Compare commits

..

13 Commits

Author SHA1 Message Date
Ryan Dick
5edee6997e wip 2024-10-23 18:03:36 +00:00
Ryan Dick
9aaecf5b5c Add utils for inferring SD3 params from a state dict and constructing an SD3 model. 2024-10-23 16:34:53 +00:00
Ryan Dick
b4a2244943 Fix Sd3ModelLoaderOutput name. 2024-10-23 16:29:18 +00:00
Ryan Dick
155bf13d2b Tidy imports in other_impls.py 2024-10-23 15:24:21 +00:00
Ryan Dick
9f7b5f7a85 Miscellaneous cleanup of mmditx.py. Mostly typing fixes. 2024-10-23 15:21:25 +00:00
Ryan Dick
b3d16b4979 Copy file from 19bf11c4e1/other_impls.py. 2024-10-23 14:44:33 +00:00
Ryan Dick
10b2567fcb Rough draft of Sd3ModelLoaderInvocation. 2024-10-23 14:34:05 +00:00
Ryan Dick
04feb74f81 Move FluxModelLoaderInvocaton to its own file. model.py was getting bloated. 2024-10-23 14:16:11 +00:00
Ryan Dick
a7d8db8c15 Fix model probing of CLIP-G model with CLIPTextModelWithProjection class type. 2024-10-23 14:01:30 +00:00
Ryan Dick
b3b930a6f5 Add BaseModelType.StablDiffusion3 and some hacks to get model probing working. 2024-10-23 13:11:23 +00:00
Ryan Dick
43f108fe9f Add comment explaining some hard-coded background values. 2024-10-23 13:11:23 +00:00
Ryan Dick
f1f2525ed0 Add util function for detecting SD3 checkpoint state dict. 2024-10-23 13:11:23 +00:00
Ryan Dick
afd7b50343 Copy files from 19bf11c4e1 2024-10-23 13:11:23 +00:00
503 changed files with 14807 additions and 28654 deletions

View File

@@ -19,4 +19,3 @@
- [ ] _The PR has a short but descriptive title, suitable for a changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_

View File

@@ -1,14 +0,0 @@
# Security Policy
## Supported Versions
Only the latest version of Invoke will receive security updates.
We do not currently maintain multiple versions of the application with updates.
## Reporting a Vulnerability
To report a vulnerability, contact the Invoke team directly at security@invoke.ai
At this time, we do not maintain a formal bug bounty program.
You can also share identified security issues with our team on huntr.com

View File

@@ -50,7 +50,7 @@ Applications are built on top of the invoke framework. They should construct `in
### Web UI
The Web UI is built on top of an HTTP API built with [FastAPI](https://fastapi.tiangolo.com/) and [Socket.IO](https://socket.io/). The frontend code is found in `/invokeai/frontend` and the backend code is found in `/invokeai/app/api_app.py` and `/invokeai/app/api/`. The code is further organized as such:
The Web UI is built on top of an HTTP API built with [FastAPI](https://fastapi.tiangolo.com/) and [Socket.IO](https://socket.io/). The frontend code is found in `/frontend` and the backend code is found in `/ldm/invoke/app/api_app.py` and `/ldm/invoke/app/api/`. The code is further organized as such:
| Component | Description |
| --- | --- |
@@ -62,7 +62,7 @@ The Web UI is built on top of an HTTP API built with [FastAPI](https://fastapi.t
### CLI
The CLI is built automatically from invocation metadata, and also supports invocation piping and auto-linking. Code is available in `/invokeai/frontend/cli`.
The CLI is built automatically from invocation metadata, and also supports invocation piping and auto-linking. Code is available in `/ldm/invoke/app/cli_app.py`.
## Invoke
@@ -70,7 +70,7 @@ The Invoke framework provides the interface to the underlying AI systems and is
### Invoker
The invoker (`/invokeai/app/services/invoker.py`) is the primary interface through which applications interact with the framework. Its primary purpose is to create, manage, and invoke sessions. It also maintains two sets of services:
The invoker (`/ldm/invoke/app/services/invoker.py`) is the primary interface through which applications interact with the framework. Its primary purpose is to create, manage, and invoke sessions. It also maintains two sets of services:
- **invocation services**, which are used by invocations to interact with core functionality.
- **invoker services**, which are used by the invoker to manage sessions and manage the invocation queue.
@@ -82,12 +82,12 @@ The session graph does not support looping. This is left as an application probl
### Invocations
Invocations represent individual units of execution, with inputs and outputs. All invocations are located in `/invokeai/app/invocations`, and are all automatically discovered and made available in the applications. These are the primary way to expose new functionality in Invoke.AI, and the [implementation guide](INVOCATIONS.md) explains how to add new invocations.
Invocations represent individual units of execution, with inputs and outputs. All invocations are located in `/ldm/invoke/app/invocations`, and are all automatically discovered and made available in the applications. These are the primary way to expose new functionality in Invoke.AI, and the [implementation guide](INVOCATIONS.md) explains how to add new invocations.
### Services
Services provide invocations access AI Core functionality and other necessary functionality (e.g. image storage). These are available in `/invokeai/app/services`. As a general rule, new services should provide an interface as an abstract base class, and may provide a lightweight local implementation by default in their module. The goal for all services should be to enable the usage of different implementations (e.g. using cloud storage for image storage), but should not load any module dependencies unless that implementation has been used (i.e. don't import anything that won't be used, especially if it's expensive to import).
Services provide invocations access AI Core functionality and other necessary functionality (e.g. image storage). These are available in `/ldm/invoke/app/services`. As a general rule, new services should provide an interface as an abstract base class, and may provide a lightweight local implementation by default in their module. The goal for all services should be to enable the usage of different implementations (e.g. using cloud storage for image storage), but should not load any module dependencies unless that implementation has been used (i.e. don't import anything that won't be used, especially if it's expensive to import).
## AI Core
The AI Core is represented by the rest of the code base (i.e. the code outside of `/invokeai/app/`).
The AI Core is represented by the rest of the code base (i.e. the code outside of `/ldm/invoke/app/`).

View File

@@ -287,8 +287,8 @@ new Invocation ready to be used.
Once you've created a Node, the next step is to share it with the community! The
best way to do this is to submit a Pull Request to add the Node to the
[Community Nodes](../nodes/communityNodes.md) list. If you're not sure how to do that,
take a look a at our [contributing nodes overview](../nodes/contributingNodes.md).
[Community Nodes](nodes/communityNodes) list. If you're not sure how to do that,
take a look a at our [contributing nodes overview](contributingNodes).
## Advanced

View File

@@ -9,20 +9,20 @@ model. These are the:
configuration information. Among other things, the record service
tracks the type of the model, its provenance, and where it can be
found on disk.
* _ModelInstallServiceBase_ A service for installing models to
disk. It uses `DownloadQueueServiceBase` to download models and
their metadata, and `ModelRecordServiceBase` to store that
information. It is also responsible for managing the InvokeAI
`models` directory and its contents.
* _DownloadQueueServiceBase_
A multithreaded downloader responsible
for downloading models from a remote source to disk. The download
queue has special methods for downloading repo_id folders from
Hugging Face, as well as discriminating among model versions in
Civitai, but can be used for arbitrary content.
* _ModelLoadServiceBase_
Responsible for loading a model from disk
into RAM and VRAM and getting it ready for inference.
@@ -207,9 +207,9 @@ for use in the InvokeAI web server. Its signature is:
```
def open(
cls,
config: InvokeAIAppConfig,
conn: Optional[sqlite3.Connection] = None,
cls,
config: InvokeAIAppConfig,
conn: Optional[sqlite3.Connection] = None,
lock: Optional[threading.Lock] = None
) -> Union[ModelRecordServiceSQL, ModelRecordServiceFile]:
```
@@ -363,7 +363,7 @@ functionality:
* Registering a model config record for a model already located on the
local filesystem, without moving it or changing its path.
* Installing a model alreadiy located on the local filesystem, by
moving it into the InvokeAI root directory under the
`models` folder (or wherever config parameter `models_dir`
@@ -371,21 +371,21 @@ functionality:
* Probing of models to determine their type, base type and other key
information.
* Interface with the InvokeAI event bus to provide status updates on
the download, installation and registration process.
* Downloading a model from an arbitrary URL and installing it in
`models_dir`.
* Special handling for HuggingFace repo_ids to recursively download
the contents of the repository, paying attention to alternative
variants such as fp16.
* Saving tags and other metadata about the model into the invokeai database
when fetching from a repo that provides that type of information,
(currently only HuggingFace).
### Initializing the installer
A default installer is created at InvokeAI api startup time and stored
@@ -461,7 +461,7 @@ revision.
`config` is an optional dict of values that will override the
autoprobed values for model type, base, scheduler prediction type, and
so forth. See [Model configuration and
probing](#model-configuration-and-probing) for details.
probing](#Model-configuration-and-probing) for details.
`access_token` is an optional access token for accessing resources
that need authentication.
@@ -494,7 +494,7 @@ source8 = URLModelSource(url='https://civitai.com/api/download/models/63006', ac
for source in [source1, source2, source3, source4, source5, source6, source7]:
install_job = installer.install_model(source)
source2job = installer.wait_for_installs(timeout=120)
for source in sources:
job = source2job[source]
@@ -504,7 +504,7 @@ for source in sources:
print(f"{source} installed as {model_key}")
elif job.errored:
print(f"{source}: {job.error_type}.\nStack trace:\n{job.error}")
```
As shown here, the `import_model()` method accepts a variety of

View File

@@ -1,6 +1,6 @@
# InvokeAI Backend Tests
We use `pytest` to run the backend python tests. (See [pyproject.toml](https://github.com/invoke-ai/InvokeAI/blob/main/pyproject.toml) for the default `pytest` options.)
We use `pytest` to run the backend python tests. (See [pyproject.toml](/pyproject.toml) for the default `pytest` options.)
## Fast vs. Slow
All tests are categorized as either 'fast' (no test annotation) or 'slow' (annotated with the `@pytest.mark.slow` decorator).
@@ -33,7 +33,7 @@ pytest tests -m ""
## Test Organization
All backend tests are in the [`tests/`](https://github.com/invoke-ai/InvokeAI/tree/main/tests) directory. This directory mirrors the organization of the `invokeai/` directory. For example, tests for `invokeai/model_management/model_manager.py` would be found in `tests/model_management/test_model_manager.py`.
All backend tests are in the [`tests/`](/tests/) directory. This directory mirrors the organization of the `invokeai/` directory. For example, tests for `invokeai/model_management/model_manager.py` would be found in `tests/model_management/test_model_manager.py`.
TODO: The above statement is aspirational. A re-organization of legacy tests is required to make it true.

View File

@@ -2,7 +2,7 @@
## **What do I need to know to help?**
If you are looking to help with a code contribution, InvokeAI uses several different technologies under the hood: Python (Pydantic, FastAPI, diffusers) and Typescript (React, Redux Toolkit, ChakraUI, Mantine, Konva). Familiarity with StableDiffusion and image generation concepts is helpful, but not essential.
If you are looking to help with a code contribution, InvokeAI uses several different technologies under the hood: Python (Pydantic, FastAPI, diffusers) and Typescript (React, Redux Toolkit, ChakraUI, Mantine, Konva). Familiarity with StableDiffusion and image generation concepts is helpful, but not essential.
## **Get Started**
@@ -12,7 +12,7 @@ To get started, take a look at our [new contributors checklist](newContributorCh
Once you're setup, for more information, you can review the documentation specific to your area of interest:
* #### [InvokeAI Architecure](../ARCHITECTURE.md)
* #### [Frontend Documentation](../frontend/index.md)
* #### [Frontend Documentation](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web)
* #### [Node Documentation](../INVOCATIONS.md)
* #### [Local Development](../LOCAL_DEVELOPMENT.md)
@@ -20,15 +20,15 @@ Once you're setup, for more information, you can review the documentation specif
If you don't feel ready to make a code contribution yet, no problem! You can also help out in other ways, such as [documentation](documentation.md), [translation](translation.md) or helping support other users and triage issues as they're reported in GitHub.
There are two paths to making a development contribution:
There are two paths to making a development contribution:
1. Choosing an open issue to address. Open issues can be found in the [Issues](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen) section of the InvokeAI repository. These are tagged by the issue type (bug, enhancement, etc.) along with the “good first issues” tag denoting if they are suitable for first time contributors.
1. Additional items can be found on our [roadmap](https://github.com/orgs/invoke-ai/projects/7). The roadmap is organized in terms of priority, and contains features of varying size and complexity. If there is an inflight item youd like to help with, reach out to the contributor assigned to the item to see how you can help.
1. Additional items can be found on our [roadmap](https://github.com/orgs/invoke-ai/projects/7). The roadmap is organized in terms of priority, and contains features of varying size and complexity. If there is an inflight item youd like to help with, reach out to the contributor assigned to the item to see how you can help.
2. Opening a new issue or feature to add. **Please make sure you have searched through existing issues before creating new ones.**
*Regardless of what you choose, please post in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord before you start development in order to confirm that the issue or feature is aligned with the current direction of the project. We value our contributors time and effort and want to ensure that no ones time is being misspent.*
## Best Practices:
## Best Practices:
* Keep your pull requests small. Smaller pull requests are more likely to be accepted and merged
* Comments! Commenting your code helps reviewers easily understand your contribution
* Use Python and Typescripts typing systems, and consider using an editor with [LSP](https://microsoft.github.io/language-server-protocol/) support to streamline development
@@ -38,7 +38,7 @@ There are two paths to making a development contribution:
If you need help, you can ask questions in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord.
For frontend related work, **@psychedelicious** is the best person to reach out to.
For frontend related work, **@psychedelicious** is the best person to reach out to.
For backend related work, please reach out to **@blessedcoolant**, **@lstein**, **@StAlKeR7779** or **@psychedelicious**.

View File

@@ -5,7 +5,7 @@ If you're a new contributor to InvokeAI or Open Source Projects, this is the gui
## New Contributor Checklist
- [x] Set up your local development environment & fork of InvokAI by following [the steps outlined here](../dev-environment.md)
- [x] Set up your local tooling with [this guide](../LOCAL_DEVELOPMENT.md). Feel free to skip this step if you already have tooling you're comfortable with.
- [x] Set up your local tooling with [this guide](InvokeAI/contributing/LOCAL_DEVELOPMENT/#developing-invokeai-in-vscode). Feel free to skip this step if you already have tooling you're comfortable with.
- [x] Familiarize yourself with [Git](https://www.atlassian.com/git) & our project structure by reading through the [development documentation](development.md)
- [x] Join the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord
- [x] Choose an issue to work on! This can be achieved by asking in the #dev-chat channel, tackling a [good first issue](https://github.com/invoke-ai/InvokeAI/contribute) or finding an item on the [roadmap](https://github.com/orgs/invoke-ai/projects/7). If nothing in any of those places catches your eye, feel free to work on something of interest to you!
@@ -22,15 +22,15 @@ Before starting these steps, ensure you have your local environment [configured
2. Fork the [InvokeAI](https://github.com/invoke-ai/InvokeAI) repository to your GitHub profile. This means that you will have a copy of the repository under **your-GitHub-username/InvokeAI**.
3. Clone the repository to your local machine using:
```bash
git clone https://github.com/your-GitHub-username/InvokeAI.git
```
```bash
git clone https://github.com/your-GitHub-username/InvokeAI.git
```
If you're unfamiliar with using Git through the commandline, [GitHub Desktop](https://desktop.github.com) is a easy-to-use alternative with a UI. You can do all the same steps listed here, but through the interface. 4. Create a new branch for your fix using:
```bash
git checkout -b branch-name-here
```
```bash
git checkout -b branch-name-here
```
5. Make the appropriate changes for the issue you are trying to address or the feature that you want to add.
6. Add the file contents of the changed files to the "snapshot" git uses to manage the state of the project, also known as the index:

View File

@@ -17,49 +17,46 @@ If you just want to use Invoke, you should use the [installer][installer link].
## Setup
1. Run through the [requirements][requirements link].
2. [Fork and clone][forking link] the [InvokeAI repo][repo link].
3. Create an directory for user data (images, models, db, etc). This is typically at `~/invokeai`, but if you already have a non-dev install, you may want to create a separate directory for the dev install.
4. Create a python virtual environment inside the directory you just created:
1. [Fork and clone][forking link] the [InvokeAI repo][repo link].
1. Create an directory for user data (images, models, db, etc). This is typically at `~/invokeai`, but if you already have a non-dev install, you may want to create a separate directory for the dev install.
1. Create a python virtual environment inside the directory you just created:
```sh
python3 -m venv .venv --prompt InvokeAI-Dev
```
```sh
python3 -m venv .venv --prompt InvokeAI-Dev
```
5. Activate the venv (you'll need to do this every time you want to run the app):
1. Activate the venv (you'll need to do this every time you want to run the app):
```sh
source .venv/bin/activate
```
```sh
source .venv/bin/activate
```
6. Install the repo as an [editable install][editable install link]:
1. Install the repo as an [editable install][editable install link]:
```sh
pip install -e ".[dev,test,xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
```sh
pip install -e ".[dev,test,xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
Refer to the [manual installation][manual install link] instructions for more determining the correct install options. `xformers` is optional, but `dev` and `test` are not.
Refer to the [manual installation][manual install link]] instructions for more determining the correct install options. `xformers` is optional, but `dev` and `test` are not.
7. Install the frontend dev toolchain:
1. Install the frontend dev toolchain:
- [`nodejs`](https://nodejs.org/) (recommend v20 LTS)
- [`pnpm`](https://pnpm.io/8.x/installation) (must be v8 - not v9!)
- [`pnpm`](https://pnpm.io/installation#installing-a-specific-version) (must be v8 - not v9!)
8. Do a production build of the frontend:
1. Do a production build of the frontend:
```sh
cd PATH_TO_INVOKEAI_REPO/invokeai/frontend/web
pnpm i
pnpm build
```
```sh
pnpm build
```
9. Start the application:
1. Start the application:
```sh
cd PATH_TO_INVOKEAI_REPO
python scripts/invokeai-web.py
```
```sh
python scripts/invokeai-web.py
```
10. Access the UI at `localhost:9090`.
1. Access the UI at `localhost:9090`.
## Updating the UI

View File

@@ -34,11 +34,11 @@ Please reach out to @hipsterusername on [Discord](https://discord.gg/ZmtBAhwWhy)
## Contributors
This project is a combined effort of dedicated people from across the world. [Check out the list of all these amazing people](contributors.md). We thank them for their time, hard work and effort.
This project is a combined effort of dedicated people from across the world. [Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for their time, hard work and effort.
## Code of Conduct
The InvokeAI community is a welcoming place, and we want your help in maintaining that. Please review our [Code of Conduct](../CODE_OF_CONDUCT.md) to learn more - it's essential to maintaining a respectful and inclusive environment.
The InvokeAI community is a welcoming place, and we want your help in maintaining that. Please review our [Code of Conduct](https://github.com/invoke-ai/InvokeAI/blob/main/CODE_OF_CONDUCT.md) to learn more - it's essential to maintaining a respectful and inclusive environment.
By making a contribution to this project, you certify that:

View File

@@ -209,7 +209,7 @@ checkpoint models.
To solve this, go to the Model Manager tab (the cube), select the
checkpoint model that's giving you trouble, and press the "Convert"
button in the upper right of your browser window. This will convert the
button in the upper right of your browser window. This will conver the
checkpoint into a diffusers model, after which loading should be
faster and less memory-intensive.

View File

@@ -97,16 +97,16 @@ Prior to installing PyPatchMatch, you need to take the following steps:
sudo pacman -S --needed base-devel
```
2. Install `opencv`, `blas`, and required dependencies:
2. Install `opencv` and `blas`:
```sh
sudo pacman -S opencv blas fmt glew vtk hdf5
sudo pacman -S opencv blas
```
or for CUDA support
```sh
sudo pacman -S opencv-cuda blas fmt glew vtk hdf5
sudo pacman -S opencv-cuda blas
```
3. Fix the naming of the `opencv` package configuration file:

View File

@@ -99,6 +99,7 @@ their descriptions.
| Scale Latents | Scales latents by a given factor. |
| Segment Anything Processor | Applies segment anything processing to image |
| Show Image | Displays a provided image, and passes it forward in the pipeline. |
| Step Param Easing | Experimental per-step parameter easing for denoising steps |
| String Primitive Collection | A collection of string primitive values |
| String Primitive | A string primitive value |
| Subtract Integers | Subtracts two numbers |

View File

@@ -259,7 +259,7 @@ def select_gpu() -> GpuType:
[
f"Detected the [gold1]{OS}-{ARCH}[/] platform",
"",
"See [deep_sky_blue1]https://invoke-ai.github.io/InvokeAI/installation/requirements/[/] to ensure your system meets the minimum requirements.",
"See [deep_sky_blue1]https://invoke-ai.github.io/InvokeAI/#system[/] to ensure your system meets the minimum requirements.",
"",
"[red3]🠶[/] [b]Your GPU drivers must be correctly installed before using InvokeAI![/] [red3]🠴[/]",
]

View File

@@ -68,7 +68,7 @@ do_line_input() {
printf "2: Open the developer console\n"
printf "3: Command-line help\n"
printf "Q: Quit\n\n"
printf "To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest\n\n"
printf "To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest.\n\n"
read -p "Please enter 1-4, Q: [1] " yn
choice=${yn:='1'}
do_choice $choice

View File

@@ -40,8 +40,6 @@ class AppVersion(BaseModel):
version: str = Field(description="App version")
highlights: Optional[list[str]] = Field(default=None, description="Highlights of release")
class AppDependencyVersions(BaseModel):
"""App depencency Versions Response"""

View File

@@ -1,7 +1,6 @@
# Copyright (c) 2023 Lincoln D. Stein
"""FastAPI route for model configuration records."""
import contextlib
import io
import pathlib
import shutil
@@ -11,7 +10,6 @@ from enum import Enum
from tempfile import TemporaryDirectory
from typing import List, Optional, Type
import huggingface_hub
from fastapi import Body, Path, Query, Response, UploadFile
from fastapi.responses import FileResponse, HTMLResponse
from fastapi.routing import APIRouter
@@ -29,7 +27,6 @@ from invokeai.app.services.model_records import (
ModelRecordChanges,
UnknownModelException,
)
from invokeai.app.util.suppress_output import SuppressOutput
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
@@ -811,11 +808,7 @@ def get_is_installed(
for model in installed_models:
if model.source == starter_model.source:
return True
if (
(model.name == starter_model.name or model.name in starter_model.previous_names)
and model.base == starter_model.base
and model.type == starter_model.type
):
if model.name == starter_model.name and model.base == starter_model.base and model.type == starter_model.type:
return True
return False
@@ -926,51 +919,3 @@ async def get_stats() -> Optional[CacheStats]:
"""Return performance statistics on the model manager's RAM cache. Will return null if no models have been loaded."""
return ApiDependencies.invoker.services.model_manager.load.ram_cache.stats
class HFTokenStatus(str, Enum):
VALID = "valid"
INVALID = "invalid"
UNKNOWN = "unknown"
class HFTokenHelper:
@classmethod
def get_status(cls) -> HFTokenStatus:
try:
if huggingface_hub.get_token_permission(huggingface_hub.get_token()):
# Valid token!
return HFTokenStatus.VALID
# No token set
return HFTokenStatus.INVALID
except Exception:
return HFTokenStatus.UNKNOWN
@classmethod
def set_token(cls, token: str) -> HFTokenStatus:
with SuppressOutput(), contextlib.suppress(Exception):
huggingface_hub.login(token=token, add_to_git_credential=False)
return cls.get_status()
@model_manager_router.get("/hf_login", operation_id="get_hf_login_status", response_model=HFTokenStatus)
async def get_hf_login_status() -> HFTokenStatus:
token_status = HFTokenHelper.get_status()
if token_status is HFTokenStatus.UNKNOWN:
ApiDependencies.invoker.services.logger.warning("Unable to verify HF token")
return token_status
@model_manager_router.post("/hf_login", operation_id="do_hf_login", response_model=HFTokenStatus)
async def do_hf_login(
token: str = Body(description="Hugging Face token to use for login", embed=True),
) -> HFTokenStatus:
HFTokenHelper.set_token(token)
token_status = HFTokenHelper.get_status()
if token_status is HFTokenStatus.UNKNOWN:
ApiDependencies.invoker.services.logger.warning("Unable to verify HF token")
return token_status

View File

@@ -110,7 +110,7 @@ async def cancel_by_batch_ids(
@session_queue_router.put(
"/{queue_id}/cancel_by_destination",
operation_id="cancel_by_destination",
responses={200: {"model": CancelByDestinationResult}},
responses={200: {"model": CancelByBatchIDsResult}},
)
async def cancel_by_destination(
queue_id: str = Path(description="The queue id to perform this operation on"),

View File

@@ -4,7 +4,6 @@ from __future__ import annotations
import inspect
import re
import sys
import warnings
from abc import ABC, abstractmethod
from enum import Enum
@@ -63,7 +62,6 @@ class Classification(str, Enum, metaclass=MetaEnum):
- `Prototype`: The invocation is not yet stable and may be removed from the application at any time. Workflows built around this invocation may break, and we are *not* committed to supporting this invocation.
- `Deprecated`: The invocation is deprecated and may be removed in a future version.
- `Internal`: The invocation is not intended for use by end-users. It may be changed or removed at any time, but is exposed for users to play with.
- `Special`: The invocation is a special case and does not fit into any of the other classifications.
"""
Stable = "stable"
@@ -71,7 +69,6 @@ class Classification(str, Enum, metaclass=MetaEnum):
Prototype = "prototype"
Deprecated = "deprecated"
Internal = "internal"
Special = "special"
class UIConfigBase(BaseModel):
@@ -195,19 +192,12 @@ class BaseInvocation(ABC, BaseModel):
"""Gets a pydantc TypeAdapter for the union of all invocation types."""
if not cls._typeadapter or cls._typeadapter_needs_update:
AnyInvocation = TypeAliasType(
"AnyInvocation", Annotated[Union[tuple(cls.get_invocations())], Field(discriminator="type")]
"AnyInvocation", Annotated[Union[tuple(cls._invocation_classes)], Field(discriminator="type")]
)
cls._typeadapter = TypeAdapter(AnyInvocation)
cls._typeadapter_needs_update = False
return cls._typeadapter
@classmethod
def invalidate_typeadapter(cls) -> None:
"""Invalidates the typeadapter, forcing it to be rebuilt on next access. If the invocation allowlist or
denylist is changed, this should be called to ensure the typeadapter is updated and validation respects
the updated allowlist and denylist."""
cls._typeadapter_needs_update = True
@classmethod
def get_invocations(cls) -> Iterable[BaseInvocation]:
"""Gets all invocations, respecting the allowlist and denylist."""
@@ -489,26 +479,6 @@ def invocation(
title="type", default=invocation_type, json_schema_extra={"field_kind": FieldKind.NodeAttribute}
)
# Validate the `invoke()` method is implemented
if "invoke" in cls.__abstractmethods__:
raise ValueError(f'Invocation "{invocation_type}" must implement the "invoke" method')
# And validate that `invoke()` returns a subclass of `BaseInvocationOutput
invoke_return_annotation = signature(cls.invoke).return_annotation
try:
# TODO(psyche): If `invoke()` is not defined, `return_annotation` ends up as the string "BaseInvocationOutput"
# instead of the class `BaseInvocationOutput`. This may be a pydantic bug: https://github.com/pydantic/pydantic/issues/7978
if isinstance(invoke_return_annotation, str):
invoke_return_annotation = getattr(sys.modules[cls.__module__], invoke_return_annotation)
assert invoke_return_annotation is not BaseInvocationOutput
assert issubclass(invoke_return_annotation, BaseInvocationOutput)
except Exception:
raise ValueError(
f'Invocation "{invocation_type}" must have a return annotation of a subclass of BaseInvocationOutput (got "{invoke_return_annotation}")'
)
docstring = cls.__doc__
cls = create_model(
cls.__qualname__,

View File

@@ -1,120 +1,98 @@
from typing import Optional, Union
from typing import Any, Union
import numpy as np
import numpy.typing as npt
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, LatentsField
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, LatentsField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
def slerp(
t: Union[float, np.ndarray],
v0: Union[torch.Tensor, np.ndarray],
v1: Union[torch.Tensor, np.ndarray],
device: torch.device,
DOT_THRESHOLD: float = 0.9995,
):
"""
Spherical linear interpolation
Args:
t (float/np.ndarray): Float value between 0.0 and 1.0
v0 (np.ndarray): Starting vector
v1 (np.ndarray): Final vector
DOT_THRESHOLD (float): Threshold for considering the two vectors as
colineal. Not recommended to alter this.
Returns:
v2 (np.ndarray): Interpolation vector between v0 and v1
"""
inputs_are_torch = False
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
v0 = v0.detach().cpu().numpy()
if not isinstance(v1, np.ndarray):
inputs_are_torch = True
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2 = torch.from_numpy(v2).to(device)
return v2
@invocation(
"lblend",
title="Blend Latents",
tags=["latents", "blend", "mask"],
tags=["latents", "blend"],
category="latents",
version="1.1.0",
version="1.0.3",
)
class BlendLatentsInvocation(BaseInvocation):
"""Blend two latents using a given alpha. If a mask is provided, the second latents will be masked before blending.
Latents must have same size. Masking functionality added by @dwringer."""
"""Blend two latents using a given alpha. Latents must have same size."""
latents_a: LatentsField = InputField(description=FieldDescriptions.latents, input=Input.Connection)
latents_b: LatentsField = InputField(description=FieldDescriptions.latents, input=Input.Connection)
mask: Optional[ImageField] = InputField(default=None, description="Mask for blending in latents B")
alpha: float = InputField(ge=0, default=0.5, description=FieldDescriptions.blend_alpha)
def prep_mask_tensor(self, mask_image: Image.Image) -> torch.Tensor:
if mask_image.mode != "L":
mask_image = mask_image.convert("L")
mask_tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
if mask_tensor.dim() == 3:
mask_tensor = mask_tensor.unsqueeze(0)
return mask_tensor
def replace_tensor_from_masked_tensor(
self, tensor: torch.Tensor, other_tensor: torch.Tensor, mask_tensor: torch.Tensor
):
output = tensor.clone()
mask_tensor = mask_tensor.expand(output.shape)
if output.dtype != torch.float16:
output = torch.add(output, mask_tensor * torch.sub(other_tensor, tensor))
else:
output = torch.add(output, mask_tensor.half() * torch.sub(other_tensor, tensor))
return output
latents_a: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
latents_b: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents_a = context.tensors.load(self.latents_a.latents_name)
latents_b = context.tensors.load(self.latents_b.latents_name)
if self.mask is None:
mask_tensor = torch.zeros(latents_a.shape[-2:])
else:
mask_tensor = self.prep_mask_tensor(context.images.get_pil(self.mask.image_name))
mask_tensor = tv_resize(mask_tensor, latents_a.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
latents_b = self.replace_tensor_from_masked_tensor(latents_b, latents_a, mask_tensor)
if latents_a.shape != latents_b.shape:
raise ValueError("Latents to blend must be the same size.")
raise Exception("Latents to blend must be the same size.")
device = TorchDevice.choose_torch_device()
def slerp(
t: Union[float, npt.NDArray[Any]], # FIXME: maybe use np.float32 here?
v0: Union[torch.Tensor, npt.NDArray[Any]],
v1: Union[torch.Tensor, npt.NDArray[Any]],
DOT_THRESHOLD: float = 0.9995,
) -> Union[torch.Tensor, npt.NDArray[Any]]:
"""
Spherical linear interpolation
Args:
t (float/np.ndarray): Float value between 0.0 and 1.0
v0 (np.ndarray): Starting vector
v1 (np.ndarray): Final vector
DOT_THRESHOLD (float): Threshold for considering the two vectors as
colineal. Not recommended to alter this.
Returns:
v2 (np.ndarray): Interpolation vector between v0 and v1
"""
inputs_are_torch = False
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
v0 = v0.detach().cpu().numpy()
if not isinstance(v1, np.ndarray):
inputs_are_torch = True
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2_torch: torch.Tensor = torch.from_numpy(v2).to(device)
return v2_torch
else:
assert isinstance(v2, np.ndarray)
return v2
# blend
blended_latents = slerp(self.alpha, latents_a, latents_b, device)
bl = slerp(self.alpha, latents_a, latents_b)
assert isinstance(bl, torch.Tensor)
blended_latents: torch.Tensor = bl # for type checking convenience
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
blended_latents = blended_latents.to("cpu")
torch.cuda.empty_cache()
TorchDevice.empty_cache()
name = context.tensors.save(tensor=blended_latents)
return LatentsOutput.build(latents_name=name, latents=blended_latents)
return LatentsOutput.build(latents_name=name, latents=blended_latents, seed=self.latents_a.seed)

View File

@@ -95,7 +95,6 @@ class CompelInvocation(BaseInvocation):
ti_manager,
),
):
context.util.signal_progress("Building conditioning")
assert isinstance(text_encoder, CLIPTextModel)
assert isinstance(tokenizer, CLIPTokenizer)
compel = Compel(
@@ -192,7 +191,6 @@ class SDXLPromptInvocationBase:
ti_manager,
),
):
context.util.signal_progress("Building conditioning")
assert isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection))
assert isinstance(tokenizer, CLIPTokenizer)

File diff suppressed because it is too large Load Diff

View File

@@ -65,7 +65,6 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
# TODO:
context.util.signal_progress("Running VAE encoder")
masked_latents = ImageToLatentsInvocation.vae_encode(vae_info, self.fp32, self.tiled, masked_image.clone())
masked_latents_name = context.tensors.save(tensor=masked_latents)

View File

@@ -131,7 +131,6 @@ class CreateGradientMaskInvocation(BaseInvocation):
image_tensor = image_tensor.unsqueeze(0)
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
context.util.signal_progress("Running VAE encoder")
masked_latents = ImageToLatentsInvocation.vae_encode(
vae_info, self.fp32, self.tiled, masked_image.clone()
)

View File

@@ -13,7 +13,6 @@ from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers.scheduling_dpmsolver_sde import DPMSolverSDEScheduler
from diffusers.schedulers.scheduling_tcd import TCDScheduler
from diffusers.schedulers.scheduling_utils import SchedulerMixin as Scheduler
from PIL import Image
from pydantic import field_validator
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPVisionModelWithProjection
@@ -511,7 +510,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
context: InvocationContext,
t2i_adapters: Optional[Union[T2IAdapterField, list[T2IAdapterField]]],
ext_manager: ExtensionsManager,
bgr_mode: bool = False,
) -> None:
if t2i_adapters is None:
return
@@ -521,10 +519,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
t2i_adapters = [t2i_adapters]
for t2i_adapter_field in t2i_adapters:
image = context.images.get_pil(t2i_adapter_field.image.image_name)
if bgr_mode: # SDXL t2i trained on cv2's BGR outputs, but PIL won't convert straight to BGR
r, g, b = image.split()
image = Image.merge("RGB", (b, g, r))
ext_manager.add_extension(
T2IAdapterExt(
node_context=context,
@@ -622,17 +616,13 @@ class DenoiseLatentsInvocation(BaseInvocation):
for t2i_adapter_field in t2i_adapter:
t2i_adapter_model_config = context.models.get_config(t2i_adapter_field.t2i_adapter_model.key)
t2i_adapter_loaded_model = context.models.load(t2i_adapter_field.t2i_adapter_model)
image = context.images.get_pil(t2i_adapter_field.image.image_name, mode="RGB")
image = context.images.get_pil(t2i_adapter_field.image.image_name)
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
if t2i_adapter_model_config.base == BaseModelType.StableDiffusion1:
max_unet_downscale = 8
elif t2i_adapter_model_config.base == BaseModelType.StableDiffusionXL:
max_unet_downscale = 4
# SDXL adapters are trained on cv2's BGR outputs
r, g, b = image.split()
image = Image.merge("RGB", (b, g, r))
else:
raise ValueError(f"Unexpected T2I-Adapter base model type: '{t2i_adapter_model_config.base}'.")
@@ -640,39 +630,29 @@ class DenoiseLatentsInvocation(BaseInvocation):
with t2i_adapter_loaded_model as t2i_adapter_model:
total_downscale_factor = t2i_adapter_model.total_downscale_factor
# Resize the T2I-Adapter input image.
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the
# result will match the latent image's dimensions after max_unet_downscale is applied.
t2i_input_height = latents_shape[2] // max_unet_downscale * total_downscale_factor
t2i_input_width = latents_shape[3] // max_unet_downscale * total_downscale_factor
# Note: We have hard-coded `do_classifier_free_guidance=False`. This is because we only want to prepare
# a single image. If CFG is enabled, we will duplicate the resultant tensor after applying the
# T2I-Adapter model.
#
# Note: We re-use the `prepare_control_image(...)` from ControlNet for T2I-Adapter, because it has many
# of the same requirements (e.g. preserving binary masks during resize).
# Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR.
_, _, latent_height, latent_width = latents_shape
control_height_resize = latent_height * LATENT_SCALE_FACTOR
control_width_resize = latent_width * LATENT_SCALE_FACTOR
t2i_image = prepare_control_image(
image=image,
do_classifier_free_guidance=False,
width=control_width_resize,
height=control_height_resize,
width=t2i_input_width,
height=t2i_input_height,
num_channels=t2i_adapter_model.config["in_channels"], # mypy treats this as a FrozenDict
device=t2i_adapter_model.device,
dtype=t2i_adapter_model.dtype,
resize_mode=t2i_adapter_field.resize_mode,
)
# Resize the T2I-Adapter input image.
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the
# result will match the latent image's dimensions after max_unet_downscale is applied.
# We crop the image to this size so that the positions match the input image on non-standard resolutions
t2i_input_height = latents_shape[2] // max_unet_downscale * total_downscale_factor
t2i_input_width = latents_shape[3] // max_unet_downscale * total_downscale_factor
if t2i_image.shape[2] > t2i_input_height or t2i_image.shape[3] > t2i_input_width:
t2i_image = t2i_image[
:, :, : min(t2i_image.shape[2], t2i_input_height), : min(t2i_image.shape[3], t2i_input_width)
]
adapter_state = t2i_adapter_model(t2i_image)
if do_classifier_free_guidance:
@@ -920,8 +900,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
# ext = extension_field.to_extension(exit_stack, context, ext_manager)
# ext_manager.add_extension(ext)
self.parse_controlnet_field(exit_stack, context, self.control, ext_manager)
bgr_mode = self.unet.unet.base == BaseModelType.StableDiffusionXL
self.parse_t2i_adapter_field(exit_stack, context, self.t2i_adapter, ext_manager, bgr_mode)
self.parse_t2i_adapter_field(exit_stack, context, self.t2i_adapter, ext_manager)
# ext: t2i/ip adapter
ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx)

View File

@@ -41,7 +41,6 @@ class UIType(str, Enum, metaclass=MetaEnum):
# region Model Field Types
MainModel = "MainModelField"
FluxMainModel = "FluxMainModelField"
SD3MainModel = "SD3MainModelField"
SDXLMainModel = "SDXLMainModelField"
SDXLRefinerModel = "SDXLRefinerModelField"
ONNXModel = "ONNXModelField"
@@ -53,8 +52,6 @@ class UIType(str, Enum, metaclass=MetaEnum):
T2IAdapterModel = "T2IAdapterModelField"
T5EncoderModel = "T5EncoderModelField"
CLIPEmbedModel = "CLIPEmbedModelField"
CLIPLEmbedModel = "CLIPLEmbedModelField"
CLIPGEmbedModel = "CLIPGEmbedModelField"
SpandrelImageToImageModel = "SpandrelImageToImageModelField"
# endregion
@@ -134,7 +131,6 @@ class FieldDescriptions:
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
t5_encoder = "T5 tokenizer and text encoder"
clip_embed_model = "CLIP Embed loader"
clip_g_model = "CLIP-G Embed loader"
unet = "UNet (scheduler, LoRAs)"
transformer = "Transformer"
mmditx = "MMDiTX"
@@ -250,17 +246,6 @@ class FluxConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
mask: Optional[TensorField] = Field(
default=None,
description="The mask associated with this conditioning tensor. Excluded regions should be set to False, "
"included regions should be set to True.",
)
class SD3ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
class ConditioningField(BaseModel):

