Compare commits

..

13 Commits

Author SHA1 Message Date
Ryan Dick
5edee6997e wip 2024-10-23 18:03:36 +00:00
Ryan Dick
9aaecf5b5c Add utils for inferring SD3 params from a state dict and constructing an SD3 model. 2024-10-23 16:34:53 +00:00
Ryan Dick
b4a2244943 Fix Sd3ModelLoaderOutput name. 2024-10-23 16:29:18 +00:00
Ryan Dick
155bf13d2b Tidy imports in other_impls.py 2024-10-23 15:24:21 +00:00
Ryan Dick
9f7b5f7a85 Miscellaneous cleanup of mmditx.py. Mostly typing fixes. 2024-10-23 15:21:25 +00:00
Ryan Dick
b3d16b4979 Copy file from 19bf11c4e1/other_impls.py. 2024-10-23 14:44:33 +00:00
Ryan Dick
10b2567fcb Rough draft of Sd3ModelLoaderInvocation. 2024-10-23 14:34:05 +00:00
Ryan Dick
04feb74f81 Move FluxModelLoaderInvocaton to its own file. model.py was getting bloated. 2024-10-23 14:16:11 +00:00
Ryan Dick
a7d8db8c15 Fix model probing of CLIP-G model with CLIPTextModelWithProjection class type. 2024-10-23 14:01:30 +00:00
Ryan Dick
b3b930a6f5 Add BaseModelType.StablDiffusion3 and some hacks to get model probing working. 2024-10-23 13:11:23 +00:00
Ryan Dick
43f108fe9f Add comment explaining some hard-coded background values. 2024-10-23 13:11:23 +00:00
Ryan Dick
f1f2525ed0 Add util function for detecting SD3 checkpoint state dict. 2024-10-23 13:11:23 +00:00
Ryan Dick
afd7b50343 Copy files from 19bf11c4e1 2024-10-23 13:11:23 +00:00
645 changed files with 17555 additions and 36522 deletions

View File

@@ -19,4 +19,3 @@
- [ ] _The PR has a short but descriptive title, suitable for a changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_

View File

@@ -1,85 +0,0 @@
# Runs typegen schema quality checks.
# Frontend types should match the server.
#
# Checks for changes to files before running the checks.
# If always_run is true, always runs the checks.
name: 'typegen checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
jobs:
typegen-checks:
runs-on: ubuntu-22.04
timeout-minutes: 15 # expected run time: <5 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
src:
- 'pyproject.toml'
- 'invokeai/**'
- name: setup python
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install python dependencies
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
run: pip3 install --use-pep517 --editable="."
- name: install frontend dependencies
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
uses: ./.github/actions/install-frontend-deps
- name: copy schema
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
run: cp invokeai/frontend/web/src/services/api/schema.ts invokeai/frontend/web/src/services/api/schema_orig.ts
shell: bash
- name: generate schema
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
run: make frontend-typegen
shell: bash
- name: compare files
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
run: |
if ! diff invokeai/frontend/web/src/services/api/schema.ts invokeai/frontend/web/src/services/api/schema_orig.ts; then
echo "Files are different!";
exit 1;
fi
shell: bash

View File

@@ -30,12 +30,51 @@ Invoke is available in two editions:
|----------------------------------------------------------------------------------------------------------------------------|
| [Installation and Updates][installation docs] - [Documentation and Tutorials][docs home] - [Bug Reports][github issues] - [Contributing][contributing docs] |
# Installation
</div>
To get started with Invoke, [Download the Installer](https://www.invoke.com/downloads).
## Quick Start
For detailed step by step instructions, or for instructions on manual/docker installations, visit our documentation on [Installation and Updates][installation docs]
1. Download and unzip the installer from the bottom of the [latest release][latest release link].
2. Run the installer script.
- **Windows**: Double-click on the `install.bat` script.
- **macOS**: Open a Terminal window, drag the file `install.sh` from Finder into the Terminal, and press enter.
- **Linux**: Run `install.sh`.
3. When prompted, enter a location for the install and select your GPU type.
4. Once the install finishes, find the directory you selected during install. The default location is `C:\Users\Username\invokeai` for Windows or `~/invokeai` for Linux/macOS.
5. Run the launcher script (`invoke.bat` for Windows, `invoke.sh` for macOS and Linux) the same way you ran the installer script in step 2.
6. Select option 1 to start the application. Once it starts up, open your browser and go to <http://localhost:9090>.
7. Open the model manager tab to install a starter model and then you'll be ready to generate.
More detail, including hardware requirements and manual install instructions, are available in the [installation documentation][installation docs].
## Docker Container
We publish official container images in Github Container Registry: https://github.com/invoke-ai/InvokeAI/pkgs/container/invokeai. Both CUDA and ROCm images are available. Check the above link for relevant tags.
> [!IMPORTANT]
> Ensure that Docker is set up to use the GPU. Refer to [NVIDIA][nvidia docker docs] or [AMD][amd docker docs] documentation.
### Generate!
Run the container, modifying the command as necessary:
```bash
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
```
Then open `http://localhost:9090` and install some models using the Model Manager tab to begin generating.
For ROCm, add `--device /dev/kfd --device /dev/dri` to the `docker run` command.
### Persist your data
You will likely want to persist your workspace outside of the container. Use the `--volume /home/myuser/invokeai:/invokeai` flag to mount some local directory (using its **absolute** path) to the `/invokeai` path inside the container. Your generated images and models will reside there. You can use this directory with other InvokeAI installations, or switch between runtime directories as needed.
### DIY
Build your own image and customize the environment to match your needs using our `docker-compose` stack. See [README.md](./docker/README.md) in the [docker](./docker) directory.
## Troubleshooting, FAQ and Support

View File

@@ -1,14 +0,0 @@
# Security Policy
## Supported Versions
Only the latest version of Invoke will receive security updates.
We do not currently maintain multiple versions of the application with updates.
## Reporting a Vulnerability
To report a vulnerability, contact the Invoke team directly at security@invoke.ai
At this time, we do not maintain a formal bug bounty program.
You can also share identified security issues with our team on huntr.com

View File

@@ -2,42 +2,29 @@
## Builder stage
FROM library/ubuntu:24.04 AS builder
FROM library/ubuntu:23.04 AS builder
ARG DEBIAN_FRONTEND=noninteractive
RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
apt update && apt-get install -y \
build-essential \
git
git \
python3-venv \
python3-pip \
build-essential
# Install `uv` for package management
COPY --from=ghcr.io/astral-sh/uv:0.5.5 /uv /uvx /bin/
ENV VIRTUAL_ENV=/opt/venv
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
ENV INVOKEAI_SRC=/opt/invokeai
ENV PYTHON_VERSION=3.11
ENV UV_COMPILE_BYTECODE=1
ENV UV_LINK_MODE=copy
ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
ARG GPU_DRIVER=cuda
ARG TARGETPLATFORM="linux/amd64"
# unused but available
ARG BUILDPLATFORM
# Switch to the `ubuntu` user to work around dependency issues with uv-installed python
RUN mkdir -p ${VIRTUAL_ENV} && \
mkdir -p ${INVOKEAI_SRC} && \
chmod -R a+w /opt
USER ubuntu
# Install python and create the venv
RUN uv python install ${PYTHON_VERSION} && \
uv venv --relocatable --prompt "invoke" --python ${PYTHON_VERSION} ${VIRTUAL_ENV}
WORKDIR ${INVOKEAI_SRC}
COPY invokeai ./invokeai
COPY pyproject.toml ./
@@ -45,18 +32,25 @@ COPY pyproject.toml ./
# the local working copy can be bind-mounted into the image
# at path defined by ${INVOKEAI_SRC}
# NOTE: there are no pytorch builds for arm64 + cuda, only cpu
# x86_64/CUDA is the default
RUN --mount=type=cache,target=/home/ubuntu/.cache/uv,uid=1000,gid=1000 \
# x86_64/CUDA is default
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m venv ${VIRTUAL_ENV} &&\
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm6.1"; \
else \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu124"; \
fi && \
uv pip install --python ${PYTHON_VERSION} $extra_index_url_arg -e "."
fi &&\
#### Build the Web UI ------------------------------------
# xformers + triton fails to install on arm64
if [ "$GPU_DRIVER" = "cuda" ] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then \
pip install $extra_index_url_arg -e ".[xformers]"; \
else \
pip install $extra_index_url_arg -e "."; \
fi
# #### Build the Web UI ------------------------------------
FROM node:20-slim AS web-builder
ENV PNPM_HOME="/pnpm"
@@ -72,7 +66,7 @@ RUN npx vite build
#### Runtime stage ---------------------------------------
FROM library/ubuntu:24.04 AS runtime
FROM library/ubuntu:23.04 AS runtime
ARG DEBIAN_FRONTEND=noninteractive
ENV PYTHONUNBUFFERED=1
@@ -89,16 +83,17 @@ RUN apt update && apt install -y --no-install-recommends \
gosu \
magic-wormhole \
libglib2.0-0 \
libgl1 \
libglx-mesa0 \
libgl1-mesa-glx \
python3-venv \
python3-pip \
build-essential \
libopencv-dev \
libstdc++-10-dev &&\
apt-get clean && apt-get autoclean
ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv
ENV PYTHON_VERSION=3.11
ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV INVOKEAI_ROOT=/invokeai
ENV INVOKEAI_HOST=0.0.0.0
ENV INVOKEAI_PORT=9090
@@ -106,14 +101,6 @@ ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
ENV CONTAINER_UID=${CONTAINER_UID:-1000}
ENV CONTAINER_GID=${CONTAINER_GID:-1000}
# Install `uv` for package management
# and install python for the ubuntu user (expected to exist on ubuntu >=24.x)
# this is too tiny to optimize with multi-stage builds, but maybe we'll come back to it
COPY --from=ghcr.io/astral-sh/uv:0.5.5 /uv /uvx /bin/
USER ubuntu
RUN uv python install ${PYTHON_VERSION}
USER root
# --link requires buldkit w/ dockerfile syntax 1.4
COPY --link --from=builder ${INVOKEAI_SRC} ${INVOKEAI_SRC}
COPY --link --from=builder ${VIRTUAL_ENV} ${VIRTUAL_ENV}
@@ -128,7 +115,7 @@ WORKDIR ${INVOKEAI_SRC}
# build patchmatch
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
RUN python -c "from patchmatch import patch_match"
RUN python3 -c "from patchmatch import patch_match"
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R ${CONTAINER_UID}:${CONTAINER_GID} ${INVOKEAI_ROOT}

View File

@@ -16,9 +16,6 @@ set -e -o pipefail
USER_ID=${CONTAINER_UID:-1000}
USER=ubuntu
# if the user does not exist, create it. It is expected to be present on ubuntu >=24.x
_=$(id ${USER} 2>&1) || useradd -u ${USER_ID} ${USER}
# ensure the UID is correct
usermod -u ${USER_ID} ${USER} 1>/dev/null
### Set the $PUBLIC_KEY env var to enable SSH access.
@@ -39,8 +36,6 @@ fi
mkdir -p "${INVOKEAI_ROOT}"
chown --recursive ${USER} "${INVOKEAI_ROOT}" || true
cd "${INVOKEAI_ROOT}"
export HF_HOME=${HF_HOME:-$INVOKEAI_ROOT/.cache/huggingface}
export MPLCONFIGDIR=${MPLCONFIGDIR:-$INVOKEAI_ROOT/.matplotlib}
# Run the CMD as the Container User (not root).
exec gosu ${USER} "$@"

View File

@@ -39,7 +39,7 @@ It has two sections - one for internal use and one for user settings:
```yaml
# Internal metadata - do not edit:
schema_version: 4.0.2
schema_version: 4
# Put user settings here - see https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/:
host: 0.0.0.0 # serve the app on your local network
@@ -83,10 +83,6 @@ A subset of settings may be specified using CLI args:
- `--root`: specify the root directory
- `--config`: override the default `invokeai.yaml` file location
### Low-VRAM Mode
See the [Low-VRAM mode docs][low-vram] for details on enabling this feature.
### All Settings
Following the table are additional explanations for certain settings.
@@ -118,10 +114,6 @@ remote_api_tokens:
The provided token will be added as a `Bearer` token to the network requests to download the model files. As far as we know, this works for all model marketplaces that require authorization.
!!! tip "HuggingFace Models"
If you get an error when installing a HF model using a URL instead of repo id, you may need to [set up a HF API token](https://huggingface.co/settings/tokens) and add an entry for it under `remote_api_tokens`. Use `huggingface.co` for `url_regex`.
#### Model Hashing
Models are hashed during installation, providing a stable identifier for models across all platforms. Hashing is a one-time operation.
@@ -189,4 +181,3 @@ The `log_format` option provides several alternative formats:
[basic guide to yaml files]: https://circleci.com/blog/what-is-yaml-a-beginner-s-guide/
[Model Marketplace API Keys]: #model-marketplace-api-keys
[low-vram]: ./features/low-vram.md

View File

@@ -50,7 +50,7 @@ Applications are built on top of the invoke framework. They should construct `in
### Web UI
The Web UI is built on top of an HTTP API built with [FastAPI](https://fastapi.tiangolo.com/) and [Socket.IO](https://socket.io/). The frontend code is found in `/invokeai/frontend` and the backend code is found in `/invokeai/app/api_app.py` and `/invokeai/app/api/`. The code is further organized as such:
The Web UI is built on top of an HTTP API built with [FastAPI](https://fastapi.tiangolo.com/) and [Socket.IO](https://socket.io/). The frontend code is found in `/frontend` and the backend code is found in `/ldm/invoke/app/api_app.py` and `/ldm/invoke/app/api/`. The code is further organized as such:
| Component | Description |
| --- | --- |
@@ -62,7 +62,7 @@ The Web UI is built on top of an HTTP API built with [FastAPI](https://fastapi.t
### CLI
The CLI is built automatically from invocation metadata, and also supports invocation piping and auto-linking. Code is available in `/invokeai/frontend/cli`.
The CLI is built automatically from invocation metadata, and also supports invocation piping and auto-linking. Code is available in `/ldm/invoke/app/cli_app.py`.
## Invoke
@@ -70,7 +70,7 @@ The Invoke framework provides the interface to the underlying AI systems and is
### Invoker
The invoker (`/invokeai/app/services/invoker.py`) is the primary interface through which applications interact with the framework. Its primary purpose is to create, manage, and invoke sessions. It also maintains two sets of services:
The invoker (`/ldm/invoke/app/services/invoker.py`) is the primary interface through which applications interact with the framework. Its primary purpose is to create, manage, and invoke sessions. It also maintains two sets of services:
- **invocation services**, which are used by invocations to interact with core functionality.
- **invoker services**, which are used by the invoker to manage sessions and manage the invocation queue.
@@ -82,12 +82,12 @@ The session graph does not support looping. This is left as an application probl
### Invocations
Invocations represent individual units of execution, with inputs and outputs. All invocations are located in `/invokeai/app/invocations`, and are all automatically discovered and made available in the applications. These are the primary way to expose new functionality in Invoke.AI, and the [implementation guide](INVOCATIONS.md) explains how to add new invocations.
Invocations represent individual units of execution, with inputs and outputs. All invocations are located in `/ldm/invoke/app/invocations`, and are all automatically discovered and made available in the applications. These are the primary way to expose new functionality in Invoke.AI, and the [implementation guide](INVOCATIONS.md) explains how to add new invocations.
### Services
Services provide invocations access AI Core functionality and other necessary functionality (e.g. image storage). These are available in `/invokeai/app/services`. As a general rule, new services should provide an interface as an abstract base class, and may provide a lightweight local implementation by default in their module. The goal for all services should be to enable the usage of different implementations (e.g. using cloud storage for image storage), but should not load any module dependencies unless that implementation has been used (i.e. don't import anything that won't be used, especially if it's expensive to import).
Services provide invocations access AI Core functionality and other necessary functionality (e.g. image storage). These are available in `/ldm/invoke/app/services`. As a general rule, new services should provide an interface as an abstract base class, and may provide a lightweight local implementation by default in their module. The goal for all services should be to enable the usage of different implementations (e.g. using cloud storage for image storage), but should not load any module dependencies unless that implementation has been used (i.e. don't import anything that won't be used, especially if it's expensive to import).
## AI Core
The AI Core is represented by the rest of the code base (i.e. the code outside of `/invokeai/app/`).
The AI Core is represented by the rest of the code base (i.e. the code outside of `/ldm/invoke/app/`).

View File

@@ -287,8 +287,8 @@ new Invocation ready to be used.
Once you've created a Node, the next step is to share it with the community! The
best way to do this is to submit a Pull Request to add the Node to the
[Community Nodes](../nodes/communityNodes.md) list. If you're not sure how to do that,
take a look a at our [contributing nodes overview](../nodes/contributingNodes.md).
[Community Nodes](nodes/communityNodes) list. If you're not sure how to do that,
take a look a at our [contributing nodes overview](contributingNodes).
## Advanced

View File

@@ -9,20 +9,20 @@ model. These are the:
configuration information. Among other things, the record service
tracks the type of the model, its provenance, and where it can be
found on disk.
* _ModelInstallServiceBase_ A service for installing models to
disk. It uses `DownloadQueueServiceBase` to download models and
their metadata, and `ModelRecordServiceBase` to store that
information. It is also responsible for managing the InvokeAI
`models` directory and its contents.
* _DownloadQueueServiceBase_
A multithreaded downloader responsible
for downloading models from a remote source to disk. The download
queue has special methods for downloading repo_id folders from
Hugging Face, as well as discriminating among model versions in
Civitai, but can be used for arbitrary content.
* _ModelLoadServiceBase_
Responsible for loading a model from disk
into RAM and VRAM and getting it ready for inference.
@@ -207,9 +207,9 @@ for use in the InvokeAI web server. Its signature is:
```
def open(
cls,
config: InvokeAIAppConfig,
conn: Optional[sqlite3.Connection] = None,
cls,
config: InvokeAIAppConfig,
conn: Optional[sqlite3.Connection] = None,
lock: Optional[threading.Lock] = None
) -> Union[ModelRecordServiceSQL, ModelRecordServiceFile]:
```
@@ -363,7 +363,7 @@ functionality:
* Registering a model config record for a model already located on the
local filesystem, without moving it or changing its path.
* Installing a model alreadiy located on the local filesystem, by
moving it into the InvokeAI root directory under the
`models` folder (or wherever config parameter `models_dir`
@@ -371,21 +371,21 @@ functionality:
* Probing of models to determine their type, base type and other key
information.
* Interface with the InvokeAI event bus to provide status updates on
the download, installation and registration process.
* Downloading a model from an arbitrary URL and installing it in
`models_dir`.
* Special handling for HuggingFace repo_ids to recursively download
the contents of the repository, paying attention to alternative
variants such as fp16.
* Saving tags and other metadata about the model into the invokeai database
when fetching from a repo that provides that type of information,
(currently only HuggingFace).
### Initializing the installer
A default installer is created at InvokeAI api startup time and stored
@@ -461,7 +461,7 @@ revision.
`config` is an optional dict of values that will override the
autoprobed values for model type, base, scheduler prediction type, and
so forth. See [Model configuration and
probing](#model-configuration-and-probing) for details.
probing](#Model-configuration-and-probing) for details.
`access_token` is an optional access token for accessing resources
that need authentication.
@@ -494,7 +494,7 @@ source8 = URLModelSource(url='https://civitai.com/api/download/models/63006', ac
for source in [source1, source2, source3, source4, source5, source6, source7]:
install_job = installer.install_model(source)
source2job = installer.wait_for_installs(timeout=120)
for source in sources:
job = source2job[source]
@@ -504,7 +504,7 @@ for source in sources:
print(f"{source} installed as {model_key}")
elif job.errored:
print(f"{source}: {job.error_type}.\nStack trace:\n{job.error}")
```
As shown here, the `import_model()` method accepts a variety of
@@ -1364,6 +1364,7 @@ the in-memory loaded model:
|----------------|-----------------|------------------|
| `config` | AnyModelConfig | A copy of the model's configuration record for retrieving base type, etc. |
| `model` | AnyModel | The instantiated model (details below) |
| `locker` | ModelLockerBase | A context manager that mediates the movement of the model into VRAM |
### get_model_by_key(key, [submodel]) -> LoadedModel

View File

@@ -1,6 +1,6 @@
# InvokeAI Backend Tests
We use `pytest` to run the backend python tests. (See [pyproject.toml](https://github.com/invoke-ai/InvokeAI/blob/main/pyproject.toml) for the default `pytest` options.)
We use `pytest` to run the backend python tests. (See [pyproject.toml](/pyproject.toml) for the default `pytest` options.)
## Fast vs. Slow
All tests are categorized as either 'fast' (no test annotation) or 'slow' (annotated with the `@pytest.mark.slow` decorator).
@@ -33,7 +33,7 @@ pytest tests -m ""
## Test Organization
All backend tests are in the [`tests/`](https://github.com/invoke-ai/InvokeAI/tree/main/tests) directory. This directory mirrors the organization of the `invokeai/` directory. For example, tests for `invokeai/model_management/model_manager.py` would be found in `tests/model_management/test_model_manager.py`.
All backend tests are in the [`tests/`](/tests/) directory. This directory mirrors the organization of the `invokeai/` directory. For example, tests for `invokeai/model_management/model_manager.py` would be found in `tests/model_management/test_model_manager.py`.
TODO: The above statement is aspirational. A re-organization of legacy tests is required to make it true.

View File

@@ -2,7 +2,7 @@
## **What do I need to know to help?**
If you are looking to help with a code contribution, InvokeAI uses several different technologies under the hood: Python (Pydantic, FastAPI, diffusers) and Typescript (React, Redux Toolkit, ChakraUI, Mantine, Konva). Familiarity with StableDiffusion and image generation concepts is helpful, but not essential.
If you are looking to help with a code contribution, InvokeAI uses several different technologies under the hood: Python (Pydantic, FastAPI, diffusers) and Typescript (React, Redux Toolkit, ChakraUI, Mantine, Konva). Familiarity with StableDiffusion and image generation concepts is helpful, but not essential.
## **Get Started**
@@ -12,7 +12,7 @@ To get started, take a look at our [new contributors checklist](newContributorCh
Once you're setup, for more information, you can review the documentation specific to your area of interest:
* #### [InvokeAI Architecure](../ARCHITECTURE.md)
* #### [Frontend Documentation](../frontend/index.md)
* #### [Frontend Documentation](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web)
* #### [Node Documentation](../INVOCATIONS.md)
* #### [Local Development](../LOCAL_DEVELOPMENT.md)
@@ -20,15 +20,15 @@ Once you're setup, for more information, you can review the documentation specif
If you don't feel ready to make a code contribution yet, no problem! You can also help out in other ways, such as [documentation](documentation.md), [translation](translation.md) or helping support other users and triage issues as they're reported in GitHub.
There are two paths to making a development contribution:
There are two paths to making a development contribution:
1. Choosing an open issue to address. Open issues can be found in the [Issues](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen) section of the InvokeAI repository. These are tagged by the issue type (bug, enhancement, etc.) along with the “good first issues” tag denoting if they are suitable for first time contributors.
1. Additional items can be found on our [roadmap](https://github.com/orgs/invoke-ai/projects/7). The roadmap is organized in terms of priority, and contains features of varying size and complexity. If there is an inflight item youd like to help with, reach out to the contributor assigned to the item to see how you can help.
1. Additional items can be found on our [roadmap](https://github.com/orgs/invoke-ai/projects/7). The roadmap is organized in terms of priority, and contains features of varying size and complexity. If there is an inflight item youd like to help with, reach out to the contributor assigned to the item to see how you can help.
2. Opening a new issue or feature to add. **Please make sure you have searched through existing issues before creating new ones.**
*Regardless of what you choose, please post in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord before you start development in order to confirm that the issue or feature is aligned with the current direction of the project. We value our contributors time and effort and want to ensure that no ones time is being misspent.*
## Best Practices:
## Best Practices:
* Keep your pull requests small. Smaller pull requests are more likely to be accepted and merged
* Comments! Commenting your code helps reviewers easily understand your contribution
* Use Python and Typescripts typing systems, and consider using an editor with [LSP](https://microsoft.github.io/language-server-protocol/) support to streamline development
@@ -38,7 +38,7 @@ There are two paths to making a development contribution:
If you need help, you can ask questions in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord.
For frontend related work, **@psychedelicious** is the best person to reach out to.
For frontend related work, **@psychedelicious** is the best person to reach out to.
For backend related work, please reach out to **@blessedcoolant**, **@lstein**, **@StAlKeR7779** or **@psychedelicious**.

View File

@@ -5,7 +5,7 @@ If you're a new contributor to InvokeAI or Open Source Projects, this is the gui
## New Contributor Checklist
- [x] Set up your local development environment & fork of InvokAI by following [the steps outlined here](../dev-environment.md)
- [x] Set up your local tooling with [this guide](../LOCAL_DEVELOPMENT.md). Feel free to skip this step if you already have tooling you're comfortable with.
- [x] Set up your local tooling with [this guide](InvokeAI/contributing/LOCAL_DEVELOPMENT/#developing-invokeai-in-vscode). Feel free to skip this step if you already have tooling you're comfortable with.
- [x] Familiarize yourself with [Git](https://www.atlassian.com/git) & our project structure by reading through the [development documentation](development.md)
- [x] Join the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord
- [x] Choose an issue to work on! This can be achieved by asking in the #dev-chat channel, tackling a [good first issue](https://github.com/invoke-ai/InvokeAI/contribute) or finding an item on the [roadmap](https://github.com/orgs/invoke-ai/projects/7). If nothing in any of those places catches your eye, feel free to work on something of interest to you!
@@ -22,15 +22,15 @@ Before starting these steps, ensure you have your local environment [configured
2. Fork the [InvokeAI](https://github.com/invoke-ai/InvokeAI) repository to your GitHub profile. This means that you will have a copy of the repository under **your-GitHub-username/InvokeAI**.
3. Clone the repository to your local machine using:
```bash
git clone https://github.com/your-GitHub-username/InvokeAI.git
```
```bash
git clone https://github.com/your-GitHub-username/InvokeAI.git
```
If you're unfamiliar with using Git through the commandline, [GitHub Desktop](https://desktop.github.com) is a easy-to-use alternative with a UI. You can do all the same steps listed here, but through the interface. 4. Create a new branch for your fix using:
```bash
git checkout -b branch-name-here
```
```bash
git checkout -b branch-name-here
```
5. Make the appropriate changes for the issue you are trying to address or the feature that you want to add.
6. Add the file contents of the changed files to the "snapshot" git uses to manage the state of the project, also known as the index:

