Compare commits

...

53 Commits

Author SHA1 Message Date
Lincoln Stein
6d1219deec fixed filenames 2022-08-22 23:56:36 -04:00
Lincoln Stein
e019de34ac can now change output directories in mid-session using cd and pwd commands 2022-08-22 21:14:31 -04:00
Lincoln Stein
88563fd27a added support for cd command in path completer 2022-08-22 21:01:06 -04:00
Lincoln Stein
18289dabcb better exception handling for out of memory errors and badly formatted prompts 2022-08-22 16:55:18 -04:00
Lincoln Stein
e70169257e better exception handling for out of memory errors and badly formatted prompts 2022-08-22 16:55:06 -04:00
Lincoln Stein
2afa87e911 Update README.md 2022-08-22 15:45:44 -04:00
Lincoln Stein
281e381cfc clarify use of preload_models.py 2022-08-22 15:42:06 -04:00
Lincoln Stein
9a121f6190 updated changelog 2022-08-22 15:34:57 -04:00
Lincoln Stein
a20827697c adjusted instructions for the released stable-diffusion-v1 weights 2022-08-22 15:33:27 -04:00
Lincoln Stein
9391eaff0e Merge branch 'prompt-in-png' into main 2022-08-22 13:24:12 -04:00
Lincoln Stein
e1d52822c5 fixed crash that occurs if you type an empty prompt at the dream> prompt 2022-08-22 12:40:54 -04:00
Lincoln Stein
63989ce6ff tidied up scripts directory by moving the original CompViz scripts into a subfolder 2022-08-22 10:11:54 -04:00
Lincoln Stein
24b88c6fc5 Update README.md 2022-08-22 10:01:06 -04:00
Lincoln Stein
7cb5149a02 Update README.md
Fixed typo in the change log (wrong version #)
2022-08-22 00:27:48 -04:00
Lincoln Stein
ea3501a8c4 Merge branch 'main' of github.com:lstein/stable-diffusion into main 2022-08-22 00:26:11 -04:00
Lincoln Stein
8caa27bef0 Close #2 2022-08-22 00:26:03 -04:00
Lincoln Stein
ddf0ef3af1 updated README for image metadata storage 2022-08-22 00:22:12 -04:00
Lincoln Stein
aa2729d868 user's prompt is now normalized for reproducibility and written into the destination PNG file as a tEXt metadata chunk named "Dream". You can retrieve the prompt with an image editing program that supports browsing the full metadata, or with the images2prompt.py script located in 'scripts' 2022-08-22 00:12:16 -04:00
Lincoln Stein
5f352aec87 test of normalization of prompt 2022-08-21 22:48:40 -04:00
Lincoln Stein
c4c4974b39 Update README.md
Fixed formatting in changelog.
2022-08-21 21:48:02 -04:00
Lincoln Stein
194f43f00b Update README.md
Add acknowledges for those who sent pull requests.
2022-08-21 21:46:00 -04:00
Lincoln Stein
325bc5280e Updated README.md
Fix the path for where to install the LIAON-400m model.
2022-08-21 20:48:44 -04:00
Lincoln Stein
11cc8e545b Clarified the required Python version (3.8.5) 2022-08-21 20:30:21 -04:00
Lincoln Stein
9adac56f4e Fixed incorrect conda env update command 2022-08-21 20:27:25 -04:00
Lincoln Stein
5d5307dcb4 Update README.md 2022-08-21 20:20:22 -04:00
Lincoln Stein
3c74dd41c4 Merge branch 'hwharrison-main' into main
This enables k_lms sampling (now the default)`:wq
2022-08-21 20:17:22 -04:00
Lincoln Stein
f5450bad61 k_lms sampling working; half precision working, can override with --full_precision 2022-08-21 20:16:31 -04:00
Lincoln Stein
2ace56313c Update README.md 2022-08-21 19:59:36 -04:00
Lincoln Stein
78aba5b770 preparing for merge into main 2022-08-21 19:57:48 -04:00
Lincoln Stein
49f0d31fac turned off debugging flag 2022-08-21 18:27:48 -04:00
Lincoln Stein
bb91ca0462 first attempt to fold k_lms changes proposed by hwharrison and bmaltais 2022-08-21 17:09:00 -04:00
Lincoln Stein
d340afc9e5 Merge branch 'main' of https://github.com/hwharrison/stable-diffusion into hwharrison-main 2022-08-21 16:32:31 -04:00
Lincoln Stein
7085d1910b set sys.path to include "." before loading simplet1i module 2022-08-21 11:03:22 -04:00
Lincoln Stein
a997e09c48 Merge pull request #13 from hwharrison/fix_windows_bug
Fix windows path error.
2022-08-21 10:46:27 -04:00
henry
503f962f68 ntpath doesn't have append, use join instead 2022-08-20 22:38:56 -05:00
henry
41f0afbcb6 add klms sampling 2022-08-20 22:28:29 -05:00
Lincoln Stein
6650b98e7c close #11 2022-08-20 19:49:12 -04:00
Lincoln Stein
1ca3dc553c added "." directory to sys path to prevent ModuleNotFound error on ldm.simplet2i that some Windows users have experienced 2022-08-20 19:46:54 -04:00
Lincoln Stein
09afcc321c Merge pull request #4 from xraxra/halfPrecision
use Half precision for reduced memory usage & faster speed
2022-08-20 09:42:17 -04:00
Lincoln Stein
7b2335068c Update README.md 2022-08-19 15:44:26 -04:00
Lincoln Stein
d3eff4d827 Update README.md 2022-08-19 15:42:50 -04:00
Lincoln Stein
0d23a0f899 Update README.md 2022-08-19 15:41:54 -04:00
Lincoln Stein
985948c8b9 Update README.md 2022-08-19 15:40:13 -04:00
Lincoln Stein
6ae09f6e46 Update README.md 2022-08-19 15:37:54 -04:00
Lincoln Stein
ae821ce0e6 Create README.md 2022-08-19 15:33:18 -04:00
Lincoln Stein
ce5b94bf40 Update README.md 2022-08-19 14:32:05 -04:00
Lincoln Stein
b5d9981125 Update README.md 2022-08-19 14:29:05 -04:00
Lincoln Stein
9a237015da Fixed an errant quotation mark in README 2022-08-19 07:55:20 -04:00
Lincoln Stein
5eff5d4cd2 Update README.md 2022-08-19 07:04:38 -04:00
Lincoln Stein
4527ef15f9 Update README.md 2022-08-19 06:58:25 -04:00
Lincoln Stein
0cea751476 remove shebang line from scripts; suspected culprit in Windows "module ldm.simplet2i not found" error 2022-08-19 06:33:42 -04:00
xra
a5fb8469ed use Half precision for reduced memory usage & faster speed
This allows users with 6 & 8gb cards to run 512x512 and for even larger resolutions for bigger GPUs
I compared the output in Beyond Compare and there are minor differences detected at tolerance 3, but side by side the differences are not perceptible.
2022-08-19 17:23:43 +09:00
Lincoln Stein
9eaef0c5a8 Update README.md 2022-08-18 23:26:41 -04:00
16 changed files with 606 additions and 111 deletions

