Compare commits

..

1 Commits

Author SHA1 Message Date
psychedelicious
825f163492 chore: bump version to v5.4.0a1 2024-10-30 11:06:01 +11:00
173 changed files with 1506 additions and 5597 deletions

View File

@@ -19,4 +19,3 @@
- [ ] _The PR has a short but descriptive title, suitable for a changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_

View File

@@ -5,7 +5,7 @@ If you're a new contributor to InvokeAI or Open Source Projects, this is the gui
## New Contributor Checklist
- [x] Set up your local development environment & fork of InvokAI by following [the steps outlined here](../dev-environment.md)
- [x] Set up your local tooling with [this guide](../LOCAL_DEVELOPMENT.md). Feel free to skip this step if you already have tooling you're comfortable with.
- [x] Set up your local tooling with [this guide](InvokeAI/contributing/LOCAL_DEVELOPMENT/#developing-invokeai-in-vscode). Feel free to skip this step if you already have tooling you're comfortable with.
- [x] Familiarize yourself with [Git](https://www.atlassian.com/git) & our project structure by reading through the [development documentation](development.md)
- [x] Join the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord
- [x] Choose an issue to work on! This can be achieved by asking in the #dev-chat channel, tackling a [good first issue](https://github.com/invoke-ai/InvokeAI/contribute) or finding an item on the [roadmap](https://github.com/orgs/invoke-ai/projects/7). If nothing in any of those places catches your eye, feel free to work on something of interest to you!

View File

@@ -209,7 +209,7 @@ checkpoint models.
To solve this, go to the Model Manager tab (the cube), select the
checkpoint model that's giving you trouble, and press the "Convert"
button in the upper right of your browser window. This will convert the
button in the upper right of your browser window. This will conver the
checkpoint into a diffusers model, after which loading should be
faster and less memory-intensive.

View File

@@ -97,16 +97,16 @@ Prior to installing PyPatchMatch, you need to take the following steps:
sudo pacman -S --needed base-devel
```
2. Install `opencv`, `blas`, and required dependencies:
2. Install `opencv` and `blas`:
```sh
sudo pacman -S opencv blas fmt glew vtk hdf5
sudo pacman -S opencv blas
```
or for CUDA support
```sh
sudo pacman -S opencv-cuda blas fmt glew vtk hdf5
sudo pacman -S opencv-cuda blas
```
3. Fix the naming of the `opencv` package configuration file:

View File

@@ -259,7 +259,7 @@ def select_gpu() -> GpuType:
[
f"Detected the [gold1]{OS}-{ARCH}[/] platform",
"",
"See [deep_sky_blue1]https://invoke-ai.github.io/InvokeAI/installation/requirements/[/] to ensure your system meets the minimum requirements.",
"See [deep_sky_blue1]https://invoke-ai.github.io/InvokeAI/#system[/] to ensure your system meets the minimum requirements.",
"",
"[red3]🠶[/] [b]Your GPU drivers must be correctly installed before using InvokeAI![/] [red3]🠴[/]",
]

View File

@@ -68,7 +68,7 @@ do_line_input() {
printf "2: Open the developer console\n"
printf "3: Command-line help\n"
printf "Q: Quit\n\n"
printf "To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest\n\n"
printf "To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest.\n\n"
read -p "Please enter 1-4, Q: [1] " yn
choice=${yn:='1'}
do_choice $choice

View File

@@ -40,8 +40,6 @@ class AppVersion(BaseModel):
version: str = Field(description="App version")
highlights: Optional[list[str]] = Field(default=None, description="Highlights of release")
class AppDependencyVersions(BaseModel):
"""App depencency Versions Response"""

View File

@@ -1,7 +1,6 @@
# Copyright (c) 2023 Lincoln D. Stein
"""FastAPI route for model configuration records."""
import contextlib
import io
import pathlib
import shutil
@@ -11,7 +10,6 @@ from enum import Enum
from tempfile import TemporaryDirectory
from typing import List, Optional, Type
import huggingface_hub
from fastapi import Body, Path, Query, Response, UploadFile
from fastapi.responses import FileResponse, HTMLResponse
from fastapi.routing import APIRouter
@@ -29,7 +27,6 @@ from invokeai.app.services.model_records import (
ModelRecordChanges,
UnknownModelException,
)
from invokeai.app.util.suppress_output import SuppressOutput
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
@@ -926,51 +923,3 @@ async def get_stats() -> Optional[CacheStats]:
"""Return performance statistics on the model manager's RAM cache. Will return null if no models have been loaded."""
return ApiDependencies.invoker.services.model_manager.load.ram_cache.stats
class HFTokenStatus(str, Enum):
VALID = "valid"
INVALID = "invalid"
UNKNOWN = "unknown"
class HFTokenHelper:
@classmethod
def get_status(cls) -> HFTokenStatus:
try:
if huggingface_hub.get_token_permission(huggingface_hub.get_token()):
# Valid token!
return HFTokenStatus.VALID
# No token set
return HFTokenStatus.INVALID
except Exception:
return HFTokenStatus.UNKNOWN
@classmethod
def set_token(cls, token: str) -> HFTokenStatus:
with SuppressOutput(), contextlib.suppress(Exception):
huggingface_hub.login(token=token, add_to_git_credential=False)
return cls.get_status()
@model_manager_router.get("/hf_login", operation_id="get_hf_login_status", response_model=HFTokenStatus)
async def get_hf_login_status() -> HFTokenStatus:
token_status = HFTokenHelper.get_status()
if token_status is HFTokenStatus.UNKNOWN:
ApiDependencies.invoker.services.logger.warning("Unable to verify HF token")
return token_status
@model_manager_router.post("/hf_login", operation_id="do_hf_login", response_model=HFTokenStatus)
async def do_hf_login(
token: str = Body(description="Hugging Face token to use for login", embed=True),
) -> HFTokenStatus:
HFTokenHelper.set_token(token)
token_status = HFTokenHelper.get_status()
if token_status is HFTokenStatus.UNKNOWN:
ApiDependencies.invoker.services.logger.warning("Unable to verify HF token")
return token_status

View File

@@ -4,7 +4,6 @@ from __future__ import annotations
import inspect
import re
import sys
import warnings
from abc import ABC, abstractmethod
from enum import Enum
@@ -193,19 +192,12 @@ class BaseInvocation(ABC, BaseModel):
"""Gets a pydantc TypeAdapter for the union of all invocation types."""
if not cls._typeadapter or cls._typeadapter_needs_update:
AnyInvocation = TypeAliasType(
"AnyInvocation", Annotated[Union[tuple(cls.get_invocations())], Field(discriminator="type")]
"AnyInvocation", Annotated[Union[tuple(cls._invocation_classes)], Field(discriminator="type")]
)
cls._typeadapter = TypeAdapter(AnyInvocation)
cls._typeadapter_needs_update = False
return cls._typeadapter
@classmethod
def invalidate_typeadapter(cls) -> None:
"""Invalidates the typeadapter, forcing it to be rebuilt on next access. If the invocation allowlist or
denylist is changed, this should be called to ensure the typeadapter is updated and validation respects
the updated allowlist and denylist."""
cls._typeadapter_needs_update = True
@classmethod
def get_invocations(cls) -> Iterable[BaseInvocation]:
"""Gets all invocations, respecting the allowlist and denylist."""
@@ -487,26 +479,6 @@ def invocation(
title="type", default=invocation_type, json_schema_extra={"field_kind": FieldKind.NodeAttribute}
)
# Validate the `invoke()` method is implemented
if "invoke" in cls.__abstractmethods__:
raise ValueError(f'Invocation "{invocation_type}" must implement the "invoke" method')
# And validate that `invoke()` returns a subclass of `BaseInvocationOutput
invoke_return_annotation = signature(cls.invoke).return_annotation
try:
# TODO(psyche): If `invoke()` is not defined, `return_annotation` ends up as the string "BaseInvocationOutput"
# instead of the class `BaseInvocationOutput`. This may be a pydantic bug: https://github.com/pydantic/pydantic/issues/7978
if isinstance(invoke_return_annotation, str):
invoke_return_annotation = getattr(sys.modules[cls.__module__], invoke_return_annotation)
assert invoke_return_annotation is not BaseInvocationOutput
assert issubclass(invoke_return_annotation, BaseInvocationOutput)
except Exception:
raise ValueError(
f'Invocation "{invocation_type}" must have a return annotation of a subclass of BaseInvocationOutput (got "{invoke_return_annotation}")'
)
docstring = cls.__doc__
cls = create_model(
cls.__qualname__,

View File

@@ -622,7 +622,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
for t2i_adapter_field in t2i_adapter:
t2i_adapter_model_config = context.models.get_config(t2i_adapter_field.t2i_adapter_model.key)
t2i_adapter_loaded_model = context.models.load(t2i_adapter_field.t2i_adapter_model)
image = context.images.get_pil(t2i_adapter_field.image.image_name, mode="RGB")
image = context.images.get_pil(t2i_adapter_field.image.image_name)
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
if t2i_adapter_model_config.base == BaseModelType.StableDiffusion1:
@@ -640,39 +640,29 @@ class DenoiseLatentsInvocation(BaseInvocation):
with t2i_adapter_loaded_model as t2i_adapter_model:
total_downscale_factor = t2i_adapter_model.total_downscale_factor
# Resize the T2I-Adapter input image.
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the
# result will match the latent image's dimensions after max_unet_downscale is applied.
t2i_input_height = latents_shape[2] // max_unet_downscale * total_downscale_factor
t2i_input_width = latents_shape[3] // max_unet_downscale * total_downscale_factor
# Note: We have hard-coded `do_classifier_free_guidance=False`. This is because we only want to prepare
# a single image. If CFG is enabled, we will duplicate the resultant tensor after applying the
# T2I-Adapter model.
#
# Note: We re-use the `prepare_control_image(...)` from ControlNet for T2I-Adapter, because it has many
# of the same requirements (e.g. preserving binary masks during resize).
# Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR.
_, _, latent_height, latent_width = latents_shape
control_height_resize = latent_height * LATENT_SCALE_FACTOR
control_width_resize = latent_width * LATENT_SCALE_FACTOR
t2i_image = prepare_control_image(
image=image,
do_classifier_free_guidance=False,
width=control_width_resize,
height=control_height_resize,
width=t2i_input_width,
height=t2i_input_height,
num_channels=t2i_adapter_model.config["in_channels"], # mypy treats this as a FrozenDict
device=t2i_adapter_model.device,
dtype=t2i_adapter_model.dtype,
resize_mode=t2i_adapter_field.resize_mode,
)
# Resize the T2I-Adapter input image.
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the
# result will match the latent image's dimensions after max_unet_downscale is applied.
# We crop the image to this size so that the positions match the input image on non-standard resolutions
t2i_input_height = latents_shape[2] // max_unet_downscale * total_downscale_factor
t2i_input_width = latents_shape[3] // max_unet_downscale * total_downscale_factor
if t2i_image.shape[2] > t2i_input_height or t2i_image.shape[3] > t2i_input_width:
t2i_image = t2i_image[
:, :, : min(t2i_image.shape[2], t2i_input_height), : min(t2i_image.shape[3], t2i_input_width)
]
adapter_state = t2i_adapter_model(t2i_image)
if do_classifier_free_guidance:

View File

@@ -41,7 +41,6 @@ class UIType(str, Enum, metaclass=MetaEnum):
# region Model Field Types
MainModel = "MainModelField"
FluxMainModel = "FluxMainModelField"
SD3MainModel = "SD3MainModelField"
SDXLMainModel = "SDXLMainModelField"
SDXLRefinerModel = "SDXLRefinerModelField"
ONNXModel = "ONNXModelField"
@@ -53,8 +52,6 @@ class UIType(str, Enum, metaclass=MetaEnum):
T2IAdapterModel = "T2IAdapterModelField"
T5EncoderModel = "T5EncoderModelField"
CLIPEmbedModel = "CLIPEmbedModelField"
CLIPLEmbedModel = "CLIPLEmbedModelField"
CLIPGEmbedModel = "CLIPGEmbedModelField"
SpandrelImageToImageModel = "SpandrelImageToImageModelField"
# endregion
@@ -134,10 +131,8 @@ class FieldDescriptions:
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
t5_encoder = "T5 tokenizer and text encoder"
clip_embed_model = "CLIP Embed loader"
clip_g_model = "CLIP-G Embed loader"
unet = "UNet (scheduler, LoRAs)"
transformer = "Transformer"
mmditx = "MMDiTX"
vae = "VAE"
cond = "Conditioning tensor"
controlnet_model = "ControlNet model to load"
@@ -145,7 +140,6 @@ class FieldDescriptions:
lora_model = "LoRA model to load"
main_model = "Main model (UNet, VAE, CLIP) to load"
flux_model = "Flux model (Transformer) to load"
sd3_model = "SD3 model (MMDiTX) to load"
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
@@ -252,12 +246,6 @@ class FluxConditioningField(BaseModel):
conditioning_name: str = Field(description="The name of conditioning tensor")
class SD3ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
class ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""

View File

@@ -1,89 +0,0 @@
from typing import Literal
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.util import max_seq_lengths
from invokeai.backend.model_manager.config import (
CheckpointConfigBase,
SubModelType,
)
@invocation_output("flux_model_loader_output")
class FluxModelLoaderOutput(BaseInvocationOutput):
"""Flux base model loader output"""
transformer: TransformerField = OutputField(description=FieldDescriptions.transformer, title="Transformer")
clip: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP")
t5_encoder: T5EncoderField = OutputField(description=FieldDescriptions.t5_encoder, title="T5 Encoder")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
max_seq_len: Literal[256, 512] = OutputField(
description="The max sequence length to used for the T5 encoder. (256 for schnell transformer, 512 for dev transformer)",
title="Max Seq Length",
)
@invocation(
"flux_model_loader",
title="Flux Main Model",
tags=["model", "flux"],
category="model",
version="1.0.4",
classification=Classification.Prototype,
)
class FluxModelLoaderInvocation(BaseInvocation):
"""Loads a flux base model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.flux_model,
ui_type=UIType.FluxMainModel,
input=Input.Direct,
)
t5_encoder_model: ModelIdentifierField = InputField(
description=FieldDescriptions.t5_encoder, ui_type=UIType.T5EncoderModel, input=Input.Direct, title="T5 Encoder"
)
clip_embed_model: ModelIdentifierField = InputField(
description=FieldDescriptions.clip_embed_model,
ui_type=UIType.CLIPEmbedModel,
input=Input.Direct,
title="CLIP Embed",
)
vae_model: ModelIdentifierField = InputField(
description=FieldDescriptions.vae_model, ui_type=UIType.FluxVAEModel, title="VAE"
)
def invoke(self, context: InvocationContext) -> FluxModelLoaderOutput:
for key in [self.model.key, self.t5_encoder_model.key, self.clip_embed_model.key, self.vae_model.key]:
if not context.models.exists(key):
raise ValueError(f"Unknown model: {key}")
transformer = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
vae = self.vae_model.model_copy(update={"submodel_type": SubModelType.VAE})
tokenizer = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
clip_encoder = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer2 = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
t5_encoder = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
transformer_config = context.models.get_config(transformer)
assert isinstance(transformer_config, CheckpointConfigBase)
return FluxModelLoaderOutput(
transformer=TransformerField(transformer=transformer, loras=[]),
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], skipped_layers=0),
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder),
vae=VAEField(vae=vae),
max_seq_len=max_seq_lengths[transformer_config.config_path],
)

View File

@@ -1,5 +1,5 @@
import copy
from typing import List, Optional
from typing import List, Literal, Optional
from pydantic import BaseModel, Field
@@ -13,9 +13,11 @@ from invokeai.app.invocations.baseinvocation import (
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.flux.util import max_seq_lengths
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
CheckpointConfigBase,
ModelType,
SubModelType,
)
@@ -137,6 +139,78 @@ class ModelIdentifierInvocation(BaseInvocation):
return ModelIdentifierOutput(model=self.model)
@invocation_output("flux_model_loader_output")
class FluxModelLoaderOutput(BaseInvocationOutput):
"""Flux base model loader output"""
transformer: TransformerField = OutputField(description=FieldDescriptions.transformer, title="Transformer")
clip: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP")
t5_encoder: T5EncoderField = OutputField(description=FieldDescriptions.t5_encoder, title="T5 Encoder")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
max_seq_len: Literal[256, 512] = OutputField(
description="The max sequence length to used for the T5 encoder. (256 for schnell transformer, 512 for dev transformer)",
title="Max Seq Length",
)
@invocation(
"flux_model_loader",
title="Flux Main Model",
tags=["model", "flux"],
category="model",
version="1.0.4",
classification=Classification.Prototype,
)
class FluxModelLoaderInvocation(BaseInvocation):
"""Loads a flux base model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.flux_model,
ui_type=UIType.FluxMainModel,
input=Input.Direct,
)
t5_encoder_model: ModelIdentifierField = InputField(
description=FieldDescriptions.t5_encoder, ui_type=UIType.T5EncoderModel, input=Input.Direct, title="T5 Encoder"
)
clip_embed_model: ModelIdentifierField = InputField(
description=FieldDescriptions.clip_embed_model,
ui_type=UIType.CLIPEmbedModel,
input=Input.Direct,
title="CLIP Embed",
)
vae_model: ModelIdentifierField = InputField(
description=FieldDescriptions.vae_model, ui_type=UIType.FluxVAEModel, title="VAE"
)
def invoke(self, context: InvocationContext) -> FluxModelLoaderOutput:
for key in [self.model.key, self.t5_encoder_model.key, self.clip_embed_model.key, self.vae_model.key]:
if not context.models.exists(key):
raise ValueError(f"Unknown model: {key}")
transformer = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
vae = self.vae_model.model_copy(update={"submodel_type": SubModelType.VAE})
tokenizer = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
clip_encoder = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer2 = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
t5_encoder = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
transformer_config = context.models.get_config(transformer)
assert isinstance(transformer_config, CheckpointConfigBase)
return FluxModelLoaderOutput(
transformer=TransformerField(transformer=transformer, loras=[]),
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], skipped_layers=0),
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder),
vae=VAEField(vae=vae),
max_seq_len=max_seq_lengths[transformer_config.config_path],
)
@invocation(
"main_model_loader",
title="Main Model",

View File

@@ -18,7 +18,6 @@ from invokeai.app.invocations.fields import (
InputField,
LatentsField,
OutputField,
SD3ConditioningField,
TensorField,
UIComponent,
)
@@ -427,17 +426,6 @@ class FluxConditioningOutput(BaseInvocationOutput):
return cls(conditioning=FluxConditioningField(conditioning_name=conditioning_name))
@invocation_output("sd3_conditioning_output")
class SD3ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single SD3 conditioning tensor"""
conditioning: SD3ConditioningField = OutputField(description=FieldDescriptions.cond)
@classmethod
def build(cls, conditioning_name: str) -> "SD3ConditioningOutput":
return cls(conditioning=SD3ConditioningField(conditioning_name=conditioning_name))
@invocation_output("conditioning_output")
class ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single conditioning tensor"""

View File

@@ -1,260 +0,0 @@
from typing import Callable, Tuple
import torch
from diffusers.models.transformers.transformer_sd3 import SD3Transformer2DModel
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
from tqdm import tqdm
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
InputField,
SD3ConditioningField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import TransformerField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.invocations.sd3_text_encoder import SD3_T5_MAX_SEQ_LEN
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import BaseModelType
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import SD3ConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@invocation(
"sd3_denoise",
title="SD3 Denoise",
tags=["image", "sd3"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class SD3DenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Run denoising process with a SD3 model."""
transformer: TransformerField = InputField(
description=FieldDescriptions.sd3_model,
input=Input.Connection,
title="Transformer",
)
positive_conditioning: SD3ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
negative_conditioning: SD3ConditioningField = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection
)
cfg_scale: float | list[float] = InputField(default=3.5, description=FieldDescriptions.cfg_scale, title="CFG Scale")
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = self._run_diffusion(context)
latents = latents.detach().to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
def _load_text_conditioning(
self,
context: InvocationContext,
conditioning_name: str,
joint_attention_dim: int,
dtype: torch.dtype,
device: torch.device,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Load the conditioning data.
cond_data = context.conditioning.load(conditioning_name)
assert len(cond_data.conditionings) == 1
sd3_conditioning = cond_data.conditionings[0]
assert isinstance(sd3_conditioning, SD3ConditioningInfo)
sd3_conditioning = sd3_conditioning.to(dtype=dtype, device=device)
t5_embeds = sd3_conditioning.t5_embeds
if t5_embeds is None:
t5_embeds = torch.zeros(
(1, SD3_T5_MAX_SEQ_LEN, joint_attention_dim),
device=device,
dtype=dtype,
)
clip_prompt_embeds = torch.cat([sd3_conditioning.clip_l_embeds, sd3_conditioning.clip_g_embeds], dim=-1)
clip_prompt_embeds = torch.nn.functional.pad(
clip_prompt_embeds, (0, t5_embeds.shape[-1] - clip_prompt_embeds.shape[-1])
)
prompt_embeds = torch.cat([clip_prompt_embeds, t5_embeds], dim=-2)
pooled_prompt_embeds = torch.cat(
[sd3_conditioning.clip_l_pooled_embeds, sd3_conditioning.clip_g_pooled_embeds], dim=-1
)
return prompt_embeds, pooled_prompt_embeds
def _get_noise(
self,
num_samples: int,
num_channels_latents: int,
height: int,
width: int,
dtype: torch.dtype,
device: torch.device,
seed: int,
) -> torch.Tensor:
# We always generate noise on the same device and dtype then cast to ensure consistency across devices/dtypes.
rand_device = "cpu"
rand_dtype = torch.float16
return torch.randn(
num_samples,
num_channels_latents,
int(height) // LATENT_SCALE_FACTOR,
int(width) // LATENT_SCALE_FACTOR,
device=rand_device,
dtype=rand_dtype,
generator=torch.Generator(device=rand_device).manual_seed(seed),
).to(device=device, dtype=dtype)
def _prepare_cfg_scale(self, num_timesteps: int) -> list[float]:
"""Prepare the CFG scale list.
Args:
num_timesteps (int): The number of timesteps in the scheduler. Could be different from num_steps depending
on the scheduler used (e.g. higher order schedulers).
Returns:
list[float]: _description_
"""
if isinstance(self.cfg_scale, float):
cfg_scale = [self.cfg_scale] * num_timesteps
elif isinstance(self.cfg_scale, list):
assert len(self.cfg_scale) == num_timesteps
cfg_scale = self.cfg_scale
else:
raise ValueError(f"Invalid CFG scale type: {type(self.cfg_scale)}")
return cfg_scale
def _run_diffusion(
self,
context: InvocationContext,
):
inference_dtype = TorchDevice.choose_torch_dtype()
device = TorchDevice.choose_torch_device()
transformer_info = context.models.load(self.transformer.transformer)
# Load/process the conditioning data.
# TODO(ryand): Make CFG optional.
do_classifier_free_guidance = True
pos_prompt_embeds, pos_pooled_prompt_embeds = self._load_text_conditioning(
context=context,
conditioning_name=self.positive_conditioning.conditioning_name,
joint_attention_dim=transformer_info.model.config.joint_attention_dim,
dtype=inference_dtype,
device=device,
)
neg_prompt_embeds, neg_pooled_prompt_embeds = self._load_text_conditioning(
context=context,
conditioning_name=self.negative_conditioning.conditioning_name,
joint_attention_dim=transformer_info.model.config.joint_attention_dim,
dtype=inference_dtype,
device=device,
)
# TODO(ryand): Support both sequential and batched CFG inference.
prompt_embeds = torch.cat([neg_prompt_embeds, pos_prompt_embeds], dim=0)
pooled_prompt_embeds = torch.cat([neg_pooled_prompt_embeds, pos_pooled_prompt_embeds], dim=0)
# Prepare the scheduler.
scheduler = FlowMatchEulerDiscreteScheduler()
scheduler.set_timesteps(num_inference_steps=self.steps, device=device)
timesteps = scheduler.timesteps
assert isinstance(timesteps, torch.Tensor)
# Prepare the CFG scale list.
cfg_scale = self._prepare_cfg_scale(len(timesteps))
# Generate initial latent noise.
num_channels_latents = transformer_info.model.config.in_channels
assert isinstance(num_channels_latents, int)
noise = self._get_noise(
num_samples=1,
num_channels_latents=num_channels_latents,
height=self.height,
width=self.width,
dtype=inference_dtype,
device=device,
seed=self.seed,
)
latents: torch.Tensor = noise
total_steps = len(timesteps)
step_callback = self._build_step_callback(context)
step_callback(
PipelineIntermediateState(
step=0,
order=1,
total_steps=total_steps,
timestep=int(timesteps[0]),
latents=latents,
),
)
with transformer_info.model_on_device() as (cached_weights, transformer):
assert isinstance(transformer, SD3Transformer2DModel)
# 6. Denoising loop
for step_idx, t in tqdm(list(enumerate(timesteps))):
# Expand the latents if we are doing CFG.
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
# Expand the timestep to match the latent model input.
timestep = t.expand(latent_model_input.shape[0])
noise_pred = transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
pooled_projections=pooled_prompt_embeds,
joint_attention_kwargs=None,
return_dict=False,
)[0]
# Apply CFG.
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + cfg_scale[step_idx] * (noise_pred_cond - noise_pred_uncond)
# Compute the previous noisy sample x_t -> x_t-1.
latents_dtype = latents.dtype
latents = scheduler.step(model_output=noise_pred, timestep=t, sample=latents, return_dict=False)[0]
# TODO(ryand): This MPS dtype handling was copied from diffusers, I haven't tested to see if it's
# needed.
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
step_callback(
PipelineIntermediateState(
step=step_idx + 1,
order=1,
total_steps=total_steps,
timestep=int(t),
latents=latents,
),
)
return latents
def _build_step_callback(self, context: InvocationContext) -> Callable[[PipelineIntermediateState], None]:
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, BaseModelType.StableDiffusion3)
return step_callback

View File

@@ -1,73 +0,0 @@
from contextlib import nullcontext
import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.util.devices import TorchDevice
@invocation(
"sd3_l2i",
title="SD3 Latents to Image",
tags=["latents", "image", "vae", "l2i", "sd3"],
category="latents",
version="1.3.0",
)
class SD3LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL))
with SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes), vae_info as vae:
assert isinstance(vae, (AutoencoderKL))
latents = latents.to(vae.device)
vae.disable_tiling()
tiling_context = nullcontext()
# clear memory as vae decode can request a lot
TorchDevice.empty_cache()
with torch.inference_mode(), tiling_context:
# copied from diffusers pipeline
latents = latents / vae.config.scaling_factor
img = vae.decode(latents, return_dict=False)[0]
img = img.clamp(-1, 1)
img = rearrange(img[0], "c h w -> h w c") # noqa: F821
img_pil = Image.fromarray((127.5 * (img + 1.0)).byte().cpu().numpy())
TorchDevice.empty_cache()
image_dto = context.images.save(image=img_pil)
return ImageOutput.build(image_dto)

View File

@@ -1,108 +0,0 @@
from typing import Optional
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import SubModelType
@invocation_output("sd3_model_loader_output")
class Sd3ModelLoaderOutput(BaseInvocationOutput):
"""SD3 base model loader output."""
transformer: TransformerField = OutputField(description=FieldDescriptions.transformer, title="Transformer")
clip_l: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP L")
clip_g: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP G")
t5_encoder: T5EncoderField = OutputField(description=FieldDescriptions.t5_encoder, title="T5 Encoder")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation(
"sd3_model_loader",
title="SD3 Main Model",
tags=["model", "sd3"],
category="model",
version="1.0.0",
classification=Classification.Prototype,
)
class Sd3ModelLoaderInvocation(BaseInvocation):
"""Loads a SD3 base model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.sd3_model,
ui_type=UIType.SD3MainModel,
input=Input.Direct,
)
t5_encoder_model: Optional[ModelIdentifierField] = InputField(
description=FieldDescriptions.t5_encoder,
ui_type=UIType.T5EncoderModel,
input=Input.Direct,
title="T5 Encoder",
default=None,
)
clip_l_model: Optional[ModelIdentifierField] = InputField(
description=FieldDescriptions.clip_embed_model,
ui_type=UIType.CLIPLEmbedModel,
input=Input.Direct,
title="CLIP L Encoder",
default=None,
)
clip_g_model: Optional[ModelIdentifierField] = InputField(
description=FieldDescriptions.clip_g_model,
ui_type=UIType.CLIPGEmbedModel,
input=Input.Direct,
title="CLIP G Encoder",
default=None,
)
vae_model: Optional[ModelIdentifierField] = InputField(
description=FieldDescriptions.vae_model, ui_type=UIType.VAEModel, title="VAE", default=None
)
def invoke(self, context: InvocationContext) -> Sd3ModelLoaderOutput:
transformer = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
vae = (
self.vae_model.model_copy(update={"submodel_type": SubModelType.VAE})
if self.vae_model
else self.model.model_copy(update={"submodel_type": SubModelType.VAE})
)
tokenizer_l = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
clip_encoder_l = (
self.clip_l_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
if self.clip_l_model
else self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
)
tokenizer_g = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
clip_encoder_g = (
self.clip_g_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
if self.clip_g_model
else self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
)
tokenizer_t5 = (
self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer3})
if self.t5_encoder_model
else self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer3})
)
t5_encoder = (
self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder3})
if self.t5_encoder_model
else self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder3})
)
return Sd3ModelLoaderOutput(
transformer=TransformerField(transformer=transformer, loras=[]),
clip_l=CLIPField(tokenizer=tokenizer_l, text_encoder=clip_encoder_l, loras=[], skipped_layers=0),
clip_g=CLIPField(tokenizer=tokenizer_g, text_encoder=clip_encoder_g, loras=[], skipped_layers=0),
t5_encoder=T5EncoderField(tokenizer=tokenizer_t5, text_encoder=t5_encoder),
vae=VAEField(vae=vae),
)

View File

@@ -1,199 +0,0 @@
from contextlib import ExitStack
from typing import Iterator, Tuple
import torch
from transformers import (
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
T5Tokenizer,
T5TokenizerFast,
)
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import SD3ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.lora.conversions.flux_lora_constants import FLUX_LORA_CLIP_PREFIX
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
from invokeai.backend.model_manager.config import ModelFormat
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, SD3ConditioningInfo
# The SD3 T5 Max Sequence Length set based on the default in diffusers.
SD3_T5_MAX_SEQ_LEN = 256
@invocation(
"sd3_text_encoder",
title="SD3 Text Encoding",
tags=["prompt", "conditioning", "sd3"],
category="conditioning",
version="1.0.0",
classification=Classification.Prototype,
)
class Sd3TextEncoderInvocation(BaseInvocation):
"""Encodes and preps a prompt for a SD3 image."""
clip_l: CLIPField = InputField(
title="CLIP L",
description=FieldDescriptions.clip,
input=Input.Connection,
)
clip_g: CLIPField = InputField(
title="CLIP G",
description=FieldDescriptions.clip,
input=Input.Connection,
)
# The SD3 models were trained with text encoder dropout, so the T5 encoder can be omitted to save time/memory.
t5_encoder: T5EncoderField | None = InputField(
title="T5Encoder",
default=None,
description=FieldDescriptions.t5_encoder,
input=Input.Connection,
)
prompt: str = InputField(description="Text prompt to encode.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> SD3ConditioningOutput:
# Note: The text encoding model are run in separate functions to ensure that all model references are locally
# scoped. This ensures that earlier models can be freed and gc'd before loading later models (if necessary).
clip_l_embeddings, clip_l_pooled_embeddings = self._clip_encode(context, self.clip_l)
clip_g_embeddings, clip_g_pooled_embeddings = self._clip_encode(context, self.clip_g)
t5_embeddings: torch.Tensor | None = None
if self.t5_encoder is not None:
t5_embeddings = self._t5_encode(context, SD3_T5_MAX_SEQ_LEN)
conditioning_data = ConditioningFieldData(
conditionings=[
SD3ConditioningInfo(
clip_l_embeds=clip_l_embeddings,
clip_l_pooled_embeds=clip_l_pooled_embeddings,
clip_g_embeds=clip_g_embeddings,
clip_g_pooled_embeds=clip_g_pooled_embeddings,
t5_embeds=t5_embeddings,
)
]
)
conditioning_name = context.conditioning.save(conditioning_data)
return SD3ConditioningOutput.build(conditioning_name)
def _t5_encode(self, context: InvocationContext, max_seq_len: int) -> torch.Tensor:
assert self.t5_encoder is not None
t5_tokenizer_info = context.models.load(self.t5_encoder.tokenizer)
t5_text_encoder_info = context.models.load(self.t5_encoder.text_encoder)
prompt = [self.prompt]
with (
t5_text_encoder_info as t5_text_encoder,
t5_tokenizer_info as t5_tokenizer,
):
assert isinstance(t5_text_encoder, T5EncoderModel)
assert isinstance(t5_tokenizer, (T5Tokenizer, T5TokenizerFast))
text_inputs = t5_tokenizer(
prompt,
padding="max_length",
max_length=max_seq_len,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = t5_tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
assert isinstance(text_input_ids, torch.Tensor)
assert isinstance(untruncated_ids, torch.Tensor)
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = t5_tokenizer.batch_decode(untruncated_ids[:, max_seq_len - 1 : -1])
context.logger.warning(
"The following part of your input was truncated because `max_sequence_length` is set to "
f" {max_seq_len} tokens: {removed_text}"
)
prompt_embeds = t5_text_encoder(text_input_ids.to(t5_text_encoder.device))[0]
assert isinstance(prompt_embeds, torch.Tensor)
return prompt_embeds
def _clip_encode(
self, context: InvocationContext, clip_model: CLIPField, tokenizer_max_length: int = 77
) -> Tuple[torch.Tensor, torch.Tensor]:
clip_tokenizer_info = context.models.load(clip_model.tokenizer)
clip_text_encoder_info = context.models.load(clip_model.text_encoder)
prompt = [self.prompt]
with (
clip_text_encoder_info.model_on_device() as (cached_weights, clip_text_encoder),
clip_tokenizer_info as clip_tokenizer,
ExitStack() as exit_stack,
):
assert isinstance(clip_text_encoder, (CLIPTextModel, CLIPTextModelWithProjection))
assert isinstance(clip_tokenizer, CLIPTokenizer)
clip_text_encoder_config = clip_text_encoder_info.config
assert clip_text_encoder_config is not None
# Apply LoRA models to the CLIP encoder.
# Note: We apply the LoRA after the transformer has been moved to its target device for faster patching.
if clip_text_encoder_config.format in [ModelFormat.Diffusers]:
# The model is non-quantized, so we can apply the LoRA weights directly into the model.
exit_stack.enter_context(
LoRAPatcher.apply_lora_patches(
model=clip_text_encoder,
patches=self._clip_lora_iterator(context, clip_model),
prefix=FLUX_LORA_CLIP_PREFIX,
cached_weights=cached_weights,
)
)
else:
# There are currently no supported CLIP quantized models. Add support here if needed.
raise ValueError(f"Unsupported model format: {clip_text_encoder_config.format}")
clip_text_encoder = clip_text_encoder.eval().requires_grad_(False)
text_inputs = clip_tokenizer(
prompt,
padding="max_length",
max_length=tokenizer_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = clip_tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
assert isinstance(text_input_ids, torch.Tensor)
assert isinstance(untruncated_ids, torch.Tensor)
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = clip_tokenizer.batch_decode(untruncated_ids[:, tokenizer_max_length - 1 : -1])
context.logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {tokenizer_max_length} tokens: {removed_text}"
)
prompt_embeds = clip_text_encoder(
input_ids=text_input_ids.to(clip_text_encoder.device), output_hidden_states=True
)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
return prompt_embeds, pooled_prompt_embeds
def _clip_lora_iterator(
self, context: InvocationContext, clip_model: CLIPField
) -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in clip_model.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info

View File

@@ -5,7 +5,7 @@ from typing import Literal
import numpy as np
import torch
from PIL import Image
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, model_validator
from transformers import AutoModelForMaskGeneration, AutoProcessor
from transformers.models.sam import SamModel
from transformers.models.sam.processing_sam import SamProcessor
@@ -77,14 +77,19 @@ class SegmentAnythingInvocation(BaseInvocation):
default="all",
)
@model_validator(mode="after")
def check_point_lists_or_bounding_box(self):
if self.point_lists is None and self.bounding_boxes is None:
raise ValueError("Either point_lists or bounding_box must be provided.")