View File

@@ -1,10 +1,12 @@
# Dev Environment
To make changes to Invoke's backend, frontend or documentation, you'll need to set up a dev environment.
To make changes to Invoke's backend, frontend, or documentation, you'll need to set up a dev environment.
If you only want to make changes to the docs site, you can skip the frontend dev environment setup as described in the below guide.
If you just want to use Invoke, you should use the [installer][installer link].
If you just want to use Invoke, you should use the [launcher][launcher link].
!!! info "Why do I need the frontend toolchain?"
The repo doesn't contain a build of the frontend. You'll be responsible for rebuilding it every time you pull in new changes, or run it in dev mode (which incurs a substantial performance penalty).
!!! warning
@@ -15,66 +17,81 @@ If you just want to use Invoke, you should use the [launcher][launcher link].
## Setup
1. Run through the [requirements][requirements link].
1. [Fork and clone][forking link] the [InvokeAI repo][repo link].
1. Create an directory for user data (images, models, db, etc). This is typically at `~/invokeai`, but if you already have a non-dev install, you may want to create a separate directory for the dev install.
1. Create a python virtual environment inside the directory you just created:
2. [Fork and clone][forking link] the [InvokeAI repo][repo link].
```sh
python3 -m venv .venv --prompt InvokeAI-Dev
```
3. Create an directory for user data (images, models, db, etc). This is typically at `~/invokeai`, but if you already have a non-dev install, you may want to create a separate directory for the dev install.
1. Activate the venv (you'll need to do this every time you want to run the app):
4. Follow the [manual install][manual install link] guide, with some modifications to the install command:
```sh
source .venv/bin/activate
```
- Use `.` instead of `invokeai` to install from the current directory. You don't need to specify the version.
1. Install the repo as an [editable install][editable install link]:
- Add `-e` after the `install` operation to make this an [editable install][editable install link]. That means your changes to the python code will be reflected when you restart the Invoke server.
```sh
pip install -e ".[dev,test,xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
- When installing the `invokeai` package, add the `dev`, `test` and `docs` package options to the package specifier. You may or may not need the `xformers` option - follow the manual install guide to figure that out. So, your package specifier will be either `".[dev,test,docs]"` or `".[dev,test,docs,xformers]"`. Note the quotes!
Refer to the [manual installation][manual install link]] instructions for more determining the correct install options. `xformers` is optional, but `dev` and `test` are not.
With the modifications made, the install command should look something like this:
1. Install the frontend dev toolchain:
```sh
uv pip install -e ".[dev,test,docs,xformers]" --python 3.11 --python-preference only-managed --index=https://download.pytorch.org/whl/cu124 --reinstall
```
- [`nodejs`](https://nodejs.org/) (recommend v20 LTS)
- [`pnpm`](https://pnpm.io/installation#installing-a-specific-version) (must be v8 - not v9!)
5. At this point, you should have Invoke installed, a venv set up and activated, and the server running. But you will see a warning in the terminal that no UI was found. If you go to the URL for the server, you won't get a UI.
1. Do a production build of the frontend:
This is because the UI build is not distributed with the source code. You need to build it manually. End the running server instance.
```sh
pnpm build
```
If you only want to edit the docs, you can stop here and skip to the **Documentation** section below.
1. Start the application:
6. Install the frontend dev toolchain:
```sh
python scripts/invokeai-web.py
```
- [`nodejs`](https://nodejs.org/) (v20+)
- [`pnpm`](https://pnpm.io/8.x/installation) (must be v8 - not v9!)
7. Do a production build of the frontend:
```sh
cd <PATH_TO_INVOKEAI_REPO>/invokeai/frontend/web
pnpm i
pnpm build
```
8. Restart the server and navigate to the URL. You should get a UI. After making changes to the python code, restart the server to see those changes.
1. Access the UI at `localhost:9090`.
## Updating the UI
You'll need to run `pnpm build` every time you pull in new changes.
Another option is to skip the build and instead run the UI in dev mode:
You'll need to run `pnpm build` every time you pull in new changes. Another option is to skip the build and instead run the app in dev mode:
```sh
pnpm dev
```
This starts a vite dev server for the UI at `127.0.0.1:5173`, which you will use instead of `127.0.0.1:9090`.
This starts a dev server at `localhost:5173`, which you will use instead of `localhost:9090`.
The dev mode is substantially slower than the production build but may be more convenient if you just need to test things out. It will hot-reload the UI as you make changes to the frontend code. Sometimes the hot-reload doesn't work, and you need to manually refresh the browser tab.
The dev mode is substantially slower than the production build but may be more convenient if you just need to test things out.
## Documentation
The documentation is built with `mkdocs`. It provides a hot-reload dev server for the docs. Start it with `mkdocs serve`.
The documentation is built with `mkdocs`. To preview it locally, you need a additional set of packages installed.
[launcher link]: ../installation/quick_start.md
```sh
# after activating the venv
pip install -e ".[docs]"
```
Then, you can start a live docs dev server, which will auto-refresh when you edit the docs:
```sh
mkdocs serve
```
On macOS and Linux, there is a `make` target for this:
```sh
make docs
```
[installer link]: ../installation/installer.md
[forking link]: https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo
[requirements link]: ../installation/requirements.md
[repo link]: https://github.com/invoke-ai/InvokeAI

View File

@@ -34,11 +34,11 @@ Please reach out to @hipsterusername on [Discord](https://discord.gg/ZmtBAhwWhy)
## Contributors
This project is a combined effort of dedicated people from across the world. [Check out the list of all these amazing people](contributors.md). We thank them for their time, hard work and effort.
This project is a combined effort of dedicated people from across the world. [Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for their time, hard work and effort.
## Code of Conduct
The InvokeAI community is a welcoming place, and we want your help in maintaining that. Please review our [Code of Conduct](../CODE_OF_CONDUCT.md) to learn more - it's essential to maintaining a respectful and inclusive environment.
The InvokeAI community is a welcoming place, and we want your help in maintaining that. Please review our [Code of Conduct](https://github.com/invoke-ai/InvokeAI/blob/main/CODE_OF_CONDUCT.md) to learn more - it's essential to maintaining a respectful and inclusive environment.
By making a contribution to this project, you certify that:

View File

@@ -209,7 +209,7 @@ checkpoint models.
To solve this, go to the Model Manager tab (the cube), select the
checkpoint model that's giving you trouble, and press the "Convert"
button in the upper right of your browser window. This will convert the
button in the upper right of your browser window. This will conver the
checkpoint into a diffusers model, after which loading should be
faster and less memory-intensive.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 72 KiB

View File

@@ -1,129 +0,0 @@
---
title: Low-VRAM mode
---
As of v5.6.0, Invoke has a low-VRAM mode. It works on systems with dedicated GPUs (Nvidia GPUs on Windows/Linux and AMD GPUs on Linux).
This allows you to generate even if your GPU doesn't have enough VRAM to hold full models. Most users should be able to run even the beefiest models - like the ~24GB unquantised FLUX dev model.
## Enabling Low-VRAM mode
To enable Low-VRAM mode, add this line to your `invokeai.yaml` configuration file, then restart Invoke:
```yaml
enable_partial_loading: true
```
**Windows users should also [disable the Nvidia sysmem fallback](#disabling-nvidia-sysmem-fallback-windows-only)**.
It is possible to fine-tune the settings for best performance or if you still get out-of-memory errors (OOMs).
!!! tip "How to find `invokeai.yaml`"
The `invokeai.yaml` configuration file lives in your install directory. To access it, run the **Invoke Community Edition** launcher and click the install location. This will open your install directory in a file explorer window.
You'll see `invokeai.yaml` there and can edit it with any text editor. After making changes, restart Invoke.
If you don't see `invokeai.yaml`, launch Invoke once. It will create the file on its first startup.
## Details and fine-tuning
Low-VRAM mode involves 3 features, each of which can be configured or fine-tuned:
- Partial model loading
- Dynamic RAM and VRAM cache sizes
- Working memory
Read on to learn about these features and understand how to fine-tune them for your system and use-cases.
### Partial model loading
Invoke's partial model loading works by streaming model "layers" between RAM and VRAM as they are needed.
When an operation needs layers that are not in VRAM, but there isn't enough room to load them, inactive layers are offloaded to RAM to make room.
#### Enabling partial model loading
As described above, you can enable partial model loading by adding this line to `invokeai.yaml`:
```yaml
enable_partial_loading: true
```
### Dynamic RAM and VRAM cache sizes
Loading models from disk is slow and can be a major bottleneck for performance. Invoke uses two model caches - RAM and VRAM - to reduce loading from disk to a minimum.
By default, Invoke manages these caches' sizes dynamically for best performance.
#### Fine-tuning cache sizes
Prior to v5.6.0, the cache sizes were static, and for best performance, many users needed to manually fine-tune the `ram` and `vram` settings in `invokeai.yaml`.
As of v5.6.0, the caches are dynamically sized. The `ram` and `vram` settings are no longer used, and new settings are added to configure the cache.
**Most users will not need to fine-tune the cache sizes.**
But, if your GPU has enough VRAM to hold models fully, you might get a perf boost by manually setting the cache sizes in `invokeai.yaml`:
```yaml
# Set the RAM cache size to as large as possible, leaving a few GB free for the rest of your system and Invoke.
# For example, if your system has 32GB RAM, 28GB is a good value.
max_cache_ram_gb: 28
# Set the VRAM cache size to be as large as possible while leaving enough room for the working memory of the tasks you will be doing.
# For example, on a 24GB GPU that will be running unquantized FLUX without any auxiliary models,
# 18GB is a good value.
max_cache_vram_gb: 18
```
!!! tip "Max safe value for `max_cache_vram_gb`"
To determine the max safe value for `max_cache_vram_gb`, subtract `device_working_mem_gb` from your GPU's VRAM. As described below, the default for `device_working_mem_gb` is 3GB.
For example, if you have a 12GB GPU, the max safe value for `max_cache_vram_gb` is `12GB - 3GB = 9GB`.
If you had increased `device_working_mem_gb` to 4GB, then the max safe value for `max_cache_vram_gb` is `12GB - 4GB = 8GB`.
### Working memory
Invoke cannot use _all_ of your VRAM for model caching and loading. It requires some VRAM to use as working memory for various operations.
Invoke reserves 3GB VRAM as working memory by default, which is enough for most use-cases. However, it is possible to fine-tune this setting if you still get OOMs.
#### Fine-tuning working memory
You can increase the working memory size in `invokeai.yaml` to prevent OOMs:
```yaml
# The default is 3GB - bump it up to 4GB to prevent OOMs.
device_working_mem_gb: 4
```
!!! tip "Operations may request more working memory"
For some operations, we can determine VRAM requirements in advance and allocate additional working memory to prevent OOMs.
VAE decoding is one such operation. This operation converts the generation process's output into an image. For large image outputs, this might use more than the default working memory size of 3GB.
During this decoding step, Invoke calculates how much VRAM will be required to decode and requests that much VRAM from the model manager. If the amount exceeds the working memory size, the model manager will offload cached model layers from VRAM until there's enough VRAM to decode.
Once decoding completes, the model manager "reclaims" the extra VRAM allocated as working memory for future model loading operations.
### Disabling Nvidia sysmem fallback (Windows only)
On Windows, Nvidia GPUs are able to use system RAM when their VRAM fills up via **sysmem fallback**. While it sounds like a good idea on the surface, in practice it causes massive slowdowns during generation.
It is strongly suggested to disable this feature:
- Open the **NVIDIA Control Panel** app.
- Expand **3D Settings** on the left panel.
- Click **Manage 3D Settings** in the left panel.
- Find **CUDA - Sysmem Fallback Policy** in the right panel and set it to **Prefer No Sysmem Fallback**.
![cuda-sysmem-fallback](./cuda-sysmem-fallback.png)
!!! tip "Invoke does the same thing, but better"
If the sysmem fallback feature sounds familiar, that's because Invoke's partial model loading strategy is conceptually very similar - use VRAM when there's room, else fall back to RAM.
Unfortunately, the Nvidia implementation is not optimized for applications like Invoke and does more harm than good.

View File

@@ -50,9 +50,11 @@ title: Invoke
## Installation
The [Invoke Launcher](installation/quick_start.md) is the easiest way to install, update and run Invoke on Windows, macOS and Linux.
The [installer script](installation/installer.md) is the easiest way to install and update the application.
You can also install Invoke as [python package](installation/manual.md) or with [docker](installation/docker.md).
You can also install Invoke as python package [via PyPI](installation/manual.md) or [docker](installation/docker.md).
See the [installation section](./installation/index.md) for more information.
## Help

View File

@@ -4,7 +4,7 @@ title: Docker
!!! warning "macOS users"
Docker can not access the GPU on macOS, so your generation speeds will be slow. Use the [launcher](./quick_start.md) instead.
Docker can not access the GPU on macOS, so your generation speeds will be slow. Use the [installer](./installer.md) instead.
!!! tip "Linux and Windows Users"

View File

@@ -0,0 +1,36 @@
# Installation and Updating Overview
Before installing, review the [installation requirements](./requirements.md) to ensure your system is set up properly.
See the [FAQ](../faq.md) for frequently-encountered installation issues.
If you need more help, join our [discord](https://discord.gg/ZmtBAhwWhy) or [create a GitHub issue](https://github.com/invoke-ai/InvokeAI/issues).
## Automated Installer & Updates
✅ The automated [installer](./installer.md) is the best way to install Invoke.
⬆️ The same installer is also the best way to update Invoke - simply rerun it for the same folder you installed to.
The installation process simply manages installation for the core libraries & application dependencies that run Invoke.
Models, images, or other assets in the Invoke root folder won't be affected by the installation process.
## Manual Install
If you are familiar with python and want more control over the packages that are installed, you can [install Invoke manually via PyPI](./manual.md).
Updates are managed by reinstalling the latest version through PyPi.
## Developer Install
If you want to contribute to InvokeAI, you'll need to set up a [dev environment](../contributing/dev-environment.md).
## Docker
Invoke publishes docker images. See the [docker installation guide](./docker.md) for details.
## Other Installation Guides
- [PyPatchMatch](./patchmatch.md)
- [Installing Models](./models.md)

View File

@@ -1,10 +1,4 @@
# Legacy Scripts
!!! warning "Legacy Scripts"
We recommend using the Invoke Launcher to install and update Invoke. It's a desktop application for Windows, macOS and Linux. It takes care of a lot of nitty gritty details for you.
Follow the [quick start guide](./quick_start.md) to get started.
# Automatic Install & Updates
!!! tip "Use the installer to update"

View File

@@ -4,11 +4,11 @@
**Python experience is mandatory.**
If you want to use Invoke locally, you should probably use the [launcher](./quick_start.md).
If you want to use Invoke locally, you should probably use the [installer](./installer.md).
If you want to contribute to Invoke or run the app on the latest dev branch, instead follow the [dev environment](../contributing/dev-environment.md) guide.
If you want to contribute to Invoke, instead follow the [dev environment](../contributing/dev-environment.md) guide.
InvokeAI is distributed as a python package on PyPI, installable with `pip`. There are a few things that are handled by the launcher that you'll need to manage manually, described in this guide.
InvokeAI is distributed as a python package on PyPI, installable with `pip`. There are a few things that are handled by the installer and launcher that you'll need to manage manually, described in this guide.
## Requirements
@@ -16,39 +16,43 @@ Before you start, go through the [installation requirements](./requirements.md).
## Walkthrough
We'll use [`uv`](https://github.com/astral-sh/uv) to install python and create a virtual environment, then install the `invokeai` package. `uv` is a modern, very fast alternative to `pip`.
The following commands vary depending on the version of Invoke being installed and the system onto which it is being installed.
1. Install `uv` as described in its [docs](https://docs.astral.sh/uv/getting-started/installation/#standalone-installer). We suggest using the standalone installer method.
Run `uv --version` to confirm that `uv` is installed and working. After installation, you may need to restart your terminal to get access to `uv`.
2. Create a directory for your installation, typically in your home directory (e.g. `~/invokeai` or `$Home/invokeai`):
1. Create a directory to contain your InvokeAI library, configuration files, and models. This is known as the "runtime" or "root" directory, and typically lives in your home directory under the name `invokeai`.
=== "Linux/macOS"
```bash
mkdir ~/invokeai
cd ~/invokeai
```
=== "Windows (PowerShell)"
```bash
mkdir $Home/invokeai
cd $Home/invokeai
```
3. Create a virtual environment in that directory:
1. Enter the root directory and create a virtual Python environment within it named `.venv`.
```sh
uv venv --relocatable --prompt invoke --python 3.11 --python-preference only-managed .venv
```
!!! warning "Virtual Environment Location"
This command creates a portable virtual environment at `.venv` complete with a portable python 3.11. It doesn't matter if your system has no python installed, or has a different version - `uv` will handle everything.
While you may create the virtual environment anywhere in the file system, we recommend that you create it within the root directory as shown here. This allows the application to automatically detect its data directories.
4. Activate the virtual environment:
If you choose a different location for the venv, then you _must_ set the `INVOKEAI_ROOT` environment variable or specify the root directory using the `--root` CLI arg.
=== "Linux/macOS"
```bash
cd ~/invokeai
python3 -m venv .venv --prompt InvokeAI
```
=== "Windows (PowerShell)"
```bash
cd $Home/invokeai
python3 -m venv .venv --prompt InvokeAI
```
1. Activate the new environment:
=== "Linux/macOS"
@@ -56,48 +60,41 @@ The following commands vary depending on the version of Invoke being installed a
source .venv/bin/activate
```
=== "Windows (PowerShell)"
=== "Windows"
```ps
.venv\Scripts\activate
```
5. Choose a version to install. Review the [GitHub releases page](https://github.com/invoke-ai/InvokeAI/releases).
!!! info "Permissions Error (Windows)"
6. Determine the package package specifier to use when installing. This is a performance optimization.
If you get a permissions error at this point, run this command and try again.
- If you have an Nvidia 20xx series GPU or older, use `invokeai[xformers]`.
- If you have an Nvidia 30xx series GPU or newer, or do not have an Nvidia GPU, use `invokeai`.
`Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser`
7. Determine the `PyPI` index URL to use for installation, if any. This is necessary to get the right version of torch installed.
The command-line prompt should change to to show `(InvokeAI)`, indicating the venv is active.
=== "Invoke v5 or later"
1. Make sure that pip is installed in your virtual environment and up to date:
- If you are on Windows with an Nvidia GPU, use `https://download.pytorch.org/whl/cu124`.
- If you are on Linux with no GPU, use `https://download.pytorch.org/whl/cpu`.
- If you are on Linux with an AMD GPU, use `https://download.pytorch.org/whl/rocm6.1`.
- **In all other cases, do not use an index.**
=== "Invoke v4"
- If you are on Windows with an Nvidia GPU, use `https://download.pytorch.org/whl/cu124`.
- If you are on Linux with no GPU, use `https://download.pytorch.org/whl/cpu`.
- If you are on Linux with an AMD GPU, use `https://download.pytorch.org/whl/rocm5.2`.
- **In all other cases, do not use an index.**
8. Install the `invokeai` package. Substitute the package specifier and version.
```sh
uv pip install <PACKAGE_SPECIFIER>=<VERSION> --python 3.11 --python-preference only-managed --force-reinstall
```bash
python3 -m pip install --upgrade pip
```
If you determined you needed to use a `PyPI` index URL in the previous step, you'll need to add `--index=<INDEX_URL>` like this:
1. Install the InvokeAI Package. The base command is `pip install InvokeAI --use-pep517`, but you may need to change this depending on your system and the desired features.
```sh
uv pip install <PACKAGE_SPECIFIER>=<VERSION> --python 3.11 --python-preference only-managed --index=<INDEX_URL> --force-reinstall
```
- You may need to provide an [extra index URL](https://pip.pypa.io/en/stable/cli/pip_install/#cmdoption-extra-index-url). Select your platform configuration using [this tool on the PyTorch website](https://pytorch.org/get-started/locally/). Copy the `--extra-index-url` string from this and append it to your install command.
9. Deactivate and reactivate your venv so that the invokeai-specific commands become available in the environment:
```bash
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
- If you have a CUDA GPU and want to install with `xformers`, you need to add an option to the package name. Note that `xformers` is not strictly necessary. PyTorch includes an implementation of the SDP attention algorithm with similar performance for most GPUs.
```bash
pip install "InvokeAI[xformers]" --use-pep517
```
1. Deactivate and reactivate your venv so that the invokeai-specific commands become available in the environment:
=== "Linux/macOS"
@@ -105,31 +102,17 @@ The following commands vary depending on the version of Invoke being installed a
deactivate && source .venv/bin/activate
```
=== "Windows (PowerShell)"
=== "Windows"
```ps
deactivate
.venv\Scripts\activate
```
10. Run the application, specifying the directory you created earlier as the root directory:
1. Run the application:
=== "Linux/macOS"
Run `invokeai-web` to start the UI. You must activate the virtual environment before running the app.
```bash
invokeai-web --root ~/invokeai
```
!!! warning
=== "Windows (PowerShell)"
```bash
invokeai-web --root $Home/invokeai
```
## Headless Install and Launch Scripts
If you run Invoke on a headless server, you might want to install and run Invoke on the command line.
We do not plan to maintain scripts to do this moving forward, instead focusing our dev resources on the GUI [launcher](../installation/quick_start.md).
You can create your own scripts for this by copying the handful of commands in this guide. `uv`'s [`pip` interface docs](https://docs.astral.sh/uv/reference/cli/#uv-pip-install) may be useful.
If the virtual environment is _not_ inside the root directory, then you _must_ specify the path to the root directory with `--root \path\to\invokeai` or the `INVOKEAI_ROOT` environment variable.

View File

@@ -97,16 +97,16 @@ Prior to installing PyPatchMatch, you need to take the following steps:
sudo pacman -S --needed base-devel
```
2. Install `opencv`, `blas`, and required dependencies:
2. Install `opencv` and `blas`:
```sh
sudo pacman -S opencv blas fmt glew vtk hdf5
sudo pacman -S opencv blas
```
or for CUDA support
```sh
sudo pacman -S opencv-cuda blas fmt glew vtk hdf5
sudo pacman -S opencv-cuda blas
```
3. Fix the naming of the `opencv` package configuration file:

View File

@@ -1,114 +0,0 @@
# Invoke Community Edition Quick Start
Welcome to Invoke! Follow these steps to install, update, and get started creating.
## Step 1: System Requirements
Invoke runs on Windows 10+, macOS 14+ and Linux (Ubuntu 20.04+ is well-tested).
Hardware requirements vary significantly depending on model and image output size. The requirements below are rough guidelines.
- All Apple Silicon (M1, M2, etc) Macs work, but 16GB+ memory is recommended.
- AMD GPUs are supported on Linux only. The VRAM requirements are the same as Nvidia GPUs.
!!! info "Hardware Requirements (Windows/Linux)"
=== "SD1.5 - 512×512"
- GPU: Nvidia 10xx series or later, 4GB+ VRAM.
- Memory: At least 8GB RAM.
- Disk: 10GB for base installation plus 30GB for models.
=== "SDXL - 1024×1024"
- GPU: Nvidia 20xx series or later, 8GB+ VRAM.
- Memory: At least 16GB RAM.
- Disk: 10GB for base installation plus 100GB for models.
=== "FLUX - 1024×1024"
- GPU: Nvidia 20xx series or later, 10GB+ VRAM.
- Memory: At least 32GB RAM.
- Disk: 10GB for base installation plus 200GB for models.
More detail on system requirements can be found [here](./requirements.md).
## Step 2: Download
Download the most launcher for your operating system:
- [Download for Windows](https://download.invoke.ai/Invoke%20Community%20Edition.exe)
- [Download for macOS](https://download.invoke.ai/Invoke%20Community%20Edition.dmg)
- [Download for Linux](https://download.invoke.ai/Invoke%20Community%20Edition.AppImage)
## Step 3: Install or Update
Run the launcher you just downloaded, click **Install** and follow the instructions to get set up.
If you have an existing Invoke installation, you can select it and let the launcher manage the install. You'll be able to update or launch the installation.
!!! warning "Problem running the launcher on macOS"
macOS may not allow you to run the launcher. We are working to resolve this by signing the launcher executable. Until that is done, you can either use the [legacy scripts](./legacy_scripts.md) to install, or manually flag the launcher as safe:
- Open the **Invoke-Installer-mac-arm64.dmg** file.
- Drag the launcher to **Applications**.
- Open a terminal.
- Run `xattr -d 'com.apple.quarantine' /Applications/Invoke\ Community\ Edition.app`.
You should now be able to run the launcher.
## Step 4: Launch
Once installed, click **Finish**, then **Launch** to start Invoke.
The very first run after an installation or update will take a few extra moments to get ready.
!!! tip "Server Mode"
The launcher runs Invoke as a desktop application. You can enable **Server Mode** in the launcher's settings to disable this and instead access the UI through your web browser.
## Step 5: Install Models
With Invoke started up, you'll need to install some models.
The quickest way to get started is to install a **Starter Model** bundle. If you already have a model collection, Invoke can use it.
!!! info "Install Models"
=== "Install a Starter Model bundle"
1. Go to the **Models** tab.
2. Click **Starter Models** on the right.
3. Click one of the bundles to install its models. Refer to the [system requirements](#step-1-confirm-system-requirements) if you're unsure which model architecture will work for your system.
=== "Use my model collection"
4. Go to the **Models** tab.
5. Click **Scan Folder** on the right.
6. Paste the path to your models collection and click **Scan Folder**.
7. With **In-place install** enabled, Invoke will leave the model files where they are. If you disable this, **Invoke will move the models into its own folders**.
Youre now ready to start creating!
## Step 6: Learn the Basics
We recommend watching our [Getting Started Playlist](https://www.youtube.com/playlist?list=PLvWK1Kc8iXGrQy8r9TYg6QdUuJ5MMx-ZO). It covers essential features and workflows, including:
- Generating your first image.
- Using control layers and reference guides.
- Refining images with advanced workflows.
## Other Installation Methods
- You can install the Invoke application as a python package. See our [manual install](./manual.md) docs.
- You can run Invoke with docker. See our [docker install](./docker.md) docs.
- You can still use our legacy scripts to install and run Invoke. See the [legacy scripts](./legacy_scripts.md) docs.
## Need Help?
- Visit our [Support Portal](https://support.invoke.ai).
- Watch the [Getting Started Playlist](https://www.youtube.com/playlist?list=PLvWK1Kc8iXGrQy8r9TYg6QdUuJ5MMx-ZO).
- Join the conversation on [Discord][discord link].
[discord link]: https://discord.gg/ZmtBAhwWhy

View File

@@ -1,33 +1,90 @@
# Requirements
Invoke runs on Windows 10+, macOS 14+ and Linux (Ubuntu 20.04+ is well-tested).
## GPU
## Hardware
!!! warning "Problematic Nvidia GPUs"
Hardware requirements vary significantly depending on model and image output size. The requirements below are rough guidelines.
We do not recommend these GPUs. They cannot operate with half precision, but have insufficient VRAM to generate 512x512 images at full precision.
- All Apple Silicon (M1, M2, etc) Macs work, but 16GB+ memory is recommended.
- AMD GPUs are supported on Linux only. The VRAM requirements are the same as Nvidia GPUs.
- NVIDIA 10xx series cards such as the 1080 TI
- GTX 1650 series cards
- GTX 1660 series cards
!!! info "Hardware Requirements (Windows/Linux)"
Invoke runs best with a dedicated GPU, but will fall back to running on CPU, albeit much slower. You'll need a beefier GPU for SDXL.
=== "SD1.5 - 512×512"
!!! example "Stable Diffusion 1.5"
- GPU: Nvidia 10xx series or later, 4GB+ VRAM.
- Memory: At least 8GB RAM.
- Disk: 10GB for base installation plus 30GB for models.
=== "Nvidia"
=== "SDXL - 1024×1024"
```
Any GPU with at least 4GB VRAM.
```
- GPU: Nvidia 20xx series or later, 8GB+ VRAM.
- Memory: At least 16GB RAM.
- Disk: 10GB for base installation plus 100GB for models.
=== "AMD"
=== "FLUX - 1024×1024"
```
Any GPU with at least 4GB VRAM. Linux only.
```
- GPU: Nvidia 20xx series or later, 10GB+ VRAM.
- Memory: At least 32GB RAM.
- Disk: 10GB for base installation plus 200GB for models.
=== "Mac"
```
Any Apple Silicon Mac with at least 8GB memory.
```
!!! example "Stable Diffusion XL"
=== "Nvidia"
```
Any GPU with at least 8GB VRAM.
```
=== "AMD"
```
Any GPU with at least 16GB VRAM. Linux only.
```
=== "Mac"
```
Any Apple Silicon Mac with at least 16GB memory.
```
## RAM
At least 12GB of RAM.
## Disk
SSDs will, of course, offer the best performance.
The base application disk usage depends on the torch backend.
!!! example "Disk"
=== "Nvidia (CUDA)"
```
~6.5GB
```
=== "AMD (ROCm)"
```
~12GB
```
=== "Mac (MPS)"
```
~3.5GB
```
You'll need to set aside some space for images, depending on how much you generate. A couple GB is enough to get started.
You'll need a good chunk of space for models. Even if you only install the most popular models and the usual support models (ControlNet, IP Adapter ,etc), you will quickly hit 50GB of models.
!!! info "`tmpfs` on Linux"
@@ -35,32 +92,26 @@ Hardware requirements vary significantly depending on model and image output siz
## Python
!!! tip "The launcher installs python for you"
You don't need to do this if you are installing with the [Invoke Launcher](./quick_start.md).
Invoke requires python 3.10 or 3.11. If you don't already have one of these versions installed, we suggest installing 3.11, as it will be supported for longer.
Check that your system has an up-to-date Python installed by running `python3 --version` in the terminal (Linux, macOS) or cmd/powershell (Windows).
Check that your system has an up-to-date Python installed by running `python --version` in the terminal (Linux, macOS) or cmd/powershell (Windows).
!!! info "Installing Python"
<h3>Installing Python (Windows)</h3>
=== "Windows"
- Install python 3.11 with [an official installer].
- The installer includes an option to add python to your PATH. Be sure to enable this. If you missed it, re-run the installer, choose to modify an existing installation, and tick that checkbox.
- You may need to install [Microsoft Visual C++ Redistributable].
- Install python 3.11 with [an official installer].
- The installer includes an option to add python to your PATH. Be sure to enable this. If you missed it, re-run the installer, choose to modify an existing installation, and tick that checkbox.
- You may need to install [Microsoft Visual C++ Redistributable].
<h3>Installing Python (macOS)</h3>
=== "macOS"
- Install python 3.11 with [an official installer].
- If model installs fail with a certificate error, you may need to run this command (changing the python version to match what you have installed): `/Applications/Python\ 3.10/Install\ Certificates.command`
- If you haven't already, you will need to install the XCode CLI Tools by running `xcode-select --install` in a terminal.
- Install python 3.11 with [an official installer].
- If model installs fail with a certificate error, you may need to run this command (changing the python version to match what you have installed): `/Applications/Python\ 3.10/Install\ Certificates.command`
- If you haven't already, you will need to install the XCode CLI Tools by running `xcode-select --install` in a terminal.
<h3>Installing Python (Linux)</h3>
=== "Linux"
- Installing python varies depending on your system. On Ubuntu, you can use the [deadsnakes PPA](https://launchpad.net/~deadsnakes/+archive/ubuntu/ppa).
- You'll need to install `libglib2.0-0` and `libgl1-mesa-glx` for OpenCV to work. For example, on a Debian system: `sudo apt update && sudo apt install -y libglib2.0-0 libgl1-mesa-glx`
- Follow the [linux install instructions], being sure to install python 3.11.
- You'll need to install `libglib2.0-0` and `libgl1-mesa-glx` for OpenCV to work. For example, on a Debian system: `sudo apt update && sudo apt install -y libglib2.0-0 libgl1-mesa-glx`
## Drivers
@@ -124,4 +175,7 @@ An alternative to installing ROCm locally is to use a [ROCm docker container] to
[ROCm Documentation]: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html
[cuDNN support matrix]: https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html
[Nvidia Container Runtime]: https://developer.nvidia.com/container-runtime
[linux install instructions]: https://docs.python-guide.org/starting/install3/linux/
[Microsoft Visual C++ Redistributable]: https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170
[an official installer]: https://www.python.org/downloads/
[CUDA Toolkit Downloads]: https://developer.nvidia.com/cuda-downloads

