Compare commits

...

115 Commits

Author SHA1 Message Date
Lincoln Stein
81cbcb919e add ability to generate variants on an img2img; warnings quieted 2022-08-24 15:26:59 -04:00
Lincoln Stein
1eec6b776b tweaked documentation and comments slightly 2022-08-24 15:25:52 -04:00
Lincoln Stein
776c747978 added warning message when width/height specified along with init img 2022-08-24 14:04:27 -04:00
Lincoln Stein
caf4dd4155 added a TODO list to keep track of user requests 2022-08-24 13:54:59 -04:00
Sean McLellan
ee10021ea2 bikeshedding 2022-08-24 13:36:27 -04:00
Sean McLellan
ca82acfd3b Remove unnecessary print, small optmi 2022-08-24 13:33:19 -04:00
Sean McLellan
feea5fb063 Merge branch 'main' of https://github.com/BaristaLabs/stable-diffusion-dream into add-simple-variant-mechanism 2022-08-24 13:16:15 -04:00
Sean McLellan
b5cdbd3b0b Fixes issue with cuda/current mismatch 2022-08-24 13:14:08 -04:00
Lincoln Stein
e043f238af backed out change from PR #44 that was causing ddim sampler to fail with the message 'sqrt _vml_cpu not implemented for 'Half' 2022-08-24 13:10:42 -04:00
Lincoln Stein
47a5da25b7 runtime errors now produce a stack trace 2022-08-24 12:57:04 -04:00
Lincoln Stein
f55f4d7156 squelch warnings about modified untracked content due to the src/* submodules 2022-08-24 12:31:48 -04:00
Lincoln Stein
5055e9e1d5 corrected double clip reference from requirements.txt 2022-08-24 12:09:22 -04:00
Sean McLellan
c6b5e930dc Merge branch 'main' of https://github.com/BaristaLabs/stable-diffusion-dream into add-simple-variant-mechanism 2022-08-24 12:06:29 -04:00
Sean McLellan
d33e1bf563 Add simple way to make variants 2022-08-24 12:02:36 -04:00
Lincoln Stein
923466387f minor tweak to .gitignore 2022-08-24 11:52:13 -04:00
Lincoln Stein
56f7b0f434 Merge branch 'warner-benjamin-small-improvements' into main 2022-08-24 11:51:16 -04:00
Lincoln Stein
c24a16ccb0 resolved merge conflicts 2022-08-24 11:50:48 -04:00
Lincoln Stein
ab8ee9bbb6 Merge branch 'BaristaLabs-ensure-image-exists' into main
This catches the case in which user specifies an img2img init img that
doesn't exist.
2022-08-24 11:42:55 -04:00
Lincoln Stein
37609d6e53 resolved merge conflicts 2022-08-24 11:42:44 -04:00
Lincoln Stein
fb9b845fda Merge branch 'BaristaLabs-add-textual-inversion' into main
This allows the use of a custom dataset to fine tune model outputs.
2022-08-24 11:33:39 -04:00
Lincoln Stein
9050ce152b Fixed up a few merge conflicts, looks good so far 2022-08-24 11:29:32 -04:00
Lincoln Stein
73901a2777 Merge pull request #58 from nicolai256/main
init img didn't work in textual inversion, now it does :)
2022-08-24 11:24:30 -04:00
Lincoln Stein
decd1a58d2 Merge branch 'escape-single-quotes' into main
This prevents single quotes in the prompt from generating a parse error.
2022-08-24 11:21:09 -04:00
Lincoln Stein
7f4a5e946d Merge branch 'tildebyte-feat-samplers-add-remaining-k' into main
This adds the remaining k_* samplers to the dream.py script.
2022-08-24 11:19:45 -04:00
Lincoln Stein
4bc64a6aff sampler now written to PNG metadata 2022-08-24 11:18:51 -04:00
Lincoln Stein
02cf5879a1 Merge branch 'feat-samplers-add-remaining-k' of https://github.com/tildebyte/stable-diffusion into tildebyte-feat-samplers-add-remaining-k
This adds all the remaining k_* sampling algorithms.
2022-08-24 10:56:24 -04:00
Lincoln Stein
d495bac307 updated README for version release 2022-08-24 09:31:17 -04:00
Lincoln Stein
3393b8cad1 added assertion checks for out-of-bound arguments; added various copyright and license agreement files 2022-08-24 09:22:27 -04:00
Benjamin Warner
886f1c0138 Undo more 'cuda' hardcoding 2022-08-24 00:39:25 -05:00
nicolai256
9588444f0e textual inversion + init img fix 2022-08-24 05:16:01 +02:00
Sean McLellan
24b11ecf9f Fix silent SystemExit if embedding_path is not specified 2022-08-23 22:45:02 -04:00
Sean McLellan
84989f0d05 Remote token output on startup 2022-08-23 22:39:10 -04:00
Sean McLellan
a93a79568d Tweak save_top_k setting 2022-08-23 21:56:05 -04:00
Sean McLellan
7081a84600 Fix GPU parameter in readme, add SD style finetune config 2022-08-23 20:14:40 -04:00
Sean McLellan
1df1e5c38b Test for the presence of the specified img2img 2022-08-23 19:22:35 -04:00
Sean McLellan
5a513426bd Remove test .ps1 file 2022-08-23 18:32:38 -04:00
Sean McLellan
611ccb991e Remove another duplicate file 2022-08-23 18:31:41 -04:00
Sean McLellan
bde956647f Remove duplicate t2i file 2022-08-23 18:29:50 -04:00
Sean McLellan
8952196bbf Add personalization 2022-08-23 18:26:28 -04:00
Ben Alkov
050dffd269 feat(samplers): add ability use all k_* samplers
Signed-off-by: Ben Alkov <ben.alkov@gmail.com>
2022-08-23 17:26:22 -04:00
Sean McLellan
0cdf5e61b0 Merge pull request #1 from lstein/main
Upstream changes
2022-08-23 15:44:36 -04:00
Benjamin Warner
de1cea92ce Small QoL imporvements 2022-08-23 12:49:17 -05:00
Lincoln Stein
3a58988e4a escape single quotes in the command stream so as not to confuse the shlex parser 2022-08-23 13:46:50 -04:00
Lincoln Stein
7a67d3d837 confirmed that pip install -r requirements.txt is working as expected 2022-08-23 13:15:03 -04:00
Lincoln Stein
9050f3d399 Merge branch 'main' into pip-install-test 2022-08-23 11:00:57 -04:00
Lincoln Stein
a21156e3e3 removed the reference to the mod-deleted Reddit walkthru of prompt weighting usage 2022-08-23 10:44:33 -04:00
Lincoln Stein
716dbbdf8c resolved conflicts in README changelog 2022-08-23 10:40:22 -04:00
Lincoln Stein
1f2e52a1d6 fixed filename generation so that newer files are always chronologically later 2022-08-23 10:39:18 -04:00
Lincoln Stein
dc788f92b3 in output directory, new image files always start with the number higher than the previous maximum filename to ensure alphabetic sort==chronological sort 2022-08-23 10:19:11 -04:00
Lincoln Stein
13774912f4 generated requirements.txt to test pip-only (non-conda) install 2022-08-23 09:46:27 -04:00
Lincoln Stein
cb9e6d544a Update README.md
Fixed a forward/backward slash error.
2022-08-23 09:35:28 -04:00
Lincoln Stein
a6d6bafd13 updated README with info on weighted partial prompts 2022-08-23 01:58:47 -04:00
Lincoln Stein
9d1343dce3 resolved conflicts and tested 2022-08-23 01:44:43 -04:00
Lincoln Stein
11c0df07b7 prompt weighting not working 2022-08-23 01:23:14 -04:00
Lincoln Stein
ca8a799373 Merge pull request #24 from bakkot/patch-1
Fix usage of simplified API in readme
2022-08-23 01:02:13 -04:00
Lincoln Stein
710b908290 Keyboard interrupt retains seed and log information in files produced prior to interrupt. Closes #21 2022-08-23 00:51:38 -04:00
Kevin Gibbons
c80ce4fff5 fix default config to match docs / dream.py 2022-08-22 21:46:22 -07:00
Lincoln Stein
bc7b1fdd37 Added --from_file argument to load input from a file. Closes #23 2022-08-23 00:30:06 -04:00
Kevin Gibbons
1b7d414784 Fix usage of simplified API in readme 2022-08-22 21:01:15 -07:00
Lincoln Stein
6d1219deec fixed filenames 2022-08-22 23:56:36 -04:00
Lincoln Stein
e019de34ac can now change output directories in mid-session using cd and pwd commands 2022-08-22 21:14:31 -04:00
Lincoln Stein
88563fd27a added support for cd command in path completer 2022-08-22 21:01:06 -04:00
Lincoln Stein
18289dabcb better exception handling for out of memory errors and badly formatted prompts 2022-08-22 16:55:18 -04:00
Lincoln Stein
e70169257e better exception handling for out of memory errors and badly formatted prompts 2022-08-22 16:55:06 -04:00
Lincoln Stein
2afa87e911 Update README.md 2022-08-22 15:45:44 -04:00
Lincoln Stein
281e381cfc clarify use of preload_models.py 2022-08-22 15:42:06 -04:00
Lincoln Stein
9a121f6190 updated changelog 2022-08-22 15:34:57 -04:00
Lincoln Stein
a20827697c adjusted instructions for the released stable-diffusion-v1 weights 2022-08-22 15:33:27 -04:00
Lincoln Stein
9391eaff0e Merge branch 'prompt-in-png' into main 2022-08-22 13:24:12 -04:00
Lincoln Stein
e1d52822c5 fixed crash that occurs if you type an empty prompt at the dream> prompt 2022-08-22 12:40:54 -04:00
xra
e4eb775b63 added optional parameter to skip subprompt weight normalization
allows more control when fine-tuning
2022-08-23 00:03:32 +09:00
xra
a3632f5b4f improved comments & added warning if value couldn't be parsed correctly 2022-08-22 23:32:01 +09:00
Lincoln Stein
63989ce6ff tidied up scripts directory by moving the original CompViz scripts into a subfolder 2022-08-22 10:11:54 -04:00
Lincoln Stein
24b88c6fc5 Update README.md 2022-08-22 10:01:06 -04:00
xra
2736d7e15e optional weighting for creative blending of prompts
example: "an apple: a banana:0 a watermelon:0.5"
        the above example turns into 3 sub-prompts:
        "an apple" 1.0 (default if no value)
        "a banana" 0.0
        "a watermelon" 0.5
        The weights are added and normalized
        The resulting image will be: apple 66%, banana 0%, watermelon 33%
2022-08-22 22:59:06 +09:00
Lincoln Stein
7cb5149a02 Update README.md
Fixed typo in the change log (wrong version #)
2022-08-22 00:27:48 -04:00
Lincoln Stein
ea3501a8c4 Merge branch 'main' of github.com:lstein/stable-diffusion into main 2022-08-22 00:26:11 -04:00
Lincoln Stein
8caa27bef0 Close #2 2022-08-22 00:26:03 -04:00
Lincoln Stein
ddf0ef3af1 updated README for image metadata storage 2022-08-22 00:22:12 -04:00
Lincoln Stein
aa2729d868 user's prompt is now normalized for reproducibility and written into the destination PNG file as a tEXt metadata chunk named "Dream". You can retrieve the prompt with an image editing program that supports browsing the full metadata, or with the images2prompt.py script located in 'scripts' 2022-08-22 00:12:16 -04:00
Lincoln Stein
5f352aec87 test of normalization of prompt 2022-08-21 22:48:40 -04:00
Lincoln Stein
c4c4974b39 Update README.md
Fixed formatting in changelog.
2022-08-21 21:48:02 -04:00
Lincoln Stein
194f43f00b Update README.md
Add acknowledges for those who sent pull requests.
2022-08-21 21:46:00 -04:00
Lincoln Stein
325bc5280e Updated README.md
Fix the path for where to install the LIAON-400m model.
2022-08-21 20:48:44 -04:00
Lincoln Stein
11cc8e545b Clarified the required Python version (3.8.5) 2022-08-21 20:30:21 -04:00
Lincoln Stein
9adac56f4e Fixed incorrect conda env update command 2022-08-21 20:27:25 -04:00
Lincoln Stein
5d5307dcb4 Update README.md 2022-08-21 20:20:22 -04:00
Lincoln Stein
3c74dd41c4 Merge branch 'hwharrison-main' into main
This enables k_lms sampling (now the default)`:wq
2022-08-21 20:17:22 -04:00
Lincoln Stein
f5450bad61 k_lms sampling working; half precision working, can override with --full_precision 2022-08-21 20:16:31 -04:00
Lincoln Stein
2ace56313c Update README.md 2022-08-21 19:59:36 -04:00
Lincoln Stein
78aba5b770 preparing for merge into main 2022-08-21 19:57:48 -04:00
Lincoln Stein
49f0d31fac turned off debugging flag 2022-08-21 18:27:48 -04:00
Lincoln Stein
bb91ca0462 first attempt to fold k_lms changes proposed by hwharrison and bmaltais 2022-08-21 17:09:00 -04:00
Lincoln Stein
d340afc9e5 Merge branch 'main' of https://github.com/hwharrison/stable-diffusion into hwharrison-main 2022-08-21 16:32:31 -04:00
Lincoln Stein
7085d1910b set sys.path to include "." before loading simplet1i module 2022-08-21 11:03:22 -04:00
Lincoln Stein
a997e09c48 Merge pull request #13 from hwharrison/fix_windows_bug
Fix windows path error.
2022-08-21 10:46:27 -04:00
henry
503f962f68 ntpath doesn't have append, use join instead 2022-08-20 22:38:56 -05:00
henry
41f0afbcb6 add klms sampling 2022-08-20 22:28:29 -05:00
Lincoln Stein
6650b98e7c close #11 2022-08-20 19:49:12 -04:00
Lincoln Stein
1ca3dc553c added "." directory to sys path to prevent ModuleNotFound error on ldm.simplet2i that some Windows users have experienced 2022-08-20 19:46:54 -04:00
Lincoln Stein
09afcc321c Merge pull request #4 from xraxra/halfPrecision
use Half precision for reduced memory usage & faster speed
2022-08-20 09:42:17 -04:00
Lincoln Stein
7b2335068c Update README.md 2022-08-19 15:44:26 -04:00
Lincoln Stein
d3eff4d827 Update README.md 2022-08-19 15:42:50 -04:00
Lincoln Stein
0d23a0f899 Update README.md 2022-08-19 15:41:54 -04:00
Lincoln Stein
985948c8b9 Update README.md 2022-08-19 15:40:13 -04:00
Lincoln Stein
6ae09f6e46 Update README.md 2022-08-19 15:37:54 -04:00
Lincoln Stein
ae821ce0e6 Create README.md 2022-08-19 15:33:18 -04:00
Lincoln Stein
ce5b94bf40 Update README.md 2022-08-19 14:32:05 -04:00
Lincoln Stein
b5d9981125 Update README.md 2022-08-19 14:29:05 -04:00
Lincoln Stein
9a237015da Fixed an errant quotation mark in README 2022-08-19 07:55:20 -04:00
Lincoln Stein
5eff5d4cd2 Update README.md 2022-08-19 07:04:38 -04:00
Lincoln Stein
4527ef15f9 Update README.md 2022-08-19 06:58:25 -04:00
Lincoln Stein
0cea751476 remove shebang line from scripts; suspected culprit in Windows "module ldm.simplet2i not found" error 2022-08-19 06:33:42 -04:00
xra
a5fb8469ed use Half precision for reduced memory usage & faster speed
This allows users with 6 & 8gb cards to run 512x512 and for even larger resolutions for bigger GPUs
I compared the output in Beyond Compare and there are minor differences detected at tolerance 3, but side by side the differences are not perceptible.
2022-08-19 17:23:43 +09:00
Lincoln Stein
9eaef0c5a8 Update README.md 2022-08-18 23:26:41 -04:00
40 changed files with 2882 additions and 472 deletions

175
.gitignore vendored Normal file
View File

@@ -0,0 +1,175 @@
# ignore default image save location and model symbolic link
outputs/
models/ldm/stable-diffusion-v1/model.ckpt
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# emacs autosave and recovery files
*~
.#*
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
src
logs/
**/__pycache__/
outputs

13
.gitmodules vendored Normal file
View File

@@ -0,0 +1,13 @@
[submodule "taming-transformers"]
path = src/taming-transformers
url = https://github.com/CompVis/taming-transformers.git
ignore = dirty
[submodule "clip"]
path = src/clip
url = https://github.com/openai/CLIP.git
ignore = dirty
[submodule "k-diffusion"]
path = src/k-diffusion
url = https://github.com/lstein/k-diffusion.git
ignore = dirty

30
LICENSE
View File

@@ -1,9 +1,27 @@
All rights reserved by the authors.
You must not distribute the weights provided to you directly or indirectly without explicit consent of the authors.
You must not distribute harmful, offensive, dehumanizing content or otherwise harmful representations of people or their environments, cultures, religions, etc. produced with the model weights
or other generated content described in the "Misuse and Malicious Use" section in the model card.
The model weights are provided for research purposes only.
MIT License
Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
This software is derived from a fork of the source code available from
https://github.com/pesser/stable-diffusion and
https://github.com/CompViz/stable-diffusion. They carry the following
copyrights:
Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich
Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors
Please see individual source code files for copyright and authorship
attributions.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
@@ -11,4 +29,4 @@ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
SOFTWARE.

