Compare commits

..

96 Commits

Author SHA1 Message Date
psychedelicious
825f163492 chore: bump version to v5.4.0a1 2024-10-30 11:06:01 +11:00
psychedelicious
bc42205593 fix(ui): remember to disable isFiltering when finishing filtering 2024-10-30 09:19:30 +11:00
psychedelicious
2e3cba6416 fix(ui): flash of original layer when applying filter/segment
Let the parent module adopt the filtered/segemented image instead of destroying it and making the parent re-create it, which results in a brief flash of the parent layer's original objects before the new image is rendered.
2024-10-30 09:19:30 +11:00
psychedelicious
7852aacd11 fix(uI): track whether graph succeeded in runGraphAndReturnImageOutput
This prevents extraneous graph cancel requests when cleaning up the abort signal after a successful run of a graph.
2024-10-30 09:19:30 +11:00
psychedelicious
6cccd67ecd feat(ui): update SAM module to w/ minor improvements from filter module 2024-10-30 09:19:30 +11:00
psychedelicious
a7a89c9de1 feat(ui): use more resilient logic in canvas filter module, same as in SAM module 2024-10-30 09:19:30 +11:00
psychedelicious
5ca8eed89e tidy(ui): remove all buffer renderer interactions in SAM module
We don't use the buffer rendere in this module; there's no reason to clear it.
2024-10-30 09:19:30 +11:00
psychedelicious
c885c3c9a6 fix(ui): filter layer data pushed to parent rendered when saving as 2024-10-30 09:19:30 +11:00
Mary Hipp
d81c38c350 update announcements 2024-10-29 09:53:13 -04:00
Riku
92d5b73215 fix(ui): seamless zod parameter cleanup 2024-10-29 20:43:44 +11:00
Riku
097e92db6a fix(ui): always write seamless metadata
Ensure images without seamless enabled correctly reset the setting
when all parameters are recalled
2024-10-29 20:43:44 +11:00
Riku
84c6209a45 feat(ui): display seamless values in metadata viewer 2024-10-29 20:43:44 +11:00
Riku
107e48808a fix(ui): recall seamless settings 2024-10-29 20:43:44 +11:00
dunkeroni
47168b5505 chore: make ruff 2024-10-29 14:07:20 +11:00
dunkeroni
58152ec981 fix preview progress bar pre-denoise 2024-10-29 14:07:20 +11:00
dunkeroni
c74afbf332 convert to bgr on sdxl t2i 2024-10-29 14:07:20 +11:00
psychedelicious
7cdda00a54 feat(ui): rearrange canvas paste back nodes to save an image step
We were scaling the unscaled image and mask down before doing the paste-back, but this adds an extraneous step & image output.

We can do the paste-back first, then scale to output size after. So instead of 2 resizes before the paste-back, we have 1 resize after.

The end result is the same.
2024-10-29 11:13:31 +11:00
psychedelicious
a74282bce6 feat(ui): graph builders use objects for arg instead of many args 2024-10-29 11:13:31 +11:00
psychedelicious
107f048c7a feat(ui): extract canvas output node prefix to constant 2024-10-29 11:13:31 +11:00
Ryan Dick
a2486a5f06 Remove unused prediction_type and upcast_attention from from_single_file(...) calls. 2024-10-28 13:05:17 -04:00
Ryan Dick
07ab116efb Remove load_safety_checker=False from calls to from_single_file(...).
This param has been deprecated, and by including it (even when set to
False) the safety checker automatically gets downloaded.
2024-10-28 13:05:17 -04:00
Ryan Dick
1a13af3c7a Fix huggingface_hub.errors imports after version bump. 2024-10-28 13:05:17 -04:00
Ryan Dick
f2966a2594 Fix changed import for FromOriginalControlNetMixin after diffusers bump. 2024-10-28 13:05:17 -04:00
Ryan Dick
58bb97e3c6 Bump diffusers, accelerate, and huggingface-hub. 2024-10-28 13:05:17 -04:00
psychedelicious
a84aa5c049 fix(ui): canvas alerts blocking metadata panel 2024-10-27 09:46:01 +11:00
psychedelicious
aebcec28e0 chore: bump version to v5.3.0 2024-10-25 22:37:59 -04:00
psychedelicious
db1c5a94f7 feat(ui): image ctx -> New from Image -> Canvas as Raster/Control Layer 2024-10-25 22:27:00 -04:00
psychedelicious
56222a8493 feat(ui): organize layer context menu items 2024-10-25 22:27:00 -04:00
psychedelicious
b7510ce709 feat(ui): filter, select object and transform UI buttons
- Restore dedicated `Apply` buttons
- Remove icons from the buttons, too much noise when the words are short and clear
- Update loading state to show a spinner next to the `Process` button instead of on _every_ button
2024-10-25 22:27:00 -04:00
psychedelicious
5739799e2e fix(ui): close viewer when transforming 2024-10-25 22:27:00 -04:00
psychedelicious
813cf87920 feat(ui): move canvas alerts to top-left corner 2024-10-25 22:27:00 -04:00
psychedelicious
c95b151daf feat(ui): add layer title heading for canvas ctx menu 2024-10-25 22:27:00 -04:00
psychedelicious
a0f823a3cf feat(ui): reset shouldShowStagedImage flag when starting staging 2024-10-25 22:27:00 -04:00
Hippalectryon
64e0f6d688 Improve dev install docs
Fix numbering
2024-10-25 08:27:26 -04:00
psychedelicious
ddd5b1087c fix(nodes): return copies of objects in invocation ctx
Closes #6820
2024-10-25 08:26:09 -04:00
psychedelicious
008be9b846 feat(ui): add all save as options to filter 2024-10-25 08:12:14 -04:00
psychedelicious
8e7cabdc04 feat(ui): add Replace Current open to Select Object -> Save As 2024-10-25 08:12:14 -04:00
psychedelicious
a4c4237f99 feat(ui): use PiPlayFill for process buttons for filter & select object 2024-10-25 08:12:14 -04:00
psychedelicious
bda3740dcd feat(ui): use fill style icons for Filter 2024-10-25 08:12:14 -04:00
psychedelicious
5b4633baa9 feat(ui): use PiShapesFill icon for Select Object 2024-10-25 08:12:14 -04:00
psychedelicious
96351181cb feat(ui): make canvas layer toolbar icons a bit larger 2024-10-25 08:12:14 -04:00
psychedelicious
957d591d99 feat(ui): "Auto-Mask" -> "Select Object" 2024-10-25 08:12:14 -04:00
psychedelicious
75f605ba1a feat(ui): support inverted selection in auto-mask 2024-10-25 08:12:14 -04:00
psychedelicious
ab898a7180 chore(ui): typegen 2024-10-25 08:12:14 -04:00
psychedelicious
c9a4516ab1 feat(nodes): add invert to apply_tensor_mask_to_image 2024-10-25 08:12:14 -04:00
psychedelicious
fe97c0d5eb tweak(ui): default settings verbiage 2024-10-25 16:09:59 +11:00
psychedelicious
6056764840 feat(ui): disable default settings button when synced
A blue button is begging to be clicked, but clicking it will do nothing. Instead, we should communicate that no action is needed by disabling the button when the default settings are already in use.
2024-10-25 16:09:59 +11:00
psychedelicious
8747c0dbb0 fix(ui): handle no model selection in default settings tooltip 2024-10-25 16:09:59 +11:00
psychedelicious
c5cdd5f9c6 fix(ui): use const EMPTY_OBJECT to prevent rerenders 2024-10-25 16:09:59 +11:00
psychedelicious
abc5d53159 fix(ui): use explicit null check when comparing default settings
Using `&&` will result in false negatives for settings where a falsy value might be valid. For example, any setting for which 0 is a valid number. To be on the safe side, just use an explicit null check on all values.
2024-10-25 16:09:59 +11:00
psychedelicious
2f76019a89 tweak(ui): defaults sync tooltip styling 2024-10-25 16:09:59 +11:00
Mary Hipp
3f45beb1ed feat(ui): add out of sync details to model default settings button 2024-10-25 16:09:59 +11:00
Mary Hipp
bc1126a85b (ui): add setting for showing model descriptions in dropdown defaulted to true 2024-10-25 14:52:33 +11:00
psychedelicious
380017041e fix(app): mutating an image also changes the in-memory cached image
We use an in-memory cache for PIL images to reduce I/O. If a node mutates the image in any way, the cached image object is also updated (but the on-disk image file is not).

We've lucked out that this hasn't caused major issues in the past (well, maybe it has but we didn't understand them?) mainly because of a happy accident. When you call `context.images.get_pil` in a node, if you provide an image mode (e.g. `mode="RGB"`), we call `convert`  on the image. This returns a copy. The node can do whatever it wants to that copy and nothing breaks.

However, when mode is not specified, we return the image directly. This is where we get in trouble - nodes that load the image like this, and then mutate the image, update the cache. Other nodes that reference that same image will now get the mutated version of it.

The fix is super simple - we make sure to return only copies from `get_pil`.
2024-10-25 10:22:22 +11:00
psychedelicious
ab7cdbb7e0 fix(ui): do not delete point on right-mouse click 2024-10-25 10:22:22 +11:00
psychedelicious
e5b78d0221 fix(ui): canvas drop area grid layout 2024-10-25 10:22:22 +11:00
psychedelicious
1acaa6c486 chore: bump version to v5.3.0rc2 2024-10-25 07:50:58 +11:00
psychedelicious
b0381076b7 revert(ui): drop targets for inpaint mask and rg 2024-10-25 07:42:46 +11:00
psychedelicious
ffff2d6dbb feat(ui): add New from Image submenu for image ctx menu 2024-10-25 07:42:46 +11:00
psychedelicious
afa9f07649 fix(ui): missing cursor when transforming 2024-10-25 07:42:46 +11:00
psychedelicious
addb5c49ea feat(ui): support dnd images onto inpaint mask/rg entities 2024-10-25 07:42:46 +11:00
psychedelicious
a112d2d55b feat(ui): add logging to useCopyLayerToClipboard 2024-10-25 07:42:46 +11:00
psychedelicious
619a271c8a feat(ui): disable copy to clipboard when layer is empty 2024-10-25 07:42:46 +11:00
psychedelicious
909f2ee36d feat(ui): add help tooltip to automask 2024-10-25 07:42:46 +11:00
psychedelicious
b4cf3d9d03 fix(ui): canvas context menu w/ eraser tool erases 2024-10-25 07:42:46 +11:00
psychedelicious
e6ab6e0293 chore(ui): lint 2024-10-24 08:39:29 -04:00
psychedelicious
66d9c7c631 fix(ui): icon for automask save as 2024-10-24 08:39:29 -04:00
psychedelicious
fec45f3eb6 feat(ui): animate automask preview overlay 2024-10-24 08:39:29 -04:00
psychedelicious
7211d1a6fc feat(ui): add context menu options for layer type convert/copy 2024-10-24 08:39:29 -04:00
psychedelicious
f3069754a9 feat(ui): add logic to convert/copy between all layer types 2024-10-24 08:39:29 -04:00
psychedelicious
4f43152aeb fix(ui): handle pen/touch events on submenu 2024-10-24 08:39:29 -04:00
psychedelicious
7125055d02 fix(ui): icon menu item group spacing 2024-10-24 08:39:29 -04:00
psychedelicious
c91a9ce390 feat(ui): add pull bbox to global ref image ctx menu 2024-10-24 08:39:29 -04:00
psychedelicious
3e7b73da2c feat(ui): add entity context menu as canvas context menu sub-menu 2024-10-24 08:39:29 -04:00
psychedelicious
61ac50c00d feat(ui): use sub-menu for image metadata recall 2024-10-24 08:39:29 -04:00
psychedelicious
c1201f0bce feat(ui): add useSubMenu hook to abstract logic for sub-menus 2024-10-24 08:39:29 -04:00
psychedelicious
acdffac5ad feat(ui): close viewer when filtering/transforming/automasking 2024-10-24 08:39:29 -04:00
psychedelicious
e420300fa4 feat(ui): replace automask apply w/ save as menu 2024-10-24 08:39:29 -04:00
psychedelicious
260a5a4f9a feat(ui): add automask button to toolbar 2024-10-24 08:39:29 -04:00
psychedelicious
ed0c2006fe feat(ui): rename "foreground"/"background" -> "include"/"exclude" 2024-10-24 08:39:29 -04:00
psychedelicious
9ffd888c86 feat(ui): remove neutral points 2024-10-24 08:39:29 -04:00
psychedelicious
175a9dc28d feat(ui): more resilient auto-masking processing
- Use a hash of the last processed points instead of a `hasProcessed` flag to determine whether or not we should re-process a given set of points.
- Store point coords in state instead of pulling them out of the konva node positions. This makes moving a point a more explicit action in code.
- Add a `roundCoord` util to round the x and y values of a coordinate.
- Ensure we always re-process when $points changes.
2024-10-24 08:39:29 -04:00
psychedelicious
5764e4f7f2 chore(ui): lint 2024-10-24 23:34:06 +11:00
psychedelicious
4275a494b9 tweak(ui): bundle info icon 2024-10-24 23:34:06 +11:00
psychedelicious
a3deb8d30d tweak(ui): bundle tooltip styling 2024-10-24 23:34:06 +11:00
Mary Hipp
aafdb0a37b update popover copy 2024-10-24 23:34:06 +11:00
Mary Hipp
56a815719a update schema 2024-10-24 23:34:06 +11:00
Mary Hipp
4db26bfa3a (ui): add information popovers for other layer types 2024-10-24 23:34:06 +11:00
Mary Hipp
8d84ccb12b bump UI dep for combobox descriptions 2024-10-24 23:34:06 +11:00
Mary Hipp
3321d14997 undo show descriptions for now 2024-10-24 23:34:06 +11:00
maryhipp
43cc4684e1 (api) make sure all controlnet starter models will still have pre-processors correctly assigned when probed based on name 2024-10-24 23:34:06 +11:00
Mary Hipp
afa5a4b17c (ui): add informational popover for controlnet layers 2024-10-24 23:34:06 +11:00
Mary Hipp
33c433fe59 (ui): show models in starter bundles on hover, use previous_names for isInstalled logic, allow grouped model combobox to optionally show descriptions 2024-10-24 23:34:06 +11:00
maryhipp
9cd47fa857 (api): update names of starter models, add ability to track previous_names so it does not mess up logic that prevents dupe starter model installs 2024-10-24 23:34:06 +11:00
psychedelicious
32d9abe802 tweak(ui): prevent show/hide boards button cutoff
The use of hard 25% widths caused issues for some translations. Adjusted styling to not rely on any hard numbers. Tested with a project name and URL.
2024-10-24 08:21:16 -04:00
psychedelicious
3947d4a165 fix(ui): normalize infill alpha to 0-255 when building infill nodes
The browser/UI uses float 0-1 for alpha, while backend uses 0-255. We need to normalize the value when building the infill nodes for outpaint.
2024-10-24 19:22:36 +11:00
141 changed files with 3471 additions and 5433 deletions

View File

@@ -17,46 +17,49 @@ If you just want to use Invoke, you should use the [installer][installer link].
## Setup
1. Run through the [requirements][requirements link].
1. [Fork and clone][forking link] the [InvokeAI repo][repo link].
1. Create an directory for user data (images, models, db, etc). This is typically at `~/invokeai`, but if you already have a non-dev install, you may want to create a separate directory for the dev install.
1. Create a python virtual environment inside the directory you just created:
2. [Fork and clone][forking link] the [InvokeAI repo][repo link].
3. Create an directory for user data (images, models, db, etc). This is typically at `~/invokeai`, but if you already have a non-dev install, you may want to create a separate directory for the dev install.
4. Create a python virtual environment inside the directory you just created:
```sh
python3 -m venv .venv --prompt InvokeAI-Dev
```
```sh
python3 -m venv .venv --prompt InvokeAI-Dev
```
1. Activate the venv (you'll need to do this every time you want to run the app):
5. Activate the venv (you'll need to do this every time you want to run the app):
```sh
source .venv/bin/activate
```
```sh
source .venv/bin/activate
```
1. Install the repo as an [editable install][editable install link]:
6. Install the repo as an [editable install][editable install link]:
```sh
pip install -e ".[dev,test,xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
```sh
pip install -e ".[dev,test,xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
Refer to the [manual installation][manual install link]] instructions for more determining the correct install options. `xformers` is optional, but `dev` and `test` are not.
Refer to the [manual installation][manual install link]] instructions for more determining the correct install options. `xformers` is optional, but `dev` and `test` are not.
1. Install the frontend dev toolchain:
7. Install the frontend dev toolchain:
- [`nodejs`](https://nodejs.org/) (recommend v20 LTS)
- [`pnpm`](https://pnpm.io/installation#installing-a-specific-version) (must be v8 - not v9!)
- [`pnpm`](https://pnpm.io/8.x/installation) (must be v8 - not v9!)
1. Do a production build of the frontend:
8. Do a production build of the frontend:
```sh
pnpm build
```
```sh
cd PATH_TO_INVOKEAI_REPO/invokeai/frontend/web
pnpm i
pnpm build
```
1. Start the application:
9. Start the application:
```sh
python scripts/invokeai-web.py
```
```sh
cd PATH_TO_INVOKEAI_REPO
python scripts/invokeai-web.py
```
1. Access the UI at `localhost:9090`.
10. Access the UI at `localhost:9090`.
## Updating the UI

View File

@@ -808,7 +808,11 @@ def get_is_installed(
for model in installed_models:
if model.source == starter_model.source:
return True
if model.name == starter_model.name and model.base == starter_model.base and model.type == starter_model.type:
if (
(model.name == starter_model.name or model.name in starter_model.previous_names)
and model.base == starter_model.base
and model.type == starter_model.type
):
return True
return False

View File

@@ -13,6 +13,7 @@ from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers.scheduling_dpmsolver_sde import DPMSolverSDEScheduler
from diffusers.schedulers.scheduling_tcd import TCDScheduler
from diffusers.schedulers.scheduling_utils import SchedulerMixin as Scheduler
from PIL import Image
from pydantic import field_validator
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPVisionModelWithProjection
@@ -510,6 +511,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
context: InvocationContext,
t2i_adapters: Optional[Union[T2IAdapterField, list[T2IAdapterField]]],
ext_manager: ExtensionsManager,
bgr_mode: bool = False,
) -> None:
if t2i_adapters is None:
return
@@ -519,6 +521,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
t2i_adapters = [t2i_adapters]
for t2i_adapter_field in t2i_adapters:
image = context.images.get_pil(t2i_adapter_field.image.image_name)
if bgr_mode: # SDXL t2i trained on cv2's BGR outputs, but PIL won't convert straight to BGR
r, g, b = image.split()
image = Image.merge("RGB", (b, g, r))
ext_manager.add_extension(
T2IAdapterExt(
node_context=context,
@@ -623,6 +629,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
max_unet_downscale = 8
elif t2i_adapter_model_config.base == BaseModelType.StableDiffusionXL:
max_unet_downscale = 4
# SDXL adapters are trained on cv2's BGR outputs
r, g, b = image.split()
image = Image.merge("RGB", (b, g, r))
else:
raise ValueError(f"Unexpected T2I-Adapter base model type: '{t2i_adapter_model_config.base}'.")
@@ -900,7 +910,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
# ext = extension_field.to_extension(exit_stack, context, ext_manager)
# ext_manager.add_extension(ext)
self.parse_controlnet_field(exit_stack, context, self.control, ext_manager)
self.parse_t2i_adapter_field(exit_stack, context, self.t2i_adapter, ext_manager)
bgr_mode = self.unet.unet.base == BaseModelType.StableDiffusionXL
self.parse_t2i_adapter_field(exit_stack, context, self.t2i_adapter, ext_manager, bgr_mode)
# ext: t2i/ip adapter
ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx)

View File

@@ -133,7 +133,6 @@ class FieldDescriptions:
clip_embed_model = "CLIP Embed loader"
unet = "UNet (scheduler, LoRAs)"
transformer = "Transformer"
mmditx = "MMDiTX"
vae = "VAE"
cond = "Conditioning tensor"
controlnet_model = "ControlNet model to load"
@@ -141,7 +140,6 @@ class FieldDescriptions:
lora_model = "LoRA model to load"
main_model = "Main model (UNet, VAE, CLIP) to load"
flux_model = "Flux model (Transformer) to load"
sd3_model = "SD3 model (MMDiTX) to load"
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"

View File

@@ -1,86 +0,0 @@
from typing import Literal
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.util import max_seq_lengths
from invokeai.backend.model_manager.config import CheckpointConfigBase, SubModelType
@invocation_output("flux_model_loader_output")
class FluxModelLoaderOutput(BaseInvocationOutput):
"""Flux base model loader output"""
transformer: TransformerField = OutputField(description=FieldDescriptions.transformer, title="Transformer")
clip: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP")
t5_encoder: T5EncoderField = OutputField(description=FieldDescriptions.t5_encoder, title="T5 Encoder")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
max_seq_len: Literal[256, 512] = OutputField(
description="The max sequence length to used for the T5 encoder. (256 for schnell transformer, 512 for dev transformer)",
title="Max Seq Length",
)
@invocation(
"flux_model_loader",
title="Flux Main Model",
tags=["model", "flux"],
category="model",
version="1.0.4",
classification=Classification.Prototype,
)
class FluxModelLoaderInvocation(BaseInvocation):
"""Loads a flux base model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.flux_model,
ui_type=UIType.FluxMainModel,
input=Input.Direct,
)
t5_encoder_model: ModelIdentifierField = InputField(
description=FieldDescriptions.t5_encoder, ui_type=UIType.T5EncoderModel, input=Input.Direct, title="T5 Encoder"
)
clip_embed_model: ModelIdentifierField = InputField(
description=FieldDescriptions.clip_embed_model,
ui_type=UIType.CLIPEmbedModel,
input=Input.Direct,
title="CLIP Embed",
)
vae_model: ModelIdentifierField = InputField(
description=FieldDescriptions.vae_model, ui_type=UIType.FluxVAEModel, title="VAE"
)
def invoke(self, context: InvocationContext) -> FluxModelLoaderOutput:
for key in [self.model.key, self.t5_encoder_model.key, self.clip_embed_model.key, self.vae_model.key]:
if not context.models.exists(key):
raise ValueError(f"Unknown model: {key}")
transformer = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
vae = self.vae_model.model_copy(update={"submodel_type": SubModelType.VAE})
tokenizer = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
clip_encoder = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer2 = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
t5_encoder = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
transformer_config = context.models.get_config(transformer)
assert isinstance(transformer_config, CheckpointConfigBase)
return FluxModelLoaderOutput(
transformer=TransformerField(transformer=transformer, loras=[]),
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], skipped_layers=0),
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder),
vae=VAEField(vae=vae),
max_seq_len=max_seq_lengths[transformer_config.config_path],
)

View File

@@ -165,6 +165,7 @@ class ApplyMaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
mask: TensorField = InputField(description="The mask tensor to apply.")
image: ImageField = InputField(description="The image to apply the mask to.")
invert: bool = InputField(default=False, description="Whether to invert the mask.")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, mode="RGBA")
@@ -179,6 +180,9 @@ class ApplyMaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
mask = mask > 0.5
mask_np = (mask.float() * 255).byte().cpu().numpy().astype(np.uint8)
if self.invert:
mask_np = 255 - mask_np
# Apply the mask only to the alpha channel where the original alpha is non-zero. This preserves the original
# image's transparency - else the transparent regions would end up as opaque black.

View File

@@ -1,5 +1,5 @@
import copy
from typing import List, Optional
from typing import List, Literal, Optional
from pydantic import BaseModel, Field
@@ -13,9 +13,11 @@ from invokeai.app.invocations.baseinvocation import (
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.flux.util import max_seq_lengths
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
CheckpointConfigBase,
ModelType,
SubModelType,
)
@@ -137,6 +139,78 @@ class ModelIdentifierInvocation(BaseInvocation):
return ModelIdentifierOutput(model=self.model)
@invocation_output("flux_model_loader_output")
class FluxModelLoaderOutput(BaseInvocationOutput):
"""Flux base model loader output"""
transformer: TransformerField = OutputField(description=FieldDescriptions.transformer, title="Transformer")
clip: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP")
t5_encoder: T5EncoderField = OutputField(description=FieldDescriptions.t5_encoder, title="T5 Encoder")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
max_seq_len: Literal[256, 512] = OutputField(
description="The max sequence length to used for the T5 encoder. (256 for schnell transformer, 512 for dev transformer)",
title="Max Seq Length",
)
@invocation(
"flux_model_loader",
title="Flux Main Model",
tags=["model", "flux"],
category="model",
version="1.0.4",
classification=Classification.Prototype,
)
class FluxModelLoaderInvocation(BaseInvocation):
"""Loads a flux base model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.flux_model,
ui_type=UIType.FluxMainModel,
input=Input.Direct,
)
t5_encoder_model: ModelIdentifierField = InputField(
description=FieldDescriptions.t5_encoder, ui_type=UIType.T5EncoderModel, input=Input.Direct, title="T5 Encoder"
)
clip_embed_model: ModelIdentifierField = InputField(
description=FieldDescriptions.clip_embed_model,
ui_type=UIType.CLIPEmbedModel,
input=Input.Direct,
title="CLIP Embed",
)
vae_model: ModelIdentifierField = InputField(
description=FieldDescriptions.vae_model, ui_type=UIType.FluxVAEModel, title="VAE"
)
def invoke(self, context: InvocationContext) -> FluxModelLoaderOutput:
for key in [self.model.key, self.t5_encoder_model.key, self.clip_embed_model.key, self.vae_model.key]:
if not context.models.exists(key):
raise ValueError(f"Unknown model: {key}")
transformer = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
vae = self.vae_model.model_copy(update={"submodel_type": SubModelType.VAE})
tokenizer = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
clip_encoder = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer2 = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
t5_encoder = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
transformer_config = context.models.get_config(transformer)
assert isinstance(transformer_config, CheckpointConfigBase)
return FluxModelLoaderOutput(
transformer=TransformerField(transformer=transformer, loras=[]),
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], skipped_layers=0),
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder),
vae=VAEField(vae=vae),
max_seq_len=max_seq_lengths[transformer_config.config_path],
)
@invocation(
"main_model_loader",
title="Main Model",

View File

@@ -1,102 +0,0 @@
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import CheckpointConfigBase, SubModelType
@invocation_output("sd3_model_loader_output")
class Sd3ModelLoaderOutput(BaseInvocationOutput):
"""SD3 base model loader output."""
mmditx: TransformerField = OutputField(description=FieldDescriptions.mmditx, title="MMDiTX")
clip_l: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP L")
clip_g: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP G")
t5_encoder: T5EncoderField = OutputField(description=FieldDescriptions.t5_encoder, title="T5 Encoder")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation(
"sd3_model_loader",
title="SD3 Main Model",
tags=["model", "sd3"],
category="model",
version="1.0.0",
classification=Classification.Prototype,
)
class Sd3ModelLoaderInvocation(BaseInvocation):
"""Loads a SD3 base model, outputting its submodels."""
# TODO(ryand): Create a UIType.Sd3MainModelField to use here.
model: ModelIdentifierField = InputField(
description=FieldDescriptions.sd3_model,
ui_type=UIType.MainModel,
input=Input.Direct,
)
# TODO(ryand): Make the text encoders optional.
# Note: The text encoders are optional for SD3. The model was trained with dropout, so any can be left out at
# inference time. Typically, only the T5 encoder is omitted, since it is the largest by far.
t5_encoder_model: ModelIdentifierField = InputField(
description=FieldDescriptions.t5_encoder, ui_type=UIType.T5EncoderModel, input=Input.Direct, title="T5 Encoder"
)
clip_l_embed_model: ModelIdentifierField = InputField(
description=FieldDescriptions.clip_embed_model,
ui_type=UIType.CLIPEmbedModel,
input=Input.Direct,
title="CLIP L Embed",
)
clip_g_embed_model: ModelIdentifierField = InputField(
description=FieldDescriptions.clip_embed_model,
ui_type=UIType.CLIPEmbedModel,
input=Input.Direct,
title="CLIP G Embed",
)
# TODO(ryand): Create a UIType.Sd3VaModelField to use here.
vae_model: ModelIdentifierField = InputField(
description=FieldDescriptions.vae_model, ui_type=UIType.VAEModel, title="VAE"
)
def invoke(self, context: InvocationContext) -> Sd3ModelLoaderOutput:
for key in [
self.model.key,
self.t5_encoder_model.key,
self.clip_l_embed_model.key,
self.clip_g_embed_model.key,
self.vae_model.key,
]:
if not context.models.exists(key):
raise ValueError(f"Unknown model: {key}")
# TODO(ryand): Figure out the sub-model types for SD3.
mmditx = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
vae = self.vae_model.model_copy(update={"submodel_type": SubModelType.VAE})
tokenizer_l = self.clip_l_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
clip_encoder_l = self.clip_l_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer_g = self.clip_g_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
clip_encoder_g = self.clip_g_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer_t5 = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
t5_encoder = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
transformer_config = context.models.get_config(mmditx)
assert isinstance(transformer_config, CheckpointConfigBase)
return Sd3ModelLoaderOutput(
mmditx=TransformerField(transformer=mmditx, loras=[]),
clip_l=CLIPField(tokenizer=tokenizer_l, text_encoder=clip_encoder_l, loras=[], skipped_layers=0),
clip_g=CLIPField(tokenizer=tokenizer_g, text_encoder=clip_encoder_g, loras=[], skipped_layers=0),
t5_encoder=T5EncoderField(tokenizer=tokenizer_t5, text_encoder=t5_encoder),
vae=VAEField(vae=vae),
)

View File

@@ -1,3 +1,4 @@
from copy import deepcopy
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Callable, Optional, Union
@@ -221,7 +222,7 @@ class ImagesInterface(InvocationContextInterface):
)
def get_pil(self, image_name: str, mode: IMAGE_MODES | None = None) -> Image:
"""Gets an image as a PIL Image object.
"""Gets an image as a PIL Image object. This method returns a copy of the image.
Args:
image_name: The name of the image to get.
@@ -233,11 +234,15 @@ class ImagesInterface(InvocationContextInterface):
image = self._services.images.get_pil_image(image_name)
if mode and mode != image.mode:
try:
# convert makes a copy!
image = image.convert(mode)
except ValueError:
self._services.logger.warning(
f"Could not convert image from {image.mode} to {mode}. Using original mode instead."
)
else:
# copy the image to prevent the user from modifying the original
image = image.copy()
return image
def get_metadata(self, image_name: str) -> Optional[MetadataField]:
@@ -290,15 +295,15 @@ class TensorsInterface(InvocationContextInterface):
return name
def load(self, name: str) -> Tensor:
"""Loads a tensor by name.
"""Loads a tensor by name. This method returns a copy of the tensor.
Args:
name: The name of the tensor to load.
Returns:
The loaded tensor.
The tensor.
"""
return self._services.tensors.load(name)
return self._services.tensors.load(name).clone()
class ConditioningInterface(InvocationContextInterface):
@@ -316,16 +321,16 @@ class ConditioningInterface(InvocationContextInterface):
return name
def load(self, name: str) -> ConditioningFieldData:
"""Loads conditioning data by name.
"""Loads conditioning data by name. This method returns a copy of the conditioning data.
Args:
name: The name of the conditioning data to load.
Returns:
The loaded conditioning data.
The conditioning data.
"""
return self._services.conditioning.load(name)
return deepcopy(self._services.conditioning.load(name))
class ModelsInterface(InvocationContextInterface):

View File

@@ -53,8 +53,6 @@ class BaseModelType(str, Enum):
Any = "any"
StableDiffusion1 = "sd-1"
StableDiffusion2 = "sd-2"
# TODO(ryand): Should this just be StableDiffusion3?
StableDiffusion35 = "sd-3.5"
StableDiffusionXL = "sdxl"
StableDiffusionXLRefiner = "sdxl-refiner"
Flux = "flux"

View File

@@ -1,55 +0,0 @@
from pathlib import Path
from typing import Optional
from invokeai.backend.model_manager.config import (
AnyModel,
AnyModelConfig,
BaseModelType,
CheckpointConfigBase,
MainCheckpointConfig,
ModelFormat,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.load.load_default import ModelLoader
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion35, type=ModelType.Main, format=ModelFormat.Checkpoint)
class FluxCheckpointModel(ModelLoader):
"""Class to load main models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not isinstance(config, CheckpointConfigBase):
raise ValueError("Only CheckpointConfigBase models are currently supported here.")
match submodel_type:
case SubModelType.Transformer:
return self._load_from_singlefile(config)
raise ValueError(
f"Only Transformer submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
)
def _load_from_singlefile(
self,
config: AnyModelConfig,
) -> AnyModel:
assert isinstance(config, MainCheckpointConfig)
model_path = Path(config.path)
# model = Flux(params[config.config_path])
# sd = load_file(model_path)
# if "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in sd:
# sd = convert_bundle_to_flux_transformer_checkpoint(sd)
# new_sd_size = sum([ten.nelement() * torch.bfloat16.itemsize for ten in sd.values()])
# self._ram_cache.make_room(new_sd_size)
# for k in sd.keys():
# # We need to cast to bfloat16 due to it being the only currently supported dtype for inference
# sd[k] = sd[k].to(torch.bfloat16)
# model.load_state_dict(sd, assign=True)
return model

View File

@@ -117,8 +117,6 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
load_class = load_classes[config.base][config.variant]
except KeyError as e:
raise Exception(f"No diffusers pipeline known for base={config.base}, variant={config.variant}") from e
prediction_type = config.prediction_type.value
upcast_attention = config.upcast_attention
# Without SilenceWarnings we get log messages like this:
# site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
@@ -129,13 +127,7 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
# ['text_model.embeddings.position_ids']
with SilenceWarnings():
pipeline = load_class.from_single_file(
config.path,
torch_dtype=self._torch_dtype,
prediction_type=prediction_type,
upcast_attention=upcast_attention,
load_safety_checker=False,
)
pipeline = load_class.from_single_file(config.path, torch_dtype=self._torch_dtype)
if not submodel_type:
return pipeline

View File

@@ -20,7 +20,7 @@ from typing import Optional
import requests
from huggingface_hub import HfApi, configure_http_backend, hf_hub_url
from huggingface_hub.utils._errors import RepositoryNotFoundError, RevisionNotFoundError
from huggingface_hub.errors import RepositoryNotFoundError, RevisionNotFoundError
from pydantic.networks import AnyHttpUrl
from requests.sessions import Session

View File

@@ -37,7 +37,6 @@ from invokeai.backend.model_manager.config import (
from invokeai.backend.model_manager.util.model_util import lora_token_vector_length, read_checkpoint_meta
from invokeai.backend.quantization.gguf.ggml_tensor import GGMLTensor
from invokeai.backend.quantization.gguf.loaders import gguf_sd_loader
from invokeai.backend.sd3.sd3_state_dict_utils import is_sd3_checkpoint
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
from invokeai.backend.util.silence_warnings import SilenceWarnings
@@ -121,7 +120,6 @@ class ModelProbe(object):
"T2IAdapter": ModelType.T2IAdapter,
"CLIPModel": ModelType.CLIPEmbed,
"CLIPTextModel": ModelType.CLIPEmbed,
"CLIPTextModelWithProjection": ModelType.CLIPEmbed,
"T5EncoderModel": ModelType.T5Encoder,
"FluxControlNetModel": ModelType.ControlNet,
}
@@ -243,11 +241,6 @@ class ModelProbe(object):
for key in [str(k) for k in ckpt.keys()]:
if key.startswith(
(
# The following prefixes appear when multiple models have been bundled together in a single file (I
# believe the format originated in ComfyUI).
# first_stage_model = VAE
# cond_stage_model = Text Encoder
# model.diffusion_model = UNet / Transformer
"cond_stage_model.",
"first_stage_model.",
"model.diffusion_model.",
@@ -404,9 +397,6 @@ class ModelProbe(object):
# is used rather than attempting to support flux with separate model types and format
# If changed in the future, please fix me
config_file = "flux-schnell"
elif base_type == BaseModelType.StableDiffusion35:
# TODO(ryand): Think about what to do here.
config_file = "sd3.5-large"
else:
config_file = LEGACY_CONFIGS[base_type][variant_type]
if isinstance(config_file, dict): # need another tier for sd-2.x models
@@ -472,8 +462,9 @@ MODEL_NAME_TO_PREPROCESSOR = {
"normal": "normalbae_image_processor",
"sketch": "pidi_image_processor",
"scribble": "lineart_image_processor",
"lineart": "lineart_image_processor",
"lineart anime": "lineart_anime_image_processor",
"lineart_anime": "lineart_anime_image_processor",
"lineart": "lineart_image_processor",
"softedge": "hed_image_processor",
"hed": "hed_image_processor",
"shuffle": "content_shuffle_image_processor",
@@ -526,7 +517,7 @@ class CheckpointProbeBase(ProbeBase):
def get_variant_type(self) -> ModelVariantType:
model_type = ModelProbe.get_model_type_from_checkpoint(self.model_path, self.checkpoint)
base_type = self.get_base_type()
if model_type != ModelType.Main or base_type in (BaseModelType.Flux, BaseModelType.StableDiffusion35):
if model_type != ModelType.Main or base_type == BaseModelType.Flux:
return ModelVariantType.Normal
state_dict = self.checkpoint.get("state_dict") or self.checkpoint
in_channels = state_dict["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
@@ -551,10 +542,6 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
or "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in state_dict
):
return BaseModelType.Flux
if is_sd3_checkpoint(state_dict):
return BaseModelType.StableDiffusion35
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 768:
return BaseModelType.StableDiffusion1