View File

@@ -49,7 +49,6 @@ To use a community workflow, download the `.json` node graph file and load it in
+ [BriaAI Background Remove](#briaai-remove-background)
+ [Remove Background](#remove-background)
+ [Retroize](#retroize)
+ [Stereogram](#stereogram-nodes)
+ [Size Stepper Nodes](#size-stepper-nodes)
+ [Simple Skin Detection](#simple-skin-detection)
+ [Text font to Image](#text-font-to-image)
@@ -527,16 +526,6 @@ View:
<img src="https://github.com/Ar7ific1al/InvokeAI_nodes_retroize/assets/2306586/de8b4fa6-324c-4c2d-b36c-297600c73974" width="500" />
--------------------------------
### Stereogram Nodes
**Description:** A set of custom nodes for InvokeAI to create cross-view or parallel-view stereograms. Stereograms are 2D images that, when viewed properly, reveal a 3D scene. Check out [r/crossview](https://www.reddit.com/r/CrossView/) for tutorials.
**Node Link:** https://github.com/simonfuhrmann/invokeai-stereo
**Example Workflow and Output**
</br><img src="https://raw.githubusercontent.com/simonfuhrmann/invokeai-stereo/refs/heads/main/docs/example_promo_03.jpg" width="600" />
--------------------------------
### Simple Skin Detection

View File

@@ -99,6 +99,7 @@ their descriptions.
| Scale Latents | Scales latents by a given factor. |
| Segment Anything Processor | Applies segment anything processing to image |
| Show Image | Displays a provided image, and passes it forward in the pipeline. |
| Step Param Easing | Experimental per-step parameter easing for denoising steps |
| String Primitive Collection | A collection of string primitive values |
| String Primitive | A string primitive value |
| Subtract Integers | Subtracts two numbers |

View File

@@ -259,7 +259,7 @@ def select_gpu() -> GpuType:
[
f"Detected the [gold1]{OS}-{ARCH}[/] platform",
"",
"See [deep_sky_blue1]https://invoke-ai.github.io/InvokeAI/installation/requirements/[/] to ensure your system meets the minimum requirements.",
"See [deep_sky_blue1]https://invoke-ai.github.io/InvokeAI/#system[/] to ensure your system meets the minimum requirements.",
"",
"[red3]🠶[/] [b]Your GPU drivers must be correctly installed before using InvokeAI![/] [red3]🠴[/]",
]

View File

@@ -68,7 +68,7 @@ do_line_input() {
printf "2: Open the developer console\n"
printf "3: Command-line help\n"
printf "Q: Quit\n\n"
printf "To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest\n\n"
printf "To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest.\n\n"
read -p "Please enter 1-4, Q: [1] " yn
choice=${yn:='1'}
do_choice $choice

View File

@@ -40,8 +40,6 @@ class AppVersion(BaseModel):
version: str = Field(description="App version")
highlights: Optional[list[str]] = Field(default=None, description="Highlights of release")
class AppDependencyVersions(BaseModel):
"""App depencency Versions Response"""

View File

@@ -31,7 +31,7 @@ class DeleteBoardResult(BaseModel):
response_model=BoardDTO,
)
async def create_board(
board_name: str = Query(description="The name of the board to create", max_length=300),
board_name: str = Query(description="The name of the board to create"),
is_private: bool = Query(default=False, description="Whether the board is private"),
) -> BoardDTO:
"""Creates a board"""

View File

@@ -1,16 +1,15 @@
# Copyright (c) 2023 Lincoln D. Stein
"""FastAPI route for model configuration records."""
import contextlib
import io
import pathlib
import shutil
import traceback
from copy import deepcopy
from enum import Enum
from tempfile import TemporaryDirectory
from typing import List, Optional, Type
import huggingface_hub
from fastapi import Body, Path, Query, Response, UploadFile
from fastapi.responses import FileResponse, HTMLResponse
from fastapi.routing import APIRouter
@@ -20,6 +19,7 @@ from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.config import get_config
from invokeai.app.services.model_images.model_images_common import ModelImageFileNotFoundException
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
from invokeai.app.services.model_records import (
@@ -27,7 +27,6 @@ from invokeai.app.services.model_records import (
ModelRecordChanges,
UnknownModelException,
)
from invokeai.app.util.suppress_output import SuppressOutput
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
@@ -35,7 +34,7 @@ from invokeai.backend.model_manager.config import (
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.load.model_cache.cache_stats import CacheStats
from invokeai.backend.model_manager.load.model_cache.model_cache_base import CacheStats
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
from invokeai.backend.model_manager.metadata.metadata_base import ModelMetadataWithFiles, UnknownMetadataException
from invokeai.backend.model_manager.search import ModelSearch
@@ -809,11 +808,7 @@ def get_is_installed(
for model in installed_models:
if model.source == starter_model.source:
return True
if (
(model.name == starter_model.name or model.name in starter_model.previous_names)
and model.base == starter_model.base
and model.type == starter_model.type
):
if model.name == starter_model.name and model.base == starter_model.base and model.type == starter_model.type:
return True
return False
@@ -846,6 +841,74 @@ async def get_starter_models() -> StarterModelResponse:
return StarterModelResponse(starter_models=starter_models, starter_bundles=starter_bundles)
@model_manager_router.get(
"/model_cache",
operation_id="get_cache_size",
response_model=float,
summary="Get maximum size of model manager RAM or VRAM cache.",
)
async def get_cache_size(cache_type: CacheType = Query(description="The cache type", default=CacheType.RAM)) -> float:
"""Return the current RAM or VRAM cache size setting (in GB)."""
cache = ApiDependencies.invoker.services.model_manager.load.ram_cache
value = 0.0
if cache_type == CacheType.RAM:
value = cache.max_cache_size
elif cache_type == CacheType.VRAM:
value = cache.max_vram_cache_size
return value
@model_manager_router.put(
"/model_cache",
operation_id="set_cache_size",
response_model=float,
summary="Set maximum size of model manager RAM or VRAM cache, optionally writing new value out to invokeai.yaml config file.",
)
async def set_cache_size(
value: float = Query(description="The new value for the maximum cache size"),
cache_type: CacheType = Query(description="The cache type", default=CacheType.RAM),
persist: bool = Query(description="Write new value out to invokeai.yaml", default=False),
) -> float:
"""Set the current RAM or VRAM cache size setting (in GB). ."""
cache = ApiDependencies.invoker.services.model_manager.load.ram_cache
app_config = get_config()
# Record initial state.
vram_old = app_config.vram
ram_old = app_config.ram
# Prepare target state.
vram_new = vram_old
ram_new = ram_old
if cache_type == CacheType.RAM:
ram_new = value
elif cache_type == CacheType.VRAM:
vram_new = value
else:
raise ValueError(f"Unexpected {cache_type=}.")
config_path = app_config.config_file_path
new_config_path = config_path.with_suffix(".yaml.new")
try:
# Try to apply the target state.
cache.max_vram_cache_size = vram_new
cache.max_cache_size = ram_new
app_config.ram = ram_new
app_config.vram = vram_new
if persist:
app_config.write_file(new_config_path)
shutil.move(new_config_path, config_path)
except Exception as e:
# If there was a failure, restore the initial state.
cache.max_cache_size = ram_old
cache.max_vram_cache_size = vram_old
app_config.ram = ram_old
app_config.vram = vram_old
raise RuntimeError("Failed to update cache size") from e
return value
@model_manager_router.get(
"/stats",
operation_id="get_stats",
@@ -856,51 +919,3 @@ async def get_stats() -> Optional[CacheStats]:
"""Return performance statistics on the model manager's RAM cache. Will return null if no models have been loaded."""
return ApiDependencies.invoker.services.model_manager.load.ram_cache.stats
class HFTokenStatus(str, Enum):
VALID = "valid"
INVALID = "invalid"
UNKNOWN = "unknown"
class HFTokenHelper:
@classmethod
def get_status(cls) -> HFTokenStatus:
try:
if huggingface_hub.get_token_permission(huggingface_hub.get_token()):
# Valid token!
return HFTokenStatus.VALID
# No token set
return HFTokenStatus.INVALID
except Exception:
return HFTokenStatus.UNKNOWN
@classmethod
def set_token(cls, token: str) -> HFTokenStatus:
with SuppressOutput(), contextlib.suppress(Exception):
huggingface_hub.login(token=token, add_to_git_credential=False)
return cls.get_status()
@model_manager_router.get("/hf_login", operation_id="get_hf_login_status", response_model=HFTokenStatus)
async def get_hf_login_status() -> HFTokenStatus:
token_status = HFTokenHelper.get_status()
if token_status is HFTokenStatus.UNKNOWN:
ApiDependencies.invoker.services.logger.warning("Unable to verify HF token")
return token_status
@model_manager_router.post("/hf_login", operation_id="do_hf_login", response_model=HFTokenStatus)
async def do_hf_login(
token: str = Body(description="Hugging Face token to use for login", embed=True),
) -> HFTokenStatus:
HFTokenHelper.set_token(token)
token_status = HFTokenHelper.get_status()
if token_status is HFTokenStatus.UNKNOWN:
ApiDependencies.invoker.services.logger.warning("Unable to verify HF token")
return token_status

View File

@@ -110,7 +110,7 @@ async def cancel_by_batch_ids(
@session_queue_router.put(
"/{queue_id}/cancel_by_destination",
operation_id="cancel_by_destination",
responses={200: {"model": CancelByDestinationResult}},
responses={200: {"model": CancelByBatchIDsResult}},
)
async def cancel_by_destination(
queue_id: str = Path(description="The queue id to perform this operation on"),

View File

@@ -59,32 +59,11 @@ logger.info(f"Using torch device: {torch_device_name}")
loop = asyncio.new_event_loop()
# We may change the port if the default is in use, this global variable is used to store the port so that we can log
# the correct port when the server starts in the lifespan handler.
port = app_config.port
@asynccontextmanager
async def lifespan(app: FastAPI):
# Add startup event to load dependencies
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, loop=loop, logger=logger)
# Log the server address when it starts - in case the network log level is not high enough to see the startup log
proto = "https" if app_config.ssl_certfile else "http"
msg = f"Invoke running on {proto}://{app_config.host}:{port} (Press CTRL+C to quit)"
# Logging this way ignores the logger's log level and _always_ logs the message
record = logger.makeRecord(
name=logger.name,
level=logging.INFO,
fn="",
lno=0,
msg=msg,
args=(),
exc_info=None,
)
logger.handle(record)
yield
# Shut down threads
ApiDependencies.shutdown()
@@ -227,7 +206,6 @@ def invoke_api() -> None:
else:
jurigged.watch(logger=InvokeAILogger.get_logger(name="jurigged").info)
global port
port = find_port(app_config.port)
if port != app_config.port:
logger.warn(f"Port {app_config.port} in use, using port {port}")
@@ -239,17 +217,18 @@ def invoke_api() -> None:
host=app_config.host,
port=port,
loop="asyncio",
log_level=app_config.log_level_network,
log_level=app_config.log_level,
ssl_certfile=app_config.ssl_certfile,
ssl_keyfile=app_config.ssl_keyfile,
)
server = uvicorn.Server(config)
# replace uvicorn's loggers with InvokeAI's for consistent appearance
uvicorn_logger = InvokeAILogger.get_logger("uvicorn")
uvicorn_logger.handlers.clear()
for hdlr in logger.handlers:
uvicorn_logger.addHandler(hdlr)
for logname in ["uvicorn.access", "uvicorn"]:
log = InvokeAILogger.get_logger(logname)
log.handlers.clear()
for ch in logger.handlers:
log.addHandler(ch)
loop.run_until_complete(server.serve())

View File

@@ -15,11 +15,6 @@ custom_nodes_readme_path = str(custom_nodes_path / "README.md")
shutil.copy(Path(__file__).parent / "custom_nodes/init.py", custom_nodes_init_path)
shutil.copy(Path(__file__).parent / "custom_nodes/README.md", custom_nodes_readme_path)
# set the same permissions as the destination directory, in case our source is read-only,
# so that the files are user-writable
for p in custom_nodes_path.glob("**/*"):
p.chmod(custom_nodes_path.stat().st_mode)
# Import custom nodes, see https://docs.python.org/3/library/importlib.html#importing-programmatically
spec = spec_from_file_location("custom_nodes", custom_nodes_init_path)
if spec is None or spec.loader is None:

View File

@@ -4,7 +4,6 @@ from __future__ import annotations
import inspect
import re
import sys
import warnings
from abc import ABC, abstractmethod
from enum import Enum
@@ -63,7 +62,6 @@ class Classification(str, Enum, metaclass=MetaEnum):
- `Prototype`: The invocation is not yet stable and may be removed from the application at any time. Workflows built around this invocation may break, and we are *not* committed to supporting this invocation.
- `Deprecated`: The invocation is deprecated and may be removed in a future version.
- `Internal`: The invocation is not intended for use by end-users. It may be changed or removed at any time, but is exposed for users to play with.
- `Special`: The invocation is a special case and does not fit into any of the other classifications.
"""
Stable = "stable"
@@ -71,7 +69,6 @@ class Classification(str, Enum, metaclass=MetaEnum):
Prototype = "prototype"
Deprecated = "deprecated"
Internal = "internal"
Special = "special"
class UIConfigBase(BaseModel):
@@ -195,19 +192,12 @@ class BaseInvocation(ABC, BaseModel):
"""Gets a pydantc TypeAdapter for the union of all invocation types."""
if not cls._typeadapter or cls._typeadapter_needs_update:
AnyInvocation = TypeAliasType(
"AnyInvocation", Annotated[Union[tuple(cls.get_invocations())], Field(discriminator="type")]
"AnyInvocation", Annotated[Union[tuple(cls._invocation_classes)], Field(discriminator="type")]
)
cls._typeadapter = TypeAdapter(AnyInvocation)
cls._typeadapter_needs_update = False
return cls._typeadapter
@classmethod
def invalidate_typeadapter(cls) -> None:
"""Invalidates the typeadapter, forcing it to be rebuilt on next access. If the invocation allowlist or
denylist is changed, this should be called to ensure the typeadapter is updated and validation respects
the updated allowlist and denylist."""
cls._typeadapter_needs_update = True
@classmethod
def get_invocations(cls) -> Iterable[BaseInvocation]:
"""Gets all invocations, respecting the allowlist and denylist."""
@@ -489,26 +479,6 @@ def invocation(
title="type", default=invocation_type, json_schema_extra={"field_kind": FieldKind.NodeAttribute}
)
# Validate the `invoke()` method is implemented
if "invoke" in cls.__abstractmethods__:
raise ValueError(f'Invocation "{invocation_type}" must implement the "invoke" method')
# And validate that `invoke()` returns a subclass of `BaseInvocationOutput
invoke_return_annotation = signature(cls.invoke).return_annotation
try:
# TODO(psyche): If `invoke()` is not defined, `return_annotation` ends up as the string "BaseInvocationOutput"
# instead of the class `BaseInvocationOutput`. This may be a pydantic bug: https://github.com/pydantic/pydantic/issues/7978
if isinstance(invoke_return_annotation, str):
invoke_return_annotation = getattr(sys.modules[cls.__module__], invoke_return_annotation)
assert invoke_return_annotation is not BaseInvocationOutput
assert issubclass(invoke_return_annotation, BaseInvocationOutput)
except Exception:
raise ValueError(
f'Invocation "{invocation_type}" must have a return annotation of a subclass of BaseInvocationOutput (got "{invoke_return_annotation}")'
)
docstring = cls.__doc__
cls = create_model(
cls.__qualname__,

View File

@@ -1,120 +1,98 @@
from typing import Optional, Union
from typing import Any, Union
import numpy as np
import numpy.typing as npt
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, LatentsField
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, LatentsField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
def slerp(
t: Union[float, np.ndarray],
v0: Union[torch.Tensor, np.ndarray],
v1: Union[torch.Tensor, np.ndarray],
device: torch.device,
DOT_THRESHOLD: float = 0.9995,
):
"""
Spherical linear interpolation
Args:
t (float/np.ndarray): Float value between 0.0 and 1.0
v0 (np.ndarray): Starting vector
v1 (np.ndarray): Final vector
DOT_THRESHOLD (float): Threshold for considering the two vectors as
colineal. Not recommended to alter this.
Returns:
v2 (np.ndarray): Interpolation vector between v0 and v1
"""
inputs_are_torch = False
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
v0 = v0.detach().cpu().numpy()
if not isinstance(v1, np.ndarray):
inputs_are_torch = True
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2 = torch.from_numpy(v2).to(device)
return v2
@invocation(
"lblend",
title="Blend Latents",
tags=["latents", "blend", "mask"],
tags=["latents", "blend"],
category="latents",
version="1.1.0",
version="1.0.3",
)
class BlendLatentsInvocation(BaseInvocation):
"""Blend two latents using a given alpha. If a mask is provided, the second latents will be masked before blending.
Latents must have same size. Masking functionality added by @dwringer."""
"""Blend two latents using a given alpha. Latents must have same size."""
latents_a: LatentsField = InputField(description=FieldDescriptions.latents, input=Input.Connection)
latents_b: LatentsField = InputField(description=FieldDescriptions.latents, input=Input.Connection)
mask: Optional[ImageField] = InputField(default=None, description="Mask for blending in latents B")
alpha: float = InputField(ge=0, default=0.5, description=FieldDescriptions.blend_alpha)
def prep_mask_tensor(self, mask_image: Image.Image) -> torch.Tensor:
if mask_image.mode != "L":
mask_image = mask_image.convert("L")
mask_tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
if mask_tensor.dim() == 3:
mask_tensor = mask_tensor.unsqueeze(0)
return mask_tensor
def replace_tensor_from_masked_tensor(
self, tensor: torch.Tensor, other_tensor: torch.Tensor, mask_tensor: torch.Tensor
):
output = tensor.clone()
mask_tensor = mask_tensor.expand(output.shape)
if output.dtype != torch.float16:
output = torch.add(output, mask_tensor * torch.sub(other_tensor, tensor))
else:
output = torch.add(output, mask_tensor.half() * torch.sub(other_tensor, tensor))
return output
latents_a: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
latents_b: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents_a = context.tensors.load(self.latents_a.latents_name)
latents_b = context.tensors.load(self.latents_b.latents_name)
if self.mask is None:
mask_tensor = torch.zeros(latents_a.shape[-2:])
else:
mask_tensor = self.prep_mask_tensor(context.images.get_pil(self.mask.image_name))
mask_tensor = tv_resize(mask_tensor, latents_a.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
latents_b = self.replace_tensor_from_masked_tensor(latents_b, latents_a, mask_tensor)
if latents_a.shape != latents_b.shape:
raise ValueError("Latents to blend must be the same size.")
raise Exception("Latents to blend must be the same size.")
device = TorchDevice.choose_torch_device()
def slerp(
t: Union[float, npt.NDArray[Any]], # FIXME: maybe use np.float32 here?
v0: Union[torch.Tensor, npt.NDArray[Any]],
v1: Union[torch.Tensor, npt.NDArray[Any]],
DOT_THRESHOLD: float = 0.9995,
) -> Union[torch.Tensor, npt.NDArray[Any]]:
"""
Spherical linear interpolation
Args:
t (float/np.ndarray): Float value between 0.0 and 1.0
v0 (np.ndarray): Starting vector
v1 (np.ndarray): Final vector
DOT_THRESHOLD (float): Threshold for considering the two vectors as
colineal. Not recommended to alter this.
Returns:
v2 (np.ndarray): Interpolation vector between v0 and v1
"""
inputs_are_torch = False
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
v0 = v0.detach().cpu().numpy()
if not isinstance(v1, np.ndarray):
inputs_are_torch = True
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2_torch: torch.Tensor = torch.from_numpy(v2).to(device)
return v2_torch
else:
assert isinstance(v2, np.ndarray)
return v2
# blend
blended_latents = slerp(self.alpha, latents_a, latents_b, device)
bl = slerp(self.alpha, latents_a, latents_b)
assert isinstance(bl, torch.Tensor)
blended_latents: torch.Tensor = bl # for type checking convenience
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
blended_latents = blended_latents.to("cpu")
torch.cuda.empty_cache()
TorchDevice.empty_cache()
name = context.tensors.save(tensor=blended_latents)
return LatentsOutput.build(latents_name=name, latents=blended_latents)
return LatentsOutput.build(latents_name=name, latents=blended_latents, seed=self.latents_a.seed)

View File

@@ -19,9 +19,9 @@ from invokeai.app.invocations.model import CLIPField
from invokeai.app.invocations.primitives import ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.ti_utils import generate_ti_list
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
ConditioningFieldData,
@@ -63,28 +63,29 @@ class CompelInvocation(BaseInvocation):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
def _lora_loader() -> Iterator[Tuple[ModelPatchRaw, float]]:
tokenizer_info = context.models.load(self.clip.tokenizer)
text_encoder_info = context.models.load(self.clip.text_encoder)
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.clip.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, ModelPatchRaw)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
return
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
text_encoder_info = context.models.load(self.clip.text_encoder)
ti_list = generate_ti_list(self.prompt, text_encoder_info.config.base, context)
with (
# apply all patches while the model is on the target device
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
context.models.load(self.clip.tokenizer) as tokenizer,
LayerPatcher.apply_smart_model_patches(
tokenizer_info as tokenizer,
LoRAPatcher.apply_lora_patches(
model=text_encoder,
patches=_lora_loader(),
prefix="lora_te_",
dtype=text_encoder.dtype,
cached_weights=cached_weights,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
@@ -94,7 +95,6 @@ class CompelInvocation(BaseInvocation):
ti_manager,
),
):
context.util.signal_progress("Building conditioning")
assert isinstance(text_encoder, CLIPTextModel)
assert isinstance(tokenizer, CLIPTokenizer)
compel = Compel(
@@ -103,7 +103,6 @@ class CompelInvocation(BaseInvocation):
textual_inversion_manager=ti_manager,
dtype_for_device_getter=TorchDevice.choose_torch_dtype,
truncate_long_prompts=False,
device=TorchDevice.choose_torch_device(),
)
conjunction = Compel.parse_prompt_string(self.prompt)
@@ -138,7 +137,9 @@ class SDXLPromptInvocationBase:
lora_prefix: str,
zero_on_empty: bool,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
tokenizer_info = context.models.load(clip_field.tokenizer)
text_encoder_info = context.models.load(clip_field.text_encoder)
# return zero on empty
if prompt == "" and zero_on_empty:
cpu_text_encoder = text_encoder_info.model
@@ -160,11 +161,11 @@ class SDXLPromptInvocationBase:
c_pooled = None
return c, c_pooled
def _lora_loader() -> Iterator[Tuple[ModelPatchRaw, float]]:
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in clip_field.loras:
lora_info = context.models.load(lora.lora)
lora_model = lora_info.model
assert isinstance(lora_model, ModelPatchRaw)
assert isinstance(lora_model, LoRAModelRaw)
yield (lora_model, lora.weight)
del lora_info
return
@@ -176,12 +177,11 @@ class SDXLPromptInvocationBase:
with (
# apply all patches while the model is on the target device
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
context.models.load(clip_field.tokenizer) as tokenizer,
LayerPatcher.apply_smart_model_patches(
model=text_encoder,
tokenizer_info as tokenizer,
LoRAPatcher.apply_lora_patches(
text_encoder,
patches=_lora_loader(),
prefix=lora_prefix,
dtype=text_encoder.dtype,
cached_weights=cached_weights,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
@@ -191,7 +191,6 @@ class SDXLPromptInvocationBase:
ti_manager,
),
):
context.util.signal_progress("Building conditioning")
assert isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection))
assert isinstance(tokenizer, CLIPTokenizer)
@@ -204,7 +203,6 @@ class SDXLPromptInvocationBase:
truncate_long_prompts=False, # TODO:
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
requires_pooled=get_pooled,
device=TorchDevice.choose_torch_device(),
)
conjunction = Compel.parse_prompt_string(prompt)
@@ -222,6 +220,7 @@ class SDXLPromptInvocationBase:
del tokenizer
del text_encoder
del tokenizer_info
del text_encoder_info
c = c.detach().to("cpu")

File diff suppressed because it is too large Load Diff

View File

@@ -1,5 +1,7 @@
from typing import Literal
from invokeai.backend.util.devices import TorchDevice
LATENT_SCALE_FACTOR = 8
"""
HACK: Many nodes are currently hard-coded to use a fixed latent scale factor of 8. This is fragile, and will need to
@@ -10,3 +12,5 @@ The ratio of image:latent dimensions is LATENT_SCALE_FACTOR:1, or 8:1.
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
"""A literal type for PIL image modes supported by Invoke"""
DEFAULT_PRECISION = TorchDevice.choose_torch_dtype()

View File

@@ -6,6 +6,7 @@ from PIL import Image
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import DEFAULT_PRECISION
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
from invokeai.app.invocations.model import VAEField
@@ -28,7 +29,11 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1)
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3)
fp32: bool = InputField(default=False, description=FieldDescriptions.fp32, ui_order=4)
fp32: bool = InputField(
default=DEFAULT_PRECISION == torch.float32,
description=FieldDescriptions.fp32,
ui_order=4,
)
def prep_mask_tensor(self, mask_image: Image.Image) -> torch.Tensor:
if mask_image.mode != "L":
@@ -60,7 +65,6 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
# TODO:
context.util.signal_progress("Running VAE encoder")
masked_latents = ImageToLatentsInvocation.vae_encode(vae_info, self.fp32, self.tiled, masked_image.clone())
masked_latents_name = context.tensors.save(tensor=masked_latents)

View File

@@ -7,6 +7,7 @@ from PIL import Image, ImageFilter
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.constants import DEFAULT_PRECISION
from invokeai.app.invocations.fields import (
DenoiseMaskField,
FieldDescriptions,
@@ -75,7 +76,11 @@ class CreateGradientMaskInvocation(BaseInvocation):
ui_order=7,
)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=8)
fp32: bool = InputField(default=False, description=FieldDescriptions.fp32, ui_order=9)
fp32: bool = InputField(
default=DEFAULT_PRECISION == torch.float32,
description=FieldDescriptions.fp32,
ui_order=9,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> GradientMaskOutput:
@@ -126,7 +131,6 @@ class CreateGradientMaskInvocation(BaseInvocation):
image_tensor = image_tensor.unsqueeze(0)
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
context.util.signal_progress("Running VAE encoder")
masked_latents = ImageToLatentsInvocation.vae_encode(
vae_info, self.fp32, self.tiled, masked_image.clone()
)

