulers())
]
# Text to image
class TextToImageInvocation(BaseInvocation):
"""Generates an image using text2img."""
type: Literal["txt2img"] = "txt2img"
# Inputs
# TODO: consider making prompt optional to enable providing prompt through a link
# fmt: off
prompt: Optional[str] = Field(description="The prompt to generate an image from")
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
sampler_name: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The sampler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
# fmt: on
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
def invoke(self, context: InvocationContext) -> ImageOutput:
# def step_callback(state: PipelineIntermediateState):
# if (context.services.queue.is_canceled(context.graph_execution_state_id)):
# raise CanceledException
# self.dispatch_progress(context, state.latents, state.step)
# Handle invalid model parameter
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
# (right now uses whatever current model is set in model manager)
model= context.services.model_manager.get_model()
outputs = Txt2Img(model).generate(
prompt=self.prompt,
step_callback=partial(self.dispatch_progress, context),
**self.dict(
exclude={"prompt"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
generate_output = next(outputs)
# Results are image and seed, unwrap for now and ignore the seed
# TODO: pre-seed?
# TODO: can this return multiple results? Should it?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, generate_output.image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
class ImageToImageInvocation(TextToImageInvocation):
"""Generates an image using img2img."""
type: Literal["img2img"] = "img2img"
# Inputs
image: Union[ImageField, None] = Field(description="The input image")
strength: float = Field(
default=0.75, gt=0, le=1, description="The strength of the original image"
)
fit: bool = Field(
default=True,
description="Whether or not the result should be fit to the aspect ratio of the input image",
)
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
None
if self.image is None
else context.services.images.get(
self.image.image_type, self.image.image_name
)
)
mask = None
# Handle invalid model parameter
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
model = context.services.model_manager.get_model()
outputs = Img2Img(model).generate(
prompt=self.prompt,
init_image=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
generator_output = next(outputs)
result_image = generator_output.image
# Results are image and seed, unwrap for now and ignore the seed
# TODO: pre-seed?
# TODO: can this return multiple results? Should it?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, result_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
class InpaintInvocation(ImageToImageInvocation):
"""Generates an image using inpaint."""
type: Literal["inpaint"] = "inpaint"
# Inputs
mask: Union[ImageField, None] = Field(description="The mask")
inpaint_replace: float = Field(
default=0.0,
ge=0.0,
le=1.0,
description="The amount by which to replace masked areas with latent noise",
)
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
None
if self.image is None
else context.services.images.get(
self.image.image_type, self.image.image_name
)
)
mask = (
None
if self.mask is None
else context.services.images.get(self.mask.image_type, self.mask.image_name)
)
# Handle invalid model parameter
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
model = context.services.model_manager.get_model()
outputs = Inpaint(model).generate(
prompt=self.prompt,
init_img=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
generator_output = next(outputs)
result_image = generator_output.image
# Results are image and seed, unwrap for now and ignore the seed
# TODO: pre-seed?
# TODO: can this return multiple results? Should it?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, result_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)

View File

@@ -2,108 +2,156 @@
from datetime import datetime, timezone
from typing import Literal, Optional
import numpy
from pydantic import Field, BaseModel
from PIL import Image, ImageOps, ImageFilter
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
image_type: str = Field(default=ImageType.RESULT, description="The type of the image")
image_type: str = Field(
default=ImageType.RESULT, description="The type of the image"
)
image_name: Optional[str] = Field(default=None, description="The name of the image")
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
type: Literal['image'] = 'image'
image: ImageField = Field(default=None, description="The output image")
#fmt: off
type: Literal["image"] = "image"
image: ImageField = Field(default=None, description="The output image")
#fmt: on
class Config:
schema_extra = {
'required': [
'type',
'image',
]
}
class MaskOutput(BaseInvocationOutput):
"""Base class for invocations that output a mask"""
type: Literal['mask'] = 'mask'
mask: ImageField = Field(default=None, description="The output mask")
#fmt: off
type: Literal["mask"] = "mask"
mask: ImageField = Field(default=None, description="The output mask")
#fmt: on
class Config:
schema_extra = {
'required': [
'type',
'mask',
]
}
# TODO: this isn't really necessary anymore
class LoadImageInvocation(BaseInvocation):
"""Load an image from a filename and provide it as output."""
type: Literal['load_image'] = 'load_image'
#fmt: off
type: Literal["load_image"] = "load_image"
# Inputs
image_type: ImageType = Field(description="The type of the image")
image_name: str = Field(description="The name of the image")
image_name: str = Field(description="The name of the image")
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
return ImageOutput(
image = ImageField(image_type = self.image_type, image_name = self.image_name)
image=ImageField(image_type=self.image_type, image_name=self.image_name)
)
class ShowImageInvocation(BaseInvocation):
"""Displays a provided image, and passes it forward in the pipeline."""
type: Literal['show_image'] = 'show_image'
type: Literal["show_image"] = "show_image"
# Inputs
image: ImageField = Field(default=None, description="The image to show")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(self.image.image_type, self.image.image_name)
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
if image:
image.show()
# TODO: how to handle failure?
return ImageOutput(
image = ImageField(image_type = self.image.image_type, image_name = self.image.image_name)
image=ImageField(
image_type=self.image.image_type, image_name=self.image.image_name
)
)
class CropImageInvocation(BaseInvocation):
"""Crops an image to a specified box. The box can be outside of the image."""
type: Literal['crop'] = 'crop'
#fmt: off
type: Literal["crop"] = "crop"
# Inputs
image: ImageField = Field(default=None, description="The image to crop")
x: int = Field(default=0, description="The left x coordinate of the crop rectangle")
y: int = Field(default=0, description="The top y coordinate of the crop rectangle")
width: int = Field(default=512, gt=0, description="The width of the crop rectangle")
x: int = Field(default=0, description="The left x coordinate of the crop rectangle")
y: int = Field(default=0, description="The top y coordinate of the crop rectangle")
width: int = Field(default=512, gt=0, description="The width of the crop rectangle")
height: int = Field(default=512, gt=0, description="The height of the crop rectangle")
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(self.image.image_type, self.image.image_name)
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image_crop = Image.new(mode = 'RGBA', size = (self.width, self.height), color = (0, 0, 0, 0))
image_crop = Image.new(
mode="RGBA", size=(self.width, self.height), color=(0, 0, 0, 0)
)
image_crop.paste(image, (-self.x, -self.y))
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(context.graph_execution_state_id, self.id)
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image_crop)
return ImageOutput(
image = ImageField(image_type = image_type, image_name = image_name)
image=ImageField(image_type=image_type, image_name=image_name)
)
class PasteImageInvocation(BaseInvocation):
"""Pastes an image into another image."""
type: Literal['paste'] = 'paste'
#fmt: off
type: Literal["paste"] = "paste"
# Inputs
base_image: ImageField = Field(default=None, description="The base image")
image: ImageField = Field(default=None, description="The image to paste")
base_image: ImageField = Field(default=None, description="The base image")
image: ImageField = Field(default=None, description="The image to paste")
mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting")
x: int = Field(default=0, description="The left x coordinate at which to paste the image")
y: int = Field(default=0, description="The top y coordinate at which to paste the image")
x: int = Field(default=0, description="The left x coordinate at which to paste the image")
y: int = Field(default=0, description="The top y coordinate at which to paste the image")
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
base_image = context.services.images.get(self.base_image.image_type, self.base_image.image_name)
image = context.services.images.get(self.image.image_type, self.image.image_name)
mask = None if self.mask is None else ImageOps.invert(services.images.get(self.mask.image_type, self.mask.image_name))
base_image = context.services.images.get(
self.base_image.image_type, self.base_image.image_name
)
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
mask = (
None
if self.mask is None
else ImageOps.invert(
services.images.get(self.mask.image_type, self.mask.image_name)
)
)
# TODO: probably shouldn't invert mask here... should user be required to do it?
min_x = min(0, self.x)
@@ -111,75 +159,98 @@ class PasteImageInvocation(BaseInvocation):
max_x = max(base_image.width, image.width + self.x)
max_y = max(base_image.height, image.height + self.y)
new_image = Image.new(mode = 'RGBA', size = (max_x - min_x, max_y - min_y), color = (0, 0, 0, 0))
new_image = Image.new(
mode="RGBA", size=(max_x - min_x, max_y - min_y), color=(0, 0, 0, 0)
)
new_image.paste(base_image, (abs(min_x), abs(min_y)))
new_image.paste(image, (max(0, self.x), max(0, self.y)), mask = mask)
new_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask)
image_type = ImageType.RESULT
image_name = context.services.images.create_name(context.graph_execution_state_id, self.id)
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, new_image)
return ImageOutput(
image = ImageField(image_type = image_type, image_name = image_name)
image=ImageField(image_type=image_type, image_name=image_name)
)
class MaskFromAlphaInvocation(BaseInvocation):
"""Extracts the alpha channel of an image as a mask."""
type: Literal['tomask'] = 'tomask'
#fmt: off
type: Literal["tomask"] = "tomask"
# Inputs
image: ImageField = Field(default=None, description="The image to create the mask from")
invert: bool = Field(default=False, description="Whether or not to invert the mask")
invert: bool = Field(default=False, description="Whether or not to invert the mask")
#fmt: on
def invoke(self, context: InvocationContext) -> MaskOutput:
image = context.services.images.get(self.image.image_type, self.image.image_name)
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image_mask = image.split()[-1]
if self.invert:
image_mask = ImageOps.invert(image_mask)
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(context.graph_execution_state_id, self.id)
context.services.images.save(image_type, image_name, image_mask)
return MaskOutput(
mask = ImageField(image_type = image_type, image_name = image_name)
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image_mask)
return MaskOutput(mask=ImageField(image_type=image_type, image_name=image_name))
class BlurInvocation(BaseInvocation):
"""Blurs an image"""
type: Literal['blur'] = 'blur'
#fmt: off
type: Literal["blur"] = "blur"
# Inputs
image: ImageField = Field(default=None, description="The image to blur")
radius: float = Field(default=8.0, ge=0, description="The blur radius")
blur_type: Literal['gaussian', 'box'] = Field(default='gaussian', description="The type of blur")
radius: float = Field(default=8.0, ge=0, description="The blur radius")
blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur")
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(self.image.image_type, self.image.image_name)
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
blur = ImageFilter.GaussianBlur(self.radius) if self.blur_type == 'gaussian' else ImageFilter.BoxBlur(self.radius)
blur = (
ImageFilter.GaussianBlur(self.radius)
if self.blur_type == "gaussian"
else ImageFilter.BoxBlur(self.radius)
)
blur_image = image.filter(blur)
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(context.graph_execution_state_id, self.id)
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, blur_image)
return ImageOutput(
image = ImageField(image_type = image_type, image_name = image_name)
image=ImageField(image_type=image_type, image_name=image_name)
)
class LerpInvocation(BaseInvocation):
"""Linear interpolation of all pixels of an image"""
type: Literal['lerp'] = 'lerp'
#fmt: off
type: Literal["lerp"] = "lerp"
# Inputs
image: ImageField = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum output value")
max: int = Field(default=255, ge=0, le=255, description="The maximum output value")
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(self.image.image_type, self.image.image_name)
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image_arr = numpy.asarray(image, dtype=numpy.float32) / 255
image_arr = image_arr * (self.max - self.min) + self.max
@@ -187,33 +258,46 @@ class LerpInvocation(BaseInvocation):
lerp_image = Image.fromarray(numpy.uint8(image_arr))
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(context.graph_execution_state_id, self.id)
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, lerp_image)
return ImageOutput(
image = ImageField(image_type = image_type, image_name = image_name)
image=ImageField(image_type=image_type, image_name=image_name)
)
class InverseLerpInvocation(BaseInvocation):
"""Inverse linear interpolation of all pixels of an image"""
type: Literal['ilerp'] = 'ilerp'
#fmt: off
type: Literal["ilerp"] = "ilerp"
# Inputs
image: ImageField = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum input value")
max: int = Field(default=255, ge=0, le=255, description="The maximum input value")
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(self.image.image_type, self.image.image_name)
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image_arr = numpy.asarray(image, dtype=numpy.float32)
image_arr = numpy.minimum(numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1) * 255
image_arr = (
numpy.minimum(
numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1
)
* 255
)
ilerp_image = Image.fromarray(numpy.uint8(image_arr))
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(context.graph_execution_state_id, self.id)
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, ilerp_image)
return ImageOutput(
image = ImageField(image_type = image_type, image_name = image_name)
image=ImageField(image_type=image_type, image_name=image_name)
)

View File

@@ -0,0 +1,321 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal, Optional
from pydantic import BaseModel, Field
from torch import Tensor
import torch
from ...backend.model_management.model_manager import ModelManager
from ...backend.util.devices import CUDA_DEVICE, torch_dtype
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.image_util.seamless import configure_model_padding
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
import numpy as np
from accelerate.utils import set_seed
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from ...backend.generator import Generator
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.util.util import image_to_dataURL
from diffusers.schedulers import SchedulerMixin as Scheduler
import diffusers
from diffusers import DiffusionPipeline
class LatentsField(BaseModel):
"""A latents field used for passing latents between invocations"""
latents_name: Optional[str] = Field(default=None, description="The name of the latents")
class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents"""
#fmt: off
type: Literal["latent_output"] = "latent_output"
latents: LatentsField = Field(default=None, description="The output latents")
#fmt: on
class NoiseOutput(BaseInvocationOutput):
"""Invocation noise output"""
#fmt: off
type: Literal["noise_output"] = "noise_output"
noise: LatentsField = Field(default=None, description="The output noise")
#fmt: on
# TODO: this seems like a hack
scheduler_map = dict(
ddim=diffusers.DDIMScheduler,
dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_dpm_2=diffusers.KDPM2DiscreteScheduler,
k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler,
k_dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_euler=diffusers.EulerDiscreteScheduler,
k_euler_a=diffusers.EulerAncestralDiscreteScheduler,
k_heun=diffusers.HeunDiscreteScheduler,
k_lms=diffusers.LMSDiscreteScheduler,
plms=diffusers.PNDMScheduler,
)
SAMPLER_NAME_VALUES = Literal[
tuple(list(scheduler_map.keys()))
]
def get_scheduler(scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
scheduler_class = scheduler_map.get(scheduler_name,'ddim')
scheduler = scheduler_class.from_config(model.scheduler.config)
# hack copied over from generate.py
if not hasattr(scheduler, 'uses_inpainting_model'):
scheduler.uses_inpainting_model = lambda: False
return scheduler
def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_channels:int=4, use_mps_noise:bool=False, downsampling_factor:int = 8):
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(latent_channels, 4)
use_device = "cpu" if (use_mps_noise or device.type == "mps") else device
generator = torch.Generator(device=use_device).manual_seed(seed)
x = torch.randn(
[
1,
input_channels,
height // downsampling_factor,
width // downsampling_factor,
],
dtype=torch_dtype(device),
device=use_device,
generator=generator,
).to(device)
# if self.perlin > 0.0:
# perlin_noise = self.get_perlin_noise(
# width // self.downsampling_factor, height // self.downsampling_factor
# )
# x = (1 - self.perlin) * x + self.perlin * perlin_noise
return x
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""
type: Literal["noise"] = "noise"
# Inputs
seed: int = Field(default=0, ge=0, le=np.iinfo(np.uint32).max, description="The seed to use", )
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting noise", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting noise", )
def invoke(self, context: InvocationContext) -> NoiseOutput:
device = torch.device(CUDA_DEVICE)
noise = get_noise(self.width, self.height, device, self.seed)
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, noise)
return NoiseOutput(
noise=LatentsField(latents_name=name)
)
# Text to image
class TextToLatentsInvocation(BaseInvocation):
"""Generates latents from a prompt."""
type: Literal["t2l"] = "t2l"
# Inputs
# TODO: consider making prompt optional to enable providing prompt through a link
# fmt: off
prompt: Optional[str] = Field(description="The prompt to generate an image from")
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
noise: Optional[LatentsField] = Field(description="The noise to use")
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
sampler_name: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The sampler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
# fmt: on
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, sample: Tensor, step: int
) -> None:
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
context.graph_execution_state_id,
self.id,
{
"width": width,
"height": height,
"dataURL": dataURL
},
step,
self.steps,
)
def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline:
model_info = model_manager.get_model(self.model)
model_name = model_info['model_name']
model_hash = model_info['hash']
model: StableDiffusionGeneratorPipeline = model_info['model']
model.scheduler = get_scheduler(
model=model,
scheduler_name=self.sampler_name
)
if isinstance(model, DiffusionPipeline):
for component in [model.unet, model.vae]:
configure_model_padding(component,
self.seamless,
self.seamless_axes
)
else:
configure_model_padding(model,
self.seamless,
self.seamless_axes
)
return model
def get_conditioning_data(self, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(self.prompt, model=model)
conditioning_data = ConditioningData(
uc,
c,
self.cfg_scale,
extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=0.0,#threshold,
warmup=0.2,#warmup,
h_symmetry_time_pct=None,#h_symmetry_time_pct,
v_symmetry_time_pct=None#v_symmetry_time_pct,
),
).add_scheduler_args_if_applicable(model.scheduler, eta=None)#ddim_eta)
return conditioning_data
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, state.latents, state.step)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model)
# TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(model.device)),
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
callback=step_callback
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, result_latents)
return LatentsOutput(
latents=LatentsField(latents_name=name)
)
class LatentsToLatentsInvocation(TextToLatentsInvocation):
"""Generates latents using latents as base image."""
type: Literal["l2l"] = "l2l"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
strength: float = Field(default=0.5, description="The strength of the latents to use")
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name)
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, state.latents, state.step)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model)
# TODO: Verify the noise is the right size
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=model.device, dtype=latent.dtype
)
timesteps, _ = model.get_img2img_timesteps(
self.steps,
self.strength,
device=model.device,
)
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=initial_latents,
timesteps=timesteps,
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
callback=step_callback
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, result_latents)
return LatentsOutput(
latents=LatentsField(latents_name=name)
)
# Latent to image
class LatentsToImageInvocation(BaseInvocation):
"""Generates an image from latents."""
type: Literal["l2i"] = "l2i"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
model: str = Field(default="", description="The model to use")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
# TODO: this only really needs the vae
model_info = context.services.model_manager.get_model(self.model)
model: StableDiffusionGeneratorPipeline = model_info['model']
with torch.inference_mode():
np_image = model.decode_latents(latents)
image = model.numpy_to_pil(np_image)[0]
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)

View File

@@ -0,0 +1,68 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Optional
import numpy
from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
class IntOutput(BaseInvocationOutput):
"""An integer output"""
#fmt: off
type: Literal["int_output"] = "int_output"
a: int = Field(default=None, description="The output integer")
#fmt: on
class AddInvocation(BaseInvocation):
"""Adds two numbers"""
#fmt: off
type: Literal["add"] = "add"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a + self.b)
class SubtractInvocation(BaseInvocation):
"""Subtracts two numbers"""
#fmt: off
type: Literal["sub"] = "sub"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a - self.b)
class MultiplyInvocation(BaseInvocation):
"""Multiplies two numbers"""
#fmt: off
type: Literal["mul"] = "mul"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a * self.b)
class DivideInvocation(BaseInvocation):
"""Divides two numbers"""
#fmt: off
type: Literal["div"] = "div"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=int(self.a / self.b))

View File

@@ -1,9 +1,22 @@
from typing import Literal
from pydantic.fields import Field
from .baseinvocation import BaseInvocationOutput
class PromptOutput(BaseInvocationOutput):
"""Base class for invocations that output a prompt"""
type: Literal['prompt'] = 'prompt'
#fmt: off
type: Literal["prompt"] = "prompt"
prompt: str = Field(default=None, description="The output prompt")
#fmt: on
class Config:
schema_extra = {
'required': [
'type',
'prompt',
]
}

View File

@@ -0,0 +1,42 @@
from datetime import datetime, timezone
from typing import Literal, Union
from pydantic import Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
class RestoreFaceInvocation(BaseInvocation):
"""Restores faces in an image."""
#fmt: off
type: Literal["restore_face"] = "restore_face"
# Inputs
image: Union[ImageField, None] = Field(description="The input image")
strength: float = Field(default=0.75, gt=0, le=1, description="The strength of the restoration" )
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
results = context.services.restoration.upscale_and_reconstruct(
image_list=[[image, 0]],
upscale=None,
strength=self.strength, # GFPGAN strength
save_original=False,
image_callback=None,
)
# Results are image and seed, unwrap for now
# TODO: can this return multiple results?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)

View File

@@ -0,0 +1,46 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Union
from pydantic import Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
class UpscaleInvocation(BaseInvocation):
"""Upscales an image."""
#fmt: off
type: Literal["upscale"] = "upscale"
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2, 4] = Field(default=2, description="The upscale level")
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
results = context.services.restoration.upscale_and_reconstruct(
image_list=[[image, 0]],
upscale=(self.level, self.strength),
strength=0.0, # GFPGAN strength
save_original=False,
image_callback=None,
)
# Results are image and seed, unwrap for now
# TODO: can this return multiple results?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)

View File

@@ -0,0 +1,88 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Any, Dict, TypedDict
ProgressImage = TypedDict(
"ProgressImage", {"dataURL": str, "width": int, "height": int}
)
class EventServiceBase:
session_event: str = "session_event"
"""Basic event bus, to have an empty stand-in when not needed"""
def dispatch(self, event_name: str, payload: Any) -> None:
pass
def __emit_session_event(self, event_name: str, payload: Dict) -> None:
self.dispatch(
event_name=EventServiceBase.session_event,
payload=dict(event=event_name, data=payload),
)
# Define events here for every event in the system.
# This will make them easier to integrate until we find a schema generator.
def emit_generator_progress(
self,
graph_execution_state_id: str,
invocation_id: str,
progress_image: ProgressImage | None,
step: int,
total_steps: int,
) -> None:
"""Emitted when there is generation progress"""
self.__emit_session_event(
event_name="generator_progress",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
progress_image=progress_image,
step=step,
total_steps=total_steps,
),
)
def emit_invocation_complete(
self, graph_execution_state_id: str, invocation_id: str, result: Dict
) -> None:
"""Emitted when an invocation has completed"""
self.__emit_session_event(
event_name="invocation_complete",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
result=result,
),
)
def emit_invocation_error(
self, graph_execution_state_id: str, invocation_id: str, error: str
) -> None:
"""Emitted when an invocation has completed"""
self.__emit_session_event(
event_name="invocation_error",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
error=error,
),
)
def emit_invocation_started(
self, graph_execution_state_id: str, invocation_id: str
) -> None:
"""Emitted when an invocation has started"""
self.__emit_session_event(
event_name="invocation_started",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
),
)
def emit_graph_execution_complete(self, graph_execution_state_id: str) -> None:
"""Emitted when a session has completed all invocations"""
self.__emit_session_event(
event_name="graph_execution_state_complete",
payload=dict(graph_execution_state_id=graph_execution_state_id),
)