elif self.point_lists is not None and self.bounding_boxes is not None:
raise ValueError("Only one of point_lists or bounding_box can be provided.")
return self
@torch.no_grad()
def invoke(self, context: InvocationContext) -> MaskOutput:
# The models expect a 3-channel RGB image.
image_pil = context.images.get_pil(self.image.image_name, mode="RGB")
if self.point_lists is not None and self.bounding_boxes is not None:
raise ValueError("Only one of point_lists or bounding_box can be provided.")
if (not self.bounding_boxes or len(self.bounding_boxes) == 0) and (
not self.point_lists or len(self.point_lists) == 0
):

View File

@@ -15,7 +15,6 @@ from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ClipVariantType,
ControlAdapterDefaultSettings,
MainModelDefaultSettings,
ModelFormat,
@@ -86,7 +85,7 @@ class ModelRecordChanges(BaseModelExcludeNull):
# Checkpoint-specific changes
# TODO(MM2): Should we expose these? Feels footgun-y...
variant: Optional[ModelVariantType | ClipVariantType] = Field(description="The variant of the model.", default=None)
variant: Optional[ModelVariantType] = Field(description="The variant of the model.", default=None)
prediction_type: Optional[SchedulerPredictionType] = Field(
description="The prediction type of the model.", default=None
)

View File

@@ -1,382 +0,0 @@
{
"name": "SD3.5 Text to Image",
"author": "InvokeAI",
"description": "Sample text to image workflow for Stable Diffusion 3.5",
"version": "1.0.0",
"contact": "invoke@invoke.ai",
"tags": "text2image, SD3.5, default",
"notes": "",
"exposedFields": [
{
"nodeId": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"fieldName": "model"
},
{
"nodeId": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"fieldName": "prompt"
}
],
"meta": {
"version": "3.0.0",
"category": "default"
},
"id": "e3a51d6b-8208-4d6d-b187-fcfe8b32934c",
"nodes": [
{
"id": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"type": "invocation",
"data": {
"id": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"type": "sd3_model_loader",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"nodePack": "invokeai",
"inputs": {
"model": {
"name": "model",
"label": "",
"value": {
"key": "f7b20be9-92a8-4cfb-bca4-6c3b5535c10b",
"hash": "placeholder",
"name": "stable-diffusion-3.5-medium",
"base": "sd-3",
"type": "main"
}
},
"t5_encoder_model": {
"name": "t5_encoder_model",
"label": ""
},
"clip_l_model": {
"name": "clip_l_model",
"label": ""
},
"clip_g_model": {
"name": "clip_g_model",
"label": ""
},
"vae_model": {
"name": "vae_model",
"label": ""
}
}
},
"position": {
"x": -55.58689609637031,
"y": -111.53602444662268
}
},
{
"id": "f7e394ac-6394-4096-abcb-de0d346506b3",
"type": "invocation",
"data": {
"id": "f7e394ac-6394-4096-abcb-de0d346506b3",
"type": "rand_int",
"version": "1.0.1",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": false,
"nodePack": "invokeai",
"inputs": {
"low": {
"name": "low",
"label": "",
"value": 0
},
"high": {
"name": "high",
"label": "",
"value": 2147483647
}
}
},
"position": {
"x": 470.45870147220353,
"y": 350.3141781644303
}
},
{
"id": "9eb72af0-dd9e-4ec5-ad87-d65e3c01f48b",
"type": "invocation",
"data": {
"id": "9eb72af0-dd9e-4ec5-ad87-d65e3c01f48b",
"type": "sd3_l2i",
"version": "1.3.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": false,
"useCache": true,
"nodePack": "invokeai",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
}
}
},
"position": {
"x": 1192.3097009334897,
"y": -366.0994675072209
}
},
{
"id": "3b4f7f27-cfc0-4373-a009-99c5290d0cd6",
"type": "invocation",
"data": {
"id": "3b4f7f27-cfc0-4373-a009-99c5290d0cd6",
"type": "sd3_text_encoder",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"nodePack": "invokeai",
"inputs": {
"clip_l": {
"name": "clip_l",
"label": ""
},
"clip_g": {
"name": "clip_g",
"label": ""
},
"t5_encoder": {
"name": "t5_encoder",
"label": ""
},
"prompt": {
"name": "prompt",
"label": "",
"value": ""
}
}
},
"position": {
"x": 408.16054647924784,
"y": 65.06415352118786
}
},
{
"id": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"type": "invocation",
"data": {
"id": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"type": "sd3_text_encoder",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"nodePack": "invokeai",
"inputs": {
"clip_l": {
"name": "clip_l",
"label": ""
},
"clip_g": {
"name": "clip_g",
"label": ""
},
"t5_encoder": {
"name": "t5_encoder",
"label": ""
},
"prompt": {
"name": "prompt",
"label": "",
"value": ""
}
}
},
"position": {
"x": 378.9283412440941,
"y": -302.65777497352553
}
},
{
"id": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"type": "invocation",
"data": {
"id": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"type": "sd3_denoise",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"nodePack": "invokeai",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"transformer": {
"name": "transformer",
"label": ""
},
"positive_conditioning": {
"name": "positive_conditioning",
"label": ""
},
"negative_conditioning": {
"name": "negative_conditioning",
"label": ""
},
"cfg_scale": {
"name": "cfg_scale",
"label": "",
"value": 3.5
},
"width": {
"name": "width",
"label": "",
"value": 1024
},
"height": {
"name": "height",
"label": "",
"value": 1024
},
"steps": {
"name": "steps",
"label": "",
"value": 30
},
"seed": {
"name": "seed",
"label": "",
"value": 0
}
}
},
"position": {
"x": 813.7814762740603,
"y": -142.20529727605867
}
}
],
"edges": [
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4cvae-9eb72af0-dd9e-4ec5-ad87-d65e3c01f48bvae",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "9eb72af0-dd9e-4ec5-ad87-d65e3c01f48b",
"sourceHandle": "vae",
"targetHandle": "vae"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4ct5_encoder-3b4f7f27-cfc0-4373-a009-99c5290d0cd6t5_encoder",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "3b4f7f27-cfc0-4373-a009-99c5290d0cd6",
"sourceHandle": "t5_encoder",
"targetHandle": "t5_encoder"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4ct5_encoder-e17d34e7-6ed1-493c-9a85-4fcd291cb084t5_encoder",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"sourceHandle": "t5_encoder",
"targetHandle": "t5_encoder"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4cclip_g-3b4f7f27-cfc0-4373-a009-99c5290d0cd6clip_g",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "3b4f7f27-cfc0-4373-a009-99c5290d0cd6",
"sourceHandle": "clip_g",
"targetHandle": "clip_g"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4cclip_g-e17d34e7-6ed1-493c-9a85-4fcd291cb084clip_g",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"sourceHandle": "clip_g",
"targetHandle": "clip_g"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4cclip_l-3b4f7f27-cfc0-4373-a009-99c5290d0cd6clip_l",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "3b4f7f27-cfc0-4373-a009-99c5290d0cd6",
"sourceHandle": "clip_l",
"targetHandle": "clip_l"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4cclip_l-e17d34e7-6ed1-493c-9a85-4fcd291cb084clip_l",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"sourceHandle": "clip_l",
"targetHandle": "clip_l"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4ctransformer-c7539f7b-7ac5-49b9-93eb-87ede611409ftransformer",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"sourceHandle": "transformer",
"targetHandle": "transformer"
},
{
"id": "reactflow__edge-f7e394ac-6394-4096-abcb-de0d346506b3value-c7539f7b-7ac5-49b9-93eb-87ede611409fseed",
"type": "default",
"source": "f7e394ac-6394-4096-abcb-de0d346506b3",
"target": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"sourceHandle": "value",
"targetHandle": "seed"
},
{
"id": "reactflow__edge-c7539f7b-7ac5-49b9-93eb-87ede611409flatents-9eb72af0-dd9e-4ec5-ad87-d65e3c01f48blatents",
"type": "default",
"source": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"target": "9eb72af0-dd9e-4ec5-ad87-d65e3c01f48b",
"sourceHandle": "latents",
"targetHandle": "latents"
},
{
"id": "reactflow__edge-e17d34e7-6ed1-493c-9a85-4fcd291cb084conditioning-c7539f7b-7ac5-49b9-93eb-87ede611409fpositive_conditioning",
"type": "default",
"source": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"target": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"sourceHandle": "conditioning",
"targetHandle": "positive_conditioning"
},
{
"id": "reactflow__edge-3b4f7f27-cfc0-4373-a009-99c5290d0cd6conditioning-c7539f7b-7ac5-49b9-93eb-87ede611409fnegative_conditioning",
"type": "default",
"source": "3b4f7f27-cfc0-4373-a009-99c5290d0cd6",
"target": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"sourceHandle": "conditioning",
"targetHandle": "negative_conditioning"
}
]
}

View File

@@ -34,25 +34,6 @@ SD1_5_LATENT_RGB_FACTORS = [
[-0.1307, -0.1874, -0.7445], # L4
]
SD3_5_LATENT_RGB_FACTORS = [
[-0.05240681, 0.03251581, 0.0749016],
[-0.0580572, 0.00759826, 0.05729818],
[0.16144888, 0.01270368, -0.03768577],
[0.14418615, 0.08460266, 0.15941818],
[0.04894035, 0.0056485, -0.06686988],
[0.05187166, 0.19222395, 0.06261094],
[0.1539433, 0.04818359, 0.07103094],
[-0.08601796, 0.09013458, 0.10893912],
[-0.12398469, -0.06766567, 0.0033688],
[-0.0439737, 0.07825329, 0.02258823],
[0.03101129, 0.06382551, 0.07753657],
[-0.01315361, 0.08554491, -0.08772475],
[0.06464487, 0.05914605, 0.13262741],
[-0.07863674, -0.02261737, -0.12761454],
[-0.09923835, -0.08010759, -0.06264447],
[-0.03392309, -0.0804029, -0.06078822],
]
FLUX_LATENT_RGB_FACTORS = [
[-0.0412, 0.0149, 0.0521],
[0.0056, 0.0291, 0.0768],
@@ -129,9 +110,6 @@ def stable_diffusion_step_callback(
sdxl_latent_rgb_factors = torch.tensor(SDXL_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
sdxl_smooth_matrix = torch.tensor(SDXL_SMOOTH_MATRIX, dtype=sample.dtype, device=sample.device)
image = sample_to_lowres_estimated_image(sample, sdxl_latent_rgb_factors, sdxl_smooth_matrix)
elif base_model == BaseModelType.StableDiffusion3:
sd3_latent_rgb_factors = torch.tensor(SD3_5_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
image = sample_to_lowres_estimated_image(sample, sd3_latent_rgb_factors)
else:
v1_5_latent_rgb_factors = torch.tensor(SD1_5_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
image = sample_to_lowres_estimated_image(sample, v1_5_latent_rgb_factors)

View File

@@ -53,7 +53,6 @@ class BaseModelType(str, Enum):
Any = "any"
StableDiffusion1 = "sd-1"
StableDiffusion2 = "sd-2"
StableDiffusion3 = "sd-3"
StableDiffusionXL = "sdxl"
StableDiffusionXLRefiner = "sdxl-refiner"
Flux = "flux"
@@ -84,10 +83,8 @@ class SubModelType(str, Enum):
Transformer = "transformer"
TextEncoder = "text_encoder"
TextEncoder2 = "text_encoder_2"
TextEncoder3 = "text_encoder_3"
Tokenizer = "tokenizer"
Tokenizer2 = "tokenizer_2"
Tokenizer3 = "tokenizer_3"
VAE = "vae"
VAEDecoder = "vae_decoder"
VAEEncoder = "vae_encoder"
@@ -95,13 +92,6 @@ class SubModelType(str, Enum):
SafetyChecker = "safety_checker"
class ClipVariantType(str, Enum):
"""Variant type."""
L = "large"
G = "gigantic"
class ModelVariantType(str, Enum):
"""Variant type."""
@@ -157,15 +147,6 @@ class ModelSourceType(str, Enum):
DEFAULTS_PRECISION = Literal["fp16", "fp32"]
AnyVariant: TypeAlias = Union[ModelVariantType, ClipVariantType, None]
class SubmodelDefinition(BaseModel):
path_or_prefix: str
model_type: ModelType
variant: AnyVariant = None
class MainModelDefaultSettings(BaseModel):
vae: str | None = Field(default=None, description="Default VAE for this model (model key)")
vae_precision: DEFAULTS_PRECISION | None = Field(default=None, description="Default VAE precision for this model")
@@ -212,9 +193,6 @@ class ModelConfigBase(BaseModel):
schema["required"].extend(["key", "type", "format"])
model_config = ConfigDict(validate_assignment=True, json_schema_extra=json_schema_extra)
submodels: Optional[Dict[SubModelType, SubmodelDefinition]] = Field(
description="Loadable submodels in this model", default=None
)
class CheckpointConfigBase(ModelConfigBase):
@@ -357,7 +335,7 @@ class MainConfigBase(ModelConfigBase):
default_settings: Optional[MainModelDefaultSettings] = Field(
description="Default settings for this model", default=None
)
variant: AnyVariant = ModelVariantType.Normal
variant: ModelVariantType = ModelVariantType.Normal
class MainCheckpointConfig(CheckpointConfigBase, MainConfigBase):
@@ -441,33 +419,12 @@ class CLIPEmbedDiffusersConfig(DiffusersConfigBase):
type: Literal[ModelType.CLIPEmbed] = ModelType.CLIPEmbed
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
variant: ClipVariantType = ClipVariantType.L
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.CLIPEmbed.value}.{ModelFormat.Diffusers.value}")
class CLIPGEmbedDiffusersConfig(CLIPEmbedDiffusersConfig):
"""Model config for CLIP-G Embeddings."""
variant: ClipVariantType = ClipVariantType.G
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.CLIPEmbed.value}.{ModelFormat.Diffusers.value}.{ClipVariantType.G}")
class CLIPLEmbedDiffusersConfig(CLIPEmbedDiffusersConfig):
"""Model config for CLIP-L Embeddings."""
variant: ClipVariantType = ClipVariantType.L
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.CLIPEmbed.value}.{ModelFormat.Diffusers.value}.{ClipVariantType.L}")
class CLIPVisionDiffusersConfig(DiffusersConfigBase):
"""Model config for CLIPVision."""
@@ -544,8 +501,6 @@ AnyModelConfig = Annotated[
Annotated[SpandrelImageToImageConfig, SpandrelImageToImageConfig.get_tag()],
Annotated[CLIPVisionDiffusersConfig, CLIPVisionDiffusersConfig.get_tag()],
Annotated[CLIPEmbedDiffusersConfig, CLIPEmbedDiffusersConfig.get_tag()],
Annotated[CLIPLEmbedDiffusersConfig, CLIPLEmbedDiffusersConfig.get_tag()],
Annotated[CLIPGEmbedDiffusersConfig, CLIPGEmbedDiffusersConfig.get_tag()],
],
Discriminator(get_model_discriminator_value),
]

View File

@@ -128,9 +128,9 @@ class BnbQuantizedLlmInt8bCheckpointModel(ModelLoader):
"The bnb modules are not available. Please install bitsandbytes if available on your platform."
)
match submodel_type:
case SubModelType.Tokenizer2 | SubModelType.Tokenizer3:
case SubModelType.Tokenizer2:
return T5Tokenizer.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
case SubModelType.TextEncoder2 | SubModelType.TextEncoder3:
case SubModelType.TextEncoder2:
te2_model_path = Path(config.path) / "text_encoder_2"
model_config = AutoConfig.from_pretrained(te2_model_path)
with accelerate.init_empty_weights():
@@ -172,9 +172,9 @@ class T5EncoderCheckpointModel(ModelLoader):
raise ValueError("Only T5EncoderConfig models are currently supported here.")
match submodel_type:
case SubModelType.Tokenizer2 | SubModelType.Tokenizer3:
case SubModelType.Tokenizer2:
return T5Tokenizer.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
case SubModelType.TextEncoder2 | SubModelType.TextEncoder3:
case SubModelType.TextEncoder2:
return T5EncoderModel.from_pretrained(Path(config.path) / "text_encoder_2", torch_dtype="auto")
raise ValueError(

View File

@@ -42,7 +42,6 @@ VARIANT_TO_IN_CHANNEL_MAP = {
@ModelLoaderRegistry.register(
base=BaseModelType.StableDiffusionXLRefiner, type=ModelType.Main, format=ModelFormat.Diffusers
)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion3, type=ModelType.Main, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion1, type=ModelType.Main, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion2, type=ModelType.Main, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusionXL, type=ModelType.Main, format=ModelFormat.Checkpoint)
@@ -52,6 +51,13 @@ VARIANT_TO_IN_CHANNEL_MAP = {
class StableDiffusionDiffusersModel(GenericDiffusersLoader):
"""Class to load main models."""
model_base_to_model_type = {
BaseModelType.StableDiffusion1: "FrozenCLIPEmbedder",
BaseModelType.StableDiffusion2: "FrozenOpenCLIPEmbedder",
BaseModelType.StableDiffusionXL: "SDXL",
BaseModelType.StableDiffusionXLRefiner: "SDXL-Refiner",
}
def _load_model(
self,
config: AnyModelConfig,

View File

@@ -1,7 +1,7 @@
import json
import re
from pathlib import Path
from typing import Any, Callable, Dict, Literal, Optional, Union
from typing import Any, Dict, Literal, Optional, Union
import safetensors.torch
import spandrel
@@ -22,7 +22,6 @@ from invokeai.backend.lora.conversions.flux_kohya_lora_conversion_utils import i
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS, ModelHash
from invokeai.backend.model_manager.config import (
AnyModelConfig,
AnyVariant,
BaseModelType,
ControlAdapterDefaultSettings,
InvalidModelConfigException,
@@ -34,15 +33,8 @@ from invokeai.backend.model_manager.config import (
ModelType,
ModelVariantType,
SchedulerPredictionType,
SubmodelDefinition,
SubModelType,
)
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import ConfigLoader
from invokeai.backend.model_manager.util.model_util import (
get_clip_variant_type,
lora_token_vector_length,
read_checkpoint_meta,
)
from invokeai.backend.model_manager.util.model_util import lora_token_vector_length, read_checkpoint_meta
from invokeai.backend.quantization.gguf.ggml_tensor import GGMLTensor
from invokeai.backend.quantization.gguf.loaders import gguf_sd_loader
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
@@ -120,7 +112,6 @@ class ModelProbe(object):
"StableDiffusionXLPipeline": ModelType.Main,
"StableDiffusionXLImg2ImgPipeline": ModelType.Main,
"StableDiffusionXLInpaintPipeline": ModelType.Main,
"StableDiffusion3Pipeline": ModelType.Main,
"LatentConsistencyModelPipeline": ModelType.Main,
"AutoencoderKL": ModelType.VAE,
"AutoencoderTiny": ModelType.VAE,
@@ -131,12 +122,8 @@ class ModelProbe(object):
"CLIPTextModel": ModelType.CLIPEmbed,
"T5EncoderModel": ModelType.T5Encoder,
"FluxControlNetModel": ModelType.ControlNet,
"SD3Transformer2DModel": ModelType.Main,
"CLIPTextModelWithProjection": ModelType.CLIPEmbed,
}
TYPE2VARIANT: Dict[ModelType, Callable[[str], Optional[AnyVariant]]] = {ModelType.CLIPEmbed: get_clip_variant_type}
@classmethod
def register_probe(
cls, format: Literal["diffusers", "checkpoint", "onnx"], model_type: ModelType, probe_class: type[ProbeBase]
@@ -183,10 +170,7 @@ class ModelProbe(object):
fields["path"] = model_path.as_posix()
fields["type"] = fields.get("type") or model_type
fields["base"] = fields.get("base") or probe.get_base_type()
variant_func = cls.TYPE2VARIANT.get(fields["type"], None)
fields["variant"] = (
fields.get("variant") or (variant_func and variant_func(model_path.as_posix())) or probe.get_variant_type()
)
fields["variant"] = fields.get("variant") or probe.get_variant_type()
fields["prediction_type"] = fields.get("prediction_type") or probe.get_scheduler_prediction_type()
fields["image_encoder_model_id"] = fields.get("image_encoder_model_id") or probe.get_image_encoder_model_id()
fields["name"] = fields.get("name") or cls.get_model_name(model_path)
@@ -233,10 +217,6 @@ class ModelProbe(object):
and fields["prediction_type"] == SchedulerPredictionType.VPrediction
)
get_submodels = getattr(probe, "get_submodels", None)
if fields["base"] == BaseModelType.StableDiffusion3 and callable(get_submodels):
fields["submodels"] = get_submodels()
model_info = ModelConfigFactory.make_config(fields) # , key=fields.get("key", None))
return model_info
@@ -767,33 +747,18 @@ class FolderProbeBase(ProbeBase):
class PipelineFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
# Handle pipelines with a UNet (i.e SD 1.x, SD2, SDXL).
config_path = self.model_path / "unet" / "config.json"
if config_path.exists():
with open(config_path) as file:
unet_conf = json.load(file)
if unet_conf["cross_attention_dim"] == 768:
return BaseModelType.StableDiffusion1
elif unet_conf["cross_attention_dim"] == 1024:
return BaseModelType.StableDiffusion2
elif unet_conf["cross_attention_dim"] == 1280:
return BaseModelType.StableDiffusionXLRefiner
elif unet_conf["cross_attention_dim"] == 2048:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException(f"Unknown base model for {self.model_path}")
# Handle pipelines with a transformer (i.e. SD3).
config_path = self.model_path / "transformer" / "config.json"
if config_path.exists():
with open(config_path) as file:
transformer_conf = json.load(file)
if transformer_conf["_class_name"] == "SD3Transformer2DModel":
return BaseModelType.StableDiffusion3
else:
raise InvalidModelConfigException(f"Unknown base model for {self.model_path}")
raise InvalidModelConfigException(f"Unknown base model for {self.model_path}")
with open(self.model_path / "unet" / "config.json", "r") as file:
unet_conf = json.load(file)
if unet_conf["cross_attention_dim"] == 768:
return BaseModelType.StableDiffusion1
elif unet_conf["cross_attention_dim"] == 1024:
return BaseModelType.StableDiffusion2
elif unet_conf["cross_attention_dim"] == 1280:
return BaseModelType.StableDiffusionXLRefiner
elif unet_conf["cross_attention_dim"] == 2048:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException(f"Unknown base model for {self.model_path}")
def get_scheduler_prediction_type(self) -> SchedulerPredictionType:
with open(self.model_path / "scheduler" / "scheduler_config.json", "r") as file:
@@ -805,23 +770,6 @@ class PipelineFolderProbe(FolderProbeBase):
else:
raise InvalidModelConfigException("Unknown scheduler prediction type: {scheduler_conf['prediction_type']}")
def get_submodels(self) -> Dict[SubModelType, SubmodelDefinition]:
config = ConfigLoader.load_config(self.model_path, config_name="model_index.json")
submodels: Dict[SubModelType, SubmodelDefinition] = {}
for key, value in config.items():
if key.startswith("_") or not (isinstance(value, list) and len(value) == 2):
continue
model_loader = str(value[1])
if model_type := ModelProbe.CLASS2TYPE.get(model_loader):
variant_func = ModelProbe.TYPE2VARIANT.get(model_type, None)
submodels[SubModelType(key)] = SubmodelDefinition(
path_or_prefix=(self.model_path / key).resolve().as_posix(),
model_type=model_type,
variant=variant_func and variant_func((self.model_path / key).as_posix()),
)
return submodels
def get_variant_type(self) -> ModelVariantType:
# This only works for pipelines! Any kind of
# exception results in our returning the

View File

@@ -140,22 +140,6 @@ flux_dev = StarterModel(
type=ModelType.Main,
dependencies=[t5_base_encoder, flux_vae, clip_l_encoder],
)
sd35_medium = StarterModel(
name="SD3.5 Medium",
base=BaseModelType.StableDiffusion3,
source="stabilityai/stable-diffusion-3.5-medium",
description="Medium SD3.5 Model: ~15GB",
type=ModelType.Main,
dependencies=[],
)
sd35_large = StarterModel(
name="SD3.5 Large",
base=BaseModelType.StableDiffusion3,
source="stabilityai/stable-diffusion-3.5-large",
description="Large SD3.5 Model: ~19G",
type=ModelType.Main,
dependencies=[],
)
cyberrealistic_sd1 = StarterModel(
name="CyberRealistic v4.1",
base=BaseModelType.StableDiffusion1,
@@ -586,8 +570,6 @@ STARTER_MODELS: list[StarterModel] = [
flux_dev_quantized,
flux_schnell,
flux_dev,
sd35_medium,
sd35_large,
cyberrealistic_sd1,
rev_animated_sd1,
dreamshaper_8_sd1,

View File

@@ -8,7 +8,6 @@ import safetensors
import torch
from picklescan.scanner import scan_file_path
from invokeai.backend.model_manager.config import ClipVariantType
from invokeai.backend.quantization.gguf.loaders import gguf_sd_loader
@@ -166,23 +165,3 @@ def convert_bundle_to_flux_transformer_checkpoint(
del transformer_state_dict[k]
return original_state_dict
def get_clip_variant_type(location: str) -> Optional[ClipVariantType]:
try:
path = Path(location)
config_path = path / "config.json"
if not config_path.exists():
return ClipVariantType.L
with open(config_path) as file:
clip_conf = json.load(file)
hidden_size = clip_conf.get("hidden_size", -1)
match hidden_size:
case 1280:
return ClipVariantType.G
case 768:
return ClipVariantType.L
case _:
return ClipVariantType.L
except Exception:
return ClipVariantType.L

View File

@@ -129,11 +129,9 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
# Some special handling is needed here if there is not an exact match and if we cannot infer the variant
# from the file name. In this case, we only give this file a point if the requested variant is FP32 or DEFAULT.
if (
variant is not ModelRepoVariant.Default
and candidate_variant_label
and candidate_variant_label.startswith(f".{variant.value}")
) or (not candidate_variant_label and variant in [ModelRepoVariant.FP32, ModelRepoVariant.Default]):
if candidate_variant_label == f".{variant}" or (
not candidate_variant_label and variant in [ModelRepoVariant.FP32, ModelRepoVariant.Default]
):
score += 1
if parent not in subfolder_weights:
@@ -148,7 +146,7 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
# Check if at least one of the files has the explicit fp16 variant.
at_least_one_fp16 = False
for candidate in candidate_list:
if len(candidate.path.suffixes) == 2 and candidate.path.suffixes[0].startswith(".fp16"):
if len(candidate.path.suffixes) == 2 and candidate.path.suffixes[0] == ".fp16":
at_least_one_fp16 = True
break
@@ -164,16 +162,7 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
# candidate.
highest_score_candidate = max(candidate_list, key=lambda candidate: candidate.score)
if highest_score_candidate:
pattern = r"^(.*?)-\d+-of-\d+(\.\w+)$"
match = re.match(pattern, highest_score_candidate.path.as_posix())
if match:
for candidate in candidate_list:
if candidate.path.as_posix().startswith(match.group(1)) and candidate.path.as_posix().endswith(
match.group(2)
):
result.add(candidate.path)
else:
result.add(highest_score_candidate.path)
result.add(highest_score_candidate.path)
# If one of the architecture-related variants was specified and no files matched other than
# config and text files then we return an empty list

View File

@@ -499,22 +499,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
for idx, value in enumerate(single_t2i_adapter_data.adapter_state):
accum_adapter_state[idx] += value * t2i_adapter_weight
# Hack: force compatibility with irregular resolutions by padding the feature map with zeros
for idx, tensor in enumerate(accum_adapter_state):
# The tensor size is supposed to be some integer downscale factor of the latents size.
# Internally, the unet will pad the latents before downscaling between levels when it is no longer divisible by its downscale factor.
# If the latent size does not scale down evenly, we need to pad the tensor so that it matches the the downscaled padded latents later on.
scale_factor = latents.size()[-1] // tensor.size()[-1]
required_padding_width = math.ceil(latents.size()[-1] / scale_factor) - tensor.size()[-1]
required_padding_height = math.ceil(latents.size()[-2] / scale_factor) - tensor.size()[-2]
tensor = torch.nn.functional.pad(
tensor,
(0, required_padding_width, 0, required_padding_height, 0, 0, 0, 0),
mode="constant",
value=0,
)
accum_adapter_state[idx] = tensor
down_intrablock_additional_residuals = accum_adapter_state
# Handle inpainting models.

View File

@@ -49,32 +49,9 @@ class FLUXConditioningInfo:
return self
@dataclass
class SD3ConditioningInfo:
clip_l_pooled_embeds: torch.Tensor
clip_l_embeds: torch.Tensor
clip_g_pooled_embeds: torch.Tensor
clip_g_embeds: torch.Tensor
t5_embeds: torch.Tensor | None
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
self.clip_l_pooled_embeds = self.clip_l_pooled_embeds.to(device=device, dtype=dtype)
self.clip_l_embeds = self.clip_l_embeds.to(device=device, dtype=dtype)
self.clip_g_pooled_embeds = self.clip_g_pooled_embeds.to(device=device, dtype=dtype)
self.clip_g_embeds = self.clip_g_embeds.to(device=device, dtype=dtype)
if self.t5_embeds is not None:
self.t5_embeds = self.t5_embeds.to(device=device, dtype=dtype)
return self
@dataclass
class ConditioningFieldData:
conditionings: (
List[BasicConditioningInfo]
| List[SDXLConditioningInfo]
| List[FLUXConditioningInfo]
| List[SD3ConditioningInfo]
)
conditionings: List[BasicConditioningInfo] | List[SDXLConditioningInfo] | List[FLUXConditioningInfo]
@dataclass

View File

@@ -9,7 +9,6 @@ const config: KnipConfig = {
'src/services/api/schema.ts',
'src/features/nodes/types/v1/**',
'src/features/nodes/types/v2/**',
'src/features/parameters/types/parameterSchemas.ts',
// TODO(psyche): maybe we can clean up these utils after canvas v2 release
'src/features/controlLayers/konva/util.ts',
// TODO(psyche): restore HRF functionality?

Binary file not shown.