294
LICENSE-ModelWeights.txt Normal file
View File

@@ -0,0 +1,294 @@
Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors
CreativeML Open RAIL-M
dated August 22, 2022
Section I: PREAMBLE
Multimodal generative models are being widely adopted and used, and
have the potential to transform the way artists, among other
individuals, conceive and benefit from AI or ML technologies as a tool
for content creation.
Notwithstanding the current and potential benefits that these
artifacts can bring to society at large, there are also concerns about
potential misuses of them, either due to their technical limitations
or ethical considerations.
In short, this license strives for both the open and responsible
downstream use of the accompanying model. When it comes to the open
character, we took inspiration from open source permissive licenses
regarding the grant of IP rights. Referring to the downstream
responsible use, we added use-based restrictions not permitting the
use of the Model in very specific scenarios, in order for the licensor
to be able to enforce the license in case potential misuses of the
Model may occur. At the same time, we strive to promote open and
responsible research on generative models for art and content
generation.
Even though downstream derivative versions of the model could be
released under different licensing terms, the latter will always have
to include - at minimum - the same use-based restrictions as the ones
in the original license (this license). We believe in the intersection
between open and responsible AI development; thus, this License aims
to strike a balance between both in order to enable responsible
open-science in the field of AI.
This License governs the use of the model (and its derivatives) and is
informed by the model card associated with the model.
NOW THEREFORE, You and Licensor agree as follows:
1. Definitions
- "License" means the terms and conditions for use, reproduction, and
Distribution as defined in this document.
- "Data" means a collection of information and/or content extracted
from the dataset used with the Model, including to train, pretrain,
or otherwise evaluate the Model. The Data is not licensed under this
License.
- "Output" means the results of operating a Model as embodied in
informational content resulting therefrom.
- "Model" means any accompanying machine-learning based assemblies
(including checkpoints), consisting of learnt weights, parameters
(including optimizer states), corresponding to the model
architecture as embodied in the Complementary Material, that have
been trained or tuned, in whole or in part on the Data, using the
Complementary Material.
- "Derivatives of the Model" means all modifications to the Model,
works based on the Model, or any other model which is created or
initialized by transfer of patterns of the weights, parameters,
activations or output of the Model, to the other model, in order to
cause the other model to perform similarly to the Model, including -
but not limited to - distillation methods entailing the use of
intermediate data representations or methods based on the generation
of synthetic data by the Model for training the other model.
- "Complementary Material" means the accompanying source code and
scripts used to define, run, load, benchmark or evaluate the Model,
and used to prepare data for training or evaluation, if any. This
includes any accompanying documentation, tutorials, examples, etc,
if any.
- "Distribution" means any transmission, reproduction, publication or
other sharing of the Model or Derivatives of the Model to a third
party, including providing the Model as a hosted service made
available by electronic or other remote means - e.g. API-based or
web access.
- "Licensor" means the copyright owner or entity authorized by the
copyright owner that is granting the License, including the persons
or entities that may have rights in the Model and/or distributing
the Model.
- "You" (or "Your") means an individual or Legal Entity exercising
permissions granted by this License and/or making use of the Model
for whichever purpose and in any field of use, including usage of
the Model in an end-use application - e.g. chatbot, translator,
image generator.
- "Third Parties" means individuals or legal entities that are not
under common control with Licensor or You.
- "Contribution" means any work of authorship, including the original
version of the Model and any modifications or additions to that
Model or Derivatives of the Model thereof, that is intentionally
submitted to Licensor for inclusion in the Model by the copyright
owner or by an individual or Legal Entity authorized to submit on
behalf of the copyright owner. For the purposes of this definition,
"submitted" means any form of electronic, verbal, or written
communication sent to the Licensor or its representatives, including
but not limited to communication on electronic mailing lists, source
code control systems, and issue tracking systems that are managed
by, or on behalf of, the Licensor for the purpose of discussing and
improving the Model, but excluding communication that is
conspicuously marked or otherwise designated in writing by the
copyright owner as "Not a Contribution."
- "Contributor" means Licensor and any individual or Legal Entity on
behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Model.
Section II: INTELLECTUAL PROPERTY RIGHTS
Both copyright and patent grants apply to the Model, Derivatives of
the Model and Complementary Material. The Model and Derivatives of the
Model are subject to additional terms as described in Section III.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare, publicly display, publicly
perform, sublicense, and distribute the Complementary Material, the
Model, and Derivatives of the Model.
3. Grant of Patent License. Subject to the terms and conditions of
this License and where and as applicable, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this paragraph) patent
license to make, have made, use, offer to sell, sell, import, and
otherwise transfer the Model and the Complementary Material, where
such license applies only to those patent claims licensable by such
Contributor that are necessarily infringed by their Contribution(s)
alone or by combination of their Contribution(s) with the Model to
which such Contribution(s) was submitted. If You institute patent
litigation against any entity (including a cross-claim or counterclaim
in a lawsuit) alleging that the Model and/or Complementary Material or
a Contribution incorporated within the Model and/or Complementary
Material constitutes direct or contributory patent infringement, then
any patent licenses granted to You under this License for the Model
and/or Work shall terminate as of the date such litigation is asserted
or filed.
Section III: CONDITIONS OF USAGE, DISTRIBUTION AND REDISTRIBUTION
4. Distribution and Redistribution. You may host for Third Party
remote access purposes (e.g. software-as-a-service), reproduce and
distribute copies of the Model or Derivatives of the Model thereof in
any medium, with or without modifications, provided that You meet the
following conditions: Use-based restrictions as referenced in
paragraph 5 MUST be included as an enforceable provision by You in any
type of legal agreement (e.g. a license) governing the use and/or
distribution of the Model or Derivatives of the Model, and You shall
give notice to subsequent users You Distribute to, that the Model or
Derivatives of the Model are subject to paragraph 5. This provision
does not apply to the use of Complementary Material. You must give
any Third Party recipients of the Model or Derivatives of the Model a
copy of this License; You must cause any modified files to carry
prominent notices stating that You changed the files; You must retain
all copyright, patent, trademark, and attribution notices excluding
those notices that do not pertain to any part of the Model,
Derivatives of the Model. You may add Your own copyright statement to
Your modifications and may provide additional or different license
terms and conditions - respecting paragraph 4.a. - for use,
reproduction, or Distribution of Your modifications, or for any such
Derivatives of the Model as a whole, provided Your use, reproduction,
and Distribution of the Model otherwise complies with the conditions
stated in this License.
5. Use-based restrictions. The restrictions set forth in Attachment A
are considered Use-based restrictions. Therefore You cannot use the
Model and the Derivatives of the Model for the specified restricted
uses. You may use the Model subject to this License, including only
for lawful purposes and in accordance with the License. Use may
include creating any content with, finetuning, updating, running,
training, evaluating and/or reparametrizing the Model. You shall
require all of Your users who use the Model or a Derivative of the
Model to comply with the terms of this paragraph (paragraph 5).
6. The Output You Generate. Except as set forth herein, Licensor
claims no rights in the Output You generate using the Model. You are
accountable for the Output you generate and its subsequent uses. No
use of the output can contravene any provision as stated in the
License.
Section IV: OTHER PROVISIONS
7. Updates and Runtime Restrictions. To the maximum extent permitted
by law, Licensor reserves the right to restrict (remotely or
otherwise) usage of the Model in violation of this License, update the
Model through electronic means, or modify the Output of the Model
based on updates. You shall undertake reasonable efforts to use the
latest version of the Model.
8. Trademarks and related. Nothing in this License permits You to make
use of Licensors trademarks, trade names, logos or to otherwise
suggest endorsement or misrepresent the relationship between the
parties; and any rights not expressly granted herein are reserved by
the Licensors.
9. Disclaimer of Warranty. Unless required by applicable law or agreed
to in writing, Licensor provides the Model and the Complementary
Material (and each Contributor provides its Contributions) on an "AS
IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied, including, without limitation, any warranties or
conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR
A PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Model, Derivatives of
the Model, and the Complementary Material and assume any risks
associated with Your exercise of permissions under this License.
10. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise, unless
required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You
for damages, including any direct, indirect, special, incidental, or
consequential damages of any character arising as a result of this
License or out of the use or inability to use the Model and the
Complementary Material (including but not limited to damages for loss
of goodwill, work stoppage, computer failure or malfunction, or any
and all other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
11. Accepting Warranty or Additional Liability. While redistributing
the Model, Derivatives of the Model and the Complementary Material
thereof, You may choose to offer, and charge a fee for, acceptance of
support, warranty, indemnity, or other liability obligations and/or
rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole
responsibility, not on behalf of any other Contributor, and only if
You agree to indemnify, defend, and hold each Contributor harmless for
any liability incurred by, or claims asserted against, such
Contributor by reason of your accepting any such warranty or
additional liability.
12. If any provision of this License is held to be invalid, illegal or
unenforceable, the remaining provisions shall be unaffected thereby
and remain valid as if such provision had not been set forth herein.
END OF TERMS AND CONDITIONS
Attachment A
Use Restrictions
You agree not to use the Model or Derivatives of the Model:
- In any way that violates any applicable national, federal, state,
local or international law or regulation;
- For the purpose of exploiting, harming or attempting to exploit or
harm minors in any way;
- To generate or disseminate verifiably false information and/or
content with the purpose of harming others;
- To generate or disseminate personal identifiable information that
can be used to harm an individual;
- To defame, disparage or otherwise harass others;
- For fully automated decision making that adversely impacts an
individuals legal rights or otherwise creates or modifies a
binding, enforceable obligation;
pp- For any use intended to or which has the effect of discriminating
against or harming individuals or groups based on online or offline
social behavior or known or predicted personal or personality
characteristics;
- To exploit any of the vulnerabilities of a specific group of persons
based on their age, social, physical or mental characteristics, in
order to materially distort the behavior of a person pertaining to
that group in a manner that causes or is likely to cause that person
or another person physical or psychological harm;
- For any use intended to or which has the effect of discriminating
against individuals or groups based on legally protected
characteristics or categories;
- To provide medical advice and medical results interpretation;
- To generate or disseminate information for the purpose to be used
for administration of justice, law enforcement, immigration or
asylum processes, such as predicting an individual will commit
fraud/crime commitment (e.g. by text profiling, drawing causal
relationships between assertions made in documents, indiscriminate
and arbitrarily-targeted use).