View File

@@ -1,20 +1,23 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC, abstractmethod
from enum import Enum
import datetime
import os
from abc import ABC, abstractmethod
from enum import Enum
from pathlib import Path
from queue import Queue
from typing import Dict
from PIL.Image import Image
from ...pngwriter import PngWriter
from invokeai.app.util.save_thumbnail import save_thumbnail
from invokeai.backend.image_util import PngWriter
class ImageType(str, Enum):
RESULT = 'results'
INTERMEDIATE = 'intermediates'
UPLOAD = 'uploads'
RESULT = "results"
INTERMEDIATE = "intermediates"
UPLOAD = "uploads"
class ImageStorageBase(ABC):
@@ -38,14 +41,15 @@ class ImageStorageBase(ABC):
pass
def create_name(self, context_id: str, node_id: str) -> str:
return f'{context_id}_{node_id}_{str(int(datetime.datetime.now(datetime.timezone.utc).timestamp()))}.png'
return f"{context_id}_{node_id}_{str(int(datetime.datetime.now(datetime.timezone.utc).timestamp()))}.png"
class DiskImageStorage(ImageStorageBase):
"""Stores images on disk"""
__output_folder: str
__pngWriter: PngWriter
__cache_ids: Queue # TODO: this is an incredibly naive cache
__cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[str, Image]
__max_cache_size: int
@@ -54,13 +58,18 @@ class DiskImageStorage(ImageStorageBase):
self.__pngWriter = PngWriter(output_folder)
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = 10 # TODO: get this from config
self.__max_cache_size = 10 # TODO: get this from config
Path(output_folder).mkdir(parents=True, exist_ok=True)
# TODO: don't hard-code. get/save/delete should maybe take subpath?
for image_type in ImageType:
Path(os.path.join(output_folder, image_type)).mkdir(parents=True, exist_ok=True)
Path(os.path.join(output_folder, image_type)).mkdir(
parents=True, exist_ok=True
)
Path(os.path.join(output_folder, image_type, "thumbnails")).mkdir(
parents=True, exist_ok=True
)
def get(self, image_type: ImageType, image_name: str) -> Image:
image_path = self.get_path(image_type, image_name)
@@ -79,8 +88,14 @@ class DiskImageStorage(ImageStorageBase):
def save(self, image_type: ImageType, image_name: str, image: Image) -> None:
image_subpath = os.path.join(image_type, image_name)
self.__pngWriter.save_image_and_prompt_to_png(image, "", image_subpath, None) # TODO: just pass full path to png writer
self.__pngWriter.save_image_and_prompt_to_png(
image, "", image_subpath, None
) # TODO: just pass full path to png writer
save_thumbnail(
image=image,
filename=image_name,
path=os.path.join(self.__output_folder, image_type, "thumbnails"),
)
image_path = self.get_path(image_type, image_name)
self.__set_cache(image_path, image)
@@ -88,7 +103,7 @@ class DiskImageStorage(ImageStorageBase):
image_path = self.get_path(image_type, image_name)
if os.path.exists(image_path):
os.remove(image_path)
if image_path in self.__cache:
del self.__cache[image_path]
@@ -98,7 +113,9 @@ class DiskImageStorage(ImageStorageBase):
def __set_cache(self, image_name: str, image: Image):
if not image_name in self.__cache:
self.__cache[image_name] = image
self.__cache_ids.put(image_name) # TODO: this should refresh position for LRU cache
self.__cache_ids.put(
image_name
) # TODO: this should refresh position for LRU cache
if len(self.__cache) > self.__max_cache_size:
cache_id = self.__cache_ids.get()
del self.__cache[cache_id]

View File

@@ -0,0 +1,81 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC, abstractmethod
from queue import Queue
import time
# TODO: make this serializable
class InvocationQueueItem:
# session_id: str
graph_execution_state_id: str
invocation_id: str
invoke_all: bool
timestamp: float
def __init__(
self,
# session_id: str,
graph_execution_state_id: str,
invocation_id: str,
invoke_all: bool = False,
):
# self.session_id = session_id
self.graph_execution_state_id = graph_execution_state_id
self.invocation_id = invocation_id
self.invoke_all = invoke_all
self.timestamp = time.time()
class InvocationQueueABC(ABC):
"""Abstract base class for all invocation queues"""
@abstractmethod
def get(self) -> InvocationQueueItem:
pass
@abstractmethod
def put(self, item: InvocationQueueItem | None) -> None:
pass
@abstractmethod
def cancel(self, graph_execution_state_id: str) -> None:
pass
@abstractmethod
def is_canceled(self, graph_execution_state_id: str) -> bool:
pass
class MemoryInvocationQueue(InvocationQueueABC):
__queue: Queue
__cancellations: dict[str, float]
def __init__(self):
self.__queue = Queue()
self.__cancellations = dict()
def get(self) -> InvocationQueueItem:
item = self.__queue.get()
while isinstance(item, InvocationQueueItem) \
and item.graph_execution_state_id in self.__cancellations \
and self.__cancellations[item.graph_execution_state_id] > item.timestamp:
item = self.__queue.get()
# Clear old items
for graph_execution_state_id in list(self.__cancellations.keys()):
if self.__cancellations[graph_execution_state_id] < item.timestamp:
del self.__cancellations[graph_execution_state_id]
return item
def put(self, item: InvocationQueueItem | None) -> None:
self.__queue.put(item)
def cancel(self, graph_execution_state_id: str) -> None:
if graph_execution_state_id not in self.__cancellations:
self.__cancellations[graph_execution_state_id] = time.time()
def is_canceled(self, graph_execution_state_id: str) -> bool:
return graph_execution_state_id in self.__cancellations

View File

@@ -0,0 +1,43 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from invokeai.backend import ModelManager
from .events import EventServiceBase
from .latent_storage import LatentsStorageBase
from .image_storage import ImageStorageBase
from .restoration_services import RestorationServices
from .invocation_queue import InvocationQueueABC
from .item_storage import ItemStorageABC
class InvocationServices:
"""Services that can be used by invocations"""
events: EventServiceBase
latents: LatentsStorageBase
images: ImageStorageBase
queue: InvocationQueueABC
model_manager: ModelManager
restoration: RestorationServices
# NOTE: we must forward-declare any types that include invocations, since invocations can use services
graph_execution_manager: ItemStorageABC["GraphExecutionState"]
processor: "InvocationProcessorABC"
def __init__(
self,
model_manager: ModelManager,
events: EventServiceBase,
latents: LatentsStorageBase,
images: ImageStorageBase,
queue: InvocationQueueABC,
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
processor: "InvocationProcessorABC",
restoration: RestorationServices,
):
self.model_manager = model_manager
self.events = events
self.latents = latents
self.images = images
self.queue = queue
self.graph_execution_manager = graph_execution_manager
self.processor = processor
self.restoration = restoration

View File

@@ -2,11 +2,12 @@
from abc import ABC
from threading import Event, Thread
from .graph import Graph, GraphExecutionState
from .item_storage import ItemStorageABC
from ..invocations.baseinvocation import InvocationContext
from .invocation_services import InvocationServices
from .graph import Graph, GraphExecutionState
from .invocation_queue import InvocationQueueABC, InvocationQueueItem
from .invocation_services import InvocationServices
from .item_storage import ItemStorageABC
class Invoker:
@@ -14,14 +15,13 @@ class Invoker:
services: InvocationServices
def __init__(self,
services: InvocationServices
):
def __init__(self, services: InvocationServices):
self.services = services
self._start()
def invoke(self, graph_execution_state: GraphExecutionState, invoke_all: bool = False) -> str|None:
def invoke(
self, graph_execution_state: GraphExecutionState, invoke_all: bool = False
) -> str | None:
"""Determines the next node to invoke and returns the id of the invoked node, or None if there are no nodes to execute"""
# Get the next invocation
@@ -33,38 +33,39 @@ class Invoker:
self.services.graph_execution_manager.set(graph_execution_state)
# Queue the invocation
print(f'queueing item {invocation.id}')
self.services.queue.put(InvocationQueueItem(
#session_id = session.id,
graph_execution_state_id = graph_execution_state.id,
invocation_id = invocation.id,
invoke_all = invoke_all
))
self.services.queue.put(
InvocationQueueItem(
# session_id = session.id,
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
invoke_all=invoke_all,
)
)
return invocation.id
def create_execution_state(self, graph: Graph|None = None) -> GraphExecutionState:
def create_execution_state(self, graph: Graph | None = None) -> GraphExecutionState:
"""Creates a new execution state for the given graph"""
new_state = GraphExecutionState(graph = Graph() if graph is None else graph)
new_state = GraphExecutionState(graph=Graph() if graph is None else graph)
self.services.graph_execution_manager.set(new_state)
return new_state
def cancel(self, graph_execution_state_id: str) -> None:
"""Cancels the given execution state"""
self.services.queue.cancel(graph_execution_state_id)
def __start_service(self, service) -> None:
# Call start() method on any services that have it
start_op = getattr(service, 'start', None)
start_op = getattr(service, "start", None)
if callable(start_op):
start_op(self)
def __stop_service(self, service) -> None:
# Call stop() method on any services that have it
stop_op = getattr(service, 'stop', None)
stop_op = getattr(service, "stop", None)
if callable(stop_op):
stop_op(self)
def _start(self) -> None:
"""Starts the invoker. This is called automatically when the invoker is created."""
for service in vars(self.services):
@@ -73,7 +74,6 @@ class Invoker:
for service in vars(self.services):
self.__start_service(getattr(self.services, service))
def stop(self) -> None:
"""Stops the invoker. A new invoker will have to be created to execute further."""
# First stop all services
@@ -87,4 +87,4 @@ class Invoker:
class InvocationProcessorABC(ABC):
pass
pass

View File

@@ -1,19 +1,21 @@
from abc import ABC, abstractmethod
from typing import Callable, Generic, TypeVar
from typing import Callable, TypeVar, Generic
from pydantic import BaseModel, Field
from pydantic.generics import GenericModel
from abc import ABC, abstractmethod
T = TypeVar('T', bound=BaseModel)
T = TypeVar("T", bound=BaseModel)
class PaginatedResults(GenericModel, Generic[T]):
"""Paginated results"""
items: list[T] = Field(description = "Items")
page: int = Field(description = "Current Page")
pages: int = Field(description = "Total number of pages")
per_page: int = Field(description = "Number of items per page")
total: int = Field(description = "Total number of items in result")
#fmt: off
items: list[T] = Field(description="Items")
page: int = Field(description="Current Page")
pages: int = Field(description="Total number of pages")
per_page: int = Field(description="Number of items per page")
total: int = Field(description="Total number of items in result")
#fmt: on
class ItemStorageABC(ABC, Generic[T]):
_on_changed_callbacks: list[Callable[[T], None]]
@@ -24,6 +26,7 @@ class ItemStorageABC(ABC, Generic[T]):
self._on_deleted_callbacks = list()
"""Base item storage class"""
@abstractmethod
def get(self, item_id: str) -> T:
pass
@@ -37,7 +40,9 @@ class ItemStorageABC(ABC, Generic[T]):
pass
@abstractmethod
def search(self, query: str, page: int = 0, per_page: int = 10) -> PaginatedResults[T]:
def search(
self, query: str, page: int = 0, per_page: int = 10
) -> PaginatedResults[T]:
pass
def on_changed(self, on_changed: Callable[[T], None]) -> None:
@@ -51,7 +56,7 @@ class ItemStorageABC(ABC, Generic[T]):
def _on_changed(self, item: T) -> None:
for callback in self._on_changed_callbacks:
callback(item)
def _on_deleted(self, item_id: str) -> None:
for callback in self._on_deleted_callbacks:
callback(item_id)

View File

@@ -0,0 +1,93 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import os
from abc import ABC, abstractmethod
from pathlib import Path
from queue import Queue
from typing import Dict
import torch
class LatentsStorageBase(ABC):
"""Responsible for storing and retrieving latents."""
@abstractmethod
def get(self, name: str) -> torch.Tensor:
pass
@abstractmethod
def set(self, name: str, data: torch.Tensor) -> None:
pass
@abstractmethod
def delete(self, name: str) -> None:
pass
class ForwardCacheLatentsStorage(LatentsStorageBase):
"""Caches the latest N latents in memory, writing-thorugh to and reading from underlying storage"""
__cache: Dict[str, torch.Tensor]
__cache_ids: Queue
__max_cache_size: int
__underlying_storage: LatentsStorageBase
def __init__(self, underlying_storage: LatentsStorageBase, max_cache_size: int = 20):
self.__underlying_storage = underlying_storage
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = max_cache_size
def get(self, name: str) -> torch.Tensor:
cache_item = self.__get_cache(name)
if cache_item is not None:
return cache_item
latent = self.__underlying_storage.get(name)
self.__set_cache(name, latent)
return latent
def set(self, name: str, data: torch.Tensor) -> None:
self.__underlying_storage.set(name, data)
self.__set_cache(name, data)
def delete(self, name: str) -> None:
self.__underlying_storage.delete(name)
if name in self.__cache:
del self.__cache[name]
def __get_cache(self, name: str) -> torch.Tensor|None:
return None if name not in self.__cache else self.__cache[name]
def __set_cache(self, name: str, data: torch.Tensor):
if not name in self.__cache:
self.__cache[name] = data
self.__cache_ids.put(name)
if self.__cache_ids.qsize() > self.__max_cache_size:
self.__cache.pop(self.__cache_ids.get())
class DiskLatentsStorage(LatentsStorageBase):
"""Stores latents in a folder on disk without caching"""
__output_folder: str
def __init__(self, output_folder: str):
self.__output_folder = output_folder
Path(output_folder).mkdir(parents=True, exist_ok=True)
def get(self, name: str) -> torch.Tensor:
latent_path = self.get_path(name)
return torch.load(latent_path)
def set(self, name: str, data: torch.Tensor) -> None:
latent_path = self.get_path(name)
torch.save(data, latent_path)
def delete(self, name: str) -> None:
latent_path = self.get_path(name)
os.remove(latent_path)
def get_path(self, name: str) -> str:
return os.path.join(self.__output_folder, name)

View File

@@ -0,0 +1,120 @@
import os
import sys
import torch
from argparse import Namespace
from invokeai.backend import Args
from omegaconf import OmegaConf
from pathlib import Path
import invokeai.version
from ...backend import ModelManager
from ...backend.util import choose_precision, choose_torch_device
from ...backend import Globals
# TODO: Replace with an abstract class base ModelManagerBase
def get_model_manager(config: Args) -> ModelManager:
if not config.conf:
config_file = os.path.join(Globals.root, "configs", "models.yaml")
if not os.path.exists(config_file):
report_model_error(
config, FileNotFoundError(f"The file {config_file} could not be found.")
)
print(f">> {invokeai.version.__app_name__}, version {invokeai.version.__version__}")
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
import transformers # type: ignore
transformers.logging.set_verbosity_error()
import diffusers
diffusers.logging.set_verbosity_error()
# normalize the config directory relative to root
if not os.path.isabs(config.conf):
config.conf = os.path.normpath(os.path.join(Globals.root, config.conf))
if config.embeddings:
if not os.path.isabs(config.embedding_path):
embedding_path = os.path.normpath(
os.path.join(Globals.root, config.embedding_path)
)
else:
embedding_path = config.embedding_path
else:
embedding_path = None
# migrate legacy models
ModelManager.migrate_models()
# creating the model manager
try:
device = torch.device(choose_torch_device())
precision = 'float16' if config.precision=='float16' \
else 'float32' if config.precision=='float32' \
else choose_precision(device)
model_manager = ModelManager(
OmegaConf.load(config.conf),
precision=precision,
device_type=device,
max_loaded_models=config.max_loaded_models,
embedding_path = Path(embedding_path),
)
except (FileNotFoundError, TypeError, AssertionError) as e:
report_model_error(config, e)
except (IOError, KeyError) as e:
print(f"{e}. Aborting.")
sys.exit(-1)
# try to autoconvert new models
# autoimport new .ckpt files
if path := config.autoconvert:
model_manager.autoconvert_weights(
conf_path=config.conf,
weights_directory=path,
)
return model_manager
def report_model_error(opt: Namespace, e: Exception):
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
print(
"** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
)
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
if yes_to_all:
print(
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
)
else:
response = input(
"Do you want to run invokeai-configure script to select and/or reinstall models? [y] "
)
if response.startswith(("n", "N")):
return
print("invokeai-configure is launching....\n")
# Match arguments that were set on the CLI
# only the arguments accepted by the configuration script are parsed
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
config = ["--config", opt.conf] if opt.conf is not None else []
previous_config = sys.argv
sys.argv = ["invokeai-configure"]
sys.argv.extend(root_dir)
sys.argv.extend(config.to_dict())
if yes_to_all is not None:
for arg in yes_to_all.split():
sys.argv.append(arg)
from invokeai.frontend.install import invokeai_configure
invokeai_configure()
# TODO: Figure out how to restart
# print('** InvokeAI will now restart')
# sys.argv = previous_args
# main() # would rather do a os.exec(), but doesn't exist?
# sys.exit(0)

View File

@@ -0,0 +1,124 @@
import traceback
from threading import Event, Thread
from ..invocations.baseinvocation import InvocationContext
from .invocation_queue import InvocationQueueItem
from .invoker import InvocationProcessorABC, Invoker
from ..util.util import CanceledException
class DefaultInvocationProcessor(InvocationProcessorABC):
__invoker_thread: Thread
__stop_event: Event
__invoker: Invoker
def start(self, invoker) -> None:
self.__invoker = invoker
self.__stop_event = Event()
self.__invoker_thread = Thread(
name="invoker_processor",
target=self.__process,
kwargs=dict(stop_event=self.__stop_event),
)
self.__invoker_thread.daemon = (
True # TODO: probably better to just not use threads?
)
self.__invoker_thread.start()
def stop(self, *args, **kwargs) -> None:
self.__stop_event.set()
def __process(self, stop_event: Event):
try:
while not stop_event.is_set():
queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
if not queue_item: # Probably stopping
continue
graph_execution_state = (
self.__invoker.services.graph_execution_manager.get(
queue_item.graph_execution_state_id
)
)
invocation = graph_execution_state.execution_graph.get_node(
queue_item.invocation_id
)
# Send starting event
self.__invoker.services.events.emit_invocation_started(
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
)
# Invoke
try:
outputs = invocation.invoke(
InvocationContext(
services=self.__invoker.services,
graph_execution_state_id=graph_execution_state.id,
)
)
# Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled(
graph_execution_state.id
):
continue
# Save outputs and history
graph_execution_state.complete(invocation.id, outputs)
# Save the state changes
self.__invoker.services.graph_execution_manager.set(
graph_execution_state
)
# Send complete event
self.__invoker.services.events.emit_invocation_complete(
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
result=outputs.dict(),
)
except KeyboardInterrupt:
pass
except CanceledException:
pass
except Exception as e:
error = traceback.format_exc()
# Save error
graph_execution_state.set_node_error(invocation.id, error)
# Save the state changes
self.__invoker.services.graph_execution_manager.set(
graph_execution_state
)
# Send error event
self.__invoker.services.events.emit_invocation_error(
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
error=error,
)
pass
# Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled(
graph_execution_state.id
):
continue
# Queue any further commands if invoking all
is_complete = graph_execution_state.is_complete()
if queue_item.invoke_all and not is_complete:
self.__invoker.invoke(graph_execution_state, invoke_all=True)
elif is_complete:
self.__invoker.services.events.emit_graph_execution_complete(
graph_execution_state.id
)
except KeyboardInterrupt:
... # Log something?

View File

@@ -0,0 +1,109 @@
import sys
import traceback
import torch
from ...backend.restoration import Restoration
from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE
# This should be a real base class for postprocessing functions,
# but right now we just instantiate the existing gfpgan, esrgan
# and codeformer functions.
class RestorationServices:
'''Face restoration and upscaling'''
def __init__(self,args):
try:
gfpgan, codeformer, esrgan = None, None, None
if args.restore or args.esrgan:
restoration = Restoration()
if args.restore:
gfpgan, codeformer = restoration.load_face_restore_models(
args.gfpgan_model_path
)
else:
print(">> Face restoration disabled")
if args.esrgan:
esrgan = restoration.load_esrgan(args.esrgan_bg_tile)
else:
print(">> Upscaling disabled")
else:
print(">> Face restoration and upscaling disabled")
except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr)
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
self.device = torch.device(choose_torch_device())
self.gfpgan = gfpgan
self.codeformer = codeformer
self.esrgan = esrgan
# note that this one method does gfpgan and codepath reconstruction, as well as
# esrgan upscaling
# TO DO: refactor into separate methods
def upscale_and_reconstruct(
self,
image_list,
facetool="gfpgan",
upscale=None,
upscale_denoise_str=0.75,
strength=0.0,
codeformer_fidelity=0.75,
save_original=False,
image_callback=None,
prefix=None,
):
results = []
for r in image_list:
image, seed = r
try:
if strength > 0:
if self.gfpgan is not None or self.codeformer is not None:
if facetool == "gfpgan":
if self.gfpgan is None:
print(
">> GFPGAN not found. Face restoration is disabled."
)
else:
image = self.gfpgan.process(image, strength, seed)
if facetool == "codeformer":
if self.codeformer is None:
print(
">> CodeFormer not found. Face restoration is disabled."
)
else:
cf_device = (
CPU_DEVICE if self.device == MPS_DEVICE else self.device
)
image = self.codeformer.process(
image=image,
strength=strength,
device=cf_device,
seed=seed,
fidelity=codeformer_fidelity,
)
else:
print(">> Face Restoration is disabled.")
if upscale is not None:
if self.esrgan is not None:
if len(upscale) < 2:
upscale.append(0.75)
image = self.esrgan.process(
image,
upscale[1],
seed,
int(upscale[0]),
denoise_str=upscale_denoise_str,
)
else:
print(">> ESRGAN is disabled. Image not upscaled.")
except Exception as e:
print(
f">> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
)
if image_callback is not None:
image_callback(image, seed, upscaled=True, use_prefix=prefix)
else:
r[0] = image
results.append([image, seed])
return results

View File

@@ -1,12 +1,15 @@
import sqlite3
from threading import Lock
from typing import Generic, TypeVar, Union, get_args
from pydantic import BaseModel, parse_raw_as
from .item_storage import ItemStorageABC, PaginatedResults
T = TypeVar('T', bound=BaseModel)
T = TypeVar("T", bound=BaseModel)
sqlite_memory = ":memory:"
sqlite_memory = ':memory:'
class SqliteItemStorage(ItemStorageABC, Generic[T]):
_filename: str
@@ -16,15 +19,17 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
_id_field: str
_lock: Lock
def __init__(self, filename: str, table_name: str, id_field: str = 'id'):
def __init__(self, filename: str, table_name: str, id_field: str = "id"):
super().__init__()
self._filename = filename
self._table_name = table_name
self._id_field = id_field # TODO: validate that T has this field
self._id_field = id_field # TODO: validate that T has this field
self._lock = Lock()
self._conn = sqlite3.connect(self._filename, check_same_thread=False) # TODO: figure out a better threading solution
self._conn = sqlite3.connect(
self._filename, check_same_thread=False
) # TODO: figure out a better threading solution
self._cursor = self._conn.cursor()
self._create_table()
@@ -32,10 +37,14 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
def _create_table(self):
try:
self._lock.acquire()
self._cursor.execute(f'''CREATE TABLE IF NOT EXISTS {self._table_name} (
self._cursor.execute(
f"""CREATE TABLE IF NOT EXISTS {self._table_name} (
item TEXT,
id TEXT GENERATED ALWAYS AS (json_extract(item, '$.{self._id_field}')) VIRTUAL NOT NULL);''')
self._cursor.execute(f'''CREATE UNIQUE INDEX IF NOT EXISTS {self._table_name}_id ON {self._table_name}(id);''')
id TEXT GENERATED ALWAYS AS (json_extract(item, '$.{self._id_field}')) VIRTUAL NOT NULL);"""
)
self._cursor.execute(
f"""CREATE UNIQUE INDEX IF NOT EXISTS {self._table_name}_id ON {self._table_name}(id);"""
)
finally:
self._lock.release()
@@ -46,7 +55,11 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
def set(self, item: T):
try:
self._lock.acquire()
self._cursor.execute(f'''INSERT OR REPLACE INTO {self._table_name} (item) VALUES (?);''', (item.json(),))
self._cursor.execute(
f"""INSERT OR REPLACE INTO {self._table_name} (item) VALUES (?);""",
(item.json(),),
)
self._conn.commit()
finally:
self._lock.release()
self._on_changed(item)
@@ -54,7 +67,9 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
def get(self, id: str) -> Union[T, None]:
try:
self._lock.acquire()
self._cursor.execute(f'''SELECT item FROM {self._table_name} WHERE id = ?;''', (str(id),))
self._cursor.execute(
f"""SELECT item FROM {self._table_name} WHERE id = ?;""", (str(id),)
)
result = self._cursor.fetchone()
finally:
self._lock.release()
@@ -67,7 +82,10 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
def delete(self, id: str):
try:
self._lock.acquire()
self._cursor.execute(f'''DELETE FROM {self._table_name} WHERE id = ?;''', (str(id),))
self._cursor.execute(
f"""DELETE FROM {self._table_name} WHERE id = ?;""", (str(id),)
)
self._conn.commit()
finally:
self._lock.release()
self._on_deleted(id)
@@ -75,12 +93,15 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
def list(self, page: int = 0, per_page: int = 10) -> PaginatedResults[T]:
try:
self._lock.acquire()
self._cursor.execute(f'''SELECT item FROM {self._table_name} LIMIT ? OFFSET ?;''', (per_page, page * per_page))
self._cursor.execute(
f"""SELECT item FROM {self._table_name} LIMIT ? OFFSET ?;""",
(per_page, page * per_page),
)
result = self._cursor.fetchall()
items = list(map(lambda r: self._parse_item(r[0]), result))
self._cursor.execute(f'''SELECT count(*) FROM {self._table_name};''')
self._cursor.execute(f"""SELECT count(*) FROM {self._table_name};""")
count = self._cursor.fetchone()[0]
finally:
self._lock.release()
@@ -88,22 +109,26 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
pageCount = int(count / per_page) + 1
return PaginatedResults[T](
items = items,
page = page,
pages = pageCount,
per_page = per_page,
total = count
items=items, page=page, pages=pageCount, per_page=per_page, total=count
)
def search(self, query: str, page: int = 0, per_page: int = 10) -> PaginatedResults[T]:
def search(
self, query: str, page: int = 0, per_page: int = 10
) -> PaginatedResults[T]:
try:
self._lock.acquire()
self._cursor.execute(f'''SELECT item FROM {self._table_name} WHERE item LIKE ? LIMIT ? OFFSET ?;''', (f'%{query}%', per_page, page * per_page))
self._cursor.execute(
f"""SELECT item FROM {self._table_name} WHERE item LIKE ? LIMIT ? OFFSET ?;""",
(f"%{query}%", per_page, page * per_page),
)
result = self._cursor.fetchall()
items = list(map(lambda r: self._parse_item(r[0]), result))
self._cursor.execute(f'''SELECT count(*) FROM {self._table_name} WHERE item LIKE ?;''', (f'%{query}%',))
self._cursor.execute(
f"""SELECT count(*) FROM {self._table_name} WHERE item LIKE ?;""",
(f"%{query}%",),
)
count = self._cursor.fetchone()[0]
finally:
self._lock.release()
@@ -111,9 +136,5 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
pageCount = int(count / per_page) + 1
return PaginatedResults[T](
items = items,
page = page,
pages = pageCount,
per_page = per_page,
total = count
items=items, page=page, pages=pageCount, per_page=per_page, total=count
)