View File

@@ -10,12 +10,9 @@ import torchvision.transforms as T
from diffusers.configuration_utils import ConfigMixin
from diffusers.models.adapter import T2IAdapter
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers.scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from diffusers.schedulers.scheduling_dpmsolver_sde import DPMSolverSDEScheduler
from diffusers.schedulers.scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from diffusers.schedulers.scheduling_tcd import TCDScheduler
from diffusers.schedulers.scheduling_utils import SchedulerMixin as Scheduler
from PIL import Image
from pydantic import field_validator
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPVisionModelWithProjection
@@ -39,10 +36,10 @@ from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
from invokeai.backend.model_manager import BaseModelType, ModelVariantType
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.stable_diffusion import PipelineIntermediateState
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext, DenoiseInputs
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
@@ -91,7 +88,6 @@ def get_scheduler(
# possible.
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
orig_scheduler_info = context.models.load(scheduler_info)
with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config
@@ -107,10 +103,6 @@ def get_scheduler(
if scheduler_class is DPMSolverSDEScheduler:
scheduler_config["noise_sampler_seed"] = seed
if scheduler_class is DPMSolverMultistepScheduler or scheduler_class is DPMSolverSinglestepScheduler:
if scheduler_config["_class_name"] == "DEISMultistepScheduler" and scheduler_config["algorithm_type"] == "deis":
scheduler_config["algorithm_type"] = "dpmsolver++"
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
@@ -418,7 +410,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
context: InvocationContext,
control_input: ControlField | list[ControlField] | None,
latents_shape: List[int],
device: torch.device,
exit_stack: ExitStack,
do_classifier_free_guidance: bool = True,
) -> list[ControlNetData] | None:
@@ -460,7 +451,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
height=control_height_resize,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
device=device,
device=control_model.device,
dtype=control_model.dtype,
control_mode=control_info.control_mode,
resize_mode=control_info.resize_mode,
@@ -519,7 +510,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
context: InvocationContext,
t2i_adapters: Optional[Union[T2IAdapterField, list[T2IAdapterField]]],
ext_manager: ExtensionsManager,
bgr_mode: bool = False,
) -> None:
if t2i_adapters is None:
return
@@ -529,10 +519,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
t2i_adapters = [t2i_adapters]
for t2i_adapter_field in t2i_adapters:
image = context.images.get_pil(t2i_adapter_field.image.image_name)
if bgr_mode: # SDXL t2i trained on cv2's BGR outputs, but PIL won't convert straight to BGR
r, g, b = image.split()
image = Image.merge("RGB", (b, g, r))
ext_manager.add_extension(
T2IAdapterExt(
node_context=context,
@@ -555,6 +541,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
for single_ip_adapter in ip_adapters:
with context.models.load(single_ip_adapter.ip_adapter_model) as ip_adapter_model:
assert isinstance(ip_adapter_model, IPAdapter)
image_encoder_model_info = context.models.load(single_ip_adapter.image_encoder_model)
# `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here.
single_ipa_image_fields = single_ip_adapter.image
if not isinstance(single_ipa_image_fields, list):
@@ -563,7 +550,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
single_ipa_images = [
context.images.get_pil(image.image_name, mode="RGB") for image in single_ipa_image_fields
]
with context.models.load(single_ip_adapter.image_encoder_model) as image_encoder_model:
with image_encoder_model_info as image_encoder_model:
assert isinstance(image_encoder_model, CLIPVisionModelWithProjection)
# Get image embeddings from CLIP and ImageProjModel.
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
@@ -613,7 +600,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
context: InvocationContext,
t2i_adapter: Optional[Union[T2IAdapterField, list[T2IAdapterField]]],
latents_shape: list[int],
device: torch.device,
do_classifier_free_guidance: bool,
) -> Optional[list[T2IAdapterData]]:
if t2i_adapter is None:
@@ -629,57 +615,44 @@ class DenoiseLatentsInvocation(BaseInvocation):
t2i_adapter_data = []
for t2i_adapter_field in t2i_adapter:
t2i_adapter_model_config = context.models.get_config(t2i_adapter_field.t2i_adapter_model.key)
image = context.images.get_pil(t2i_adapter_field.image.image_name, mode="RGB")
t2i_adapter_loaded_model = context.models.load(t2i_adapter_field.t2i_adapter_model)
image = context.images.get_pil(t2i_adapter_field.image.image_name)
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
if t2i_adapter_model_config.base == BaseModelType.StableDiffusion1:
max_unet_downscale = 8
elif t2i_adapter_model_config.base == BaseModelType.StableDiffusionXL:
max_unet_downscale = 4
# SDXL adapters are trained on cv2's BGR outputs
r, g, b = image.split()
image = Image.merge("RGB", (b, g, r))
else:
raise ValueError(f"Unexpected T2I-Adapter base model type: '{t2i_adapter_model_config.base}'.")
t2i_adapter_model: T2IAdapter
with context.models.load(t2i_adapter_field.t2i_adapter_model) as t2i_adapter_model:
with t2i_adapter_loaded_model as t2i_adapter_model:
total_downscale_factor = t2i_adapter_model.total_downscale_factor
# Resize the T2I-Adapter input image.
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the
# result will match the latent image's dimensions after max_unet_downscale is applied.
t2i_input_height = latents_shape[2] // max_unet_downscale * total_downscale_factor
t2i_input_width = latents_shape[3] // max_unet_downscale * total_downscale_factor
# Note: We have hard-coded `do_classifier_free_guidance=False`. This is because we only want to prepare
# a single image. If CFG is enabled, we will duplicate the resultant tensor after applying the
# T2I-Adapter model.
#
# Note: We re-use the `prepare_control_image(...)` from ControlNet for T2I-Adapter, because it has many
# of the same requirements (e.g. preserving binary masks during resize).
# Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR.
_, _, latent_height, latent_width = latents_shape
control_height_resize = latent_height * LATENT_SCALE_FACTOR
control_width_resize = latent_width * LATENT_SCALE_FACTOR
t2i_image = prepare_control_image(
image=image,
do_classifier_free_guidance=False,
width=control_width_resize,
height=control_height_resize,
width=t2i_input_width,
height=t2i_input_height,
num_channels=t2i_adapter_model.config["in_channels"], # mypy treats this as a FrozenDict
device=device,
device=t2i_adapter_model.device,
dtype=t2i_adapter_model.dtype,
resize_mode=t2i_adapter_field.resize_mode,
)
# Resize the T2I-Adapter input image.
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the
# result will match the latent image's dimensions after max_unet_downscale is applied.
# We crop the image to this size so that the positions match the input image on non-standard resolutions
t2i_input_height = latents_shape[2] // max_unet_downscale * total_downscale_factor
t2i_input_width = latents_shape[3] // max_unet_downscale * total_downscale_factor
if t2i_image.shape[2] > t2i_input_height or t2i_image.shape[3] > t2i_input_width:
t2i_image = t2i_image[
:, :, : min(t2i_image.shape[2], t2i_input_height), : min(t2i_image.shape[3], t2i_input_width)
]
adapter_state = t2i_adapter_model(t2i_image)
if do_classifier_free_guidance:
@@ -927,14 +900,15 @@ class DenoiseLatentsInvocation(BaseInvocation):
# ext = extension_field.to_extension(exit_stack, context, ext_manager)
# ext_manager.add_extension(ext)
self.parse_controlnet_field(exit_stack, context, self.control, ext_manager)
bgr_mode = self.unet.unet.base == BaseModelType.StableDiffusionXL
self.parse_t2i_adapter_field(exit_stack, context, self.t2i_adapter, ext_manager, bgr_mode)
self.parse_t2i_adapter_field(exit_stack, context, self.t2i_adapter, ext_manager)
# ext: t2i/ip adapter
ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx)
unet_info = context.models.load(self.unet.unet)
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
context.models.load(self.unet.unet).model_on_device() as (cached_weights, unet),
unet_info.model_on_device() as (cached_weights, unet),
ModelPatcher.patch_unet_attention_processor(unet, denoise_ctx.inputs.attention_processor_cls),
# ext: controlnet
ext_manager.patch_extensions(denoise_ctx),
@@ -955,7 +929,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
@torch.no_grad()
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
def _old_invoke(self, context: InvocationContext) -> LatentsOutput:
device = TorchDevice.choose_torch_device()
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
@@ -970,7 +943,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
context,
self.t2i_adapter,
latents.shape,
device=device,
do_classifier_free_guidance=True,
)
@@ -994,36 +966,37 @@ class DenoiseLatentsInvocation(BaseInvocation):
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, unet_config.base)
def _lora_loader() -> Iterator[Tuple[ModelPatchRaw, float]]:
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.unet.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, ModelPatchRaw)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
return
unet_info = context.models.load(self.unet.unet)
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
ExitStack() as exit_stack,
context.models.load(self.unet.unet).model_on_device() as (cached_weights, unet),
unet_info.model_on_device() as (cached_weights, unet),
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
SeamlessExt.static_patch_model(unet, self.unet.seamless_axes), # FIXME
# Apply the LoRA after unet has been moved to its target device for faster patching.
LayerPatcher.apply_smart_model_patches(
LoRAPatcher.apply_lora_patches(
model=unet,
patches=_lora_loader(),
prefix="lora_unet_",
dtype=unet.dtype,
cached_weights=cached_weights,
),
):
assert isinstance(unet, UNet2DConditionModel)
latents = latents.to(device=device, dtype=unet.dtype)
latents = latents.to(device=unet.device, dtype=unet.dtype)
if noise is not None:
noise = noise.to(device=device, dtype=unet.dtype)
noise = noise.to(device=unet.device, dtype=unet.dtype)
if mask is not None:
mask = mask.to(device=device, dtype=unet.dtype)
mask = mask.to(device=unet.device, dtype=unet.dtype)
if masked_latents is not None:
masked_latents = masked_latents.to(device=device, dtype=unet.dtype)
masked_latents = masked_latents.to(device=unet.device, dtype=unet.dtype)
scheduler = get_scheduler(
context=context,
@@ -1039,7 +1012,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
device=device,
device=unet.device,
dtype=unet.dtype,
latent_height=latent_height,
latent_width=latent_width,
@@ -1052,7 +1025,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
context=context,
control_input=self.control,
latents_shape=latents.shape,
device=device,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
exit_stack=exit_stack,
@@ -1070,7 +1042,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
scheduler,
device=device,
device=unet.device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,

View File

@@ -41,7 +41,6 @@ class UIType(str, Enum, metaclass=MetaEnum):
# region Model Field Types
MainModel = "MainModelField"
FluxMainModel = "FluxMainModelField"
SD3MainModel = "SD3MainModelField"
SDXLMainModel = "SDXLMainModelField"
SDXLRefinerModel = "SDXLRefinerModelField"
ONNXModel = "ONNXModelField"
@@ -53,10 +52,7 @@ class UIType(str, Enum, metaclass=MetaEnum):
T2IAdapterModel = "T2IAdapterModelField"
T5EncoderModel = "T5EncoderModelField"
CLIPEmbedModel = "CLIPEmbedModelField"
CLIPLEmbedModel = "CLIPLEmbedModelField"
CLIPGEmbedModel = "CLIPGEmbedModelField"
SpandrelImageToImageModel = "SpandrelImageToImageModelField"
ControlLoRAModel = "ControlLoRAModelField"
# endregion
# region Misc Field Types
@@ -135,7 +131,6 @@ class FieldDescriptions:
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
t5_encoder = "T5 tokenizer and text encoder"
clip_embed_model = "CLIP Embed loader"
clip_g_model = "CLIP-G Embed loader"
unet = "UNet (scheduler, LoRAs)"
transformer = "Transformer"
mmditx = "MMDiTX"
@@ -144,7 +139,6 @@ class FieldDescriptions:
controlnet_model = "ControlNet model to load"
vae_model = "VAE model to load"
lora_model = "LoRA model to load"
control_lora_model = "Control LoRA model to load"
main_model = "Main model (UNet, VAE, CLIP) to load"
flux_model = "Flux model (Transformer) to load"
sd3_model = "SD3 model (MMDiTX) to load"
@@ -252,17 +246,6 @@ class FluxConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
mask: Optional[TensorField] = Field(
default=None,
description="The mask associated with this conditioning tensor. Excluded regions should be set to False, "
"included regions should be set to True.",
)
class SD3ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
class ConditioningField(BaseModel):

View File

@@ -1,49 +0,0 @@
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, OutputField, UIType
from invokeai.app.invocations.model import ControlLoRAField, ModelIdentifierField
from invokeai.app.services.shared.invocation_context import InvocationContext
@invocation_output("flux_control_lora_loader_output")
class FluxControlLoRALoaderOutput(BaseInvocationOutput):
"""Flux Control LoRA Loader Output"""
control_lora: ControlLoRAField = OutputField(
title="Flux Control LoRA", description="Control LoRAs to apply on model loading", default=None
)
@invocation(
"flux_control_lora_loader",
title="Flux Control LoRA",
tags=["lora", "model", "flux"],
category="model",
version="1.1.0",
classification=Classification.Prototype,
)
class FluxControlLoRALoaderInvocation(BaseInvocation):
"""LoRA model and Image to use with FLUX transformer generation."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.control_lora_model, title="Control LoRA", ui_type=UIType.ControlLoRAModel
)
image: ImageField = InputField(description="The image to encode.")
weight: float = InputField(description="The weight of the LoRA.", default=1.0)
def invoke(self, context: InvocationContext) -> FluxControlLoRALoaderOutput:
if not context.models.exists(self.lora.key):
raise ValueError(f"Unknown lora: {self.lora.key}!")
return FluxControlLoRALoaderOutput(
control_lora=ControlLoRAField(
lora=self.lora,
img=self.image,
weight=self.weight,
)
)

View File

@@ -1,12 +1,10 @@
from contextlib import ExitStack
from typing import Callable, Iterator, Optional, Tuple, Union
from typing import Callable, Iterator, Optional, Tuple
import einops
import numpy as np
import numpy.typing as npt
import torch
import torchvision.transforms as tv_transforms
from PIL import Image
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
@@ -23,9 +21,8 @@ from invokeai.app.invocations.fields import (
WithMetadata,
)
from invokeai.app.invocations.flux_controlnet import FluxControlNetField
from invokeai.app.invocations.flux_vae_encode import FluxVaeEncodeInvocation
from invokeai.app.invocations.ip_adapter import IPAdapterField
from invokeai.app.invocations.model import ControlLoRAField, LoRAField, TransformerField, VAEField
from invokeai.app.invocations.model import TransformerField, VAEField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.controlnet.instantx_controlnet_flux import InstantXControlNetFlux
@@ -33,7 +30,6 @@ from invokeai.backend.flux.controlnet.xlabs_controlnet_flux import XLabsControlN
from invokeai.backend.flux.denoise import denoise
from invokeai.backend.flux.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.ip_adapter.xlabs_ip_adapter_flux import XlabsIpAdapterFlux
@@ -46,11 +42,10 @@ from invokeai.backend.flux.sampling_utils import (
pack,
unpack,
)
from invokeai.backend.flux.text_conditioning import FluxTextConditioning
from invokeai.backend.lora.conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
from invokeai.backend.model_manager.config import ModelFormat
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@@ -61,7 +56,7 @@ from invokeai.backend.util.devices import TorchDevice
title="FLUX Denoise",
tags=["image", "flux"],
category="image",
version="3.2.2",
version="3.2.0",
classification=Classification.Prototype,
)
class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
@@ -86,19 +81,15 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
add_noise: bool = InputField(default=True, description="Add noise based on denoising start.")
transformer: TransformerField = InputField(
description=FieldDescriptions.flux_model,
input=Input.Connection,
title="Transformer",
)
control_lora: Optional[ControlLoRAField] = InputField(
description=FieldDescriptions.control_lora_model, input=Input.Connection, title="Control LoRA", default=None
)
positive_text_conditioning: FluxConditioningField | list[FluxConditioningField] = InputField(
positive_text_conditioning: FluxConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
negative_text_conditioning: FluxConditioningField | list[FluxConditioningField] | None = InputField(
negative_text_conditioning: FluxConditioningField | None = InputField(
default=None,
description="Negative conditioning tensor. Can be None if cfg_scale is 1.0.",
input=Input.Connection,
@@ -147,12 +138,36 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
def _load_text_conditioning(
self, context: InvocationContext, conditioning_name: str, dtype: torch.dtype
) -> Tuple[torch.Tensor, torch.Tensor]:
# Load the conditioning data.
cond_data = context.conditioning.load(conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
flux_conditioning = flux_conditioning.to(dtype=dtype)
t5_embeddings = flux_conditioning.t5_embeds
clip_embeddings = flux_conditioning.clip_embeds
return t5_embeddings, clip_embeddings
def _run_diffusion(
self,
context: InvocationContext,
):
inference_dtype = torch.bfloat16
# Load the conditioning data.
pos_t5_embeddings, pos_clip_embeddings = self._load_text_conditioning(
context, self.positive_text_conditioning.conditioning_name, inference_dtype
)
neg_t5_embeddings: torch.Tensor | None = None
neg_clip_embeddings: torch.Tensor | None = None
if self.negative_text_conditioning is not None:
neg_t5_embeddings, neg_clip_embeddings = self._load_text_conditioning(
context, self.negative_text_conditioning.conditioning_name, inference_dtype
)
# Load the input latents, if provided.
init_latents = context.tensors.load(self.latents.latents_name) if self.latents else None
if init_latents is not None:
@@ -167,45 +182,15 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
dtype=inference_dtype,
seed=self.seed,
)
b, _c, latent_h, latent_w = noise.shape
packed_h = latent_h // 2
packed_w = latent_w // 2
# Load the conditioning data.
pos_text_conditionings = self._load_text_conditioning(
context=context,
cond_field=self.positive_text_conditioning,
packed_height=packed_h,
packed_width=packed_w,
dtype=inference_dtype,
device=TorchDevice.choose_torch_device(),
)
neg_text_conditionings: list[FluxTextConditioning] | None = None
if self.negative_text_conditioning is not None:
neg_text_conditionings = self._load_text_conditioning(
context=context,
cond_field=self.negative_text_conditioning,
packed_height=packed_h,
packed_width=packed_w,
dtype=inference_dtype,
device=TorchDevice.choose_torch_device(),
)
pos_regional_prompting_extension = RegionalPromptingExtension.from_text_conditioning(
pos_text_conditionings, img_seq_len=packed_h * packed_w
)
neg_regional_prompting_extension = (
RegionalPromptingExtension.from_text_conditioning(neg_text_conditionings, img_seq_len=packed_h * packed_w)
if neg_text_conditionings
else None
)
transformer_config = context.models.get_config(self.transformer.transformer)
is_schnell = "schnell" in getattr(transformer_config, "config_path", "")
transformer_info = context.models.load(self.transformer.transformer)
is_schnell = "schnell" in transformer_info.config.config_path
# Calculate the timestep schedule.
image_seq_len = noise.shape[-1] * noise.shape[-2] // 4
timesteps = get_schedule(
num_steps=self.num_steps,
image_seq_len=packed_h * packed_w,
image_seq_len=image_seq_len,
shift=not is_schnell,
)
@@ -222,12 +207,9 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"to be poor. Consider using a FLUX dev model instead."
)
if self.add_noise:
# Noise the orig_latents by the appropriate amount for the first timestep.
t_0 = timesteps[0]
x = t_0 * noise + (1.0 - t_0) * init_latents
else:
x = init_latents
# Noise the orig_latents by the appropriate amount for the first timestep.
t_0 = timesteps[0]
x = t_0 * noise + (1.0 - t_0) * init_latents
else:
# init_latents are not provided, so we are not doing image-to-image (i.e. we are starting from pure noise).
if self.denoising_start > 1e-5:
@@ -240,26 +222,30 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
if len(timesteps) <= 1:
return x
if is_schnell and self.control_lora:
raise ValueError("Control LoRAs cannot be used with FLUX Schnell")
# Prepare the extra image conditioning tensor if a FLUX structural control image is provided.
img_cond = self._prep_structural_control_img_cond(context)
inpaint_mask = self._prep_inpaint_mask(context, x)
b, _c, latent_h, latent_w = x.shape
img_ids = generate_img_ids(h=latent_h, w=latent_w, batch_size=b, device=x.device, dtype=x.dtype)
pos_bs, pos_t5_seq_len, _ = pos_t5_embeddings.shape
pos_txt_ids = torch.zeros(
pos_bs, pos_t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device()
)
neg_txt_ids: torch.Tensor | None = None
if neg_t5_embeddings is not None:
neg_bs, neg_t5_seq_len, _ = neg_t5_embeddings.shape
neg_txt_ids = torch.zeros(
neg_bs, neg_t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device()
)
# Pack all latent tensors.
init_latents = pack(init_latents) if init_latents is not None else None
inpaint_mask = pack(inpaint_mask) if inpaint_mask is not None else None
img_cond = pack(img_cond) if img_cond is not None else None
noise = pack(noise)
x = pack(x)
# Now that we have 'packed' the latent tensors, verify that we calculated the image_seq_len, packed_h, and
# packed_w correctly.
assert packed_h * packed_w == x.shape[1]
# Now that we have 'packed' the latent tensors, verify that we calculated the image_seq_len correctly.
assert image_seq_len == x.shape[1]
# Prepare inpaint extension.
inpaint_extension: InpaintExtension | None = None
@@ -276,7 +262,7 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
# TODO(ryand): We should really do this in a separate invocation to benefit from caching.
ip_adapter_fields = self._normalize_ip_adapter_fields()
pos_image_prompt_clip_embeds, neg_image_prompt_clip_embeds = self._prep_ip_adapter_image_prompt_clip_embeds(
ip_adapter_fields, context, device=x.device
ip_adapter_fields, context
)
cfg_scale = self.prep_cfg_scale(
@@ -299,40 +285,41 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
)
# Load the transformer model.
(cached_weights, transformer) = exit_stack.enter_context(
context.models.load(self.transformer.transformer).model_on_device()
)
(cached_weights, transformer) = exit_stack.enter_context(transformer_info.model_on_device())
assert isinstance(transformer, Flux)
config = transformer_config
config = transformer_info.config
assert config is not None
# Determine if the model is quantized.
# If the model is quantized, then we need to apply the LoRA weights as sidecar layers. This results in
# slower inference than direct patching, but is agnostic to the quantization format.
# Apply LoRA models to the transformer.
# Note: We apply the LoRA after the transformer has been moved to its target device for faster patching.
if config.format in [ModelFormat.Checkpoint]:
model_is_quantized = False
# The model is non-quantized, so we can apply the LoRA weights directly into the model.
exit_stack.enter_context(
LoRAPatcher.apply_lora_patches(
model=transformer,
patches=self._lora_iterator(context),
prefix=FLUX_LORA_TRANSFORMER_PREFIX,
cached_weights=cached_weights,
)
)
elif config.format in [
ModelFormat.BnbQuantizedLlmInt8b,
ModelFormat.BnbQuantizednf4b,
ModelFormat.GGUFQuantized,
]:
model_is_quantized = True
# The model is quantized, so apply the LoRA weights as sidecar layers. This results in slower inference,
# than directly patching the weights, but is agnostic to the quantization format.
exit_stack.enter_context(
LoRAPatcher.apply_lora_sidecar_patches(
model=transformer,
patches=self._lora_iterator(context),
prefix=FLUX_LORA_TRANSFORMER_PREFIX,
dtype=inference_dtype,
)
)
else:
raise ValueError(f"Unsupported model format: {config.format}")
# Apply LoRA models to the transformer.
# Note: We apply the LoRA after the transformer has been moved to its target device for faster patching.
exit_stack.enter_context(
LayerPatcher.apply_smart_model_patches(
model=transformer,
patches=self._lora_iterator(context),
prefix=FLUX_LORA_TRANSFORMER_PREFIX,
dtype=inference_dtype,
cached_weights=cached_weights,
force_sidecar_patching=model_is_quantized,
)
)
# Prepare IP-Adapter extensions.
pos_ip_adapter_extensions, neg_ip_adapter_extensions = self._prep_ip_adapter_extensions(
pos_image_prompt_clip_embeds=pos_image_prompt_clip_embeds,
@@ -347,8 +334,12 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
model=transformer,
img=x,
img_ids=img_ids,
pos_regional_prompting_extension=pos_regional_prompting_extension,
neg_regional_prompting_extension=neg_regional_prompting_extension,
txt=pos_t5_embeddings,
txt_ids=pos_txt_ids,
vec=pos_clip_embeddings,
neg_txt=neg_t5_embeddings,
neg_txt_ids=neg_txt_ids,
neg_vec=neg_clip_embeddings,
timesteps=timesteps,
step_callback=self._build_step_callback(context),
guidance=self.guidance,
@@ -357,49 +348,11 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
controlnet_extensions=controlnet_extensions,
pos_ip_adapter_extensions=pos_ip_adapter_extensions,
neg_ip_adapter_extensions=neg_ip_adapter_extensions,
img_cond=img_cond,
)
x = unpack(x.float(), self.height, self.width)
return x
def _load_text_conditioning(
self,
context: InvocationContext,
cond_field: FluxConditioningField | list[FluxConditioningField],
packed_height: int,
packed_width: int,
dtype: torch.dtype,
device: torch.device,
) -> list[FluxTextConditioning]:
"""Load text conditioning data from a FluxConditioningField or a list of FluxConditioningFields."""
# Normalize to a list of FluxConditioningFields.
cond_list = [cond_field] if isinstance(cond_field, FluxConditioningField) else cond_field
text_conditionings: list[FluxTextConditioning] = []
for cond_field in cond_list:
# Load the text embeddings.
cond_data = context.conditioning.load(cond_field.conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
flux_conditioning = flux_conditioning.to(dtype=dtype, device=device)
t5_embeddings = flux_conditioning.t5_embeds
clip_embeddings = flux_conditioning.clip_embeds
# Load the mask, if provided.
mask: Optional[torch.Tensor] = None
if cond_field.mask is not None:
mask = context.tensors.load(cond_field.mask.tensor_name)
mask = mask.to(device=device)
mask = RegionalPromptingExtension.preprocess_regional_prompt_mask(
mask, packed_height, packed_width, dtype, device
)
text_conditionings.append(FluxTextConditioning(t5_embeddings, clip_embeddings, mask))
return text_conditionings
@classmethod
def prep_cfg_scale(
cls, cfg_scale: float | list[float], timesteps: list[float], cfg_scale_start_step: int, cfg_scale_end_step: int
@@ -514,18 +467,15 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
# before loading the models. Then make sure that all VAE encoding is done before loading the ControlNets to
# minimize peak memory.
# First, load the ControlNet models so that we can determine the ControlNet types.
controlnet_models = [context.models.load(controlnet.control_model) for controlnet in controlnets]
# Calculate the controlnet conditioning tensors.
# We do this before loading the ControlNet models because it may require running the VAE, and we are trying to
# keep peak memory down.
controlnet_conds: list[torch.Tensor] = []
for controlnet in controlnets:
for controlnet, controlnet_model in zip(controlnets, controlnet_models, strict=True):
image = context.images.get_pil(controlnet.image.image_name)
# HACK(ryand): We have to load the ControlNet model to determine whether the VAE needs to be run. We really
# shouldn't have to load the model here. There's a risk that the model will be dropped from the model cache
# before we load it into VRAM and thus we'll have to load it again (context:
# https://github.com/invoke-ai/InvokeAI/issues/7513).
controlnet_model = context.models.load(controlnet.control_model)
if isinstance(controlnet_model.model, InstantXControlNetFlux):
if self.controlnet_vae is None:
raise ValueError("A ControlNet VAE is required when using an InstantX FLUX ControlNet.")
@@ -555,8 +505,10 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
# Finally, load the ControlNet models and initialize the ControlNet extensions.
controlnet_extensions: list[XLabsControlNetExtension | InstantXControlNetExtension] = []
for controlnet, controlnet_cond in zip(controlnets, controlnet_conds, strict=True):
model = exit_stack.enter_context(context.models.load(controlnet.control_model))
for controlnet, controlnet_cond, controlnet_model in zip(
controlnets, controlnet_conds, controlnet_models, strict=True
):
model = exit_stack.enter_context(controlnet_model)
if isinstance(model, XLabsControlNetFlux):
controlnet_extensions.append(
@@ -589,29 +541,6 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
return controlnet_extensions
def _prep_structural_control_img_cond(self, context: InvocationContext) -> torch.Tensor | None:
if self.control_lora is None:
return None
if not self.controlnet_vae:
raise ValueError("controlnet_vae must be set when using a FLUX Control LoRA.")
# Load the conditioning image and resize it to the target image size.
cond_img = context.images.get_pil(self.control_lora.img.image_name)
cond_img = cond_img.convert("RGB")
cond_img = cond_img.resize((self.width, self.height), Image.Resampling.BICUBIC)
cond_img = np.array(cond_img)
# Normalize the conditioning image to the range [-1, 1].
# This normalization is based on the original implementations here:
# https://github.com/black-forest-labs/flux/blob/805da8571a0b49b6d4043950bd266a65328c243b/src/flux/modules/image_embedders.py#L34
# https://github.com/black-forest-labs/flux/blob/805da8571a0b49b6d4043950bd266a65328c243b/src/flux/modules/image_embedders.py#L60
img_cond = torch.from_numpy(cond_img).float() / 127.5 - 1.0
img_cond = einops.rearrange(img_cond, "h w c -> 1 c h w")
vae_info = context.models.load(self.controlnet_vae.vae)
return FluxVaeEncodeInvocation.vae_encode(vae_info=vae_info, image_tensor=img_cond)
def _normalize_ip_adapter_fields(self) -> list[IPAdapterField]:
if self.ip_adapter is None:
return []
@@ -626,7 +555,6 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
self,
ip_adapter_fields: list[IPAdapterField],
context: InvocationContext,
device: torch.device,
) -> tuple[list[torch.Tensor], list[torch.Tensor]]:
"""Run the IPAdapter CLIPVisionModel, returning image prompt embeddings."""
clip_image_processor = CLIPImageProcessor()
@@ -666,11 +594,11 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
assert isinstance(image_encoder_model, CLIPVisionModelWithProjection)
clip_image: torch.Tensor = clip_image_processor(images=pos_images, return_tensors="pt").pixel_values
clip_image = clip_image.to(device=device, dtype=image_encoder_model.dtype)
clip_image = clip_image.to(device=image_encoder_model.device, dtype=image_encoder_model.dtype)
pos_clip_image_embeds = image_encoder_model(clip_image).image_embeds
clip_image = clip_image_processor(images=neg_images, return_tensors="pt").pixel_values
clip_image = clip_image.to(device=device, dtype=image_encoder_model.dtype)
clip_image = clip_image.to(device=image_encoder_model.device, dtype=image_encoder_model.dtype)
neg_clip_image_embeds = image_encoder_model(clip_image).image_embeds
pos_image_prompt_clip_embeds.append(pos_clip_image_embeds)
@@ -719,15 +647,10 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
return pos_ip_adapter_extensions, neg_ip_adapter_extensions
def _lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[ModelPatchRaw, float]]:
loras: list[Union[LoRAField, ControlLoRAField]] = [*self.transformer.loras]
if self.control_lora:
# Note: Since FLUX structural control LoRAs modify the shape of some weights, it is important that they are
# applied last.
loras.append(self.control_lora)
for lora in loras:
def _lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.transformer.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, ModelPatchRaw)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info

View File

@@ -11,10 +11,7 @@ from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.util import max_seq_lengths
from invokeai.backend.model_manager.config import (
CheckpointConfigBase,
SubModelType,
)
from invokeai.backend.model_manager.config import CheckpointConfigBase, SubModelType
@invocation_output("flux_model_loader_output")