View File

@@ -13,6 +13,9 @@ class StarterModelWithoutDependencies(BaseModel):
type: ModelType
format: Optional[ModelFormat] = None
is_installed: bool = False
# allows us to track what models a user has installed across name changes within starter models
# if you update a starter model name, please add the old one to this list for that starter model
previous_names: list[str] = []
class StarterModel(StarterModelWithoutDependencies):
@@ -243,44 +246,49 @@ easy_neg_sd1 = StarterModel(
# endregion
# region IP Adapter
ip_adapter_sd1 = StarterModel(
name="IP Adapter",
name="Standard Reference (IP Adapter)",
base=BaseModelType.StableDiffusion1,
source="https://huggingface.co/InvokeAI/ip_adapter_sd15/resolve/main/ip-adapter_sd15.safetensors",
description="IP-Adapter for SD 1.5 models",
description="References images with a more generalized/looser degree of precision.",
type=ModelType.IPAdapter,
dependencies=[ip_adapter_sd_image_encoder],
previous_names=["IP Adapter"],
)
ip_adapter_plus_sd1 = StarterModel(
name="IP Adapter Plus",
name="Precise Reference (IP Adapter Plus)",
base=BaseModelType.StableDiffusion1,
source="https://huggingface.co/InvokeAI/ip_adapter_plus_sd15/resolve/main/ip-adapter-plus_sd15.safetensors",
description="Refined IP-Adapter for SD 1.5 models",
description="References images with a higher degree of precision.",
type=ModelType.IPAdapter,
dependencies=[ip_adapter_sd_image_encoder],
previous_names=["IP Adapter Plus"],
)
ip_adapter_plus_face_sd1 = StarterModel(
name="IP Adapter Plus Face",
name="Face Reference (IP Adapter Plus Face)",
base=BaseModelType.StableDiffusion1,
source="https://huggingface.co/InvokeAI/ip_adapter_plus_face_sd15/resolve/main/ip-adapter-plus-face_sd15.safetensors",
description="Refined IP-Adapter for SD 1.5 models, adapted for faces",
description="References images with a higher degree of precision, adapted for faces",
type=ModelType.IPAdapter,
dependencies=[ip_adapter_sd_image_encoder],
previous_names=["IP Adapter Plus Face"],
)
ip_adapter_sdxl = StarterModel(
name="IP Adapter SDXL",
name="Standard Reference (IP Adapter ViT-H)",
base=BaseModelType.StableDiffusionXL,
source="https://huggingface.co/InvokeAI/ip_adapter_sdxl_vit_h/resolve/main/ip-adapter_sdxl_vit-h.safetensors",
description="IP-Adapter for SDXL models",
description="References images with a higher degree of precision.",
type=ModelType.IPAdapter,
dependencies=[ip_adapter_sdxl_image_encoder],
previous_names=["IP Adapter SDXL"],
)
ip_adapter_flux = StarterModel(
name="XLabs FLUX IP-Adapter",
name="Standard Reference (XLabs FLUX IP-Adapter)",
base=BaseModelType.Flux,
source="https://huggingface.co/XLabs-AI/flux-ip-adapter/resolve/main/flux-ip-adapter.safetensors",
description="FLUX IP-Adapter",
description="References images with a more generalized/looser degree of precision.",
type=ModelType.IPAdapter,
dependencies=[clip_vit_l_image_encoder],
previous_names=["XLabs FLUX IP-Adapter"],
)
# endregion
# region ControlNet
@@ -299,157 +307,162 @@ qr_code_cnet_sdxl = StarterModel(
type=ModelType.ControlNet,
)
canny_sd1 = StarterModel(
name="canny",
name="Hard Edge Detection (canny)",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_canny",
description="ControlNet weights trained on sd-1.5 with canny conditioning.",
description="Uses detected edges in the image to control composition.",
type=ModelType.ControlNet,
previous_names=["canny"],
)
inpaint_cnet_sd1 = StarterModel(
name="inpaint",
name="Inpainting",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_inpaint",
description="ControlNet weights trained on sd-1.5 with canny conditioning, inpaint version",
type=ModelType.ControlNet,
previous_names=["inpaint"],
)
mlsd_sd1 = StarterModel(
name="mlsd",
name="Line Drawing (mlsd)",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_mlsd",
description="ControlNet weights trained on sd-1.5 with canny conditioning, MLSD version",
description="Uses straight line detection for controlling the generation.",
type=ModelType.ControlNet,
previous_names=["mlsd"],
)
depth_sd1 = StarterModel(
name="depth",
name="Depth Map",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11f1p_sd15_depth",
description="ControlNet weights trained on sd-1.5 with depth conditioning",
description="Uses depth information in the image to control the depth in the generation.",
type=ModelType.ControlNet,
previous_names=["depth"],
)
normal_bae_sd1 = StarterModel(
name="normal_bae",
name="Lighting Detection (Normals)",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_normalbae",
description="ControlNet weights trained on sd-1.5 with normalbae image conditioning",
description="Uses detected lighting information to guide the lighting of the composition.",
type=ModelType.ControlNet,
previous_names=["normal_bae"],
)
seg_sd1 = StarterModel(
name="seg",
name="Segmentation Map",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_seg",
description="ControlNet weights trained on sd-1.5 with seg image conditioning",
description="Uses segmentation maps to guide the structure of the composition.",
type=ModelType.ControlNet,
previous_names=["seg"],
)
lineart_sd1 = StarterModel(
name="lineart",
name="Lineart",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_lineart",
description="ControlNet weights trained on sd-1.5 with lineart image conditioning",
description="Uses lineart detection to guide the lighting of the composition.",
type=ModelType.ControlNet,
previous_names=["lineart"],
)
lineart_anime_sd1 = StarterModel(
name="lineart_anime",
name="Lineart Anime",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15s2_lineart_anime",
description="ControlNet weights trained on sd-1.5 with anime image conditioning",
description="Uses anime lineart detection to guide the lighting of the composition.",
type=ModelType.ControlNet,
previous_names=["lineart_anime"],
)
openpose_sd1 = StarterModel(
name="openpose",
name="Pose Detection (openpose)",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_openpose",
description="ControlNet weights trained on sd-1.5 with openpose image conditioning",
description="Uses pose information to control the pose of human characters in the generation.",
type=ModelType.ControlNet,
previous_names=["openpose"],
)
scribble_sd1 = StarterModel(
name="scribble",
name="Contour Detection (scribble)",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_scribble",
description="ControlNet weights trained on sd-1.5 with scribble image conditioning",
description="Uses edges, contours, or line art in the image to control composition.",
type=ModelType.ControlNet,
previous_names=["scribble"],
)
softedge_sd1 = StarterModel(
name="softedge",
name="Soft Edge Detection (softedge)",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_softedge",
description="ControlNet weights trained on sd-1.5 with soft edge conditioning",
description="Uses a soft edge detection map to control composition.",
type=ModelType.ControlNet,
previous_names=["softedge"],
)
shuffle_sd1 = StarterModel(
name="shuffle",
name="Remix (shuffle)",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11e_sd15_shuffle",
description="ControlNet weights trained on sd-1.5 with shuffle image conditioning",
type=ModelType.ControlNet,
previous_names=["shuffle"],
)
tile_sd1 = StarterModel(
name="tile",
name="Tile",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11f1e_sd15_tile",
description="ControlNet weights trained on sd-1.5 with tiled image conditioning",
type=ModelType.ControlNet,
)
ip2p_sd1 = StarterModel(
name="ip2p",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11e_sd15_ip2p",
description="ControlNet weights trained on sd-1.5 with ip2p conditioning.",
description="Uses image data to replicate exact colors/structure in the resulting generation.",
type=ModelType.ControlNet,
previous_names=["tile"],
)
canny_sdxl = StarterModel(
name="canny-sdxl",
name="Hard Edge Detection (canny)",
base=BaseModelType.StableDiffusionXL,
source="xinsir/controlNet-canny-sdxl-1.0",
description="ControlNet weights trained on sdxl-1.0 with canny conditioning, by Xinsir.",
description="Uses detected edges in the image to control composition.",
type=ModelType.ControlNet,
previous_names=["canny-sdxl"],
)
depth_sdxl = StarterModel(
name="depth-sdxl",
name="Depth Map",
base=BaseModelType.StableDiffusionXL,
source="diffusers/controlNet-depth-sdxl-1.0",
description="ControlNet weights trained on sdxl-1.0 with depth conditioning.",
description="Uses depth information in the image to control the depth in the generation.",
type=ModelType.ControlNet,
previous_names=["depth-sdxl"],
)
softedge_sdxl = StarterModel(
name="softedge-dexined-sdxl",
name="Soft Edge Detection (softedge)",
base=BaseModelType.StableDiffusionXL,
source="SargeZT/controlNet-sd-xl-1.0-softedge-dexined",
description="ControlNet weights trained on sdxl-1.0 with dexined soft edge preprocessing.",
type=ModelType.ControlNet,
)
depth_zoe_16_sdxl = StarterModel(
name="depth-16bit-zoe-sdxl",
base=BaseModelType.StableDiffusionXL,
source="SargeZT/controlNet-sd-xl-1.0-depth-16bit-zoe",
description="ControlNet weights trained on sdxl-1.0 with Zoe's preprocessor (16 bits).",
type=ModelType.ControlNet,
)
depth_zoe_32_sdxl = StarterModel(
name="depth-zoe-sdxl",
base=BaseModelType.StableDiffusionXL,
source="diffusers/controlNet-zoe-depth-sdxl-1.0",
description="ControlNet weights trained on sdxl-1.0 with Zoe's preprocessor (32 bits).",
description="Uses a soft edge detection map to control composition.",
type=ModelType.ControlNet,
previous_names=["softedge-dexined-sdxl"],
)
openpose_sdxl = StarterModel(
name="openpose-sdxl",
name="Pose Detection (openpose)",
base=BaseModelType.StableDiffusionXL,
source="xinsir/controlNet-openpose-sdxl-1.0",
description="ControlNet weights trained on sdxl-1.0 compatible with the DWPose processor by Xinsir.",
description="Uses pose information to control the pose of human characters in the generation.",
type=ModelType.ControlNet,
previous_names=["openpose-sdxl", "controlnet-openpose-sdxl"],
)
scribble_sdxl = StarterModel(
name="scribble-sdxl",
name="Contour Detection (scribble)",
base=BaseModelType.StableDiffusionXL,
source="xinsir/controlNet-scribble-sdxl-1.0",
description="ControlNet weights trained on sdxl-1.0 compatible with various lineart processors and black/white sketches by Xinsir.",
description="Uses edges, contours, or line art in the image to control composition.",
type=ModelType.ControlNet,
previous_names=["scribble-sdxl", "controlnet-scribble-sdxl"],
)
tile_sdxl = StarterModel(
name="tile-sdxl",
name="Tile",
base=BaseModelType.StableDiffusionXL,
source="xinsir/controlNet-tile-sdxl-1.0",
description="ControlNet weights trained on sdxl-1.0 with tiled image conditioning",
description="Uses image data to replicate exact colors/structure in the resulting generation.",
type=ModelType.ControlNet,
previous_names=["tile-sdxl"],
)
union_cnet_sdxl = StarterModel(
name="Multi-Guidance Detection (Union Pro)",
base=BaseModelType.StableDiffusionXL,
source="InvokeAI/Xinsir-SDXL_Controlnet_Union",
description="A unified ControlNet for SDXL model that supports 10+ control types",
type=ModelType.ControlNet,
)
union_cnet_flux = StarterModel(
@@ -462,60 +475,52 @@ union_cnet_flux = StarterModel(
# endregion
# region T2I Adapter
t2i_canny_sd1 = StarterModel(
name="canny-sd15",
name="Hard Edge Detection (canny)",
base=BaseModelType.StableDiffusion1,
source="TencentARC/t2iadapter_canny_sd15v2",
description="T2I Adapter weights trained on sd-1.5 with canny conditioning.",
description="Uses detected edges in the image to control composition",
type=ModelType.T2IAdapter,
previous_names=["canny-sd15"],
)
t2i_sketch_sd1 = StarterModel(
name="sketch-sd15",
name="Sketch",
base=BaseModelType.StableDiffusion1,
source="TencentARC/t2iadapter_sketch_sd15v2",
description="T2I Adapter weights trained on sd-1.5 with sketch conditioning.",
description="Uses a sketch to control composition",
type=ModelType.T2IAdapter,
previous_names=["sketch-sd15"],
)
t2i_depth_sd1 = StarterModel(
name="depth-sd15",
name="Depth Map",
base=BaseModelType.StableDiffusion1,
source="TencentARC/t2iadapter_depth_sd15v2",
description="T2I Adapter weights trained on sd-1.5 with depth conditioning.",
type=ModelType.T2IAdapter,
)
t2i_zoe_depth_sd1 = StarterModel(
name="zoedepth-sd15",
base=BaseModelType.StableDiffusion1,
source="TencentARC/t2iadapter_zoedepth_sd15v1",
description="T2I Adapter weights trained on sd-1.5 with zoe depth conditioning.",
description="Uses depth information in the image to control the depth in the generation.",
type=ModelType.T2IAdapter,
previous_names=["depth-sd15"],
)
t2i_canny_sdxl = StarterModel(
name="canny-sdxl",
name="Hard Edge Detection (canny)",
base=BaseModelType.StableDiffusionXL,
source="TencentARC/t2i-adapter-canny-sdxl-1.0",
description="T2I Adapter weights trained on sdxl-1.0 with canny conditioning.",
type=ModelType.T2IAdapter,
)
t2i_zoe_depth_sdxl = StarterModel(
name="zoedepth-sdxl",
base=BaseModelType.StableDiffusionXL,
source="TencentARC/t2i-adapter-depth-zoe-sdxl-1.0",
description="T2I Adapter weights trained on sdxl-1.0 with zoe depth conditioning.",
description="Uses detected edges in the image to control composition",
type=ModelType.T2IAdapter,
previous_names=["canny-sdxl"],
)
t2i_lineart_sdxl = StarterModel(
name="lineart-sdxl",
name="Lineart",
base=BaseModelType.StableDiffusionXL,
source="TencentARC/t2i-adapter-lineart-sdxl-1.0",
description="T2I Adapter weights trained on sdxl-1.0 with lineart conditioning.",
description="Uses lineart detection to guide the lighting of the composition.",
type=ModelType.T2IAdapter,
previous_names=["lineart-sdxl"],
)
t2i_sketch_sdxl = StarterModel(
name="sketch-sdxl",
name="Sketch",
base=BaseModelType.StableDiffusionXL,
source="TencentARC/t2i-adapter-sketch-sdxl-1.0",
description="T2I Adapter weights trained on sdxl-1.0 with sketch conditioning.",
description="Uses a sketch to control composition",
type=ModelType.T2IAdapter,
previous_names=["sketch-sdxl"],
)
# endregion
# region SpandrelImageToImage
@@ -600,22 +605,18 @@ STARTER_MODELS: list[StarterModel] = [
softedge_sd1,
shuffle_sd1,
tile_sd1,
ip2p_sd1,
canny_sdxl,
depth_sdxl,
softedge_sdxl,
depth_zoe_16_sdxl,
depth_zoe_32_sdxl,
openpose_sdxl,
scribble_sdxl,
tile_sdxl,
union_cnet_sdxl,
union_cnet_flux,
t2i_canny_sd1,
t2i_sketch_sd1,
t2i_depth_sd1,
t2i_zoe_depth_sd1,
t2i_canny_sdxl,
t2i_zoe_depth_sdxl,
t2i_lineart_sdxl,
t2i_sketch_sdxl,
realesrgan_x4,
@@ -646,7 +647,6 @@ sd1_bundle: list[StarterModel] = [
softedge_sd1,
shuffle_sd1,
tile_sd1,
ip2p_sd1,
swinir,
]
@@ -657,8 +657,6 @@ sdxl_bundle: list[StarterModel] = [
canny_sdxl,
depth_sdxl,
softedge_sdxl,
depth_zoe_16_sdxl,
depth_zoe_32_sdxl,
openpose_sdxl,
scribble_sdxl,
tile_sdxl,

View File

@@ -1,891 +0,0 @@
# This file was originally copied from:
# https://github.com/Stability-AI/sd3.5/blob/19bf11c4e1e37324c5aa5a61f010d4127848a09c/mmditx.py
### This file contains impls for MM-DiT, the core model component of SD3
import math
from typing import Dict, List, Optional
import numpy as np
import torch
from einops import rearrange, repeat
from invokeai.backend.sd3.other_impls import Mlp, attention
class PatchEmbed(torch.nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
img_size: Optional[int] = 224,
patch_size: int = 16,
in_chans: int = 3,
embed_dim: int = 768,
flatten: bool = True,
bias: bool = True,
strict_img_size: bool = True,
dynamic_img_pad: bool = False,
dtype: torch.dtype | None = None,
device: torch.device | None = None,
):
super().__init__()
self.patch_size = (patch_size, patch_size)
if img_size is not None:
self.img_size = (img_size, img_size)
self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size, strict=False)])
self.num_patches = self.grid_size[0] * self.grid_size[1]
else:
self.img_size = None
self.grid_size = None
self.num_patches = None
# flatten spatial dim and transpose to channels last, kept for bwd compat
self.flatten = flatten
self.strict_img_size = strict_img_size
self.dynamic_img_pad = dynamic_img_pad
self.proj = torch.nn.Conv2d(
in_chans,
embed_dim,
kernel_size=patch_size,
stride=patch_size,
bias=bias,
dtype=dtype,
device=device,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # NCHW -> NLC
return x
def modulate(x: torch.Tensor, shift: torch.Tensor | None, scale: torch.Tensor) -> torch.Tensor:
if shift is None:
shift = torch.zeros_like(scale)
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
#################################################################################
# Sine/Cosine Positional Embedding Functions #
#################################################################################
def get_2d_sincos_pos_embed(
embed_dim: int,
grid_size: int,
cls_token: bool = False,
extra_tokens: int = 0,
scaling_factor: Optional[float] = None,
offset: Optional[float] = None,
):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
if scaling_factor is not None:
grid = grid / scaling_factor
if offset is not None:
grid = grid - offset
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim: int, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim: int, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
return np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(torch.nn.Module):
"""Embeds scalar timesteps into vector representations."""
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None):
super().__init__()
self.mlp = torch.nn.Sequential(
torch.nn.Linear(
frequency_embedding_size,
hidden_size,
bias=True,
dtype=dtype,
device=device,
),
torch.nn.SiLU(),
torch.nn.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
device=t.device
)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(dtype=t.dtype)
return embedding
def forward(self, t, dtype, **kwargs):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
t_emb = self.mlp(t_freq)
return t_emb
class VectorEmbedder(torch.nn.Module):
"""Embeds a flat vector of dimension input_dim"""
def __init__(self, input_dim: int, hidden_size: int, dtype=None, device=None):
super().__init__()
self.mlp = torch.nn.Sequential(
torch.nn.Linear(input_dim, hidden_size, bias=True, dtype=dtype, device=device),
torch.nn.SiLU(),
torch.nn.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.mlp(x)
#################################################################################
# Core DiT Model #
#################################################################################
def split_qkv(qkv, head_dim):
qkv = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, -1, head_dim).movedim(2, 0)
return qkv[0], qkv[1], qkv[2]
def optimized_attention(qkv, num_heads):
return attention(qkv[0], qkv[1], qkv[2], num_heads)
class SelfAttention(torch.nn.Module):
ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug")
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
qk_scale: Optional[float] = None,
attn_mode: str = "xformers",
pre_only: bool = False,
qk_norm: Optional[str] = None,
rmsnorm: bool = False,
dtype=None,
device=None,
):
super().__init__()
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.qkv = torch.nn.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
if not pre_only:
self.proj = torch.nn.Linear(dim, dim, dtype=dtype, device=device)
assert attn_mode in self.ATTENTION_MODES
self.attn_mode = attn_mode
self.pre_only = pre_only
if qk_norm == "rms":
self.ln_q = RMSNorm(
self.head_dim,
elementwise_affine=True,
eps=1.0e-6,
dtype=dtype,
device=device,
)
self.ln_k = RMSNorm(
self.head_dim,
elementwise_affine=True,
eps=1.0e-6,
dtype=dtype,
device=device,
)
elif qk_norm == "ln":
self.ln_q = torch.nn.LayerNorm(
self.head_dim,
elementwise_affine=True,
eps=1.0e-6,
dtype=dtype,
device=device,
)
self.ln_k = torch.nn.LayerNorm(
self.head_dim,
elementwise_affine=True,
eps=1.0e-6,
dtype=dtype,
device=device,
)
elif qk_norm is None:
self.ln_q = torch.nn.Identity()
self.ln_k = torch.nn.Identity()
else:
raise ValueError(qk_norm)
def pre_attention(self, x: torch.Tensor):
B, L, C = x.shape
qkv = self.qkv(x)
q, k, v = split_qkv(qkv, self.head_dim)
q = self.ln_q(q).reshape(q.shape[0], q.shape[1], -1)
k = self.ln_k(k).reshape(q.shape[0], q.shape[1], -1)
return (q, k, v)
def post_attention(self, x: torch.Tensor) -> torch.Tensor:
assert not self.pre_only
x = self.proj(x)
return x
def forward(self, x: torch.Tensor) -> torch.Tensor:
(q, k, v) = self.pre_attention(x)
x = attention(q, k, v, self.num_heads)
x = self.post_attention(x)
return x
class RMSNorm(torch.nn.Module):
def __init__(
self,
dim: int,
elementwise_affine: bool = False,
eps: float = 1e-6,
device=None,
dtype=None,
):
"""
Initialize the RMSNorm normalization layer.
Args:
dim (int): The dimension of the input tensor.
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
Attributes:
eps (float): A small value added to the denominator for numerical stability.
weight (torch.nn.Parameter): Learnable scaling parameter.
"""
super().__init__()
self.eps = eps
self.learnable_scale = elementwise_affine
if self.learnable_scale:
self.weight = torch.nn.Parameter(torch.empty(dim, device=device, dtype=dtype))
else:
self.register_parameter("weight", None)
def _norm(self, x):
"""
Apply the RMSNorm normalization to the input tensor.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The normalized tensor.
"""
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
"""
Forward pass through the RMSNorm layer.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying RMSNorm.
"""
x = self._norm(x)
if self.learnable_scale:
return x * self.weight.to(device=x.device, dtype=x.dtype)
else:
return x
class SwiGLUFeedForward(torch.nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int,
ffn_dim_multiplier: Optional[float] = None,
):
"""
Initialize the FeedForward module.
Args:
dim (int): Input dimension.
hidden_dim (int): Hidden dimension of the feedforward layer.
multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None.
Attributes:
w1 (ColumnParallelLinear): Linear transformation for the first layer.
w2 (RowParallelLinear): Linear transformation for the second layer.
w3 (ColumnParallelLinear): Linear transformation for the third layer.
"""
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = torch.nn.Linear(dim, hidden_dim, bias=False)
self.w2 = torch.nn.Linear(hidden_dim, dim, bias=False)
self.w3 = torch.nn.Linear(dim, hidden_dim, bias=False)
def forward(self, x):
return self.w2(torch.nn.functional.silu(self.w1(x)) * self.w3(x))
class DismantledBlock(torch.nn.Module):
"""A DiT block with gated adaptive layer norm (adaLN) conditioning."""
ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug")
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
attn_mode: str = "xformers",
qkv_bias: bool = False,
pre_only: bool = False,
rmsnorm: bool = False,
scale_mod_only: bool = False,
swiglu: bool = False,
qk_norm: Optional[str] = None,
x_block_self_attn: bool = False,
dtype=None,
device=None,
**block_kwargs,
):
super().__init__()
assert attn_mode in self.ATTENTION_MODES
if not rmsnorm:
self.norm1 = torch.nn.LayerNorm(
hidden_size,
elementwise_affine=False,
eps=1e-6,
dtype=dtype,
device=device,
)
else:
self.norm1 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.attn = SelfAttention(
dim=hidden_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_mode=attn_mode,
pre_only=pre_only,
qk_norm=qk_norm,
rmsnorm=rmsnorm,
dtype=dtype,
device=device,
)
if x_block_self_attn:
assert not pre_only
assert not scale_mod_only
self.x_block_self_attn = True
self.attn2 = SelfAttention(
dim=hidden_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_mode=attn_mode,
pre_only=False,
qk_norm=qk_norm,
rmsnorm=rmsnorm,
dtype=dtype,
device=device,
)
else:
self.x_block_self_attn = False
if not pre_only:
if not rmsnorm:
self.norm2 = torch.nn.LayerNorm(
hidden_size,
elementwise_affine=False,
eps=1e-6,
dtype=dtype,
device=device,
)
else:
self.norm2 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
if not pre_only:
if not swiglu:
self.mlp = Mlp(
in_features=hidden_size,
hidden_features=mlp_hidden_dim,
act_layer=torch.nn.GELU(approximate="tanh"),
dtype=dtype,
device=device,
)
else:
self.mlp = SwiGLUFeedForward(dim=hidden_size, hidden_dim=mlp_hidden_dim, multiple_of=256)
self.scale_mod_only = scale_mod_only
if x_block_self_attn:
assert not pre_only
assert not scale_mod_only
n_mods = 9
elif not scale_mod_only:
n_mods = 6 if not pre_only else 2
else:
n_mods = 4 if not pre_only else 1
self.adaLN_modulation = torch.nn.Sequential(
torch.nn.SiLU(),
torch.nn.Linear(hidden_size, n_mods * hidden_size, bias=True, dtype=dtype, device=device),
)
self.pre_only = pre_only
def pre_attention(self, x: torch.Tensor, c: torch.Tensor):
assert x is not None, "pre_attention called with None input"
if not self.pre_only:
if not self.scale_mod_only:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(
6, dim=1
)
else:
shift_msa = None
shift_mlp = None
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(4, dim=1)
qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa))
return qkv, (x, gate_msa, shift_mlp, scale_mlp, gate_mlp)
else:
if not self.scale_mod_only:
shift_msa, scale_msa = self.adaLN_modulation(c).chunk(2, dim=1)
else:
shift_msa = None
scale_msa = self.adaLN_modulation(c)
qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa))
return qkv, None
def post_attention(
self,
attn: torch.Tensor,
x: torch.Tensor,
gate_msa: torch.Tensor,
shift_mlp: torch.Tensor,
scale_mlp: torch.Tensor,
gate_mlp: torch.Tensor,
) -> torch.Tensor:
assert not self.pre_only
x = x + gate_msa.unsqueeze(1) * self.attn.post_attention(attn)
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
return x
def pre_attention_x(
self, x: torch.Tensor, c: torch.Tensor
) -> tuple[
tuple[torch.Tensor, torch.Tensor, torch.Tensor],
tuple[torch.Tensor, torch.Tensor, torch.Tensor],
tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor],
]:
assert self.x_block_self_attn
(
shift_msa,
scale_msa,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
shift_msa2,
scale_msa2,
gate_msa2,
) = self.adaLN_modulation(c).chunk(9, dim=1)
x_norm = self.norm1(x)
qkv = self.attn.pre_attention(modulate(x_norm, shift_msa, scale_msa))
qkv2 = self.attn2.pre_attention(modulate(x_norm, shift_msa2, scale_msa2))
return (
qkv,
qkv2,
(
x,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
gate_msa2,
),
)
def post_attention_x(
self,
attn: torch.Tensor,
attn2: torch.Tensor,
x: torch.Tensor,
gate_msa: torch.Tensor,
shift_mlp: torch.Tensor,
scale_mlp: torch.Tensor,
gate_mlp: torch.Tensor,
gate_msa2: torch.Tensor,
attn1_dropout: float = 0.0,
):
assert not self.pre_only
if attn1_dropout > 0.0:
# Use torch.bernoulli to implement dropout, only dropout the batch dimension
attn1_dropout = torch.bernoulli(torch.full((attn.size(0), 1, 1), 1 - attn1_dropout, device=attn.device))
attn_ = gate_msa.unsqueeze(1) * self.attn.post_attention(attn) * attn1_dropout
else:
attn_ = gate_msa.unsqueeze(1) * self.attn.post_attention(attn)
x = x + attn_
attn2_ = gate_msa2.unsqueeze(1) * self.attn2.post_attention(attn2)
x = x + attn2_
mlp_ = gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
x = x + mlp_
return x, (gate_msa, gate_msa2, gate_mlp, attn_, attn2_)
def forward(self, x: torch.Tensor, c: torch.Tensor):
assert not self.pre_only
if self.x_block_self_attn:
(q, k, v), (q2, k2, v2), intermediates = self.pre_attention_x(x, c)
attn = attention(q, k, v, self.attn.num_heads)
attn2 = attention(q2, k2, v2, self.attn2.num_heads)
return self.post_attention_x(attn, attn2, *intermediates)
else:
(q, k, v), intermediates = self.pre_attention(x, c)
attn = attention(q, k, v, self.attn.num_heads)
return self.post_attention(attn, *intermediates)
def block_mixing(
context: torch.Tensor, x: torch.Tensor, context_block: DismantledBlock, x_block: DismantledBlock, c: torch.Tensor
):
assert context is not None, "block_mixing called with None context"
context_qkv, context_intermediates = context_block.pre_attention(context, c)
if x_block.x_block_self_attn:
x_qkv, x_qkv2, x_intermediates = x_block.pre_attention_x(x, c)
else:
x_qkv, x_intermediates = x_block.pre_attention(x, c)
o: list[torch.Tensor] = []
for t in range(3):
o.append(torch.cat((context_qkv[t], x_qkv[t]), dim=1))
q, k, v = tuple(o)
attn = attention(q, k, v, x_block.attn.num_heads)
context_attn, x_attn = (
attn[:, : context_qkv[0].shape[1]],
attn[:, context_qkv[0].shape[1] :],
)
if not context_block.pre_only:
context = context_block.post_attention(context_attn, *context_intermediates)
else:
context = None
if x_block.x_block_self_attn:
x_q2, x_k2, x_v2 = x_qkv2
attn2 = attention(x_q2, x_k2, x_v2, x_block.attn2.num_heads)
else:
x = x_block.post_attention(x_attn, *x_intermediates)
return context, x
class JointBlock(torch.nn.Module):
"""just a small wrapper to serve as a fsdp unit"""
def __init__(self, *args, **kwargs):
super().__init__()
pre_only = kwargs.pop("pre_only")
qk_norm = kwargs.pop("qk_norm", None)
x_block_self_attn = kwargs.pop("x_block_self_attn", False)
self.context_block = DismantledBlock(*args, pre_only=pre_only, qk_norm=qk_norm, **kwargs)
self.x_block = DismantledBlock(
*args,
pre_only=False,
qk_norm=qk_norm,
x_block_self_attn=x_block_self_attn,
**kwargs,
)
def forward(self, *args, **kwargs):
return block_mixing(*args, context_block=self.context_block, x_block=self.x_block, **kwargs)
class FinalLayer(torch.nn.Module):
"""
The final layer of DiT.
"""
def __init__(
self,
hidden_size: int,
patch_size: int,
out_channels: int,
total_out_channels: Optional[int] = None,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
super().__init__()
self.norm_final = torch.nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device
)
self.linear = (
torch.nn.Linear(
hidden_size,
patch_size * patch_size * out_channels,
bias=True,
dtype=dtype,
device=device,
)
if (total_out_channels is None)
else torch.nn.Linear(hidden_size, total_out_channels, bias=True, dtype=dtype, device=device)
)
self.adaLN_modulation = torch.nn.Sequential(
torch.nn.SiLU(),
torch.nn.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device),
)
def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class MMDiTX(torch.nn.Module):
"""Diffusion model with a Transformer backbone."""
def __init__(
self,
input_size: int | None = 32,
patch_size: int = 2,
in_channels: int = 4,
depth: int = 28,
mlp_ratio: float = 4.0,
learn_sigma: bool = False,
adm_in_channels: Optional[int] = None,
context_embedder_config: Optional[Dict] = None,
register_length: int = 0,
attn_mode: str = "torch",
rmsnorm: bool = False,
scale_mod_only: bool = False,
swiglu: bool = False,
out_channels: Optional[int] = None,
pos_embed_scaling_factor: Optional[float] = None,
pos_embed_offset: Optional[float] = None,
pos_embed_max_size: Optional[int] = None,
num_patches: Optional[int] = None,
qk_norm: Optional[str] = None,
x_block_self_attn_layers: Optional[List[int]] = None,
qkv_bias: bool = True,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
verbose: bool = False,
):
super().__init__()
if verbose:
print(
f"mmdit initializing with: {input_size=}, {patch_size=}, {in_channels=}, {depth=}, {mlp_ratio=}, {learn_sigma=}, {adm_in_channels=}, {context_embedder_config=}, {register_length=}, {attn_mode=}, {rmsnorm=}, {scale_mod_only=}, {swiglu=}, {out_channels=}, {pos_embed_scaling_factor=}, {pos_embed_offset=}, {pos_embed_max_size=}, {num_patches=}, {qk_norm=}, {qkv_bias=}, {dtype=}, {device=}"
)
self.dtype = dtype
self.learn_sigma = learn_sigma
self.in_channels = in_channels
default_out_channels = in_channels * 2 if learn_sigma else in_channels
self.out_channels = out_channels if out_channels is not None else default_out_channels
self.patch_size = patch_size
self.pos_embed_scaling_factor = pos_embed_scaling_factor
self.pos_embed_offset = pos_embed_offset
self.pos_embed_max_size = pos_embed_max_size
self.x_block_self_attn_layers = x_block_self_attn_layers or []
# apply magic --> this defines a head_size of 64
hidden_size = 64 * depth
num_heads = depth
self.num_heads = num_heads
self.x_embedder = PatchEmbed(
input_size,
patch_size,
in_channels,
hidden_size,
bias=True,
strict_img_size=self.pos_embed_max_size is None,
dtype=dtype,
device=device,
)
self.t_embedder = TimestepEmbedder(hidden_size, dtype=dtype, device=device)
if adm_in_channels is not None:
assert isinstance(adm_in_channels, int)
self.y_embedder = VectorEmbedder(adm_in_channels, hidden_size, dtype=dtype, device=device)
self.context_embedder = torch.nn.Identity()
if context_embedder_config is not None:
if context_embedder_config["target"] == "torch.nn.Linear":
self.context_embedder = torch.nn.Linear(**context_embedder_config["params"], dtype=dtype, device=device)
self.register_length = register_length
if self.register_length > 0:
self.register = torch.nn.Parameter(torch.randn(1, register_length, hidden_size, dtype=dtype, device=device))
# num_patches = self.x_embedder.num_patches
# Will use fixed sin-cos embedding:
# just use a buffer already
if num_patches is not None:
self.register_buffer(
"pos_embed",
torch.zeros(1, num_patches, hidden_size, dtype=dtype, device=device),
)
else:
self.pos_embed = None
self.joint_blocks = torch.nn.ModuleList(
[
JointBlock(
hidden_size,
num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
attn_mode=attn_mode,
pre_only=i == depth - 1,
rmsnorm=rmsnorm,
scale_mod_only=scale_mod_only,
swiglu=swiglu,
qk_norm=qk_norm,
x_block_self_attn=(i in self.x_block_self_attn_layers),
dtype=dtype,
device=device,
)
for i in range(depth)
]
)
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels, dtype=dtype, device=device)
def cropped_pos_embed(self, hw: torch.Size) -> torch.Tensor:
assert self.pos_embed_max_size is not None
p = self.x_embedder.patch_size[0]
h, w = hw
# patched size
h = h // p
w = w // p
assert h <= self.pos_embed_max_size, (h, self.pos_embed_max_size)
assert w <= self.pos_embed_max_size, (w, self.pos_embed_max_size)
top = (self.pos_embed_max_size - h) // 2
left = (self.pos_embed_max_size - w) // 2
spatial_pos_embed: torch.Tensor = rearrange(
self.pos_embed,
"1 (h w) c -> 1 h w c",
h=self.pos_embed_max_size,
w=self.pos_embed_max_size,
) # type: ignore Type checking does not correctly infer the type of the self.pos_embed buffer.
spatial_pos_embed = spatial_pos_embed[:, top : top + h, left : left + w, :]
spatial_pos_embed = rearrange(spatial_pos_embed, "1 h w c -> 1 (h w) c")
return spatial_pos_embed
def unpatchify(self, x: torch.Tensor, hw: Optional[torch.Size] = None) -> torch.Tensor:
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
if hw is None:
h = w = int(x.shape[1] ** 0.5)
else:
h, w = hw
h = h // p
w = w // p
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum("nhwpqc->nchpwq", x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
return imgs
def forward_core_with_concat(
self,
x: torch.Tensor,
c_mod: torch.Tensor,
context: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if self.register_length > 0:
context = torch.cat(
(
repeat(self.register, "1 ... -> b ...", b=x.shape[0]),
context if context is not None else torch.Tensor([]).type_as(x),
),
1,
)
# context is B, L', D
# x is B, L, D
for block in self.joint_blocks:
context, x = block(context, x, c=c_mod)
x = self.final_layer(x, c_mod) # (N, T, patch_size ** 2 * out_channels)
return x
def forward(
self,
x: torch.Tensor,
t: torch.Tensor,
y: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
hw = x.shape[-2:]
x = self.x_embedder(x) + self.cropped_pos_embed(hw)
c = self.t_embedder(t, dtype=x.dtype) # (N, D)
if y is not None:
y = self.y_embedder(y) # (N, D)
c = c + y # (N, D)
context = self.context_embedder(context)
x = self.forward_core_with_concat(x, c, context)
x = self.unpatchify(x, hw=hw) # (N, out_channels, H, W)
return x