View File

@@ -0,0 +1,25 @@
import os
from PIL import Image
def save_thumbnail(
image: Image.Image,
filename: str,
path: str,
size: int = 256,
) -> str:
"""
Saves a thumbnail of an image, returning its path.
"""
base_filename = os.path.splitext(filename)[0]
thumbnail_path = os.path.join(path, base_filename + ".webp")
if os.path.exists(thumbnail_path):
return thumbnail_path
image_copy = image.copy()
image_copy.thumbnail(size=(size, size))
image_copy.save(thumbnail_path, "WEBP")
return thumbnail_path

42
invokeai/app/util/util.py Normal file
View File

@@ -0,0 +1,42 @@
import torch
from PIL import Image
from ..invocations.baseinvocation import InvocationContext
from ...backend.util.util import image_to_dataURL
from ...backend.generator.base import Generator
from ...backend.stable_diffusion import PipelineIntermediateState
class CanceledException(Exception):
pass
def fast_latents_step_callback(sample: torch.Tensor, step: int, steps: int, id: str, context: InvocationContext, ):
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
context.graph_execution_state_id,
id,
{
"width": width,
"height": height,
"dataURL": dataURL
},
step,
steps,
)
def diffusers_step_callback_adapter(*cb_args, **kwargs):
"""
txt2img gives us a Tensor in the step_callbak, while img2img gives us a PipelineIntermediateState.
This adapter grabs the needed data and passes it along to the callback function.
"""
if isinstance(cb_args[0], PipelineIntermediateState):
progress_state: PipelineIntermediateState = cb_args[0]
return fast_latents_step_callback(progress_state.latents, progress_state.step, **kwargs)
else:
return fast_latents_step_callback(*cb_args, **kwargs)

View File

@@ -1,5 +1,16 @@
'''
"""
Initialization file for invokeai.backend
'''
from .invoke_ai_web_server import InvokeAIWebServer
"""
from .generate import Generate
from .generator import (
InvokeAIGeneratorBasicParams,
InvokeAIGenerator,
InvokeAIGeneratorOutput,
Txt2Img,
Img2Img,
Inpaint
)
from .model_management import ModelManager
from .safety_checker import SafetyChecker
from .args import Args
from .globals import Globals

File diff suppressed because it is too large Load Diff

View File

@@ -6,19 +6,20 @@
#
# Coauthor: Kevin Turner http://github.com/keturn
#
print("Loading Python libraries...\n")
import sys
print("Loading Python libraries...\n",file=sys.stderr)
import argparse
import io
import os
import re
import shutil
import sys
import traceback
import warnings
from argparse import Namespace
from pathlib import Path
from urllib import request
from shutil import get_terminal_size
from urllib import request
import npyscreen
import torch
@@ -37,17 +38,20 @@ from transformers import (
import invokeai.configs as configs
from ...frontend.install.model_install import addModelsForm, process_and_execute
from ...frontend.install.widgets import (
CenteredButtonPress,
IntTitleSlider,
set_min_terminal_size,
)
from ..args import PRECISION_CHOICES, Args
from ..globals import Globals, global_config_dir, global_config_file, global_cache_dir
from .model_install import addModelsForm, process_and_execute
from ..globals import Globals, global_cache_dir, global_config_dir, global_config_file
from .model_install_backend import (
default_dataset,
download_from_hf,
recommended_datasets,
hf_download_with_resume,
recommended_datasets,
)
from .widgets import IntTitleSlider, CenteredButtonPress, set_min_terminal_size
warnings.filterwarnings("ignore")
@@ -82,6 +86,7 @@ INIT_FILE_PREAMBLE = """# InvokeAI initialization file
# -Ak_euler_a -C10.0
"""
# --------------------------------------------
def postscript(errors: None):
if not any(errors):
@@ -180,13 +185,11 @@ def download_with_progress_bar(model_url: str, model_dest: str, label: str = "th
# ---------------------------------------------
# this will preload the Bert tokenizer fles
def download_bert():
print(
"Installing bert tokenizer...",
file=sys.stderr
)
print("Installing bert tokenizer...", file=sys.stderr)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
from transformers import BertTokenizerFast
download_from_hf(BertTokenizerFast, "bert-base-uncased")
@@ -197,12 +200,14 @@ def download_sd1_clip():
download_from_hf(CLIPTokenizer, version)
download_from_hf(CLIPTextModel, version)
# ---------------------------------------------
def download_sd2_clip():
version = 'stabilityai/stable-diffusion-2'
version = "stabilityai/stable-diffusion-2"
print("Installing SD2 clip model...", file=sys.stderr)
download_from_hf(CLIPTokenizer, version, subfolder='tokenizer')
download_from_hf(CLIPTextModel, version, subfolder='text_encoder')
download_from_hf(CLIPTokenizer, version, subfolder="tokenizer")
download_from_hf(CLIPTextModel, version, subfolder="text_encoder")
# ---------------------------------------------
def download_realesrgan():
@@ -290,7 +295,7 @@ def download_vaes():
# first the diffusers version
repo_id = "stabilityai/sd-vae-ft-mse"
args = dict(
cache_dir=global_cache_dir("diffusers"),
cache_dir=global_cache_dir("hub"),
)
if not AutoencoderKL.from_pretrained(repo_id, **args):
raise Exception(f"download of {repo_id} failed")
@@ -323,13 +328,13 @@ def get_root(root: str = None) -> str:
class editOptsForm(npyscreen.FormMultiPage):
# for responsive resizing - disabled
# FIX_MINIMUM_SIZE_WHEN_CREATED = False
def create(self):
program_opts = self.parentApp.program_opts
old_opts = self.parentApp.invokeai_opts
first_time = not (Globals.root / Globals.initfile).exists()
access_token = HfFolder.get_token()
window_width,window_height = get_terminal_size()
window_width, window_height = get_terminal_size()
for i in [
"Configure startup settings. You can come back and change these later.",
"Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields.",
@@ -681,6 +686,7 @@ def run_console_ui(
else:
return (editApp.new_opts, editApp.user_selections)
# -------------------------------------
def write_opts(opts: Namespace, init_file: Path):
"""
@@ -701,8 +707,8 @@ def write_opts(opts: Namespace, init_file: Path):
"^--?(o|out|no-xformer|xformer|no-ckpt|ckpt|free|no-nsfw|nsfw|prec|max_load|embed|always|ckpt|free_gpu)"
)
# fix windows paths
opts.outdir = opts.outdir.replace('\\','/')
opts.embedding_path = opts.embedding_path.replace('\\','/')
opts.outdir = opts.outdir.replace("\\", "/")
opts.embedding_path = opts.embedding_path.replace("\\", "/")
new_file = f"{init_file}.new"
try:
lines = [x.strip() for x in open(init_file, "r").readlines()]
@@ -855,6 +861,7 @@ def main():
except KeyboardInterrupt:
print("\nGoodbye! Come back soon.")
# -------------------------------------
if __name__ == "__main__":
main()

View File

@@ -8,6 +8,7 @@ import sys
import warnings
from pathlib import Path
from tempfile import TemporaryFile
from typing import List
import requests
from diffusers import AutoencoderKL
@@ -15,12 +16,12 @@ from huggingface_hub import hf_hub_url
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from tqdm import tqdm
from typing import List
import invokeai.configs as configs
from ..generator.diffusers_pipeline import StableDiffusionGeneratorPipeline
from ..globals import Globals, global_cache_dir, global_config_dir
from ..model_manager import ModelManager
from ..model_management import ModelManager
from ..stable_diffusion import StableDiffusionGeneratorPipeline
warnings.filterwarnings("ignore")
@@ -44,45 +45,49 @@ Config_preamble = """
# was trained on.
"""
def default_config_file():
return Path(global_config_dir()) / "models.yaml"
def sd_configs():
return Path(global_config_dir()) / "stable-diffusion"
def initial_models():
global Datasets
if Datasets:
return Datasets
return (Datasets := OmegaConf.load(Dataset_path))
def install_requested_models(
install_initial_models: List[str] = None,
remove_models: List[str] = None,
scan_directory: Path = None,
external_models: List[str] = None,
scan_at_startup: bool = False,
convert_to_diffusers: bool = False,
precision: str = "float16",
purge_deleted: bool = False,
config_file_path: Path = None,
install_initial_models: List[str] = None,
remove_models: List[str] = None,
scan_directory: Path = None,
external_models: List[str] = None,
scan_at_startup: bool = False,
convert_to_diffusers: bool = False,
precision: str = "float16",
purge_deleted: bool = False,
config_file_path: Path = None,
):
'''
"""
Entry point for installing/deleting starter models, or installing external models.
'''
config_file_path=config_file_path or default_config_file()
"""
config_file_path = config_file_path or default_config_file()
if not config_file_path.exists():
open(config_file_path,'w')
model_manager= ModelManager(OmegaConf.load(config_file_path),precision=precision)
open(config_file_path, "w")
model_manager = ModelManager(OmegaConf.load(config_file_path), precision=precision)
if remove_models and len(remove_models) > 0:
print("== DELETING UNCHECKED STARTER MODELS ==")
for model in remove_models:
print(f'{model}...')
print(f"{model}...")
model_manager.del_model(model, delete_files=purge_deleted)
model_manager.commit(config_file_path)
if install_initial_models and len(install_initial_models) > 0:
print("== INSTALLING SELECTED STARTER MODELS ==")
successfully_downloaded = download_weight_datasets(
@@ -96,20 +101,20 @@ def install_requested_models(
# due to above, we have to reload the model manager because conf file
# was changed behind its back
model_manager= ModelManager(OmegaConf.load(config_file_path),precision=precision)
model_manager = ModelManager(OmegaConf.load(config_file_path), precision=precision)
external_models = external_models or list()
if scan_directory:
external_models.append(str(scan_directory))
if len(external_models)>0:
if len(external_models) > 0:
print("== INSTALLING EXTERNAL MODELS ==")
for path_url_or_repo in external_models:
try:
model_manager.heuristic_import(
path_url_or_repo,
convert=convert_to_diffusers,
commit_to_conf=config_file_path
commit_to_conf=config_file_path,
)
except KeyboardInterrupt:
sys.exit(-1)
@@ -117,17 +122,18 @@ def install_requested_models(
pass
if scan_at_startup and scan_directory.is_dir():
argument = '--autoconvert' if convert_to_diffusers else '--autoimport'
argument = "--autoconvert" if convert_to_diffusers else "--autoimport"
initfile = Path(Globals.root, Globals.initfile)
replacement = Path(Globals.root, f'{Globals.initfile}.new')
directory = str(scan_directory).replace('\\','/')
with open(initfile,'r') as input:
with open(replacement,'w') as output:
replacement = Path(Globals.root, f"{Globals.initfile}.new")
directory = str(scan_directory).replace("\\", "/")
with open(initfile, "r") as input:
with open(replacement, "w") as output:
while line := input.readline():
if not line.startswith(argument):
output.writelines([line])
output.writelines([f'{argument} {directory}'])
os.replace(replacement,initfile)
output.writelines([f"{argument} {directory}"])
os.replace(replacement, initfile)
# -------------------------------------
def yes_or_no(prompt: str, default_yes=True):
@@ -183,7 +189,9 @@ def migrate_models_ckpt():
if not os.path.exists(os.path.join(model_path, "model.ckpt")):
return
new_name = initial_models()["stable-diffusion-1.4"]["file"]
print('The Stable Diffusion v4.1 "model.ckpt" is already installed. The name will be changed to {new_name} to avoid confusion.')
print(
'The Stable Diffusion v4.1 "model.ckpt" is already installed. The name will be changed to {new_name} to avoid confusion.'
)
print(f"model.ckpt => {new_name}")
os.replace(
os.path.join(model_path, "model.ckpt"), os.path.join(model_path, new_name)
@@ -262,7 +270,6 @@ def _download_diffusion_weights(
path = download_from_hf(
model_class,
repo_id,
cache_subdir="diffusers",
safety_checker=None,
**extra_args,
)
@@ -383,7 +390,8 @@ def update_config_file(successfully_downloaded: dict, config_file: Path):
# ---------------------------------------------
def new_config_file_contents(
successfully_downloaded: dict, config_file: Path,
successfully_downloaded: dict,
config_file: Path,
) -> str:
if config_file.exists():
conf = OmegaConf.load(str(config_file.expanduser().resolve()))
@@ -413,7 +421,9 @@ def new_config_file_contents(
stanza["weights"] = os.path.relpath(
successfully_downloaded[model], start=Globals.root
)
stanza["config"] = os.path.normpath(os.path.join(sd_configs(), mod["config"]))
stanza["config"] = os.path.normpath(
os.path.join(sd_configs(), mod["config"])
)
if "vae" in mod:
if "file" in mod["vae"]:
stanza["vae"] = os.path.normpath(
@@ -445,7 +455,7 @@ def delete_weights(model_name: str, conf_stanza: dict):
print(
f"\n** The checkpoint version of {model_name} is superseded by the diffusers version. Deleting the original file {weights}?"
)
weights = Path(weights)
if not weights.is_absolute():
weights = Path(Globals.root) / weights

View File

@@ -5,6 +5,7 @@
import gc
import importlib
import logging
import os
import random
import re
@@ -19,28 +20,23 @@ import numpy as np
import skimage
import torch
import transformers
from PIL import Image, ImageOps
from accelerate.utils import set_seed
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.utils.import_utils import is_xformers_available
from omegaconf import OmegaConf
from PIL import Image, ImageOps
from pytorch_lightning import logging, seed_everything
import ldm.invoke.conditioning
from ldm.invoke.args import metadata_from_png
from ldm.invoke.concepts_lib import HuggingFaceConceptsLibrary
from ldm.invoke.conditioning import get_uc_and_c_and_ec
from ldm.invoke.devices import choose_precision, choose_torch_device
from ldm.invoke.generator.inpaint import infill_methods
from ldm.invoke.globals import Globals, global_cache_dir
from ldm.invoke.image_util import InitImageResizer
from ldm.invoke.model_manager import ModelManager
from ldm.invoke.pngwriter import PngWriter
from ldm.invoke.seamless import configure_model_padding
from ldm.invoke.txt2mask import Txt2Mask
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.ksampler import KSampler
from ldm.models.diffusion.plms import PLMSSampler
from pathlib import Path
from .args import metadata_from_png
from .generator import infill_methods
from .globals import Globals, global_cache_dir
from .image_util import InitImageResizer, PngWriter, Txt2Mask, configure_model_padding
from .model_management import ModelManager
from .safety_checker import SafetyChecker
from .prompting import get_uc_and_c_and_ec
from .prompting.conditioning import log_tokenization
from .stable_diffusion import HuggingFaceConceptsLibrary
from .util import choose_precision, choose_torch_device
def fix_func(orig):
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
@@ -227,6 +223,7 @@ class Generate:
self.precision,
max_loaded_models=max_loaded_models,
sequential_offload=self.free_gpu_mem,
embedding_path=Path(self.embedding_path),
)
# don't accept invalid models
fallback = self.model_manager.default_model() or FALLBACK_MODEL_NAME
@@ -249,31 +246,8 @@ class Generate:
# load safety checker if requested
if safety_checker:
try:
print(">> Initializing NSFW checker")
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from transformers import AutoFeatureExtractor
safety_model_id = "CompVis/stable-diffusion-safety-checker"
safety_model_path = global_cache_dir("hub")
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
safety_model_id,
local_files_only=True,
cache_dir=safety_model_path,
)
self.safety_feature_extractor = AutoFeatureExtractor.from_pretrained(
safety_model_id,
local_files_only=True,
cache_dir=safety_model_path,
)
self.safety_checker.to(self.device)
except Exception:
print(
"** An error was encountered while installing the safety checker:"
)
print(traceback.format_exc())
print(">> Initializing NSFW checker")
self.safety_checker = SafetyChecker(self.device)
else:
print(">> NSFW checker is disabled")
@@ -328,8 +302,8 @@ class Generate:
variation_amount=0.0,
threshold=0.0,
perlin=0.0,
h_symmetry_time_pct = None,
v_symmetry_time_pct = None,
h_symmetry_time_pct=None,
v_symmetry_time_pct=None,
karras_max=None,
outdir=None,
# these are specific to img2img and inpaint
@@ -486,7 +460,7 @@ class Generate:
if sampler_name and (sampler_name != self.sampler_name):
self.sampler_name = sampler_name
self._set_sampler()
self._set_scheduler()
# apply the concepts library to the prompt
prompt = self.huggingface_concepts_library.replace_concepts_with_triggers(
@@ -495,28 +469,11 @@ class Generate:
self.model.textual_inversion_manager.get_all_trigger_strings(),
)
# bit of a hack to change the cached sampler's karras threshold to
# whatever the user asked for
if karras_max is not None and isinstance(self.sampler, KSampler):
self.sampler.adjust_settings(karras_max=karras_max)
tic = time.time()
if self._has_cuda():
torch.cuda.reset_peak_memory_stats()
results = list()
init_image = None
mask_image = None
try:
if (
self.free_gpu_mem
and self.model.cond_stage_model.device != self.model.device
):
self.model.cond_stage_model.device = self.model.device
self.model.cond_stage_model.to(self.model.device)
except AttributeError:
pass
try:
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(
@@ -545,15 +502,6 @@ class Generate:
generator.set_variation(self.seed, variation_amount, with_variations)
generator.use_mps_noise = use_mps_noise
checker = (
{
"checker": self.safety_checker,
"extractor": self.safety_feature_extractor,
}
if self.safety_checker
else None
)
results = generator.generate(
prompt,
iterations=iterations,
@@ -580,7 +528,7 @@ class Generate:
embiggen_strength=embiggen_strength,
inpaint_replace=inpaint_replace,
mask_blur_radius=mask_blur_radius,
safety_checker=checker,
safety_checker=self.safety_checker,
seam_size=seam_size,
seam_blur=seam_blur,
seam_strength=seam_strength,
@@ -717,7 +665,7 @@ class Generate:
prompt,
model=self.model,
skip_normalize_legacy_blend=opt.skip_normalize,
log_tokens=ldm.invoke.conditioning.log_tokenization,
log_tokens=log_tokenization,
)
if tool in ("gfpgan", "codeformer", "upscale"):
@@ -741,7 +689,7 @@ class Generate:
)
elif tool == "outcrop":
from ldm.invoke.restoration.outcrop import Outcrop
from .restoration.outcrop import Outcrop
extend_instructions = {}
for direction, pixels in _pairwise(opt.outcrop):
@@ -794,7 +742,7 @@ class Generate:
clear_cuda_cache=self.clear_cuda_cache,
)
elif tool == "outpaint":
from ldm.invoke.restoration.outpaint import Outpaint
from .restoration.outpaint import Outpaint
restorer = Outpaint(image, self)
return restorer.process(opt, args, image_callback=callback, prefix=prefix)
@@ -816,17 +764,12 @@ class Generate:
hires_fix: bool = False,
force_outpaint: bool = False,
):
inpainting_model_in_use = self.sampler.uses_inpainting_model()
if hires_fix:
return self._make_txt2img2img()
if embiggen is not None:
return self._make_embiggen()
if inpainting_model_in_use:
return self._make_omnibus()
if ((init_image is not None) and (mask_image is not None)) or force_outpaint:
return self._make_inpaint()
@@ -903,16 +846,9 @@ class Generate:
def _make_inpaint(self):
return self._load_generator(".inpaint", "Inpaint")
def _make_omnibus(self):
return self._load_generator(".omnibus", "Omnibus")
def _load_generator(self, module, class_name):
if self.is_legacy_model(self.model_name):
mn = f"ldm.invoke.ckpt_generator{module}"
cn = f"Ckpt{class_name}"
else:
mn = f"ldm.invoke.generator{module}"
cn = class_name
mn = f"invokeai.backend.generator{module}"
cn = class_name
module = importlib.import_module(mn)
constructor = getattr(module, cn)
return constructor(self.model, self.precision)
@@ -973,21 +909,9 @@ class Generate:
# uncache generators so they pick up new models
self.generators = {}
seed_everything(random.randrange(0, np.iinfo(np.uint32).max))
if self.embedding_path is not None:
print(f'>> Loading embeddings from {self.embedding_path}')
for root, _, files in os.walk(self.embedding_path):
for name in files:
ti_path = os.path.join(root, name)
self.model.textual_inversion_manager.load_textual_inversion(
ti_path, defer_injecting_tokens=True
)
print(
f'>> Textual inversion triggers: {", ".join(sorted(self.model.textual_inversion_manager.get_all_trigger_strings()))}'
)
set_seed(random.randrange(0, np.iinfo(np.uint32).max))
self.model_name = model_name
self._set_sampler() # requires self.model_name to be set first
self._set_scheduler() # requires self.model_name to be set first
return self.model
def load_huggingface_concepts(self, concepts: list[str]):
@@ -1030,10 +954,9 @@ class Generate:
image_callback=None,
prefix=None,
):
results = []
for r in image_list:
image, seed = r
image, seed, _ = r
try:
if strength > 0:
if self.gfpgan is not None or self.codeformer is not None:
@@ -1120,44 +1043,6 @@ class Generate:
def is_legacy_model(self, model_name) -> bool:
return self.model_manager.is_legacy(model_name)
def _set_sampler(self):
if isinstance(self.model, DiffusionPipeline):
return self._set_scheduler()
else:
return self._set_sampler_legacy()
# very repetitive code - can this be simplified? The KSampler names are
# consistent, at least
def _set_sampler_legacy(self):
msg = f">> Setting Sampler to {self.sampler_name}"
if self.sampler_name == "plms":
self.sampler = PLMSSampler(self.model, device=self.device)
elif self.sampler_name == "ddim":
self.sampler = DDIMSampler(self.model, device=self.device)
elif self.sampler_name == "k_dpm_2_a":
self.sampler = KSampler(self.model, "dpm_2_ancestral", device=self.device)
elif self.sampler_name == "k_dpm_2":
self.sampler = KSampler(self.model, "dpm_2", device=self.device)
elif self.sampler_name == "k_dpmpp_2_a":
self.sampler = KSampler(
self.model, "dpmpp_2s_ancestral", device=self.device
)
elif self.sampler_name == "k_dpmpp_2":
self.sampler = KSampler(self.model, "dpmpp_2m", device=self.device)
elif self.sampler_name == "k_euler_a":
self.sampler = KSampler(self.model, "euler_ancestral", device=self.device)
elif self.sampler_name == "k_euler":
self.sampler = KSampler(self.model, "euler", device=self.device)
elif self.sampler_name == "k_heun":
self.sampler = KSampler(self.model, "heun", device=self.device)
elif self.sampler_name == "k_lms":
self.sampler = KSampler(self.model, "lms", device=self.device)
else:
msg = f">> Unsupported Sampler: {self.sampler_name}, Defaulting to plms"
self.sampler = PLMSSampler(self.model, device=self.device)
print(msg)
def _set_scheduler(self):
default = self.model.scheduler