255
README.md
View File

@@ -17,10 +17,15 @@ initialization only happens once. After that image generation
from the command-line interface is very fast.
The script uses the readline library to allow for in-line editing,
command history (up and down arrows), autocompletion, and more.
command history (up and down arrows), autocompletion, and more. To help
keep track of which prompts generated which images, the script writes a
log file of image names and prompts to the selected output directory.
In addition, as of version 1.02, it also writes the prompt into the PNG
file's metadata where it can be retrieved using scripts/images2prompt.py
Note that this has only been tested in the Linux environment. Testing
and tweaking for Windows is in progress.
The script is confirmed to work on Linux and Windows systems. It should
work on MacOSX as well, but this is not confirmed. Note that this script
runs from the command-line (CMD or Terminal window), and does not have a GUI.
~~~~
(ldm) ~/stable-diffusion$ python3 ./scripts/dream.py
@@ -37,17 +42,25 @@ setting sampler to plms
* Initialization done! Awaiting your command...
dream> ashley judd riding a camel -n2 -s150
Outputs:
outputs/txt2img-samples/00009.png: "ashley judd riding a camel" -n2 -s150 -S 416354203
outputs/txt2img-samples/00010.png: "ashley judd riding a camel" -n2 -s150-S 1362479620
outputs/img-samples/00009.png: "ashley judd riding a camel" -n2 -s150 -S 416354203
outputs/img-samples/00010.png: "ashley judd riding a camel" -n2 -s150 -S 1362479620
dream> "there's a fly in my soup" -n6 -g
outputs/txt2img-samples/00041.png: "there's a fly in my soup" -n6 -g -S 2685670268
outputs/img-samples/00011.png: "there's a fly in my soup" -n6 -g -S 2685670268
seeds for individual rows: [2685670268, 1216708065, 2335773498, 822223658, 714542046, 3395302430]
dream> q
# this shows how to retrieve the prompt stored in the saved image's metadata
(ldm) ~/stable-diffusion$ python3 ./scripts/images2prompt.py outputs/img_samples/*.png
00009.png: "ashley judd riding a camel" -s150 -S 416354203
00010.png: "ashley judd riding a camel" -s150 -S 1362479620
00011.png: "there's a fly in my soup" -n6 -g -S 2685670268
~~~~
The dream> prompt's arguments are pretty-much
The dream> prompt's arguments are pretty much
identical to those used in the Discord bot, except you don't need to
type "!dream". A significant change is that creation of individual images is the default
type "!dream" (it doesn't hurt if you do). A significant change is that creation of individual images
is now the default
unless --grid (-g) is given. For backward compatibility, the -i switch is recognized.
For command-line help type -h (or --help) at the dream> prompt.
@@ -71,31 +84,213 @@ The --init_img (-I) option gives the path to the seed picture. --strength (-f) c
the original will be modified, ranging from 0.0 (keep the original intact), to 1.0 (ignore the original
completely). The default is 0.75, and ranges from 0.25-0.75 give interesting results.
## Changes
* v1.05 (22 August 2022 - after the drop)
* Filenames now use the following formats:
000010.95183149.png -- Two files produced by the same command (e.g. -n2),
000010.26742632.png -- distinguished by a different seed.
000011.455191342.01.png -- Two files produced by the same command using
000011.455191342.02.png -- a batch size>1 (e.g. -b2). They have the same seed.
000011.4160627868.grid#1-4.png -- a grid of four images (-g); the whole grid can
be regenerated with the indicated key
* It should no longer be possible for one image to overwrite another
* You can use the "cd" and "pwd" commands at the dream> prompt to set and retrieve
the path of the output directory.
* v1.04 (22 August 2022 - after the drop)
* Updated README to reflect installation of the released weights.
* Suppressed very noisy and inconsequential warning when loading the frozen CLIP
tokenizer.
* v1.03 (22 August 2022)
* The original txt2img and img2img scripts from the CompViz repository have been moved into
a subfolder named "orig_scripts", to reduce confusion.
* v1.02 (21 August 2022)
* A copy of the prompt and all of its switches and options is now stored in the corresponding
image in a tEXt metadata field named "Dream". You can read the prompt using scripts/images2prompt.py,
or an image editor that allows you to explore the full metadata.
**Please run "conda env update -f environment.yaml" to load the k_lms dependencies!!**
* v1.01 (21 August 2022)
* added k_lms sampling.
**Please run "conda env update -f environment.yaml" to load the k_lms dependencies!!**
* use half precision arithmetic by default, resulting in faster execution and lower memory requirements
Pass argument --full_precision to dream.py to get slower but more accurate image generation
## Installation
For installation, follow the instructions from the original CompViz/stable-diffusion
README which is appended to this README for your convenience. A few things to be aware of:
There are separate installation walkthroughs for [Linux/Mac](#linuxmac) and [Windows](#windows).
1. You will need the stable-diffusion model weights, which have to be downloaded separately as described
in the CompViz instructions. They are expected to be released in the latter half of August.
### Linux/Mac
2. If you do not have the weights and want to play with low-quality image generation, then you can use
the public LAION400m weights, which can be installed like this:
1. You will need to install the following prerequisites if they are not already available. Use your
operating system's preferred installer
* Python (version 3.8.5 recommended; higher may work)
* git
~~~~
mkdir -p models/ldm/text2img-large/
wget -O models/ldm/text2img-large/model.ckpt https://ommer-lab.com/files/latent-diffusion/nitro/txt2img-f8-large/model.ckpt
~~~~
2. Install the Python Anaconda environment manager using pip3.
```
~$ pip3 install anaconda
```
After installing anaconda, you should log out of your system and log back in. If the installation
worked, your command prompt will be prefixed by the name of the current anaconda environment, "(base)".
You will then have to invoke dream.py with the --laion400m (or -l for short) flag:
~~~~
(ldm) ~/stable-diffusion$ python3 ./scripts/dream.py -l
~~~~
3. Copy the stable-diffusion source code from GitHub:
```
(base) ~$ git clone https://github.com/lstein/stable-diffusion.git
```
This will create stable-diffusion folder where you will follow the rest of the steps.
3. To get around issues that arise when running the stable diffusion model on a machine without internet
connectivity, I wrote a script that pre-downloads internet dependencies. Whether or not your GPU machine
has connectivity, you will need to run this preloading script before the first run of dream.py. See
"Workaround for machines with limited internet connectivity" below for the walkthrough.
4. Enter the newly-created stable-diffusion folder. From this step forward make sure that you are working in the stable-diffusion directory!
```
(base) ~$ cd stable-diffusion
(base) ~/stable-diffusion$
```
5. Use anaconda to copy necessary python packages, create a new python environment named "ldm",
and activate the environment.
```