Before

Width:  |  Height:  |  Size: 895 KiB

View File

@@ -95,8 +95,7 @@
"none": "Keine",
"new": "Neu",
"ok": "OK",
"close": "Schließen",
"clipboard": "Zwischenablage"
"close": "Schließen"
},
"gallery": {
"galleryImageSize": "Bildgröße",
@@ -536,12 +535,14 @@
"addModels": "Model hinzufügen",
"deleteModelImage": "Lösche Model Bild",
"huggingFaceRepoID": "HuggingFace Repo ID",
"hfToken": "HuggingFace Schlüssel",
"huggingFacePlaceholder": "besitzer/model-name",
"modelSettings": "Modelleinstellungen",
"typePhraseHere": "Phrase hier eingeben",
"spandrelImageToImage": "Bild zu Bild (Spandrel)",
"starterModels": "Einstiegsmodelle",
"t5Encoder": "T5-Kodierer",
"useDefaultSettings": "Standardeinstellungen verwenden",
"uploadImage": "Bild hochladen",
"urlOrLocalPath": "URL oder lokaler Pfad",
"install": "Installieren",
@@ -677,41 +678,10 @@
"toast": {
"uploadFailed": "Hochladen fehlgeschlagen",
"imageCopied": "Bild kopiert",
"parametersNotSet": "Parameter nicht zurückgerufen",
"parametersNotSet": "Parameter nicht festgelegt",
"addedToBoard": "Dem Board hinzugefügt",
"loadedWithWarnings": "Workflow mit Warnungen geladen",
"imageSaved": "Bild gespeichert",
"linkCopied": "Link kopiert",
"problemCopyingLayer": "Ebene kann nicht kopiert werden",
"problemSavingLayer": "Ebene kann nicht gespeichert werden",
"parameterSetDesc": "{{parameter}} zurückgerufen",
"imageUploaded": "Bild hochgeladen",
"problemCopyingImage": "Bild kann nicht kopiert werden",
"parameterNotSetDesc": "{{parameter}} kann nicht zurückgerufen werden",
"prunedQueue": "Warteschlange bereinigt",
"modelAddedSimple": "Modell zur Warteschlange hinzugefügt",
"parametersSet": "Parameter zurückgerufen",
"imageNotLoadedDesc": "Bild konnte nicht gefunden werden",
"setControlImage": "Als Kontrollbild festlegen",
"sentToUpscale": "An Vergrößerung gesendet",
"parameterNotSetDescWithMessage": "{{parameter}} kann nicht zurückgerufen werden: {{message}}",
"unableToLoadImageMetadata": "Bildmetadaten können nicht geladen werden",
"unableToLoadImage": "Bild kann nicht geladen werden",
"serverError": "Serverfehler",
"parameterNotSet": "Parameter nicht zurückgerufen",
"sessionRef": "Sitzung: {{sessionId}}",
"problemDownloadingImage": "Bild kann nicht heruntergeladen werden",
"parameters": "Parameter",
"parameterSet": "Parameter zurückgerufen",
"importFailed": "Import fehlgeschlagen",
"importSuccessful": "Import erfolgreich",
"setNodeField": "Als Knotenfeld festlegen",
"somethingWentWrong": "Etwas ist schief gelaufen",
"workflowLoaded": "Arbeitsablauf geladen",
"workflowDeleted": "Arbeitsablauf gelöscht",
"errorCopied": "Fehler kopiert",
"layerCopiedToClipboard": "Ebene in die Zwischenablage kopiert",
"sentToCanvas": "An Leinwand gesendet"
"imageSaved": "Bild gespeichert"
},
"accessibility": {
"uploadImage": "Bild hochladen",
@@ -855,6 +825,7 @@
"width": "Breite",
"createdBy": "Erstellt von",
"steps": "Schritte",
"seamless": "Nahtlos",
"positivePrompt": "Positiver Prompt",
"generationMode": "Generierungsmodus",
"Threshold": "Rauschen-Schwelle",
@@ -1199,19 +1170,7 @@
"workflowVersion": "Version",
"saveToGallery": "In Galerie speichern",
"noWorkflows": "Keine Arbeitsabläufe",
"noMatchingWorkflows": "Keine passenden Arbeitsabläufe",
"unknownErrorValidatingWorkflow": "Unbekannter Fehler beim Validieren des Arbeitsablaufes",
"inputFieldTypeParseError": "Typ des Eingabefelds {{node}}.{{field}} kann nicht analysiert werden ({{message}})",
"workflowSettings": "Arbeitsablauf Editor Einstellungen",
"unableToLoadWorkflow": "Arbeitsablauf kann nicht geladen werden",
"viewMode": "In linearen Ansicht verwenden",
"unableToValidateWorkflow": "Arbeitsablauf kann nicht validiert werden",
"outputFieldTypeParseError": "Typ des Ausgabefelds {{node}}.{{field}} kann nicht analysiert werden ({{message}})",
"unableToGetWorkflowVersion": "Version des Arbeitsablaufschemas kann nicht bestimmt werden",
"unknownFieldType": "$t(nodes.unknownField) Typ: {{type}}",
"unknownField": "Unbekanntes Feld",
"unableToUpdateNodes_one": "{{count}} Knoten kann nicht aktualisiert werden",
"unableToUpdateNodes_other": "{{count}} Knoten können nicht aktualisiert werden"
"noMatchingWorkflows": "Keine passenden Arbeitsabläufe"
},
"hrf": {
"enableHrf": "Korrektur für hohe Auflösungen",
@@ -1341,7 +1300,15 @@
"enableLogging": "Protokollierung aktivieren"
},
"whatsNew": {
"whatsNewInInvoke": "Was gibt's Neues"
"whatsNewInInvoke": "Was gibt's Neues",
"canvasV2Announcement": {
"fluxSupport": "Unterstützung für Flux-Modelle",
"newCanvas": "Eine leistungsstarke neue Kontrollfläche",
"newLayerTypes": "Neue Ebenentypen für noch mehr Kontrolle",
"readReleaseNotes": "Anmerkungen zu dieser Version lesen",
"watchReleaseVideo": "Video über diese Version anzeigen",
"watchUiUpdatesOverview": "Interface-Updates Übersicht"
}
},
"stylePresets": {
"name": "Name",

View File

@@ -733,17 +733,7 @@
"huggingFacePlaceholder": "owner/model-name",
"huggingFaceRepoID": "HuggingFace Repo ID",
"huggingFaceHelper": "If multiple models are found in this repo, you will be prompted to select one to install.",
"hfTokenLabel": "HuggingFace Token (Required for some models)",
"hfTokenHelperText": "A HF token is required to use some models. Click here to create or get your token.",
"hfTokenInvalid": "Invalid or Missing HF Token",
"hfForbidden": "You do not have access to this HF model",
"hfForbiddenErrorMessage": "We recommend visiting the repo page on HuggingFace.com. The owner may require acceptance of terms in order to download.",
"hfTokenInvalidErrorMessage": "Invalid or missing HuggingFace token.",
"hfTokenRequired": "You are trying to download a model that requires a valid HuggingFace Token.",
"hfTokenInvalidErrorMessage2": "Update it in the ",
"hfTokenUnableToVerify": "Unable to Verify HF Token",
"hfTokenUnableToVerifyErrorMessage": "Unable to verify HuggingFace token. This is likely due to a network error. Please try again later.",
"hfTokenSaved": "HF Token Saved",
"hfToken": "HuggingFace Token",
"imageEncoderModelId": "Image Encoder Model ID",
"includesNModels": "Includes {{n}} models and their dependencies",
"installQueue": "Install Queue",
@@ -997,7 +987,6 @@
"controlNetControlMode": "Control Mode",
"copyImage": "Copy Image",
"denoisingStrength": "Denoising Strength",
"noRasterLayers": "No Raster Layers",
"downloadImage": "Download Image",
"general": "General",
"guidance": "Guidance",
@@ -1048,7 +1037,6 @@
"patchmatchDownScaleSize": "Downscale",
"perlinNoise": "Perlin Noise",
"positivePromptPlaceholder": "Positive Prompt",
"recallMetadata": "Recall Metadata",
"iterations": "Iterations",
"scale": "Scale",
"scaleBeforeProcessing": "Scale Before Processing",
@@ -1413,9 +1401,8 @@
"paramDenoisingStrength": {
"heading": "Denoising Strength",
"paragraphs": [
"Controls how much the generated image varies from the raster layer(s).",
"Lower strength stays closer to the combined visible raster layers. Higher strength relies more on the global prompt.",
"When there are no raster layers with visible content, this setting is ignored."
"How much noise is added to the input image.",
"0 will result in an identical image, while 1 will result in a completely new image."
]
},
"paramHeight": {
@@ -1654,17 +1641,14 @@
"newControlLayerError": "Problem Creating Control Layer",
"newRasterLayerOk": "Created Raster Layer",
"newRasterLayerError": "Problem Creating Raster Layer",
"newFromImage": "New from Image",
"pullBboxIntoLayerOk": "Bbox Pulled Into Layer",
"pullBboxIntoLayerError": "Problem Pulling BBox Into Layer",
"pullBboxIntoReferenceImageOk": "Bbox Pulled Into ReferenceImage",
"pullBboxIntoReferenceImageError": "Problem Pulling BBox Into ReferenceImage",
"regionIsEmpty": "Selected region is empty",
"mergeVisible": "Merge Visible",
"mergeDown": "Merge Down",
"mergeVisibleOk": "Merged layers",
"mergeVisibleError": "Error merging layers",
"mergingLayers": "Merging layers",
"mergeVisibleOk": "Merged visible layers",
"mergeVisibleError": "Error merging visible layers",
"clearHistory": "Clear History",
"bboxOverlay": "Show Bbox Overlay",
"resetCanvas": "Reset Canvas",
@@ -1777,10 +1761,9 @@
"newCanvasSession": "New Canvas Session",
"newCanvasSessionDesc": "This will clear the canvas and all settings except for your model selection. Generations will be staged on the canvas.",
"replaceCurrent": "Replace Current",
"controlLayerEmptyState": "<UploadButton>Upload an image</UploadButton>, drag an image from the <GalleryButton>gallery</GalleryButton> onto this layer, or draw on the canvas to get started.",
"controlMode": {
"controlMode": "Control Mode",
"balanced": "Balanced (recommended)",
"balanced": "Balanced",
"prompt": "Prompt",
"control": "Control",
"megaControl": "Mega Control"
@@ -1819,9 +1802,6 @@
"process": "Process",
"apply": "Apply",
"cancel": "Cancel",
"advanced": "Advanced",
"processingLayerWith": "Processing layer with the {{type}} filter.",
"forMoreControl": "For more control, click Advanced below.",
"spandrel_filter": {
"label": "Image-to-Image Model",
"description": "Run an image-to-image model on the selected layer.",
@@ -2102,8 +2082,9 @@
},
"whatsNew": {
"whatsNewInInvoke": "What's New in Invoke",
"line1": "<StrongComponent>Layer Merging</StrongComponent>: New <StrongComponent>Merge Down</StrongComponent> and improved <StrongComponent>Merge Visible</StrongComponent> for all layers, with special handling for Regional Guidance and Control Layers.",
"line2": "<StrongComponent>HF Token Support</StrongComponent>: Upload models that require Hugging Face authentication.",
"line1": "<ItalicComponent>Select Object</ItalicComponent> tool for precise object selection and editing",
"line2": "Expanded Flux support, now with Global Reference Images",
"line3": "Improved tooltips and context menus",
"readReleaseNotes": "Read Release Notes",
"watchRecentReleaseVideos": "Watch Recent Release Videos",
"watchUiUpdatesOverview": "Watch UI Updates Overview"

View File

@@ -5,7 +5,7 @@
"reportBugLabel": "Signaler un bug",
"settingsLabel": "Paramètres",
"img2img": "Image vers Image",
"nodes": "Workflows",
"nodes": "Processus",
"upload": "Importer",
"load": "Charger",
"back": "Retour",
@@ -95,8 +95,7 @@
"positivePrompt": "Prompt Positif",
"negativePrompt": "Prompt Négatif",
"ok": "Ok",
"close": "Fermer",
"clipboard": "Presse-papier"
"close": "Fermer"
},
"gallery": {
"galleryImageSize": "Taille de l'image",
@@ -162,7 +161,7 @@
"unstarImage": "Retirer le marquage de l'Image",
"viewerImage": "Visualisation de l'Image",
"imagesSettings": "Paramètres des images de la galerie",
"assetsTab": "Fichiers que vous avez importés pour vos projets.",
"assetsTab": "Fichiers que vous avez importé pour vos projets.",
"imagesTab": "Images que vous avez créées et enregistrées dans Invoke.",
"boardsSettings": "Paramètres des planches"
},
@@ -220,6 +219,7 @@
"typePhraseHere": "Écrire une phrase ici",
"cancel": "Annuler",
"defaultSettingsSaved": "Paramètres par défaut enregistrés",
"hfToken": "Token HuggingFace",
"imageEncoderModelId": "ID du modèle d'encodeur d'image",
"path": "Chemin sur le disque",
"repoVariant": "Variante de dépôt",
@@ -254,6 +254,7 @@
"loraModels": "LoRAs",
"main": "Principal",
"urlOrLocalPathHelper": "Les URL doivent pointer vers un seul fichier. Les chemins locaux peuvent pointer vers un seul fichier ou un dossier pour un seul modèle de diffuseurs.",
"useDefaultSettings": "Utiliser les paramètres par défaut",
"modelImageUpdateFailed": "Mise à jour de l'image du modèle échouée",
"loraTriggerPhrases": "Phrases de déclenchement LoRA",
"mainModelTriggerPhrases": "Phrases de déclenchement du modèle principal",
@@ -283,28 +284,24 @@
"skippingXDuplicates_many": ", en ignorant {{count}} doublons",
"skippingXDuplicates_other": ", en ignorant {{count}} doublons",
"installingModel": "Modèle en cours d'installation",
"installingBundle": "Pack en cours d'installation",
"noDefaultSettings": "Aucun paramètre par défaut configuré pour ce modèle. Visitez le Gestionnaire de Modèles pour ajouter des paramètres par défaut.",
"usingDefaultSettings": "Utilisation des paramètres par défaut du modèle",
"defaultSettingsOutOfSync": "Certain paramètres ne correspondent pas aux valeurs par défaut du modèle :",
"restoreDefaultSettings": "Cliquez pour utiliser les paramètres par défaut du modèle."
"installingBundle": "Pack en cours d'installation"
},
"parameters": {
"images": "Images",
"steps": "Étapes",
"cfgScale": "Échelle CFG",
"steps": "Etapes",
"cfgScale": "CFG Echelle",
"width": "Largeur",
"height": "Hauteur",
"seed": "Graine",
"shuffle": "Nouvelle graine",
"shuffle": "Mélanger la graine",
"noiseThreshold": "Seuil de Bruit",
"perlinNoise": "Bruit de Perlin",
"type": "Type",
"strength": "Force",
"upscaling": "Agrandissement",
"scale": "Échelle",
"scale": "Echelle",
"imageFit": "Ajuster Image Initiale à la Taille de Sortie",
"scaleBeforeProcessing": "Échelle Avant Traitement",
"scaleBeforeProcessing": "Echelle Avant Traitement",
"scaledWidth": "Larg. Échelle",
"scaledHeight": "Haut. Échelle",
"infillMethod": "Méthode de Remplissage",
@@ -425,10 +422,7 @@
"clearIntermediatesWithCount_other": "Effacé {{count}} Intermédiaires",
"informationalPopoversDisabled": "Pop-ups d'information désactivés",
"informationalPopoversDisabledDesc": "Les pop-ups d'information ont été désactivés. Activez-les dans les paramètres.",
"confirmOnNewSession": "Confirmer lors d'une nouvelle session",
"modelDescriptionsDisabledDesc": "Les descriptions des modèles dans les menus déroulants ont été désactivées. Activez-les dans les paramètres.",
"enableModelDescriptions": "Activer les descriptions de modèle dans les menus déroulants",
"modelDescriptionsDisabled": "Descriptions de modèle dans les menus déroulants désactivés"
"confirmOnNewSession": "Confirmer lors d'une nouvelle session"
},
"toast": {
"uploadFailed": "Importation échouée",
@@ -441,22 +435,22 @@
"parameterNotSet": "Paramètre non Rappelé",
"canceled": "Traitement annulé",
"addedToBoard": "Ajouté aux ressources de la planche {{name}}",
"workflowLoaded": "Workflow chargé",
"workflowLoaded": "Processus chargé",
"connected": "Connecté au serveur",
"setNodeField": "Définir comme champ de nœud",
"imageUploadFailed": "Échec de l'importation de l'image",
"loadedWithWarnings": "Workflow chargé avec des avertissements",
"loadedWithWarnings": "Processus chargé avec des avertissements",
"imageUploaded": "Image importée",
"modelAddedSimple": "Modèle ajouté à la file d'attente",
"setControlImage": "Définir comme image de contrôle",
"workflowDeleted": "Workflow supprimé",
"workflowDeleted": "Processus supprimé",
"baseModelChangedCleared_one": "Effacé ou désactivé {{count}} sous-modèle incompatible",
"baseModelChangedCleared_many": "Effacé ou désactivé {{count}} sous-modèles incompatibles",
"baseModelChangedCleared_other": "Effacé ou désactivé {{count}} sous-modèles incompatibles",
"invalidUpload": "Importation invalide",
"problemDownloadingImage": "Impossible de télécharger l'image",
"problemRetrievingWorkflow": "Problème de récupération du Workflow",
"problemDeletingWorkflow": "Problème de suppression du Workflow",
"problemRetrievingWorkflow": "Problème de récupération du processus",
"problemDeletingWorkflow": "Problème de suppression du processus",
"prunedQueue": "File d'attente vidée",
"parameters": "Paramètres",
"modelImportCanceled": "Importation du modèle annulée",
@@ -556,7 +550,7 @@
"accordions": {
"advanced": {
"title": "Avancé",
"options": "Options $t(accordions.advanced.title)"
"options": "$t(accordions.advanced.title) Options"
},
"image": {
"title": "Image"
@@ -637,7 +631,7 @@
"graphQueued": "Graph ajouté à la file d'attente",
"other": "Autre",
"generation": "Génération",
"workflows": "Workflows",
"workflows": "Processus",
"batchFailedToQueue": "Impossible d'ajouter le Lot dans à la file d'attente",
"graphFailedToQueue": "Impossible d'ajouter le graph à la file d'attente",
"item": "Élément",
@@ -710,8 +704,8 @@
"desc": "Rappelle toutes les métadonnées pour l'image actuelle."
},
"loadWorkflow": {
"title": "Ouvrir un Workflow",
"desc": "Charge le workflow enregistré lié à l'image actuelle (s'il en a un)."
"title": "Charger le processus",
"desc": "Charge le processus enregistré de l'image actuelle (s'il en a un)."
},
"recallSeed": {
"desc": "Rappelle la graine pour l'image actuelle.",
@@ -762,8 +756,8 @@
"desc": "Séléctionne l'onglet Agrandissement."
},
"selectWorkflowsTab": {
"desc": "Sélectionne l'onglet Workflows.",
"title": "Sélectionner l'onglet Workflows"
"desc": "Sélectionne l'onglet Processus.",
"title": "Sélectionner l'onglet Processus"
},
"togglePanels": {
"desc": "Affiche ou masque les panneaux gauche et droit en même temps.",
@@ -969,11 +963,11 @@
},
"undo": {
"title": "Annuler",
"desc": "Annule la dernière action de workflow."
"desc": "Annule la dernière action de processus."
},
"redo": {
"title": "Rétablir",
"desc": "Rétablit la dernière action de workflow."
"desc": "Rétablit la dernière action de processus."
},
"addNode": {
"desc": "Ouvre le menu d'ajout de nœud.",
@@ -991,7 +985,7 @@
"desc": "Colle les nœuds et les connections copiés.",
"title": "Coller"
},
"title": "Workflows"
"title": "Processus"
}
},
"popovers": {
@@ -1378,43 +1372,6 @@
"Des valeurs de guidage élevées peuvent entraîner une saturation excessive, et un guidage élevé ou faible peut entraîner des résultats de génération déformés. Le guidage ne s'applique qu'aux modèles FLUX DEV."
],
"heading": "Guidage"
},
"globalReferenceImage": {
"heading": "Image de Référence Globale",
"paragraphs": [
"Applique une image de référence pour influencer l'ensemble de la génération."
]
},
"regionalReferenceImage": {
"heading": "Image de Référence Régionale",
"paragraphs": [
"Pinceau pour appliquer une image de référence à des zones spécifiques."
]
},
"inpainting": {
"heading": "Inpainting",
"paragraphs": [
"Contrôle la zone qui est modifiée, guidé par la force de débruitage."
]
},
"regionalGuidance": {
"heading": "Guide Régional",
"paragraphs": [
"Pinceau pour guider l'emplacement des éléments provenant des prompts globaux."
]
},
"regionalGuidanceAndReferenceImage": {
"heading": "Guide régional et image de référence régionale",
"paragraphs": [
"Pour le Guide Régional, utilisez le pinceau pour indiquer où les éléments des prompts globaux doivent apparaître.",
"Pour l'image de référence régionale, pinceau pour appliquer une image de référence à des zones spécifiques."
]
},
"rasterLayer": {
"heading": "Couche Rastérisation",
"paragraphs": [
"Contenu basé sur les pixels de votre toile, utilisé lors de la génération d'images."
]
}
},
"dynamicPrompts": {
@@ -1435,11 +1392,12 @@
"positivePrompt": "Prompt Positif",
"allPrompts": "Tous les Prompts",
"negativePrompt": "Prompt Négatif",
"seamless": "Sans jointure",
"metadata": "Métadonné",
"scheduler": "Planificateur",
"imageDetails": "Détails de l'Image",
"seed": "Graine",
"workflow": "Workflow",
"workflow": "Processus",
"width": "Largeur",
"Threshold": "Seuil de bruit",
"noMetaData": "Aucune métadonnée trouvée",
@@ -1488,8 +1446,8 @@
"hideMinimapnodes": "Masquer MiniCarte",
"zoomOutNodes": "Dézoomer",
"zoomInNodes": "Zoomer",
"downloadWorkflow": "Exporter le Workflow au format JSON",
"loadWorkflow": "Charger un Workflow",
"downloadWorkflow": "Télécharger processus en JSON",
"loadWorkflow": "Charger le processus",
"reloadNodeTemplates": "Recharger les modèles de nœuds",
"animatedEdges": "Connexions animées",
"cannotConnectToSelf": "Impossible de se connecter à soi-même",
@@ -1512,16 +1470,16 @@
"float": "Flottant",
"mismatchedVersion": "Nœud invalide : le nœud {{node}} de type {{type}} a une version incompatible (essayez de mettre à jour?)",
"missingTemplate": "Nœud invalide : le nœud {{node}} de type {{type}} modèle manquant (non installé?)",
"noWorkflow": "Pas de Workflow",
"noWorkflow": "Pas de processus",
"validateConnectionsHelp": "Prévenir la création de connexions invalides et l'invocation de graphes invalides",
"workflowSettings": "Paramètres de l'Éditeur de Workflow",
"workflowValidation": "Erreur de validation du Workflow",
"workflowSettings": "Paramètres de l'Éditeur de Processus",
"workflowValidation": "Erreur de validation du processus",
"executionStateInProgress": "En cours",
"node": "Noeud",
"scheduler": "Planificateur",
"notes": "Notes",
"notesDescription": "Ajouter des notes sur votre workflow",
"unableToLoadWorkflow": "Impossible de charger le Workflow",
"notesDescription": "Ajouter des notes sur votre processus",
"unableToLoadWorkflow": "Impossible de charger le processus",
"addNode": "Ajouter un nœud",
"problemSettingTitle": "Problème lors de définition du Titre",
"connectionWouldCreateCycle": "La connexion créerait un cycle",
@@ -1544,7 +1502,7 @@
"noOutputRecorded": "Aucun résultat enregistré",
"removeLinearView": "Retirer de la vue linéaire",
"snapToGrid": "Aligner sur la grille",
"workflow": "Workflow",
"workflow": "Processus",
"updateApp": "Mettre à jour l'application",
"updateNode": "Mettre à jour le nœud",
"nodeOutputs": "Sorties de nœud",
@@ -1557,7 +1515,7 @@
"string": "Chaîne de caractères",
"workflowName": "Nom",
"snapToGridHelp": "Aligner les nœuds sur la grille lors du déplacement",
"unableToValidateWorkflow": "Impossible de valider le Workflow",
"unableToValidateWorkflow": "Impossible de valider le processus",
"validateConnections": "Valider les connexions et le graphique",
"unableToUpdateNodes_one": "Impossible de mettre à jour {{count}} nœud",
"unableToUpdateNodes_many": "Impossible de mettre à jour {{count}} nœuds",
@@ -1570,15 +1528,15 @@
"nodePack": "Paquet de nœuds",
"sourceNodeDoesNotExist": "Connexion invalide : le nœud source/de sortie {{node}} n'existe pas",
"sourceNodeFieldDoesNotExist": "Connexion invalide : {{node}}.{{field}} n'existe pas",
"unableToGetWorkflowVersion": "Impossible d'obtenir la version du schéma du Workflow",
"newWorkflowDesc2": "Votre workflow actuel comporte des modifications non enregistrées.",
"unableToGetWorkflowVersion": "Impossible d'obtenir la version du schéma de processus",
"newWorkflowDesc2": "Votre processus actuel comporte des modifications non enregistrées.",
"deletedInvalidEdge": "Connexion invalide supprimé {{source}} -> {{target}}",
"targetNodeDoesNotExist": "Connexion invalide : le nœud cible/entrée {{node}} n'existe pas",
"targetNodeFieldDoesNotExist": "Connexion invalide : le champ {{node}}.{{field}} n'existe pas",
"nodeVersion": "Version du noeud",
"clearWorkflowDesc2": "Votre workflow actuel comporte des modifications non enregistrées.",
"clearWorkflow": "Effacer le Workflow",
"clearWorkflowDesc": "Effacer ce workflow et en commencer un nouveau?",
"clearWorkflowDesc2": "Votre processus actuel comporte des modifications non enregistrées.",
"clearWorkflow": "Effacer le Processus",
"clearWorkflowDesc": "Effacer ce processus et en commencer un nouveau?",
"unsupportedArrayItemType": "type d'élément de tableau non pris en charge \"{{type}}\"",
"addLinearView": "Ajouter à la vue linéaire",
"collectionOrScalarFieldType": "{{name}} (Unique ou Collection)",
@@ -1587,7 +1545,7 @@
"ipAdapter": "IP-Adapter",
"viewMode": "Utiliser en vue linéaire",
"collectionFieldType": "{{name}} (Collection)",
"newWorkflow": "Nouveau Workflow",
"newWorkflow": "Nouveau processus",
"reorderLinearView": "Réorganiser la vue linéaire",
"unknownOutput": "Sortie inconnue : {{name}}",
"outputFieldTypeParseError": "Impossible d'analyser le type du champ de sortie {{node}}.{{field}} ({{message}})",
@@ -1597,13 +1555,13 @@
"unknownFieldType": "$t(nodes.unknownField) type : {{type}}",
"inputFieldTypeParseError": "Impossible d'analyser le type du champ d'entrée {{node}}.{{field}} ({{message}})",
"unableToExtractSchemaNameFromRef": "impossible d'extraire le nom du schéma à partir de la référence",
"editMode": "Modifier dans l'éditeur de Workflow",
"unknownErrorValidatingWorkflow": "Erreur inconnue lors de la validation du Workflow",
"editMode": "Modifier dans l'éditeur de processus",
"unknownErrorValidatingWorkflow": "Erreur inconnue lors de la validation du processus",
"updateAllNodes": "Mettre à jour les nœuds",
"allNodesUpdated": "Tous les nœuds mis à jour",
"newWorkflowDesc": "Créer un nouveau workflow?",
"newWorkflowDesc": "Créer un nouveau processus?",
"edit": "Modifier",
"noFieldsViewMode": "Ce workflow n'a aucun champ sélectionné à afficher. Consultez le workflow complet pour configurer les valeurs.",
"noFieldsViewMode": "Ce processus n'a aucun champ sélectionné à afficher. Consultez le processus complet pour configurer les valeurs.",
"graph": "Graph",
"modelAccessError": "Impossible de trouver le modèle {{key}}, réinitialisation aux paramètres par défaut",
"showEdgeLabelsHelp": "Afficher le nom sur les connections, indiquant les nœuds connectés",
@@ -1617,9 +1575,9 @@
"missingInvocationTemplate": "Modèle d'invocation manquant",
"imageAccessError": "Impossible de trouver l'image {{image_name}}, réinitialisation à la valeur par défaut",
"boardAccessError": "Impossible de trouver la planche {{board_id}}, réinitialisation à la valeur par défaut",
"workflowHelpText": "Besoin d'aide? Consultez notre guide sur <LinkComponent>Comment commencer avec les Workflows</LinkComponent>.",
"noWorkflows": "Aucun Workflows",
"noMatchingWorkflows": "Aucun Workflows correspondant"
"workflowHelpText": "Besoin d'aide? Consultez notre guide sur <LinkComponent>Comment commencer avec les Processus</LinkComponent>.",
"noWorkflows": "Aucun Processus",
"noMatchingWorkflows": "Aucun processus correspondant"
},
"models": {
"noMatchingModels": "Aucun modèle correspondant",
@@ -1636,51 +1594,59 @@
},
"workflows": {
"workflowLibrary": "Bibliothèque",
"loading": "Chargement des Workflows",
"searchWorkflows": "Chercher des Workflows",
"workflowCleared": "Workflow effacé",
"loading": "Chargement des processus",
"searchWorkflows": "Rechercher des processus",
"workflowCleared": "Processus effacé",
"noDescription": "Aucune description",
"deleteWorkflow": "Supprimer le Workflow",
"openWorkflow": "Ouvrir le Workflow",
"deleteWorkflow": "Supprimer le processus",
"openWorkflow": "Ouvrir le processus",
"uploadWorkflow": "Charger à partir d'un fichier",
"workflowName": "Nom du Workflow",
"unnamedWorkflow": "Workflow sans nom",
"saveWorkflowAs": "Enregistrer le Workflow sous",
"workflows": "Workflows",
"savingWorkflow": "Enregistrement du Workflow...",
"saveWorkflowToProject": "Enregistrer le Workflow dans le projet",
"workflowName": "Nom du processus",
"unnamedWorkflow": "Processus sans nom",
"saveWorkflowAs": "Enregistrer le processus sous",
"workflows": "Processus",
"savingWorkflow": "Enregistrement du processus...",
"saveWorkflowToProject": "Enregistrer le processus dans le projet",
"downloadWorkflow": "Enregistrer dans le fichier",
"saveWorkflow": "Enregistrer le Workflow",
"problemSavingWorkflow": "Problème de sauvegarde du Workflow",
"workflowEditorMenu": "Menu de l'Éditeur de Workflow",
"newWorkflowCreated": "Nouveau Workflow créé",
"clearWorkflowSearchFilter": "Réinitialiser le filtre de recherche de Workflow",
"problemLoading": "Problème de chargement des Workflows",
"workflowSaved": "Workflow enregistré",
"noWorkflows": "Pas de Workflows",
"saveWorkflow": "Enregistrer le processus",
"problemSavingWorkflow": "Problème de sauvegarde du processus",
"workflowEditorMenu": "Menu de l'Éditeur de Processus",
"newWorkflowCreated": "Nouveau processus créé",
"clearWorkflowSearchFilter": "Réinitialiser le filtre de recherche de processus",
"problemLoading": "Problème de chargement des processus",
"workflowSaved": "Processus enregistré",
"noWorkflows": "Pas de processus",
"ascending": "Ascendant",
"loadFromGraph": "Charger le Workflow à partir du graphique",
"loadFromGraph": "Charger le processus à partir du graphique",
"descending": "Descendant",
"created": "Créé",
"updated": "Mis à jour",
"loadWorkflow": "$t(common.load) Workflow",
"loadWorkflow": "$t(common.load) Processus",
"convertGraph": "Convertir le graphique",
"opened": "Ouvert",
"name": "Nom",
"autoLayout": "Mise en page automatique",
"defaultWorkflows": "Workflows par défaut",
"userWorkflows": "Workflows de l'utilisateur",
"projectWorkflows": "Workflows du projet",
"defaultWorkflows": "Processus par défaut",
"userWorkflows": "Processus utilisateur",
"projectWorkflows": "Processus du projet",
"copyShareLink": "Copier le lien de partage",
"chooseWorkflowFromLibrary": "Choisir le Workflow dans la Bibliothèque",
"chooseWorkflowFromLibrary": "Choisir le Processus dans la Bibliothèque",
"uploadAndSaveWorkflow": "Importer dans la bibliothèque",
"edit": "Modifer",
"deleteWorkflow2": "Êtes-vous sûr de vouloir supprimer ce Workflow? Cette action ne peut pas être annulé.",
"deleteWorkflow2": "Êtes-vous sûr de vouloir supprimer ce processus? Ceci ne peut pas être annulé.",
"download": "Télécharger",
"copyShareLinkForWorkflow": "Copier le lien de partage pour le Workflow",
"copyShareLinkForWorkflow": "Copier le lien de partage pour le processus",
"delete": "Supprimer"
},
"whatsNew": {
"canvasV2Announcement": {
"watchReleaseVideo": "Regarder la vidéo de lancement",
"newLayerTypes": "Nouveaux types de couches pour un contrôle encore plus précis",
"fluxSupport": "Support pour la famille de modèles Flux",
"readReleaseNotes": "Lire les notes de version",
"newCanvas": "Une nouvelle Toile de contrôle puissant",
"watchUiUpdatesOverview": "Regarder l'aperçu des mises à jour de l'UI"
},
"whatsNewInInvoke": "Quoi de neuf dans Invoke"
},
"ui": {
@@ -1691,7 +1657,7 @@
"gallery": "Galerie",
"upscalingTab": "$t(ui.tabs.upscaling) $t(common.tab)",
"generation": "Génération",
"workflows": "Workflows",
"workflows": "Processus",
"workflowsTab": "$t(ui.tabs.workflows) $t(common.tab)",
"models": "Modèles",
"modelsTab": "$t(ui.tabs.models) $t(common.tab)"
@@ -1801,9 +1767,7 @@
"bboxGroup": "Créer à partir de la bounding box",
"newRegionalReferenceImage": "Nouvelle image de référence régionale",
"newGlobalReferenceImage": "Nouvelle image de référence globale",
"newControlLayer": "Nouveau couche de contrôle",
"newInpaintMask": "Nouveau Masque Inpaint",
"newRegionalGuidance": "Nouveau Guide Régional"
"newControlLayer": "Nouveau couche de contrôle"
},
"bookmark": "Marque-page pour Changement Rapide",
"saveLayerToAssets": "Enregistrer la couche dans les ressources",
@@ -1816,6 +1780,8 @@
"on": "Activé",
"label": "Aligner sur la grille"
},
"isolatedFilteringPreview": "Aperçu de filtrage isolé",
"isolatedTransformingPreview": "Aperçu de transformation isolée",
"invertBrushSizeScrollDirection": "Inverser le défilement pour la taille du pinceau",
"pressureSensitivity": "Sensibilité à la pression",
"preserveMask": {
@@ -1823,10 +1789,9 @@
"alert": "Préserver la zone masquée"
},
"isolatedPreview": "Aperçu Isolé",
"isolatedStagingPreview": "Aperçu de l'attente isolé",
"isolatedLayerPreview": "Aperçu de la couche isolée",
"isolatedLayerPreviewDesc": "Pour afficher uniquement cette couche lors de l'exécution d'opérations telles que le filtrage ou la transformation."