View File

@@ -0,0 +1,13 @@
"""
Initialization file for the invokeai.generator package
"""
from .base import (
InvokeAIGenerator,
InvokeAIGeneratorBasicParams,
InvokeAIGeneratorOutput,
Txt2Img,
Img2Img,
Inpaint,
Generator,
)
from .inpaint import infill_methods

View File

@@ -0,0 +1,649 @@
"""
Base class for invokeai.backend.generator.*
including img2img, txt2img, and inpaint
"""
from __future__ import annotations
import itertools
import dataclasses
import diffusers
import os
import random
import traceback
from abc import ABCMeta
from argparse import Namespace
from contextlib import nullcontext
import cv2
import numpy as np
import torch
from PIL import Image, ImageChops, ImageFilter
from accelerate.utils import set_seed
from diffusers import DiffusionPipeline
from tqdm import trange
from typing import Callable, List, Iterator, Optional, Type
from dataclasses import dataclass, field
from diffusers.schedulers import SchedulerMixin as Scheduler
from ..image_util import configure_model_padding
from ..util.util import rand_perlin_2d
from ..safety_checker import SafetyChecker
from ..prompting.conditioning import get_uc_and_c_and_ec
from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
downsampling = 8
@dataclass
class InvokeAIGeneratorBasicParams:
seed: Optional[int]=None
width: int=512
height: int=512
cfg_scale: float=7.5
steps: int=20
ddim_eta: float=0.0
scheduler: str='ddim'
precision: str='float16'
perlin: float=0.0
threshold: float=0.0
seamless: bool=False
seamless_axes: List[str]=field(default_factory=lambda: ['x', 'y'])
h_symmetry_time_pct: Optional[float]=None
v_symmetry_time_pct: Optional[float]=None
variation_amount: float = 0.0
with_variations: list=field(default_factory=list)
safety_checker: Optional[SafetyChecker]=None
@dataclass
class InvokeAIGeneratorOutput:
'''
InvokeAIGeneratorOutput is a dataclass that contains the outputs of a generation
operation, including the image, its seed, the model name used to generate the image
and the model hash, as well as all the generate() parameters that went into
generating the image (in .params, also available as attributes)
'''
image: Image.Image
seed: int
model_hash: str
attention_maps_images: List[Image.Image]
params: Namespace
# we are interposing a wrapper around the original Generator classes so that
# old code that calls Generate will continue to work.
class InvokeAIGenerator(metaclass=ABCMeta):
scheduler_map = dict(
ddim=diffusers.DDIMScheduler,
dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_dpm_2=diffusers.KDPM2DiscreteScheduler,
k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler,
k_dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_euler=diffusers.EulerDiscreteScheduler,
k_euler_a=diffusers.EulerAncestralDiscreteScheduler,
k_heun=diffusers.HeunDiscreteScheduler,
k_lms=diffusers.LMSDiscreteScheduler,
plms=diffusers.PNDMScheduler,
)
def __init__(self,
model_info: dict,
params: InvokeAIGeneratorBasicParams=InvokeAIGeneratorBasicParams(),
):
self.model_info=model_info
self.params=params
def generate(self,
prompt: str='',
callback: Optional[Callable]=None,
step_callback: Optional[Callable]=None,
iterations: int=1,
**keyword_args,
)->Iterator[InvokeAIGeneratorOutput]:
'''
Return an iterator across the indicated number of generations.
Each time the iterator is called it will return an InvokeAIGeneratorOutput
object. Use like this:
outputs = txt2img.generate(prompt='banana sushi', iterations=5)
for result in outputs:
print(result.image, result.seed)
In the typical case of wanting to get just a single image, iterations
defaults to 1 and do:
output = next(txt2img.generate(prompt='banana sushi')
Pass None to get an infinite iterator.
outputs = txt2img.generate(prompt='banana sushi', iterations=None)
for o in outputs:
print(o.image, o.seed)
'''
generator_args = dataclasses.asdict(self.params)
generator_args.update(keyword_args)
model_info = self.model_info
model_name = model_info['model_name']
model:StableDiffusionGeneratorPipeline = model_info['model']
model_hash = model_info['hash']
scheduler: Scheduler = self.get_scheduler(
model=model,
scheduler_name=generator_args.get('scheduler')
)
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(prompt,model=model)
gen_class = self._generator_class()
generator = gen_class(model, self.params.precision)
if self.params.variation_amount > 0:
generator.set_variation(generator_args.get('seed'),
generator_args.get('variation_amount'),
generator_args.get('with_variations')
)
if isinstance(model, DiffusionPipeline):
for component in [model.unet, model.vae]:
configure_model_padding(component,
generator_args.get('seamless',False),
generator_args.get('seamless_axes')
)
else:
configure_model_padding(model,
generator_args.get('seamless',False),
generator_args.get('seamless_axes')
)
iteration_count = range(iterations) if iterations else itertools.count(start=0, step=1)
for i in iteration_count:
results = generator.generate(prompt,
conditioning=(uc, c, extra_conditioning_info),
step_callback=step_callback,
sampler=scheduler,
**generator_args,
)
output = InvokeAIGeneratorOutput(
image=results[0][0],
seed=results[0][1],
attention_maps_images=results[0][2],
model_hash = model_hash,
params=Namespace(model_name=model_name,**generator_args),
)
if callback:
callback(output)
yield output
@classmethod
def schedulers(self)->List[str]:
'''
Return list of all the schedulers that we currently handle.
'''
return list(self.scheduler_map.keys())
def load_generator(self, model: StableDiffusionGeneratorPipeline, generator_class: Type[Generator]):
return generator_class(model, self.params.precision)
def get_scheduler(self, scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
scheduler_class = self.scheduler_map.get(scheduler_name,'ddim')
scheduler = scheduler_class.from_config(model.scheduler.config)
# hack copied over from generate.py
if not hasattr(scheduler, 'uses_inpainting_model'):
scheduler.uses_inpainting_model = lambda: False
return scheduler
@classmethod
def _generator_class(cls)->Type[Generator]:
'''
In derived classes return the name of the generator to apply.
If you don't override will return the name of the derived
class, which nicely parallels the generator class names.
'''
return Generator
# ------------------------------------
class Txt2Img(InvokeAIGenerator):
@classmethod
def _generator_class(cls):
from .txt2img import Txt2Img
return Txt2Img
# ------------------------------------
class Img2Img(InvokeAIGenerator):
def generate(self,
init_image: Image.Image | torch.FloatTensor,
strength: float=0.75,
**keyword_args
)->Iterator[InvokeAIGeneratorOutput]:
return super().generate(init_image=init_image,
strength=strength,
**keyword_args
)
@classmethod
def _generator_class(cls):
from .img2img import Img2Img
return Img2Img
# ------------------------------------
# Takes all the arguments of Img2Img and adds the mask image and the seam/infill stuff
class Inpaint(Img2Img):
def generate(self,
mask_image: Image.Image | torch.FloatTensor,
# Seam settings - when 0, doesn't fill seam
seam_size: int = 0,
seam_blur: int = 0,
seam_strength: float = 0.7,
seam_steps: int = 10,
tile_size: int = 32,
inpaint_replace=False,
infill_method=None,
inpaint_width=None,
inpaint_height=None,
inpaint_fill: tuple(int) = (0x7F, 0x7F, 0x7F, 0xFF),
**keyword_args
)->Iterator[InvokeAIGeneratorOutput]:
return super().generate(
mask_image=mask_image,
seam_size=seam_size,
seam_blur=seam_blur,
seam_strength=seam_strength,
seam_steps=seam_steps,
tile_size=tile_size,
inpaint_replace=inpaint_replace,
infill_method=infill_method,
inpaint_width=inpaint_width,
inpaint_height=inpaint_height,
inpaint_fill=inpaint_fill,
**keyword_args
)
@classmethod
def _generator_class(cls):
from .inpaint import Inpaint
return Inpaint
# ------------------------------------
class Embiggen(Txt2Img):
def generate(
self,
embiggen: list=None,
embiggen_tiles: list = None,
strength: float=0.75,
**kwargs)->Iterator[InvokeAIGeneratorOutput]:
return super().generate(embiggen=embiggen,
embiggen_tiles=embiggen_tiles,
strength=strength,
**kwargs)
@classmethod
def _generator_class(cls):
from .embiggen import Embiggen
return Embiggen
class Generator:
downsampling_factor: int
latent_channels: int
precision: str
model: DiffusionPipeline
def __init__(self, model: DiffusionPipeline, precision: str):
self.model = model
self.precision = precision
self.seed = None
self.latent_channels = model.channels
self.downsampling_factor = downsampling # BUG: should come from model or config
self.safety_checker = None
self.perlin = 0.0
self.threshold = 0
self.variation_amount = 0
self.with_variations = []
self.use_mps_noise = False
self.free_gpu_mem = None
# this is going to be overridden in img2img.py, txt2img.py and inpaint.py
def get_make_image(self, prompt, **kwargs):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
"""
raise NotImplementedError(
"image_iterator() must be implemented in a descendent class"
)
def set_variation(self, seed, variation_amount, with_variations):
self.seed = seed
self.variation_amount = variation_amount
self.with_variations = with_variations
def generate(
self,
prompt,
width,
height,
sampler,
init_image=None,
iterations=1,
seed=None,
image_callback=None,
step_callback=None,
threshold=0.0,
perlin=0.0,
h_symmetry_time_pct=None,
v_symmetry_time_pct=None,
safety_checker: SafetyChecker=None,
free_gpu_mem: bool = False,
**kwargs,
):
scope = nullcontext
self.safety_checker = safety_checker
self.free_gpu_mem = free_gpu_mem
attention_maps_images = []
attention_maps_callback = lambda saver: attention_maps_images.append(
saver.get_stacked_maps_image()
)
make_image = self.get_make_image(
prompt,
sampler=sampler,
init_image=init_image,
width=width,
height=height,
step_callback=step_callback,
threshold=threshold,
perlin=perlin,
h_symmetry_time_pct=h_symmetry_time_pct,
v_symmetry_time_pct=v_symmetry_time_pct,
attention_maps_callback=attention_maps_callback,
**kwargs,
)
results = []
seed = seed if seed is not None and seed >= 0 else self.new_seed()
first_seed = seed
seed, initial_noise = self.generate_initial_noise(seed, width, height)
# There used to be an additional self.model.ema_scope() here, but it breaks
# the inpaint-1.5 model. Not sure what it did.... ?
with scope(self.model.device.type):
for n in trange(iterations, desc="Generating"):
x_T = None
if self.variation_amount > 0:
set_seed(seed)
target_noise = self.get_noise(width, height)
x_T = self.slerp(self.variation_amount, initial_noise, target_noise)
elif initial_noise is not None:
# i.e. we specified particular variations
x_T = initial_noise
else:
set_seed(seed)
try:
x_T = self.get_noise(width, height)
except:
print("** An error occurred while getting initial noise **")
print(traceback.format_exc())
# Pass on the seed in case a layer beneath us needs to generate noise on its own.
image = make_image(x_T, seed)
if self.safety_checker is not None:
image = self.safety_checker.check(image)
results.append([image, seed, attention_maps_images])
if image_callback is not None:
attention_maps_image = (
None
if len(attention_maps_images) == 0
else attention_maps_images[-1]
)
image_callback(
image,
seed,
first_seed=first_seed,
attention_maps_image=attention_maps_image,
)
seed = self.new_seed()
# Free up memory from the last generation.
clear_cuda_cache = (
kwargs["clear_cuda_cache"] if "clear_cuda_cache" in kwargs else None
)
if clear_cuda_cache is not None:
clear_cuda_cache()
return results
def sample_to_image(self, samples) -> Image.Image:
"""
Given samples returned from a sampler, converts
it into a PIL Image
"""
with torch.inference_mode():
image = self.model.decode_latents(samples)
return self.model.numpy_to_pil(image)[0]
def repaste_and_color_correct(
self,
result: Image.Image,
init_image: Image.Image,
init_mask: Image.Image,
mask_blur_radius: int = 8,
) -> Image.Image:
if init_image is None or init_mask is None:
return result
# Get the original alpha channel of the mask if there is one.
# Otherwise it is some other black/white image format ('1', 'L' or 'RGB')
pil_init_mask = (
init_mask.getchannel("A")
if init_mask.mode == "RGBA"
else init_mask.convert("L")
)
pil_init_image = init_image.convert(
"RGBA"
) # Add an alpha channel if one doesn't exist
# Build an image with only visible pixels from source to use as reference for color-matching.
init_rgb_pixels = np.asarray(init_image.convert("RGB"), dtype=np.uint8)
init_a_pixels = np.asarray(pil_init_image.getchannel("A"), dtype=np.uint8)
init_mask_pixels = np.asarray(pil_init_mask, dtype=np.uint8)
# Get numpy version of result
np_image = np.asarray(result, dtype=np.uint8)
# Mask and calculate mean and standard deviation
mask_pixels = init_a_pixels * init_mask_pixels > 0
np_init_rgb_pixels_masked = init_rgb_pixels[mask_pixels, :]
np_image_masked = np_image[mask_pixels, :]
if np_init_rgb_pixels_masked.size > 0:
init_means = np_init_rgb_pixels_masked.mean(axis=0)
init_std = np_init_rgb_pixels_masked.std(axis=0)
gen_means = np_image_masked.mean(axis=0)
gen_std = np_image_masked.std(axis=0)
# Color correct
np_matched_result = np_image.copy()
np_matched_result[:, :, :] = (
(
(
(
np_matched_result[:, :, :].astype(np.float32)
- gen_means[None, None, :]
)
/ gen_std[None, None, :]
)
* init_std[None, None, :]
+ init_means[None, None, :]
)
.clip(0, 255)
.astype(np.uint8)
)
matched_result = Image.fromarray(np_matched_result, mode="RGB")
else:
matched_result = Image.fromarray(np_image, mode="RGB")
# Blur the mask out (into init image) by specified amount
if mask_blur_radius > 0:
nm = np.asarray(pil_init_mask, dtype=np.uint8)
nmd = cv2.erode(
nm,
kernel=np.ones((3, 3), dtype=np.uint8),
iterations=int(mask_blur_radius / 2),
)
pmd = Image.fromarray(nmd, mode="L")
blurred_init_mask = pmd.filter(ImageFilter.BoxBlur(mask_blur_radius))
else:
blurred_init_mask = pil_init_mask
multiplied_blurred_init_mask = ImageChops.multiply(
blurred_init_mask, self.pil_image.split()[-1]
)
# Paste original on color-corrected generation (using blurred mask)
matched_result.paste(init_image, (0, 0), mask=multiplied_blurred_init_mask)
return matched_result
@staticmethod
def sample_to_lowres_estimated_image(samples):
# origingally adapted from code by @erucipe and @keturn here:
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/7
# these updated numbers for v1.5 are from @torridgristle
v1_5_latent_rgb_factors = torch.tensor(
[
# R G B
[0.3444, 0.1385, 0.0670], # L1
[0.1247, 0.4027, 0.1494], # L2
[-0.3192, 0.2513, 0.2103], # L3
[-0.1307, -0.1874, -0.7445], # L4
],
dtype=samples.dtype,
device=samples.device,
)
latent_image = samples[0].permute(1, 2, 0) @ v1_5_latent_rgb_factors
latents_ubyte = (
((latent_image + 1) / 2)
.clamp(0, 1) # change scale from -1..1 to 0..1
.mul(0xFF) # to 0..255
.byte()
).cpu()
return Image.fromarray(latents_ubyte.numpy())
def generate_initial_noise(self, seed, width, height):
initial_noise = None
if self.variation_amount > 0 or len(self.with_variations) > 0:
# use fixed initial noise plus random noise per iteration
set_seed(seed)
initial_noise = self.get_noise(width, height)
for v_seed, v_weight in self.with_variations:
seed = v_seed
set_seed(seed)
next_noise = self.get_noise(width, height)
initial_noise = self.slerp(v_weight, initial_noise, next_noise)
if self.variation_amount > 0:
random.seed() # reset RNG to an actually random state, so we can get a random seed for variations
seed = random.randrange(0, np.iinfo(np.uint32).max)
return (seed, initial_noise)
def get_perlin_noise(self, width, height):
fixdevice = "cpu" if (self.model.device.type == "mps") else self.model.device
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(self.latent_channels, 4)
# round up to the nearest block of 8
temp_width = int((width + 7) / 8) * 8
temp_height = int((height + 7) / 8) * 8
noise = torch.stack(
[
rand_perlin_2d(
(temp_height, temp_width), (8, 8), device=self.model.device
).to(fixdevice)
for _ in range(input_channels)
],
dim=0,
).to(self.model.device)
return noise[0:4, 0:height, 0:width]
def new_seed(self):
self.seed = random.randrange(0, np.iinfo(np.uint32).max)
return self.seed
def slerp(self, t, v0, v1, DOT_THRESHOLD=0.9995):
"""
Spherical linear interpolation
Args:
t (float/np.ndarray): Float value between 0.0 and 1.0
v0 (np.ndarray): Starting vector
v1 (np.ndarray): Final vector
DOT_THRESHOLD (float): Threshold for considering the two vectors as
colineal. Not recommended to alter this.
Returns:
v2 (np.ndarray): Interpolation vector between v0 and v1
"""
inputs_are_torch = False
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
v0 = v0.detach().cpu().numpy()
if not isinstance(v1, np.ndarray):
inputs_are_torch = True
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2 = torch.from_numpy(v2).to(self.model.device)
return v2
# this is a handy routine for debugging use. Given a generated sample,
# convert it into a PNG image and store it at the indicated path
def save_sample(self, sample, filepath):
image = self.sample_to_image(sample)
dirname = os.path.dirname(filepath) or "."
if not os.path.exists(dirname):
print(f"** creating directory {dirname}")
os.makedirs(dirname, exist_ok=True)
image.save(filepath, "PNG")
def torch_dtype(self) -> torch.dtype:
return torch.float16 if self.precision == "float16" else torch.float32
# returns a tensor filled with random numbers from a normal distribution
def get_noise(self, width, height):
device = self.model.device
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(self.latent_channels, 4)
if self.use_mps_noise or device.type == "mps":
x = torch.randn(
[
1,
input_channels,
height // self.downsampling_factor,
width // self.downsampling_factor,
],
dtype=self.torch_dtype(),
device="cpu",
).to(device)
else:
x = torch.randn(
[
1,
input_channels,
height // self.downsampling_factor,
width // self.downsampling_factor,
],
dtype=self.torch_dtype(),
device=device,
)
if self.perlin > 0.0:
perlin_noise = self.get_perlin_noise(
width // self.downsampling_factor, height // self.downsampling_factor
)
x = (1 - self.perlin) * x + self.perlin * perlin_noise
return x

