Compare commits

...

5 Commits

Author SHA1 Message Date
Lincoln Stein
2b2ebd19e7 fixed a typo that introduced a crash 2022-08-18 13:47:07 -04:00
Lincoln Stein
74f238d310 Added info on img2img functionality. 2022-08-18 13:35:54 -04:00
Lincoln Stein
58f1962671 Merge branch 'CompVis:main' into main 2022-08-18 13:32:45 -04:00
owenvincent
7b8c883b07 Update README.md 2022-08-18 15:46:44 +02:00
owenvincent
be6ab334c2 update links in README.md 2022-08-18 13:49:59 +02:00
2 changed files with 23 additions and 18 deletions

View File

@@ -3,21 +3,7 @@
This is a fork of CompVis/stable-diffusion, the wonderful open source
text-to-image generator.
The original has been modified in several minor ways:
## Simplified API for text to image generation
There is now a simplified API for text to image generation, which
lets you create images from a prompt in just three lines of code:
~~~~
from ldm.simplet2i import T2I
model = T2I()
outputs = model.text2image("a unicorn in manhattan")
~~~~
Outputs is a list of lists in the format [[filename1,seed1],[filename2,seed2]...]
Please see ldm/simplet2i.py for more information.
The original has been modified in several ways:
## Interactive command-line interface similar to the Discord bot
@@ -63,8 +49,25 @@ weights (512x512) and the older (256x256) latent diffusion weights
identical to those used in the Discord bot, except you don't need to
type "!dream". Pass "-h" (or "--help") to list the arguments.
This script also provides an img2img feature that lets you seed your
creations with a drawing or photo.
For command-line help, type -h (or --help) at the dream> prompt.
## Simplified API for text to image generation
There is now a simplified API for text to image generation, which
lets you create images from a prompt in just three lines of code:
~~~~
from ldm.simplet2i import T2I
model = T2I()
outputs = model.text2image("a unicorn in manhattan")
~~~~
Outputs is a list of lists in the format [[filename1,seed1],[filename2,seed2]...]
Please see ldm/simplet2i.py for more information.
## Workaround for machines with limited internet connectivity
My development machine is a GPU node in a high-performance compute
@@ -116,14 +119,16 @@ to send me an email if you use and like the script.
# Original README from CompViz/stable-diffusion
*Stable Diffusion was made possible thanks to a collaboration with [Stability AI](https://stability.ai/) and [Runway](https://runwayml.com/) and builds upon our previous work:*
[**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)<br/>
[**High-Resolution Image Synthesis with Latent Diffusion Models**](https://ommer-lab.com/research/latent-diffusion-models/)<br/>
[Robin Rombach](https://github.com/rromb)\*,
[Andreas Blattmann](https://github.com/ablattmann)\*,
[Dominik Lorenz](https://github.com/qp-qp)\,
[Patrick Esser](https://github.com/pesser),
[Björn Ommer](https://hci.iwr.uni-heidelberg.de/Staff/bommer)<br/>
which is available on [GitHub](https://github.com/CompVis/latent-diffusion).
**CVPR '22 Oral**
which is available on [GitHub](https://github.com/CompVis/latent-diffusion). PDF at [arXiv](https://arxiv.org/abs/2112.10752). Please also visit our [Project page](https://ommer-lab.com/research/latent-diffusion-models/).
![txt2img-stable2](assets/stable-samples/txt2img/merged-0006.png)
[Stable Diffusion](#stable-diffusion-v1) is a latent text-to-image diffusion

View File

@@ -197,7 +197,7 @@ class T2I:
shape = [self.latent_channels, height // self.downsampling_factor, width // self.downsampling_factor]
samples_ddim, _ = sampler.sample(S=steps,
conditioning=c,
batch_size_size=batch_size,
batch_size=batch_size,
shape=shape,
verbose=False,
unconditional_guidance_scale=cfg_scale,