(base) ~/stable-diffusion$ conda env create -f environment.yaml
(base) ~/stable-diffusion$ conda activate ldm
(ldm) ~/stable-diffusion$
```
After these steps, your command prompt will be prefixed by "(ldm)" as shown above.
6. Load a couple of small machine-learning models required by stable diffusion:
```
(ldm) ~/stable-diffusion$ python3 scripts/preload_models.py
```
Note that this step is necessary because I modified the original
just-in-time model loading scheme to allow the script to work on GPU
machines that are not internet connected. See [Workaround for machines with limited internet connectivity](#workaround-for-machines-with-limited-internet-connectivity)
7. Now you need to install the weights for the stable diffusion model.
For running with the released weights, you will first need to set up an acount with Hugging Face (https://huggingface.co).
Use your credentials to log in, and then point your browser at https://huggingface.co/CompVis/stable-diffusion-v-1-4-original.
You may be asked to sign a license agreement at this point.
Click on "Files and versions" near the top of the page, and then click on the file named "sd-v1-4.ckpt". You'll be taken
to a page that prompts you to click the "download" link. Save the file somewhere safe on your local machine.
Now run the following commands from within the stable-diffusion directory. This will create a symbolic
link from the stable-diffusion model.ckpt file, to the true location of the sd-v1-4.ckpt file.
```
(ldm) ~/stable-diffusion$ mkdir -p models/ldm/stable-diffusion-v1
(ldm) ~/stable-diffusion$ ln -sf /path/to/sd-v1-4.ckpt models/ldm/stable-diffusion-v1/model.ckpt
```
8. Start generating images!
```
# for the pre-release weights use the -l or --liaon400m switch
(ldm) ~/stable-diffusion$ python3 scripts/dream.py -l
# for the post-release weights do not use the switch
(ldm) ~/stable-diffusion$ python3 scripts/dream.py
# for additional configuration switches and arguments, use -h or --help
(ldm) ~/stable-diffusion$ python3 scripts/dream.py -h
```
9. Subsequently, to relaunch the script, be sure to run "conda activate ldm" (step 5, second command), enter the "stable-diffusion"
directory, and then launch the dream script (step 8). If you forget to activate the ldm environment, the script will fail with multiple ModuleNotFound errors.
#### Updating to newer versions of the script
This distribution is changing rapidly. If you used the "git clone" method (step 5) to download the stable-diffusion directory, then to update to the latest and greatest version, launch the Anaconda window, enter "stable-diffusion", and type:
```
(ldm) ~/stable-diffusion$ git pull
```
This will bring your local copy into sync with the remote one.
### Windows
1. Install Python version 3.8.5 from here: https://www.python.org/downloads/windows/
(note that several users have reported that later versions do not work properly)
2. Install Anaconda3 (miniconda3 version) from here: https://docs.anaconda.com/anaconda/install/windows/
3. Install Git from here: https://git-scm.com/download/win
4. Launch Anaconda from the Windows Start menu. This will bring up a command window. Type all the remaining commands in this window.
5. Run the command:
```
git clone https://github.com/lstein/stable-diffusion.git
```
This will create stable-diffusion folder where you will follow the rest of the steps.
6. Enter the newly-created stable-diffusion folder. From this step forward make sure that you are working in the stable-diffusion directory!
```
cd stable-diffusion
```
7. Run the following two commands:
```
conda env create -f environment.yaml (step 7a)
conda activate ldm (step 7b)
```
This will install all python requirements and activate the "ldm" environment which sets PATH and other environment variables properly.
8. Run the command:
```
python scripts\preload_models.py
```
This installs several machine learning models that stable diffusion
requires. (Note that this step is required. I created it because some people
are using GPU systems that are behind a firewall and the models can't be
downloaded just-in-time)
9. Now you need to install the weights for the big stable diffusion model.
For running with the released weights, you will first need to set up
an acount with Hugging Face (https://huggingface.co). Use your
credentials to log in, and then point your browser at
https://huggingface.co/CompVis/stable-diffusion-v-1-4-original. You
may be asked to sign a license agreement at this point.
Click on "Files and versions" near the top of the page, and then click
on the file named "sd-v1-4.ckpt". You'll be taken to a page that
prompts you to click the "download" link. Now save the file somewhere
safe on your local machine. The weight file is >4 GB in size, so
downloading may take a while.
Now run the following commands from **within the stable-diffusion
directory** to copy the weights file to the right place:
```
mkdir -p models/ldm/stable-diffusion-v1
copy C:\path\to\sd-v1-4.ckpt models\ldm\stable-diffusion-v1\model.ckpt
```
Please replace "C:\path\to\sd-v1.4.ckpt" with the correct path to wherever
you stashed this file. If you prefer not to copy or move the .ckpt file,
you may instead create a shortcut to it from within
"models\ldm\stable-diffusion-v1\".
10. Start generating images!
```
# for the pre-release weights
python scripts\dream.py -l
# for the post-release weights
python scripts\dream.py
```
11. Subsequently, to relaunch the script, first activate the Anaconda command window (step 4), enter the stable-diffusion directory (step 6, "cd \path\to\stable-diffusion"), run "conda activate ldm" (step 7b), and then launch the dream script (step 10).
#### Updating to newer versions of the script
This distribution is changing rapidly. If you used the "git clone" method (step 5) to download the stable-diffusion directory, then to update to the latest and greatest version, launch the Anaconda window, enter "stable-diffusion", and type:
```
git pull
```
This will bring your local copy into sync with the remote one.
## Simplified API for text to image generation
@@ -154,7 +349,9 @@ For support,
please use this repository's GitHub Issues tracking service. Feel free
to send me an email if you use and like the script.
*Author:* Lincoln D. Stein <lincoln.stein@gmail.com>
*Original Author:* Lincoln D. Stein <lincoln.stein@gmail.com>
*Contributions by:* [Peter Kowalczyk](https://github.com/slix), [Henry Harrison](https://github.com/hwharrison), [xraxra](https://github.com/xraxra), and [bmaltais](https://github.com/bmaltais)
# Original README from CompViz/stable-diffusion
*Stable Diffusion was made possible thanks to a collaboration with [Stability AI](https://stability.ai/) and [Runway](https://runwayml.com/) and builds upon our previous work:*
@@ -181,6 +378,7 @@ See [this section](#stable-diffusion-v1) below and the [model card](https://hugg
## Requirements
A suitable [conda](https://conda.io/) environment named `ldm` can be created
and activated with:
@@ -195,8 +393,7 @@ You can also update an existing [latent diffusion](https://github.com/CompVis/la
conda install pytorch torchvision -c pytorch
pip install transformers==4.19.2
pip install -e .
```
```
## Stable Diffusion v1