"isolatedStagingPreview": "Aperçu de l'attente isolé"
},
"convertToRasterLayer": "Convertir en Couche de Rastérisation",
"transparency": "Transparence",
"moveBackward": "Reculer",
"rectangle": "Rectangle",
@@ -1949,6 +1914,7 @@
"globalReferenceImage_withCount_one": "$t(controlLayers.globalReferenceImage)",
"globalReferenceImage_withCount_many": "Images de référence globales",
"globalReferenceImage_withCount_other": "Images de référence globales",
"convertToControlLayer": "Convertir en Couche de Contrôle",
"layer_withCount_one": "Couche {{count}}",
"layer_withCount_many": "Couches {{count}}",
"layer_withCount_other": "Couches {{count}}",
@@ -2011,41 +1977,7 @@
"pullBboxIntoReferenceImageOk": "Bounding Box insérée dans l'Image de référence",
"controlLayer_withCount_one": "$t(controlLayers.controlLayer)",
"controlLayer_withCount_many": "Controler les couches",
"controlLayer_withCount_other": "Controler les couches",
"copyInpaintMaskTo": "Copier $t(controlLayers.inpaintMask) vers",
"copyRegionalGuidanceTo": "Copier $t(controlLayers.regionalGuidance) vers",
"convertRasterLayerTo": "Convertir $t(controlLayers.rasterLayer) vers",
"selectObject": {
"selectObject": "Sélectionner l'objet",
"clickToAdd": "Cliquez sur la couche pour ajouter un point",
"apply": "Appliquer",
"cancel": "Annuler",
"dragToMove": "Faites glisser un point pour le déplacer",
"clickToRemove": "Cliquez sur un point pour le supprimer",
"include": "Inclure",
"invertSelection": "Sélection Inversée",
"saveAs": "Enregistrer sous",
"neutral": "Neutre",
"pointType": "Type de point",
"exclude": "Exclure",
"process": "Traiter",
"reset": "Réinitialiser",
"help1": "Sélectionnez un seul objet cible. Ajoutez des points <Bold>Inclure</Bold> et <Bold>Exclure</Bold> pour indiquer quelles parties de la couche font partie de l'objet cible.",
"help2": "Commencez par un point <Bold>Inclure</Bold> au sein de l'objet cible. Ajoutez d'autres points pour affiner la sélection. Moins de points produisent généralement de meilleurs résultats.",
"help3": "Inversez la sélection pour sélectionner tout sauf l'objet cible."
},
"canvasAsControlLayer": "$t(controlLayers.canvas) en tant que $t(controlLayers.controlLayer)",
"convertRegionalGuidanceTo": "Convertir $t(controlLayers.regionalGuidance) vers",
"copyRasterLayerTo": "Copier $t(controlLayers.rasterLayer) vers",
"newControlLayer": "Nouveau $t(controlLayers.controlLayer)",
"newRegionalGuidance": "Nouveau $t(controlLayers.regionalGuidance)",
"replaceCurrent": "Remplacer Actuel",
"convertControlLayerTo": "Convertir $t(controlLayers.controlLayer) vers",
"convertInpaintMaskTo": "Convertir $t(controlLayers.inpaintMask) vers",
"copyControlLayerTo": "Copier $t(controlLayers.controlLayer) vers",
"newInpaintMask": "Nouveau $t(controlLayers.inpaintMask)",
"newRasterLayer": "Nouveau $t(controlLayers.rasterLayer)",
"canvasAsRasterLayer": "$t(controlLayers.canvas) en tant que $t(controlLayers.rasterLayer)"
"controlLayer_withCount_other": "Controler les couches"
},
"upscaling": {
"exceedsMaxSizeDetails": "La limite maximale d'agrandissement est de {{maxUpscaleDimension}}x{{maxUpscaleDimension}} pixels. Veuillez essayer une image plus petite ou réduire votre sélection d'échelle.",
@@ -2116,7 +2048,7 @@
"config": "Configuration",
"canvas": "Toile",
"generation": "Génération",
"workflows": "Workflows",
"workflows": "Processus",
"system": "Système",
"models": "Modèles",
"logNamespaces": "Journalisation des espaces de noms",
@@ -2139,9 +2071,9 @@
"newUserExperience": {
"toGetStarted": "Pour commencer, saisissez un prompt dans la boîte et cliquez sur <StrongComponent>Invoke</StrongComponent> pour générer votre première image. Sélectionnez un template de prompt pour améliorer les résultats. Vous pouvez choisir de sauvegarder vos images directement dans la <StrongComponent>Galerie</StrongComponent> ou de les modifier sur la <StrongComponent>Toile</StrongComponent>.",
"gettingStartedSeries": "Vous souhaitez plus de conseils? Consultez notre <LinkComponent>Série de démarrage</LinkComponent> pour des astuces sur l'exploitation du plein potentiel de l'Invoke Studio.",
"noModelsInstalled": "Il semble qu'aucun modèle ne soit installé",
"noModelsInstalled": "Il semblerait qu'aucun modèle ne soit installé",
"downloadStarterModels": "Télécharger les modèles de démarrage",
"importModels": "Importer des Modèles",
"importModels": "Importer Modèles",
"toGetStartedLocal": "Pour commencer, assurez-vous de télécharger ou d'importer des modèles nécessaires pour exécuter Invoke. Ensuite, saisissez le prompt dans la boîte et cliquez sur <StrongComponent>Invoke</StrongComponent> pour générer votre première image. Sélectionnez un template de prompt pour améliorer les résultats. Vous pouvez choisir de sauvegarder vos images directement sur <StrongComponent>Galerie</StrongComponent> ou les modifier sur la <StrongComponent>Toile</StrongComponent>."
},
"upsell": {

View File

@@ -92,9 +92,7 @@
"none": "Niente",
"new": "Nuovo",
"view": "Vista",
"close": "Chiudi",
"clipboard": "Appunti",
"ok": "Ok"
"close": "Chiudi"
},
"gallery": {
"galleryImageSize": "Dimensione dell'immagine",
@@ -544,6 +542,7 @@
"defaultSettingsSaved": "Impostazioni predefinite salvate",
"defaultSettings": "Impostazioni predefinite",
"metadata": "Metadati",
"useDefaultSettings": "Usa le impostazioni predefinite",
"triggerPhrases": "Frasi Trigger",
"deleteModelImage": "Elimina l'immagine del modello",
"localOnly": "solo locale",
@@ -589,15 +588,7 @@
"installingXModels_many": "Installazione di {{count}} modelli",
"installingXModels_other": "Installazione di {{count}} modelli",
"includesNModels": "Include {{n}} modelli e le loro dipendenze",
"starterBundleHelpText": "Installa facilmente tutti i modelli necessari per iniziare con un modello base, tra cui un modello principale, controlnet, adattatori IP e altro. Selezionando un pacchetto salterai tutti i modelli che hai già installato.",
"noDefaultSettings": "Nessuna impostazione predefinita configurata per questo modello. Visita Gestione Modelli per aggiungere impostazioni predefinite.",
"defaultSettingsOutOfSync": "Alcune impostazioni non corrispondono a quelle predefinite del modello:",
"restoreDefaultSettings": "Fare clic per utilizzare le impostazioni predefinite del modello.",
"usingDefaultSettings": "Utilizzo delle impostazioni predefinite del modello",
"huggingFace": "HuggingFace",
"huggingFaceRepoID": "HuggingFace Repository ID",
"clipEmbed": "CLIP Embed",
"t5Encoder": "T5 Encoder"
"starterBundleHelpText": "Installa facilmente tutti i modelli necessari per iniziare con un modello base, tra cui un modello principale, controlnet, adattatori IP e altro. Selezionando un pacchetto salterai tutti i modelli che hai già installato."
},
"parameters": {
"images": "Immagini",
@@ -698,8 +689,7 @@
"boxBlur": "Sfocatura Box",
"staged": "Maschera espansa",
"optimizedImageToImage": "Immagine-a-immagine ottimizzata",
"sendToCanvas": "Invia alla Tela",
"coherenceMinDenoise": "Riduzione minima del rumore"
"sendToCanvas": "Invia alla Tela"
},
"settings": {
"models": "Modelli",
@@ -734,10 +724,7 @@
"reloadingIn": "Ricaricando in",
"informationalPopoversDisabled": "Testo informativo a comparsa disabilitato",
"informationalPopoversDisabledDesc": "I testi informativi a comparsa sono disabilitati. Attivali nelle impostazioni.",
"confirmOnNewSession": "Conferma su nuova sessione",
"enableModelDescriptions": "Abilita le descrizioni dei modelli nei menu a discesa",
"modelDescriptionsDisabled": "Descrizioni dei modelli nei menu a discesa disabilitate",
"modelDescriptionsDisabledDesc": "Le descrizioni dei modelli nei menu a discesa sono state disabilitate. Abilitale nelle Impostazioni."
"confirmOnNewSession": "Conferma su nuova sessione"
},
"toast": {
"uploadFailed": "Caricamento fallito",
@@ -1089,8 +1076,7 @@
"noLoRAsInstalled": "Nessun LoRA installato",
"addLora": "Aggiungi LoRA",
"defaultVAE": "VAE predefinito",
"concepts": "Concetti",
"lora": "LoRA"
"concepts": "Concetti"
},
"invocationCache": {
"disable": "Disabilita",
@@ -1147,8 +1133,7 @@
"paragraphs": [
"Scegli quanti livelli del modello CLIP saltare.",
"Alcuni modelli funzionano meglio con determinate impostazioni di CLIP Skip."
],
"heading": "CLIP Skip"
]
},
"compositingCoherencePass": {
"heading": "Passaggio di Coerenza",
@@ -1507,42 +1492,6 @@
"Controlla quanto il prompt influenza il processo di generazione.",
"Valori di guida elevati possono causare sovrasaturazione e una guida elevata o bassa può causare risultati di generazione distorti. La guida si applica solo ai modelli FLUX DEV."
]
},
"regionalReferenceImage": {
"paragraphs": [
"Pennello per applicare un'immagine di riferimento ad aree specifiche."
],
"heading": "Immagine di riferimento Regionale"
},
"rasterLayer": {
"paragraphs": [
"Contenuto basato sui pixel della tua tela, utilizzato durante la generazione dell'immagine."
],
"heading": "Livello Raster"
},
"regionalGuidance": {
"heading": "Guida Regionale",
"paragraphs": [
"Pennello per guidare la posizione in cui devono apparire gli elementi dei prompt globali."
]
},
"regionalGuidanceAndReferenceImage": {
"heading": "Guida regionale e immagine di riferimento regionale",
"paragraphs": [
"Per la Guida Regionale, utilizzare il pennello per indicare dove devono apparire gli elementi dei prompt globali.",
"Per l'immagine di riferimento regionale, utilizzare il pennello per applicare un'immagine di riferimento ad aree specifiche."
]
},
"globalReferenceImage": {
"heading": "Immagine di riferimento Globale",
"paragraphs": [
"Applica un'immagine di riferimento per influenzare l'intera generazione."
]
},
"inpainting": {
"paragraphs": [
"Controlla quale area viene modificata, in base all'intensità di riduzione del rumore."
]
}
},
"sdxl": {
@@ -1564,6 +1513,7 @@
"refinerSteps": "Passi Affinamento"
},
"metadata": {
"seamless": "Senza giunture",
"positivePrompt": "Prompt positivo",
"negativePrompt": "Prompt negativo",
"generationMode": "Modalità generazione",
@@ -1591,10 +1541,7 @@
"parsingFailed": "Analisi non riuscita",
"recallParameter": "Richiama {{label}}",
"canvasV2Metadata": "Tela",
"guidance": "Guida",
"seamlessXAxis": "Asse X senza giunte",
"seamlessYAxis": "Asse Y senza giunte",
"vae": "VAE"
"guidance": "Guida"
},
"hrf": {
"enableHrf": "Abilita Correzione Alta Risoluzione",
@@ -1691,11 +1638,11 @@
"regionalGuidance": "Guida regionale",
"opacity": "Opacità",
"mergeVisible": "Fondi il visibile",
"mergeVisibleOk": "Livelli uniti",
"mergeVisibleOk": "Livelli visibili uniti",
"deleteReferenceImage": "Elimina l'immagine di riferimento",
"referenceImage": "Immagine di riferimento",
"fitBboxToLayers": "Adatta il riquadro di delimitazione ai livelli",
"mergeVisibleError": "Errore durante l'unione dei livelli",
"mergeVisibleError": "Errore durante l'unione dei livelli visibili",
"regionalReferenceImage": "Immagine di riferimento Regionale",
"newLayerFromImage": "Nuovo livello da immagine",
"newCanvasFromImage": "Nuova tela da immagine",
@@ -1787,7 +1734,7 @@
"composition": "Solo Composizione",
"ipAdapterMethod": "Metodo Adattatore IP"
},
"showingType": "Mostra {{type}}",
"showingType": "Mostrare {{type}}",
"dynamicGrid": "Griglia dinamica",
"tool": {
"view": "Muovi",
@@ -1915,6 +1862,8 @@
"layer_withCount_one": "Livello ({{count}})",
"layer_withCount_many": "Livelli ({{count}})",
"layer_withCount_other": "Livelli ({{count}})",
"convertToControlLayer": "Converti in livello di controllo",
"convertToRasterLayer": "Converti in livello raster",
"unlocked": "Sbloccato",
"enableTransparencyEffect": "Abilita l'effetto trasparenza",
"replaceLayer": "Sostituisci livello",
@@ -1927,7 +1876,9 @@
"newCanvasSession": "Nuova sessione Tela",
"deleteSelected": "Elimina selezione",
"settings": {
"isolatedFilteringPreview": "Anteprima del filtraggio isolata",
"isolatedStagingPreview": "Anteprima di generazione isolata",
"isolatedTransformingPreview": "Anteprima di trasformazione isolata",
"isolatedPreview": "Anteprima isolata",
"invertBrushSizeScrollDirection": "Inverti scorrimento per dimensione pennello",
"snapToGrid": {
@@ -1939,9 +1890,7 @@
"preserveMask": {
"alert": "Preservare la regione mascherata",
"label": "Preserva la regione mascherata"
},
"isolatedLayerPreview": "Anteprima livello isolato",
"isolatedLayerPreviewDesc": "Se visualizzare solo questo livello quando si eseguono operazioni come il filtraggio o la trasformazione."
}
},
"transform": {
"reset": "Reimposta",
@@ -1986,46 +1935,9 @@
"canvasGroup": "Tela",
"newRasterLayer": "Nuovo Livello Raster",
"saveCanvasToGallery": "Salva la Tela nella Galleria",
"saveToGalleryGroup": "Salva nella Galleria",
"newInpaintMask": "Nuova maschera Inpaint",
"newRegionalGuidance": "Nuova Guida Regionale"
"saveToGalleryGroup": "Salva nella Galleria"
},
"newImg2ImgCanvasFromImage": "Nuova Immagine da immagine",
"copyRasterLayerTo": "Copia $t(controlLayers.rasterLayer) in",
"copyControlLayerTo": "Copia $t(controlLayers.controlLayer) in",
"copyInpaintMaskTo": "Copia $t(controlLayers.inpaintMask) in",
"selectObject": {
"dragToMove": "Trascina un punto per spostarlo",
"clickToAdd": "Fare clic sul livello per aggiungere un punto",
"clickToRemove": "Clicca su un punto per rimuoverlo",
"help3": "Inverte la selezione per selezionare tutto tranne l'oggetto di destinazione.",
"pointType": "Tipo punto",
"apply": "Applica",
"reset": "Reimposta",
"cancel": "Annulla",
"selectObject": "Seleziona oggetto",
"invertSelection": "Inverti selezione",
"exclude": "Escludi",
"include": "Includi",
"neutral": "Neutro",
"saveAs": "Salva come",
"process": "Elabora",
"help1": "Seleziona un singolo oggetto di destinazione. Aggiungi i punti <Bold>Includi</Bold> e <Bold>Escludi</Bold> per indicare quali parti del livello fanno parte dell'oggetto di destinazione.",
"help2": "Inizia con un punto <Bold>Include</Bold> all'interno dell'oggetto di destinazione. Aggiungi altri punti per perfezionare la selezione. Meno punti in genere producono risultati migliori."
},
"convertControlLayerTo": "Converti $t(controlLayers.controlLayer) in",
"newRasterLayer": "Nuovo $t(controlLayers.rasterLayer)",
"newRegionalGuidance": "Nuova $t(controlLayers.regionalGuidance)",
"canvasAsRasterLayer": "$t(controlLayers.canvas) come $t(controlLayers.rasterLayer)",
"canvasAsControlLayer": "$t(controlLayers.canvas) come $t(controlLayers.controlLayer)",
"convertInpaintMaskTo": "Converti $t(controlLayers.inpaintMask) in",
"copyRegionalGuidanceTo": "Copia $t(controlLayers.regionalGuidance) in",
"convertRasterLayerTo": "Converti $t(controlLayers.rasterLayer) in",
"convertRegionalGuidanceTo": "Converti $t(controlLayers.regionalGuidance) in",
"newControlLayer": "Nuovo $t(controlLayers.controlLayer)",
"newInpaintMask": "Nuova $t(controlLayers.inpaintMask)",
"replaceCurrent": "Sostituisci corrente",
"mergeDown": "Unire in basso"
"newImg2ImgCanvasFromImage": "Nuova Immagine da immagine"
},
"ui": {
"tabs": {
@@ -2118,13 +2030,15 @@
"toGetStartedLocal": "Per iniziare, assicurati di scaricare o importare i modelli necessari per eseguire Invoke. Quindi, inserisci un prompt nella casella e fai clic su <StrongComponent>Invoke</StrongComponent> per generare la tua prima immagine. Seleziona un modello di prompt per migliorare i risultati. Puoi scegliere di salvare le tue immagini direttamente nella <StrongComponent>Galleria</StrongComponent> o modificarle nella <StrongComponent>Tela</StrongComponent>."
},
"whatsNew": {
"whatsNewInInvoke": "Novità in Invoke",
"line2": "Supporto Flux esteso, ora con immagini di riferimento globali",
"line3": "Tooltip e menu contestuali migliorati",
"readReleaseNotes": "Leggi le note di rilascio",
"watchRecentReleaseVideos": "Guarda i video su questa versione",
"line1": "Strumento <ItalicComponent>Seleziona oggetto</ItalicComponent> per la selezione e la modifica precise degli oggetti",
"watchUiUpdatesOverview": "Guarda le novità dell'interfaccia"
"canvasV2Announcement": {
"readReleaseNotes": "Leggi le Note di Rilascio",
"fluxSupport": "Supporto per la famiglia di modelli Flux",
"newCanvas": "Una nuova potente tela di controllo",
"watchReleaseVideo": "Guarda il video di rilascio",
"watchUiUpdatesOverview": "Guarda le novità dell'interfaccia",
"newLayerTypes": "Nuovi tipi di livello per un miglior controllo"
},
"whatsNewInInvoke": "Novità in Invoke"
},
"system": {
"logLevel": {

View File

@@ -229,6 +229,7 @@
"submitSupportTicket": "サポート依頼を送信する"
},
"metadata": {
"seamless": "シームレス",
"Threshold": "ノイズ閾値",
"seed": "シード",
"width": "幅",

View File

@@ -155,6 +155,7 @@
"path": "Pad",
"triggerPhrases": "Triggerzinnen",
"typePhraseHere": "Typ zin hier in",
"useDefaultSettings": "Gebruik standaardinstellingen",
"modelImageDeleteFailed": "Fout bij verwijderen modelafbeelding",
"modelImageUpdated": "Modelafbeelding bijgewerkt",
"modelImageUpdateFailed": "Fout bij bijwerken modelafbeelding",
@@ -665,6 +666,7 @@
}
},
"metadata": {
"seamless": "Naadloos",
"positivePrompt": "Positieve prompt",
"negativePrompt": "Negatieve prompt",
"generationMode": "Genereermodus",

View File

@@ -544,6 +544,7 @@
"scanResults": "Результаты сканирования",
"source": "Источник",
"triggerPhrases": "Триггерные фразы",
"useDefaultSettings": "Использовать стандартные настройки",
"modelName": "Название модели",
"modelSettings": "Настройки модели",
"upcastAttention": "Внимание",
@@ -572,6 +573,7 @@
"simpleModelPlaceholder": "URL или путь к локальному файлу или папке diffusers",
"urlOrLocalPath": "URL или локальный путь",
"urlOrLocalPathHelper": "URL-адреса должны указывать на один файл. Локальные пути могут указывать на один файл или папку для одной модели диффузоров.",
"hfToken": "Токен HuggingFace",
"starterModels": "Стартовые модели",
"textualInversions": "Текстовые инверсии",
"loraModels": "LoRAs",
@@ -1400,6 +1402,7 @@
}
},
"metadata": {
"seamless": "Бесшовность",
"positivePrompt": "Запрос",
"negativePrompt": "Негативный запрос",
"generationMode": "Режим генерации",
@@ -1833,12 +1836,14 @@
},
"settings": {
"isolatedPreview": "Изолированный предпросмотр",
"isolatedTransformingPreview": "Изолированный предпросмотр преобразования",
"invertBrushSizeScrollDirection": "Инвертировать прокрутку для размера кисти",
"snapToGrid": {
"label": "Привязка к сетке",
"on": "Вкл",
"off": "Выкл"
},
"isolatedFilteringPreview": "Изолированный предпросмотр фильтрации",
"pressureSensitivity": "Чувствительность к давлению",
"isolatedStagingPreview": "Изолированный предпросмотр на промежуточной стадии",
"preserveMask": {
@@ -1860,6 +1865,7 @@
"enableAutoNegative": "Включить авто негатив",
"maskFill": "Заполнение маски",
"viewProgressInViewer": "Просматривайте прогресс и результаты в <Btn>Просмотрщике изображений</Btn>.",
"convertToRasterLayer": "Конвертировать в растровый слой",
"tool": {
"move": "Двигать",
"bbox": "Ограничительная рамка",
@@ -1927,6 +1933,7 @@
"newGallerySession": "Новая сессия галереи",
"sendToCanvasDesc": "Нажатие кнопки Invoke отображает вашу текущую работу на холсте.",
"globalReferenceImages_withCount_hidden": "Глобальные эталонные изображения ({{count}} скрыто)",
"convertToControlLayer": "Конвертировать в контрольный слой",
"layer_withCount_one": "Слой ({{count}})",
"layer_withCount_few": "Слои ({{count}})",
"layer_withCount_many": "Слои ({{count}})",
@@ -2056,6 +2063,14 @@
}
},
"whatsNew": {
"canvasV2Announcement": {
"newLayerTypes": "Новые типы слоев для еще большего контроля",
"readReleaseNotes": "Прочитать информацию о выпуске",
"watchReleaseVideo": "Смотреть видео о выпуске",
"fluxSupport": "Поддержка семейства моделей Flux",
"newCanvas": "Новый мощный холст управления",
"watchUiUpdatesOverview": "Обзор обновлений пользовательского интерфейса"
},
"whatsNewInInvoke": "Что нового в Invoke"
},
"newUserExperience": {

View File

@@ -82,21 +82,7 @@
"dontShowMeThese": "请勿显示这些内容",
"beta": "测试版",
"toResolve": "解决",
"tab": "标签页",
"apply": "应用",
"edit": "编辑",
"off": "关",
"loadingImage": "正在加载图片",
"ok": "确定",
"placeholderSelectAModel": "选择一个模型",
"close": "关闭",
"reset": "重设",
"none": "无",
"new": "新建",
"view": "视图",
"alpha": "透明度通道",
"openInViewer": "在查看器中打开",
"clipboard": "剪贴板"
"tab": "标签页"
},
"gallery": {
"galleryImageSize": "预览大小",
@@ -138,7 +124,7 @@
"selectAllOnPage": "选择本页全部",
"swapImages": "交换图像",
"exitBoardSearch": "退出面板搜索",
"exitSearch": "退出图像搜索",
"exitSearch": "退出搜索",
"oldestFirst": "最旧在前",
"sortDirection": "排序方向",
"showStarredImagesFirst": "优先显示收藏的图片",
@@ -149,333 +135,17 @@
"searchImages": "按元数据搜索",
"jump": "跳过",
"compareHelp2": "按 <Kbd>M</Kbd> 键切换不同的比较模式。",
"displayBoardSearch": "板搜索",
"displaySearch": "图像搜索",
"displayBoardSearch": "显示面板搜索",
"displaySearch": "显示搜索",
"stretchToFit": "拉伸以适应",
"exitCompare": "退出对比",
"compareHelp1": "在点击图库中的图片或使用箭头键切换比较图片时,请按住<Kbd>Alt</Kbd> 键。",
"go": "运行",
"boardsSettings": "画板设置",
"imagesSettings": "画廊图片设置",
"gallery": "画廊",
"move": "移动",
"imagesTab": "您在Invoke中创建和保存的图片。",
"openViewer": "打开查看器",
"closeViewer": "关闭查看器",
"assetsTab": "您已上传用于项目的文件。"
"go": "运行"
},
"hotkeys": {
"searchHotkeys": "检索快捷键",
"noHotkeysFound": "未找到快捷键",
"clearSearch": "清除检索项",
"app": {
"cancelQueueItem": {
"title": "取消",
"desc": "取消当前正在处理的队列项目。"
},
"selectQueueTab": {
"title": "选择队列标签",
"desc": "选择队列标签。"
},
"toggleLeftPanel": {
"desc": "显示或隐藏左侧面板。",
"title": "开关左侧面板"
},
"resetPanelLayout": {
"title": "重设面板布局",
"desc": "将左侧和右侧面板重置为默认大小和布局。"
},
"togglePanels": {
"title": "开关面板",
"desc": "同时显示或隐藏左右两侧的面板。"
},
"selectWorkflowsTab": {
"title": "选择工作流标签",
"desc": "选择工作流标签。"
},
"selectModelsTab": {
"title": "选择模型标签",
"desc": "选择模型标签。"
},
"toggleRightPanel": {
"title": "开关右侧面板",
"desc": "显示或隐藏右侧面板。"
},
"clearQueue": {
"title": "清除队列",
"desc": "取消并清除所有队列条目。"
},
"selectCanvasTab": {
"title": "选择画布标签",
"desc": "选择画布标签。"
},
"invokeFront": {
"desc": "将生成请求排队,添加到队列的前面。",
"title": "调用(前台)"
},
"selectUpscalingTab": {
"title": "选择放大选项卡",
"desc": "选择高清放大选项卡。"
},
"focusPrompt": {
"title": "聚焦提示",
"desc": "将光标焦点移动到正向提示。"
},
"title": "应用程序",
"invoke": {
"title": "调用",
"desc": "将生成请求排队,添加到队列的末尾。"
}
},
"canvas": {
"selectBrushTool": {
"title": "画笔工具",
"desc": "选择画笔工具。"
},
"selectEraserTool": {
"title": "橡皮擦工具",
"desc": "选择橡皮擦工具。"
},
"title": "画布",
"selectColorPickerTool": {
"title": "拾色器工具",
"desc": "选择拾色器工具。"
},
"fitBboxToCanvas": {
"title": "使边界框适应画布",
"desc": "缩放并调整视图以适应边界框。"
},
"setZoomTo400Percent": {
"title": "缩放到400%",
"desc": "将画布的缩放设置为400%。"
},
"setZoomTo800Percent": {
"desc": "将画布的缩放设置为800%。",
"title": "缩放到800%"
},
"redo": {
"desc": "重做上一次画布操作。",
"title": "重做"
},
"nextEntity": {
"title": "下一层",
"desc": "在列表中选择下一层。"
},
"selectRectTool": {
"title": "矩形工具",
"desc": "选择矩形工具。"
},
"selectViewTool": {
"title": "视图工具",
"desc": "选择视图工具。"
},
"prevEntity": {
"desc": "在列表中选择上一层。",
"title": "上一层"
},
"transformSelected": {
"desc": "变换所选图层。",
"title": "变换"
},
"selectBboxTool": {
"title": "边界框工具",
"desc": "选择边界框工具。"
},
"setZoomTo200Percent": {
"title": "缩放到200%",
"desc": "将画布的缩放设置为200%。"
},
"applyFilter": {
"title": "应用过滤器",
"desc": "将待处理的过滤器应用于所选图层。"
},
"filterSelected": {
"title": "过滤器",
"desc": "对所选图层进行过滤。仅适用于栅格层和控制层。"
},
"cancelFilter": {
"title": "取消过滤器",
"desc": "取消待处理的过滤器。"
},
"incrementToolWidth": {
"title": "增加工具宽度",
"desc": "增加所选的画笔或橡皮擦工具的宽度。"
},
"decrementToolWidth": {
"desc": "减少所选的画笔或橡皮擦工具的宽度。",
"title": "减少工具宽度"
},
"selectMoveTool": {
"title": "移动工具",
"desc": "选择移动工具。"
},
"setFillToWhite": {
"title": "将颜色设置为白色",
"desc": "将当前工具的颜色设置为白色。"
},
"cancelTransform": {
"desc": "取消待处理的变换。",
"title": "取消变换"
},
"applyTransform": {
"title": "应用变换",
"desc": "将待处理的变换应用于所选图层。"
},
"setZoomTo100Percent": {
"title": "缩放到100%",
"desc": "将画布的缩放设置为100%。"
},
"resetSelected": {
"title": "重置图层",
"desc": "重置选定的图层。仅适用于修复蒙版和区域指导。"
},
"undo": {
"title": "撤消",
"desc": "撤消上一次画布操作。"
},
"quickSwitch": {
"title": "图层快速切换",
"desc": "在最后两个选定的图层之间切换。如果某个图层被书签标记,则始终在该图层和最后一个未标记的图层之间切换。"
},
"fitLayersToCanvas": {
"title": "使图层适应画布",
"desc": "缩放并调整视图以适应所有可见图层。"
},
"deleteSelected": {
"title": "删除图层",
"desc": "删除选定的图层。"
}
},
"hotkeys": "快捷键",
"workflows": {
"pasteSelection": {
"title": "粘贴",
"desc": "粘贴复制的节点和边。"
},
"title": "工作流",
"addNode": {
"title": "添加节点",
"desc": "打开添加节点菜单。"
},
"copySelection": {
"desc": "复制选定的节点和边。",
"title": "复制"
},
"pasteSelectionWithEdges": {
"title": "带边缘的粘贴",
"desc": "粘贴复制的节点、边,以及与复制的节点连接的所有边。"
},
"selectAll": {
"title": "全选",
"desc": "选择所有节点和边。"
},
"deleteSelection": {
"title": "删除",
"desc": "删除选定的节点和边。"
},
"undo": {
"title": "撤销",
"desc": "撤销上一个工作流操作。"
},
"redo": {
"desc": "重做上一个工作流操作。",
"title": "重做"
}
},
"gallery": {
"title": "画廊",
"galleryNavUp": {
"title": "向上导航",
"desc": "在图库网格中向上导航,选择该图像。如果在页面顶部,则转到上一页。"
},
"galleryNavUpAlt": {
"title": "向上导航(比较图像)",
"desc": "与向上导航相同,但选择比较图像,如果比较模式尚未打开,则将其打开。"
},
"selectAllOnPage": {
"desc": "选择当前页面上的所有图像。",
"title": "选页面上的所有内容"
},
"galleryNavDownAlt": {
"title": "向下导航(比较图像)",
"desc": "与向下导航相同,但选择比较图像,如果比较模式尚未打开,则将其打开。"
},
"galleryNavLeftAlt": {
"title": "向左导航(比较图像)",
"desc": "与向左导航相同,但选择比较图像,如果比较模式尚未打开,则将其打开。"
},
"clearSelection": {
"title": "清除选择",
"desc": "清除当前的选择(如果有的话)。"
},
"deleteSelection": {
"title": "删除",
"desc": "删除所有选定的图像。默认情况下,系统会提示您确认删除。如果这些图像当前在应用中使用,系统将发出警告。"
},
"galleryNavLeft": {
"title": "向左导航",
"desc": "在图库网格中向左导航,选择该图像。如果处于行的第一张图像,转到上一行。如果处于页面的第一张图像,转到上一页。"
},
"galleryNavRight": {
"title": "向右导航",
"desc": "在图库网格中向右导航,选择该图像。如果在行的最后一张图像,转到下一行。如果在页面的最后一张图像,转到下一页。"
},
"galleryNavDown": {
"desc": "在图库网格中向下导航,选择该图像。如果在页面底部,则转到下一页。",
"title": "向下导航"
},
"galleryNavRightAlt": {
"title": "向右导航(比较图像)",
"desc": "与向右导航相同,但选择比较图像,如果比较模式尚未打开,则将其打开。"
}
},
"viewer": {
"toggleMetadata": {
"desc": "显示或隐藏当前图像的元数据覆盖。",
"title": "显示/隐藏元数据"
},
"recallPrompts": {
"desc": "召回当前图像的正面和负面提示。",
"title": "召回提示"
},
"toggleViewer": {
"title": "显示/隐藏图像查看器",
"desc": "显示或隐藏图像查看器。仅在画布选项卡上可用。"
},
"recallAll": {
"desc": "召回当前图像的所有元数据。",
"title": "召回所有元数据"
},
"recallSeed": {
"title": "召回种子",
"desc": "召回当前图像的种子。"
},
"swapImages": {
"title": "交换比较图像",
"desc": "交换正在比较的图像。"
},
"nextComparisonMode": {
"title": "下一个比较模式",
"desc": "环浏览比较模式。"
},
"loadWorkflow": {
"title": "加载工作流",
"desc": "加载当前图像的保存工作流程(如果有的话)。"
},
"title": "图像查看器",
"remix": {
"title": "混合",
"desc": "召回当前图像的所有元数据,除了种子。"
},
"useSize": {
"title": "使用尺寸",
"desc": "使用当前图像的尺寸作为边界框尺寸。"
},
"runPostprocessing": {
"title": "行后处理",
"desc": "对当前图像运行所选的后处理。"
}
}
"clearSearch": "清除检索项"
},
"modelManager": {
"modelManager": "模型管理器",
@@ -540,6 +210,7 @@
"noModelsInstalled": "无已安装的模型",
"urlOrLocalPathHelper": "链接应该指向单个文件.本地路径可以指向单个文件,或者对于单个扩散模型(diffusers model),可以指向一个文件夹.",
"modelSettings": "模型设置",
"useDefaultSettings": "使用默认设置",
"scanPlaceholder": "本地文件夹路径",
"installRepo": "安装仓库",
"modelImageDeleted": "模型图像已删除",
@@ -578,16 +249,7 @@
"loraTriggerPhrases": "LoRA 触发词",
"ipAdapters": "IP适配器",
"spandrelImageToImage": "图生图(Spandrel)",
"starterModelsInModelManager": "您可以在模型管理器中找到初始模型",
"noDefaultSettings": "此模型没有配置默认设置。请访问模型管理器添加默认设置。",
"clipEmbed": "CLIP 嵌入",
"defaultSettingsOutOfSync": "某些设置与模型的默认值不匹配:",
"restoreDefaultSettings": "点击以使用模型的默认设置。",
"usingDefaultSettings": "使用模型的默认设置",
"huggingFace": "HuggingFace",
"hfTokenInvalid": "HF 令牌无效或缺失",
"hfTokenLabel": "HuggingFace 令牌(某些模型所需)",
"hfTokenHelperText": "使用某些模型需要 HF 令牌。点击这里创建或获取你的令牌。"
"starterModelsInModelManager": "您可以在模型管理器中找到初始模型"
},
"parameters": {
"images": "图像",
@@ -705,7 +367,7 @@
"uploadFailed": "上传失败",
"imageCopied": "图像已复制",
"parametersNotSet": "参数未恢复",
"uploadFailedInvalidUploadDesc": "必须是单 PNG 或 JPEG 图像。",
"uploadFailedInvalidUploadDesc": "必须是单张的 PNG 或 JPEG 图",
"connected": "服务器连接",
"parameterSet": "参数已恢复",
"parameterNotSet": "参数未恢复",
@@ -717,7 +379,7 @@
"setControlImage": "设为控制图像",
"setNodeField": "设为节点字段",
"imageUploaded": "图像已上传",
"addedToBoard": "添加到{{name}}的资产中",
"addedToBoard": "添加到面板",
"workflowLoaded": "工作流已加载",
"imageUploadFailed": "图像上传失败",
"baseModelChangedCleared_other": "已清除或禁用{{count}}个不兼容的子模型",
@@ -754,9 +416,7 @@
"createIssue": "创建问题",
"about": "关于",
"submitSupportTicket": "提交支持工单",
"toggleRightPanel": "切换右侧面板(G)",
"uploadImages": "上传图片",
"toggleLeftPanel": "开关左侧面板(T)"
"toggleRightPanel": "切换右侧面板(G)"
},
"nodes": {
"zoomInNodes": "放大",
@@ -909,7 +569,7 @@
"cancelSucceeded": "项目已取消",
"queue": "队列",
"batch": "批处理",
"clearQueueAlertDialog": "清队列立即取消所有正在处理的项目并完全清队列。待处理的过滤器将被取消。",
"clearQueueAlertDialog": "清队列时会立即取消所有处理的项目并且会完全清队列。",
"pending": "待定",
"completedIn": "完成于",
"resumeFailed": "恢复处理器时出现问题",
@@ -950,15 +610,7 @@
"openQueue": "打开队列",
"prompts_other": "提示词",
"iterations_other": "迭代",
"generations_other": "生成",
"canvas": "画布",
"workflows": "工作流",
"generation": "生成",
"other": "其他",
"gallery": "画廊",
"destination": "目标存储",
"upscaling": "高清放大",
"origin": "来源"
"generations_other": "生成"
},
"sdxl": {
"refinerStart": "Refiner 开始作用时机",
@@ -997,6 +649,7 @@
"workflow": "工作流",
"steps": "步数",
"scheduler": "调度器",
"seamless": "无缝",
"recallParameters": "召回参数",
"noRecallParameters": "未找到要召回的参数",
"vae": "VAE",
@@ -1005,11 +658,7 @@
"parsingFailed": "解析失败",
"recallParameter": "调用{{label}}",
"imageDimensions": "图像尺寸",
"parameterSet": "已设置参数{{parameter}}",
"guidance": "指导",
"seamlessXAxis": "无缝 X 轴",
"seamlessYAxis": "无缝 Y 轴",
"canvasV2Metadata": "画布"
"parameterSet": "已设置参数{{parameter}}"
},
"models": {
"noMatchingModels": "无相匹配的模型",
@@ -1060,8 +709,7 @@
"shared": "共享面板",
"archiveBoard": "归档面板",
"archived": "已归档",
"assetsWithCount_other": "{{count}}项资源",
"updateBoardError": "更新画板出错"
"assetsWithCount_other": "{{count}}项资源"
},
"dynamicPrompts": {
"seedBehaviour": {
@@ -1527,8 +1175,7 @@
},
"prompt": {
"addPromptTrigger": "添加提示词触发器",
"noMatchingTriggers": "没有匹配的触发器",
"compatibleEmbeddings": "兼容的嵌入"
"noMatchingTriggers": "没有匹配的触发器"
},
"controlLayers": {
"autoNegative": "自动反向",
@@ -1539,8 +1186,8 @@
"moveToFront": "移动到前面",
"addLayer": "添加层",
"deletePrompt": "删除提示词",
"addPositivePrompt": "添加 $t(controlLayers.prompt)",
"addNegativePrompt": "添加 $t(controlLayers.negativePrompt)",
"addPositivePrompt": "添加 $t(common.positivePrompt)",
"addNegativePrompt": "添加 $t(common.negativePrompt)",
"rectangle": "矩形",
"opacity": "透明度"
},

View File

@@ -58,6 +58,7 @@
"model": "模型",
"seed": "種子",
"vae": "VAE",
"seamless": "無縫",
"metadata": "元數據",
"width": "寬度",
"height": "高度"

View File

@@ -2,7 +2,7 @@ import { createAction } from '@reduxjs/toolkit';
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { deepClone } from 'common/util/deepClone';
import { selectDefaultIPAdapter } from 'features/controlLayers/hooks/addLayerHooks';
import { selectDefaultControlAdapter, selectDefaultIPAdapter } from 'features/controlLayers/hooks/addLayerHooks';
import { getPrefixedId } from 'features/controlLayers/konva/util';
import {
controlLayerAdded,
@@ -23,7 +23,7 @@ import type {
CanvasReferenceImageState,
CanvasRegionalGuidanceState,
} from 'features/controlLayers/store/types';
import { imageDTOToImageObject, imageDTOToImageWithDims, initialControlNet } from 'features/controlLayers/store/util';
import { imageDTOToImageObject, imageDTOToImageWithDims } from 'features/controlLayers/store/util';
import type { TypesafeDraggableData, TypesafeDroppableData } from 'features/dnd/types';
import { isValidDrop } from 'features/dnd/util/isValidDrop';
import { imageToCompareChanged, selectionChanged } from 'features/gallery/store/gallerySlice';
@@ -163,10 +163,11 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
const state = getState();
const imageObject = imageDTOToImageObject(activeData.payload.imageDTO);
const { x, y } = selectCanvasSlice(state).bbox.rect;
const defaultControlAdapter = selectDefaultControlAdapter(state);
const overrides: Partial<CanvasControlLayerState> = {
objects: [imageObject],
position: { x, y },
controlAdapter: deepClone(initialControlNet),
controlAdapter: defaultControlAdapter,
};
dispatch(controlLayerAdded({ overrides, isSelected: true }));
return;

View File

@@ -164,7 +164,7 @@ const handleVAEModels: ModelHandler = (models, state, dispatch, log) => {
// We have a VAE selected, need to check if it is available
// Grab just the VAE models
const vaeModels = models.filter((m) => isNonFluxVAEModelConfig(m));
const vaeModels = models.filter(isNonFluxVAEModelConfig);
// If the current VAE model is available, we don't need to do anything
if (vaeModels.some((m) => m.key === selectedVAEModel.key)) {
@@ -297,7 +297,7 @@ const handleUpscaleModel: ModelHandler = (models, state, dispatch, log) => {
const handleT5EncoderModels: ModelHandler = (models, state, dispatch, log) => {
const selectedT5EncoderModel = state.params.t5EncoderModel;
const t5EncoderModels = models.filter((m) => isT5EncoderModelConfig(m));
const t5EncoderModels = models.filter(isT5EncoderModelConfig);
// If the currently selected model is available, we don't need to do anything
if (selectedT5EncoderModel && t5EncoderModels.some((m) => m.key === selectedT5EncoderModel.key)) {
@@ -325,7 +325,7 @@ const handleT5EncoderModels: ModelHandler = (models, state, dispatch, log) => {
const handleCLIPEmbedModels: ModelHandler = (models, state, dispatch, log) => {
const selectedCLIPEmbedModel = state.params.clipEmbedModel;
const CLIPEmbedModels = models.filter((m) => isCLIPEmbedModelConfig(m));
const CLIPEmbedModels = models.filter(isCLIPEmbedModelConfig);
// If the currently selected model is available, we don't need to do anything
if (selectedCLIPEmbedModel && CLIPEmbedModels.some((m) => m.key === selectedCLIPEmbedModel.key)) {
@@ -353,7 +353,7 @@ const handleCLIPEmbedModels: ModelHandler = (models, state, dispatch, log) => {
const handleFLUXVAEModels: ModelHandler = (models, state, dispatch, log) => {
const selectedFLUXVAEModel = state.params.fluxVAE;
const fluxVAEModels = models.filter((m) => isFluxVAEModelConfig(m));
const fluxVAEModels = models.filter(isFluxVAEModelConfig);
// If the currently selected model is available, we don't need to do anything
if (selectedFLUXVAEModel && fluxVAEModels.some((m) => m.key === selectedFLUXVAEModel.key)) {

View File

@@ -4,8 +4,6 @@ import { atom } from 'nanostores';
/**
* A fallback non-writable atom that always returns `false`, used when a nanostores atom is only conditionally available
* in a hook or component.