210
README-CompViz.md Normal file
View File

@@ -0,0 +1,210 @@
# Original README from CompViz/stable-diffusion
*Stable Diffusion was made possible thanks to a collaboration with [Stability AI](https://stability.ai/) and [Runway](https://runwayml.com/) and builds upon our previous work:*
[**High-Resolution Image Synthesis with Latent Diffusion Models**](https://ommer-lab.com/research/latent-diffusion-models/)<br/>
[Robin Rombach](https://github.com/rromb)\*,
[Andreas Blattmann](https://github.com/ablattmann)\*,
[Dominik Lorenz](https://github.com/qp-qp)\,
[Patrick Esser](https://github.com/pesser),
[Björn Ommer](https://hci.iwr.uni-heidelberg.de/Staff/bommer)<br/>
**CVPR '22 Oral**
which is available on [GitHub](https://github.com/CompVis/latent-diffusion). PDF at [arXiv](https://arxiv.org/abs/2112.10752). Please also visit our [Project page](https://ommer-lab.com/research/latent-diffusion-models/).
![txt2img-stable2](assets/stable-samples/txt2img/merged-0006.png)
[Stable Diffusion](#stable-diffusion-v1) is a latent text-to-image diffusion
model.
Thanks to a generous compute donation from [Stability AI](https://stability.ai/) and support from [LAION](https://laion.ai/), we were able to train a Latent Diffusion Model on 512x512 images from a subset of the [LAION-5B](https://laion.ai/blog/laion-5b/) database.
Similar to Google's [Imagen](https://arxiv.org/abs/2205.11487),
this model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts.
With its 860M UNet and 123M text encoder, the model is relatively lightweight and runs on a GPU with at least 10GB VRAM.
See [this section](#stable-diffusion-v1) below and the [model card](https://huggingface.co/CompVis/stable-diffusion).
## Requirements
A suitable [conda](https://conda.io/) environment named `ldm` can be created
and activated with:
```
conda env create -f environment.yaml
conda activate ldm
```
You can also update an existing [latent diffusion](https://github.com/CompVis/latent-diffusion) environment by running
```
conda install pytorch torchvision -c pytorch
pip install transformers==4.19.2
pip install -e .
```
## Stable Diffusion v1
Stable Diffusion v1 refers to a specific configuration of the model
architecture that uses a downsampling-factor 8 autoencoder with an 860M UNet
and CLIP ViT-L/14 text encoder for the diffusion model. The model was pretrained on 256x256 images and
then finetuned on 512x512 images.
*Note: Stable Diffusion v1 is a general text-to-image diffusion model and therefore mirrors biases and (mis-)conceptions that are present
in its training data.
Details on the training procedure and data, as well as the intended use of the model can be found in the corresponding [model card](https://huggingface.co/CompVis/stable-diffusion).
Research into the safe deployment of general text-to-image models is an ongoing effort. To prevent misuse and harm, we currently provide access to the checkpoints only for [academic research purposes upon request](https://stability.ai/academia-access-form).
**This is an experiment in safe and community-driven publication of a capable and general text-to-image model. We are working on a public release with a more permissive license that also incorporates ethical considerations.***
[Request access to Stable Diffusion v1 checkpoints for academic research](https://stability.ai/academia-access-form)
### Weights
We currently provide three checkpoints, `sd-v1-1.ckpt`, `sd-v1-2.ckpt` and `sd-v1-3.ckpt`,
which were trained as follows,
- `sd-v1-1.ckpt`: 237k steps at resolution `256x256` on [laion2B-en](https://huggingface.co/datasets/laion/laion2B-en).
194k steps at resolution `512x512` on [laion-high-resolution](https://huggingface.co/datasets/laion/laion-high-resolution) (170M examples from LAION-5B with resolution `>= 1024x1024`).
- `sd-v1-2.ckpt`: Resumed from `sd-v1-1.ckpt`.
515k steps at resolution `512x512` on "laion-improved-aesthetics" (a subset of laion2B-en,
filtered to images with an original size `>= 512x512`, estimated aesthetics score `> 5.0`, and an estimated watermark probability `< 0.5`. The watermark estimate is from the LAION-5B metadata, the aesthetics score is estimated using an [improved aesthetics estimator](https://github.com/christophschuhmann/improved-aesthetic-predictor)).
- `sd-v1-3.ckpt`: Resumed from `sd-v1-2.ckpt`. 195k steps at resolution `512x512` on "laion-improved-aesthetics" and 10\% dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598).
Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0,
5.0, 6.0, 7.0, 8.0) and 50 PLMS sampling
steps show the relative improvements of the checkpoints:
![sd evaluation results](assets/v1-variants-scores.jpg)
### Text-to-Image with Stable Diffusion
![txt2img-stable2](assets/stable-samples/txt2img/merged-0005.png)
![txt2img-stable2](assets/stable-samples/txt2img/merged-0007.png)
Stable Diffusion is a latent diffusion model conditioned on the (non-pooled) text embeddings of a CLIP ViT-L/14 text encoder.
#### Sampling Script
After [obtaining the weights](#weights), link them
```
mkdir -p models/ldm/stable-diffusion-v1/
ln -s <path/to/model.ckpt> models/ldm/stable-diffusion-v1/model.ckpt
```
and sample with
```
python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --plms
```
By default, this uses a guidance scale of `--scale 7.5`, [Katherine Crowson's implementation](https://github.com/CompVis/latent-diffusion/pull/51) of the [PLMS](https://arxiv.org/abs/2202.09778) sampler,
and renders images of size 512x512 (which it was trained on) in 50 steps. All supported arguments are listed below (type `python scripts/txt2img.py --help`).
```commandline
usage: txt2img.py [-h] [--prompt [PROMPT]] [--outdir [OUTDIR]] [--skip_grid] [--skip_save] [--ddim_steps DDIM_STEPS] [--plms] [--laion400m] [--fixed_code] [--ddim_eta DDIM_ETA] [--n_iter N_ITER] [--H H] [--W W] [--C C] [--f F] [--n_samples N_SAMPLES] [--n_rows N_ROWS]
[--scale SCALE] [--from-file FROM_FILE] [--config CONFIG] [--ckpt CKPT] [--seed SEED] [--precision {full,autocast}]
optional arguments:
-h, --help show this help message and exit
--prompt [PROMPT] the prompt to render
--outdir [OUTDIR] dir to write results to
--skip_grid do not save a grid, only individual samples. Helpful when evaluating lots of samples
--skip_save do not save individual samples. For speed measurements.
--ddim_steps DDIM_STEPS
number of ddim sampling steps
--plms use plms sampling
--laion400m uses the LAION400M model
--fixed_code if enabled, uses the same starting code across samples
--ddim_eta DDIM_ETA ddim eta (eta=0.0 corresponds to deterministic sampling
--n_iter N_ITER sample this often
--H H image height, in pixel space
--W W image width, in pixel space
--C C latent channels
--f F downsampling factor
--n_samples N_SAMPLES
how many samples to produce for each given prompt. A.k.a. batch size
(note that the seeds for each image in the batch will be unavailable)
--n_rows N_ROWS rows in the grid (default: n_samples)
--scale SCALE unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))
--from-file FROM_FILE
if specified, load prompts from this file
--config CONFIG path to config which constructs model
--ckpt CKPT path to checkpoint of model
--seed SEED the seed (for reproducible sampling)
--precision {full,autocast}
evaluate at this precision
```
Note: The inference config for all v1 versions is designed to be used with EMA-only checkpoints.
For this reason `use_ema=False` is set in the configuration, otherwise the code will try to switch from
non-EMA to EMA weights. If you want to examine the effect of EMA vs no EMA, we provide "full" checkpoints
which contain both types of weights. For these, `use_ema=False` will load and use the non-EMA weights.
#### Diffusers Integration
Another way to download and sample Stable Diffusion is by using the [diffusers library](https://github.com/huggingface/diffusers/tree/main#new--stable-diffusion-is-now-fully-compatible-with-diffusers)
```py
# make sure you're logged in with `huggingface-cli login`
from torch import autocast
from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-3-diffusers",
use_auth_token=True
)
prompt = "a photo of an astronaut riding a horse on mars"
with autocast("cuda"):
image = pipe(prompt)["sample"][0]
image.save("astronaut_rides_horse.png")
```
### Image Modification with Stable Diffusion
By using a diffusion-denoising mechanism as first proposed by [SDEdit](https://arxiv.org/abs/2108.01073), the model can be used for different
tasks such as text-guided image-to-image translation and upscaling. Similar to the txt2img sampling script,
we provide a script to perform image modification with Stable Diffusion.
The following describes an example where a rough sketch made in [Pinta](https://www.pinta-project.com/) is converted into a detailed artwork.
```
python scripts/img2img.py --prompt "A fantasy landscape, trending on artstation" --init-img <path-to-img.jpg> --strength 0.8
```
Here, strength is a value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.
Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input. See the following example.
**Input**
![sketch-in](assets/stable-samples/img2img/sketch-mountains-input.jpg)
**Outputs**
![out3](assets/stable-samples/img2img/mountains-3.png)
![out2](assets/stable-samples/img2img/mountains-2.png)
This procedure can, for example, also be used to upscale samples from the base model.
## Comments
- Our codebase for the diffusion models builds heavily on [OpenAI's ADM codebase](https://github.com/openai/guided-diffusion)
and [https://github.com/lucidrains/denoising-diffusion-pytorch](https://github.com/lucidrains/denoising-diffusion-pytorch).
Thanks for open-sourcing!
- The implementation of the transformer encoder is from [x-transformers](https://github.com/lucidrains/x-transformers) by [lucidrains](https://github.com/lucidrains?tab=repositories).
## BibTeX
```
@misc{rombach2021highresolution,
title={High-Resolution Image Synthesis with Latent Diffusion Models},
author={Robin Rombach and Andreas Blattmann and Dominik Lorenz and Patrick Esser and Björn Ommer},
year={2021},
eprint={2112.10752},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```

574
README.md
View File

@@ -17,10 +17,15 @@ initialization only happens once. After that image generation
from the command-line interface is very fast.
The script uses the readline library to allow for in-line editing,
command history (up and down arrows), autocompletion, and more.
command history (up and down arrows), autocompletion, and more. To help
keep track of which prompts generated which images, the script writes a
log file of image names and prompts to the selected output directory.
In addition, as of version 1.02, it also writes the prompt into the PNG
file's metadata where it can be retrieved using scripts/images2prompt.py
Note that this has only been tested in the Linux environment. Testing
and tweaking for Windows is in progress.
The script is confirmed to work on Linux and Windows systems. It should
work on MacOSX as well, but this is not confirmed. Note that this script
runs from the command-line (CMD or Terminal window), and does not have a GUI.
~~~~
(ldm) ~/stable-diffusion$ python3 ./scripts/dream.py
@@ -37,23 +42,31 @@ setting sampler to plms
* Initialization done! Awaiting your command...
dream> ashley judd riding a camel -n2 -s150
Outputs:
outputs/txt2img-samples/00009.png: "ashley judd riding a camel" -n2 -s150 -S 416354203
outputs/txt2img-samples/00010.png: "ashley judd riding a camel" -n2 -s150-S 1362479620
outputs/img-samples/00009.png: "ashley judd riding a camel" -n2 -s150 -S 416354203
outputs/img-samples/00010.png: "ashley judd riding a camel" -n2 -s150 -S 1362479620
dream> "there's a fly in my soup" -n6 -g
outputs/txt2img-samples/00041.png: "there's a fly in my soup" -n6 -g -S 2685670268
outputs/img-samples/00011.png: "there's a fly in my soup" -n6 -g -S 2685670268
seeds for individual rows: [2685670268, 1216708065, 2335773498, 822223658, 714542046, 3395302430]
dream> q
# this shows how to retrieve the prompt stored in the saved image's metadata
(ldm) ~/stable-diffusion$ python3 ./scripts/images2prompt.py outputs/img_samples/*.png
00009.png: "ashley judd riding a camel" -s150 -S 416354203
00010.png: "ashley judd riding a camel" -s150 -S 1362479620
00011.png: "there's a fly in my soup" -n6 -g -S 2685670268
~~~~
The dream> prompt's arguments are pretty-much
identical to those used in the Discord bot, except you don't need to
type "!dream". A significant change is that creation of individual images is the default
unless --grid (-g) is given. For backward compatibility, the -i switch is recognized.
For command-line help type -h (or --help) at the dream> prompt.
The dream> prompt's arguments are pretty much identical to those used
in the Discord bot, except you don't need to type "!dream" (it doesn't
hurt if you do). A significant change is that creation of individual
images is now the default unless --grid (-g) is given. For backward
compatibility, the -i switch is recognized. For command-line help
type -h (or --help) at the dream> prompt.
The script itself also recognizes a series of command-line switches that will change
important global defaults, such as the directory for image outputs and the location
of the model weight files.
The script itself also recognizes a series of command-line switches
that will change important global defaults, such as the directory for
image outputs and the location of the model weight files.
## Image-to-Image
@@ -71,31 +84,309 @@ The --init_img (-I) option gives the path to the seed picture. --strength (-f) c
the original will be modified, ranging from 0.0 (keep the original intact), to 1.0 (ignore the original
completely). The default is 0.75, and ranges from 0.25-0.75 give interesting results.
## Weighted Prompts
You may weight different sections of the prompt to tell the sampler to attach different levels of
priority to them, by adding :(number) to the end of the section you wish to up- or downweight.
For example consider this prompt:
~~~~
tabby cat:0.25 white duck:0.75 hybrid
~~~~
This will tell the sampler to invest 25% of its effort on the tabby
cat aspect of the image and 75% on the white duck aspect
(surprisingly, this example actually works). The prompt weights can
use any combination of integers and floating point numbers, and they
do not need to add up to 1.
## Personalizing Text-to-Image Generation
You may personalize the generated images to provide your own styles or objects by training a new LDM checkpoint
and introducing a new vocabulary to the fixed model.
To train, prepare a folder that contains images sized at 512x512 and execute the following:
~~~~
# As the default backend is not available on Windows, if you're using that platform, execute SET PL_TORCH_DISTRIBUTED_BACKEND=gloo
(ldm) ~/stable-diffusion$ python3 ./main.py --base ./configs/stable-diffusion/v1-finetune.yaml \
-t \
--actual_resume ./models/ldm/stable-diffusion-v1/model.ckpt \
-n my_cat \
--gpus 0, \
--data_root D:/textual-inversion/my_cat \
--init_word 'cat'
~~~~
During the training process, files will be created in /logs/[project][time][project]/
where you can see the process.
conditioning* contains the training prompts
inputs, reconstruction the input images for the training epoch
samples, samples scaled for a sample of the prompt and one with the init word provided
On a RTX3090, the process for SD will take ~1h @1.6 iterations/sec.
Note: According to the associated paper, the optimal number of images
is 3-5 any more images than that and your model might not converge.
Training will run indefinately, but you may wish to stop it before the
heat death of the universe, when you fine a low loss epoch or around
~5000 iterations.
Once the model is trained, specify the trained .pt file when starting
dream using
~~~~
(ldm) ~/stable-diffusion$ python3 ./scripts/dream.py --embedding_path /path/to/embedding.pt --full_precision
~~~~
Then, to utilize your subject at the dream prompt
~~~
dream> "a photo of *"
~~~
this also works with image2image
~~~~
dream> "waterfall and rainbow in the style of *" --init_img=./init-images/crude_drawing.png --strength=0.5 -s100 -n4
~~~~
It's also possible to train multiple tokens (modify the placeholder string in configs/stable-diffusion/v1-finetune.yaml) and combine LDM checkpoints using:
~~~~
(ldm) ~/stable-diffusion$ python3 ./scripts/merge_embeddings.py \
--manager_ckpts /path/to/first/embedding.pt /path/to/second/embedding.pt [...] \
--output_path /path/to/output/embedding.pt
~~~~
Credit goes to @rinongal and the repository located at
https://github.com/rinongal/textual_inversion Please see the
repository and associated paper for details and limitations.
## Changes
* v1.08 (24 August 2022)
* Escape single quotes on the dream> command before trying to parse. This avoids
parse errors.
* A new -v option allows you to generate multiple variants of an initial image
in img2img mode. (kudos to Oceanswave)
* Removed instruction to get Python3.8 as first step in Windows install.
Anaconda3 does it for you.
* Added bounds checks for numeric arguments that could cause crashes.
* Cleaned up the copyright and license agreement files.
* v1.07 (23 August 2022)
* Image filenames will now never fill gaps in the sequence, but will be assigned the
next higher name in the chosen directory. This ensures that the alphabetic and chronological
sort orders are the same.
* v1.06 (23 August 2022)
* Added weighted prompt support contributed by [xraxra](https://github.com/xraxra)
* Example of using weighted prompts to tweak a demonic figure contributed by [bmaltais](https://github.com/bmaltais)
* v1.05 (22 August 2022 - after the drop)
* Filenames now use the following formats:
000010.95183149.png -- Two files produced by the same command (e.g. -n2),
000010.26742632.png -- distinguished by a different seed.
000011.455191342.01.png -- Two files produced by the same command using
000011.455191342.02.png -- a batch size>1 (e.g. -b2). They have the same seed.
000011.4160627868.grid#1-4.png -- a grid of four images (-g); the whole grid can
be regenerated with the indicated key
* It should no longer be possible for one image to overwrite another
* You can use the "cd" and "pwd" commands at the dream> prompt to set and retrieve
the path of the output directory.
* v1.04 (22 August 2022 - after the drop)
* Updated README to reflect installation of the released weights.
* Suppressed very noisy and inconsequential warning when loading the frozen CLIP
tokenizer.
* v1.03 (22 August 2022)
* The original txt2img and img2img scripts from the CompViz repository have been moved into
a subfolder named "orig_scripts", to reduce confusion.
* v1.02 (21 August 2022)
* A copy of the prompt and all of its switches and options is now stored in the corresponding
image in a tEXt metadata field named "Dream". You can read the prompt using scripts/images2prompt.py,
or an image editor that allows you to explore the full metadata.
**Please run "conda env update -f environment.yaml" to load the k_lms dependencies!!**
* v1.01 (21 August 2022)
* added k_lms sampling.
**Please run "conda env update -f environment.yaml" to load the k_lms dependencies!!**
* use half precision arithmetic by default, resulting in faster execution and lower memory requirements
Pass argument --full_precision to dream.py to get slower but more accurate image generation
## Installation
For installation, follow the instructions from the original CompViz/stable-diffusion
README which is appended to this README for your convenience. A few things to be aware of:
There are separate installation walkthroughs for [Linux/Mac](#linuxmac) and [Windows](#windows).
1. You will need the stable-diffusion model weights, which have to be downloaded separately as described
in the CompViz instructions. They are expected to be released in the latter half of August.
### Linux/Mac
2. If you do not have the weights and want to play with low-quality image generation, then you can use
the public LAION400m weights, which can be installed like this:
1. You will need to install the following prerequisites if they are not already available. Use your
operating system's preferred installer
* Python (version 3.8.5 recommended; higher may work)
* git
~~~~
mkdir -p models/ldm/text2img-large/
wget -O models/ldm/text2img-large/model.ckpt https://ommer-lab.com/files/latent-diffusion/nitro/txt2img-f8-large/model.ckpt
~~~~
2. Install the Python Anaconda environment manager using pip3.
```
~$ pip3 install anaconda
```
After installing anaconda, you should log out of your system and log back in. If the installation
worked, your command prompt will be prefixed by the name of the current anaconda environment, "(base)".
You will then have to invoke dream.py with the --laion400m (or -l for short) flag:
~~~~
(ldm) ~/stable-diffusion$ python3 ./scripts/dream.py -l
~~~~
3. Copy the stable-diffusion source code from GitHub:
```
(base) ~$ git clone https://github.com/lstein/stable-diffusion.git
```
This will create stable-diffusion folder where you will follow the rest of the steps.
3. To get around issues that arise when running the stable diffusion model on a machine without internet
connectivity, I wrote a script that pre-downloads internet dependencies. Whether or not your GPU machine
has connectivity, you will need to run this preloading script before the first run of dream.py. See
"Workaround for machines with limited internet connectivity" below for the walkthrough.
4. Enter the newly-created stable-diffusion folder. From this step forward make sure that you are working in the stable-diffusion directory!
```
(base) ~$ cd stable-diffusion
(base) ~/stable-diffusion$
```
5. Use anaconda to copy necessary python packages, create a new python environment named "ldm",
and activate the environment.
```
(base) ~/stable-diffusion$ conda env create -f environment.yaml
(base) ~/stable-diffusion$ conda activate ldm
(ldm) ~/stable-diffusion$
```
After these steps, your command prompt will be prefixed by "(ldm)" as shown above.
6. Load a couple of small machine-learning models required by stable diffusion:
```
(ldm) ~/stable-diffusion$ python3 scripts/preload_models.py
```
Note that this step is necessary because I modified the original
just-in-time model loading scheme to allow the script to work on GPU
machines that are not internet connected. See [Workaround for machines with limited internet connectivity](#workaround-for-machines-with-limited-internet-connectivity)
7. Now you need to install the weights for the stable diffusion model.
For running with the released weights, you will first need to set up an acount with Hugging Face (https://huggingface.co).
Use your credentials to log in, and then point your browser at https://huggingface.co/CompVis/stable-diffusion-v-1-4-original.
You may be asked to sign a license agreement at this point.
Click on "Files and versions" near the top of the page, and then click on the file named "sd-v1-4.ckpt". You'll be taken
to a page that prompts you to click the "download" link. Save the file somewhere safe on your local machine.
Now run the following commands from within the stable-diffusion directory. This will create a symbolic
link from the stable-diffusion model.ckpt file, to the true location of the sd-v1-4.ckpt file.
```
(ldm) ~/stable-diffusion$ mkdir -p models/ldm/stable-diffusion-v1
(ldm) ~/stable-diffusion$ ln -sf /path/to/sd-v1-4.ckpt models/ldm/stable-diffusion-v1/model.ckpt
```
8. Start generating images!
```
# for the pre-release weights use the -l or --liaon400m switch
(ldm) ~/stable-diffusion$ python3 scripts/dream.py -l
# for the post-release weights do not use the switch
(ldm) ~/stable-diffusion$ python3 scripts/dream.py
# for additional configuration switches and arguments, use -h or --help
(ldm) ~/stable-diffusion$ python3 scripts/dream.py -h
```
9. Subsequently, to relaunch the script, be sure to run "conda activate ldm" (step 5, second command), enter the "stable-diffusion"
directory, and then launch the dream script (step 8). If you forget to activate the ldm environment, the script will fail with multiple ModuleNotFound errors.
#### Updating to newer versions of the script
This distribution is changing rapidly. If you used the "git clone" method (step 5) to download the stable-diffusion directory, then to update to the latest and greatest version, launch the Anaconda window, enter "stable-diffusion", and type:
```
(ldm) ~/stable-diffusion$ git pull
```
This will bring your local copy into sync with the remote one.
### Windows
1. Install Anaconda3 (miniconda3 version) from here: https://docs.anaconda.com/anaconda/install/windows/
2. Install Git from here: https://git-scm.com/download/win
3. Launch Anaconda from the Windows Start menu. This will bring up a command window. Type all the remaining commands in this window.
4. Run the command:
```
git clone https://github.com/lstein/stable-diffusion.git
```
This will create stable-diffusion folder where you will follow the rest of the steps.
5. Enter the newly-created stable-diffusion folder. From this step forward make sure that you are working in the stable-diffusion directory!
```
cd stable-diffusion
```
6. Run the following two commands:
```
conda env create -f environment.yaml (step 6a)
conda activate ldm (step 6b)
```
This will install all python requirements and activate the "ldm" environment which sets PATH and other environment variables properly.
7. Run the command:
```
python scripts\preload_models.py
```
This installs several machine learning models that stable diffusion
requires. (Note that this step is required. I created it because some people
are using GPU systems that are behind a firewall and the models can't be
downloaded just-in-time)
8. Now you need to install the weights for the big stable diffusion model.
For running with the released weights, you will first need to set up
an acount with Hugging Face (https://huggingface.co). Use your
credentials to log in, and then point your browser at
https://huggingface.co/CompVis/stable-diffusion-v-1-4-original. You
may be asked to sign a license agreement at this point.
Click on "Files and versions" near the top of the page, and then click
on the file named "sd-v1-4.ckpt". You'll be taken to a page that
prompts you to click the "download" link. Now save the file somewhere
safe on your local machine. The weight file is >4 GB in size, so
downloading may take a while.
Now run the following commands from **within the stable-diffusion
directory** to copy the weights file to the right place:
```
mkdir -p models\ldm\stable-diffusion-v1
copy C:\path\to\sd-v1-4.ckpt models\ldm\stable-diffusion-v1\model.ckpt
```
Please replace "C:\path\to\sd-v1.4.ckpt" with the correct path to wherever
you stashed this file. If you prefer not to copy or move the .ckpt file,
you may instead create a shortcut to it from within
"models\ldm\stable-diffusion-v1\".
9. Start generating images!
```
# for the pre-release weights
python scripts\dream.py -l
# for the post-release weights
python scripts\dream.py
```
10. Subsequently, to relaunch the script, first activate the Anaconda command window (step 3), enter the stable-diffusion directory (step 5, "cd \path\to\stable-diffusion"), run "conda activate ldm" (step 6b), and then launch the dream script (step 9).
#### Updating to newer versions of the script
This distribution is changing rapidly. If you used the "git clone" method (step 5) to download the stable-diffusion directory, then to update to the latest and greatest version, launch the Anaconda window, enter "stable-diffusion", and type:
```
git pull
```
This will bring your local copy into sync with the remote one.
## Simplified API for text to image generation
@@ -106,7 +397,7 @@ lets you create images from a prompt in just three lines of code:
~~~~
from ldm.simplet2i import T2I
model = T2I()
outputs = model.text2image("a unicorn in manhattan")
outputs = model.txt2img("a unicorn in manhattan")
~~~~
Outputs is a list of lists in the format [[filename1,seed1],[filename2,seed2]...]
@@ -154,214 +445,17 @@ For support,
please use this repository's GitHub Issues tracking service. Feel free
to send me an email if you use and like the script.
*Author:* Lincoln D. Stein <lincoln.stein@gmail.com>
*Original Author:* Lincoln D. Stein <lincoln.stein@gmail.com>
# Original README from CompViz/stable-diffusion
*Stable Diffusion was made possible thanks to a collaboration with [Stability AI](https://stability.ai/) and [Runway](https://runwayml.com/) and builds upon our previous work:*
*Contributions by:*
[Peter Kowalczyk](https://github.com/slix), [Henry Harrison](https://github.com/hwharrison),
[xraxra](https://github.com/xraxra), [bmaltais](https://github.com/bmaltais), [Sean McLellan] (https://github.com/Oceanswave],
[nicolai256](https://github.com/nicolai256], [Benjamin Warner](https://github.com/warner-benjamin),
and [tildebyte](https://github.com/tildebyte)
[**High-Resolution Image Synthesis with Latent Diffusion Models**](https://ommer-lab.com/research/latent-diffusion-models/)<br/>
[Robin Rombach](https://github.com/rromb)\*,
[Andreas Blattmann](https://github.com/ablattmann)\*,
[Dominik Lorenz](https://github.com/qp-qp)\,
[Patrick Esser](https://github.com/pesser),
[Björn Ommer](https://hci.iwr.uni-heidelberg.de/Staff/bommer)<br/>
**CVPR '22 Oral**
which is available on [GitHub](https://github.com/CompVis/latent-diffusion). PDF at [arXiv](https://arxiv.org/abs/2112.10752). Please also visit our [Project page](https://ommer-lab.com/research/latent-diffusion-models/).
![txt2img-stable2](assets/stable-samples/txt2img/merged-0006.png)
[Stable Diffusion](#stable-diffusion-v1) is a latent text-to-image diffusion
model.
Thanks to a generous compute donation from [Stability AI](https://stability.ai/) and support from [LAION](https://laion.ai/), we were able to train a Latent Diffusion Model on 512x512 images from a subset of the [LAION-5B](https://laion.ai/blog/laion-5b/) database.
Similar to Google's [Imagen](https://arxiv.org/abs/2205.11487),
this model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts.
With its 860M UNet and 123M text encoder, the model is relatively lightweight and runs on a GPU with at least 10GB VRAM.
See [this section](#stable-diffusion-v1) below and the [model card](https://huggingface.co/CompVis/stable-diffusion).
## Requirements
A suitable [conda](https://conda.io/) environment named `ldm` can be created
and activated with:
```
conda env create -f environment.yaml
conda activate ldm
```
You can also update an existing [latent diffusion](https://github.com/CompVis/latent-diffusion) environment by running
```
conda install pytorch torchvision -c pytorch
pip install transformers==4.19.2
pip install -e .
```
## Stable Diffusion v1
Stable Diffusion v1 refers to a specific configuration of the model
architecture that uses a downsampling-factor 8 autoencoder with an 860M UNet
and CLIP ViT-L/14 text encoder for the diffusion model. The model was pretrained on 256x256 images and
then finetuned on 512x512 images.
*Note: Stable Diffusion v1 is a general text-to-image diffusion model and therefore mirrors biases and (mis-)conceptions that are present
in its training data.
Details on the training procedure and data, as well as the intended use of the model can be found in the corresponding [model card](https://huggingface.co/CompVis/stable-diffusion).
Research into the safe deployment of general text-to-image models is an ongoing effort. To prevent misuse and harm, we currently provide access to the checkpoints only for [academic research purposes upon request](https://stability.ai/academia-access-form).
**This is an experiment in safe and community-driven publication of a capable and general text-to-image model. We are working on a public release with a more permissive license that also incorporates ethical considerations.***
[Request access to Stable Diffusion v1 checkpoints for academic research](https://stability.ai/academia-access-form)
### Weights
We currently provide three checkpoints, `sd-v1-1.ckpt`, `sd-v1-2.ckpt` and `sd-v1-3.ckpt`,
which were trained as follows,
- `sd-v1-1.ckpt`: 237k steps at resolution `256x256` on [laion2B-en](https://huggingface.co/datasets/laion/laion2B-en).
194k steps at resolution `512x512` on [laion-high-resolution](https://huggingface.co/datasets/laion/laion-high-resolution) (170M examples from LAION-5B with resolution `>= 1024x1024`).
- `sd-v1-2.ckpt`: Resumed from `sd-v1-1.ckpt`.
515k steps at resolution `512x512` on "laion-improved-aesthetics" (a subset of laion2B-en,
filtered to images with an original size `>= 512x512`, estimated aesthetics score `> 5.0`, and an estimated watermark probability `< 0.5`. The watermark estimate is from the LAION-5B metadata, the aesthetics score is estimated using an [improved aesthetics estimator](https://github.com/christophschuhmann/improved-aesthetic-predictor)).
- `sd-v1-3.ckpt`: Resumed from `sd-v1-2.ckpt`. 195k steps at resolution `512x512` on "laion-improved-aesthetics" and 10\% dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598).
Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0,
5.0, 6.0, 7.0, 8.0) and 50 PLMS sampling
steps show the relative improvements of the checkpoints:
![sd evaluation results](assets/v1-variants-scores.jpg)
### Text-to-Image with Stable Diffusion
![txt2img-stable2](assets/stable-samples/txt2img/merged-0005.png)
![txt2img-stable2](assets/stable-samples/txt2img/merged-0007.png)
Stable Diffusion is a latent diffusion model conditioned on the (non-pooled) text embeddings of a CLIP ViT-L/14 text encoder.
#### Sampling Script
After [obtaining the weights](#weights), link them
```
mkdir -p models/ldm/stable-diffusion-v1/
ln -s <path/to/model.ckpt> models/ldm/stable-diffusion-v1/model.ckpt
```
and sample with
```
python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --plms
```
By default, this uses a guidance scale of `--scale 7.5`, [Katherine Crowson's implementation](https://github.com/CompVis/latent-diffusion/pull/51) of the [PLMS](https://arxiv.org/abs/2202.09778) sampler,
and renders images of size 512x512 (which it was trained on) in 50 steps. All supported arguments are listed below (type `python scripts/txt2img.py --help`).
```commandline
usage: txt2img.py [-h] [--prompt [PROMPT]] [--outdir [OUTDIR]] [--skip_grid] [--skip_save] [--ddim_steps DDIM_STEPS] [--plms] [--laion400m] [--fixed_code] [--ddim_eta DDIM_ETA] [--n_iter N_ITER] [--H H] [--W W] [--C C] [--f F] [--n_samples N_SAMPLES] [--n_rows N_ROWS]
[--scale SCALE] [--from-file FROM_FILE] [--config CONFIG] [--ckpt CKPT] [--seed SEED] [--precision {full,autocast}]
optional arguments:
-h, --help show this help message and exit
--prompt [PROMPT] the prompt to render
--outdir [OUTDIR] dir to write results to
--skip_grid do not save a grid, only individual samples. Helpful when evaluating lots of samples
--skip_save do not save individual samples. For speed measurements.
--ddim_steps DDIM_STEPS
number of ddim sampling steps
--plms use plms sampling
--laion400m uses the LAION400M model
--fixed_code if enabled, uses the same starting code across samples
--ddim_eta DDIM_ETA ddim eta (eta=0.0 corresponds to deterministic sampling
--n_iter N_ITER sample this often
--H H image height, in pixel space
--W W image width, in pixel space
--C C latent channels
--f F downsampling factor
--n_samples N_SAMPLES
how many samples to produce for each given prompt. A.k.a. batch size
--n_rows N_ROWS rows in the grid (default: n_samples)
--scale SCALE unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))
--from-file FROM_FILE
if specified, load prompts from this file
--config CONFIG path to config which constructs model
--ckpt CKPT path to checkpoint of model
--seed SEED the seed (for reproducible sampling)
--precision {full,autocast}
evaluate at this precision
```
Note: The inference config for all v1 versions is designed to be used with EMA-only checkpoints.
For this reason `use_ema=False` is set in the configuration, otherwise the code will try to switch from
non-EMA to EMA weights. If you want to examine the effect of EMA vs no EMA, we provide "full" checkpoints
which contain both types of weights. For these, `use_ema=False` will load and use the non-EMA weights.
#### Diffusers Integration
Another way to download and sample Stable Diffusion is by using the [diffusers library](https://github.com/huggingface/diffusers/tree/main#new--stable-diffusion-is-now-fully-compatible-with-diffusers)
```py
# make sure you're logged in with `huggingface-cli login`
from torch import autocast
from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-3-diffusers",
use_auth_token=True
)
prompt = "a photo of an astronaut riding a horse on mars"
with autocast("cuda"):
image = pipe(prompt)["sample"][0]
image.save("astronaut_rides_horse.png")
```
### Image Modification with Stable Diffusion
By using a diffusion-denoising mechanism as first proposed by [SDEdit](https://arxiv.org/abs/2108.01073), the model can be used for different
tasks such as text-guided image-to-image translation and upscaling. Similar to the txt2img sampling script,
we provide a script to perform image modification with Stable Diffusion.
The following describes an example where a rough sketch made in [Pinta](https://www.pinta-project.com/) is converted into a detailed artwork.
```
python scripts/img2img.py --prompt "A fantasy landscape, trending on artstation" --init-img <path-to-img.jpg> --strength 0.8
```
Here, strength is a value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.
Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input. See the following example.
**Input**
![sketch-in](assets/stable-samples/img2img/sketch-mountains-input.jpg)
**Outputs**
![out3](assets/stable-samples/img2img/mountains-3.png)
![out2](assets/stable-samples/img2img/mountains-2.png)
This procedure can, for example, also be used to upscale samples from the base model.
## Comments
- Our codebase for the diffusion models builds heavily on [OpenAI's ADM codebase](https://github.com/openai/guided-diffusion)
and [https://github.com/lucidrains/denoising-diffusion-pytorch](https://github.com/lucidrains/denoising-diffusion-pytorch).
Thanks for open-sourcing!
- The implementation of the transformer encoder is from [x-transformers](https://github.com/lucidrains/x-transformers) by [lucidrains](https://github.com/lucidrains?tab=repositories).
## BibTeX
```
@misc{rombach2021highresolution,
title={High-Resolution Image Synthesis with Latent Diffusion Models},
author={Robin Rombach and Andreas Blattmann and Dominik Lorenz and Patrick Esser and Björn Ommer},
year={2021},
eprint={2112.10752},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
Original portions of the software are Copyright (c) 2020 Lincoln D. Stein (https://github.com/lstein)
#Further Reading
Please see the original README for more information on this software
and underlying algorithm, located in the file README-CompViz.md.