View File

@@ -24,6 +24,8 @@ dependencies:
- transformers==4.19.2
- torchmetrics==0.6.0
- kornia==0.6
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
- accelerate==0.12.0
- -e git+https://github.com/openai/CLIP.git@main#egg=clip
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
- -e git+https://github.com/lstein/k-diffusion.git@master#egg=k-diffusion
- -e .

View File

@@ -0,0 +1,74 @@
'''wrapper around part of Karen Crownson's k-duffsion library, making it call compatible with other Samplers'''
import k_diffusion as K
import torch
import torch.nn as nn
import accelerate
class CFGDenoiser(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, x, sigma, uncond, cond, cond_scale):
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
return uncond + (cond - uncond) * cond_scale
class KSampler(object):
def __init__(self,model,schedule="lms", **kwargs):
super().__init__()
self.model = K.external.CompVisDenoiser(model)
self.accelerator = accelerate.Accelerator()
self.device = self.accelerator.device
self.schedule = schedule
def forward(self, x, sigma, uncond, cond, cond_scale):
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
return uncond + (cond - uncond) * cond_scale
# most of these arguments are ignored and are only present for compatibility with
# other samples
@torch.no_grad()
def sample(self,
S,
batch_size,
shape,
conditioning=None,
callback=None,
normals_sequence=None,
img_callback=None,
quantize_x0=False,
eta=0.,
mask=None,
x0=None,
temperature=1.,
noise_dropout=0.,
score_corrector=None,
corrector_kwargs=None,
verbose=True,
x_T=None,
log_every_t=100,
unconditional_guidance_scale=1.,
unconditional_conditioning=None,
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
**kwargs
):
sigmas = self.model.get_sigmas(S)
if x_T:
x = x_T
else:
x = torch.randn([batch_size, *shape], device=self.device) * sigmas[0] # for GPU draw
model_wrap_cfg = CFGDenoiser(self.model)
extra_args = {'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale}
return (K.sampling.sample_lms(model_wrap_cfg, x, sigmas, extra_args=extra_args, disable=not self.accelerator.is_main_process),
None)
def gather(samples_ddim):
return self.accelerator.gather(samples_ddim)