View File

@@ -30,7 +30,6 @@ from invokeai.backend.flux.controlnet.xlabs_controlnet_flux import XLabsControlN
from invokeai.backend.flux.denoise import denoise
from invokeai.backend.flux.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.ip_adapter.xlabs_ip_adapter_flux import XlabsIpAdapterFlux
@@ -43,7 +42,6 @@ from invokeai.backend.flux.sampling_utils import (
pack,
unpack,
)
from invokeai.backend.flux.text_conditioning import FluxTextConditioning
from invokeai.backend.lora.conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
@@ -58,7 +56,7 @@ from invokeai.backend.util.devices import TorchDevice
title="FLUX Denoise",
tags=["image", "flux"],
category="image",
version="3.2.2",
version="3.2.0",
classification=Classification.Prototype,
)
class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
@@ -83,16 +81,15 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
add_noise: bool = InputField(default=True, description="Add noise based on denoising start.")
transformer: TransformerField = InputField(
description=FieldDescriptions.flux_model,
input=Input.Connection,
title="Transformer",
)
positive_text_conditioning: FluxConditioningField | list[FluxConditioningField] = InputField(
positive_text_conditioning: FluxConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
negative_text_conditioning: FluxConditioningField | list[FluxConditioningField] | None = InputField(
negative_text_conditioning: FluxConditioningField | None = InputField(
default=None,
description="Negative conditioning tensor. Can be None if cfg_scale is 1.0.",
input=Input.Connection,
@@ -141,12 +138,36 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
def _load_text_conditioning(
self, context: InvocationContext, conditioning_name: str, dtype: torch.dtype
) -> Tuple[torch.Tensor, torch.Tensor]:
# Load the conditioning data.
cond_data = context.conditioning.load(conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
flux_conditioning = flux_conditioning.to(dtype=dtype)
t5_embeddings = flux_conditioning.t5_embeds
clip_embeddings = flux_conditioning.clip_embeds
return t5_embeddings, clip_embeddings
def _run_diffusion(
self,
context: InvocationContext,
):
inference_dtype = torch.bfloat16
# Load the conditioning data.
pos_t5_embeddings, pos_clip_embeddings = self._load_text_conditioning(
context, self.positive_text_conditioning.conditioning_name, inference_dtype
)
neg_t5_embeddings: torch.Tensor | None = None
neg_clip_embeddings: torch.Tensor | None = None
if self.negative_text_conditioning is not None:
neg_t5_embeddings, neg_clip_embeddings = self._load_text_conditioning(
context, self.negative_text_conditioning.conditioning_name, inference_dtype
)
# Load the input latents, if provided.
init_latents = context.tensors.load(self.latents.latents_name) if self.latents else None
if init_latents is not None:
@@ -161,45 +182,15 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
dtype=inference_dtype,
seed=self.seed,
)
b, _c, latent_h, latent_w = noise.shape
packed_h = latent_h // 2
packed_w = latent_w // 2
# Load the conditioning data.
pos_text_conditionings = self._load_text_conditioning(
context=context,
cond_field=self.positive_text_conditioning,
packed_height=packed_h,
packed_width=packed_w,
dtype=inference_dtype,
device=TorchDevice.choose_torch_device(),
)
neg_text_conditionings: list[FluxTextConditioning] | None = None
if self.negative_text_conditioning is not None:
neg_text_conditionings = self._load_text_conditioning(
context=context,
cond_field=self.negative_text_conditioning,
packed_height=packed_h,
packed_width=packed_w,
dtype=inference_dtype,
device=TorchDevice.choose_torch_device(),
)
pos_regional_prompting_extension = RegionalPromptingExtension.from_text_conditioning(
pos_text_conditionings, img_seq_len=packed_h * packed_w
)
neg_regional_prompting_extension = (
RegionalPromptingExtension.from_text_conditioning(neg_text_conditionings, img_seq_len=packed_h * packed_w)
if neg_text_conditionings
else None
)
transformer_info = context.models.load(self.transformer.transformer)
is_schnell = "schnell" in transformer_info.config.config_path
# Calculate the timestep schedule.
image_seq_len = noise.shape[-1] * noise.shape[-2] // 4
timesteps = get_schedule(
num_steps=self.num_steps,
image_seq_len=packed_h * packed_w,
image_seq_len=image_seq_len,
shift=not is_schnell,
)
@@ -216,12 +207,9 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"to be poor. Consider using a FLUX dev model instead."
)
if self.add_noise:
# Noise the orig_latents by the appropriate amount for the first timestep.
t_0 = timesteps[0]
x = t_0 * noise + (1.0 - t_0) * init_latents
else:
x = init_latents
# Noise the orig_latents by the appropriate amount for the first timestep.
t_0 = timesteps[0]
x = t_0 * noise + (1.0 - t_0) * init_latents
else:
# init_latents are not provided, so we are not doing image-to-image (i.e. we are starting from pure noise).
if self.denoising_start > 1e-5:
@@ -236,17 +224,28 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
inpaint_mask = self._prep_inpaint_mask(context, x)
b, _c, latent_h, latent_w = x.shape
img_ids = generate_img_ids(h=latent_h, w=latent_w, batch_size=b, device=x.device, dtype=x.dtype)
pos_bs, pos_t5_seq_len, _ = pos_t5_embeddings.shape
pos_txt_ids = torch.zeros(
pos_bs, pos_t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device()
)
neg_txt_ids: torch.Tensor | None = None
if neg_t5_embeddings is not None:
neg_bs, neg_t5_seq_len, _ = neg_t5_embeddings.shape
neg_txt_ids = torch.zeros(
neg_bs, neg_t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device()
)
# Pack all latent tensors.
init_latents = pack(init_latents) if init_latents is not None else None
inpaint_mask = pack(inpaint_mask) if inpaint_mask is not None else None
noise = pack(noise)
x = pack(x)
# Now that we have 'packed' the latent tensors, verify that we calculated the image_seq_len, packed_h, and
# packed_w correctly.
assert packed_h * packed_w == x.shape[1]
# Now that we have 'packed' the latent tensors, verify that we calculated the image_seq_len correctly.
assert image_seq_len == x.shape[1]
# Prepare inpaint extension.
inpaint_extension: InpaintExtension | None = None
@@ -335,8 +334,12 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
model=transformer,
img=x,
img_ids=img_ids,
pos_regional_prompting_extension=pos_regional_prompting_extension,
neg_regional_prompting_extension=neg_regional_prompting_extension,
txt=pos_t5_embeddings,
txt_ids=pos_txt_ids,
vec=pos_clip_embeddings,
neg_txt=neg_t5_embeddings,
neg_txt_ids=neg_txt_ids,
neg_vec=neg_clip_embeddings,
timesteps=timesteps,
step_callback=self._build_step_callback(context),
guidance=self.guidance,
@@ -350,43 +353,6 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
x = unpack(x.float(), self.height, self.width)
return x
def _load_text_conditioning(
self,
context: InvocationContext,
cond_field: FluxConditioningField | list[FluxConditioningField],
packed_height: int,
packed_width: int,
dtype: torch.dtype,
device: torch.device,
) -> list[FluxTextConditioning]:
"""Load text conditioning data from a FluxConditioningField or a list of FluxConditioningFields."""
# Normalize to a list of FluxConditioningFields.
cond_list = [cond_field] if isinstance(cond_field, FluxConditioningField) else cond_field
text_conditionings: list[FluxTextConditioning] = []
for cond_field in cond_list:
# Load the text embeddings.
cond_data = context.conditioning.load(cond_field.conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
flux_conditioning = flux_conditioning.to(dtype=dtype, device=device)
t5_embeddings = flux_conditioning.t5_embeds
clip_embeddings = flux_conditioning.clip_embeds
# Load the mask, if provided.
mask: Optional[torch.Tensor] = None
if cond_field.mask is not None:
mask = context.tensors.load(cond_field.mask.tensor_name)
mask = mask.to(device=device)
mask = RegionalPromptingExtension.preprocess_regional_prompt_mask(
mask, packed_height, packed_width, dtype, device
)
text_conditionings.append(FluxTextConditioning(t5_embeddings, clip_embeddings, mask))
return text_conditionings
@classmethod
def prep_cfg_scale(
cls, cfg_scale: float | list[float], timesteps: list[float], cfg_scale_start_step: int, cfg_scale_end_step: int

View File

@@ -11,10 +11,7 @@ from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.util import max_seq_lengths
from invokeai.backend.model_manager.config import (
CheckpointConfigBase,
SubModelType,
)
from invokeai.backend.model_manager.config import CheckpointConfigBase, SubModelType
@invocation_output("flux_model_loader_output")

View File

@@ -1,18 +1,11 @@
from contextlib import ExitStack
from typing import Iterator, Literal, Optional, Tuple
from typing import Iterator, Literal, Tuple
import torch
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxConditioningField,
Input,
InputField,
TensorField,
UIComponent,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import FluxConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
@@ -29,7 +22,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import Condit
title="FLUX Text Encoding",
tags=["prompt", "conditioning", "flux"],
category="conditioning",
version="1.1.1",
version="1.1.0",
classification=Classification.Prototype,
)
class FluxTextEncoderInvocation(BaseInvocation):
@@ -48,10 +41,7 @@ class FluxTextEncoderInvocation(BaseInvocation):
t5_max_seq_len: Literal[256, 512] = InputField(
description="Max sequence length for the T5 encoder. Expected to be 256 for FLUX schnell models and 512 for FLUX dev models."
)
prompt: str = InputField(description="Text prompt to encode.", ui_component=UIComponent.Textarea)
mask: Optional[TensorField] = InputField(
default=None, description="A mask defining the region that this conditioning prompt applies to."
)
prompt: str = InputField(description="Text prompt to encode.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> FluxConditioningOutput:
@@ -64,9 +54,7 @@ class FluxTextEncoderInvocation(BaseInvocation):
)
conditioning_name = context.conditioning.save(conditioning_data)
return FluxConditioningOutput(
conditioning=FluxConditioningField(conditioning_name=conditioning_name, mask=self.mask)
)
return FluxConditioningOutput.build(conditioning_name)
def _t5_encode(self, context: InvocationContext) -> torch.Tensor:
t5_tokenizer_info = context.models.load(self.t5_encoder.tokenizer)
@@ -83,7 +71,6 @@ class FluxTextEncoderInvocation(BaseInvocation):
t5_encoder = HFEncoder(t5_text_encoder, t5_tokenizer, False, self.t5_max_seq_len)
context.util.signal_progress("Running T5 encoder")
prompt_embeds = t5_encoder(prompt)
assert isinstance(prompt_embeds, torch.Tensor)
@@ -124,7 +111,6 @@ class FluxTextEncoderInvocation(BaseInvocation):
clip_encoder = HFEncoder(clip_text_encoder, clip_tokenizer, True, 77)
context.util.signal_progress("Running CLIP encoder")
pooled_prompt_embeds = clip_encoder(prompt)
assert isinstance(pooled_prompt_embeds, torch.Tensor)

View File

@@ -41,8 +41,7 @@ class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
def _vae_decode(self, vae_info: LoadedModel, latents: torch.Tensor) -> Image.Image:
with vae_info as vae:
assert isinstance(vae, AutoEncoder)
vae_dtype = next(iter(vae.parameters())).dtype
latents = latents.to(device=TorchDevice.choose_torch_device(), dtype=vae_dtype)
latents = latents.to(device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype())
img = vae.decode(latents)
img = img.clamp(-1, 1)
@@ -54,7 +53,6 @@ class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
context.util.signal_progress("Running VAE")
image = self._vae_decode(vae_info=vae_info, latents=latents)
TorchDevice.empty_cache()

View File

@@ -44,8 +44,9 @@ class FluxVaeEncodeInvocation(BaseInvocation):
generator = torch.Generator(device=TorchDevice.choose_torch_device()).manual_seed(0)
with vae_info as vae:
assert isinstance(vae, AutoEncoder)
vae_dtype = next(iter(vae.parameters())).dtype
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=vae_dtype)
image_tensor = image_tensor.to(
device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype()
)
latents = vae.encode(image_tensor, sample=True, generator=generator)
return latents
@@ -59,7 +60,6 @@ class FluxVaeEncodeInvocation(BaseInvocation):
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
context.util.signal_progress("Running VAE")
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
latents = latents.to("cpu")

View File

@@ -1,59 +0,0 @@
from pydantic import ValidationInfo, field_validator
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import InputField, OutputField
from invokeai.app.services.shared.invocation_context import InvocationContext
@invocation_output("image_panel_coordinate_output")
class ImagePanelCoordinateOutput(BaseInvocationOutput):
x_left: int = OutputField(description="The left x-coordinate of the panel.")
y_top: int = OutputField(description="The top y-coordinate of the panel.")
width: int = OutputField(description="The width of the panel.")
height: int = OutputField(description="The height of the panel.")
@invocation(
"image_panel_layout",
title="Image Panel Layout",
tags=["image", "panel", "layout"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class ImagePanelLayoutInvocation(BaseInvocation):
"""Get the coordinates of a single panel in a grid. (If the full image shape cannot be divided evenly into panels,
then the grid may not cover the entire image.)
"""
width: int = InputField(description="The width of the entire grid.")
height: int = InputField(description="The height of the entire grid.")
num_cols: int = InputField(ge=1, default=1, description="The number of columns in the grid.")
num_rows: int = InputField(ge=1, default=1, description="The number of rows in the grid.")
panel_col_idx: int = InputField(ge=0, default=0, description="The column index of the panel to be processed.")
panel_row_idx: int = InputField(ge=0, default=0, description="The row index of the panel to be processed.")
@field_validator("panel_col_idx")
def validate_panel_col_idx(cls, v: int, info: ValidationInfo) -> int:
if v < 0 or v >= info.data["num_cols"]:
raise ValueError(f"panel_col_idx must be between 0 and {info.data['num_cols'] - 1}")
return v
@field_validator("panel_row_idx")
def validate_panel_row_idx(cls, v: int, info: ValidationInfo) -> int:
if v < 0 or v >= info.data["num_rows"]:
raise ValueError(f"panel_row_idx must be between 0 and {info.data['num_rows'] - 1}")
return v
def invoke(self, context: InvocationContext) -> ImagePanelCoordinateOutput:
x_left = self.panel_col_idx * (self.width // self.num_cols)
y_top = self.panel_row_idx * (self.height // self.num_rows)
width = self.width // self.num_cols
height = self.height // self.num_rows
return ImagePanelCoordinateOutput(x_left=x_left, y_top=y_top, width=width, height=height)

View File

@@ -117,7 +117,6 @@ class ImageToLatentsInvocation(BaseInvocation):
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
context.util.signal_progress("Running VAE encoder")
latents = self.vae_encode(
vae_info=vae_info, upcast=self.fp32, tiled=self.tiled, image_tensor=image_tensor, tile_size=self.tile_size
)

View File

@@ -60,7 +60,6 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
with SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes), vae_info as vae:
context.util.signal_progress("Running VAE decoder")
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
latents = latents.to(vae.device)
if self.fp32:

View File

@@ -165,7 +165,6 @@ class ApplyMaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
mask: TensorField = InputField(description="The mask tensor to apply.")
image: ImageField = InputField(description="The image to apply the mask to.")
invert: bool = InputField(default=False, description="Whether to invert the mask.")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, mode="RGBA")
@@ -180,9 +179,6 @@ class ApplyMaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
mask = mask > 0.5
mask_np = (mask.float() * 255).byte().cpu().numpy().astype(np.uint8)
if self.invert:
mask_np = 255 - mask_np
# Apply the mask only to the alpha channel where the original alpha is non-zero. This preserves the original
# image's transparency - else the transparent regions would end up as opaque black.

View File

@@ -147,10 +147,6 @@ GENERATION_MODES = Literal[
"flux_img2img",
"flux_inpaint",
"flux_outpaint",
"sd3_txt2img",
"sd3_img2img",
"sd3_inpaint",
"sd3_outpaint",
]

View File

@@ -1,4 +1,43 @@
import io
from typing import Literal, Optional
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image
from easing_functions import (
BackEaseIn,
BackEaseInOut,
BackEaseOut,
BounceEaseIn,
BounceEaseInOut,
BounceEaseOut,
CircularEaseIn,
CircularEaseInOut,
CircularEaseOut,
CubicEaseIn,
CubicEaseInOut,
CubicEaseOut,
ElasticEaseIn,
ElasticEaseInOut,
ElasticEaseOut,
ExponentialEaseIn,
ExponentialEaseInOut,
ExponentialEaseOut,
LinearInOut,
QuadEaseIn,
QuadEaseInOut,
QuadEaseOut,
QuarticEaseIn,
QuarticEaseInOut,
QuarticEaseOut,
QuinticEaseIn,
QuinticEaseInOut,
QuinticEaseOut,
SineEaseIn,
SineEaseInOut,
SineEaseOut,
)
from matplotlib.ticker import MaxNLocator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import InputField
@@ -26,3 +65,191 @@ class FloatLinearRangeInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
param_list = list(np.linspace(self.start, self.stop, self.steps))
return FloatCollectionOutput(collection=param_list)
EASING_FUNCTIONS_MAP = {
"Linear": LinearInOut,
"QuadIn": QuadEaseIn,
"QuadOut": QuadEaseOut,
"QuadInOut": QuadEaseInOut,
"CubicIn": CubicEaseIn,
"CubicOut": CubicEaseOut,
"CubicInOut": CubicEaseInOut,
"QuarticIn": QuarticEaseIn,
"QuarticOut": QuarticEaseOut,
"QuarticInOut": QuarticEaseInOut,
"QuinticIn": QuinticEaseIn,
"QuinticOut": QuinticEaseOut,
"QuinticInOut": QuinticEaseInOut,
"SineIn": SineEaseIn,
"SineOut": SineEaseOut,
"SineInOut": SineEaseInOut,
"CircularIn": CircularEaseIn,
"CircularOut": CircularEaseOut,
"CircularInOut": CircularEaseInOut,
"ExponentialIn": ExponentialEaseIn,
"ExponentialOut": ExponentialEaseOut,
"ExponentialInOut": ExponentialEaseInOut,
"ElasticIn": ElasticEaseIn,
"ElasticOut": ElasticEaseOut,
"ElasticInOut": ElasticEaseInOut,
"BackIn": BackEaseIn,
"BackOut": BackEaseOut,
"BackInOut": BackEaseInOut,
"BounceIn": BounceEaseIn,
"BounceOut": BounceEaseOut,
"BounceInOut": BounceEaseInOut,
}
EASING_FUNCTION_KEYS = Literal[tuple(EASING_FUNCTIONS_MAP.keys())]
# actually I think for now could just use CollectionOutput (which is list[Any]
@invocation(
"step_param_easing",
title="Step Param Easing",
tags=["step", "easing"],
category="step",
version="1.0.2",
)
class StepParamEasingInvocation(BaseInvocation):
"""Experimental per-step parameter easing for denoising steps"""
easing: EASING_FUNCTION_KEYS = InputField(default="Linear", description="The easing function to use")
num_steps: int = InputField(default=20, description="number of denoising steps")
start_value: float = InputField(default=0.0, description="easing starting value")
end_value: float = InputField(default=1.0, description="easing ending value")
start_step_percent: float = InputField(default=0.0, description="fraction of steps at which to start easing")
end_step_percent: float = InputField(default=1.0, description="fraction of steps after which to end easing")
# if None, then start_value is used prior to easing start
pre_start_value: Optional[float] = InputField(default=None, description="value before easing start")
# if None, then end value is used prior to easing end
post_end_value: Optional[float] = InputField(default=None, description="value after easing end")
mirror: bool = InputField(default=False, description="include mirror of easing function")
# FIXME: add alt_mirror option (alternative to default or mirror), or remove entirely
# alt_mirror: bool = InputField(default=False, description="alternative mirroring by dual easing")
show_easing_plot: bool = InputField(default=False, description="show easing plot")
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
log_diagnostics = False
# convert from start_step_percent to nearest step <= (steps * start_step_percent)
# start_step = int(np.floor(self.num_steps * self.start_step_percent))
start_step = int(np.round(self.num_steps * self.start_step_percent))
# convert from end_step_percent to nearest step >= (steps * end_step_percent)
# end_step = int(np.ceil((self.num_steps - 1) * self.end_step_percent))
end_step = int(np.round((self.num_steps - 1) * self.end_step_percent))
# end_step = int(np.ceil(self.num_steps * self.end_step_percent))
num_easing_steps = end_step - start_step + 1
# num_presteps = max(start_step - 1, 0)
num_presteps = start_step
num_poststeps = self.num_steps - (num_presteps + num_easing_steps)
prelist = list(num_presteps * [self.pre_start_value])
postlist = list(num_poststeps * [self.post_end_value])
if log_diagnostics:
context.logger.debug("start_step: " + str(start_step))
context.logger.debug("end_step: " + str(end_step))
context.logger.debug("num_easing_steps: " + str(num_easing_steps))
context.logger.debug("num_presteps: " + str(num_presteps))
context.logger.debug("num_poststeps: " + str(num_poststeps))
context.logger.debug("prelist size: " + str(len(prelist)))
context.logger.debug("postlist size: " + str(len(postlist)))
context.logger.debug("prelist: " + str(prelist))
context.logger.debug("postlist: " + str(postlist))
easing_class = EASING_FUNCTIONS_MAP[self.easing]
if log_diagnostics:
context.logger.debug("easing class: " + str(easing_class))
easing_list = []
if self.mirror: # "expected" mirroring
# if number of steps is even, squeeze duration down to (number_of_steps)/2
# and create reverse copy of list to append
# if number of steps is odd, squeeze duration down to ceil(number_of_steps/2)
# and create reverse copy of list[1:end-1]
# but if even then number_of_steps/2 === ceil(number_of_steps/2), so can just use ceil always
base_easing_duration = int(np.ceil(num_easing_steps / 2.0))
if log_diagnostics:
context.logger.debug("base easing duration: " + str(base_easing_duration))
even_num_steps = num_easing_steps % 2 == 0 # even number of steps
easing_function = easing_class(
start=self.start_value,
end=self.end_value,
duration=base_easing_duration - 1,
)
base_easing_vals = []
for step_index in range(base_easing_duration):
easing_val = easing_function.ease(step_index)
base_easing_vals.append(easing_val)
if log_diagnostics:
context.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(easing_val))
if even_num_steps:
mirror_easing_vals = list(reversed(base_easing_vals))
else:
mirror_easing_vals = list(reversed(base_easing_vals[0:-1]))
if log_diagnostics:
context.logger.debug("base easing vals: " + str(base_easing_vals))
context.logger.debug("mirror easing vals: " + str(mirror_easing_vals))
easing_list = base_easing_vals + mirror_easing_vals
# FIXME: add alt_mirror option (alternative to default or mirror), or remove entirely
# elif self.alt_mirror: # function mirroring (unintuitive behavior (at least to me))
# # half_ease_duration = round(num_easing_steps - 1 / 2)
# half_ease_duration = round((num_easing_steps - 1) / 2)
# easing_function = easing_class(start=self.start_value,
# end=self.end_value,
# duration=half_ease_duration,
# )
#
# mirror_function = easing_class(start=self.end_value,
# end=self.start_value,
# duration=half_ease_duration,
# )
# for step_index in range(num_easing_steps):
# if step_index <= half_ease_duration:
# step_val = easing_function.ease(step_index)
# else:
# step_val = mirror_function.ease(step_index - half_ease_duration)
# easing_list.append(step_val)
# if log_diagnostics: logger.debug(step_index, step_val)
#
else: # no mirroring (default)
easing_function = easing_class(
start=self.start_value,
end=self.end_value,
duration=num_easing_steps - 1,
)
for step_index in range(num_easing_steps):
step_val = easing_function.ease(step_index)
easing_list.append(step_val)
if log_diagnostics:
context.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(step_val))
if log_diagnostics:
context.logger.debug("prelist size: " + str(len(prelist)))
context.logger.debug("easing_list size: " + str(len(easing_list)))
context.logger.debug("postlist size: " + str(len(postlist)))
param_list = prelist + easing_list + postlist
if self.show_easing_plot:
plt.figure()
plt.xlabel("Step")
plt.ylabel("Param Value")
plt.title("Per-Step Values Based On Easing: " + self.easing)
plt.bar(range(len(param_list)), param_list)
# plt.plot(param_list)
ax = plt.gca()
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
buf = io.BytesIO()
plt.savefig(buf, format="png")
buf.seek(0)
im = PIL.Image.open(buf)
im.show()
buf.close()
# output array of size steps, each entry list[i] is param value for step i
return FloatCollectionOutput(collection=param_list)

View File

@@ -4,13 +4,7 @@ from typing import Optional
import torch
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
BoundingBoxField,
@@ -24,7 +18,6 @@ from invokeai.app.invocations.fields import (
InputField,
LatentsField,
OutputField,
SD3ConditioningField,
TensorField,
UIComponent,
)
@@ -433,17 +426,6 @@ class FluxConditioningOutput(BaseInvocationOutput):
return cls(conditioning=FluxConditioningField(conditioning_name=conditioning_name))
@invocation_output("sd3_conditioning_output")
class SD3ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single SD3 conditioning tensor"""
conditioning: SD3ConditioningField = OutputField(description=FieldDescriptions.cond)
@classmethod
def build(cls, conditioning_name: str) -> "SD3ConditioningOutput":
return cls(conditioning=SD3ConditioningField(conditioning_name=conditioning_name))
@invocation_output("conditioning_output")
class ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single conditioning tensor"""
@@ -539,23 +521,3 @@ class BoundingBoxInvocation(BaseInvocation):
# endregion
@invocation(
"image_batch",
title="Image Batch",
tags=["primitives", "image", "batch", "internal"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class ImageBatchInvocation(BaseInvocation):
"""Create a batched generation, where the workflow is executed once for each image in the batch."""
images: list[ImageField] = InputField(min_length=1, description="The images to batch over", input=Input.Direct)
def __init__(self):
raise NotImplementedError("This class should never be executed or instantiated directly.")
def invoke(self, context: InvocationContext) -> ImageOutput:
raise NotImplementedError("This class should never be executed or instantiated directly.")

View File

@@ -1,338 +0,0 @@
from typing import Callable, Optional, Tuple
import torch
import torchvision.transforms as tv_transforms
from diffusers.models.transformers.transformer_sd3 import SD3Transformer2DModel
from torchvision.transforms.functional import resize as tv_resize
from tqdm import tqdm
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
DenoiseMaskField,
FieldDescriptions,
Input,
InputField,
LatentsField,
SD3ConditioningField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import TransformerField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.invocations.sd3_text_encoder import SD3_T5_MAX_SEQ_LEN
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.sampling_utils import clip_timestep_schedule_fractional
from invokeai.backend.model_manager.config import BaseModelType
from invokeai.backend.sd3.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import SD3ConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@invocation(
"sd3_denoise",
title="SD3 Denoise",
tags=["image", "sd3"],
category="image",
version="1.1.0",
classification=Classification.Prototype,
)
class SD3DenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Run denoising process with a SD3 model."""
# If latents is provided, this means we are doing image-to-image.
latents: Optional[LatentsField] = InputField(
default=None, description=FieldDescriptions.latents, input=Input.Connection
)
# denoise_mask is used for image-to-image inpainting. Only the masked region is modified.
denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None, description=FieldDescriptions.denoise_mask, input=Input.Connection
)
denoising_start: float = InputField(default=0.0, ge=0, le=1, description=FieldDescriptions.denoising_start)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
transformer: TransformerField = InputField(
description=FieldDescriptions.sd3_model, input=Input.Connection, title="Transformer"
)
positive_conditioning: SD3ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
negative_conditioning: SD3ConditioningField = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection
)
cfg_scale: float | list[float] = InputField(default=3.5, description=FieldDescriptions.cfg_scale, title="CFG Scale")
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = self._run_diffusion(context)
latents = latents.detach().to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
def _prep_inpaint_mask(self, context: InvocationContext, latents: torch.Tensor) -> torch.Tensor | None:
"""Prepare the inpaint mask.
- Loads the mask
- Resizes if necessary
- Casts to same device/dtype as latents
Args:
context (InvocationContext): The invocation context, for loading the inpaint mask.
latents (torch.Tensor): A latent image tensor. Used to determine the target shape, device, and dtype for the
inpaint mask.
Returns:
torch.Tensor | None: Inpaint mask. Values of 0.0 represent the regions to be fully denoised, and 1.0
represent the regions to be preserved.
"""
if self.denoise_mask is None:
return None
mask = context.tensors.load(self.denoise_mask.mask_name)
# The input denoise_mask contains values in [0, 1], where 0.0 represents the regions to be fully denoised, and
# 1.0 represents the regions to be preserved.
# We invert the mask so that the regions to be preserved are 0.0 and the regions to be denoised are 1.0.
mask = 1.0 - mask
_, _, latent_height, latent_width = latents.shape
mask = tv_resize(
img=mask,
size=[latent_height, latent_width],
interpolation=tv_transforms.InterpolationMode.BILINEAR,
antialias=False,
)
mask = mask.to(device=latents.device, dtype=latents.dtype)
return mask
def _load_text_conditioning(
self,
context: InvocationContext,
conditioning_name: str,
joint_attention_dim: int,
dtype: torch.dtype,
device: torch.device,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Load the conditioning data.
cond_data = context.conditioning.load(conditioning_name)
assert len(cond_data.conditionings) == 1
sd3_conditioning = cond_data.conditionings[0]
assert isinstance(sd3_conditioning, SD3ConditioningInfo)
sd3_conditioning = sd3_conditioning.to(dtype=dtype, device=device)
t5_embeds = sd3_conditioning.t5_embeds
if t5_embeds is None:
t5_embeds = torch.zeros(
(1, SD3_T5_MAX_SEQ_LEN, joint_attention_dim),
device=device,
dtype=dtype,
)
clip_prompt_embeds = torch.cat([sd3_conditioning.clip_l_embeds, sd3_conditioning.clip_g_embeds], dim=-1)
clip_prompt_embeds = torch.nn.functional.pad(
clip_prompt_embeds, (0, t5_embeds.shape[-1] - clip_prompt_embeds.shape[-1])
)
prompt_embeds = torch.cat([clip_prompt_embeds, t5_embeds], dim=-2)
pooled_prompt_embeds = torch.cat(
[sd3_conditioning.clip_l_pooled_embeds, sd3_conditioning.clip_g_pooled_embeds], dim=-1
)
return prompt_embeds, pooled_prompt_embeds
def _get_noise(
self,
num_samples: int,
num_channels_latents: int,
height: int,
width: int,
dtype: torch.dtype,
device: torch.device,
seed: int,
) -> torch.Tensor:
# We always generate noise on the same device and dtype then cast to ensure consistency across devices/dtypes.
rand_device = "cpu"
rand_dtype = torch.float16
return torch.randn(
num_samples,
num_channels_latents,
int(height) // LATENT_SCALE_FACTOR,
int(width) // LATENT_SCALE_FACTOR,
device=rand_device,
dtype=rand_dtype,
generator=torch.Generator(device=rand_device).manual_seed(seed),
).to(device=device, dtype=dtype)
def _prepare_cfg_scale(self, num_timesteps: int) -> list[float]:
"""Prepare the CFG scale list.
Args:
num_timesteps (int): The number of timesteps in the scheduler. Could be different from num_steps depending
on the scheduler used (e.g. higher order schedulers).
Returns:
list[float]: _description_
"""
if isinstance(self.cfg_scale, float):
cfg_scale = [self.cfg_scale] * num_timesteps
elif isinstance(self.cfg_scale, list):
assert len(self.cfg_scale) == num_timesteps
cfg_scale = self.cfg_scale
else:
raise ValueError(f"Invalid CFG scale type: {type(self.cfg_scale)}")
return cfg_scale
def _run_diffusion(
self,
context: InvocationContext,
):
inference_dtype = TorchDevice.choose_torch_dtype()
device = TorchDevice.choose_torch_device()
transformer_info = context.models.load(self.transformer.transformer)
# Load/process the conditioning data.
# TODO(ryand): Make CFG optional.
do_classifier_free_guidance = True
pos_prompt_embeds, pos_pooled_prompt_embeds = self._load_text_conditioning(
context=context,
conditioning_name=self.positive_conditioning.conditioning_name,
joint_attention_dim=transformer_info.model.config.joint_attention_dim,
dtype=inference_dtype,
device=device,
)
neg_prompt_embeds, neg_pooled_prompt_embeds = self._load_text_conditioning(
context=context,
conditioning_name=self.negative_conditioning.conditioning_name,
joint_attention_dim=transformer_info.model.config.joint_attention_dim,
dtype=inference_dtype,
device=device,
)
# TODO(ryand): Support both sequential and batched CFG inference.
prompt_embeds = torch.cat([neg_prompt_embeds, pos_prompt_embeds], dim=0)
pooled_prompt_embeds = torch.cat([neg_pooled_prompt_embeds, pos_pooled_prompt_embeds], dim=0)
# Prepare the timestep schedule.
# We add an extra step to the end to account for the final timestep of 0.0.
timesteps: list[float] = torch.linspace(1, 0, self.steps + 1).tolist()
# Clip the timesteps schedule based on denoising_start and denoising_end.
timesteps = clip_timestep_schedule_fractional(timesteps, self.denoising_start, self.denoising_end)
total_steps = len(timesteps) - 1
# Prepare the CFG scale list.
cfg_scale = self._prepare_cfg_scale(total_steps)
# Load the input latents, if provided.
init_latents = context.tensors.load(self.latents.latents_name) if self.latents else None
if init_latents is not None:
init_latents = init_latents.to(device=device, dtype=inference_dtype)
# Generate initial latent noise.
num_channels_latents = transformer_info.model.config.in_channels
assert isinstance(num_channels_latents, int)
noise = self._get_noise(
num_samples=1,
num_channels_latents=num_channels_latents,
height=self.height,
width=self.width,
dtype=inference_dtype,
device=device,
seed=self.seed,
)
# Prepare input latent image.
if init_latents is not None:
# Noise the init_latents by the appropriate amount for the first timestep.
t_0 = timesteps[0]
latents = t_0 * noise + (1.0 - t_0) * init_latents
else:
# init_latents are not provided, so we are not doing image-to-image (i.e. we are starting from pure noise).
if self.denoising_start > 1e-5:
raise ValueError("denoising_start should be 0 when initial latents are not provided.")
latents = noise
# If len(timesteps) == 1, then short-circuit. We are just noising the input latents, but not taking any
# denoising steps.
if len(timesteps) <= 1:
return latents
# Prepare inpaint extension.
inpaint_mask = self._prep_inpaint_mask(context, latents)
inpaint_extension: InpaintExtension | None = None
if inpaint_mask is not None:
assert init_latents is not None
inpaint_extension = InpaintExtension(
init_latents=init_latents,
inpaint_mask=inpaint_mask,
noise=noise,
)
step_callback = self._build_step_callback(context)
step_callback(
PipelineIntermediateState(
step=0,
order=1,
total_steps=total_steps,
timestep=int(timesteps[0]),
latents=latents,
),
)
with transformer_info.model_on_device() as (cached_weights, transformer):
assert isinstance(transformer, SD3Transformer2DModel)
# 6. Denoising loop
for step_idx, (t_curr, t_prev) in tqdm(list(enumerate(zip(timesteps[:-1], timesteps[1:], strict=True)))):
# Expand the latents if we are doing CFG.
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
# Expand the timestep to match the latent model input.
# Multiply by 1000 to match the default FlowMatchEulerDiscreteScheduler num_train_timesteps.
timestep = torch.tensor([t_curr * 1000], device=device).expand(latent_model_input.shape[0])
noise_pred = transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
pooled_projections=pooled_prompt_embeds,
joint_attention_kwargs=None,
return_dict=False,
)[0]
# Apply CFG.
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + cfg_scale[step_idx] * (noise_pred_cond - noise_pred_uncond)
# Compute the previous noisy sample x_t -> x_t-1.
latents_dtype = latents.dtype
latents = latents.to(dtype=torch.float32)
latents = latents + (t_prev - t_curr) * noise_pred
latents = latents.to(dtype=latents_dtype)
if inpaint_extension is not None:
latents = inpaint_extension.merge_intermediate_latents_with_init_latents(latents, t_prev)
step_callback(
PipelineIntermediateState(
step=step_idx + 1,
order=1,
total_steps=total_steps,
timestep=int(t_curr),
latents=latents,
),
)
return latents
def _build_step_callback(self, context: InvocationContext) -> Callable[[PipelineIntermediateState], None]:
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, BaseModelType.StableDiffusion3)
return step_callback

View File

@@ -1,65 +0,0 @@
import einops
import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
Input,
InputField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
@invocation(
"sd3_i2l",
title="SD3 Image to Latents",
tags=["image", "latents", "vae", "i2l", "sd3"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class SD3ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates latents from an image."""
image: ImageField = InputField(description="The image to encode")
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection)
@staticmethod
def vae_encode(vae_info: LoadedModel, image_tensor: torch.Tensor) -> torch.Tensor:
with vae_info as vae:
assert isinstance(vae, AutoencoderKL)
vae.disable_tiling()
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
with torch.inference_mode():
image_tensor_dist = vae.encode(image_tensor).latent_dist
# TODO: Use seed to make sampling reproducible.
latents: torch.Tensor = image_tensor_dist.sample().to(dtype=vae.dtype)
latents = vae.config.scaling_factor * latents
return latents
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.images.get_pil(self.image.image_name)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
vae_info = context.models.load(self.vae.vae)
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
latents = latents.to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)

View File

@@ -1,74 +0,0 @@
from contextlib import nullcontext
import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.util.devices import TorchDevice
@invocation(
"sd3_l2i",
title="SD3 Latents to Image",
tags=["latents", "image", "vae", "l2i", "sd3"],
category="latents",
version="1.3.0",
)
class SD3LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL))
with SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes), vae_info as vae:
context.util.signal_progress("Running VAE")
assert isinstance(vae, (AutoencoderKL))
latents = latents.to(vae.device)
vae.disable_tiling()
tiling_context = nullcontext()
# clear memory as vae decode can request a lot
TorchDevice.empty_cache()
with torch.inference_mode(), tiling_context:
# copied from diffusers pipeline
latents = latents / vae.config.scaling_factor
img = vae.decode(latents, return_dict=False)[0]
img = img.clamp(-1, 1)
img = rearrange(img[0], "c h w -> h w c") # noqa: F821
img_pil = Image.fromarray((127.5 * (img + 1.0)).byte().cpu().numpy())
TorchDevice.empty_cache()
image_dto = context.images.save(image=img_pil)
return ImageOutput.build(image_dto)

View File

@@ -1,5 +1,3 @@
from typing import Optional
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
@@ -10,14 +8,14 @@ from invokeai.app.invocations.baseinvocation import (
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import SubModelType
from invokeai.backend.model_manager.config import CheckpointConfigBase, SubModelType
@invocation_output("sd3_model_loader_output")
class Sd3ModelLoaderOutput(BaseInvocationOutput):
"""SD3 base model loader output."""
transformer: TransformerField = OutputField(description=FieldDescriptions.transformer, title="Transformer")
mmditx: TransformerField = OutputField(description=FieldDescriptions.mmditx, title="MMDiTX")
clip_l: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP L")
clip_g: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP G")
t5_encoder: T5EncoderField = OutputField(description=FieldDescriptions.t5_encoder, title="T5 Encoder")
@@ -35,72 +33,68 @@ class Sd3ModelLoaderOutput(BaseInvocationOutput):
class Sd3ModelLoaderInvocation(BaseInvocation):
"""Loads a SD3 base model, outputting its submodels."""
# TODO(ryand): Create a UIType.Sd3MainModelField to use here.
model: ModelIdentifierField = InputField(
description=FieldDescriptions.sd3_model,
ui_type=UIType.SD3MainModel,
ui_type=UIType.MainModel,
input=Input.Direct,
)
t5_encoder_model: Optional[ModelIdentifierField] = InputField(
description=FieldDescriptions.t5_encoder,
ui_type=UIType.T5EncoderModel,
input=Input.Direct,
title="T5 Encoder",
default=None,
# TODO(ryand): Make the text encoders optional.
# Note: The text encoders are optional for SD3. The model was trained with dropout, so any can be left out at
# inference time. Typically, only the T5 encoder is omitted, since it is the largest by far.
t5_encoder_model: ModelIdentifierField = InputField(
description=FieldDescriptions.t5_encoder, ui_type=UIType.T5EncoderModel, input=Input.Direct, title="T5 Encoder"
)
clip_l_model: Optional[ModelIdentifierField] = InputField(
clip_l_embed_model: ModelIdentifierField = InputField(
description=FieldDescriptions.clip_embed_model,
ui_type=UIType.CLIPLEmbedModel,
ui_type=UIType.CLIPEmbedModel,
input=Input.Direct,
title="CLIP L Encoder",
default=None,
title="CLIP L Embed",
)
clip_g_model: Optional[ModelIdentifierField] = InputField(
description=FieldDescriptions.clip_g_model,
ui_type=UIType.CLIPGEmbedModel,
clip_g_embed_model: ModelIdentifierField = InputField(
description=FieldDescriptions.clip_embed_model,
ui_type=UIType.CLIPEmbedModel,
input=Input.Direct,
title="CLIP G Encoder",
default=None,
title="CLIP G Embed",
)
vae_model: Optional[ModelIdentifierField] = InputField(
description=FieldDescriptions.vae_model, ui_type=UIType.VAEModel, title="VAE", default=None
# TODO(ryand): Create a UIType.Sd3VaModelField to use here.
vae_model: ModelIdentifierField = InputField(
description=FieldDescriptions.vae_model, ui_type=UIType.VAEModel, title="VAE"
)
def invoke(self, context: InvocationContext) -> Sd3ModelLoaderOutput:
transformer = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
vae = (
self.vae_model.model_copy(update={"submodel_type": SubModelType.VAE})
if self.vae_model
else self.model.model_copy(update={"submodel_type": SubModelType.VAE})
)
tokenizer_l = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
clip_encoder_l = (
self.clip_l_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
if self.clip_l_model
else self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
)
tokenizer_g = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
clip_encoder_g = (
self.clip_g_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
if self.clip_g_model
else self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
)
tokenizer_t5 = (
self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer3})
if self.t5_encoder_model
else self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer3})
)
t5_encoder = (
self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder3})
if self.t5_encoder_model
else self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder3})
)
for key in [
self.model.key,
self.t5_encoder_model.key,
self.clip_l_embed_model.key,
self.clip_g_embed_model.key,
self.vae_model.key,
]:
if not context.models.exists(key):
raise ValueError(f"Unknown model: {key}")
# TODO(ryand): Figure out the sub-model types for SD3.
mmditx = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
vae = self.vae_model.model_copy(update={"submodel_type": SubModelType.VAE})
tokenizer_l = self.clip_l_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
clip_encoder_l = self.clip_l_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer_g = self.clip_g_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
clip_encoder_g = self.clip_g_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer_t5 = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
t5_encoder = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
transformer_config = context.models.get_config(mmditx)
assert isinstance(transformer_config, CheckpointConfigBase)
return Sd3ModelLoaderOutput(
transformer=TransformerField(transformer=transformer, loras=[]),
mmditx=TransformerField(transformer=mmditx, loras=[]),
clip_l=CLIPField(tokenizer=tokenizer_l, text_encoder=clip_encoder_l, loras=[], skipped_layers=0),
clip_g=CLIPField(tokenizer=tokenizer_g, text_encoder=clip_encoder_g, loras=[], skipped_layers=0),
t5_encoder=T5EncoderField(tokenizer=tokenizer_t5, text_encoder=t5_encoder),