View File

@@ -1,795 +0,0 @@
# This file was originally copied from:
# https://github.com/Stability-AI/sd3.5/blob/19bf11c4e1e37324c5aa5a61f010d4127848a09c/other_impls.py
### This file contains impls for underlying related models (CLIP, T5, etc)
import math
from typing import Callable, Optional
import torch
from transformers import CLIPTokenizer, T5TokenizerFast
#################################################################################################
### Core/Utility
#################################################################################################
def attention(
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, heads: int, mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
"""Convenience wrapper around a basic attention operation"""
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2), (q, k, v))
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
return out.transpose(1, 2).reshape(b, -1, heads * dim_head)
class Mlp(torch.nn.Module):
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
def __init__(
self,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer: Callable[[torch.Tensor], torch.Tensor] | None = None,
bias: bool = True,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
if act_layer is None:
act_layer = torch.nn.functional.gelu
self.fc1 = torch.nn.Linear(in_features, hidden_features, bias=bias, dtype=dtype, device=device)
self.act = act_layer
self.fc2 = torch.nn.Linear(hidden_features, out_features, bias=bias, dtype=dtype, device=device)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return x
#################################################################################################
### CLIP
#################################################################################################
class CLIPAttention(torch.nn.Module):
def __init__(self, embed_dim, heads, dtype, device):
super().__init__()
self.heads = heads
self.q_proj = torch.nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
self.k_proj = torch.nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
self.v_proj = torch.nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
self.out_proj = torch.nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
def forward(self, x, mask=None):
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
out = attention(q, k, v, self.heads, mask)
return self.out_proj(out)
ACTIVATIONS = {
"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
"gelu": torch.nn.functional.gelu,
}
class CLIPLayer(torch.nn.Module):
def __init__(
self,
embed_dim,
heads,
intermediate_size,
intermediate_activation,
dtype,
device,
):
super().__init__()
self.layer_norm1 = torch.nn.LayerNorm(embed_dim, dtype=dtype, device=device)
self.self_attn = CLIPAttention(embed_dim, heads, dtype, device)
self.layer_norm2 = torch.nn.LayerNorm(embed_dim, dtype=dtype, device=device)
# self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device)
self.mlp = Mlp(
embed_dim,
intermediate_size,
embed_dim,
act_layer=ACTIVATIONS[intermediate_activation],
dtype=dtype,
device=device,
)
def forward(self, x, mask=None):
x += self.self_attn(self.layer_norm1(x), mask)
x += self.mlp(self.layer_norm2(x))
return x
class CLIPEncoder(torch.nn.Module):
def __init__(
self,
num_layers,
embed_dim,
heads,
intermediate_size,
intermediate_activation,
dtype,
device,
):
super().__init__()
self.layers = torch.nn.ModuleList(
[
CLIPLayer(
embed_dim,
heads,
intermediate_size,
intermediate_activation,
dtype,
device,
)
for i in range(num_layers)
]
)
def forward(self, x, mask=None, intermediate_output=None):
if intermediate_output is not None:
if intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output
intermediate = None
for i, l in enumerate(self.layers):
x = l(x, mask)
if i == intermediate_output:
intermediate = x.clone()
return x, intermediate
class CLIPEmbeddings(torch.nn.Module):
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None):
super().__init__()
self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
def forward(self, input_tokens):
return self.token_embedding(input_tokens) + self.position_embedding.weight
class CLIPTextModel_(torch.nn.Module):
def __init__(self, config_dict, dtype, device):
num_layers = config_dict["num_hidden_layers"]
embed_dim = config_dict["hidden_size"]
heads = config_dict["num_attention_heads"]
intermediate_size = config_dict["intermediate_size"]
intermediate_activation = config_dict["hidden_act"]
super().__init__()
self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device)
self.encoder = CLIPEncoder(
num_layers,
embed_dim,
heads,
intermediate_size,
intermediate_activation,
dtype,
device,
)
self.final_layer_norm = torch.nn.LayerNorm(embed_dim, dtype=dtype, device=device)
def forward(self, input_tokens, intermediate_output=None, final_layer_norm_intermediate=True):
x = self.embeddings(input_tokens)
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
x, i = self.encoder(x, mask=causal_mask, intermediate_output=intermediate_output)
x = self.final_layer_norm(x)
if i is not None and final_layer_norm_intermediate:
i = self.final_layer_norm(i)
pooled_output = x[
torch.arange(x.shape[0], device=x.device),
input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),
]
return x, i, pooled_output
class CLIPTextModel(torch.nn.Module):
def __init__(self, config_dict, dtype, device):
super().__init__()
self.num_layers = config_dict["num_hidden_layers"]
self.text_model = CLIPTextModel_(config_dict, dtype, device)
embed_dim = config_dict["hidden_size"]
self.text_projection = torch.nn.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
self.text_projection.weight.copy_(torch.eye(embed_dim))
self.dtype = dtype
def get_input_embeddings(self):
return self.text_model.embeddings.token_embedding
def set_input_embeddings(self, embeddings):
self.text_model.embeddings.token_embedding = embeddings
def forward(self, *args, **kwargs):
x = self.text_model(*args, **kwargs)
out = self.text_projection(x[2])
return (x[0], x[1], out, x[2])
def parse_parentheses(string):
result = []
current_item = ""
nesting_level = 0
for char in string:
if char == "(":
if nesting_level == 0:
if current_item:
result.append(current_item)
current_item = "("
else:
current_item = "("
else:
current_item += char
nesting_level += 1
elif char == ")":
nesting_level -= 1
if nesting_level == 0:
result.append(current_item + ")")
current_item = ""
else:
current_item += char
else:
current_item += char
if current_item:
result.append(current_item)
return result
def token_weights(string, current_weight):
a = parse_parentheses(string)
out = []
for x in a:
weight = current_weight
if len(x) >= 2 and x[-1] == ")" and x[0] == "(":
x = x[1:-1]
xx = x.rfind(":")
weight *= 1.1
if xx > 0:
try:
weight = float(x[xx + 1 :])
x = x[:xx]
except:
pass
out += token_weights(x, weight)
else:
out += [(x, current_weight)]
return out
def escape_important(text):
text = text.replace("\\)", "\0\1")
text = text.replace("\\(", "\0\2")
return text
def unescape_important(text):
text = text.replace("\0\1", ")")
text = text.replace("\0\2", "(")
return text
class SDTokenizer:
def __init__(
self,
max_length=77,
pad_with_end=True,
tokenizer=None,
has_start_token=True,
pad_to_max_length=True,
min_length=None,
extra_padding_token=None,
):
self.tokenizer = tokenizer
self.max_length = max_length
self.min_length = min_length
empty = self.tokenizer("")["input_ids"]
if has_start_token:
self.tokens_start = 1
self.start_token = empty[0]
self.end_token = empty[1]
else:
self.tokens_start = 0
self.start_token = None
self.end_token = empty[0]
self.pad_with_end = pad_with_end
self.pad_to_max_length = pad_to_max_length
self.extra_padding_token = extra_padding_token
vocab = self.tokenizer.get_vocab()
self.inv_vocab = {v: k for k, v in vocab.items()}
self.max_word_length = 8
def tokenize_with_weights(self, text: str, return_word_ids=False):
"""
Tokenize the text, with weight values - presume 1.0 for all and ignore other features here.
The details aren't relevant for a reference impl, and weights themselves has weak effect on SD3.
"""
if self.pad_with_end:
pad_token = self.end_token
else:
pad_token = 0
text = escape_important(text)
parsed_weights = token_weights(text, 1.0)
# tokenize words
tokens = []
for weighted_segment, weight in parsed_weights:
to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(" ")
to_tokenize = [x for x in to_tokenize if x != ""]
for word in to_tokenize:
# parse word
tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start : -1]])
# reshape token array to CLIP input size
batched_tokens = []
batch = []
if self.start_token is not None:
batch.append((self.start_token, 1.0, 0))
batched_tokens.append(batch)
for i, t_group in enumerate(tokens):
# determine if we're going to try and keep the tokens in a single batch
is_large = len(t_group) >= self.max_word_length
while len(t_group) > 0:
if len(t_group) + len(batch) > self.max_length - 1:
remaining_length = self.max_length - len(batch) - 1
# break word in two and add end token
if is_large:
batch.extend([(t, w, i + 1) for t, w in t_group[:remaining_length]])
batch.append((self.end_token, 1.0, 0))
t_group = t_group[remaining_length:]
# add end token and pad
else:
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
# start new batch
batch = []
if self.start_token is not None:
batch.append((self.start_token, 1.0, 0))
batched_tokens.append(batch)
else:
batch.extend([(t, w, i + 1) for t, w in t_group])
t_group = []
# pad extra padding token first befor getting to the end token
if self.extra_padding_token is not None:
batch.extend([(self.extra_padding_token, 1.0, 0)] * (self.min_length - len(batch) - 1))
# fill last batch
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch)))
if self.min_length is not None and len(batch) < self.min_length:
batch.extend([(pad_token, 1.0, 0)] * (self.min_length - len(batch)))
if not return_word_ids:
batched_tokens = [[(t, w) for t, w, _ in x] for x in batched_tokens]
return batched_tokens
def untokenize(self, token_weight_pair):
return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
class SDXLClipGTokenizer(SDTokenizer):
def __init__(self, tokenizer):
super().__init__(pad_with_end=False, tokenizer=tokenizer)
class SD3Tokenizer:
def __init__(self):
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
self.clip_l = SDTokenizer(tokenizer=clip_tokenizer)
self.clip_g = SDXLClipGTokenizer(clip_tokenizer)
self.t5xxl = T5XXLTokenizer()
def tokenize_with_weights(self, text: str):
out = {}
out["l"] = self.clip_l.tokenize_with_weights(text)
out["g"] = self.clip_g.tokenize_with_weights(text)
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text[:226])
return out
class ClipTokenWeightEncoder:
def encode_token_weights(self, token_weight_pairs):
tokens = list(map(lambda a: a[0], token_weight_pairs[0]))
out, pooled = self([tokens])
if pooled is not None:
first_pooled = pooled[0:1].cpu()
else:
first_pooled = pooled
output = [out[0:1]]
return torch.cat(output, dim=-2).cpu(), first_pooled
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
"""Uses the CLIP transformer encoder for text (from huggingface)"""
LAYERS = ["last", "pooled", "hidden"]
def __init__(
self,
device="cpu",
max_length=77,
layer="last",
layer_idx=None,
textmodel_json_config=None,
dtype=None,
model_class=CLIPTextModel,
special_tokens={"start": 49406, "end": 49407, "pad": 49407},
layer_norm_hidden_state=True,
return_projected_pooled=True,
):
super().__init__()
assert layer in self.LAYERS
self.transformer = model_class(textmodel_json_config, dtype, device)
self.num_layers = self.transformer.num_layers
self.max_length = max_length
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
self.layer = layer
self.layer_idx = None
self.special_tokens = special_tokens
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
self.layer_norm_hidden_state = layer_norm_hidden_state
self.return_projected_pooled = return_projected_pooled
if layer == "hidden":
assert layer_idx is not None
assert abs(layer_idx) < self.num_layers
self.set_clip_options({"layer": layer_idx})
self.options_default = (
self.layer,
self.layer_idx,
self.return_projected_pooled,
)
def set_clip_options(self, options):
layer_idx = options.get("layer", self.layer_idx)
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
if layer_idx is None or abs(layer_idx) > self.num_layers:
self.layer = "last"
else:
self.layer = "hidden"
self.layer_idx = layer_idx
def forward(self, tokens):
backup_embeds = self.transformer.get_input_embeddings()
device = backup_embeds.weight.device
tokens = torch.LongTensor(tokens).to(device)
outputs = self.transformer(
tokens,
intermediate_output=self.layer_idx,
final_layer_norm_intermediate=self.layer_norm_hidden_state,
)
self.transformer.set_input_embeddings(backup_embeds)
if self.layer == "last":
z = outputs[0]
else:
z = outputs[1]
pooled_output = None
if len(outputs) >= 3:
if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None:
pooled_output = outputs[3].float()
elif outputs[2] is not None:
pooled_output = outputs[2].float()
return z.float(), pooled_output
class SDXLClipG(SDClipModel):
"""Wraps the CLIP-G model into the SD-CLIP-Model interface"""
def __init__(self, config, device="cpu", layer="penultimate", layer_idx=None, dtype=None):
if layer == "penultimate":
layer = "hidden"
layer_idx = -2
super().__init__(
device=device,
layer=layer,
layer_idx=layer_idx,
textmodel_json_config=config,
dtype=dtype,
special_tokens={"start": 49406, "end": 49407, "pad": 0},
layer_norm_hidden_state=False,
)
class T5XXLModel(SDClipModel):
"""Wraps the T5-XXL model into the SD-CLIP-Model interface for convenience"""
def __init__(self, config, device="cpu", layer="last", layer_idx=None, dtype=None):
super().__init__(
device=device,
layer=layer,
layer_idx=layer_idx,
textmodel_json_config=config,
dtype=dtype,
special_tokens={"end": 1, "pad": 0},
model_class=T5,
)
#################################################################################################
### T5 implementation, for the T5-XXL text encoder portion, largely pulled from upstream impl
#################################################################################################
class T5XXLTokenizer(SDTokenizer):
"""Wraps the T5 Tokenizer from HF into the SDTokenizer interface"""
def __init__(self):
super().__init__(
pad_with_end=False,
tokenizer=T5TokenizerFast.from_pretrained("google/t5-v1_1-xxl"),
has_start_token=False,
pad_to_max_length=False,
max_length=99999999,
min_length=77,
)
class T5LayerNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None):
super().__init__()
self.weight = torch.nn.Parameter(torch.ones(hidden_size, dtype=dtype, device=device))
self.variance_epsilon = eps
def forward(self, x):
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.variance_epsilon)
return self.weight.to(device=x.device, dtype=x.dtype) * x
class T5DenseGatedActDense(torch.nn.Module):
def __init__(self, model_dim, ff_dim, dtype, device):
super().__init__()
self.wi_0 = torch.nn.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
self.wi_1 = torch.nn.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
self.wo = torch.nn.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device)
def forward(self, x):
hidden_gelu = torch.nn.functional.gelu(self.wi_0(x), approximate="tanh")
hidden_linear = self.wi_1(x)
x = hidden_gelu * hidden_linear
x = self.wo(x)
return x
class T5LayerFF(torch.nn.Module):
def __init__(self, model_dim, ff_dim, dtype, device):
super().__init__()
self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, dtype, device)
self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
def forward(self, x):
forwarded_states = self.layer_norm(x)
forwarded_states = self.DenseReluDense(forwarded_states)
x += forwarded_states
return x
class T5Attention(torch.nn.Module):
def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device):
super().__init__()
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = torch.nn.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.k = torch.nn.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.v = torch.nn.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.o = torch.nn.Linear(inner_dim, model_dim, bias=False, dtype=dtype, device=device)
self.num_heads = num_heads
self.relative_attention_bias = None
if relative_attention_bias:
self.relative_attention_num_buckets = 32
self.relative_attention_max_distance = 128
self.relative_attention_bias = torch.nn.Embedding(
self.relative_attention_num_buckets, self.num_heads, device=device
)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large,
torch.full_like(relative_position_if_large, num_buckets - 1),
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device):
"""Compute binned relative position bias"""
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=True,
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(self, x, past_bias=None):
q = self.q(x)
k = self.k(x)
v = self.v(x)
if self.relative_attention_bias is not None:
past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device)
if past_bias is not None:
mask = past_bias
out = attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask)
return self.o(out), past_bias
class T5LayerSelfAttention(torch.nn.Module):
def __init__(
self,
model_dim,
inner_dim,
ff_dim,
num_heads,
relative_attention_bias,
dtype,
device,
):
super().__init__()
self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device)
self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
def forward(self, x, past_bias=None):
output, past_bias = self.SelfAttention(self.layer_norm(x), past_bias=past_bias)
x += output
return x, past_bias
class T5Block(torch.nn.Module):
def __init__(
self,
model_dim,
inner_dim,
ff_dim,
num_heads,
relative_attention_bias,
dtype,
device,
):
super().__init__()
self.layer = torch.nn.ModuleList()
self.layer.append(
T5LayerSelfAttention(
model_dim,
inner_dim,
ff_dim,
num_heads,
relative_attention_bias,
dtype,
device,
)
)
self.layer.append(T5LayerFF(model_dim, ff_dim, dtype, device))
def forward(self, x, past_bias=None):
x, past_bias = self.layer[0](x, past_bias)
x = self.layer[-1](x)
return x, past_bias
class T5Stack(torch.nn.Module):
def __init__(
self,
num_layers,
model_dim,
inner_dim,
ff_dim,
num_heads,
vocab_size,
dtype,
device,
):
super().__init__()
self.embed_tokens = torch.nn.Embedding(vocab_size, model_dim, device=device)
self.block = torch.nn.ModuleList(
[
T5Block(
model_dim,
inner_dim,
ff_dim,
num_heads,
relative_attention_bias=(i == 0),
dtype=dtype,
device=device,
)
for i in range(num_layers)
]
)
self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
def forward(self, input_ids, intermediate_output=None, final_layer_norm_intermediate=True):
intermediate = None
x = self.embed_tokens(input_ids)
past_bias = None
for i, l in enumerate(self.block):
x, past_bias = l(x, past_bias)
if i == intermediate_output:
intermediate = x.clone()
x = self.final_layer_norm(x)
if intermediate is not None and final_layer_norm_intermediate:
intermediate = self.final_layer_norm(intermediate)
return x, intermediate
class T5(torch.nn.Module):
def __init__(self, config_dict, dtype, device):
super().__init__()
self.num_layers = config_dict["num_layers"]
self.encoder = T5Stack(
self.num_layers,
config_dict["d_model"],
config_dict["d_model"],
config_dict["d_ff"],
config_dict["num_heads"],
config_dict["vocab_size"],
dtype,
device,
)
self.dtype = dtype
def get_input_embeddings(self):
return self.encoder.embed_tokens
def set_input_embeddings(self, embeddings):
self.encoder.embed_tokens = embeddings
def forward(self, *args, **kwargs):
return self.encoder(*args, **kwargs)

View File

@@ -1,609 +0,0 @@
# This file was originally copied from:
# https://github.com/Stability-AI/sd3.5/blob/19bf11c4e1e37324c5aa5a61f010d4127848a09c/sd3_impls.py
### Impls of the SD3 core diffusion model and VAE
import math
import re
import einops
import torch
from PIL import Image
from tqdm import tqdm
from invokeai.backend.sd3.mmditx import MMDiTX
#################################################################################################
### MMDiT Model Wrapping
#################################################################################################
class ModelSamplingDiscreteFlow(torch.nn.Module):
"""Helper for sampler scheduling (ie timestep/sigma calculations) for Discrete Flow models"""
def __init__(self, shift: float = 1.0):
super().__init__()
self.shift = shift
timesteps = 1000
ts = self.sigma(torch.arange(1, timesteps + 1, 1))
self.register_buffer("sigmas", ts)
@property
def sigma_min(self):
return self.sigmas[0]
@property
def sigma_max(self):
return self.sigmas[-1]
def timestep(self, sigma: torch.Tensor) -> torch.Tensor:
return sigma * 1000
def sigma(self, timestep: torch.Tensor):
timestep = timestep / 1000.0
if self.shift == 1.0:
return timestep
return self.shift * timestep / (1 + (self.shift - 1) * timestep)
def calculate_denoised(
self, sigma: torch.Tensor, model_output: torch.Tensor, model_input: torch.Tensor
) -> torch.Tensor:
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
return model_input - model_output * sigma
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
return sigma * noise + (1.0 - sigma) * latent_image
class BaseModel(torch.nn.Module):
"""Wrapper around the core MM-DiT model"""
def __init__(
self,
shift=1.0,
device=None,
dtype=torch.float32,
file=None,
prefix="",
verbose=False,
):
super().__init__()
# Important configuration values can be quickly determined by checking shapes in the source file
# Some of these will vary between models (eg 2B vs 8B primarily differ in their depth, but also other details change)
patch_size = file.get_tensor(f"{prefix}x_embedder.proj.weight").shape[2]
depth = file.get_tensor(f"{prefix}x_embedder.proj.weight").shape[0] // 64
num_patches = file.get_tensor(f"{prefix}pos_embed").shape[1]
pos_embed_max_size = round(math.sqrt(num_patches))
adm_in_channels = file.get_tensor(f"{prefix}y_embedder.mlp.0.weight").shape[1]
context_shape = file.get_tensor(f"{prefix}context_embedder.weight").shape
qk_norm = "rms" if f"{prefix}joint_blocks.0.context_block.attn.ln_k.weight" in file.keys() else None
x_block_self_attn_layers = sorted(
[
int(key.split(".x_block.attn2.ln_k.weight")[0].split(".")[-1])
for key in list(filter(re.compile(".*.x_block.attn2.ln_k.weight").match, file.keys()))
]
)
context_embedder_config = {
"target": "torch.nn.Linear",
"params": {
"in_features": context_shape[1],
"out_features": context_shape[0],
},
}
self.diffusion_model = MMDiTX(
input_size=None,
pos_embed_scaling_factor=None,
pos_embed_offset=None,
pos_embed_max_size=pos_embed_max_size,
patch_size=patch_size,
in_channels=16,
depth=depth,
num_patches=num_patches,
adm_in_channels=adm_in_channels,
context_embedder_config=context_embedder_config,
qk_norm=qk_norm,
x_block_self_attn_layers=x_block_self_attn_layers,
device=device,
dtype=dtype,
verbose=verbose,
)
self.model_sampling = ModelSamplingDiscreteFlow(shift=shift)
def apply_model(
self, x: torch.Tensor, sigma: float, c_crossattn: torch.Tensor | None = None, y: torch.Tensor | None = None
):
dtype = self.get_dtype()
timestep = self.model_sampling.timestep(sigma).float()
model_output = self.diffusion_model(x.to(dtype), timestep, context=c_crossattn.to(dtype), y=y.to(dtype)).float()
return self.model_sampling.calculate_denoised(sigma, model_output, x)
def forward(self, *args, **kwargs):
return self.apply_model(*args, **kwargs)
def get_dtype(self):
return self.diffusion_model.dtype
class CFGDenoiser(torch.nn.Module):
"""Helper for applying CFG Scaling to diffusion outputs"""
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, x, timestep, cond, uncond, cond_scale):
# Run cond and uncond in a batch together
batched = self.model.apply_model(
torch.cat([x, x]),
torch.cat([timestep, timestep]),
c_crossattn=torch.cat([cond["c_crossattn"], uncond["c_crossattn"]]),
y=torch.cat([cond["y"], uncond["y"]]),
)
# Then split and apply CFG Scaling
pos_out, neg_out = batched.chunk(2)
scaled = neg_out + (pos_out - neg_out) * cond_scale
return scaled
class SD3LatentFormat:
"""Latents are slightly shifted from center - this class must be called after VAE Decode to correct for the shift"""
def __init__(self):
self.scale_factor = 1.5305
self.shift_factor = 0.0609
def process_in(self, latent):
return (latent - self.shift_factor) * self.scale_factor
def process_out(self, latent):
return (latent / self.scale_factor) + self.shift_factor
def decode_latent_to_preview(self, x0):
"""Quick RGB approximate preview of sd3 latents"""
factors = torch.tensor(
[
[-0.0645, 0.0177, 0.1052],
[0.0028, 0.0312, 0.0650],
[0.1848, 0.0762, 0.0360],
[0.0944, 0.0360, 0.0889],
[0.0897, 0.0506, -0.0364],
[-0.0020, 0.1203, 0.0284],
[0.0855, 0.0118, 0.0283],
[-0.0539, 0.0658, 0.1047],
[-0.0057, 0.0116, 0.0700],
[-0.0412, 0.0281, -0.0039],
[0.1106, 0.1171, 0.1220],
[-0.0248, 0.0682, -0.0481],
[0.0815, 0.0846, 0.1207],
[-0.0120, -0.0055, -0.0867],
[-0.0749, -0.0634, -0.0456],
[-0.1418, -0.1457, -0.1259],
],
device="cpu",
)
latent_image = x0[0].permute(1, 2, 0).cpu() @ factors
latents_ubyte = (
((latent_image + 1) / 2)
.clamp(0, 1) # change scale from -1..1 to 0..1
.mul(0xFF) # to 0..255
.byte()
).cpu()
return Image.fromarray(latents_ubyte.numpy())
#################################################################################################
### Samplers
#################################################################################################
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
return x[(...,) + (None,) * dims_to_append]
def to_d(x, sigma, denoised):
"""Converts a denoiser output to a Karras ODE derivative."""
return (x - denoised) / append_dims(sigma, x.ndim)
@torch.no_grad()
@torch.autocast("cuda", dtype=torch.float16)
def sample_euler(model, x, sigmas, extra_args=None):
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
for i in tqdm(range(len(sigmas) - 1)):
sigma_hat = sigmas[i]
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x, sigma_hat, denoised)
dt = sigmas[i + 1] - sigma_hat
# Euler method
x = x + d * dt
return x
@torch.no_grad()
@torch.autocast("cuda", dtype=torch.float16)
def sample_dpmpp_2m(model, x, sigmas, extra_args=None):
"""DPM-Solver++(2M)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
old_denoised = None
for i in tqdm(range(len(sigmas) - 1)):
denoised = model(x, sigmas[i] * s_in, **extra_args)
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
if old_denoised is None or sigmas[i + 1] == 0:
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
else:
h_last = t - t_fn(sigmas[i - 1])
r = h_last / h
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
old_denoised = denoised
return x
#################################################################################################
### VAE
#################################################################################################
def Normalize(in_channels, num_groups=32, dtype=torch.float32, device=None):
return torch.nn.GroupNorm(
num_groups=num_groups,
num_channels=in_channels,
eps=1e-6,
affine=True,
dtype=dtype,
device=device,
)
class ResnetBlock(torch.nn.Module):
def __init__(self, *, in_channels, out_channels=None, dtype=torch.float32, device=None):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.norm1 = Normalize(in_channels, dtype=dtype, device=device)
self.conv1 = torch.nn.Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
dtype=dtype,
device=device,
)
self.norm2 = Normalize(out_channels, dtype=dtype, device=device)
self.conv2 = torch.nn.Conv2d(
out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
dtype=dtype,
device=device,
)
if self.in_channels != self.out_channels:
self.nin_shortcut = torch.nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
dtype=dtype,
device=device,
)
else:
self.nin_shortcut = None
self.swish = torch.nn.SiLU(inplace=True)
def forward(self, x):
hidden = x
hidden = self.norm1(hidden)
hidden = self.swish(hidden)
hidden = self.conv1(hidden)
hidden = self.norm2(hidden)
hidden = self.swish(hidden)
hidden = self.conv2(hidden)
if self.in_channels != self.out_channels:
x = self.nin_shortcut(x)
return x + hidden
class AttnBlock(torch.nn.Module):
def __init__(self, in_channels, dtype=torch.float32, device=None):
super().__init__()
self.norm = Normalize(in_channels, dtype=dtype, device=device)
self.q = torch.nn.Conv2d(
in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0,
dtype=dtype,
device=device,
)
self.k = torch.nn.Conv2d(
in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0,
dtype=dtype,
device=device,
)
self.v = torch.nn.Conv2d(
in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0,
dtype=dtype,
device=device,
)
self.proj_out = torch.nn.Conv2d(
in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0,
dtype=dtype,
device=device,
)
def forward(self, x):
hidden = self.norm(x)
q = self.q(hidden)
k = self.k(hidden)
v = self.v(hidden)
b, c, h, w = q.shape
q, k, v = map(
lambda x: einops.rearrange(x, "b c h w -> b 1 (h w) c").contiguous(),
(q, k, v),
)
hidden = torch.nn.functional.scaled_dot_product_attention(q, k, v) # scale is dim ** -0.5 per default
hidden = einops.rearrange(hidden, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
hidden = self.proj_out(hidden)
return x + hidden
class Downsample(torch.nn.Module):
def __init__(self, in_channels, dtype=torch.float32, device=None):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels,
in_channels,
kernel_size=3,
stride=2,
padding=0,
dtype=dtype,
device=device,
)
def forward(self, x):
pad = (0, 1, 0, 1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
return x
class Upsample(torch.nn.Module):
def __init__(self, in_channels, dtype=torch.float32, device=None):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1,
dtype=dtype,
device=device,
)
def forward(self, x):
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
x = self.conv(x)
return x
class VAEEncoder(torch.nn.Module):
def __init__(
self,
ch=128,
ch_mult=(1, 2, 4, 4),
num_res_blocks=2,
in_channels=3,
z_channels=16,
dtype=torch.float32,
device=None,
):
super().__init__()
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
# downsampling
self.conv_in = torch.nn.Conv2d(
in_channels,
ch,
kernel_size=3,
stride=1,
padding=1,
dtype=dtype,
device=device,
)
in_ch_mult = (1,) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
self.down = torch.nn.ModuleList()
for i_level in range(self.num_resolutions):
block = torch.nn.ModuleList()
attn = torch.nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for i_block in range(num_res_blocks):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
dtype=dtype,
device=device,
)
)
block_in = block_out
down = torch.nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in, dtype=dtype, device=device)
self.down.append(down)
# middle
self.mid = torch.nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
self.mid.attn_1 = AttnBlock(block_in, dtype=dtype, device=device)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
# end
self.norm_out = Normalize(block_in, dtype=dtype, device=device)
self.conv_out = torch.nn.Conv2d(
block_in,
2 * z_channels,
kernel_size=3,
stride=1,
padding=1,
dtype=dtype,
device=device,
)
self.swish = torch.nn.SiLU(inplace=True)
def forward(self, x):
# downsampling
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1])
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# end
h = self.norm_out(h)
h = self.swish(h)
h = self.conv_out(h)
return h
class VAEDecoder(torch.nn.Module):
def __init__(
self,
ch=128,
out_ch=3,
ch_mult=(1, 2, 4, 4),
num_res_blocks=2,
resolution=256,
z_channels=16,
dtype=torch.float32,
device=None,
):
super().__init__()
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
# z to block_in
self.conv_in = torch.nn.Conv2d(
z_channels,
block_in,
kernel_size=3,
stride=1,
padding=1,
dtype=dtype,
device=device,
)
# middle
self.mid = torch.nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
self.mid.attn_1 = AttnBlock(block_in, dtype=dtype, device=device)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
# upsampling
self.up = torch.nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = torch.nn.ModuleList()
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
dtype=dtype,
device=device,
)
)
block_in = block_out
up = torch.nn.Module()
up.block = block
if i_level != 0:
up.upsample = Upsample(block_in, dtype=dtype, device=device)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in, dtype=dtype, device=device)
self.conv_out = torch.nn.Conv2d(
block_in,
out_ch,
kernel_size=3,
stride=1,
padding=1,
dtype=dtype,
device=device,
)
self.swish = torch.nn.SiLU(inplace=True)
def forward(self, z):
# z to block_in
hidden = self.conv_in(z)
# middle
hidden = self.mid.block_1(hidden)
hidden = self.mid.attn_1(hidden)
hidden = self.mid.block_2(hidden)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
hidden = self.up[i_level].block[i_block](hidden)
if i_level != 0:
hidden = self.up[i_level].upsample(hidden)
# end
hidden = self.norm_out(hidden)
hidden = self.swish(hidden)
hidden = self.conv_out(hidden)
return hidden
class SDVAE(torch.nn.Module):
def __init__(self, dtype=torch.float32, device=None):
super().__init__()
self.encoder = VAEEncoder(dtype=dtype, device=device)
self.decoder = VAEDecoder(dtype=dtype, device=device)
@torch.autocast("cuda", dtype=torch.float16)
def decode(self, latent):
return self.decoder(latent)
@torch.autocast("cuda", dtype=torch.float16)
def encode(self, image):
hidden = self.encoder(image)
mean, logvar = torch.chunk(hidden, 2, dim=1)
logvar = torch.clamp(logvar, -30.0, 20.0)
std = torch.exp(0.5 * logvar)
return mean + std * torch.randn_like(mean)