View File

@@ -1,37 +1,38 @@
'''
ldm.invoke.generator.embiggen descends from ldm.invoke.generator
and generates with ldm.invoke.generator.img2img
'''
"""
invokeai.backend.generator.embiggen descends from .generator
and generates with .generator.img2img
"""
import numpy as np
import torch
from PIL import Image
from tqdm import trange
from ldm.invoke.generator.base import Generator
from ldm.invoke.generator.img2img import Img2Img
from .base import Generator
from .img2img import Img2Img
class Embiggen(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
self.init_latent = None
self.init_latent = None
# Replace generate because Embiggen doesn't need/use most of what it does normallly
def generate(self,prompt,iterations=1,seed=None,
image_callback=None, step_callback=None,
**kwargs):
make_image = self.get_make_image(
prompt,
step_callback = step_callback,
**kwargs
)
results = []
seed = seed if seed else self.new_seed()
def generate(
self,
prompt,
iterations=1,
seed=None,
image_callback=None,
step_callback=None,
**kwargs,
):
make_image = self.get_make_image(prompt, step_callback=step_callback, **kwargs)
results = []
seed = seed if seed else self.new_seed()
# Noise will be generated by the Img2Img generator when called
for _ in trange(iterations, desc='Generating'):
for _ in trange(iterations, desc="Generating"):
# make_image will call Img2Img which will do the equivalent of get_noise itself
image = make_image()
results.append([image, seed])
@@ -56,13 +57,15 @@ class Embiggen(Generator):
embiggen,
embiggen_tiles,
step_callback=None,
**kwargs
**kwargs,
):
"""
Returns a function returning an image derived from the prompt and multi-stage twice-baked potato layering over the img2img on the initial image
Return value depends on the seed at the time you call it
"""
assert not sampler.uses_inpainting_model(), "--embiggen is not supported by inpainting models"
assert (
not sampler.uses_inpainting_model()
), "--embiggen is not supported by inpainting models"
# Construct embiggen arg array, and sanity check arguments
if embiggen == None: # embiggen can also be called with just embiggen_tiles
@@ -70,48 +73,57 @@ class Embiggen(Generator):
elif embiggen[0] < 0:
embiggen[0] = 1.0
print(
'>> Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !')
">> Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !"
)
if len(embiggen) < 2:
embiggen.append(0.75)
elif embiggen[1] > 1.0 or embiggen[1] < 0:
embiggen[1] = 0.75
print('>> Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !')
print(
">> Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !"
)
if len(embiggen) < 3:
embiggen.append(0.25)
elif embiggen[2] < 0:
embiggen[2] = 0.25
print('>> Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !')
print(
">> Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !"
)
# Convert tiles from their user-freindly count-from-one to count-from-zero, because we need to do modulo math
# and then sort them, because... people.
if embiggen_tiles:
embiggen_tiles = list(map(lambda n: n-1, embiggen_tiles))
embiggen_tiles = list(map(lambda n: n - 1, embiggen_tiles))
embiggen_tiles.sort()
if strength >= 0.5:
print(f'* WARNING: Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45.')
print(
f"* WARNING: Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45."
)
# Prep img2img generator, since we wrap over it
gen_img2img = Img2Img(self.model,self.precision)
gen_img2img = Img2Img(self.model, self.precision)
# Open original init image (not a tensor) to manipulate
initsuperimage = Image.open(init_img)
with Image.open(init_img) as img:
initsuperimage = img.convert('RGB')
initsuperimage = img.convert("RGB")
# Size of the target super init image in pixels
initsuperwidth, initsuperheight = initsuperimage.size
# Increase by scaling factor if not already resized, using ESRGAN as able
if embiggen[0] != 1.0:
initsuperwidth = round(initsuperwidth*embiggen[0])
initsuperheight = round(initsuperheight*embiggen[0])
initsuperwidth = round(initsuperwidth * embiggen[0])
initsuperheight = round(initsuperheight * embiggen[0])
if embiggen[1] > 0: # No point in ESRGAN upscaling if strength is set zero
from ldm.invoke.restoration.realesrgan import ESRGAN
from ..restoration.realesrgan import ESRGAN
esrgan = ESRGAN()
print(
f'>> ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}')
f">> ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}"
)
if embiggen[0] > 2:
initsuperimage = esrgan.process(
initsuperimage,
@@ -130,7 +142,8 @@ class Embiggen(Generator):
# but from personal experiance it doesn't greatly improve anything after 4x
# Resize to target scaling factor resolution
initsuperimage = initsuperimage.resize(
(initsuperwidth, initsuperheight), Image.Resampling.LANCZOS)
(initsuperwidth, initsuperheight), Image.Resampling.LANCZOS
)
# Use width and height as tile widths and height
# Determine buffer size in pixels
@@ -153,23 +166,24 @@ class Embiggen(Generator):
emb_tiles_x = 1
emb_tiles_y = 1
if (initsuperwidth - width) > 0:
emb_tiles_x = ceildiv(initsuperwidth - width,
width - overlap_size_x) + 1
emb_tiles_x = ceildiv(initsuperwidth - width, width - overlap_size_x) + 1
if (initsuperheight - height) > 0:
emb_tiles_y = ceildiv(initsuperheight - height,
height - overlap_size_y) + 1
emb_tiles_y = ceildiv(initsuperheight - height, height - overlap_size_y) + 1
# Sanity
assert emb_tiles_x > 1 or emb_tiles_y > 1, f'ERROR: Based on the requested dimensions of {initsuperwidth}x{initsuperheight} and tiles of {width}x{height} you don\'t need to Embiggen! Check your arguments.'
assert (
emb_tiles_x > 1 or emb_tiles_y > 1
), f"ERROR: Based on the requested dimensions of {initsuperwidth}x{initsuperheight} and tiles of {width}x{height} you don't need to Embiggen! Check your arguments."
# Prep alpha layers --------------
# https://stackoverflow.com/questions/69321734/how-to-create-different-transparency-like-gradient-with-python-pil
# agradientL is Left-side transparent
agradientL = Image.linear_gradient('L').rotate(
90).resize((overlap_size_x, height))
agradientL = (
Image.linear_gradient("L").rotate(90).resize((overlap_size_x, height))
)
# agradientT is Top-side transparent
agradientT = Image.linear_gradient('L').resize((width, overlap_size_y))
agradientT = Image.linear_gradient("L").resize((width, overlap_size_y))
# radial corner is the left-top corner, made full circle then cut to just the left-top quadrant
agradientC = Image.new('L', (256, 256))
agradientC = Image.new("L", (256, 256))
for y in range(256):
for x in range(256):
# Find distance to lower right corner (numpy takes arrays)
@@ -177,16 +191,16 @@ class Embiggen(Generator):
# Clamp values to max 255
if distanceToLR > 255:
distanceToLR = 255
#Place the pixel as invert of distance
# Place the pixel as invert of distance
agradientC.putpixel((x, y), round(255 - distanceToLR))
# Create alternative asymmetric diagonal corner to use on "tailing" intersections to prevent hard edges
# Fits for a left-fading gradient on the bottom side and full opacity on the right side.
agradientAsymC = Image.new('L', (256, 256))
agradientAsymC = Image.new("L", (256, 256))
for y in range(256):
for x in range(256):
value = round(max(0, x-(255-y)) * (255 / max(1,y)))
#Clamp values
value = round(max(0, x - (255 - y)) * (255 / max(1, y)))
# Clamp values
value = max(0, value)
value = min(255, value)
agradientAsymC.putpixel((x, y), value)
@@ -204,80 +218,91 @@ class Embiggen(Generator):
# make masks with an asymmetric upper-right corner so when the curved transparent corner of the next tile
# to its right is placed it doesn't reveal a hard trailing semi-transparent edge in the overlapping space
alphaLayerTaC = alphaLayerT.copy()
alphaLayerTaC.paste(agradientAsymC.rotate(270).resize((overlap_size_x, overlap_size_y)), (width - overlap_size_x, 0))
alphaLayerTaC.paste(
agradientAsymC.rotate(270).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, 0),
)
alphaLayerLTaC = alphaLayerLTC.copy()
alphaLayerLTaC.paste(agradientAsymC.rotate(270).resize((overlap_size_x, overlap_size_y)), (width - overlap_size_x, 0))
alphaLayerLTaC.paste(
agradientAsymC.rotate(270).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, 0),
)
if embiggen_tiles:
# Individual unconnected sides
alphaLayerR = Image.new("L", (width, height), 255)
alphaLayerR.paste(agradientL.rotate(
180), (width - overlap_size_x, 0))
alphaLayerR.paste(agradientL.rotate(180), (width - overlap_size_x, 0))
alphaLayerB = Image.new("L", (width, height), 255)
alphaLayerB.paste(agradientT.rotate(
180), (0, height - overlap_size_y))
alphaLayerB.paste(agradientT.rotate(180), (0, height - overlap_size_y))
alphaLayerTB = Image.new("L", (width, height), 255)
alphaLayerTB.paste(agradientT, (0, 0))
alphaLayerTB.paste(agradientT.rotate(
180), (0, height - overlap_size_y))
alphaLayerTB.paste(agradientT.rotate(180), (0, height - overlap_size_y))
alphaLayerLR = Image.new("L", (width, height), 255)
alphaLayerLR.paste(agradientL, (0, 0))
alphaLayerLR.paste(agradientL.rotate(
180), (width - overlap_size_x, 0))
alphaLayerLR.paste(agradientL.rotate(180), (width - overlap_size_x, 0))
# Sides and corner Layers
alphaLayerRBC = Image.new("L", (width, height), 255)
alphaLayerRBC.paste(agradientL.rotate(
180), (width - overlap_size_x, 0))
alphaLayerRBC.paste(agradientT.rotate(
180), (0, height - overlap_size_y))
alphaLayerRBC.paste(agradientC.rotate(180).resize(
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, height - overlap_size_y))
alphaLayerRBC.paste(agradientL.rotate(180), (width - overlap_size_x, 0))
alphaLayerRBC.paste(agradientT.rotate(180), (0, height - overlap_size_y))
alphaLayerRBC.paste(
agradientC.rotate(180).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, height - overlap_size_y),
)
alphaLayerLBC = Image.new("L", (width, height), 255)
alphaLayerLBC.paste(agradientL, (0, 0))
alphaLayerLBC.paste(agradientT.rotate(
180), (0, height - overlap_size_y))
alphaLayerLBC.paste(agradientC.rotate(90).resize(
(overlap_size_x, overlap_size_y)), (0, height - overlap_size_y))
alphaLayerLBC.paste(agradientT.rotate(180), (0, height - overlap_size_y))
alphaLayerLBC.paste(
agradientC.rotate(90).resize((overlap_size_x, overlap_size_y)),
(0, height - overlap_size_y),
)
alphaLayerRTC = Image.new("L", (width, height), 255)
alphaLayerRTC.paste(agradientL.rotate(
180), (width - overlap_size_x, 0))
alphaLayerRTC.paste(agradientL.rotate(180), (width - overlap_size_x, 0))
alphaLayerRTC.paste(agradientT, (0, 0))
alphaLayerRTC.paste(agradientC.rotate(270).resize(
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, 0))
alphaLayerRTC.paste(
agradientC.rotate(270).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, 0),
)
# All but X layers
alphaLayerABT = Image.new("L", (width, height), 255)
alphaLayerABT.paste(alphaLayerLBC, (0, 0))
alphaLayerABT.paste(agradientL.rotate(
180), (width - overlap_size_x, 0))
alphaLayerABT.paste(agradientC.rotate(180).resize(
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, height - overlap_size_y))
alphaLayerABT.paste(agradientL.rotate(180), (width - overlap_size_x, 0))
alphaLayerABT.paste(
agradientC.rotate(180).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, height - overlap_size_y),
)
alphaLayerABL = Image.new("L", (width, height), 255)
alphaLayerABL.paste(alphaLayerRTC, (0, 0))
alphaLayerABL.paste(agradientT.rotate(
180), (0, height - overlap_size_y))
alphaLayerABL.paste(agradientC.rotate(180).resize(
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, height - overlap_size_y))
alphaLayerABL.paste(agradientT.rotate(180), (0, height - overlap_size_y))
alphaLayerABL.paste(
agradientC.rotate(180).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, height - overlap_size_y),
)
alphaLayerABR = Image.new("L", (width, height), 255)
alphaLayerABR.paste(alphaLayerLBC, (0, 0))
alphaLayerABR.paste(agradientT, (0, 0))
alphaLayerABR.paste(agradientC.resize(
(overlap_size_x, overlap_size_y)), (0, 0))
alphaLayerABR.paste(
agradientC.resize((overlap_size_x, overlap_size_y)), (0, 0)
)
alphaLayerABB = Image.new("L", (width, height), 255)
alphaLayerABB.paste(alphaLayerRTC, (0, 0))
alphaLayerABB.paste(agradientL, (0, 0))
alphaLayerABB.paste(agradientC.resize(
(overlap_size_x, overlap_size_y)), (0, 0))
alphaLayerABB.paste(
agradientC.resize((overlap_size_x, overlap_size_y)), (0, 0)
)
# All-around layer
alphaLayerAA = Image.new("L", (width, height), 255)
alphaLayerAA.paste(alphaLayerABT, (0, 0))
alphaLayerAA.paste(agradientT, (0, 0))
alphaLayerAA.paste(agradientC.resize(
(overlap_size_x, overlap_size_y)), (0, 0))
alphaLayerAA.paste(agradientC.rotate(270).resize(
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, 0))
alphaLayerAA.paste(
agradientC.resize((overlap_size_x, overlap_size_y)), (0, 0)
)
alphaLayerAA.paste(
agradientC.rotate(270).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, 0),
)
# Clean up temporary gradients
del agradientL
@@ -287,17 +312,20 @@ class Embiggen(Generator):
def make_image():
# Make main tiles -------------------------------------------------
if embiggen_tiles:
print(f'>> Making {len(embiggen_tiles)} Embiggen tiles...')
print(f">> Making {len(embiggen_tiles)} Embiggen tiles...")
else:
print(
f'>> Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})...')
f">> Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})..."
)
emb_tile_store = []
# Although we could use the same seed for every tile for determinism, at higher strengths this may
# produce duplicated structures for each tile and make the tiling effect more obvious
# instead track and iterate a local seed we pass to Img2Img
seed = self.seed
seedintlimit = np.iinfo(np.uint32).max - 1 # only retreive this one from numpy
seedintlimit = (
np.iinfo(np.uint32).max - 1
) # only retreive this one from numpy
for tile in range(emb_tiles_x * emb_tiles_y):
# Don't iterate on first tile
@@ -334,37 +362,38 @@ class Embiggen(Generator):
if embiggen_tiles:
print(
f'Making tile #{tile + 1} ({embiggen_tiles.index(tile) + 1} of {len(embiggen_tiles)} requested)')
f"Making tile #{tile + 1} ({embiggen_tiles.index(tile) + 1} of {len(embiggen_tiles)} requested)"
)
else:
print(
f'Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles')
print(f"Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles")
# create a torch tensor from an Image
newinitimage = np.array(
newinitimage).astype(np.float32) / 255.0
newinitimage = np.array(newinitimage).astype(np.float32) / 255.0
newinitimage = newinitimage[None].transpose(0, 3, 1, 2)
newinitimage = torch.from_numpy(newinitimage)
newinitimage = 2.0 * newinitimage - 1.0
newinitimage = newinitimage.to(self.model.device)
clear_cuda_cache = kwargs['clear_cuda_cache'] if 'clear_cuda_cache' in kwargs else None
clear_cuda_cache = (
kwargs["clear_cuda_cache"] if "clear_cuda_cache" in kwargs else None
)
tile_results = gen_img2img.generate(
prompt,
iterations = 1,
seed = seed,
sampler = sampler,
steps = steps,
cfg_scale = cfg_scale,
conditioning = conditioning,
ddim_eta = ddim_eta,
image_callback = None, # called only after the final image is generated
step_callback = step_callback, # called after each intermediate image is generated
width = width,
height = height,
init_image = newinitimage, # notice that init_image is different from init_img
mask_image = None,
strength = strength,
clear_cuda_cache = clear_cuda_cache
iterations=1,
seed=seed,
sampler=sampler,
steps=steps,
cfg_scale=cfg_scale,
conditioning=conditioning,
ddim_eta=ddim_eta,
image_callback=None, # called only after the final image is generated
step_callback=step_callback, # called after each intermediate image is generated
width=width,
height=height,
init_image=newinitimage, # notice that init_image is different from init_img
mask_image=None,
strength=strength,
clear_cuda_cache=clear_cuda_cache,
)
emb_tile_store.append(tile_results[0][0])
@@ -373,12 +402,14 @@ class Embiggen(Generator):
del newinitimage
# Sanity check we have them all
if len(emb_tile_store) == (emb_tiles_x * emb_tiles_y) or (embiggen_tiles != [] and len(emb_tile_store) == len(embiggen_tiles)):
outputsuperimage = Image.new(
"RGBA", (initsuperwidth, initsuperheight))
if len(emb_tile_store) == (emb_tiles_x * emb_tiles_y) or (
embiggen_tiles != [] and len(emb_tile_store) == len(embiggen_tiles)
):
outputsuperimage = Image.new("RGBA", (initsuperwidth, initsuperheight))
if embiggen_tiles:
outputsuperimage.alpha_composite(
initsuperimage.convert('RGBA'), (0, 0))
initsuperimage.convert("RGBA"), (0, 0)
)
for tile in range(emb_tiles_x * emb_tiles_y):
if embiggen_tiles:
if tile in embiggen_tiles:
@@ -387,7 +418,7 @@ class Embiggen(Generator):
continue
else:
intileimage = emb_tile_store[tile]
intileimage = intileimage.convert('RGBA')
intileimage = intileimage.convert("RGBA")
# Get row and column entries
emb_row_i = tile // emb_tiles_x
emb_column_i = tile % emb_tiles_x
@@ -399,8 +430,7 @@ class Embiggen(Generator):
if emb_column_i + 1 == emb_tiles_x:
left = initsuperwidth - width
else:
left = round(emb_column_i *
(width - overlap_size_x))
left = round(emb_column_i * (width - overlap_size_x))
if emb_row_i + 1 == emb_tiles_y:
top = initsuperheight - height
else:
@@ -411,33 +441,43 @@ class Embiggen(Generator):
# top of image
if emb_row_i == 0:
if emb_column_i == 0:
if (tile+1) in embiggen_tiles: # Look-ahead right
if (tile+emb_tiles_x) not in embiggen_tiles: # Look-ahead down
if (tile + 1) in embiggen_tiles: # Look-ahead right
if (
tile + emb_tiles_x
) not in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerB)
# Otherwise do nothing on this tile
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
elif (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down only
intileimage.putalpha(alphaLayerR)
else:
intileimage.putalpha(alphaLayerRBC)
elif emb_column_i == emb_tiles_x - 1:
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
if (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerL)
else:
intileimage.putalpha(alphaLayerLBC)
else:
if (tile+1) in embiggen_tiles: # Look-ahead right
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
if (tile + 1) in embiggen_tiles: # Look-ahead right
if (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerL)
else:
intileimage.putalpha(alphaLayerLBC)
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
elif (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down only
intileimage.putalpha(alphaLayerLR)
else:
intileimage.putalpha(alphaLayerABT)
# bottom of image
elif emb_row_i == emb_tiles_y - 1:
if emb_column_i == 0:
if (tile+1) in embiggen_tiles: # Look-ahead right
if (tile + 1) in embiggen_tiles: # Look-ahead right
intileimage.putalpha(alphaLayerTaC)
else:
intileimage.putalpha(alphaLayerRTC)
@@ -445,34 +485,44 @@ class Embiggen(Generator):
# No tiles to look ahead to
intileimage.putalpha(alphaLayerLTC)
else:
if (tile+1) in embiggen_tiles: # Look-ahead right
if (tile + 1) in embiggen_tiles: # Look-ahead right
intileimage.putalpha(alphaLayerLTaC)
else:
intileimage.putalpha(alphaLayerABB)
# vertical middle of image
else:
if emb_column_i == 0:
if (tile+1) in embiggen_tiles: # Look-ahead right
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
if (tile + 1) in embiggen_tiles: # Look-ahead right
if (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerTaC)
else:
intileimage.putalpha(alphaLayerTB)
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
elif (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down only
intileimage.putalpha(alphaLayerRTC)
else:
intileimage.putalpha(alphaLayerABL)
elif emb_column_i == emb_tiles_x - 1:
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
if (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerLTC)
else:
intileimage.putalpha(alphaLayerABR)
else:
if (tile+1) in embiggen_tiles: # Look-ahead right
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
if (tile + 1) in embiggen_tiles: # Look-ahead right
if (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerLTaC)
else:
intileimage.putalpha(alphaLayerABR)
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
elif (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down only
intileimage.putalpha(alphaLayerABB)
else:
intileimage.putalpha(alphaLayerAA)
@@ -481,21 +531,28 @@ class Embiggen(Generator):
if emb_row_i == 0 and emb_column_i >= 1:
intileimage.putalpha(alphaLayerL)
elif emb_row_i >= 1 and emb_column_i == 0:
if emb_column_i + 1 == emb_tiles_x: # If we don't have anything that can be placed to the right
if (
emb_column_i + 1 == emb_tiles_x
): # If we don't have anything that can be placed to the right
intileimage.putalpha(alphaLayerT)
else:
intileimage.putalpha(alphaLayerTaC)
else:
if emb_column_i + 1 == emb_tiles_x: # If we don't have anything that can be placed to the right
if (
emb_column_i + 1 == emb_tiles_x
): # If we don't have anything that can be placed to the right
intileimage.putalpha(alphaLayerLTC)
else:
intileimage.putalpha(alphaLayerLTaC)
# Layer tile onto final image
outputsuperimage.alpha_composite(intileimage, (left, top))
else:
print('Error: could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation.')
print(
"Error: could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation."
)
# after internal loops and patching up return Embiggen image
return outputsuperimage
# end of function declaration
return make_image

View File

@@ -0,0 +1,101 @@
"""
invokeai.backend.generator.img2img descends from .generator
"""
from typing import Optional
import torch
from accelerate.utils import set_seed
from diffusers import logging
from ..stable_diffusion import (
ConditioningData,
PostprocessingSettings,
StableDiffusionGeneratorPipeline,
)
from .base import Generator
class Img2Img(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
self.init_latent = None # by get_noise()
def get_make_image(
self,
prompt,
sampler,
steps,
cfg_scale,
ddim_eta,
conditioning,
init_image,
strength,
step_callback=None,
threshold=0.0,
warmup=0.2,
perlin=0.0,
h_symmetry_time_pct=None,
v_symmetry_time_pct=None,
attention_maps_callback=None,
**kwargs,
):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it.
"""
self.perlin = perlin
# noinspection PyTypeChecker
pipeline: StableDiffusionGeneratorPipeline = self.model
pipeline.scheduler = sampler
uc, c, extra_conditioning_info = conditioning
conditioning_data = ConditioningData(
uc,
c,
cfg_scale,
extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=threshold,
warmup=warmup,
h_symmetry_time_pct=h_symmetry_time_pct,
v_symmetry_time_pct=v_symmetry_time_pct,
),
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta)
def make_image(x_T: torch.Tensor, seed: int):
# FIXME: use x_T for initial seeded noise
# We're not at the moment because the pipeline automatically resizes init_image if
# necessary, which the x_T input might not match.
# In the meantime, reset the seed prior to generating pipeline output so we at least get the same result.
logging.set_verbosity_error() # quench safety check warnings
pipeline_output = pipeline.img2img_from_embeddings(
init_image,
strength,
steps,
conditioning_data,
noise_func=self.get_noise_like,
callback=step_callback,
seed=seed,
)
if (
pipeline_output.attention_map_saver is not None
and attention_maps_callback is not None
):
attention_maps_callback(pipeline_output.attention_map_saver)
return pipeline.numpy_to_pil(pipeline_output.images)[0]
return make_image
def get_noise_like(self, like: torch.Tensor):
device = like.device
if device.type == "mps":
x = torch.randn_like(like, device="cpu").to(device)
else:
x = torch.randn_like(like, device=device)
if self.perlin > 0.0:
shape = like.shape
x = (1 - self.perlin) * x + self.perlin * self.get_perlin_noise(
shape[3], shape[2]
)
return x