View File

@@ -1,201 +0,0 @@
from contextlib import ExitStack
from typing import Iterator, Tuple
import torch
from transformers import (
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
T5Tokenizer,
T5TokenizerFast,
)
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import SD3ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.lora.conversions.flux_lora_constants import FLUX_LORA_CLIP_PREFIX
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
from invokeai.backend.model_manager.config import ModelFormat
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, SD3ConditioningInfo
# The SD3 T5 Max Sequence Length set based on the default in diffusers.
SD3_T5_MAX_SEQ_LEN = 256
@invocation(
"sd3_text_encoder",
title="SD3 Text Encoding",
tags=["prompt", "conditioning", "sd3"],
category="conditioning",
version="1.0.0",
classification=Classification.Prototype,
)
class Sd3TextEncoderInvocation(BaseInvocation):
"""Encodes and preps a prompt for a SD3 image."""
clip_l: CLIPField = InputField(
title="CLIP L",
description=FieldDescriptions.clip,
input=Input.Connection,
)
clip_g: CLIPField = InputField(
title="CLIP G",
description=FieldDescriptions.clip,
input=Input.Connection,
)
# The SD3 models were trained with text encoder dropout, so the T5 encoder can be omitted to save time/memory.
t5_encoder: T5EncoderField | None = InputField(
title="T5Encoder",
default=None,
description=FieldDescriptions.t5_encoder,
input=Input.Connection,
)
prompt: str = InputField(description="Text prompt to encode.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> SD3ConditioningOutput:
# Note: The text encoding model are run in separate functions to ensure that all model references are locally
# scoped. This ensures that earlier models can be freed and gc'd before loading later models (if necessary).
clip_l_embeddings, clip_l_pooled_embeddings = self._clip_encode(context, self.clip_l)
clip_g_embeddings, clip_g_pooled_embeddings = self._clip_encode(context, self.clip_g)
t5_embeddings: torch.Tensor | None = None
if self.t5_encoder is not None:
t5_embeddings = self._t5_encode(context, SD3_T5_MAX_SEQ_LEN)
conditioning_data = ConditioningFieldData(
conditionings=[
SD3ConditioningInfo(
clip_l_embeds=clip_l_embeddings,
clip_l_pooled_embeds=clip_l_pooled_embeddings,
clip_g_embeds=clip_g_embeddings,
clip_g_pooled_embeds=clip_g_pooled_embeddings,
t5_embeds=t5_embeddings,
)
]
)
conditioning_name = context.conditioning.save(conditioning_data)
return SD3ConditioningOutput.build(conditioning_name)
def _t5_encode(self, context: InvocationContext, max_seq_len: int) -> torch.Tensor:
assert self.t5_encoder is not None
t5_tokenizer_info = context.models.load(self.t5_encoder.tokenizer)
t5_text_encoder_info = context.models.load(self.t5_encoder.text_encoder)
prompt = [self.prompt]
with (
t5_text_encoder_info as t5_text_encoder,
t5_tokenizer_info as t5_tokenizer,
):
context.util.signal_progress("Running T5 encoder")
assert isinstance(t5_text_encoder, T5EncoderModel)
assert isinstance(t5_tokenizer, (T5Tokenizer, T5TokenizerFast))
text_inputs = t5_tokenizer(
prompt,
padding="max_length",
max_length=max_seq_len,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = t5_tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
assert isinstance(text_input_ids, torch.Tensor)
assert isinstance(untruncated_ids, torch.Tensor)
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = t5_tokenizer.batch_decode(untruncated_ids[:, max_seq_len - 1 : -1])
context.logger.warning(
"The following part of your input was truncated because `max_sequence_length` is set to "
f" {max_seq_len} tokens: {removed_text}"
)
prompt_embeds = t5_text_encoder(text_input_ids.to(t5_text_encoder.device))[0]
assert isinstance(prompt_embeds, torch.Tensor)
return prompt_embeds
def _clip_encode(
self, context: InvocationContext, clip_model: CLIPField, tokenizer_max_length: int = 77
) -> Tuple[torch.Tensor, torch.Tensor]:
clip_tokenizer_info = context.models.load(clip_model.tokenizer)
clip_text_encoder_info = context.models.load(clip_model.text_encoder)
prompt = [self.prompt]
with (
clip_text_encoder_info.model_on_device() as (cached_weights, clip_text_encoder),
clip_tokenizer_info as clip_tokenizer,
ExitStack() as exit_stack,
):
context.util.signal_progress("Running CLIP encoder")
assert isinstance(clip_text_encoder, (CLIPTextModel, CLIPTextModelWithProjection))
assert isinstance(clip_tokenizer, CLIPTokenizer)
clip_text_encoder_config = clip_text_encoder_info.config
assert clip_text_encoder_config is not None
# Apply LoRA models to the CLIP encoder.
# Note: We apply the LoRA after the transformer has been moved to its target device for faster patching.
if clip_text_encoder_config.format in [ModelFormat.Diffusers]:
# The model is non-quantized, so we can apply the LoRA weights directly into the model.
exit_stack.enter_context(
LoRAPatcher.apply_lora_patches(
model=clip_text_encoder,
patches=self._clip_lora_iterator(context, clip_model),
prefix=FLUX_LORA_CLIP_PREFIX,
cached_weights=cached_weights,
)
)
else:
# There are currently no supported CLIP quantized models. Add support here if needed.
raise ValueError(f"Unsupported model format: {clip_text_encoder_config.format}")
clip_text_encoder = clip_text_encoder.eval().requires_grad_(False)
text_inputs = clip_tokenizer(
prompt,
padding="max_length",
max_length=tokenizer_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = clip_tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
assert isinstance(text_input_ids, torch.Tensor)
assert isinstance(untruncated_ids, torch.Tensor)
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = clip_tokenizer.batch_decode(untruncated_ids[:, tokenizer_max_length - 1 : -1])
context.logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {tokenizer_max_length} tokens: {removed_text}"
)
prompt_embeds = clip_text_encoder(
input_ids=text_input_ids.to(clip_text_encoder.device), output_hidden_states=True
)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
return prompt_embeds, pooled_prompt_embeds
def _clip_lora_iterator(
self, context: InvocationContext, clip_model: CLIPField
) -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in clip_model.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info

View File

@@ -5,7 +5,7 @@ from typing import Literal
import numpy as np
import torch
from PIL import Image
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, model_validator
from transformers import AutoModelForMaskGeneration, AutoProcessor
from transformers.models.sam import SamModel
from transformers.models.sam.processing_sam import SamProcessor
@@ -77,14 +77,19 @@ class SegmentAnythingInvocation(BaseInvocation):
default="all",
)
@model_validator(mode="after")
def check_point_lists_or_bounding_box(self):
if self.point_lists is None and self.bounding_boxes is None:
raise ValueError("Either point_lists or bounding_box must be provided.")
elif self.point_lists is not None and self.bounding_boxes is not None:
raise ValueError("Only one of point_lists or bounding_box can be provided.")
return self
@torch.no_grad()
def invoke(self, context: InvocationContext) -> MaskOutput:
# The models expect a 3-channel RGB image.
image_pil = context.images.get_pil(self.image.image_name, mode="RGB")
if self.point_lists is not None and self.bounding_boxes is not None:
raise ValueError("Only one of point_lists or bounding_box can be provided.")
if (not self.bounding_boxes or len(self.bounding_boxes) == 0) and (
not self.point_lists or len(self.point_lists) == 0
):

View File

@@ -86,7 +86,7 @@ class ModelLoadService(ModelLoadServiceBase):
def torch_load_file(checkpoint: Path) -> AnyModel:
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0 or scan_result.scan_err:
if scan_result.infected_files != 0:
raise Exception("The model at {checkpoint} is potentially infected by malware. Aborting load.")
result = torch_load(checkpoint, map_location="cpu")
return result

View File

@@ -15,7 +15,6 @@ from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ClipVariantType,
ControlAdapterDefaultSettings,
MainModelDefaultSettings,
ModelFormat,
@@ -86,7 +85,7 @@ class ModelRecordChanges(BaseModelExcludeNull):
# Checkpoint-specific changes
# TODO(MM2): Should we expose these? Feels footgun-y...
variant: Optional[ModelVariantType | ClipVariantType] = Field(description="The variant of the model.", default=None)
variant: Optional[ModelVariantType] = Field(description="The variant of the model.", default=None)
prediction_type: Optional[SchedulerPredictionType] = Field(
description="The prediction type of the model.", default=None
)

View File

@@ -378,9 +378,6 @@ class DefaultSessionProcessor(SessionProcessorBase):
self._poll_now()
async def _on_queue_item_status_changed(self, event: FastAPIEvent[QueueItemStatusChangedEvent]) -> None:
# Make sure the cancel event is for the currently processing queue item
if self._queue_item and self._queue_item.item_id is not event[1].item_id:
return
if self._queue_item and event[1].status in ["completed", "failed", "canceled"]:
# When the queue item is canceled via HTTP, the queue item status is set to `"canceled"` and this event is
# emitted. We need to respond to this event and stop graph execution. This is done by setting the cancel

View File

@@ -16,7 +16,6 @@ from pydantic import (
from pydantic_core import to_jsonable_python
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.invocations.fields import ImageField
from invokeai.app.services.shared.graph import Graph, GraphExecutionState, NodeNotFoundError
from invokeai.app.services.workflow_records.workflow_records_common import (
WorkflowWithoutID,
@@ -52,7 +51,11 @@ class SessionQueueItemNotFoundError(ValueError):
# region Batch
BatchDataType = Union[StrictStr, float, int, ImageField]
BatchDataType = Union[
StrictStr,
float,
int,
]
class NodeFieldValue(BaseModel):

View File

@@ -1,4 +1,3 @@
from copy import deepcopy
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Callable, Optional, Union
@@ -160,10 +159,6 @@ class LoggerInterface(InvocationContextInterface):
class ImagesInterface(InvocationContextInterface):
def __init__(self, services: InvocationServices, data: InvocationContextData, util: "UtilInterface") -> None:
super().__init__(services, data)
self._util = util
def save(
self,
image: Image,
@@ -190,8 +185,6 @@ class ImagesInterface(InvocationContextInterface):
The saved image DTO.
"""
self._util.signal_progress("Saving image")
# If `metadata` is provided directly, use that. Else, use the metadata provided by `WithMetadata`, falling back to None.
metadata_ = None
if metadata:
@@ -228,7 +221,7 @@ class ImagesInterface(InvocationContextInterface):
)
def get_pil(self, image_name: str, mode: IMAGE_MODES | None = None) -> Image:
"""Gets an image as a PIL Image object. This method returns a copy of the image.
"""Gets an image as a PIL Image object.
Args:
image_name: The name of the image to get.
@@ -240,15 +233,11 @@ class ImagesInterface(InvocationContextInterface):
image = self._services.images.get_pil_image(image_name)
if mode and mode != image.mode:
try:
# convert makes a copy!
image = image.convert(mode)
except ValueError:
self._services.logger.warning(
f"Could not convert image from {image.mode} to {mode}. Using original mode instead."
)
else:
# copy the image to prevent the user from modifying the original
image = image.copy()
return image
def get_metadata(self, image_name: str) -> Optional[MetadataField]:
@@ -301,15 +290,15 @@ class TensorsInterface(InvocationContextInterface):
return name
def load(self, name: str) -> Tensor:
"""Loads a tensor by name. This method returns a copy of the tensor.
"""Loads a tensor by name.
Args:
name: The name of the tensor to load.
Returns:
The tensor.
The loaded tensor.
"""
return self._services.tensors.load(name).clone()
return self._services.tensors.load(name)
class ConditioningInterface(InvocationContextInterface):
@@ -327,25 +316,21 @@ class ConditioningInterface(InvocationContextInterface):
return name
def load(self, name: str) -> ConditioningFieldData:
"""Loads conditioning data by name. This method returns a copy of the conditioning data.
"""Loads conditioning data by name.
Args:
name: The name of the conditioning data to load.
Returns:
The conditioning data.
The loaded conditioning data.
"""
return deepcopy(self._services.conditioning.load(name))
return self._services.conditioning.load(name)
class ModelsInterface(InvocationContextInterface):
"""Common API for loading, downloading and managing models."""
def __init__(self, services: InvocationServices, data: InvocationContextData, util: "UtilInterface") -> None:
super().__init__(services, data)
self._util = util
def exists(self, identifier: Union[str, "ModelIdentifierField"]) -> bool:
"""Check if a model exists.
@@ -378,15 +363,11 @@ class ModelsInterface(InvocationContextInterface):
if isinstance(identifier, str):
model = self._services.model_manager.store.get_model(identifier)
return self._services.model_manager.load.load_model(model, submodel_type)
else:
submodel_type = submodel_type or identifier.submodel_type
_submodel_type = submodel_type or identifier.submodel_type
model = self._services.model_manager.store.get_model(identifier.key)
message = f"Loading model {model.name}"
if submodel_type:
message += f" ({submodel_type.value})"
self._util.signal_progress(message)
return self._services.model_manager.load.load_model(model, submodel_type)
return self._services.model_manager.load.load_model(model, _submodel_type)
def load_by_attrs(
self, name: str, base: BaseModelType, type: ModelType, submodel_type: Optional[SubModelType] = None
@@ -411,10 +392,6 @@ class ModelsInterface(InvocationContextInterface):
if len(configs) > 1:
raise ValueError(f"More than one model found with name {name}, base {base}, and type {type}")
message = f"Loading model {name}"
if submodel_type:
message += f" ({submodel_type.value})"
self._util.signal_progress(message)
return self._services.model_manager.load.load_model(configs[0], submodel_type)
def get_config(self, identifier: Union[str, "ModelIdentifierField"]) -> AnyModelConfig:
@@ -485,7 +462,6 @@ class ModelsInterface(InvocationContextInterface):
Returns:
Path to the downloaded model
"""
self._util.signal_progress(f"Downloading model {source}")
return self._services.model_manager.install.download_and_cache_model(source=source)
def load_local_model(
@@ -508,8 +484,6 @@ class ModelsInterface(InvocationContextInterface):
Returns:
A LoadedModelWithoutConfig object.
"""
self._util.signal_progress(f"Loading model {model_path.name}")
return self._services.model_manager.load.load_model_from_path(model_path=model_path, loader=loader)
def load_remote_model(
@@ -535,8 +509,6 @@ class ModelsInterface(InvocationContextInterface):
A LoadedModelWithoutConfig object.
"""
model_path = self._services.model_manager.install.download_and_cache_model(source=str(source))
self._util.signal_progress(f"Loading model {source}")
return self._services.model_manager.load.load_model_from_path(model_path=model_path, loader=loader)
@@ -730,12 +702,12 @@ def build_invocation_context(
"""
logger = LoggerInterface(services=services, data=data)
images = ImagesInterface(services=services, data=data)
tensors = TensorsInterface(services=services, data=data)
models = ModelsInterface(services=services, data=data)
config = ConfigInterface(services=services, data=data)
util = UtilInterface(services=services, data=data, is_canceled=is_canceled)
conditioning = ConditioningInterface(services=services, data=data)
models = ModelsInterface(services=services, data=data, util=util)
images = ImagesInterface(services=services, data=data, util=util)
boards = BoardsInterface(services=services, data=data)
ctx = InvocationContext(

View File

@@ -1,382 +0,0 @@
{
"name": "SD3.5 Text to Image",
"author": "InvokeAI",
"description": "Sample text to image workflow for Stable Diffusion 3.5",
"version": "1.0.0",
"contact": "invoke@invoke.ai",
"tags": "text2image, SD3.5, default",
"notes": "",
"exposedFields": [
{
"nodeId": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"fieldName": "model"
},
{
"nodeId": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"fieldName": "prompt"
}
],
"meta": {
"version": "3.0.0",
"category": "default"
},
"id": "e3a51d6b-8208-4d6d-b187-fcfe8b32934c",
"nodes": [
{
"id": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"type": "invocation",
"data": {
"id": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"type": "sd3_model_loader",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"nodePack": "invokeai",
"inputs": {
"model": {
"name": "model",
"label": "",
"value": {
"key": "f7b20be9-92a8-4cfb-bca4-6c3b5535c10b",
"hash": "placeholder",
"name": "stable-diffusion-3.5-medium",
"base": "sd-3",
"type": "main"
}
},
"t5_encoder_model": {
"name": "t5_encoder_model",
"label": ""
},
"clip_l_model": {
"name": "clip_l_model",
"label": ""
},
"clip_g_model": {
"name": "clip_g_model",
"label": ""
},
"vae_model": {
"name": "vae_model",
"label": ""
}
}
},
"position": {
"x": -55.58689609637031,
"y": -111.53602444662268
}
},
{
"id": "f7e394ac-6394-4096-abcb-de0d346506b3",
"type": "invocation",
"data": {
"id": "f7e394ac-6394-4096-abcb-de0d346506b3",
"type": "rand_int",
"version": "1.0.1",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": false,
"nodePack": "invokeai",
"inputs": {
"low": {
"name": "low",
"label": "",
"value": 0
},
"high": {
"name": "high",
"label": "",
"value": 2147483647
}
}
},
"position": {
"x": 470.45870147220353,
"y": 350.3141781644303
}
},
{
"id": "9eb72af0-dd9e-4ec5-ad87-d65e3c01f48b",
"type": "invocation",
"data": {
"id": "9eb72af0-dd9e-4ec5-ad87-d65e3c01f48b",
"type": "sd3_l2i",
"version": "1.3.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": false,
"useCache": true,
"nodePack": "invokeai",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
}
}
},
"position": {
"x": 1192.3097009334897,
"y": -366.0994675072209
}
},
{
"id": "3b4f7f27-cfc0-4373-a009-99c5290d0cd6",
"type": "invocation",
"data": {
"id": "3b4f7f27-cfc0-4373-a009-99c5290d0cd6",
"type": "sd3_text_encoder",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"nodePack": "invokeai",
"inputs": {
"clip_l": {
"name": "clip_l",
"label": ""
},
"clip_g": {
"name": "clip_g",
"label": ""
},
"t5_encoder": {
"name": "t5_encoder",
"label": ""
},
"prompt": {
"name": "prompt",
"label": "",
"value": ""
}
}
},
"position": {
"x": 408.16054647924784,
"y": 65.06415352118786
}
},
{
"id": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"type": "invocation",
"data": {
"id": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"type": "sd3_text_encoder",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"nodePack": "invokeai",
"inputs": {
"clip_l": {
"name": "clip_l",
"label": ""
},
"clip_g": {
"name": "clip_g",
"label": ""
},
"t5_encoder": {
"name": "t5_encoder",
"label": ""
},
"prompt": {
"name": "prompt",
"label": "",
"value": ""
}
}
},
"position": {
"x": 378.9283412440941,
"y": -302.65777497352553
}
},
{
"id": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"type": "invocation",
"data": {
"id": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"type": "sd3_denoise",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"nodePack": "invokeai",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"transformer": {
"name": "transformer",
"label": ""
},
"positive_conditioning": {
"name": "positive_conditioning",
"label": ""
},
"negative_conditioning": {
"name": "negative_conditioning",
"label": ""
},
"cfg_scale": {
"name": "cfg_scale",
"label": "",
"value": 3.5
},
"width": {
"name": "width",
"label": "",
"value": 1024
},
"height": {
"name": "height",
"label": "",
"value": 1024
},
"steps": {
"name": "steps",
"label": "",
"value": 30
},
"seed": {
"name": "seed",
"label": "",
"value": 0
}
}
},
"position": {
"x": 813.7814762740603,
"y": -142.20529727605867
}
}
],
"edges": [
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4cvae-9eb72af0-dd9e-4ec5-ad87-d65e3c01f48bvae",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "9eb72af0-dd9e-4ec5-ad87-d65e3c01f48b",
"sourceHandle": "vae",
"targetHandle": "vae"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4ct5_encoder-3b4f7f27-cfc0-4373-a009-99c5290d0cd6t5_encoder",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "3b4f7f27-cfc0-4373-a009-99c5290d0cd6",
"sourceHandle": "t5_encoder",
"targetHandle": "t5_encoder"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4ct5_encoder-e17d34e7-6ed1-493c-9a85-4fcd291cb084t5_encoder",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"sourceHandle": "t5_encoder",
"targetHandle": "t5_encoder"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4cclip_g-3b4f7f27-cfc0-4373-a009-99c5290d0cd6clip_g",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "3b4f7f27-cfc0-4373-a009-99c5290d0cd6",
"sourceHandle": "clip_g",
"targetHandle": "clip_g"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4cclip_g-e17d34e7-6ed1-493c-9a85-4fcd291cb084clip_g",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"sourceHandle": "clip_g",
"targetHandle": "clip_g"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4cclip_l-3b4f7f27-cfc0-4373-a009-99c5290d0cd6clip_l",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "3b4f7f27-cfc0-4373-a009-99c5290d0cd6",
"sourceHandle": "clip_l",
"targetHandle": "clip_l"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4cclip_l-e17d34e7-6ed1-493c-9a85-4fcd291cb084clip_l",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"sourceHandle": "clip_l",
"targetHandle": "clip_l"
},
{
"id": "reactflow__edge-3f22f668-0e02-4fde-a2bb-c339586ceb4ctransformer-c7539f7b-7ac5-49b9-93eb-87ede611409ftransformer",
"type": "default",
"source": "3f22f668-0e02-4fde-a2bb-c339586ceb4c",
"target": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"sourceHandle": "transformer",
"targetHandle": "transformer"
},
{
"id": "reactflow__edge-f7e394ac-6394-4096-abcb-de0d346506b3value-c7539f7b-7ac5-49b9-93eb-87ede611409fseed",
"type": "default",
"source": "f7e394ac-6394-4096-abcb-de0d346506b3",
"target": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"sourceHandle": "value",
"targetHandle": "seed"
},
{
"id": "reactflow__edge-c7539f7b-7ac5-49b9-93eb-87ede611409flatents-9eb72af0-dd9e-4ec5-ad87-d65e3c01f48blatents",
"type": "default",
"source": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"target": "9eb72af0-dd9e-4ec5-ad87-d65e3c01f48b",
"sourceHandle": "latents",
"targetHandle": "latents"
},
{
"id": "reactflow__edge-e17d34e7-6ed1-493c-9a85-4fcd291cb084conditioning-c7539f7b-7ac5-49b9-93eb-87ede611409fpositive_conditioning",
"type": "default",
"source": "e17d34e7-6ed1-493c-9a85-4fcd291cb084",
"target": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"sourceHandle": "conditioning",
"targetHandle": "positive_conditioning"
},
{
"id": "reactflow__edge-3b4f7f27-cfc0-4373-a009-99c5290d0cd6conditioning-c7539f7b-7ac5-49b9-93eb-87ede611409fnegative_conditioning",
"type": "default",
"source": "3b4f7f27-cfc0-4373-a009-99c5290d0cd6",
"target": "c7539f7b-7ac5-49b9-93eb-87ede611409f",
"sourceHandle": "conditioning",
"targetHandle": "negative_conditioning"
}
]
}

View File

@@ -34,25 +34,6 @@ SD1_5_LATENT_RGB_FACTORS = [
[-0.1307, -0.1874, -0.7445], # L4
]
SD3_5_LATENT_RGB_FACTORS = [
[-0.05240681, 0.03251581, 0.0749016],
[-0.0580572, 0.00759826, 0.05729818],
[0.16144888, 0.01270368, -0.03768577],
[0.14418615, 0.08460266, 0.15941818],
[0.04894035, 0.0056485, -0.06686988],
[0.05187166, 0.19222395, 0.06261094],
[0.1539433, 0.04818359, 0.07103094],
[-0.08601796, 0.09013458, 0.10893912],
[-0.12398469, -0.06766567, 0.0033688],
[-0.0439737, 0.07825329, 0.02258823],
[0.03101129, 0.06382551, 0.07753657],
[-0.01315361, 0.08554491, -0.08772475],
[0.06464487, 0.05914605, 0.13262741],
[-0.07863674, -0.02261737, -0.12761454],
[-0.09923835, -0.08010759, -0.06264447],
[-0.03392309, -0.0804029, -0.06078822],
]
FLUX_LATENT_RGB_FACTORS = [
[-0.0412, 0.0149, 0.0521],
[0.0056, 0.0291, 0.0768],
@@ -129,9 +110,6 @@ def stable_diffusion_step_callback(
sdxl_latent_rgb_factors = torch.tensor(SDXL_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
sdxl_smooth_matrix = torch.tensor(SDXL_SMOOTH_MATRIX, dtype=sample.dtype, device=sample.device)
image = sample_to_lowres_estimated_image(sample, sdxl_latent_rgb_factors, sdxl_smooth_matrix)
elif base_model == BaseModelType.StableDiffusion3:
sd3_latent_rgb_factors = torch.tensor(SD3_5_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
image = sample_to_lowres_estimated_image(sample, sd3_latent_rgb_factors)
else:
v1_5_latent_rgb_factors = torch.tensor(SD1_5_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
image = sample_to_lowres_estimated_image(sample, v1_5_latent_rgb_factors)

View File

@@ -1,10 +1,9 @@
import einops
import torch
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.math import attention
from invokeai.backend.flux.modules.layers import DoubleStreamBlock, SingleStreamBlock
from invokeai.backend.flux.modules.layers import DoubleStreamBlock
class CustomDoubleStreamBlockProcessor:
@@ -14,12 +13,7 @@ class CustomDoubleStreamBlockProcessor:
@staticmethod
def _double_stream_block_forward(
block: DoubleStreamBlock,
img: torch.Tensor,
txt: torch.Tensor,
vec: torch.Tensor,
pe: torch.Tensor,
attn_mask: torch.Tensor | None = None,
block: DoubleStreamBlock, img: torch.Tensor, txt: torch.Tensor, vec: torch.Tensor, pe: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""This function is a direct copy of DoubleStreamBlock.forward(), but it returns some of the intermediate
values.
@@ -46,7 +40,7 @@ class CustomDoubleStreamBlockProcessor:
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn = attention(q, k, v, pe=pe, attn_mask=attn_mask)
attn = attention(q, k, v, pe=pe)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
@@ -69,15 +63,11 @@ class CustomDoubleStreamBlockProcessor:
vec: torch.Tensor,
pe: torch.Tensor,
ip_adapter_extensions: list[XLabsIPAdapterExtension],
regional_prompting_extension: RegionalPromptingExtension,
) -> tuple[torch.Tensor, torch.Tensor]:
"""A custom implementation of DoubleStreamBlock.forward() with additional features:
- IP-Adapter support
"""
attn_mask = regional_prompting_extension.get_double_stream_attn_mask(block_index)
img, txt, img_q = CustomDoubleStreamBlockProcessor._double_stream_block_forward(
block, img, txt, vec, pe, attn_mask=attn_mask
)
img, txt, img_q = CustomDoubleStreamBlockProcessor._double_stream_block_forward(block, img, txt, vec, pe)
# Apply IP-Adapter conditioning.
for ip_adapter_extension in ip_adapter_extensions:
@@ -91,48 +81,3 @@ class CustomDoubleStreamBlockProcessor:
)
return img, txt
class CustomSingleStreamBlockProcessor:
"""A class containing a custom implementation of SingleStreamBlock.forward() with additional features (masking,
etc.)
"""
@staticmethod
def _single_stream_block_forward(
block: SingleStreamBlock,
x: torch.Tensor,
vec: torch.Tensor,
pe: torch.Tensor,
attn_mask: torch.Tensor | None = None,
) -> torch.Tensor:
"""This function is a direct copy of SingleStreamBlock.forward()."""
mod, _ = block.modulation(vec)
x_mod = (1 + mod.scale) * block.pre_norm(x) + mod.shift
qkv, mlp = torch.split(block.linear1(x_mod), [3 * block.hidden_size, block.mlp_hidden_dim], dim=-1)
q, k, v = einops.rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=block.num_heads)
q, k = block.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, attn_mask=attn_mask)
# compute activation in mlp stream, cat again and run second linear layer
output = block.linear2(torch.cat((attn, block.mlp_act(mlp)), 2))
return x + mod.gate * output
@staticmethod
def custom_single_block_forward(
timestep_index: int,
total_num_timesteps: int,
block_index: int,
block: SingleStreamBlock,
img: torch.Tensor,
vec: torch.Tensor,
pe: torch.Tensor,
regional_prompting_extension: RegionalPromptingExtension,
) -> torch.Tensor:
"""A custom implementation of SingleStreamBlock.forward() with additional features:
- Masking
"""
attn_mask = regional_prompting_extension.get_single_stream_attn_mask(block_index)
return CustomSingleStreamBlockProcessor._single_stream_block_forward(block, img, vec, pe, attn_mask=attn_mask)

View File

@@ -7,7 +7,6 @@ from tqdm import tqdm
from invokeai.backend.flux.controlnet.controlnet_flux_output import ControlNetFluxOutput, sum_controlnet_flux_outputs
from invokeai.backend.flux.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.model import Flux
@@ -19,8 +18,14 @@ def denoise(
# model input
img: torch.Tensor,
img_ids: torch.Tensor,
pos_regional_prompting_extension: RegionalPromptingExtension,
neg_regional_prompting_extension: RegionalPromptingExtension | None,
# positive text conditioning
txt: torch.Tensor,
txt_ids: torch.Tensor,
vec: torch.Tensor,
# negative text conditioning
neg_txt: torch.Tensor | None,
neg_txt_ids: torch.Tensor | None,
neg_vec: torch.Tensor | None,
# sampling parameters
timesteps: list[float],
step_callback: Callable[[PipelineIntermediateState], None],
@@ -56,9 +61,9 @@ def denoise(
total_num_timesteps=total_steps,
img=img,
img_ids=img_ids,
txt=pos_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=pos_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
y=pos_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
)
@@ -73,9 +78,9 @@ def denoise(
pred = model(
img=img,
img_ids=img_ids,
txt=pos_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=pos_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
y=pos_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
timestep_index=step_index,
@@ -83,7 +88,6 @@ def denoise(
controlnet_double_block_residuals=merged_controlnet_residuals.double_block_residuals,
controlnet_single_block_residuals=merged_controlnet_residuals.single_block_residuals,
ip_adapter_extensions=pos_ip_adapter_extensions,
regional_prompting_extension=pos_regional_prompting_extension,
)
step_cfg_scale = cfg_scale[step_index]
@@ -93,15 +97,15 @@ def denoise(
# TODO(ryand): Add option to run positive and negative predictions in a single batch for better performance
# on systems with sufficient VRAM.
if neg_regional_prompting_extension is None:
if neg_txt is None or neg_txt_ids is None or neg_vec is None:
raise ValueError("Negative text conditioning is required when cfg_scale is not 1.0.")
neg_pred = model(
img=img,
img_ids=img_ids,
txt=neg_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=neg_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
y=neg_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
txt=neg_txt,
txt_ids=neg_txt_ids,
y=neg_vec,
timesteps=t_vec,
guidance=guidance_vec,
timestep_index=step_index,
@@ -109,7 +113,6 @@ def denoise(
controlnet_double_block_residuals=None,
controlnet_single_block_residuals=None,
ip_adapter_extensions=neg_ip_adapter_extensions,
regional_prompting_extension=neg_regional_prompting_extension,
)
pred = neg_pred + step_cfg_scale * (pred - neg_pred)

View File

@@ -1,276 +0,0 @@
from typing import Optional
import torch
import torchvision
from invokeai.backend.flux.text_conditioning import FluxRegionalTextConditioning, FluxTextConditioning
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import Range
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.mask import to_standard_float_mask
class RegionalPromptingExtension:
"""A class for managing regional prompting with FLUX.
This implementation is inspired by https://arxiv.org/pdf/2411.02395 (though there are significant differences).
"""
def __init__(
self,
regional_text_conditioning: FluxRegionalTextConditioning,
restricted_attn_mask: torch.Tensor | None = None,
):
self.regional_text_conditioning = regional_text_conditioning
self.restricted_attn_mask = restricted_attn_mask
def get_double_stream_attn_mask(self, block_index: int) -> torch.Tensor | None:
order = [self.restricted_attn_mask, None]
return order[block_index % len(order)]
def get_single_stream_attn_mask(self, block_index: int) -> torch.Tensor | None:
order = [self.restricted_attn_mask, None]
return order[block_index % len(order)]
@classmethod
def from_text_conditioning(cls, text_conditioning: list[FluxTextConditioning], img_seq_len: int):
"""Create a RegionalPromptingExtension from a list of text conditionings.
Args:
text_conditioning (list[FluxTextConditioning]): The text conditionings to use for regional prompting.
img_seq_len (int): The image sequence length (i.e. packed_height * packed_width).
"""
regional_text_conditioning = cls._concat_regional_text_conditioning(text_conditioning)
attn_mask_with_restricted_img_self_attn = cls._prepare_restricted_attn_mask(
regional_text_conditioning, img_seq_len
)
return cls(
regional_text_conditioning=regional_text_conditioning,
restricted_attn_mask=attn_mask_with_restricted_img_self_attn,
)
# Keeping _prepare_unrestricted_attn_mask for reference as an alternative masking strategy:
#
# @classmethod
# def _prepare_unrestricted_attn_mask(
# cls,
# regional_text_conditioning: FluxRegionalTextConditioning,
# img_seq_len: int,
# ) -> torch.Tensor:
# """Prepare an 'unrestricted' attention mask. In this context, 'unrestricted' means that:
# - img self-attention is not masked.
# - img regions attend to both txt within their own region and to global prompts.
# """
# device = TorchDevice.choose_torch_device()
# # Infer txt_seq_len from the t5_embeddings tensor.
# txt_seq_len = regional_text_conditioning.t5_embeddings.shape[1]
# # In the attention blocks, the txt seq and img seq are concatenated and then attention is applied.
# # Concatenation happens in the following order: [txt_seq, img_seq].
# # There are 4 portions of the attention mask to consider as we prepare it:
# # 1. txt attends to itself
# # 2. txt attends to corresponding regional img
# # 3. regional img attends to corresponding txt
# # 4. regional img attends to itself
# # Initialize empty attention mask.
# regional_attention_mask = torch.zeros(
# (txt_seq_len + img_seq_len, txt_seq_len + img_seq_len), device=device, dtype=torch.float16
# )
# for image_mask, t5_embedding_range in zip(
# regional_text_conditioning.image_masks, regional_text_conditioning.t5_embedding_ranges, strict=True
# ):
# # 1. txt attends to itself
# regional_attention_mask[
# t5_embedding_range.start : t5_embedding_range.end, t5_embedding_range.start : t5_embedding_range.end
# ] = 1.0
# # 2. txt attends to corresponding regional img
# # Note that we reshape to (1, img_seq_len) to ensure broadcasting works as desired.
# fill_value = image_mask.view(1, img_seq_len) if image_mask is not None else 1.0
# regional_attention_mask[t5_embedding_range.start : t5_embedding_range.end, txt_seq_len:] = fill_value
# # 3. regional img attends to corresponding txt
# # Note that we reshape to (img_seq_len, 1) to ensure broadcasting works as desired.
# fill_value = image_mask.view(img_seq_len, 1) if image_mask is not None else 1.0
# regional_attention_mask[txt_seq_len:, t5_embedding_range.start : t5_embedding_range.end] = fill_value
# # 4. regional img attends to itself
# # Allow unrestricted img self attention.
# regional_attention_mask[txt_seq_len:, txt_seq_len:] = 1.0
# # Convert attention mask to boolean.
# regional_attention_mask = regional_attention_mask > 0.5
# return regional_attention_mask
@classmethod
def _prepare_restricted_attn_mask(
cls,
regional_text_conditioning: FluxRegionalTextConditioning,
img_seq_len: int,
) -> torch.Tensor | None:
"""Prepare a 'restricted' attention mask. In this context, 'restricted' means that:
- img self-attention is only allowed within regions.
- img regions only attend to txt within their own region, not to global prompts.
"""
# Identify background region. I.e. the region that is not covered by any region masks.
background_region_mask: None | torch.Tensor = None
for image_mask in regional_text_conditioning.image_masks:
if image_mask is not None:
if background_region_mask is None:
background_region_mask = torch.ones_like(image_mask)
background_region_mask *= 1 - image_mask
if background_region_mask is None:
# There are no region masks, short-circuit and return None.
# TODO(ryand): We could restrict txt-txt attention across multiple global prompts, but this would
# is a rare use case and would make the logic here significantly more complicated.
return None
device = TorchDevice.choose_torch_device()
# Infer txt_seq_len from the t5_embeddings tensor.
txt_seq_len = regional_text_conditioning.t5_embeddings.shape[1]
# In the attention blocks, the txt seq and img seq are concatenated and then attention is applied.
# Concatenation happens in the following order: [txt_seq, img_seq].
# There are 4 portions of the attention mask to consider as we prepare it:
# 1. txt attends to itself
# 2. txt attends to corresponding regional img
# 3. regional img attends to corresponding txt
# 4. regional img attends to itself
# Initialize empty attention mask.
regional_attention_mask = torch.zeros(
(txt_seq_len + img_seq_len, txt_seq_len + img_seq_len), device=device, dtype=torch.float16
)
for image_mask, t5_embedding_range in zip(
regional_text_conditioning.image_masks, regional_text_conditioning.t5_embedding_ranges, strict=True
):
# 1. txt attends to itself
regional_attention_mask[
t5_embedding_range.start : t5_embedding_range.end, t5_embedding_range.start : t5_embedding_range.end
] = 1.0
if image_mask is not None:
# 2. txt attends to corresponding regional img
# Note that we reshape to (1, img_seq_len) to ensure broadcasting works as desired.
regional_attention_mask[t5_embedding_range.start : t5_embedding_range.end, txt_seq_len:] = (
image_mask.view(1, img_seq_len)
)
# 3. regional img attends to corresponding txt
# Note that we reshape to (img_seq_len, 1) to ensure broadcasting works as desired.
regional_attention_mask[txt_seq_len:, t5_embedding_range.start : t5_embedding_range.end] = (
image_mask.view(img_seq_len, 1)
)
# 4. regional img attends to itself
image_mask = image_mask.view(img_seq_len, 1)
regional_attention_mask[txt_seq_len:, txt_seq_len:] += image_mask @ image_mask.T
else:
# We don't allow attention between non-background image regions and global prompts. This helps to ensure
# that regions focus on their local prompts. We do, however, allow attention between background regions
# and global prompts. If we didn't do this, then the background regions would not attend to any txt
# embeddings, which we found experimentally to cause artifacts.
# 2. global txt attends to background region
# Note that we reshape to (1, img_seq_len) to ensure broadcasting works as desired.
regional_attention_mask[t5_embedding_range.start : t5_embedding_range.end, txt_seq_len:] = (
background_region_mask.view(1, img_seq_len)
)
# 3. background region attends to global txt
# Note that we reshape to (img_seq_len, 1) to ensure broadcasting works as desired.
regional_attention_mask[txt_seq_len:, t5_embedding_range.start : t5_embedding_range.end] = (
background_region_mask.view(img_seq_len, 1)
)
# Allow background regions to attend to themselves.
regional_attention_mask[txt_seq_len:, txt_seq_len:] += background_region_mask.view(img_seq_len, 1)
regional_attention_mask[txt_seq_len:, txt_seq_len:] += background_region_mask.view(1, img_seq_len)
# Convert attention mask to boolean.
regional_attention_mask = regional_attention_mask > 0.5
return regional_attention_mask
@classmethod
def _concat_regional_text_conditioning(
cls,
text_conditionings: list[FluxTextConditioning],
) -> FluxRegionalTextConditioning:
"""Concatenate regional text conditioning data into a single conditioning tensor (with associated masks)."""
concat_t5_embeddings: list[torch.Tensor] = []
concat_t5_embedding_ranges: list[Range] = []
image_masks: list[torch.Tensor | None] = []
# Choose global CLIP embedding.
# Use the first global prompt's CLIP embedding as the global CLIP embedding. If there is no global prompt, use
# the first prompt's CLIP embedding.
global_clip_embedding: torch.Tensor = text_conditionings[0].clip_embeddings
for text_conditioning in text_conditionings:
if text_conditioning.mask is None:
global_clip_embedding = text_conditioning.clip_embeddings
break
cur_t5_embedding_len = 0
for text_conditioning in text_conditionings:
concat_t5_embeddings.append(text_conditioning.t5_embeddings)
concat_t5_embedding_ranges.append(
Range(start=cur_t5_embedding_len, end=cur_t5_embedding_len + text_conditioning.t5_embeddings.shape[1])
)
image_masks.append(text_conditioning.mask)
cur_t5_embedding_len += text_conditioning.t5_embeddings.shape[1]
t5_embeddings = torch.cat(concat_t5_embeddings, dim=1)
# Initialize the txt_ids tensor.
pos_bs, pos_t5_seq_len, _ = t5_embeddings.shape
t5_txt_ids = torch.zeros(
pos_bs, pos_t5_seq_len, 3, dtype=t5_embeddings.dtype, device=TorchDevice.choose_torch_device()
)
return FluxRegionalTextConditioning(
t5_embeddings=t5_embeddings,
clip_embeddings=global_clip_embedding,
t5_txt_ids=t5_txt_ids,
image_masks=image_masks,
t5_embedding_ranges=concat_t5_embedding_ranges,
)
@staticmethod
def preprocess_regional_prompt_mask(
mask: Optional[torch.Tensor], packed_height: int, packed_width: int, dtype: torch.dtype, device: torch.device
) -> torch.Tensor:
"""Preprocess a regional prompt mask to match the target height and width.
If mask is None, returns a mask of all ones with the target height and width.
If mask is not None, resizes the mask to the target height and width using 'nearest' interpolation.
packed_height and packed_width are the target height and width of the mask in the 'packed' latent space.
Returns:
torch.Tensor: The processed mask. shape: (1, 1, packed_height * packed_width).
"""
if mask is None:
return torch.ones((1, 1, packed_height * packed_width), dtype=dtype, device=device)
mask = to_standard_float_mask(mask, out_dtype=dtype)
tf = torchvision.transforms.Resize(
(packed_height, packed_width), interpolation=torchvision.transforms.InterpolationMode.NEAREST
)
# Add a batch dimension to the mask, because torchvision expects shape (batch, channels, h, w).
mask = mask.unsqueeze(0) # Shape: (1, h, w) -> (1, 1, h, w)
resized_mask = tf(mask)
# Flatten the height and width dimensions into a single image_seq_len dimension.
return resized_mask.flatten(start_dim=2)