31
TODO.txt Normal file
View File

@@ -0,0 +1,31 @@
Feature requests:
1. "gobig" mode - split image into strips, scale up, add detail using
img2img and reassemble with feathering. Issue #66.
2. Port basujindal low VRAM optimizations. Issue #62
3. Store images under folders named after the prompt. Issue #27.
4. Some sort of automation for generating variations. Issues #32 and #47.
5. Support for inpainting masks #68.
6. Support for loading variations of the stable-diffusion
weights #49
7. Support for klms and other non-ddim samplers in img2img() #36
8. Pass a shell command to open up an image viewer on the last
batch of images generated #29.
Code Refactorization:
1. Move the PNG file generation code out of simplet2i and into
separate module. txt2img() and img2img() should return Image
objects, and parent code is responsible for filenaming logic.
2. Refactor redundant code that is shared between txt2img() and
img2img().
3. Experiment with replacing CompViz code with HuggingFace.

View File

@@ -0,0 +1,105 @@
model:
base_learning_rate: 5.0e-03
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
cond_stage_key: caption
image_size: 64
channels: 4
cond_stage_trainable: true # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False
embedding_reg_weight: 0.0
personalization_config:
target: ldm.modules.embedding_manager.EmbeddingManager
params:
placeholder_strings: ["*"]
initializer_words: ["sculpture"]
per_image_tokens: false
num_vectors_per_token: 1
progressive_words: False
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
data:
target: main.DataModuleFromConfig
params:
batch_size: 2
num_workers: 16
wrap: false
train:
target: ldm.data.personalized.PersonalizedBase
params:
size: 512
set: train
per_image_tokens: false
repeats: 100
validation:
target: ldm.data.personalized.PersonalizedBase
params:
size: 512
set: val
per_image_tokens: false
repeats: 10
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 500
max_images: 8
increase_log_steps: False
trainer:
benchmark: True
max_steps: 6100

View File

@@ -0,0 +1,103 @@
model:
base_learning_rate: 5.0e-03
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
cond_stage_key: caption
image_size: 64
channels: 4
cond_stage_trainable: true # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False
embedding_reg_weight: 0.0
personalization_config:
target: ldm.modules.embedding_manager.EmbeddingManager
params:
placeholder_strings: ["*"]
initializer_words: ["painting"]
per_image_tokens: false
num_vectors_per_token: 1
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
data:
target: main.DataModuleFromConfig
params:
batch_size: 2
num_workers: 16
wrap: false
train:
target: ldm.data.personalized_style.PersonalizedBase
params:
size: 512
set: train
per_image_tokens: false
repeats: 100
validation:
target: ldm.data.personalized_style.PersonalizedBase
params:
size: 512
set: val
per_image_tokens: false
repeats: 10
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 500
max_images: 8
increase_log_steps: False
trainer:
benchmark: True

View File

@@ -26,6 +26,15 @@ model:
f_max: [ 1. ]
f_min: [ 1. ]
personalization_config:
target: ldm.modules.embedding_manager.EmbeddingManager
params:
placeholder_strings: ["*"]
initializer_words: ["sculpture"]
per_image_tokens: false
num_vectors_per_token: 1
progressive_words: False
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:

View File

@@ -19,11 +19,14 @@ dependencies:
- omegaconf==2.1.1
- test-tube>=0.7.5
- streamlit>=0.73.1
- pillow==9.0.1
- einops==0.3.0
- torch-fidelity==0.3.0
- transformers==4.19.2
- torchmetrics==0.6.0
- kornia==0.6
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
- accelerate==0.12.0
- -e git+https://github.com/openai/CLIP.git@main#egg=clip
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
- -e git+https://github.com/lstein/k-diffusion.git@master#egg=k-diffusion
- -e .