View File

@@ -1,426 +0,0 @@
# This file was originally copied from:
# https://github.com/Stability-AI/sd3.5/blob/19bf11c4e1e37324c5aa5a61f010d4127848a09c/sd3_infer.py
# NOTE: Must have folder `models` with the following files:
# - `clip_g.safetensors` (openclip bigG, same as SDXL)
# - `clip_l.safetensors` (OpenAI CLIP-L, same as SDXL)
# - `t5xxl.safetensors` (google T5-v1.1-XXL)
# - `sd3_medium.safetensors` (or whichever main MMDiT model file)
# Also can have
# - `sd3_vae.safetensors` (holds the VAE separately if needed)
import datetime
import math
import os
import fire
import numpy as np
import sd3_impls
import torch
from other_impls import SD3Tokenizer, SDClipModel, SDXLClipG, T5XXLModel
from PIL import Image
from safetensors import safe_open
from sd3_impls import SDVAE, BaseModel, CFGDenoiser, SD3LatentFormat
from tqdm import tqdm
#################################################################################################
### Wrappers for model parts
#################################################################################################
def load_into(f, model, prefix, device, dtype=None):
"""Just a debugging-friendly hack to apply the weights in a safetensors file to the pytorch module."""
for key in f.keys():
if key.startswith(prefix) and not key.startswith("loss."):
path = key[len(prefix) :].split(".")
obj = model
for p in path:
if obj is list:
obj = obj[int(p)]
else:
obj = getattr(obj, p, None)
if obj is None:
print(f"Skipping key '{key}' in safetensors file as '{p}' does not exist in python model")
break
if obj is None:
continue
try:
tensor = f.get_tensor(key).to(device=device)
if dtype is not None:
tensor = tensor.to(dtype=dtype)
obj.requires_grad_(False)
obj.set_(tensor)
except Exception as e:
print(f"Failed to load key '{key}' in safetensors file: {e}")
raise e
CLIPG_CONFIG = {
"hidden_act": "gelu",
"hidden_size": 1280,
"intermediate_size": 5120,
"num_attention_heads": 20,
"num_hidden_layers": 32,
}
class ClipG:
def __init__(self):
with safe_open("models/clip_g.safetensors", framework="pt", device="cpu") as f:
self.model = SDXLClipG(CLIPG_CONFIG, device="cpu", dtype=torch.float32)
load_into(f, self.model.transformer, "", "cpu", torch.float32)
CLIPL_CONFIG = {
"hidden_act": "quick_gelu",
"hidden_size": 768,
"intermediate_size": 3072,
"num_attention_heads": 12,
"num_hidden_layers": 12,
}
class ClipL:
def __init__(self):
with safe_open("models/clip_l.safetensors", framework="pt", device="cpu") as f:
self.model = SDClipModel(
layer="hidden",
layer_idx=-2,
device="cpu",
dtype=torch.float32,
layer_norm_hidden_state=False,
return_projected_pooled=False,
textmodel_json_config=CLIPL_CONFIG,
)
load_into(f, self.model.transformer, "", "cpu", torch.float32)
T5_CONFIG = {
"d_ff": 10240,
"d_model": 4096,
"num_heads": 64,
"num_layers": 24,
"vocab_size": 32128,
}
class T5XXL:
def __init__(self):
with safe_open("models/t5xxl.safetensors", framework="pt", device="cpu") as f:
self.model = T5XXLModel(T5_CONFIG, device="cpu", dtype=torch.float32)
load_into(f, self.model.transformer, "", "cpu", torch.float32)
class SD3:
def __init__(self, model, shift, verbose=False):
with safe_open(model, framework="pt", device="cpu") as f:
self.model = BaseModel(
shift=shift,
file=f,
prefix="model.diffusion_model.",
device="cpu",
dtype=torch.float16,
verbose=verbose,
).eval()
load_into(f, self.model, "model.", "cpu", torch.float16)
class VAE:
def __init__(self, model):
with safe_open(model, framework="pt", device="cpu") as f:
self.model = SDVAE(device="cpu", dtype=torch.float16).eval().cpu()
prefix = ""
if any(k.startswith("first_stage_model.") for k in f.keys()):
prefix = "first_stage_model."
load_into(f, self.model, prefix, "cpu", torch.float16)
#################################################################################################
### Main inference logic
#################################################################################################
# Note: Sigma shift value, publicly released models use 3.0
SHIFT = 3.0
# Naturally, adjust to the width/height of the model you have
WIDTH = 1024
HEIGHT = 1024
# Pick your prompt
PROMPT = "a photo of a cat"
# Most models prefer the range of 4-5, but still work well around 7
CFG_SCALE = 4.5
# Different models want different step counts but most will be good at 50, albeit that's slow to run
# sd3_medium is quite decent at 28 steps
STEPS = 40
# Seed
SEED = 23
# SEEDTYPE = "fixed"
SEEDTYPE = "rand"
# SEEDTYPE = "roll"
# Actual model file path
# MODEL = "models/sd3_medium.safetensors"
# MODEL = "models/sd3.5_large_turbo.safetensors"
MODEL = "models/sd3.5_large.safetensors"
# VAE model file path, or set None to use the same model file
VAEFile = None # "models/sd3_vae.safetensors"
# Optional init image file path
INIT_IMAGE = None
# If init_image is given, this is the percentage of denoising steps to run (1.0 = full denoise, 0.0 = no denoise at all)
DENOISE = 0.6
# Output file path
OUTDIR = "outputs"
# SAMPLER
# SAMPLER = "euler"
SAMPLER = "dpmpp_2m"
class SD3Inferencer:
def print(self, txt):
if self.verbose:
print(txt)
def load(self, model=MODEL, vae=VAEFile, shift=SHIFT, verbose=False):
self.verbose = verbose
print("Loading tokenizers...")
# NOTE: if you need a reference impl for a high performance CLIP tokenizer instead of just using the HF transformers one,
# check https://github.com/Stability-AI/StableSwarmUI/blob/master/src/Utils/CliplikeTokenizer.cs
# (T5 tokenizer is different though)
self.tokenizer = SD3Tokenizer()
print("Loading OpenAI CLIP L...")
self.clip_l = ClipL()
print("Loading OpenCLIP bigG...")
self.clip_g = ClipG()
print("Loading Google T5-v1-XXL...")
self.t5xxl = T5XXL()
print(f"Loading SD3 model {os.path.basename(model)}...")
self.sd3 = SD3(model, shift, verbose)
print("Loading VAE model...")
self.vae = VAE(vae or model)
print("Models loaded.")
def get_empty_latent(self, width, height):
self.print("Prep an empty latent...")
return torch.ones(1, 16, height // 8, width // 8, device="cpu") * 0.0609
def get_sigmas(self, sampling, steps):
start = sampling.timestep(sampling.sigma_max)
end = sampling.timestep(sampling.sigma_min)
timesteps = torch.linspace(start, end, steps)
sigs = []
for x in range(len(timesteps)):
ts = timesteps[x]
sigs.append(sampling.sigma(ts))
sigs += [0.0]
return torch.FloatTensor(sigs)
def get_noise(self, seed, latent):
generator = torch.manual_seed(seed)
self.print(f"dtype = {latent.dtype}, layout = {latent.layout}, device = {latent.device}")
return torch.randn(
latent.size(),
dtype=torch.float32,
layout=latent.layout,
generator=generator,
device="cpu",
).to(latent.dtype)
def get_cond(self, prompt):
self.print("Encode prompt...")
tokens = self.tokenizer.tokenize_with_weights(prompt)
l_out, l_pooled = self.clip_l.model.encode_token_weights(tokens["l"])
g_out, g_pooled = self.clip_g.model.encode_token_weights(tokens["g"])
t5_out, t5_pooled = self.t5xxl.model.encode_token_weights(tokens["t5xxl"])
lg_out = torch.cat([l_out, g_out], dim=-1)
lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
return torch.cat([lg_out, t5_out], dim=-2), torch.cat((l_pooled, g_pooled), dim=-1)
def max_denoise(self, sigmas):
max_sigma = float(self.sd3.model.model_sampling.sigma_max)
sigma = float(sigmas[0])
return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
def fix_cond(self, cond):
cond, pooled = (cond[0].half().cuda(), cond[1].half().cuda())
return {"c_crossattn": cond, "y": pooled}
def do_sampling(
self,
latent,
seed,
conditioning,
neg_cond,
steps,
cfg_scale,
sampler="dpmpp_2m",
denoise=1.0,
) -> torch.Tensor:
self.print("Sampling...")
latent = latent.half().cuda()
self.sd3.model = self.sd3.model.cuda()
noise = self.get_noise(seed, latent).cuda()
sigmas = self.get_sigmas(self.sd3.model.model_sampling, steps).cuda()
sigmas = sigmas[int(steps * (1 - denoise)) :]
conditioning = self.fix_cond(conditioning)
neg_cond = self.fix_cond(neg_cond)
extra_args = {"cond": conditioning, "uncond": neg_cond, "cond_scale": cfg_scale}
noise_scaled = self.sd3.model.model_sampling.noise_scaling(sigmas[0], noise, latent, self.max_denoise(sigmas))
sample_fn = getattr(sd3_impls, f"sample_{sampler}")
latent = sample_fn(CFGDenoiser(self.sd3.model), noise_scaled, sigmas, extra_args=extra_args)
latent = SD3LatentFormat().process_out(latent)
self.sd3.model = self.sd3.model.cpu()
self.print("Sampling done")
return latent
def vae_encode(self, image) -> torch.Tensor:
self.print("Encoding image to latent...")
image = image.convert("RGB")
image_np = np.array(image).astype(np.float32) / 255.0
image_np = np.moveaxis(image_np, 2, 0)
batch_images = np.expand_dims(image_np, axis=0).repeat(1, axis=0)
image_torch = torch.from_numpy(batch_images)
image_torch = 2.0 * image_torch - 1.0
image_torch = image_torch.cuda()
self.vae.model = self.vae.model.cuda()
latent = self.vae.model.encode(image_torch).cpu()
self.vae.model = self.vae.model.cpu()
self.print("Encoded")
return latent
def vae_decode(self, latent) -> Image.Image:
self.print("Decoding latent to image...")
latent = latent.cuda()
self.vae.model = self.vae.model.cuda()
image = self.vae.model.decode(latent)
image = image.float()
self.vae.model = self.vae.model.cpu()
image = torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)[0]
decoded_np = 255.0 * np.moveaxis(image.cpu().numpy(), 0, 2)
decoded_np = decoded_np.astype(np.uint8)
out_image = Image.fromarray(decoded_np)
self.print("Decoded")
return out_image
def gen_image(
self,
prompts=[PROMPT],
width=WIDTH,
height=HEIGHT,
steps=STEPS,
cfg_scale=CFG_SCALE,
sampler=SAMPLER,
seed=SEED,
seed_type=SEEDTYPE,
out_dir=OUTDIR,
init_image=INIT_IMAGE,
denoise=DENOISE,
):
latent = self.get_empty_latent(width, height)
if init_image:
image_data = Image.open(init_image)
image_data = image_data.resize((width, height), Image.LANCZOS)
latent = self.vae_encode(image_data)
latent = SD3LatentFormat().process_in(latent)
neg_cond = self.get_cond("")
seed_num = None
pbar = tqdm(enumerate(prompts), total=len(prompts), position=0, leave=True)
for i, prompt in pbar:
if seed_type == "roll":
seed_num = seed if seed_num is None else seed_num + 1
elif seed_type == "rand":
seed_num = torch.randint(0, 100000, (1,)).item()
else: # fixed
seed_num = seed
conditioning = self.get_cond(prompt)
sampled_latent = self.do_sampling(
latent,
seed_num,
conditioning,
neg_cond,
steps,
cfg_scale,
sampler,
denoise if init_image else 1.0,
)
image = self.vae_decode(sampled_latent)
save_path = os.path.join(out_dir, f"{i:06d}.png")
self.print(f"Will save to {save_path}")
image.save(save_path)
self.print("Done")
CONFIGS = {
"sd3_medium": {
"shift": 1.0,
"cfg": 5.0,
"steps": 50,
"sampler": "dpmpp_2m",
},
"sd3.5_large": {
"shift": 3.0,
"cfg": 4.5,
"steps": 40,
"sampler": "dpmpp_2m",
},
"sd3.5_large_turbo": {"shift": 3.0, "cfg": 1.0, "steps": 4, "sampler": "euler"},
}
@torch.no_grad()
def main(
prompt=PROMPT,
model=MODEL,
out_dir=OUTDIR,
postfix=None,
seed=SEED,
seed_type=SEEDTYPE,
sampler=None,
steps=None,
cfg=None,
shift=None,
width=WIDTH,
height=HEIGHT,
vae=VAEFile,
init_image=INIT_IMAGE,
denoise=DENOISE,
verbose=False,
):
steps = steps or CONFIGS[os.path.splitext(os.path.basename(model))[0]]["steps"]
cfg = cfg or CONFIGS[os.path.splitext(os.path.basename(model))[0]]["cfg"]
shift = shift or CONFIGS[os.path.splitext(os.path.basename(model))[0]]["shift"]
sampler = sampler or CONFIGS[os.path.splitext(os.path.basename(model))[0]]["sampler"]
inferencer = SD3Inferencer()
inferencer.load(model, vae, shift, verbose)
if isinstance(prompt, str):
if os.path.splitext(prompt)[-1] == ".txt":
with open(prompt, "r") as f:
prompts = [l.strip() for l in f.readlines()]
else:
prompts = [prompt]
out_dir = os.path.join(
out_dir,
os.path.splitext(os.path.basename(model))[0],
os.path.splitext(os.path.basename(prompt))[0][:50]
+ (postfix or datetime.datetime.now().strftime("_%Y-%m-%dT%H-%M-%S")),
)
print(f"Saving images to {out_dir}")
os.makedirs(out_dir, exist_ok=False)
inferencer.gen_image(
prompts,
width,
height,
steps,
cfg,
sampler,
seed,
seed_type,
out_dir,
init_image,
denoise,
)
fire.Fire(main)

View File

@@ -1,72 +0,0 @@
from dataclasses import dataclass
from typing import Literal, TypedDict
import torch
from invokeai.backend.sd3.mmditx import MMDiTX
from invokeai.backend.sd3.sd3_impls import ModelSamplingDiscreteFlow
class ContextEmbedderConfig(TypedDict):
target: Literal["torch.nn.Linear"]
params: dict[str, int]
@dataclass
class Sd3MMDiTXParams:
patch_size: int
depth: int
num_patches: int
pos_embed_max_size: int
adm_in_channels: int
context_shape: tuple[int, int]
qk_norm: Literal["rms", None]
x_block_self_attn_layers: list[int]
context_embedder_config: ContextEmbedderConfig
class Sd3MMDiTX(torch.nn.Module):
"""This class is based closely on
https://github.com/Stability-AI/sd3.5/blob/19bf11c4e1e37324c5aa5a61f010d4127848a09c/sd3_impls.py#L53
but has more standard model loading semantics.
"""
def __init__(
self,
params: Sd3MMDiTXParams,
shift: float = 1.0,
device: torch.device | None = None,
dtype: torch.dtype | None = None,
verbose: bool = False,
):
super().__init__()
self.diffusion_model = MMDiTX(
input_size=None,
pos_embed_scaling_factor=None,
pos_embed_offset=None,
pos_embed_max_size=params.pos_embed_max_size,
patch_size=params.patch_size,
in_channels=16,
depth=params.depth,
num_patches=params.num_patches,
adm_in_channels=params.adm_in_channels,
context_embedder_config=params.context_embedder_config,
qk_norm=params.qk_norm,
x_block_self_attn_layers=params.x_block_self_attn_layers,
device=device,
dtype=dtype,
verbose=verbose,
)
self.model_sampling = ModelSamplingDiscreteFlow(shift=shift)
def apply_model(self, x: torch.Tensor, sigma: torch.Tensor, c_crossattn: torch.Tensor, y: torch.Tensor):
dtype = self.get_dtype()
timestep = self.model_sampling.timestep(sigma).float()
model_output = self.diffusion_model(x.to(dtype), timestep, context=c_crossattn.to(dtype), y=y.to(dtype)).float()
return self.model_sampling.calculate_denoised(sigma, model_output, x)
def forward(self, x: torch.Tensor, sigma: float, c_crossattn: torch.Tensor, y: torch.Tensor):
return self.apply_model(x=x, sigma=sigma, c_crossattn=c_crossattn, y=y)
def get_dtype(self):
return self.diffusion_model.dtype

View File

@@ -1,70 +0,0 @@
import math
import re
from typing import Any, Dict
from invokeai.backend.sd3.sd3_mmditx import ContextEmbedderConfig, Sd3MMDiTXParams
def is_sd3_checkpoint(sd: Dict[str, Any]) -> bool:
"""Is the state dict for an SD3 checkpoint like this one?:
https://huggingface.co/stabilityai/stable-diffusion-3.5-large/blob/main/sd3.5_large.safetensors
Note that this checkpoint format contains both the VAE and the MMDiTX model.
This is intended to be a reasonably high-precision detector, but it is not guaranteed to have perfect precision.
"""
# If all of the expected keys are present, then this is very likely a SD3 checkpoint.
expected_keys = {
# VAE decoder and encoder keys.
"first_stage_model.decoder.conv_in.bias",
"first_stage_model.decoder.conv_in.weight",
"first_stage_model.encoder.conv_in.bias",
"first_stage_model.encoder.conv_in.weight",
# MMDiTX keys.
"model.diffusion_model.final_layer.linear.bias",
"model.diffusion_model.final_layer.linear.weight",
"model.diffusion_model.joint_blocks.0.context_block.attn.ln_k.weight",
"model.diffusion_model.joint_blocks.0.context_block.attn.ln_q.weight",
}
return expected_keys.issubset(sd.keys())
def infer_sd3_mmditx_params(sd: Dict[str, Any], prefix: str = "model.diffusion_model.") -> Sd3MMDiTXParams:
"""Infer the MMDiTX model parameters from the state dict.
This logic is based on:
https://github.com/Stability-AI/sd3.5/blob/19bf11c4e1e37324c5aa5a61f010d4127848a09c/sd3_impls.py#L68-L88
"""
patch_size = sd[f"{prefix}x_embedder.proj.weight"].shape[2]
depth = sd[f"{prefix}x_embedder.proj.weight"].shape[0] // 64
num_patches = sd[f"{prefix}pos_embed"].shape[1]
pos_embed_max_size = round(math.sqrt(num_patches))
adm_in_channels = sd[f"{prefix}y_embedder.mlp.0.weight"].shape[1]
context_shape = sd[f"{prefix}context_embedder.weight"].shape
qk_norm = "rms" if f"{prefix}joint_blocks.0.context_block.attn.ln_k.weight" in sd else None
x_block_self_attn_layers = sorted(
[
int(key.split(".x_block.attn2.ln_k.weight")[0].split(".")[-1])
for key in list(filter(re.compile(".*.x_block.attn2.ln_k.weight").match, sd.keys()))
]
)
context_embedder_config: ContextEmbedderConfig = {
"target": "torch.nn.Linear",
"params": {
"in_features": context_shape[1],
"out_features": context_shape[0],
},
}
return Sd3MMDiTXParams(
patch_size=patch_size,
depth=depth,
num_patches=num_patches,
pos_embed_max_size=pos_embed_max_size,
adm_in_channels=adm_in_channels,
context_shape=context_shape,
qk_norm=qk_norm,
x_block_self_attn_layers=x_block_self_attn_layers,
context_embedder_config=context_embedder_config,
)

View File

@@ -33,7 +33,7 @@ class PreviewExt(ExtensionBase):
def initial_preview(self, ctx: DenoiseContext):
self.callback(
PipelineIntermediateState(
step=-1,
step=0,
order=ctx.scheduler.order,
total_steps=len(ctx.inputs.timesteps),
timestep=int(ctx.scheduler.config.num_train_timesteps), # TODO: is there any code which uses it?

View File

@@ -3,7 +3,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
import diffusers
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalControlNetMixin
from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
from diffusers.models.controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
from diffusers.models.embeddings import (
@@ -32,7 +32,9 @@ from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.get_logger(__name__)
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
# NOTE(ryand): I'm not the origina author of this code, but for future reference, it appears that this class was copied
# from diffusers in order to add support for the encoder_attention_mask argument.
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
"""
A ControlNet model.

View File

@@ -58,7 +58,7 @@
"@dnd-kit/sortable": "^8.0.0",
"@dnd-kit/utilities": "^3.2.2",
"@fontsource-variable/inter": "^5.1.0",
"@invoke-ai/ui-library": "^0.0.42",
"@invoke-ai/ui-library": "^0.0.43",
"@nanostores/react": "^0.7.3",
"@reduxjs/toolkit": "2.2.3",
"@roarr/browser-log-writer": "^1.3.0",

View File

@@ -24,8 +24,8 @@ dependencies:
specifier: ^5.1.0
version: 5.1.0
'@invoke-ai/ui-library':
specifier: ^0.0.42
version: 0.0.42(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1)
specifier: ^0.0.43
version: 0.0.43(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1)
'@nanostores/react':
specifier: ^0.7.3
version: 0.7.3(nanostores@0.11.3)(react@18.3.1)
@@ -1696,20 +1696,20 @@ packages:
prettier: 3.3.3
dev: true
/@invoke-ai/ui-library@0.0.42(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-OuDXRipBO5mu+Nv4qN8cd8MiwiGBdq6h4PirVgPI9/ltbdcIzePgUJ0dJns26lflHSTRWW38I16wl4YTw3mNWA==}
/@invoke-ai/ui-library@0.0.43(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-t3fPYyks07ue3dEBPJuTHbeDLnDckDCOrtvc07mMDbLOnlPEZ0StaeiNGH+oO8qLzAuMAlSTdswgHfzTc2MmPw==}
peerDependencies:
'@fontsource-variable/inter': ^5.0.16
react: ^18.2.0
react-dom: ^18.2.0
dependencies:
'@chakra-ui/anatomy': 2.2.2
'@chakra-ui/anatomy': 2.3.4
'@chakra-ui/icons': 2.2.4(@chakra-ui/react@2.10.2)(react@18.3.1)
'@chakra-ui/layout': 2.3.1(@chakra-ui/system@2.6.2)(react@18.3.1)
'@chakra-ui/portal': 2.1.0(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/react': 2.10.2(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/styled-system': 2.9.2
'@chakra-ui/theme-tools': 2.1.2(@chakra-ui/styled-system@2.9.2)
'@chakra-ui/styled-system': 2.11.2(react@18.3.1)
'@chakra-ui/theme-tools': 2.2.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1)
'@emotion/react': 11.13.3(@types/react@18.3.11)(react@18.3.1)
'@emotion/styled': 11.13.0(@emotion/react@11.13.3)(@types/react@18.3.11)(react@18.3.1)
'@fontsource-variable/inter': 5.1.0

View File

@@ -94,6 +94,7 @@
"close": "Close",
"copy": "Copy",
"copyError": "$t(gallery.copy) Error",
"clipboard": "Clipboard",
"on": "On",
"off": "Off",
"or": "or",
@@ -681,7 +682,8 @@
"recallParameters": "Recall Parameters",
"recallParameter": "Recall {{label}}",
"scheduler": "Scheduler",
"seamless": "Seamless",
"seamlessXAxis": "Seamless X Axis",
"seamlessYAxis": "Seamless Y Axis",
"seed": "Seed",
"steps": "Steps",
"strength": "Image to image strength",
@@ -712,8 +714,12 @@
"convertToDiffusersHelpText4": "This is a one time process only. It might take around 30s-60s depending on the specifications of your computer.",
"convertToDiffusersHelpText5": "Please make sure you have enough disk space. Models generally vary between 2GB-7GB in size.",
"convertToDiffusersHelpText6": "Do you wish to convert this model?",
"noDefaultSettings": "No default settings configured for this model. Visit the Model Manager to add default settings.",
"defaultSettings": "Default Settings",
"defaultSettingsSaved": "Default Settings Saved",
"defaultSettingsOutOfSync": "Some settings do not match the model's defaults:",
"restoreDefaultSettings": "Click to use the model's default settings.",
"usingDefaultSettings": "Using model's default settings",
"delete": "Delete",
"deleteConfig": "Delete Config",
"deleteModel": "Delete Model",
@@ -798,7 +804,6 @@
"uploadImage": "Upload Image",
"urlOrLocalPath": "URL or Local Path",
"urlOrLocalPathHelper": "URLs should point to a single file. Local paths can point to a single file or folder for a single diffusers model.",
"useDefaultSettings": "Use Default Settings",
"vae": "VAE",
"vaePrecision": "VAE Precision",
"variant": "Variant",
@@ -1108,6 +1113,9 @@
"enableInformationalPopovers": "Enable Informational Popovers",
"informationalPopoversDisabled": "Informational Popovers Disabled",
"informationalPopoversDisabledDesc": "Informational popovers have been disabled. Enable them in Settings.",
"enableModelDescriptions": "Enable Model Descriptions in Dropdowns",
"modelDescriptionsDisabled": "Model Descriptions in Dropdowns Disabled",
"modelDescriptionsDisabledDesc": "Model descriptions in dropdowns have been disabled. Enable them in Settings.",
"enableInvisibleWatermark": "Enable Invisible Watermark",
"enableNSFWChecker": "Enable NSFW Checker",
"general": "General",
@@ -1251,6 +1259,33 @@
"heading": "Mask Adjustments",
"paragraphs": ["Adjust the mask."]
},
"inpainting": {
"heading": "Inpainting",
"paragraphs": ["Controls which area is modified, guided by Denoising Strength."]
},
"rasterLayer": {
"heading": "Raster Layer",
"paragraphs": ["Pixel-based content of your canvas, used during image generation."]
},
"regionalGuidance": {
"heading": "Regional Guidance",
"paragraphs": ["Brush to guide where elements from global prompts should appear."]
},
"regionalGuidanceAndReferenceImage": {
"heading": "Regional Guidance and Regional Reference Image",
"paragraphs": [
"For Regional Guidance, brush to guide where elements from global prompts should appear.",
"For Regional Reference Image, brush to apply a reference image to specific areas."
]
},
"globalReferenceImage": {
"heading": "Global Reference Image",
"paragraphs": ["Applies a reference image to influence the entire generation."]
},
"regionalReferenceImage": {
"heading": "Regional Reference Image",
"paragraphs": ["Brush to apply a reference image to specific areas."]
},
"controlNet": {
"heading": "ControlNet",
"paragraphs": [
@@ -1648,6 +1683,8 @@
"controlLayer": "Control Layer",
"inpaintMask": "Inpaint Mask",
"regionalGuidance": "Regional Guidance",
"canvasAsRasterLayer": "$t(controlLayers.canvas) as $t(controlLayers.rasterLayer)",
"canvasAsControlLayer": "$t(controlLayers.canvas) as $t(controlLayers.controlLayer)",
"referenceImage": "Reference Image",
"regionalReferenceImage": "Regional Reference Image",
"globalReferenceImage": "Global Reference Image",
@@ -1688,8 +1725,18 @@
"layer_other": "Layers",
"layer_withCount_one": "Layer ({{count}})",
"layer_withCount_other": "Layers ({{count}})",
"convertToControlLayer": "Convert to Control Layer",
"convertToRasterLayer": "Convert to Raster Layer",
"convertRasterLayerTo": "Convert $t(controlLayers.rasterLayer) To",
"convertControlLayerTo": "Convert $t(controlLayers.controlLayer) To",
"convertInpaintMaskTo": "Convert $t(controlLayers.inpaintMask) To",
"convertRegionalGuidanceTo": "Convert $t(controlLayers.regionalGuidance) To",
"copyRasterLayerTo": "Copy $t(controlLayers.rasterLayer) To",
"copyControlLayerTo": "Copy $t(controlLayers.controlLayer) To",
"copyInpaintMaskTo": "Copy $t(controlLayers.inpaintMask) To",
"copyRegionalGuidanceTo": "Copy $t(controlLayers.regionalGuidance) To",
"newRasterLayer": "New $t(controlLayers.rasterLayer)",
"newControlLayer": "New $t(controlLayers.controlLayer)",
"newInpaintMask": "New $t(controlLayers.inpaintMask)",
"newRegionalGuidance": "New $t(controlLayers.regionalGuidance)",
"transparency": "Transparency",
"enableTransparencyEffect": "Enable Transparency Effect",
"disableTransparencyEffect": "Disable Transparency Effect",
@@ -1713,6 +1760,7 @@
"newGallerySessionDesc": "This will clear the canvas and all settings except for your model selection. Generations will be sent to the gallery.",
"newCanvasSession": "New Canvas Session",
"newCanvasSessionDesc": "This will clear the canvas and all settings except for your model selection. Generations will be staged on the canvas.",
"replaceCurrent": "Replace Current",
"controlMode": {
"controlMode": "Control Mode",
"balanced": "Balanced",
@@ -1842,16 +1890,24 @@
"apply": "Apply",
"cancel": "Cancel"
},
"segment": {
"autoMask": "Auto Mask",
"selectObject": {
"selectObject": "Select Object",
"pointType": "Point Type",
"foreground": "Foreground",
"background": "Background",
"invertSelection": "Invert Selection",
"include": "Include",
"exclude": "Exclude",
"neutral": "Neutral",
"reset": "Reset",
"apply": "Apply",
"reset": "Reset",
"saveAs": "Save As",
"cancel": "Cancel",
"process": "Process"
"process": "Process",
"help1": "Select a single target object. Add <Bold>Include</Bold> and <Bold>Exclude</Bold> points to indicate which parts of the layer are part of the target object.",
"help2": "Start with one <Bold>Include</Bold> point within the target object. Add more points to refine the selection. Fewer points typically produce better results.",
"help3": "Invert the selection to select everything except the target object.",
"clickToAdd": "Click on the layer to add a point",
"dragToMove": "Drag a point to move it",
"clickToRemove": "Click on a point to remove it"
},
"settings": {
"snapToGrid": {
@@ -1892,6 +1948,8 @@
"newRegionalReferenceImage": "New Regional Reference Image",
"newControlLayer": "New Control Layer",
"newRasterLayer": "New Raster Layer",
"newInpaintMask": "New Inpaint Mask",
"newRegionalGuidance": "New Regional Guidance",
"cropCanvasToBbox": "Crop Canvas to Bbox"
},
"stagingArea": {
@@ -2024,13 +2082,11 @@
},
"whatsNew": {
"whatsNewInInvoke": "What's New in Invoke",
"canvasV2Announcement": {
"newCanvas": "A powerful new control canvas",
"newLayerTypes": "New layer types for even more control",
"fluxSupport": "Support for the Flux family of models",
"readReleaseNotes": "Read Release Notes",
"watchReleaseVideo": "Watch Release Video",
"watchUiUpdatesOverview": "Watch UI Updates Overview"
}
"line1": "<ItalicComponent>Select Object</ItalicComponent> tool for precise object selection and editing",
"line2": "Expanded Flux support, now with Global Reference Images",
"line3": "Improved tooltips and context menus",
"readReleaseNotes": "Read Release Notes",
"watchRecentReleaseVideos": "Watch Recent Release Videos",
"watchUiUpdatesOverview": "Watch UI Updates Overview"
}
}

View File

@@ -8,6 +8,7 @@ import {
controlLayerAdded,
entityRasterized,
entitySelected,
inpaintMaskAdded,
rasterLayerAdded,
referenceImageAdded,
referenceImageIPAdapterImageChanged,
@@ -17,6 +18,7 @@ import {
import { selectCanvasSlice } from 'features/controlLayers/store/selectors';
import type {
CanvasControlLayerState,
CanvasInpaintMaskState,
CanvasRasterLayerState,
CanvasReferenceImageState,
CanvasRegionalGuidanceState,
@@ -110,6 +112,46 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
return;
}
/**
/**
* Image dropped on Inpaint Mask
*/
if (
overData.actionType === 'ADD_INPAINT_MASK_FROM_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const imageObject = imageDTOToImageObject(activeData.payload.imageDTO);
const { x, y } = selectCanvasSlice(getState()).bbox.rect;
const overrides: Partial<CanvasInpaintMaskState> = {
objects: [imageObject],
position: { x, y },
};
dispatch(inpaintMaskAdded({ overrides, isSelected: true }));
return;
}
/**
/**
* Image dropped on Regional Guidance
*/
if (
overData.actionType === 'ADD_REGIONAL_GUIDANCE_FROM_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const imageObject = imageDTOToImageObject(activeData.payload.imageDTO);
const { x, y } = selectCanvasSlice(getState()).bbox.rect;
const overrides: Partial<CanvasRegionalGuidanceState> = {
objects: [imageObject],
position: { x, y },
};
dispatch(rgAdded({ overrides, isSelected: true }));
return;
}
/**
* Image dropped on Raster layer
*/

View File

@@ -26,5 +26,9 @@ export const IconMenuItem = ({ tooltip, icon, ...props }: Props) => {
};
export const IconMenuItemGroup = ({ children }: { children: ReactNode }) => {
return <Flex gap={2}>{children}</Flex>;
return (
<Flex gap={2} justifyContent="space-between">
{children}
</Flex>
);
};

View File

@@ -23,8 +23,10 @@ export type Feature =
| 'dynamicPrompts'
| 'dynamicPromptsMaxPrompts'
| 'dynamicPromptsSeedBehaviour'
| 'globalReferenceImage'
| 'imageFit'
| 'infillMethod'
| 'inpainting'
| 'ipAdapterMethod'
| 'lora'
| 'loraWeight'
@@ -46,6 +48,7 @@ export type Feature =
| 'paramVAEPrecision'
| 'paramWidth'
| 'patchmatchDownScaleSize'
| 'rasterLayer'
| 'refinerModel'
| 'refinerNegativeAestheticScore'
| 'refinerPositiveAestheticScore'
@@ -53,6 +56,9 @@ export type Feature =
| 'refinerStart'
| 'refinerSteps'
| 'refinerCfgScale'
| 'regionalGuidance'
| 'regionalGuidanceAndReferenceImage'
| 'regionalReferenceImage'
| 'scaleBeforeProcessing'
| 'seamlessTilingXAxis'
| 'seamlessTilingYAxis'
@@ -76,6 +82,24 @@ export const POPOVER_DATA: { [key in Feature]?: PopoverData } = {
clipSkip: {
href: 'https://support.invoke.ai/support/solutions/articles/151000178161-advanced-settings',
},
inpainting: {
href: 'https://support.invoke.ai/support/solutions/articles/151000096702-inpainting-outpainting-and-bounding-box',
},
rasterLayer: {
href: 'https://support.invoke.ai/support/solutions/articles/151000094998-raster-layers-and-initial-images',
},
regionalGuidance: {
href: 'https://support.invoke.ai/support/solutions/articles/151000165024-regional-guidance-layers',
},
regionalGuidanceAndReferenceImage: {
href: 'https://support.invoke.ai/support/solutions/articles/151000165024-regional-guidance-layers',
},
globalReferenceImage: {
href: 'https://support.invoke.ai/support/solutions/articles/151000159340-global-and-regional-reference-images-ip-adapters-',
},
regionalReferenceImage: {
href: 'https://support.invoke.ai/support/solutions/articles/151000159340-global-and-regional-reference-images-ip-adapters-',
},
controlNet: {
href: 'https://support.invoke.ai/support/solutions/articles/151000105880',
},

View File

@@ -127,8 +127,6 @@ export const buildUseDisclosure = (defaultIsOpen: boolean): [() => UseDisclosure
*
* Hook to manage a boolean state. Use this for a local boolean state.
* @param defaultIsOpen Initial state of the disclosure
*
* @knipignore
*/
export const useDisclosure = (defaultIsOpen: boolean): UseDisclosure => {
const [isOpen, set] = useState(defaultIsOpen);

View File

@@ -4,6 +4,7 @@ import { useAppSelector } from 'app/store/storeHooks';
import type { GroupBase } from 'chakra-react-select';
import { selectParamsSlice } from 'features/controlLayers/store/paramsSlice';
import type { ModelIdentifierField } from 'features/nodes/types/common';
import { selectSystemShouldEnableModelDescriptions } from 'features/system/store/systemSlice';
import { groupBy, reduce } from 'lodash-es';
import { useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
@@ -37,6 +38,7 @@ export const useGroupedModelCombobox = <T extends AnyModelConfig>(
): UseGroupedModelComboboxReturn => {
const { t } = useTranslation();
const base = useAppSelector(selectBaseWithSDXLFallback);
const shouldShowModelDescriptions = useAppSelector(selectSystemShouldEnableModelDescriptions);
const { modelConfigs, selectedModel, getIsDisabled, onChange, isLoading, groupByType = false } = arg;
const options = useMemo<GroupBase<ComboboxOption>[]>(() => {
if (!modelConfigs) {
@@ -51,6 +53,7 @@ export const useGroupedModelCombobox = <T extends AnyModelConfig>(
options: val.map((model) => ({
label: model.name,
value: model.key,
description: (shouldShowModelDescriptions && model.description) || undefined,
isDisabled: getIsDisabled ? getIsDisabled(model) : false,
})),
});
@@ -60,7 +63,7 @@ export const useGroupedModelCombobox = <T extends AnyModelConfig>(
);
_options.sort((a) => (a.label?.split('/')[0]?.toLowerCase().includes(base) ? -1 : 1));
return _options;
}, [modelConfigs, groupByType, getIsDisabled, base]);
}, [modelConfigs, groupByType, getIsDisabled, base, shouldShowModelDescriptions]);
const value = useMemo(
() =>

View File

@@ -1,5 +1,7 @@
import type { ComboboxOnChange, ComboboxOption } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import type { ModelIdentifierField } from 'features/nodes/types/common';
import { selectSystemShouldEnableModelDescriptions } from 'features/system/store/systemSlice';
import { useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import type { AnyModelConfig } from 'services/api/types';
@@ -24,13 +26,16 @@ type UseModelComboboxReturn = {
export const useModelCombobox = <T extends AnyModelConfig>(arg: UseModelComboboxArg<T>): UseModelComboboxReturn => {
const { t } = useTranslation();
const { modelConfigs, selectedModel, getIsDisabled, onChange, isLoading, optionsFilter = () => true } = arg;
const shouldShowModelDescriptions = useAppSelector(selectSystemShouldEnableModelDescriptions);
const options = useMemo<ComboboxOption[]>(() => {
return modelConfigs.filter(optionsFilter).map((model) => ({
label: model.name,
value: model.key,
description: (shouldShowModelDescriptions && model.description) || undefined,
isDisabled: getIsDisabled ? getIsDisabled(model) : false,
}));
}, [optionsFilter, getIsDisabled, modelConfigs]);
}, [optionsFilter, getIsDisabled, modelConfigs, shouldShowModelDescriptions]);
const value = useMemo(
() => options.find((m) => (selectedModel ? m.value === selectedModel.key : false)),

View File

@@ -0,0 +1,161 @@
import type { MenuButtonProps, MenuItemProps, MenuListProps, MenuProps } from '@invoke-ai/ui-library';
import { Box, Flex, Icon, Text } from '@invoke-ai/ui-library';
import { useDisclosure } from 'common/hooks/useBoolean';
import type { FocusEventHandler, PointerEvent, RefObject } from 'react';
import { useCallback, useEffect, useRef } from 'react';
import { PiCaretRightBold } from 'react-icons/pi';
import { useDebouncedCallback } from 'use-debounce';
const offset: [number, number] = [0, 8];
type UseSubMenuReturn = {
parentMenuItemProps: Partial<MenuItemProps>;
menuProps: Partial<MenuProps>;
menuButtonProps: Partial<MenuButtonProps>;
menuListProps: Partial<MenuListProps> & { ref: RefObject<HTMLDivElement> };
};
/**
* A hook that provides the necessary props to create a sub-menu within a menu.
*
* The sub-menu should be wrapped inside a parent `MenuItem` component.
*
* Use SubMenuButtonContent to render a button with a label and a right caret icon.
*
* TODO(psyche): Add keyboard handling for sub-menu.
*
* @example
* ```tsx
* const SubMenuExample = () => {
* const subMenu = useSubMenu();
* return (
* <Menu>
* <MenuButton>Open Parent Menu</MenuButton>
* <MenuList>
* <MenuItem>Parent Item 1</MenuItem>
* <MenuItem>Parent Item 2</MenuItem>
* <MenuItem>Parent Item 3</MenuItem>
* <MenuItem {...subMenu.parentMenuItemProps} icon={<PiImageBold />}>
* <Menu {...subMenu.menuProps}>
* <MenuButton {...subMenu.menuButtonProps}>
* <SubMenuButtonContent label="Open Sub Menu" />
* </MenuButton>
* <MenuList {...subMenu.menuListProps}>
* <MenuItem>Sub Item 1</MenuItem>
* <MenuItem>Sub Item 2</MenuItem>
* <MenuItem>Sub Item 3</MenuItem>
* </MenuList>
* </Menu>
* </MenuItem>
* </MenuList>
* </Menu>
* );
* };
* ```
*/
export const useSubMenu = (): UseSubMenuReturn => {
const subMenu = useDisclosure(false);
const menuListRef = useRef<HTMLDivElement>(null);
const closeDebounced = useDebouncedCallback(subMenu.close, 300);
const openAndCancelPendingClose = useCallback(() => {
closeDebounced.cancel();
subMenu.open();
}, [closeDebounced, subMenu]);
const toggleAndCancelPendingClose = useCallback(() => {
if (subMenu.isOpen) {
subMenu.close();
return;
} else {
closeDebounced.cancel();
subMenu.toggle();
}
}, [closeDebounced, subMenu]);
const onBlurMenuList = useCallback<FocusEventHandler<HTMLDivElement>>(
(e) => {
// Don't trigger blur if focus is moving to a child element - e.g. from a sub-menu item to another sub-menu item
if (e.currentTarget.contains(e.relatedTarget)) {
closeDebounced.cancel();
return;
}
subMenu.close();
},
[closeDebounced, subMenu]
);
const onParentMenuItemPointerLeave = useCallback(
(e: PointerEvent<HTMLButtonElement>) => {
/**
* The pointerleave event is triggered when the pen or touch device is lifted, which would close the sub-menu.
* However, we want to keep the sub-menu open until the pen or touch device pressed some other element. This
* will be handled in the useEffect below - just ignore the pointerleave event for pen and touch devices.
*/
if (e.pointerType === 'pen' || e.pointerType === 'touch') {
return;
}
subMenu.close();
},
[subMenu]
);
/**
* When using a mouse, the pointerleave events close the menu. But when using a pen or touch device, we need to close
* the sub-menu when the user taps outside of the menu list. So we need to listen for clicks outside of the menu list
* and close the menu accordingly.
*/
useEffect(() => {
const el = menuListRef.current;
if (!el) {
return;
}
const controller = new AbortController();
window.addEventListener(
'click',
(e) => {
if (menuListRef.current?.contains(e.target as Node)) {
return;
}
subMenu.close();
},
{ signal: controller.signal }
);
return () => {
controller.abort();
};
}, [subMenu]);
return {
parentMenuItemProps: {
onClick: toggleAndCancelPendingClose,
onPointerEnter: openAndCancelPendingClose,
onPointerLeave: onParentMenuItemPointerLeave,
closeOnSelect: false,
},
menuProps: {
isOpen: subMenu.isOpen,
onClose: subMenu.close,
placement: 'right',
offset: offset,
closeOnBlur: false,
},
menuButtonProps: {
as: Box,
width: 'full',
height: 'full',
},
menuListProps: {
ref: menuListRef,
onPointerEnter: openAndCancelPendingClose,
onPointerLeave: closeDebounced,
onBlur: onBlurMenuList,
},
};
};
export const SubMenuButtonContent = ({ label }: { label: string }) => {
return (
<Flex w="full" h="full" flexDir="row" justifyContent="space-between" alignItems="center">
<Text>{label}</Text>
<Icon as={PiCaretRightBold} />
</Flex>
);
};