View File

@@ -41,12 +41,10 @@ def infer_xlabs_ip_adapter_params_from_state_dict(state_dict: dict[str, torch.Te
hidden_dim = state_dict["double_blocks.0.processor.ip_adapter_double_stream_k_proj.weight"].shape[0]
context_dim = state_dict["double_blocks.0.processor.ip_adapter_double_stream_k_proj.weight"].shape[1]
clip_embeddings_dim = state_dict["ip_adapter_proj_model.proj.weight"].shape[1]
clip_extra_context_tokens = state_dict["ip_adapter_proj_model.proj.weight"].shape[0] // context_dim
return XlabsIpAdapterParams(
num_double_blocks=num_double_blocks,
context_dim=context_dim,
hidden_dim=hidden_dim,
clip_embeddings_dim=clip_embeddings_dim,
clip_extra_context_tokens=clip_extra_context_tokens,
)

View File

@@ -31,16 +31,13 @@ class XlabsIpAdapterParams:
hidden_dim: int
clip_embeddings_dim: int
clip_extra_context_tokens: int
class XlabsIpAdapterFlux(torch.nn.Module):
def __init__(self, params: XlabsIpAdapterParams):
super().__init__()
self.image_proj = ImageProjModel(
cross_attention_dim=params.context_dim,
clip_embeddings_dim=params.clip_embeddings_dim,
clip_extra_context_tokens=params.clip_extra_context_tokens,
cross_attention_dim=params.context_dim, clip_embeddings_dim=params.clip_embeddings_dim
)
self.ip_adapter_double_blocks = IPAdapterDoubleBlocks(
num_double_blocks=params.num_double_blocks, context_dim=params.context_dim, hidden_dim=params.hidden_dim

View File

@@ -5,10 +5,10 @@ from einops import rearrange
from torch import Tensor
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, attn_mask: Tensor | None = None) -> Tensor:
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
q, k = apply_rope(q, k, pe)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = rearrange(x, "B H L D -> B L (H D)")
return x
@@ -24,12 +24,12 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
out = torch.einsum("...n,d->...nd", pos, omega)
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.to(dtype=pos.dtype, device=pos.device)
return out.float()
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
xq_ = xq.view(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.view(*xk.shape[:-1], -1, 1, 2)
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.view(*xq.shape), xk_out.view(*xk.shape)
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)

View File

@@ -5,11 +5,7 @@ from dataclasses import dataclass
import torch
from torch import Tensor, nn
from invokeai.backend.flux.custom_block_processor import (
CustomDoubleStreamBlockProcessor,
CustomSingleStreamBlockProcessor,
)
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.custom_block_processor import CustomDoubleStreamBlockProcessor
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.modules.layers import (
DoubleStreamBlock,
@@ -99,7 +95,6 @@ class Flux(nn.Module):
controlnet_double_block_residuals: list[Tensor] | None,
controlnet_single_block_residuals: list[Tensor] | None,
ip_adapter_extensions: list[XLabsIPAdapterExtension],
regional_prompting_extension: RegionalPromptingExtension,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
@@ -122,6 +117,7 @@ class Flux(nn.Module):
assert len(controlnet_double_block_residuals) == len(self.double_blocks)
for block_index, block in enumerate(self.double_blocks):
assert isinstance(block, DoubleStreamBlock)
img, txt = CustomDoubleStreamBlockProcessor.custom_double_block_forward(
timestep_index=timestep_index,
total_num_timesteps=total_num_timesteps,
@@ -132,7 +128,6 @@ class Flux(nn.Module):
vec=vec,
pe=pe,
ip_adapter_extensions=ip_adapter_extensions,
regional_prompting_extension=regional_prompting_extension,
)
if controlnet_double_block_residuals is not None:
@@ -145,17 +140,7 @@ class Flux(nn.Module):
assert len(controlnet_single_block_residuals) == len(self.single_blocks)
for block_index, block in enumerate(self.single_blocks):
assert isinstance(block, SingleStreamBlock)
img = CustomSingleStreamBlockProcessor.custom_single_block_forward(
timestep_index=timestep_index,
total_num_timesteps=total_num_timesteps,
block_index=block_index,
block=block,
img=img,
vec=vec,
pe=pe,
regional_prompting_extension=regional_prompting_extension,
)
img = block(img, vec=vec, pe=pe)
if controlnet_single_block_residuals is not None:
img[:, txt.shape[1] :, ...] += controlnet_single_block_residuals[block_index]

View File

@@ -66,7 +66,10 @@ class RMSNorm(torch.nn.Module):
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x: Tensor):
return torch.nn.functional.rms_norm(x, self.scale.shape, self.scale, eps=1e-6)
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
return (x * rrms).to(dtype=x_dtype) * self.scale
class QKNorm(torch.nn.Module):

View File

@@ -1,36 +0,0 @@
from dataclasses import dataclass
import torch
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import Range
@dataclass
class FluxTextConditioning:
t5_embeddings: torch.Tensor
clip_embeddings: torch.Tensor
# If mask is None, the prompt is a global prompt.
mask: torch.Tensor | None
@dataclass
class FluxRegionalTextConditioning:
# Concatenated text embeddings.
# Shape: (1, concatenated_txt_seq_len, 4096)
t5_embeddings: torch.Tensor
# Shape: (1, concatenated_txt_seq_len, 3)
t5_txt_ids: torch.Tensor
# Global CLIP embeddings.
# Shape: (1, 768)
clip_embeddings: torch.Tensor
# A binary mask indicating the regions of the image that the prompt should be applied to. If None, the prompt is a
# global prompt.
# image_masks[i] is the mask for the ith prompt.
# image_masks[i] has shape (1, image_seq_len) and dtype torch.bool.
image_masks: list[torch.Tensor | None]
# List of ranges that represent the embedding ranges for each mask.
# t5_embedding_ranges[i] contains the range of the t5 embeddings that correspond to image_masks[i].
t5_embedding_ranges: list[Range]

File diff suppressed because it is too large Load Diff

View File

@@ -45,9 +45,8 @@ def lora_model_from_flux_diffusers_state_dict(state_dict: Dict[str, torch.Tensor
# Constants for FLUX.1
num_double_layers = 19
num_single_layers = 38
hidden_size = 3072
mlp_ratio = 4.0
mlp_hidden_dim = int(hidden_size * mlp_ratio)
# inner_dim = 3072
# mlp_ratio = 4.0
layers: dict[str, AnyLoRALayer] = {}
@@ -63,43 +62,30 @@ def lora_model_from_flux_diffusers_state_dict(state_dict: Dict[str, torch.Tensor
layers[dst_key] = LoRALayer.from_state_dict_values(values=value)
assert len(src_layer_dict) == 0
def add_qkv_lora_layer_if_present(
src_keys: list[str],
src_weight_shapes: list[tuple[int, int]],
dst_qkv_key: str,
allow_missing_keys: bool = False,
) -> None:
def add_qkv_lora_layer_if_present(src_keys: list[str], dst_qkv_key: str) -> None:
"""Handle the Q, K, V matrices for a transformer block. We need special handling because the diffusers format
stores them in separate matrices, whereas the BFL format used internally by InvokeAI concatenates them.
"""
# If none of the keys are present, return early.
# We expect that either all src keys are present or none of them are. Verify this.
keys_present = [key in grouped_state_dict for key in src_keys]
assert all(keys_present) or not any(keys_present)
# If none of the keys are present, return early.
if not any(keys_present):
return
src_layer_dicts = [grouped_state_dict.pop(key) for key in src_keys]
sub_layers: list[LoRALayer] = []
for src_key, src_weight_shape in zip(src_keys, src_weight_shapes, strict=True):
src_layer_dict = grouped_state_dict.pop(src_key, None)
if src_layer_dict is not None:
values = {
"lora_down.weight": src_layer_dict.pop("lora_A.weight"),
"lora_up.weight": src_layer_dict.pop("lora_B.weight"),
}
if alpha is not None:
values["alpha"] = torch.tensor(alpha)
assert values["lora_down.weight"].shape[1] == src_weight_shape[1]
assert values["lora_up.weight"].shape[0] == src_weight_shape[0]
sub_layers.append(LoRALayer.from_state_dict_values(values=values))
assert len(src_layer_dict) == 0
else:
if not allow_missing_keys:
raise ValueError(f"Missing LoRA layer: '{src_key}'.")
values = {
"lora_up.weight": torch.zeros((src_weight_shape[0], 1)),
"lora_down.weight": torch.zeros((1, src_weight_shape[1])),
}
sub_layers.append(LoRALayer.from_state_dict_values(values=values))
layers[dst_qkv_key] = ConcatenatedLoRALayer(lora_layers=sub_layers)
for src_layer_dict in src_layer_dicts:
values = {
"lora_down.weight": src_layer_dict.pop("lora_A.weight"),
"lora_up.weight": src_layer_dict.pop("lora_B.weight"),
}
if alpha is not None:
values["alpha"] = torch.tensor(alpha)
sub_layers.append(LoRALayer.from_state_dict_values(values=values))
assert len(src_layer_dict) == 0
layers[dst_qkv_key] = ConcatenatedLoRALayer(lora_layers=sub_layers, concat_axis=0)
# time_text_embed.timestep_embedder -> time_in.
add_lora_layer_if_present("time_text_embed.timestep_embedder.linear_1", "time_in.in_layer")
@@ -132,7 +118,6 @@ def lora_model_from_flux_diffusers_state_dict(state_dict: Dict[str, torch.Tensor
f"transformer_blocks.{i}.attn.to_k",
f"transformer_blocks.{i}.attn.to_v",
],
[(hidden_size, hidden_size), (hidden_size, hidden_size), (hidden_size, hidden_size)],
f"double_blocks.{i}.img_attn.qkv",
)
add_qkv_lora_layer_if_present(
@@ -141,7 +126,6 @@ def lora_model_from_flux_diffusers_state_dict(state_dict: Dict[str, torch.Tensor
f"transformer_blocks.{i}.attn.add_k_proj",
f"transformer_blocks.{i}.attn.add_v_proj",
],
[(hidden_size, hidden_size), (hidden_size, hidden_size), (hidden_size, hidden_size)],
f"double_blocks.{i}.txt_attn.qkv",
)
@@ -191,14 +175,7 @@ def lora_model_from_flux_diffusers_state_dict(state_dict: Dict[str, torch.Tensor
f"single_transformer_blocks.{i}.attn.to_v",
f"single_transformer_blocks.{i}.proj_mlp",
],
[
(hidden_size, hidden_size),
(hidden_size, hidden_size),
(hidden_size, hidden_size),
(mlp_hidden_dim, hidden_size),
],
f"single_blocks.{i}.linear1",
allow_missing_keys=True,
)
# Output projections.

View File

@@ -53,7 +53,8 @@ class BaseModelType(str, Enum):
Any = "any"
StableDiffusion1 = "sd-1"
StableDiffusion2 = "sd-2"
StableDiffusion3 = "sd-3"
# TODO(ryand): Should this just be StableDiffusion3?
StableDiffusion35 = "sd-3.5"
StableDiffusionXL = "sdxl"
StableDiffusionXLRefiner = "sdxl-refiner"
Flux = "flux"
@@ -84,10 +85,8 @@ class SubModelType(str, Enum):
Transformer = "transformer"
TextEncoder = "text_encoder"
TextEncoder2 = "text_encoder_2"
TextEncoder3 = "text_encoder_3"
Tokenizer = "tokenizer"
Tokenizer2 = "tokenizer_2"
Tokenizer3 = "tokenizer_3"
VAE = "vae"
VAEDecoder = "vae_decoder"
VAEEncoder = "vae_encoder"
@@ -95,13 +94,6 @@ class SubModelType(str, Enum):
SafetyChecker = "safety_checker"
class ClipVariantType(str, Enum):
"""Variant type."""
L = "large"
G = "gigantic"
class ModelVariantType(str, Enum):
"""Variant type."""
@@ -157,17 +149,6 @@ class ModelSourceType(str, Enum):
DEFAULTS_PRECISION = Literal["fp16", "fp32"]
AnyVariant: TypeAlias = Union[ModelVariantType, ClipVariantType, None]
class SubmodelDefinition(BaseModel):
path_or_prefix: str
model_type: ModelType
variant: AnyVariant = None
model_config = ConfigDict(protected_namespaces=())
class MainModelDefaultSettings(BaseModel):
vae: str | None = Field(default=None, description="Default VAE for this model (model key)")
vae_precision: DEFAULTS_PRECISION | None = Field(default=None, description="Default VAE precision for this model")
@@ -214,9 +195,6 @@ class ModelConfigBase(BaseModel):
schema["required"].extend(["key", "type", "format"])
model_config = ConfigDict(validate_assignment=True, json_schema_extra=json_schema_extra)
submodels: Optional[Dict[SubModelType, SubmodelDefinition]] = Field(
description="Loadable submodels in this model", default=None
)
class CheckpointConfigBase(ModelConfigBase):
@@ -359,7 +337,7 @@ class MainConfigBase(ModelConfigBase):
default_settings: Optional[MainModelDefaultSettings] = Field(
description="Default settings for this model", default=None
)
variant: AnyVariant = ModelVariantType.Normal
variant: ModelVariantType = ModelVariantType.Normal
class MainCheckpointConfig(CheckpointConfigBase, MainConfigBase):
@@ -443,33 +421,12 @@ class CLIPEmbedDiffusersConfig(DiffusersConfigBase):
type: Literal[ModelType.CLIPEmbed] = ModelType.CLIPEmbed
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
variant: ClipVariantType = ClipVariantType.L
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.CLIPEmbed.value}.{ModelFormat.Diffusers.value}")
class CLIPGEmbedDiffusersConfig(CLIPEmbedDiffusersConfig):
"""Model config for CLIP-G Embeddings."""
variant: ClipVariantType = ClipVariantType.G
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.CLIPEmbed.value}.{ModelFormat.Diffusers.value}.{ClipVariantType.G}")
class CLIPLEmbedDiffusersConfig(CLIPEmbedDiffusersConfig):
"""Model config for CLIP-L Embeddings."""
variant: ClipVariantType = ClipVariantType.L
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.CLIPEmbed.value}.{ModelFormat.Diffusers.value}.{ClipVariantType.L}")
class CLIPVisionDiffusersConfig(DiffusersConfigBase):
"""Model config for CLIPVision."""
@@ -546,8 +503,6 @@ AnyModelConfig = Annotated[
Annotated[SpandrelImageToImageConfig, SpandrelImageToImageConfig.get_tag()],
Annotated[CLIPVisionDiffusersConfig, CLIPVisionDiffusersConfig.get_tag()],
Annotated[CLIPEmbedDiffusersConfig, CLIPEmbedDiffusersConfig.get_tag()],
Annotated[CLIPLEmbedDiffusersConfig, CLIPLEmbedDiffusersConfig.get_tag()],
Annotated[CLIPGEmbedDiffusersConfig, CLIPGEmbedDiffusersConfig.get_tag()],
],
Discriminator(get_model_discriminator_value),
]

View File

@@ -35,7 +35,6 @@ class ModelLoader(ModelLoaderBase):
self._logger = logger
self._ram_cache = ram_cache
self._torch_dtype = TorchDevice.choose_torch_dtype()
self._torch_device = TorchDevice.choose_torch_device()
def load_model(self, model_config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
"""

View File

@@ -84,15 +84,7 @@ class FluxVAELoader(ModelLoader):
model = AutoEncoder(ae_params[config.config_path])
sd = load_file(model_path)
model.load_state_dict(sd, assign=True)
# VAE is broken in float16, which mps defaults to
if self._torch_dtype == torch.float16:
try:
vae_dtype = torch.tensor([1.0], dtype=torch.bfloat16, device=self._torch_device).dtype
except TypeError:
vae_dtype = torch.float32
else:
vae_dtype = self._torch_dtype
model.to(vae_dtype)
model.to(dtype=self._torch_dtype)
return model
@@ -136,9 +128,9 @@ class BnbQuantizedLlmInt8bCheckpointModel(ModelLoader):
"The bnb modules are not available. Please install bitsandbytes if available on your platform."
)
match submodel_type:
case SubModelType.Tokenizer2 | SubModelType.Tokenizer3:
case SubModelType.Tokenizer2:
return T5Tokenizer.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
case SubModelType.TextEncoder2 | SubModelType.TextEncoder3:
case SubModelType.TextEncoder2:
te2_model_path = Path(config.path) / "text_encoder_2"
model_config = AutoConfig.from_pretrained(te2_model_path)
with accelerate.init_empty_weights():
@@ -180,9 +172,9 @@ class T5EncoderCheckpointModel(ModelLoader):
raise ValueError("Only T5EncoderConfig models are currently supported here.")
match submodel_type:
case SubModelType.Tokenizer2 | SubModelType.Tokenizer3:
case SubModelType.Tokenizer2:
return T5Tokenizer.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
case SubModelType.TextEncoder2 | SubModelType.TextEncoder3:
case SubModelType.TextEncoder2:
return T5EncoderModel.from_pretrained(Path(config.path) / "text_encoder_2", torch_dtype="auto")
raise ValueError(

View File

@@ -0,0 +1,55 @@
from pathlib import Path
from typing import Optional
from invokeai.backend.model_manager.config import (
AnyModel,
AnyModelConfig,
BaseModelType,
CheckpointConfigBase,
MainCheckpointConfig,
ModelFormat,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.load.load_default import ModelLoader
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion35, type=ModelType.Main, format=ModelFormat.Checkpoint)
class FluxCheckpointModel(ModelLoader):
"""Class to load main models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not isinstance(config, CheckpointConfigBase):
raise ValueError("Only CheckpointConfigBase models are currently supported here.")
match submodel_type:
case SubModelType.Transformer:
return self._load_from_singlefile(config)
raise ValueError(
f"Only Transformer submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
)
def _load_from_singlefile(
self,
config: AnyModelConfig,
) -> AnyModel:
assert isinstance(config, MainCheckpointConfig)
model_path = Path(config.path)
# model = Flux(params[config.config_path])
# sd = load_file(model_path)
# if "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in sd:
# sd = convert_bundle_to_flux_transformer_checkpoint(sd)
# new_sd_size = sum([ten.nelement() * torch.bfloat16.itemsize for ten in sd.values()])
# self._ram_cache.make_room(new_sd_size)
# for k in sd.keys():
# # We need to cast to bfloat16 due to it being the only currently supported dtype for inference
# sd[k] = sd[k].to(torch.bfloat16)
# model.load_state_dict(sd, assign=True)
return model

View File

@@ -42,7 +42,6 @@ VARIANT_TO_IN_CHANNEL_MAP = {
@ModelLoaderRegistry.register(
base=BaseModelType.StableDiffusionXLRefiner, type=ModelType.Main, format=ModelFormat.Diffusers
)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion3, type=ModelType.Main, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion1, type=ModelType.Main, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion2, type=ModelType.Main, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusionXL, type=ModelType.Main, format=ModelFormat.Checkpoint)
@@ -52,6 +51,13 @@ VARIANT_TO_IN_CHANNEL_MAP = {
class StableDiffusionDiffusersModel(GenericDiffusersLoader):
"""Class to load main models."""
model_base_to_model_type = {
BaseModelType.StableDiffusion1: "FrozenCLIPEmbedder",
BaseModelType.StableDiffusion2: "FrozenOpenCLIPEmbedder",
BaseModelType.StableDiffusionXL: "SDXL",
BaseModelType.StableDiffusionXLRefiner: "SDXL-Refiner",
}
def _load_model(
self,
config: AnyModelConfig,
@@ -111,6 +117,8 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
load_class = load_classes[config.base][config.variant]
except KeyError as e:
raise Exception(f"No diffusers pipeline known for base={config.base}, variant={config.variant}") from e
prediction_type = config.prediction_type.value
upcast_attention = config.upcast_attention
# Without SilenceWarnings we get log messages like this:
# site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
@@ -121,7 +129,13 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
# ['text_model.embeddings.position_ids']
with SilenceWarnings():
pipeline = load_class.from_single_file(config.path, torch_dtype=self._torch_dtype)
pipeline = load_class.from_single_file(
config.path,
torch_dtype=self._torch_dtype,
prediction_type=prediction_type,
upcast_attention=upcast_attention,
load_safety_checker=False,
)
if not submodel_type:
return pipeline

View File

@@ -20,7 +20,7 @@ from typing import Optional
import requests
from huggingface_hub import HfApi, configure_http_backend, hf_hub_url
from huggingface_hub.errors import RepositoryNotFoundError, RevisionNotFoundError
from huggingface_hub.utils._errors import RepositoryNotFoundError, RevisionNotFoundError
from pydantic.networks import AnyHttpUrl
from requests.sessions import Session

View File

@@ -1,7 +1,7 @@
import json
import re
from pathlib import Path
from typing import Any, Callable, Dict, Literal, Optional, Union
from typing import Any, Dict, Literal, Optional, Union
import safetensors.torch
import spandrel
@@ -22,7 +22,6 @@ from invokeai.backend.lora.conversions.flux_kohya_lora_conversion_utils import i
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS, ModelHash
from invokeai.backend.model_manager.config import (
AnyModelConfig,
AnyVariant,
BaseModelType,
ControlAdapterDefaultSettings,
InvalidModelConfigException,
@@ -34,17 +33,11 @@ from invokeai.backend.model_manager.config import (
ModelType,
ModelVariantType,
SchedulerPredictionType,
SubmodelDefinition,
SubModelType,
)
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import ConfigLoader
from invokeai.backend.model_manager.util.model_util import (
get_clip_variant_type,
lora_token_vector_length,
read_checkpoint_meta,
)
from invokeai.backend.model_manager.util.model_util import lora_token_vector_length, read_checkpoint_meta
from invokeai.backend.quantization.gguf.ggml_tensor import GGMLTensor
from invokeai.backend.quantization.gguf.loaders import gguf_sd_loader
from invokeai.backend.sd3.sd3_state_dict_utils import is_sd3_checkpoint
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
from invokeai.backend.util.silence_warnings import SilenceWarnings
@@ -120,7 +113,6 @@ class ModelProbe(object):
"StableDiffusionXLPipeline": ModelType.Main,
"StableDiffusionXLImg2ImgPipeline": ModelType.Main,
"StableDiffusionXLInpaintPipeline": ModelType.Main,
"StableDiffusion3Pipeline": ModelType.Main,
"LatentConsistencyModelPipeline": ModelType.Main,
"AutoencoderKL": ModelType.VAE,
"AutoencoderTiny": ModelType.VAE,
@@ -129,14 +121,11 @@ class ModelProbe(object):
"T2IAdapter": ModelType.T2IAdapter,
"CLIPModel": ModelType.CLIPEmbed,
"CLIPTextModel": ModelType.CLIPEmbed,
"CLIPTextModelWithProjection": ModelType.CLIPEmbed,
"T5EncoderModel": ModelType.T5Encoder,
"FluxControlNetModel": ModelType.ControlNet,
"SD3Transformer2DModel": ModelType.Main,
"CLIPTextModelWithProjection": ModelType.CLIPEmbed,
}
TYPE2VARIANT: Dict[ModelType, Callable[[str], Optional[AnyVariant]]] = {ModelType.CLIPEmbed: get_clip_variant_type}
@classmethod
def register_probe(
cls, format: Literal["diffusers", "checkpoint", "onnx"], model_type: ModelType, probe_class: type[ProbeBase]
@@ -183,10 +172,7 @@ class ModelProbe(object):
fields["path"] = model_path.as_posix()
fields["type"] = fields.get("type") or model_type
fields["base"] = fields.get("base") or probe.get_base_type()
variant_func = cls.TYPE2VARIANT.get(fields["type"], None)
fields["variant"] = (
fields.get("variant") or (variant_func and variant_func(model_path.as_posix())) or probe.get_variant_type()
)
fields["variant"] = fields.get("variant") or probe.get_variant_type()
fields["prediction_type"] = fields.get("prediction_type") or probe.get_scheduler_prediction_type()
fields["image_encoder_model_id"] = fields.get("image_encoder_model_id") or probe.get_image_encoder_model_id()
fields["name"] = fields.get("name") or cls.get_model_name(model_path)
@@ -233,10 +219,6 @@ class ModelProbe(object):
and fields["prediction_type"] == SchedulerPredictionType.VPrediction
)
get_submodels = getattr(probe, "get_submodels", None)
if fields["base"] == BaseModelType.StableDiffusion3 and callable(get_submodels):
fields["submodels"] = get_submodels()
model_info = ModelConfigFactory.make_config(fields) # , key=fields.get("key", None))
return model_info
@@ -261,6 +243,11 @@ class ModelProbe(object):
for key in [str(k) for k in ckpt.keys()]:
if key.startswith(
(
# The following prefixes appear when multiple models have been bundled together in a single file (I
# believe the format originated in ComfyUI).
# first_stage_model = VAE
# cond_stage_model = Text Encoder
# model.diffusion_model = UNet / Transformer
"cond_stage_model.",
"first_stage_model.",
"model.diffusion_model.",
@@ -417,6 +404,9 @@ class ModelProbe(object):
# is used rather than attempting to support flux with separate model types and format
# If changed in the future, please fix me
config_file = "flux-schnell"
elif base_type == BaseModelType.StableDiffusion35:
# TODO(ryand): Think about what to do here.
config_file = "sd3.5-large"
else:
config_file = LEGACY_CONFIGS[base_type][variant_type]
if isinstance(config_file, dict): # need another tier for sd-2.x models
@@ -469,7 +459,7 @@ class ModelProbe(object):
"""
# scan model
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0 or scan_result.scan_err:
if scan_result.infected_files != 0:
raise Exception("The model {model_name} is potentially infected by malware. Aborting import.")
@@ -482,10 +472,8 @@ MODEL_NAME_TO_PREPROCESSOR = {
"normal": "normalbae_image_processor",
"sketch": "pidi_image_processor",
"scribble": "lineart_image_processor",
"lineart anime": "lineart_anime_image_processor",
"lineart_anime": "lineart_anime_image_processor",
"lineart": "lineart_image_processor",
"soft": "hed_image_processor",
"lineart_anime": "lineart_anime_image_processor",
"softedge": "hed_image_processor",
"hed": "hed_image_processor",
"shuffle": "content_shuffle_image_processor",
@@ -538,7 +526,7 @@ class CheckpointProbeBase(ProbeBase):
def get_variant_type(self) -> ModelVariantType:
model_type = ModelProbe.get_model_type_from_checkpoint(self.model_path, self.checkpoint)
base_type = self.get_base_type()
if model_type != ModelType.Main or base_type == BaseModelType.Flux:
if model_type != ModelType.Main or base_type in (BaseModelType.Flux, BaseModelType.StableDiffusion35):
return ModelVariantType.Normal
state_dict = self.checkpoint.get("state_dict") or self.checkpoint
in_channels = state_dict["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
@@ -563,6 +551,10 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
or "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in state_dict
):
return BaseModelType.Flux
if is_sd3_checkpoint(state_dict):
return BaseModelType.StableDiffusion35
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 768:
return BaseModelType.StableDiffusion1
@@ -768,33 +760,18 @@ class FolderProbeBase(ProbeBase):
class PipelineFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
# Handle pipelines with a UNet (i.e SD 1.x, SD2, SDXL).
config_path = self.model_path / "unet" / "config.json"
if config_path.exists():
with open(config_path) as file:
unet_conf = json.load(file)
if unet_conf["cross_attention_dim"] == 768:
return BaseModelType.StableDiffusion1
elif unet_conf["cross_attention_dim"] == 1024:
return BaseModelType.StableDiffusion2
elif unet_conf["cross_attention_dim"] == 1280:
return BaseModelType.StableDiffusionXLRefiner
elif unet_conf["cross_attention_dim"] == 2048:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException(f"Unknown base model for {self.model_path}")
# Handle pipelines with a transformer (i.e. SD3).
config_path = self.model_path / "transformer" / "config.json"
if config_path.exists():
with open(config_path) as file:
transformer_conf = json.load(file)
if transformer_conf["_class_name"] == "SD3Transformer2DModel":
return BaseModelType.StableDiffusion3
else:
raise InvalidModelConfigException(f"Unknown base model for {self.model_path}")
raise InvalidModelConfigException(f"Unknown base model for {self.model_path}")
with open(self.model_path / "unet" / "config.json", "r") as file:
unet_conf = json.load(file)
if unet_conf["cross_attention_dim"] == 768:
return BaseModelType.StableDiffusion1
elif unet_conf["cross_attention_dim"] == 1024:
return BaseModelType.StableDiffusion2
elif unet_conf["cross_attention_dim"] == 1280:
return BaseModelType.StableDiffusionXLRefiner
elif unet_conf["cross_attention_dim"] == 2048:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException(f"Unknown base model for {self.model_path}")
def get_scheduler_prediction_type(self) -> SchedulerPredictionType:
with open(self.model_path / "scheduler" / "scheduler_config.json", "r") as file:
@@ -806,23 +783,6 @@ class PipelineFolderProbe(FolderProbeBase):
else:
raise InvalidModelConfigException("Unknown scheduler prediction type: {scheduler_conf['prediction_type']}")
def get_submodels(self) -> Dict[SubModelType, SubmodelDefinition]:
config = ConfigLoader.load_config(self.model_path, config_name="model_index.json")
submodels: Dict[SubModelType, SubmodelDefinition] = {}
for key, value in config.items():
if key.startswith("_") or not (isinstance(value, list) and len(value) == 2):
continue
model_loader = str(value[1])
if model_type := ModelProbe.CLASS2TYPE.get(model_loader):
variant_func = ModelProbe.TYPE2VARIANT.get(model_type, None)
submodels[SubModelType(key)] = SubmodelDefinition(
path_or_prefix=(self.model_path / key).resolve().as_posix(),
model_type=model_type,
variant=variant_func and variant_func((self.model_path / key).as_posix()),
)
return submodels
def get_variant_type(self) -> ModelVariantType:
# This only works for pipelines! Any kind of
# exception results in our returning the

View File

@@ -13,9 +13,6 @@ class StarterModelWithoutDependencies(BaseModel):
type: ModelType
format: Optional[ModelFormat] = None
is_installed: bool = False
# allows us to track what models a user has installed across name changes within starter models
# if you update a starter model name, please add the old one to this list for that starter model
previous_names: list[str] = []
class StarterModel(StarterModelWithoutDependencies):
@@ -140,22 +137,6 @@ flux_dev = StarterModel(
type=ModelType.Main,
dependencies=[t5_base_encoder, flux_vae, clip_l_encoder],
)
sd35_medium = StarterModel(
name="SD3.5 Medium",
base=BaseModelType.StableDiffusion3,
source="stabilityai/stable-diffusion-3.5-medium",
description="Medium SD3.5 Model: ~15GB",
type=ModelType.Main,
dependencies=[],
)
sd35_large = StarterModel(
name="SD3.5 Large",
base=BaseModelType.StableDiffusion3,
source="stabilityai/stable-diffusion-3.5-large",
description="Large SD3.5 Model: ~19G",
type=ModelType.Main,
dependencies=[],
)
cyberrealistic_sd1 = StarterModel(
name="CyberRealistic v4.1",
base=BaseModelType.StableDiffusion1,
@@ -262,46 +243,42 @@ easy_neg_sd1 = StarterModel(
# endregion
# region IP Adapter
ip_adapter_sd1 = StarterModel(
name="Standard Reference (IP Adapter)",
name="IP Adapter",
base=BaseModelType.StableDiffusion1,
source="https://huggingface.co/InvokeAI/ip_adapter_sd15/resolve/main/ip-adapter_sd15.safetensors",
description="References images with a more generalized/looser degree of precision.",
description="IP-Adapter for SD 1.5 models",
type=ModelType.IPAdapter,
dependencies=[ip_adapter_sd_image_encoder],
previous_names=["IP Adapter"],
)
ip_adapter_plus_sd1 = StarterModel(
name="Precise Reference (IP Adapter Plus)",
name="IP Adapter Plus",
base=BaseModelType.StableDiffusion1,
source="https://huggingface.co/InvokeAI/ip_adapter_plus_sd15/resolve/main/ip-adapter-plus_sd15.safetensors",
description="References images with a higher degree of precision.",
description="Refined IP-Adapter for SD 1.5 models",
type=ModelType.IPAdapter,
dependencies=[ip_adapter_sd_image_encoder],
previous_names=["IP Adapter Plus"],
)
ip_adapter_plus_face_sd1 = StarterModel(
name="Face Reference (IP Adapter Plus Face)",
name="IP Adapter Plus Face",
base=BaseModelType.StableDiffusion1,
source="https://huggingface.co/InvokeAI/ip_adapter_plus_face_sd15/resolve/main/ip-adapter-plus-face_sd15.safetensors",
description="References images with a higher degree of precision, adapted for faces",
description="Refined IP-Adapter for SD 1.5 models, adapted for faces",
type=ModelType.IPAdapter,
dependencies=[ip_adapter_sd_image_encoder],
previous_names=["IP Adapter Plus Face"],
)
ip_adapter_sdxl = StarterModel(
name="Standard Reference (IP Adapter ViT-H)",
name="IP Adapter SDXL",
base=BaseModelType.StableDiffusionXL,
source="https://huggingface.co/InvokeAI/ip_adapter_sdxl_vit_h/resolve/main/ip-adapter_sdxl_vit-h.safetensors",
description="References images with a higher degree of precision.",
description="IP-Adapter for SDXL models",
type=ModelType.IPAdapter,
dependencies=[ip_adapter_sdxl_image_encoder],
previous_names=["IP Adapter SDXL"],
)
ip_adapter_flux = StarterModel(
name="Standard Reference (XLabs FLUX IP-Adapter v2)",
name="XLabs FLUX IP-Adapter",
base=BaseModelType.Flux,
source="https://huggingface.co/XLabs-AI/flux-ip-adapter-v2/resolve/main/ip_adapter.safetensors",
description="References images with a more generalized/looser degree of precision.",
source="https://huggingface.co/XLabs-AI/flux-ip-adapter/resolve/main/flux-ip-adapter.safetensors",
description="FLUX IP-Adapter",
type=ModelType.IPAdapter,
dependencies=[clip_vit_l_image_encoder],
)
@@ -322,162 +299,157 @@ qr_code_cnet_sdxl = StarterModel(
type=ModelType.ControlNet,
)
canny_sd1 = StarterModel(
name="Hard Edge Detection (canny)",
name="canny",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_canny",
description="Uses detected edges in the image to control composition.",
description="ControlNet weights trained on sd-1.5 with canny conditioning.",
type=ModelType.ControlNet,
previous_names=["canny"],
)
inpaint_cnet_sd1 = StarterModel(
name="Inpainting",
name="inpaint",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_inpaint",
description="ControlNet weights trained on sd-1.5 with canny conditioning, inpaint version",
type=ModelType.ControlNet,
previous_names=["inpaint"],
)
mlsd_sd1 = StarterModel(
name="Line Drawing (mlsd)",
name="mlsd",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_mlsd",
description="Uses straight line detection for controlling the generation.",
description="ControlNet weights trained on sd-1.5 with canny conditioning, MLSD version",
type=ModelType.ControlNet,
previous_names=["mlsd"],
)
depth_sd1 = StarterModel(
name="Depth Map",
name="depth",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11f1p_sd15_depth",
description="Uses depth information in the image to control the depth in the generation.",
description="ControlNet weights trained on sd-1.5 with depth conditioning",
type=ModelType.ControlNet,
previous_names=["depth"],
)
normal_bae_sd1 = StarterModel(
name="Lighting Detection (Normals)",
name="normal_bae",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_normalbae",
description="Uses detected lighting information to guide the lighting of the composition.",
description="ControlNet weights trained on sd-1.5 with normalbae image conditioning",
type=ModelType.ControlNet,
previous_names=["normal_bae"],
)
seg_sd1 = StarterModel(
name="Segmentation Map",
name="seg",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_seg",
description="Uses segmentation maps to guide the structure of the composition.",
description="ControlNet weights trained on sd-1.5 with seg image conditioning",
type=ModelType.ControlNet,
previous_names=["seg"],
)
lineart_sd1 = StarterModel(
name="Lineart",
name="lineart",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_lineart",
description="Uses lineart detection to guide the lighting of the composition.",
description="ControlNet weights trained on sd-1.5 with lineart image conditioning",
type=ModelType.ControlNet,
previous_names=["lineart"],
)
lineart_anime_sd1 = StarterModel(
name="Lineart Anime",
name="lineart_anime",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15s2_lineart_anime",
description="Uses anime lineart detection to guide the lighting of the composition.",
description="ControlNet weights trained on sd-1.5 with anime image conditioning",
type=ModelType.ControlNet,
previous_names=["lineart_anime"],
)
openpose_sd1 = StarterModel(
name="Pose Detection (openpose)",
name="openpose",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_openpose",
description="Uses pose information to control the pose of human characters in the generation.",
description="ControlNet weights trained on sd-1.5 with openpose image conditioning",
type=ModelType.ControlNet,
previous_names=["openpose"],
)
scribble_sd1 = StarterModel(
name="Contour Detection (scribble)",
name="scribble",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_scribble",
description="Uses edges, contours, or line art in the image to control composition.",
description="ControlNet weights trained on sd-1.5 with scribble image conditioning",
type=ModelType.ControlNet,
previous_names=["scribble"],
)
softedge_sd1 = StarterModel(
name="Soft Edge Detection (softedge)",
name="softedge",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_softedge",
description="Uses a soft edge detection map to control composition.",
description="ControlNet weights trained on sd-1.5 with soft edge conditioning",
type=ModelType.ControlNet,
previous_names=["softedge"],
)
shuffle_sd1 = StarterModel(
name="Remix (shuffle)",
name="shuffle",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11e_sd15_shuffle",
description="ControlNet weights trained on sd-1.5 with shuffle image conditioning",
type=ModelType.ControlNet,
previous_names=["shuffle"],
)
tile_sd1 = StarterModel(
name="Tile",
name="tile",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11f1e_sd15_tile",
description="Uses image data to replicate exact colors/structure in the resulting generation.",
description="ControlNet weights trained on sd-1.5 with tiled image conditioning",
type=ModelType.ControlNet,
)
ip2p_sd1 = StarterModel(
name="ip2p",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11e_sd15_ip2p",
description="ControlNet weights trained on sd-1.5 with ip2p conditioning.",
type=ModelType.ControlNet,
previous_names=["tile"],
)
canny_sdxl = StarterModel(
name="Hard Edge Detection (canny)",
name="canny-sdxl",
base=BaseModelType.StableDiffusionXL,
source="xinsir/controlNet-canny-sdxl-1.0",
description="Uses detected edges in the image to control composition.",
description="ControlNet weights trained on sdxl-1.0 with canny conditioning, by Xinsir.",
type=ModelType.ControlNet,
previous_names=["canny-sdxl"],
)
depth_sdxl = StarterModel(
name="Depth Map",
name="depth-sdxl",
base=BaseModelType.StableDiffusionXL,
source="diffusers/controlNet-depth-sdxl-1.0",
description="Uses depth information in the image to control the depth in the generation.",
description="ControlNet weights trained on sdxl-1.0 with depth conditioning.",
type=ModelType.ControlNet,
previous_names=["depth-sdxl"],
)
softedge_sdxl = StarterModel(
name="Soft Edge Detection (softedge)",
name="softedge-dexined-sdxl",
base=BaseModelType.StableDiffusionXL,
source="SargeZT/controlNet-sd-xl-1.0-softedge-dexined",
description="Uses a soft edge detection map to control composition.",
description="ControlNet weights trained on sdxl-1.0 with dexined soft edge preprocessing.",
type=ModelType.ControlNet,
)
depth_zoe_16_sdxl = StarterModel(
name="depth-16bit-zoe-sdxl",
base=BaseModelType.StableDiffusionXL,
source="SargeZT/controlNet-sd-xl-1.0-depth-16bit-zoe",
description="ControlNet weights trained on sdxl-1.0 with Zoe's preprocessor (16 bits).",
type=ModelType.ControlNet,
)
depth_zoe_32_sdxl = StarterModel(
name="depth-zoe-sdxl",
base=BaseModelType.StableDiffusionXL,
source="diffusers/controlNet-zoe-depth-sdxl-1.0",
description="ControlNet weights trained on sdxl-1.0 with Zoe's preprocessor (32 bits).",
type=ModelType.ControlNet,
previous_names=["softedge-dexined-sdxl"],
)
openpose_sdxl = StarterModel(
name="Pose Detection (openpose)",
name="openpose-sdxl",
base=BaseModelType.StableDiffusionXL,
source="xinsir/controlNet-openpose-sdxl-1.0",
description="Uses pose information to control the pose of human characters in the generation.",
description="ControlNet weights trained on sdxl-1.0 compatible with the DWPose processor by Xinsir.",
type=ModelType.ControlNet,
previous_names=["openpose-sdxl", "controlnet-openpose-sdxl"],
)
scribble_sdxl = StarterModel(
name="Contour Detection (scribble)",
name="scribble-sdxl",
base=BaseModelType.StableDiffusionXL,
source="xinsir/controlNet-scribble-sdxl-1.0",
description="Uses edges, contours, or line art in the image to control composition.",
description="ControlNet weights trained on sdxl-1.0 compatible with various lineart processors and black/white sketches by Xinsir.",
type=ModelType.ControlNet,
previous_names=["scribble-sdxl", "controlnet-scribble-sdxl"],
)
tile_sdxl = StarterModel(
name="Tile",
name="tile-sdxl",
base=BaseModelType.StableDiffusionXL,
source="xinsir/controlNet-tile-sdxl-1.0",
description="Uses image data to replicate exact colors/structure in the resulting generation.",
type=ModelType.ControlNet,
previous_names=["tile-sdxl"],
)
union_cnet_sdxl = StarterModel(
name="Multi-Guidance Detection (Union Pro)",
base=BaseModelType.StableDiffusionXL,
source="InvokeAI/Xinsir-SDXL_Controlnet_Union",
description="A unified ControlNet for SDXL model that supports 10+ control types",
description="ControlNet weights trained on sdxl-1.0 with tiled image conditioning",
type=ModelType.ControlNet,
)
union_cnet_flux = StarterModel(
@@ -490,52 +462,60 @@ union_cnet_flux = StarterModel(
# endregion
# region T2I Adapter
t2i_canny_sd1 = StarterModel(
name="Hard Edge Detection (canny)",
name="canny-sd15",
base=BaseModelType.StableDiffusion1,
source="TencentARC/t2iadapter_canny_sd15v2",
description="Uses detected edges in the image to control composition",
description="T2I Adapter weights trained on sd-1.5 with canny conditioning.",
type=ModelType.T2IAdapter,
previous_names=["canny-sd15"],
)
t2i_sketch_sd1 = StarterModel(
name="Sketch",
name="sketch-sd15",
base=BaseModelType.StableDiffusion1,
source="TencentARC/t2iadapter_sketch_sd15v2",
description="Uses a sketch to control composition",
description="T2I Adapter weights trained on sd-1.5 with sketch conditioning.",
type=ModelType.T2IAdapter,
previous_names=["sketch-sd15"],
)
t2i_depth_sd1 = StarterModel(
name="Depth Map",
name="depth-sd15",
base=BaseModelType.StableDiffusion1,
source="TencentARC/t2iadapter_depth_sd15v2",
description="Uses depth information in the image to control the depth in the generation.",
description="T2I Adapter weights trained on sd-1.5 with depth conditioning.",
type=ModelType.T2IAdapter,
)
t2i_zoe_depth_sd1 = StarterModel(
name="zoedepth-sd15",
base=BaseModelType.StableDiffusion1,
source="TencentARC/t2iadapter_zoedepth_sd15v1",
description="T2I Adapter weights trained on sd-1.5 with zoe depth conditioning.",
type=ModelType.T2IAdapter,
previous_names=["depth-sd15"],
)
t2i_canny_sdxl = StarterModel(
name="Hard Edge Detection (canny)",
name="canny-sdxl",
base=BaseModelType.StableDiffusionXL,
source="TencentARC/t2i-adapter-canny-sdxl-1.0",
description="Uses detected edges in the image to control composition",
description="T2I Adapter weights trained on sdxl-1.0 with canny conditioning.",
type=ModelType.T2IAdapter,
)
t2i_zoe_depth_sdxl = StarterModel(
name="zoedepth-sdxl",
base=BaseModelType.StableDiffusionXL,
source="TencentARC/t2i-adapter-depth-zoe-sdxl-1.0",
description="T2I Adapter weights trained on sdxl-1.0 with zoe depth conditioning.",
type=ModelType.T2IAdapter,
previous_names=["canny-sdxl"],
)
t2i_lineart_sdxl = StarterModel(
name="Lineart",
name="lineart-sdxl",
base=BaseModelType.StableDiffusionXL,
source="TencentARC/t2i-adapter-lineart-sdxl-1.0",
description="Uses lineart detection to guide the lighting of the composition.",
description="T2I Adapter weights trained on sdxl-1.0 with lineart conditioning.",
type=ModelType.T2IAdapter,
previous_names=["lineart-sdxl"],
)
t2i_sketch_sdxl = StarterModel(
name="Sketch",
name="sketch-sdxl",
base=BaseModelType.StableDiffusionXL,
source="TencentARC/t2i-adapter-sketch-sdxl-1.0",
description="Uses a sketch to control composition",
description="T2I Adapter weights trained on sdxl-1.0 with sketch conditioning.",
type=ModelType.T2IAdapter,
previous_names=["sketch-sdxl"],
)
# endregion
# region SpandrelImageToImage
@@ -585,8 +565,6 @@ STARTER_MODELS: list[StarterModel] = [
flux_dev_quantized,
flux_schnell,
flux_dev,
sd35_medium,
sd35_large,
cyberrealistic_sd1,
rev_animated_sd1,
dreamshaper_8_sd1,
@@ -622,18 +600,22 @@ STARTER_MODELS: list[StarterModel] = [
softedge_sd1,
shuffle_sd1,
tile_sd1,
ip2p_sd1,
canny_sdxl,
depth_sdxl,
softedge_sdxl,
depth_zoe_16_sdxl,
depth_zoe_32_sdxl,
openpose_sdxl,
scribble_sdxl,
tile_sdxl,
union_cnet_sdxl,
union_cnet_flux,
t2i_canny_sd1,
t2i_sketch_sd1,
t2i_depth_sd1,
t2i_zoe_depth_sd1,
t2i_canny_sdxl,
t2i_zoe_depth_sdxl,
t2i_lineart_sdxl,
t2i_sketch_sdxl,
realesrgan_x4,
@@ -664,6 +646,7 @@ sd1_bundle: list[StarterModel] = [
softedge_sd1,
shuffle_sd1,
tile_sd1,
ip2p_sd1,
swinir,
]
@@ -674,6 +657,8 @@ sdxl_bundle: list[StarterModel] = [
canny_sdxl,
depth_sdxl,
softedge_sdxl,
depth_zoe_16_sdxl,
depth_zoe_32_sdxl,
openpose_sdxl,
scribble_sdxl,
tile_sdxl,