160
ldm/data/personalized.py Normal file
View File

@@ -0,0 +1,160 @@
import os
import numpy as np
import PIL
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
import random
imagenet_templates_smallest = [
'a photo of a {}',
]
imagenet_templates_small = [
'a photo of a {}',
'a rendering of a {}',
'a cropped photo of the {}',
'the photo of a {}',
'a photo of a clean {}',
'a photo of a dirty {}',
'a dark photo of the {}',
'a photo of my {}',
'a photo of the cool {}',
'a close-up photo of a {}',
'a bright photo of the {}',
'a cropped photo of a {}',
'a photo of the {}',
'a good photo of the {}',
'a photo of one {}',
'a close-up photo of the {}',
'a rendition of the {}',
'a photo of the clean {}',
'a rendition of a {}',
'a photo of a nice {}',
'a good photo of a {}',
'a photo of the nice {}',
'a photo of the small {}',
'a photo of the weird {}',
'a photo of the large {}',
'a photo of a cool {}',
'a photo of a small {}',
]
imagenet_dual_templates_small = [
'a photo of a {} with {}',
'a rendering of a {} with {}',
'a cropped photo of the {} with {}',
'the photo of a {} with {}',
'a photo of a clean {} with {}',
'a photo of a dirty {} with {}',
'a dark photo of the {} with {}',
'a photo of my {} with {}',
'a photo of the cool {} with {}',
'a close-up photo of a {} with {}',
'a bright photo of the {} with {}',
'a cropped photo of a {} with {}',
'a photo of the {} with {}',
'a good photo of the {} with {}',
'a photo of one {} with {}',
'a close-up photo of the {} with {}',
'a rendition of the {} with {}',
'a photo of the clean {} with {}',
'a rendition of a {} with {}',
'a photo of a nice {} with {}',
'a good photo of a {} with {}',
'a photo of the nice {} with {}',
'a photo of the small {} with {}',
'a photo of the weird {} with {}',
'a photo of the large {} with {}',
'a photo of a cool {} with {}',
'a photo of a small {} with {}',
]
per_img_token_list = [
'א', 'ב', 'ג', 'ד', 'ה', 'ו', 'ז', 'ח', 'ט', 'י', 'כ', 'ל', 'מ', 'נ', 'ס', 'ע', 'פ', 'צ', 'ק', 'ר', 'ש', 'ת',
]
class PersonalizedBase(Dataset):
def __init__(self,
data_root,
size=None,
repeats=100,
interpolation="bicubic",
flip_p=0.5,
set="train",
placeholder_token="*",
per_image_tokens=False,
center_crop=False,
mixing_prob=0.25,
coarse_class_text=None,
):
self.data_root = data_root
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
# self._length = len(self.image_paths)
self.num_images = len(self.image_paths)
self._length = self.num_images
self.placeholder_token = placeholder_token
self.per_image_tokens = per_image_tokens
self.center_crop = center_crop
self.mixing_prob = mixing_prob
self.coarse_class_text = coarse_class_text
if per_image_tokens:
assert self.num_images < len(per_img_token_list), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
if set == "train":
self._length = self.num_images * repeats
self.size = size
self.interpolation = {"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
}[interpolation]
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
def __len__(self):
return self._length
def __getitem__(self, i):
example = {}
image = Image.open(self.image_paths[i % self.num_images])
if not image.mode == "RGB":
image = image.convert("RGB")
placeholder_string = self.placeholder_token
if self.coarse_class_text:
placeholder_string = f"{self.coarse_class_text} {placeholder_string}"
if self.per_image_tokens and np.random.uniform() < self.mixing_prob:
text = random.choice(imagenet_dual_templates_small).format(placeholder_string, per_img_token_list[i % self.num_images])
else:
text = random.choice(imagenet_templates_small).format(placeholder_string)
example["caption"] = text
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
h, w, = img.shape[0], img.shape[1]
img = img[(h - crop) // 2:(h + crop) // 2,
(w - crop) // 2:(w + crop) // 2]
image = Image.fromarray(img)
if self.size is not None:
image = image.resize((self.size, self.size), resample=self.interpolation)
image = self.flip(image)
image = np.array(image).astype(np.uint8)
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
return example

View File

@@ -0,0 +1,129 @@
import os
import numpy as np
import PIL
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
import random
imagenet_templates_small = [
'a painting in the style of {}',
'a rendering in the style of {}',
'a cropped painting in the style of {}',
'the painting in the style of {}',
'a clean painting in the style of {}',
'a dirty painting in the style of {}',
'a dark painting in the style of {}',
'a picture in the style of {}',
'a cool painting in the style of {}',
'a close-up painting in the style of {}',
'a bright painting in the style of {}',
'a cropped painting in the style of {}',
'a good painting in the style of {}',
'a close-up painting in the style of {}',
'a rendition in the style of {}',
'a nice painting in the style of {}',
'a small painting in the style of {}',
'a weird painting in the style of {}',
'a large painting in the style of {}',
]
imagenet_dual_templates_small = [
'a painting in the style of {} with {}',
'a rendering in the style of {} with {}',
'a cropped painting in the style of {} with {}',
'the painting in the style of {} with {}',
'a clean painting in the style of {} with {}',
'a dirty painting in the style of {} with {}',
'a dark painting in the style of {} with {}',
'a cool painting in the style of {} with {}',
'a close-up painting in the style of {} with {}',
'a bright painting in the style of {} with {}',
'a cropped painting in the style of {} with {}',
'a good painting in the style of {} with {}',
'a painting of one {} in the style of {}',
'a nice painting in the style of {} with {}',
'a small painting in the style of {} with {}',
'a weird painting in the style of {} with {}',
'a large painting in the style of {} with {}',
]
per_img_token_list = [
'א', 'ב', 'ג', 'ד', 'ה', 'ו', 'ז', 'ח', 'ט', 'י', 'כ', 'ל', 'מ', 'נ', 'ס', 'ע', 'פ', 'צ', 'ק', 'ר', 'ש', 'ת',
]
class PersonalizedBase(Dataset):
def __init__(self,
data_root,
size=None,
repeats=100,
interpolation="bicubic",
flip_p=0.5,
set="train",
placeholder_token="*",
per_image_tokens=False,
center_crop=False,
):
self.data_root = data_root
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
# self._length = len(self.image_paths)
self.num_images = len(self.image_paths)
self._length = self.num_images
self.placeholder_token = placeholder_token
self.per_image_tokens = per_image_tokens
self.center_crop = center_crop
if per_image_tokens:
assert self.num_images < len(per_img_token_list), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
if set == "train":
self._length = self.num_images * repeats
self.size = size
self.interpolation = {"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
}[interpolation]
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
def __len__(self):
return self._length
def __getitem__(self, i):
example = {}
image = Image.open(self.image_paths[i % self.num_images])
if not image.mode == "RGB":
image = image.convert("RGB")
if self.per_image_tokens and np.random.uniform() < 0.25:
text = random.choice(imagenet_dual_templates_small).format(self.placeholder_token, per_img_token_list[i % self.num_images])
else:
text = random.choice(imagenet_templates_small).format(self.placeholder_token)
example["caption"] = text
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
h, w, = img.shape[0], img.shape[1]
img = img[(h - crop) // 2:(h + crop) // 2,
(w - crop) // 2:(w + crop) // 2]
image = Image.fromarray(img)
if self.size is not None:
image = image.resize((self.size, self.size), resample=self.interpolation)
image = self.flip(image)
image = np.array(image).astype(np.uint8)
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
return example

View File

@@ -10,16 +10,17 @@ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, mak
class DDIMSampler(object):
def __init__(self, model, schedule="linear", **kwargs):
def __init__(self, model, schedule="linear", device="cuda", **kwargs):
super().__init__()
self.model = model
self.ddpm_num_timesteps = model.num_timesteps
self.schedule = schedule
self.device = device
def register_buffer(self, name, attr):
if type(attr) == torch.Tensor:
if attr.device != torch.device("cuda"):
attr = attr.to(torch.device("cuda"))
if attr.device != torch.device(self.device):
attr = attr.to(torch.device(self.device))
setattr(self, name, attr)
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):

View File

@@ -7,7 +7,9 @@ https://github.com/CompVis/taming-transformers
"""
import torch
import torch.nn as nn
import os
import numpy as np
import pytorch_lightning as pl
from torch.optim.lr_scheduler import LambdaLR
@@ -64,6 +66,7 @@ class DDPM(pl.LightningModule):
cosine_s=8e-3,
given_betas=None,
original_elbo_weight=0.,
embedding_reg_weight=0.,
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
l_simple_weight=1.,
conditioning_key=None,
@@ -98,6 +101,7 @@ class DDPM(pl.LightningModule):
self.v_posterior = v_posterior
self.original_elbo_weight = original_elbo_weight
self.l_simple_weight = l_simple_weight
self.embedding_reg_weight = embedding_reg_weight
if monitor is not None:
self.monitor = monitor
@@ -427,6 +431,7 @@ class LatentDiffusion(DDPM):
def __init__(self,
first_stage_config,
cond_stage_config,
personalization_config,
num_timesteps_cond=None,
cond_stage_key="image",
cond_stage_trainable=False,
@@ -436,6 +441,7 @@ class LatentDiffusion(DDPM):
scale_factor=1.0,
scale_by_std=False,
*args, **kwargs):
self.num_timesteps_cond = default(num_timesteps_cond, 1)
self.scale_by_std = scale_by_std
assert self.num_timesteps_cond <= kwargs['timesteps']
@@ -450,6 +456,7 @@ class LatentDiffusion(DDPM):
self.concat_mode = concat_mode
self.cond_stage_trainable = cond_stage_trainable
self.cond_stage_key = cond_stage_key
try:
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
except:
@@ -460,6 +467,7 @@ class LatentDiffusion(DDPM):
self.register_buffer('scale_factor', torch.tensor(scale_factor))
self.instantiate_first_stage(first_stage_config)
self.instantiate_cond_stage(cond_stage_config)
self.cond_stage_forward = cond_stage_forward
self.clip_denoised = False
self.bbox_tokenizer = None
@@ -469,6 +477,25 @@ class LatentDiffusion(DDPM):
self.init_from_ckpt(ckpt_path, ignore_keys)
self.restarted_from_ckpt = True
self.cond_stage_model.train = disabled_train
for param in self.cond_stage_model.parameters():
param.requires_grad = False
self.model.eval()
self.model.train = disabled_train
for param in self.model.parameters():
param.requires_grad = False
self.embedding_manager = self.instantiate_embedding_manager(personalization_config, self.cond_stage_model)
self.emb_ckpt_counter = 0
# if self.embedding_manager.is_clip:
# self.cond_stage_model.update_embedding_func(self.embedding_manager)
for param in self.embedding_manager.embedding_parameters():
param.requires_grad = True
def make_cond_schedule(self, ):
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
@@ -530,6 +557,15 @@ class LatentDiffusion(DDPM):
except urllib.error.URLError:
raise SystemExit("* Couldn't load a dependency. Try running scripts/preload_models.py from an internet-conected machine.")
self.cond_stage_model = model
def instantiate_embedding_manager(self, config, embedder):
model = instantiate_from_config(config, embedder=embedder)
if config.params.get("embedding_manager_ckpt", None): # do not load if missing OR empty string
model.load(config.params.embedding_manager_ckpt)
return model
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
denoise_row = []
@@ -555,7 +591,7 @@ class LatentDiffusion(DDPM):
def get_learned_conditioning(self, c):
if self.cond_stage_forward is None:
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
c = self.cond_stage_model.encode(c)
c = self.cond_stage_model.encode(c, embedding_manager=self.embedding_manager)
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()
else:
@@ -880,6 +916,7 @@ class LatentDiffusion(DDPM):
if self.shorten_cond_schedule: # TODO: drop this option
tc = self.cond_ids[t].to(self.device)
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
return self.p_losses(x, c, t, *args, **kwargs)
def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
@@ -1046,6 +1083,14 @@ class LatentDiffusion(DDPM):
loss += (self.original_elbo_weight * loss_vlb)
loss_dict.update({f'{prefix}/loss': loss})
if self.embedding_reg_weight > 0:
loss_embedding_reg = self.embedding_manager.embedding_to_coarse_loss().mean()
loss_dict.update({f'{prefix}/loss_emb_reg': loss_embedding_reg})
loss += (self.embedding_reg_weight * loss_embedding_reg)
loss_dict.update({f'{prefix}/loss': loss})
return loss, loss_dict
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
@@ -1250,11 +1295,10 @@ class LatentDiffusion(DDPM):
return samples, intermediates
@torch.no_grad()
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
plot_diffusion_rows=True, **kwargs):
quantize_denoised=True, inpaint=False, plot_denoise_rows=False, plot_progressive_rows=False,
plot_diffusion_rows=False, **kwargs):
use_ddim = ddim_steps is not None
@@ -1312,6 +1356,16 @@ class LatentDiffusion(DDPM):
if plot_denoise_rows:
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
log["denoise_row"] = denoise_grid
uc = self.get_learned_conditioning(len(c) * [""])
sample_scaled, _ = self.sample_log(cond=c,
batch_size=N,
ddim=use_ddim,
ddim_steps=ddim_steps,
eta=ddim_eta,
unconditional_guidance_scale=5.0,
unconditional_conditioning=uc)
log["samples_scaled"] = self.decode_first_stage(sample_scaled)
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
self.first_stage_model, IdentityFirstStage):
@@ -1364,13 +1418,18 @@ class LatentDiffusion(DDPM):
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.model.parameters())
if self.cond_stage_trainable:
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
params = params + list(self.cond_stage_model.parameters())
if self.learn_logvar:
print('Diffusion model optimizing logvar')
params.append(self.logvar)
if self.embedding_manager is not None:
params = list(self.embedding_manager.embedding_parameters())
# params = list(self.cond_stage_model.transformer.text_model.embeddings.embedding_manager.embedding_parameters())
else:
params = list(self.model.parameters())
if self.cond_stage_trainable:
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
params = params + list(self.cond_stage_model.parameters())
if self.learn_logvar:
print('Diffusion model optimizing logvar')
params.append(self.logvar)
opt = torch.optim.AdamW(params, lr=lr)
if self.use_scheduler:
assert 'target' in self.scheduler_config
@@ -1395,6 +1454,18 @@ class LatentDiffusion(DDPM):
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
return x
@rank_zero_only
def on_save_checkpoint(self, checkpoint):
checkpoint.clear()
if os.path.isdir(self.trainer.checkpoint_callback.dirpath):
self.embedding_manager.save(os.path.join(self.trainer.checkpoint_callback.dirpath, "embeddings.pt"))
if (self.global_step - self.emb_ckpt_counter) > 500:
self.embedding_manager.save(os.path.join(self.trainer.checkpoint_callback.dirpath, f"embeddings_gs-{self.global_step}.pt"))
self.emb_ckpt_counter += 500
class DiffusionWrapper(pl.LightningModule):
def __init__(self, diff_model_config, conditioning_key):

View File

@@ -0,0 +1,74 @@
'''wrapper around part of Karen Crownson's k-duffsion library, making it call compatible with other Samplers'''
import k_diffusion as K
import torch
import torch.nn as nn
import accelerate
class CFGDenoiser(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, x, sigma, uncond, cond, cond_scale):
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
return uncond + (cond - uncond) * cond_scale
class KSampler(object):
def __init__(self,model,schedule="lms", **kwargs):
super().__init__()
self.model = K.external.CompVisDenoiser(model)
self.accelerator = accelerate.Accelerator()
self.device = self.accelerator.device
self.schedule = schedule
def forward(self, x, sigma, uncond, cond, cond_scale):
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
return uncond + (cond - uncond) * cond_scale
# most of these arguments are ignored and are only present for compatibility with
# other samples
@torch.no_grad()
def sample(self,
S,
batch_size,
shape,
conditioning=None,
callback=None,
normals_sequence=None,
img_callback=None,
quantize_x0=False,
eta=0.,
mask=None,
x0=None,
temperature=1.,
noise_dropout=0.,
score_corrector=None,
corrector_kwargs=None,
verbose=True,
x_T=None,
log_every_t=100,
unconditional_guidance_scale=1.,
unconditional_conditioning=None,
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
**kwargs
):
sigmas = self.model.get_sigmas(S)
if x_T:
x = x_T
else:
x = torch.randn([batch_size, *shape], device=self.device) * sigmas[0] # for GPU draw
model_wrap_cfg = CFGDenoiser(self.model)
extra_args = {'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale}
return (K.sampling.__dict__[f'sample_{self.schedule}'](model_wrap_cfg, x, sigmas, extra_args=extra_args, disable=not self.accelerator.is_main_process),
None)
def gather(samples_ddim):
return self.accelerator.gather(samples_ddim)

View File

@@ -9,16 +9,18 @@ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, mak
class PLMSSampler(object):
def __init__(self, model, schedule="linear", **kwargs):
def __init__(self, model, schedule="linear", device="cuda", **kwargs):
super().__init__()
self.model = model
self.ddpm_num_timesteps = model.num_timesteps
self.schedule = schedule
self.device = device
def register_buffer(self, name, attr):
if type(attr) == torch.Tensor:
if attr.device != torch.device("cuda"):
attr = attr.to(torch.device("cuda"))
if attr.device != torch.device(self.device):
attr = attr.to(torch.device(self.device))
setattr(self, name, attr)
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):

View File

@@ -109,7 +109,7 @@ def checkpoint(func, inputs, params, flag):
explicitly take as arguments.
:param flag: if False, disable gradient checkpointing.
"""
if flag:
if False: # disabled checkpointing to allow requires_grad = False for main model
args = tuple(inputs) + tuple(params)
return CheckpointFunction.apply(func, len(inputs), *args)
else:

View File

@@ -0,0 +1,164 @@
from cmath import log
import torch
from torch import nn
import sys
from ldm.data.personalized import per_img_token_list
from transformers import CLIPTokenizer
from functools import partial
DEFAULT_PLACEHOLDER_TOKEN = ["*"]
PROGRESSIVE_SCALE = 2000
def get_clip_token_for_string(tokenizer, string):
batch_encoding = tokenizer(string, truncation=True, max_length=77, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"]
assert torch.count_nonzero(tokens - 49407) == 2, f"String '{string}' maps to more than a single token. Please use another string"
return tokens[0, 1]
def get_bert_token_for_string(tokenizer, string):
token = tokenizer(string)
# assert torch.count_nonzero(token) == 3, f"String '{string}' maps to more than a single token. Please use another string"
token = token[0, 1]
return token
def get_embedding_for_clip_token(embedder, token):
return embedder(token.unsqueeze(0))[0, 0]
class EmbeddingManager(nn.Module):
def __init__(
self,
embedder,
placeholder_strings=None,
initializer_words=None,
per_image_tokens=False,
num_vectors_per_token=1,
progressive_words=False,
**kwargs
):
super().__init__()
self.string_to_token_dict = {}
self.string_to_param_dict = nn.ParameterDict()
self.initial_embeddings = nn.ParameterDict() # These should not be optimized
self.progressive_words = progressive_words
self.progressive_counter = 0
self.max_vectors_per_token = num_vectors_per_token
if hasattr(embedder, 'tokenizer'): # using Stable Diffusion's CLIP encoder
self.is_clip = True
get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer)
get_embedding_for_tkn = partial(get_embedding_for_clip_token, embedder.transformer.text_model.embeddings)
token_dim = 1280
else: # using LDM's BERT encoder
self.is_clip = False
get_token_for_string = partial(get_bert_token_for_string, embedder.tknz_fn)
get_embedding_for_tkn = embedder.transformer.token_emb
token_dim = 1280
if per_image_tokens:
placeholder_strings.extend(per_img_token_list)
for idx, placeholder_string in enumerate(placeholder_strings):
token = get_token_for_string(placeholder_string)
if initializer_words and idx < len(initializer_words):
init_word_token = get_token_for_string(initializer_words[idx])
with torch.no_grad():
init_word_embedding = get_embedding_for_tkn(init_word_token.cpu())
token_params = torch.nn.Parameter(init_word_embedding.unsqueeze(0).repeat(num_vectors_per_token, 1), requires_grad=True)
self.initial_embeddings[placeholder_string] = torch.nn.Parameter(init_word_embedding.unsqueeze(0).repeat(num_vectors_per_token, 1), requires_grad=False)
else:
token_params = torch.nn.Parameter(torch.rand(size=(num_vectors_per_token, token_dim), requires_grad=True))
self.string_to_token_dict[placeholder_string] = token
self.string_to_param_dict[placeholder_string] = token_params
def forward(
self,
tokenized_text,
embedded_text,
):
b, n, device = *tokenized_text.shape, tokenized_text.device
for placeholder_string, placeholder_token in self.string_to_token_dict.items():
placeholder_embedding = self.string_to_param_dict[placeholder_string].to(device)
if self.max_vectors_per_token == 1: # If there's only one vector per token, we can do a simple replacement
placeholder_idx = torch.where(tokenized_text == placeholder_token.to(device))
embedded_text[placeholder_idx] = placeholder_embedding
else: # otherwise, need to insert and keep track of changing indices
if self.progressive_words:
self.progressive_counter += 1
max_step_tokens = 1 + self.progressive_counter // PROGRESSIVE_SCALE
else:
max_step_tokens = self.max_vectors_per_token
num_vectors_for_token = min(placeholder_embedding.shape[0], max_step_tokens)
placeholder_rows, placeholder_cols = torch.where(tokenized_text == placeholder_token.to(device))
if placeholder_rows.nelement() == 0:
continue
sorted_cols, sort_idx = torch.sort(placeholder_cols, descending=True)
sorted_rows = placeholder_rows[sort_idx]
for idx in range(len(sorted_rows)):
row = sorted_rows[idx]
col = sorted_cols[idx]
new_token_row = torch.cat([tokenized_text[row][:col], placeholder_token.repeat(num_vectors_for_token).to(device), tokenized_text[row][col + 1:]], axis=0)[:n]
new_embed_row = torch.cat([embedded_text[row][:col], placeholder_embedding[:num_vectors_for_token], embedded_text[row][col + 1:]], axis=0)[:n]
embedded_text[row] = new_embed_row
tokenized_text[row] = new_token_row
return embedded_text
def save(self, ckpt_path):
torch.save({"string_to_token": self.string_to_token_dict,
"string_to_param": self.string_to_param_dict}, ckpt_path)
def load(self, ckpt_path):
ckpt = torch.load(ckpt_path, map_location='cpu')
self.string_to_token_dict = ckpt["string_to_token"]
self.string_to_param_dict = ckpt["string_to_param"]
def get_embedding_norms_squared(self):
all_params = torch.cat(list(self.string_to_param_dict.values()), axis=0) # num_placeholders x embedding_dim
param_norm_squared = (all_params * all_params).sum(axis=-1) # num_placeholders
return param_norm_squared
def embedding_parameters(self):
return self.string_to_param_dict.parameters()
def embedding_to_coarse_loss(self):
loss = 0.
num_embeddings = len(self.initial_embeddings)
for key in self.initial_embeddings:
optimized = self.string_to_param_dict[key]
coarse = self.initial_embeddings[key].clone().to(optimized.device)
loss = loss + (optimized - coarse) @ (optimized - coarse).T / num_embeddings
return loss

View File

@@ -8,6 +8,27 @@ import kornia
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
def _expand_mask(mask, dtype, tgt_len = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
def _build_causal_attention_mask(bsz, seq_len, dtype):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
mask.fill_(torch.tensor(torch.finfo(dtype).min))
mask.triu_(1) # zero out the lower diagonal
mask = mask.unsqueeze(1) # expand mask
return mask
class AbstractEncoder(nn.Module):
def __init__(self):
@@ -98,18 +119,17 @@ class BERTEmbedder(AbstractEncoder):
attn_layers=Encoder(dim=n_embed, depth=n_layer),
emb_dropout=embedding_dropout)
def forward(self, text):
def forward(self, text, embedding_manager=None):
if self.use_tknz_fn:
tokens = self.tknz_fn(text)#.to(self.device)
else:
tokens = text
z = self.transformer(tokens, return_embeddings=True)
z = self.transformer(tokens, return_embeddings=True, embedding_manager=embedding_manager)
return z
def encode(self, text):
def encode(self, text, **kwargs):
# output of length 77
return self(text)
return self(text, **kwargs)
class SpatialRescaler(nn.Module):
def __init__(self,
@@ -146,28 +166,171 @@ class FrozenCLIPEmbedder(AbstractEncoder):
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
super().__init__()
self.tokenizer = CLIPTokenizer.from_pretrained(version)
self.transformer = CLIPTextModel.from_pretrained(version)
self.tokenizer = CLIPTokenizer.from_pretrained(version,local_files_only=True)
self.transformer = CLIPTextModel.from_pretrained(version,local_files_only=True)
self.device = device
self.max_length = max_length
self.freeze()
def embedding_forward(
self,
input_ids = None,
position_ids = None,
inputs_embeds = None,
embedding_manager = None,
) -> torch.Tensor:
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
if embedding_manager is not None:
inputs_embeds = embedding_manager(input_ids, inputs_embeds)
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
self.transformer.text_model.embeddings.forward = embedding_forward.__get__(self.transformer.text_model.embeddings)
def encoder_forward(
self,
inputs_embeds,
attention_mask = None,
causal_attention_mask = None,
output_attentions = None,
output_hidden_states = None,
return_dict = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
return hidden_states
self.transformer.text_model.encoder.forward = encoder_forward.__get__(self.transformer.text_model.encoder)
def text_encoder_forward(
self,
input_ids = None,
attention_mask = None,
position_ids = None,
output_attentions = None,
output_hidden_states = None,
return_dict = None,
embedding_manager = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None:
raise ValueError("You have to specify either input_ids")
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids, embedding_manager=embedding_manager)
bsz, seq_len = input_shape
# CLIP's text model uses causal mask, prepare it here.
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
causal_attention_mask = _build_causal_attention_mask(bsz, seq_len, hidden_states.dtype).to(
hidden_states.device
)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
last_hidden_state = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = self.final_layer_norm(last_hidden_state)
return last_hidden_state
self.transformer.text_model.forward = text_encoder_forward.__get__(self.transformer.text_model)
def transformer_forward(
self,
input_ids = None,
attention_mask = None,
position_ids = None,
output_attentions = None,
output_hidden_states = None,
return_dict = None,
embedding_manager = None,
):
return self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
embedding_manager = embedding_manager
)
self.transformer.forward = transformer_forward.__get__(self.transformer)
def freeze(self):
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
def forward(self, text, **kwargs):
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.device)
outputs = self.transformer(input_ids=tokens)
z = self.transformer(input_ids=tokens, **kwargs)
z = outputs.last_hidden_state
return z
def encode(self, text):
return self(text)
def encode(self, text, **kwargs):
return self(text, **kwargs)
class FrozenCLIPTextEmbedder(nn.Module):

View File

@@ -485,7 +485,8 @@ class AttentionLayers(nn.Module):
mask=None,
context_mask=None,
mems=None,
return_hiddens=False
return_hiddens=False,
**kwargs
):
hiddens = []
intermediates = []
@@ -603,11 +604,19 @@ class TransformerWrapper(nn.Module):
return_mems=False,
return_attn=False,
mems=None,
embedding_manager=None,
**kwargs
):
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
x = self.token_emb(x)
x += self.pos_emb(x)
embedded_x = self.token_emb(x)
if embedding_manager:
x = embedding_manager(x, embedded_x)
else:
x = embedded_x
x = x + self.pos_emb(x)
x = self.emb_dropout(x)
x = self.project_emb(x)