View File

@@ -1,32 +1,35 @@
'''
ldm.invoke.generator.inpaint descends from ldm.invoke.generator
'''
"""
invokeai.backend.generator.inpaint descends from .generator
"""
from __future__ import annotations
import math
import PIL
import cv2
import numpy as np
import PIL
import torch
from PIL import Image, ImageFilter, ImageOps, ImageChops
from PIL import Image, ImageChops, ImageFilter, ImageOps
from ldm.invoke.generator.diffusers_pipeline import image_resized_to_grid_as_tensor, StableDiffusionGeneratorPipeline, \
ConditioningData
from ldm.invoke.generator.img2img import Img2Img
from ldm.invoke.patchmatch import PatchMatch
from ldm.util import debug_image
from ..image_util import PatchMatch, debug_image
from ..stable_diffusion.diffusers_pipeline import (
ConditioningData,
StableDiffusionGeneratorPipeline,
image_resized_to_grid_as_tensor,
)
from .img2img import Img2Img
def infill_methods()->list[str]:
def infill_methods() -> list[str]:
methods = [
"tile",
"solid",
]
if PatchMatch.patchmatch_available():
methods.insert(0, 'patchmatch')
methods.insert(0, "patchmatch")
return methods
class Inpaint(Img2Img):
def __init__(self, model, precision):
self.inpaint_height = 0
@@ -53,11 +56,11 @@ class Inpaint(Img2Img):
np.ravel(image),
shape=(nrows, ncols, height, width, depth),
strides=(height * _strides[0], width * _strides[1], *_strides),
writeable=False
writeable=False,
)
def infill_patchmatch(self, im: Image.Image) -> Image:
if im.mode != 'RGBA':
if im.mode != "RGBA":
return im
# Skip patchmatch if patchmatch isn't available
@@ -65,13 +68,17 @@ class Inpaint(Img2Img):
return im
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though)
im_patched_np = PatchMatch.inpaint(im.convert('RGB'), ImageOps.invert(im.split()[-1]), patch_size = 3)
im_patched = Image.fromarray(im_patched_np, mode = 'RGB')
im_patched_np = PatchMatch.inpaint(
im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3
)
im_patched = Image.fromarray(im_patched_np, mode="RGB")
return im_patched
def tile_fill_missing(self, im: Image.Image, tile_size: int = 16, seed: int = None) -> Image:
def tile_fill_missing(
self, im: Image.Image, tile_size: int = 16, seed: int = None
) -> Image:
# Only fill if there's an alpha layer
if im.mode != 'RGBA':
if im.mode != "RGBA":
return im
a = np.asarray(im, dtype=np.uint8)
@@ -79,21 +86,21 @@ class Inpaint(Img2Img):
tile_size = (tile_size, tile_size)
# Get the image as tiles of a specified size
tiles = self.get_tile_images(a,*tile_size).copy()
tiles = self.get_tile_images(a, *tile_size).copy()
# Get the mask as tiles
tiles_mask = tiles[:,:,:,:,3]
tiles_mask = tiles[:, :, :, :, 3]
# Find any mask tiles with any fully transparent pixels (we will be replacing these later)
tmask_shape = tiles_mask.shape
tiles_mask = tiles_mask.reshape(math.prod(tiles_mask.shape))
n,ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:])
tiles_mask = (tiles_mask > 0)
tiles_mask = tiles_mask.reshape((n,ny)).all(axis = 1)
n, ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:])
tiles_mask = tiles_mask > 0
tiles_mask = tiles_mask.reshape((n, ny)).all(axis=1)
# Get RGB tiles in single array and filter by the mask
tshape = tiles.shape
tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), * tiles.shape[2:]))
tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), *tiles.shape[2:]))
filtered_tiles = tiles_all[tiles_mask]
if len(filtered_tiles) == 0:
@@ -101,23 +108,32 @@ class Inpaint(Img2Img):
# Find all invalid tiles and replace with a random valid tile
replace_count = (tiles_mask == False).sum()
rng = np.random.default_rng(seed = seed)
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[rng.choice(filtered_tiles.shape[0], replace_count),:,:,:]
rng = np.random.default_rng(seed=seed)
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[
rng.choice(filtered_tiles.shape[0], replace_count), :, :, :
]
# Convert back to an image
tiles_all = tiles_all.reshape(tshape)
tiles_all = tiles_all.swapaxes(1,2)
st = tiles_all.reshape((math.prod(tiles_all.shape[0:2]), math.prod(tiles_all.shape[2:4]), tiles_all.shape[4]))
si = Image.fromarray(st, mode='RGBA')
tiles_all = tiles_all.swapaxes(1, 2)
st = tiles_all.reshape(
(
math.prod(tiles_all.shape[0:2]),
math.prod(tiles_all.shape[2:4]),
tiles_all.shape[4],
)
)
si = Image.fromarray(st, mode="RGBA")
return si
def mask_edge(self, mask: Image, edge_size: int, edge_blur: int) -> Image:
npimg = np.asarray(mask, dtype=np.uint8)
# Detect any partially transparent regions
npgradient = np.uint8(255 * (1.0 - np.floor(np.abs(0.5 - np.float32(npimg) / 255.0) * 2.0)))
npgradient = np.uint8(
255 * (1.0 - np.floor(np.abs(0.5 - np.float32(npimg) / 255.0) * 2.0))
)
# Detect hard edges
npedge = cv2.Canny(npimg, threshold1=100, threshold2=200)
@@ -126,7 +142,9 @@ class Inpaint(Img2Img):
npmask = npgradient + npedge
# Expand
npmask = cv2.dilate(npmask, np.ones((3,3), np.uint8), iterations = int(edge_size / 2))
npmask = cv2.dilate(
npmask, np.ones((3, 3), np.uint8), iterations=int(edge_size / 2)
)
new_mask = Image.fromarray(npmask)
@@ -135,9 +153,23 @@ class Inpaint(Img2Img):
return ImageOps.invert(new_mask)
def seam_paint(self, im: Image.Image, seam_size: int, seam_blur: int, prompt, sampler, steps, cfg_scale, ddim_eta,
conditioning, strength, noise, infill_method, step_callback) -> Image.Image:
def seam_paint(
self,
im: Image.Image,
seam_size: int,
seam_blur: int,
prompt,
seed,
sampler,
steps,
cfg_scale,
ddim_eta,
conditioning,
strength,
noise,
infill_method,
step_callback,
) -> Image.Image:
hard_mask = self.pil_image.split()[-1].copy()
mask = self.mask_edge(hard_mask, seam_size, seam_blur)
@@ -148,45 +180,52 @@ class Inpaint(Img2Img):
cfg_scale,
ddim_eta,
conditioning,
init_image = im.copy().convert('RGBA'),
mask_image = mask,
strength = strength,
mask_blur_radius = 0,
seam_size = 0,
step_callback = step_callback,
inpaint_width = im.width,
inpaint_height = im.height,
infill_method = infill_method
init_image=im.copy().convert("RGBA"),
mask_image=mask,
strength=strength,
mask_blur_radius=0,
seam_size=0,
step_callback=step_callback,
inpaint_width=im.width,
inpaint_height=im.height,
infill_method=infill_method,
)
seam_noise = self.get_noise(im.width, im.height)
result = make_image(seam_noise)
result = make_image(seam_noise, seed)
return result
@torch.no_grad()
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
conditioning,
init_image: PIL.Image.Image | torch.FloatTensor,
mask_image: PIL.Image.Image | torch.FloatTensor,
strength: float,
mask_blur_radius: int = 8,
# Seam settings - when 0, doesn't fill seam
seam_size: int = 0,
seam_blur: int = 0,
seam_strength: float = 0.7,
seam_steps: int = 10,
tile_size: int = 32,
step_callback=None,
inpaint_replace=False, enable_image_debugging=False,
infill_method = None,
inpaint_width=None,
inpaint_height=None,
inpaint_fill:tuple(int)=(0x7F, 0x7F, 0x7F, 0xFF),
attention_maps_callback=None,
**kwargs):
def get_make_image(
self,
prompt,
sampler,
steps,
cfg_scale,
ddim_eta,
conditioning,
init_image: PIL.Image.Image | torch.FloatTensor,
mask_image: PIL.Image.Image | torch.FloatTensor,
strength: float,
mask_blur_radius: int = 8,
# Seam settings - when 0, doesn't fill seam
seam_size: int = 0,
seam_blur: int = 0,
seam_strength: float = 0.7,
seam_steps: int = 10,
tile_size: int = 32,
step_callback=None,
inpaint_replace=False,
enable_image_debugging=False,
infill_method=None,
inpaint_width=None,
inpaint_height=None,
inpaint_fill: tuple(int) = (0x7F, 0x7F, 0x7F, 0xFF),
attention_maps_callback=None,
**kwargs,
):
"""
Returns a function returning an image derived from the prompt and
the initial image + mask. Return value depends on the seed at
@@ -204,33 +243,39 @@ class Inpaint(Img2Img):
self.pil_image = init_image.copy()
# Do infill
if infill_method == 'patchmatch' and PatchMatch.patchmatch_available():
if infill_method == "patchmatch" and PatchMatch.patchmatch_available():
init_filled = self.infill_patchmatch(self.pil_image.copy())
elif infill_method == 'tile':
elif infill_method == "tile":
init_filled = self.tile_fill_missing(
self.pil_image.copy(),
seed = self.seed,
tile_size = tile_size
self.pil_image.copy(), seed=self.seed, tile_size=tile_size
)
elif infill_method == 'solid':
elif infill_method == "solid":
solid_bg = PIL.Image.new("RGBA", init_image.size, inpaint_fill)
init_filled = PIL.Image.alpha_composite(solid_bg, init_image)
else:
raise ValueError(f"Non-supported infill type {infill_method}", infill_method)
init_filled.paste(init_image, (0,0), init_image.split()[-1])
raise ValueError(
f"Non-supported infill type {infill_method}", infill_method
)
init_filled.paste(init_image, (0, 0), init_image.split()[-1])
# Resize if requested for inpainting
if inpaint_width and inpaint_height:
init_filled = init_filled.resize((inpaint_width, inpaint_height))
debug_image(init_filled, "init_filled", debug_status=self.enable_image_debugging)
debug_image(
init_filled, "init_filled", debug_status=self.enable_image_debugging
)
# Create init tensor
init_image = image_resized_to_grid_as_tensor(init_filled.convert('RGB'))
init_image = image_resized_to_grid_as_tensor(init_filled.convert("RGB"))
if isinstance(mask_image, PIL.Image.Image):
self.pil_mask = mask_image.copy()
debug_image(mask_image, "mask_image BEFORE multiply with pil_image", debug_status=self.enable_image_debugging)
debug_image(
mask_image,
"mask_image BEFORE multiply with pil_image",
debug_status=self.enable_image_debugging,
)
init_alpha = self.pil_image.getchannel("A")
if mask_image.mode != "L":
@@ -243,8 +288,14 @@ class Inpaint(Img2Img):
if inpaint_width and inpaint_height:
mask_image = mask_image.resize((inpaint_width, inpaint_height))
debug_image(mask_image, "mask_image AFTER multiply with pil_image", debug_status=self.enable_image_debugging)
mask: torch.FloatTensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
debug_image(
mask_image,
"mask_image AFTER multiply with pil_image",
debug_status=self.enable_image_debugging,
)
mask: torch.FloatTensor = image_resized_to_grid_as_tensor(
mask_image, normalize=False
)
else:
mask: torch.FloatTensor = mask_image
@@ -256,11 +307,11 @@ class Inpaint(Img2Img):
# todo: support cross-attention control
uc, c, _ = conditioning
conditioning_data = (ConditioningData(uc, c, cfg_scale)
.add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta))
conditioning_data = ConditioningData(
uc, c, cfg_scale
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta)
def make_image(x_T):
def make_image(x_T: torch.Tensor, seed: int):
pipeline_output = pipeline.inpaint_from_embeddings(
init_image=init_image,
mask=1 - mask, # expects white means "paint here."
@@ -269,45 +320,75 @@ class Inpaint(Img2Img):
conditioning_data=conditioning_data,
noise_func=self.get_noise_like,
callback=step_callback,
seed=seed,
)
if pipeline_output.attention_map_saver is not None and attention_maps_callback is not None:
if (
pipeline_output.attention_map_saver is not None
and attention_maps_callback is not None
):
attention_maps_callback(pipeline_output.attention_map_saver)
result = self.postprocess_size_and_mask(pipeline.numpy_to_pil(pipeline_output.images)[0])
result = self.postprocess_size_and_mask(
pipeline.numpy_to_pil(pipeline_output.images)[0]
)
# Seam paint if this is our first pass (seam_size set to 0 during seam painting)
if seam_size > 0:
old_image = self.pil_image or init_image
old_mask = self.pil_mask or mask_image
result = self.seam_paint(result, seam_size, seam_blur, prompt, sampler, seam_steps, cfg_scale, ddim_eta,
conditioning, seam_strength, x_T, infill_method, step_callback)
result = self.seam_paint(
result,
seam_size,
seam_blur,
prompt,
seed,
sampler,
seam_steps,
cfg_scale,
ddim_eta,
conditioning,
seam_strength,
x_T,
infill_method,
step_callback,
)
# Restore original settings
self.get_make_image(prompt,sampler,steps,cfg_scale,ddim_eta,
conditioning,
old_image,
old_mask,
strength,
mask_blur_radius, seam_size, seam_blur, seam_strength,
seam_steps, tile_size, step_callback,
inpaint_replace, enable_image_debugging,
inpaint_width = inpaint_width,
inpaint_height = inpaint_height,
infill_method = infill_method,
**kwargs)
self.get_make_image(
prompt,
sampler,
steps,
cfg_scale,
ddim_eta,
conditioning,
old_image,
old_mask,
strength,
mask_blur_radius,
seam_size,
seam_blur,
seam_strength,
seam_steps,
tile_size,
step_callback,
inpaint_replace,
enable_image_debugging,
inpaint_width=inpaint_width,
inpaint_height=inpaint_height,
infill_method=infill_method,
**kwargs,
)
return result
return make_image
def sample_to_image(self, samples)->Image.Image:
gen_result = super().sample_to_image(samples).convert('RGB')
def sample_to_image(self, samples) -> Image.Image:
gen_result = super().sample_to_image(samples).convert("RGB")
return self.postprocess_size_and_mask(gen_result)
def postprocess_size_and_mask(self, gen_result: Image.Image) -> Image.Image:
debug_image(gen_result, "gen_result", debug_status=self.enable_image_debugging)
@@ -318,7 +399,13 @@ class Inpaint(Img2Img):
if self.pil_image is None or self.pil_mask is None:
return gen_result
corrected_result = self.repaste_and_color_correct(gen_result, self.pil_image, self.pil_mask, self.mask_blur_radius)
debug_image(corrected_result, "corrected_result", debug_status=self.enable_image_debugging)
corrected_result = self.repaste_and_color_correct(
gen_result, self.pil_image, self.pil_mask, self.mask_blur_radius
)
debug_image(
corrected_result,
"corrected_result",
debug_status=self.enable_image_debugging,
)
return corrected_result

View File

@@ -0,0 +1,81 @@
"""
invokeai.backend.generator.txt2img inherits from invokeai.backend.generator
"""
import PIL.Image
import torch
from ..stable_diffusion import (
ConditioningData,
PostprocessingSettings,
StableDiffusionGeneratorPipeline,
)
from .base import Generator
class Txt2Img(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
@torch.no_grad()
def get_make_image(
self,
prompt,
sampler,
steps,
cfg_scale,
ddim_eta,
conditioning,
width,
height,
step_callback=None,
threshold=0.0,
warmup=0.2,
perlin=0.0,
h_symmetry_time_pct=None,
v_symmetry_time_pct=None,
attention_maps_callback=None,
**kwargs,
):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
kwargs are 'width' and 'height'
"""
self.perlin = perlin
# noinspection PyTypeChecker
pipeline: StableDiffusionGeneratorPipeline = self.model
pipeline.scheduler = sampler
uc, c, extra_conditioning_info = conditioning
conditioning_data = ConditioningData(
uc,
c,
cfg_scale,
extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=threshold,
warmup=warmup,
h_symmetry_time_pct=h_symmetry_time_pct,
v_symmetry_time_pct=v_symmetry_time_pct,
),
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta)
def make_image(x_T: torch.Tensor, _: int) -> PIL.Image.Image:
pipeline_output = pipeline.image_from_embeddings(
latents=torch.zeros_like(x_T, dtype=self.torch_dtype()),
noise=x_T,
num_inference_steps=steps,
conditioning_data=conditioning_data,
callback=step_callback,
)
if (
pipeline_output.attention_map_saver is not None
and attention_maps_callback is not None
):
attention_maps_callback(pipeline_output.attention_map_saver)
return pipeline.numpy_to_pil(pipeline_output.images)[0]
return make_image

View File

@@ -1,6 +1,6 @@
'''
ldm.invoke.generator.txt2img inherits from ldm.invoke.generator
'''
"""
invokeai.backend.generator.txt2img inherits from invokeai.backend.generator
"""
import math
from typing import Callable, Optional
@@ -8,21 +8,37 @@ from typing import Callable, Optional
import torch
from diffusers.utils.logging import get_verbosity, set_verbosity, set_verbosity_error
from ldm.invoke.generator.base import Generator
from ldm.invoke.generator.diffusers_pipeline import trim_to_multiple_of, StableDiffusionGeneratorPipeline, \
ConditioningData
from ldm.models.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ..stable_diffusion import PostprocessingSettings
from .base import Generator
from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
from ..stable_diffusion.diffusers_pipeline import ConditioningData
from ..stable_diffusion.diffusers_pipeline import trim_to_multiple_of
class Txt2Img2Img(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
self.init_latent = None # for get_noise()
self.init_latent = None # for get_noise()
def get_make_image(self, prompt:str, sampler, steps:int, cfg_scale:float, ddim_eta,
conditioning, width:int, height:int, strength:float,
step_callback:Optional[Callable]=None, threshold=0.0, warmup=0.2, perlin=0.0,
h_symmetry_time_pct=None, v_symmetry_time_pct=None, attention_maps_callback=None, **kwargs):
def get_make_image(
self,
prompt: str,
sampler,
steps: int,
cfg_scale: float,
ddim_eta,
conditioning,
width: int,
height: int,
strength: float,
step_callback: Optional[Callable] = None,
threshold=0.0,
warmup=0.2,
perlin=0.0,
h_symmetry_time_pct=None,
v_symmetry_time_pct=None,
attention_maps_callback=None,
**kwargs,
):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
@@ -35,19 +51,20 @@ class Txt2Img2Img(Generator):
pipeline.scheduler = sampler
uc, c, extra_conditioning_info = conditioning
conditioning_data = (
ConditioningData(
uc, c, cfg_scale, extra_conditioning_info,
postprocessing_settings = PostprocessingSettings(
threshold=threshold,
warmup=0.2,
h_symmetry_time_pct=h_symmetry_time_pct,
v_symmetry_time_pct=v_symmetry_time_pct
)
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta))
def make_image(x_T):
conditioning_data = ConditioningData(
uc,
c,
cfg_scale,
extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=threshold,
warmup=0.2,
h_symmetry_time_pct=h_symmetry_time_pct,
v_symmetry_time_pct=v_symmetry_time_pct,
),
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta)
def make_image(x_T: torch.Tensor, _: int):
first_pass_latent_output, _ = pipeline.latents_from_embeddings(
latents=torch.zeros_like(x_T),
num_inference_steps=steps,
@@ -61,28 +78,40 @@ class Txt2Img2Img(Generator):
init_width = first_pass_latent_output.size()[3] * self.downsampling_factor
init_height = first_pass_latent_output.size()[2] * self.downsampling_factor
print(
f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
)
f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
)
# resizing
resized_latents = torch.nn.functional.interpolate(
first_pass_latent_output,
size=(height // self.downsampling_factor, width // self.downsampling_factor),
mode="bilinear"
size=(
height // self.downsampling_factor,
width // self.downsampling_factor,
),
mode="bilinear",
)
# Free up memory from the last generation.
clear_cuda_cache = kwargs['clear_cuda_cache'] or None
clear_cuda_cache = kwargs["clear_cuda_cache"] or None
if clear_cuda_cache is not None:
clear_cuda_cache()
second_pass_noise = self.get_noise_like(resized_latents, override_perlin=True)
second_pass_noise = self.get_noise_like(
resized_latents, override_perlin=True
)
# Clear symmetry for the second pass
from dataclasses import replace
new_postprocessing_settings = replace(conditioning_data.postprocessing_settings, h_symmetry_time_pct=None)
new_postprocessing_settings = replace(new_postprocessing_settings, v_symmetry_time_pct=None)
new_conditioning_data = replace(conditioning_data, postprocessing_settings=new_postprocessing_settings)
new_postprocessing_settings = replace(
conditioning_data.postprocessing_settings, h_symmetry_time_pct=None
)
new_postprocessing_settings = replace(
new_postprocessing_settings, v_symmetry_time_pct=None
)
new_conditioning_data = replace(
conditioning_data, postprocessing_settings=new_postprocessing_settings
)
verbosity = get_verbosity()
set_verbosity_error()
@@ -92,15 +121,18 @@ class Txt2Img2Img(Generator):
conditioning_data=new_conditioning_data,
strength=strength,
noise=second_pass_noise,
callback=step_callback)
callback=step_callback,
)
set_verbosity(verbosity)
if pipeline_output.attention_map_saver is not None and attention_maps_callback is not None:
if (
pipeline_output.attention_map_saver is not None
and attention_maps_callback is not None
):
attention_maps_callback(pipeline_output.attention_map_saver)
return pipeline.numpy_to_pil(pipeline_output.images)[0]
# FIXME: do we really need something entirely different for the inpainting model?
# in the case of the inpainting model being loaded, the trick of
@@ -111,19 +143,23 @@ class Txt2Img2Img(Generator):
return make_image
def get_noise_like(self, like: torch.Tensor, override_perlin: bool=False):
def get_noise_like(self, like: torch.Tensor, override_perlin: bool = False):
device = like.device
if device.type == 'mps':
x = torch.randn_like(like, device='cpu', dtype=self.torch_dtype()).to(device)
if device.type == "mps":
x = torch.randn_like(like, device="cpu", dtype=self.torch_dtype()).to(
device
)
else:
x = torch.randn_like(like, device=device, dtype=self.torch_dtype())
if self.perlin > 0.0 and override_perlin == False:
shape = like.shape
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(shape[3], shape[2])
x = (1 - self.perlin) * x + self.perlin * self.get_perlin_noise(
shape[3], shape[2]
)
return x
# returns a tensor filled with random numbers from a normal distribution
def get_noise(self,width,height,scale = True):
def get_noise(self, width, height, scale=True):
# print(f"Get noise: {width}x{height}")
if scale:
# Scale the input width and height for the initial generation
@@ -133,7 +169,9 @@ class Txt2Img2Img(Generator):
aspect = width / height
dimension = self.model.unet.config.sample_size * self.model.vae_scale_factor
min_dimension = math.floor(dimension * 0.5)
model_area = dimension * dimension # hardcoded for now since all models are trained on square images
model_area = (
dimension * dimension
) # hardcoded for now since all models are trained on square images
if aspect > 1.0:
init_height = max(min_dimension, math.sqrt(model_area / aspect))
@@ -142,7 +180,9 @@ class Txt2Img2Img(Generator):
init_width = max(min_dimension, math.sqrt(model_area * aspect))
init_height = init_width / aspect
scaled_width, scaled_height = trim_to_multiple_of(math.floor(init_width), math.floor(init_height))
scaled_width, scaled_height = trim_to_multiple_of(
math.floor(init_width), math.floor(init_height)
)
else:
scaled_width = width
@@ -152,10 +192,14 @@ class Txt2Img2Img(Generator):
channels = self.latent_channels
if channels == 9:
channels = 4 # we don't really want noise for all the mask channels
shape = (1, channels,
scaled_height // self.downsampling_factor, scaled_width // self.downsampling_factor)
if self.use_mps_noise or device.type == 'mps':
tensor = torch.empty(size=shape, device='cpu')
shape = (
1,
channels,
scaled_height // self.downsampling_factor,
scaled_width // self.downsampling_factor,
)
if self.use_mps_noise or device.type == "mps":
tensor = torch.empty(size=shape, device="cpu")
tensor = self.get_noise_like(like=tensor).to(device)
else:
tensor = torch.empty(size=shape, device=device)

View File

@@ -1,5 +1,5 @@
'''
ldm.invoke.globals defines a small number of global variables that would
"""
invokeai.backend.globals defines a small number of global variables that would
otherwise have to be passed through long and complex call chains.
It defines a Namespace object named "Globals" that contains
@@ -9,7 +9,7 @@ the attributes:
- initfile - path to the initialization file
- try_patchmatch - option to globally disable loading of 'patchmatch' module
- always_use_cpu - force use of CPU even if GPU is available
'''
"""
import os
import os.path as osp
@@ -20,12 +20,12 @@ from typing import Union
Globals = Namespace()
# Where to look for the initialization file and other key components
Globals.initfile = 'invokeai.init'
Globals.models_file = 'models.yaml'
Globals.models_dir = 'models'
Globals.config_dir = 'configs'
Globals.autoscan_dir = 'weights'
Globals.converted_ckpts_dir = 'converted_ckpts'
Globals.initfile = "invokeai.init"
Globals.models_file = "models.yaml"
Globals.models_dir = "models"
Globals.config_dir = "configs"
Globals.autoscan_dir = "weights"
Globals.converted_ckpts_dir = "converted_ckpts"
# Set the default root directory. This can be overwritten by explicitly
# passing the `--root <directory>` argument on the command line.
@@ -34,12 +34,15 @@ Globals.converted_ckpts_dir = 'converted_ckpts'
# 2) use VIRTUAL_ENV environment variable, with a check for initfile being there
# 3) use ~/invokeai
if os.environ.get('INVOKEAI_ROOT'):
Globals.root = osp.abspath(os.environ.get('INVOKEAI_ROOT'))
elif os.environ.get('VIRTUAL_ENV') and Path(os.environ.get('VIRTUAL_ENV'),'..',Globals.initfile).exists():
Globals.root = osp.abspath(osp.join(os.environ.get('VIRTUAL_ENV'), '..'))
if os.environ.get("INVOKEAI_ROOT"):
Globals.root = osp.abspath(os.environ.get("INVOKEAI_ROOT"))
elif (
os.environ.get("VIRTUAL_ENV")
and Path(os.environ.get("VIRTUAL_ENV"), "..", Globals.initfile).exists()
):
Globals.root = osp.abspath(osp.join(os.environ.get("VIRTUAL_ENV"), ".."))
else:
Globals.root = osp.abspath(osp.expanduser('~/invokeai'))
Globals.root = osp.abspath(osp.expanduser("~/invokeai"))
# Try loading patchmatch
Globals.try_patchmatch = True
@@ -61,55 +64,59 @@ Globals.sequential_guidance = False
Globals.full_precision = False
# whether we should convert ckpt files into diffusers models on the fly
Globals.ckpt_convert = False
Globals.ckpt_convert = True
# logging tokenization everywhere
Globals.log_tokenization = False
def global_config_file()->Path:
def global_config_file() -> Path:
return Path(Globals.root, Globals.config_dir, Globals.models_file)
def global_config_dir()->Path:
def global_config_dir() -> Path:
return Path(Globals.root, Globals.config_dir)
def global_models_dir()->Path:
def global_models_dir() -> Path:
return Path(Globals.root, Globals.models_dir)
def global_autoscan_dir()->Path:
def global_autoscan_dir() -> Path:
return Path(Globals.root, Globals.autoscan_dir)
def global_converted_ckpts_dir()->Path:
def global_converted_ckpts_dir() -> Path:
return Path(global_models_dir(), Globals.converted_ckpts_dir)
def global_set_root(root_dir:Union[str,Path]):
def global_set_root(root_dir: Union[str, Path]):
Globals.root = root_dir
def global_cache_dir(subdir:Union[str,Path]='')->Path:
'''
def global_cache_dir(subdir: Union[str, Path] = "") -> Path:
"""
Returns Path to the model cache directory. If a subdirectory
is provided, it will be appended to the end of the path, allowing
for huggingface-style conventions:
global_cache_dir('diffusers')
for Hugging Face-style conventions. Currently, Hugging Face has
moved all models into the "hub" subfolder, so for any pretrained
HF model, use:
global_cache_dir('hub')
Current HuggingFace documentation (mid-Jan 2023) indicates that
transformers models will be cached into a "transformers" subdirectory,
but in practice they seem to go into "hub". But if needed:
global_cache_dir('transformers')
One other caveat is that HuggingFace is moving some diffusers models
into the "hub" subdirectory as well, so this will need to be revisited
from time to time.
'''
home: str = os.getenv('HF_HOME')
The legacy location for transformers used to be global_cache_dir('transformers')
and global_cache_dir('diffusers') for diffusers.
"""
home: str = os.getenv("HF_HOME")
if home is None:
home = os.getenv('XDG_CACHE_HOME')
home = os.getenv("XDG_CACHE_HOME")
if home is not None:
# Set `home` to $XDG_CACHE_HOME/huggingface, which is the default location mentioned in HuggingFace Hub Client Library.
# Set `home` to $XDG_CACHE_HOME/huggingface, which is the default location mentioned in Hugging Face Hub Client Library.
# See: https://huggingface.co/docs/huggingface_hub/main/en/package_reference/environment_variables#xdgcachehome
home += os.sep + 'huggingface'
home += os.sep + "huggingface"
if home is not None:
return Path(home,subdir)
return Path(home, subdir)
else:
return Path(Globals.root,'models',subdir)
return Path(Globals.root, "models", subdir)