*
* @knipignore
*/
export const $false: ReadableAtom<boolean> = atom(false);
/**

View File

@@ -1,6 +1,5 @@
import type { PopoverProps } from '@invoke-ai/ui-library';
import commercialLicenseBg from 'public/assets/images/commercial-license-bg.png';
import denoisingStrength from 'public/assets/images/denoising-strength.png';
export type Feature =
| 'clipSkip'
@@ -126,7 +125,7 @@ export const POPOVER_DATA: { [key in Feature]?: PopoverData } = {
href: 'https://support.invoke.ai/support/solutions/articles/151000158838-compositing-settings',
},
infillMethod: {
href: 'https://support.invoke.ai/support/solutions/articles/151000158838-compositing-settings',
href: 'https://support.invoke.ai/support/solutions/articles/151000158841-infill-and-scaling',
},
scaleBeforeProcessing: {
href: 'https://support.invoke.ai/support/solutions/articles/151000158841',
@@ -139,7 +138,6 @@ export const POPOVER_DATA: { [key in Feature]?: PopoverData } = {
},
paramDenoisingStrength: {
href: 'https://support.invoke.ai/support/solutions/articles/151000094998-image-to-image',
image: denoisingStrength,
},
paramHrf: {
href: 'https://support.invoke.ai/support/solutions/articles/151000096700-how-can-i-get-larger-images-what-does-upscaling-do-',

View File

@@ -1,57 +0,0 @@
type Props = {
/**
* The amplitude of the wave. 0 is a straight line, higher values create more pronounced waves.
*/
amplitude: number;
/**
* The number of segments in the line. More segments create a smoother wave.
*/
segments?: number;
/**
* The color of the wave.
*/
stroke: string;
/**
* The width of the wave.
*/
strokeWidth: number;
/**
* The width of the SVG.
*/
width: number;
/**
* The height of the SVG.
*/
height: number;
};
const WavyLine = ({ amplitude, stroke, strokeWidth, width, height, segments = 5 }: Props) => {
// Calculate the path dynamically based on waviness
const generatePath = () => {
if (amplitude === 0) {
// If waviness is 0, return a straight line
return `M0,${height / 2} L${width},${height / 2}`;
}
const clampedAmplitude = Math.min(height / 2, amplitude); // Cap amplitude to half the height
const segmentWidth = width / segments;
let path = `M0,${height / 2}`; // Start in the middle of the left edge
// Loop through each segment and alternate the y position to create waves
for (let i = 1; i <= segments; i++) {
const x = i * segmentWidth;
const y = height / 2 + (i % 2 === 0 ? clampedAmplitude : -clampedAmplitude);
path += ` Q${x - segmentWidth / 2},${y} ${x},${height / 2}`;
}
return path;
};
return (
<svg width={width} height={height} viewBox={`0 0 ${width} ${height}`} xmlns="http://www.w3.org/2000/svg">
<path d={generatePath()} fill="none" stroke={stroke} strokeWidth={strokeWidth} />
</svg>
);
};
export default WavyLine;

View File

@@ -202,6 +202,46 @@ const createSelector = (
if (controlLayer.controlAdapter.model?.base !== model?.base) {
problems.push(i18n.t('parameters.invoke.layer.controlAdapterIncompatibleBaseModel'));
}
// T2I Adapters require images have dimensions that are multiples of 64 (SD1.5) or 32 (SDXL)
if (controlLayer.controlAdapter.type === 't2i_adapter') {
const multiple = model?.base === 'sdxl' ? 32 : 64;
if (bbox.scaleMethod === 'none') {
if (bbox.rect.width % 16 !== 0) {
reasons.push({
content: i18n.t('parameters.invoke.layer.t2iAdapterIncompatibleBboxWidth', {
multiple,
width: bbox.rect.width,
}),
});
}
if (bbox.rect.height % 16 !== 0) {
reasons.push({
content: i18n.t('parameters.invoke.layer.t2iAdapterIncompatibleBboxHeight', {
multiple,
height: bbox.rect.height,
}),
});
}
} else {
if (bbox.scaledSize.width % 16 !== 0) {
reasons.push({
content: i18n.t('parameters.invoke.layer.t2iAdapterIncompatibleScaledBboxWidth', {
multiple,
width: bbox.scaledSize.width,
}),
});
}
if (bbox.scaledSize.height % 16 !== 0) {
reasons.push({
content: i18n.t('parameters.invoke.layer.t2iAdapterIncompatibleScaledBboxHeight', {
multiple,
height: bbox.scaledSize.height,
}),
});
}
}
}
if (problems.length) {
const content = upperFirst(problems.join(', '));
reasons.push({ prefix, content });

View File

@@ -1,15 +0,0 @@
import type { CSSProperties } from 'react';
/**
* Chakra's Tooltip's method of finding the nearest scroll parent has a problem - it assumes the first parent with
* `overflow: hidden` is the scroll parent. In this case, the Collapse component has that style, but isn't scrollable
* itself. The result is that the tooltip does not close on scroll, because the scrolling happens higher up in the DOM.
*
* As a hacky workaround, we can set the overflow to `visible`, which allows the scroll parent search to continue up to
* the actual scroll parent (in this case, the OverlayScrollbarsComponent in BoardsListWrapper).
*
* See: https://github.com/chakra-ui/chakra-ui/issues/7871#issuecomment-2453780958
*/
export const fixTooltipCloseOnScrollStyles: CSSProperties = {
overflow: 'visible',
};

View File

@@ -7,8 +7,6 @@ import { EntityListSelectedEntityActionBar } from 'features/controlLayers/compon
import { selectHasEntities } from 'features/controlLayers/store/selectors';
import { memo, useRef } from 'react';
import { ParamDenoisingStrength } from './ParamDenoisingStrength';
export const CanvasLayersPanelContent = memo(() => {
const hasEntities = useAppSelector(selectHasEntities);
const layersPanelFocusRef = useRef<HTMLDivElement>(null);
@@ -18,8 +16,6 @@ export const CanvasLayersPanelContent = memo(() => {
<Flex ref={layersPanelFocusRef} flexDir="column" gap={2} w="full" h="full">
<EntityListSelectedEntityActionBar />
<Divider py={0} />
<ParamDenoisingStrength />
<Divider py={0} />
{!hasEntities && <CanvasAddEntityButtons />}
{hasEntities && <CanvasEntityList />}
</Flex>

View File

@@ -7,7 +7,7 @@ import { CanvasEntityPreviewImage } from 'features/controlLayers/components/comm
import { CanvasEntitySettingsWrapper } from 'features/controlLayers/components/common/CanvasEntitySettingsWrapper';
import { CanvasEntityEditableTitle } from 'features/controlLayers/components/common/CanvasEntityTitleEdit';
import { ControlLayerBadges } from 'features/controlLayers/components/ControlLayer/ControlLayerBadges';
import { ControlLayerSettings } from 'features/controlLayers/components/ControlLayer/ControlLayerSettings';
import { ControlLayerControlAdapter } from 'features/controlLayers/components/ControlLayer/ControlLayerControlAdapter';
import { ControlLayerAdapterGate } from 'features/controlLayers/contexts/EntityAdapterContext';
import { EntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
@@ -41,7 +41,7 @@ export const ControlLayer = memo(({ id }: Props) => {
<CanvasEntityHeaderCommonActions />
</CanvasEntityHeader>
<CanvasEntitySettingsWrapper>
<ControlLayerSettings />
<ControlLayerControlAdapter />
</CanvasEntitySettingsWrapper>
<IAIDroppable data={dropData} dropLabel={t('controlLayers.replaceLayer')} />
</CanvasEntityContainer>

View File

@@ -6,7 +6,6 @@ import { BeginEndStepPct } from 'features/controlLayers/components/common/BeginE
import { Weight } from 'features/controlLayers/components/common/Weight';
import { ControlLayerControlAdapterControlMode } from 'features/controlLayers/components/ControlLayer/ControlLayerControlAdapterControlMode';
import { ControlLayerControlAdapterModel } from 'features/controlLayers/components/ControlLayer/ControlLayerControlAdapterModel';
import { useEntityAdapterContext } from 'features/controlLayers/contexts/EntityAdapterContext';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { usePullBboxIntoLayer } from 'features/controlLayers/hooks/saveCanvasHooks';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
@@ -17,7 +16,6 @@ import {
controlLayerModelChanged,
controlLayerWeightChanged,
} from 'features/controlLayers/store/canvasSlice';
import { getFilterForModel } from 'features/controlLayers/store/filters';
import { selectIsFLUX } from 'features/controlLayers/store/paramsSlice';
import { selectCanvasSlice, selectEntityOrThrow } from 'features/controlLayers/store/selectors';
import type { CanvasEntityIdentifier, ControlModeV2 } from 'features/controlLayers/store/types';
@@ -46,7 +44,6 @@ export const ControlLayerControlAdapter = memo(() => {
const controlAdapter = useControlLayerControlAdapter(entityIdentifier);
const filter = useEntityFilter(entityIdentifier);
const isFLUX = useAppSelector(selectIsFLUX);
const adapter = useEntityAdapterContext('control_layer');
const onChangeBeginEndStepPct = useCallback(
(beginEndStepPct: [number, number]) => {
@@ -72,43 +69,8 @@ export const ControlLayerControlAdapter = memo(() => {
const onChangeModel = useCallback(
(modelConfig: ControlNetModelConfig | T2IAdapterModelConfig) => {
dispatch(controlLayerModelChanged({ entityIdentifier, modelConfig }));
// When we change the model, we need may need to start filtering w/ the simplified filter mode, and/or change the
// filter config.
const isFiltering = adapter.filterer.$isFiltering.get();
const isSimple = adapter.filterer.$simple.get();
// If we are filtering and _not_ in simple mode, that means the user has clicked Advanced. They want to be in control
// of the settings. Bail early without doing anything else.
if (isFiltering && !isSimple) {
return;
}
// Else, we are in simple mode and will take care of some things for the user.
// First, check if the newly-selected model has a default filter. It may not - for example, Tile controlnet models
// don't have a default filter.
const defaultFilterForNewModel = getFilterForModel(modelConfig);
if (!defaultFilterForNewModel) {
// The user has chosen a model that doesn't have a default filter - cancel any in-progress filtering and bail.
if (isFiltering) {
adapter.filterer.cancel();
}
return;
}
// At this point, we know the user has selected a model that has a default filter. We need to either start filtering
// with that default filter, or update the existing filter config to match the new model's default filter.
const filterConfig = defaultFilterForNewModel.buildDefaults();
if (isFiltering) {
adapter.filterer.$filterConfig.set(filterConfig);
} else {
adapter.filterer.start(filterConfig);
}
// The user may have disabled auto-processing, so we should process the filter manually. This is essentially a
// no-op if auto-processing is already enabled, because the process method is debounced.
adapter.filterer.process();
},
[adapter.filterer, dispatch, entityIdentifier]
[dispatch, entityIdentifier]
);
const pullBboxIntoLayer = usePullBboxIntoLayer(entityIdentifier);

View File

@@ -5,7 +5,6 @@ import { CanvasEntityMenuItemsCropToBbox } from 'features/controlLayers/componen
import { CanvasEntityMenuItemsDelete } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDelete';
import { CanvasEntityMenuItemsDuplicate } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDuplicate';
import { CanvasEntityMenuItemsFilter } from 'features/controlLayers/components/common/CanvasEntityMenuItemsFilter';
import { CanvasEntityMenuItemsMergeDown } from 'features/controlLayers/components/common/CanvasEntityMenuItemsMergeDown';
import { CanvasEntityMenuItemsSave } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSave';
import { CanvasEntityMenuItemsSelectObject } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSelectObject';
import { CanvasEntityMenuItemsTransform } from 'features/controlLayers/components/common/CanvasEntityMenuItemsTransform';
@@ -28,7 +27,6 @@ export const ControlLayerMenuItems = memo(() => {
<CanvasEntityMenuItemsSelectObject />
<ControlLayerMenuItemsTransparencyEffect />
<MenuDivider />
<CanvasEntityMenuItemsMergeDown />
<ControlLayerMenuItemsCopyToSubMenu />
<ControlLayerMenuItemsConvertToSubMenu />
<CanvasEntityMenuItemsCropToBbox />

View File

@@ -2,8 +2,7 @@ import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useEntityIsLocked } from 'features/controlLayers/hooks/useEntityIsLocked';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import {
controlLayerConvertedToInpaintMask,
controlLayerConvertedToRasterLayer,
@@ -18,8 +17,7 @@ export const ControlLayerMenuItemsConvertToSubMenu = memo(() => {
const subMenu = useSubMenu();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('control_layer');
const isBusy = useCanvasIsBusy();
const isLocked = useEntityIsLocked(entityIdentifier);
const isInteractable = useIsEntityInteractable(entityIdentifier);
const convertToInpaintMask = useCallback(() => {
dispatch(controlLayerConvertedToInpaintMask({ entityIdentifier, replace: true }));
@@ -34,19 +32,19 @@ export const ControlLayerMenuItemsConvertToSubMenu = memo(() => {
}, [dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiSwapBold />} isDisabled={isLocked || isBusy}>
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiSwapBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.convertControlLayerTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<MenuItem onClick={convertToInpaintMask} icon={<PiSwapBold />} isDisabled={isLocked || isBusy}>
<MenuItem onClick={convertToInpaintMask} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.inpaintMask')}
</MenuItem>
<MenuItem onClick={convertToRegionalGuidance} icon={<PiSwapBold />} isDisabled={isLocked || isBusy}>
<MenuItem onClick={convertToRegionalGuidance} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.regionalGuidance')}
</MenuItem>
<MenuItem onClick={convertToRasterLayer} icon={<PiSwapBold />} isDisabled={isLocked || isBusy}>
<MenuItem onClick={convertToRasterLayer} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.rasterLayer')}
</MenuItem>
</MenuList>

View File

@@ -3,7 +3,7 @@ import { useAppDispatch } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { CanvasEntityMenuItemsCopyToClipboard } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCopyToClipboard';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import {
controlLayerConvertedToInpaintMask,
controlLayerConvertedToRasterLayer,
@@ -18,7 +18,7 @@ export const ControlLayerMenuItemsCopyToSubMenu = memo(() => {
const subMenu = useSubMenu();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('control_layer');
const isBusy = useCanvasIsBusy();
const isInteractable = useIsEntityInteractable(entityIdentifier);
const copyToInpaintMask = useCallback(() => {
dispatch(controlLayerConvertedToInpaintMask({ entityIdentifier }));
@@ -33,20 +33,20 @@ export const ControlLayerMenuItemsCopyToSubMenu = memo(() => {
}, [dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiCopyBold />} isDisabled={isBusy}>
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiCopyBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.copyControlLayerTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<CanvasEntityMenuItemsCopyToClipboard />
<MenuItem onClick={copyToInpaintMask} icon={<PiCopyBold />} isDisabled={isBusy}>
<MenuItem onClick={copyToInpaintMask} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newInpaintMask')}
</MenuItem>
<MenuItem onClick={copyToRegionalGuidance} icon={<PiCopyBold />} isDisabled={isBusy}>
<MenuItem onClick={copyToRegionalGuidance} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newRegionalGuidance')}
</MenuItem>
<MenuItem onClick={copyToRasterLayer} icon={<PiCopyBold />} isDisabled={isBusy}>
<MenuItem onClick={copyToRasterLayer} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newRasterLayer')}
</MenuItem>
</MenuList>

View File

@@ -2,7 +2,7 @@ import { MenuItem } from '@invoke-ai/ui-library';
import { createSelector } from '@reduxjs/toolkit';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useEntityIsLocked } from 'features/controlLayers/hooks/useEntityIsLocked';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { controlLayerWithTransparencyEffectToggled } from 'features/controlLayers/store/canvasSlice';
import { selectCanvasSlice, selectEntityOrThrow } from 'features/controlLayers/store/selectors';
import { memo, useCallback, useMemo } from 'react';
@@ -13,7 +13,7 @@ export const ControlLayerMenuItemsTransparencyEffect = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('control_layer');
const isLocked = useEntityIsLocked(entityIdentifier);
const isInteractable = useIsEntityInteractable(entityIdentifier);
const selectWithTransparencyEffect = useMemo(
() =>
createSelector(selectCanvasSlice, (canvas) => {
@@ -28,7 +28,7 @@ export const ControlLayerMenuItemsTransparencyEffect = memo(() => {
}, [dispatch, entityIdentifier]);
return (
<MenuItem onClick={onToggle} icon={<PiDropHalfBold />} isDisabled={isLocked}>
<MenuItem onClick={onToggle} icon={<PiDropHalfBold />} isDisabled={!isInteractable}>
{withTransparencyEffect
? t('controlLayers.disableTransparencyEffect')
: t('controlLayers.enableTransparencyEffect')}

View File

@@ -1,18 +0,0 @@
import { ControlLayerControlAdapter } from 'features/controlLayers/components/ControlLayer/ControlLayerControlAdapter';
import { ControlLayerSettingsEmptyState } from 'features/controlLayers/components/ControlLayer/ControlLayerSettingsEmptyState';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useEntityIsEmpty } from 'features/controlLayers/hooks/useEntityIsEmpty';
import { memo } from 'react';
export const ControlLayerSettings = memo(() => {
const entityIdentifier = useEntityIdentifierContext();
const isEmpty = useEntityIsEmpty(entityIdentifier);
if (isEmpty) {
return <ControlLayerSettingsEmptyState />;
}
return <ControlLayerControlAdapter />;
});
ControlLayerSettings.displayName = 'ControlLayerSettings';

View File

@@ -1,50 +0,0 @@
import { Button, Flex, Text } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useImageUploadButton } from 'common/hooks/useImageUploadButton';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { activeTabCanvasRightPanelChanged } from 'features/ui/store/uiSlice';
import { memo, useCallback, useMemo } from 'react';
import { Trans } from 'react-i18next';
import type { PostUploadAction } from 'services/api/types';
export const ControlLayerSettingsEmptyState = memo(() => {
const entityIdentifier = useEntityIdentifierContext('control_layer');
const dispatch = useAppDispatch();
const isBusy = useCanvasIsBusy();
const postUploadAction = useMemo<PostUploadAction>(
() => ({ type: 'REPLACE_LAYER_WITH_IMAGE', entityIdentifier }),
[entityIdentifier]
);
const uploadApi = useImageUploadButton({ postUploadAction });
const onClickGalleryButton = useCallback(() => {
dispatch(activeTabCanvasRightPanelChanged('gallery'));
}, [dispatch]);
return (
<Flex flexDir="column" gap={3} position="relative" w="full" p={4}>
<Text textAlign="center" color="base.300">
<Trans
i18nKey="controlLayers.controlLayerEmptyState"
components={{
UploadButton: (
<Button
isDisabled={isBusy}
size="sm"
variant="link"
color="base.300"
{...uploadApi.getUploadButtonProps()}
/>
),
GalleryButton: (
<Button onClick={onClickGalleryButton} isDisabled={isBusy} size="sm" variant="link" color="base.300" />
),
}}
/>
</Text>
<input {...uploadApi.getUploadInputProps()} />
</Flex>
);
});
ControlLayerSettingsEmptyState.displayName = 'ControlLayerSettingsEmptyState';

View File

@@ -9,7 +9,6 @@ import {
MenuList,
Spacer,
Spinner,
Text,
} from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { useAppSelector } from 'app/store/storeHooks';
@@ -29,10 +28,13 @@ import { memo, useCallback, useMemo, useRef } from 'react';
import { useTranslation } from 'react-i18next';
import { PiCaretDownBold } from 'react-icons/pi';
const FilterContentAdvanced = memo(
const FilterContent = memo(
({ adapter }: { adapter: CanvasEntityAdapterRasterLayer | CanvasEntityAdapterControlLayer }) => {
const { t } = useTranslation();
const ref = useRef<HTMLDivElement>(null);
useFocusRegion('canvas', ref, { focusOnMount: true });
const config = useStore(adapter.filterer.$filterConfig);
const isCanvasFocused = useIsRegionFocused('canvas');
const isProcessing = useStore(adapter.filterer.$isProcessing);
const hasImageState = useStore(adapter.filterer.$hasImageState);
const autoProcess = useAppSelector(selectAutoProcess);
@@ -71,8 +73,36 @@ const FilterContentAdvanced = memo(
adapter.filterer.saveAs('control_layer');
}, [adapter.filterer]);
useRegisteredHotkeys({
id: 'applyFilter',
category: 'canvas',
callback: adapter.filterer.apply,
options: { enabled: !isProcessing && isCanvasFocused },
dependencies: [adapter.filterer, isProcessing, isCanvasFocused],
});
useRegisteredHotkeys({
id: 'cancelFilter',
category: 'canvas',
callback: adapter.filterer.cancel,
options: { enabled: !isProcessing && isCanvasFocused },
dependencies: [adapter.filterer, isProcessing, isCanvasFocused],
});
return (
<>
<Flex
ref={ref}
bg="base.800"
borderRadius="base"
p={4}
flexDir="column"
gap={4}
w={420}
h="auto"
shadow="dark-lg"
transitionProperty="height"
transitionDuration="normal"
>
<Flex w="full" gap={4}>
<Heading size="md" color="base.300" userSelect="none">
{t('controlLayers.filter.filter')}
@@ -139,67 +169,12 @@ const FilterContentAdvanced = memo(
{t('controlLayers.filter.cancel')}
</Button>
</ButtonGroup>
</>
</Flex>
);
}
);
FilterContentAdvanced.displayName = 'FilterContentAdvanced';
const FilterContentSimple = memo(
({ adapter }: { adapter: CanvasEntityAdapterRasterLayer | CanvasEntityAdapterControlLayer }) => {
const { t } = useTranslation();
const config = useStore(adapter.filterer.$filterConfig);
const isProcessing = useStore(adapter.filterer.$isProcessing);
const hasImageState = useStore(adapter.filterer.$hasImageState);
const isValid = useMemo(() => {
return IMAGE_FILTERS[config.type].validateConfig?.(config as never) ?? true;
}, [config]);
const onClickAdvanced = useCallback(() => {
adapter.filterer.$simple.set(false);
}, [adapter.filterer.$simple]);
return (
<>
<Flex w="full" gap={4}>
<Heading size="md" color="base.300" userSelect="none">
{t('controlLayers.filter.filter')}
</Heading>
<Spacer />
</Flex>
<Flex flexDir="column" w="full" gap={2} pb={2}>
<Text color="base.500" textAlign="center">
{t('controlLayers.filter.processingLayerWith', { type: t(`controlLayers.filter.${config.type}.label`) })}
</Text>
<Text color="base.500" textAlign="center">
{t('controlLayers.filter.forMoreControl')}
</Text>
</Flex>
<ButtonGroup isAttached={false} size="sm" w="full">
<Button variant="ghost" onClick={onClickAdvanced}>
{t('controlLayers.filter.advanced')}
</Button>
<Spacer />
<Button
onClick={adapter.filterer.apply}
loadingText={t('controlLayers.filter.apply')}
variant="ghost"
isDisabled={isProcessing || !isValid || !hasImageState}
>
{t('controlLayers.filter.apply')}
</Button>
<Button variant="ghost" onClick={adapter.filterer.cancel} loadingText={t('controlLayers.filter.cancel')}>
{t('controlLayers.filter.cancel')}
</Button>
</ButtonGroup>
</>
);
}
);
FilterContentSimple.displayName = 'FilterContentSimple';
FilterContent.displayName = 'FilterContent';
export const Filter = () => {
const canvasManager = useCanvasManager();
@@ -207,54 +182,8 @@ export const Filter = () => {
if (!adapter) {
return null;
}
return <FilterContent adapter={adapter} />;
};
Filter.displayName = 'Filter';
const FilterContent = memo(
({ adapter }: { adapter: CanvasEntityAdapterRasterLayer | CanvasEntityAdapterControlLayer }) => {
const simplified = useStore(adapter.filterer.$simple);
const isCanvasFocused = useIsRegionFocused('canvas');
const isProcessing = useStore(adapter.filterer.$isProcessing);
const ref = useRef<HTMLDivElement>(null);
useFocusRegion('canvas', ref, { focusOnMount: true });
useRegisteredHotkeys({
id: 'applyFilter',
category: 'canvas',
callback: adapter.filterer.apply,
options: { enabled: !isProcessing && isCanvasFocused, enableOnFormTags: true },
dependencies: [adapter.filterer, isProcessing, isCanvasFocused],
});
useRegisteredHotkeys({
id: 'cancelFilter',
category: 'canvas',
callback: adapter.filterer.cancel,
options: { enabled: !isProcessing && isCanvasFocused, enableOnFormTags: true },
dependencies: [adapter.filterer, isProcessing, isCanvasFocused],
});
return (
<Flex
ref={ref}
bg="base.800"
borderRadius="base"
p={4}
flexDir="column"
gap={4}
w={420}
h="auto"
shadow="dark-lg"
transitionProperty="height"
transitionDuration="normal"
>
{simplified && <FilterContentSimple adapter={adapter} />}
{!simplified && <FilterContentAdvanced adapter={adapter} />}
</Flex>
);
}
);
FilterContent.displayName = 'FilterContent';

View File

@@ -4,8 +4,6 @@ import { CanvasEntityMenuItemsArrange } from 'features/controlLayers/components/
import { CanvasEntityMenuItemsCropToBbox } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCropToBbox';
import { CanvasEntityMenuItemsDelete } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDelete';
import { CanvasEntityMenuItemsDuplicate } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDuplicate';
import { CanvasEntityMenuItemsMergeDown } from 'features/controlLayers/components/common/CanvasEntityMenuItemsMergeDown';
import { CanvasEntityMenuItemsSave } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSave';
import { CanvasEntityMenuItemsTransform } from 'features/controlLayers/components/common/CanvasEntityMenuItemsTransform';
import { InpaintMaskMenuItemsConvertToSubMenu } from 'features/controlLayers/components/InpaintMask/InpaintMaskMenuItemsConvertToSubMenu';
import { InpaintMaskMenuItemsCopyToSubMenu } from 'features/controlLayers/components/InpaintMask/InpaintMaskMenuItemsCopyToSubMenu';
@@ -22,11 +20,9 @@ export const InpaintMaskMenuItems = memo(() => {
<MenuDivider />
<CanvasEntityMenuItemsTransform />
<MenuDivider />
<CanvasEntityMenuItemsMergeDown />
<InpaintMaskMenuItemsCopyToSubMenu />
<InpaintMaskMenuItemsConvertToSubMenu />
<CanvasEntityMenuItemsCropToBbox />
<CanvasEntityMenuItemsSave />
</>
);
});

View File

@@ -2,8 +2,7 @@ import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useEntityIsLocked } from 'features/controlLayers/hooks/useEntityIsLocked';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { inpaintMaskConvertedToRegionalGuidance } from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
@@ -14,21 +13,20 @@ export const InpaintMaskMenuItemsConvertToSubMenu = memo(() => {
const subMenu = useSubMenu();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('inpaint_mask');
const isBusy = useCanvasIsBusy();
const isLocked = useEntityIsLocked(entityIdentifier);
const isInteractable = useIsEntityInteractable(entityIdentifier);
const convertToRegionalGuidance = useCallback(() => {
dispatch(inpaintMaskConvertedToRegionalGuidance({ entityIdentifier, replace: true }));
}, [dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiSwapBold />} isDisabled={isBusy || isLocked}>
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiSwapBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.convertInpaintMaskTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<MenuItem onClick={convertToRegionalGuidance} icon={<PiSwapBold />} isDisabled={isBusy || isLocked}>
<MenuItem onClick={convertToRegionalGuidance} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.regionalGuidance')}
</MenuItem>
</MenuList>

View File

@@ -3,7 +3,7 @@ import { useAppDispatch } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { CanvasEntityMenuItemsCopyToClipboard } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCopyToClipboard';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { inpaintMaskConvertedToRegionalGuidance } from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
@@ -14,21 +14,21 @@ export const InpaintMaskMenuItemsCopyToSubMenu = memo(() => {
const subMenu = useSubMenu();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('inpaint_mask');
const isBusy = useCanvasIsBusy();
const isInteractable = useIsEntityInteractable(entityIdentifier);
const copyToRegionalGuidance = useCallback(() => {
dispatch(inpaintMaskConvertedToRegionalGuidance({ entityIdentifier }));
}, [dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiCopyBold />} isDisabled={isBusy}>
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiCopyBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.copyInpaintMaskTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<CanvasEntityMenuItemsCopyToClipboard />
<MenuItem onClick={copyToRegionalGuidance} icon={<PiCopyBold />} isDisabled={isBusy}>
<MenuItem onClick={copyToRegionalGuidance} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newRegionalGuidance')}
</MenuItem>
</MenuList>

View File

@@ -1,82 +0,0 @@
import {
Badge,
CompositeNumberInput,
CompositeSlider,
Flex,
FormControl,
FormLabel,
useToken,
} from '@invoke-ai/ui-library';
import { createSelector } from '@reduxjs/toolkit';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { InformationalPopover } from 'common/components/InformationalPopover/InformationalPopover';
import WavyLine from 'common/components/WavyLine';
import { selectImg2imgStrength, setImg2imgStrength } from 'features/controlLayers/store/paramsSlice';
import { selectActiveRasterLayerEntities } from 'features/controlLayers/store/selectors';
import { selectImg2imgStrengthConfig } from 'features/system/store/configSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
const selectIsEnabled = createSelector(selectActiveRasterLayerEntities, (entities) => entities.length > 0);
export const ParamDenoisingStrength = memo(() => {
const img2imgStrength = useAppSelector(selectImg2imgStrength);
const dispatch = useAppDispatch();
const isEnabled = useAppSelector(selectIsEnabled);
const onChange = useCallback(
(v: number) => {
dispatch(setImg2imgStrength(v));
},
[dispatch]
);
const config = useAppSelector(selectImg2imgStrengthConfig);
const { t } = useTranslation();
const [invokeBlue300] = useToken('colors', ['invokeBlue.300']);
return (
<FormControl isDisabled={!isEnabled} p={1} justifyContent="space-between" h={8}>
<Flex gap={3} alignItems="center">
<InformationalPopover feature="paramDenoisingStrength">
<FormLabel mr={0}>{`${t('parameters.denoisingStrength')}`}</FormLabel>
</InformationalPopover>
{isEnabled && (
<WavyLine amplitude={img2imgStrength * 10} stroke={invokeBlue300} strokeWidth={1} width={40} height={14} />
)}
</Flex>
{isEnabled ? (
<>
<CompositeSlider
step={config.coarseStep}
fineStep={config.fineStep}
min={config.sliderMin}
max={config.sliderMax}
defaultValue={config.initial}
onChange={onChange}
value={img2imgStrength}
/>
<CompositeNumberInput
step={config.coarseStep}
fineStep={config.fineStep}
min={config.numberInputMin}
max={config.numberInputMax}
defaultValue={config.initial}
onChange={onChange}
value={img2imgStrength}
variant="outline"
/>
</>
) : (
<Flex alignItems="center">
<Badge opacity="0.6">
{t('common.disabled')} - {t('parameters.noRasterLayers')}
</Badge>
</Flex>
)}
</FormControl>
);
});
ParamDenoisingStrength.displayName = 'ParamDenoisingStrength';

View File

@@ -5,7 +5,6 @@ import { CanvasEntityMenuItemsCropToBbox } from 'features/controlLayers/componen