View File

@@ -1,3 +1,10 @@
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
# Derived from source code carrying the following copyrights
# Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich
# Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors
"""Simplified text to image API for stable diffusion/latent diffusion
Example Usage:
@@ -11,7 +18,7 @@ t2i = T2I(outdir = <path> // outputs/txt2img-samples
batch_size = <integer> // how many images to generate per sampling (1)
steps = <integer> // 50
seed = <integer> // current system time
sampler = ['ddim','plms'] // ddim
sampler_name= ['ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms'] // k_lms
grid = <boolean> // false
width = <integer> // image width, multiple of 64 (512)
height = <integer> // image height, multiple of 64 (512)
@@ -60,10 +67,13 @@ from torch import autocast
from contextlib import contextmanager, nullcontext
import time
import math
import re
import traceback
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.ksampler import KSampler
class T2I:
"""T2I class
@@ -76,7 +86,7 @@ class T2I:
batch_size
steps
seed
sampler
sampler_name
grid
individual
width
@@ -87,6 +97,9 @@ class T2I:
downsampling_factor
precision
strength
embedding_path
The vast majority of these arguments default to reasonable values.
"""
def __init__(self,
outdir="outputs/txt2img-samples",
@@ -100,14 +113,18 @@ class T2I:
seed=None,
cfg_scale=7.5,
weights="models/ldm/stable-diffusion-v1/model.ckpt",
config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml",
sampler="plms",
config = "configs/stable-diffusion/v1-inference.yaml",
sampler_name="klms",
latent_channels=4,
downsampling_factor=8,
ddim_eta=0.0, # deterministic
fixed_code=False,
precision='autocast',
strength=0.75 # default in scripts/img2img.py
full_precision=False,
strength=0.75, # default in scripts/img2img.py
embedding_path=None,
latent_diffusion_weights=False, # just to keep track of this parameter when regenerating prompt
device='cuda'
):
self.outdir = outdir
self.batch_size = batch_size
@@ -117,25 +134,31 @@ class T2I:
self.grid = grid
self.steps = steps
self.cfg_scale = cfg_scale
self.weights = weights
self.weights = weights
self.config = config
self.sampler_name = sampler
self.sampler_name = sampler_name
self.fixed_code = fixed_code
self.latent_channels = latent_channels
self.downsampling_factor = downsampling_factor
self.ddim_eta = ddim_eta
self.precision = precision
self.full_precision = full_precision
self.strength = strength
self.embedding_path = embedding_path
self.model = None # empty for now
self.sampler = None
self.latent_diffusion_weights=latent_diffusion_weights
self.device = device
if seed is None:
self.seed = self._new_seed()
else:
self.seed = seed
@torch.no_grad()
def txt2img(self,prompt,outdir=None,batch_size=None,iterations=None,
steps=None,seed=None,grid=None,individual=None,width=None,height=None,
cfg_scale=None,ddim_eta=None,strength=None,init_img=None):
cfg_scale=None,ddim_eta=None,strength=None,embedding_path=None,init_img=None,
skip_normalize=False,variants=None): # note the "variants" option is an unused hack caused by how options are passed
"""
Generate an image from the prompt, writing iteration images into the outdir
The output is a list of lists in the format: [[filename1,seed1], [filename2,seed2],...]
@@ -150,9 +173,13 @@ class T2I:
batch_size = batch_size or self.batch_size
iterations = iterations or self.iterations
strength = strength or self.strength # not actually used here, but preserved for code refactoring
embedding_path = embedding_path or self.embedding_path
model = self.load_model() # will instantiate the model or return it from cache
assert strength<1.0 and strength>=0.0, "strength (-f) must be >=0.0 and <1.0"
assert cfg_scale>1.0, "CFG_Scale (-C) must be >1.0"
# grid and individual are mutually exclusive, with individual taking priority.
# not necessary, but needed for compatability with dream bot
if (grid is None):
@@ -164,7 +191,6 @@ class T2I:
# make directories and establish names for the output files
os.makedirs(outdir, exist_ok=True)
base_count = len(os.listdir(outdir))-1
start_code = None
if self.fixed_code:
@@ -178,65 +204,90 @@ class T2I:
sampler = self.sampler
images = list()
seeds = list()
filename = None
image_count = 0
tic = time.time()
with torch.no_grad():
with precision_scope("cuda"):
with model.ema_scope():
all_samples = list()
for n in trange(iterations, desc="Sampling"):
seed_everything(seed)
for prompts in tqdm(data, desc="data", dynamic_ncols=True):
uc = None
if cfg_scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
# Gawd. Too many levels of indent here. Need to refactor into smaller routines!
try:
with precision_scope(self.device.type), model.ema_scope():
all_samples = list()
for n in trange(iterations, desc="Sampling"):
seed_everything(seed)
for prompts in tqdm(data, desc="data", dynamic_ncols=True):
uc = None
if cfg_scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
# weighted sub-prompts
subprompts,weights = T2I._split_weighted_subprompts(prompts[0])
if len(subprompts) > 1:
# i dont know if this is correct.. but it works
c = torch.zeros_like(uc)
# get total weight for normalizing
totalWeight = sum(weights)
# normalize each "sub prompt" and add it
for i in range(0,len(subprompts)):
weight = weights[i]
if not skip_normalize:
weight = weight / totalWeight
c = torch.add(c,model.get_learned_conditioning(subprompts[i]), alpha=weight)
else: # just standard 1 prompt
c = model.get_learned_conditioning(prompts)
shape = [self.latent_channels, height // self.downsampling_factor, width // self.downsampling_factor]
samples_ddim, _ = sampler.sample(S=steps,
conditioning=c,
batch_size=batch_size,
shape=shape,
verbose=False,
unconditional_guidance_scale=cfg_scale,
unconditional_conditioning=uc,
eta=ddim_eta,
x_T=start_code)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
shape = [self.latent_channels, height // self.downsampling_factor, width // self.downsampling_factor]
samples_ddim, _ = sampler.sample(S=steps,
conditioning=c,
batch_size=batch_size,
shape=shape,
verbose=False,
unconditional_guidance_scale=cfg_scale,
unconditional_conditioning=uc,
eta=ddim_eta,
x_T=start_code)
if not grid:
for x_sample in x_samples_ddim:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
filename = os.path.join(outdir, f"{base_count:05}.png")
Image.fromarray(x_sample.astype(np.uint8)).save(filename)
images.append([filename,seed])
base_count += 1
else:
all_samples.append(x_samples_ddim)
seeds.append(seed)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
seed = self._new_seed()
if grid:
images = self._make_grid(samples=all_samples,
seeds=seeds,
batch_size=batch_size,
iterations=iterations,
outdir=outdir)
if not grid:
for x_sample in x_samples_ddim:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
filename = self._unique_filename(outdir,previousname=filename,
seed=seed,isbatch=(batch_size>1))
assert not os.path.exists(filename)
Image.fromarray(x_sample.astype(np.uint8)).save(filename)
images.append([filename,seed])
else:
all_samples.append(x_samples_ddim)
seeds.append(seed)
image_count += 1
seed = self._new_seed()
if grid:
images = self._make_grid(samples=all_samples,
seeds=seeds,
batch_size=batch_size,
iterations=iterations,
outdir=outdir)
except KeyboardInterrupt:
print('*interrupted*')
print('Partial results will be returned; if --grid was requested, nothing will be returned.')
except RuntimeError as e:
print(str(e))
toc = time.time()
print(f'{batch_size * iterations} images generated in',"%4.2fs"% (toc-tic))
print(f'{image_count} images generated in',"%4.2fs"% (toc-tic))
return images
# There is lots of shared code between this and txt2img and should be refactored.
@torch.no_grad()
def img2img(self,prompt,outdir=None,init_img=None,batch_size=None,iterations=None,
steps=None,seed=None,grid=None,individual=None,width=None,height=None,
cfg_scale=None,ddim_eta=None,strength=None):
cfg_scale=None,ddim_eta=None,strength=None,embedding_path=None,
skip_normalize=False,variants=None): # note the "variants" option is an unused hack caused by how options are passed
"""
Generate an image from the prompt and the initial image, writing iteration images into the outdir
The output is a list of lists in the format: [[filename1,seed1], [filename2,seed2],...]
@@ -249,6 +300,10 @@ class T2I:
batch_size = batch_size or self.batch_size
iterations = iterations or self.iterations
strength = strength or self.strength
embedding_path = embedding_path or self.embedding_path
assert strength<1.0 and strength>=0.0, "strength (-f) must be >=0.0 and <1.0"
assert cfg_scale>1.0, "CFG_Scale (-C) must be >1.0"
if init_img is None:
print("no init_img provided!")
@@ -256,6 +311,8 @@ class T2I:
model = self.load_model() # will instantiate the model or return it from cache
precision_scope = autocast if self.precision=="autocast" else nullcontext
# grid and individual are mutually exclusive, with individual taking priority.
# not necessary, but needed for compatability with dream bot
if (grid is None):
@@ -268,18 +325,18 @@ class T2I:
# PLMS sampler not supported yet, so ignore previous sampler
if self.sampler_name!='ddim':
print(f"sampler '{self.sampler_name}' is not yet supported. Using DDM sampler")
sampler = DDIMSampler(model)
sampler = DDIMSampler(model, device=self.device)
else:
sampler = self.sampler
# make directories and establish names for the output files
os.makedirs(outdir, exist_ok=True)
base_count = len(os.listdir(outdir))-1
assert os.path.isfile(init_img)
init_image = self._load_img(init_img).to(self.device)
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space
with precision_scope(self.device.type):
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space
sampler.make_schedule(ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False)
@@ -292,63 +349,84 @@ class T2I:
t_enc = int(strength * steps)
print(f"target t_enc is {t_enc} steps")
precision_scope = autocast if self.precision=="autocast" else nullcontext
images = list()
seeds = list()
filename = None
image_count = 0 # actual number of iterations performed
tic = time.time()
with torch.no_grad():
with precision_scope("cuda"):
with model.ema_scope():
all_samples = list()
for n in trange(iterations, desc="Sampling"):
seed_everything(seed)
for prompts in tqdm(data, desc="data", dynamic_ncols=True):
uc = None
if cfg_scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
# Gawd. Too many levels of indent here. Need to refactor into smaller routines!
try:
with precision_scope(self.device.type), model.ema_scope():
all_samples = list()
for n in trange(iterations, desc="Sampling"):
seed_everything(seed)
for prompts in tqdm(data, desc="data", dynamic_ncols=True):
uc = None
if cfg_scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
# weighted sub-prompts
subprompts,weights = T2I._split_weighted_subprompts(prompts[0])
if len(subprompts) > 1:
# i dont know if this is correct.. but it works
c = torch.zeros_like(uc)
# get total weight for normalizing
totalWeight = sum(weights)
# normalize each "sub prompt" and add it
for i in range(0,len(subprompts)):
weight = weights[i]
if not skip_normalize:
weight = weight / totalWeight
c = torch.add(c,model.get_learned_conditioning(subprompts[i]), alpha=weight)
else: # just standard 1 prompt
c = model.get_learned_conditioning(prompts)
# encode (scaled latent)
z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc]*batch_size).to(self.device))
# decode it
samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=cfg_scale,
unconditional_conditioning=uc,)
# encode (scaled latent)
z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc]*batch_size).to(self.device))
# decode it
samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=cfg_scale,
unconditional_conditioning=uc,)
x_samples = model.decode_first_stage(samples)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
x_samples = model.decode_first_stage(samples)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
if not grid:
for x_sample in x_samples:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
filename = os.path.join(outdir, f"{base_count:05}.png")
Image.fromarray(x_sample.astype(np.uint8)).save(filename)
images.append([filename,seed])
base_count += 1
else:
all_samples.append(x_samples)
seeds.append(seed)
if not grid:
for x_sample in x_samples:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
filename = self._unique_filename(outdir,previousname=filename,
seed=seed,isbatch=(batch_size>1))
assert not os.path.exists(filename)
Image.fromarray(x_sample.astype(np.uint8)).save(filename)
images.append([filename,seed])
else:
all_samples.append(x_samples)
seeds.append(seed)
image_count +=1
seed = self._new_seed()
if grid:
images = self._make_grid(samples=all_samples,
seeds=seeds,
batch_size=batch_size,
iterations=iterations,
outdir=outdir)
seed = self._new_seed()
if grid:
images = self._make_grid(samples=all_samples,
seeds=seeds,
batch_size=batch_size,
iterations=iterations,
outdir=outdir)
except KeyboardInterrupt:
print('*interrupted*')
print('Partial results will be returned; if --grid was requested, nothing will be returned.')
except RuntimeError as e:
print("Oops! A runtime error has occurred. If this is unexpected, please copy-and-paste this stack trace and post it as an Issue to http://github.com/lstein/stable-diffusion")
traceback.print_exc()
toc = time.time()
print(f'{batch_size * iterations} images generated in',"%4.2fs"% (toc-tic))
print(f'{image_count} images generated in',"%4.2fs"% (toc-tic))
return images
def _make_grid(self,samples,seeds,batch_size,iterations,outdir):
images = list()
base_count = len(os.listdir(outdir))-1
n_rows = batch_size if batch_size>1 else int(math.sqrt(batch_size * iterations))
# save as grid
grid = torch.stack(samples, 0)
@@ -357,7 +435,7 @@ class T2I:
# to image
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
filename = os.path.join(outdir, f"{base_count:05}.png")
filename = self._unique_filename(outdir,seed=seeds[0],grid_count=batch_size*iterations)
Image.fromarray(grid.astype(np.uint8)).save(filename)
for s in seeds:
images.append([filename,s])
@@ -373,21 +451,38 @@ class T2I:
seed_everything(self.seed)
try:
config = OmegaConf.load(self.config)
self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
self.device = torch.device(self.device) if torch.cuda.is_available() else torch.device("cpu")
model = self._load_model_from_config(config,self.weights)
if self.embedding_path is not None:
model.embedding_manager.load(self.embedding_path)
self.model = model.to(self.device)
# model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here
self.model.cond_stage_model.device = self.device
except AttributeError:
raise SystemExit
msg = f'setting sampler to {self.sampler_name}'
if self.sampler_name=='plms':
print("setting sampler to plms")
self.sampler = PLMSSampler(self.model)
self.sampler = PLMSSampler(self.model, device=self.device)
elif self.sampler_name == 'ddim':
print("setting sampler to ddim")
self.sampler = DDIMSampler(self.model)
self.sampler = DDIMSampler(self.model, device=self.device)
elif self.sampler_name == 'k_dpm_2_a':
self.sampler = KSampler(self.model,'dpm_2_ancestral')
elif self.sampler_name == 'k_dpm_2':
self.sampler = KSampler(self.model,'dpm_2')
elif self.sampler_name == 'k_euler_a':
self.sampler = KSampler(self.model,'euler_ancestral')
elif self.sampler_name == 'k_euler':
self.sampler = KSampler(self.model,'euler')
elif self.sampler_name == 'k_heun':
self.sampler = KSampler(self.model,'heun')
elif self.sampler_name == 'k_lms':
self.sampler = KSampler(self.model,'lms')
else:
print(f"unsupported sampler {self.sampler_name}, defaulting to plms")
self.sampler = PLMSSampler(self.model)
msg = f'unsupported sampler {self.sampler_name}, defaulting to plms'
self.sampler = PLMSSampler(self.model, device=self.device)
print(msg)
return self.model
@@ -399,8 +494,12 @@ class T2I:
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
model.cuda()
model.eval()
if self.full_precision:
print('Using slower but more accurate full-precision math (--full_precision)')
else:
print('Using half precision math. Call with --full_precision to use slower but more accurate full precision.')
model.half()
return model
def _load_img(self,path):
@@ -413,3 +512,85 @@ class T2I:
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.*image - 1.
def _unique_filename(self,outdir,previousname=None,seed=0,isbatch=False,grid_count=None):
revision = 1
if previousname is None:
# sort reverse alphabetically until we find max+1
dirlist = sorted(os.listdir(outdir),reverse=True)
# find the first filename that matches our pattern or return 000000.0.png
filename = next((f for f in dirlist if re.match('^(\d+)\..*\.png',f)),'0000000.0.png')
basecount = int(filename.split('.',1)[0])
basecount += 1
if grid_count is not None:
grid_label = f'grid#1-{grid_count}'
filename = f'{basecount:06}.{seed}.{grid_label}.png'
elif isbatch:
filename = f'{basecount:06}.{seed}.01.png'
else:
filename = f'{basecount:06}.{seed}.png'
return os.path.join(outdir,filename)
else:
previousname = os.path.basename(previousname)
x = re.match('^(\d+)\..*\.png',previousname)
if not x:
return self._unique_filename(outdir,previousname,seed)
basecount = int(x.groups()[0])
series = 0
finished = False
while not finished:
series += 1
filename = f'{basecount:06}.{seed}.png'
if isbatch or os.path.exists(os.path.join(outdir,filename)):
filename = f'{basecount:06}.{seed}.{series:02}.png'
finished = not os.path.exists(os.path.join(outdir,filename))
return os.path.join(outdir,filename)
def _split_weighted_subprompts(text):
"""
grabs all text up to the first occurrence of ':'
uses the grabbed text as a sub-prompt, and takes the value following ':' as weight
if ':' has no value defined, defaults to 1.0
repeats until no text remaining
"""
remaining = len(text)
prompts = []
weights = []
while remaining > 0:
if ":" in text:
idx = text.index(":") # first occurrence from start
# grab up to index as sub-prompt
prompt = text[:idx]
remaining -= idx
# remove from main text
text = text[idx+1:]
# find value for weight
if " " in text:
idx = text.index(" ") # first occurence
else: # no space, read to end
idx = len(text)
if idx != 0:
try:
weight = float(text[:idx])
except: # couldn't treat as float
print(f"Warning: '{text[:idx]}' is not a value, are you missing a space?")
weight = 1.0
else: # no value found
weight = 1.0
# remove from main text
remaining -= idx
text = text[idx+1:]
# append the sub-prompt and its weight
prompts.append(prompt)
weights.append(weight)
else: # no : found
if len(text) > 0: # there is still text though
# take remainder as weight 1
prompts.append(text)
weights.append(1.0)
remaining = 0
return prompts, weights

View File

@@ -12,6 +12,7 @@ from queue import Queue
from inspect import isfunction
from PIL import Image, ImageDraw, ImageFont
def log_txt_as_img(wh, xc, size=10):
# wh a tuple of (width, height)
# xc a list of captions to plot
@@ -20,7 +21,7 @@ def log_txt_as_img(wh, xc, size=10):
for bi in range(b):
txt = Image.new("RGB", wh, color="white")
draw = ImageDraw.Draw(txt)
font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
font = ImageFont.load_default()
nc = int(40 * (wh[0] / 256))
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
@@ -73,14 +74,14 @@ def count_params(model, verbose=False):
return total_params
def instantiate_from_config(config):
def instantiate_from_config(config, **kwargs):
if not "target" in config:
if config == '__is_first_stage__':
return None
elif config == "__is_unconditional__":
return None
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", dict()))
return get_obj_from_str(config["target"])(**config.get("params", dict()), **kwargs)
def get_obj_from_str(string, reload=False):

64
main.py
View File

@@ -2,6 +2,7 @@ import argparse, os, sys, datetime, glob, importlib, csv
import numpy as np
import time
import torch
import torchvision
import pytorch_lightning as pl
@@ -20,6 +21,22 @@ from pytorch_lightning.utilities import rank_zero_info
from ldm.data.base import Txt2ImgIterableBaseDataset
from ldm.util import instantiate_from_config
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
sd = pl_sd["state_dict"]
config.model.params.ckpt_path = ckpt
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.cuda()
return model
def get_parser(**parser_kwargs):
def str2bool(v):
@@ -120,6 +137,23 @@ def get_parser(**parser_kwargs):
default=True,
help="scale base-lr by ngpu * batch_size * n_accumulate",
)
parser.add_argument(
"--datadir_in_name",
type=str2bool,
nargs="?",
const=True,
default=True,
help="Prepend the final directory in the data_root to the output directory name")
parser.add_argument("--actual_resume", type=str, default="", help="Path to model to actually resume from")
parser.add_argument("--data_root", type=str, required=True, help="Path to directory with training images")
parser.add_argument("--embedding_manager_ckpt", type=str, default="", help="Initialize embedding manager from a checkpoint")
parser.add_argument("--placeholder_tokens", type=str, nargs="+", default=["*"])
parser.add_argument("--init_word", type=str, help="Word to use as source for initial token embedding.")
return parser
@@ -502,6 +536,10 @@ if __name__ == "__main__":
name = "_" + cfg_name
else:
name = ""
if opt.datadir_in_name:
now = os.path.basename(os.path.normpath(opt.data_root)) + now
nowname = now + name + opt.postfix
logdir = os.path.join(opt.logdir, nowname)
@@ -532,7 +570,18 @@ if __name__ == "__main__":
lightning_config.trainer = trainer_config
# model
model = instantiate_from_config(config.model)
# config.model.params.personalization_config.params.init_word = opt.init_word
config.model.params.personalization_config.params.embedding_manager_ckpt = opt.embedding_manager_ckpt
config.model.params.personalization_config.params.placeholder_tokens = opt.placeholder_tokens
if opt.init_word:
config.model.params.personalization_config.params.initializer_words[0] = opt.init_word
if opt.actual_resume:
model = load_model_from_config(config, opt.actual_resume)
else:
model = instantiate_from_config(config.model)
# trainer and callbacks
trainer_kwargs = dict()
@@ -655,11 +704,16 @@ if __name__ == "__main__":
del callbacks_cfg['ignore_keys_callback']
trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
trainer_kwargs["max_steps"] = opt.max_steps
trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs)
trainer.logdir = logdir ###
# data
config.data.params.train.params.data_root = opt.data_root
config.data.params.validation.params.data_root = opt.data_root
data = instantiate_from_config(config.data)
data = instantiate_from_config(config.data)
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
# calling these ourselves should not be necessary but it is.
@@ -710,8 +764,8 @@ if __name__ == "__main__":
import signal
signal.signal(signal.SIGUSR1, melk)
signal.signal(signal.SIGUSR2, divein)
signal.signal(signal.SIGTERM, melk)
signal.signal(signal.SIGTERM, divein)
# run
if opt.train:
@@ -737,5 +791,5 @@ if __name__ == "__main__":
dst = os.path.join(dst, "debug_runs", name)
os.makedirs(os.path.split(dst)[0], exist_ok=True)
os.rename(logdir, dst)
if trainer.global_rank == 0:
print(trainer.profiler.summary())
# if trainer.global_rank == 0:
# print(trainer.profiler.summary())

23
requirements.txt Normal file
View File

@@ -0,0 +1,23 @@
accelerate==0.12.0
albumentations==0.4.3
einops==0.3.0
huggingface-hub==0.8.1
imageio==2.9.0
imageio-ffmpeg==0.4.2
kornia==0.6.0
numpy==1.19.2
omegaconf==2.1.1
opencv-python==4.1.2.30
pillow==9.0.1
pudb==2019.2
pytorch
pytorch-lightning==1.4.2
streamlit==1.12.0
test-tube>=0.7.5
torch-fidelity==0.3.0
torchmetrics==0.6.0
torchvision
transformers==4.19.2
-e git+https://github.com/openai/CLIP.git@main#egg=clip
-e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
-e git+https://github.com/lstein/k-diffusion.git@master#egg=k-diffusion