View File

@@ -1,26 +1,19 @@
from contextlib import ExitStack
from typing import Iterator, Literal, Optional, Tuple
from typing import Iterator, Literal, Tuple
import torch
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxConditioningField,
Input,
InputField,
TensorField,
UIComponent,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import FluxConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.modules.conditioner import HFEncoder
from invokeai.backend.lora.conversions.flux_lora_constants import FLUX_LORA_CLIP_PREFIX
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
from invokeai.backend.model_manager.config import ModelFormat
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_CLIP_PREFIX
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, FLUXConditioningInfo
@@ -29,7 +22,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import Condit
title="FLUX Text Encoding",
tags=["prompt", "conditioning", "flux"],
category="conditioning",
version="1.1.1",
version="1.1.0",
classification=Classification.Prototype,
)
class FluxTextEncoderInvocation(BaseInvocation):
@@ -48,10 +41,7 @@ class FluxTextEncoderInvocation(BaseInvocation):
t5_max_seq_len: Literal[256, 512] = InputField(
description="Max sequence length for the T5 encoder. Expected to be 256 for FLUX schnell models and 512 for FLUX dev models."
)
prompt: str = InputField(description="Text prompt to encode.", ui_component=UIComponent.Textarea)
mask: Optional[TensorField] = InputField(
default=None, description="A mask defining the region that this conditioning prompt applies to."
)
prompt: str = InputField(description="Text prompt to encode.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> FluxConditioningOutput:
@@ -64,53 +54,54 @@ class FluxTextEncoderInvocation(BaseInvocation):
)
conditioning_name = context.conditioning.save(conditioning_data)
return FluxConditioningOutput(
conditioning=FluxConditioningField(conditioning_name=conditioning_name, mask=self.mask)
)
return FluxConditioningOutput.build(conditioning_name)
def _t5_encode(self, context: InvocationContext) -> torch.Tensor:
t5_tokenizer_info = context.models.load(self.t5_encoder.tokenizer)
t5_text_encoder_info = context.models.load(self.t5_encoder.text_encoder)
prompt = [self.prompt]
with (
context.models.load(self.t5_encoder.text_encoder) as t5_text_encoder,
context.models.load(self.t5_encoder.tokenizer) as t5_tokenizer,
t5_text_encoder_info as t5_text_encoder,
t5_tokenizer_info as t5_tokenizer,
):
assert isinstance(t5_text_encoder, T5EncoderModel)
assert isinstance(t5_tokenizer, T5Tokenizer)
t5_encoder = HFEncoder(t5_text_encoder, t5_tokenizer, False, self.t5_max_seq_len)
context.util.signal_progress("Running T5 encoder")
prompt_embeds = t5_encoder(prompt)
assert isinstance(prompt_embeds, torch.Tensor)
return prompt_embeds
def _clip_encode(self, context: InvocationContext) -> torch.Tensor:
prompt = [self.prompt]
clip_tokenizer_info = context.models.load(self.clip.tokenizer)
clip_text_encoder_info = context.models.load(self.clip.text_encoder)
clip_text_encoder_config = clip_text_encoder_info.config
assert clip_text_encoder_config is not None
prompt = [self.prompt]
with (
clip_text_encoder_info.model_on_device() as (cached_weights, clip_text_encoder),
context.models.load(self.clip.tokenizer) as clip_tokenizer,
clip_tokenizer_info as clip_tokenizer,
ExitStack() as exit_stack,
):
assert isinstance(clip_text_encoder, CLIPTextModel)
assert isinstance(clip_tokenizer, CLIPTokenizer)
clip_text_encoder_config = clip_text_encoder_info.config
assert clip_text_encoder_config is not None
# Apply LoRA models to the CLIP encoder.
# Note: We apply the LoRA after the transformer has been moved to its target device for faster patching.
if clip_text_encoder_config.format in [ModelFormat.Diffusers]:
# The model is non-quantized, so we can apply the LoRA weights directly into the model.
exit_stack.enter_context(
LayerPatcher.apply_smart_model_patches(
LoRAPatcher.apply_lora_patches(
model=clip_text_encoder,
patches=self._clip_lora_iterator(context),
prefix=FLUX_LORA_CLIP_PREFIX,
dtype=clip_text_encoder.dtype,
cached_weights=cached_weights,
)
)
@@ -120,15 +111,14 @@ class FluxTextEncoderInvocation(BaseInvocation):
clip_encoder = HFEncoder(clip_text_encoder, clip_tokenizer, True, 77)
context.util.signal_progress("Running CLIP encoder")
pooled_prompt_embeds = clip_encoder(prompt)
assert isinstance(pooled_prompt_embeds, torch.Tensor)
return pooled_prompt_embeds
def _clip_lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[ModelPatchRaw, float]]:
def _clip_lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.clip.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, ModelPatchRaw)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info

View File

@@ -3,7 +3,6 @@ from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
@@ -25,7 +24,7 @@ from invokeai.backend.util.devices import TorchDevice
title="FLUX Latents to Image",
tags=["latents", "image", "vae", "l2i", "flux"],
category="latents",
version="1.0.1",
version="1.0.0",
)
class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
@@ -39,26 +38,10 @@ class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
input=Input.Connection,
)
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoEncoder) -> int:
"""Estimate the working memory required by the invocation in bytes."""
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision).
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 1090 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
# We add a 20% buffer to the working memory estimate to be safe.
working_memory = working_memory * 1.2
return int(working_memory)
def _vae_decode(self, vae_info: LoadedModel, latents: torch.Tensor) -> Image.Image:
estimated_working_memory = self._estimate_working_memory(latents, vae_info.model)
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
with vae_info as vae:
assert isinstance(vae, AutoEncoder)
vae_dtype = next(iter(vae.parameters())).dtype
latents = latents.to(device=TorchDevice.choose_torch_device(), dtype=vae_dtype)
latents = latents.to(device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype())
img = vae.decode(latents)
img = img.clamp(-1, 1)
@@ -70,7 +53,6 @@ class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
context.util.signal_progress("Running VAE")
image = self._vae_decode(vae_info=vae_info, latents=latents)
TorchDevice.empty_cache()

View File

@@ -44,8 +44,9 @@ class FluxVaeEncodeInvocation(BaseInvocation):
generator = torch.Generator(device=TorchDevice.choose_torch_device()).manual_seed(0)
with vae_info as vae:
assert isinstance(vae, AutoEncoder)
vae_dtype = next(iter(vae.parameters())).dtype
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=vae_dtype)
image_tensor = image_tensor.to(
device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype()
)
latents = vae.encode(image_tensor, sample=True, generator=generator)
return latents
@@ -59,7 +60,6 @@ class FluxVaeEncodeInvocation(BaseInvocation):
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
context.util.signal_progress("Running VAE")
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
latents = latents.to("cpu")

View File

@@ -1,59 +0,0 @@
from pydantic import ValidationInfo, field_validator
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import InputField, OutputField
from invokeai.app.services.shared.invocation_context import InvocationContext
@invocation_output("image_panel_coordinate_output")
class ImagePanelCoordinateOutput(BaseInvocationOutput):
x_left: int = OutputField(description="The left x-coordinate of the panel.")
y_top: int = OutputField(description="The top y-coordinate of the panel.")
width: int = OutputField(description="The width of the panel.")
height: int = OutputField(description="The height of the panel.")
@invocation(
"image_panel_layout",
title="Image Panel Layout",
tags=["image", "panel", "layout"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class ImagePanelLayoutInvocation(BaseInvocation):
"""Get the coordinates of a single panel in a grid. (If the full image shape cannot be divided evenly into panels,
then the grid may not cover the entire image.)
"""
width: int = InputField(description="The width of the entire grid.")
height: int = InputField(description="The height of the entire grid.")
num_cols: int = InputField(ge=1, default=1, description="The number of columns in the grid.")
num_rows: int = InputField(ge=1, default=1, description="The number of rows in the grid.")
panel_col_idx: int = InputField(ge=0, default=0, description="The column index of the panel to be processed.")
panel_row_idx: int = InputField(ge=0, default=0, description="The row index of the panel to be processed.")
@field_validator("panel_col_idx")
def validate_panel_col_idx(cls, v: int, info: ValidationInfo) -> int:
if v < 0 or v >= info.data["num_cols"]:
raise ValueError(f"panel_col_idx must be between 0 and {info.data['num_cols'] - 1}")
return v
@field_validator("panel_row_idx")
def validate_panel_row_idx(cls, v: int, info: ValidationInfo) -> int:
if v < 0 or v >= info.data["num_rows"]:
raise ValueError(f"panel_row_idx must be between 0 and {info.data['num_rows'] - 1}")
return v
def invoke(self, context: InvocationContext) -> ImagePanelCoordinateOutput:
x_left = self.panel_col_idx * (self.width // self.num_cols)
y_top = self.panel_row_idx * (self.height // self.num_rows)
width = self.width // self.num_cols
height = self.height // self.num_rows
return ImagePanelCoordinateOutput(x_left=x_left, y_top=y_top, width=width, height=height)

View File

@@ -13,7 +13,7 @@ from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
@@ -26,7 +26,6 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
from invokeai.backend.util.devices import TorchDevice
@invocation(
@@ -50,7 +49,7 @@ class ImageToLatentsInvocation(BaseInvocation):
# NOTE: tile_size = 0 is a special value. We use this rather than `int | None`, because the workflow UI does not
# offer a way to directly set None values.
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
fp32: bool = InputField(default=False, description=FieldDescriptions.fp32)
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
@staticmethod
def vae_encode(
@@ -99,7 +98,7 @@ class ImageToLatentsInvocation(BaseInvocation):
)
# non_noised_latents_from_image
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=vae.dtype)
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
with torch.inference_mode(), tiling_context:
latents = ImageToLatentsInvocation._encode_to_tensor(vae, image_tensor)
@@ -118,7 +117,6 @@ class ImageToLatentsInvocation(BaseInvocation):
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
context.util.signal_progress("Running VAE encoder")
latents = self.vae_encode(
vae_info=vae_info, upcast=self.fp32, tiled=self.tiled, image_tensor=image_tensor, tile_size=self.tile_size
)

View File

@@ -12,7 +12,7 @@ from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
@@ -34,7 +34,7 @@ from invokeai.backend.util.devices import TorchDevice
title="Latents to Image",
tags=["latents", "image", "vae", "l2i"],
category="latents",
version="1.3.1",
version="1.3.0",
)
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
@@ -51,60 +51,17 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
# NOTE: tile_size = 0 is a special value. We use this rather than `int | None`, because the workflow UI does not
# offer a way to directly set None values.
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
fp32: bool = InputField(default=False, description=FieldDescriptions.fp32)
def _estimate_working_memory(
self, latents: torch.Tensor, use_tiling: bool, vae: AutoencoderKL | AutoencoderTiny
) -> int:
"""Estimate the working memory required by the invocation in bytes."""
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision). This estimate is accurate for both SD1 and SDXL.
element_size = 4 if self.fp32 else 2
scaling_constant = 960 # Determined experimentally.
if use_tiling:
tile_size = self.tile_size
if tile_size == 0:
tile_size = vae.tile_sample_min_size
assert isinstance(tile_size, int)
out_h = tile_size
out_w = tile_size
working_memory = out_h * out_w * element_size * scaling_constant
# We add 25% to the working memory estimate when tiling is enabled to account for factors like tile overlap
# and number of tiles. We could make this more precise in the future, but this should be good enough for
# most use cases.
working_memory = working_memory * 1.25
else:
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
working_memory = out_h * out_w * element_size * scaling_constant
if self.fp32:
# If we are running in FP32, then we should account for the likely increase in model size (~250MB).
working_memory += 250 * 2**20
# We add 20% to the working memory estimate to be safe.
working_memory = int(working_memory * 1.2)
return working_memory
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
use_tiling = self.tiled or context.config.get().force_tiled_decode
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
estimated_working_memory = self._estimate_working_memory(latents, use_tiling, vae_info.model)
with (
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),
):
context.util.signal_progress("Running VAE decoder")
with SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes), vae_info as vae:
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
latents = latents.to(TorchDevice.choose_torch_device())
latents = latents.to(vae.device)
if self.fp32:
vae.to(dtype=torch.float32)
@@ -130,7 +87,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
vae.to(dtype=torch.float16)
latents = latents.half()
if use_tiling:
if self.tiled or context.config.get().force_tiled_decode:
vae.enable_tiling()
else:
vae.disable_tiling()

View File

@@ -165,7 +165,6 @@ class ApplyMaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
mask: TensorField = InputField(description="The mask tensor to apply.")
image: ImageField = InputField(description="The image to apply the mask to.")
invert: bool = InputField(default=False, description="Whether to invert the mask.")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, mode="RGBA")
@@ -180,9 +179,6 @@ class ApplyMaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
mask = mask > 0.5
mask_np = (mask.float() * 255).byte().cpu().numpy().astype(np.uint8)
if self.invert:
mask_np = 255 - mask_np
# Apply the mask only to the alpha channel where the original alpha is non-zero. This preserves the original
# image's transparency - else the transparent regions would end up as opaque black.

View File

@@ -147,10 +147,6 @@ GENERATION_MODES = Literal[
"flux_img2img",
"flux_inpaint",
"flux_outpaint",
"sd3_txt2img",
"sd3_img2img",
"sd3_inpaint",
"sd3_outpaint",
]

View File

@@ -10,7 +10,7 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.config import (
@@ -65,6 +65,11 @@ class CLIPField(BaseModel):
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
class TransformerField(BaseModel):
transformer: ModelIdentifierField = Field(description="Info to load Transformer submodel")
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
class T5EncoderField(BaseModel):
tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel")
text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel")
@@ -75,15 +80,6 @@ class VAEField(BaseModel):
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
class ControlLoRAField(LoRAField):
img: ImageField = Field(description="Image to use in structural conditioning")
class TransformerField(BaseModel):
transformer: ModelIdentifierField = Field(description="Info to load Transformer submodel")
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
@invocation_output("unet_output")
class UNetOutput(BaseInvocationOutput):
"""Base class for invocations that output a UNet field."""

View File

@@ -1,4 +1,43 @@
import io
from typing import Literal, Optional
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image
from easing_functions import (
BackEaseIn,
BackEaseInOut,
BackEaseOut,
BounceEaseIn,
BounceEaseInOut,
BounceEaseOut,
CircularEaseIn,
CircularEaseInOut,
CircularEaseOut,
CubicEaseIn,
CubicEaseInOut,
CubicEaseOut,
ElasticEaseIn,
ElasticEaseInOut,
ElasticEaseOut,
ExponentialEaseIn,
ExponentialEaseInOut,
ExponentialEaseOut,
LinearInOut,
QuadEaseIn,
QuadEaseInOut,
QuadEaseOut,
QuarticEaseIn,
QuarticEaseInOut,
QuarticEaseOut,
QuinticEaseIn,
QuinticEaseInOut,
QuinticEaseOut,
SineEaseIn,
SineEaseInOut,
SineEaseOut,
)
from matplotlib.ticker import MaxNLocator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import InputField
@@ -26,3 +65,191 @@ class FloatLinearRangeInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
param_list = list(np.linspace(self.start, self.stop, self.steps))
return FloatCollectionOutput(collection=param_list)
EASING_FUNCTIONS_MAP = {
"Linear": LinearInOut,
"QuadIn": QuadEaseIn,
"QuadOut": QuadEaseOut,
"QuadInOut": QuadEaseInOut,
"CubicIn": CubicEaseIn,
"CubicOut": CubicEaseOut,
"CubicInOut": CubicEaseInOut,
"QuarticIn": QuarticEaseIn,
"QuarticOut": QuarticEaseOut,
"QuarticInOut": QuarticEaseInOut,
"QuinticIn": QuinticEaseIn,
"QuinticOut": QuinticEaseOut,
"QuinticInOut": QuinticEaseInOut,
"SineIn": SineEaseIn,
"SineOut": SineEaseOut,
"SineInOut": SineEaseInOut,
"CircularIn": CircularEaseIn,
"CircularOut": CircularEaseOut,
"CircularInOut": CircularEaseInOut,
"ExponentialIn": ExponentialEaseIn,
"ExponentialOut": ExponentialEaseOut,
"ExponentialInOut": ExponentialEaseInOut,
"ElasticIn": ElasticEaseIn,
"ElasticOut": ElasticEaseOut,
"ElasticInOut": ElasticEaseInOut,
"BackIn": BackEaseIn,
"BackOut": BackEaseOut,
"BackInOut": BackEaseInOut,
"BounceIn": BounceEaseIn,
"BounceOut": BounceEaseOut,
"BounceInOut": BounceEaseInOut,
}
EASING_FUNCTION_KEYS = Literal[tuple(EASING_FUNCTIONS_MAP.keys())]
# actually I think for now could just use CollectionOutput (which is list[Any]
@invocation(
"step_param_easing",
title="Step Param Easing",
tags=["step", "easing"],
category="step",
version="1.0.2",
)
class StepParamEasingInvocation(BaseInvocation):
"""Experimental per-step parameter easing for denoising steps"""
easing: EASING_FUNCTION_KEYS = InputField(default="Linear", description="The easing function to use")
num_steps: int = InputField(default=20, description="number of denoising steps")
start_value: float = InputField(default=0.0, description="easing starting value")
end_value: float = InputField(default=1.0, description="easing ending value")
start_step_percent: float = InputField(default=0.0, description="fraction of steps at which to start easing")
end_step_percent: float = InputField(default=1.0, description="fraction of steps after which to end easing")
# if None, then start_value is used prior to easing start
pre_start_value: Optional[float] = InputField(default=None, description="value before easing start")
# if None, then end value is used prior to easing end
post_end_value: Optional[float] = InputField(default=None, description="value after easing end")
mirror: bool = InputField(default=False, description="include mirror of easing function")
# FIXME: add alt_mirror option (alternative to default or mirror), or remove entirely
# alt_mirror: bool = InputField(default=False, description="alternative mirroring by dual easing")
show_easing_plot: bool = InputField(default=False, description="show easing plot")
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
log_diagnostics = False
# convert from start_step_percent to nearest step <= (steps * start_step_percent)
# start_step = int(np.floor(self.num_steps * self.start_step_percent))
start_step = int(np.round(self.num_steps * self.start_step_percent))
# convert from end_step_percent to nearest step >= (steps * end_step_percent)
# end_step = int(np.ceil((self.num_steps - 1) * self.end_step_percent))
end_step = int(np.round((self.num_steps - 1) * self.end_step_percent))
# end_step = int(np.ceil(self.num_steps * self.end_step_percent))
num_easing_steps = end_step - start_step + 1
# num_presteps = max(start_step - 1, 0)
num_presteps = start_step
num_poststeps = self.num_steps - (num_presteps + num_easing_steps)
prelist = list(num_presteps * [self.pre_start_value])
postlist = list(num_poststeps * [self.post_end_value])
if log_diagnostics:
context.logger.debug("start_step: " + str(start_step))
context.logger.debug("end_step: " + str(end_step))
context.logger.debug("num_easing_steps: " + str(num_easing_steps))
context.logger.debug("num_presteps: " + str(num_presteps))
context.logger.debug("num_poststeps: " + str(num_poststeps))
context.logger.debug("prelist size: " + str(len(prelist)))
context.logger.debug("postlist size: " + str(len(postlist)))
context.logger.debug("prelist: " + str(prelist))
context.logger.debug("postlist: " + str(postlist))
easing_class = EASING_FUNCTIONS_MAP[self.easing]
if log_diagnostics:
context.logger.debug("easing class: " + str(easing_class))
easing_list = []
if self.mirror: # "expected" mirroring
# if number of steps is even, squeeze duration down to (number_of_steps)/2
# and create reverse copy of list to append
# if number of steps is odd, squeeze duration down to ceil(number_of_steps/2)
# and create reverse copy of list[1:end-1]
# but if even then number_of_steps/2 === ceil(number_of_steps/2), so can just use ceil always
base_easing_duration = int(np.ceil(num_easing_steps / 2.0))
if log_diagnostics:
context.logger.debug("base easing duration: " + str(base_easing_duration))
even_num_steps = num_easing_steps % 2 == 0 # even number of steps
easing_function = easing_class(
start=self.start_value,
end=self.end_value,
duration=base_easing_duration - 1,
)
base_easing_vals = []
for step_index in range(base_easing_duration):
easing_val = easing_function.ease(step_index)
base_easing_vals.append(easing_val)
if log_diagnostics:
context.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(easing_val))
if even_num_steps:
mirror_easing_vals = list(reversed(base_easing_vals))
else:
mirror_easing_vals = list(reversed(base_easing_vals[0:-1]))
if log_diagnostics:
context.logger.debug("base easing vals: " + str(base_easing_vals))
context.logger.debug("mirror easing vals: " + str(mirror_easing_vals))
easing_list = base_easing_vals + mirror_easing_vals
# FIXME: add alt_mirror option (alternative to default or mirror), or remove entirely
# elif self.alt_mirror: # function mirroring (unintuitive behavior (at least to me))
# # half_ease_duration = round(num_easing_steps - 1 / 2)
# half_ease_duration = round((num_easing_steps - 1) / 2)
# easing_function = easing_class(start=self.start_value,
# end=self.end_value,
# duration=half_ease_duration,
# )
#
# mirror_function = easing_class(start=self.end_value,
# end=self.start_value,
# duration=half_ease_duration,
# )
# for step_index in range(num_easing_steps):
# if step_index <= half_ease_duration:
# step_val = easing_function.ease(step_index)
# else:
# step_val = mirror_function.ease(step_index - half_ease_duration)
# easing_list.append(step_val)
# if log_diagnostics: logger.debug(step_index, step_val)
#
else: # no mirroring (default)
easing_function = easing_class(
start=self.start_value,
end=self.end_value,
duration=num_easing_steps - 1,
)
for step_index in range(num_easing_steps):
step_val = easing_function.ease(step_index)
easing_list.append(step_val)
if log_diagnostics:
context.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(step_val))
if log_diagnostics:
context.logger.debug("prelist size: " + str(len(prelist)))
context.logger.debug("easing_list size: " + str(len(easing_list)))
context.logger.debug("postlist size: " + str(len(postlist)))
param_list = prelist + easing_list + postlist
if self.show_easing_plot:
plt.figure()
plt.xlabel("Step")
plt.ylabel("Param Value")
plt.title("Per-Step Values Based On Easing: " + self.easing)
plt.bar(range(len(param_list)), param_list)
# plt.plot(param_list)
ax = plt.gca()
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
buf = io.BytesIO()
plt.savefig(buf, format="png")
buf.seek(0)
im = PIL.Image.open(buf)
im.show()
buf.close()
# output array of size steps, each entry list[i] is param value for step i
return FloatCollectionOutput(collection=param_list)

View File

@@ -4,13 +4,7 @@ from typing import Optional
import torch
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
BoundingBoxField,
@@ -24,7 +18,6 @@ from invokeai.app.invocations.fields import (
InputField,
LatentsField,
OutputField,
SD3ConditioningField,
TensorField,
UIComponent,
)
@@ -433,17 +426,6 @@ class FluxConditioningOutput(BaseInvocationOutput):
return cls(conditioning=FluxConditioningField(conditioning_name=conditioning_name))
@invocation_output("sd3_conditioning_output")
class SD3ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single SD3 conditioning tensor"""
conditioning: SD3ConditioningField = OutputField(description=FieldDescriptions.cond)
@classmethod
def build(cls, conditioning_name: str) -> "SD3ConditioningOutput":
return cls(conditioning=SD3ConditioningField(conditioning_name=conditioning_name))
@invocation_output("conditioning_output")
class ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single conditioning tensor"""
@@ -539,23 +521,3 @@ class BoundingBoxInvocation(BaseInvocation):
# endregion
@invocation(
"image_batch",
title="Image Batch",
tags=["primitives", "image", "batch", "internal"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class ImageBatchInvocation(BaseInvocation):
"""Create a batched generation, where the workflow is executed once for each image in the batch."""
images: list[ImageField] = InputField(min_length=1, description="The images to batch over", input=Input.Direct)
def __init__(self):
raise NotImplementedError("This class should never be executed or instantiated directly.")
def invoke(self, context: InvocationContext) -> ImageOutput:
raise NotImplementedError("This class should never be executed or instantiated directly.")

View File

@@ -1,338 +0,0 @@
from typing import Callable, Optional, Tuple
import torch
import torchvision.transforms as tv_transforms
from diffusers.models.transformers.transformer_sd3 import SD3Transformer2DModel
from torchvision.transforms.functional import resize as tv_resize
from tqdm import tqdm
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
DenoiseMaskField,
FieldDescriptions,
Input,
InputField,
LatentsField,
SD3ConditioningField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import TransformerField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.invocations.sd3_text_encoder import SD3_T5_MAX_SEQ_LEN
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.sampling_utils import clip_timestep_schedule_fractional
from invokeai.backend.model_manager.config import BaseModelType
from invokeai.backend.sd3.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import SD3ConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@invocation(
"sd3_denoise",
title="SD3 Denoise",
tags=["image", "sd3"],
category="image",
version="1.1.0",
classification=Classification.Prototype,
)
class SD3DenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Run denoising process with a SD3 model."""
# If latents is provided, this means we are doing image-to-image.
latents: Optional[LatentsField] = InputField(
default=None, description=FieldDescriptions.latents, input=Input.Connection
)
# denoise_mask is used for image-to-image inpainting. Only the masked region is modified.
denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None, description=FieldDescriptions.denoise_mask, input=Input.Connection
)
denoising_start: float = InputField(default=0.0, ge=0, le=1, description=FieldDescriptions.denoising_start)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
transformer: TransformerField = InputField(
description=FieldDescriptions.sd3_model, input=Input.Connection, title="Transformer"
)
positive_conditioning: SD3ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
negative_conditioning: SD3ConditioningField = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection
)
cfg_scale: float | list[float] = InputField(default=3.5, description=FieldDescriptions.cfg_scale, title="CFG Scale")
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = self._run_diffusion(context)
latents = latents.detach().to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
def _prep_inpaint_mask(self, context: InvocationContext, latents: torch.Tensor) -> torch.Tensor | None:
"""Prepare the inpaint mask.
- Loads the mask
- Resizes if necessary
- Casts to same device/dtype as latents
Args:
context (InvocationContext): The invocation context, for loading the inpaint mask.
latents (torch.Tensor): A latent image tensor. Used to determine the target shape, device, and dtype for the
inpaint mask.
Returns:
torch.Tensor | None: Inpaint mask. Values of 0.0 represent the regions to be fully denoised, and 1.0
represent the regions to be preserved.
"""
if self.denoise_mask is None:
return None
mask = context.tensors.load(self.denoise_mask.mask_name)
# The input denoise_mask contains values in [0, 1], where 0.0 represents the regions to be fully denoised, and
# 1.0 represents the regions to be preserved.
# We invert the mask so that the regions to be preserved are 0.0 and the regions to be denoised are 1.0.
mask = 1.0 - mask
_, _, latent_height, latent_width = latents.shape
mask = tv_resize(
img=mask,
size=[latent_height, latent_width],
interpolation=tv_transforms.InterpolationMode.BILINEAR,
antialias=False,
)
mask = mask.to(device=latents.device, dtype=latents.dtype)
return mask
def _load_text_conditioning(
self,
context: InvocationContext,
conditioning_name: str,
joint_attention_dim: int,
dtype: torch.dtype,
device: torch.device,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Load the conditioning data.
cond_data = context.conditioning.load(conditioning_name)
assert len(cond_data.conditionings) == 1
sd3_conditioning = cond_data.conditionings[0]
assert isinstance(sd3_conditioning, SD3ConditioningInfo)
sd3_conditioning = sd3_conditioning.to(dtype=dtype, device=device)
t5_embeds = sd3_conditioning.t5_embeds
if t5_embeds is None:
t5_embeds = torch.zeros(
(1, SD3_T5_MAX_SEQ_LEN, joint_attention_dim),
device=device,
dtype=dtype,
)
clip_prompt_embeds = torch.cat([sd3_conditioning.clip_l_embeds, sd3_conditioning.clip_g_embeds], dim=-1)
clip_prompt_embeds = torch.nn.functional.pad(
clip_prompt_embeds, (0, t5_embeds.shape[-1] - clip_prompt_embeds.shape[-1])
)
prompt_embeds = torch.cat([clip_prompt_embeds, t5_embeds], dim=-2)
pooled_prompt_embeds = torch.cat(
[sd3_conditioning.clip_l_pooled_embeds, sd3_conditioning.clip_g_pooled_embeds], dim=-1
)
return prompt_embeds, pooled_prompt_embeds
def _get_noise(
self,
num_samples: int,
num_channels_latents: int,
height: int,
width: int,
dtype: torch.dtype,
device: torch.device,
seed: int,
) -> torch.Tensor:
# We always generate noise on the same device and dtype then cast to ensure consistency across devices/dtypes.
rand_device = "cpu"
rand_dtype = torch.float16
return torch.randn(
num_samples,
num_channels_latents,
int(height) // LATENT_SCALE_FACTOR,
int(width) // LATENT_SCALE_FACTOR,
device=rand_device,
dtype=rand_dtype,
generator=torch.Generator(device=rand_device).manual_seed(seed),
).to(device=device, dtype=dtype)
def _prepare_cfg_scale(self, num_timesteps: int) -> list[float]:
"""Prepare the CFG scale list.
Args:
num_timesteps (int): The number of timesteps in the scheduler. Could be different from num_steps depending
on the scheduler used (e.g. higher order schedulers).
Returns:
list[float]: _description_
"""
if isinstance(self.cfg_scale, float):
cfg_scale = [self.cfg_scale] * num_timesteps
elif isinstance(self.cfg_scale, list):
assert len(self.cfg_scale) == num_timesteps
cfg_scale = self.cfg_scale
else:
raise ValueError(f"Invalid CFG scale type: {type(self.cfg_scale)}")
return cfg_scale
def _run_diffusion(
self,
context: InvocationContext,
):
inference_dtype = TorchDevice.choose_torch_dtype()
device = TorchDevice.choose_torch_device()
transformer_info = context.models.load(self.transformer.transformer)
# Load/process the conditioning data.
# TODO(ryand): Make CFG optional.
do_classifier_free_guidance = True
pos_prompt_embeds, pos_pooled_prompt_embeds = self._load_text_conditioning(
context=context,
conditioning_name=self.positive_conditioning.conditioning_name,
joint_attention_dim=transformer_info.model.config.joint_attention_dim,
dtype=inference_dtype,
device=device,
)
neg_prompt_embeds, neg_pooled_prompt_embeds = self._load_text_conditioning(
context=context,
conditioning_name=self.negative_conditioning.conditioning_name,
joint_attention_dim=transformer_info.model.config.joint_attention_dim,
dtype=inference_dtype,
device=device,
)
# TODO(ryand): Support both sequential and batched CFG inference.
prompt_embeds = torch.cat([neg_prompt_embeds, pos_prompt_embeds], dim=0)
pooled_prompt_embeds = torch.cat([neg_pooled_prompt_embeds, pos_pooled_prompt_embeds], dim=0)
# Prepare the timestep schedule.
# We add an extra step to the end to account for the final timestep of 0.0.
timesteps: list[float] = torch.linspace(1, 0, self.steps + 1).tolist()
# Clip the timesteps schedule based on denoising_start and denoising_end.
timesteps = clip_timestep_schedule_fractional(timesteps, self.denoising_start, self.denoising_end)
total_steps = len(timesteps) - 1
# Prepare the CFG scale list.
cfg_scale = self._prepare_cfg_scale(total_steps)
# Load the input latents, if provided.
init_latents = context.tensors.load(self.latents.latents_name) if self.latents else None
if init_latents is not None:
init_latents = init_latents.to(device=device, dtype=inference_dtype)
# Generate initial latent noise.
num_channels_latents = transformer_info.model.config.in_channels
assert isinstance(num_channels_latents, int)
noise = self._get_noise(
num_samples=1,
num_channels_latents=num_channels_latents,
height=self.height,
width=self.width,
dtype=inference_dtype,
device=device,
seed=self.seed,
)
# Prepare input latent image.
if init_latents is not None:
# Noise the init_latents by the appropriate amount for the first timestep.
t_0 = timesteps[0]
latents = t_0 * noise + (1.0 - t_0) * init_latents
else:
# init_latents are not provided, so we are not doing image-to-image (i.e. we are starting from pure noise).
if self.denoising_start > 1e-5:
raise ValueError("denoising_start should be 0 when initial latents are not provided.")
latents = noise
# If len(timesteps) == 1, then short-circuit. We are just noising the input latents, but not taking any
# denoising steps.
if len(timesteps) <= 1:
return latents
# Prepare inpaint extension.
inpaint_mask = self._prep_inpaint_mask(context, latents)
inpaint_extension: InpaintExtension | None = None
if inpaint_mask is not None:
assert init_latents is not None
inpaint_extension = InpaintExtension(
init_latents=init_latents,
inpaint_mask=inpaint_mask,
noise=noise,
)
step_callback = self._build_step_callback(context)
step_callback(
PipelineIntermediateState(
step=0,
order=1,
total_steps=total_steps,
timestep=int(timesteps[0]),
latents=latents,
),
)
with transformer_info.model_on_device() as (cached_weights, transformer):
assert isinstance(transformer, SD3Transformer2DModel)
# 6. Denoising loop
for step_idx, (t_curr, t_prev) in tqdm(list(enumerate(zip(timesteps[:-1], timesteps[1:], strict=True)))):
# Expand the latents if we are doing CFG.
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
# Expand the timestep to match the latent model input.
# Multiply by 1000 to match the default FlowMatchEulerDiscreteScheduler num_train_timesteps.
timestep = torch.tensor([t_curr * 1000], device=device).expand(latent_model_input.shape[0])
noise_pred = transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
pooled_projections=pooled_prompt_embeds,
joint_attention_kwargs=None,
return_dict=False,
)[0]
# Apply CFG.
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + cfg_scale[step_idx] * (noise_pred_cond - noise_pred_uncond)
# Compute the previous noisy sample x_t -> x_t-1.
latents_dtype = latents.dtype
latents = latents.to(dtype=torch.float32)
latents = latents + (t_prev - t_curr) * noise_pred
latents = latents.to(dtype=latents_dtype)
if inpaint_extension is not None:
latents = inpaint_extension.merge_intermediate_latents_with_init_latents(latents, t_prev)
step_callback(
PipelineIntermediateState(
step=step_idx + 1,
order=1,
total_steps=total_steps,
timestep=int(t_curr),
latents=latents,
),
)
return latents
def _build_step_callback(self, context: InvocationContext) -> Callable[[PipelineIntermediateState], None]:
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, BaseModelType.StableDiffusion3)
return step_callback