View File

@@ -1,5 +1,6 @@
import { Button, Flex, Heading } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { InformationalPopover } from 'common/components/InformationalPopover/InformationalPopover';
import {
useAddControlLayer,
useAddGlobalReferenceImage,
@@ -28,69 +29,80 @@ export const CanvasAddEntityButtons = memo(() => {
<Flex position="relative" flexDir="column" gap={4} top="20%">
<Flex flexDir="column" justifyContent="flex-start" gap={2}>
<Heading size="xs">{t('controlLayers.global')}</Heading>
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addGlobalReferenceImage}
>
{t('controlLayers.globalReferenceImage')}
</Button>
<InformationalPopover feature="globalReferenceImage">
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addGlobalReferenceImage}
>
{t('controlLayers.globalReferenceImage')}
</Button>
</InformationalPopover>
</Flex>
<Flex flexDir="column" gap={2}>
<Heading size="xs">{t('controlLayers.regional')}</Heading>
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addInpaintMask}
>
{t('controlLayers.inpaintMask')}
</Button>
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addRegionalGuidance}
isDisabled={isFLUX}
>
{t('controlLayers.regionalGuidance')}
</Button>
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addRegionalReferenceImage}
isDisabled={isFLUX}
>
{t('controlLayers.regionalReferenceImage')}
</Button>
<InformationalPopover feature="inpainting">
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addInpaintMask}
>
{t('controlLayers.inpaintMask')}
</Button>
</InformationalPopover>
<InformationalPopover feature="regionalGuidance">
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addRegionalGuidance}
isDisabled={isFLUX}
>
{t('controlLayers.regionalGuidance')}
</Button>
</InformationalPopover>
<InformationalPopover feature="regionalReferenceImage">
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addRegionalReferenceImage}
isDisabled={isFLUX}
>
{t('controlLayers.regionalReferenceImage')}
</Button>
</InformationalPopover>
</Flex>
<Flex flexDir="column" justifyContent="flex-start" gap={2}>
<Heading size="xs">{t('controlLayers.layer_other')}</Heading>
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addControlLayer}
>
{t('controlLayers.controlLayer')}
</Button>
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addRasterLayer}
>
{t('controlLayers.rasterLayer')}
</Button>
<InformationalPopover feature="controlNet">
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addControlLayer}
>
{t('controlLayers.controlLayer')}
</Button>
</InformationalPopover>
<InformationalPopover feature="rasterLayer">
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addRasterLayer}
>
{t('controlLayers.rasterLayer')}
</Button>
</InformationalPopover>
</Flex>
</Flex>
</Flex>

View File

@@ -13,7 +13,7 @@ export const CanvasAlertsPreserveMask = memo(() => {
}
return (
<Alert status="warning" borderRadius="base" fontSize="sm" shadow="md" w="fit-content" alignSelf="flex-end">
<Alert status="warning" borderRadius="base" fontSize="sm" shadow="md" w="fit-content">
<AlertIcon />
<AlertTitle>{t('controlLayers.settings.preserveMask.alert')}</AlertTitle>
</Alert>

View File

@@ -98,7 +98,7 @@ const CanvasAlertsSelectedEntityStatusContent = memo(({ entityIdentifier, adapte
}
return (
<Alert status={alert.status} borderRadius="base" fontSize="sm" shadow="md" w="fit-content" alignSelf="flex-end">
<Alert status={alert.status} borderRadius="base" fontSize="sm" shadow="md" w="fit-content">
<AlertIcon />
<AlertTitle>{alert.title}</AlertTitle>
</Alert>

View File

@@ -132,7 +132,6 @@ const AlertWrapper = ({
fontSize="sm"
shadow="md"
w="fit-content"
alignSelf="flex-end"
>
<Flex w="full" alignItems="center">
<AlertIcon />

View File

@@ -1,4 +1,5 @@
import { MenuGroup, MenuItem } from '@invoke-ai/ui-library';
import { Menu, MenuButton, MenuGroup, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { CanvasContextMenuItemsCropCanvasToBbox } from 'features/controlLayers/components/CanvasContextMenu/CanvasContextMenuItemsCropCanvasToBbox';
import { NewLayerIcon } from 'features/controlLayers/components/common/icons';
import {
@@ -16,6 +17,8 @@ import { PiFloppyDiskBold } from 'react-icons/pi';
export const CanvasContextMenuGlobalMenuItems = memo(() => {
const { t } = useTranslation();
const saveSubMenu = useSubMenu();
const newSubMenu = useSubMenu();
const isBusy = useCanvasIsBusy();
const saveCanvasToGallery = useSaveCanvasToGallery();
const saveBboxToGallery = useSaveBboxToGallery();
@@ -28,27 +31,41 @@ export const CanvasContextMenuGlobalMenuItems = memo(() => {
<>
<MenuGroup title={t('controlLayers.canvasContextMenu.canvasGroup')}>
<CanvasContextMenuItemsCropCanvasToBbox />
</MenuGroup>
<MenuGroup title={t('controlLayers.canvasContextMenu.saveToGalleryGroup')}>
<MenuItem icon={<PiFloppyDiskBold />} isDisabled={isBusy} onClick={saveCanvasToGallery}>
{t('controlLayers.canvasContextMenu.saveCanvasToGallery')}
<MenuItem {...saveSubMenu.parentMenuItemProps} icon={<PiFloppyDiskBold />}>
<Menu {...saveSubMenu.menuProps}>
<MenuButton {...saveSubMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.canvasContextMenu.saveToGalleryGroup')} />
</MenuButton>
<MenuList {...saveSubMenu.menuListProps}>
<MenuItem icon={<PiFloppyDiskBold />} isDisabled={isBusy} onClick={saveCanvasToGallery}>
{t('controlLayers.canvasContextMenu.saveCanvasToGallery')}
</MenuItem>
<MenuItem icon={<PiFloppyDiskBold />} isDisabled={isBusy} onClick={saveBboxToGallery}>
{t('controlLayers.canvasContextMenu.saveBboxToGallery')}
</MenuItem>
</MenuList>
</Menu>
</MenuItem>
<MenuItem icon={<PiFloppyDiskBold />} isDisabled={isBusy} onClick={saveBboxToGallery}>
{t('controlLayers.canvasContextMenu.saveBboxToGallery')}
</MenuItem>
</MenuGroup>
<MenuGroup title={t('controlLayers.canvasContextMenu.bboxGroup')}>
<MenuItem icon={<NewLayerIcon />} isDisabled={isBusy} onClick={newGlobalReferenceImageFromBbox}>
{t('controlLayers.canvasContextMenu.newGlobalReferenceImage')}
</MenuItem>
<MenuItem icon={<NewLayerIcon />} isDisabled={isBusy} onClick={newRegionalReferenceImageFromBbox}>
{t('controlLayers.canvasContextMenu.newRegionalReferenceImage')}
</MenuItem>
<MenuItem icon={<NewLayerIcon />} isDisabled={isBusy} onClick={newControlLayerFromBbox}>
{t('controlLayers.canvasContextMenu.newControlLayer')}
</MenuItem>
<MenuItem icon={<NewLayerIcon />} isDisabled={isBusy} onClick={newRasterLayerFromBbox}>
{t('controlLayers.canvasContextMenu.newRasterLayer')}
<MenuItem {...newSubMenu.parentMenuItemProps} icon={<NewLayerIcon />}>
<Menu {...newSubMenu.menuProps}>
<MenuButton {...newSubMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.canvasContextMenu.bboxGroup')} />
</MenuButton>
<MenuList {...newSubMenu.menuListProps}>
<MenuItem icon={<NewLayerIcon />} isDisabled={isBusy} onClick={newGlobalReferenceImageFromBbox}>
{t('controlLayers.canvasContextMenu.newGlobalReferenceImage')}
</MenuItem>
<MenuItem icon={<NewLayerIcon />} isDisabled={isBusy} onClick={newRegionalReferenceImageFromBbox}>
{t('controlLayers.canvasContextMenu.newRegionalReferenceImage')}
</MenuItem>
<MenuItem icon={<NewLayerIcon />} isDisabled={isBusy} onClick={newControlLayerFromBbox}>
{t('controlLayers.canvasContextMenu.newControlLayer')}
</MenuItem>
<MenuItem icon={<NewLayerIcon />} isDisabled={isBusy} onClick={newRasterLayerFromBbox}>
{t('controlLayers.canvasContextMenu.newRasterLayer')}
</MenuItem>
</MenuList>
</Menu>
</MenuItem>
</MenuGroup>
</>

View File

@@ -1,42 +1,43 @@
import { MenuGroup } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { CanvasEntityMenuItemsCopyToClipboard } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCopyToClipboard';
import { CanvasEntityMenuItemsCropToBbox } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCropToBbox';
import { CanvasEntityMenuItemsDelete } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDelete';
import { CanvasEntityMenuItemsFilter } from 'features/controlLayers/components/common/CanvasEntityMenuItemsFilter';
import { CanvasEntityMenuItemsSave } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSave';
import { CanvasEntityMenuItemsSegment } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSegment';
import { CanvasEntityMenuItemsTransform } from 'features/controlLayers/components/common/CanvasEntityMenuItemsTransform';
import { ControlLayerMenuItems } from 'features/controlLayers/components/ControlLayer/ControlLayerMenuItems';
import { InpaintMaskMenuItems } from 'features/controlLayers/components/InpaintMask/InpaintMaskMenuItems';
import { IPAdapterMenuItems } from 'features/controlLayers/components/IPAdapter/IPAdapterMenuItems';
import { RasterLayerMenuItems } from 'features/controlLayers/components/RasterLayer/RasterLayerMenuItems';
import { RegionalGuidanceMenuItems } from 'features/controlLayers/components/RegionalGuidance/RegionalGuidanceMenuItems';
import {
EntityIdentifierContext,
useEntityIdentifierContext,
} from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useEntityTitle } from 'features/controlLayers/hooks/useEntityTitle';
import { useEntityTypeString } from 'features/controlLayers/hooks/useEntityTypeString';
import { selectSelectedEntityIdentifier } from 'features/controlLayers/store/selectors';
import {
isFilterableEntityIdentifier,
isSaveableEntityIdentifier,
isSegmentableEntityIdentifier,
isTransformableEntityIdentifier,
} from 'features/controlLayers/store/types';
import type { PropsWithChildren } from 'react';
import { memo } from 'react';
import type { Equals } from 'tsafe';
import { assert } from 'tsafe';
const CanvasContextMenuSelectedEntityMenuItemsContent = memo(() => {
const entityIdentifier = useEntityIdentifierContext();
const title = useEntityTitle(entityIdentifier);
return (
<MenuGroup title={title}>
{isFilterableEntityIdentifier(entityIdentifier) && <CanvasEntityMenuItemsFilter />}
{isTransformableEntityIdentifier(entityIdentifier) && <CanvasEntityMenuItemsTransform />}
{isSegmentableEntityIdentifier(entityIdentifier) && <CanvasEntityMenuItemsSegment />}
{isSaveableEntityIdentifier(entityIdentifier) && <CanvasEntityMenuItemsCopyToClipboard />}
{isSaveableEntityIdentifier(entityIdentifier) && <CanvasEntityMenuItemsSave />}
{isTransformableEntityIdentifier(entityIdentifier) && <CanvasEntityMenuItemsCropToBbox />}
<CanvasEntityMenuItemsDelete />
</MenuGroup>
);
if (entityIdentifier.type === 'raster_layer') {
return <RasterLayerMenuItems />;
}
if (entityIdentifier.type === 'control_layer') {
return <ControlLayerMenuItems />;
}
if (entityIdentifier.type === 'inpaint_mask') {
return <InpaintMaskMenuItems />;
}
if (entityIdentifier.type === 'regional_guidance') {
return <RegionalGuidanceMenuItems />;
}
if (entityIdentifier.type === 'reference_image') {
return <IPAdapterMenuItems />;
}
assert<Equals<typeof entityIdentifier.type, never>>(false);
});
CanvasContextMenuSelectedEntityMenuItemsContent.displayName = 'CanvasContextMenuSelectedEntityMenuItemsContent';
export const CanvasContextMenuSelectedEntityMenuItems = memo(() => {
@@ -48,9 +49,20 @@ export const CanvasContextMenuSelectedEntityMenuItems = memo(() => {
return (
<EntityIdentifierContext.Provider value={selectedEntityIdentifier}>
<CanvasContextMenuSelectedEntityMenuItemsContent />
<CanvasContextMenuSelectedEntityMenuGroup>
<CanvasContextMenuSelectedEntityMenuItemsContent />
</CanvasContextMenuSelectedEntityMenuGroup>
</EntityIdentifierContext.Provider>
);
});
CanvasContextMenuSelectedEntityMenuItems.displayName = 'CanvasContextMenuSelectedEntityMenuItems';
const CanvasContextMenuSelectedEntityMenuGroup = memo((props: PropsWithChildren) => {
const entityIdentifier = useEntityIdentifierContext();
const title = useEntityTypeString(entityIdentifier.type);
return <MenuGroup title={title}>{props.children}</MenuGroup>;
});
CanvasContextMenuSelectedEntityMenuGroup.displayName = 'CanvasContextMenuSelectedEntityMenuGroup';

View File

@@ -62,6 +62,7 @@ export const CanvasDropArea = memo(() => {
data={addControlLayerFromImageDropData}
/>
</GridItem>
<GridItem position="relative">
<IAIDroppable
dropLabel={t('controlLayers.canvasContextMenu.newRegionalReferenceImage')}

View File

@@ -29,7 +29,7 @@ export const EntityListGlobalActionBarAddLayerMenu = memo(() => {
<Menu>
<MenuButton
as={IconButton}
size="sm"
minW={8}
variant="link"
alignSelf="stretch"
tooltip={t('controlLayers.addLayer')}

View File

@@ -4,6 +4,7 @@ import { EntityListSelectedEntityActionBarDuplicateButton } from 'features/contr
import { EntityListSelectedEntityActionBarFill } from 'features/controlLayers/components/CanvasEntityList/EntityListSelectedEntityActionBarFill';
import { EntityListSelectedEntityActionBarFilterButton } from 'features/controlLayers/components/CanvasEntityList/EntityListSelectedEntityActionBarFilterButton';
import { EntityListSelectedEntityActionBarOpacity } from 'features/controlLayers/components/CanvasEntityList/EntityListSelectedEntityActionBarOpacity';
import { EntityListSelectedEntityActionBarSelectObjectButton } from 'features/controlLayers/components/CanvasEntityList/EntityListSelectedEntityActionBarSelectObjectButton';
import { EntityListSelectedEntityActionBarTransformButton } from 'features/controlLayers/components/CanvasEntityList/EntityListSelectedEntityActionBarTransformButton';
import { memo } from 'react';
@@ -16,6 +17,7 @@ export const EntityListSelectedEntityActionBar = memo(() => {
<Spacer />
<EntityListSelectedEntityActionBarFill />
<Flex h="full">
<EntityListSelectedEntityActionBarSelectObjectButton />
<EntityListSelectedEntityActionBarFilterButton />
<EntityListSelectedEntityActionBarTransformButton />
<EntityListSelectedEntityActionBarSaveToAssetsButton />

View File

@@ -23,7 +23,7 @@ export const EntityListSelectedEntityActionBarDuplicateButton = memo(() => {
<IconButton
onClick={onClick}
isDisabled={!selectedEntityIdentifier || isBusy}
size="sm"
minW={8}
variant="link"
alignSelf="stretch"
aria-label={t('controlLayers.duplicate')}

View File

@@ -5,7 +5,7 @@ import { selectSelectedEntityIdentifier } from 'features/controlLayers/store/sel
import { isFilterableEntityIdentifier } from 'features/controlLayers/store/types';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiShootingStarBold } from 'react-icons/pi';
import { PiShootingStarFill } from 'react-icons/pi';
export const EntityListSelectedEntityActionBarFilterButton = memo(() => {
const { t } = useTranslation();
@@ -24,12 +24,12 @@ export const EntityListSelectedEntityActionBarFilterButton = memo(() => {
<IconButton
onClick={filter.start}
isDisabled={filter.isDisabled}
size="sm"
minW={8}
variant="link"
alignSelf="stretch"
aria-label={t('controlLayers.filter.filter')}
tooltip={t('controlLayers.filter.filter')}
icon={<PiShootingStarBold />}
icon={<PiShootingStarFill />}
/>
);
});

View File

@@ -31,7 +31,7 @@ export const EntityListSelectedEntityActionBarSaveToAssetsButton = memo(() => {
<IconButton
onClick={onClick}
isDisabled={!selectedEntityIdentifier || isBusy}
size="sm"
minW={8}
variant="link"
alignSelf="stretch"
aria-label={t('controlLayers.saveLayerToAssets')}

View File

@@ -0,0 +1,37 @@
import { IconButton } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { useEntitySegmentAnything } from 'features/controlLayers/hooks/useEntitySegmentAnything';
import { selectSelectedEntityIdentifier } from 'features/controlLayers/store/selectors';
import { isSegmentableEntityIdentifier } from 'features/controlLayers/store/types';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiShapesFill } from 'react-icons/pi';
export const EntityListSelectedEntityActionBarSelectObjectButton = memo(() => {
const { t } = useTranslation();
const selectedEntityIdentifier = useAppSelector(selectSelectedEntityIdentifier);
const segment = useEntitySegmentAnything(selectedEntityIdentifier);
if (!selectedEntityIdentifier) {
return null;
}
if (!isSegmentableEntityIdentifier(selectedEntityIdentifier)) {
return null;
}
return (
<IconButton
onClick={segment.start}
isDisabled={segment.isDisabled}
minW={8}
variant="link"
alignSelf="stretch"
aria-label={t('controlLayers.selectObject.selectObject')}
tooltip={t('controlLayers.selectObject.selectObject')}
icon={<PiShapesFill />}
/>
);
});
EntityListSelectedEntityActionBarSelectObjectButton.displayName = 'EntityListSelectedEntityActionBarSelectObjectButton';

View File

@@ -24,7 +24,7 @@ export const EntityListSelectedEntityActionBarTransformButton = memo(() => {
<IconButton
onClick={transform.start}
isDisabled={transform.isDisabled}
size="sm"
minW={8}
variant="link"
alignSelf="stretch"
aria-label={t('controlLayers.transform.transform')}

View File

@@ -10,7 +10,7 @@ import { CanvasDropArea } from 'features/controlLayers/components/CanvasDropArea
import { Filter } from 'features/controlLayers/components/Filters/Filter';
import { CanvasHUD } from 'features/controlLayers/components/HUD/CanvasHUD';
import { InvokeCanvasComponent } from 'features/controlLayers/components/InvokeCanvasComponent';
import { SegmentAnything } from 'features/controlLayers/components/SegmentAnything/SegmentAnything';
import { SelectObject } from 'features/controlLayers/components/SelectObject/SelectObject';
import { StagingAreaIsStagingGate } from 'features/controlLayers/components/StagingArea/StagingAreaIsStagingGate';
import { StagingAreaToolbar } from 'features/controlLayers/components/StagingArea/StagingAreaToolbar';
import { CanvasToolbar } from 'features/controlLayers/components/Toolbar/CanvasToolbar';
@@ -25,8 +25,8 @@ const MenuContent = () => {
return (
<CanvasManagerProviderGate>
<MenuList>
<CanvasContextMenuGlobalMenuItems />
<CanvasContextMenuSelectedEntityMenuItems />
<CanvasContextMenuGlobalMenuItems />
</MenuList>
</CanvasManagerProviderGate>
);
@@ -71,12 +71,16 @@ export const CanvasMainPanelContent = memo(() => {
>
<InvokeCanvasComponent />
<CanvasManagerProviderGate>
{showHUD && (
<Flex position="absolute" top={1} insetInlineStart={1} pointerEvents="none">
<CanvasHUD />
</Flex>
)}
<Flex flexDir="column" position="absolute" top={1} insetInlineEnd={1} pointerEvents="none" gap={2}>
<Flex
position="absolute"
flexDir="column"
top={1}
insetInlineStart={1}
pointerEvents="none"
gap={2}
alignItems="flex-start"
>
{showHUD && <CanvasHUD />}
<CanvasAlertsSelectedEntityStatus />
<CanvasAlertsPreserveMask />
<CanvasAlertsSendingToGallery />
@@ -102,7 +106,7 @@ export const CanvasMainPanelContent = memo(() => {
<CanvasManagerProviderGate>
<Filter />
<Transform />
<SegmentAnything />
<SelectObject />
</CanvasManagerProviderGate>
</Flex>
<CanvasDropArea />

View File

@@ -21,7 +21,7 @@ import { selectCanvasSlice, selectEntityOrThrow } from 'features/controlLayers/s
import type { CanvasEntityIdentifier, ControlModeV2 } from 'features/controlLayers/store/types';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiBoundingBoxBold, PiShootingStarBold, PiUploadBold } from 'react-icons/pi';
import { PiBoundingBoxBold, PiShootingStarFill, PiUploadBold } from 'react-icons/pi';
import type { ControlNetModelConfig, PostUploadAction, T2IAdapterModelConfig } from 'services/api/types';
const useControlLayerControlAdapter = (entityIdentifier: CanvasEntityIdentifier<'control_layer'>) => {
@@ -93,7 +93,7 @@ export const ControlLayerControlAdapter = memo(() => {
variant="link"
aria-label={t('controlLayers.filter.filter')}
tooltip={t('controlLayers.filter.filter')}
icon={<PiShootingStarBold />}
icon={<PiShootingStarFill />}
/>
<IconButton
onClick={pullBboxIntoLayer}

View File

@@ -1,15 +1,15 @@
import { MenuDivider } from '@invoke-ai/ui-library';
import { IconMenuItemGroup } from 'common/components/IconMenuItem';
import { CanvasEntityMenuItemsArrange } from 'features/controlLayers/components/common/CanvasEntityMenuItemsArrange';
import { CanvasEntityMenuItemsCopyToClipboard } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCopyToClipboard';
import { CanvasEntityMenuItemsCropToBbox } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCropToBbox';
import { CanvasEntityMenuItemsDelete } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDelete';
import { CanvasEntityMenuItemsDuplicate } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDuplicate';
import { CanvasEntityMenuItemsFilter } from 'features/controlLayers/components/common/CanvasEntityMenuItemsFilter';
import { CanvasEntityMenuItemsSave } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSave';
import { CanvasEntityMenuItemsSegment } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSegment';
import { CanvasEntityMenuItemsSelectObject } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSelectObject';
import { CanvasEntityMenuItemsTransform } from 'features/controlLayers/components/common/CanvasEntityMenuItemsTransform';
import { ControlLayerMenuItemsConvertControlToRaster } from 'features/controlLayers/components/ControlLayer/ControlLayerMenuItemsConvertControlToRaster';
import { ControlLayerMenuItemsConvertToSubMenu } from 'features/controlLayers/components/ControlLayer/ControlLayerMenuItemsConvertToSubMenu';
import { ControlLayerMenuItemsCopyToSubMenu } from 'features/controlLayers/components/ControlLayer/ControlLayerMenuItemsCopyToSubMenu';
import { ControlLayerMenuItemsTransparencyEffect } from 'features/controlLayers/components/ControlLayer/ControlLayerMenuItemsTransparencyEffect';
import { memo } from 'react';
@@ -24,12 +24,12 @@ export const ControlLayerMenuItems = memo(() => {
<MenuDivider />
<CanvasEntityMenuItemsTransform />
<CanvasEntityMenuItemsFilter />
<CanvasEntityMenuItemsSegment />
<ControlLayerMenuItemsConvertControlToRaster />
<CanvasEntityMenuItemsSelectObject />
<ControlLayerMenuItemsTransparencyEffect />
<MenuDivider />
<ControlLayerMenuItemsCopyToSubMenu />
<ControlLayerMenuItemsConvertToSubMenu />
<CanvasEntityMenuItemsCropToBbox />
<CanvasEntityMenuItemsCopyToClipboard />
<CanvasEntityMenuItemsSave />
</>
);

View File

@@ -1,27 +0,0 @@
import { MenuItem } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { controlLayerConvertedToRasterLayer } from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiLightningBold } from 'react-icons/pi';
export const ControlLayerMenuItemsConvertControlToRaster = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('control_layer');
const isInteractable = useIsEntityInteractable(entityIdentifier);
const convertControlLayerToRasterLayer = useCallback(() => {
dispatch(controlLayerConvertedToRasterLayer({ entityIdentifier }));
}, [dispatch, entityIdentifier]);
return (
<MenuItem onClick={convertControlLayerToRasterLayer} icon={<PiLightningBold />} isDisabled={!isInteractable}>
{t('controlLayers.convertToRasterLayer')}
</MenuItem>
);
});
ControlLayerMenuItemsConvertControlToRaster.displayName = 'ControlLayerMenuItemsConvertControlToRaster';

View File

@@ -0,0 +1,56 @@
import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import {
controlLayerConvertedToInpaintMask,
controlLayerConvertedToRasterLayer,
controlLayerConvertedToRegionalGuidance,
} from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiSwapBold } from 'react-icons/pi';
export const ControlLayerMenuItemsConvertToSubMenu = memo(() => {
const { t } = useTranslation();
const subMenu = useSubMenu();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('control_layer');
const isInteractable = useIsEntityInteractable(entityIdentifier);
const convertToInpaintMask = useCallback(() => {
dispatch(controlLayerConvertedToInpaintMask({ entityIdentifier, replace: true }));
}, [dispatch, entityIdentifier]);
const convertToRegionalGuidance = useCallback(() => {
dispatch(controlLayerConvertedToRegionalGuidance({ entityIdentifier, replace: true }));
}, [dispatch, entityIdentifier]);
const convertToRasterLayer = useCallback(() => {
dispatch(controlLayerConvertedToRasterLayer({ entityIdentifier, replace: true }));
}, [dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiSwapBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.convertControlLayerTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<MenuItem onClick={convertToInpaintMask} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.inpaintMask')}
</MenuItem>
<MenuItem onClick={convertToRegionalGuidance} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.regionalGuidance')}
</MenuItem>
<MenuItem onClick={convertToRasterLayer} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.rasterLayer')}
</MenuItem>
</MenuList>
</Menu>
</MenuItem>
);
});
ControlLayerMenuItemsConvertToSubMenu.displayName = 'ControlLayerMenuItemsConvertToSubMenu';

View File

@@ -0,0 +1,58 @@
import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { CanvasEntityMenuItemsCopyToClipboard } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCopyToClipboard';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import {
controlLayerConvertedToInpaintMask,
controlLayerConvertedToRasterLayer,
controlLayerConvertedToRegionalGuidance,
} from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiCopyBold } from 'react-icons/pi';
export const ControlLayerMenuItemsCopyToSubMenu = memo(() => {
const { t } = useTranslation();
const subMenu = useSubMenu();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('control_layer');
const isInteractable = useIsEntityInteractable(entityIdentifier);
const copyToInpaintMask = useCallback(() => {
dispatch(controlLayerConvertedToInpaintMask({ entityIdentifier }));
}, [dispatch, entityIdentifier]);
const copyToRegionalGuidance = useCallback(() => {
dispatch(controlLayerConvertedToRegionalGuidance({ entityIdentifier }));
}, [dispatch, entityIdentifier]);
const copyToRasterLayer = useCallback(() => {
dispatch(controlLayerConvertedToRasterLayer({ entityIdentifier }));
}, [dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiCopyBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.copyControlLayerTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<CanvasEntityMenuItemsCopyToClipboard />
<MenuItem onClick={copyToInpaintMask} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newInpaintMask')}
</MenuItem>
<MenuItem onClick={copyToRegionalGuidance} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newRegionalGuidance')}
</MenuItem>
<MenuItem onClick={copyToRasterLayer} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newRasterLayer')}
</MenuItem>
</MenuList>
</Menu>
</MenuItem>
);
});
ControlLayerMenuItemsCopyToSubMenu.displayName = 'ControlLayerMenuItemsCopyToSubMenu';

View File

@@ -1,4 +1,15 @@
import { Button, ButtonGroup, Flex, Heading, Spacer } from '@invoke-ai/ui-library';
import {
Button,
ButtonGroup,
Flex,
Heading,
Menu,
MenuButton,
MenuItem,
MenuList,
Spacer,
Spinner,
} from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { useAppSelector } from 'app/store/storeHooks';
import { useFocusRegion, useIsRegionFocused } from 'common/hooks/focus';
@@ -15,7 +26,7 @@ import { IMAGE_FILTERS } from 'features/controlLayers/store/filters';
import { useRegisteredHotkeys } from 'features/system/components/HotkeysModal/useHotkeyData';
import { memo, useCallback, useMemo, useRef } from 'react';
import { useTranslation } from 'react-i18next';
import { PiArrowsCounterClockwiseBold, PiCheckBold, PiShootingStarBold, PiXBold } from 'react-icons/pi';
import { PiCaretDownBold } from 'react-icons/pi';
const FilterContent = memo(
({ adapter }: { adapter: CanvasEntityAdapterRasterLayer | CanvasEntityAdapterControlLayer }) => {
@@ -25,7 +36,7 @@ const FilterContent = memo(
const config = useStore(adapter.filterer.$filterConfig);
const isCanvasFocused = useIsRegionFocused('canvas');
const isProcessing = useStore(adapter.filterer.$isProcessing);
const hasProcessed = useStore(adapter.filterer.$hasProcessed);
const hasImageState = useStore(adapter.filterer.$hasImageState);
const autoProcess = useAppSelector(selectAutoProcess);
const onChangeFilterConfig = useCallback(
@@ -46,6 +57,22 @@ const FilterContent = memo(
return IMAGE_FILTERS[config.type].validateConfig?.(config as never) ?? true;
}, [config]);
const saveAsInpaintMask = useCallback(() => {
adapter.filterer.saveAs('inpaint_mask');
}, [adapter.filterer]);
const saveAsRegionalGuidance = useCallback(() => {
adapter.filterer.saveAs('regional_guidance');
}, [adapter.filterer]);
const saveAsRasterLayer = useCallback(() => {
adapter.filterer.saveAs('raster_layer');
}, [adapter.filterer]);
const saveAsControlLayer = useCallback(() => {
adapter.filterer.saveAs('control_layer');
}, [adapter.filterer]);
useRegisteredHotkeys({
id: 'applyFilter',
category: 'canvas',
@@ -89,40 +116,56 @@ const FilterContent = memo(
<ButtonGroup isAttached={false} size="sm" w="full">
<Button
variant="ghost"
leftIcon={<PiShootingStarBold />}
onClick={adapter.filterer.processImmediate}
isLoading={isProcessing}
loadingText={t('controlLayers.filter.process')}
isDisabled={!isValid || autoProcess}
isDisabled={isProcessing || !isValid || (autoProcess && hasImageState)}
>
{t('controlLayers.filter.process')}
{isProcessing && <Spinner ms={3} boxSize={5} color="base.600" />}
</Button>
<Spacer />
<Button
leftIcon={<PiArrowsCounterClockwiseBold />}
onClick={adapter.filterer.reset}
isLoading={isProcessing}
isDisabled={isProcessing}
loadingText={t('controlLayers.filter.reset')}
variant="ghost"
>
{t('controlLayers.filter.reset')}
</Button>
<Button
variant="ghost"
leftIcon={<PiCheckBold />}
onClick={adapter.filterer.apply}
isLoading={isProcessing}
loadingText={t('controlLayers.filter.apply')}
isDisabled={!isValid || !hasProcessed}
variant="ghost"
isDisabled={isProcessing || !isValid || !hasImageState}
>
{t('controlLayers.filter.apply')}
</Button>
<Button
variant="ghost"
leftIcon={<PiXBold />}
onClick={adapter.filterer.cancel}
loadingText={t('controlLayers.filter.cancel')}
>
<Menu>
<MenuButton
as={Button}
loadingText={t('controlLayers.selectObject.saveAs')}
variant="ghost"
isDisabled={isProcessing || !isValid || !hasImageState}
rightIcon={<PiCaretDownBold />}
>
{t('controlLayers.selectObject.saveAs')}
</MenuButton>
<MenuList>
<MenuItem isDisabled={isProcessing || !isValid || !hasImageState} onClick={saveAsInpaintMask}>
{t('controlLayers.newInpaintMask')}
</MenuItem>
<MenuItem isDisabled={isProcessing || !isValid || !hasImageState} onClick={saveAsRegionalGuidance}>
{t('controlLayers.newRegionalGuidance')}
</MenuItem>
<MenuItem isDisabled={isProcessing || !isValid || !hasImageState} onClick={saveAsControlLayer}>
{t('controlLayers.newControlLayer')}
</MenuItem>
<MenuItem isDisabled={isProcessing || !isValid || !hasImageState} onClick={saveAsRasterLayer}>
{t('controlLayers.newRasterLayer')}
</MenuItem>
</MenuList>
</Menu>
<Button variant="ghost" onClick={adapter.filterer.cancel} loadingText={t('controlLayers.filter.cancel')}>
{t('controlLayers.filter.cancel')}
</Button>
</ButtonGroup>

View File

@@ -0,0 +1,22 @@
import { MenuItem } from '@invoke-ai/ui-library';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { usePullBboxIntoGlobalReferenceImage } from 'features/controlLayers/hooks/saveCanvasHooks';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiBoundingBoxBold } from 'react-icons/pi';
export const IPAdapterMenuItemPullBbox = memo(() => {
const { t } = useTranslation();
const entityIdentifier = useEntityIdentifierContext('reference_image');
const pullBboxIntoIPAdapter = usePullBboxIntoGlobalReferenceImage(entityIdentifier);
const isBusy = useCanvasIsBusy();
return (
<MenuItem onClick={pullBboxIntoIPAdapter} icon={<PiBoundingBoxBold />} isDisabled={isBusy}>
{t('controlLayers.pullBboxIntoReferenceImage')}
</MenuItem>
);
});
IPAdapterMenuItemPullBbox.displayName = 'IPAdapterMenuItemPullBbox';

View File

@@ -1,16 +1,22 @@
import { MenuDivider } from '@invoke-ai/ui-library';
import { IconMenuItemGroup } from 'common/components/IconMenuItem';
import { CanvasEntityMenuItemsArrange } from 'features/controlLayers/components/common/CanvasEntityMenuItemsArrange';
import { CanvasEntityMenuItemsDelete } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDelete';
import { CanvasEntityMenuItemsDuplicate } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDuplicate';
import { IPAdapterMenuItemPullBbox } from 'features/controlLayers/components/IPAdapter/IPAdapterMenuItemPullBbox';
import { memo } from 'react';
export const IPAdapterMenuItems = memo(() => {
return (
<IconMenuItemGroup>
<CanvasEntityMenuItemsArrange />
<CanvasEntityMenuItemsDuplicate />
<CanvasEntityMenuItemsDelete asIcon />
</IconMenuItemGroup>
<>
<IconMenuItemGroup>
<CanvasEntityMenuItemsArrange />
<CanvasEntityMenuItemsDuplicate />
<CanvasEntityMenuItemsDelete asIcon />
</IconMenuItemGroup>
<MenuDivider />
<IPAdapterMenuItemPullBbox />
</>
);
});