View File

@@ -146,8 +146,8 @@ class FrozenCLIPEmbedder(AbstractEncoder):
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
super().__init__()
self.tokenizer = CLIPTokenizer.from_pretrained(version)
self.transformer = CLIPTextModel.from_pretrained(version)
self.tokenizer = CLIPTokenizer.from_pretrained(version,local_files_only=True)
self.transformer = CLIPTextModel.from_pretrained(version,local_files_only=True)
self.device = device
self.max_length = max_length
self.freeze()

View File

@@ -11,7 +11,7 @@ t2i = T2I(outdir = <path> // outputs/txt2img-samples
batch_size = <integer> // how many images to generate per sampling (1)
steps = <integer> // 50
seed = <integer> // current system time
sampler = ['ddim','plms'] // ddim
sampler_name= ['ddim','plms','klms'] // klms
grid = <boolean> // false
width = <integer> // image width, multiple of 64 (512)
height = <integer> // image height, multiple of 64 (512)
@@ -60,10 +60,12 @@ from torch import autocast
from contextlib import contextmanager, nullcontext
import time
import math
import re
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.ksampler import KSampler
class T2I:
"""T2I class
@@ -76,7 +78,7 @@ class T2I:
batch_size
steps
seed
sampler
sampler_name
grid
individual
width
@@ -87,6 +89,8 @@ class T2I:
downsampling_factor
precision
strength
The vast majority of these arguments default to reasonable values.
"""
def __init__(self,
outdir="outputs/txt2img-samples",
@@ -101,13 +105,15 @@ class T2I:
cfg_scale=7.5,
weights="models/ldm/stable-diffusion-v1/model.ckpt",
config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml",
sampler="plms",
sampler_name="klms",
latent_channels=4,
downsampling_factor=8,
ddim_eta=0.0, # deterministic
fixed_code=False,
precision='autocast',
strength=0.75 # default in scripts/img2img.py
full_precision=False,
strength=0.75, # default in scripts/img2img.py
latent_diffusion_weights=False # just to keep track of this parameter when regenerating prompt
):
self.outdir = outdir
self.batch_size = batch_size
@@ -117,17 +123,19 @@ class T2I:
self.grid = grid
self.steps = steps
self.cfg_scale = cfg_scale
self.weights = weights
self.weights = weights
self.config = config
self.sampler_name = sampler
self.sampler_name = sampler_name
self.fixed_code = fixed_code
self.latent_channels = latent_channels
self.downsampling_factor = downsampling_factor
self.ddim_eta = ddim_eta
self.precision = precision
self.full_precision = full_precision
self.strength = strength
self.model = None # empty for now
self.sampler = None
self.latent_diffusion_weights=latent_diffusion_weights
if seed is None:
self.seed = self._new_seed()
else:
@@ -164,7 +172,6 @@ class T2I:
# make directories and establish names for the output files
os.makedirs(outdir, exist_ok=True)
base_count = len(os.listdir(outdir))-1
start_code = None
if self.fixed_code:
@@ -178,7 +185,7 @@ class T2I:
sampler = self.sampler
images = list()
seeds = list()
filename = None
tic = time.time()
with torch.no_grad():
@@ -211,10 +218,11 @@ class T2I:
if not grid:
for x_sample in x_samples_ddim:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
filename = os.path.join(outdir, f"{base_count:05}.png")
filename = self._unique_filename(outdir,previousname=filename,
seed=seed,isbatch=(batch_size>1))
assert not os.path.exists(filename)
Image.fromarray(x_sample.astype(np.uint8)).save(filename)
images.append([filename,seed])
base_count += 1
else:
all_samples.append(x_samples_ddim)
seeds.append(seed)
@@ -256,6 +264,8 @@ class T2I:
model = self.load_model() # will instantiate the model or return it from cache
precision_scope = autocast if self.precision=="autocast" else nullcontext
# grid and individual are mutually exclusive, with individual taking priority.
# not necessary, but needed for compatability with dream bot
if (grid is None):
@@ -274,12 +284,12 @@ class T2I:
# make directories and establish names for the output files
os.makedirs(outdir, exist_ok=True)
base_count = len(os.listdir(outdir))-1
assert os.path.isfile(init_img)
init_image = self._load_img(init_img).to(self.device)
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space
with precision_scope("cuda"):
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space
sampler.make_schedule(ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False)
@@ -292,10 +302,10 @@ class T2I:
t_enc = int(strength * steps)
print(f"target t_enc is {t_enc} steps")
precision_scope = autocast if self.precision=="autocast" else nullcontext
images = list()
seeds = list()
filename = None
tic = time.time()
with torch.no_grad():
@@ -324,10 +334,10 @@ class T2I:
if not grid:
for x_sample in x_samples:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
filename = os.path.join(outdir, f"{base_count:05}.png")
filename = self._unique_filename(outdir,filename,seed=seed,isbatch=(batch_size>1))
assert not os.path.exists(filename)
Image.fromarray(x_sample.astype(np.uint8)).save(filename)
images.append([filename,seed])
base_count += 1
else:
all_samples.append(x_samples)
seeds.append(seed)
@@ -348,7 +358,6 @@ class T2I:
def _make_grid(self,samples,seeds,batch_size,iterations,outdir):
images = list()
base_count = len(os.listdir(outdir))-1
n_rows = batch_size if batch_size>1 else int(math.sqrt(batch_size * iterations))
# save as grid
grid = torch.stack(samples, 0)
@@ -357,7 +366,7 @@ class T2I:
# to image
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
filename = os.path.join(outdir, f"{base_count:05}.png")
filename = self._unique_filename(outdir,seed=seeds[0],grid_count=batch_size*iterations)
Image.fromarray(grid.astype(np.uint8)).save(filename)
for s in seeds:
images.append([filename,s])
@@ -385,6 +394,9 @@ class T2I:
elif self.sampler_name == 'ddim':
print("setting sampler to ddim")
self.sampler = DDIMSampler(self.model)
elif self.sampler_name == 'klms':
print("setting sampler to klms")
self.sampler = KSampler(self.model,'lms')
else:
print(f"unsupported sampler {self.sampler_name}, defaulting to plms")
self.sampler = PLMSSampler(self.model)
@@ -401,6 +413,11 @@ class T2I:
m, u = model.load_state_dict(sd, strict=False)
model.cuda()
model.eval()
if self.full_precision:
print('Using slower but more accurate full-precision math (--full_precision)')
else:
print('Using half precision math. Call with --full_precision to use slower but more accurate full precision.')
model.half()
return model
def _load_img(self,path):
@@ -413,3 +430,40 @@ class T2I:
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.*image - 1.
def _unique_filename(self,outdir,previousname=None,seed=0,isbatch=False,grid_count=None):
revision = 1
if previousname is None:
# count up until we find an unfilled slot
dir_list = [a.split('.',1)[0] for a in os.listdir(outdir)]
uniques = dict.fromkeys(dir_list,True)
basecount = 1
while f'{basecount:06}' in uniques:
basecount += 1
if grid_count is not None:
grid_label = f'grid#1-{grid_count}'
filename = f'{basecount:06}.{seed}.{grid_label}.png'
elif isbatch:
filename = f'{basecount:06}.{seed}.01.png'
else:
filename = f'{basecount:06}.{seed}.png'
return os.path.join(outdir,filename)
else:
previousname = os.path.basename(previousname)
x = re.match('^(\d+)\..*\.png',previousname)
if not x:
return self._unique_filename(outdir,previousname,seed)
basecount = int(x.groups()[0])
series = 0
finished = False
while not finished:
series += 1
filename = f'{basecount:06}.{seed}.png'
if isbatch or os.path.exists(os.path.join(outdir,filename)):
filename = f'{basecount:06}.{seed}.{series:02}.png'
finished = not os.path.exists(os.path.join(outdir,filename))
return os.path.join(outdir,filename)