View File

@@ -8,7 +8,6 @@ import safetensors
import torch
from picklescan.scanner import scan_file_path
from invokeai.backend.model_manager.config import ClipVariantType
from invokeai.backend.quantization.gguf.loaders import gguf_sd_loader
@@ -44,7 +43,7 @@ def _fast_safetensors_reader(path: str) -> Dict[str, torch.Tensor]:
return checkpoint
def read_checkpoint_meta(path: Union[str, Path], scan: bool = True) -> Dict[str, torch.Tensor]:
def read_checkpoint_meta(path: Union[str, Path], scan: bool = False) -> Dict[str, torch.Tensor]:
if str(path).endswith(".safetensors"):
try:
path_str = path.as_posix() if isinstance(path, Path) else path
@@ -52,15 +51,16 @@ def read_checkpoint_meta(path: Union[str, Path], scan: bool = True) -> Dict[str,
except Exception:
# TODO: create issue for support "meta"?
checkpoint = safetensors.torch.load_file(path, device="cpu")
elif str(path).endswith(".gguf"):
# The GGUF reader used here uses numpy memmap, so these tensors are not loaded into memory during this function
checkpoint = gguf_sd_loader(Path(path), compute_dtype=torch.float32)
else:
if scan:
scan_result = scan_file_path(path)
if scan_result.infected_files != 0 or scan_result.scan_err:
if scan_result.infected_files != 0:
raise Exception(f'The model file "{path}" is potentially infected by malware. Aborting import.')
checkpoint = torch.load(path, map_location=torch.device("meta"))
if str(path).endswith(".gguf"):
# The GGUF reader used here uses numpy memmap, so these tensors are not loaded into memory during this function
checkpoint = gguf_sd_loader(Path(path), compute_dtype=torch.float32)
else:
checkpoint = torch.load(path, map_location=torch.device("meta"))
return checkpoint
@@ -165,25 +165,3 @@ def convert_bundle_to_flux_transformer_checkpoint(
del transformer_state_dict[k]
return original_state_dict
def get_clip_variant_type(location: str) -> Optional[ClipVariantType]:
try:
path = Path(location)
config_path = path / "config.json"
if not config_path.exists():
config_path = path / "text_encoder" / "config.json"
if not config_path.exists():
return ClipVariantType.L
with open(config_path) as file:
clip_conf = json.load(file)
hidden_size = clip_conf.get("hidden_size", -1)
match hidden_size:
case 1280:
return ClipVariantType.G
case 768:
return ClipVariantType.L
case _:
return ClipVariantType.L
except Exception:
return ClipVariantType.L

View File

@@ -85,7 +85,6 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
"""Select the proper variant files from a list of HuggingFace repo_id paths."""
result: set[Path] = set()
subfolder_weights: dict[Path, list[SubfolderCandidate]] = {}
safetensors_detected = False
for path in files:
if path.suffix in [".onnx", ".pb", ".onnx_data"]:
if variant == ModelRepoVariant.ONNX:
@@ -120,27 +119,19 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
# We prefer safetensors over other file formats and an exact variant match. We'll score each file based on
# variant and format and select the best one.
if safetensors_detected and path.suffix == ".bin":
continue
parent = path.parent
score = 0
if path.suffix == ".safetensors":
safetensors_detected = True
if parent in subfolder_weights:
subfolder_weights[parent] = [sfc for sfc in subfolder_weights[parent] if sfc.path.suffix != ".bin"]
score += 1
candidate_variant_label = path.suffixes[0] if len(path.suffixes) == 2 else None
# Some special handling is needed here if there is not an exact match and if we cannot infer the variant
# from the file name. In this case, we only give this file a point if the requested variant is FP32 or DEFAULT.
if (
variant is not ModelRepoVariant.Default
and candidate_variant_label
and candidate_variant_label.startswith(f".{variant.value}")
) or (not candidate_variant_label and variant in [ModelRepoVariant.FP32, ModelRepoVariant.Default]):
if candidate_variant_label == f".{variant}" or (
not candidate_variant_label and variant in [ModelRepoVariant.FP32, ModelRepoVariant.Default]
):
score += 1
if parent not in subfolder_weights:
@@ -155,7 +146,7 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
# Check if at least one of the files has the explicit fp16 variant.
at_least_one_fp16 = False
for candidate in candidate_list:
if len(candidate.path.suffixes) == 2 and candidate.path.suffixes[0].startswith(".fp16"):
if len(candidate.path.suffixes) == 2 and candidate.path.suffixes[0] == ".fp16":
at_least_one_fp16 = True
break
@@ -171,16 +162,7 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
# candidate.
highest_score_candidate = max(candidate_list, key=lambda candidate: candidate.score)
if highest_score_candidate:
pattern = r"^(.*?)-\d+-of-\d+(\.\w+)$"
match = re.match(pattern, highest_score_candidate.path.as_posix())
if match:
for candidate in candidate_list:
if candidate.path.as_posix().startswith(match.group(1)) and candidate.path.as_posix().endswith(
match.group(2)
):
result.add(candidate.path)
else:
result.add(highest_score_candidate.path)
result.add(highest_score_candidate.path)
# If one of the architecture-related variants was specified and no files matched other than
# config and text files then we return an empty list

View File

@@ -1,58 +0,0 @@
import torch
class InpaintExtension:
"""A class for managing inpainting with SD3."""
def __init__(self, init_latents: torch.Tensor, inpaint_mask: torch.Tensor, noise: torch.Tensor):
"""Initialize InpaintExtension.
Args:
init_latents (torch.Tensor): The initial latents (i.e. un-noised at timestep 0).
inpaint_mask (torch.Tensor): A mask specifying which elements to inpaint. Range [0, 1]. Values of 1 will be
re-generated. Values of 0 will remain unchanged. Values between 0 and 1 can be used to blend the
inpainted region with the background.
noise (torch.Tensor): The noise tensor used to noise the init_latents.
"""
assert init_latents.dim() == inpaint_mask.dim() == noise.dim() == 4
assert init_latents.shape[-2:] == inpaint_mask.shape[-2:] == noise.shape[-2:]
self._init_latents = init_latents
self._inpaint_mask = inpaint_mask
self._noise = noise
def _apply_mask_gradient_adjustment(self, t_prev: float) -> torch.Tensor:
"""Applies inpaint mask gradient adjustment and returns the inpaint mask to be used at the current timestep."""
# As we progress through the denoising process, we promote gradient regions of the mask to have a full weight of
# 1.0. This helps to produce more coherent seams around the inpainted region. We experimented with a (small)
# number of promotion strategies (e.g. gradual promotion based on timestep), but found that a simple cutoff
# threshold worked well.
# We use a small epsilon to avoid any potential issues with floating point precision.
eps = 1e-4
mask_gradient_t_cutoff = 0.5
if t_prev > mask_gradient_t_cutoff:
# Early in the denoising process, use the inpaint mask as-is.
return self._inpaint_mask
else:
# After the cut-off, promote all non-zero mask values to 1.0.
mask = self._inpaint_mask.where(self._inpaint_mask <= (0.0 + eps), 1.0)
return mask
def merge_intermediate_latents_with_init_latents(
self, intermediate_latents: torch.Tensor, t_prev: float
) -> torch.Tensor:
"""Merge the intermediate latents with the initial latents for the current timestep using the inpaint mask. I.e.
update the intermediate latents to keep the regions that are not being inpainted on the correct noise
trajectory.
This function should be called after each denoising step.
"""
mask = self._apply_mask_gradient_adjustment(t_prev)
# Noise the init latents for the current timestep.
noised_init_latents = self._noise * t_prev + (1.0 - t_prev) * self._init_latents
# Merge the intermediate latents with the noised_init_latents using the inpaint_mask.
return intermediate_latents * mask + noised_init_latents * (1.0 - mask)

View File

@@ -0,0 +1,891 @@
# This file was originally copied from:
# https://github.com/Stability-AI/sd3.5/blob/19bf11c4e1e37324c5aa5a61f010d4127848a09c/mmditx.py
### This file contains impls for MM-DiT, the core model component of SD3
import math
from typing import Dict, List, Optional
import numpy as np
import torch
from einops import rearrange, repeat
from invokeai.backend.sd3.other_impls import Mlp, attention
class PatchEmbed(torch.nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
img_size: Optional[int] = 224,
patch_size: int = 16,
in_chans: int = 3,
embed_dim: int = 768,
flatten: bool = True,
bias: bool = True,
strict_img_size: bool = True,
dynamic_img_pad: bool = False,
dtype: torch.dtype | None = None,
device: torch.device | None = None,
):
super().__init__()
self.patch_size = (patch_size, patch_size)
if img_size is not None:
self.img_size = (img_size, img_size)
self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size, strict=False)])
self.num_patches = self.grid_size[0] * self.grid_size[1]
else:
self.img_size = None
self.grid_size = None
self.num_patches = None
# flatten spatial dim and transpose to channels last, kept for bwd compat
self.flatten = flatten
self.strict_img_size = strict_img_size
self.dynamic_img_pad = dynamic_img_pad
self.proj = torch.nn.Conv2d(
in_chans,
embed_dim,
kernel_size=patch_size,
stride=patch_size,
bias=bias,
dtype=dtype,
device=device,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # NCHW -> NLC
return x
def modulate(x: torch.Tensor, shift: torch.Tensor | None, scale: torch.Tensor) -> torch.Tensor:
if shift is None:
shift = torch.zeros_like(scale)
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
#################################################################################
# Sine/Cosine Positional Embedding Functions #
#################################################################################
def get_2d_sincos_pos_embed(
embed_dim: int,
grid_size: int,
cls_token: bool = False,
extra_tokens: int = 0,
scaling_factor: Optional[float] = None,
offset: Optional[float] = None,
):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
if scaling_factor is not None:
grid = grid / scaling_factor
if offset is not None:
grid = grid - offset
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim: int, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim: int, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
return np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(torch.nn.Module):
"""Embeds scalar timesteps into vector representations."""
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None):
super().__init__()
self.mlp = torch.nn.Sequential(
torch.nn.Linear(
frequency_embedding_size,
hidden_size,
bias=True,
dtype=dtype,
device=device,
),
torch.nn.SiLU(),
torch.nn.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
device=t.device
)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(dtype=t.dtype)
return embedding
def forward(self, t, dtype, **kwargs):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
t_emb = self.mlp(t_freq)
return t_emb
class VectorEmbedder(torch.nn.Module):
"""Embeds a flat vector of dimension input_dim"""
def __init__(self, input_dim: int, hidden_size: int, dtype=None, device=None):
super().__init__()
self.mlp = torch.nn.Sequential(
torch.nn.Linear(input_dim, hidden_size, bias=True, dtype=dtype, device=device),
torch.nn.SiLU(),
torch.nn.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.mlp(x)
#################################################################################
# Core DiT Model #
#################################################################################
def split_qkv(qkv, head_dim):
qkv = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, -1, head_dim).movedim(2, 0)
return qkv[0], qkv[1], qkv[2]
def optimized_attention(qkv, num_heads):
return attention(qkv[0], qkv[1], qkv[2], num_heads)
class SelfAttention(torch.nn.Module):
ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug")
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
qk_scale: Optional[float] = None,
attn_mode: str = "xformers",
pre_only: bool = False,
qk_norm: Optional[str] = None,
rmsnorm: bool = False,
dtype=None,
device=None,
):
super().__init__()
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.qkv = torch.nn.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
if not pre_only:
self.proj = torch.nn.Linear(dim, dim, dtype=dtype, device=device)
assert attn_mode in self.ATTENTION_MODES
self.attn_mode = attn_mode
self.pre_only = pre_only
if qk_norm == "rms":
self.ln_q = RMSNorm(
self.head_dim,
elementwise_affine=True,
eps=1.0e-6,
dtype=dtype,
device=device,
)
self.ln_k = RMSNorm(
self.head_dim,
elementwise_affine=True,
eps=1.0e-6,
dtype=dtype,
device=device,
)
elif qk_norm == "ln":
self.ln_q = torch.nn.LayerNorm(
self.head_dim,
elementwise_affine=True,
eps=1.0e-6,
dtype=dtype,
device=device,
)
self.ln_k = torch.nn.LayerNorm(
self.head_dim,
elementwise_affine=True,
eps=1.0e-6,
dtype=dtype,
device=device,
)
elif qk_norm is None:
self.ln_q = torch.nn.Identity()
self.ln_k = torch.nn.Identity()
else:
raise ValueError(qk_norm)
def pre_attention(self, x: torch.Tensor):
B, L, C = x.shape
qkv = self.qkv(x)
q, k, v = split_qkv(qkv, self.head_dim)
q = self.ln_q(q).reshape(q.shape[0], q.shape[1], -1)
k = self.ln_k(k).reshape(q.shape[0], q.shape[1], -1)
return (q, k, v)
def post_attention(self, x: torch.Tensor) -> torch.Tensor:
assert not self.pre_only
x = self.proj(x)
return x
def forward(self, x: torch.Tensor) -> torch.Tensor:
(q, k, v) = self.pre_attention(x)
x = attention(q, k, v, self.num_heads)
x = self.post_attention(x)
return x
class RMSNorm(torch.nn.Module):
def __init__(
self,
dim: int,
elementwise_affine: bool = False,
eps: float = 1e-6,
device=None,
dtype=None,
):
"""
Initialize the RMSNorm normalization layer.
Args:
dim (int): The dimension of the input tensor.
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
Attributes:
eps (float): A small value added to the denominator for numerical stability.
weight (torch.nn.Parameter): Learnable scaling parameter.
"""
super().__init__()
self.eps = eps
self.learnable_scale = elementwise_affine
if self.learnable_scale:
self.weight = torch.nn.Parameter(torch.empty(dim, device=device, dtype=dtype))
else:
self.register_parameter("weight", None)
def _norm(self, x):
"""
Apply the RMSNorm normalization to the input tensor.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The normalized tensor.
"""
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
"""
Forward pass through the RMSNorm layer.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying RMSNorm.
"""
x = self._norm(x)
if self.learnable_scale:
return x * self.weight.to(device=x.device, dtype=x.dtype)
else:
return x
class SwiGLUFeedForward(torch.nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int,
ffn_dim_multiplier: Optional[float] = None,
):
"""
Initialize the FeedForward module.
Args:
dim (int): Input dimension.
hidden_dim (int): Hidden dimension of the feedforward layer.
multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None.
Attributes:
w1 (ColumnParallelLinear): Linear transformation for the first layer.
w2 (RowParallelLinear): Linear transformation for the second layer.
w3 (ColumnParallelLinear): Linear transformation for the third layer.
"""
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = torch.nn.Linear(dim, hidden_dim, bias=False)
self.w2 = torch.nn.Linear(hidden_dim, dim, bias=False)
self.w3 = torch.nn.Linear(dim, hidden_dim, bias=False)
def forward(self, x):
return self.w2(torch.nn.functional.silu(self.w1(x)) * self.w3(x))
class DismantledBlock(torch.nn.Module):
"""A DiT block with gated adaptive layer norm (adaLN) conditioning."""
ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug")
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
attn_mode: str = "xformers",
qkv_bias: bool = False,
pre_only: bool = False,
rmsnorm: bool = False,
scale_mod_only: bool = False,
swiglu: bool = False,
qk_norm: Optional[str] = None,
x_block_self_attn: bool = False,
dtype=None,
device=None,
**block_kwargs,
):
super().__init__()
assert attn_mode in self.ATTENTION_MODES
if not rmsnorm:
self.norm1 = torch.nn.LayerNorm(
hidden_size,
elementwise_affine=False,
eps=1e-6,
dtype=dtype,
device=device,
)
else:
self.norm1 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.attn = SelfAttention(
dim=hidden_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_mode=attn_mode,
pre_only=pre_only,
qk_norm=qk_norm,
rmsnorm=rmsnorm,
dtype=dtype,
device=device,
)
if x_block_self_attn:
assert not pre_only
assert not scale_mod_only
self.x_block_self_attn = True
self.attn2 = SelfAttention(
dim=hidden_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_mode=attn_mode,
pre_only=False,
qk_norm=qk_norm,
rmsnorm=rmsnorm,
dtype=dtype,
device=device,
)
else:
self.x_block_self_attn = False
if not pre_only:
if not rmsnorm:
self.norm2 = torch.nn.LayerNorm(
hidden_size,
elementwise_affine=False,
eps=1e-6,
dtype=dtype,
device=device,
)
else:
self.norm2 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
if not pre_only:
if not swiglu:
self.mlp = Mlp(
in_features=hidden_size,
hidden_features=mlp_hidden_dim,
act_layer=torch.nn.GELU(approximate="tanh"),
dtype=dtype,
device=device,
)
else:
self.mlp = SwiGLUFeedForward(dim=hidden_size, hidden_dim=mlp_hidden_dim, multiple_of=256)
self.scale_mod_only = scale_mod_only
if x_block_self_attn:
assert not pre_only
assert not scale_mod_only
n_mods = 9
elif not scale_mod_only:
n_mods = 6 if not pre_only else 2
else:
n_mods = 4 if not pre_only else 1
self.adaLN_modulation = torch.nn.Sequential(
torch.nn.SiLU(),
torch.nn.Linear(hidden_size, n_mods * hidden_size, bias=True, dtype=dtype, device=device),
)
self.pre_only = pre_only
def pre_attention(self, x: torch.Tensor, c: torch.Tensor):
assert x is not None, "pre_attention called with None input"
if not self.pre_only:
if not self.scale_mod_only:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(
6, dim=1
)
else:
shift_msa = None
shift_mlp = None
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(4, dim=1)
qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa))
return qkv, (x, gate_msa, shift_mlp, scale_mlp, gate_mlp)
else:
if not self.scale_mod_only:
shift_msa, scale_msa = self.adaLN_modulation(c).chunk(2, dim=1)
else:
shift_msa = None
scale_msa = self.adaLN_modulation(c)
qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa))
return qkv, None
def post_attention(
self,
attn: torch.Tensor,
x: torch.Tensor,
gate_msa: torch.Tensor,
shift_mlp: torch.Tensor,
scale_mlp: torch.Tensor,
gate_mlp: torch.Tensor,
) -> torch.Tensor:
assert not self.pre_only
x = x + gate_msa.unsqueeze(1) * self.attn.post_attention(attn)
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
return x
def pre_attention_x(
self, x: torch.Tensor, c: torch.Tensor
) -> tuple[
tuple[torch.Tensor, torch.Tensor, torch.Tensor],
tuple[torch.Tensor, torch.Tensor, torch.Tensor],
tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor],
]:
assert self.x_block_self_attn
(
shift_msa,
scale_msa,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
shift_msa2,
scale_msa2,
gate_msa2,
) = self.adaLN_modulation(c).chunk(9, dim=1)
x_norm = self.norm1(x)
qkv = self.attn.pre_attention(modulate(x_norm, shift_msa, scale_msa))
qkv2 = self.attn2.pre_attention(modulate(x_norm, shift_msa2, scale_msa2))
return (
qkv,
qkv2,
(
x,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
gate_msa2,
),
)
def post_attention_x(
self,
attn: torch.Tensor,
attn2: torch.Tensor,
x: torch.Tensor,
gate_msa: torch.Tensor,
shift_mlp: torch.Tensor,
scale_mlp: torch.Tensor,
gate_mlp: torch.Tensor,
gate_msa2: torch.Tensor,
attn1_dropout: float = 0.0,
):
assert not self.pre_only
if attn1_dropout > 0.0:
# Use torch.bernoulli to implement dropout, only dropout the batch dimension
attn1_dropout = torch.bernoulli(torch.full((attn.size(0), 1, 1), 1 - attn1_dropout, device=attn.device))
attn_ = gate_msa.unsqueeze(1) * self.attn.post_attention(attn) * attn1_dropout
else:
attn_ = gate_msa.unsqueeze(1) * self.attn.post_attention(attn)
x = x + attn_
attn2_ = gate_msa2.unsqueeze(1) * self.attn2.post_attention(attn2)
x = x + attn2_
mlp_ = gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
x = x + mlp_
return x, (gate_msa, gate_msa2, gate_mlp, attn_, attn2_)
def forward(self, x: torch.Tensor, c: torch.Tensor):
assert not self.pre_only
if self.x_block_self_attn:
(q, k, v), (q2, k2, v2), intermediates = self.pre_attention_x(x, c)
attn = attention(q, k, v, self.attn.num_heads)
attn2 = attention(q2, k2, v2, self.attn2.num_heads)
return self.post_attention_x(attn, attn2, *intermediates)
else:
(q, k, v), intermediates = self.pre_attention(x, c)
attn = attention(q, k, v, self.attn.num_heads)
return self.post_attention(attn, *intermediates)
def block_mixing(
context: torch.Tensor, x: torch.Tensor, context_block: DismantledBlock, x_block: DismantledBlock, c: torch.Tensor
):
assert context is not None, "block_mixing called with None context"
context_qkv, context_intermediates = context_block.pre_attention(context, c)
if x_block.x_block_self_attn:
x_qkv, x_qkv2, x_intermediates = x_block.pre_attention_x(x, c)
else:
x_qkv, x_intermediates = x_block.pre_attention(x, c)
o: list[torch.Tensor] = []
for t in range(3):
o.append(torch.cat((context_qkv[t], x_qkv[t]), dim=1))
q, k, v = tuple(o)
attn = attention(q, k, v, x_block.attn.num_heads)
context_attn, x_attn = (
attn[:, : context_qkv[0].shape[1]],
attn[:, context_qkv[0].shape[1] :],
)
if not context_block.pre_only:
context = context_block.post_attention(context_attn, *context_intermediates)
else:
context = None
if x_block.x_block_self_attn:
x_q2, x_k2, x_v2 = x_qkv2
attn2 = attention(x_q2, x_k2, x_v2, x_block.attn2.num_heads)
else:
x = x_block.post_attention(x_attn, *x_intermediates)
return context, x
class JointBlock(torch.nn.Module):
"""just a small wrapper to serve as a fsdp unit"""
def __init__(self, *args, **kwargs):
super().__init__()
pre_only = kwargs.pop("pre_only")
qk_norm = kwargs.pop("qk_norm", None)
x_block_self_attn = kwargs.pop("x_block_self_attn", False)
self.context_block = DismantledBlock(*args, pre_only=pre_only, qk_norm=qk_norm, **kwargs)
self.x_block = DismantledBlock(
*args,
pre_only=False,
qk_norm=qk_norm,
x_block_self_attn=x_block_self_attn,
**kwargs,
)
def forward(self, *args, **kwargs):
return block_mixing(*args, context_block=self.context_block, x_block=self.x_block, **kwargs)
class FinalLayer(torch.nn.Module):
"""
The final layer of DiT.
"""
def __init__(
self,
hidden_size: int,
patch_size: int,
out_channels: int,
total_out_channels: Optional[int] = None,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
super().__init__()
self.norm_final = torch.nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device
)
self.linear = (
torch.nn.Linear(
hidden_size,
patch_size * patch_size * out_channels,
bias=True,
dtype=dtype,
device=device,
)
if (total_out_channels is None)
else torch.nn.Linear(hidden_size, total_out_channels, bias=True, dtype=dtype, device=device)
)
self.adaLN_modulation = torch.nn.Sequential(
torch.nn.SiLU(),
torch.nn.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device),
)
def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class MMDiTX(torch.nn.Module):
"""Diffusion model with a Transformer backbone."""
def __init__(
self,
input_size: int | None = 32,
patch_size: int = 2,
in_channels: int = 4,
depth: int = 28,
mlp_ratio: float = 4.0,
learn_sigma: bool = False,
adm_in_channels: Optional[int] = None,
context_embedder_config: Optional[Dict] = None,
register_length: int = 0,
attn_mode: str = "torch",
rmsnorm: bool = False,
scale_mod_only: bool = False,
swiglu: bool = False,
out_channels: Optional[int] = None,
pos_embed_scaling_factor: Optional[float] = None,
pos_embed_offset: Optional[float] = None,
pos_embed_max_size: Optional[int] = None,
num_patches: Optional[int] = None,
qk_norm: Optional[str] = None,
x_block_self_attn_layers: Optional[List[int]] = None,
qkv_bias: bool = True,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
verbose: bool = False,
):
super().__init__()
if verbose:
print(
f"mmdit initializing with: {input_size=}, {patch_size=}, {in_channels=}, {depth=}, {mlp_ratio=}, {learn_sigma=}, {adm_in_channels=}, {context_embedder_config=}, {register_length=}, {attn_mode=}, {rmsnorm=}, {scale_mod_only=}, {swiglu=}, {out_channels=}, {pos_embed_scaling_factor=}, {pos_embed_offset=}, {pos_embed_max_size=}, {num_patches=}, {qk_norm=}, {qkv_bias=}, {dtype=}, {device=}"
)
self.dtype = dtype
self.learn_sigma = learn_sigma
self.in_channels = in_channels
default_out_channels = in_channels * 2 if learn_sigma else in_channels
self.out_channels = out_channels if out_channels is not None else default_out_channels
self.patch_size = patch_size
self.pos_embed_scaling_factor = pos_embed_scaling_factor
self.pos_embed_offset = pos_embed_offset
self.pos_embed_max_size = pos_embed_max_size
self.x_block_self_attn_layers = x_block_self_attn_layers or []
# apply magic --> this defines a head_size of 64
hidden_size = 64 * depth
num_heads = depth
self.num_heads = num_heads
self.x_embedder = PatchEmbed(
input_size,
patch_size,
in_channels,
hidden_size,
bias=True,
strict_img_size=self.pos_embed_max_size is None,
dtype=dtype,
device=device,
)
self.t_embedder = TimestepEmbedder(hidden_size, dtype=dtype, device=device)
if adm_in_channels is not None:
assert isinstance(adm_in_channels, int)
self.y_embedder = VectorEmbedder(adm_in_channels, hidden_size, dtype=dtype, device=device)
self.context_embedder = torch.nn.Identity()
if context_embedder_config is not None:
if context_embedder_config["target"] == "torch.nn.Linear":
self.context_embedder = torch.nn.Linear(**context_embedder_config["params"], dtype=dtype, device=device)
self.register_length = register_length
if self.register_length > 0:
self.register = torch.nn.Parameter(torch.randn(1, register_length, hidden_size, dtype=dtype, device=device))
# num_patches = self.x_embedder.num_patches
# Will use fixed sin-cos embedding:
# just use a buffer already
if num_patches is not None:
self.register_buffer(
"pos_embed",
torch.zeros(1, num_patches, hidden_size, dtype=dtype, device=device),
)
else:
self.pos_embed = None
self.joint_blocks = torch.nn.ModuleList(
[
JointBlock(
hidden_size,
num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
attn_mode=attn_mode,
pre_only=i == depth - 1,
rmsnorm=rmsnorm,
scale_mod_only=scale_mod_only,
swiglu=swiglu,
qk_norm=qk_norm,
x_block_self_attn=(i in self.x_block_self_attn_layers),
dtype=dtype,
device=device,
)
for i in range(depth)
]
)
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels, dtype=dtype, device=device)
def cropped_pos_embed(self, hw: torch.Size) -> torch.Tensor:
assert self.pos_embed_max_size is not None
p = self.x_embedder.patch_size[0]
h, w = hw
# patched size
h = h // p
w = w // p
assert h <= self.pos_embed_max_size, (h, self.pos_embed_max_size)
assert w <= self.pos_embed_max_size, (w, self.pos_embed_max_size)
top = (self.pos_embed_max_size - h) // 2
left = (self.pos_embed_max_size - w) // 2
spatial_pos_embed: torch.Tensor = rearrange(
self.pos_embed,
"1 (h w) c -> 1 h w c",
h=self.pos_embed_max_size,
w=self.pos_embed_max_size,
) # type: ignore Type checking does not correctly infer the type of the self.pos_embed buffer.
spatial_pos_embed = spatial_pos_embed[:, top : top + h, left : left + w, :]
spatial_pos_embed = rearrange(spatial_pos_embed, "1 h w c -> 1 (h w) c")
return spatial_pos_embed
def unpatchify(self, x: torch.Tensor, hw: Optional[torch.Size] = None) -> torch.Tensor:
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
if hw is None:
h = w = int(x.shape[1] ** 0.5)
else:
h, w = hw
h = h // p
w = w // p
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum("nhwpqc->nchpwq", x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
return imgs
def forward_core_with_concat(
self,
x: torch.Tensor,
c_mod: torch.Tensor,
context: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if self.register_length > 0:
context = torch.cat(
(
repeat(self.register, "1 ... -> b ...", b=x.shape[0]),
context if context is not None else torch.Tensor([]).type_as(x),
),
1,
)
# context is B, L', D
# x is B, L, D
for block in self.joint_blocks:
context, x = block(context, x, c=c_mod)
x = self.final_layer(x, c_mod) # (N, T, patch_size ** 2 * out_channels)
return x
def forward(
self,
x: torch.Tensor,
t: torch.Tensor,
y: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
hw = x.shape[-2:]
x = self.x_embedder(x) + self.cropped_pos_embed(hw)
c = self.t_embedder(t, dtype=x.dtype) # (N, D)
if y is not None:
y = self.y_embedder(y) # (N, D)
c = c + y # (N, D)
context = self.context_embedder(context)
x = self.forward_core_with_concat(x, c, context)
x = self.unpatchify(x, hw=hw) # (N, out_channels, H, W)
return x