View File

@@ -14,7 +14,7 @@ type Props = {
};
export const InpaintMask = memo(({ id }: Props) => {
const entityIdentifier = useMemo<CanvasEntityIdentifier>(() => ({ id, type: 'inpaint_mask' }), [id]);
const entityIdentifier = useMemo<CanvasEntityIdentifier<'inpaint_mask'>>(() => ({ id, type: 'inpaint_mask' }), [id]);
return (
<EntityIdentifierContext.Provider value={entityIdentifier}>

View File

@@ -5,6 +5,8 @@ import { CanvasEntityMenuItemsCropToBbox } from 'features/controlLayers/componen
import { CanvasEntityMenuItemsDelete } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDelete';
import { CanvasEntityMenuItemsDuplicate } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDuplicate';
import { CanvasEntityMenuItemsTransform } from 'features/controlLayers/components/common/CanvasEntityMenuItemsTransform';
import { InpaintMaskMenuItemsConvertToSubMenu } from 'features/controlLayers/components/InpaintMask/InpaintMaskMenuItemsConvertToSubMenu';
import { InpaintMaskMenuItemsCopyToSubMenu } from 'features/controlLayers/components/InpaintMask/InpaintMaskMenuItemsCopyToSubMenu';
import { memo } from 'react';
export const InpaintMaskMenuItems = memo(() => {
@@ -18,6 +20,8 @@ export const InpaintMaskMenuItems = memo(() => {
<MenuDivider />
<CanvasEntityMenuItemsTransform />
<MenuDivider />
<InpaintMaskMenuItemsCopyToSubMenu />
<InpaintMaskMenuItemsConvertToSubMenu />
<CanvasEntityMenuItemsCropToBbox />
</>
);

View File

@@ -0,0 +1,38 @@
import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { inpaintMaskConvertedToRegionalGuidance } from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiSwapBold } from 'react-icons/pi';
export const InpaintMaskMenuItemsConvertToSubMenu = memo(() => {
const { t } = useTranslation();
const subMenu = useSubMenu();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('inpaint_mask');
const isInteractable = useIsEntityInteractable(entityIdentifier);
const convertToRegionalGuidance = useCallback(() => {
dispatch(inpaintMaskConvertedToRegionalGuidance({ entityIdentifier, replace: true }));
}, [dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiSwapBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.convertInpaintMaskTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<MenuItem onClick={convertToRegionalGuidance} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.regionalGuidance')}
</MenuItem>
</MenuList>
</Menu>
</MenuItem>
);
});
InpaintMaskMenuItemsConvertToSubMenu.displayName = 'InpaintMaskMenuItemsConvertToSubMenu';

View File

@@ -0,0 +1,40 @@
import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { CanvasEntityMenuItemsCopyToClipboard } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCopyToClipboard';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { inpaintMaskConvertedToRegionalGuidance } from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiCopyBold } from 'react-icons/pi';
export const InpaintMaskMenuItemsCopyToSubMenu = memo(() => {
const { t } = useTranslation();
const subMenu = useSubMenu();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('inpaint_mask');
const isInteractable = useIsEntityInteractable(entityIdentifier);
const copyToRegionalGuidance = useCallback(() => {
dispatch(inpaintMaskConvertedToRegionalGuidance({ entityIdentifier }));
}, [dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiCopyBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.copyInpaintMaskTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<CanvasEntityMenuItemsCopyToClipboard />
<MenuItem onClick={copyToRegionalGuidance} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newRegionalGuidance')}
</MenuItem>
</MenuList>
</Menu>
</MenuItem>
);
});
InpaintMaskMenuItemsCopyToSubMenu.displayName = 'InpaintMaskMenuItemsCopyToSubMenu';

View File

@@ -1,15 +1,15 @@
import { MenuDivider } from '@invoke-ai/ui-library';
import { IconMenuItemGroup } from 'common/components/IconMenuItem';
import { CanvasEntityMenuItemsArrange } from 'features/controlLayers/components/common/CanvasEntityMenuItemsArrange';
import { CanvasEntityMenuItemsCopyToClipboard } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCopyToClipboard';
import { CanvasEntityMenuItemsCropToBbox } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCropToBbox';
import { CanvasEntityMenuItemsDelete } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDelete';
import { CanvasEntityMenuItemsDuplicate } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDuplicate';
import { CanvasEntityMenuItemsFilter } from 'features/controlLayers/components/common/CanvasEntityMenuItemsFilter';
import { CanvasEntityMenuItemsSave } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSave';
import { CanvasEntityMenuItemsSegment } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSegment';
import { CanvasEntityMenuItemsSelectObject } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSelectObject';
import { CanvasEntityMenuItemsTransform } from 'features/controlLayers/components/common/CanvasEntityMenuItemsTransform';
import { RasterLayerMenuItemsConvertRasterToControl } from 'features/controlLayers/components/RasterLayer/RasterLayerMenuItemsConvertRasterToControl';
import { RasterLayerMenuItemsConvertToSubMenu } from 'features/controlLayers/components/RasterLayer/RasterLayerMenuItemsConvertToSubMenu';
import { RasterLayerMenuItemsCopyToSubMenu } from 'features/controlLayers/components/RasterLayer/RasterLayerMenuItemsCopyToSubMenu';
import { memo } from 'react';
export const RasterLayerMenuItems = memo(() => {
@@ -23,11 +23,11 @@ export const RasterLayerMenuItems = memo(() => {
<MenuDivider />
<CanvasEntityMenuItemsTransform />
<CanvasEntityMenuItemsFilter />
<CanvasEntityMenuItemsSegment />
<RasterLayerMenuItemsConvertRasterToControl />
<CanvasEntityMenuItemsSelectObject />
<MenuDivider />
<RasterLayerMenuItemsCopyToSubMenu />
<RasterLayerMenuItemsConvertToSubMenu />
<CanvasEntityMenuItemsCropToBbox />
<CanvasEntityMenuItemsCopyToClipboard />
<CanvasEntityMenuItemsSave />
</>
);

View File

@@ -1,36 +0,0 @@
import { MenuItem } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { selectDefaultControlAdapter } from 'features/controlLayers/hooks/addLayerHooks';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { rasterLayerConvertedToControlLayer } from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiLightningBold } from 'react-icons/pi';
export const RasterLayerMenuItemsConvertRasterToControl = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('raster_layer');
const defaultControlAdapter = useAppSelector(selectDefaultControlAdapter);
const isInteractable = useIsEntityInteractable(entityIdentifier);
const onClick = useCallback(() => {
dispatch(
rasterLayerConvertedToControlLayer({
entityIdentifier,
overrides: {
controlAdapter: defaultControlAdapter,
},
})
);
}, [defaultControlAdapter, dispatch, entityIdentifier]);
return (
<MenuItem onClick={onClick} icon={<PiLightningBold />} isDisabled={!isInteractable}>
{t('controlLayers.convertToControlLayer')}
</MenuItem>
);
});
RasterLayerMenuItemsConvertRasterToControl.displayName = 'RasterLayerMenuItemsConvertRasterToControl';

View File

@@ -0,0 +1,65 @@
import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { selectDefaultControlAdapter } from 'features/controlLayers/hooks/addLayerHooks';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import {
rasterLayerConvertedToControlLayer,
rasterLayerConvertedToInpaintMask,
rasterLayerConvertedToRegionalGuidance,
} from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiSwapBold } from 'react-icons/pi';
export const RasterLayerMenuItemsConvertToSubMenu = memo(() => {
const { t } = useTranslation();
const subMenu = useSubMenu();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('raster_layer');
const defaultControlAdapter = useAppSelector(selectDefaultControlAdapter);
const isInteractable = useIsEntityInteractable(entityIdentifier);
const convertToInpaintMask = useCallback(() => {
dispatch(rasterLayerConvertedToInpaintMask({ entityIdentifier, replace: true }));
}, [dispatch, entityIdentifier]);
const convertToRegionalGuidance = useCallback(() => {
dispatch(rasterLayerConvertedToRegionalGuidance({ entityIdentifier, replace: true }));
}, [dispatch, entityIdentifier]);
const convertToControlLayer = useCallback(() => {
dispatch(
rasterLayerConvertedToControlLayer({
entityIdentifier,
replace: true,
overrides: { controlAdapter: defaultControlAdapter },
})
);
}, [defaultControlAdapter, dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiSwapBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.convertRasterLayerTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<MenuItem onClick={convertToInpaintMask} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.inpaintMask')}
</MenuItem>
<MenuItem onClick={convertToRegionalGuidance} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.regionalGuidance')}
</MenuItem>
<MenuItem onClick={convertToControlLayer} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.controlLayer')}
</MenuItem>
</MenuList>
</Menu>
</MenuItem>
);
});
RasterLayerMenuItemsConvertToSubMenu.displayName = 'RasterLayerMenuItemsConvertToSubMenu';

View File

@@ -0,0 +1,66 @@
import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { CanvasEntityMenuItemsCopyToClipboard } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCopyToClipboard';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { selectDefaultControlAdapter } from 'features/controlLayers/hooks/addLayerHooks';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import {
rasterLayerConvertedToControlLayer,
rasterLayerConvertedToInpaintMask,
rasterLayerConvertedToRegionalGuidance,
} from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiCopyBold } from 'react-icons/pi';
export const RasterLayerMenuItemsCopyToSubMenu = memo(() => {
const { t } = useTranslation();
const subMenu = useSubMenu();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('raster_layer');
const defaultControlAdapter = useAppSelector(selectDefaultControlAdapter);
const isInteractable = useIsEntityInteractable(entityIdentifier);
const copyToInpaintMask = useCallback(() => {
dispatch(rasterLayerConvertedToInpaintMask({ entityIdentifier }));
}, [dispatch, entityIdentifier]);
const copyToRegionalGuidance = useCallback(() => {
dispatch(rasterLayerConvertedToRegionalGuidance({ entityIdentifier }));
}, [dispatch, entityIdentifier]);
const copyToControlLayer = useCallback(() => {
dispatch(
rasterLayerConvertedToControlLayer({
entityIdentifier,
overrides: { controlAdapter: defaultControlAdapter },
})
);
}, [defaultControlAdapter, dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiCopyBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.copyRasterLayerTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<CanvasEntityMenuItemsCopyToClipboard />
<MenuItem onClick={copyToInpaintMask} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newInpaintMask')}
</MenuItem>
<MenuItem onClick={copyToRegionalGuidance} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newRegionalGuidance')}
</MenuItem>
<MenuItem onClick={copyToControlLayer} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newControlLayer')}
</MenuItem>
</MenuList>
</Menu>
</MenuItem>
);
});
RasterLayerMenuItemsCopyToSubMenu.displayName = 'RasterLayerMenuItemsCopyToSubMenu';

View File

@@ -16,7 +16,10 @@ type Props = {
};
export const RegionalGuidance = memo(({ id }: Props) => {
const entityIdentifier = useMemo<CanvasEntityIdentifier>(() => ({ id, type: 'regional_guidance' }), [id]);
const entityIdentifier = useMemo<CanvasEntityIdentifier<'regional_guidance'>>(
() => ({ id, type: 'regional_guidance' }),
[id]
);
return (
<EntityIdentifierContext.Provider value={entityIdentifier}>

View File

@@ -1,4 +1,5 @@
import { Flex, MenuDivider } from '@invoke-ai/ui-library';
import { MenuDivider } from '@invoke-ai/ui-library';
import { IconMenuItemGroup } from 'common/components/IconMenuItem';
import { CanvasEntityMenuItemsArrange } from 'features/controlLayers/components/common/CanvasEntityMenuItemsArrange';
import { CanvasEntityMenuItemsCropToBbox } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCropToBbox';
import { CanvasEntityMenuItemsDelete } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDelete';
@@ -6,22 +7,26 @@ import { CanvasEntityMenuItemsDuplicate } from 'features/controlLayers/component
import { CanvasEntityMenuItemsTransform } from 'features/controlLayers/components/common/CanvasEntityMenuItemsTransform';
import { RegionalGuidanceMenuItemsAddPromptsAndIPAdapter } from 'features/controlLayers/components/RegionalGuidance/RegionalGuidanceMenuItemsAddPromptsAndIPAdapter';
import { RegionalGuidanceMenuItemsAutoNegative } from 'features/controlLayers/components/RegionalGuidance/RegionalGuidanceMenuItemsAutoNegative';
import { RegionalGuidanceMenuItemsConvertToSubMenu } from 'features/controlLayers/components/RegionalGuidance/RegionalGuidanceMenuItemsConvertToSubMenu';
import { RegionalGuidanceMenuItemsCopyToSubMenu } from 'features/controlLayers/components/RegionalGuidance/RegionalGuidanceMenuItemsCopyToSubMenu';
import { memo } from 'react';
export const RegionalGuidanceMenuItems = memo(() => {
return (
<>
<Flex gap={2}>
<IconMenuItemGroup>
<CanvasEntityMenuItemsArrange />
<CanvasEntityMenuItemsDuplicate />
<CanvasEntityMenuItemsDelete asIcon />
</Flex>
</IconMenuItemGroup>
<MenuDivider />
<RegionalGuidanceMenuItemsAddPromptsAndIPAdapter />
<MenuDivider />
<CanvasEntityMenuItemsTransform />
<RegionalGuidanceMenuItemsAutoNegative />
<MenuDivider />
<RegionalGuidanceMenuItemsCopyToSubMenu />
<RegionalGuidanceMenuItemsConvertToSubMenu />
<CanvasEntityMenuItemsCropToBbox />
</>
);

View File

@@ -0,0 +1,38 @@
import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { rgConvertedToInpaintMask } from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiSwapBold } from 'react-icons/pi';
export const RegionalGuidanceMenuItemsConvertToSubMenu = memo(() => {
const { t } = useTranslation();
const subMenu = useSubMenu();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('regional_guidance');
const isInteractable = useIsEntityInteractable(entityIdentifier);
const convertToInpaintMask = useCallback(() => {
dispatch(rgConvertedToInpaintMask({ entityIdentifier, replace: true }));
}, [dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiSwapBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.convertRegionalGuidanceTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<MenuItem onClick={convertToInpaintMask} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.inpaintMask')}
</MenuItem>
</MenuList>
</Menu>
</MenuItem>
);
});
RegionalGuidanceMenuItemsConvertToSubMenu.displayName = 'RegionalGuidanceMenuItemsConvertToSubMenu';

View File

@@ -0,0 +1,40 @@
import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { CanvasEntityMenuItemsCopyToClipboard } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCopyToClipboard';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { rgConvertedToInpaintMask } from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiCopyBold } from 'react-icons/pi';
export const RegionalGuidanceMenuItemsCopyToSubMenu = memo(() => {
const { t } = useTranslation();
const subMenu = useSubMenu();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('regional_guidance');
const isInteractable = useIsEntityInteractable(entityIdentifier);
const copyToInpaintMask = useCallback(() => {
dispatch(rgConvertedToInpaintMask({ entityIdentifier }));
}, [dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiCopyBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.copyRegionalGuidanceTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<CanvasEntityMenuItemsCopyToClipboard />
<MenuItem onClick={copyToInpaintMask} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newInpaintMask')}
</MenuItem>
</MenuList>
</Menu>
</MenuItem>
);
});
RegionalGuidanceMenuItemsCopyToSubMenu.displayName = 'RegionalGuidanceMenuItemsCopyToSubMenu';

View File

@@ -1,124 +0,0 @@
import { Button, ButtonGroup, Flex, Heading, Spacer } from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { useAppSelector } from 'app/store/storeHooks';
import { useFocusRegion, useIsRegionFocused } from 'common/hooks/focus';
import { CanvasAutoProcessSwitch } from 'features/controlLayers/components/CanvasAutoProcessSwitch';
import { CanvasOperationIsolatedLayerPreviewSwitch } from 'features/controlLayers/components/CanvasOperationIsolatedLayerPreviewSwitch';
import { SegmentAnythingPointType } from 'features/controlLayers/components/SegmentAnything/SegmentAnythingPointType';
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import type { CanvasEntityAdapterControlLayer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterControlLayer';
import type { CanvasEntityAdapterRasterLayer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterRasterLayer';
import { selectAutoProcess } from 'features/controlLayers/store/canvasSettingsSlice';
import { useRegisteredHotkeys } from 'features/system/components/HotkeysModal/useHotkeyData';
import { memo, useRef } from 'react';
import { useTranslation } from 'react-i18next';
import { PiArrowsCounterClockwiseBold, PiCheckBold, PiStarBold, PiXBold } from 'react-icons/pi';
const SegmentAnythingContent = memo(
({ adapter }: { adapter: CanvasEntityAdapterRasterLayer | CanvasEntityAdapterControlLayer }) => {
const { t } = useTranslation();
const ref = useRef<HTMLDivElement>(null);
useFocusRegion('canvas', ref, { focusOnMount: true });
const isCanvasFocused = useIsRegionFocused('canvas');
const isProcessing = useStore(adapter.segmentAnything.$isProcessing);
const hasPoints = useStore(adapter.segmentAnything.$hasPoints);
const autoProcess = useAppSelector(selectAutoProcess);
useRegisteredHotkeys({
id: 'applySegmentAnything',
category: 'canvas',
callback: adapter.segmentAnything.apply,
options: { enabled: !isProcessing && isCanvasFocused },
dependencies: [adapter.segmentAnything, isProcessing, isCanvasFocused],
});
useRegisteredHotkeys({
id: 'cancelSegmentAnything',
category: 'canvas',
callback: adapter.segmentAnything.cancel,
options: { enabled: !isProcessing && isCanvasFocused },
dependencies: [adapter.segmentAnything, isProcessing, isCanvasFocused],
});
return (
<Flex
ref={ref}
bg="base.800"
borderRadius="base"
p={4}
flexDir="column"
gap={4}
minW={420}
h="auto"
shadow="dark-lg"
transitionProperty="height"
transitionDuration="normal"
>
<Flex w="full" gap={4}>
<Heading size="md" color="base.300" userSelect="none">
{t('controlLayers.segment.autoMask')}
</Heading>
<Spacer />
<CanvasAutoProcessSwitch />
<CanvasOperationIsolatedLayerPreviewSwitch />
</Flex>
<SegmentAnythingPointType adapter={adapter} />
<ButtonGroup isAttached={false} size="sm" w="full">
<Button
leftIcon={<PiStarBold />}
onClick={adapter.segmentAnything.processImmediate}
isLoading={isProcessing}
loadingText={t('controlLayers.segment.process')}
variant="ghost"
isDisabled={!hasPoints || autoProcess}
>
{t('controlLayers.segment.process')}
</Button>
<Spacer />
<Button
leftIcon={<PiArrowsCounterClockwiseBold />}
onClick={adapter.segmentAnything.reset}
isLoading={isProcessing}
loadingText={t('controlLayers.segment.reset')}
variant="ghost"
>
{t('controlLayers.segment.reset')}
</Button>
<Button
leftIcon={<PiCheckBold />}
onClick={adapter.segmentAnything.apply}
isLoading={isProcessing}
loadingText={t('controlLayers.segment.apply')}
variant="ghost"
>
{t('controlLayers.segment.apply')}
</Button>
<Button
leftIcon={<PiXBold />}
onClick={adapter.segmentAnything.cancel}
isLoading={isProcessing}
loadingText={t('common.cancel')}
variant="ghost"
>
{t('controlLayers.segment.cancel')}
</Button>
</ButtonGroup>
</Flex>
);
}
);
SegmentAnythingContent.displayName = 'SegmentAnythingContent';
export const SegmentAnything = () => {
const canvasManager = useCanvasManager();
const adapter = useStore(canvasManager.stateApi.$segmentingAdapter);
if (!adapter) {
return null;
}
return <SegmentAnythingContent adapter={adapter} />;
};

View File

@@ -0,0 +1,223 @@
import {
Button,
ButtonGroup,
Flex,
Heading,
Icon,
ListItem,
Menu,
MenuButton,
MenuItem,
MenuList,
Spacer,
Spinner,
Text,
Tooltip,
UnorderedList,
} from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { useAppSelector } from 'app/store/storeHooks';
import { useFocusRegion, useIsRegionFocused } from 'common/hooks/focus';
import { CanvasAutoProcessSwitch } from 'features/controlLayers/components/CanvasAutoProcessSwitch';
import { CanvasOperationIsolatedLayerPreviewSwitch } from 'features/controlLayers/components/CanvasOperationIsolatedLayerPreviewSwitch';
import { SelectObjectInvert } from 'features/controlLayers/components/SelectObject/SelectObjectInvert';
import { SelectObjectPointType } from 'features/controlLayers/components/SelectObject/SelectObjectPointType';
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import type { CanvasEntityAdapterControlLayer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterControlLayer';
import type { CanvasEntityAdapterRasterLayer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterRasterLayer';
import { selectAutoProcess } from 'features/controlLayers/store/canvasSettingsSlice';
import { useRegisteredHotkeys } from 'features/system/components/HotkeysModal/useHotkeyData';
import type { PropsWithChildren } from 'react';
import { memo, useCallback, useRef } from 'react';
import { Trans, useTranslation } from 'react-i18next';
import { PiCaretDownBold, PiInfoBold } from 'react-icons/pi';
const SelectObjectContent = memo(
({ adapter }: { adapter: CanvasEntityAdapterRasterLayer | CanvasEntityAdapterControlLayer }) => {
const { t } = useTranslation();
const ref = useRef<HTMLDivElement>(null);
useFocusRegion('canvas', ref, { focusOnMount: true });
const isCanvasFocused = useIsRegionFocused('canvas');
const isProcessing = useStore(adapter.segmentAnything.$isProcessing);
const hasPoints = useStore(adapter.segmentAnything.$hasPoints);
const hasImageState = useStore(adapter.segmentAnything.$hasImageState);
const autoProcess = useAppSelector(selectAutoProcess);
const saveAsInpaintMask = useCallback(() => {
adapter.segmentAnything.saveAs('inpaint_mask');
}, [adapter.segmentAnything]);
const saveAsRegionalGuidance = useCallback(() => {
adapter.segmentAnything.saveAs('regional_guidance');
}, [adapter.segmentAnything]);
const saveAsRasterLayer = useCallback(() => {
adapter.segmentAnything.saveAs('raster_layer');
}, [adapter.segmentAnything]);
const saveAsControlLayer = useCallback(() => {
adapter.segmentAnything.saveAs('control_layer');
}, [adapter.segmentAnything]);
useRegisteredHotkeys({
id: 'applySegmentAnything',
category: 'canvas',
callback: adapter.segmentAnything.apply,
options: { enabled: !isProcessing && isCanvasFocused },
dependencies: [adapter.segmentAnything, isProcessing, isCanvasFocused],
});
useRegisteredHotkeys({
id: 'cancelSegmentAnything',
category: 'canvas',
callback: adapter.segmentAnything.cancel,
options: { enabled: !isProcessing && isCanvasFocused },
dependencies: [adapter.segmentAnything, isProcessing, isCanvasFocused],
});
return (
<Flex
ref={ref}
bg="base.800"
borderRadius="base"
p={4}
flexDir="column"
gap={4}
minW={420}
h="auto"
shadow="dark-lg"
transitionProperty="height"
transitionDuration="normal"
>
<Flex w="full" gap={4} alignItems="center">
<Flex gap={2}>
<Heading size="md" color="base.300" userSelect="none">
{t('controlLayers.selectObject.selectObject')}
</Heading>
<Tooltip label={<SelectObjectHelpTooltipContent />}>
<Flex alignItems="center">
<Icon as={PiInfoBold} color="base.500" />
</Flex>
</Tooltip>
</Flex>
<Spacer />
<CanvasAutoProcessSwitch />
<CanvasOperationIsolatedLayerPreviewSwitch />
</Flex>
<Flex w="full" justifyContent="space-between" py={2}>
<SelectObjectPointType adapter={adapter} />
<SelectObjectInvert adapter={adapter} />
</Flex>
<ButtonGroup isAttached={false} size="sm" w="full">
<Button
onClick={adapter.segmentAnything.processImmediate}
loadingText={t('controlLayers.selectObject.process')}
variant="ghost"
isDisabled={isProcessing || !hasPoints || (autoProcess && hasImageState)}
>
{t('controlLayers.selectObject.process')}
{isProcessing && <Spinner ms={3} boxSize={5} color="base.600" />}
</Button>
<Spacer />
<Button
onClick={adapter.segmentAnything.reset}
isDisabled={isProcessing || !hasPoints}
loadingText={t('controlLayers.selectObject.reset')}
variant="ghost"
>
{t('controlLayers.selectObject.reset')}
</Button>
<Button
onClick={adapter.segmentAnything.apply}
loadingText={t('controlLayers.selectObject.apply')}
variant="ghost"
isDisabled={isProcessing || !hasImageState}
>
{t('controlLayers.selectObject.apply')}
</Button>
<Menu>
<MenuButton
as={Button}
loadingText={t('controlLayers.selectObject.saveAs')}
variant="ghost"
isDisabled={isProcessing || !hasImageState}
rightIcon={<PiCaretDownBold />}
>
{t('controlLayers.selectObject.saveAs')}
</MenuButton>
<MenuList>
<MenuItem isDisabled={isProcessing || !hasImageState} onClick={saveAsInpaintMask}>
{t('controlLayers.newInpaintMask')}
</MenuItem>
<MenuItem isDisabled={isProcessing || !hasImageState} onClick={saveAsRegionalGuidance}>
{t('controlLayers.newRegionalGuidance')}
</MenuItem>
<MenuItem isDisabled={isProcessing || !hasImageState} onClick={saveAsControlLayer}>
{t('controlLayers.newControlLayer')}
</MenuItem>
<MenuItem isDisabled={isProcessing || !hasImageState} onClick={saveAsRasterLayer}>
{t('controlLayers.newRasterLayer')}
</MenuItem>
</MenuList>
</Menu>
<Button
onClick={adapter.segmentAnything.cancel}
isDisabled={isProcessing}
loadingText={t('common.cancel')}
variant="ghost"
>
{t('controlLayers.selectObject.cancel')}
</Button>
</ButtonGroup>
</Flex>
);
}
);
SelectObjectContent.displayName = 'SegmentAnythingContent';
export const SelectObject = memo(() => {
const canvasManager = useCanvasManager();
const adapter = useStore(canvasManager.stateApi.$segmentingAdapter);
if (!adapter) {
return null;
}
return <SelectObjectContent adapter={adapter} />;
});
SelectObject.displayName = 'SelectObject';
const Bold = (props: PropsWithChildren) => (
<Text as="span" fontWeight="semibold">
{props.children}
</Text>
);
const SelectObjectHelpTooltipContent = memo(() => {
const { t } = useTranslation();
return (
<Flex gap={3} flexDir="column">
<Text>
<Trans i18nKey="controlLayers.selectObject.help1" components={{ Bold: <Bold /> }} />
</Text>
<Text>
<Trans i18nKey="controlLayers.selectObject.help2" components={{ Bold: <Bold /> }} />
</Text>
<Text>
<Trans i18nKey="controlLayers.selectObject.help3" />
</Text>
<UnorderedList>
<ListItem>{t('controlLayers.selectObject.clickToAdd')}</ListItem>
<ListItem>{t('controlLayers.selectObject.dragToMove')}</ListItem>
<ListItem>{t('controlLayers.selectObject.clickToRemove')}</ListItem>
</UnorderedList>
</Flex>
);
});
SelectObjectHelpTooltipContent.displayName = 'SelectObjectHelpTooltipContent';

View File

@@ -0,0 +1,26 @@
import { FormControl, FormLabel, Switch } from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import type { CanvasEntityAdapterControlLayer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterControlLayer';
import type { CanvasEntityAdapterRasterLayer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterRasterLayer';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
export const SelectObjectInvert = memo(
({ adapter }: { adapter: CanvasEntityAdapterRasterLayer | CanvasEntityAdapterControlLayer }) => {
const { t } = useTranslation();
const invert = useStore(adapter.segmentAnything.$invert);
const onChange = useCallback(() => {
adapter.segmentAnything.$invert.set(!adapter.segmentAnything.$invert.get());
}, [adapter.segmentAnything.$invert]);
return (
<FormControl w="min-content">
<FormLabel m={0}>{t('controlLayers.selectObject.invertSelection')}</FormLabel>
<Switch size="sm" isChecked={invert} onChange={onChange} />
</FormControl>
);
}
);
SelectObjectInvert.displayName = 'SelectObjectInvert';

View File

@@ -6,7 +6,7 @@ import { SAM_POINT_LABEL_STRING_TO_NUMBER, zSAMPointLabelString } from 'features
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
export const SegmentAnythingPointType = memo(
export const SelectObjectPointType = memo(
({ adapter }: { adapter: CanvasEntityAdapterRasterLayer | CanvasEntityAdapterControlLayer }) => {
const { t } = useTranslation();
const pointType = useStore(adapter.segmentAnything.$pointTypeString);
@@ -21,18 +21,15 @@ export const SegmentAnythingPointType = memo(
);
return (
<FormControl w="full">
<FormLabel>{t('controlLayers.segment.pointType')}</FormLabel>
<FormControl w="min-content">
<FormLabel m={0}>{t('controlLayers.selectObject.pointType')}</FormLabel>
<RadioGroup value={pointType} onChange={onChange} w="full" size="md">
<Flex alignItems="center" w="full" gap={4} fontWeight="semibold" color="base.300">
<Radio value="foreground">
<Text>{t('controlLayers.segment.foreground')}</Text>
<Text>{t('controlLayers.selectObject.include')}</Text>
</Radio>
<Radio value="background">
<Text>{t('controlLayers.segment.background')}</Text>
</Radio>
<Radio value="neutral">
<Text>{t('controlLayers.segment.neutral')}</Text>
<Text>{t('controlLayers.selectObject.exclude')}</Text>
</Radio>
</Flex>
</RadioGroup>
@@ -41,4 +38,4 @@ export const SegmentAnythingPointType = memo(
}
);
SegmentAnythingPointType.displayName = 'SegmentAnythingPointType';
SelectObjectPointType.displayName = 'SelectObject';

View File

@@ -1,4 +1,4 @@
import { Button, ButtonGroup, Flex, Heading, Spacer } from '@invoke-ai/ui-library';
import { Button, ButtonGroup, Flex, Heading, Spacer, Spinner } from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { useFocusRegion, useIsRegionFocused } from 'common/hooks/focus';
import { CanvasOperationIsolatedLayerPreviewSwitch } from 'features/controlLayers/components/CanvasOperationIsolatedLayerPreviewSwitch';
@@ -8,7 +8,6 @@ import type { CanvasEntityAdapter } from 'features/controlLayers/konva/CanvasEnt
import { useRegisteredHotkeys } from 'features/system/components/HotkeysModal/useHotkeyData';
import { memo, useRef } from 'react';
import { useTranslation } from 'react-i18next';
import { PiArrowsCounterClockwiseBold, PiCheckBold, PiXBold } from 'react-icons/pi';
const TransformContent = memo(({ adapter }: { adapter: CanvasEntityAdapter }) => {
const { t } = useTranslation();
@@ -62,30 +61,28 @@ const TransformContent = memo(({ adapter }: { adapter: CanvasEntityAdapter }) =>
<TransformFitToBboxButtons adapter={adapter} />
<ButtonGroup isAttached={false} size="sm" w="full">
<ButtonGroup isAttached={false} size="sm" w="full" alignItems="center">
{isProcessing && <Spinner ms={3} boxSize={5} color="base.600" />}
<Spacer />
<Button
leftIcon={<PiArrowsCounterClockwiseBold />}
onClick={adapter.transformer.resetTransform}
isLoading={isProcessing}
isDisabled={isProcessing}
loadingText={t('controlLayers.transform.reset')}
variant="ghost"
>
{t('controlLayers.transform.reset')}
</Button>
<Button
leftIcon={<PiCheckBold />}
onClick={adapter.transformer.applyTransform}
isLoading={isProcessing}
isDisabled={isProcessing}
loadingText={t('controlLayers.transform.apply')}
variant="ghost"
>
{t('controlLayers.transform.apply')}
</Button>
<Button
leftIcon={<PiXBold />}
onClick={adapter.transformer.stopTransform}
isLoading={isProcessing}
isDisabled={isProcessing}
loadingText={t('common.cancel')}
variant="ghost"
>

View File

@@ -4,7 +4,6 @@ import { useStore } from '@nanostores/react';
import type { CanvasEntityAdapter } from 'features/controlLayers/konva/CanvasEntity/types';
import { memo, useCallback, useMemo, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { PiArrowsOutBold } from 'react-icons/pi';
import type { Equals } from 'tsafe';
import { assert } from 'tsafe';
import { z } from 'zod';
@@ -60,10 +59,9 @@ export const TransformFitToBboxButtons = memo(({ adapter }: { adapter: CanvasEnt
<Combobox options={options} value={value} onChange={onChange} isSearchable={false} isClearable={false} />
</FormControl>
<Button
leftIcon={<PiArrowsOutBold />}
size="sm"
onClick={onClick}
isLoading={isProcessing}
isDisabled={isProcessing}
loadingText={t('controlLayers.transform.fitToBbox')}
variant="ghost"
>

View File

@@ -1,9 +1,11 @@
import type { SystemStyleObject } from '@invoke-ai/ui-library';
import { Button, Collapse, Flex, Icon, Spacer, Text } from '@invoke-ai/ui-library';
import { InformationalPopover } from 'common/components/InformationalPopover/InformationalPopover';
import { useBoolean } from 'common/hooks/useBoolean';
import { CanvasEntityAddOfTypeButton } from 'features/controlLayers/components/common/CanvasEntityAddOfTypeButton';
import { CanvasEntityMergeVisibleButton } from 'features/controlLayers/components/common/CanvasEntityMergeVisibleButton';
import { CanvasEntityTypeIsHiddenToggle } from 'features/controlLayers/components/common/CanvasEntityTypeIsHiddenToggle';
import { useEntityTypeInformationalPopover } from 'features/controlLayers/hooks/useEntityTypeInformationalPopover';
import { useEntityTypeTitle } from 'features/controlLayers/hooks/useEntityTypeTitle';
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
import type { PropsWithChildren } from 'react';
@@ -21,6 +23,7 @@ const _hover: SystemStyleObject = {
export const CanvasEntityGroupList = memo(({ isSelected, type, children }: Props) => {
const title = useEntityTypeTitle(type);
const informationalPopoverFeature = useEntityTypeInformationalPopover(type);
const collapse = useBoolean(true);
const canMergeVisible = useMemo(() => type === 'raster_layer' || type === 'inpaint_mask', [type]);
const canHideAll = useMemo(() => type !== 'reference_image', [type]);
@@ -47,15 +50,30 @@ export const CanvasEntityGroupList = memo(({ isSelected, type, children }: Props
transitionProperty="common"
transitionDuration="fast"
/>
<Text
fontWeight="semibold"
color={isSelected ? 'base.200' : 'base.500'}
userSelect="none"
transitionProperty="common"
transitionDuration="fast"
>
{title}
</Text>
{informationalPopoverFeature ? (
<InformationalPopover feature={informationalPopoverFeature}>
<Text
fontWeight="semibold"
color={isSelected ? 'base.200' : 'base.500'}
userSelect="none"
transitionProperty="common"
transitionDuration="fast"
>
{title}
</Text>
</InformationalPopover>
) : (
<Text
fontWeight="semibold"
color={isSelected ? 'base.200' : 'base.500'}
userSelect="none"
transitionProperty="common"
transitionDuration="fast"
>
{title}
</Text>
)}
<Spacer />
</Flex>
{canMergeVisible && <CanvasEntityMergeVisibleButton type={type} />}

View File

@@ -2,6 +2,7 @@ import { MenuItem } from '@invoke-ai/ui-library';
import { useEntityAdapterSafe } from 'features/controlLayers/contexts/EntityAdapterContext';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCopyLayerToClipboard } from 'features/controlLayers/hooks/useCopyLayerToClipboard';
import { useEntityIsEmpty } from 'features/controlLayers/hooks/useEntityIsEmpty';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
@@ -12,6 +13,7 @@ export const CanvasEntityMenuItemsCopyToClipboard = memo(() => {
const entityIdentifier = useEntityIdentifierContext();
const adapter = useEntityAdapterSafe(entityIdentifier);
const isInteractable = useIsEntityInteractable(entityIdentifier);
const isEmpty = useEntityIsEmpty(entityIdentifier);
const copyLayerToClipboard = useCopyLayerToClipboard();
const onClick = useCallback(() => {
@@ -19,8 +21,8 @@ export const CanvasEntityMenuItemsCopyToClipboard = memo(() => {
}, [copyLayerToClipboard, adapter]);
return (
<MenuItem onClick={onClick} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.copyToClipboard')}
<MenuItem onClick={onClick} icon={<PiCopyBold />} isDisabled={!isInteractable || isEmpty}>
{t('common.clipboard')}
</MenuItem>
);
});