View File

@@ -1,8 +1,10 @@
#!/usr/bin/env python
#!/usr/bin/env python3
import argparse
import shlex
import atexit
import os
import sys
from PIL import Image,PngImagePlugin
# readline unavailable on windows systems
try:
@@ -11,7 +13,7 @@ try:
except:
readline_available = False
debugging = True
debugging = False
def main():
''' Initialize command-line parsers and the diffusion model '''
@@ -35,9 +37,14 @@ def main():
setup_readline()
print("* Initializing, be patient...\n")
sys.path.append('.')
from pytorch_lightning import logging
from ldm.simplet2i import T2I
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
import transformers
transformers.logging.set_verbosity_error()
# creating a simple text2image object with a handful of
# defaults passed on the command line.
# additional parameters will be added (or overriden) during
@@ -46,9 +53,12 @@ def main():
height=height,
batch_size=opt.batch_size,
outdir=opt.outdir,
sampler=opt.sampler,
sampler_name=opt.sampler_name,
weights=weights,
config=config)
full_precision=opt.full_precision,
config=config,
latent_diffusion_weights=opt.laion400m # this is solely for recreating the prompt
)
# make sure the output directory exists
if not os.path.exists(opt.outdir):
@@ -60,9 +70,9 @@ def main():
# preload the model
if not debugging:
t2i.load_model()
print("\n* Initialization done! Awaiting your command (-h for help, q to quit)...")
print("\n* Initialization done! Awaiting your command (-h for help, 'q' to quit, 'cd' to change output dir, 'pwd' to print output dir)...")
log_path = os.path.join(opt.outdir,"dream_log.txt")
log_path = os.path.join(opt.outdir,'..','dream_log.txt')
with open(log_path,'a') as log:
cmd_parser = create_cmd_parser()
main_loop(t2i,cmd_parser,log)
@@ -80,10 +90,31 @@ def main_loop(t2i,parser,log):
done = True
break
elements = shlex.split(command)
if elements[0]=='q': #
try:
elements = shlex.split(command)
except ValueError as e:
print(str(e))
continue
if len(elements)==0:
continue
if elements[0]=='q':
done = True
break
if elements[0]=='cd' and len(elements)>1:
if os.path.exists(elements[1]):
print(f"setting image output directory to {elements[1]}")
t2i.outdir=elements[1]
else:
print(f"directory {elements[1]} does not exist")
continue
if elements[0]=='pwd':
print(f"current output directory is {t2i.outdir}")
continue
if elements[0].startswith('!dream'): # in case a stored prompt still contains the !dream command
elements.pop(0)
@@ -116,42 +147,83 @@ def main_loop(t2i,parser,log):
else:
results = t2i.img2img(**vars(opt))
print("Outputs:")
write_log_message(opt,switches,results,log)
write_log_message(t2i,opt,results,log)
except KeyboardInterrupt:
print('*interrupted*')
continue
except RuntimeError as e:
print(str(e))
continue
print("goodbye!")
def write_log_message(opt,switches,results,logfile):
''' logs the name of the output image, its prompt and seed to both the terminal and the log file '''
if opt.grid:
_output_for_grid(switches,results,logfile)
else:
_output_for_individual(switches,results,logfile)
def write_log_message(t2i,opt,results,logfile):
''' logs the name of the output image, its prompt and seed to the terminal, log file, and a Dream text chunk in the PNG metadata '''
switches = _reconstruct_switches(t2i,opt)
prompt_str = ' '.join(switches)
# when multiple images are produced in batch, then we keep track of where each starts
last_seed = None
img_num = 1
batch_size = opt.batch_size or t2i.batch_size
seenit = {}
seeds = [a[1] for a in results]
if batch_size > 1:
seeds = f"(seeds for each batch row: {seeds})"
else:
seeds = f"(seeds for individual images: {seeds})"
def _output_for_individual(switches,results,logfile):
for r in results:
log_message = " ".join([' ',str(r[0])+':',
f'"{switches[0]}"',
*switches[1:],f'-S {r[1]}'])
seed = r[1]
log_message = (f'{r[0]}: {prompt_str} -S{seed}')
if batch_size > 1:
if seed != last_seed:
img_num = 1
log_message += f' # (batch image {img_num} of {batch_size})'
else:
img_num += 1
log_message += f' # (batch image {img_num} of {batch_size})'
last_seed = seed
print(log_message)
logfile.write(log_message+"\n")
logfile.flush()
if r[0] not in seenit:
seenit[r[0]] = True
try:
if opt.grid:
_write_prompt_to_png(r[0],f'{prompt_str} -g -S{seed} {seeds}')
else:
_write_prompt_to_png(r[0],f'{prompt_str} -S{seed}')
except FileNotFoundError:
print(f"Could not open file '{r[0]}' for reading")
def _output_for_grid(switches,results,logfile):
first_seed = results[0][1]
log_message = " ".join([' ',str(results[0][0])+':',
f'"{switches[0]}"',
*switches[1:],f'-S {results[0][1]}'])
print(log_message)
logfile.write(log_message+"\n")