View File

@@ -0,0 +1,795 @@
# This file was originally copied from:
# https://github.com/Stability-AI/sd3.5/blob/19bf11c4e1e37324c5aa5a61f010d4127848a09c/other_impls.py
### This file contains impls for underlying related models (CLIP, T5, etc)
import math
from typing import Callable, Optional
import torch
from transformers import CLIPTokenizer, T5TokenizerFast
#################################################################################################
### Core/Utility
#################################################################################################
def attention(
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, heads: int, mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
"""Convenience wrapper around a basic attention operation"""
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2), (q, k, v))
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
return out.transpose(1, 2).reshape(b, -1, heads * dim_head)
class Mlp(torch.nn.Module):
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
def __init__(
self,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer: Callable[[torch.Tensor], torch.Tensor] | None = None,
bias: bool = True,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
if act_layer is None:
act_layer = torch.nn.functional.gelu
self.fc1 = torch.nn.Linear(in_features, hidden_features, bias=bias, dtype=dtype, device=device)
self.act = act_layer
self.fc2 = torch.nn.Linear(hidden_features, out_features, bias=bias, dtype=dtype, device=device)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return x
#################################################################################################
### CLIP
#################################################################################################
class CLIPAttention(torch.nn.Module):
def __init__(self, embed_dim, heads, dtype, device):
super().__init__()
self.heads = heads
self.q_proj = torch.nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
self.k_proj = torch.nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
self.v_proj = torch.nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
self.out_proj = torch.nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
def forward(self, x, mask=None):
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
out = attention(q, k, v, self.heads, mask)
return self.out_proj(out)
ACTIVATIONS = {
"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
"gelu": torch.nn.functional.gelu,
}
class CLIPLayer(torch.nn.Module):
def __init__(
self,
embed_dim,
heads,
intermediate_size,
intermediate_activation,
dtype,
device,
):
super().__init__()
self.layer_norm1 = torch.nn.LayerNorm(embed_dim, dtype=dtype, device=device)
self.self_attn = CLIPAttention(embed_dim, heads, dtype, device)
self.layer_norm2 = torch.nn.LayerNorm(embed_dim, dtype=dtype, device=device)
# self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device)
self.mlp = Mlp(
embed_dim,
intermediate_size,
embed_dim,
act_layer=ACTIVATIONS[intermediate_activation],
dtype=dtype,
device=device,
)
def forward(self, x, mask=None):
x += self.self_attn(self.layer_norm1(x), mask)
x += self.mlp(self.layer_norm2(x))
return x
class CLIPEncoder(torch.nn.Module):
def __init__(
self,
num_layers,
embed_dim,
heads,
intermediate_size,
intermediate_activation,
dtype,
device,
):
super().__init__()
self.layers = torch.nn.ModuleList(
[
CLIPLayer(
embed_dim,
heads,
intermediate_size,
intermediate_activation,
dtype,
device,
)
for i in range(num_layers)
]
)
def forward(self, x, mask=None, intermediate_output=None):
if intermediate_output is not None:
if intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output
intermediate = None
for i, l in enumerate(self.layers):
x = l(x, mask)
if i == intermediate_output:
intermediate = x.clone()
return x, intermediate
class CLIPEmbeddings(torch.nn.Module):
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None):
super().__init__()
self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
def forward(self, input_tokens):
return self.token_embedding(input_tokens) + self.position_embedding.weight
class CLIPTextModel_(torch.nn.Module):
def __init__(self, config_dict, dtype, device):
num_layers = config_dict["num_hidden_layers"]
embed_dim = config_dict["hidden_size"]
heads = config_dict["num_attention_heads"]
intermediate_size = config_dict["intermediate_size"]
intermediate_activation = config_dict["hidden_act"]
super().__init__()
self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device)
self.encoder = CLIPEncoder(
num_layers,
embed_dim,
heads,
intermediate_size,
intermediate_activation,
dtype,
device,
)
self.final_layer_norm = torch.nn.LayerNorm(embed_dim, dtype=dtype, device=device)
def forward(self, input_tokens, intermediate_output=None, final_layer_norm_intermediate=True):
x = self.embeddings(input_tokens)
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
x, i = self.encoder(x, mask=causal_mask, intermediate_output=intermediate_output)
x = self.final_layer_norm(x)
if i is not None and final_layer_norm_intermediate:
i = self.final_layer_norm(i)
pooled_output = x[
torch.arange(x.shape[0], device=x.device),
input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),
]
return x, i, pooled_output
class CLIPTextModel(torch.nn.Module):
def __init__(self, config_dict, dtype, device):
super().__init__()
self.num_layers = config_dict["num_hidden_layers"]
self.text_model = CLIPTextModel_(config_dict, dtype, device)
embed_dim = config_dict["hidden_size"]
self.text_projection = torch.nn.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
self.text_projection.weight.copy_(torch.eye(embed_dim))
self.dtype = dtype
def get_input_embeddings(self):
return self.text_model.embeddings.token_embedding
def set_input_embeddings(self, embeddings):
self.text_model.embeddings.token_embedding = embeddings
def forward(self, *args, **kwargs):
x = self.text_model(*args, **kwargs)
out = self.text_projection(x[2])
return (x[0], x[1], out, x[2])
def parse_parentheses(string):
result = []
current_item = ""
nesting_level = 0
for char in string:
if char == "(":
if nesting_level == 0:
if current_item:
result.append(current_item)
current_item = "("
else:
current_item = "("
else:
current_item += char
nesting_level += 1
elif char == ")":
nesting_level -= 1
if nesting_level == 0:
result.append(current_item + ")")
current_item = ""
else:
current_item += char
else:
current_item += char
if current_item:
result.append(current_item)
return result
def token_weights(string, current_weight):
a = parse_parentheses(string)
out = []
for x in a:
weight = current_weight
if len(x) >= 2 and x[-1] == ")" and x[0] == "(":
x = x[1:-1]
xx = x.rfind(":")
weight *= 1.1
if xx > 0:
try:
weight = float(x[xx + 1 :])
x = x[:xx]
except:
pass
out += token_weights(x, weight)
else:
out += [(x, current_weight)]
return out
def escape_important(text):
text = text.replace("\\)", "\0\1")
text = text.replace("\\(", "\0\2")
return text
def unescape_important(text):
text = text.replace("\0\1", ")")
text = text.replace("\0\2", "(")
return text
class SDTokenizer:
def __init__(
self,
max_length=77,
pad_with_end=True,
tokenizer=None,
has_start_token=True,
pad_to_max_length=True,
min_length=None,
extra_padding_token=None,
):
self.tokenizer = tokenizer
self.max_length = max_length
self.min_length = min_length
empty = self.tokenizer("")["input_ids"]
if has_start_token:
self.tokens_start = 1
self.start_token = empty[0]
self.end_token = empty[1]
else:
self.tokens_start = 0
self.start_token = None
self.end_token = empty[0]
self.pad_with_end = pad_with_end
self.pad_to_max_length = pad_to_max_length
self.extra_padding_token = extra_padding_token
vocab = self.tokenizer.get_vocab()
self.inv_vocab = {v: k for k, v in vocab.items()}
self.max_word_length = 8
def tokenize_with_weights(self, text: str, return_word_ids=False):
"""
Tokenize the text, with weight values - presume 1.0 for all and ignore other features here.
The details aren't relevant for a reference impl, and weights themselves has weak effect on SD3.
"""
if self.pad_with_end:
pad_token = self.end_token
else:
pad_token = 0
text = escape_important(text)
parsed_weights = token_weights(text, 1.0)
# tokenize words
tokens = []
for weighted_segment, weight in parsed_weights:
to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(" ")
to_tokenize = [x for x in to_tokenize if x != ""]
for word in to_tokenize:
# parse word
tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start : -1]])
# reshape token array to CLIP input size
batched_tokens = []
batch = []
if self.start_token is not None:
batch.append((self.start_token, 1.0, 0))
batched_tokens.append(batch)
for i, t_group in enumerate(tokens):
# determine if we're going to try and keep the tokens in a single batch
is_large = len(t_group) >= self.max_word_length
while len(t_group) > 0:
if len(t_group) + len(batch) > self.max_length - 1:
remaining_length = self.max_length - len(batch) - 1
# break word in two and add end token
if is_large:
batch.extend([(t, w, i + 1) for t, w in t_group[:remaining_length]])
batch.append((self.end_token, 1.0, 0))
t_group = t_group[remaining_length:]
# add end token and pad
else:
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
# start new batch
batch = []
if self.start_token is not None:
batch.append((self.start_token, 1.0, 0))
batched_tokens.append(batch)
else:
batch.extend([(t, w, i + 1) for t, w in t_group])
t_group = []
# pad extra padding token first befor getting to the end token
if self.extra_padding_token is not None:
batch.extend([(self.extra_padding_token, 1.0, 0)] * (self.min_length - len(batch) - 1))
# fill last batch
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch)))
if self.min_length is not None and len(batch) < self.min_length:
batch.extend([(pad_token, 1.0, 0)] * (self.min_length - len(batch)))
if not return_word_ids:
batched_tokens = [[(t, w) for t, w, _ in x] for x in batched_tokens]
return batched_tokens
def untokenize(self, token_weight_pair):
return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
class SDXLClipGTokenizer(SDTokenizer):
def __init__(self, tokenizer):
super().__init__(pad_with_end=False, tokenizer=tokenizer)
class SD3Tokenizer:
def __init__(self):
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
self.clip_l = SDTokenizer(tokenizer=clip_tokenizer)
self.clip_g = SDXLClipGTokenizer(clip_tokenizer)
self.t5xxl = T5XXLTokenizer()
def tokenize_with_weights(self, text: str):
out = {}
out["l"] = self.clip_l.tokenize_with_weights(text)
out["g"] = self.clip_g.tokenize_with_weights(text)
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text[:226])
return out
class ClipTokenWeightEncoder:
def encode_token_weights(self, token_weight_pairs):
tokens = list(map(lambda a: a[0], token_weight_pairs[0]))
out, pooled = self([tokens])
if pooled is not None:
first_pooled = pooled[0:1].cpu()
else:
first_pooled = pooled
output = [out[0:1]]
return torch.cat(output, dim=-2).cpu(), first_pooled
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
"""Uses the CLIP transformer encoder for text (from huggingface)"""
LAYERS = ["last", "pooled", "hidden"]
def __init__(
self,
device="cpu",
max_length=77,
layer="last",
layer_idx=None,
textmodel_json_config=None,
dtype=None,
model_class=CLIPTextModel,
special_tokens={"start": 49406, "end": 49407, "pad": 49407},
layer_norm_hidden_state=True,
return_projected_pooled=True,
):
super().__init__()
assert layer in self.LAYERS
self.transformer = model_class(textmodel_json_config, dtype, device)
self.num_layers = self.transformer.num_layers
self.max_length = max_length
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
self.layer = layer
self.layer_idx = None
self.special_tokens = special_tokens
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
self.layer_norm_hidden_state = layer_norm_hidden_state
self.return_projected_pooled = return_projected_pooled
if layer == "hidden":
assert layer_idx is not None
assert abs(layer_idx) < self.num_layers
self.set_clip_options({"layer": layer_idx})
self.options_default = (
self.layer,
self.layer_idx,
self.return_projected_pooled,
)
def set_clip_options(self, options):
layer_idx = options.get("layer", self.layer_idx)
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
if layer_idx is None or abs(layer_idx) > self.num_layers:
self.layer = "last"
else:
self.layer = "hidden"
self.layer_idx = layer_idx
def forward(self, tokens):
backup_embeds = self.transformer.get_input_embeddings()
device = backup_embeds.weight.device
tokens = torch.LongTensor(tokens).to(device)
outputs = self.transformer(
tokens,
intermediate_output=self.layer_idx,
final_layer_norm_intermediate=self.layer_norm_hidden_state,
)
self.transformer.set_input_embeddings(backup_embeds)
if self.layer == "last":
z = outputs[0]
else:
z = outputs[1]
pooled_output = None
if len(outputs) >= 3:
if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None:
pooled_output = outputs[3].float()
elif outputs[2] is not None:
pooled_output = outputs[2].float()
return z.float(), pooled_output
class SDXLClipG(SDClipModel):
"""Wraps the CLIP-G model into the SD-CLIP-Model interface"""
def __init__(self, config, device="cpu", layer="penultimate", layer_idx=None, dtype=None):
if layer == "penultimate":
layer = "hidden"
layer_idx = -2
super().__init__(
device=device,
layer=layer,
layer_idx=layer_idx,
textmodel_json_config=config,
dtype=dtype,
special_tokens={"start": 49406, "end": 49407, "pad": 0},
layer_norm_hidden_state=False,
)
class T5XXLModel(SDClipModel):
"""Wraps the T5-XXL model into the SD-CLIP-Model interface for convenience"""
def __init__(self, config, device="cpu", layer="last", layer_idx=None, dtype=None):
super().__init__(
device=device,
layer=layer,
layer_idx=layer_idx,
textmodel_json_config=config,
dtype=dtype,
special_tokens={"end": 1, "pad": 0},
model_class=T5,
)
#################################################################################################
### T5 implementation, for the T5-XXL text encoder portion, largely pulled from upstream impl
#################################################################################################
class T5XXLTokenizer(SDTokenizer):
"""Wraps the T5 Tokenizer from HF into the SDTokenizer interface"""
def __init__(self):
super().__init__(
pad_with_end=False,
tokenizer=T5TokenizerFast.from_pretrained("google/t5-v1_1-xxl"),
has_start_token=False,
pad_to_max_length=False,
max_length=99999999,
min_length=77,
)
class T5LayerNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None):
super().__init__()
self.weight = torch.nn.Parameter(torch.ones(hidden_size, dtype=dtype, device=device))
self.variance_epsilon = eps
def forward(self, x):
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.variance_epsilon)
return self.weight.to(device=x.device, dtype=x.dtype) * x
class T5DenseGatedActDense(torch.nn.Module):
def __init__(self, model_dim, ff_dim, dtype, device):
super().__init__()
self.wi_0 = torch.nn.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
self.wi_1 = torch.nn.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
self.wo = torch.nn.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device)
def forward(self, x):
hidden_gelu = torch.nn.functional.gelu(self.wi_0(x), approximate="tanh")
hidden_linear = self.wi_1(x)
x = hidden_gelu * hidden_linear
x = self.wo(x)
return x
class T5LayerFF(torch.nn.Module):
def __init__(self, model_dim, ff_dim, dtype, device):
super().__init__()
self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, dtype, device)
self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
def forward(self, x):
forwarded_states = self.layer_norm(x)
forwarded_states = self.DenseReluDense(forwarded_states)
x += forwarded_states
return x
class T5Attention(torch.nn.Module):
def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device):
super().__init__()
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = torch.nn.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.k = torch.nn.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.v = torch.nn.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.o = torch.nn.Linear(inner_dim, model_dim, bias=False, dtype=dtype, device=device)
self.num_heads = num_heads
self.relative_attention_bias = None
if relative_attention_bias:
self.relative_attention_num_buckets = 32
self.relative_attention_max_distance = 128
self.relative_attention_bias = torch.nn.Embedding(
self.relative_attention_num_buckets, self.num_heads, device=device
)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large,
torch.full_like(relative_position_if_large, num_buckets - 1),
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device):
"""Compute binned relative position bias"""
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=True,
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(self, x, past_bias=None):
q = self.q(x)
k = self.k(x)
v = self.v(x)
if self.relative_attention_bias is not None:
past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device)
if past_bias is not None:
mask = past_bias
out = attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask)
return self.o(out), past_bias
class T5LayerSelfAttention(torch.nn.Module):
def __init__(
self,
model_dim,
inner_dim,
ff_dim,
num_heads,
relative_attention_bias,
dtype,
device,
):
super().__init__()
self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device)
self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
def forward(self, x, past_bias=None):
output, past_bias = self.SelfAttention(self.layer_norm(x), past_bias=past_bias)
x += output
return x, past_bias
class T5Block(torch.nn.Module):
def __init__(
self,
model_dim,
inner_dim,
ff_dim,
num_heads,
relative_attention_bias,
dtype,
device,
):
super().__init__()
self.layer = torch.nn.ModuleList()
self.layer.append(
T5LayerSelfAttention(
model_dim,
inner_dim,
ff_dim,
num_heads,
relative_attention_bias,
dtype,
device,
)
)
self.layer.append(T5LayerFF(model_dim, ff_dim, dtype, device))
def forward(self, x, past_bias=None):
x, past_bias = self.layer[0](x, past_bias)
x = self.layer[-1](x)
return x, past_bias
class T5Stack(torch.nn.Module):
def __init__(
self,
num_layers,
model_dim,
inner_dim,
ff_dim,
num_heads,
vocab_size,
dtype,
device,
):
super().__init__()
self.embed_tokens = torch.nn.Embedding(vocab_size, model_dim, device=device)
self.block = torch.nn.ModuleList(
[
T5Block(
model_dim,
inner_dim,
ff_dim,
num_heads,
relative_attention_bias=(i == 0),
dtype=dtype,
device=device,
)
for i in range(num_layers)
]
)
self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
def forward(self, input_ids, intermediate_output=None, final_layer_norm_intermediate=True):
intermediate = None
x = self.embed_tokens(input_ids)
past_bias = None
for i, l in enumerate(self.block):
x, past_bias = l(x, past_bias)
if i == intermediate_output:
intermediate = x.clone()
x = self.final_layer_norm(x)
if intermediate is not None and final_layer_norm_intermediate:
intermediate = self.final_layer_norm(intermediate)
return x, intermediate
class T5(torch.nn.Module):
def __init__(self, config_dict, dtype, device):
super().__init__()
self.num_layers = config_dict["num_layers"]
self.encoder = T5Stack(
self.num_layers,
config_dict["d_model"],
config_dict["d_model"],
config_dict["d_ff"],
config_dict["num_heads"],
config_dict["vocab_size"],
dtype,
device,
)
self.dtype = dtype
def get_input_embeddings(self):
return self.encoder.embed_tokens
def set_input_embeddings(self, embeddings):
self.encoder.embed_tokens = embeddings
def forward(self, *args, **kwargs):
return self.encoder(*args, **kwargs)

View File

@@ -0,0 +1,609 @@
# This file was originally copied from:
# https://github.com/Stability-AI/sd3.5/blob/19bf11c4e1e37324c5aa5a61f010d4127848a09c/sd3_impls.py
### Impls of the SD3 core diffusion model and VAE
import math
import re
import einops
import torch
from PIL import Image
from tqdm import tqdm
from invokeai.backend.sd3.mmditx import MMDiTX
#################################################################################################
### MMDiT Model Wrapping
#################################################################################################
class ModelSamplingDiscreteFlow(torch.nn.Module):
"""Helper for sampler scheduling (ie timestep/sigma calculations) for Discrete Flow models"""
def __init__(self, shift: float = 1.0):
super().__init__()
self.shift = shift
timesteps = 1000
ts = self.sigma(torch.arange(1, timesteps + 1, 1))
self.register_buffer("sigmas", ts)
@property
def sigma_min(self):
return self.sigmas[0]
@property
def sigma_max(self):
return self.sigmas[-1]
def timestep(self, sigma: torch.Tensor) -> torch.Tensor:
return sigma * 1000
def sigma(self, timestep: torch.Tensor):
timestep = timestep / 1000.0
if self.shift == 1.0:
return timestep
return self.shift * timestep / (1 + (self.shift - 1) * timestep)
def calculate_denoised(
self, sigma: torch.Tensor, model_output: torch.Tensor, model_input: torch.Tensor
) -> torch.Tensor:
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
return model_input - model_output * sigma
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
return sigma * noise + (1.0 - sigma) * latent_image
class BaseModel(torch.nn.Module):
"""Wrapper around the core MM-DiT model"""
def __init__(
self,
shift=1.0,
device=None,
dtype=torch.float32,
file=None,
prefix="",
verbose=False,
):
super().__init__()
# Important configuration values can be quickly determined by checking shapes in the source file
# Some of these will vary between models (eg 2B vs 8B primarily differ in their depth, but also other details change)
patch_size = file.get_tensor(f"{prefix}x_embedder.proj.weight").shape[2]
depth = file.get_tensor(f"{prefix}x_embedder.proj.weight").shape[0] // 64
num_patches = file.get_tensor(f"{prefix}pos_embed").shape[1]
pos_embed_max_size = round(math.sqrt(num_patches))
adm_in_channels = file.get_tensor(f"{prefix}y_embedder.mlp.0.weight").shape[1]
context_shape = file.get_tensor(f"{prefix}context_embedder.weight").shape
qk_norm = "rms" if f"{prefix}joint_blocks.0.context_block.attn.ln_k.weight" in file.keys() else None
x_block_self_attn_layers = sorted(
[
int(key.split(".x_block.attn2.ln_k.weight")[0].split(".")[-1])
for key in list(filter(re.compile(".*.x_block.attn2.ln_k.weight").match, file.keys()))
]
)
context_embedder_config = {
"target": "torch.nn.Linear",
"params": {
"in_features": context_shape[1],
"out_features": context_shape[0],
},
}
self.diffusion_model = MMDiTX(
input_size=None,
pos_embed_scaling_factor=None,
pos_embed_offset=None,
pos_embed_max_size=pos_embed_max_size,
patch_size=patch_size,
in_channels=16,
depth=depth,
num_patches=num_patches,
adm_in_channels=adm_in_channels,
context_embedder_config=context_embedder_config,
qk_norm=qk_norm,
x_block_self_attn_layers=x_block_self_attn_layers,
device=device,
dtype=dtype,
verbose=verbose,
)
self.model_sampling = ModelSamplingDiscreteFlow(shift=shift)
def apply_model(
self, x: torch.Tensor, sigma: float, c_crossattn: torch.Tensor | None = None, y: torch.Tensor | None = None
):
dtype = self.get_dtype()
timestep = self.model_sampling.timestep(sigma).float()
model_output = self.diffusion_model(x.to(dtype), timestep, context=c_crossattn.to(dtype), y=y.to(dtype)).float()
return self.model_sampling.calculate_denoised(sigma, model_output, x)
def forward(self, *args, **kwargs):
return self.apply_model(*args, **kwargs)
def get_dtype(self):
return self.diffusion_model.dtype
class CFGDenoiser(torch.nn.Module):
"""Helper for applying CFG Scaling to diffusion outputs"""
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, x, timestep, cond, uncond, cond_scale):
# Run cond and uncond in a batch together
batched = self.model.apply_model(
torch.cat([x, x]),
torch.cat([timestep, timestep]),
c_crossattn=torch.cat([cond["c_crossattn"], uncond["c_crossattn"]]),
y=torch.cat([cond["y"], uncond["y"]]),
)
# Then split and apply CFG Scaling
pos_out, neg_out = batched.chunk(2)
scaled = neg_out + (pos_out - neg_out) * cond_scale
return scaled
class SD3LatentFormat:
"""Latents are slightly shifted from center - this class must be called after VAE Decode to correct for the shift"""
def __init__(self):
self.scale_factor = 1.5305
self.shift_factor = 0.0609
def process_in(self, latent):
return (latent - self.shift_factor) * self.scale_factor
def process_out(self, latent):
return (latent / self.scale_factor) + self.shift_factor
def decode_latent_to_preview(self, x0):
"""Quick RGB approximate preview of sd3 latents"""
factors = torch.tensor(
[
[-0.0645, 0.0177, 0.1052],
[0.0028, 0.0312, 0.0650],
[0.1848, 0.0762, 0.0360],
[0.0944, 0.0360, 0.0889],
[0.0897, 0.0506, -0.0364],
[-0.0020, 0.1203, 0.0284],
[0.0855, 0.0118, 0.0283],
[-0.0539, 0.0658, 0.1047],
[-0.0057, 0.0116, 0.0700],
[-0.0412, 0.0281, -0.0039],
[0.1106, 0.1171, 0.1220],
[-0.0248, 0.0682, -0.0481],
[0.0815, 0.0846, 0.1207],
[-0.0120, -0.0055, -0.0867],
[-0.0749, -0.0634, -0.0456],
[-0.1418, -0.1457, -0.1259],
],
device="cpu",
)
latent_image = x0[0].permute(1, 2, 0).cpu() @ factors
latents_ubyte = (
((latent_image + 1) / 2)
.clamp(0, 1) # change scale from -1..1 to 0..1
.mul(0xFF) # to 0..255
.byte()
).cpu()
return Image.fromarray(latents_ubyte.numpy())
#################################################################################################
### Samplers
#################################################################################################
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
return x[(...,) + (None,) * dims_to_append]
def to_d(x, sigma, denoised):
"""Converts a denoiser output to a Karras ODE derivative."""
return (x - denoised) / append_dims(sigma, x.ndim)
@torch.no_grad()
@torch.autocast("cuda", dtype=torch.float16)
def sample_euler(model, x, sigmas, extra_args=None):
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
for i in tqdm(range(len(sigmas) - 1)):
sigma_hat = sigmas[i]
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x, sigma_hat, denoised)
dt = sigmas[i + 1] - sigma_hat
# Euler method
x = x + d * dt
return x
@torch.no_grad()
@torch.autocast("cuda", dtype=torch.float16)
def sample_dpmpp_2m(model, x, sigmas, extra_args=None):
"""DPM-Solver++(2M)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
old_denoised = None
for i in tqdm(range(len(sigmas) - 1)):
denoised = model(x, sigmas[i] * s_in, **extra_args)
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
if old_denoised is None or sigmas[i + 1] == 0:
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
else:
h_last = t - t_fn(sigmas[i - 1])
r = h_last / h
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
old_denoised = denoised
return x
#################################################################################################
### VAE
#################################################################################################
def Normalize(in_channels, num_groups=32, dtype=torch.float32, device=None):
return torch.nn.GroupNorm(
num_groups=num_groups,
num_channels=in_channels,
eps=1e-6,
affine=True,
dtype=dtype,
device=device,
)
class ResnetBlock(torch.nn.Module):
def __init__(self, *, in_channels, out_channels=None, dtype=torch.float32, device=None):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.norm1 = Normalize(in_channels, dtype=dtype, device=device)
self.conv1 = torch.nn.Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
dtype=dtype,
device=device,
)
self.norm2 = Normalize(out_channels, dtype=dtype, device=device)
self.conv2 = torch.nn.Conv2d(
out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
dtype=dtype,
device=device,
)
if self.in_channels != self.out_channels:
self.nin_shortcut = torch.nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
dtype=dtype,
device=device,
)
else:
self.nin_shortcut = None
self.swish = torch.nn.SiLU(inplace=True)
def forward(self, x):
hidden = x
hidden = self.norm1(hidden)
hidden = self.swish(hidden)
hidden = self.conv1(hidden)
hidden = self.norm2(hidden)
hidden = self.swish(hidden)
hidden = self.conv2(hidden)
if self.in_channels != self.out_channels:
x = self.nin_shortcut(x)
return x + hidden
class AttnBlock(torch.nn.Module):
def __init__(self, in_channels, dtype=torch.float32, device=None):
super().__init__()
self.norm = Normalize(in_channels, dtype=dtype, device=device)
self.q = torch.nn.Conv2d(
in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0,
dtype=dtype,
device=device,
)
self.k = torch.nn.Conv2d(
in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0,
dtype=dtype,
device=device,
)
self.v = torch.nn.Conv2d(
in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0,
dtype=dtype,
device=device,
)
self.proj_out = torch.nn.Conv2d(
in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0,
dtype=dtype,
device=device,
)
def forward(self, x):
hidden = self.norm(x)
q = self.q(hidden)
k = self.k(hidden)
v = self.v(hidden)
b, c, h, w = q.shape
q, k, v = map(
lambda x: einops.rearrange(x, "b c h w -> b 1 (h w) c").contiguous(),
(q, k, v),
)
hidden = torch.nn.functional.scaled_dot_product_attention(q, k, v) # scale is dim ** -0.5 per default
hidden = einops.rearrange(hidden, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
hidden = self.proj_out(hidden)
return x + hidden
class Downsample(torch.nn.Module):
def __init__(self, in_channels, dtype=torch.float32, device=None):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels,
in_channels,
kernel_size=3,
stride=2,
padding=0,
dtype=dtype,
device=device,
)
def forward(self, x):
pad = (0, 1, 0, 1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
return x
class Upsample(torch.nn.Module):
def __init__(self, in_channels, dtype=torch.float32, device=None):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1,
dtype=dtype,
device=device,
)
def forward(self, x):
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
x = self.conv(x)
return x
class VAEEncoder(torch.nn.Module):
def __init__(
self,
ch=128,
ch_mult=(1, 2, 4, 4),
num_res_blocks=2,
in_channels=3,
z_channels=16,
dtype=torch.float32,
device=None,
):
super().__init__()
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
# downsampling
self.conv_in = torch.nn.Conv2d(
in_channels,
ch,
kernel_size=3,
stride=1,
padding=1,
dtype=dtype,
device=device,
)
in_ch_mult = (1,) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
self.down = torch.nn.ModuleList()
for i_level in range(self.num_resolutions):
block = torch.nn.ModuleList()
attn = torch.nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for i_block in range(num_res_blocks):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
dtype=dtype,
device=device,
)
)
block_in = block_out
down = torch.nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in, dtype=dtype, device=device)
self.down.append(down)
# middle
self.mid = torch.nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
self.mid.attn_1 = AttnBlock(block_in, dtype=dtype, device=device)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
# end
self.norm_out = Normalize(block_in, dtype=dtype, device=device)
self.conv_out = torch.nn.Conv2d(
block_in,
2 * z_channels,
kernel_size=3,
stride=1,
padding=1,
dtype=dtype,
device=device,
)
self.swish = torch.nn.SiLU(inplace=True)
def forward(self, x):
# downsampling
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1])
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# end
h = self.norm_out(h)
h = self.swish(h)
h = self.conv_out(h)
return h
class VAEDecoder(torch.nn.Module):
def __init__(
self,
ch=128,
out_ch=3,
ch_mult=(1, 2, 4, 4),
num_res_blocks=2,
resolution=256,
z_channels=16,
dtype=torch.float32,
device=None,
):
super().__init__()
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
# z to block_in
self.conv_in = torch.nn.Conv2d(
z_channels,
block_in,
kernel_size=3,
stride=1,
padding=1,
dtype=dtype,
device=device,
)
# middle
self.mid = torch.nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
self.mid.attn_1 = AttnBlock(block_in, dtype=dtype, device=device)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
# upsampling
self.up = torch.nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = torch.nn.ModuleList()
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
dtype=dtype,
device=device,
)
)
block_in = block_out
up = torch.nn.Module()
up.block = block
if i_level != 0:
up.upsample = Upsample(block_in, dtype=dtype, device=device)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in, dtype=dtype, device=device)
self.conv_out = torch.nn.Conv2d(
block_in,
out_ch,
kernel_size=3,
stride=1,
padding=1,
dtype=dtype,
device=device,
)
self.swish = torch.nn.SiLU(inplace=True)
def forward(self, z):
# z to block_in
hidden = self.conv_in(z)
# middle
hidden = self.mid.block_1(hidden)
hidden = self.mid.attn_1(hidden)
hidden = self.mid.block_2(hidden)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
hidden = self.up[i_level].block[i_block](hidden)
if i_level != 0:
hidden = self.up[i_level].upsample(hidden)
# end
hidden = self.norm_out(hidden)
hidden = self.swish(hidden)
hidden = self.conv_out(hidden)
return hidden
class SDVAE(torch.nn.Module):
def __init__(self, dtype=torch.float32, device=None):
super().__init__()
self.encoder = VAEEncoder(dtype=dtype, device=device)
self.decoder = VAEDecoder(dtype=dtype, device=device)
@torch.autocast("cuda", dtype=torch.float16)
def decode(self, latent):
return self.decoder(latent)
@torch.autocast("cuda", dtype=torch.float16)
def encode(self, image):
hidden = self.encoder(image)
mean, logvar = torch.chunk(hidden, 2, dim=1)
logvar = torch.clamp(logvar, -30.0, 20.0)
std = torch.exp(0.5 * logvar)
return mean + std * torch.randn_like(mean)

View File

@@ -0,0 +1,426 @@
# This file was originally copied from:
# https://github.com/Stability-AI/sd3.5/blob/19bf11c4e1e37324c5aa5a61f010d4127848a09c/sd3_infer.py
# NOTE: Must have folder `models` with the following files:
# - `clip_g.safetensors` (openclip bigG, same as SDXL)
# - `clip_l.safetensors` (OpenAI CLIP-L, same as SDXL)
# - `t5xxl.safetensors` (google T5-v1.1-XXL)
# - `sd3_medium.safetensors` (or whichever main MMDiT model file)
# Also can have
# - `sd3_vae.safetensors` (holds the VAE separately if needed)
import datetime
import math
import os
import fire
import numpy as np
import sd3_impls
import torch
from other_impls import SD3Tokenizer, SDClipModel, SDXLClipG, T5XXLModel
from PIL import Image
from safetensors import safe_open
from sd3_impls import SDVAE, BaseModel, CFGDenoiser, SD3LatentFormat
from tqdm import tqdm
#################################################################################################
### Wrappers for model parts
#################################################################################################
def load_into(f, model, prefix, device, dtype=None):
"""Just a debugging-friendly hack to apply the weights in a safetensors file to the pytorch module."""
for key in f.keys():
if key.startswith(prefix) and not key.startswith("loss."):
path = key[len(prefix) :].split(".")
obj = model
for p in path:
if obj is list:
obj = obj[int(p)]
else:
obj = getattr(obj, p, None)
if obj is None:
print(f"Skipping key '{key}' in safetensors file as '{p}' does not exist in python model")
break
if obj is None:
continue
try:
tensor = f.get_tensor(key).to(device=device)
if dtype is not None:
tensor = tensor.to(dtype=dtype)
obj.requires_grad_(False)
obj.set_(tensor)
except Exception as e:
print(f"Failed to load key '{key}' in safetensors file: {e}")
raise e
CLIPG_CONFIG = {
"hidden_act": "gelu",
"hidden_size": 1280,
"intermediate_size": 5120,
"num_attention_heads": 20,
"num_hidden_layers": 32,
}
class ClipG:
def __init__(self):
with safe_open("models/clip_g.safetensors", framework="pt", device="cpu") as f:
self.model = SDXLClipG(CLIPG_CONFIG, device="cpu", dtype=torch.float32)
load_into(f, self.model.transformer, "", "cpu", torch.float32)
CLIPL_CONFIG = {
"hidden_act": "quick_gelu",
"hidden_size": 768,
"intermediate_size": 3072,
"num_attention_heads": 12,
"num_hidden_layers": 12,
}
class ClipL:
def __init__(self):
with safe_open("models/clip_l.safetensors", framework="pt", device="cpu") as f:
self.model = SDClipModel(
layer="hidden",
layer_idx=-2,
device="cpu",
dtype=torch.float32,
layer_norm_hidden_state=False,
return_projected_pooled=False,
textmodel_json_config=CLIPL_CONFIG,
)
load_into(f, self.model.transformer, "", "cpu", torch.float32)
T5_CONFIG = {
"d_ff": 10240,
"d_model": 4096,
"num_heads": 64,
"num_layers": 24,
"vocab_size": 32128,
}
class T5XXL:
def __init__(self):
with safe_open("models/t5xxl.safetensors", framework="pt", device="cpu") as f:
self.model = T5XXLModel(T5_CONFIG, device="cpu", dtype=torch.float32)
load_into(f, self.model.transformer, "", "cpu", torch.float32)
class SD3:
def __init__(self, model, shift, verbose=False):
with safe_open(model, framework="pt", device="cpu") as f:
self.model = BaseModel(
shift=shift,
file=f,
prefix="model.diffusion_model.",
device="cpu",
dtype=torch.float16,
verbose=verbose,
).eval()
load_into(f, self.model, "model.", "cpu", torch.float16)
class VAE:
def __init__(self, model):
with safe_open(model, framework="pt", device="cpu") as f:
self.model = SDVAE(device="cpu", dtype=torch.float16).eval().cpu()
prefix = ""
if any(k.startswith("first_stage_model.") for k in f.keys()):
prefix = "first_stage_model."
load_into(f, self.model, prefix, "cpu", torch.float16)
#################################################################################################
### Main inference logic
#################################################################################################
# Note: Sigma shift value, publicly released models use 3.0
SHIFT = 3.0
# Naturally, adjust to the width/height of the model you have
WIDTH = 1024
HEIGHT = 1024
# Pick your prompt
PROMPT = "a photo of a cat"
# Most models prefer the range of 4-5, but still work well around 7
CFG_SCALE = 4.5
# Different models want different step counts but most will be good at 50, albeit that's slow to run
# sd3_medium is quite decent at 28 steps
STEPS = 40
# Seed
SEED = 23
# SEEDTYPE = "fixed"
SEEDTYPE = "rand"
# SEEDTYPE = "roll"
# Actual model file path
# MODEL = "models/sd3_medium.safetensors"
# MODEL = "models/sd3.5_large_turbo.safetensors"
MODEL = "models/sd3.5_large.safetensors"
# VAE model file path, or set None to use the same model file
VAEFile = None # "models/sd3_vae.safetensors"
# Optional init image file path
INIT_IMAGE = None
# If init_image is given, this is the percentage of denoising steps to run (1.0 = full denoise, 0.0 = no denoise at all)
DENOISE = 0.6
# Output file path
OUTDIR = "outputs"
# SAMPLER
# SAMPLER = "euler"
SAMPLER = "dpmpp_2m"
class SD3Inferencer:
def print(self, txt):
if self.verbose:
print(txt)
def load(self, model=MODEL, vae=VAEFile, shift=SHIFT, verbose=False):
self.verbose = verbose
print("Loading tokenizers...")
# NOTE: if you need a reference impl for a high performance CLIP tokenizer instead of just using the HF transformers one,
# check https://github.com/Stability-AI/StableSwarmUI/blob/master/src/Utils/CliplikeTokenizer.cs
# (T5 tokenizer is different though)
self.tokenizer = SD3Tokenizer()
print("Loading OpenAI CLIP L...")
self.clip_l = ClipL()
print("Loading OpenCLIP bigG...")
self.clip_g = ClipG()
print("Loading Google T5-v1-XXL...")
self.t5xxl = T5XXL()
print(f"Loading SD3 model {os.path.basename(model)}...")
self.sd3 = SD3(model, shift, verbose)
print("Loading VAE model...")
self.vae = VAE(vae or model)
print("Models loaded.")
def get_empty_latent(self, width, height):
self.print("Prep an empty latent...")
return torch.ones(1, 16, height // 8, width // 8, device="cpu") * 0.0609
def get_sigmas(self, sampling, steps):
start = sampling.timestep(sampling.sigma_max)
end = sampling.timestep(sampling.sigma_min)
timesteps = torch.linspace(start, end, steps)
sigs = []
for x in range(len(timesteps)):
ts = timesteps[x]
sigs.append(sampling.sigma(ts))
sigs += [0.0]
return torch.FloatTensor(sigs)
def get_noise(self, seed, latent):
generator = torch.manual_seed(seed)
self.print(f"dtype = {latent.dtype}, layout = {latent.layout}, device = {latent.device}")
return torch.randn(
latent.size(),
dtype=torch.float32,
layout=latent.layout,
generator=generator,
device="cpu",
).to(latent.dtype)
def get_cond(self, prompt):
self.print("Encode prompt...")
tokens = self.tokenizer.tokenize_with_weights(prompt)
l_out, l_pooled = self.clip_l.model.encode_token_weights(tokens["l"])
g_out, g_pooled = self.clip_g.model.encode_token_weights(tokens["g"])
t5_out, t5_pooled = self.t5xxl.model.encode_token_weights(tokens["t5xxl"])
lg_out = torch.cat([l_out, g_out], dim=-1)
lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
return torch.cat([lg_out, t5_out], dim=-2), torch.cat((l_pooled, g_pooled), dim=-1)
def max_denoise(self, sigmas):
max_sigma = float(self.sd3.model.model_sampling.sigma_max)
sigma = float(sigmas[0])
return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
def fix_cond(self, cond):
cond, pooled = (cond[0].half().cuda(), cond[1].half().cuda())
return {"c_crossattn": cond, "y": pooled}
def do_sampling(
self,
latent,
seed,
conditioning,
neg_cond,
steps,
cfg_scale,
sampler="dpmpp_2m",
denoise=1.0,
) -> torch.Tensor:
self.print("Sampling...")
latent = latent.half().cuda()
self.sd3.model = self.sd3.model.cuda()
noise = self.get_noise(seed, latent).cuda()
sigmas = self.get_sigmas(self.sd3.model.model_sampling, steps).cuda()
sigmas = sigmas[int(steps * (1 - denoise)) :]
conditioning = self.fix_cond(conditioning)
neg_cond = self.fix_cond(neg_cond)
extra_args = {"cond": conditioning, "uncond": neg_cond, "cond_scale": cfg_scale}
noise_scaled = self.sd3.model.model_sampling.noise_scaling(sigmas[0], noise, latent, self.max_denoise(sigmas))
sample_fn = getattr(sd3_impls, f"sample_{sampler}")
latent = sample_fn(CFGDenoiser(self.sd3.model), noise_scaled, sigmas, extra_args=extra_args)
latent = SD3LatentFormat().process_out(latent)
self.sd3.model = self.sd3.model.cpu()
self.print("Sampling done")
return latent
def vae_encode(self, image) -> torch.Tensor:
self.print("Encoding image to latent...")
image = image.convert("RGB")
image_np = np.array(image).astype(np.float32) / 255.0
image_np = np.moveaxis(image_np, 2, 0)
batch_images = np.expand_dims(image_np, axis=0).repeat(1, axis=0)
image_torch = torch.from_numpy(batch_images)
image_torch = 2.0 * image_torch - 1.0
image_torch = image_torch.cuda()
self.vae.model = self.vae.model.cuda()
latent = self.vae.model.encode(image_torch).cpu()
self.vae.model = self.vae.model.cpu()
self.print("Encoded")
return latent
def vae_decode(self, latent) -> Image.Image:
self.print("Decoding latent to image...")
latent = latent.cuda()
self.vae.model = self.vae.model.cuda()
image = self.vae.model.decode(latent)
image = image.float()
self.vae.model = self.vae.model.cpu()
image = torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)[0]
decoded_np = 255.0 * np.moveaxis(image.cpu().numpy(), 0, 2)
decoded_np = decoded_np.astype(np.uint8)
out_image = Image.fromarray(decoded_np)
self.print("Decoded")
return out_image
def gen_image(
self,
prompts=[PROMPT],
width=WIDTH,
height=HEIGHT,
steps=STEPS,
cfg_scale=CFG_SCALE,
sampler=SAMPLER,
seed=SEED,
seed_type=SEEDTYPE,
out_dir=OUTDIR,
init_image=INIT_IMAGE,
denoise=DENOISE,
):
latent = self.get_empty_latent(width, height)
if init_image:
image_data = Image.open(init_image)
image_data = image_data.resize((width, height), Image.LANCZOS)
latent = self.vae_encode(image_data)
latent = SD3LatentFormat().process_in(latent)
neg_cond = self.get_cond("")
seed_num = None
pbar = tqdm(enumerate(prompts), total=len(prompts), position=0, leave=True)
for i, prompt in pbar:
if seed_type == "roll":
seed_num = seed if seed_num is None else seed_num + 1
elif seed_type == "rand":
seed_num = torch.randint(0, 100000, (1,)).item()
else: # fixed
seed_num = seed
conditioning = self.get_cond(prompt)
sampled_latent = self.do_sampling(
latent,
seed_num,
conditioning,
neg_cond,
steps,
cfg_scale,
sampler,
denoise if init_image else 1.0,
)
image = self.vae_decode(sampled_latent)
save_path = os.path.join(out_dir, f"{i:06d}.png")
self.print(f"Will save to {save_path}")
image.save(save_path)
self.print("Done")
CONFIGS = {
"sd3_medium": {
"shift": 1.0,
"cfg": 5.0,
"steps": 50,
"sampler": "dpmpp_2m",
},
"sd3.5_large": {
"shift": 3.0,
"cfg": 4.5,
"steps": 40,
"sampler": "dpmpp_2m",
},
"sd3.5_large_turbo": {"shift": 3.0, "cfg": 1.0, "steps": 4, "sampler": "euler"},
}
@torch.no_grad()
def main(
prompt=PROMPT,
model=MODEL,
out_dir=OUTDIR,
postfix=None,
seed=SEED,
seed_type=SEEDTYPE,
sampler=None,
steps=None,
cfg=None,
shift=None,
width=WIDTH,
height=HEIGHT,
vae=VAEFile,
init_image=INIT_IMAGE,
denoise=DENOISE,
verbose=False,
):
steps = steps or CONFIGS[os.path.splitext(os.path.basename(model))[0]]["steps"]
cfg = cfg or CONFIGS[os.path.splitext(os.path.basename(model))[0]]["cfg"]
shift = shift or CONFIGS[os.path.splitext(os.path.basename(model))[0]]["shift"]
sampler = sampler or CONFIGS[os.path.splitext(os.path.basename(model))[0]]["sampler"]
inferencer = SD3Inferencer()
inferencer.load(model, vae, shift, verbose)
if isinstance(prompt, str):
if os.path.splitext(prompt)[-1] == ".txt":
with open(prompt, "r") as f:
prompts = [l.strip() for l in f.readlines()]
else:
prompts = [prompt]
out_dir = os.path.join(
out_dir,
os.path.splitext(os.path.basename(model))[0],
os.path.splitext(os.path.basename(prompt))[0][:50]
+ (postfix or datetime.datetime.now().strftime("_%Y-%m-%dT%H-%M-%S")),
)
print(f"Saving images to {out_dir}")
os.makedirs(out_dir, exist_ok=False)
inferencer.gen_image(
prompts,
width,
height,
steps,
cfg,
sampler,
seed,
seed_type,
out_dir,
init_image,
denoise,
)
fire.Fire(main)