View File

@@ -1,66 +0,0 @@
import einops
import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
Input,
InputField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
@invocation(
"sd3_i2l",
title="SD3 Image to Latents",
tags=["image", "latents", "vae", "i2l", "sd3"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class SD3ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates latents from an image."""
image: ImageField = InputField(description="The image to encode")
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection)
@staticmethod
def vae_encode(vae_info: LoadedModel, image_tensor: torch.Tensor) -> torch.Tensor:
with vae_info as vae:
assert isinstance(vae, AutoencoderKL)
vae.disable_tiling()
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=vae.dtype)
with torch.inference_mode():
image_tensor_dist = vae.encode(image_tensor).latent_dist
# TODO: Use seed to make sampling reproducible.
latents: torch.Tensor = image_tensor_dist.sample().to(dtype=vae.dtype)
latents = vae.config.scaling_factor * latents
return latents
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.images.get_pil(self.image.image_name)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
vae_info = context.models.load(self.vae.vae)
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
latents = latents.to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)

View File

@@ -1,93 +0,0 @@
from contextlib import nullcontext
import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.util.devices import TorchDevice
@invocation(
"sd3_l2i",
title="SD3 Latents to Image",
tags=["latents", "image", "vae", "l2i", "sd3"],
category="latents",
version="1.3.1",
)
class SD3LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoencoderKL) -> int:
"""Estimate the working memory required by the invocation in bytes."""
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision).
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 1230 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
# We add a 20% buffer to the working memory estimate to be safe.
working_memory = working_memory * 1.2
return int(working_memory)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL))
estimated_working_memory = self._estimate_working_memory(latents, vae_info.model)
with (
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),
):
context.util.signal_progress("Running VAE")
assert isinstance(vae, (AutoencoderKL))
latents = latents.to(TorchDevice.choose_torch_device())
vae.disable_tiling()
tiling_context = nullcontext()
# clear memory as vae decode can request a lot
TorchDevice.empty_cache()
with torch.inference_mode(), tiling_context:
# copied from diffusers pipeline
latents = latents / vae.config.scaling_factor
img = vae.decode(latents, return_dict=False)[0]
img = img.clamp(-1, 1)
img = rearrange(img[0], "c h w -> h w c") # noqa: F821
img_pil = Image.fromarray((127.5 * (img + 1.0)).byte().cpu().numpy())
TorchDevice.empty_cache()
image_dto = context.images.save(image=img_pil)
return ImageOutput.build(image_dto)

View File

@@ -1,5 +1,3 @@
from typing import Optional
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
@@ -10,14 +8,14 @@ from invokeai.app.invocations.baseinvocation import (
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import SubModelType
from invokeai.backend.model_manager.config import CheckpointConfigBase, SubModelType
@invocation_output("sd3_model_loader_output")
class Sd3ModelLoaderOutput(BaseInvocationOutput):
"""SD3 base model loader output."""
transformer: TransformerField = OutputField(description=FieldDescriptions.transformer, title="Transformer")
mmditx: TransformerField = OutputField(description=FieldDescriptions.mmditx, title="MMDiTX")
clip_l: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP L")
clip_g: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP G")
t5_encoder: T5EncoderField = OutputField(description=FieldDescriptions.t5_encoder, title="T5 Encoder")
@@ -35,72 +33,68 @@ class Sd3ModelLoaderOutput(BaseInvocationOutput):
class Sd3ModelLoaderInvocation(BaseInvocation):
"""Loads a SD3 base model, outputting its submodels."""
# TODO(ryand): Create a UIType.Sd3MainModelField to use here.
model: ModelIdentifierField = InputField(
description=FieldDescriptions.sd3_model,
ui_type=UIType.SD3MainModel,
ui_type=UIType.MainModel,
input=Input.Direct,
)
t5_encoder_model: Optional[ModelIdentifierField] = InputField(
description=FieldDescriptions.t5_encoder,
ui_type=UIType.T5EncoderModel,
input=Input.Direct,
title="T5 Encoder",
default=None,
# TODO(ryand): Make the text encoders optional.
# Note: The text encoders are optional for SD3. The model was trained with dropout, so any can be left out at
# inference time. Typically, only the T5 encoder is omitted, since it is the largest by far.
t5_encoder_model: ModelIdentifierField = InputField(
description=FieldDescriptions.t5_encoder, ui_type=UIType.T5EncoderModel, input=Input.Direct, title="T5 Encoder"
)
clip_l_model: Optional[ModelIdentifierField] = InputField(
clip_l_embed_model: ModelIdentifierField = InputField(
description=FieldDescriptions.clip_embed_model,
ui_type=UIType.CLIPLEmbedModel,
ui_type=UIType.CLIPEmbedModel,
input=Input.Direct,
title="CLIP L Encoder",
default=None,
title="CLIP L Embed",
)
clip_g_model: Optional[ModelIdentifierField] = InputField(
description=FieldDescriptions.clip_g_model,
ui_type=UIType.CLIPGEmbedModel,
clip_g_embed_model: ModelIdentifierField = InputField(
description=FieldDescriptions.clip_embed_model,
ui_type=UIType.CLIPEmbedModel,
input=Input.Direct,
title="CLIP G Encoder",
default=None,
title="CLIP G Embed",
)
vae_model: Optional[ModelIdentifierField] = InputField(
description=FieldDescriptions.vae_model, ui_type=UIType.VAEModel, title="VAE", default=None
# TODO(ryand): Create a UIType.Sd3VaModelField to use here.
vae_model: ModelIdentifierField = InputField(
description=FieldDescriptions.vae_model, ui_type=UIType.VAEModel, title="VAE"
)
def invoke(self, context: InvocationContext) -> Sd3ModelLoaderOutput:
transformer = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
vae = (
self.vae_model.model_copy(update={"submodel_type": SubModelType.VAE})
if self.vae_model
else self.model.model_copy(update={"submodel_type": SubModelType.VAE})
)
tokenizer_l = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
clip_encoder_l = (
self.clip_l_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
if self.clip_l_model
else self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
)
tokenizer_g = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
clip_encoder_g = (
self.clip_g_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
if self.clip_g_model
else self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
)
tokenizer_t5 = (
self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer3})
if self.t5_encoder_model
else self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer3})
)
t5_encoder = (
self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder3})
if self.t5_encoder_model
else self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder3})
)
for key in [
self.model.key,
self.t5_encoder_model.key,
self.clip_l_embed_model.key,
self.clip_g_embed_model.key,
self.vae_model.key,
]:
if not context.models.exists(key):
raise ValueError(f"Unknown model: {key}")
# TODO(ryand): Figure out the sub-model types for SD3.
mmditx = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
vae = self.vae_model.model_copy(update={"submodel_type": SubModelType.VAE})
tokenizer_l = self.clip_l_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
clip_encoder_l = self.clip_l_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer_g = self.clip_g_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
clip_encoder_g = self.clip_g_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer_t5 = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
t5_encoder = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
transformer_config = context.models.get_config(mmditx)
assert isinstance(transformer_config, CheckpointConfigBase)
return Sd3ModelLoaderOutput(
transformer=TransformerField(transformer=transformer, loras=[]),
mmditx=TransformerField(transformer=mmditx, loras=[]),
clip_l=CLIPField(tokenizer=tokenizer_l, text_encoder=clip_encoder_l, loras=[], skipped_layers=0),
clip_g=CLIPField(tokenizer=tokenizer_g, text_encoder=clip_encoder_g, loras=[], skipped_layers=0),
t5_encoder=T5EncoderField(tokenizer=tokenizer_t5, text_encoder=t5_encoder),

View File

@@ -1,198 +0,0 @@
from contextlib import ExitStack
from typing import Iterator, Tuple
import torch
from transformers import (
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
T5Tokenizer,
T5TokenizerFast,
)
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import SD3ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import ModelFormat
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_CLIP_PREFIX
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, SD3ConditioningInfo
from invokeai.backend.util.devices import TorchDevice
# The SD3 T5 Max Sequence Length set based on the default in diffusers.
SD3_T5_MAX_SEQ_LEN = 256
@invocation(
"sd3_text_encoder",
title="SD3 Text Encoding",
tags=["prompt", "conditioning", "sd3"],
category="conditioning",
version="1.0.0",
classification=Classification.Prototype,
)
class Sd3TextEncoderInvocation(BaseInvocation):
"""Encodes and preps a prompt for a SD3 image."""
clip_l: CLIPField = InputField(
title="CLIP L",
description=FieldDescriptions.clip,
input=Input.Connection,
)
clip_g: CLIPField = InputField(
title="CLIP G",
description=FieldDescriptions.clip,
input=Input.Connection,
)
# The SD3 models were trained with text encoder dropout, so the T5 encoder can be omitted to save time/memory.
t5_encoder: T5EncoderField | None = InputField(
title="T5Encoder",
default=None,
description=FieldDescriptions.t5_encoder,
input=Input.Connection,
)
prompt: str = InputField(description="Text prompt to encode.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> SD3ConditioningOutput:
# Note: The text encoding model are run in separate functions to ensure that all model references are locally
# scoped. This ensures that earlier models can be freed and gc'd before loading later models (if necessary).
clip_l_embeddings, clip_l_pooled_embeddings = self._clip_encode(context, self.clip_l)
clip_g_embeddings, clip_g_pooled_embeddings = self._clip_encode(context, self.clip_g)
t5_embeddings: torch.Tensor | None = None
if self.t5_encoder is not None:
t5_embeddings = self._t5_encode(context, SD3_T5_MAX_SEQ_LEN)
conditioning_data = ConditioningFieldData(
conditionings=[
SD3ConditioningInfo(
clip_l_embeds=clip_l_embeddings,
clip_l_pooled_embeds=clip_l_pooled_embeddings,
clip_g_embeds=clip_g_embeddings,
clip_g_pooled_embeds=clip_g_pooled_embeddings,
t5_embeds=t5_embeddings,
)
]
)
conditioning_name = context.conditioning.save(conditioning_data)
return SD3ConditioningOutput.build(conditioning_name)
def _t5_encode(self, context: InvocationContext, max_seq_len: int) -> torch.Tensor:
assert self.t5_encoder is not None
prompt = [self.prompt]
with (
context.models.load(self.t5_encoder.text_encoder) as t5_text_encoder,
context.models.load(self.t5_encoder.tokenizer) as t5_tokenizer,
):
context.util.signal_progress("Running T5 encoder")
assert isinstance(t5_text_encoder, T5EncoderModel)
assert isinstance(t5_tokenizer, (T5Tokenizer, T5TokenizerFast))
text_inputs = t5_tokenizer(
prompt,
padding="max_length",
max_length=max_seq_len,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = t5_tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
assert isinstance(text_input_ids, torch.Tensor)
assert isinstance(untruncated_ids, torch.Tensor)
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = t5_tokenizer.batch_decode(untruncated_ids[:, max_seq_len - 1 : -1])
context.logger.warning(
"The following part of your input was truncated because `max_sequence_length` is set to "
f" {max_seq_len} tokens: {removed_text}"
)
prompt_embeds = t5_text_encoder(text_input_ids.to(TorchDevice.choose_torch_device()))[0]
assert isinstance(prompt_embeds, torch.Tensor)
return prompt_embeds
def _clip_encode(
self, context: InvocationContext, clip_model: CLIPField, tokenizer_max_length: int = 77
) -> Tuple[torch.Tensor, torch.Tensor]:
prompt = [self.prompt]
clip_text_encoder_info = context.models.load(clip_model.text_encoder)
with (
clip_text_encoder_info.model_on_device() as (cached_weights, clip_text_encoder),
context.models.load(clip_model.tokenizer) as clip_tokenizer,
ExitStack() as exit_stack,
):
context.util.signal_progress("Running CLIP encoder")
assert isinstance(clip_text_encoder, (CLIPTextModel, CLIPTextModelWithProjection))
assert isinstance(clip_tokenizer, CLIPTokenizer)
clip_text_encoder_config = clip_text_encoder_info.config
assert clip_text_encoder_config is not None
# Apply LoRA models to the CLIP encoder.
# Note: We apply the LoRA after the transformer has been moved to its target device for faster patching.
if clip_text_encoder_config.format in [ModelFormat.Diffusers]:
# The model is non-quantized, so we can apply the LoRA weights directly into the model.
exit_stack.enter_context(
LayerPatcher.apply_smart_model_patches(
model=clip_text_encoder,
patches=self._clip_lora_iterator(context, clip_model),
prefix=FLUX_LORA_CLIP_PREFIX,
dtype=clip_text_encoder.dtype,
cached_weights=cached_weights,
)
)
else:
# There are currently no supported CLIP quantized models. Add support here if needed.
raise ValueError(f"Unsupported model format: {clip_text_encoder_config.format}")
clip_text_encoder = clip_text_encoder.eval().requires_grad_(False)
text_inputs = clip_tokenizer(
prompt,
padding="max_length",
max_length=tokenizer_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = clip_tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
assert isinstance(text_input_ids, torch.Tensor)
assert isinstance(untruncated_ids, torch.Tensor)
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = clip_tokenizer.batch_decode(untruncated_ids[:, tokenizer_max_length - 1 : -1])
context.logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {tokenizer_max_length} tokens: {removed_text}"
)
prompt_embeds = clip_text_encoder(
input_ids=text_input_ids.to(TorchDevice.choose_torch_device()), output_hidden_states=True
)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
return prompt_embeds, pooled_prompt_embeds
def _clip_lora_iterator(
self, context: InvocationContext, clip_model: CLIPField
) -> Iterator[Tuple[ModelPatchRaw, float]]:
for lora in clip_model.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, ModelPatchRaw)
yield (lora_info.model, lora.weight)
del lora_info

View File

@@ -5,7 +5,7 @@ from typing import Literal
import numpy as np
import torch
from PIL import Image
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, model_validator
from transformers import AutoModelForMaskGeneration, AutoProcessor
from transformers.models.sam import SamModel
from transformers.models.sam.processing_sam import SamProcessor
@@ -77,14 +77,19 @@ class SegmentAnythingInvocation(BaseInvocation):
default="all",
)
@model_validator(mode="after")
def check_point_lists_or_bounding_box(self):
if self.point_lists is None and self.bounding_boxes is None:
raise ValueError("Either point_lists or bounding_box must be provided.")
elif self.point_lists is not None and self.bounding_boxes is not None:
raise ValueError("Only one of point_lists or bounding_box can be provided.")
return self
@torch.no_grad()
def invoke(self, context: InvocationContext) -> MaskOutput:
# The models expect a 3-channel RGB image.
image_pil = context.images.get_pil(self.image.image_name, mode="RGB")
if self.point_lists is not None and self.bounding_boxes is not None:
raise ValueError("Only one of point_lists or bounding_box can be provided.")
if (not self.bounding_boxes or len(self.bounding_boxes) == 0) and (
not self.point_lists or len(self.point_lists) == 0
):

View File

@@ -22,7 +22,6 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
from invokeai.backend.tiles.tiles import calc_tiles_min_overlap
from invokeai.backend.tiles.utils import TBLR, Tile
from invokeai.backend.util.devices import TorchDevice
@invocation("spandrel_image_to_image", title="Image-to-Image", tags=["upscale"], category="upscale", version="1.3.0")
@@ -103,7 +102,7 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
(height * scale, width * scale, channels), dtype=torch.uint8, device=torch.device("cpu")
)
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=spandrel_model.dtype)
image_tensor = image_tensor.to(device=spandrel_model.device, dtype=spandrel_model.dtype)
# Run the model on each tile.
pbar = tqdm(list(zip(tiles, scaled_tiles, strict=True)), desc="Upscaling Tiles")
@@ -117,7 +116,9 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
raise CanceledException
# Extract the current tile from the input tensor.
input_tile = image_tensor[:, :, tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right]
input_tile = image_tensor[
:, :, tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right
].to(device=spandrel_model.device, dtype=spandrel_model.dtype)
# Run the model on the tile.
output_tile = spandrel_model.run(input_tile)
@@ -150,12 +151,15 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
return pil_image
@torch.no_grad()
@torch.inference_mode()
def invoke(self, context: InvocationContext) -> ImageOutput:
# Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to
# revisit this.
image = context.images.get_pil(self.image.image_name, mode="RGB")
# Load the model.
spandrel_model_info = context.models.load(self.image_to_image_model)
def step_callback(step: int, total_steps: int) -> None:
context.util.signal_progress(
message=f"Processing tile {step}/{total_steps}",
@@ -163,7 +167,7 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
)
# Do the upscaling.
with context.models.load(self.image_to_image_model) as spandrel_model:
with spandrel_model_info as spandrel_model:
assert isinstance(spandrel_model, SpandrelImageToImageModel)
# Upscale the image
@@ -196,12 +200,15 @@ class SpandrelImageToImageAutoscaleInvocation(SpandrelImageToImageInvocation):
description="If true, the output image will be resized to the nearest multiple of 8 in both dimensions.",
)
@torch.no_grad()
@torch.inference_mode()
def invoke(self, context: InvocationContext) -> ImageOutput:
# Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to
# revisit this.
image = context.images.get_pil(self.image.image_name, mode="RGB")
# Load the model.
spandrel_model_info = context.models.load(self.image_to_image_model)
# The target size of the image, determined by the provided scale. We'll run the upscaler until we hit this size.
# Later, we may mutate this value if the model doesn't upscale the image or if the user requested a multiple of 8.
target_width = int(image.width * self.scale)
@@ -214,7 +221,7 @@ class SpandrelImageToImageAutoscaleInvocation(SpandrelImageToImageInvocation):
)
# Do the upscaling.
with context.models.load(self.image_to_image_model) as spandrel_model:
with spandrel_model_info as spandrel_model:
assert isinstance(spandrel_model, SpandrelImageToImageModel)
iteration = 1

View File

@@ -22,8 +22,8 @@ from invokeai.app.invocations.fields import (
from invokeai.app.invocations.model import UNetField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, PipelineIntermediateState
from invokeai.backend.stable_diffusion.multi_diffusion_pipeline import (
MultiDiffusionPipeline,
@@ -194,25 +194,25 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
context.util.sd_step_callback(state, unet_config.base)
# Prepare an iterator that yields the UNet's LoRA models and their weights.
def _lora_loader() -> Iterator[Tuple[ModelPatchRaw, float]]:
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.unet.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, ModelPatchRaw)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
device = TorchDevice.choose_torch_device()
# Load the UNet model.
unet_info = context.models.load(self.unet.unet)
with (
ExitStack() as exit_stack,
context.models.load(self.unet.unet) as unet,
LayerPatcher.apply_smart_model_patches(
model=unet, patches=_lora_loader(), prefix="lora_unet_", dtype=unet.dtype
),
unet_info as unet,
LoRAPatcher.apply_lora_patches(model=unet, patches=_lora_loader(), prefix="lora_unet_"),
):
assert isinstance(unet, UNet2DConditionModel)
latents = latents.to(device=device, dtype=unet.dtype)
latents = latents.to(device=unet.device, dtype=unet.dtype)
if noise is not None:
noise = noise.to(device=device, dtype=unet.dtype)
noise = noise.to(device=unet.device, dtype=unet.dtype)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
@@ -226,7 +226,7 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
device=device,
device=unet.device,
dtype=unet.dtype,
latent_height=latent_tile_height,
latent_width=latent_tile_width,
@@ -239,7 +239,6 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
context=context,
control_input=self.control,
latents_shape=list(latents.shape),
device=device,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
exit_stack=exit_stack,
@@ -265,7 +264,7 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
timesteps, init_timestep, scheduler_step_kwargs = DenoiseLatentsInvocation.init_scheduler(
scheduler,
device=device,
device=unet.device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,

View File

@@ -57,7 +57,7 @@ def deserialize_board_record(board_dict: dict) -> BoardRecord:
class BoardChanges(BaseModel, extra="forbid"):
board_name: Optional[str] = Field(default=None, description="The board's new name.", max_length=300)
board_name: Optional[str] = Field(default=None, description="The board's new name.")
cover_image_name: Optional[str] = Field(default=None, description="The name of the board's new cover image.")
archived: Optional[bool] = Field(default=None, description="Whether or not the board is archived")

View File

@@ -4,7 +4,6 @@
from __future__ import annotations
import copy
import filecmp
import locale
import os
import re
@@ -13,6 +12,7 @@ from functools import lru_cache
from pathlib import Path
from typing import Any, Literal, Optional
import psutil
import yaml
from pydantic import BaseModel, Field, PrivateAttr, field_validator
from pydantic_settings import BaseSettings, PydanticBaseSettingsSource, SettingsConfigDict
@@ -24,6 +24,8 @@ from invokeai.frontend.cli.arg_parser import InvokeAIArgs
INIT_FILE = Path("invokeai.yaml")
DB_FILE = Path("invokeai.db")
LEGACY_INIT_FILE = Path("invokeai.init")
DEFAULT_RAM_CACHE = 10.0
DEFAULT_VRAM_CACHE = 0.25
DEVICE = Literal["auto", "cpu", "cuda", "cuda:1", "mps"]
PRECISION = Literal["auto", "float16", "bfloat16", "float32"]
ATTENTION_TYPE = Literal["auto", "normal", "xformers", "sliced", "torch-sdp"]
@@ -33,6 +35,24 @@ LOG_LEVEL = Literal["debug", "info", "warning", "error", "critical"]
CONFIG_SCHEMA_VERSION = "4.0.2"
def get_default_ram_cache_size() -> float:
"""Run a heuristic for the default RAM cache based on installed RAM."""
# On some machines, psutil.virtual_memory().total gives a value that is slightly less than the actual RAM, so the
# limits are set slightly lower than than what we expect the actual RAM to be.
GB = 1024**3
max_ram = psutil.virtual_memory().total / GB
if max_ram >= 60:
return 15.0
if max_ram >= 30:
return 7.5
if max_ram >= 14:
return 4.0
return 2.1 # 2.1 is just large enough for sd 1.5 ;-)
class URLRegexTokenPair(BaseModel):
url_regex: str = Field(description="Regular expression to match against the URL")
token: str = Field(description="Token to use when the URL matches the regex")
@@ -76,20 +96,15 @@ class InvokeAIAppConfig(BaseSettings):
log_format: Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style.<br>Valid values: `plain`, `color`, `syslog`, `legacy`
log_level: Emit logging messages at this level or higher.<br>Valid values: `debug`, `info`, `warning`, `error`, `critical`
log_sql: Log SQL queries. `log_level` must be `debug` for this to do anything. Extremely verbose.
log_level_network: Log level for network-related messages. 'info' and 'debug' are very verbose.<br>Valid values: `debug`, `info`, `warning`, `error`, `critical`
use_memory_db: Use in-memory database. Useful for development.
dev_reload: Automatically reload when Python sources are changed. Does not reload node definitions.
profile_graphs: Enable graph profiling using `cProfile`.
profile_prefix: An optional prefix for profile output files.
profiles_dir: Path to profiles output directory.
max_cache_ram_gb: The maximum amount of CPU RAM to use for model caching in GB. If unset, the limit will be configured based on the available RAM. In most cases, it is recommended to leave this unset.
max_cache_vram_gb: The amount of VRAM to use for model caching in GB. If unset, the limit will be configured based on the available VRAM and the device_working_mem_gb. In most cases, it is recommended to leave this unset.
ram: Maximum memory amount used by memory model cache for rapid switching (GB).
vram: Amount of VRAM reserved for model storage (GB).
lazy_offload: Keep models in VRAM until their space is needed.
log_memory_usage: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.
device_working_mem_gb: The amount of working memory to keep available on the compute device (in GB). Has no effect if running on CPU. If you are experiencing OOM errors, try increasing this value.
enable_partial_loading: Enable partial loading of models. This enables models to run with reduced VRAM requirements (at the cost of slower speed) by streaming the model from RAM to VRAM as its used. In some edge cases, partial loading can cause models to run more slowly if they were previously being fully loaded into VRAM.
ram: DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_ram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.
vram: DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_vram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.
lazy_offload: DEPRECATED: This setting is no longer used. Lazy-offloading is enabled by default. This config setting will be removed once the new model cache behavior is stable.
device: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda`, `cuda:1`, `mps`
precision: Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.<br>Valid values: `auto`, `float16`, `bfloat16`, `float32`
sequential_guidance: Whether to calculate guidance in serial instead of in parallel, lowering memory requirements.
@@ -147,7 +162,6 @@ class InvokeAIAppConfig(BaseSettings):
log_format: LOG_FORMAT = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style.')
log_level: LOG_LEVEL = Field(default="info", description="Emit logging messages at this level or higher.")
log_sql: bool = Field(default=False, description="Log SQL queries. `log_level` must be `debug` for this to do anything. Extremely verbose.")
log_level_network: LOG_LEVEL = Field(default='warning', description="Log level for network-related messages. 'info' and 'debug' are very verbose.")
# Development
use_memory_db: bool = Field(default=False, description="Use in-memory database. Useful for development.")
@@ -157,15 +171,10 @@ class InvokeAIAppConfig(BaseSettings):
profiles_dir: Path = Field(default=Path("profiles"), description="Path to profiles output directory.")
# CACHE
max_cache_ram_gb: Optional[float] = Field(default=None, gt=0, description="The maximum amount of CPU RAM to use for model caching in GB. If unset, the limit will be configured based on the available RAM. In most cases, it is recommended to leave this unset.")
max_cache_vram_gb: Optional[float] = Field(default=None, ge=0, description="The amount of VRAM to use for model caching in GB. If unset, the limit will be configured based on the available VRAM and the device_working_mem_gb. In most cases, it is recommended to leave this unset.")
ram: float = Field(default_factory=get_default_ram_cache_size, gt=0, description="Maximum memory amount used by memory model cache for rapid switching (GB).")
vram: float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (GB).")
lazy_offload: bool = Field(default=True, description="Keep models in VRAM until their space is needed.")
log_memory_usage: bool = Field(default=False, description="If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.")
device_working_mem_gb: float = Field(default=3, description="The amount of working memory to keep available on the compute device (in GB). Has no effect if running on CPU. If you are experiencing OOM errors, try increasing this value.")
enable_partial_loading: bool = Field(default=False, description="Enable partial loading of models. This enables models to run with reduced VRAM requirements (at the cost of slower speed) by streaming the model from RAM to VRAM as its used. In some edge cases, partial loading can cause models to run more slowly if they were previously being fully loaded into VRAM.")
# Deprecated CACHE configs
ram: Optional[float] = Field(default=None, gt=0, description="DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_ram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.")
vram: Optional[float] = Field(default=None, ge=0, description="DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_vram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.")
lazy_offload: bool = Field(default=True, description="DEPRECATED: This setting is no longer used. Lazy-offloading is enabled by default. This config setting will be removed once the new model cache behavior is stable.")
# DEVICE
device: DEVICE = Field(default="auto", description="Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.")
@@ -516,35 +525,9 @@ def get_config() -> InvokeAIAppConfig:
]
example_config.write_file(config.config_file_path.with_suffix(".example.yaml"), as_example=True)
# Copy all legacy configs only if needed
# We know `__path__[0]` is correct here
# Copy all legacy configs - We know `__path__[0]` is correct here
configs_src = Path(model_configs.__path__[0]) # pyright: ignore [reportUnknownMemberType, reportUnknownArgumentType, reportAttributeAccessIssue]
dest_path = config.legacy_conf_path
# Create destination (we don't need to check for existence)
dest_path.mkdir(parents=True, exist_ok=True)
# Compare directories recursively
comparison = filecmp.dircmp(configs_src, dest_path)
need_copy = any(
[
comparison.left_only, # Files exist only in source
comparison.diff_files, # Files that differ
comparison.common_funny, # Files that couldn't be compared
]
)
if need_copy:
# Get permissions from destination directory
dest_mode = dest_path.stat().st_mode
# Copy directory tree
shutil.copytree(configs_src, dest_path, dirs_exist_ok=True)
# Set permissions on copied files to match destination directory
dest_path.chmod(dest_mode)
for p in dest_path.glob("**/*"):
p.chmod(dest_mode)
shutil.copytree(configs_src, config.legacy_conf_path, dirs_exist_ok=True)
if config.config_file_path.exists():
config_from_file = load_and_migrate_config(config.config_file_path)