all_seeds = [row[1] for row in results]
log_message = f' seeds for individual rows: {all_seeds}'
print(log_message)
logfile.write(log_message+"\n")
def _reconstruct_switches(t2i,opt):
'''Normalize the prompt and switches'''
switches = list()
switches.append(f'"{opt.prompt}"')
switches.append(f'-s{opt.steps or t2i.steps}')
switches.append(f'-b{opt.batch_size or t2i.batch_size}')
switches.append(f'-W{opt.width or t2i.width}')
switches.append(f'-H{opt.height or t2i.height}')
switches.append(f'-C{opt.cfg_scale or t2i.cfg_scale}')
if opt.init_img:
switches.append(f'-I{opt.init_img}')
if opt.strength and opt.init_img is not None:
switches.append(f'-f{opt.strength or t2i.strength}')
if t2i.full_precision:
switches.append('-F')
return switches
def _write_prompt_to_png(path,prompt):
info = PngImagePlugin.PngInfo()
info.add_text("Dream",prompt)
im = Image.open(path)
im.save(path,"PNG",pnginfo=info)
def create_argv_parser():
parser = argparse.ArgumentParser(description="Parse script's command line args")
parser.add_argument("--laion400m",
@@ -159,19 +231,24 @@ def create_argv_parser():
"-l",
dest='laion400m',
action='store_true',
help="fallback to the latent diffusion (LAION4400M) weights and config")
help="fallback to the latent diffusion (laion400m) weights and config")
parser.add_argument('-n','--iterations',
type=int,
default=1,
help="number of images to generate")
parser.add_argument('-F','--full_precision',
dest='full_precision',
action='store_true',
help="use slower full precision math for calculations")
parser.add_argument('-b','--batch_size',
type=int,
default=1,
help="number of images to produce per iteration (currently not working properly - producing too many images)")
parser.add_argument('--sampler',
choices=['plms','ddim'],
default='plms',
help="which sampler to use")
help="number of images to produce per iteration (faster, but doesn't generate individual seeds")
parser.add_argument('--sampler','-m',
dest="sampler_name",
choices=['plms','ddim', 'klms'],
default='klms',
help="which sampler to use (klms) - can only be set on command line")
parser.add_argument('-o',
'--outdir',
type=str,
@@ -186,7 +263,7 @@ def create_cmd_parser():
parser.add_argument('-s','--steps',type=int,help="number of steps")
parser.add_argument('-S','--seed',type=int,help="image seed")
parser.add_argument('-n','--iterations',type=int,default=1,help="number of samplings to perform")
parser.add_argument('-b','--batch_size',type=int,default=1,help="number of images to produce per sampling (currently broken)")
parser.add_argument('-b','--batch_size',type=int,default=1,help="number of images to produce per sampling")
parser.add_argument('-W','--width',type=int,help="image width, multiple of 64")
parser.add_argument('-H','--height',type=int,help="image height, multiple of 64")
parser.add_argument('-C','--cfg_scale',default=7.5,type=float,help="prompt configuration scale")
@@ -198,7 +275,8 @@ def create_cmd_parser():
if readline_available:
def setup_readline():
readline.set_completer(Completer(['--steps','-s','--seed','-S','--iterations','-n','--batch_size','-b',
readline.set_completer(Completer(['cd','pwd',
'--steps','-s','--seed','-S','--iterations','-n','--batch_size','-b',
'--width','-W','--height','-H','--cfg_scale','-C','--grid','-g',
'--individual','-i','--init_img','-I','--strength','-f']).complete)
readline.set_completer_delims(" ")
@@ -220,8 +298,13 @@ if readline_available:
return
def complete(self,text,state):
if text.startswith('-I') or text.startswith('--init_img'):
return self._image_completions(text,state)
buffer = readline.get_line_buffer()
if text.startswith(('-I','--init_img')):
return self._path_completions(text,state,('.png'))
if buffer.strip().endswith('cd') or text.startswith(('.','/')):
return self._path_completions(text,state,())
response = None
if state == 0:
@@ -241,12 +324,14 @@ if readline_available:
response = None
return response
def _image_completions(self,text,state):
def _path_completions(self,text,state,extensions):
# get the path so far
if text.startswith('-I'):
path = text.replace('-I','',1).lstrip()
elif text.startswith('--init_img='):
path = text.replace('--init_img=','',1).lstrip()
else:
path = text
matches = list()
@@ -263,7 +348,7 @@ if readline_available:
if full_path.startswith(path):
if os.path.isdir(full_path):
matches.append(os.path.join(os.path.dirname(text),n)+'/')
elif n.endswith('.png'):
elif n.endswith(extensions):
matches.append(os.path.join(os.path.dirname(text),n))
try:
@@ -271,7 +356,6 @@ if readline_available:
except IndexError:
response = None
return response
if __name__ == "__main__":
main()