View File

@@ -0,0 +1,72 @@
from dataclasses import dataclass
from typing import Literal, TypedDict
import torch
from invokeai.backend.sd3.mmditx import MMDiTX
from invokeai.backend.sd3.sd3_impls import ModelSamplingDiscreteFlow
class ContextEmbedderConfig(TypedDict):
target: Literal["torch.nn.Linear"]
params: dict[str, int]
@dataclass
class Sd3MMDiTXParams:
patch_size: int
depth: int
num_patches: int
pos_embed_max_size: int
adm_in_channels: int
context_shape: tuple[int, int]
qk_norm: Literal["rms", None]
x_block_self_attn_layers: list[int]
context_embedder_config: ContextEmbedderConfig
class Sd3MMDiTX(torch.nn.Module):
"""This class is based closely on
https://github.com/Stability-AI/sd3.5/blob/19bf11c4e1e37324c5aa5a61f010d4127848a09c/sd3_impls.py#L53
but has more standard model loading semantics.
"""
def __init__(
self,
params: Sd3MMDiTXParams,
shift: float = 1.0,
device: torch.device | None = None,
dtype: torch.dtype | None = None,
verbose: bool = False,
):
super().__init__()
self.diffusion_model = MMDiTX(
input_size=None,
pos_embed_scaling_factor=None,
pos_embed_offset=None,
pos_embed_max_size=params.pos_embed_max_size,
patch_size=params.patch_size,
in_channels=16,
depth=params.depth,
num_patches=params.num_patches,
adm_in_channels=params.adm_in_channels,
context_embedder_config=params.context_embedder_config,
qk_norm=params.qk_norm,
x_block_self_attn_layers=params.x_block_self_attn_layers,
device=device,
dtype=dtype,
verbose=verbose,
)
self.model_sampling = ModelSamplingDiscreteFlow(shift=shift)
def apply_model(self, x: torch.Tensor, sigma: torch.Tensor, c_crossattn: torch.Tensor, y: torch.Tensor):
dtype = self.get_dtype()
timestep = self.model_sampling.timestep(sigma).float()
model_output = self.diffusion_model(x.to(dtype), timestep, context=c_crossattn.to(dtype), y=y.to(dtype)).float()
return self.model_sampling.calculate_denoised(sigma, model_output, x)
def forward(self, x: torch.Tensor, sigma: float, c_crossattn: torch.Tensor, y: torch.Tensor):
return self.apply_model(x=x, sigma=sigma, c_crossattn=c_crossattn, y=y)
def get_dtype(self):
return self.diffusion_model.dtype

View File

@@ -0,0 +1,70 @@
import math
import re
from typing import Any, Dict
from invokeai.backend.sd3.sd3_mmditx import ContextEmbedderConfig, Sd3MMDiTXParams
def is_sd3_checkpoint(sd: Dict[str, Any]) -> bool:
"""Is the state dict for an SD3 checkpoint like this one?:
https://huggingface.co/stabilityai/stable-diffusion-3.5-large/blob/main/sd3.5_large.safetensors
Note that this checkpoint format contains both the VAE and the MMDiTX model.
This is intended to be a reasonably high-precision detector, but it is not guaranteed to have perfect precision.
"""
# If all of the expected keys are present, then this is very likely a SD3 checkpoint.
expected_keys = {
# VAE decoder and encoder keys.
"first_stage_model.decoder.conv_in.bias",
"first_stage_model.decoder.conv_in.weight",
"first_stage_model.encoder.conv_in.bias",
"first_stage_model.encoder.conv_in.weight",
# MMDiTX keys.
"model.diffusion_model.final_layer.linear.bias",
"model.diffusion_model.final_layer.linear.weight",
"model.diffusion_model.joint_blocks.0.context_block.attn.ln_k.weight",
"model.diffusion_model.joint_blocks.0.context_block.attn.ln_q.weight",
}
return expected_keys.issubset(sd.keys())
def infer_sd3_mmditx_params(sd: Dict[str, Any], prefix: str = "model.diffusion_model.") -> Sd3MMDiTXParams:
"""Infer the MMDiTX model parameters from the state dict.
This logic is based on:
https://github.com/Stability-AI/sd3.5/blob/19bf11c4e1e37324c5aa5a61f010d4127848a09c/sd3_impls.py#L68-L88
"""
patch_size = sd[f"{prefix}x_embedder.proj.weight"].shape[2]
depth = sd[f"{prefix}x_embedder.proj.weight"].shape[0] // 64
num_patches = sd[f"{prefix}pos_embed"].shape[1]
pos_embed_max_size = round(math.sqrt(num_patches))
adm_in_channels = sd[f"{prefix}y_embedder.mlp.0.weight"].shape[1]
context_shape = sd[f"{prefix}context_embedder.weight"].shape
qk_norm = "rms" if f"{prefix}joint_blocks.0.context_block.attn.ln_k.weight" in sd else None
x_block_self_attn_layers = sorted(
[
int(key.split(".x_block.attn2.ln_k.weight")[0].split(".")[-1])
for key in list(filter(re.compile(".*.x_block.attn2.ln_k.weight").match, sd.keys()))
]
)
context_embedder_config: ContextEmbedderConfig = {
"target": "torch.nn.Linear",
"params": {
"in_features": context_shape[1],
"out_features": context_shape[0],
},
}
return Sd3MMDiTXParams(
patch_size=patch_size,
depth=depth,
num_patches=num_patches,
pos_embed_max_size=pos_embed_max_size,
adm_in_channels=adm_in_channels,
context_shape=context_shape,
qk_norm=qk_norm,
x_block_self_attn_layers=x_block_self_attn_layers,
context_embedder_config=context_embedder_config,
)

View File

@@ -499,22 +499,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
for idx, value in enumerate(single_t2i_adapter_data.adapter_state):
accum_adapter_state[idx] += value * t2i_adapter_weight
# Hack: force compatibility with irregular resolutions by padding the feature map with zeros
for idx, tensor in enumerate(accum_adapter_state):
# The tensor size is supposed to be some integer downscale factor of the latents size.
# Internally, the unet will pad the latents before downscaling between levels when it is no longer divisible by its downscale factor.
# If the latent size does not scale down evenly, we need to pad the tensor so that it matches the the downscaled padded latents later on.
scale_factor = latents.size()[-1] // tensor.size()[-1]
required_padding_width = math.ceil(latents.size()[-1] / scale_factor) - tensor.size()[-1]
required_padding_height = math.ceil(latents.size()[-2] / scale_factor) - tensor.size()[-2]
tensor = torch.nn.functional.pad(
tensor,
(0, required_padding_width, 0, required_padding_height, 0, 0, 0, 0),
mode="constant",
value=0,
)
accum_adapter_state[idx] = tensor
down_intrablock_additional_residuals = accum_adapter_state
# Handle inpainting models.

View File

@@ -49,32 +49,9 @@ class FLUXConditioningInfo:
return self
@dataclass
class SD3ConditioningInfo:
clip_l_pooled_embeds: torch.Tensor
clip_l_embeds: torch.Tensor
clip_g_pooled_embeds: torch.Tensor
clip_g_embeds: torch.Tensor
t5_embeds: torch.Tensor | None
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
self.clip_l_pooled_embeds = self.clip_l_pooled_embeds.to(device=device, dtype=dtype)
self.clip_l_embeds = self.clip_l_embeds.to(device=device, dtype=dtype)
self.clip_g_pooled_embeds = self.clip_g_pooled_embeds.to(device=device, dtype=dtype)
self.clip_g_embeds = self.clip_g_embeds.to(device=device, dtype=dtype)
if self.t5_embeds is not None:
self.t5_embeds = self.t5_embeds.to(device=device, dtype=dtype)
return self
@dataclass
class ConditioningFieldData:
conditionings: (
List[BasicConditioningInfo]
| List[SDXLConditioningInfo]
| List[FLUXConditioningInfo]
| List[SD3ConditioningInfo]
)
conditionings: List[BasicConditioningInfo] | List[SDXLConditioningInfo] | List[FLUXConditioningInfo]
@dataclass

View File

@@ -33,7 +33,7 @@ class PreviewExt(ExtensionBase):
def initial_preview(self, ctx: DenoiseContext):
self.callback(
PipelineIntermediateState(
step=0,
step=-1,
order=ctx.scheduler.order,
total_steps=len(ctx.inputs.timesteps),
timestep=int(ctx.scheduler.config.num_train_timesteps), # TODO: is there any code which uses it?

View File

@@ -3,7 +3,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
import diffusers
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.loaders import FromOriginalControlNetMixin
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
from diffusers.models.controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
from diffusers.models.embeddings import (
@@ -32,9 +32,7 @@ from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.get_logger(__name__)
# NOTE(ryand): I'm not the origina author of this code, but for future reference, it appears that this class was copied
# from diffusers in order to add support for the encoder_attention_mask argument.
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
"""
A ControlNet model.

View File

@@ -1,3 +1,3 @@
# Invoke UI
<https://invoke-ai.github.io/InvokeAI/contributing/frontend/>
<https://invoke-ai.github.io/InvokeAI/contributing/frontend/OVERVIEW/>

View File

@@ -9,7 +9,6 @@ const config: KnipConfig = {
'src/services/api/schema.ts',
'src/features/nodes/types/v1/**',
'src/features/nodes/types/v2/**',
'src/features/parameters/types/parameterSchemas.ts',
// TODO(psyche): maybe we can clean up these utils after canvas v2 release
'src/features/controlLayers/konva/util.ts',
// TODO(psyche): restore HRF functionality?

View File

@@ -52,13 +52,13 @@
}
},
"dependencies": {
"@atlaskit/pragmatic-drag-and-drop": "^1.4.0",
"@atlaskit/pragmatic-drag-and-drop-auto-scroll": "^1.4.0",
"@atlaskit/pragmatic-drag-and-drop-hitbox": "^1.0.3",
"@dagrejs/dagre": "^1.1.4",
"@dagrejs/graphlib": "^2.2.4",
"@dnd-kit/core": "^6.1.0",
"@dnd-kit/sortable": "^8.0.0",
"@dnd-kit/utilities": "^3.2.2",
"@fontsource-variable/inter": "^5.1.0",
"@invoke-ai/ui-library": "^0.0.44",
"@invoke-ai/ui-library": "^0.0.42",
"@nanostores/react": "^0.7.3",
"@reduxjs/toolkit": "2.2.3",
"@roarr/browser-log-writer": "^1.3.0",

View File

@@ -5,27 +5,27 @@ settings:
excludeLinksFromLockfile: false
dependencies:
'@atlaskit/pragmatic-drag-and-drop':
specifier: ^1.4.0
version: 1.4.0
'@atlaskit/pragmatic-drag-and-drop-auto-scroll':
specifier: ^1.4.0
version: 1.4.0
'@atlaskit/pragmatic-drag-and-drop-hitbox':
specifier: ^1.0.3
version: 1.0.3
'@dagrejs/dagre':
specifier: ^1.1.4
version: 1.1.4
'@dagrejs/graphlib':
specifier: ^2.2.4
version: 2.2.4
'@dnd-kit/core':
specifier: ^6.1.0
version: 6.1.0(react-dom@18.3.1)(react@18.3.1)
'@dnd-kit/sortable':
specifier: ^8.0.0
version: 8.0.0(@dnd-kit/core@6.1.0)(react@18.3.1)
'@dnd-kit/utilities':
specifier: ^3.2.2
version: 3.2.2(react@18.3.1)
'@fontsource-variable/inter':
specifier: ^5.1.0
version: 5.1.0
'@invoke-ai/ui-library':
specifier: ^0.0.44
version: 0.0.44(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1)
specifier: ^0.0.42
version: 0.0.42(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1)
'@nanostores/react':
specifier: ^0.7.3
version: 0.7.3(nanostores@0.11.3)(react@18.3.1)
@@ -319,28 +319,6 @@ packages:
'@jridgewell/trace-mapping': 0.3.25
dev: true
/@atlaskit/pragmatic-drag-and-drop-auto-scroll@1.4.0:
resolution: {integrity: sha512-5GoikoTSW13UX76F9TDeWB8x3jbbGlp/Y+3aRkHe1MOBMkrWkwNpJ42MIVhhX/6NSeaZiPumP0KbGJVs2tOWSQ==}
dependencies:
'@atlaskit/pragmatic-drag-and-drop': 1.4.0
'@babel/runtime': 7.25.7
dev: false
/@atlaskit/pragmatic-drag-and-drop-hitbox@1.0.3:
resolution: {integrity: sha512-/Sbu/HqN2VGLYBhnsG7SbRNg98XKkbF6L7XDdBi+izRybfaK1FeMfodPpm/xnBHPJzwYMdkE0qtLyv6afhgMUA==}
dependencies:
'@atlaskit/pragmatic-drag-and-drop': 1.4.0
'@babel/runtime': 7.25.7
dev: false
/@atlaskit/pragmatic-drag-and-drop@1.4.0:
resolution: {integrity: sha512-qRY3PTJIcxfl/QB8Gwswz+BRvlmgAC5pB+J2hL6dkIxgqAgVwOhAamMUKsrOcFU/axG2Q7RbNs1xfoLKDuhoPg==}
dependencies:
'@babel/runtime': 7.25.7
bind-event-listener: 3.0.0
raf-schd: 4.0.3
dev: false
/@babel/code-frame@7.25.7:
resolution: {integrity: sha512-0xZJFNE5XMpENsgfHYTw8FbX4kv53mFLn2i3XPoq69LyhYSCBJtitaHx9QnsVTrsogI4Z3+HtEfZ2/GFPOtf5g==}
engines: {node: '>=6.9.0'}
@@ -515,8 +493,8 @@ packages:
resolution: {integrity: sha512-MV6D4VLRIHr4PkW4zMyqfrNS1mPlCTiCXwvYGtDFQYr+xHFfonhAuf9WjsSc0nyp2m0OdkSLnzmVKkZFLo25Tg==}
dev: false
/@chakra-ui/anatomy@2.3.5:
resolution: {integrity: sha512-3im33cUOxCbISjaBlINE2u8BOwJSCdzpjCX0H+0JxK2xz26UaVA5xeI3NYHUoxDnr/QIrgfrllGxS0szYwOcyg==}
/@chakra-ui/anatomy@2.3.4:
resolution: {integrity: sha512-fFIYN7L276gw0Q7/ikMMlZxP7mvnjRaWJ7f3Jsf9VtDOi6eAYIBRrhQe6+SZ0PGmoOkRaBc7gSE5oeIbgFFyrw==}
dev: false
/@chakra-ui/breakpoint-utils@2.0.8:
@@ -573,12 +551,12 @@ packages:
react: 18.3.1
dev: false
/@chakra-ui/hooks@2.4.3(react@18.3.1):
resolution: {integrity: sha512-Sr2zsoTZw3p7HbrUy4aLpTIkE2XXUelAUgg3NGwMzrmx75bE0qVyiuuTFOuyEzGxYVV2Fe8QtcKKilm6RwzTGg==}
/@chakra-ui/hooks@2.4.2(react@18.3.1):
resolution: {integrity: sha512-LRKiVE1oA7afT5tbbSKAy7Uas2xFHE6IkrQdbhWCHmkHBUtPvjQQDgwtnd4IRZPmoEfNGwoJ/MQpwOM/NRTTwA==}
peerDependencies:
react: '>=18'
dependencies:
'@chakra-ui/utils': 2.2.3(react@18.3.1)
'@chakra-ui/utils': 2.2.2(react@18.3.1)
'@zag-js/element-size': 0.31.1
copy-to-clipboard: 3.3.3
framesync: 6.1.2
@@ -596,13 +574,13 @@ packages:
react: 18.3.1
dev: false
/@chakra-ui/icons@2.2.4(@chakra-ui/react@2.10.4)(react@18.3.1):
/@chakra-ui/icons@2.2.4(@chakra-ui/react@2.10.2)(react@18.3.1):
resolution: {integrity: sha512-l5QdBgwrAg3Sc2BRqtNkJpfuLw/pWRDwwT58J6c4PqQT6wzXxyNa8Q0PForu1ltB5qEiFb1kxr/F/HO1EwNa6g==}
peerDependencies:
'@chakra-ui/react': '>=2.0.0'
react: '>=18'
dependencies:
'@chakra-ui/react': 2.10.4(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/react': 2.10.2(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1)
react: 18.3.1
dev: false
@@ -825,8 +803,8 @@ packages:
react: 18.3.1
dev: false
/@chakra-ui/react@2.10.4(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-XyRWnuZ1Uw7Mlj5pKUGO5/WhnIHP/EOrpy6lGZC1yWlkd0eIfIpYMZ1ALTZx4KPEdbBaes48dgiMT2ROCqLhkA==}
/@chakra-ui/react@2.10.2(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-TfIHTqTlxTHYJZBtpiR5EZasPUrLYKJxdbHkdOJb5G1OQ+2c5kKl5XA7c2pMtsEptzb7KxAAIB62t3hxdfWp1w==}
peerDependencies:
'@emotion/react': '>=11'
'@emotion/styled': '>=11'
@@ -834,10 +812,10 @@ packages:
react: '>=18'
react-dom: '>=18'
dependencies:
'@chakra-ui/hooks': 2.4.3(react@18.3.1)
'@chakra-ui/styled-system': 2.12.1(react@18.3.1)
'@chakra-ui/theme': 3.4.7(@chakra-ui/styled-system@2.12.1)(react@18.3.1)
'@chakra-ui/utils': 2.2.3(react@18.3.1)
'@chakra-ui/hooks': 2.4.2(react@18.3.1)
'@chakra-ui/styled-system': 2.11.2(react@18.3.1)
'@chakra-ui/theme': 3.4.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1)
'@chakra-ui/utils': 2.2.2(react@18.3.1)
'@emotion/react': 11.13.3(@types/react@18.3.11)(react@18.3.1)
'@emotion/styled': 11.13.0(@emotion/react@11.13.3)(@types/react@18.3.11)(react@18.3.1)
'@popperjs/core': 2.11.8
@@ -868,10 +846,10 @@ packages:
react: 18.3.1
dev: false
/@chakra-ui/styled-system@2.12.1(react@18.3.1):
resolution: {integrity: sha512-DQph1nDiCPtgze7nDe0a36530ByXb5VpPosKGyWMvKocVeZJcDtYG6XM0+V5a0wKuFBXsViBBRIFUTiUesJAcg==}
/@chakra-ui/styled-system@2.11.2(react@18.3.1):
resolution: {integrity: sha512-y++z2Uop+hjfZX9mbH88F1ikazPv32asD2er56zMJBemUAzweXnHTpiCQbluEDSUDhqmghVZAdb+5L4XLbsRxA==}
dependencies:
'@chakra-ui/utils': 2.2.3(react@18.3.1)
'@chakra-ui/utils': 2.2.2(react@18.3.1)
csstype: 3.1.3
transitivePeerDependencies:
- react
@@ -915,14 +893,14 @@ packages:
color2k: 2.0.3
dev: false
/@chakra-ui/theme-tools@2.2.7(@chakra-ui/styled-system@2.12.1)(react@18.3.1):
resolution: {integrity: sha512-K/VJd0QcnKik7m+qZTkggqNLep6+MPUu8IP5TUpHsnSM5R/RVjsJIR7gO8IZVAIMIGLLTIhGshHxeMekqv6LcQ==}
/@chakra-ui/theme-tools@2.2.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1):
resolution: {integrity: sha512-3UhKPyzKbV3l/bg1iQN9PBvffYp+EBOoYMUaeTUdieQRPFzo2jbYR0lNCxqv8h5aGM/k54nCHU2M/GStyi9F2A==}
peerDependencies:
'@chakra-ui/styled-system': '>=2.0.0'
dependencies:
'@chakra-ui/anatomy': 2.3.5
'@chakra-ui/styled-system': 2.12.1(react@18.3.1)
'@chakra-ui/utils': 2.2.3(react@18.3.1)
'@chakra-ui/anatomy': 2.3.4
'@chakra-ui/styled-system': 2.11.2(react@18.3.1)
'@chakra-ui/utils': 2.2.2(react@18.3.1)
color2k: 2.0.3
transitivePeerDependencies:
- react
@@ -948,15 +926,15 @@ packages:
'@chakra-ui/theme-tools': 2.1.2(@chakra-ui/styled-system@2.9.2)
dev: false
/@chakra-ui/theme@3.4.7(@chakra-ui/styled-system@2.12.1)(react@18.3.1):
resolution: {integrity: sha512-pfewthgZTFNUYeUwGvhPQO/FTIyf375cFV1AT8N1y0aJiw4KDe7YTGm7p0aFy4AwAjH2ydMgeEx/lua4tx8qyQ==}
/@chakra-ui/theme@3.4.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1):
resolution: {integrity: sha512-ZwFBLfiMC3URwaO31ONXoKH9k0TX0OW3UjdPF3EQkQpYyrk/fm36GkkzajjtdpWEd7rzDLRsQjPmvwNaSoNDtg==}
peerDependencies:
'@chakra-ui/styled-system': '>=2.8.0'
dependencies:
'@chakra-ui/anatomy': 2.3.5
'@chakra-ui/styled-system': 2.12.1(react@18.3.1)
'@chakra-ui/theme-tools': 2.2.7(@chakra-ui/styled-system@2.12.1)(react@18.3.1)
'@chakra-ui/utils': 2.2.3(react@18.3.1)
'@chakra-ui/anatomy': 2.3.4
'@chakra-ui/styled-system': 2.11.2(react@18.3.1)
'@chakra-ui/theme-tools': 2.2.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1)
'@chakra-ui/utils': 2.2.2(react@18.3.1)
transitivePeerDependencies:
- react
dev: false
@@ -981,8 +959,8 @@ packages:
lodash.mergewith: 4.6.2
dev: false
/@chakra-ui/utils@2.2.3(react@18.3.1):
resolution: {integrity: sha512-cldoCQuexZ6e07/9hWHKD4l1QXXlM1Nax9tuQOBvVf/EgwNZt3nZu8zZRDFlhAOKCTQDkmpLTTu+eXXjChNQOw==}
/@chakra-ui/utils@2.2.2(react@18.3.1):
resolution: {integrity: sha512-jUPLT0JzRMWxpdzH6c+t0YMJYrvc5CLericgITV3zDSXblkfx3DsYXqU11DJTSGZI9dUKzM1Wd0Wswn4eJwvFQ==}
peerDependencies:
react: '>=16.8.0'
dependencies:
@@ -1002,6 +980,49 @@ packages:
engines: {node: '>17.0.0'}
dev: false
/@dnd-kit/accessibility@3.1.0(react@18.3.1):
resolution: {integrity: sha512-ea7IkhKvlJUv9iSHJOnxinBcoOI3ppGnnL+VDJ75O45Nss6HtZd8IdN8touXPDtASfeI2T2LImb8VOZcL47wjQ==}
peerDependencies:
react: '>=16.8.0'
dependencies:
react: 18.3.1
tslib: 2.7.0
dev: false
/@dnd-kit/core@6.1.0(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-J3cQBClB4TVxwGo3KEjssGEXNJqGVWx17aRTZ1ob0FliR5IjYgTxl5YJbKTzA6IzrtelotH19v6y7uoIRUZPSg==}
peerDependencies:
react: '>=16.8.0'
react-dom: '>=16.8.0'
dependencies:
'@dnd-kit/accessibility': 3.1.0(react@18.3.1)
'@dnd-kit/utilities': 3.2.2(react@18.3.1)
react: 18.3.1
react-dom: 18.3.1(react@18.3.1)
tslib: 2.7.0
dev: false
/@dnd-kit/sortable@8.0.0(@dnd-kit/core@6.1.0)(react@18.3.1):
resolution: {integrity: sha512-U3jk5ebVXe1Lr7c2wU7SBZjcWdQP+j7peHJfCspnA81enlu88Mgd7CC8Q+pub9ubP7eKVETzJW+IBAhsqbSu/g==}
peerDependencies:
'@dnd-kit/core': ^6.1.0
react: '>=16.8.0'
dependencies:
'@dnd-kit/core': 6.1.0(react-dom@18.3.1)(react@18.3.1)
'@dnd-kit/utilities': 3.2.2(react@18.3.1)
react: 18.3.1
tslib: 2.7.0
dev: false
/@dnd-kit/utilities@3.2.2(react@18.3.1):
resolution: {integrity: sha512-+MKAJEOfaBe5SmV6t34p80MMKhjvUz0vRrvVJbPT0WElzaOJ/1xs+D+KDv+tD/NE5ujfrChEcshd4fLn0wpiqg==}
peerDependencies:
react: '>=16.8.0'
dependencies:
react: 18.3.1
tslib: 2.7.0
dev: false
/@emotion/babel-plugin@11.12.0:
resolution: {integrity: sha512-y2WQb+oP8Jqvvclh8Q55gLUyb7UFvgv7eJfsj7td5TToBrIUtPay2kMrZi4xjq9qw2vD0ZR5fSho0yqoFgX7Rw==}
dependencies:
@@ -1675,18 +1696,18 @@ packages:
prettier: 3.3.3
dev: true
/@invoke-ai/ui-library@0.0.44(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-PDseHmdr8oi8cmrpx3UwIYHn4NduAJX2R0pM0pyM54xrCMPMgYiCbC/eOs8Gt4fBc2ziiPZ9UGoW4evnE3YJsg==}
/@invoke-ai/ui-library@0.0.42(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-OuDXRipBO5mu+Nv4qN8cd8MiwiGBdq6h4PirVgPI9/ltbdcIzePgUJ0dJns26lflHSTRWW38I16wl4YTw3mNWA==}
peerDependencies:
'@fontsource-variable/inter': ^5.0.16
react: ^18.2.0
react-dom: ^18.2.0
dependencies:
'@chakra-ui/anatomy': 2.2.2
'@chakra-ui/icons': 2.2.4(@chakra-ui/react@2.10.4)(react@18.3.1)
'@chakra-ui/icons': 2.2.4(@chakra-ui/react@2.10.2)(react@18.3.1)
'@chakra-ui/layout': 2.3.1(@chakra-ui/system@2.6.2)(react@18.3.1)
'@chakra-ui/portal': 2.1.0(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/react': 2.10.4(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/react': 2.10.2(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/styled-system': 2.9.2
'@chakra-ui/theme-tools': 2.1.2(@chakra-ui/styled-system@2.9.2)
'@emotion/react': 11.13.3(@types/react@18.3.11)(react@18.3.1)
@@ -4292,10 +4313,6 @@ packages:
open: 8.4.2
dev: true
/bind-event-listener@3.0.0:
resolution: {integrity: sha512-PJvH288AWQhKs2v9zyfYdPzlPqf5bXbGMmhmUIY9x4dAUGIWgomO771oBQNwJnMQSnUIXhKu6sgzpBRXTlvb8Q==}
dev: false
/bl@4.1.0:
resolution: {integrity: sha512-1W07cM9gS6DcLperZfFSj+bWLtaPGSOHWhPiGzXmvVJbRLdG82sH/Kn8EtW1VqWVA54AKf2h5k5BbnIbwF3h6w==}
dependencies:
@@ -7540,10 +7557,6 @@ packages:
resolution: {integrity: sha512-NuaNSa6flKT5JaSYQzJok04JzTL1CA6aGhv5rfLW3PgqA+M2ChpZQnAC8h8i4ZFkBS8X5RqkDBHA7r4hej3K9A==}
dev: true
/raf-schd@4.0.3:
resolution: {integrity: sha512-tQkJl2GRWh83ui2DiPTJz9wEiMN20syf+5oKfB03yYP7ioZcJwsIK8FjrtLwH1m7C7e+Tt2yYBlrOpdT+dyeIQ==}
dev: false
/raf-throttle@2.0.6:
resolution: {integrity: sha512-C7W6hy78A+vMmk5a/B6C5szjBHrUzWJkVyakjKCK59Uy2CcA7KhO1JUvvH32IXYFIcyJ3FMKP3ZzCc2/71I6Vg==}
dev: false

Binary file not shown.

Before

Width:  |  Height:  |  Size: 895 KiB

View File

@@ -95,10 +95,7 @@
"none": "Keine",
"new": "Neu",
"ok": "OK",
"close": "Schließen",
"clipboard": "Zwischenablage",
"generating": "Generieren",
"loadingModel": "Lade Modell"
"close": "Schließen"
},
"gallery": {
"galleryImageSize": "Bildgröße",
@@ -538,12 +535,14 @@
"addModels": "Model hinzufügen",
"deleteModelImage": "Lösche Model Bild",
"huggingFaceRepoID": "HuggingFace Repo ID",
"hfToken": "HuggingFace Schlüssel",
"huggingFacePlaceholder": "besitzer/model-name",
"modelSettings": "Modelleinstellungen",
"typePhraseHere": "Phrase hier eingeben",
"spandrelImageToImage": "Bild zu Bild (Spandrel)",
"starterModels": "Einstiegsmodelle",
"t5Encoder": "T5-Kodierer",
"useDefaultSettings": "Standardeinstellungen verwenden",
"uploadImage": "Bild hochladen",
"urlOrLocalPath": "URL oder lokaler Pfad",
"install": "Installieren",
@@ -593,15 +592,7 @@
"loraTriggerPhrases": "LoRA-Auslösephrasen",
"installingBundle": "Bündel wird installiert",
"triggerPhrases": "Auslösephrasen",
"mainModelTriggerPhrases": "Hauptmodell-Auslösephrasen",
"noDefaultSettings": "Für dieses Modell sind keine Standardeinstellungen konfiguriert. Besuchen Sie den Modell-Manager, um Standardeinstellungen hinzuzufügen.",
"defaultSettingsOutOfSync": "Einige Einstellungen stimmen nicht mit den Standardeinstellungen des Modells überein:",
"clipLEmbed": "CLIP-L einbetten",
"clipGEmbed": "CLIP-G einbetten",
"hfTokenLabel": "HuggingFace-Token (für einige Modelle erforderlich)",
"hfTokenHelperText": "Für die Nutzung einiger Modelle ist ein HF-Token erforderlich. Klicken Sie hier, um Ihr Token zu erstellen oder zu erhalten.",
"hfForbidden": "Sie haben keinen Zugriff auf dieses HF-Modell",
"hfTokenInvalid": "Ungültiges oder fehlendes HF-Token"
"mainModelTriggerPhrases": "Hauptmodell-Auslösephrasen"
},
"parameters": {
"images": "Bilder",
@@ -642,6 +633,12 @@
"remixImage": "Remix des Bilds erstellen",
"imageActions": "Weitere Bildaktionen",
"invoke": {
"layer": {
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, Bbox-Breite ist {{width}}",
"t2iAdapterIncompatibleScaledBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, Skalierte Bbox-Breite ist {{width}}",
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, Skalierte Bbox-Höhe ist {{height}}",
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, Bbox-Höhe ist {{height}}"
},
"fluxModelIncompatibleScaledBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), Skalierte Bbox-Breite ist {{width}}",
"fluxModelIncompatibleScaledBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), Skalierte Bbox-Höhe ist {{height}}",
"fluxModelIncompatibleBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), Bbox-Breite ist {{width}}",
@@ -681,41 +678,10 @@
"toast": {
"uploadFailed": "Hochladen fehlgeschlagen",
"imageCopied": "Bild kopiert",
"parametersNotSet": "Parameter nicht zurückgerufen",
"parametersNotSet": "Parameter nicht festgelegt",
"addedToBoard": "Dem Board hinzugefügt",
"loadedWithWarnings": "Workflow mit Warnungen geladen",
"imageSaved": "Bild gespeichert",
"linkCopied": "Link kopiert",
"problemCopyingLayer": "Ebene kann nicht kopiert werden",
"problemSavingLayer": "Ebene kann nicht gespeichert werden",
"parameterSetDesc": "{{parameter}} zurückgerufen",
"imageUploaded": "Bild hochgeladen",
"problemCopyingImage": "Bild kann nicht kopiert werden",
"parameterNotSetDesc": "{{parameter}} kann nicht zurückgerufen werden",
"prunedQueue": "Warteschlange bereinigt",
"modelAddedSimple": "Modell zur Warteschlange hinzugefügt",
"parametersSet": "Parameter zurückgerufen",
"imageNotLoadedDesc": "Bild konnte nicht gefunden werden",
"setControlImage": "Als Kontrollbild festlegen",
"sentToUpscale": "An Vergrößerung gesendet",
"parameterNotSetDescWithMessage": "{{parameter}} kann nicht zurückgerufen werden: {{message}}",
"unableToLoadImageMetadata": "Bildmetadaten können nicht geladen werden",
"unableToLoadImage": "Bild kann nicht geladen werden",
"serverError": "Serverfehler",
"parameterNotSet": "Parameter nicht zurückgerufen",
"sessionRef": "Sitzung: {{sessionId}}",
"problemDownloadingImage": "Bild kann nicht heruntergeladen werden",
"parameters": "Parameter",
"parameterSet": "Parameter zurückgerufen",
"importFailed": "Import fehlgeschlagen",
"importSuccessful": "Import erfolgreich",
"setNodeField": "Als Knotenfeld festlegen",
"somethingWentWrong": "Etwas ist schief gelaufen",
"workflowLoaded": "Arbeitsablauf geladen",
"workflowDeleted": "Arbeitsablauf gelöscht",
"errorCopied": "Fehler kopiert",
"layerCopiedToClipboard": "Ebene in die Zwischenablage kopiert",
"sentToCanvas": "An Leinwand gesendet"
"imageSaved": "Bild gespeichert"
},
"accessibility": {
"uploadImage": "Bild hochladen",
@@ -772,8 +738,7 @@
"deletedPrivateBoardsCannotbeRestored": "Gelöschte Boards können nicht wiederhergestellt werden. Wenn Sie „Nur Board löschen“ wählen, werden die Bilder in einen privaten, nicht kategorisierten Status für den Ersteller des Bildes versetzt.",
"assetsWithCount_one": "{{count}} in der Sammlung",
"assetsWithCount_other": "{{count}} in der Sammlung",
"deletedBoardsCannotbeRestored": "Gelöschte Ordner können nicht wiederhergestellt werden. Die Auswahl von \"Nur Ordner löschen\" verschiebt Bilder in einen unkategorisierten Zustand.",
"updateBoardError": "Fehler beim Aktualisieren des Ordners"
"deletedBoardsCannotbeRestored": "Gelöschte Ordner können nicht wiederhergestellt werden. Die Auswahl von \"Nur Ordner löschen\" verschiebt Bilder in einen unkategorisierten Zustand."
},
"queue": {
"status": "Status",
@@ -845,8 +810,7 @@
"upscaling": "Hochskalierung",
"canvas": "Leinwand",
"prompts_one": "Prompt",
"prompts_other": "Prompts",
"batchSize": "Stapelgröße"
"prompts_other": "Prompts"
},
"metadata": {
"negativePrompt": "Negativ Beschreibung",
@@ -861,6 +825,7 @@
"width": "Breite",
"createdBy": "Erstellt von",
"steps": "Schritte",
"seamless": "Nahtlos",
"positivePrompt": "Positiver Prompt",
"generationMode": "Generierungsmodus",
"Threshold": "Rauschen-Schwelle",
@@ -877,9 +842,7 @@
"recallParameter": "{{label}} Abrufen",
"parsingFailed": "Parsing Fehlgeschlagen",
"canvasV2Metadata": "Leinwand",
"guidance": "Führung",
"seamlessXAxis": "Nahtlose X Achse",
"seamlessYAxis": "Nahtlose Y Achse"
"guidance": "Führung"
},
"popovers": {
"noiseUseCPU": {
@@ -1086,21 +1049,6 @@
},
"patchmatchDownScaleSize": {
"heading": "Herunterskalieren"
},
"paramHeight": {
"heading": "Höhe",
"paragraphs": [
"Höhe des generierten Bildes. Muss ein Vielfaches von 8 sein."
]
},
"paramUpscaleMethod": {
"heading": "Vergrößerungsmethode",
"paragraphs": [
"Methode zum Hochskalieren des Bildes für High Resolution Fix."
]
},
"paramHrf": {
"heading": "High Resolution Fix aktivieren"
}
},
"invocationCache": {
@@ -1222,19 +1170,7 @@
"workflowVersion": "Version",
"saveToGallery": "In Galerie speichern",
"noWorkflows": "Keine Arbeitsabläufe",
"noMatchingWorkflows": "Keine passenden Arbeitsabläufe",
"unknownErrorValidatingWorkflow": "Unbekannter Fehler beim Validieren des Arbeitsablaufes",
"inputFieldTypeParseError": "Typ des Eingabefelds {{node}}.{{field}} kann nicht analysiert werden ({{message}})",
"workflowSettings": "Arbeitsablauf Editor Einstellungen",
"unableToLoadWorkflow": "Arbeitsablauf kann nicht geladen werden",
"viewMode": "In linearen Ansicht verwenden",
"unableToValidateWorkflow": "Arbeitsablauf kann nicht validiert werden",
"outputFieldTypeParseError": "Typ des Ausgabefelds {{node}}.{{field}} kann nicht analysiert werden ({{message}})",
"unableToGetWorkflowVersion": "Version des Arbeitsablaufschemas kann nicht bestimmt werden",
"unknownFieldType": "$t(nodes.unknownField) Typ: {{type}}",
"unknownField": "Unbekanntes Feld",
"unableToUpdateNodes_one": "{{count}} Knoten kann nicht aktualisiert werden",
"unableToUpdateNodes_other": "{{count}} Knoten können nicht aktualisiert werden"
"noMatchingWorkflows": "Keine passenden Arbeitsabläufe"
},
"hrf": {
"enableHrf": "Korrektur für hohe Auflösungen",
@@ -1364,7 +1300,15 @@
"enableLogging": "Protokollierung aktivieren"
},
"whatsNew": {
"whatsNewInInvoke": "Was gibt's Neues"
"whatsNewInInvoke": "Was gibt's Neues",
"canvasV2Announcement": {
"fluxSupport": "Unterstützung für Flux-Modelle",
"newCanvas": "Eine leistungsstarke neue Kontrollfläche",
"newLayerTypes": "Neue Ebenentypen für noch mehr Kontrolle",
"readReleaseNotes": "Anmerkungen zu dieser Version lesen",
"watchReleaseVideo": "Video über diese Version anzeigen",
"watchUiUpdatesOverview": "Interface-Updates Übersicht"
}
},
"stylePresets": {
"name": "Name",
@@ -1415,13 +1359,7 @@
"pullBboxIntoLayerOk": "Bbox in die Ebene gezogen",
"saveBboxToGallery": "Bbox in Galerie speichern",
"tool": {
"bbox": "Bbox",
"brush": "Pinsel",
"eraser": "Radiergummi",
"colorPicker": "Farbwähler",
"view": "Ansicht",
"rectangle": "Rechteck",
"move": "Verschieben"
"bbox": "Bbox"
},
"transform": {
"fitToBbox": "An Bbox anpassen",
@@ -1463,6 +1401,7 @@
"deleteReferenceImage": "Referenzbild löschen",
"referenceImage": "Referenzbild",
"opacity": "Opazität",
"resetCanvas": "Leinwand zurücksetzen",
"removeBookmark": "Lesezeichen entfernen",
"rasterLayer": "Raster-Ebene",
"rasterLayers_withCount_visible": "Raster-Ebenen ({{count}})",
@@ -1539,30 +1478,7 @@
"layer_one": "Ebene",
"layer_other": "Ebenen",
"layer_withCount_one": "Ebene ({{count}})",
"layer_withCount_other": "Ebenen ({{count}})",
"fill": {
"fillStyle": "Füllstil",
"diagonal": "Diagonal",
"vertical": "Vertikal",
"fillColor": "Füllfarbe",
"grid": "Raster",
"solid": "Solide",
"crosshatch": "Kreuzschraffur",
"horizontal": "Horizontal"
},
"filter": {
"apply": "Anwenden",
"reset": "Zurücksetzen",
"cancel": "Abbrechen",
"spandrel_filter": {
"label": "Bild-zu-Bild Modell",
"description": "Ein Bild-zu-Bild Modell auf der ausgewählten Ebene ausführen.",
"model": "Modell"
},
"filters": "Filter",
"filterType": "Filtertyp",
"filter": "Filter"
}
"layer_withCount_other": "Ebenen ({{count}})"
},
"upsell": {
"shareAccess": "Zugang teilen",