View File

@@ -8,7 +8,7 @@ import time
import traceback
from pathlib import Path
from queue import Empty, PriorityQueue
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional, Set
from typing import Any, Dict, List, Literal, Optional, Set
import requests
from pydantic.networks import AnyHttpUrl
@@ -28,13 +28,11 @@ from invokeai.app.services.download.download_base import (
ServiceInactiveException,
UnknownJobIDException,
)
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.backend.model_manager.metadata import RemoteModelFile
from invokeai.backend.util.logging import InvokeAILogger
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
# Maximum number of bytes to download during each call to requests.iter_content()
DOWNLOAD_CHUNK_SIZE = 100000

View File

@@ -0,0 +1 @@
from .events_base import EventServiceBase # noqa F401

View File

@@ -4,7 +4,6 @@ from fastapi_events.handlers.local import local_handler
from fastapi_events.registry.payload_schema import registry as payload_schema
from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.services.model_install.model_install_common import ModelInstallJob, ModelSource
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
from invokeai.app.services.session_queue.session_queue_common import (
QUEUE_ITEM_STATUS,
@@ -19,7 +18,7 @@ from invokeai.backend.model_manager.config import AnyModelConfig, SubModelType
if TYPE_CHECKING:
from invokeai.app.services.download.download_base import DownloadJob
from invokeai.app.services.model_install.model_install_common import ModelInstallJob, ModelSource
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
class EventBase(BaseModel):
@@ -423,7 +422,7 @@ class ModelInstallDownloadStartedEvent(ModelEventBase):
__event_name__ = "model_install_download_started"
id: int = Field(description="The ID of the install job")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
source: str = Field(description="Source of the model; local path, repo_id or url")
local_path: str = Field(description="Where model is downloading to")
bytes: int = Field(description="Number of bytes downloaded so far")
total_bytes: int = Field(description="Total size of download, including all files")
@@ -444,7 +443,7 @@ class ModelInstallDownloadStartedEvent(ModelEventBase):
]
return cls(
id=job.id,
source=job.source,
source=str(job.source),
local_path=job.local_path.as_posix(),
parts=parts,
bytes=job.bytes,
@@ -459,7 +458,7 @@ class ModelInstallDownloadProgressEvent(ModelEventBase):
__event_name__ = "model_install_download_progress"
id: int = Field(description="The ID of the install job")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
source: str = Field(description="Source of the model; local path, repo_id or url")
local_path: str = Field(description="Where model is downloading to")
bytes: int = Field(description="Number of bytes downloaded so far")
total_bytes: int = Field(description="Total size of download, including all files")
@@ -480,7 +479,7 @@ class ModelInstallDownloadProgressEvent(ModelEventBase):
]
return cls(
id=job.id,
source=job.source,
source=str(job.source),
local_path=job.local_path.as_posix(),
parts=parts,
bytes=job.bytes,
@@ -495,11 +494,11 @@ class ModelInstallDownloadsCompleteEvent(ModelEventBase):
__event_name__ = "model_install_downloads_complete"
id: int = Field(description="The ID of the install job")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
source: str = Field(description="Source of the model; local path, repo_id or url")
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallDownloadsCompleteEvent":
return cls(id=job.id, source=job.source)
return cls(id=job.id, source=str(job.source))
@payload_schema.register
@@ -509,11 +508,11 @@ class ModelInstallStartedEvent(ModelEventBase):
__event_name__ = "model_install_started"
id: int = Field(description="The ID of the install job")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
source: str = Field(description="Source of the model; local path, repo_id or url")
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallStartedEvent":
return cls(id=job.id, source=job.source)
return cls(id=job.id, source=str(job.source))
@payload_schema.register
@@ -523,14 +522,14 @@ class ModelInstallCompleteEvent(ModelEventBase):
__event_name__ = "model_install_complete"
id: int = Field(description="The ID of the install job")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
source: str = Field(description="Source of the model; local path, repo_id or url")
key: str = Field(description="Model config record key")
total_bytes: Optional[int] = Field(description="Size of the model (may be None for installation of a local path)")
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallCompleteEvent":
assert job.config_out is not None
return cls(id=job.id, source=job.source, key=(job.config_out.key), total_bytes=job.total_bytes)
return cls(id=job.id, source=str(job.source), key=(job.config_out.key), total_bytes=job.total_bytes)
@payload_schema.register
@@ -540,11 +539,11 @@ class ModelInstallCancelledEvent(ModelEventBase):
__event_name__ = "model_install_cancelled"
id: int = Field(description="The ID of the install job")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
source: str = Field(description="Source of the model; local path, repo_id or url")
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallCancelledEvent":
return cls(id=job.id, source=job.source)
return cls(id=job.id, source=str(job.source))
@payload_schema.register
@@ -554,7 +553,7 @@ class ModelInstallErrorEvent(ModelEventBase):
__event_name__ = "model_install_error"
id: int = Field(description="The ID of the install job")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
source: str = Field(description="Source of the model; local path, repo_id or url")
error_type: str = Field(description="The name of the exception")
error: str = Field(description="A text description of the exception")
@@ -562,7 +561,7 @@ class ModelInstallErrorEvent(ModelEventBase):
def build(cls, job: "ModelInstallJob") -> "ModelInstallErrorEvent":
assert job.error_type is not None
assert job.error is not None
return cls(id=job.id, source=job.source, error_type=job.error_type, error=job.error)
return cls(id=job.id, source=str(job.source), error_type=job.error_type, error=job.error)
class BulkDownloadEventBase(EventBase):

View File

@@ -20,7 +20,7 @@ from invokeai.app.services.invocation_stats.invocation_stats_common import (
NodeExecutionStatsSummary,
)
from invokeai.app.services.invoker import Invoker
from invokeai.backend.model_manager.load.model_cache.cache_stats import CacheStats
from invokeai.backend.model_manager.load.model_cache import CacheStats
# Size of 1GB in bytes.
GB = 2**30

View File

@@ -3,20 +3,18 @@
from abc import ABC, abstractmethod
from pathlib import Path
from typing import TYPE_CHECKING, List, Optional, Union
from typing import List, Optional, Union
from pydantic.networks import AnyHttpUrl
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download import DownloadQueueServiceBase
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_common import ModelInstallJob, ModelSource
from invokeai.app.services.model_records import ModelRecordChanges, ModelRecordServiceBase
from invokeai.backend.model_manager import AnyModelConfig
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
class ModelInstallServiceBase(ABC):
"""Abstract base class for InvokeAI model installation."""

View File

@@ -9,7 +9,7 @@ from pathlib import Path
from queue import Empty, Queue
from shutil import copyfile, copytree, move, rmtree
from tempfile import mkdtemp
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type, Union
from typing import Any, Dict, List, Optional, Tuple, Type, Union
import torch
import yaml
@@ -20,6 +20,7 @@ from requests import Session
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download import DownloadQueueServiceBase, MultiFileDownloadJob
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
from invokeai.app.services.model_install.model_install_common import (
@@ -56,10 +57,6 @@ from invokeai.backend.util.catch_sigint import catch_sigint
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.util import slugify
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
TMPDIR_PREFIX = "tmpinstall_"
@@ -441,10 +438,9 @@ class ModelInstallService(ModelInstallServiceBase):
variants = "|".join(ModelRepoVariant.__members__.values())
hf_repoid_re = f"^([^/:]+/[^/:]+)(?::({variants})?(?::/?([^:]+))?)?$"
source_obj: Optional[StringLikeSource] = None
source_stripped = source.strip('"')
if Path(source_stripped).exists(): # A local file or directory
source_obj = LocalModelSource(path=Path(source_stripped))
if Path(source).exists(): # A local file or directory
source_obj = LocalModelSource(path=Path(source))
elif match := re.match(hf_repoid_re, source):
source_obj = HFModelSource(
repo_id=match.group(1),

View File

@@ -7,7 +7,7 @@ from typing import Callable, Optional
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
from invokeai.backend.model_manager.load import LoadedModel, LoadedModelWithoutConfig
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
class ModelLoadServiceBase(ABC):
@@ -24,7 +24,7 @@ class ModelLoadServiceBase(ABC):
@property
@abstractmethod
def ram_cache(self) -> ModelCache:
def ram_cache(self) -> ModelCacheBase[AnyModel]:
"""Return the RAM cache used by this loader."""
@abstractmethod

View File

@@ -18,7 +18,7 @@ from invokeai.backend.model_manager.load import (
ModelLoaderRegistry,
ModelLoaderRegistryBase,
)
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
@@ -30,7 +30,7 @@ class ModelLoadService(ModelLoadServiceBase):
def __init__(
self,
app_config: InvokeAIAppConfig,
ram_cache: ModelCache,
ram_cache: ModelCacheBase[AnyModel],
registry: Optional[Type[ModelLoaderRegistryBase]] = ModelLoaderRegistry,
):
"""Initialize the model load service."""
@@ -45,7 +45,7 @@ class ModelLoadService(ModelLoadServiceBase):
self._invoker = invoker
@property
def ram_cache(self) -> ModelCache:
def ram_cache(self) -> ModelCacheBase[AnyModel]:
"""Return the RAM cache used by this loader."""
return self._ram_cache
@@ -78,14 +78,15 @@ class ModelLoadService(ModelLoadServiceBase):
self, model_path: Path, loader: Optional[Callable[[Path], AnyModel]] = None
) -> LoadedModelWithoutConfig:
cache_key = str(model_path)
ram_cache = self.ram_cache
try:
return LoadedModelWithoutConfig(cache_record=self._ram_cache.get(key=cache_key), cache=self._ram_cache)
return LoadedModelWithoutConfig(_locker=ram_cache.get(key=cache_key))
except IndexError:
pass
def torch_load_file(checkpoint: Path) -> AnyModel:
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0 or scan_result.scan_err:
if scan_result.infected_files != 0:
raise Exception("The model at {checkpoint} is potentially infected by malware. Aborting load.")
result = torch_load(checkpoint, map_location="cpu")
return result
@@ -108,5 +109,5 @@ class ModelLoadService(ModelLoadServiceBase):
)
assert loader is not None
raw_model = loader(model_path)
self._ram_cache.put(key=cache_key, model=raw_model)
return LoadedModelWithoutConfig(cache_record=self._ram_cache.get(key=cache_key), cache=self._ram_cache)
ram_cache.put(key=cache_key, model=raw_model)
return LoadedModelWithoutConfig(_locker=ram_cache.get(key=cache_key))

View File

@@ -16,8 +16,7 @@ from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBas
from invokeai.app.services.model_load.model_load_default import ModelLoadService
from invokeai.app.services.model_manager.model_manager_base import ModelManagerServiceBase
from invokeai.app.services.model_records.model_records_base import ModelRecordServiceBase
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
from invokeai.backend.model_manager.load import ModelCache, ModelLoaderRegistry
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
@@ -82,12 +81,11 @@ class ModelManagerService(ModelManagerServiceBase):
logger.setLevel(app_config.log_level.upper())
ram_cache = ModelCache(
execution_device_working_mem_gb=app_config.device_working_mem_gb,
enable_partial_loading=app_config.enable_partial_loading,
max_ram_cache_size_gb=app_config.max_cache_ram_gb,
max_vram_cache_size_gb=app_config.max_cache_vram_gb,
execution_device=execution_device or TorchDevice.choose_torch_device(),
max_cache_size=app_config.ram,
max_vram_cache_size=app_config.vram,
lazy_offloading=app_config.lazy_offload,
logger=logger,
execution_device=execution_device or TorchDevice.choose_torch_device(),
)
loader = ModelLoadService(
app_config=app_config,

View File

@@ -15,7 +15,6 @@ from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ClipVariantType,
ControlAdapterDefaultSettings,
MainModelDefaultSettings,
ModelFormat,
@@ -86,7 +85,7 @@ class ModelRecordChanges(BaseModelExcludeNull):
# Checkpoint-specific changes
# TODO(MM2): Should we expose these? Feels footgun-y...
variant: Optional[ModelVariantType | ClipVariantType] = Field(description="The variant of the model.", default=None)
variant: Optional[ModelVariantType] = Field(description="The variant of the model.", default=None)
prediction_type: Optional[SchedulerPredictionType] = Field(
description="The prediction type of the model.", default=None
)

View File

@@ -378,9 +378,6 @@ class DefaultSessionProcessor(SessionProcessorBase):
self._poll_now()
async def _on_queue_item_status_changed(self, event: FastAPIEvent[QueueItemStatusChangedEvent]) -> None:
# Make sure the cancel event is for the currently processing queue item
if self._queue_item and self._queue_item.item_id != event[1].item_id:
return
if self._queue_item and event[1].status in ["completed", "failed", "canceled"]:
# When the queue item is canceled via HTTP, the queue item status is set to `"canceled"` and this event is
# emitted. We need to respond to this event and stop graph execution. This is done by setting the cancel
@@ -439,9 +436,7 @@ class DefaultSessionProcessor(SessionProcessorBase):
poll_now_event.wait(self._polling_interval)
continue
self._invoker.services.logger.info(
f"Executing queue item {self._queue_item.item_id}, session {self._queue_item.session_id}"
)
self._invoker.services.logger.debug(f"Executing queue item {self._queue_item.item_id}")
cancel_event.clear()
# Run the graph

View File

@@ -16,7 +16,6 @@ from pydantic import (
from pydantic_core import to_jsonable_python
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.invocations.fields import ImageField
from invokeai.app.services.shared.graph import Graph, GraphExecutionState, NodeNotFoundError
from invokeai.app.services.workflow_records.workflow_records_common import (
WorkflowWithoutID,
@@ -52,7 +51,11 @@ class SessionQueueItemNotFoundError(ValueError):
# region Batch
BatchDataType = Union[StrictStr, float, int, ImageField]
BatchDataType = Union[
StrictStr,
float,
int,
]
class NodeFieldValue(BaseModel):

View File

@@ -1,4 +1,3 @@
from copy import deepcopy
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Callable, Optional, Union
@@ -160,10 +159,6 @@ class LoggerInterface(InvocationContextInterface):
class ImagesInterface(InvocationContextInterface):
def __init__(self, services: InvocationServices, data: InvocationContextData, util: "UtilInterface") -> None:
super().__init__(services, data)
self._util = util
def save(
self,
image: Image,
@@ -190,8 +185,6 @@ class ImagesInterface(InvocationContextInterface):
The saved image DTO.
"""
self._util.signal_progress("Saving image")
# If `metadata` is provided directly, use that. Else, use the metadata provided by `WithMetadata`, falling back to None.
metadata_ = None
if metadata:
@@ -228,7 +221,7 @@ class ImagesInterface(InvocationContextInterface):
)
def get_pil(self, image_name: str, mode: IMAGE_MODES | None = None) -> Image:
"""Gets an image as a PIL Image object. This method returns a copy of the image.
"""Gets an image as a PIL Image object.
Args:
image_name: The name of the image to get.
@@ -240,15 +233,11 @@ class ImagesInterface(InvocationContextInterface):
image = self._services.images.get_pil_image(image_name)
if mode and mode != image.mode:
try:
# convert makes a copy!
image = image.convert(mode)
except ValueError:
self._services.logger.warning(
f"Could not convert image from {image.mode} to {mode}. Using original mode instead."
)
else:
# copy the image to prevent the user from modifying the original
image = image.copy()
return image
def get_metadata(self, image_name: str) -> Optional[MetadataField]:
@@ -301,15 +290,15 @@ class TensorsInterface(InvocationContextInterface):
return name
def load(self, name: str) -> Tensor:
"""Loads a tensor by name. This method returns a copy of the tensor.
"""Loads a tensor by name.
Args:
name: The name of the tensor to load.
Returns:
The tensor.
The loaded tensor.
"""
return self._services.tensors.load(name).clone()
return self._services.tensors.load(name)
class ConditioningInterface(InvocationContextInterface):
@@ -327,25 +316,21 @@ class ConditioningInterface(InvocationContextInterface):
return name
def load(self, name: str) -> ConditioningFieldData:
"""Loads conditioning data by name. This method returns a copy of the conditioning data.
"""Loads conditioning data by name.
Args:
name: The name of the conditioning data to load.
Returns:
The conditioning data.
The loaded conditioning data.
"""
return deepcopy(self._services.conditioning.load(name))
return self._services.conditioning.load(name)
class ModelsInterface(InvocationContextInterface):
"""Common API for loading, downloading and managing models."""
def __init__(self, services: InvocationServices, data: InvocationContextData, util: "UtilInterface") -> None:
super().__init__(services, data)
self._util = util
def exists(self, identifier: Union[str, "ModelIdentifierField"]) -> bool:
"""Check if a model exists.
@@ -378,15 +363,11 @@ class ModelsInterface(InvocationContextInterface):
if isinstance(identifier, str):
model = self._services.model_manager.store.get_model(identifier)
return self._services.model_manager.load.load_model(model, submodel_type)
else:
submodel_type = submodel_type or identifier.submodel_type
_submodel_type = submodel_type or identifier.submodel_type
model = self._services.model_manager.store.get_model(identifier.key)
message = f"Loading model {model.name}"
if submodel_type:
message += f" ({submodel_type.value})"
self._util.signal_progress(message)
return self._services.model_manager.load.load_model(model, submodel_type)
return self._services.model_manager.load.load_model(model, _submodel_type)
def load_by_attrs(
self, name: str, base: BaseModelType, type: ModelType, submodel_type: Optional[SubModelType] = None
@@ -411,10 +392,6 @@ class ModelsInterface(InvocationContextInterface):
if len(configs) > 1:
raise ValueError(f"More than one model found with name {name}, base {base}, and type {type}")
message = f"Loading model {name}"
if submodel_type:
message += f" ({submodel_type.value})"
self._util.signal_progress(message)
return self._services.model_manager.load.load_model(configs[0], submodel_type)
def get_config(self, identifier: Union[str, "ModelIdentifierField"]) -> AnyModelConfig:
@@ -485,7 +462,6 @@ class ModelsInterface(InvocationContextInterface):
Returns:
Path to the downloaded model
"""
self._util.signal_progress(f"Downloading model {source}")
return self._services.model_manager.install.download_and_cache_model(source=source)
def load_local_model(
@@ -508,8 +484,6 @@ class ModelsInterface(InvocationContextInterface):
Returns:
A LoadedModelWithoutConfig object.
"""
self._util.signal_progress(f"Loading model {model_path.name}")
return self._services.model_manager.load.load_model_from_path(model_path=model_path, loader=loader)
def load_remote_model(
@@ -535,8 +509,6 @@ class ModelsInterface(InvocationContextInterface):
A LoadedModelWithoutConfig object.
"""
model_path = self._services.model_manager.install.download_and_cache_model(source=str(source))
self._util.signal_progress(f"Loading model {source}")
return self._services.model_manager.load.load_model_from_path(model_path=model_path, loader=loader)
@@ -730,12 +702,12 @@ def build_invocation_context(
"""
logger = LoggerInterface(services=services, data=data)
images = ImagesInterface(services=services, data=data)
tensors = TensorsInterface(services=services, data=data)
models = ModelsInterface(services=services, data=data)
config = ConfigInterface(services=services, data=data)
util = UtilInterface(services=services, data=data, is_canceled=is_canceled)
conditioning = ConditioningInterface(services=services, data=data)
models = ModelsInterface(services=services, data=data, util=util)
images = ImagesInterface(services=services, data=data, util=util)
boards = BoardsInterface(services=services, data=data)
ctx = InvocationContext(

View File

@@ -35,7 +35,7 @@ class Migration11Callback:
def _remove_convert_cache(self) -> None:
"""Rename models/.cache to models/.convert_cache."""
self._logger.info("Removing models/.cache directory. Converted models will now be cached in .convert_cache.")
self._logger.info("Removing .cache directory. Converted models will now be cached in .convert_cache.")
legacy_convert_path = self._app_config.root_path / "models" / ".cache"
shutil.rmtree(legacy_convert_path, ignore_errors=True)

View File

@@ -1,382 +0,0 @@
{
"name": "SD3.5 Text to Image",
"author": "InvokeAI",
"description": "Sample text to image workflow for Stable Diffusion 3.5",
"version": "1.0.0",
"contact": "invoke@invoke.ai",
"tags": "text2image, SD3.5, default",
"notes": "",
"exposedFields": [
{
"nodeId": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"fieldName": "model"
},
{
"nodeId": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"fieldName": "prompt"
}
],
"meta": {
"version": "3.0.0",
"category": "default"
},
"id": "e3a51d6b-8208-4d6d-b187-fcfe8b32934c",
"nodes": [
{
"id": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"type": "invocation",
"data": {
"id": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"type": "sd3_model_loader",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"nodePack": "invokeai",
"inputs": {
"model": {
"name": "model",
"label": "",
"value": {
"key": "f7b20be9-92a8-4cfb-bca4-6c3b5535c10b",
"hash": "placeholder",
"name": "stable-diffusion-3.5-medium",
"base": "sd-3",
"type": "main"
}
},
"t5_encoder_model": {
"name": "t5_encoder_model",
"label": ""
},
"clip_l_model": {
"name": "clip_l_model",
"label": ""
},
"clip_g_model": {
"name": "clip_g_model",
"label": ""
},
"vae_model": {
"name": "vae_model",
"label": ""
}
}
},
"position": {
"x": -55.58689609637031,
"y": -111.53602444662268
}
},
{
"id": "f7e394ac-6394-4096-abcb-de0d346506b3",
"type": "invocation",
"data": {
"id": "f7e394ac-6394-4096-abcb-de0d346506b3",
"type": "rand_int",
"version": "1.0.1",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": false,
"nodePack": "invokeai",
"inputs": {
"low": {
"name": "low",
"label": "",
"value": 0
},
"high": {
"name": "high",
"label": "",
"value": 2147483647
}
}
},
"position": {
"x": 470.45870147220353,
"y": 350.3141781644303
}
},
{
"id": "9eb72af0-dd9e-4ec5-ad87-d65e3c01f48b",
"type": "invocation",
"data": {
"id": "9eb72af0-dd9e-4ec5-ad87-d65e3c01f48b",
"type": "sd3_l2i",
"version": "1.3.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": false,
"useCache": true,
"nodePack": "invokeai",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
}
}
},
"position": {
"x": 1192.3097009334897,
"y": -366.0994675072209
}
},
{
"id": "3b4f7f27-cfc0-4373-a009-99c5290d0cd6",
"type": "invocation",
"data": {
"id": "3b4f7f27-cfc0-4373-a009-99c5290d0cd6",
"type": "sd3_text_encoder",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"nodePack": "invokeai",
"inputs": {
"clip_l": {
"name": "clip_l",
"label": ""
},
"clip_g": {
"name": "clip_g",
"label": ""
},
"t5_encoder": {
"name": "t5_encoder",
"label": ""
},
"prompt": {
"name": "prompt",
"label": "",
"value": ""
}
}
},
"position": {
"x": 408.16054647924784,
"y": 65.06415352118786
}
},
{
"id": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"type": "invocation",
"data": {
"id": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"type": "sd3_text_encoder",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"nodePack": "invokeai",
"inputs": {
"clip_l": {
"name": "clip_l",
"label": ""
},
"clip_g": {
"name": "clip_g",
"label": ""
},
"t5_encoder": {
"name": "t5_encoder",
"label": ""
},
"prompt": {
"name": "prompt",
"label": "",
"value": ""
}
}
},
"position": {
"x": 378.9283412440941,
"y": -302.65777497352553
}
},
{
"id": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"type": "invocation",
"data": {
"id": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"type": "sd3_denoise",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"nodePack": "invokeai",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"transformer": {
"name": "transformer",
"label": ""
},
"positive_conditioning": {
"name": "positive_conditioning",
"label": ""
},
"negative_conditioning": {
"name": "negative_conditioning",
"label": ""
},
"cfg_scale": {
"name": "cfg_scale",
"label": "",
"value": 3.5
},
"width": {
"name": "width",
"label": "",
"value": 1024
},
"height": {
"name": "height",
"label": "",
"value": 1024
},
"steps": {
"name": "steps",
"label": "",
"value": 30
},
"seed": {
"name": "seed",
"label": "",
"value": 0
}
}
},
"position": {
"x": 813.7814762740603,
"y": -142.20529727605867
}
}
],
"edges": [
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4cvae-9eb72af0-dd9e-4ec5-ad87-d65e3c01f48bvae",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "9eb72af0-dd9e-4ec5-ad87-d65e3c01f48b",
"sourceHandle": "vae",
"targetHandle": "vae"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4ct5_encoder-3b4f7f27-cfc0-4373-a009-99c5290d0cd6t5_encoder",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "3b4f7f27-cfc0-4373-a009-99c5290d0cd6",
"sourceHandle": "t5_encoder",
"targetHandle": "t5_encoder"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4ct5_encoder-e17d34e7-6ed1-493c-9a85-4fcd291cb084t5_encoder",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"sourceHandle": "t5_encoder",
"targetHandle": "t5_encoder"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4cclip_g-3b4f7f27-cfc0-4373-a009-99c5290d0cd6clip_g",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "3b4f7f27-cfc0-4373-a009-99c5290d0cd6",
"sourceHandle": "clip_g",
"targetHandle": "clip_g"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4cclip_g-e17d34e7-6ed1-493c-9a85-4fcd291cb084clip_g",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"sourceHandle": "clip_g",
"targetHandle": "clip_g"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4cclip_l-3b4f7f27-cfc0-4373-a009-99c5290d0cd6clip_l",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "3b4f7f27-cfc0-4373-a009-99c5290d0cd6",
"sourceHandle": "clip_l",
"targetHandle": "clip_l"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4cclip_l-e17d34e7-6ed1-493c-9a85-4fcd291cb084clip_l",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"sourceHandle": "clip_l",
"targetHandle": "clip_l"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4ctransformer-c7539f7b-7ac5-49b9-93eb-87ede611409ftransformer",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"sourceHandle": "transformer",
"targetHandle": "transformer"
},
{
"id": "reactflow__edge-f7e394ac-6394-4096-abcb-de0d346506b3value-c7539f7b-7ac5-49b9-93eb-87ede611409fseed",
"type": "default",
"source": "f7e394ac-6394-4096-abcb-de0d346506b3",
"target": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"sourceHandle": "value",
"targetHandle": "seed"
},
{
"id": "reactflow__edge-c7539f7b-7ac5-49b9-93eb-87ede611409flatents-9eb72af0-dd9e-4ec5-ad87-d65e3c01f48blatents",
"type": "default",
"source": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"target": "9eb72af0-dd9e-4ec5-ad87-d65e3c01f48b",
"sourceHandle": "latents",
"targetHandle": "latents"
},
{
"id": "reactflow__edge-e17d34e7-6ed1-493c-9a85-4fcd291cb084conditioning-c7539f7b-7ac5-49b9-93eb-87ede611409fpositive_conditioning",
"type": "default",
"source": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"target": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"sourceHandle": "conditioning",
"targetHandle": "positive_conditioning"
},
{
"id": "reactflow__edge-3b4f7f27-cfc0-4373-a009-99c5290d0cd6conditioning-c7539f7b-7ac5-49b9-93eb-87ede611409fnegative_conditioning",
"type": "default",
"source": "3b4f7f27-cfc0-4373-a009-99c5290d0cd6",
"target": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"sourceHandle": "conditioning",
"targetHandle": "negative_conditioning"
}
]
}