View File

@@ -0,0 +1,24 @@
"""
Initialization file for invokeai.backend.image_util methods.
"""
from .patchmatch import PatchMatch
from .pngwriter import PngWriter, PromptFormatter, retrieve_metadata, write_metadata
from .seamless import configure_model_padding
from .txt2mask import Txt2Mask
from .util import InitImageResizer, make_grid
def debug_image(
debug_image, debug_text, debug_show=True, debug_result=False, debug_status=False
):
if not debug_status:
return
image_copy = debug_image.copy().convert("RGBA")
ImageDraw.Draw(image_copy).text((5, 5), debug_text, (255, 0, 0))
if debug_show:
image_copy.show()
if debug_result:
return image_copy

View File

@@ -1,20 +1,22 @@
'''
"""
This module defines a singleton object, "patchmatch" that
wraps the actual patchmatch object. It respects the global
"try_patchmatch" attribute, so that patchmatch loading can
be suppressed or deferred
'''
from ldm.invoke.globals import Globals
import numpy as np
"""
import numpy as np
from invokeai.backend.globals import Globals
class PatchMatch:
'''
"""
Thin class wrapper around the patchmatch function.
'''
"""
patch_match = None
tried_load:bool = False
tried_load: bool = False
def __init__(self):
super().__init__()
@@ -24,21 +26,22 @@ class PatchMatch:
return
if Globals.try_patchmatch:
from patchmatch import patch_match as pm
if pm.patchmatch_available:
print('>> Patchmatch initialized')
print(">> Patchmatch initialized")
else:
print('>> Patchmatch not loaded (nonfatal)')
print(">> Patchmatch not loaded (nonfatal)")
self.patch_match = pm
else:
print('>> Patchmatch loading disabled')
print(">> Patchmatch loading disabled")
self.tried_load = True
@classmethod
def patchmatch_available(self)->bool:
def patchmatch_available(self) -> bool:
self._load_patch_match()
return self.patch_match and self.patch_match.patchmatch_available
@classmethod
def inpaint(self,*args,**kwargs)->np.ndarray:
def inpaint(self, *args, **kwargs) -> np.ndarray:
if self.patchmatch_available():
return self.patch_match.inpaint(*args,**kwargs)
return self.patch_match.inpaint(*args, **kwargs)

View File

@@ -6,10 +6,11 @@ PngWriter -- Converts Images generated by T2I into PNGs, finds
Exports function retrieve_metadata(path)
"""
import json
import os
import re
import json
from PIL import PngImagePlugin, Image
from PIL import Image, PngImagePlugin
# -------------------image generation utils-----
@@ -25,52 +26,57 @@ class PngWriter:
dirlist = sorted(os.listdir(self.outdir), reverse=True)
# find the first filename that matches our pattern or return 000000.0.png
existing_name = next(
(f for f in dirlist if re.match('^(\d+)\..*\.png', f)),
'0000000.0.png',
(f for f in dirlist if re.match("^(\d+)\..*\.png", f)),
"0000000.0.png",
)
basecount = int(existing_name.split('.', 1)[0]) + 1
return f'{basecount:06}'
basecount = int(existing_name.split(".", 1)[0]) + 1
return f"{basecount:06}"
# saves image named _image_ to outdir/name, writing metadata from prompt
# returns full path of output
def save_image_and_prompt_to_png(self, image, dream_prompt, name, metadata=None, compress_level=6):
def save_image_and_prompt_to_png(
self, image, dream_prompt, name, metadata=None, compress_level=6
):
path = os.path.join(self.outdir, name)
info = PngImagePlugin.PngInfo()
info.add_text('Dream', dream_prompt)
info.add_text("Dream", dream_prompt)
if metadata:
info.add_text('sd-metadata', json.dumps(metadata))
image.save(path, 'PNG', pnginfo=info, compress_level=compress_level)
info.add_text("sd-metadata", json.dumps(metadata))
image.save(path, "PNG", pnginfo=info, compress_level=compress_level)
return path
def retrieve_metadata(self,img_basename):
'''
def retrieve_metadata(self, img_basename):
"""
Given a PNG filename stored in outdir, returns the "sd-metadata"
metadata stored there, as a dict
'''
path = os.path.join(self.outdir,img_basename)
"""
path = os.path.join(self.outdir, img_basename)
all_metadata = retrieve_metadata(path)
return all_metadata['sd-metadata']
return all_metadata["sd-metadata"]
def retrieve_metadata(img_path):
'''
"""
Given a path to a PNG image, returns the "sd-metadata"
metadata stored there, as a dict
'''
"""
im = Image.open(img_path)
if hasattr(im, 'text'):
md = im.text.get('sd-metadata', '{}')
dream_prompt = im.text.get('Dream', '')
if hasattr(im, "text"):
md = im.text.get("sd-metadata", "{}")
dream_prompt = im.text.get("Dream", "")
else:
# When trying to retrieve metadata from images without a 'text' payload, such as JPG images.
md = '{}'
dream_prompt = ''
return {'sd-metadata': json.loads(md), 'Dream': dream_prompt}
md = "{}"
dream_prompt = ""
return {"sd-metadata": json.loads(md), "Dream": dream_prompt}
def write_metadata(img_path:str, meta:dict):
def write_metadata(img_path: str, meta: dict):
im = Image.open(img_path)
info = PngImagePlugin.PngInfo()
info.add_text('sd-metadata', json.dumps(meta))
im.save(img_path,'PNG',pnginfo=info)
info.add_text("sd-metadata", json.dumps(meta))
im.save(img_path, "PNG", pnginfo=info)
class PromptFormatter:
def __init__(self, t2i, opt):
@@ -86,28 +92,30 @@ class PromptFormatter:
switches = list()
switches.append(f'"{opt.prompt}"')
switches.append(f'-s{opt.steps or t2i.steps}')
switches.append(f'-W{opt.width or t2i.width}')
switches.append(f'-H{opt.height or t2i.height}')
switches.append(f'-C{opt.cfg_scale or t2i.cfg_scale}')
switches.append(f'-A{opt.sampler_name or t2i.sampler_name}')
# to do: put model name into the t2i object
# switches.append(f'--model{t2i.model_name}')
switches.append(f"-s{opt.steps or t2i.steps}")
switches.append(f"-W{opt.width or t2i.width}")
switches.append(f"-H{opt.height or t2i.height}")
switches.append(f"-C{opt.cfg_scale or t2i.cfg_scale}")
switches.append(f"-A{opt.sampler_name or t2i.sampler_name}")
# to do: put model name into the t2i object
# switches.append(f'--model{t2i.model_name}')
if opt.seamless or t2i.seamless:
switches.append(f'--seamless')
switches.append(f"--seamless")
if opt.init_img:
switches.append(f'-I{opt.init_img}')
switches.append(f"-I{opt.init_img}")
if opt.fit:
switches.append(f'--fit')
switches.append(f"--fit")
if opt.strength and opt.init_img is not None:
switches.append(f'-f{opt.strength or t2i.strength}')
switches.append(f"-f{opt.strength or t2i.strength}")
if opt.gfpgan_strength:
switches.append(f'-G{opt.gfpgan_strength}')
switches.append(f"-G{opt.gfpgan_strength}")
if opt.upscale:
switches.append(f'-U {" ".join([str(u) for u in opt.upscale])}')
if opt.variation_amount > 0:
switches.append(f'-v{opt.variation_amount}')
switches.append(f"-v{opt.variation_amount}")
if opt.with_variations:
formatted_variations = ','.join(f'{seed}:{weight}' for seed, weight in opt.with_variations)
switches.append(f'-V{formatted_variations}')
return ' '.join(switches)
formatted_variations = ",".join(
f"{seed}:{weight}" for seed, weight in opt.with_variations
)
switches.append(f"-V{formatted_variations}")
return " ".join(switches)

View File

@@ -0,0 +1,59 @@
import torch.nn as nn
def _conv_forward_asymmetric(self, input, weight, bias):
"""
Patch for Conv2d._conv_forward that supports asymmetric padding
"""
working = nn.functional.pad(
input, self.asymmetric_padding["x"], mode=self.asymmetric_padding_mode["x"]
)
working = nn.functional.pad(
working, self.asymmetric_padding["y"], mode=self.asymmetric_padding_mode["y"]
)
return nn.functional.conv2d(
working,
weight,
bias,
self.stride,
nn.modules.utils._pair(0),
self.dilation,
self.groups,
)
def configure_model_padding(model, seamless, seamless_axes):
"""
Modifies the 2D convolution layers to use a circular padding mode based on the `seamless` and `seamless_axes` options.
"""
# TODO: get an explicit interface for this in diffusers: https://github.com/huggingface/diffusers/issues/556
for m in model.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
if seamless:
m.asymmetric_padding_mode = {}
m.asymmetric_padding = {}
m.asymmetric_padding_mode["x"] = (
"circular" if ("x" in seamless_axes) else "constant"
)
m.asymmetric_padding["x"] = (
m._reversed_padding_repeated_twice[0],
m._reversed_padding_repeated_twice[1],
0,
0,
)
m.asymmetric_padding_mode["y"] = (
"circular" if ("y" in seamless_axes) else "constant"
)
m.asymmetric_padding["y"] = (
0,
0,
m._reversed_padding_repeated_twice[2],
m._reversed_padding_repeated_twice[3],
)
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
else:
m._conv_forward = nn.Conv2d._conv_forward.__get__(m, nn.Conv2d)
if hasattr(m, "asymmetric_padding_mode"):
del m.asymmetric_padding_mode
if hasattr(m, "asymmetric_padding"):
del m.asymmetric_padding

View File

@@ -1,9 +1,9 @@
'''Makes available the Txt2Mask class, which assists in the automatic
"""Makes available the Txt2Mask class, which assists in the automatic
assignment of masks via text prompt using clipseg.
Here is typical usage:
from ldm.invoke.txt2mask import Txt2Mask, SegmentedGrayscale
from invokeai.backend.image_util.txt2mask import Txt2Mask, SegmentedGrayscale
from PIL import Image
txt2mask = Txt2Mask(self.device)
@@ -25,31 +25,39 @@ the mask that exceed the indicated confidence threshold. Values range
from 0.0 to 1.0. The higher the threshold, the more confident the
algorithm is. In limited testing, I have found that values around 0.5
work fine.
'''
"""
import numpy as np
import torch
import numpy as np
from transformers import AutoProcessor, CLIPSegForImageSegmentation
from PIL import Image, ImageOps
from torchvision import transforms
from ldm.invoke.globals import global_cache_dir
from transformers import AutoProcessor, CLIPSegForImageSegmentation
CLIPSEG_MODEL = 'CIDAS/clipseg-rd64-refined'
from invokeai.backend.globals import global_cache_dir
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
CLIPSEG_SIZE = 352
class SegmentedGrayscale(object):
def __init__(self, image:Image, heatmap:torch.Tensor):
def __init__(self, image: Image, heatmap: torch.Tensor):
self.heatmap = heatmap
self.image = image
def to_grayscale(self,invert:bool=False)->Image:
return self._rescale(Image.fromarray(np.uint8(255 - self.heatmap * 255 if invert else self.heatmap * 255)))
def to_grayscale(self, invert: bool = False) -> Image:
return self._rescale(
Image.fromarray(
np.uint8(255 - self.heatmap * 255 if invert else self.heatmap * 255)
)
)
def to_mask(self,threshold:float=0.5)->Image:
def to_mask(self, threshold: float = 0.5) -> Image:
discrete_heatmap = self.heatmap.lt(threshold).int()
return self._rescale(Image.fromarray(np.uint8(discrete_heatmap*255),mode='L'))
return self._rescale(
Image.fromarray(np.uint8(discrete_heatmap * 255), mode="L")
)
def to_transparent(self,invert:bool=False)->Image:
def to_transparent(self, invert: bool = False) -> Image:
transparent_image = self.image.copy()
# For img2img, we want the selected regions to be transparent,
# but to_grayscale() returns the opposite. Thus invert.
@@ -58,70 +66,77 @@ class SegmentedGrayscale(object):
return transparent_image
# unscales and uncrops the 352x352 heatmap so that it matches the image again
def _rescale(self, heatmap:Image)->Image:
size = self.image.width if (self.image.width > self.image.height) else self.image.height
resized_image = heatmap.resize(
(size,size),
resample=Image.Resampling.LANCZOS
def _rescale(self, heatmap: Image) -> Image:
size = (
self.image.width
if (self.image.width > self.image.height)
else self.image.height
)
return resized_image.crop((0,0,self.image.width,self.image.height))
resized_image = heatmap.resize((size, size), resample=Image.Resampling.LANCZOS)
return resized_image.crop((0, 0, self.image.width, self.image.height))
class Txt2Mask(object):
'''
"""
Create new Txt2Mask object. The optional device argument can be one of
'cuda', 'mps' or 'cpu'.
'''
def __init__(self,device='cpu',refined=False):
print('>> Initializing clipseg model for text to mask inference')
"""
def __init__(self, device="cpu", refined=False):
print(">> Initializing clipseg model for text to mask inference")
# BUG: we are not doing anything with the device option at this time
self.device = device
self.processor = AutoProcessor.from_pretrained(CLIPSEG_MODEL,
cache_dir=global_cache_dir('hub')
)
self.model = CLIPSegForImageSegmentation.from_pretrained(CLIPSEG_MODEL,
cache_dir=global_cache_dir('hub')
)
self.processor = AutoProcessor.from_pretrained(
CLIPSEG_MODEL, cache_dir=global_cache_dir("hub")
)
self.model = CLIPSegForImageSegmentation.from_pretrained(
CLIPSEG_MODEL, cache_dir=global_cache_dir("hub")
)
@torch.no_grad()
def segment(self, image, prompt:str) -> SegmentedGrayscale:
'''
def segment(self, image, prompt: str) -> SegmentedGrayscale:
"""
Given a prompt string such as "a bagel", tries to identify the object in the
provided image and returns a SegmentedGrayscale object in which the brighter
pixels indicate where the object is inferred to be.
'''
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
transforms.Resize((CLIPSEG_SIZE, CLIPSEG_SIZE)), # must be multiple of 64...
])
"""
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
transforms.Resize(
(CLIPSEG_SIZE, CLIPSEG_SIZE)
), # must be multiple of 64...
]
)
if type(image) is str:
image = Image.open(image).convert('RGB')
image = Image.open(image).convert("RGB")
image = ImageOps.exif_transpose(image)
img = self._scale_and_crop(image)
inputs = self.processor(text=[prompt],
images=[img],
padding=True,
return_tensors='pt')
inputs = self.processor(
text=[prompt], images=[img], padding=True, return_tensors="pt"
)
outputs = self.model(**inputs)
heatmap = torch.sigmoid(outputs.logits)
return SegmentedGrayscale(image, heatmap)
def _scale_and_crop(self, image:Image)->Image:
scaled_image = Image.new('RGB',(CLIPSEG_SIZE,CLIPSEG_SIZE))
if image.width > image.height: # width is constraint
def _scale_and_crop(self, image: Image) -> Image:
scaled_image = Image.new("RGB", (CLIPSEG_SIZE, CLIPSEG_SIZE))
if image.width > image.height: # width is constraint
scale = CLIPSEG_SIZE / image.width
else:
scale = CLIPSEG_SIZE / image.height
scaled_image.paste(
image.resize(
(int(scale * image.width),
int(scale * image.height)
),
resample=Image.Resampling.LANCZOS
),box=(0,0)
(int(scale * image.width), int(scale * image.height)),
resample=Image.Resampling.LANCZOS,
),
box=(0, 0),
)
return scaled_image

View File

@@ -1,12 +1,15 @@
from math import sqrt, floor, ceil
from math import ceil, floor, sqrt
from PIL import Image
class InitImageResizer():
class InitImageResizer:
"""Simple class to create resized copies of an Image while preserving the aspect ratio."""
def __init__(self,Image):
def __init__(self, Image):
self.image = Image
def resize(self,width=None,height=None) -> Image:
def resize(self, width=None, height=None) -> Image:
"""
Return a copy of the image resized to fit within
a box width x height. The aspect ratio is
@@ -18,37 +21,36 @@ class InitImageResizer():
Everything is floored to the nearest multiple of 64 so
that it can be passed to img2img()
"""
im = self.image
im = self.image
ar = im.width/float(im.height)
ar = im.width / float(im.height)
# Infer missing values from aspect ratio
if not(width or height): # both missing
width = im.width
if not (width or height): # both missing
width = im.width
height = im.height
elif not height: # height missing
height = int(width/ar)
elif not width: # width missing
width = int(height*ar)
elif not height: # height missing
height = int(width / ar)
elif not width: # width missing
width = int(height * ar)
w_scale = width/im.width
h_scale = height/im.height
scale = min(w_scale,h_scale)
(rw,rh) = (int(scale*im.width),int(scale*im.height))
w_scale = width / im.width
h_scale = height / im.height
scale = min(w_scale, h_scale)
(rw, rh) = (int(scale * im.width), int(scale * im.height))
#round everything to multiples of 64
width,height,rw,rh = map(
lambda x: x-x%64, (width,height,rw,rh)
)
# round everything to multiples of 64
width, height, rw, rh = map(lambda x: x - x % 64, (width, height, rw, rh))
# no resize necessary, but return a copy
if im.width == width and im.height == height:
return im.copy()
# otherwise resize the original image so that it fits inside the bounding box
resized_image = self.image.resize((rw,rh),resample=Image.Resampling.LANCZOS)
resized_image = self.image.resize((rw, rh), resample=Image.Resampling.LANCZOS)
return resized_image
def make_grid(image_list, rows=None, cols=None):
image_cnt = len(image_list)
if None in (rows, cols):
@@ -57,7 +59,7 @@ def make_grid(image_list, rows=None, cols=None):
width = image_list[0].width
height = image_list[0].height
grid_img = Image.new('RGB', (width * cols, height * rows))
grid_img = Image.new("RGB", (width * cols, height * rows))
i = 0
for r in range(0, rows):
for c in range(0, cols):
@@ -67,4 +69,3 @@ def make_grid(image_list, rows=None, cols=None):
i = i + 1
return grid_img

View File

@@ -0,0 +1,9 @@
"""
Initialization file for invokeai.backend.model_management
"""
from .convert_ckpt_to_diffusers import (
convert_ckpt_to_diffusers,
load_pipeline_from_original_stable_diffusion_ckpt,
)
from .model_manager import ModelManager

View File

@@ -0,0 +1,9 @@
"""
Initialization file for invokeai.backend.prompting
"""
from .conditioning import (
get_prompt_structure,
get_tokens_for_prompt_object,
get_uc_and_c_and_ec,
split_weighted_subprompts,
)