import { CanvasEntityMenuItemsDelete } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDelete';
import { CanvasEntityMenuItemsDuplicate } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDuplicate';
import { CanvasEntityMenuItemsFilter } from 'features/controlLayers/components/common/CanvasEntityMenuItemsFilter';
import { CanvasEntityMenuItemsMergeDown } from 'features/controlLayers/components/common/CanvasEntityMenuItemsMergeDown';
import { CanvasEntityMenuItemsSave } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSave';
import { CanvasEntityMenuItemsSelectObject } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSelectObject';
import { CanvasEntityMenuItemsTransform } from 'features/controlLayers/components/common/CanvasEntityMenuItemsTransform';
@@ -26,7 +25,6 @@ export const RasterLayerMenuItems = memo(() => {
<CanvasEntityMenuItemsFilter />
<CanvasEntityMenuItemsSelectObject />
<MenuDivider />
<CanvasEntityMenuItemsMergeDown />
<RasterLayerMenuItemsCopyToSubMenu />
<RasterLayerMenuItemsConvertToSubMenu />
<CanvasEntityMenuItemsCropToBbox />

View File

@@ -1,16 +1,14 @@
import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { deepClone } from 'common/util/deepClone';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useEntityIsLocked } from 'features/controlLayers/hooks/useEntityIsLocked';
import { selectDefaultControlAdapter } from 'features/controlLayers/hooks/addLayerHooks';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import {
rasterLayerConvertedToControlLayer,
rasterLayerConvertedToInpaintMask,
rasterLayerConvertedToRegionalGuidance,
} from 'features/controlLayers/store/canvasSlice';
import { initialControlNet } from 'features/controlLayers/store/util';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiSwapBold } from 'react-icons/pi';
@@ -21,8 +19,8 @@ export const RasterLayerMenuItemsConvertToSubMenu = memo(() => {
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('raster_layer');
const isBusy = useCanvasIsBusy();
const isLocked = useEntityIsLocked(entityIdentifier);
const defaultControlAdapter = useAppSelector(selectDefaultControlAdapter);
const isInteractable = useIsEntityInteractable(entityIdentifier);
const convertToInpaintMask = useCallback(() => {
dispatch(rasterLayerConvertedToInpaintMask({ entityIdentifier, replace: true }));
@@ -37,25 +35,25 @@ export const RasterLayerMenuItemsConvertToSubMenu = memo(() => {
rasterLayerConvertedToControlLayer({
entityIdentifier,
replace: true,
overrides: { controlAdapter: deepClone(initialControlNet) },
overrides: { controlAdapter: defaultControlAdapter },
})
);
}, [dispatch, entityIdentifier]);
}, [defaultControlAdapter, dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiSwapBold />} isDisabled={isBusy || isLocked}>
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiSwapBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.convertRasterLayerTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<MenuItem onClick={convertToInpaintMask} icon={<PiSwapBold />} isDisabled={isBusy || isLocked}>
<MenuItem onClick={convertToInpaintMask} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.inpaintMask')}
</MenuItem>
<MenuItem onClick={convertToRegionalGuidance} icon={<PiSwapBold />} isDisabled={isBusy || isLocked}>
<MenuItem onClick={convertToRegionalGuidance} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.regionalGuidance')}
</MenuItem>
<MenuItem onClick={convertToControlLayer} icon={<PiSwapBold />} isDisabled={isBusy || isLocked}>
<MenuItem onClick={convertToControlLayer} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.controlLayer')}
</MenuItem>
</MenuList>

View File

@@ -1,16 +1,15 @@
import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { deepClone } from 'common/util/deepClone';
import { CanvasEntityMenuItemsCopyToClipboard } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCopyToClipboard';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { selectDefaultControlAdapter } from 'features/controlLayers/hooks/addLayerHooks';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import {
rasterLayerConvertedToControlLayer,
rasterLayerConvertedToInpaintMask,
rasterLayerConvertedToRegionalGuidance,
} from 'features/controlLayers/store/canvasSlice';
import { initialControlNet } from 'features/controlLayers/store/util';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiCopyBold } from 'react-icons/pi';
@@ -21,7 +20,8 @@ export const RasterLayerMenuItemsCopyToSubMenu = memo(() => {
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('raster_layer');
const isBusy = useCanvasIsBusy();
const defaultControlAdapter = useAppSelector(selectDefaultControlAdapter);
const isInteractable = useIsEntityInteractable(entityIdentifier);
const copyToInpaintMask = useCallback(() => {
dispatch(rasterLayerConvertedToInpaintMask({ entityIdentifier }));
@@ -35,26 +35,26 @@ export const RasterLayerMenuItemsCopyToSubMenu = memo(() => {
dispatch(
rasterLayerConvertedToControlLayer({
entityIdentifier,
overrides: { controlAdapter: deepClone(initialControlNet) },
overrides: { controlAdapter: defaultControlAdapter },
})
);
}, [dispatch, entityIdentifier]);
}, [defaultControlAdapter, dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiCopyBold />} isDisabled={isBusy}>
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiCopyBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.copyRasterLayerTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<CanvasEntityMenuItemsCopyToClipboard />
<MenuItem onClick={copyToInpaintMask} icon={<PiCopyBold />} isDisabled={isBusy}>
<MenuItem onClick={copyToInpaintMask} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newInpaintMask')}
</MenuItem>
<MenuItem onClick={copyToRegionalGuidance} icon={<PiCopyBold />} isDisabled={isBusy}>
<MenuItem onClick={copyToRegionalGuidance} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newRegionalGuidance')}
</MenuItem>
<MenuItem onClick={copyToControlLayer} icon={<PiCopyBold />} isDisabled={isBusy}>
<MenuItem onClick={copyToControlLayer} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newControlLayer')}
</MenuItem>
</MenuList>

View File

@@ -4,8 +4,6 @@ import { CanvasEntityMenuItemsArrange } from 'features/controlLayers/components/
import { CanvasEntityMenuItemsCropToBbox } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCropToBbox';
import { CanvasEntityMenuItemsDelete } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDelete';
import { CanvasEntityMenuItemsDuplicate } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDuplicate';
import { CanvasEntityMenuItemsMergeDown } from 'features/controlLayers/components/common/CanvasEntityMenuItemsMergeDown';
import { CanvasEntityMenuItemsSave } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSave';
import { CanvasEntityMenuItemsTransform } from 'features/controlLayers/components/common/CanvasEntityMenuItemsTransform';
import { RegionalGuidanceMenuItemsAddPromptsAndIPAdapter } from 'features/controlLayers/components/RegionalGuidance/RegionalGuidanceMenuItemsAddPromptsAndIPAdapter';
import { RegionalGuidanceMenuItemsAutoNegative } from 'features/controlLayers/components/RegionalGuidance/RegionalGuidanceMenuItemsAutoNegative';
@@ -27,11 +25,9 @@ export const RegionalGuidanceMenuItems = memo(() => {
<CanvasEntityMenuItemsTransform />
<RegionalGuidanceMenuItemsAutoNegative />
<MenuDivider />
<CanvasEntityMenuItemsMergeDown />
<RegionalGuidanceMenuItemsCopyToSubMenu />
<RegionalGuidanceMenuItemsConvertToSubMenu />
<CanvasEntityMenuItemsCropToBbox />
<CanvasEntityMenuItemsSave />
</>
);
});

View File

@@ -2,8 +2,7 @@ import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useEntityIsLocked } from 'features/controlLayers/hooks/useEntityIsLocked';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { rgConvertedToInpaintMask } from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
@@ -14,21 +13,20 @@ export const RegionalGuidanceMenuItemsConvertToSubMenu = memo(() => {
const subMenu = useSubMenu();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('regional_guidance');
const isBusy = useCanvasIsBusy();
const isLocked = useEntityIsLocked(entityIdentifier);
const isInteractable = useIsEntityInteractable(entityIdentifier);
const convertToInpaintMask = useCallback(() => {
dispatch(rgConvertedToInpaintMask({ entityIdentifier, replace: true }));
}, [dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiSwapBold />} isDisabled={isLocked || isBusy}>
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiSwapBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.convertRegionalGuidanceTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<MenuItem onClick={convertToInpaintMask} icon={<PiSwapBold />} isDisabled={isLocked || isBusy}>
<MenuItem onClick={convertToInpaintMask} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.inpaintMask')}
</MenuItem>
</MenuList>

View File

@@ -3,7 +3,7 @@ import { useAppDispatch } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { CanvasEntityMenuItemsCopyToClipboard } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCopyToClipboard';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { rgConvertedToInpaintMask } from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
@@ -14,21 +14,21 @@ export const RegionalGuidanceMenuItemsCopyToSubMenu = memo(() => {
const subMenu = useSubMenu();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('regional_guidance');
const isBusy = useCanvasIsBusy();
const isInteractable = useIsEntityInteractable(entityIdentifier);
const copyToInpaintMask = useCallback(() => {
dispatch(rgConvertedToInpaintMask({ entityIdentifier }));
}, [dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiCopyBold />} isDisabled={isBusy}>
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiCopyBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.copyRegionalGuidanceTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<CanvasEntityMenuItemsCopyToClipboard />
<MenuItem onClick={copyToInpaintMask} icon={<PiCopyBold />} isDisabled={isBusy}>
<MenuItem onClick={copyToInpaintMask} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newInpaintMask')}
</MenuItem>
</MenuList>

View File

@@ -2,15 +2,14 @@ import type { SystemStyleObject } from '@invoke-ai/ui-library';
import { Button, Collapse, Flex, Icon, Spacer, Text } from '@invoke-ai/ui-library';
import { InformationalPopover } from 'common/components/InformationalPopover/InformationalPopover';
import { useBoolean } from 'common/hooks/useBoolean';
import { fixTooltipCloseOnScrollStyles } from 'common/util/fixTooltipCloseOnScrollStyles';
import { CanvasEntityAddOfTypeButton } from 'features/controlLayers/components/common/CanvasEntityAddOfTypeButton';
import { CanvasEntityMergeVisibleButton } from 'features/controlLayers/components/common/CanvasEntityMergeVisibleButton';
import { CanvasEntityTypeIsHiddenToggle } from 'features/controlLayers/components/common/CanvasEntityTypeIsHiddenToggle';
import { useEntityTypeInformationalPopover } from 'features/controlLayers/hooks/useEntityTypeInformationalPopover';
import { useEntityTypeTitle } from 'features/controlLayers/hooks/useEntityTypeTitle';
import { type CanvasEntityIdentifier, isRenderableEntityType } from 'features/controlLayers/store/types';
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
import type { PropsWithChildren } from 'react';
import { memo } from 'react';
import { memo, useMemo } from 'react';
import { PiCaretDownBold } from 'react-icons/pi';
type Props = PropsWithChildren<{
@@ -26,6 +25,8 @@ export const CanvasEntityGroupList = memo(({ isSelected, type, children }: Props
const title = useEntityTypeTitle(type);
const informationalPopoverFeature = useEntityTypeInformationalPopover(type);
const collapse = useBoolean(true);
const canMergeVisible = useMemo(() => type === 'raster_layer' || type === 'inpaint_mask', [type]);
const canHideAll = useMemo(() => type !== 'reference_image', [type]);
return (
<Flex flexDir="column" w="full">
@@ -75,11 +76,11 @@ export const CanvasEntityGroupList = memo(({ isSelected, type, children }: Props
<Spacer />
</Flex>
{isRenderableEntityType(type) && <CanvasEntityMergeVisibleButton type={type} />}
{isRenderableEntityType(type) && <CanvasEntityTypeIsHiddenToggle type={type} />}
{canMergeVisible && <CanvasEntityMergeVisibleButton type={type} />}
{canHideAll && <CanvasEntityTypeIsHiddenToggle type={type} />}
<CanvasEntityAddOfTypeButton type={type} />
</Flex>
<Collapse in={collapse.isTrue} style={fixTooltipCloseOnScrollStyles}>
<Collapse in={collapse.isTrue}>
<Flex flexDir="column" gap={2} pt={2}>
{children}
</Flex>

View File

@@ -2,7 +2,7 @@ import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { IconMenuItem } from 'common/components/IconMenuItem';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import {
entityArrangedBackwardOne,
entityArrangedForwardOne,
@@ -56,7 +56,7 @@ export const CanvasEntityMenuItemsArrange = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext();
const isBusy = useCanvasIsBusy();
const isInteractable = useIsEntityInteractable(entityIdentifier);
const selectValidActions = useMemo(
() =>
createMemoizedSelector(selectCanvasSlice, (canvas) => {
@@ -92,28 +92,28 @@ export const CanvasEntityMenuItemsArrange = memo(() => {
aria-label={t('controlLayers.moveToFront')}
tooltip={t('controlLayers.moveToFront')}
onClick={moveToFront}
isDisabled={!validActions.canMoveToFront || isBusy}
isDisabled={!validActions.canMoveToFront || !isInteractable}
icon={<PiArrowLineUpBold />}
/>
<IconMenuItem
aria-label={t('controlLayers.moveForward')}
tooltip={t('controlLayers.moveForward')}
onClick={moveForwardOne}
isDisabled={!validActions.canMoveForwardOne || isBusy}
isDisabled={!validActions.canMoveForwardOne || !isInteractable}
icon={<PiArrowUpBold />}
/>
<IconMenuItem
aria-label={t('controlLayers.moveBackward')}
tooltip={t('controlLayers.moveBackward')}
onClick={moveBackwardOne}
isDisabled={!validActions.canMoveBackwardOne || isBusy}
isDisabled={!validActions.canMoveBackwardOne || !isInteractable}
icon={<PiArrowDownBold />}
/>
<IconMenuItem
aria-label={t('controlLayers.moveToBack')}
tooltip={t('controlLayers.moveToBack')}
onClick={moveToBack}
isDisabled={!validActions.canMoveToBack || isBusy}
isDisabled={!validActions.canMoveToBack || !isInteractable}
icon={<PiArrowLineDownBold />}
/>
</>

View File

@@ -1,9 +1,9 @@
import { MenuItem } from '@invoke-ai/ui-library';
import { useEntityAdapterSafe } from 'features/controlLayers/contexts/EntityAdapterContext';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useCopyLayerToClipboard } from 'features/controlLayers/hooks/useCopyLayerToClipboard';
import { useEntityIsEmpty } from 'features/controlLayers/hooks/useEntityIsEmpty';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiCopyBold } from 'react-icons/pi';
@@ -12,7 +12,7 @@ export const CanvasEntityMenuItemsCopyToClipboard = memo(() => {
const { t } = useTranslation();
const entityIdentifier = useEntityIdentifierContext();
const adapter = useEntityAdapterSafe(entityIdentifier);
const isBusy = useCanvasIsBusy();
const isInteractable = useIsEntityInteractable(entityIdentifier);
const isEmpty = useEntityIsEmpty(entityIdentifier);
const copyLayerToClipboard = useCopyLayerToClipboard();
@@ -21,7 +21,7 @@ export const CanvasEntityMenuItemsCopyToClipboard = memo(() => {
}, [copyLayerToClipboard, adapter]);
return (
<MenuItem onClick={onClick} icon={<PiCopyBold />} isDisabled={isBusy || isEmpty}>
<MenuItem onClick={onClick} icon={<PiCopyBold />} isDisabled={!isInteractable || isEmpty}>
{t('common.clipboard')}
</MenuItem>
);

View File

@@ -1,8 +1,7 @@
import { MenuItem } from '@invoke-ai/ui-library';
import { useEntityAdapterSafe } from 'features/controlLayers/contexts/EntityAdapterContext';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useEntityIsLocked } from 'features/controlLayers/hooks/useEntityIsLocked';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiCropBold } from 'react-icons/pi';
@@ -11,8 +10,7 @@ export const CanvasEntityMenuItemsCropToBbox = memo(() => {
const { t } = useTranslation();
const entityIdentifier = useEntityIdentifierContext();
const adapter = useEntityAdapterSafe(entityIdentifier);
const isBusy = useCanvasIsBusy();
const isLocked = useEntityIsLocked(entityIdentifier);
const isInteractable = useIsEntityInteractable(entityIdentifier);
const onClick = useCallback(() => {
if (!adapter) {
return;
@@ -21,7 +19,7 @@ export const CanvasEntityMenuItemsCropToBbox = memo(() => {
}, [adapter]);
return (
<MenuItem onClick={onClick} icon={<PiCropBold />} isDisabled={isBusy || isLocked}>
<MenuItem onClick={onClick} icon={<PiCropBold />} isDisabled={!isInteractable}>
{t('controlLayers.cropLayerToBbox')}
</MenuItem>
);

View File

@@ -2,7 +2,7 @@ import { MenuItem } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { IconMenuItem } from 'common/components/IconMenuItem';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { entityDeleted } from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
@@ -16,7 +16,7 @@ export const CanvasEntityMenuItemsDelete = memo(({ asIcon = false }: Props) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext();
const isBusy = useCanvasIsBusy();
const isInteractable = useIsEntityInteractable(entityIdentifier);
const deleteEntity = useCallback(() => {
dispatch(entityDeleted({ entityIdentifier }));
@@ -30,13 +30,13 @@ export const CanvasEntityMenuItemsDelete = memo(({ asIcon = false }: Props) => {
onClick={deleteEntity}
icon={<PiTrashSimpleBold />}
isDestructive
isDisabled={isBusy}
isDisabled={!isInteractable}
/>
);
}
return (
<MenuItem onClick={deleteEntity} icon={<PiTrashSimpleBold />} isDestructive isDisabled={isBusy}>
<MenuItem onClick={deleteEntity} icon={<PiTrashSimpleBold />} isDestructive isDisabled={!isInteractable}>
{t('common.delete')}
</MenuItem>
);

View File

@@ -1,7 +1,7 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { IconMenuItem } from 'common/components/IconMenuItem';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { entityDuplicated } from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
@@ -11,7 +11,7 @@ export const CanvasEntityMenuItemsDuplicate = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext();
const isBusy = useCanvasIsBusy();
const isInteractable = useIsEntityInteractable(entityIdentifier);
const onClick = useCallback(() => {
dispatch(entityDuplicated({ entityIdentifier }));
@@ -23,7 +23,7 @@ export const CanvasEntityMenuItemsDuplicate = memo(() => {
tooltip={t('controlLayers.duplicate')}
onClick={onClick}
icon={<PiCopyFill />}
isDisabled={isBusy}
isDisabled={!isInteractable}
/>
);
});

View File

@@ -1,35 +0,0 @@
import { MenuItem } from '@invoke-ai/ui-library';
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useEntityIdentifierBelowThisOne } from 'features/controlLayers/hooks/useNextRenderableEntityIdentifier';
import type { CanvasRenderableEntityType } from 'features/controlLayers/store/types';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiStackSimpleBold } from 'react-icons/pi';
export const CanvasEntityMenuItemsMergeDown = memo(() => {
const { t } = useTranslation();
const canvasManager = useCanvasManager();
const isBusy = useCanvasIsBusy();
const entityIdentifier = useEntityIdentifierContext<CanvasRenderableEntityType>();
const entityIdentifierBelowThisOne = useEntityIdentifierBelowThisOne(entityIdentifier);
const mergeDown = useCallback(() => {
if (entityIdentifierBelowThisOne === null) {
return;
}
canvasManager.compositor.mergeByEntityIdentifiers([entityIdentifierBelowThisOne, entityIdentifier], true);
}, [canvasManager.compositor, entityIdentifier, entityIdentifierBelowThisOne]);
return (
<MenuItem
onClick={mergeDown}
icon={<PiStackSimpleBold />}
isDisabled={isBusy || entityIdentifierBelowThisOne === null}
>
{t('controlLayers.mergeDown')}
</MenuItem>
);
});
CanvasEntityMenuItemsMergeDown.displayName = 'CanvasEntityMenuItemsMergeDown';

View File

@@ -1,7 +1,7 @@
import { MenuItem } from '@invoke-ai/ui-library';
import { useEntityAdapterSafe } from 'features/controlLayers/contexts/EntityAdapterContext';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { useSaveLayerToAssets } from 'features/controlLayers/hooks/useSaveLayerToAssets';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
@@ -11,14 +11,14 @@ export const CanvasEntityMenuItemsSave = memo(() => {
const { t } = useTranslation();
const entityIdentifier = useEntityIdentifierContext();
const adapter = useEntityAdapterSafe(entityIdentifier);
const isBusy = useCanvasIsBusy();
const isInteractable = useIsEntityInteractable(entityIdentifier);
const saveLayerToAssets = useSaveLayerToAssets();
const onClick = useCallback(() => {
saveLayerToAssets(adapter);
}, [saveLayerToAssets, adapter]);
return (
<MenuItem onClick={onClick} icon={<PiFloppyDiskBold />} isDisabled={isBusy}>
<MenuItem onClick={onClick} icon={<PiFloppyDiskBold />} isDisabled={!isInteractable}>
{t('controlLayers.saveLayerToAssets')}
</MenuItem>
);

View File

@@ -1,24 +1,80 @@
import { IconButton } from '@invoke-ai/ui-library';
import { logger } from 'app/logging/logger';
import { useAppDispatch } from 'app/store/storeHooks';
import { withResultAsync } from 'common/util/result';
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useVisibleEntityCountByType } from 'features/controlLayers/hooks/useVisibleEntityCountByType';
import type { CanvasRenderableEntityType } from 'features/controlLayers/store/types';
import { useEntityTypeCount } from 'features/controlLayers/hooks/useEntityTypeCount';
import { inpaintMaskAdded, rasterLayerAdded } from 'features/controlLayers/store/canvasSlice';
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
import { imageDTOToImageObject } from 'features/controlLayers/store/util';
import { toast } from 'features/toast/toast';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiStackBold } from 'react-icons/pi';
import { serializeError } from 'serialize-error';
const log = logger('canvas');
type Props = {
type: CanvasRenderableEntityType;
type: CanvasEntityIdentifier['type'];
};
export const CanvasEntityMergeVisibleButton = memo(({ type }: Props) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const canvasManager = useCanvasManager();
const isBusy = useCanvasIsBusy();
const entityCount = useVisibleEntityCountByType(type);
const mergeVisible = useCallback(() => {
canvasManager.compositor.mergeVisibleOfType(type);
}, [canvasManager.compositor, type]);
const entityCount = useEntityTypeCount(type);
const onClick = useCallback(async () => {
if (type === 'raster_layer') {
const rect = canvasManager.stage.getVisibleRect('raster_layer');
const result = await withResultAsync(() =>
canvasManager.compositor.rasterizeAndUploadCompositeRasterLayer(rect, { is_intermediate: true })
);
if (result.isOk()) {
dispatch(
rasterLayerAdded({
isSelected: true,
overrides: {
objects: [imageDTOToImageObject(result.value)],
position: { x: Math.floor(rect.x), y: Math.floor(rect.y) },
},
isMergingVisible: true,
})
);
toast({ title: t('controlLayers.mergeVisibleOk') });
} else {
log.error({ error: serializeError(result.error) }, 'Failed to merge visible');
toast({ title: t('controlLayers.mergeVisibleError'), status: 'error' });
}
} else if (type === 'inpaint_mask') {
const rect = canvasManager.stage.getVisibleRect('inpaint_mask');
const result = await withResultAsync(() =>
canvasManager.compositor.rasterizeAndUploadCompositeInpaintMask(rect, false)
);
if (result.isOk()) {
dispatch(
inpaintMaskAdded({
isSelected: true,
overrides: {
objects: [imageDTOToImageObject(result.value)],
position: { x: Math.floor(rect.x), y: Math.floor(rect.y) },
},
isMergingVisible: true,
})
);
toast({ title: t('controlLayers.mergeVisibleOk') });
} else {
log.error({ error: serializeError(result.error) }, 'Failed to merge visible');
toast({ title: t('controlLayers.mergeVisibleError'), status: 'error' });
}
} else {
log.error({ type }, 'Unsupported type for merge visible');
}
}, [canvasManager.compositor, canvasManager.stage, dispatch, t, type]);
return (
<IconButton
@@ -27,7 +83,7 @@ export const CanvasEntityMergeVisibleButton = memo(({ type }: Props) => {
tooltip={t('controlLayers.mergeVisible')}
variant="link"
icon={<PiStackBold />}
onClick={mergeVisible}
onClick={onClick}
alignSelf="stretch"
isDisabled={entityCount <= 1 || isBusy}
/>

View File

@@ -1,4 +1,4 @@
import { Box, chakra, Flex, Tooltip } from '@invoke-ai/ui-library';
import { Box, chakra, Flex } from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { createSelector } from '@reduxjs/toolkit';
import { rgbColorToString } from 'common/util/colorCodeTransformers';
@@ -86,63 +86,13 @@ export const CanvasEntityPreviewImage = memo(() => {
useEffect(updatePreview, [updatePreview, canvasCache, nodeRect, pixelRect]);
return (
<Tooltip label={<TooltipContent canvasRef={canvasRef} />} p={2} closeOnScroll>
<Flex
position="relative"
alignItems="center"
justifyContent="center"
w={CONTAINER_WIDTH_PX}
h={CONTAINER_WIDTH_PX}
borderRadius="sm"
borderWidth={1}
bg="base.900"
flexShrink={0}
>
<Box
position="absolute"
top={0}
right={0}
bottom={0}
left={0}
bgImage={TRANSPARENCY_CHECKERBOARD_PATTERN_DARK_DATAURL}
bgSize="5px"
/>
<ChakraCanvas position="relative" ref={canvasRef} objectFit="contain" maxW="full" maxH="full" />
</Flex>
</Tooltip>
);
});
CanvasEntityPreviewImage.displayName = 'CanvasEntityPreviewImage';
const TooltipContent = ({ canvasRef }: { canvasRef: React.RefObject<HTMLCanvasElement> }) => {
const canvasRef2 = useRef<HTMLCanvasElement>(null);
useEffect(() => {
if (!canvasRef2.current || !canvasRef.current) {
return;
}
const ctx = canvasRef2.current.getContext('2d');
if (!ctx) {
return;
}
canvasRef2.current.width = canvasRef.current.width;
canvasRef2.current.height = canvasRef.current.height;
ctx.clearRect(0, 0, canvasRef2.current.width, canvasRef2.current.height);
ctx.drawImage(canvasRef.current, 0, 0);
}, [canvasRef]);
return (
<Flex
position="relative"
alignItems="center"
justifyContent="center"
w={150}
h={150}
w={CONTAINER_WIDTH_PX}
h={CONTAINER_WIDTH_PX}
borderRadius="sm"
borderWidth={1}
bg="base.900"
@@ -155,9 +105,11 @@ const TooltipContent = ({ canvasRef }: { canvasRef: React.RefObject<HTMLCanvasEl
bottom={0}
left={0}
bgImage={TRANSPARENCY_CHECKERBOARD_PATTERN_DARK_DATAURL}
bgSize="8px"
bgSize="5px"
/>
<ChakraCanvas position="relative" ref={canvasRef2} objectFit="contain" maxW="full" maxH="full" />
<ChakraCanvas position="relative" ref={canvasRef} objectFit="contain" maxW="full" maxH="full" />
</Flex>
);
};
});
CanvasEntityPreviewImage.displayName = 'CanvasEntityPreviewImage';

View File

@@ -4,10 +4,9 @@ import type { CanvasEntityAdapterControlLayer } from 'features/controlLayers/kon
import type { CanvasEntityAdapterInpaintMask } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterInpaintMask';
import type { CanvasEntityAdapterRasterLayer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterRasterLayer';
import type { CanvasEntityAdapterRegionalGuidance } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterRegionalGuidance';
import type { CanvasEntityAdapterFromType } from 'features/controlLayers/konva/CanvasEntity/types';
import type { CanvasEntityIdentifier, CanvasRenderableEntityType } from 'features/controlLayers/store/types';
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
import type { PropsWithChildren } from 'react';
import { createContext, memo, useContext, useMemo, useSyncExternalStore } from 'react';
import { createContext, memo, useMemo, useSyncExternalStore } from 'react';
import { assert } from 'tsafe';
const EntityAdapterContext = createContext<
@@ -96,17 +95,6 @@ export const RegionalGuidanceAdapterGate = memo(({ children }: PropsWithChildren
return <EntityAdapterContext.Provider value={adapter}>{children}</EntityAdapterContext.Provider>;
});
export const useEntityAdapterContext = <T extends CanvasRenderableEntityType | undefined = CanvasRenderableEntityType>(
type?: T
): CanvasEntityAdapterFromType<T extends undefined ? CanvasRenderableEntityType : T> => {
const adapter = useContext(EntityAdapterContext);
assert(adapter, 'useEntityIdentifier must be used within a EntityIdentifierProvider');
if (type) {
assert(adapter.entityIdentifier.type === type, 'useEntityIdentifier must be used with the correct type');
}
return adapter as CanvasEntityAdapterFromType<T extends undefined ? CanvasRenderableEntityType : T>;
};
RegionalGuidanceAdapterGate.displayName = 'RegionalGuidanceAdapterGate';
export const useEntityAdapterSafe = (

View File

@@ -49,7 +49,6 @@ import { isControlNetOrT2IAdapterModelConfig, isIPAdapterModelConfig } from 'ser
import type { Equals } from 'tsafe';
import { assert } from 'tsafe';
/** @knipignore */
export const selectDefaultControlAdapter = createSelector(
selectModelConfigsQuery,
selectBase,
@@ -93,10 +92,11 @@ export const selectDefaultIPAdapter = createSelector(
export const useAddControlLayer = () => {
const dispatch = useAppDispatch();
const defaultControlAdapter = useAppSelector(selectDefaultControlAdapter);
const func = useCallback(() => {
const overrides = { controlAdapter: deepClone(initialControlNet) };
const overrides = { controlAdapter: defaultControlAdapter };
dispatch(controlLayerAdded({ isSelected: true, overrides }));
}, [dispatch]);
}, [defaultControlAdapter, dispatch]);
return func;
};

View File

@@ -4,7 +4,7 @@ import type { SerializableObject } from 'common/types';
import { deepClone } from 'common/util/deepClone';
import { withResultAsync } from 'common/util/result';
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import { selectDefaultIPAdapter } from 'features/controlLayers/hooks/addLayerHooks';
import { selectDefaultControlAdapter, selectDefaultIPAdapter } from 'features/controlLayers/hooks/addLayerHooks';
import { getPrefixedId } from 'features/controlLayers/konva/util';
import {
controlLayerAdded,
@@ -25,7 +25,7 @@ import type {
Rect,
RegionalGuidanceReferenceImageState,
} from 'features/controlLayers/store/types';
import { imageDTOToImageObject, imageDTOToImageWithDims, initialControlNet } from 'features/controlLayers/store/util';
import { imageDTOToImageObject, imageDTOToImageWithDims } from 'features/controlLayers/store/util';
import { toast } from 'features/toast/toast';
import { useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
@@ -51,9 +51,7 @@ const useSaveCanvas = ({ region, saveToGallery, toastOk, toastError, onSave, wit
const saveCanvas = useCallback(async () => {
const rect =
region === 'bbox'
? canvasManager.stateApi.getBbox().rect
: canvasManager.compositor.getVisibleRectOfType('raster_layer');