View File

@@ -3,7 +3,7 @@ import { useEntityIdentifierContext } from 'features/controlLayers/contexts/Enti
import { useEntityFilter } from 'features/controlLayers/hooks/useEntityFilter';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiShootingStarBold } from 'react-icons/pi';
import { PiShootingStarFill } from 'react-icons/pi';
export const CanvasEntityMenuItemsFilter = memo(() => {
const { t } = useTranslation();
@@ -11,7 +11,7 @@ export const CanvasEntityMenuItemsFilter = memo(() => {
const filter = useEntityFilter(entityIdentifier);
return (
<MenuItem onClick={filter.start} icon={<PiShootingStarBold />} isDisabled={filter.isDisabled}>
<MenuItem onClick={filter.start} icon={<PiShootingStarFill />} isDisabled={filter.isDisabled}>
{t('controlLayers.filter.filter')}
</MenuItem>
);

View File

@@ -3,18 +3,18 @@ import { useEntityIdentifierContext } from 'features/controlLayers/contexts/Enti
import { useEntitySegmentAnything } from 'features/controlLayers/hooks/useEntitySegmentAnything';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiMaskHappyBold } from 'react-icons/pi';
import { PiShapesFill } from 'react-icons/pi';
export const CanvasEntityMenuItemsSegment = memo(() => {
export const CanvasEntityMenuItemsSelectObject = memo(() => {
const { t } = useTranslation();
const entityIdentifier = useEntityIdentifierContext();
const segmentAnything = useEntitySegmentAnything(entityIdentifier);
return (
<MenuItem onClick={segmentAnything.start} icon={<PiMaskHappyBold />} isDisabled={segmentAnything.isDisabled}>
{t('controlLayers.segment.autoMask')}
<MenuItem onClick={segmentAnything.start} icon={<PiShapesFill />} isDisabled={segmentAnything.isDisabled}>
{t('controlLayers.selectObject.selectObject')}
</MenuItem>
);
});
CanvasEntityMenuItemsSegment.displayName = 'CanvasEntityMenuItemsSegment';
CanvasEntityMenuItemsSelectObject.displayName = 'CanvasEntityMenuItemsSelectObject';

View File

@@ -24,7 +24,9 @@ import {
selectEntityOrThrow,
} from 'features/controlLayers/store/selectors';
import type {
CanvasControlLayerState,
CanvasEntityIdentifier,
CanvasInpaintMaskState,
CanvasRasterLayerState,
CanvasRegionalGuidanceState,
ControlNetConfig,
@@ -44,6 +46,8 @@ import { useCallback } from 'react';
import { modelConfigsAdapterSelectors, selectModelConfigsQuery } from 'services/api/endpoints/models';
import type { ControlNetModelConfig, ImageDTO, IPAdapterModelConfig, T2IAdapterModelConfig } from 'services/api/types';
import { isControlNetOrT2IAdapterModelConfig, isIPAdapterModelConfig } from 'services/api/types';
import type { Equals } from 'tsafe';
import { assert } from 'tsafe';
export const selectDefaultControlAdapter = createSelector(
selectModelConfigsQuery,
@@ -124,6 +128,60 @@ export const useNewRasterLayerFromImage = () => {
return func;
};
export const useNewControlLayerFromImage = () => {
const dispatch = useAppDispatch();
const bboxRect = useAppSelector(selectBboxRect);
const func = useCallback(
(imageDTO: ImageDTO) => {
const imageObject = imageDTOToImageObject(imageDTO);
const overrides: Partial<CanvasControlLayerState> = {
position: { x: bboxRect.x, y: bboxRect.y },
objects: [imageObject],
};
dispatch(controlLayerAdded({ overrides, isSelected: true }));
},
[bboxRect.x, bboxRect.y, dispatch]
);
return func;
};
export const useNewInpaintMaskFromImage = () => {
const dispatch = useAppDispatch();
const bboxRect = useAppSelector(selectBboxRect);
const func = useCallback(
(imageDTO: ImageDTO) => {
const imageObject = imageDTOToImageObject(imageDTO);
const overrides: Partial<CanvasInpaintMaskState> = {
position: { x: bboxRect.x, y: bboxRect.y },
objects: [imageObject],
};
dispatch(inpaintMaskAdded({ overrides, isSelected: true }));
},
[bboxRect.x, bboxRect.y, dispatch]
);
return func;
};
export const useNewRegionalGuidanceFromImage = () => {
const dispatch = useAppDispatch();
const bboxRect = useAppSelector(selectBboxRect);
const func = useCallback(
(imageDTO: ImageDTO) => {
const imageObject = imageDTOToImageObject(imageDTO);
const overrides: Partial<CanvasRegionalGuidanceState> = {
position: { x: bboxRect.x, y: bboxRect.y },
objects: [imageObject],
};
dispatch(rgAdded({ overrides, isSelected: true }));
},
[bboxRect.x, bboxRect.y, dispatch]
);
return func;
};
/**
* Returns a function that adds a new canvas with the given image as the initial image, replicating the img2img flow:
* - Reset the canvas
@@ -138,18 +196,31 @@ export const useNewCanvasFromImage = () => {
const bboxRect = useAppSelector(selectBboxRect);
const base = useAppSelector(selectBboxModelBase);
const func = useCallback(
(imageDTO: ImageDTO) => {
(imageDTO: ImageDTO, type: CanvasRasterLayerState['type'] | CanvasControlLayerState['type']) => {
// Calculate the new bbox dimensions to fit the image's aspect ratio at the optimal size
const ratio = imageDTO.width / imageDTO.height;
const optimalDimension = getOptimalDimension(base);
const { width, height } = calculateNewSize(ratio, optimalDimension ** 2, base);
// The overrides need to include the layer's ID so we can transform the layer it is initialized
const overrides = {
id: getPrefixedId('raster_layer'),
position: { x: bboxRect.x, y: bboxRect.y },
objects: [imageDTOToImageObject(imageDTO)],
} satisfies Partial<CanvasRasterLayerState>;
let overrides: Partial<CanvasRasterLayerState> | Partial<CanvasControlLayerState>;
if (type === 'raster_layer') {
overrides = {
id: getPrefixedId('raster_layer'),
position: { x: bboxRect.x, y: bboxRect.y },
objects: [imageDTOToImageObject(imageDTO)],
} satisfies Partial<CanvasRasterLayerState>;
} else if (type === 'control_layer') {
overrides = {
id: getPrefixedId('control_layer'),
position: { x: bboxRect.x, y: bboxRect.y },
objects: [imageDTOToImageObject(imageDTO)],
} satisfies Partial<CanvasControlLayerState>;
} else {
// Catch unhandled types
assert<Equals<typeof type, never>>(false);
}
CanvasEntityAdapterBase.registerInitCallback(async (adapter) => {
// Skip the callback if the adapter is not the one we are creating
@@ -166,7 +237,16 @@ export const useNewCanvasFromImage = () => {
dispatch(canvasReset());
// The `bboxChangedFromCanvas` reducer does no validation! Careful!
dispatch(bboxChangedFromCanvas({ x: 0, y: 0, width, height }));
dispatch(rasterLayerAdded({ overrides, isSelected: true }));
// The type casts are safe because the type is checked above
if (type === 'raster_layer') {
dispatch(rasterLayerAdded({ overrides: overrides as Partial<CanvasRasterLayerState>, isSelected: true }));
} else if (type === 'control_layer') {
dispatch(controlLayerAdded({ overrides: overrides as Partial<CanvasControlLayerState>, isSelected: true }));
} else {
// Catch unhandled types
assert<Equals<typeof type, never>>(false);
}
},
[base, bboxRect.x, bboxRect.y, dispatch]
);

View File

@@ -1,3 +1,4 @@
import { logger } from 'app/logging/logger';
import type { CanvasEntityAdapterControlLayer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterControlLayer';
import type { CanvasEntityAdapterInpaintMask } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterInpaintMask';
import type { CanvasEntityAdapterRasterLayer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterRasterLayer';
@@ -7,6 +8,9 @@ import { copyBlobToClipboard } from 'features/system/util/copyBlobToClipboard';
import { toast } from 'features/toast/toast';
import { useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { serializeError } from 'serialize-error';
const log = logger('canvas');
export const useCopyLayerToClipboard = () => {
const { t } = useTranslation();
@@ -26,11 +30,13 @@ export const useCopyLayerToClipboard = () => {
const canvas = adapter.getCanvas();
const blob = await canvasToBlob(canvas);
copyBlobToClipboard(blob);
log.trace('Layer copied to clipboard');
toast({
status: 'info',
title: t('toast.layerCopiedToClipboard'),
});
} catch (error) {
log.error({ error: serializeError(error) }, 'Problem copying layer to clipboard');
toast({
status: 'error',
title: t('toast.problemCopyingLayer'),

View File

@@ -5,11 +5,13 @@ import { useEntityAdapterSafe } from 'features/controlLayers/contexts/EntityAdap
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
import { isFilterableEntityIdentifier } from 'features/controlLayers/store/types';
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
import { useCallback, useMemo } from 'react';
export const useEntityFilter = (entityIdentifier: CanvasEntityIdentifier | null) => {
const canvasManager = useCanvasManager();
const adapter = useEntityAdapterSafe(entityIdentifier);
const imageViewer = useImageViewer();
const isBusy = useCanvasIsBusy();
const isInteractable = useStore(adapter?.$isInteractable ?? $false);
const isEmpty = useStore(adapter?.$isEmpty ?? $false);
@@ -50,8 +52,9 @@ export const useEntityFilter = (entityIdentifier: CanvasEntityIdentifier | null)
if (!adapter) {
return;
}
imageViewer.close();
adapter.filterer.start();
}, [isDisabled, entityIdentifier, canvasManager]);
}, [isDisabled, entityIdentifier, canvasManager, imageViewer]);
return { isDisabled, start } as const;
};

View File

@@ -0,0 +1,11 @@
import { useAppSelector } from 'app/store/storeHooks';
import { buildSelectHasObjects } from 'features/controlLayers/store/selectors';
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
import { useMemo } from 'react';
export const useEntityIsEmpty = (entityIdentifier: CanvasEntityIdentifier) => {
const selectHasObjects = useMemo(() => buildSelectHasObjects(entityIdentifier), [entityIdentifier]);
const hasObjects = useAppSelector(selectHasObjects);
return !hasObjects;
};

View File

@@ -5,11 +5,13 @@ import { useEntityAdapterSafe } from 'features/controlLayers/contexts/EntityAdap
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
import { isSegmentableEntityIdentifier } from 'features/controlLayers/store/types';
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
import { useCallback, useMemo } from 'react';
export const useEntitySegmentAnything = (entityIdentifier: CanvasEntityIdentifier | null) => {
const canvasManager = useCanvasManager();
const adapter = useEntityAdapterSafe(entityIdentifier);
const imageViewer = useImageViewer();
const isBusy = useCanvasIsBusy();
const isInteractable = useStore(adapter?.$isInteractable ?? $false);
const isEmpty = useStore(adapter?.$isEmpty ?? $false);
@@ -50,8 +52,9 @@ export const useEntitySegmentAnything = (entityIdentifier: CanvasEntityIdentifie
if (!adapter) {
return;
}
imageViewer.close();
adapter.segmentAnything.start();
}, [isDisabled, entityIdentifier, canvasManager]);
}, [isDisabled, entityIdentifier, canvasManager, imageViewer]);
return { isDisabled, start } as const;
};

View File

@@ -5,11 +5,13 @@ import { useEntityAdapterSafe } from 'features/controlLayers/contexts/EntityAdap
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
import { isTransformableEntityIdentifier } from 'features/controlLayers/store/types';
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
import { useCallback, useMemo } from 'react';
export const useEntityTransform = (entityIdentifier: CanvasEntityIdentifier | null) => {
const canvasManager = useCanvasManager();
const adapter = useEntityAdapterSafe(entityIdentifier);
const imageViewer = useImageViewer();
const isBusy = useCanvasIsBusy();
const isInteractable = useStore(adapter?.$isInteractable ?? $false);
const isEmpty = useStore(adapter?.$isEmpty ?? $false);
@@ -50,8 +52,9 @@ export const useEntityTransform = (entityIdentifier: CanvasEntityIdentifier | nu
if (!adapter) {
return;
}
imageViewer.close();
await adapter.transformer.startTransform();
}, [isDisabled, entityIdentifier, canvasManager]);
}, [isDisabled, entityIdentifier, canvasManager, imageViewer]);
const fitToBbox = useCallback(async () => {
if (isDisabled) {
@@ -67,10 +70,11 @@ export const useEntityTransform = (entityIdentifier: CanvasEntityIdentifier | nu
if (!adapter) {
return;
}
imageViewer.close();
await adapter.transformer.startTransform({ silent: true });
adapter.transformer.fitToBboxContain();
await adapter.transformer.applyTransform();
}, [canvasManager, entityIdentifier, isDisabled]);
}, [canvasManager, entityIdentifier, imageViewer, isDisabled]);
return { isDisabled, start, fitToBbox } as const;
};

View File

@@ -0,0 +1,25 @@
import type { Feature } from 'common/components/InformationalPopover/constants';
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
import { useMemo } from 'react';
export const useEntityTypeInformationalPopover = (type: CanvasEntityIdentifier['type']): Feature | undefined => {
const feature = useMemo(() => {
switch (type) {
case 'control_layer':
return 'controlNet';
case 'inpaint_mask':
return 'inpainting';
case 'raster_layer':
return 'rasterLayer';
case 'regional_guidance':
return 'regionalGuidanceAndReferenceImage';
case 'reference_image':
return 'globalReferenceImage';
default:
return undefined;
}
}, [type]);
return feature;
};

View File

@@ -1,27 +1,36 @@
import { deepClone } from 'common/util/deepClone';
import { withResult, withResultAsync } from 'common/util/result';
import type { CanvasEntityAdapterControlLayer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterControlLayer';
import type { CanvasEntityAdapterRasterLayer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterRasterLayer';
import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
import { CanvasModuleBase } from 'features/controlLayers/konva/CanvasModuleBase';
import { getPrefixedId } from 'features/controlLayers/konva/util';
import { CanvasObjectImage } from 'features/controlLayers/konva/CanvasObject/CanvasObjectImage';
import { addCoords, getKonvaNodeDebugAttrs, getPrefixedId } from 'features/controlLayers/konva/util';
import { selectAutoProcess } from 'features/controlLayers/store/canvasSettingsSlice';
import type { FilterConfig } from 'features/controlLayers/store/filters';
import { getFilterForModel, IMAGE_FILTERS } from 'features/controlLayers/store/filters';
import type { CanvasImageState } from 'features/controlLayers/store/types';
import type { CanvasEntityType, CanvasImageState } from 'features/controlLayers/store/types';
import { imageDTOToImageObject } from 'features/controlLayers/store/util';
import Konva from 'konva';
import { debounce } from 'lodash-es';
import { atom } from 'nanostores';
import { atom, computed } from 'nanostores';
import type { Logger } from 'roarr';
import { serializeError } from 'serialize-error';
import { buildSelectModelConfig } from 'services/api/hooks/modelsByType';
import { isControlNetOrT2IAdapterModelConfig } from 'services/api/types';
import stableHash from 'stable-hash';
import type { Equals } from 'tsafe';
import { assert } from 'tsafe';
type CanvasEntityFiltererConfig = {
processDebounceMs: number;
/**
* The debounce time in milliseconds for processing the filter.
*/
PROCESS_DEBOUNCE_MS: number;
};
const DEFAULT_CONFIG: CanvasEntityFiltererConfig = {
processDebounceMs: 1000,
PROCESS_DEBOUNCE_MS: 1000,
};
export class CanvasEntityFilterer extends CanvasModuleBase {
@@ -32,20 +41,65 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
readonly manager: CanvasManager;
readonly log: Logger;
imageState: CanvasImageState | null = null;
subscriptions = new Set<() => void>();
config: CanvasEntityFiltererConfig = DEFAULT_CONFIG;
subscriptions = new Set<() => void>();
/**
* The AbortController used to cancel the filter processing.
*/
abortController: AbortController | null = null;
/**
* Whether the module is currently filtering an image.
*/
$isFiltering = atom<boolean>(false);
$hasProcessed = atom<boolean>(false);
/**
* The hash of the last processed config. This is used to prevent re-processing the same config.
*/
$lastProcessedHash = atom<string>('');
/**
* Whether the module is currently processing the filter.
*/
$isProcessing = atom<boolean>(false);
/**
* The config for the filter.
*/
$filterConfig = atom<FilterConfig>(IMAGE_FILTERS.canny_edge_detection.buildDefaults());
/**
* The initial filter config, used to reset the filter config.
*/
$initialFilterConfig = atom<FilterConfig | null>(null);
/**
* The ephemeral image state of the filtered image.
*/
$imageState = atom<CanvasImageState | null>(null);
/**
* Whether the module has an image state. This is a computed value based on $imageState.
*/
$hasImageState = computed(this.$imageState, (imageState) => imageState !== null);
/**
* The filtered image object module, if it exists.
*/
imageModule: CanvasObjectImage | null = null;
/**
* The Konva nodes for the module.
*/
konva: {
/**
* The main Konva group node for the module. This is added to the parent layer on start, and removed on teardown.
*/
group: Konva.Group;
};
KONVA_GROUP_NAME = `${this.type}:group`;
constructor(parent: CanvasEntityAdapterRasterLayer | CanvasEntityAdapterControlLayer) {
super();
this.id = getPrefixedId(this.type);
@@ -55,9 +109,17 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
this.log = this.manager.buildLogger(this);
this.log.debug('Creating filter module');
this.konva = {
group: new Konva.Group({ name: this.KONVA_GROUP_NAME }),
};
}
/**
* Adds event listeners needed while filtering the entity.
*/
subscribe = () => {
// As the filter config changes, process the filter
this.subscriptions.add(
this.$filterConfig.listen(() => {
if (this.manager.stateApi.getSettings().autoProcess && this.$isFiltering.get()) {
@@ -65,6 +127,7 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
}
})
);
// When auto-process is enabled, process the filter
this.subscriptions.add(
this.manager.stateApi.createStoreSubscription(selectAutoProcess, (autoProcess) => {
if (autoProcess && this.$isFiltering.get()) {
@@ -74,11 +137,18 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
);
};
/**
* Removes event listeners used while filtering the entity.
*/
unsubscribe = () => {
this.subscriptions.forEach((unsubscribe) => unsubscribe());
this.subscriptions.clear();
};
/**
* Starts the filter module.
* @param config The filter config to start with. If omitted, the default filter config is used.
*/
start = (config?: FilterConfig) => {
const filteringAdapter = this.manager.stateApi.$filteringAdapter.get();
if (filteringAdapter) {
@@ -88,30 +158,57 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
this.log.trace('Initializing filter');
this.subscribe();
// Reset any previous state
this.resetEphemeralState();
this.$isFiltering.set(true);
// Update the konva group's position to match the parent entity
const pixelRect = this.parent.transformer.$pixelRect.get();
const position = addCoords(this.parent.state.position, pixelRect);
this.konva.group.setAttrs(position);
// Add the group to the parent layer
this.parent.konva.layer.add(this.konva.group);
if (config) {
// If a config is provided, use it
this.$filterConfig.set(config);
} else if (this.parent.type === 'control_layer_adapter' && this.parent.state.controlAdapter.model) {
this.$initialFilterConfig.set(config);
} else {
this.$filterConfig.set(this.createInitialFilterConfig());
}
this.$initialFilterConfig.set(this.$filterConfig.get());
this.subscribe();
this.manager.stateApi.$filteringAdapter.set(this.parent);
if (this.manager.stateApi.getSettings().autoProcess) {
this.processImmediate();
}
};
createInitialFilterConfig = (): FilterConfig => {
if (this.parent.type === 'control_layer_adapter' && this.parent.state.controlAdapter.model) {
// If the parent is a control layer adapter, we should check if the model has a default filter and set it if so
const selectModelConfig = buildSelectModelConfig(
this.parent.state.controlAdapter.model.key,
isControlNetOrT2IAdapterModelConfig
);
const modelConfig = this.manager.stateApi.runSelector(selectModelConfig);
// This always returns a filter
const filter = getFilterForModel(modelConfig);
this.$filterConfig.set(filter.buildDefaults());
return filter.buildDefaults();
} else {
// Otherwise, set the default filter
this.$filterConfig.set(IMAGE_FILTERS.canny_edge_detection.buildDefaults());
}
this.$isFiltering.set(true);
this.manager.stateApi.$filteringAdapter.set(this.parent);
if (this.manager.stateApi.getSettings().autoProcess) {
this.processImmediate();
// Otherwise, used the default filter
return IMAGE_FILTERS.canny_edge_detection.buildDefaults();
}
};
/**
* Processes the filter, updating the module's state and rendering the filtered image.
*/
processImmediate = async () => {
const config = this.$filterConfig.get();
const filterData = IMAGE_FILTERS[config.type];
@@ -123,6 +220,12 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
return;
}
const hash = stableHash({ config });
if (hash === this.$lastProcessedHash.get()) {
this.log.trace('Already processed config');
return;
}
this.log.trace({ config }, 'Processing filter');
const rect = this.parent.transformer.getRelativeRect();
@@ -156,91 +259,181 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
this.manager.stateApi.runGraphAndReturnImageOutput({
graph,
outputNodeId,
// The filter graph should always be prepended to the queue so it's processed ASAP.
prepend: true,
/**
* The filter node may need to download a large model. Currently, the models required by the filter nodes are
* downloaded just-in-time, as required by the filter. If we use a timeout here, we might get into a catch-22
* where the filter node is waiting for the model to download, but the download gets canceled if the filter
* node times out.
*
* (I suspect the model download will actually _not_ be canceled if the graph is canceled, but let's not chance it!)
*
* TODO(psyche): Figure out a better way to handle this. Probably need to download the models ahead of time.
*/
// timeout: 5000,
/**
* The filter node should be able to cancel the request if it's taking too long. This will cancel the graph's
* queue item and clear any event listeners on the request.
*/
signal: controller.signal,
})
);
// If there is an error, log it and bail out of this processing run
if (filterResult.isErr()) {
this.log.error({ error: serializeError(filterResult.error) }, 'Error processing filter');
this.log.error({ error: serializeError(filterResult.error) }, 'Error filtering');
this.$isProcessing.set(false);
// Clean up the abort controller as needed
if (!this.abortController.signal.aborted) {
this.abortController.abort();
}
this.abortController = null;
return;
}
this.log.trace({ imageDTO: filterResult.value }, 'Filter processed');
this.imageState = imageDTOToImageObject(filterResult.value);
this.log.trace({ imageDTO: filterResult.value }, 'Filtered');
await this.parent.bufferRenderer.setBuffer(this.imageState, true);
// Prepare the ephemeral image state
const imageState = imageDTOToImageObject(filterResult.value);
this.$imageState.set(imageState);
// Destroy any existing masked image and create a new one
if (this.imageModule) {
this.imageModule.destroy();
}
this.imageModule = new CanvasObjectImage(imageState, this);
// Force update the masked image - after awaiting, the image will be rendered (in memory)
await this.imageModule.update(imageState, true);
this.konva.group.add(this.imageModule.konva.group);
// The porcessing is complete, set can set the last processed hash and isProcessing to false
this.$lastProcessedHash.set(hash);
this.$isProcessing.set(false);
this.$hasProcessed.set(true);
// Clean up the abort controller as needed
if (!this.abortController.signal.aborted) {
this.abortController.abort();
}
this.abortController = null;
};
process = debounce(this.processImmediate, this.config.processDebounceMs);
/**
* Debounced version of processImmediate.
*/
process = debounce(this.processImmediate, this.config.PROCESS_DEBOUNCE_MS);
/**
* Applies the filter image to the entity, replacing the entity's objects with the filtered image.
*/
apply = () => {
const imageState = this.imageState;
if (!imageState) {
const filteredImageObjectState = this.$imageState.get();
if (!filteredImageObjectState) {
this.log.warn('No image state to apply filter to');
return;
}
this.log.trace('Applying filter');
this.parent.bufferRenderer.commitBuffer();
this.log.trace('Applying');
// Have the parent adopt the image module - this prevents a flash of the original layer content before the filtered
// image is rendered
if (this.imageModule) {
this.parent.renderer.adoptObjectRenderer(this.imageModule);
}
// Rasterize the entity, replacing the objects with the masked image
const rect = this.parent.transformer.getRelativeRect();
this.manager.stateApi.rasterizeEntity({
entityIdentifier: this.parent.entityIdentifier,
imageObject: imageState,
imageObject: filteredImageObjectState,
position: {
x: Math.round(rect.x),
y: Math.round(rect.y),
},
replaceObjects: true,
});
this.imageState = null;
// Final cleanup and teardown, returning user to main canvas UI
this.resetEphemeralState();
this.teardown();
};
/**
* Saves the filtered image as a new entity of the given type.
* @param type The type of entity to save the filtered image as.
*/
saveAs = (type: Exclude<CanvasEntityType, 'reference_image'>) => {
const imageState = this.$imageState.get();
if (!imageState) {
this.log.warn('No image state to apply filter to');
return;
}
this.log.trace(`Saving as ${type}`);
const rect = this.parent.transformer.getRelativeRect();
const arg = {
overrides: {
objects: [imageState],
position: {
x: Math.round(rect.x),
y: Math.round(rect.y),
},
},
isSelected: true,
};
switch (type) {
case 'raster_layer':
this.manager.stateApi.addRasterLayer(arg);
break;
case 'control_layer':
this.manager.stateApi.addControlLayer(arg);
break;
case 'inpaint_mask':
this.manager.stateApi.addInpaintMask(arg);
break;
case 'regional_guidance':
this.manager.stateApi.addRegionalGuidance(arg);
break;
default:
assert<Equals<typeof type, never>>(false);
}
// Final cleanup and teardown, returning user to main canvas UI
this.resetEphemeralState();
this.teardown();
};
resetEphemeralState = () => {
// First we need to bail out of any processing
if (this.abortController && !this.abortController.signal.aborted) {
this.abortController.abort();
}
this.abortController = null;
// If the image module exists, and is a child of the group, destroy it. It might not be a child of the group if
// the user has applied the filter and the image has been adopted by the parent entity.
if (this.imageModule && this.imageModule.konva.group.parent === this.konva.group) {
this.imageModule.destroy();
this.imageModule = null;
}
const initialFilterConfig = this.$initialFilterConfig.get() ?? this.createInitialFilterConfig();
this.$filterConfig.set(initialFilterConfig);
this.$imageState.set(null);
this.$lastProcessedHash.set('');
this.$isProcessing.set(false);
};
teardown = () => {
this.$initialFilterConfig.set(null);
this.konva.group.remove();
this.unsubscribe();
this.$isFiltering.set(false);
this.$hasProcessed.set(false);
this.manager.stateApi.$filteringAdapter.set(null);
};
/**
* Resets the module (e.g. remove all points and the mask image).
*
* Does not cancel or otherwise complete the segmenting process.
*/
reset = () => {
this.log.trace('Resetting filter');
this.abortController?.abort();
this.abortController = null;
this.parent.bufferRenderer.clearBuffer();
this.parent.transformer.updatePosition();
this.parent.renderer.syncKonvaCache(true);
this.imageState = null;
this.$hasProcessed.set(false);
this.log.trace('Resetting');
this.resetEphemeralState();
};
cancel = () => {
this.log.trace('Cancelling filter');
this.reset();
this.unsubscribe();
this.$isProcessing.set(false);
this.$isFiltering.set(false);
this.$hasProcessed.set(false);
this.manager.stateApi.$filteringAdapter.set(null);
this.log.trace('Canceling');
this.resetEphemeralState();
this.teardown();
};
repr = () => {
@@ -248,11 +441,14 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
id: this.id,
type: this.type,
path: this.path,
parent: this.parent.id,
config: this.config,
imageState: deepClone(this.$imageState.get()),
$isFiltering: this.$isFiltering.get(),
$hasProcessed: this.$hasProcessed.get(),
$lastProcessedHash: this.$lastProcessedHash.get(),
$isProcessing: this.$isProcessing.get(),
$filterConfig: this.$filterConfig.get(),
konva: { group: getKonvaNodeDebugAttrs(this.konva.group) },
};
};
@@ -263,5 +459,6 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
}
this.abortController = null;
this.unsubscribe();
this.konva.group.destroy();
};
}

View File

@@ -1,6 +1,7 @@
import { Mutex } from 'async-mutex';
import { deepClone } from 'common/util/deepClone';
import type { CanvasEntityBufferObjectRenderer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityBufferObjectRenderer';
import type { CanvasEntityFilterer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityFilterer';
import type { CanvasEntityObjectRenderer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityObjectRenderer';
import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
import { CanvasModuleBase } from 'features/controlLayers/konva/CanvasModuleBase';
@@ -21,7 +22,8 @@ export class CanvasObjectImage extends CanvasModuleBase {
| CanvasEntityObjectRenderer
| CanvasEntityBufferObjectRenderer
| CanvasStagingAreaModule
| CanvasSegmentAnythingModule;
| CanvasSegmentAnythingModule
| CanvasEntityFilterer;
readonly manager: CanvasManager;
readonly log: Logger;
@@ -43,6 +45,7 @@ export class CanvasObjectImage extends CanvasModuleBase {
| CanvasEntityBufferObjectRenderer
| CanvasStagingAreaModule
| CanvasSegmentAnythingModule
| CanvasEntityFilterer
) {
super();
this.id = state.id;