View File

@@ -1,110 +1,138 @@
'''
"""
This module handles the generation of the conditioning tensors.
Useful function exports:
get_uc_and_c_and_ec() get the conditioned and unconditioned latent, and edited conditioning if we're doing cross-attention control
'''
"""
import re
from typing import Union, Optional, Any
from transformers import CLIPTokenizer, CLIPTextModel
from typing import Optional, Union
from compel import Compel
from compel.prompt_parser import FlattenedPrompt, Blend, Fragment, CrossAttentionControlSubstitute, PromptParser
from .devices import torch_dtype
from ..models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
from ldm.invoke.globals import Globals
from compel.prompt_parser import (
Blend,
CrossAttentionControlSubstitute,
FlattenedPrompt,
Fragment,
PromptParser,
)
def get_tokenizer(model) -> CLIPTokenizer:
# TODO remove legacy ckpt fallback handling
return (getattr(model, 'tokenizer', None) # diffusers
or model.cond_stage_model.tokenizer) # ldm
from invokeai.backend.globals import Globals
def get_text_encoder(model) -> Any:
# TODO remove legacy ckpt fallback handling
return (getattr(model, 'text_encoder', None) # diffusers
or UnsqueezingLDMTransformer(model.cond_stage_model.transformer)) # ldm
class UnsqueezingLDMTransformer:
def __init__(self, ldm_transformer):
self.ldm_transformer = ldm_transformer
@property
def device(self):
return self.ldm_transformer.device
def __call__(self, *args, **kwargs):
insufficiently_unsqueezed_tensor = self.ldm_transformer(*args, **kwargs)
return insufficiently_unsqueezed_tensor.unsqueeze(0)
from ..stable_diffusion import InvokeAIDiffuserComponent
from ..util import torch_dtype
def get_uc_and_c_and_ec(prompt_string, model, log_tokens=False, skip_normalize_legacy_blend=False):
def get_uc_and_c_and_ec(
prompt_string, model, log_tokens=False, skip_normalize_legacy_blend=False
):
# lazy-load any deferred textual inversions.
# this might take a couple of seconds the first time a textual inversion is used.
model.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(prompt_string)
model.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(
prompt_string
)
tokenizer = get_tokenizer(model)
text_encoder = get_text_encoder(model)
compel = Compel(tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=model.textual_inversion_manager,
dtype_for_device_getter=torch_dtype)
tokenizer = model.tokenizer
compel = Compel(
tokenizer=tokenizer,
text_encoder=model.text_encoder,
textual_inversion_manager=model.textual_inversion_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=False
)
positive_prompt_string, negative_prompt_string = split_prompt_to_positive_and_negative(prompt_string)
legacy_blend = try_parse_legacy_blend(positive_prompt_string, skip_normalize_legacy_blend)
positive_prompt: FlattenedPrompt|Blend
# get rid of any newline characters
prompt_string = prompt_string.replace("\n", " ")
(
positive_prompt_string,
negative_prompt_string,
) = split_prompt_to_positive_and_negative(prompt_string)
legacy_blend = try_parse_legacy_blend(
positive_prompt_string, skip_normalize_legacy_blend
)
positive_prompt: Union[FlattenedPrompt, Blend]
if legacy_blend is not None:
positive_prompt = legacy_blend
else:
positive_prompt = Compel.parse_prompt_string(positive_prompt_string)
negative_prompt: FlattenedPrompt|Blend = Compel.parse_prompt_string(negative_prompt_string)
negative_prompt: Union[FlattenedPrompt, Blend] = Compel.parse_prompt_string(
negative_prompt_string
)
if log_tokens or getattr(Globals, "log_tokenization", False):
log_tokenization(positive_prompt, negative_prompt, tokenizer=tokenizer)
c, options = compel.build_conditioning_tensor_for_prompt_object(positive_prompt)
uc, _ = compel.build_conditioning_tensor_for_prompt_object(negative_prompt)
[c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
tokens_count = get_max_token_count(tokenizer, positive_prompt)
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(tokens_count_including_eos_bos=tokens_count,
cross_attention_control_args=options.get(
'cross_attention_control', None))
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=tokens_count,
cross_attention_control_args=options.get("cross_attention_control", None),
)
return uc, c, ec
def get_prompt_structure(prompt_string, skip_normalize_legacy_blend: bool = False) -> (
Union[FlattenedPrompt, Blend], FlattenedPrompt):
positive_prompt_string, negative_prompt_string = split_prompt_to_positive_and_negative(prompt_string)
legacy_blend = try_parse_legacy_blend(positive_prompt_string, skip_normalize_legacy_blend)
positive_prompt: FlattenedPrompt|Blend
def get_prompt_structure(
prompt_string, skip_normalize_legacy_blend: bool = False
) -> (Union[FlattenedPrompt, Blend], FlattenedPrompt):
(
positive_prompt_string,
negative_prompt_string,
) = split_prompt_to_positive_and_negative(prompt_string)
legacy_blend = try_parse_legacy_blend(
positive_prompt_string, skip_normalize_legacy_blend
)
positive_prompt: Union[FlattenedPrompt, Blend]
if legacy_blend is not None:
positive_prompt = legacy_blend
else:
positive_prompt = Compel.parse_prompt_string(positive_prompt_string)
negative_prompt: FlattenedPrompt|Blend = Compel.parse_prompt_string(negative_prompt_string)
negative_prompt: Union[FlattenedPrompt, Blend] = Compel.parse_prompt_string(
negative_prompt_string
)
return positive_prompt, negative_prompt
def get_max_token_count(tokenizer, prompt: Union[FlattenedPrompt, Blend], truncate_if_too_long=True) -> int:
def get_max_token_count(
tokenizer, prompt: Union[FlattenedPrompt, Blend], truncate_if_too_long=False
) -> int:
if type(prompt) is Blend:
blend: Blend = prompt
return max([get_max_token_count(tokenizer, c, truncate_if_too_long) for c in blend.prompts])
return max(
[
get_max_token_count(tokenizer, c, truncate_if_too_long)
for c in blend.prompts
]
)
else:
return len(get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long))
return len(
get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long)
)
def get_tokens_for_prompt_object(tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True) -> [str]:
def get_tokens_for_prompt_object(
tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True
) -> [str]:
if type(parsed_prompt) is Blend:
raise ValueError("Blend is not supported here - you need to get tokens for each of its .children")
raise ValueError(
"Blend is not supported here - you need to get tokens for each of its .children"
)
text_fragments = [x.text if type(x) is Fragment else
(" ".join([f.text for f in x.original]) if type(x) is CrossAttentionControlSubstitute else
str(x))
for x in parsed_prompt.children]
text_fragments = [
x.text
if type(x) is Fragment
else (
" ".join([f.text for f in x.original])
if type(x) is CrossAttentionControlSubstitute
else str(x)
)
for x in parsed_prompt.children
]
text = " ".join(text_fragments)
tokens = tokenizer.tokenize(text)
if truncate_if_too_long:
@@ -113,40 +141,48 @@ def get_tokens_for_prompt_object(tokenizer, parsed_prompt: FlattenedPrompt, trun
return tokens
def split_prompt_to_positive_and_negative(prompt_string_uncleaned):
unconditioned_words = ''
unconditional_regex = r'\[(.*?)\]'
def split_prompt_to_positive_and_negative(prompt_string_uncleaned: str):
unconditioned_words = ""
unconditional_regex = r"\[(.*?)\]"
unconditionals = re.findall(unconditional_regex, prompt_string_uncleaned)
if len(unconditionals) > 0:
unconditioned_words = ' '.join(unconditionals)
unconditioned_words = " ".join(unconditionals)
# Remove Unconditioned Words From Prompt
unconditional_regex_compile = re.compile(unconditional_regex)
clean_prompt = unconditional_regex_compile.sub(' ', prompt_string_uncleaned)
prompt_string_cleaned = re.sub(' +', ' ', clean_prompt)
clean_prompt = unconditional_regex_compile.sub(" ", prompt_string_uncleaned)
prompt_string_cleaned = re.sub(" +", " ", clean_prompt)
else:
prompt_string_cleaned = prompt_string_uncleaned
return prompt_string_cleaned, unconditioned_words
def log_tokenization(positive_prompt: Union[Blend, FlattenedPrompt],
negative_prompt: Union[Blend, FlattenedPrompt],
tokenizer):
def log_tokenization(
positive_prompt: Union[Blend, FlattenedPrompt],
negative_prompt: Union[Blend, FlattenedPrompt],
tokenizer,
):
print(f"\n>> [TOKENLOG] Parsed Prompt: {positive_prompt}")
print(f"\n>> [TOKENLOG] Parsed Negative Prompt: {negative_prompt}")
log_tokenization_for_prompt_object(positive_prompt, tokenizer)
log_tokenization_for_prompt_object(negative_prompt, tokenizer, display_label_prefix="(negative prompt)")
log_tokenization_for_prompt_object(
negative_prompt, tokenizer, display_label_prefix="(negative prompt)"
)
def log_tokenization_for_prompt_object(p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None):
def log_tokenization_for_prompt_object(
p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None
):
display_label_prefix = display_label_prefix or ""
if type(p) is Blend:
blend: Blend = p
for i, c in enumerate(blend.prompts):
log_tokenization_for_prompt_object(
c, tokenizer,
display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})")
c,
tokenizer,
display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})",
)
elif type(p) is FlattenedPrompt:
flattened_prompt: FlattenedPrompt = p
if flattened_prompt.wants_cross_attention_control:
@@ -161,18 +197,26 @@ def log_tokenization_for_prompt_object(p: Union[Blend, FlattenedPrompt], tokeniz
edited_fragments.append(f)
original_text = " ".join([x.text for x in original_fragments])
log_tokenization_for_text(original_text, tokenizer,
display_label=f"{display_label_prefix}(.swap originals)")
log_tokenization_for_text(
original_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap originals)",
)
edited_text = " ".join([x.text for x in edited_fragments])
log_tokenization_for_text(edited_text, tokenizer,
display_label=f"{display_label_prefix}(.swap replacements)")
log_tokenization_for_text(
edited_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap replacements)",
)
else:
text = " ".join([x.text for x in flattened_prompt.children])
log_tokenization_for_text(text, tokenizer, display_label=display_label_prefix)
log_tokenization_for_text(
text, tokenizer, display_label=display_label_prefix
)
def log_tokenization_for_text(text, tokenizer, display_label=None):
""" shows how the prompt is tokenized
def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
"""shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '
"""
@@ -183,25 +227,25 @@ def log_tokenization_for_text(text, tokenizer, display_label=None):
totalTokens = len(tokens)
for i in range(0, totalTokens):
token = tokens[i].replace('</w>', ' ')
token = tokens[i].replace("</w>", " ")
# alternate color
s = (usedTokens % 6) + 1
if i < tokenizer.model_max_length:
if truncate_if_too_long and i >= tokenizer.model_max_length:
discarded = discarded + f"\x1b[0;3{s};40m{token}"
else:
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
usedTokens += 1
else: # over max token length
discarded = discarded + f"\x1b[0;3{s};40m{token}"
if usedTokens > 0:
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
print(f'{tokenized}\x1b[0m')
print(f"{tokenized}\x1b[0m")
if discarded != "":
print(f'\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):')
print(f'{discarded}\x1b[0m')
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
print(f"{discarded}\x1b[0m")
def try_parse_legacy_blend(text: str, skip_normalize: bool=False) -> Optional[Blend]:
def try_parse_legacy_blend(text: str, skip_normalize: bool = False) -> Optional[Blend]:
weighted_subprompts = split_weighted_subprompts(text, skip_normalize=skip_normalize)
if len(weighted_subprompts) <= 1:
return None
@@ -212,10 +256,12 @@ def try_parse_legacy_blend(text: str, skip_normalize: bool=False) -> Optional[Bl
parsed_conjunctions = [pp.parse_conjunction(x) for x in strings]
flattened_prompts = [x.prompts[0] for x in parsed_conjunctions]
return Blend(prompts=flattened_prompts, weights=weights, normalize_weights=not skip_normalize)
return Blend(
prompts=flattened_prompts, weights=weights, normalize_weights=not skip_normalize
)
def split_weighted_subprompts(text, skip_normalize=False)->list:
def split_weighted_subprompts(text, skip_normalize=False) -> list:
"""
Legacy blend parsing.
@@ -224,7 +270,8 @@ def split_weighted_subprompts(text, skip_normalize=False)->list:
if ':' has no value defined, defaults to 1.0
repeats until no text remaining
"""
prompt_parser = re.compile("""
prompt_parser = re.compile(
"""
(?P<prompt> # capture group for 'prompt'
(?:\\\:|[^:])+ # match one or more non ':' characters or escaped colons '\:'
) # end 'prompt'
@@ -237,16 +284,20 @@ def split_weighted_subprompts(text, skip_normalize=False)->list:
| # OR
$ # else, if no ':' then match end of line
) # end non-capture group
""", re.VERBOSE)
parsed_prompts = [(match.group("prompt").replace("\\:", ":"), float(
match.group("weight") or 1)) for match in re.finditer(prompt_parser, text)]
""",
re.VERBOSE,
)
parsed_prompts = [
(match.group("prompt").replace("\\:", ":"), float(match.group("weight") or 1))
for match in re.finditer(prompt_parser, text)
]
if skip_normalize:
return parsed_prompts
weight_sum = sum(map(lambda x: x[1], parsed_prompts))
if weight_sum == 0:
print(
"* Warning: Subprompt weights add up to zero. Discarding and using even weights instead.")
"* Warning: Subprompt weights add up to zero. Discarding and using even weights instead."
)
equal_weight = 1 / max(len(parsed_prompts), 1)
return [(x[0], equal_weight) for x in parsed_prompts]
return [(x[0], x[1] / weight_sum) for x in parsed_prompts]

View File

@@ -0,0 +1,4 @@
"""
Initialization file for the invokeai.backend.restoration package
"""
from .base import Restoration

View File

@@ -1,38 +1,43 @@
class Restoration():
class Restoration:
def __init__(self) -> None:
pass
def load_face_restore_models(self, gfpgan_model_path='./models/gfpgan/GFPGANv1.4.pth'):
def load_face_restore_models(
self, gfpgan_model_path="./models/gfpgan/GFPGANv1.4.pth"
):
# Load GFPGAN
gfpgan = self.load_gfpgan(gfpgan_model_path)
if gfpgan.gfpgan_model_exists:
print('>> GFPGAN Initialized')
print(">> GFPGAN Initialized")
else:
print('>> GFPGAN Disabled')
print(">> GFPGAN Disabled")
gfpgan = None
# Load CodeFormer
codeformer = self.load_codeformer()
if codeformer.codeformer_model_exists:
print('>> CodeFormer Initialized')
print(">> CodeFormer Initialized")
else:
print('>> CodeFormer Disabled')
print(">> CodeFormer Disabled")
codeformer = None
return gfpgan, codeformer
# Face Restore Models
def load_gfpgan(self, gfpgan_model_path):
from ldm.invoke.restoration.gfpgan import GFPGAN
from .gfpgan import GFPGAN
return GFPGAN(gfpgan_model_path)
def load_codeformer(self):
from ldm.invoke.restoration.codeformer import CodeFormerRestoration
from .codeformer import CodeFormerRestoration
return CodeFormerRestoration()
# Upscale Models
def load_esrgan(self, esrgan_bg_tile=400):
from ldm.invoke.restoration.realesrgan import ESRGAN
from .realesrgan import ESRGAN
esrgan = ESRGAN(esrgan_bg_tile)
print('>> ESRGAN Initialized')
return esrgan;
print(">> ESRGAN Initialized")
return esrgan

View File

@@ -1,17 +1,21 @@
import os
import torch
import numpy as np
import warnings
import sys
from ldm.invoke.globals import Globals
import warnings
pretrained_model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
import numpy as np
import torch
class CodeFormerRestoration():
def __init__(self,
codeformer_dir='models/codeformer',
codeformer_model_path='codeformer.pth') -> None:
from ..globals import Globals
pretrained_model_url = (
"https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
)
class CodeFormerRestoration:
def __init__(
self, codeformer_dir="models/codeformer", codeformer_model_path="codeformer.pth"
) -> None:
if not os.path.isabs(codeformer_dir):
codeformer_dir = os.path.join(Globals.root, codeformer_dir)
@@ -19,22 +23,23 @@ class CodeFormerRestoration():
self.codeformer_model_exists = os.path.isfile(self.model_path)
if not self.codeformer_model_exists:
print('## NOT FOUND: CodeFormer model not found at ' + self.model_path)
print("## NOT FOUND: CodeFormer model not found at " + self.model_path)
sys.path.append(os.path.abspath(codeformer_dir))
def process(self, image, strength, device, seed=None, fidelity=0.75):
if seed is not None:
print(f'>> CodeFormer - Restoring Faces for image seed:{seed}')
print(f">> CodeFormer - Restoring Faces for image seed:{seed}")
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)
from basicsr.utils.download_util import load_file_from_url
from basicsr.utils import img2tensor, tensor2img
from basicsr.utils.download_util import load_file_from_url
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from ldm.invoke.restoration.codeformer_arch import CodeFormer
from torchvision.transforms.functional import normalize
from PIL import Image
from torchvision.transforms.functional import normalize
from .codeformer_arch import CodeFormer
cf_class = CodeFormer
@@ -43,28 +48,31 @@ class CodeFormerRestoration():
codebook_size=1024,
n_head=8,
n_layers=9,
connect_list=['32', '64', '128', '256']
connect_list=["32", "64", "128", "256"],
).to(device)
# note that this file should already be downloaded and cached at
# this point
checkpoint_path = load_file_from_url(url=pretrained_model_url,
model_dir=os.path.abspath(os.path.dirname(self.model_path)),
progress=True
checkpoint_path = load_file_from_url(
url=pretrained_model_url,
model_dir=os.path.abspath(os.path.dirname(self.model_path)),
progress=True,
)
checkpoint = torch.load(checkpoint_path)['params_ema']
checkpoint = torch.load(checkpoint_path)["params_ema"]
cf.load_state_dict(checkpoint)
cf.eval()
image = image.convert('RGB')
image = image.convert("RGB")
# Codeformer expects a BGR np array; make array and flip channels
bgr_image_array = np.array(image, dtype=np.uint8)[...,::-1]
bgr_image_array = np.array(image, dtype=np.uint8)[..., ::-1]
face_helper = FaceRestoreHelper(
upscale_factor=1,
use_parse=True,
device=device,
model_rootpath=os.path.join(Globals.root,'models','gfpgan','weights'),
model_rootpath=os.path.join(
Globals.root, "models", "gfpgan", "weights"
),
)
face_helper.clean_all()
face_helper.read_image(bgr_image_array)
@@ -72,30 +80,35 @@ class CodeFormerRestoration():
face_helper.align_warp_face()
for idx, cropped_face in enumerate(face_helper.cropped_faces):
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = img2tensor(
cropped_face / 255.0, bgr2rgb=True, float32=True
)
normalize(
cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True
)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
try:
with torch.no_grad():
output = cf(cropped_face_t, w=fidelity, adain=True)[0]
restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(-1, 1))
restored_face = tensor2img(
output.squeeze(0), rgb2bgr=True, min_max=(-1, 1)
)
del output
torch.cuda.empty_cache()
except RuntimeError as error:
print(f'\tFailed inference for CodeFormer: {error}.')
print(f"\tFailed inference for CodeFormer: {error}.")
restored_face = cropped_face
restored_face = restored_face.astype('uint8')
restored_face = restored_face.astype("uint8")
face_helper.add_restored_face(restored_face)
face_helper.get_inverse_affine(None)
restored_img = face_helper.paste_faces_to_input_image()
# Flip the channels back to RGB
res = Image.fromarray(restored_img[...,::-1])
res = Image.fromarray(restored_img[..., ::-1])
if strength < 1.0:
# Resize the image to the new image if the sizes have changed

View File

@@ -1,13 +1,15 @@
import math
from typing import List, Optional
import numpy as np
import torch
from torch import nn, Tensor
import torch.nn.functional as F
from typing import Optional, List
from ldm.invoke.restoration.vqgan_arch import *
from basicsr.utils import get_root_logger
from basicsr.utils.registry import ARCH_REGISTRY
from torch import Tensor, nn
from .vqgan_arch import *
def calc_mean_std(feat, eps=1e-5):
"""Calculate mean and std for adaptive_instance_normalization.
@@ -18,7 +20,7 @@ def calc_mean_std(feat, eps=1e-5):
divide-by-zero. Default: 1e-5.
"""
size = feat.size()
assert len(size) == 4, 'The input feature should be 4D tensor.'
assert len(size) == 4, "The input feature should be 4D tensor."
b, c = size[:2]
feat_var = feat.view(b, c, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(b, c, 1, 1)
@@ -39,7 +41,9 @@ def adaptive_instance_normalization(content_feat, style_feat):
size = content_feat.size()
style_mean, style_std = calc_mean_std(style_feat)
content_mean, content_std = calc_mean_std(content_feat)
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(
size
)
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
@@ -49,7 +53,9 @@ class PositionEmbeddingSine(nn.Module):
used by the Attention is all you need paper, generalized to work on images.
"""
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
def __init__(
self, num_pos_feats=64, temperature=10000, normalize=False, scale=None
):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
@@ -62,7 +68,9 @@ class PositionEmbeddingSine(nn.Module):
def forward(self, x, mask=None):
if mask is None:
mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
mask = torch.zeros(
(x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool
)
not_mask = ~mask
y_embed = not_mask.cumsum(1, dtype=torch.float32)
x_embed = not_mask.cumsum(2, dtype=torch.float32)
@@ -85,6 +93,7 @@ class PositionEmbeddingSine(nn.Module):
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
@@ -93,11 +102,13 @@ def _get_activation_fn(activation):
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
class TransformerSALayer(nn.Module):
def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"):
def __init__(
self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"
):
super().__init__()
self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout)
# Implementation of Feedforward model - MLP
@@ -115,16 +126,19 @@ class TransformerSALayer(nn.Module):
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward(self, tgt,
tgt_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
def forward(
self,
tgt,
tgt_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
# self attention
tgt2 = self.norm1(tgt)
q = k = self.with_pos_embed(tgt2, query_pos)
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt2 = self.self_attn(
q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
)[0]
tgt = tgt + self.dropout1(tgt2)
# ffn
@@ -133,20 +147,23 @@ class TransformerSALayer(nn.Module):
tgt = tgt + self.dropout2(tgt2)
return tgt
class Fuse_sft_block(nn.Module):
def __init__(self, in_ch, out_ch):
super().__init__()
self.encode_enc = ResBlock(2*in_ch, out_ch)
self.encode_enc = ResBlock(2 * in_ch, out_ch)
self.scale = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
)
self.shift = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
)
def forward(self, enc_feat, dec_feat, w=1):
enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1))
@@ -159,11 +176,19 @@ class Fuse_sft_block(nn.Module):
@ARCH_REGISTRY.register()
class CodeFormer(VQAutoEncoder):
def __init__(self, dim_embd=512, n_head=8, n_layers=9,
codebook_size=1024, latent_size=256,
connect_list=['32', '64', '128', '256'],
fix_modules=['quantize','generator']):
super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size)
def __init__(
self,
dim_embd=512,
n_head=8,
n_layers=9,
codebook_size=1024,
latent_size=256,
connect_list=["32", "64", "128", "256"],
fix_modules=["quantize", "generator"],
):
super(CodeFormer, self).__init__(
512, 64, [1, 2, 2, 4, 4, 8], "nearest", 2, [16], codebook_size
)
if fix_modules is not None:
for module in fix_modules:
@@ -173,33 +198,53 @@ class CodeFormer(VQAutoEncoder):
self.connect_list = connect_list
self.n_layers = n_layers
self.dim_embd = dim_embd
self.dim_mlp = dim_embd*2
self.dim_mlp = dim_embd * 2
self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd))
self.feat_emb = nn.Linear(256, self.dim_embd)
# transformer
self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0)
for _ in range(self.n_layers)])
self.ft_layers = nn.Sequential(
*[
TransformerSALayer(
embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0
)
for _ in range(self.n_layers)
]
)
# logits_predict head
self.idx_pred_layer = nn.Sequential(
nn.LayerNorm(dim_embd),
nn.Linear(dim_embd, codebook_size, bias=False))
nn.LayerNorm(dim_embd), nn.Linear(dim_embd, codebook_size, bias=False)
)
self.channels = {
'16': 512,
'32': 256,
'64': 256,
'128': 128,
'256': 128,
'512': 64,
"16": 512,
"32": 256,
"64": 256,
"128": 128,
"256": 128,
"512": 64,
}
# after second residual block for > 16, before attn layer for ==16
self.fuse_encoder_block = {'512':2, '256':5, '128':8, '64':11, '32':14, '16':18}
self.fuse_encoder_block = {
"512": 2,
"256": 5,
"128": 8,
"64": 11,
"32": 14,
"16": 18,
}
# after first residual block for > 16, before attn layer for ==16
self.fuse_generator_block = {'16':6, '32': 9, '64':12, '128':15, '256':18, '512':21}
self.fuse_generator_block = {
"16": 6,
"32": 9,
"64": 12,
"128": 15,
"256": 18,
"512": 21,
}
# fuse_convs_dict
self.fuse_convs_dict = nn.ModuleDict()
@@ -228,20 +273,20 @@ class CodeFormer(VQAutoEncoder):
lq_feat = x
# ################# Transformer ###################
# quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat)
pos_emb = self.position_emb.unsqueeze(1).repeat(1,x.shape[0],1)
pos_emb = self.position_emb.unsqueeze(1).repeat(1, x.shape[0], 1)
# BCHW -> BC(HW) -> (HW)BC
feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2,0,1))
feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2, 0, 1))
query_emb = feat_emb
# Transformer encoder
for layer in self.ft_layers:
query_emb = layer(query_emb, query_pos=pos_emb)
# output logits
logits = self.idx_pred_layer(query_emb) # (hw)bn
logits = logits.permute(1,0,2) # (hw)bn -> b(hw)n
logits = self.idx_pred_layer(query_emb) # (hw)bn
logits = logits.permute(1, 0, 2) # (hw)bn -> b(hw)n
if code_only: # for training stage II
# logits doesn't need softmax before cross_entropy loss
if code_only: # for training stage II
# logits doesn't need softmax before cross_entropy loss
return logits, lq_feat
# ################# Quantization ###################
@@ -252,12 +297,14 @@ class CodeFormer(VQAutoEncoder):
# ------------
soft_one_hot = F.softmax(logits, dim=2)
_, top_idx = torch.topk(soft_one_hot, 1, dim=2)
quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0],16,16,256])
quant_feat = self.quantize.get_codebook_feat(
top_idx, shape=[x.shape[0], 16, 16, 256]
)
# preserve gradients
# quant_feat = lq_feat + (quant_feat - lq_feat).detach()
if detach_16:
quant_feat = quant_feat.detach() # for training stage III
quant_feat = quant_feat.detach() # for training stage III
if adain:
quant_feat = adaptive_instance_normalization(quant_feat, lq_feat)
@@ -267,10 +314,12 @@ class CodeFormer(VQAutoEncoder):
for i, block in enumerate(self.generator.blocks):
x = block(x)
if i in fuse_list: # fuse after i-th block
if i in fuse_list: # fuse after i-th block
f_size = str(x.shape[-1])
if w>0:
x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w)
if w > 0:
x = self.fuse_convs_dict[f_size](
enc_feat_dict[f_size].detach(), x, w
)
out = x
# logits doesn't need softmax before cross_entropy loss
return out, logits, lq_feat

Some files were not shown because too many files have changed in this diff Show More