region === 'bbox' ? canvasManager.stateApi.getBbox().rect : canvasManager.stage.getVisibleRect('raster_layer');
if (rect.width === 0 || rect.height === 0) {
toast({
@@ -70,19 +68,12 @@ const useSaveCanvas = ({ region, saveToGallery, toastOk, toastError, onSave, wit
metadata = selectCanvasMetadata(store.getState());
}
const result = await withResultAsync(() => {
const rasterAdapters = canvasManager.compositor.getVisibleAdaptersOfType('raster_layer');
return canvasManager.compositor.getCompositeImageDTO(
rasterAdapters,
rect,
{
is_intermediate: !saveToGallery,
metadata,
},
undefined,
true // force upload the image to ensure it gets added to the gallery
);
});
const result = await withResultAsync(() =>
canvasManager.compositor.rasterizeAndUploadCompositeRasterLayer(rect, {
is_intermediate: !saveToGallery,
metadata,
})
);
if (result.isOk()) {
if (onSave) {
@@ -95,6 +86,7 @@ const useSaveCanvas = ({ region, saveToGallery, toastOk, toastError, onSave, wit
}
}, [
canvasManager.compositor,
canvasManager.stage,
canvasManager.stateApi,
onSave,
region,
@@ -229,12 +221,13 @@ export const useNewRasterLayerFromBbox = () => {
export const useNewControlLayerFromBbox = () => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const defaultControlAdapter = useAppSelector(selectDefaultControlAdapter);
const arg = useMemo<UseSaveCanvasArg>(() => {
const onSave = (imageDTO: ImageDTO, rect: Rect) => {
const overrides: Partial<CanvasControlLayerState> = {
objects: [imageDTOToImageObject(imageDTO)],
controlAdapter: deepClone(initialControlNet),
controlAdapter: deepClone(defaultControlAdapter),
position: { x: rect.x, y: rect.y },
};
dispatch(controlLayerAdded({ overrides, isSelected: true }));
@@ -247,7 +240,7 @@ export const useNewControlLayerFromBbox = () => {
toastOk: t('controlLayers.newControlLayerOk'),
toastError: t('controlLayers.newControlLayerError'),
};
}, [dispatch, t]);
}, [defaultControlAdapter, dispatch, t]);
const func = useSaveCanvas(arg);
return func;
};

View File

@@ -1,8 +1,9 @@
import { useStore } from '@nanostores/react';
import { $false } from 'app/store/nanostores/util';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useAssertSingleton } from 'common/hooks/useAssertSingleton';
import { useEntityAdapterSafe } from 'features/controlLayers/contexts/EntityAdapterContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useEntityIsLocked } from 'features/controlLayers/hooks/useEntityIsLocked';
import { entityReset } from 'features/controlLayers/store/canvasSlice';
import { selectSelectedEntityIdentifier } from 'features/controlLayers/store/selectors';
import { isMaskEntityIdentifier } from 'features/controlLayers/store/types';
@@ -13,30 +14,30 @@ import { useCallback, useMemo } from 'react';
export function useCanvasResetLayerHotkey() {
useAssertSingleton(useCanvasResetLayerHotkey.name);
const dispatch = useAppDispatch();
const entityIdentifier = useAppSelector(selectSelectedEntityIdentifier);
const selectedEntityIdentifier = useAppSelector(selectSelectedEntityIdentifier);
const isBusy = useCanvasIsBusy();
const adapter = useEntityAdapterSafe(entityIdentifier);
const isLocked = useEntityIsLocked(entityIdentifier);
const adapter = useEntityAdapterSafe(selectedEntityIdentifier);
const isInteractable = useStore(adapter?.$isInteractable ?? $false);
const imageViewer = useImageViewer();
const resetSelectedLayer = useCallback(() => {
if (entityIdentifier === null || adapter === null) {
if (selectedEntityIdentifier === null || adapter === null) {
return;
}
adapter.bufferRenderer.clearBuffer();
dispatch(entityReset({ entityIdentifier }));
}, [adapter, dispatch, entityIdentifier]);
dispatch(entityReset({ entityIdentifier: selectedEntityIdentifier }));
}, [adapter, dispatch, selectedEntityIdentifier]);
const isResetAllowed = useMemo(
() => entityIdentifier !== null && isMaskEntityIdentifier(entityIdentifier),
[entityIdentifier]
const isResetEnabled = useMemo(
() => selectedEntityIdentifier !== null && isMaskEntityIdentifier(selectedEntityIdentifier),
[selectedEntityIdentifier]
);
useRegisteredHotkeys({
id: 'resetSelected',
category: 'canvas',
callback: resetSelectedLayer,
options: { enabled: isResetAllowed && !isBusy && !isLocked && !imageViewer.isOpen },
dependencies: [isResetAllowed, isBusy, isLocked, resetSelectedLayer, imageViewer.isOpen],
options: { enabled: isResetEnabled && !isBusy && isInteractable && !imageViewer.isOpen },
dependencies: [isResetEnabled, isBusy, isInteractable, resetSelectedLayer, imageViewer.isOpen],
});
}

View File

@@ -1,8 +1,8 @@
import { useStore } from '@nanostores/react';
import { $false } from 'app/store/nanostores/util';
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import { useEntityAdapterSafe } from 'features/controlLayers/contexts/EntityAdapterContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useEntityIsEmpty } from 'features/controlLayers/hooks/useEntityIsEmpty';
import { useEntityIsLocked } from 'features/controlLayers/hooks/useEntityIsLocked';
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
import { isFilterableEntityIdentifier } from 'features/controlLayers/store/types';
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
@@ -13,8 +13,8 @@ export const useEntityFilter = (entityIdentifier: CanvasEntityIdentifier | null)
const adapter = useEntityAdapterSafe(entityIdentifier);
const imageViewer = useImageViewer();
const isBusy = useCanvasIsBusy();
const isLocked = useEntityIsLocked(entityIdentifier);
const isEmpty = useEntityIsEmpty(entityIdentifier);
const isInteractable = useStore(adapter?.$isInteractable ?? $false);
const isEmpty = useStore(adapter?.$isEmpty ?? $false);
const isDisabled = useMemo(() => {
if (!entityIdentifier) {
@@ -29,14 +29,14 @@ export const useEntityFilter = (entityIdentifier: CanvasEntityIdentifier | null)
if (isBusy) {
return true;
}
if (isLocked) {
if (!isInteractable) {
return true;
}
if (isEmpty) {
return true;
}
return false;
}, [entityIdentifier, adapter, isBusy, isLocked, isEmpty]);
}, [entityIdentifier, adapter, isBusy, isInteractable, isEmpty]);
const start = useCallback(() => {
if (isDisabled) {

View File

@@ -3,11 +3,8 @@ import { buildSelectHasObjects } from 'features/controlLayers/store/selectors';
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
import { useMemo } from 'react';
export const useEntityIsEmpty = (entityIdentifier: CanvasEntityIdentifier | null) => {
const selectHasObjects = useMemo(
() => (entityIdentifier ? buildSelectHasObjects(entityIdentifier) : () => false),
[entityIdentifier]
);
export const useEntityIsEmpty = (entityIdentifier: CanvasEntityIdentifier) => {
const selectHasObjects = useMemo(() => buildSelectHasObjects(entityIdentifier), [entityIdentifier]);
const hasObjects = useAppSelector(selectHasObjects);
return !hasObjects;

View File

@@ -0,0 +1,13 @@
import { useStore } from '@nanostores/react';
import { $true } from 'app/store/nanostores/util';
import { useEntityAdapterSafe } from 'features/controlLayers/contexts/EntityAdapterContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
export const useIsEntityInteractable = (entityIdentifier: CanvasEntityIdentifier) => {
const isBusy = useCanvasIsBusy();
const adapter = useEntityAdapterSafe(entityIdentifier);
const isInteractable = useStore(adapter?.$isInteractable ?? $true);
return !isBusy && isInteractable;
};

View File

@@ -4,13 +4,10 @@ import { selectCanvasSlice, selectEntity } from 'features/controlLayers/store/se
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
import { useMemo } from 'react';
export const useEntityIsLocked = (entityIdentifier: CanvasEntityIdentifier | null) => {
export const useEntityIsLocked = (entityIdentifier: CanvasEntityIdentifier) => {
const selectIsLocked = useMemo(
() =>
createSelector(selectCanvasSlice, (canvas) => {
if (!entityIdentifier) {
return false;
}
const entity = selectEntity(canvas, entityIdentifier);
if (!entity) {
return false;

View File

@@ -1,8 +1,8 @@
import { useStore } from '@nanostores/react';
import { $false } from 'app/store/nanostores/util';
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import { useEntityAdapterSafe } from 'features/controlLayers/contexts/EntityAdapterContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useEntityIsEmpty } from 'features/controlLayers/hooks/useEntityIsEmpty';
import { useEntityIsLocked } from 'features/controlLayers/hooks/useEntityIsLocked';
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
import { isSegmentableEntityIdentifier } from 'features/controlLayers/store/types';
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
@@ -13,8 +13,8 @@ export const useEntitySegmentAnything = (entityIdentifier: CanvasEntityIdentifie
const adapter = useEntityAdapterSafe(entityIdentifier);
const imageViewer = useImageViewer();
const isBusy = useCanvasIsBusy();
const isLocked = useEntityIsLocked(entityIdentifier);
const isEmpty = useEntityIsEmpty(entityIdentifier);
const isInteractable = useStore(adapter?.$isInteractable ?? $false);
const isEmpty = useStore(adapter?.$isEmpty ?? $false);
const isDisabled = useMemo(() => {
if (!entityIdentifier) {
@@ -29,14 +29,14 @@ export const useEntitySegmentAnything = (entityIdentifier: CanvasEntityIdentifie
if (isBusy) {
return true;
}
if (isLocked) {
if (!isInteractable) {
return true;
}
if (isEmpty) {
return true;
}
return false;
}, [entityIdentifier, adapter, isBusy, isLocked, isEmpty]);
}, [entityIdentifier, adapter, isBusy, isInteractable, isEmpty]);
const start = useCallback(() => {
if (isDisabled) {

View File

@@ -1,8 +1,8 @@
import { useStore } from '@nanostores/react';
import { $false } from 'app/store/nanostores/util';
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import { useEntityAdapterSafe } from 'features/controlLayers/contexts/EntityAdapterContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { useEntityIsEmpty } from 'features/controlLayers/hooks/useEntityIsEmpty';
import { useEntityIsLocked } from 'features/controlLayers/hooks/useEntityIsLocked';
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
import { isTransformableEntityIdentifier } from 'features/controlLayers/store/types';
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
@@ -13,8 +13,8 @@ export const useEntityTransform = (entityIdentifier: CanvasEntityIdentifier | nu
const adapter = useEntityAdapterSafe(entityIdentifier);
const imageViewer = useImageViewer();
const isBusy = useCanvasIsBusy();
const isLocked = useEntityIsLocked(entityIdentifier);
const isEmpty = useEntityIsEmpty(entityIdentifier);
const isInteractable = useStore(adapter?.$isInteractable ?? $false);
const isEmpty = useStore(adapter?.$isEmpty ?? $false);
const isDisabled = useMemo(() => {
if (!entityIdentifier) {
@@ -29,14 +29,14 @@ export const useEntityTransform = (entityIdentifier: CanvasEntityIdentifier | nu
if (isBusy) {
return true;
}
if (isLocked) {
if (!isInteractable) {
return true;
}
if (isEmpty) {
return true;
}
return false;
}, [entityIdentifier, adapter, isBusy, isLocked, isEmpty]);
}, [entityIdentifier, adapter, isBusy, isInteractable, isEmpty]);
const start = useCallback(async () => {
if (isDisabled) {

View File

@@ -1,25 +0,0 @@
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppSelector } from 'app/store/storeHooks';
import { selectCanvasSlice, selectEntityIdentifierBelowThisOne } from 'features/controlLayers/store/selectors';
import type { CanvasRenderableEntityIdentifier } from 'features/controlLayers/store/types';
import { getEntityIdentifier } from 'features/controlLayers/store/types';
import { useMemo } from 'react';
export const useEntityIdentifierBelowThisOne = <T extends CanvasRenderableEntityIdentifier>(
entityIdentifier: T
): T | null => {
const selector = useMemo(
() =>
createMemoizedSelector(selectCanvasSlice, (canvas) => {
const nextEntity = selectEntityIdentifierBelowThisOne(canvas, entityIdentifier);
if (!nextEntity) {
return null;
}
return getEntityIdentifier(nextEntity);
}),
[entityIdentifier]
);
const entityIdentifierBelowThisOne = useAppSelector(selector);
return entityIdentifierBelowThisOne as T | null;
};

View File

@@ -1,33 +0,0 @@
import { createSelector } from '@reduxjs/toolkit';
import { useAppSelector } from 'app/store/storeHooks';
import {
selectActiveControlLayerEntities,
selectActiveInpaintMaskEntities,
selectActiveRasterLayerEntities,
selectActiveReferenceImageEntities,
selectActiveRegionalGuidanceEntities,
} from 'features/controlLayers/store/selectors';
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
import { useMemo } from 'react';
import { assert } from 'tsafe';
export const useVisibleEntityCountByType = (type: CanvasEntityIdentifier['type']): number => {
const selectVisibleEntityCountByType = useMemo(() => {
switch (type) {
case 'control_layer':
return createSelector(selectActiveControlLayerEntities, (entities) => entities.length);
case 'raster_layer':
return createSelector(selectActiveRasterLayerEntities, (entities) => entities.length);
case 'inpaint_mask':
return createSelector(selectActiveInpaintMaskEntities, (entities) => entities.length);
case 'regional_guidance':
return createSelector(selectActiveRegionalGuidanceEntities, (entities) => entities.length);
case 'reference_image':
return createSelector(selectActiveReferenceImageEntities, (entities) => entities.length);
default:
assert(false, 'Invalid entity type');
}
}, [type]);
const visibleEntityCount = useAppSelector(selectVisibleEntityCountByType);
return visibleEntityCount;
};

View File

@@ -1,32 +1,15 @@
import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
import { CanvasModuleBase } from 'features/controlLayers/konva/CanvasModuleBase';
import type { Transparency } from 'features/controlLayers/konva/util';
import { getPrefixedId } from 'features/controlLayers/konva/util';
import type { GenerationMode } from 'features/controlLayers/store/types';
import { LRUCache } from 'lru-cache';
import type { Logger } from 'roarr';
type GetCacheEntryWithFallbackArg<T extends NonNullable<unknown>> = {
cache: LRUCache<string, T>;
key: string;
getValue: () => Promise<T>;
onHit?: (value: T) => void;
onMiss?: () => void;
};
type CanvasCacheModuleConfig = {
/**
* The maximum size of the image name cache.
*/
imageNameCacheSize: number;
/**
* The maximum size of the image data cache.
*/
imageDataCacheSize: number;
/**
* The maximum size of the transparency calculation cache.
*/
transparencyCalculationCacheSize: number;
/**
* The maximum size of the canvas element cache.
*/
@@ -38,9 +21,7 @@ type CanvasCacheModuleConfig = {
};
const DEFAULT_CONFIG: CanvasCacheModuleConfig = {
imageNameCacheSize: 1000,
imageDataCacheSize: 32,
transparencyCalculationCacheSize: 1000,
imageNameCacheSize: 100,
canvasElementCacheSize: 32,
generationModeCacheSize: 100,
};
@@ -60,38 +41,26 @@ export class CanvasCacheModule extends CanvasModuleBase {
config: CanvasCacheModuleConfig = DEFAULT_CONFIG;
/**
* A cache for storing image names.
* A cache for storing image names. Used as a cache for results of layer/canvas/entity exports. For example, when we
* rasterize a layer and upload it to the server, we store the image name in this cache.
*
* For example, the key might be a hash of a composite of entities with the uploaded image name as the value.
* The cache key is a hash of the exported entity's state and the export rect.
*/
imageNameCache = new LRUCache<string, string>({ max: this.config.imageNameCacheSize });
/**
* A cache for storing canvas elements.
* A cache for storing canvas elements. Similar to the image name cache, but for canvas elements. The primary use is
* for caching composite layers. For example, the canvas compositor module uses this to store the canvas elements for
* individual raster layers when creating a composite of the layers.
*
* For example, the key might be a hash of a composite of entities with the canvas element as the value.
* The cache key is a hash of the exported entity's state and the export rect.
*/
canvasElementCache = new LRUCache<string, HTMLCanvasElement>({ max: this.config.canvasElementCacheSize });
/**
* A cache for image data objects.
* A cache for the generation mode calculation, which is fairly expensive.
*
* For example, the key might be a hash of a composite of entities with the image data as the value.
*/
imageDataCache = new LRUCache<string, ImageData>({ max: this.config.imageDataCacheSize });
/**
* A cache for transparency calculation results.
*
* For example, the key might be a hash of a composite of entities with the transparency as the value.
*/
transparencyCalculationCache = new LRUCache<string, Transparency>({ max: this.config.imageDataCacheSize });
/**
* A cache for generation mode calculation results.
*
* For example, the key might be a hash of a composite of raster and inpaint mask entities with the generation mode
* as the value.
* The cache key is a hash of all the objects that contribute to the generation mode calculation (e.g. the composite
* raster layer, the composite inpaint mask, and bounding box), and the value is the generation mode.
*/
generationModeCache = new LRUCache<string, GenerationMode>({ max: this.config.generationModeCacheSize });
@@ -106,33 +75,6 @@ export class CanvasCacheModule extends CanvasModuleBase {
this.log.debug('Creating cache module');
}
/**
* A helper function for getting a cache entry with a fallback.
* @param param0.cache The LRUCache to get the entry from.
* @param param0.key The key to use to retrieve the entry.
* @param param0.getValue An async function to generate the value if the entry is not in the cache.
* @param param0.onHit An optional function to call when the entry is in the cache.
* @param param0.onMiss An optional function to call when the entry is not in the cache.
* @returns
*/
static getWithFallback = async <T extends NonNullable<unknown>>({
cache,
getValue,
key,
onHit,
onMiss,
}: GetCacheEntryWithFallbackArg<T>): Promise<T> => {
let value = cache.get(key);
if (value === undefined) {
onMiss?.();
value = await getValue();
cache.set(key, value);
} else {
onHit?.(value);
}
return value;
};
/**
* Clears all caches.
*/

View File

@@ -1,55 +1,24 @@
import type { SerializableObject } from 'common/types';
import { withResultAsync } from 'common/util/result';
import { CanvasCacheModule } from 'features/controlLayers/konva/CanvasCacheModule';
import type { CanvasEntityAdapter, CanvasEntityAdapterFromType } from 'features/controlLayers/konva/CanvasEntity/types';
import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
import { CanvasModuleBase } from 'features/controlLayers/konva/CanvasModuleBase';
import type { Transparency } from 'features/controlLayers/konva/util';
import {
canvasToBlob,
canvasToImageData,
getImageDataTransparency,
getPrefixedId,
getRectUnion,
mapId,
previewBlob,
} from 'features/controlLayers/konva/util';
import {
selectActiveControlLayerEntities,
selectActiveInpaintMaskEntities,
selectActiveRasterLayerEntities,
selectActiveRegionalGuidanceEntities,
} from 'features/controlLayers/store/selectors';
import type {
CanvasRenderableEntityIdentifier,
CanvasRenderableEntityState,
CanvasRenderableEntityType,
GenerationMode,
Rect,
} from 'features/controlLayers/store/types';
import { getEntityIdentifier } from 'features/controlLayers/store/types';
import { imageDTOToImageObject } from 'features/controlLayers/store/util';
import type { GenerationMode, Rect } from 'features/controlLayers/store/types';
import { selectAutoAddBoardId } from 'features/gallery/store/gallerySelectors';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { atom, computed } from 'nanostores';
import type { Logger } from 'roarr';
import { serializeError } from 'serialize-error';
import type { UploadOptions } from 'services/api/endpoints/images';
import { getImageDTOSafe, uploadImage } from 'services/api/endpoints/images';
import type { ImageDTO } from 'services/api/types';
import stableHash from 'stable-hash';
import type { Equals } from 'tsafe';
import { assert } from 'tsafe';
type CompositingOptions = {
/**
* The global composite operation to use when compositing each entity.
* See: https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation
*/
globalCompositeOperation?: GlobalCompositeOperation;
};
/**
* Handles compositing operations:
* - Rasterizing and uploading the composite raster layer
@@ -85,98 +54,41 @@ export class CanvasCompositorModule extends CanvasModuleBase {
}
/**
* Gets the rect union of all visible entities of the given entity type. This is used for "merge visible".
*
* If no entity type is provided, all visible entities are included in the rect.
*
* @param type The optional entity type
* @returns The rect
* Gets the entity IDs of all raster layers that should be included in the composite raster layer.
* A raster layer is included if it is enabled and has objects. The ids are sorted by draw order.
* @returns An array of raster layer entity IDs
*/
getVisibleRectOfType = (type?: CanvasRenderableEntityType): Rect => {
const rects = [];
for (const adapter of this.manager.getAllAdapters()) {
if (!adapter.state.isEnabled) {
getCompositeRasterLayerEntityIds = (): string[] => {
const validSortedIds = [];
const sortedIds = this.manager.stateApi.getRasterLayersState().entities.map(({ id }) => id);
for (const id of sortedIds) {
const adapter = this.manager.adapters.rasterLayers.get(id);
if (!adapter) {
this.log.warn({ id }, 'Raster layer adapter not found');
continue;
}
if (type && adapter.state.type !== type) {
continue;
}
if (adapter.renderer.hasObjects()) {
rects.push(adapter.transformer.getRelativeRect());
if (adapter.state.isEnabled && adapter.state.objects.length > 0) {
validSortedIds.push(adapter.id);
}
}
return getRectUnion(...rects);
return validSortedIds;
};
/**
* Gets the rect union of the given entity adapters. This is used for "merge down" and "merge selected".
*
* Unlike `getVisibleRectOfType`, **disabled entities are included in the rect**, per the conventional behaviour of
* these merge methods.
*
* @param adapters The entity adapters to include in the rect
* @returns The rect
* Gets a hash of the composite raster layer, which includes the state of all raster layers that are included in the
* composite plus arbitrary extra data that should contribute to the hash (e.g. a rect).
* @param extra Any extra data to include in the hash
* @returns A hash for the composite raster layer
*/
getRectOfAdapters = (adapters: CanvasEntityAdapter[]): Rect => {
const rects = [];
for (const adapter of adapters) {
if (adapter.renderer.hasObjects()) {
rects.push(adapter.transformer.getRelativeRect());
}
}
return getRectUnion(...rects);
};
/**
* Gets all visible adapters for the given entity type. Visible adapters are those that are not disabled and have
* objects to render. This is used for "merge visible" functionality and for calculating the generation mode.
*
* This includes all adapters that are not disabled and have objects to render.
*
* @param type The entity type
* @returns The adapters for the given entity type that are eligible to be included in a composite
*/
getVisibleAdaptersOfType = <T extends CanvasRenderableEntityType>(type: T): CanvasEntityAdapterFromType<T>[] => {
let entities: CanvasRenderableEntityState[];
switch (type) {
case 'raster_layer':
entities = this.manager.stateApi.getRasterLayersState().entities;
break;
case 'inpaint_mask':
entities = this.manager.stateApi.getInpaintMasksState().entities;
break;
case 'control_layer':
entities = this.manager.stateApi.getControlLayersState().entities;
break;
case 'regional_guidance':
entities = this.manager.stateApi.getRegionsState().entities;
break;
default:
assert(false, `Unhandled entity type: ${type}`);
}
const adapters: CanvasEntityAdapter[] = entities
// Get the identifier for each entity
.map((entity) => getEntityIdentifier(entity))
// Get the adapter for each entity
.map(this.manager.getAdapter)
// Filter out null adapters
.filter((adapter) => !!adapter)
// Filter out adapters that are disabled or have no objects (and are thus not to be included in the composite)
.filter((adapter) => !adapter.$isDisabled.get() && adapter.renderer.hasObjects());
return adapters as CanvasEntityAdapterFromType<T>[];
};
getCompositeHash = (adapters: CanvasEntityAdapter[], extra: SerializableObject): string => {
getCompositeRasterLayerHash = (extra: SerializableObject): string => {
const adapterHashes: SerializableObject[] = [];
for (const adapter of adapters) {
for (const id of this.getCompositeRasterLayerEntityIds()) {
const adapter = this.manager.adapters.rasterLayers.get(id);
if (!adapter) {
this.log.warn({ id }, 'Raster layer adapter not found');
continue;
}
adapterHashes.push(adapter.getHashableState());
}
@@ -189,33 +101,23 @@ export class CanvasCompositorModule extends CanvasModuleBase {
};
/**
* Composites the given canvas entities for the given rect and returns the resulting canvas.
* Gets a canvas element for the composite raster layer. Only the region defined by the rect is included in the canvas.
*
* The canvas element is cached to avoid recomputing it when the canvas state has not changed.
* If the hash of the composite raster layer is found in the cache, the cached canvas is returned.
*
* The canvas entities are drawn in the order they are provided.
*
* @param adapters The adapters for the canvas entities to composite, in the order they should be drawn
* @param rect The region to include in the canvas
* @param compositingOptions Options for compositing the entities
* @returns The composite canvas
* @returns A canvas element with the composite raster layer drawn on it
*/
getCompositeCanvas = (
adapters: CanvasEntityAdapter[],
rect: Rect,
compositingOptions?: CompositingOptions
): HTMLCanvasElement => {
const entityIdentifiers = adapters.map((adapter) => adapter.entityIdentifier);
const hash = this.getCompositeHash(adapters, { rect });
getCompositeRasterLayerCanvas = (rect: Rect): HTMLCanvasElement => {
const hash = this.getCompositeRasterLayerHash({ rect });
const cachedCanvas = this.manager.cache.canvasElementCache.get(hash);
if (cachedCanvas) {
this.log.debug({ entityIdentifiers, rect }, 'Using cached composite canvas');
this.log.trace({ rect }, 'Using cached composite raster layer canvas');
return cachedCanvas;
}
this.log.debug({ entityIdentifiers, rect }, 'Building composite canvas');
this.log.trace({ rect }, 'Building composite raster layer canvas');
this.$isCompositing.set(true);
const canvas = document.createElement('canvas');
@@ -227,12 +129,13 @@ export class CanvasCompositorModule extends CanvasModuleBase {
ctx.imageSmoothingEnabled = false;
if (compositingOptions?.globalCompositeOperation) {
ctx.globalCompositeOperation = compositingOptions.globalCompositeOperation;
}
for (const adapter of adapters) {
this.log.debug({ entityIdentifier: adapter.entityIdentifier }, 'Drawing entity to composite canvas');
for (const id of this.getCompositeRasterLayerEntityIds()) {
const adapter = this.manager.adapters.rasterLayers.get(id);
if (!adapter) {
this.log.warn({ id }, 'Raster layer adapter not found');
continue;
}
this.log.trace({ id }, 'Drawing raster layer to composite canvas');
const adapterCanvas = adapter.getCanvas(rect);
ctx.drawImage(adapterCanvas, 0, 0);
}
@@ -242,44 +145,23 @@ export class CanvasCompositorModule extends CanvasModuleBase {
};
/**
* Composites the given canvas entities for the given rect and uploads the resulting image.
* Rasterizes the composite raster layer and uploads it to the server.
*
* The uploaded image is cached to avoid recomputing it when the canvas state has not changed. The canvas elements
* created for each entity are also cached to avoid recomputing them when the canvas state has not changed.
* If the hash of the composite raster layer is found in the cache, the cached image DTO is returned.
*
* The canvas entities are drawn in the order they are provided.
*
* @param adapters The adapters for the canvas entities to composite, in the order they should be drawn
* @param rect The region to include in the rasterized image
* @param uploadOptions Options for uploading the image
* @param compositingOptions Options for compositing the entities
* @param forceUpload If true, the image is always re-uploaded, returning a new image DTO
* @returns A promise that resolves to the image DTO
* @param options Options for uploading the image
* @returns A promise that resolves to the uploaded image DTO
*/
getCompositeImageDTO = async (
adapters: CanvasEntityAdapter[],
rasterizeAndUploadCompositeRasterLayer = async (
rect: Rect,
uploadOptions: Pick<UploadOptions, 'is_intermediate' | 'metadata'>,
compositingOptions?: CompositingOptions,
forceUpload?: boolean
options: Pick<UploadOptions, 'is_intermediate' | 'metadata'>
): Promise<ImageDTO> => {
this.log.trace({ rect }, 'Rasterizing composite raster layer');
assert(rect.width > 0 && rect.height > 0, 'Unable to rasterize empty rect');
const hash = this.getCompositeHash(adapters, { rect });
const cachedImageName = forceUpload ? undefined : this.manager.cache.imageNameCache.get(hash);
let imageDTO: ImageDTO | null = null;
if (cachedImageName) {
imageDTO = await getImageDTOSafe(cachedImageName);
if (imageDTO) {
this.log.debug({ rect, imageName: cachedImageName, imageDTO }, 'Using cached composite image');
return imageDTO;
}
this.log.warn({ rect, imageName: cachedImageName }, 'Cached image name not found, recompositing');
}
const canvas = this.getCompositeCanvas(adapters, rect, compositingOptions);
const canvas = this.getCompositeRasterLayerCanvas(rect);
this.$isProcessing.set(true);
const blobResult = await withResultAsync(() => canvasToBlob(canvas));
@@ -291,169 +173,217 @@ export class CanvasCompositorModule extends CanvasModuleBase {
const blob = blobResult.value;
if (this.manager._isDebugging) {
previewBlob(blob, 'Composite');
previewBlob(blob, 'Composite raster layer canvas');
}
this.$isUploading.set(true);
const uploadResult = await withResultAsync(() =>
uploadImage({
blob,
fileName: 'canvas-composite.png',
fileName: 'composite-raster-layer.png',
image_category: 'general',
is_intermediate: uploadOptions.is_intermediate,
board_id: uploadOptions.is_intermediate ? undefined : selectAutoAddBoardId(this.manager.store.getState()),
metadata: uploadOptions.metadata,
is_intermediate: options.is_intermediate,
board_id: options.is_intermediate ? undefined : selectAutoAddBoardId(this.manager.store.getState()),
metadata: options.metadata,
})
);
this.$isUploading.set(false);
if (uploadResult.isErr()) {
throw uploadResult.error;
}
imageDTO = uploadResult.value;
const imageDTO = uploadResult.value;
return imageDTO;
};
/**
* Gets the image DTO for the composite raster layer.