View File

@@ -1,8 +1,13 @@
#!/usr/bin/env python
#!/usr/bin/env python3
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
import argparse
import shlex
import atexit
import os
import sys
import copy
from PIL import Image,PngImagePlugin
# readline unavailable on windows systems
try:
@@ -11,7 +16,7 @@ try:
except:
readline_available = False
debugging = True
debugging = False
def main():
''' Initialize command-line parsers and the diffusion model '''
@@ -35,9 +40,14 @@ def main():
setup_readline()
print("* Initializing, be patient...\n")
sys.path.append('.')
from pytorch_lightning import logging
from ldm.simplet2i import T2I
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
import transformers
transformers.logging.set_verbosity_error()
# creating a simple text2image object with a handful of
# defaults passed on the command line.
# additional parameters will be added (or overriden) during
@@ -46,9 +56,14 @@ def main():
height=height,
batch_size=opt.batch_size,
outdir=opt.outdir,
sampler=opt.sampler,
sampler_name=opt.sampler_name,
weights=weights,
config=config)
full_precision=opt.full_precision,
config=config,
latent_diffusion_weights=opt.laion400m, # this is solely for recreating the prompt
embedding_path=opt.embedding_path,
device=opt.device
)
# make sure the output directory exists
if not os.path.exists(opt.outdir):
@@ -57,33 +72,74 @@ def main():
# gets rid of annoying messages about random seed
logging.getLogger("pytorch_lightning").setLevel(logging.ERROR)
# preload the model
if not debugging:
t2i.load_model()
print("\n* Initialization done! Awaiting your command (-h for help, q to quit)...")
infile = None
try:
if opt.infile is not None:
infile = open(opt.infile,'r')
except FileNotFoundError as e:
print(e)
exit(-1)
log_path = os.path.join(opt.outdir,"dream_log.txt")
# preload the model
t2i.load_model()
print("\n* Initialization done! Awaiting your command (-h for help, 'q' to quit, 'cd' to change output dir, 'pwd' to print output dir)...")
log_path = os.path.join(opt.outdir,'dream_log.txt')
with open(log_path,'a') as log:
cmd_parser = create_cmd_parser()
main_loop(t2i,cmd_parser,log)
main_loop(t2i,cmd_parser,log,infile)
log.close()
if infile:
infile.close()
def main_loop(t2i,parser,log):
def main_loop(t2i,parser,log,infile):
''' prompt/read/execute loop '''
done = False
while not done:
try:
command = input("dream> ")
command = infile.readline() if infile else input("dream> ")
except EOFError:
done = True
break
elements = shlex.split(command)
if elements[0]=='q': #
if infile and len(command)==0:
done = True
break
if command.startswith(('#','//')):
continue
# before splitting, escape single quotes so as not to mess
# up the parser
command = command.replace("'","\\'")
try:
elements = shlex.split(command)
except ValueError as e:
print(str(e))
continue
if len(elements)==0:
continue
if elements[0]=='q':
done = True
break
if elements[0]=='cd' and len(elements)>1:
if os.path.exists(elements[1]):
print(f"setting image output directory to {elements[1]}")
t2i.outdir=elements[1]
else:
print(f"directory {elements[1]} does not exist")
continue
if elements[0]=='pwd':
print(f"current output directory is {t2i.outdir}")
continue
if elements[0].startswith('!dream'): # in case a stored prompt still contains the !dream command
elements.pop(0)
@@ -114,44 +170,112 @@ def main_loop(t2i,parser,log):
if opt.init_img is None:
results = t2i.txt2img(**vars(opt))
else:
assert os.path.exists(opt.init_img),f"No file found at {opt.init_img}. On Linux systems, pressing <tab> after -I will autocomplete a list of possible image files."
if None not in (opt.width,opt.height):
print('Warning: width and height options are ignored when modifying an init image')
results = t2i.img2img(**vars(opt))
print("Outputs:")
write_log_message(opt,switches,results,log)
except KeyboardInterrupt:
print('*interrupted*')
except AssertionError as e:
print(e)
continue
allVariantResults = []
if opt.variants is not None:
print(f"Generating {opt.variants} variant(s)...")
newopt = copy.deepcopy(opt)
newopt.variants = None
for r in results:
newopt.init_img = r[0]
print(f"\t generating variant for {newopt.init_img}")
for j in range(0, opt.variants):
try:
variantResults = t2i.img2img(**vars(newopt))
allVariantResults.append([newopt,variantResults])
except AssertionError as e:
print(e)
continue
print(f"{opt.variants} Variants generated!")
print("Outputs:")
write_log_message(t2i,opt,results,log)
if allVariantResults:
print("Variant outputs:")
for vr in allVariantResults:
write_log_message(t2i,vr[0],vr[1],log)
print("goodbye!")
def write_log_message(opt,switches,results,logfile):
''' logs the name of the output image, its prompt and seed to both the terminal and the log file '''
if opt.grid:
_output_for_grid(switches,results,logfile)
else:
_output_for_individual(switches,results,logfile)
def write_log_message(t2i,opt,results,logfile):
''' logs the name of the output image, its prompt and seed to the terminal, log file, and a Dream text chunk in the PNG metadata '''
switches = _reconstruct_switches(t2i,opt)
prompt_str = ' '.join(switches)
# when multiple images are produced in batch, then we keep track of where each starts
last_seed = None
img_num = 1
batch_size = opt.batch_size or t2i.batch_size
seenit = {}
seeds = [a[1] for a in results]
if batch_size > 1:
seeds = f"(seeds for each batch row: {seeds})"
else:
seeds = f"(seeds for individual images: {seeds})"
def _output_for_individual(switches,results,logfile):
for r in results:
log_message = " ".join([' ',str(r[0])+':',
f'"{switches[0]}"',
*switches[1:],f'-S {r[1]}'])
seed = r[1]
log_message = (f'{r[0]}: {prompt_str} -S{seed}')
if batch_size > 1:
if seed != last_seed:
img_num = 1
log_message += f' # (batch image {img_num} of {batch_size})'
else:
img_num += 1
log_message += f' # (batch image {img_num} of {batch_size})'
last_seed = seed
print(log_message)
logfile.write(log_message+"\n")
logfile.flush()
if r[0] not in seenit:
seenit[r[0]] = True
try:
if opt.grid:
_write_prompt_to_png(r[0],f'{prompt_str} -g -S{seed} {seeds}')
else:
_write_prompt_to_png(r[0],f'{prompt_str} -S{seed}')
except FileNotFoundError:
print(f"Could not open file '{r[0]}' for reading")
def _output_for_grid(switches,results,logfile):
first_seed = results[0][1]
log_message = " ".join([' ',str(results[0][0])+':',
f'"{switches[0]}"',
*switches[1:],f'-S {results[0][1]}'])
print(log_message)
logfile.write(log_message+"\n")
all_seeds = [row[1] for row in results]
log_message = f' seeds for individual rows: {all_seeds}'
print(log_message)
logfile.write(log_message+"\n")
def _reconstruct_switches(t2i,opt):
'''Normalize the prompt and switches'''
switches = list()
switches.append(f'"{opt.prompt}"')
switches.append(f'-s{opt.steps or t2i.steps}')
switches.append(f'-b{opt.batch_size or t2i.batch_size}')
switches.append(f'-W{opt.width or t2i.width}')
switches.append(f'-H{opt.height or t2i.height}')
switches.append(f'-C{opt.cfg_scale or t2i.cfg_scale}')
switches.append(f'-m{t2i.sampler_name}')
if opt.variants:
switches.append(f'-v{opt.variants}')
if opt.init_img:
switches.append(f'-I{opt.init_img}')
if opt.strength and opt.init_img is not None:
switches.append(f'-f{opt.strength or t2i.strength}')
if t2i.full_precision:
switches.append('-F')
return switches
def _write_prompt_to_png(path,prompt):
info = PngImagePlugin.PngInfo()
info.add_text("Dream",prompt)
im = Image.open(path)
im.save(path,"PNG",pnginfo=info)
def create_argv_parser():
parser = argparse.ArgumentParser(description="Parse script's command line args")
parser.add_argument("--laion400m",
@@ -159,24 +283,41 @@ def create_argv_parser():
"-l",
dest='laion400m',
action='store_true',
help="fallback to the latent diffusion (LAION4400M) weights and config")
help="fallback to the latent diffusion (laion400m) weights and config")
parser.add_argument("--from_file",
dest='infile',
type=str,
help="if specified, load prompts from this file")
parser.add_argument('-n','--iterations',
type=int,
default=1,
help="number of images to generate")
parser.add_argument('-F','--full_precision',
dest='full_precision',
action='store_true',
help="use slower full precision math for calculations")
parser.add_argument('-b','--batch_size',
type=int,
default=1,
help="number of images to produce per iteration (currently not working properly - producing too many images)")
parser.add_argument('--sampler',
choices=['plms','ddim'],
default='plms',
help="which sampler to use")
parser.add_argument('-o',
'--outdir',
help="number of images to produce per iteration (faster, but doesn't generate individual seeds")
parser.add_argument('--sampler','-m',
dest="sampler_name",
choices=['ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms'],
default='k_lms',
help="which sampler to use (k_lms) - can only be set on command line")
parser.add_argument('--outdir',
'-o',
type=str,
default="outputs/img-samples",
help="directory in which to place generated images and a log of prompts and seeds")
parser.add_argument('--embedding_path',
type=str,
help="Path to a pre-trained embedding manager checkpoint - can only be set on command line")
parser.add_argument('--device',
'-d',
type=str,
default="cuda",
help="device to run stable diffusion on. defaults to cuda `torch.cuda.current_device()` if avalible")
return parser
@@ -185,22 +326,25 @@ def create_cmd_parser():
parser.add_argument('prompt')
parser.add_argument('-s','--steps',type=int,help="number of steps")
parser.add_argument('-S','--seed',type=int,help="image seed")
parser.add_argument('-n','--iterations',type=int,default=1,help="number of samplings to perform")
parser.add_argument('-b','--batch_size',type=int,default=1,help="number of images to produce per sampling (currently broken)")
parser.add_argument('-n','--iterations',type=int,default=1,help="number of samplings to perform (slower, but will provide seeds for individual images)")
parser.add_argument('-b','--batch_size',type=int,default=1,help="number of images to produce per sampling (will not provide seeds for individual images!)")
parser.add_argument('-W','--width',type=int,help="image width, multiple of 64")
parser.add_argument('-H','--height',type=int,help="image height, multiple of 64")
parser.add_argument('-C','--cfg_scale',default=7.5,type=float,help="prompt configuration scale")
parser.add_argument('-g','--grid',action='store_true',help="generate a grid")
parser.add_argument('-i','--individual',action='store_true',help="generate individual files (default)")
parser.add_argument('-I','--init_img',type=str,help="path to input image (supersedes width and height)")
parser.add_argument('-I','--init_img',type=str,help="path to input image for img2img mode (supersedes width and height)")
parser.add_argument('-f','--strength',default=0.75,type=float,help="strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely")
parser.add_argument('-v','--variants',type=int,help="in img2img mode, the first generated image will get passed back to img2img to generate the requested number of variants")
parser.add_argument('-x','--skip_normalize',action='store_true',help="skip subprompt weight normalization")
return parser
if readline_available:
def setup_readline():
readline.set_completer(Completer(['--steps','-s','--seed','-S','--iterations','-n','--batch_size','-b',
readline.set_completer(Completer(['cd','pwd',
'--steps','-s','--seed','-S','--iterations','-n','--batch_size','-b',
'--width','-W','--height','-H','--cfg_scale','-C','--grid','-g',
'--individual','-i','--init_img','-I','--strength','-f']).complete)
'--individual','-i','--init_img','-I','--strength','-f','-v','--variants']).complete)
readline.set_completer_delims(" ")
readline.parse_and_bind('tab: complete')
load_history()
@@ -220,8 +364,13 @@ if readline_available:
return
def complete(self,text,state):
if text.startswith('-I') or text.startswith('--init_img'):
return self._image_completions(text,state)
buffer = readline.get_line_buffer()
if text.startswith(('-I','--init_img')):
return self._path_completions(text,state,('.png'))
if buffer.strip().endswith('cd') or text.startswith(('.','/')):
return self._path_completions(text,state,())
response = None
if state == 0:
@@ -241,12 +390,14 @@ if readline_available:
response = None
return response
def _image_completions(self,text,state):
def _path_completions(self,text,state,extensions):
# get the path so far
if text.startswith('-I'):
path = text.replace('-I','',1).lstrip()
elif text.startswith('--init_img='):
path = text.replace('--init_img=','',1).lstrip()
else:
path = text
matches = list()
@@ -263,7 +414,7 @@ if readline_available:
if full_path.startswith(path):
if os.path.isdir(full_path):
matches.append(os.path.join(os.path.dirname(text),n)+'/')
elif n.endswith('.png'):
elif n.endswith(extensions):
matches.append(os.path.join(os.path.dirname(text),n))
try:
@@ -271,7 +422,7 @@ if readline_available:
except IndexError:
response = None
return response
if __name__ == "__main__":
main()

30
scripts/images2prompt.py Executable file
View File

@@ -0,0 +1,30 @@
#!/usr/bin/env python3
'''This script reads the "Dream" Stable Diffusion prompt embedded in files generated by dream.py'''
import sys
from PIL import Image,PngImagePlugin
if len(sys.argv) < 2:
print("Usage: file2prompt.py <file1.png> <file2.png> <file3.png>...")
print("This script opens up the indicated dream.py-generated PNG file(s) and prints out the prompt used to generate them.")
exit(-1)
filenames = sys.argv[1:]
for f in filenames:
try:
im = Image.open(f)
try:
prompt = im.text['Dream']
except KeyError:
prompt = ''
print(f'{f}: {prompt}')
except FileNotFoundError:
sys.stderr.write(f'{f} not found\n')
continue
except PermissionError:
sys.stderr.write(f'{f} could not be opened due to inadequate permissions\n')
continue

View File

@@ -0,0 +1,83 @@
from ldm.modules.encoders.modules import BERTTokenizer
from ldm.modules.embedding_manager import EmbeddingManager
import argparse, os
from functools import partial
import torch
def get_placeholder_loop(placeholder_string, tokenizer):
new_placeholder = None
while True:
if new_placeholder is None:
new_placeholder = input(f"Placeholder string {placeholder_string} was already used. Please enter a replacement string: ")
else:
new_placeholder = input(f"Placeholder string '{new_placeholder}' maps to more than a single token. Please enter another string: ")
token = tokenizer(new_placeholder)
if torch.count_nonzero(token) == 3:
return new_placeholder, token[0, 1]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--manager_ckpts",
type=str,
nargs="+",
required=True,
help="Paths to a set of embedding managers to be merged."
)
parser.add_argument(
"--output_path",
type=str,
required=True,
help="Output path for the merged manager",
)
args = parser.parse_args()
tokenizer = BERTTokenizer(vq_interface=False, max_length=77)
EmbeddingManager = partial(EmbeddingManager, tokenizer, ["*"])
string_to_token_dict = {}
string_to_param_dict = torch.nn.ParameterDict()
placeholder_to_src = {}
for manager_ckpt in args.manager_ckpts:
print(f"Parsing {manager_ckpt}...")
manager = EmbeddingManager()
manager.load(manager_ckpt)
for placeholder_string in manager.string_to_token_dict:
if not placeholder_string in string_to_token_dict:
string_to_token_dict[placeholder_string] = manager.string_to_token_dict[placeholder_string]
string_to_param_dict[placeholder_string] = manager.string_to_param_dict[placeholder_string]
placeholder_to_src[placeholder_string] = manager_ckpt
else:
new_placeholder, new_token = get_placeholder_loop(placeholder_string, tokenizer)
string_to_token_dict[new_placeholder] = new_token
string_to_param_dict[new_placeholder] = manager.string_to_param_dict[placeholder_string]
placeholder_to_src[new_placeholder] = manager_ckpt
print("Saving combined manager...")
merged_manager = EmbeddingManager()
merged_manager.string_to_param_dict = string_to_param_dict
merged_manager.string_to_token_dict = string_to_token_dict
merged_manager.save(args.output_path)
print("Managers merged. Final list of placeholders: ")
print(placeholder_to_src)

View File

@@ -12,6 +12,10 @@ from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import contextmanager, nullcontext
import accelerate
import k_diffusion as K
import torch.nn as nn
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
@@ -80,6 +84,11 @@ def main():
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--klms",
action='store_true',
help="use klms sampling",
)
parser.add_argument(
"--laion400m",
action='store_true',
@@ -190,6 +199,22 @@ def main():
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
#for klms
model_wrap = K.external.CompVisDenoiser(model)
accelerator = accelerate.Accelerator()
device = accelerator.device
class CFGDenoiser(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, x, sigma, uncond, cond, cond_scale):
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
return uncond + (cond - uncond) * cond_scale
if opt.plms:
sampler = PLMSSampler(model)
else:
@@ -226,8 +251,8 @@ def main():
with model.ema_scope():
tic = time.time()
all_samples = list()
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
for n in trange(opt.n_iter, desc="Sampling", disable =not accelerator.is_main_process):
for prompts in tqdm(data, desc="data", disable =not accelerator.is_main_process):
uc = None
if opt.scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
@@ -235,18 +260,32 @@ def main():
prompts = list(prompts)
c = model.get_learned_conditioning(prompts)
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code)
if not opt.klms:
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code)
else:
sigmas = model_wrap.get_sigmas(opt.ddim_steps)
if start_code:
x = start_code
else:
x = torch.randn([opt.n_samples, *shape], device=device) * sigmas[0] # for GPU draw
model_wrap_cfg = CFGDenoiser(model_wrap)
extra_args = {'cond': c, 'uncond': uc, 'cond_scale': opt.scale}
samples_ddim = K.sampling.sample_lms(model_wrap_cfg, x, sigmas, extra_args=extra_args, disable=not accelerator.is_main_process)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
if opt.klms:
x_sample = accelerator.gather(x_samples_ddim)
if not opt.skip_save:
for x_sample in x_samples_ddim:

23
scripts/preload_models.py Normal file → Executable file
View File

@@ -1,8 +1,12 @@
#!/usr/bin/env python
#!/usr/bin/env python3
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
# Before running stable-diffusion on an internet-isolated machine,
# run this script from one with internet connectivity. The
# two machines must share a common .cache directory.
import sys
import transformers
transformers.logging.set_verbosity_error()
# this will preload the Bert tokenizer fles
print("preloading bert tokenizer...")
@@ -11,7 +15,20 @@ tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
print("...success")
# this will download requirements for Kornia
print("preloading Kornia requirements...")
print("preloading Kornia requirements (ignore the warnings)...")
import kornia
print("...success")
# doesn't work - probably wrong logger
# logging.getLogger('transformers.tokenization_utils').setLevel(logging.ERROR)
version='openai/clip-vit-large-patch14'
print('preloading CLIP model (Ignore the warnings)...')
sys.stdout.flush()
import clip
from transformers import CLIPTokenizer, CLIPTextModel
tokenizer =CLIPTokenizer.from_pretrained(version)
transformer=CLIPTextModel.from_pretrained(version)
print('\n\n...success')

1
src/clip Submodule

Submodule src/clip added at d50d76daa6

1
src/k-diffusion Submodule

Submodule src/k-diffusion added at db57990687