View File

@@ -34,25 +34,6 @@ SD1_5_LATENT_RGB_FACTORS = [
[-0.1307, -0.1874, -0.7445], # L4
]
SD3_5_LATENT_RGB_FACTORS = [
[-0.05240681, 0.03251581, 0.0749016],
[-0.0580572, 0.00759826, 0.05729818],
[0.16144888, 0.01270368, -0.03768577],
[0.14418615, 0.08460266, 0.15941818],
[0.04894035, 0.0056485, -0.06686988],
[0.05187166, 0.19222395, 0.06261094],
[0.1539433, 0.04818359, 0.07103094],
[-0.08601796, 0.09013458, 0.10893912],
[-0.12398469, -0.06766567, 0.0033688],
[-0.0439737, 0.07825329, 0.02258823],
[0.03101129, 0.06382551, 0.07753657],
[-0.01315361, 0.08554491, -0.08772475],
[0.06464487, 0.05914605, 0.13262741],
[-0.07863674, -0.02261737, -0.12761454],
[-0.09923835, -0.08010759, -0.06264447],
[-0.03392309, -0.0804029, -0.06078822],
]
FLUX_LATENT_RGB_FACTORS = [
[-0.0412, 0.0149, 0.0521],
[0.0056, 0.0291, 0.0768],
@@ -129,9 +110,6 @@ def stable_diffusion_step_callback(
sdxl_latent_rgb_factors = torch.tensor(SDXL_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
sdxl_smooth_matrix = torch.tensor(SDXL_SMOOTH_MATRIX, dtype=sample.dtype, device=sample.device)
image = sample_to_lowres_estimated_image(sample, sdxl_latent_rgb_factors, sdxl_smooth_matrix)
elif base_model == BaseModelType.StableDiffusion3:
sd3_latent_rgb_factors = torch.tensor(SD3_5_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
image = sample_to_lowres_estimated_image(sample, sd3_latent_rgb_factors)
else:
v1_5_latent_rgb_factors = torch.tensor(SD1_5_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
image = sample_to_lowres_estimated_image(sample, v1_5_latent_rgb_factors)

View File

@@ -1,10 +1,9 @@
import einops
import torch
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.math import attention
from invokeai.backend.flux.modules.layers import DoubleStreamBlock, SingleStreamBlock
from invokeai.backend.flux.modules.layers import DoubleStreamBlock
class CustomDoubleStreamBlockProcessor:
@@ -14,12 +13,7 @@ class CustomDoubleStreamBlockProcessor:
@staticmethod
def _double_stream_block_forward(
block: DoubleStreamBlock,
img: torch.Tensor,
txt: torch.Tensor,
vec: torch.Tensor,
pe: torch.Tensor,
attn_mask: torch.Tensor | None = None,
block: DoubleStreamBlock, img: torch.Tensor, txt: torch.Tensor, vec: torch.Tensor, pe: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""This function is a direct copy of DoubleStreamBlock.forward(), but it returns some of the intermediate
values.
@@ -46,7 +40,7 @@ class CustomDoubleStreamBlockProcessor:
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn = attention(q, k, v, pe=pe, attn_mask=attn_mask)
attn = attention(q, k, v, pe=pe)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
@@ -69,15 +63,11 @@ class CustomDoubleStreamBlockProcessor:
vec: torch.Tensor,
pe: torch.Tensor,
ip_adapter_extensions: list[XLabsIPAdapterExtension],
regional_prompting_extension: RegionalPromptingExtension,
) -> tuple[torch.Tensor, torch.Tensor]:
"""A custom implementation of DoubleStreamBlock.forward() with additional features:
- IP-Adapter support
"""
attn_mask = regional_prompting_extension.get_double_stream_attn_mask(block_index)
img, txt, img_q = CustomDoubleStreamBlockProcessor._double_stream_block_forward(
block, img, txt, vec, pe, attn_mask=attn_mask
)
img, txt, img_q = CustomDoubleStreamBlockProcessor._double_stream_block_forward(block, img, txt, vec, pe)
# Apply IP-Adapter conditioning.
for ip_adapter_extension in ip_adapter_extensions:
@@ -91,48 +81,3 @@ class CustomDoubleStreamBlockProcessor:
)
return img, txt
class CustomSingleStreamBlockProcessor:
"""A class containing a custom implementation of SingleStreamBlock.forward() with additional features (masking,
etc.)
"""
@staticmethod
def _single_stream_block_forward(
block: SingleStreamBlock,
x: torch.Tensor,
vec: torch.Tensor,
pe: torch.Tensor,
attn_mask: torch.Tensor | None = None,
) -> torch.Tensor:
"""This function is a direct copy of SingleStreamBlock.forward()."""
mod, _ = block.modulation(vec)
x_mod = (1 + mod.scale) * block.pre_norm(x) + mod.shift
qkv, mlp = torch.split(block.linear1(x_mod), [3 * block.hidden_size, block.mlp_hidden_dim], dim=-1)
q, k, v = einops.rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=block.num_heads)
q, k = block.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, attn_mask=attn_mask)
# compute activation in mlp stream, cat again and run second linear layer
output = block.linear2(torch.cat((attn, block.mlp_act(mlp)), 2))
return x + mod.gate * output
@staticmethod
def custom_single_block_forward(
timestep_index: int,
total_num_timesteps: int,
block_index: int,
block: SingleStreamBlock,
img: torch.Tensor,
vec: torch.Tensor,
pe: torch.Tensor,
regional_prompting_extension: RegionalPromptingExtension,
) -> torch.Tensor:
"""A custom implementation of SingleStreamBlock.forward() with additional features:
- Masking
"""
attn_mask = regional_prompting_extension.get_single_stream_attn_mask(block_index)
return CustomSingleStreamBlockProcessor._single_stream_block_forward(block, img, vec, pe, attn_mask=attn_mask)

View File

@@ -7,7 +7,6 @@ from tqdm import tqdm
from invokeai.backend.flux.controlnet.controlnet_flux_output import ControlNetFluxOutput, sum_controlnet_flux_outputs
from invokeai.backend.flux.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.model import Flux
@@ -19,8 +18,14 @@ def denoise(
# model input
img: torch.Tensor,
img_ids: torch.Tensor,
pos_regional_prompting_extension: RegionalPromptingExtension,
neg_regional_prompting_extension: RegionalPromptingExtension | None,
# positive text conditioning
txt: torch.Tensor,
txt_ids: torch.Tensor,
vec: torch.Tensor,
# negative text conditioning
neg_txt: torch.Tensor | None,
neg_txt_ids: torch.Tensor | None,
neg_vec: torch.Tensor | None,
# sampling parameters
timesteps: list[float],
step_callback: Callable[[PipelineIntermediateState], None],
@@ -30,8 +35,6 @@ def denoise(
controlnet_extensions: list[XLabsControlNetExtension | InstantXControlNetExtension],
pos_ip_adapter_extensions: list[XLabsIPAdapterExtension],
neg_ip_adapter_extensions: list[XLabsIPAdapterExtension],
# extra img tokens
img_cond: torch.Tensor | None,
):
# step 0 is the initial state
total_steps = len(timesteps) - 1
@@ -58,9 +61,9 @@ def denoise(
total_num_timesteps=total_steps,
img=img,
img_ids=img_ids,
txt=pos_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=pos_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
y=pos_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
)
@@ -71,13 +74,13 @@ def denoise(
# controlnet_residuals datastructure is efficient in that it likely contains multiple references to the same
# tensors. Calculating the sum materializes each tensor into its own instance.
merged_controlnet_residuals = sum_controlnet_flux_outputs(controlnet_residuals)
pred_img = torch.cat((img, img_cond), dim=-1) if img_cond is not None else img
pred = model(
img=pred_img,
img=img,
img_ids=img_ids,
txt=pos_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=pos_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
y=pos_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
timestep_index=step_index,
@@ -85,7 +88,6 @@ def denoise(
controlnet_double_block_residuals=merged_controlnet_residuals.double_block_residuals,
controlnet_single_block_residuals=merged_controlnet_residuals.single_block_residuals,
ip_adapter_extensions=pos_ip_adapter_extensions,
regional_prompting_extension=pos_regional_prompting_extension,
)
step_cfg_scale = cfg_scale[step_index]
@@ -95,15 +97,15 @@ def denoise(
# TODO(ryand): Add option to run positive and negative predictions in a single batch for better performance
# on systems with sufficient VRAM.
if neg_regional_prompting_extension is None:
if neg_txt is None or neg_txt_ids is None or neg_vec is None:
raise ValueError("Negative text conditioning is required when cfg_scale is not 1.0.")
neg_pred = model(
img=img,
img_ids=img_ids,
txt=neg_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=neg_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
y=neg_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
txt=neg_txt,
txt_ids=neg_txt_ids,
y=neg_vec,
timesteps=t_vec,
guidance=guidance_vec,
timestep_index=step_index,
@@ -111,7 +113,6 @@ def denoise(
controlnet_double_block_residuals=None,
controlnet_single_block_residuals=None,
ip_adapter_extensions=neg_ip_adapter_extensions,
regional_prompting_extension=neg_regional_prompting_extension,
)
pred = neg_pred + step_cfg_scale * (pred - neg_pred)

View File

@@ -1,276 +0,0 @@
from typing import Optional
import torch
import torchvision
from invokeai.backend.flux.text_conditioning import FluxRegionalTextConditioning, FluxTextConditioning
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import Range
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.mask import to_standard_float_mask
class RegionalPromptingExtension:
"""A class for managing regional prompting with FLUX.
This implementation is inspired by https://arxiv.org/pdf/2411.02395 (though there are significant differences).
"""
def __init__(
self,
regional_text_conditioning: FluxRegionalTextConditioning,
restricted_attn_mask: torch.Tensor | None = None,
):
self.regional_text_conditioning = regional_text_conditioning
self.restricted_attn_mask = restricted_attn_mask
def get_double_stream_attn_mask(self, block_index: int) -> torch.Tensor | None:
order = [self.restricted_attn_mask, None]
return order[block_index % len(order)]
def get_single_stream_attn_mask(self, block_index: int) -> torch.Tensor | None:
order = [self.restricted_attn_mask, None]
return order[block_index % len(order)]
@classmethod
def from_text_conditioning(cls, text_conditioning: list[FluxTextConditioning], img_seq_len: int):
"""Create a RegionalPromptingExtension from a list of text conditionings.
Args:
text_conditioning (list[FluxTextConditioning]): The text conditionings to use for regional prompting.
img_seq_len (int): The image sequence length (i.e. packed_height * packed_width).
"""
regional_text_conditioning = cls._concat_regional_text_conditioning(text_conditioning)
attn_mask_with_restricted_img_self_attn = cls._prepare_restricted_attn_mask(
regional_text_conditioning, img_seq_len
)
return cls(
regional_text_conditioning=regional_text_conditioning,
restricted_attn_mask=attn_mask_with_restricted_img_self_attn,
)
# Keeping _prepare_unrestricted_attn_mask for reference as an alternative masking strategy:
#
# @classmethod
# def _prepare_unrestricted_attn_mask(
# cls,
# regional_text_conditioning: FluxRegionalTextConditioning,
# img_seq_len: int,
# ) -> torch.Tensor:
# """Prepare an 'unrestricted' attention mask. In this context, 'unrestricted' means that:
# - img self-attention is not masked.
# - img regions attend to both txt within their own region and to global prompts.
# """
# device = TorchDevice.choose_torch_device()
# # Infer txt_seq_len from the t5_embeddings tensor.
# txt_seq_len = regional_text_conditioning.t5_embeddings.shape[1]
# # In the attention blocks, the txt seq and img seq are concatenated and then attention is applied.
# # Concatenation happens in the following order: [txt_seq, img_seq].
# # There are 4 portions of the attention mask to consider as we prepare it:
# # 1. txt attends to itself
# # 2. txt attends to corresponding regional img
# # 3. regional img attends to corresponding txt
# # 4. regional img attends to itself
# # Initialize empty attention mask.
# regional_attention_mask = torch.zeros(
# (txt_seq_len + img_seq_len, txt_seq_len + img_seq_len), device=device, dtype=torch.float16
# )
# for image_mask, t5_embedding_range in zip(
# regional_text_conditioning.image_masks, regional_text_conditioning.t5_embedding_ranges, strict=True
# ):
# # 1. txt attends to itself
# regional_attention_mask[
# t5_embedding_range.start : t5_embedding_range.end, t5_embedding_range.start : t5_embedding_range.end
# ] = 1.0
# # 2. txt attends to corresponding regional img
# # Note that we reshape to (1, img_seq_len) to ensure broadcasting works as desired.
# fill_value = image_mask.view(1, img_seq_len) if image_mask is not None else 1.0
# regional_attention_mask[t5_embedding_range.start : t5_embedding_range.end, txt_seq_len:] = fill_value
# # 3. regional img attends to corresponding txt
# # Note that we reshape to (img_seq_len, 1) to ensure broadcasting works as desired.
# fill_value = image_mask.view(img_seq_len, 1) if image_mask is not None else 1.0
# regional_attention_mask[txt_seq_len:, t5_embedding_range.start : t5_embedding_range.end] = fill_value
# # 4. regional img attends to itself
# # Allow unrestricted img self attention.
# regional_attention_mask[txt_seq_len:, txt_seq_len:] = 1.0
# # Convert attention mask to boolean.
# regional_attention_mask = regional_attention_mask > 0.5
# return regional_attention_mask
@classmethod
def _prepare_restricted_attn_mask(
cls,
regional_text_conditioning: FluxRegionalTextConditioning,
img_seq_len: int,
) -> torch.Tensor | None:
"""Prepare a 'restricted' attention mask. In this context, 'restricted' means that:
- img self-attention is only allowed within regions.
- img regions only attend to txt within their own region, not to global prompts.
"""
# Identify background region. I.e. the region that is not covered by any region masks.
background_region_mask: None | torch.Tensor = None
for image_mask in regional_text_conditioning.image_masks:
if image_mask is not None:
if background_region_mask is None:
background_region_mask = torch.ones_like(image_mask)
background_region_mask *= 1 - image_mask
if background_region_mask is None:
# There are no region masks, short-circuit and return None.
# TODO(ryand): We could restrict txt-txt attention across multiple global prompts, but this would
# is a rare use case and would make the logic here significantly more complicated.
return None
device = TorchDevice.choose_torch_device()
# Infer txt_seq_len from the t5_embeddings tensor.
txt_seq_len = regional_text_conditioning.t5_embeddings.shape[1]
# In the attention blocks, the txt seq and img seq are concatenated and then attention is applied.
# Concatenation happens in the following order: [txt_seq, img_seq].
# There are 4 portions of the attention mask to consider as we prepare it:
# 1. txt attends to itself
# 2. txt attends to corresponding regional img
# 3. regional img attends to corresponding txt
# 4. regional img attends to itself
# Initialize empty attention mask.
regional_attention_mask = torch.zeros(
(txt_seq_len + img_seq_len, txt_seq_len + img_seq_len), device=device, dtype=torch.float16
)
for image_mask, t5_embedding_range in zip(
regional_text_conditioning.image_masks, regional_text_conditioning.t5_embedding_ranges, strict=True
):
# 1. txt attends to itself
regional_attention_mask[
t5_embedding_range.start : t5_embedding_range.end, t5_embedding_range.start : t5_embedding_range.end
] = 1.0
if image_mask is not None:
# 2. txt attends to corresponding regional img
# Note that we reshape to (1, img_seq_len) to ensure broadcasting works as desired.
regional_attention_mask[t5_embedding_range.start : t5_embedding_range.end, txt_seq_len:] = (
image_mask.view(1, img_seq_len)
)
# 3. regional img attends to corresponding txt
# Note that we reshape to (img_seq_len, 1) to ensure broadcasting works as desired.
regional_attention_mask[txt_seq_len:, t5_embedding_range.start : t5_embedding_range.end] = (
image_mask.view(img_seq_len, 1)
)
# 4. regional img attends to itself
image_mask = image_mask.view(img_seq_len, 1)
regional_attention_mask[txt_seq_len:, txt_seq_len:] += image_mask @ image_mask.T
else:
# We don't allow attention between non-background image regions and global prompts. This helps to ensure
# that regions focus on their local prompts. We do, however, allow attention between background regions
# and global prompts. If we didn't do this, then the background regions would not attend to any txt
# embeddings, which we found experimentally to cause artifacts.
# 2. global txt attends to background region
# Note that we reshape to (1, img_seq_len) to ensure broadcasting works as desired.
regional_attention_mask[t5_embedding_range.start : t5_embedding_range.end, txt_seq_len:] = (
background_region_mask.view(1, img_seq_len)
)
# 3. background region attends to global txt
# Note that we reshape to (img_seq_len, 1) to ensure broadcasting works as desired.
regional_attention_mask[txt_seq_len:, t5_embedding_range.start : t5_embedding_range.end] = (
background_region_mask.view(img_seq_len, 1)
)
# Allow background regions to attend to themselves.
regional_attention_mask[txt_seq_len:, txt_seq_len:] += background_region_mask.view(img_seq_len, 1)
regional_attention_mask[txt_seq_len:, txt_seq_len:] += background_region_mask.view(1, img_seq_len)
# Convert attention mask to boolean.
regional_attention_mask = regional_attention_mask > 0.5
return regional_attention_mask
@classmethod
def _concat_regional_text_conditioning(
cls,
text_conditionings: list[FluxTextConditioning],
) -> FluxRegionalTextConditioning:
"""Concatenate regional text conditioning data into a single conditioning tensor (with associated masks)."""
concat_t5_embeddings: list[torch.Tensor] = []
concat_t5_embedding_ranges: list[Range] = []
image_masks: list[torch.Tensor | None] = []
# Choose global CLIP embedding.
# Use the first global prompt's CLIP embedding as the global CLIP embedding. If there is no global prompt, use
# the first prompt's CLIP embedding.
global_clip_embedding: torch.Tensor = text_conditionings[0].clip_embeddings
for text_conditioning in text_conditionings:
if text_conditioning.mask is None:
global_clip_embedding = text_conditioning.clip_embeddings
break
cur_t5_embedding_len = 0
for text_conditioning in text_conditionings:
concat_t5_embeddings.append(text_conditioning.t5_embeddings)
concat_t5_embedding_ranges.append(
Range(start=cur_t5_embedding_len, end=cur_t5_embedding_len + text_conditioning.t5_embeddings.shape[1])
)
image_masks.append(text_conditioning.mask)
cur_t5_embedding_len += text_conditioning.t5_embeddings.shape[1]
t5_embeddings = torch.cat(concat_t5_embeddings, dim=1)
# Initialize the txt_ids tensor.
pos_bs, pos_t5_seq_len, _ = t5_embeddings.shape
t5_txt_ids = torch.zeros(
pos_bs, pos_t5_seq_len, 3, dtype=t5_embeddings.dtype, device=TorchDevice.choose_torch_device()
)
return FluxRegionalTextConditioning(
t5_embeddings=t5_embeddings,
clip_embeddings=global_clip_embedding,
t5_txt_ids=t5_txt_ids,
image_masks=image_masks,
t5_embedding_ranges=concat_t5_embedding_ranges,
)
@staticmethod
def preprocess_regional_prompt_mask(
mask: Optional[torch.Tensor], packed_height: int, packed_width: int, dtype: torch.dtype, device: torch.device
) -> torch.Tensor:
"""Preprocess a regional prompt mask to match the target height and width.
If mask is None, returns a mask of all ones with the target height and width.
If mask is not None, resizes the mask to the target height and width using 'nearest' interpolation.
packed_height and packed_width are the target height and width of the mask in the 'packed' latent space.
Returns:
torch.Tensor: The processed mask. shape: (1, 1, packed_height * packed_width).
"""
if mask is None:
return torch.ones((1, 1, packed_height * packed_width), dtype=dtype, device=device)
mask = to_standard_float_mask(mask, out_dtype=dtype)
tf = torchvision.transforms.Resize(
(packed_height, packed_width), interpolation=torchvision.transforms.InterpolationMode.NEAREST
)
# Add a batch dimension to the mask, because torchvision expects shape (batch, channels, h, w).
mask = mask.unsqueeze(0) # Shape: (1, h, w) -> (1, 1, h, w)
resized_mask = tf(mask)
# Flatten the height and width dimensions into a single image_seq_len dimension.
return resized_mask.flatten(start_dim=2)

View File

@@ -8,7 +8,6 @@ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from invokeai.backend.flux.ip_adapter.xlabs_ip_adapter_flux import XlabsIpAdapterFlux
from invokeai.backend.flux.modules.layers import DoubleStreamBlock
from invokeai.backend.util.devices import TorchDevice
class XLabsIPAdapterExtension:
@@ -46,7 +45,7 @@ class XLabsIPAdapterExtension:
) -> torch.Tensor:
clip_image_processor = CLIPImageProcessor()
clip_image: torch.Tensor = clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image = clip_image.to(device=TorchDevice.choose_torch_device(), dtype=image_encoder.dtype)
clip_image = clip_image.to(device=image_encoder.device, dtype=image_encoder.dtype)
clip_image_embeds = image_encoder(clip_image).image_embeds
return clip_image_embeds

View File

@@ -41,12 +41,10 @@ def infer_xlabs_ip_adapter_params_from_state_dict(state_dict: dict[str, torch.Te
hidden_dim = state_dict["double_blocks.0.processor.ip_adapter_double_stream_k_proj.weight"].shape[0]
context_dim = state_dict["double_blocks.0.processor.ip_adapter_double_stream_k_proj.weight"].shape[1]
clip_embeddings_dim = state_dict["ip_adapter_proj_model.proj.weight"].shape[1]
clip_extra_context_tokens = state_dict["ip_adapter_proj_model.proj.weight"].shape[0] // context_dim
return XlabsIpAdapterParams(
num_double_blocks=num_double_blocks,
context_dim=context_dim,
hidden_dim=hidden_dim,
clip_embeddings_dim=clip_embeddings_dim,
clip_extra_context_tokens=clip_extra_context_tokens,
)

View File

@@ -31,16 +31,13 @@ class XlabsIpAdapterParams:
hidden_dim: int
clip_embeddings_dim: int
clip_extra_context_tokens: int
class XlabsIpAdapterFlux(torch.nn.Module):
def __init__(self, params: XlabsIpAdapterParams):
super().__init__()
self.image_proj = ImageProjModel(
cross_attention_dim=params.context_dim,
clip_embeddings_dim=params.clip_embeddings_dim,
clip_extra_context_tokens=params.clip_extra_context_tokens,
cross_attention_dim=params.context_dim, clip_embeddings_dim=params.clip_embeddings_dim
)
self.ip_adapter_double_blocks = IPAdapterDoubleBlocks(
num_double_blocks=params.num_double_blocks, context_dim=params.context_dim, hidden_dim=params.hidden_dim

View File

@@ -5,10 +5,10 @@ from einops import rearrange
from torch import Tensor
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, attn_mask: Tensor | None = None) -> Tensor:
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
q, k = apply_rope(q, k, pe)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = rearrange(x, "B H L D -> B L (H D)")
return x
@@ -24,12 +24,12 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
out = torch.einsum("...n,d->...nd", pos, omega)
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.to(dtype=pos.dtype, device=pos.device)
return out.float()
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
xq_ = xq.view(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.view(*xk.shape[:-1], -1, 1, 2)
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.view(*xq.shape).type_as(xq), xk_out.view(*xk.shape).type_as(xk)
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)

View File

@@ -1,16 +1,11 @@
# Initially pulled from https://github.com/black-forest-labs/flux
from dataclasses import dataclass
from typing import Optional
import torch
from torch import Tensor, nn
from invokeai.backend.flux.custom_block_processor import (
CustomDoubleStreamBlockProcessor,
CustomSingleStreamBlockProcessor,
)
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.custom_block_processor import CustomDoubleStreamBlockProcessor
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.modules.layers import (
DoubleStreamBlock,
@@ -36,7 +31,6 @@ class FluxParams:
theta: int
qkv_bias: bool
guidance_embed: bool
out_channels: Optional[int] = None
class Flux(nn.Module):
@@ -49,7 +43,7 @@ class Flux(nn.Module):
self.params = params
self.in_channels = params.in_channels
self.out_channels = params.out_channels or self.in_channels
self.out_channels = self.in_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}")
pe_dim = params.hidden_size // params.num_heads
@@ -101,7 +95,6 @@ class Flux(nn.Module):
controlnet_double_block_residuals: list[Tensor] | None,
controlnet_single_block_residuals: list[Tensor] | None,
ip_adapter_extensions: list[XLabsIPAdapterExtension],
regional_prompting_extension: RegionalPromptingExtension,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
@@ -124,6 +117,7 @@ class Flux(nn.Module):
assert len(controlnet_double_block_residuals) == len(self.double_blocks)
for block_index, block in enumerate(self.double_blocks):
assert isinstance(block, DoubleStreamBlock)
img, txt = CustomDoubleStreamBlockProcessor.custom_double_block_forward(
timestep_index=timestep_index,
total_num_timesteps=total_num_timesteps,
@@ -134,7 +128,6 @@ class Flux(nn.Module):
vec=vec,
pe=pe,
ip_adapter_extensions=ip_adapter_extensions,
regional_prompting_extension=regional_prompting_extension,
)
if controlnet_double_block_residuals is not None:
@@ -147,17 +140,7 @@ class Flux(nn.Module):
assert len(controlnet_single_block_residuals) == len(self.single_blocks)
for block_index, block in enumerate(self.single_blocks):
assert isinstance(block, SingleStreamBlock)
img = CustomSingleStreamBlockProcessor.custom_single_block_forward(
timestep_index=timestep_index,
total_num_timesteps=total_num_timesteps,
block_index=block_index,
block=block,
img=img,
vec=vec,
pe=pe,
regional_prompting_extension=regional_prompting_extension,
)
img = block(img, vec=vec, pe=pe)
if controlnet_single_block_residuals is not None:
img[:, txt.shape[1] :, ...] += controlnet_single_block_residuals[block_index]

View File

@@ -3,8 +3,6 @@
from torch import Tensor, nn
from transformers import PreTrainedModel, PreTrainedTokenizer
from invokeai.backend.util.devices import TorchDevice
class HFEncoder(nn.Module):
def __init__(self, encoder: PreTrainedModel, tokenizer: PreTrainedTokenizer, is_clip: bool, max_length: int):
@@ -28,7 +26,7 @@ class HFEncoder(nn.Module):
)
outputs = self.hf_module(
input_ids=batch_encoding["input_ids"].to(TorchDevice.choose_torch_device()),
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
attention_mask=None,
output_hidden_states=False,
)

View File

@@ -66,7 +66,10 @@ class RMSNorm(torch.nn.Module):
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x: Tensor):
return torch.nn.functional.rms_norm(x, self.scale.shape, self.scale, eps=1e-6)
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
return (x * rrms).to(dtype=x_dtype) * self.scale
class QKNorm(torch.nn.Module):

View File

@@ -1,36 +0,0 @@
from dataclasses import dataclass
import torch
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import Range
@dataclass
class FluxTextConditioning:
t5_embeddings: torch.Tensor
clip_embeddings: torch.Tensor
# If mask is None, the prompt is a global prompt.
mask: torch.Tensor | None
@dataclass
class FluxRegionalTextConditioning:
# Concatenated text embeddings.
# Shape: (1, concatenated_txt_seq_len, 4096)
t5_embeddings: torch.Tensor
# Shape: (1, concatenated_txt_seq_len, 3)
t5_txt_ids: torch.Tensor
# Global CLIP embeddings.
# Shape: (1, 768)
clip_embeddings: torch.Tensor
# A binary mask indicating the regions of the image that the prompt should be applied to. If None, the prompt is a
# global prompt.
# image_masks[i] is the mask for the ith prompt.
# image_masks[i] has shape (1, image_seq_len) and dtype torch.bool.
image_masks: list[torch.Tensor | None]
# List of ranges that represent the embedding ranges for each mask.
# t5_embedding_ranges[i] contains the range of the t5 embeddings that correspond to image_masks[i].
t5_embedding_ranges: list[Range]

File diff suppressed because it is too large Load Diff

View File

@@ -18,7 +18,6 @@ from invokeai.backend.image_util.util import (
resize_image_to_resolution,
safe_step,
)
from invokeai.backend.model_manager.load.model_cache.utils import get_effective_device
class DoubleConvBlock(torch.nn.Module):
@@ -110,7 +109,7 @@ class HEDProcessor:
Returns:
The detected edges.
"""
device = get_effective_device(self.network)
device = next(iter(self.network.parameters())).device
np_image = pil_to_np(input_image)
np_image = normalize_image_channel_count(np_image)
np_image = resize_image_to_resolution(np_image, detect_resolution)
@@ -184,7 +183,7 @@ class HEDEdgeDetector:
The detected edges.
"""
device = get_effective_device(self.model)
device = next(iter(self.model.parameters())).device
np_image = pil_to_np(image)

View File

@@ -7,7 +7,6 @@ from PIL import Image
import invokeai.backend.util.logging as logger
from invokeai.backend.model_manager.config import AnyModel
from invokeai.backend.model_manager.load.model_cache.utils import get_effective_device
def norm_img(np_img):
@@ -32,7 +31,7 @@ class LaMA:
mask = norm_img(mask)
mask = (mask > 0) * 1
device = get_effective_device(self._model)
device = next(self._model.buffers()).device
image = torch.from_numpy(image).unsqueeze(0).to(device)
mask = torch.from_numpy(mask).unsqueeze(0).to(device)

Some files were not shown because too many files have changed in this diff Show More