View File

@@ -6,15 +6,22 @@ import type { CanvasEntityAdapterRasterLayer } from 'features/controlLayers/konv
import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
import { CanvasModuleBase } from 'features/controlLayers/konva/CanvasModuleBase';
import { CanvasObjectImage } from 'features/controlLayers/konva/CanvasObject/CanvasObjectImage';
import { addCoords, getKonvaNodeDebugAttrs, getPrefixedId, offsetCoord } from 'features/controlLayers/konva/util';
import {
addCoords,
getKonvaNodeDebugAttrs,
getPrefixedId,
offsetCoord,
roundCoord,
} from 'features/controlLayers/konva/util';
import { selectAutoProcess } from 'features/controlLayers/store/canvasSettingsSlice';
import type {
CanvasEntityType,
CanvasImageState,
Coordinate,
RgbaColor,
SAMPoint,
SAMPointLabel,
SAMPointLabelString,
SAMPointWithId,
} from 'features/controlLayers/store/types';
import { SAM_POINT_LABEL_NUMBER_TO_STRING } from 'features/controlLayers/store/types';
import { imageDTOToImageObject } from 'features/controlLayers/store/util';
@@ -27,6 +34,9 @@ import { atom, computed } from 'nanostores';
import type { Logger } from 'roarr';
import { serializeError } from 'serialize-error';
import type { ImageDTO } from 'services/api/types';
import stableHash from 'stable-hash';
import type { Equals } from 'tsafe';
import { assert } from 'tsafe';
type CanvasSegmentAnythingModuleConfig = {
/**
@@ -70,7 +80,7 @@ const DEFAULT_CONFIG: CanvasSegmentAnythingModuleConfig = {
SAM_POINT_FOREGROUND_COLOR: { r: 50, g: 255, b: 0, a: 1 }, // light green
SAM_POINT_BACKGROUND_COLOR: { r: 255, g: 0, b: 50, a: 1 }, // red-ish
SAM_POINT_NEUTRAL_COLOR: { r: 0, g: 225, b: 255, a: 1 }, // cyan
MASK_COLOR: { r: 0, g: 200, b: 200, a: 0.5 }, // cyan with 50% opacity
MASK_COLOR: { r: 0, g: 225, b: 255, a: 1 }, // cyan
PROCESS_DEBOUNCE_MS: 1000,
};
@@ -85,6 +95,7 @@ const DEFAULT_CONFIG: CanvasSegmentAnythingModuleConfig = {
type SAMPointState = {
id: string;
label: SAMPointLabel;
coord: Coordinate;
konva: {
circle: Konva.Circle;
};
@@ -103,7 +114,7 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
subscriptions = new Set<() => void>();
/**
* The AbortController used to cancel the filter processing.
* The AbortController used to cancel the segment processing.
*/
abortController: AbortController | null = null;
@@ -113,9 +124,9 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
$isSegmenting = atom<boolean>(false);
/**
* Whether the current set of points has been processed.
* The hash of the last processed points. This is used to prevent re-processing the same points.
*/
$hasProcessed = atom<boolean>(false);
$lastProcessedHash = atom<string>('');
/**
* Whether the module is currently processing the points.
@@ -144,10 +155,15 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
/**
* The ephemeral image state of the processed image. Only used while segmenting.
*/
imageState: CanvasImageState | null = null;
$imageState = atom<CanvasImageState | null>(null);
/**
* The current input points.
* Whether the module has an image state. This is a computed value based on $imageState.
*/
$hasImageState = computed(this.$imageState, (imageState) => imageState !== null);
/**
* The current input points. A listener is added to this atom to process the points when they change.
*/
$points = atom<SAMPointState[]>([]);
@@ -157,16 +173,21 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
$hasPoints = computed(this.$points, (points) => points.length > 0);
/**
* The masked image object, if it exists.
* Whether the module should invert the mask image.
*/
maskedImage: CanvasObjectImage | null = null;
$invert = atom<boolean>(false);
/**
* The masked image object module, if it exists.
*/
imageModule: CanvasObjectImage | null = null;
/**
* The Konva nodes for the module.
*/
konva: {
/**
* The main Konva group node for the module.
* The main Konva group node for the module. This is added to the parent layer on start, and removed on teardown.
*/
group: Konva.Group;
/**
@@ -187,6 +208,10 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
* It's rendered with a globalCompositeOperation of 'source-atop' to preview the mask as a semi-transparent overlay.
*/
compositingRect: Konva.Rect;
/**
* A tween for pulsing the mask group's opacity.
*/
maskTween: Konva.Tween | null;
};
KONVA_CIRCLE_NAME = `${this.type}:circle`;
@@ -209,7 +234,7 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
this.konva = {
group: new Konva.Group({ name: this.KONVA_GROUP_NAME }),
pointGroup: new Konva.Group({ name: this.KONVA_POINT_GROUP_NAME }),
maskGroup: new Konva.Group({ name: this.KONVA_MASK_GROUP_NAME }),
maskGroup: new Konva.Group({ name: this.KONVA_MASK_GROUP_NAME, opacity: 0.6 }),
compositingRect: new Konva.Rect({
name: this.KONVA_COMPOSITING_RECT_NAME,
fill: rgbaColorToString(this.config.MASK_COLOR),
@@ -219,6 +244,7 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
perfectDrawEnabled: false,
visible: false,
}),
maskTween: null,
};
// Points should always be rendered above the mask group
@@ -250,10 +276,12 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
createPoint(coord: Coordinate, label: SAMPointLabel): SAMPointState {
const id = getPrefixedId('sam_point');
const roundedCoord = roundCoord(coord);
const circle = new Konva.Circle({
name: this.KONVA_CIRCLE_NAME,
x: Math.round(coord.x),
y: Math.round(coord.y),
x: roundedCoord.x,
y: roundedCoord.y,
radius: this.manager.stage.unscale(this.config.SAM_POINT_RADIUS), // We will scale this as the stage scale changes
fill: rgbaColorToString(this.getSAMPointColor(label)),
stroke: rgbaColorToString(this.config.SAM_POINT_BORDER_COLOR),
@@ -270,14 +298,18 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
if (this.$isDraggingPoint.get()) {
return;
}
if (e.evt.button !== 0) {
return;
}
// This event should not bubble up to the parent, stage or any other nodes
e.cancelBubble = true;
circle.destroy();
this.$points.set(this.$points.get().filter((point) => point.id !== id));
if (this.$points.get().length === 0) {
const newPoints = this.$points.get().filter((point) => point.id !== id);
if (newPoints.length === 0) {
this.resetEphemeralState();
} else {
this.$hasProcessed.set(false);
this.$points.set(newPoints);
}
});
@@ -286,25 +318,28 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
});
circle.on('dragend', () => {
const roundedCoord = roundCoord(circle.position());
this.log.trace({ ...roundedCoord, label: SAM_POINT_LABEL_NUMBER_TO_STRING[label] }, 'Moved SAM point');
this.$isDraggingPoint.set(false);
// Point has changed!
this.$hasProcessed.set(false);
this.$points.notify();
this.log.trace(
{ x: Math.round(circle.x()), y: Math.round(circle.y()), label: SAM_POINT_LABEL_NUMBER_TO_STRING[label] },
'Moved SAM point'
);
const newPoints = this.$points.get().map((point) => {
if (point.id === id) {
return { ...point, coord: roundedCoord };
}
return point;
});
this.$points.set(newPoints);
});
this.konva.pointGroup.add(circle);
this.log.trace(
{ x: Math.round(circle.x()), y: Math.round(circle.y()), label: SAM_POINT_LABEL_NUMBER_TO_STRING[label] },
'Created SAM point'
);
this.log.trace({ ...roundedCoord, label: SAM_POINT_LABEL_NUMBER_TO_STRING[label] }, 'Created SAM point');
return {
id,
coord: roundedCoord,
label,
konva: { circle },
};
@@ -327,14 +362,14 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
/**
* Gets the SAM points in the format expected by the segment-anything API. The x and y values are rounded to integers.
*/
getSAMPoints = (): SAMPoint[] => {
const points: SAMPoint[] = [];
getSAMPoints = (): SAMPointWithId[] => {
const points: SAMPointWithId[] = [];
for (const { konva, label } of this.$points.get()) {
for (const { id, coord, label } of this.$points.get()) {
points.push({
// Pull out and round the x and y values from Konva
x: Math.round(konva.circle.x()),
y: Math.round(konva.circle.y()),
id,
x: coord.x,
y: coord.y,
label,
});
}
@@ -381,10 +416,8 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
// Create a SAM point at the normalized position
const point = this.createPoint(normalizedPoint, this.$pointType.get());
this.$points.set([...this.$points.get(), point]);
// Mark the module as having _not_ processed the points now that they have changed
this.$hasProcessed.set(false);
const newPoints = [...this.$points.get(), point];
this.$points.set(newPoints);
};
/**
@@ -421,6 +454,20 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
if (points.length === 0) {
return;
}
if (this.manager.stateApi.getSettings().autoProcess) {
this.process();
}
})
);
// When the invert flag changes, process if autoProcess is enabled
this.subscriptions.add(
this.$invert.listen(() => {
if (this.$points.get().length === 0) {
return;
}
if (this.manager.stateApi.getSettings().autoProcess) {
this.process();
}
@@ -433,7 +480,7 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
if (this.$points.get().length === 0) {
return;
}
if (autoProcess && !this.$hasProcessed.get()) {
if (autoProcess) {
this.process();
}
})
@@ -441,7 +488,7 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
};
/**
* Adds event listeners needed while segmenting the entity.
* Removes event listeners used while segmenting the entity.
*/
unsubscribe = () => {
this.subscriptions.forEach((unsubscribe) => unsubscribe());
@@ -500,6 +547,14 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
return;
}
const invert = this.$invert.get();
const hash = stableHash({ points, invert });
if (hash === this.$lastProcessedHash.get()) {
this.log.trace('Already processed points');
return;
}
this.$isProcessing.set(true);
this.log.trace({ points }, 'Segmenting');
@@ -521,7 +576,7 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
this.abortController = controller;
// Build the graph for segmenting the image, using the rasterized image DTO
const { graph, outputNodeId } = this.buildGraph(rasterizeResult.value);
const { graph, outputNodeId } = CanvasSegmentAnythingModule.buildGraph(rasterizeResult.value, points, invert);
// Run the graph and get the segmented image output
const segmentResult = await withResultAsync(() =>
@@ -548,38 +603,56 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
this.log.trace({ imageDTO: segmentResult.value }, 'Segmented');
// Prepare the ephemeral image state
this.imageState = imageDTOToImageObject(segmentResult.value);
const imageState = imageDTOToImageObject(segmentResult.value);
this.$imageState.set(imageState);
// Destroy any existing masked image and create a new one
if (this.maskedImage) {
this.maskedImage.destroy();
if (this.imageModule) {
this.imageModule.destroy();
}
this.maskedImage = new CanvasObjectImage(this.imageState, this);
if (this.konva.maskTween) {
this.konva.maskTween.destroy();
this.konva.maskTween = null;
}
this.imageModule = new CanvasObjectImage(imageState, this);
// Force update the masked image - after awaiting, the image will be rendered (in memory)
await this.maskedImage.update(this.imageState, true);
await this.imageModule.update(imageState, true);
// Update the compositing rect to match the image size
this.konva.compositingRect.setAttrs({
width: this.imageState.image.width,
height: this.imageState.image.height,
width: imageState.image.width,
height: imageState.image.height,
visible: true,
});
// Now we can add the masked image to the mask group. It will be rendered above the compositing rect, but should be
// under it, so we will move the compositing rect to the top
this.konva.maskGroup.add(this.maskedImage.konva.group);
this.konva.maskGroup.add(this.imageModule.konva.group);
this.konva.compositingRect.moveToTop();
// Cache the group to ensure the mask is rendered correctly w/ opacity
this.konva.maskGroup.cache();
// Create a pulsing tween
this.konva.maskTween = new Konva.Tween({
node: this.konva.maskGroup,
duration: 1,
opacity: 0.4, // oscillate between this value and pre-tween opacity
yoyo: true,
repeat: Infinity,
easing: Konva.Easings.EaseOut,
});
// Start the pulsing effect
this.konva.maskTween.play();
this.$lastProcessedHash.set(hash);
// We are done processing (still segmenting though!)
this.$isProcessing.set(false);
// The current points have been processed
this.$hasProcessed.set(true);
// Clean up the abort controller as needed
if (!this.abortController.signal.aborted) {
this.abortController.abort();
@@ -593,24 +666,17 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
process = debounce(this.processImmediate, this.config.PROCESS_DEBOUNCE_MS);
/**
* Applies the segmented image to the entity.
* Applies the segmented image to the entity, replacing the entity's objects with the masked image.
*/
apply = () => {
if (!this.$hasProcessed.get()) {
this.log.error('Cannot apply unprocessed points');
return;
}
const imageState = this.imageState;
const imageState = this.$imageState.get();
if (!imageState) {
this.log.error('No image state to apply');
return;
}
this.log.trace('Applying');
// Commit the buffer, which will move the buffer to from the layers' buffer renderer to its main renderer
this.parent.bufferRenderer.commitBuffer();
// Rasterize the entity, this time replacing the objects with the masked image
// Rasterize the entity, replacing the objects with the masked image
const rect = this.parent.transformer.getRelativeRect();
this.manager.stateApi.rasterizeEntity({
entityIdentifier: this.parent.entityIdentifier,
@@ -627,6 +693,59 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
this.teardown();
};
/**
* Saves the segmented image as a new entity of the given type.
* @param type The type of entity to save the segmented image as.
*/
saveAs = (type: Exclude<CanvasEntityType, 'reference_image'>) => {
const imageState = this.$imageState.get();
if (!imageState) {
this.log.error('No image state to save as');
return;
}
this.log.trace(`Saving as ${type}`);
// Have the parent adopt the image module - this prevents a flash of the original layer content before the
// segmented image is rendered
if (this.imageModule) {
this.parent.renderer.adoptObjectRenderer(this.imageModule);
}
// Create the new entity with the masked image as its only object
const rect = this.parent.transformer.getRelativeRect();
const arg = {
overrides: {
objects: [imageState],
position: {
x: Math.round(rect.x),
y: Math.round(rect.y),
},
},
isSelected: true,
};
switch (type) {
case 'raster_layer':
this.manager.stateApi.addRasterLayer(arg);
break;
case 'control_layer':
this.manager.stateApi.addControlLayer(arg);
break;
case 'inpaint_mask':
this.manager.stateApi.addInpaintMask(arg);
break;
case 'regional_guidance':
this.manager.stateApi.addRegionalGuidance(arg);
break;
default:
assert<Equals<typeof type, never>>(false);
}
// Final cleanup and teardown, returning user to main canvas UI
this.resetEphemeralState();
this.teardown();
};
/**
* Resets the module (e.g. remove all points and the mask image).
*
@@ -683,30 +802,39 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
for (const point of this.$points.get()) {
point.konva.circle.destroy();
}
if (this.maskedImage) {
this.maskedImage.destroy();
// If the image module exists, and is a child of the group, destroy it. It might not be a child of the group if
// the user has applied the segmented image and the image has been adopted by the parent entity.
if (this.imageModule && this.imageModule.konva.group.parent === this.konva.group) {
this.imageModule.destroy();
this.imageModule = null;
}
if (this.konva.maskTween) {
this.konva.maskTween.destroy();
this.konva.maskTween = null;
}
// Empty internal module state
this.$points.set([]);
this.imageState = null;
this.$imageState.set(null);
this.$pointType.set(1);
this.$hasProcessed.set(false);
this.$invert.set(false);
this.$lastProcessedHash.set('');
this.$isProcessing.set(false);
// Reset non-ephemeral konva nodes
this.konva.compositingRect.visible(false);
this.konva.maskGroup.clearCache();
// The parent module's buffer should be reset & forcibly sync the cache
this.parent.bufferRenderer.clearBuffer();
this.parent.renderer.syncKonvaCache(true);
};
/**
* Builds a graph for segmenting an image with the given image DTO.
*/
buildGraph = ({ image_name }: ImageDTO): { graph: Graph; outputNodeId: string } => {
static buildGraph = (
{ image_name }: ImageDTO,
points: SAMPointWithId[],
invert: boolean
): { graph: Graph; outputNodeId: string } => {
const graph = new Graph(getPrefixedId('canvas_segment_anything'));
// TODO(psyche): When SAM2 is available in transformers, use it here
@@ -716,7 +844,7 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
type: 'segment_anything',
model: 'segment-anything-huge',
image: { image_name },
point_lists: [{ points: this.getSAMPoints() }],
point_lists: [{ points: points.map(({ x, y, label }) => ({ x, y, label })) }],
mask_filter: 'largest',
});
@@ -725,6 +853,7 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
id: getPrefixedId('apply_tensor_mask_to_image'),
type: 'apply_tensor_mask_to_image',
image: { image_name },
invert,
});
graph.addEdge(segmentAnything, 'mask', applyMask, 'mask');
@@ -759,11 +888,11 @@ export class CanvasSegmentAnythingModule extends CanvasModuleBase {
label,
circle: getKonvaNodeDebugAttrs(konva.circle),
})),
imageState: deepClone(this.imageState),
maskedImage: this.maskedImage?.repr(),
imageState: deepClone(this.$imageState.get()),
imageModule: this.imageModule?.repr(),
config: deepClone(this.config),
$isSegmenting: this.$isSegmenting.get(),
$hasProcessed: this.$hasProcessed.get(),
$lastProcessedHash: this.$lastProcessedHash.get(),
$isProcessing: this.$isProcessing.get(),
$pointType: this.$pointType.get(),
$pointTypeString: this.$pointTypeString.get(),

View File

@@ -51,10 +51,16 @@ export class CanvasStagingAreaModule extends CanvasModuleBase {
/**
* Sync the $isStaging flag with the redux state. $isStaging is used by the manager to determine the global busy
* state of the canvas.
*
* We also set the $shouldShowStagedImage flag when we enter staging mode, so that the staged images are shown,
* even if the user disabled this in the last staging session.
*/
this.subscriptions.add(
this.manager.stateApi.createStoreSubscription(selectIsStaging, (isStaging) => {
this.manager.stateApi.createStoreSubscription(selectIsStaging, (isStaging, oldIsStaging) => {
this.$isStaging.set(isStaging);
if (isStaging && !oldIsStaging) {
this.$shouldShowStagedImage.set(true);
}
})
);
}

View File

@@ -17,12 +17,16 @@ import {
} from 'features/controlLayers/store/canvasSettingsSlice';
import {
bboxChangedFromCanvas,
controlLayerAdded,
entityBrushLineAdded,
entityEraserLineAdded,
entityMoved,
entityRasterized,
entityRectAdded,
entityReset,
inpaintMaskAdded,
rasterLayerAdded,
rgAdded,
} from 'features/controlLayers/store/canvasSlice';
import { selectCanvasStagingAreaSlice } from 'features/controlLayers/store/canvasStagingAreaSlice';
import {
@@ -51,6 +55,7 @@ import { getImageDTO } from 'services/api/endpoints/images';
import { queueApi } from 'services/api/endpoints/queue';
import type { BatchConfig, ImageDTO, S } from 'services/api/types';
import { QueueError } from 'services/events/errors';
import type { Param0 } from 'tsafe';
import { assert } from 'tsafe';
import type { CanvasEntityAdapter } from './CanvasEntity/types';
@@ -160,6 +165,34 @@ export class CanvasStateApiModule extends CanvasModuleBase {
this.store.dispatch(entityRectAdded(arg));
};
/**
* Adds a raster layer to the canvas, pushing state to redux.
*/
addRasterLayer = (arg: Param0<typeof rasterLayerAdded>) => {
this.store.dispatch(rasterLayerAdded(arg));
};
/**
* Adds a control layer to the canvas, pushing state to redux.
*/
addControlLayer = (arg: Param0<typeof controlLayerAdded>) => {
this.store.dispatch(controlLayerAdded(arg));
};
/**
* Adds an inpaint mask to the canvas, pushing state to redux.
*/
addInpaintMask = (arg: Param0<typeof inpaintMaskAdded>) => {
this.store.dispatch(inpaintMaskAdded(arg));
};
/**
* Adds regional guidance to the canvas, pushing state to redux.
*/
addRegionalGuidance = (arg: Param0<typeof rgAdded>) => {
this.store.dispatch(rgAdded(arg));
};
/**
* Rasterizes an entity, pushing state to redux.
*/
@@ -260,6 +293,8 @@ export class CanvasStateApiModule extends CanvasModuleBase {
},
};
let didSuceed = false;
/**
* If a timeout is provided, we will cancel the graph if it takes too long - but we need a way to clear the timeout
* if the graph completes or errors before the timeout.
@@ -311,6 +346,8 @@ export class CanvasStateApiModule extends CanvasModuleBase {
return;
}
didSuceed = true;
// Ok!
resolve(getImageDTOResult.value);
};
@@ -401,6 +438,10 @@ export class CanvasStateApiModule extends CanvasModuleBase {
if (timeout) {
timeoutId = window.setTimeout(() => {
if (didSuceed) {
// If we already succeeded, we don't need to do anything
return;
}
this.log.trace('Graph canceled by timeout');
clearListeners();
cancelGraph();
@@ -410,6 +451,10 @@ export class CanvasStateApiModule extends CanvasModuleBase {
if (signal) {
signal.addEventListener('abort', () => {
if (didSuceed) {
// If we already succeeded, we don't need to do anything
return;
}
this.log.trace('Graph canceled by signal');
_clearTimeout();
clearListeners();

View File

@@ -216,12 +216,14 @@ export class CanvasEraserToolModule extends CanvasModuleBase {
*/
onStagePointerDown = async (e: KonvaEventObject<PointerEvent>) => {
const cursorPos = this.parent.$cursorPos.get();
const isPrimaryPointerDown = this.parent.$isPrimaryPointerDown.get();
const selectedEntity = this.manager.stateApi.getSelectedEntityAdapter();
if (!cursorPos || !selectedEntity) {
if (!cursorPos || !selectedEntity || !isPrimaryPointerDown) {
/**
* Can't do anything without:
* - A cursor position: the cursor is not on the stage
* - The mouse is down: the user is not drawing
* - A selected entity: there is no entity to draw on
*/
return;

View File

@@ -160,11 +160,16 @@ export class CanvasToolModule extends CanvasModuleBase {
const stage = this.manager.stage;
const tool = this.$tool.get();
const segmentingAdapter = this.manager.stateApi.$segmentingAdapter.get();
const transformingAdapter = this.manager.stateApi.$transformingAdapter.get();
if ((this.manager.stage.getIsDragging() || tool === 'view') && !segmentingAdapter) {
if (this.manager.stage.getIsDragging()) {
this.tools.view.syncCursorStyle();
} else if (tool === 'view') {
this.tools.view.syncCursorStyle();
} else if (segmentingAdapter) {
segmentingAdapter.segmentAnything.syncCursorStyle();
} else if (transformingAdapter) {
// The transformer handles cursor style via events
} else if (this.manager.stateApi.$isFiltering.get()) {
stage.setCursor('not-allowed');
} else if (this.manager.stagingArea.$isStaging.get()) {

View File

@@ -126,6 +126,13 @@ export const floorCoord = (coord: Coordinate): Coordinate => {
};
};
export const roundCoord = (coord: Coordinate): Coordinate => {
return {
x: Math.round(coord.x),
y: Math.round(coord.y),
};
};
/**
* Snaps a position to the edge of the given rect if within a threshold of the edge
* @param pos The position to snap

View File

@@ -29,7 +29,7 @@ import { isMainModelBase, zModelIdentifierField } from 'features/nodes/types/com
import { ASPECT_RATIO_MAP } from 'features/parameters/components/Bbox/constants';
import { getGridSize, getIsSizeOptimal, getOptimalDimension } from 'features/parameters/util/optimalDimension';
import type { IRect } from 'konva/lib/types';
import { merge, omit } from 'lodash-es';
import { merge } from 'lodash-es';
import type { UndoableOptions } from 'redux-undo';
import type { ControlNetModelConfig, ImageDTO, IPAdapterModelConfig, T2IAdapterModelConfig } from 'services/api/types';
import { assert } from 'tsafe';
@@ -57,13 +57,13 @@ import type {
} from './types';
import { getEntityIdentifier, isRenderableEntity } from './types';
import {
converters,
getControlLayerState,
getInpaintMaskState,
getRasterLayerState,
getReferenceImageState,
getRegionalGuidanceState,
imageDTOToImageWithDims,
initialControlNet,
initialIPAdapter,
} from './util';
@@ -157,28 +157,25 @@ export const canvasSlice = createSlice({
reducer: (
state,
action: PayloadAction<
EntityIdentifierPayload<{ newId: string; overrides?: Partial<CanvasControlLayerState> }, 'raster_layer'>
EntityIdentifierPayload<
{ newId: string; overrides?: Partial<CanvasControlLayerState>; replace?: boolean },
'raster_layer'
>
>
) => {
const { entityIdentifier, newId, overrides } = action.payload;
const { entityIdentifier, newId, overrides, replace } = action.payload;
const layer = selectEntity(state, entityIdentifier);
if (!layer) {
return;
}
// Convert the raster layer to control layer
const controlLayerState: CanvasControlLayerState = {
...deepClone(layer),
id: newId,
type: 'control_layer',
controlAdapter: deepClone(initialControlNet),
withTransparencyEffect: true,
};
const controlLayerState = converters.rasterLayer.toControlLayer(newId, layer, overrides);
merge(controlLayerState, overrides);
// Remove the raster layer
state.rasterLayers.entities = state.rasterLayers.entities.filter((layer) => layer.id !== entityIdentifier.id);
if (replace) {
// Remove the raster layer
state.rasterLayers.entities = state.rasterLayers.entities.filter((layer) => layer.id !== entityIdentifier.id);
}
// Add the converted control layer
state.controlLayers.entities.push(controlLayerState);
@@ -186,11 +183,90 @@ export const canvasSlice = createSlice({
state.selectedEntityIdentifier = { type: controlLayerState.type, id: controlLayerState.id };
},
prepare: (
payload: EntityIdentifierPayload<{ overrides?: Partial<CanvasControlLayerState> } | undefined, 'raster_layer'>
payload: EntityIdentifierPayload<
{ overrides?: Partial<CanvasControlLayerState>; replace?: boolean } | undefined,
'raster_layer'
>
) => ({
payload: { ...payload, newId: getPrefixedId('control_layer') },
}),
},
rasterLayerConvertedToInpaintMask: {
reducer: (
state,
action: PayloadAction<
EntityIdentifierPayload<
{ newId: string; overrides?: Partial<CanvasInpaintMaskState>; replace?: boolean },
'raster_layer'
>
>
) => {
const { entityIdentifier, newId, overrides, replace } = action.payload;
const layer = selectEntity(state, entityIdentifier);
if (!layer) {
return;
}
// Convert the raster layer to inpaint mask
const inpaintMaskState = converters.rasterLayer.toInpaintMask(newId, layer, overrides);
if (replace) {
// Remove the raster layer
state.rasterLayers.entities = state.rasterLayers.entities.filter((layer) => layer.id !== entityIdentifier.id);
}
// Add the converted inpaint mask
state.inpaintMasks.entities.push(inpaintMaskState);
state.selectedEntityIdentifier = { type: inpaintMaskState.type, id: inpaintMaskState.id };
},
prepare: (
payload: EntityIdentifierPayload<
{ overrides?: Partial<CanvasInpaintMaskState>; replace?: boolean } | undefined,
'raster_layer'
>
) => ({
payload: { ...payload, newId: getPrefixedId('inpaint_mask') },
}),
},
rasterLayerConvertedToRegionalGuidance: {
reducer: (
state,
action: PayloadAction<
EntityIdentifierPayload<
{ newId: string; overrides?: Partial<CanvasRegionalGuidanceState>; replace?: boolean },
'raster_layer'
>
>
) => {
const { entityIdentifier, newId, overrides, replace } = action.payload;
const layer = selectEntity(state, entityIdentifier);
if (!layer) {
return;
}
// Convert the raster layer to inpaint mask
const regionalGuidanceState = converters.rasterLayer.toRegionalGuidance(newId, layer, overrides);
if (replace) {
// Remove the raster layer
state.rasterLayers.entities = state.rasterLayers.entities.filter((layer) => layer.id !== entityIdentifier.id);
}
// Add the converted inpaint mask
state.regionalGuidance.entities.push(regionalGuidanceState);
state.selectedEntityIdentifier = { type: regionalGuidanceState.type, id: regionalGuidanceState.id };
},
prepare: (
payload: EntityIdentifierPayload<
{ overrides?: Partial<CanvasRegionalGuidanceState>; replace?: boolean } | undefined,
'raster_layer'
>
) => ({
payload: { ...payload, newId: getPrefixedId('regional_guidance') },
}),
},
//#region Control layers
controlLayerAdded: {
reducer: (
@@ -217,32 +293,125 @@ export const canvasSlice = createSlice({
state.selectedEntityIdentifier = { type: 'control_layer', id: data.id };
},
controlLayerConvertedToRasterLayer: {
reducer: (state, action: PayloadAction<EntityIdentifierPayload<{ newId: string }, 'control_layer'>>) => {
const { entityIdentifier, newId } = action.payload;
reducer: (
state,
action: PayloadAction<
EntityIdentifierPayload<
{ newId: string; overrides?: Partial<CanvasRasterLayerState>; replace?: boolean },
'control_layer'
>
>
) => {
const { entityIdentifier, newId, overrides, replace } = action.payload;
const layer = selectEntity(state, entityIdentifier);
if (!layer) {
return;
}
// Convert the raster layer to control layer
const rasterLayerState: CanvasRasterLayerState = {
...omit(deepClone(layer), ['type', 'controlAdapter', 'withTransparencyEffect']),
id: newId,
type: 'raster_layer',
};
const rasterLayerState = converters.controlLayer.toRasterLayer(newId, layer, overrides);
// Remove the control layer
state.controlLayers.entities = state.controlLayers.entities.filter((layer) => layer.id !== entityIdentifier.id);
if (replace) {
// Remove the control layer
state.controlLayers.entities = state.controlLayers.entities.filter(
(layer) => layer.id !== entityIdentifier.id
);
}
// Add the new raster layer
state.rasterLayers.entities.push(rasterLayerState);
state.selectedEntityIdentifier = { type: rasterLayerState.type, id: rasterLayerState.id };
},
prepare: (payload: EntityIdentifierPayload<void, 'control_layer'>) => ({
prepare: (
payload: EntityIdentifierPayload<
{ overrides?: Partial<CanvasRasterLayerState>; replace?: boolean } | undefined,
'control_layer'
>
) => ({
payload: { ...payload, newId: getPrefixedId('raster_layer') },
}),
},
controlLayerConvertedToInpaintMask: {
reducer: (
state,
action: PayloadAction<
EntityIdentifierPayload<
{ newId: string; overrides?: Partial<CanvasInpaintMaskState>; replace?: boolean },
'control_layer'
>
>
) => {
const { entityIdentifier, newId, overrides, replace } = action.payload;
const layer = selectEntity(state, entityIdentifier);
if (!layer) {
return;
}
// Convert the control layer to inpaint mask
const inpaintMaskState = converters.controlLayer.toInpaintMask(newId, layer, overrides);
if (replace) {
// Remove the control layer
state.controlLayers.entities = state.controlLayers.entities.filter(
(layer) => layer.id !== entityIdentifier.id
);
}
// Add the new inpaint mask
state.inpaintMasks.entities.push(inpaintMaskState);
state.selectedEntityIdentifier = { type: inpaintMaskState.type, id: inpaintMaskState.id };
},
prepare: (
payload: EntityIdentifierPayload<
{ overrides?: Partial<CanvasInpaintMaskState>; replace?: boolean } | undefined,
'control_layer'
>
) => ({
payload: { ...payload, newId: getPrefixedId('inpaint_mask') },
}),
},
controlLayerConvertedToRegionalGuidance: {
reducer: (
state,
action: PayloadAction<
EntityIdentifierPayload<
{ newId: string; overrides?: Partial<CanvasRegionalGuidanceState>; replace?: boolean },
'control_layer'
>
>
) => {
const { entityIdentifier, newId, overrides, replace } = action.payload;
const layer = selectEntity(state, entityIdentifier);
if (!layer) {
return;
}
// Convert the control layer to regional guidance
const regionalGuidanceState = converters.controlLayer.toRegionalGuidance(newId, layer, overrides);
if (replace) {
// Remove the control layer
state.controlLayers.entities = state.controlLayers.entities.filter(
(layer) => layer.id !== entityIdentifier.id
);
}
// Add the new regional guidance
state.regionalGuidance.entities.push(regionalGuidanceState);
state.selectedEntityIdentifier = { type: regionalGuidanceState.type, id: regionalGuidanceState.id };
},
prepare: (
payload: EntityIdentifierPayload<
{ overrides?: Partial<CanvasRegionalGuidanceState>; replace?: boolean } | undefined,
'control_layer'
>
) => ({
payload: { ...payload, newId: getPrefixedId('regional_guidance') },
}),
},
controlLayerModelChanged: (
state,
action: PayloadAction<
@@ -447,6 +616,46 @@ export const canvasSlice = createSlice({
state.regionalGuidance.entities.push(data);
state.selectedEntityIdentifier = { type: 'regional_guidance', id: data.id };
},
rgConvertedToInpaintMask: {
reducer: (
state,
action: PayloadAction<
EntityIdentifierPayload<
{ newId: string; overrides?: Partial<CanvasInpaintMaskState>; replace?: boolean },
'regional_guidance'
>
>
) => {
const { entityIdentifier, newId, overrides, replace } = action.payload;
const layer = selectEntity(state, entityIdentifier);
if (!layer) {
return;
}
// Convert the regional guidance to inpaint mask
const inpaintMaskState = converters.regionalGuidance.toInpaintMask(newId, layer, overrides);
if (replace) {
// Remove the regional guidance
state.regionalGuidance.entities = state.regionalGuidance.entities.filter(
(layer) => layer.id !== entityIdentifier.id
);
}
// Add the new inpaint mask
state.inpaintMasks.entities.push(inpaintMaskState);
state.selectedEntityIdentifier = { type: inpaintMaskState.type, id: inpaintMaskState.id };
},
prepare: (
payload: EntityIdentifierPayload<
{ overrides?: Partial<CanvasInpaintMaskState>; replace?: boolean } | undefined,
'regional_guidance'
>
) => ({
payload: { ...payload, newId: getPrefixedId('inpaint_mask') },
}),
},
rgPositivePromptChanged: (
state,
action: PayloadAction<EntityIdentifierPayload<{ prompt: string | null }, 'regional_guidance'>>
@@ -644,6 +853,44 @@ export const canvasSlice = createSlice({
state.inpaintMasks.entities = [data];
state.selectedEntityIdentifier = { type: 'inpaint_mask', id: data.id };
},
inpaintMaskConvertedToRegionalGuidance: {
reducer: (
state,
action: PayloadAction<
EntityIdentifierPayload<
{ newId: string; overrides?: Partial<CanvasRegionalGuidanceState>; replace?: boolean },
'inpaint_mask'
>
>
) => {
const { entityIdentifier, newId, overrides, replace } = action.payload;
const layer = selectEntity(state, entityIdentifier);
if (!layer) {
return;
}
// Convert the inpaint mask to regional guidance
const regionalGuidanceState = converters.inpaintMask.toRegionalGuidance(newId, layer, overrides);
if (replace) {
// Remove the inpaint mask
state.inpaintMasks.entities = state.inpaintMasks.entities.filter((layer) => layer.id !== entityIdentifier.id);
}
// Add the new regional guidance
state.regionalGuidance.entities.push(regionalGuidanceState);
state.selectedEntityIdentifier = { type: regionalGuidanceState.type, id: regionalGuidanceState.id };
},
prepare: (
payload: EntityIdentifierPayload<
{ overrides?: Partial<CanvasRegionalGuidanceState>; replace?: boolean } | undefined,
'inpaint_mask'
>
) => ({
payload: { ...payload, newId: getPrefixedId('regional_guidance') },
}),
},
//#region BBox
bboxScaledWidthChanged: (state, action: PayloadAction<number>) => {
const gridSize = getGridSize(state.bbox.modelBase);
@@ -1210,10 +1457,14 @@ export const {
rasterLayerAdded,
// rasterLayerRecalled,
rasterLayerConvertedToControlLayer,
rasterLayerConvertedToInpaintMask,
rasterLayerConvertedToRegionalGuidance,
// Control layers
controlLayerAdded,
// controlLayerRecalled,
controlLayerConvertedToRasterLayer,
controlLayerConvertedToInpaintMask,
controlLayerConvertedToRegionalGuidance,
controlLayerModelChanged,
controlLayerControlModeChanged,
controlLayerWeightChanged,
@@ -1231,6 +1482,7 @@ export const {
// Regions
rgAdded,
// rgRecalled,
rgConvertedToInpaintMask,
rgPositivePromptChanged,
rgNegativePromptChanged,
rgAutoNegativeToggled,
@@ -1244,6 +1496,7 @@ export const {
rgIPAdapterCLIPVisionModelChanged,
// Inpaint mask
inpaintMaskAdded,
inpaintMaskConvertedToRegionalGuidance,
// inpaintMaskRecalled,
} = canvasSlice.actions;

View File

@@ -349,6 +349,27 @@ export const buildSelectIsSelected = (entityIdentifier: CanvasEntityIdentifier)
);
};
/**
* Builds a selector that selects if the entity is empty.
*
* Reference images are considered empty if the IP adapter is empty.
*
* Other entities are considered empty if they have no objects.
*/
export const buildSelectHasObjects = (entityIdentifier: CanvasEntityIdentifier) => {
return createSelector(selectCanvasSlice, (canvas) => {
const entity = selectEntity(canvas, entityIdentifier);
if (!entity) {
return false;
}
if (entity.type === 'reference_image') {
return entity.ipAdapter.image !== null;
}
return entity.objects.length > 0;
});
};
export const selectWidth = createSelector(selectCanvasSlice, (canvas) => canvas.bbox.rect.width);
export const selectHeight = createSelector(selectCanvasSlice, (canvas) => canvas.bbox.rect.height);
export const selectAspectRatioID = createSelector(selectCanvasSlice, (canvas) => canvas.bbox.aspectRatio.id);

View File

@@ -131,7 +131,8 @@ const zSAMPoint = z.object({
y: z.number().int().gte(0),
label: zSAMPointLabel,
});
export type SAMPoint = z.infer<typeof zSAMPoint>;
type SAMPoint = z.infer<typeof zSAMPoint>;
export type SAMPointWithId = SAMPoint & { id: string };
const zRect = z.object({
x: z.number(),

View File

@@ -184,3 +184,153 @@ export const getInpaintMaskState = (
merge(entityState, overrides);
return entityState;
};
const convertRasterLayerToControlLayer = (
newId: string,
rasterLayerState: CanvasRasterLayerState,
overrides?: Partial<CanvasControlLayerState>
): CanvasControlLayerState => {
const { name, objects, position } = rasterLayerState;
const controlLayerState = getControlLayerState(newId, {
name,
objects,
position,
});
merge(controlLayerState, overrides);
return controlLayerState;
};
const convertRasterLayerToInpaintMask = (
newId: string,
rasterLayerState: CanvasRasterLayerState,
overrides?: Partial<CanvasInpaintMaskState>
): CanvasInpaintMaskState => {
const { name, objects, position } = rasterLayerState;
const inpaintMaskState = getInpaintMaskState(newId, {
name,
objects,
position,
});
merge(inpaintMaskState, overrides);
return inpaintMaskState;
};
const convertRasterLayerToRegionalGuidance = (
newId: string,
rasterLayerState: CanvasRasterLayerState,
overrides?: Partial<CanvasRegionalGuidanceState>
): CanvasRegionalGuidanceState => {
const { name, objects, position } = rasterLayerState;
const regionalGuidanceState = getRegionalGuidanceState(newId, {
name,
objects,
position,
});
merge(regionalGuidanceState, overrides);
return regionalGuidanceState;
};
const convertControlLayerToRasterLayer = (
newId: string,
controlLayerState: CanvasControlLayerState,
overrides?: Partial<CanvasRasterLayerState>
): CanvasRasterLayerState => {
const { name, objects, position } = controlLayerState;
const rasterLayerState = getRasterLayerState(newId, {
name,
objects,
position,
});
merge(rasterLayerState, overrides);
return rasterLayerState;
};
const convertControlLayerToInpaintMask = (
newId: string,
rasterLayerState: CanvasControlLayerState,
overrides?: Partial<CanvasInpaintMaskState>
): CanvasInpaintMaskState => {
const { name, objects, position } = rasterLayerState;
const inpaintMaskState = getInpaintMaskState(newId, {
name,
objects,
position,
});
merge(inpaintMaskState, overrides);
return inpaintMaskState;
};
const convertControlLayerToRegionalGuidance = (
newId: string,
rasterLayerState: CanvasControlLayerState,
overrides?: Partial<CanvasRegionalGuidanceState>
): CanvasRegionalGuidanceState => {
const { name, objects, position } = rasterLayerState;
const regionalGuidanceState = getRegionalGuidanceState(newId, {
name,
objects,
position,
});
merge(regionalGuidanceState, overrides);
return regionalGuidanceState;
};
const convertInpaintMaskToRegionalGuidance = (
newId: string,
inpaintMaskState: CanvasInpaintMaskState,
overrides?: Partial<CanvasRegionalGuidanceState>
): CanvasRegionalGuidanceState => {
const { name, objects, position } = inpaintMaskState;
const regionalGuidanceState = getRegionalGuidanceState(newId, {
name,
objects,
position,
});
merge(regionalGuidanceState, overrides);
return regionalGuidanceState;
};
const convertRegionalGuidanceToInpaintMask = (
newId: string,
regionalGuidanceState: CanvasRegionalGuidanceState,
overrides?: Partial<CanvasInpaintMaskState>
): CanvasInpaintMaskState => {
const { name, objects, position } = regionalGuidanceState;
const inpaintMaskState = getInpaintMaskState(newId, {
name,
objects,
position,
});
merge(inpaintMaskState, overrides);
return inpaintMaskState;
};
/**
* Supported conversions:
* - Raster Layer -> Control Layer
* - Raster Layer -> Inpaint Mask
* - Raster Layer -> Regional Guidance
* - Control Layer -> Control Layer
* - Control Layer -> Inpaint Mask
* - Control Layer -> Regional Guidance
* - Inpaint Mask -> Regional Guidance
* - Regional Guidance -> Inpaint Mask
*/
export const converters = {
rasterLayer: {
toControlLayer: convertRasterLayerToControlLayer,
toInpaintMask: convertRasterLayerToInpaintMask,
toRegionalGuidance: convertRasterLayerToRegionalGuidance,
},
controlLayer: {
toRasterLayer: convertControlLayerToRasterLayer,
toInpaintMask: convertControlLayerToInpaintMask,
toRegionalGuidance: convertControlLayerToRegionalGuidance,
},
inpaintMask: {
toRegionalGuidance: convertInpaintMaskToRegionalGuidance,
},
regionalGuidance: {
toInpaintMask: convertRegionalGuidanceToInpaintMask,
},
};

View File

@@ -42,6 +42,14 @@ export type AddControlLayerFromImageDropData = BaseDropData & {
actionType: 'ADD_CONTROL_LAYER_FROM_IMAGE';
};
type AddInpaintMaskFromImageDropData = BaseDropData & {
actionType: 'ADD_INPAINT_MASK_FROM_IMAGE';
};
type AddRegionalGuidanceFromImageDropData = BaseDropData & {
actionType: 'ADD_REGIONAL_GUIDANCE_FROM_IMAGE';
};
export type AddRegionalReferenceImageFromImageDropData = BaseDropData & {
actionType: 'ADD_REGIONAL_REFERENCE_IMAGE_FROM_IMAGE';
};
@@ -53,7 +61,7 @@ export type AddGlobalReferenceImageFromImageDropData = BaseDropData & {
export type ReplaceLayerImageDropData = BaseDropData & {
actionType: 'REPLACE_LAYER_WITH_IMAGE';
context: {
entityIdentifier: CanvasEntityIdentifier<'control_layer' | 'raster_layer'>;
entityIdentifier: CanvasEntityIdentifier<'control_layer' | 'raster_layer' | 'inpaint_mask' | 'regional_guidance'>;
};
};
@@ -98,7 +106,9 @@ export type TypesafeDroppableData =
| AddControlLayerFromImageDropData
| ReplaceLayerImageDropData
| AddRegionalReferenceImageFromImageDropData
| AddGlobalReferenceImageFromImageDropData;
| AddGlobalReferenceImageFromImageDropData
| AddInpaintMaskFromImageDropData
| AddRegionalGuidanceFromImageDropData;
type BaseDragData = {
id: string;

Some files were not shown because too many files have changed in this diff Show More