30
scripts/images2prompt.py Executable file
View File

@@ -0,0 +1,30 @@
#!/usr/bin/env python3
'''This script reads the "Dream" Stable Diffusion prompt embedded in files generated by dream.py'''
import sys
from PIL import Image,PngImagePlugin
if len(sys.argv) < 2:
print("Usage: file2prompt.py <file1.png> <file2.png> <file3.png>...")
print("This script opens up the indicated dream.py-generated PNG file(s) and prints out the prompt used to generate them.")
exit(-1)
filenames = sys.argv[1:]
for f in filenames:
try:
im = Image.open(f)
try:
prompt = im.text['Dream']
except KeyError:
prompt = ''
print(f'{f}: {prompt}')
except FileNotFoundError:
sys.stderr.write(f'{f} not found\n')
continue
except PermissionError:
sys.stderr.write(f'{f} could not be opened due to inadequate permissions\n')
continue

View File

@@ -12,6 +12,10 @@ from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import contextmanager, nullcontext
import accelerate
import k_diffusion as K
import torch.nn as nn
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
@@ -80,6 +84,11 @@ def main():
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--klms",
action='store_true',
help="use klms sampling",
)
parser.add_argument(
"--laion400m",
action='store_true',
@@ -190,6 +199,22 @@ def main():
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
#for klms
model_wrap = K.external.CompVisDenoiser(model)
accelerator = accelerate.Accelerator()
device = accelerator.device
class CFGDenoiser(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, x, sigma, uncond, cond, cond_scale):
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
return uncond + (cond - uncond) * cond_scale
if opt.plms:
sampler = PLMSSampler(model)
else:
@@ -226,8 +251,8 @@ def main():
with model.ema_scope():
tic = time.time()
all_samples = list()
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
for n in trange(opt.n_iter, desc="Sampling", disable =not accelerator.is_main_process):
for prompts in tqdm(data, desc="data", disable =not accelerator.is_main_process):
uc = None
if opt.scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
@@ -235,18 +260,32 @@ def main():
prompts = list(prompts)
c = model.get_learned_conditioning(prompts)
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code)
if not opt.klms:
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code)
else:
sigmas = model_wrap.get_sigmas(opt.ddim_steps)
if start_code:
x = start_code
else:
x = torch.randn([opt.n_samples, *shape], device=device) * sigmas[0] # for GPU draw
model_wrap_cfg = CFGDenoiser(model_wrap)
extra_args = {'cond': c, 'uncond': uc, 'cond_scale': opt.scale}
samples_ddim = K.sampling.sample_lms(model_wrap_cfg, x, sigmas, extra_args=extra_args, disable=not accelerator.is_main_process)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
if opt.klms:
x_sample = accelerator.gather(x_samples_ddim)
if not opt.skip_save:
for x_sample in x_samples_ddim:

21
scripts/preload_models.py Normal file → Executable file
View File

@@ -1,8 +1,11 @@
#!/usr/bin/env python
#!/usr/bin/env python3
# Before running stable-diffusion on an internet-isolated machine,
# run this script from one with internet connectivity. The
# two machines must share a common .cache directory.
import sys
import transformers
transformers.logging.set_verbosity_error()
# this will preload the Bert tokenizer fles
print("preloading bert tokenizer...")
@@ -11,7 +14,19 @@ tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
print("...success")
# this will download requirements for Kornia
print("preloading Kornia requirements...")
print("preloading Kornia requirements (ignore the warnings)...")
import kornia
print("...success")
# doesn't work - probably wrong logger
# logging.getLogger('transformers.tokenization_utils').setLevel(logging.ERROR)
version='openai/clip-vit-large-patch14'
print('preloading CLIP model (Ignore the warnings)...')
sys.stdout.flush()
import clip
from transformers import CLIPTokenizer, CLIPTextModel
tokenizer =CLIPTokenizer.from_pretrained(version)
transformer=CLIPTextModel.from_pretrained(version)
print('\n\n...success')