*
* If the image is found in the cache, the cached image DTO is returned.
*
* @param rect The region to include in the image
* @returns A promise that resolves to the image DTO
*/
getCompositeRasterLayerImageDTO = async (rect: Rect): Promise<ImageDTO> => {
let imageDTO: ImageDTO | null = null;
const hash = this.getCompositeRasterLayerHash({ rect });
const cachedImageName = this.manager.cache.imageNameCache.get(hash);
if (cachedImageName) {
imageDTO = await getImageDTOSafe(cachedImageName);
if (imageDTO) {
this.log.trace({ rect, imageName: cachedImageName, imageDTO }, 'Using cached composite raster layer image');
return imageDTO;
}
}
imageDTO = await this.rasterizeAndUploadCompositeRasterLayer(rect, { is_intermediate: true });
this.manager.cache.imageNameCache.set(hash, imageDTO.image_name);
return imageDTO;
};
/**
* Creates a merged composite image from the given entities. The entities are drawn in the order they are provided.
*
* The merged image is uploaded to the server and a new entity is created with the uploaded image as the only object.
*
* All entities must have the same type.
*
* @param entityIdentifiers The entity identifiers to merge
* @param deleteMergedEntities Whether to delete the merged entities after creating the new merged entity
* @returns A promise that resolves to the image DTO, or null if the merge failed
* Gets the entity IDs of all inpaint masks that should be included in the composite inpaint mask.
* An inpaint mask is included if it is enabled and has objects. The ids are sorted by draw order.
* @returns An array of inpaint mask entity IDs
*/
mergeByEntityIdentifiers = async <T extends CanvasRenderableEntityIdentifier>(
entityIdentifiers: T[],
deleteMergedEntities: boolean
): Promise<ImageDTO | null> => {
toast({ id: 'MERGE_LAYERS_TOAST', title: t('controlLayers.mergingLayers'), withCount: false });
if (entityIdentifiers.length <= 1) {
this.log.warn({ entityIdentifiers }, 'Cannot merge less than 2 entities');
return null;
getCompositeInpaintMaskEntityIds = (): string[] => {
const validSortedIds = [];
const sortedIds = this.manager.stateApi.getInpaintMasksState().entities.map(({ id }) => id);
for (const id of sortedIds) {
const adapter = this.manager.adapters.inpaintMasks.get(id);
if (!adapter) {
this.log.warn({ id }, 'Inpaint mask adapter not found');
continue;
}
if (adapter.state.isEnabled && adapter.state.objects.length > 0) {
validSortedIds.push(adapter.id);
}
}
const type = entityIdentifiers[0]?.type;
assert(type, 'Cannot merge entities with no type (this should never happen)');
return validSortedIds;
};
const adapters = this.manager.getAdapters(entityIdentifiers);
assert(adapters.length === entityIdentifiers.length, 'Failed to get all adapters for entity identifiers');
/**
* Gets a hash of the composite inpaint mask, which includes the state of all inpaint masks that are included in the
* composite plus arbitrary extra data that should contribute to the hash (e.g. a rect).
* @param extra Any extra data to include in the hash
* @returns A hash for the composite inpaint mask
*/
getCompositeInpaintMaskHash = (extra: SerializableObject): string => {
const adapterHashes: SerializableObject[] = [];
const rect = this.getRectOfAdapters(adapters);
for (const id of this.getCompositeInpaintMaskEntityIds()) {
const adapter = this.manager.adapters.inpaintMasks.get(id);
if (!adapter) {
this.log.warn({ id }, 'Inpaint mask adapter not found');
continue;
}
adapterHashes.push(adapter.getHashableState());
}
const compositingOptions: CompositingOptions = {
globalCompositeOperation: type === 'control_layer' ? 'lighter' : undefined,
const data: SerializableObject = {
extra,
adapterHashes,
};
const result = await withResultAsync(() =>
this.getCompositeImageDTO(adapters, rect, { is_intermediate: true }, compositingOptions)
return stableHash(data);
};
/**
* Gets a canvas element for the composite inpaint mask. Only the region defined by the rect is included in the canvas.
*
* If the hash of the composite inpaint mask is found in the cache, the cached canvas is returned.
*
* @param rect The region to include in the canvas
* @returns A canvas element with the composite inpaint mask drawn on it
*/
getCompositeInpaintMaskCanvas = (rect: Rect): HTMLCanvasElement => {
const hash = this.getCompositeInpaintMaskHash({ rect });
const cachedCanvas = this.manager.cache.canvasElementCache.get(hash);
if (cachedCanvas) {
this.log.trace({ rect }, 'Using cached composite inpaint mask canvas');
return cachedCanvas;
}
this.log.trace({ rect }, 'Building composite inpaint mask canvas');
this.$isCompositing.set(true);
const canvas = document.createElement('canvas');
canvas.width = rect.width;
canvas.height = rect.height;
const ctx = canvas.getContext('2d');
assert(ctx !== null);
ctx.imageSmoothingEnabled = false;
for (const id of this.getCompositeInpaintMaskEntityIds()) {
const adapter = this.manager.adapters.inpaintMasks.get(id);
if (!adapter) {
this.log.warn({ id }, 'Inpaint mask adapter not found');
continue;
}
this.log.trace({ id }, 'Drawing inpaint mask to composite canvas');
const adapterCanvas = adapter.getCanvas(rect);
ctx.drawImage(adapterCanvas, 0, 0);
}
this.manager.cache.canvasElementCache.set(hash, canvas);
this.$isCompositing.set(false);
return canvas;
};
/**
* Rasterizes the composite inpaint mask and uploads it to the server.
*
* If the hash of the composite inpaint mask is found in the cache, the cached image DTO is returned.
*
* @param rect The region to include in the rasterized image
* @param saveToGallery Whether to save the image to the gallery or just return the uploaded image DTO
* @returns A promise that resolves to the uploaded image DTO
*/
rasterizeAndUploadCompositeInpaintMask = async (rect: Rect, saveToGallery: boolean) => {
this.log.trace({ rect }, 'Rasterizing composite inpaint mask');
assert(rect.width > 0 && rect.height > 0, 'Unable to rasterize empty rect');
const canvas = this.getCompositeInpaintMaskCanvas(rect);
this.$isProcessing.set(true);
const blobResult = await withResultAsync(() => canvasToBlob(canvas));
this.$isProcessing.set(false);
if (blobResult.isErr()) {
throw blobResult.error;
}
const blob = blobResult.value;
if (this.manager._isDebugging) {
previewBlob(blob, 'Composite inpaint mask canvas');
}
this.$isUploading.set(true);
const uploadResult = await withResultAsync(() =>
uploadImage({
blob,
fileName: 'composite-inpaint-mask.png',
image_category: 'general',
is_intermediate: !saveToGallery,
board_id: saveToGallery ? selectAutoAddBoardId(this.manager.store.getState()) : undefined,
})
);
if (result.isErr()) {
this.log.error({ error: serializeError(result.error) }, 'Failed to merge selected entities');
toast({
id: 'MERGE_LAYERS_TOAST',
title: t('controlLayers.mergeVisibleError'),
status: 'error',
withCount: false,
});
return null;
this.$isUploading.set(false);
if (uploadResult.isErr()) {
throw uploadResult.error;
}
// All layer types have the same arg - create a new entity with the image as the only object, positioned at the
// top left corner of the visible rect for the given entity type.
const addEntityArg = {
isSelected: true,
overrides: {
objects: [imageDTOToImageObject(result.value)],
position: { x: Math.floor(rect.x), y: Math.floor(rect.y) },
},
mergedEntitiesToDelete: deleteMergedEntities ? entityIdentifiers.map(mapId) : [],
};
switch (type) {
case 'raster_layer':
this.manager.stateApi.addRasterLayer(addEntityArg);
break;
case 'inpaint_mask':
this.manager.stateApi.addInpaintMask(addEntityArg);
break;
case 'regional_guidance':
this.manager.stateApi.addRegionalGuidance(addEntityArg);
break;
case 'control_layer':
this.manager.stateApi.addControlLayer(addEntityArg);
break;
default:
assert<Equals<typeof type, never>>(false, 'Unsupported type for merge');
}
toast({ id: 'MERGE_LAYERS_TOAST', title: t('controlLayers.mergeVisibleOk'), status: 'success', withCount: false });
return result.value;
const imageDTO = uploadResult.value;
return imageDTO;
};
/**
* Merges all visible entities of the given type. This is used for "merge visible" functionality.
* Gets the image DTO for the composite inpaint mask.
*
* @param type The type of entity to merge
* @returns A promise that resolves to the image DTO, or null if the merge failed
* If the image is found in the cache, the cached image DTO is returned.
*
* @param rect The region to include in the image
* @returns A promise that resolves to the image DTO
*/
mergeVisibleOfType = (type: CanvasRenderableEntityType): Promise<ImageDTO | null> => {
let entities: CanvasRenderableEntityState[];
getCompositeInpaintMaskImageDTO = async (rect: Rect): Promise<ImageDTO> => {
let imageDTO: ImageDTO | null = null;
switch (type) {
case 'raster_layer':
entities = this.manager.stateApi.runSelector(selectActiveRasterLayerEntities);
break;
case 'inpaint_mask':
entities = this.manager.stateApi.runSelector(selectActiveInpaintMaskEntities);
break;
case 'regional_guidance':
entities = this.manager.stateApi.runSelector(selectActiveRegionalGuidanceEntities);
break;
case 'control_layer':
entities = this.manager.stateApi.runSelector(selectActiveControlLayerEntities);
break;
default:
assert<Equals<typeof type, never>>(false, 'Unsupported type for merge');
const hash = this.getCompositeInpaintMaskHash({ rect });
const cachedImageName = this.manager.cache.imageNameCache.get(hash);
if (cachedImageName) {
imageDTO = await getImageDTOSafe(cachedImageName);
if (imageDTO) {
this.log.trace({ rect, cachedImageName, imageDTO }, 'Using cached composite inpaint mask image');
return imageDTO;
}
}
const entityIdentifiers = entities.map(getEntityIdentifier);
return this.mergeByEntityIdentifiers(entityIdentifiers, false);
};
/**
* Calculates the transparency of the composite of the give adapters.
* @param adapters The adapters to composite
* @param rect The region to include in the composite
* @param hash The hash to use for caching the result
* @returns A promise that resolves to the transparency of the composite
*/
getTransparency = (adapters: CanvasEntityAdapter[], rect: Rect, hash: string): Promise<Transparency> => {
const entityIdentifiers = adapters.map((adapter) => adapter.entityIdentifier);
const logCtx = { entityIdentifiers, rect };
return CanvasCacheModule.getWithFallback({
cache: this.manager.cache.transparencyCalculationCache,
key: hash,
getValue: async () => {
const compositeInpaintMaskCanvas = this.getCompositeCanvas(adapters, rect);
const compositeInpaintMaskImageData = await CanvasCacheModule.getWithFallback({
cache: this.manager.cache.imageDataCache,
key: hash,
getValue: () => Promise.resolve(canvasToImageData(compositeInpaintMaskCanvas)),
onHit: () => this.log.trace(logCtx, 'Using cached image data'),
onMiss: () => this.log.trace(logCtx, 'Calculating image data'),
});
return getImageDataTransparency(compositeInpaintMaskImageData);
},
onHit: () => this.log.trace(logCtx, 'Using cached transparency'),
onMiss: () => this.log.trace(logCtx, 'Calculating transparency'),
});
imageDTO = await this.rasterizeAndUploadCompositeInpaintMask(rect, false);
this.manager.cache.imageNameCache.set(hash, imageDTO.image_name);
return imageDTO;
};
/**
@@ -474,37 +404,29 @@ export class CanvasCompositorModule extends CanvasModuleBase {
*
* @returns The generation mode
*/
getGenerationMode = async (): Promise<GenerationMode> => {
getGenerationMode(): GenerationMode {
const { rect } = this.manager.stateApi.getBbox();
const rasterLayerAdapters = this.manager.compositor.getVisibleAdaptersOfType('raster_layer');
const compositeRasterLayerHash = this.getCompositeHash(rasterLayerAdapters, { rect });
const inpaintMaskAdapters = this.manager.compositor.getVisibleAdaptersOfType('inpaint_mask');
const compositeInpaintMaskHash = this.getCompositeHash(inpaintMaskAdapters, { rect });
const compositeInpaintMaskHash = this.getCompositeInpaintMaskHash({ rect });
const compositeRasterLayerHash = this.getCompositeRasterLayerHash({ rect });
const hash = stableHash({ rect, compositeInpaintMaskHash, compositeRasterLayerHash });
const cachedGenerationMode = this.manager.cache.generationModeCache.get(hash);
if (cachedGenerationMode) {
this.log.debug({ rect, cachedGenerationMode }, 'Using cached generation mode');
this.log.trace({ rect, cachedGenerationMode }, 'Using cached generation mode');
return cachedGenerationMode;
}
this.log.debug({ rect }, 'Calculating generation mode');
const compositeInpaintMaskCanvas = this.getCompositeInpaintMaskCanvas(rect);
this.$isProcessing.set(true);
const compositeRasterLayerTransparency = await this.getTransparency(
rasterLayerAdapters,
rect,
compositeRasterLayerHash
);
const compositeInpaintMaskImageData = canvasToImageData(compositeInpaintMaskCanvas);
const compositeInpaintMaskTransparency = getImageDataTransparency(compositeInpaintMaskImageData);
this.$isProcessing.set(false);
const compositeInpaintMaskTransparency = await this.getTransparency(
inpaintMaskAdapters,
rect,
compositeInpaintMaskHash
);
const compositeRasterLayerCanvas = this.getCompositeRasterLayerCanvas(rect);
this.$isProcessing.set(true);
const compositeRasterLayerImageData = canvasToImageData(compositeRasterLayerCanvas);
const compositeRasterLayerTransparency = getImageDataTransparency(compositeRasterLayerImageData);
this.$isProcessing.set(false);
let generationMode: GenerationMode;
@@ -525,7 +447,7 @@ export class CanvasCompositorModule extends CanvasModuleBase {
this.manager.cache.generationModeCache.set(hash, generationMode);
return generationMode;
};
}
repr = () => {
return {

View File

@@ -12,26 +12,17 @@ import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
import { CanvasModuleBase } from 'features/controlLayers/konva/CanvasModuleBase';
import type { CanvasSegmentAnythingModule } from 'features/controlLayers/konva/CanvasSegmentAnythingModule';
import { getKonvaNodeDebugAttrs, getRectIntersection } from 'features/controlLayers/konva/util';
import { selectIsolatedLayerPreview } from 'features/controlLayers/store/canvasSettingsSlice';
import {
selectIsolatedLayerPreview,
selectIsolatedStagingPreview,
} from 'features/controlLayers/store/canvasSettingsSlice';
import { selectIsStaging } from 'features/controlLayers/store/canvasStagingAreaSlice';
import {
buildSelectIsHidden,
buildSelectIsSelected,
getSelectIsTypeHidden,
selectBboxRect,
selectCanvasSlice,
selectEntity,
} from 'features/controlLayers/store/selectors';
import {
type CanvasEntityIdentifier,
type CanvasRenderableEntityState,
isRasterLayerEntityIdentifier,
type Rect,
} from 'features/controlLayers/store/types';
import type { CanvasEntityIdentifier, CanvasRenderableEntityState, Rect } from 'features/controlLayers/store/types';
import Konva from 'konva';
import { atom } from 'nanostores';
import { atom, computed } from 'nanostores';
import rafThrottle from 'raf-throttle';
import type { Logger } from 'roarr';
import type { ImageDTO } from 'services/api/types';
@@ -106,10 +97,7 @@ export abstract class CanvasEntityAdapterBase<
abstract getCanvas: (rect?: Rect) => HTMLCanvasElement;
/**
* Gets a hashable representation of the entity's _renderable_ state. This should exclude any properties that are not
* relevant to rendering the entity.
*
* This is used for caching.
* Gets a hashable representation of the entity's state.
*/
abstract getHashableState: () => SerializableObject;
@@ -184,14 +172,7 @@ export abstract class CanvasEntityAdapterBase<
}
};
/**
* A selector that selects whether the entity type is hidden.
*/
selectIsTypeHidden: Selector<RootState, boolean>;
/**
* A selector that selects whether the entity is selected.
*/
selectIsHidden: Selector<RootState, boolean>;
selectIsSelected: Selector<RootState, boolean>;
/**
@@ -225,11 +206,17 @@ export abstract class CanvasEntityAdapterBase<
/**
* Whether this entity is hidden. This is synced with the entity's group type visibility.
*/
$isEntityTypeHidden = atom(false);
$isHidden = atom(false);
/**
* Whether this entity is empty. This is computed based on the entity's objects.
*/
$isEmpty = atom(true);
/**
* Whether this entity is interactable. This is computed based on the entity's locked, disabled, and hidden states.
*/
$isInteractable = computed([this.$isLocked, this.$isDisabled, this.$isHidden], (isLocked, isDisabled, isHidden) => {
return !isLocked && !isDisabled && !isHidden;
});
/**
* A cache of the entity's canvas element. This is generated from a clone of the entity's Konva layer.
*/
@@ -270,25 +257,22 @@ export abstract class CanvasEntityAdapterBase<
assert(state !== undefined, 'Missing entity state on creation');
this.state = state;
this.selectIsTypeHidden = getSelectIsTypeHidden(this.entityIdentifier.type);
this.selectIsHidden = buildSelectIsHidden(this.entityIdentifier);
this.selectIsSelected = buildSelectIsSelected(this.entityIdentifier);
/**
* There are a number of reason we may need to show or hide a layer:
* - The entity is enabled/disabled
* - The entity type is hidden/shown
* - `isolatedStagingPreview` is enabled and we start or stop staging
* - `isolatedLayerPreview` is enabled and we start or stop filtering, transforming, select-object-ing
* - The entity is selected or deselected (only selected and onscreen entities are rendered as a perf optimization)
* - Staging status changes and `isolatedStagingPreview` is enabled
* - Global filtering status changes and `isolatedFilteringPreview` is enabled
* - Global transforming status changes and `isolatedTransformingPreview` is enabled
* - The entity is selected or deselected (only selected and onscreen entities are rendered)
*/
this.subscriptions.add(this.manager.stateApi.createStoreSubscription(this.selectIsTypeHidden, this.syncVisibility));
this.subscriptions.add(this.manager.stateApi.createStoreSubscription(this.selectIsHidden, this.syncVisibility));
this.subscriptions.add(
this.manager.stateApi.createStoreSubscription(selectIsolatedLayerPreview, this.syncVisibility)
);
this.subscriptions.add(
this.manager.stateApi.createStoreSubscription(selectIsolatedStagingPreview, this.syncVisibility)
);
this.subscriptions.add(this.manager.stateApi.createStoreSubscription(selectIsStaging, this.syncVisibility));
this.subscriptions.add(this.manager.stateApi.$filteringAdapter.listen(this.syncVisibility));
this.subscriptions.add(this.manager.stateApi.$transformingAdapter.listen(this.syncVisibility));
this.subscriptions.add(this.manager.stateApi.$segmentingAdapter.listen(this.syncVisibility));
@@ -298,9 +282,7 @@ export abstract class CanvasEntityAdapterBase<
* The tool preview may need to be updated when the entity is locked or disabled. For example, when we disable the
* entity, we should hide the tool preview & change the cursor.
*/
this.subscriptions.add(this.$isDisabled.subscribe(this.manager.tool.render));
this.subscriptions.add(this.$isLocked.subscribe(this.manager.tool.render));
this.subscriptions.add(this.$isEntityTypeHidden.subscribe(this.manager.tool.render));
this.subscriptions.add(this.$isInteractable.subscribe(this.manager.tool.render));
/**
* When the stage is transformed in any way (panning, zooming, resizing) or the entity is moved, we need to update
@@ -419,9 +401,10 @@ export abstract class CanvasEntityAdapterBase<
*/
syncIsEnabled = () => {
this.log.trace('Updating visibility');
this.$isDisabled.set(!this.state.isEnabled);
this.syncVisibility();
this.konva.layer.visible(this.state.isEnabled);
this.renderer.syncKonvaCache(this.state.isEnabled);
this.transformer.syncInteractionState();
this.$isDisabled.set(!this.state.isEnabled);
};
/**
@@ -433,7 +416,6 @@ export abstract class CanvasEntityAdapterBase<
if (didRender) {
// If the objects have changed, we need to recalculate the transformer's bounding box.
this.transformer.requestRectCalculation();
this.transformer.syncInteractionState();
}
};
@@ -452,70 +434,45 @@ export abstract class CanvasEntityAdapterBase<
};
syncVisibility = rafThrottle(() => {
/**
* If the entity type is hidden, so should the entity be hidden.
*/
if (this.manager.stateApi.runSelector(this.selectIsTypeHidden)) {
// Handle the base hidden state
if (this.manager.stateApi.runSelector(this.selectIsHidden)) {
this.setVisibility(false);
return;
}
if (this.manager.stateApi.runSelector(selectIsolatedStagingPreview)) {
/**
* When staging w/ isolatedStagingPreview enabled, we only show raster layers.
*
* This allows the user to easily see how the new generation fits in with the rest of the canvas without the
* other layer types getting in the way.
*/
const isStaging = this.manager.stateApi.runSelector(selectIsStaging);
const isRasterLayer = isRasterLayerEntityIdentifier(this.entityIdentifier);
if (isStaging && !isRasterLayer) {
const isolatedLayerPreview = this.manager.stateApi.runSelector(selectIsolatedLayerPreview);
// Handle isolated preview modes - if another entity is filtering or transforming, we may need to hide this entity.
if (isolatedLayerPreview) {
const filteringEntityIdentifier = this.manager.stateApi.$filteringAdapter.get()?.entityIdentifier;
if (filteringEntityIdentifier && filteringEntityIdentifier.id !== this.id) {
this.setVisibility(false);
return;
}
}
if (this.manager.stateApi.runSelector(selectIsolatedLayerPreview)) {
/**
* Handle isolated preview modes - if another entity is filtering, transforming, or select-object-ing, we may need
* to hide this entity.
*/
const filteringAdapter = this.manager.stateApi.$filteringAdapter.get();
if (filteringAdapter && filteringAdapter !== this) {
this.setVisibility(false);
return;
}
const transformingAdapter = this.manager.stateApi.$transformingAdapter.get();
if (isolatedLayerPreview) {
const transformingEntity = this.manager.stateApi.$transformingAdapter.get();
if (
transformingAdapter &&
transformingAdapter !== this &&
transformingEntity &&
transformingEntity.entityIdentifier.id !== this.id &&
// Silent transforms should be transparent to the user, so we don't need to hide the entity.
!transformingAdapter.transformer.$silentTransform.get()
!transformingEntity.transformer.$silentTransform.get()
) {
this.setVisibility(false);
return;
}
}
const segmentingAdapter = this.manager.stateApi.$segmentingAdapter.get();
if (segmentingAdapter && segmentingAdapter !== this) {
if (isolatedLayerPreview) {
const segmentingEntity = this.manager.stateApi.$segmentingAdapter.get();
if (segmentingEntity && segmentingEntity.entityIdentifier.id !== this.id) {
this.setVisibility(false);
return;
}
}
/**
* Disabled entities should be hidden.
*/
if (this.$isDisabled.get()) {
this.setVisibility(false);
return;
}
/**
* When the entity is offscreen and not selected, we should hide it. If it is selected and offscreen, it still needs
* to be visible so the user can interact with it.
*/
// If the entity is not selected and offscreen, we can hide it
if (!this.$isOnScreen.get() && !this.manager.stateApi.getIsSelected(this.entityIdentifier.id)) {
this.setVisibility(false);
return;
@@ -525,30 +482,17 @@ export abstract class CanvasEntityAdapterBase<
});
setVisibility = (isVisible: boolean) => {
const isHidden = this.$isHidden.get();
const isLayerVisible = this.konva.layer.visible();
if (isLayerVisible === isVisible) {
if (isHidden === !isVisible && isLayerVisible === isVisible) {
// No change
return;
}
this.log.trace(isVisible ? 'Showing' : 'Hiding');
this.$isHidden.set(!isVisible);
this.konva.layer.visible(isVisible);
if (isVisible) {
/**
* When a layer is created and initially not visible, its compositing rect won't be set up properly. Then, when
* we show it in this method, it the layer will not render as it should.
*
* For example, if an inpaint mask is created via select-object while the isolated layer preview feature is
* enabled, it will be hidden on its first render, and the compositing rect will not be sized/positioned/filled.
* When next show the layer, the its underlying objects will be rendered directly, without the compositing rect
* providing the correct fill.
*
* The simplest way to ensure this doesn't happen is to always update the compositing rect when showing the layer.
*/
this.renderer.updateCompositingRectSize();
this.renderer.updateCompositingRectPosition();
this.renderer.updateCompositingRectFill();
}
this.renderer.syncKonvaCache();
};
@@ -558,8 +502,8 @@ export abstract class CanvasEntityAdapterBase<
syncIsLocked = () => {
// The only thing we need to do is update the transformer's interaction state. For tool interactions, like drawing
// shapes, we defer to the CanvasToolModule to handle the locked state.
this.$isLocked.set(this.state.isLocked);
this.transformer.syncInteractionState();
this.$isLocked.set(this.state.isLocked);
};
/**
@@ -619,8 +563,9 @@ export abstract class CanvasEntityAdapterBase<
hasCache: this.$canvasCache.get() !== null,
isLocked: this.$isLocked.get(),
isDisabled: this.$isDisabled.get(),
isEntityTypeHidden: this.$isEntityTypeHidden.get(),
isHidden: this.$isHidden.get(),
isEmpty: this.$isEmpty.get(),
isInteractable: this.$isInteractable.get(),
isOnScreen: this.$isOnScreen.get(),
intersectsBbox: this.$intersectsBbox.get(),
konva: getKonvaNodeDebugAttrs(this.konva.layer),

View File

@@ -78,12 +78,7 @@ export class CanvasEntityAdapterControlLayer extends CanvasEntityAdapterBase<
};
getHashableState = (): SerializableObject => {
const keysToOmit: (keyof CanvasControlLayerState)[] = [
'name',
'controlAdapter',
'withTransparencyEffect',
'isLocked',
];
const keysToOmit: (keyof CanvasControlLayerState)[] = ['name', 'controlAdapter', 'withTransparencyEffect'];
return omit(this.state, keysToOmit);
};
}

View File

@@ -70,7 +70,7 @@ export class CanvasEntityAdapterInpaintMask extends CanvasEntityAdapterBase<
};
getHashableState = (): SerializableObject => {
const keysToOmit: (keyof CanvasInpaintMaskState)[] = ['fill', 'name', 'opacity', 'isLocked'];
const keysToOmit: (keyof CanvasInpaintMaskState)[] = ['fill', 'name', 'opacity'];
return omit(this.state, keysToOmit);
};

View File

@@ -71,7 +71,7 @@ export class CanvasEntityAdapterRasterLayer extends CanvasEntityAdapterBase<
};
getHashableState = (): SerializableObject => {
const keysToOmit: (keyof CanvasRasterLayerState)[] = ['name', 'isLocked'];
const keysToOmit: (keyof CanvasRasterLayerState)[] = ['name'];
return omit(this.state, keysToOmit);
};
}

View File

@@ -70,16 +70,7 @@ export class CanvasEntityAdapterRegionalGuidance extends CanvasEntityAdapterBase
};
getHashableState = (): SerializableObject => {
const keysToOmit: (keyof CanvasRegionalGuidanceState)[] = [
'fill',
'name',
'opacity',
'isLocked',
'autoNegative',
'positivePrompt',
'negativePrompt',
'referenceImages',
];
const keysToOmit: (keyof CanvasRegionalGuidanceState)[] = ['fill', 'name', 'opacity'];
return omit(this.state, keysToOmit);
};

View File

@@ -9,7 +9,7 @@ import { addCoords, getKonvaNodeDebugAttrs, getPrefixedId } from 'features/contr
import { selectAutoProcess } from 'features/controlLayers/store/canvasSettingsSlice';
import type { FilterConfig } from 'features/controlLayers/store/filters';
import { getFilterForModel, IMAGE_FILTERS } from 'features/controlLayers/store/filters';
import type { CanvasImageState, CanvasRenderableEntityType } from 'features/controlLayers/store/types';
import type { CanvasEntityType, CanvasImageState } from 'features/controlLayers/store/types';
import { imageDTOToImageObject } from 'features/controlLayers/store/util';
import Konva from 'konva';
import { debounce } from 'lodash-es';
@@ -83,13 +83,6 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
* Whether the module has an image state. This is a computed value based on $imageState.
*/
$hasImageState = computed(this.$imageState, (imageState) => imageState !== null);
/**
* Whether the filter is in simple mode. In simple mode, the filter is started with a default filter config and the
* user is not presented with filter settings.
*/
$simple = atom<boolean>(false);
/**
* The filtered image object module, if it exists.
*/
@@ -154,7 +147,7 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
/**
* Starts the filter module.
* @param config The filter config to use. If omitted, the default filter config is used.
* @param config The filter config to start with. If omitted, the default filter config is used.
*/
start = (config?: FilterConfig) => {
const filteringAdapter = this.manager.stateApi.$filteringAdapter.get();
@@ -181,14 +174,12 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
// If a config is provided, use it
this.$filterConfig.set(config);
this.$initialFilterConfig.set(config);
this.$simple.set(true);
} else {
const initialConfig = this.createInitialFilterConfig();
this.$filterConfig.set(initialConfig);
this.$initialFilterConfig.set(initialConfig);
this.$simple.set(false);
this.$filterConfig.set(this.createInitialFilterConfig());
}
this.$initialFilterConfig.set(this.$filterConfig.get());
this.subscribe();
this.manager.stateApi.$filteringAdapter.set(this.parent);
@@ -207,7 +198,7 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
);
const modelConfig = this.manager.stateApi.runSelector(selectModelConfig);
// This always returns a filter
const filter = getFilterForModel(modelConfig) ?? IMAGE_FILTERS.canny_edge_detection;
const filter = getFilterForModel(modelConfig);
return filter.buildDefaults();
} else {
// Otherwise, used the default filter
@@ -219,10 +210,6 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
* Processes the filter, updating the module's state and rendering the filtered image.
*/
processImmediate = async () => {
if (!this.$isFiltering.get()) {
this.log.warn('Cannot process filter when not initialized');
return;
}
const config = this.$filterConfig.get();
const filterData = IMAGE_FILTERS[config.type];
@@ -355,6 +342,7 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
});
// Final cleanup and teardown, returning user to main canvas UI
this.resetEphemeralState();
this.teardown();
};
@@ -362,7 +350,7 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
* Saves the filtered image as a new entity of the given type.
* @param type The type of entity to save the filtered image as.
*/
saveAs = (type: CanvasRenderableEntityType) => {
saveAs = (type: Exclude<CanvasEntityType, 'reference_image'>) => {
const imageState = this.$imageState.get();
if (!imageState) {
this.log.warn('No image state to apply filter to');
@@ -398,6 +386,10 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
default:
assert<Equals<typeof type, never>>(false);
}
// Final cleanup and teardown, returning user to main canvas UI
this.resetEphemeralState();
this.teardown();
};
resetEphemeralState = () => {
@@ -413,7 +405,7 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
this.imageModule.destroy();
this.imageModule = null;
}
const initialFilterConfig = deepClone(this.$initialFilterConfig.get() ?? this.createInitialFilterConfig());
const initialFilterConfig = this.$initialFilterConfig.get() ?? this.createInitialFilterConfig();
this.$filterConfig.set(initialFilterConfig);
this.$imageState.set(null);
this.$lastProcessedHash.set('');
@@ -421,11 +413,9 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
};
teardown = () => {
this.unsubscribe();
this.$initialFilterConfig.set(null);
this.konva.group.remove();
// The reset must be done _after_ unsubscribing from listeners, in case the listeners would otherwise react to
// the reset. For example, if auto-processing is enabled and we reset the state, it may trigger processing.
this.resetEphemeralState();
this.unsubscribe();
this.$isFiltering.set(false);
this.manager.stateApi.$filteringAdapter.set(null);
};
@@ -442,6 +432,7 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
cancel = () => {
this.log.trace('Canceling');
this.resetEphemeralState();
this.teardown();
};

View File

@@ -219,19 +219,11 @@ export class CanvasEntityObjectRenderer extends CanvasModuleBase {
return;
}
if (!this.parent.konva.layer.visible()) {
return;
}
if (
!this.konva.compositing ||
(this.parent.state.type !== 'inpaint_mask' && this.parent.state.type !== 'regional_guidance')
) {
return;
}
this.log.trace('Updating compositing rect fill');
assert(this.konva.compositing, 'Missing compositing rect');
assert(this.parent.state.type === 'inpaint_mask' || this.parent.state.type === 'regional_guidance');
const fill = this.parent.state.fill;
if (fill.style === 'solid') {
@@ -252,19 +244,10 @@ export class CanvasEntityObjectRenderer extends CanvasModuleBase {
return;
}
if (!this.parent.konva.layer.visible()) {
return;
}
if (
!this.konva.compositing ||
(this.parent.state.type !== 'inpaint_mask' && this.parent.state.type !== 'regional_guidance')
) {
return;
}
this.log.trace('Updating compositing rect size');
assert(this.konva.compositing, 'Missing compositing rect');
const scale = this.manager.stage.unscale(1);
this.konva.compositing.rect.setAttrs({
@@ -279,29 +262,16 @@ export class CanvasEntityObjectRenderer extends CanvasModuleBase {
return;
}
if (!this.parent.konva.layer.visible()) {
return;
}
if (
!this.konva.compositing ||
(this.parent.state.type !== 'inpaint_mask' && this.parent.state.type !== 'regional_guidance')
) {
return;
}
this.log.trace('Updating compositing rect position');
assert(this.konva.compositing, 'Missing compositing rect');
this.konva.compositing.rect.setAttrs({
...this.manager.stage.getScaledStageRect(),
});
};
updateOpacity = throttle(() => {
if (!this.parent.konva.layer.visible()) {
return;
}
this.log.trace('Updating opacity');
const opacity = this.parent.state.opacity;

Some files were not shown because too many files have changed in this diff Show More