View File

@@ -94,7 +94,6 @@
"close": "Close",
"copy": "Copy",
"copyError": "$t(gallery.copy) Error",
"clipboard": "Clipboard",
"on": "On",
"off": "Off",
"or": "or",
@@ -122,7 +121,6 @@
"goTo": "Go to",
"hotkeysLabel": "Hotkeys",
"loadingImage": "Loading Image",
"loadingModel": "Loading Model",
"imageFailedToLoad": "Unable to Load Image",
"img2img": "Image To Image",
"inpaint": "inpaint",
@@ -175,9 +173,7 @@
"placeholderSelectAModel": "Select a model",
"reset": "Reset",
"none": "None",
"new": "New",
"generating": "Generating",
"warnings": "Warnings"
"new": "New"
},
"hrf": {
"hrf": "High Resolution Fix",
@@ -264,8 +260,7 @@
"iterations_one": "Iteration",
"iterations_other": "Iterations",
"generations_one": "Generation",
"generations_other": "Generations",
"batchSize": "Batch Size"
"generations_other": "Generations"
},
"invocationCache": {
"invocationCache": "Invocation Cache",
@@ -686,8 +681,7 @@
"recallParameters": "Recall Parameters",
"recallParameter": "Recall {{label}}",
"scheduler": "Scheduler",
"seamlessXAxis": "Seamless X Axis",
"seamlessYAxis": "Seamless Y Axis",
"seamless": "Seamless",
"seed": "Seed",
"steps": "Steps",
"strength": "Image to image strength",
@@ -708,8 +702,6 @@
"baseModel": "Base Model",
"cancel": "Cancel",
"clipEmbed": "CLIP Embed",
"clipLEmbed": "CLIP-L Embed",
"clipGEmbed": "CLIP-G Embed",
"config": "Config",
"convert": "Convert",
"convertingModelBegin": "Converting Model. Please wait.",
@@ -720,12 +712,8 @@
"convertToDiffusersHelpText4": "This is a one time process only. It might take around 30s-60s depending on the specifications of your computer.",
"convertToDiffusersHelpText5": "Please make sure you have enough disk space. Models generally vary between 2GB-7GB in size.",
"convertToDiffusersHelpText6": "Do you wish to convert this model?",
"noDefaultSettings": "No default settings configured for this model. Visit the Model Manager to add default settings.",
"defaultSettings": "Default Settings",
"defaultSettingsSaved": "Default Settings Saved",
"defaultSettingsOutOfSync": "Some settings do not match the model's defaults:",
"restoreDefaultSettings": "Click to use the model's default settings.",
"usingDefaultSettings": "Using model's default settings",
"delete": "Delete",
"deleteConfig": "Delete Config",
"deleteModel": "Delete Model",
@@ -739,17 +727,7 @@
"huggingFacePlaceholder": "owner/model-name",
"huggingFaceRepoID": "HuggingFace Repo ID",
"huggingFaceHelper": "If multiple models are found in this repo, you will be prompted to select one to install.",
"hfTokenLabel": "HuggingFace Token (Required for some models)",
"hfTokenHelperText": "A HF token is required to use some models. Click here to create or get your token.",
"hfTokenInvalid": "Invalid or Missing HF Token",
"hfForbidden": "You do not have access to this HF model",
"hfForbiddenErrorMessage": "We recommend visiting the repo page on HuggingFace.com. The owner may require acceptance of terms in order to download.",
"hfTokenInvalidErrorMessage": "Invalid or missing HuggingFace token.",
"hfTokenRequired": "You are trying to download a model that requires a valid HuggingFace Token.",
"hfTokenInvalidErrorMessage2": "Update it in the ",
"hfTokenUnableToVerify": "Unable to Verify HF Token",
"hfTokenUnableToVerifyErrorMessage": "Unable to verify HuggingFace token. This is likely due to a network error. Please try again later.",
"hfTokenSaved": "HF Token Saved",
"hfToken": "HuggingFace Token",
"imageEncoderModelId": "Image Encoder Model ID",
"includesNModels": "Includes {{n}} models and their dependencies",
"installQueue": "Install Queue",
@@ -820,6 +798,7 @@
"uploadImage": "Upload Image",
"urlOrLocalPath": "URL or Local Path",
"urlOrLocalPathHelper": "URLs should point to a single file. Local paths can point to a single file or folder for a single diffusers model.",
"useDefaultSettings": "Use Default Settings",
"vae": "VAE",
"vaePrecision": "VAE Precision",
"variant": "Variant",
@@ -979,8 +958,6 @@
"zoomOutNodes": "Zoom Out",
"betaDesc": "This invocation is in beta. Until it is stable, it may have breaking changes during app updates. We plan to support this invocation long-term.",
"prototypeDesc": "This invocation is a prototype. It may have breaking changes during app updates and may be removed at any time.",
"internalDesc": "This invocation is used internally by Invoke. It may have breaking changes during app updates and may be removed at any time.",
"specialDesc": "This invocation some special handling in the app. For example, Batch nodes are used to queue multiple graphs from a single workflow.",
"imageAccessError": "Unable to find image {{image_name}}, resetting to default",
"boardAccessError": "Unable to find board {{board_id}}, resetting to default",
"modelAccessError": "Unable to find model {{key}}, resetting to default",
@@ -1005,7 +982,6 @@
"controlNetControlMode": "Control Mode",
"copyImage": "Copy Image",
"denoisingStrength": "Denoising Strength",
"disabledNoRasterContent": "Disabled (No Raster Content)",
"downloadImage": "Download Image",
"general": "General",
"guidance": "Guidance",
@@ -1019,11 +995,8 @@
"addingImagesTo": "Adding images to",
"invoke": "Invoke",
"missingFieldTemplate": "Missing field template",
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}}: missing input",
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}} missing input",
"missingNodeTemplate": "Missing node template",
"collectionEmpty": "{{nodeLabel}} -> {{fieldLabel}} empty collection",
"collectionTooFewItems": "{{nodeLabel}} -> {{fieldLabel}}: too few items, minimum {{minItems}}",
"collectionTooManyItems": "{{nodeLabel}} -> {{fieldLabel}}: too many items, maximum {{maxItems}}",
"noModelSelected": "No model selected",
"noT5EncoderModelSelected": "No T5 Encoder model selected for FLUX generation",
"noFLUXVAEModelSelected": "No VAE model selected for FLUX generation",
@@ -1032,14 +1005,26 @@
"fluxModelIncompatibleBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), bbox height is {{height}}",
"fluxModelIncompatibleScaledBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), scaled bbox width is {{width}}",
"fluxModelIncompatibleScaledBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), scaled bbox height is {{height}}",
"canvasIsFiltering": "Canvas is busy (filtering)",
"canvasIsTransforming": "Canvas is busy (transforming)",
"canvasIsRasterizing": "Canvas is busy (rasterizing)",
"canvasIsCompositing": "Canvas is busy (compositing)",
"canvasIsSelectingObject": "Canvas is busy (selecting object)",
"canvasIsFiltering": "Canvas is filtering",
"canvasIsTransforming": "Canvas is transforming",
"canvasIsRasterizing": "Canvas is rasterizing",
"canvasIsCompositing": "Canvas is compositing",
"noPrompts": "No prompts generated",
"noNodesInGraph": "No nodes in graph",
"systemDisconnected": "System disconnected"
"systemDisconnected": "System disconnected",
"layer": {
"controlAdapterNoModelSelected": "no Control Adapter model selected",
"controlAdapterIncompatibleBaseModel": "incompatible Control Adapter base model",
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, bbox width is {{width}}",
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, bbox height is {{height}}",
"t2iAdapterIncompatibleScaledBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, scaled bbox width is {{width}}",
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, scaled bbox height is {{height}}",
"ipAdapterNoModelSelected": "no IP adapter selected",
"ipAdapterIncompatibleBaseModel": "incompatible IP Adapter base model",
"ipAdapterNoImageSelected": "no IP Adapter image selected",
"rgNoPromptsOrIPAdapters": "no text prompts or IP Adapters",
"rgNoRegion": "no region selected"
}
},
"maskBlur": "Mask Blur",
"negativePromptPlaceholder": "Negative Prompt",
@@ -1047,7 +1032,6 @@
"patchmatchDownScaleSize": "Downscale",
"perlinNoise": "Perlin Noise",
"positivePromptPlaceholder": "Positive Prompt",
"recallMetadata": "Recall Metadata",
"iterations": "Iterations",
"scale": "Scale",
"scaleBeforeProcessing": "Scale Before Processing",
@@ -1124,9 +1108,6 @@
"enableInformationalPopovers": "Enable Informational Popovers",
"informationalPopoversDisabled": "Informational Popovers Disabled",
"informationalPopoversDisabledDesc": "Informational popovers have been disabled. Enable them in Settings.",
"enableModelDescriptions": "Enable Model Descriptions in Dropdowns",
"modelDescriptionsDisabled": "Model Descriptions in Dropdowns Disabled",
"modelDescriptionsDisabledDesc": "Model descriptions in dropdowns have been disabled. Enable them in Settings.",
"enableInvisibleWatermark": "Enable Invisible Watermark",
"enableNSFWChecker": "Enable NSFW Checker",
"general": "General",
@@ -1136,7 +1117,6 @@
"resetWebUI": "Reset Web UI",
"resetWebUIDesc1": "Resetting the web UI only resets the browser's local cache of your images and remembered settings. It does not delete any images from disk.",
"resetWebUIDesc2": "If images aren't showing up in the gallery or something else isn't working, please try resetting before submitting an issue on GitHub.",
"showDetailedInvocationProgress": "Show Progress Details",
"showProgressInViewer": "Show Progress Images in Viewer",
"ui": "User Interface",
"clearIntermediatesDisabled": "Queue must be empty to clear intermediates",
@@ -1271,33 +1251,6 @@
"heading": "Mask Adjustments",
"paragraphs": ["Adjust the mask."]
},
"inpainting": {
"heading": "Inpainting",
"paragraphs": ["Controls which area is modified, guided by Denoising Strength."]
},
"rasterLayer": {
"heading": "Raster Layer",
"paragraphs": ["Pixel-based content of your canvas, used during image generation."]
},
"regionalGuidance": {
"heading": "Regional Guidance",
"paragraphs": ["Brush to guide where elements from global prompts should appear."]
},
"regionalGuidanceAndReferenceImage": {
"heading": "Regional Guidance and Regional Reference Image",
"paragraphs": [
"For Regional Guidance, brush to guide where elements from global prompts should appear.",
"For Regional Reference Image, brush to apply a reference image to specific areas."
]
},
"globalReferenceImage": {
"heading": "Global Reference Image",
"paragraphs": ["Applies a reference image to influence the entire generation."]
},
"regionalReferenceImage": {
"heading": "Regional Reference Image",
"paragraphs": ["Brush to apply a reference image to specific areas."]
},
"controlNet": {
"heading": "ControlNet",
"paragraphs": [
@@ -1307,9 +1260,8 @@
"controlNetBeginEnd": {
"heading": "Begin / End Step Percentage",
"paragraphs": [
"This setting determines which portion of the denoising (generation) process incorporates the guidance from this layer.",
"• Start Step (%): Specifies when to begin applying the guidance from this layer during the generation process.",
"• End Step (%): Specifies when to stop applying this layer's guidance and revert general guidance from the model and other settings."
"The part of the of the denoising process that will have the Control Adapter applied.",
"Generally, Control Adapters applied at the start of the process guide composition, and Control Adapters applied at the end guide details."
]
},
"controlNetControlMode": {
@@ -1319,7 +1271,7 @@
"controlNetProcessor": {
"heading": "Processor",
"paragraphs": [
"Method of processing the input image to guide the generation process. Different processors will provide different effects or styles in your generated images."
"Method of processing the input image to guide the generation process. Different processors will providedifferent effects or styles in your generated images."
]
},
"controlNetResizeMode": {
@@ -1327,15 +1279,13 @@
"paragraphs": ["Method to fit Control Adapter's input image size to the output generation size."]
},
"ipAdapterMethod": {
"heading": "Mode",
"paragraphs": ["The mode defines how the reference image will guide the generation process."]
"heading": "Method",
"paragraphs": ["Method by which to apply the current IP Adapter."]
},
"controlNetWeight": {
"heading": "Weight",
"paragraphs": [
"Adjusts how strongly the layer influences the generation process",
"• Higher Weight (.75-2): Creates a more significant impact on the final result.",
"• Lower Weight (0-.75): Creates a smaller impact on the final result."
"Weight of the Control Adapter. Higher weight will lead to larger impacts on the final image."
]
},
"dynamicPrompts": {
@@ -1416,9 +1366,8 @@
"paramDenoisingStrength": {
"heading": "Denoising Strength",
"paragraphs": [
"Controls how much the generated image varies from the raster layer(s).",
"Lower strength stays closer to the combined visible raster layers. Higher strength relies more on the global prompt.",
"When there are no raster layers with visible content, this setting is ignored."
"How much noise is added to the input image.",
"0 will result in an identical image, while 1 will result in a completely new image."
]
},
"paramHeight": {
@@ -1663,17 +1612,15 @@
"pullBboxIntoReferenceImageError": "Problem Pulling BBox Into ReferenceImage",
"regionIsEmpty": "Selected region is empty",
"mergeVisible": "Merge Visible",
"mergeDown": "Merge Down",
"mergeVisibleOk": "Merged layers",
"mergeVisibleError": "Error merging layers",
"mergingLayers": "Merging layers",
"mergeVisibleOk": "Merged visible layers",
"mergeVisibleError": "Error merging visible layers",
"clearHistory": "Clear History",
"bboxOverlay": "Show Bbox Overlay",
"newSession": "New Session",
"resetCanvas": "Reset Canvas",
"clearCaches": "Clear Caches",
"recalculateRects": "Recalculate Rects",
"clipToBbox": "Clip Strokes to Bbox",
"outputOnlyMaskedRegions": "Output Only Generated Regions",
"outputOnlyMaskedRegions": "Output Only Masked Regions",
"addLayer": "Add Layer",
"duplicate": "Duplicate",
"moveToFront": "Move to Front",
@@ -1701,12 +1648,6 @@
"controlLayer": "Control Layer",
"inpaintMask": "Inpaint Mask",
"regionalGuidance": "Regional Guidance",
"referenceImageRegional": "Reference Image (Regional)",
"referenceImageGlobal": "Reference Image (Global)",
"asRasterLayer": "As $t(controlLayers.rasterLayer)",
"asRasterLayerResize": "As $t(controlLayers.rasterLayer) (Resize)",
"asControlLayer": "As $t(controlLayers.controlLayer)",
"asControlLayerResize": "As $t(controlLayers.controlLayer) (Resize)",
"referenceImage": "Reference Image",
"regionalReferenceImage": "Regional Reference Image",
"globalReferenceImage": "Global Reference Image",
@@ -1747,18 +1688,8 @@
"layer_other": "Layers",
"layer_withCount_one": "Layer ({{count}})",
"layer_withCount_other": "Layers ({{count}})",
"convertRasterLayerTo": "Convert $t(controlLayers.rasterLayer) To",
"convertControlLayerTo": "Convert $t(controlLayers.controlLayer) To",
"convertInpaintMaskTo": "Convert $t(controlLayers.inpaintMask) To",
"convertRegionalGuidanceTo": "Convert $t(controlLayers.regionalGuidance) To",
"copyRasterLayerTo": "Copy $t(controlLayers.rasterLayer) To",
"copyControlLayerTo": "Copy $t(controlLayers.controlLayer) To",
"copyInpaintMaskTo": "Copy $t(controlLayers.inpaintMask) To",
"copyRegionalGuidanceTo": "Copy $t(controlLayers.regionalGuidance) To",
"newRasterLayer": "New $t(controlLayers.rasterLayer)",
"newControlLayer": "New $t(controlLayers.controlLayer)",
"newInpaintMask": "New $t(controlLayers.inpaintMask)",
"newRegionalGuidance": "New $t(controlLayers.regionalGuidance)",
"convertToControlLayer": "Convert to Control Layer",
"convertToRasterLayer": "Convert to Raster Layer",
"transparency": "Transparency",
"enableTransparencyEffect": "Enable Transparency Effect",
"disableTransparencyEffect": "Disable Transparency Effect",
@@ -1774,7 +1705,6 @@
"pullBboxIntoLayer": "Pull Bbox into Layer",
"pullBboxIntoReferenceImage": "Pull Bbox into Reference Image",
"showProgressOnCanvas": "Show Progress on Canvas",
"useImage": "Use Image",
"prompt": "Prompt",
"negativePrompt": "Negative Prompt",
"beginEndStepPercentShort": "Begin/End %",
@@ -1783,41 +1713,18 @@
"newGallerySessionDesc": "This will clear the canvas and all settings except for your model selection. Generations will be sent to the gallery.",
"newCanvasSession": "New Canvas Session",
"newCanvasSessionDesc": "This will clear the canvas and all settings except for your model selection. Generations will be staged on the canvas.",
"resetCanvasLayers": "Reset Canvas Layers",
"resetGenerationSettings": "Reset Generation Settings",
"replaceCurrent": "Replace Current",
"controlLayerEmptyState": "<UploadButton>Upload an image</UploadButton>, drag an image from the <GalleryButton>gallery</GalleryButton> onto this layer, or draw on the canvas to get started.",
"referenceImageEmptyState": "<UploadButton>Upload an image</UploadButton> or drag an image from the <GalleryButton>gallery</GalleryButton> onto this layer to get started.",
"warnings": {
"problemsFound": "Problems found",
"unsupportedModel": "layer not supported for selected base model",
"controlAdapterNoModelSelected": "no Control Layer model selected",
"controlAdapterIncompatibleBaseModel": "incompatible Control Layer base model",
"controlAdapterNoControl": "no control selected/drawn",
"ipAdapterNoModelSelected": "no Reference Image model selected",
"ipAdapterIncompatibleBaseModel": "incompatible Reference Image base model",
"ipAdapterNoImageSelected": "no Reference Image image selected",
"rgNoPromptsOrIPAdapters": "no text prompts or Reference Images",
"rgNegativePromptNotSupported": "Negative Prompt not supported for selected base model",
"rgReferenceImagesNotSupported": "regional Reference Images not supported for selected base model",
"rgAutoNegativeNotSupported": "Auto-Negative not supported for selected base model",
"rgNoRegion": "no region drawn"
},
"controlMode": {
"controlMode": "Control Mode",
"balanced": "Balanced (recommended)",
"balanced": "Balanced",
"prompt": "Prompt",
"control": "Control",
"megaControl": "Mega Control"
},
"ipAdapterMethod": {
"ipAdapterMethod": "Mode",
"full": "Style and Composition",
"fullDesc": "Applies visual style (colors, textures) & composition (layout, structure).",
"ipAdapterMethod": "IP Adapter Method",
"full": "Full",
"style": "Style Only",
"styleDesc": "Applies visual style (colors, textures) without considering its layout.",
"composition": "Composition Only",
"compositionDesc": "Replicates layout & structure while ignoring the reference's style."
"composition": "Composition Only"
},
"fill": {
"fillColor": "Fill Color",
@@ -1847,9 +1754,6 @@
"process": "Process",
"apply": "Apply",
"cancel": "Cancel",
"advanced": "Advanced",
"processingLayerWith": "Processing layer with the {{type}} filter.",
"forMoreControl": "For more control, click Advanced below.",
"spandrel_filter": {
"label": "Image-to-Image Model",
"description": "Run an image-to-image model on the selected layer.",
@@ -1938,24 +1842,16 @@
"apply": "Apply",
"cancel": "Cancel"
},
"selectObject": {
"selectObject": "Select Object",
"segment": {
"autoMask": "Auto Mask",
"pointType": "Point Type",
"invertSelection": "Invert Selection",
"include": "Include",
"exclude": "Exclude",
"foreground": "Foreground",
"background": "Background",
"neutral": "Neutral",
"apply": "Apply",
"reset": "Reset",
"saveAs": "Save As",
"apply": "Apply",
"cancel": "Cancel",
"process": "Process",
"help1": "Select a single target object. Add <Bold>Include</Bold> and <Bold>Exclude</Bold> points to indicate which parts of the layer are part of the target object.",
"help2": "Start with one <Bold>Include</Bold> point within the target object. Add more points to refine the selection. Fewer points typically produce better results.",
"help3": "Invert the selection to select everything except the target object.",
"clickToAdd": "Click on the layer to add a point",
"dragToMove": "Drag a point to move it",
"clickToRemove": "Click on a point to remove it"
"process": "Process"
},
"settings": {
"snapToGrid": {
@@ -1996,8 +1892,6 @@
"newRegionalReferenceImage": "New Regional Reference Image",
"newControlLayer": "New Control Layer",
"newRasterLayer": "New Raster Layer",
"newInpaintMask": "New Inpaint Mask",
"newRegionalGuidance": "New Regional Guidance",
"cropCanvasToBbox": "Crop Canvas to Bbox"
},
"stagingArea": {
@@ -2027,9 +1921,7 @@
"upscaleModelDesc": "Upscale (image to image) model",
"missingUpscaleInitialImage": "Missing initial image for upscaling",
"missingUpscaleModel": "Missing upscale model",
"missingTileControlNetModel": "No valid tile ControlNet models installed",
"incompatibleBaseModel": "Unsupported main model architecture for upscaling",
"incompatibleBaseModelDesc": "Upscaling is supported for SD1.5 and SDXL architecture models only. Change the main model to enable upscaling."
"missingTileControlNetModel": "No valid tile ControlNet models installed"
},
"stylePresets": {
"active": "Active",
@@ -2132,74 +2024,13 @@
},
"whatsNew": {
"whatsNewInInvoke": "What's New in Invoke",
"items": [
"<StrongComponent>FLUX Regional Guidance (beta)</StrongComponent>: Our beta release of FLUX Regional Guidance is live for regional prompt control.",
"<StrongComponent>Various UX Improvements</StrongComponent>: A number of small UX and Quality of Life improvements throughout the app."
],
"readReleaseNotes": "Read Release Notes",
"watchRecentReleaseVideos": "Watch Recent Release Videos",
"watchUiUpdatesOverview": "Watch UI Updates Overview"
},
"supportVideos": {
"supportVideos": "Support Videos",
"gettingStarted": "Getting Started",
"controlCanvas": "Control Canvas",
"watch": "Watch",
"studioSessionsDesc1": "Check out the <StudioSessionsPlaylistLink /> for Invoke deep dives.",
"studioSessionsDesc2": "Join our <DiscordLink /> to participate in the live sessions and ask questions. Sessions are uploaded to the playlist the following week.",
"videos": {
"creatingYourFirstImage": {
"title": "Creating Your First Image",
"description": "Introduction to creating an image from scratch using Invoke's tools."
},
"usingControlLayersAndReferenceGuides": {
"title": "Using Control Layers and Reference Guides",
"description": "Learn how to guide your image creation with control layers and reference images."
},
"understandingImageToImageAndDenoising": {
"title": "Understanding Image-to-Image and Denoising",
"description": "Overview of image-to-image transformations and denoising in Invoke."
},
"exploringAIModelsAndConceptAdapters": {
"title": "Exploring AI Models and Concept Adapters",
"description": "Dive into AI models and how to use concept adapters for creative control."
},
"creatingAndComposingOnInvokesControlCanvas": {
"title": "Creating and Composing on Invoke's Control Canvas",
"description": "Learn to compose images using Invoke's control canvas."
},
"upscaling": {
"title": "Upscaling",
"description": "How to upscale images with Invoke's tools to enhance resolution."
},
"howDoIGenerateAndSaveToTheGallery": {
"title": "How Do I Generate and Save to the Gallery?",
"description": "Steps to generate and save images to the gallery."
},
"howDoIEditOnTheCanvas": {
"title": "How Do I Edit on the Canvas?",
"description": "Guide to editing images directly on the canvas."
},
"howDoIDoImageToImageTransformation": {
"title": "How Do I Do Image-to-Image Transformation?",
"description": "Tutorial on performing image-to-image transformations in Invoke."
},
"howDoIUseControlNetsAndControlLayers": {
"title": "How Do I Use Control Nets and Control Layers?",
"description": "Learn to apply control layers and controlnets to your images."
},
"howDoIUseGlobalIPAdaptersAndReferenceImages": {
"title": "How Do I Use Global IP Adapters and Reference Images?",
"description": "Introduction to adding reference images and global IP adapters."
},
"howDoIUseInpaintMasks": {
"title": "How Do I Use Inpaint Masks?",
"description": "How to apply inpaint masks for image correction and variation."
},
"howDoIOutpaint": {
"title": "How Do I Outpaint?",
"description": "Guide to outpainting beyond the original image borders."
}
"canvasV2Announcement": {
"newCanvas": "A powerful new control canvas",
"newLayerTypes": "New layer types for even more control",
"fluxSupport": "Support for the Flux family of models",
"readReleaseNotes": "Read Release Notes",
"watchReleaseVideo": "Watch Release Video",
"watchUiUpdatesOverview": "Watch UI Updates Overview"
}
}
}

View File

@@ -13,7 +13,7 @@
"discordLabel": "Discord",
"back": "Atrás",
"loading": "Cargando",
"postprocessing": "Postprocesamiento",
"postprocessing": "Postprocesado",
"txt2img": "De texto a imagen",
"accept": "Aceptar",
"cancel": "Cancelar",
@@ -64,7 +64,7 @@
"prevPage": "Página Anterior",
"red": "Rojo",
"alpha": "Transparencia",
"outputs": "Resultados",
"outputs": "Salidas",
"learnMore": "Aprende más",
"enabled": "Activado",
"disabled": "Desactivado",
@@ -73,32 +73,7 @@
"created": "Creado",
"save": "Guardar",
"unknownError": "Error Desconocido",
"blue": "Azul",
"clipboard": "Portapapeles",
"loadingImage": "Cargando la imagen",
"inpaint": "inpaint",
"ipAdapter": "Adaptador IP",
"t2iAdapter": "Adaptador T2I",
"apply": "Aplicar",
"openInViewer": "Abrir en el visor",
"off": "Apagar",
"generating": "Generando",
"ok": "De acuerdo",
"placeholderSelectAModel": "Seleccionar un modelo",
"reset": "Restablecer",
"none": "Ninguno",
"new": "Nuevo",
"dontShowMeThese": "No mostrar estos",
"loadingModel": "Cargando el modelo",
"view": "Ver",
"edit": "Editar",
"safetensors": "Safetensors",
"toResolve": "Para resolver",
"localSystem": "Sistema local",
"notInstalled": "No $t(common.installed)",
"outpaint": "outpaint",
"simple": "Sencillo",
"close": "Cerrar"
"blue": "Azul"
},
"gallery": {
"galleryImageSize": "Tamaño de la imagen",
@@ -110,63 +85,7 @@
"deleteImage_other": "Eliminar {{count}} Imágenes",
"deleteImagePermanent": "Las imágenes eliminadas no se pueden restaurar.",
"assets": "Activos",
"autoAssignBoardOnClick": "Asignar automática tableros al hacer clic",
"gallery": "Galería",
"noImageSelected": "Sin imágenes seleccionadas",
"bulkDownloadRequestFailed": "Error al preparar la descarga",
"oldestFirst": "La más antigua primero",
"sideBySide": "conjuntamente",
"selectForCompare": "Seleccionar para comparar",
"alwaysShowImageSizeBadge": "Mostrar siempre las dimensiones de la imagen",
"currentlyInUse": "Esta imagen se utiliza actualmente con las siguientes funciones:",
"unableToLoad": "No se puede cargar la galería",
"selectAllOnPage": "Seleccionar todo en la página",
"selectAnImageToCompare": "Seleccione una imagen para comparar",
"bulkDownloadFailed": "Error en la descarga",
"compareHelp2": "Presione <Kbd> M </Kbd> para recorrer los modos de comparación.",
"move": "Mover",
"copy": "Copiar",
"drop": "Gota",
"displayBoardSearch": "Tablero de búsqueda",
"deleteSelection": "Borrar selección",
"downloadSelection": "Descargar selección",
"openInViewer": "Abrir en el visor",
"searchImages": "Búsqueda por metadatos",
"swapImages": "Intercambiar imágenes",
"sortDirection": "Orden de clasificación",
"showStarredImagesFirst": "Mostrar imágenes destacadas primero",
"go": "Ir",
"bulkDownloadRequested": "Preparando la descarga",
"image": "imagen",
"compareHelp4": "Presione <Kbd> Z </Kbd> o <Kbd> Esc </Kbd> para salir.",
"viewerImage": "Ver imagen",
"dropOrUpload": "$t(gallery.drop) o cargar",
"displaySearch": "Buscar imagen",
"download": "Descargar",
"exitBoardSearch": "Finalizar búsqueda",
"exitSearch": "Salir de la búsqueda de imágenes",
"featuresWillReset": "Si elimina esta imagen, dichas funciones se restablecerán inmediatamente.",
"jump": "Omitir",
"loading": "Cargando",
"newestFirst": "La más nueva primero",
"unstarImage": "Dejar de ser favorita",
"bulkDownloadRequestedDesc": "Su solicitud de descarga se está preparando. Esto puede tardar unos minutos.",
"hover": "Desplazar",
"compareHelp1": "Mantenga presionada la tecla <Kbd> Alt </Kbd> mientras hace clic en una imagen de la galería o utiliza las teclas de flecha para cambiar la imagen de comparación.",
"stretchToFit": "Estirar para encajar",
"exitCompare": "Salir de la comparación",
"starImage": "Imágenes favoritas",
"dropToUpload": "$t(gallery.drop) para cargar",
"slider": "Deslizador",
"assetsTab": "Archivos que has cargado para utilizarlos en tus proyectos.",
"imagesTab": "Imágenes que ha creado y guardado en Invoke.",
"compareImage": "Comparar imagen",
"boardsSettings": "Ajustes de los tableros",
"imagesSettings": "Configuración de imágenes de la galería",
"compareHelp3": "Presione <Kbd> C </Kbd> para intercambiar las imágenes comparadas.",
"showArchivedBoards": "Mostrar paneles archivados",
"closeViewer": "Cerrar visor",
"openViewer": "Abrir visor"
"autoAssignBoardOnClick": "Asignación automática de tableros al hacer clic"
},
"modelManager": {
"modelManager": "Gestor de Modelos",
@@ -212,13 +131,7 @@
"modelDeleted": "Modelo eliminado",
"modelDeleteFailed": "Error al borrar el modelo",
"settings": "Ajustes",
"syncModels": "Sincronizar las plantillas",
"clipEmbed": "Incrustar CLIP",
"addModels": "Añadir modelos",
"advanced": "Avanzado",
"clipGEmbed": "Incrustar CLIP-G",
"cancel": "Cancelar",
"clipLEmbed": "Incrustar CLIP-L"
"syncModels": "Sincronizar las plantillas"
},
"parameters": {
"images": "Imágenes",
@@ -245,19 +158,19 @@
"useSeed": "Usar Semilla",
"useAll": "Usar Todo",
"info": "Información",
"showOptionsPanel": "Mostrar panel lateral (O o T)",
"showOptionsPanel": "Mostrar panel de opciones",
"symmetry": "Simetría",
"copyImage": "Copiar la imagen",
"general": "General",
"denoisingStrength": "Intensidad de la eliminación del ruido",
"seamlessXAxis": "Eje X sin juntas",
"seamlessYAxis": "Eje Y sin juntas",
"seamlessXAxis": "Eje x",
"seamlessYAxis": "Eje y",
"scheduler": "Programador",
"positivePromptPlaceholder": "Prompt Positivo",
"negativePromptPlaceholder": "Prompt Negativo",
"controlNetControlMode": "Modo de control",
"clipSkip": "Omitir el CLIP",
"maskBlur": "Desenfoque de máscara",
"maskBlur": "Difuminar",
"patchmatchDownScaleSize": "Reducir a escala",
"coherenceMode": "Modo"
},
@@ -289,19 +202,16 @@
"serverError": "Error en el servidor",
"canceled": "Procesando la cancelación",
"connected": "Conectado al servidor",
"uploadFailedInvalidUploadDesc": "Deben ser imágenes PNG o JPEG.",
"parameterSet": "Parámetro recuperado",
"parameterNotSet": "Parámetro no recuperado",
"uploadFailedInvalidUploadDesc": "Debe ser una sola imagen PNG o JPEG",
"parameterSet": "Conjunto de parámetros",
"parameterNotSet": "Parámetro no configurado",
"problemCopyingImage": "No se puede copiar la imagen",
"errorCopied": "Error al copiar",
"baseModelChanged": "Modelo base cambiado",
"addedToBoard": "Se agregó a los activos del panel {{name}}",
"addedToBoard": "Añadido al tablero",
"baseModelChangedCleared_one": "Borrado o desactivado {{count}} submodelo incompatible",
"baseModelChangedCleared_many": "Borrados o desactivados {{count}} submodelos incompatibles",
"baseModelChangedCleared_other": "Borrados o desactivados {{count}} submodelos incompatibles",
"addedToUncategorized": "Añadido a los activos del tablero $t(boards.uncategorized)",
"imagesWillBeAddedTo": "Las imágenes subidas se añadirán a los activos del panel {{boardName}}.",
"layerCopiedToClipboard": "Capa copiada en el portapapeles"
"baseModelChangedCleared_other": "Borrados o desactivados {{count}} submodelos incompatibles"
},
"accessibility": {
"invokeProgressBar": "Activar la barra de progreso",
@@ -316,8 +226,7 @@
"mode": "Modo",
"submitSupportTicket": "Enviar Ticket de Soporte",
"toggleRightPanel": "Activar o desactivar el panel derecho (G)",
"toggleLeftPanel": "Activar o desactivar el panel izquierdo (T)",
"uploadImages": "Cargar imagen(es)"
"toggleLeftPanel": "Activar o desactivar el panel izquierdo (T)"
},
"nodes": {
"zoomInNodes": "Acercar",
@@ -329,8 +238,7 @@
"showMinimapnodes": "Mostrar el minimapa",
"reloadNodeTemplates": "Recargar las plantillas de nodos",
"loadWorkflow": "Cargar el flujo de trabajo",
"downloadWorkflow": "Descargar el flujo de trabajo en un archivo JSON",
"boardAccessError": "No se puede encontrar el panel {{board_id}}, se está restableciendo al valor predeterminado"
"downloadWorkflow": "Descargar el flujo de trabajo en un archivo JSON"
},
"boards": {
"autoAddBoard": "Agregar panel automáticamente",
@@ -347,7 +255,7 @@
"bottomMessage": "Al eliminar este panel y las imágenes que contiene, se restablecerán las funciones que los estén utilizando actualmente.",
"deleteBoardAndImages": "Borrar el panel y las imágenes",
"loading": "Cargando...",
"deletedBoardsCannotbeRestored": "Los paneles eliminados no se pueden restaurar. Al Seleccionar 'Borrar solo el panel' transferirá las imágenes a un estado sin categorizar.",
"deletedBoardsCannotbeRestored": "Los paneles eliminados no se pueden restaurar. Al Seleccionar 'Borrar Solo el Panel' transferirá las imágenes a un estado sin categorizar.",
"move": "Mover",
"menuItemAutoAdd": "Agregar automáticamente a este panel",
"searchBoard": "Buscando paneles…",
@@ -355,33 +263,29 @@
"downloadBoard": "Descargar panel",
"deleteBoardOnly": "Borrar solo el panel",
"myBoard": "Mi panel",
"noMatching": "Sin paneles coincidentes",
"noMatching": "No hay paneles que coincidan",
"imagesWithCount_one": "{{count}} imagen",
"imagesWithCount_many": "{{count}} imágenes",
"imagesWithCount_other": "{{count}} imágenes",
"assetsWithCount_one": "{{count}} activo",
"assetsWithCount_many": "{{count}} activos",
"assetsWithCount_other": "{{count}} activos",
"hideBoards": "Ocultar paneles",
"addPrivateBoard": "Agregar un panel privado",
"addSharedBoard": "Añadir panel compartido",
"hideBoards": "Ocultar Paneles",
"addPrivateBoard": "Agregar un tablero privado",
"addSharedBoard": "Agregar Panel Compartido",
"boards": "Paneles",
"archiveBoard": "Archivar panel",
"archiveBoard": "Archivar Panel",
"archived": "Archivado",
"selectedForAutoAdd": "Seleccionado para agregar automáticamente",
"unarchiveBoard": "Desarchivar el panel",
"noBoards": "No hay paneles {{boardType}}",
"shared": "Paneles compartidos",
"deletedPrivateBoardsCannotbeRestored": "Los paneles eliminados no se pueden restaurar. Al elegir \"Eliminar solo el panel\", las imágenes se colocan en un estado privado y sin categoría para el creador de la imagen.",
"viewBoards": "Ver paneles",
"private": "Paneles privados",
"updateBoardError": "No se pudo actualizar el panel"
"unarchiveBoard": "Desarchivar el tablero",
"noBoards": "No hay tableros {{boardType}}",
"shared": "Carpetas compartidas",
"deletedPrivateBoardsCannotbeRestored": "Los tableros eliminados no se pueden restaurar. Al elegir \"Eliminar solo tablero\", las imágenes se colocan en un estado privado y sin categoría para el creador de la imagen."
},
"accordions": {
"compositing": {
"title": "Composición",
"infillTab": "Relleno",
"coherenceTab": "Parámetros de la coherencia"
"infillTab": "Relleno"
},
"generation": {
"title": "Generación"
@@ -405,10 +309,7 @@
"workflows": "Flujos de trabajo",
"models": "Modelos",
"modelsTab": "$t(ui.tabs.models) $t(common.tab)",
"workflowsTab": "$t(ui.tabs.workflows) $t(common.tab)",
"upscaling": "Upscaling",
"gallery": "Galería",
"upscalingTab": "$t(ui.tabs.upscaling) $t(common.tab)"
"workflowsTab": "$t(ui.tabs.workflows) $t(common.tab)"
}
},
"queue": {
@@ -416,81 +317,12 @@
"front": "Delante",
"batchQueuedDesc_one": "Se agregó {{count}} sesión a {{direction}} la cola",
"batchQueuedDesc_many": "Se agregaron {{count}} sesiones a {{direction}} la cola",
"batchQueuedDesc_other": "Se agregaron {{count}} sesiones a {{direction}} la cola",
"clearQueueAlertDialog": "Al vaciar la cola se cancela inmediatamente cualquier elemento de procesamiento y se vaciará la cola por completo. Los filtros pendientes se cancelarán.",
"time": "Tiempo",
"clearFailed": "Error al vaciar la cola",
"cancelFailed": "Error al cancelar el elemento",
"resumeFailed": "Error al reanudar el proceso",
"pause": "Pausar",
"pauseTooltip": "Pausar el proceso",
"cancelBatchSucceeded": "Lote cancelado",
"pruneSucceeded": "Se purgaron {{item_count}} elementos completados de la cola",
"pruneFailed": "Error al purgar la cola",
"cancelBatchFailed": "Error al cancelar los lotes",
"pauseFailed": "Error al pausar el proceso",
"status": "Estado",
"origin": "Origen",
"destination": "Destino",
"generations_one": "Generación",
"generations_many": "Generaciones",
"generations_other": "Generaciones",
"resume": "Reanudar",
"queueEmpty": "Cola vacía",
"cancelItem": "Cancelar elemento",
"cancelBatch": "Cancelar lote",
"openQueue": "Abrir la cola",
"completed": "Completado",
"enqueueing": "Añadir lotes a la cola",
"clear": "Limpiar",
"pauseSucceeded": "Proceso pausado",
"resumeSucceeded": "Proceso reanudado",
"resumeTooltip": "Reanudar proceso",
"cancel": "Cancelar",
"cancelTooltip": "Cancelar artículo actual",
"pruneTooltip": "Purgar {{item_count}} elementos completados",
"batchQueued": "Lote en cola",
"pending": "Pendiente",
"item": "Elemento",
"total": "Total",
"in_progress": "En proceso",
"failed": "Fallido",
"completedIn": "Completado en",
"upscaling": "Upscaling",
"canvas": "Lienzo",
"generation": "Generación",
"workflows": "Flujo de trabajo",
"other": "Otro",
"queueFront": "Añadir al principio de la cola",
"gallery": "Galería",
"batchFieldValues": "Valores de procesamiento por lotes",
"session": "Sesión",
"notReady": "La cola aún no está lista",
"graphQueued": "Gráfico en cola",
"clearQueueAlertDialog2": "¿Estás seguro que deseas vaciar la cola?",
"next": "Siguiente",
"iterations_one": "Interacción",
"iterations_many": "Interacciones",
"iterations_other": "Interacciones",
"current": "Actual",
"queue": "Cola",
"queueBack": "Añadir a la cola",
"cancelSucceeded": "Elemento cancelado",
"clearTooltip": "Cancelar y limpiar todos los elementos",
"clearSucceeded": "Cola vaciada",
"canceled": "Cancelado",
"batch": "Lote",
"graphFailedToQueue": "Error al poner el gráfico en cola",
"batchFailedToQueue": "Error al poner en cola el lote",
"prompts_one": "Prompt",
"prompts_many": "Prompts",
"prompts_other": "Prompts",
"prune": "Eliminar"
"batchQueuedDesc_other": "Se agregaron {{count}} sesiones a {{direction}} la cola"
},
"upsell": {
"inviteTeammates": "Invitar compañeros de equipo",
"shareAccess": "Compartir acceso",
"professionalUpsell": "Disponible en la edición profesional de Invoke. Haga clic aquí o visite invoke.com/pricing para obtener más detalles."
"professionalUpsell": "Disponible en la edición profesional de Invoke. Haz clic aquí o visita invoke.com/pricing para obtener más detalles."
},
"controlLayers": {
"layer_one": "Capa",
@@ -498,415 +330,6 @@
"layer_other": "Capas",
"layer_withCount_one": "({{count}}) capa",
"layer_withCount_many": "({{count}}) capas",
"layer_withCount_other": "({{count}}) capas",
"copyToClipboard": "Copiar al portapapeles"
},
"whatsNew": {
"readReleaseNotes": "Leer las notas de la versión",
"watchRecentReleaseVideos": "Ver videos de versiones recientes",
"watchUiUpdatesOverview": "Descripción general de las actualizaciones de la interfaz de usuario de Watch",
"whatsNewInInvoke": "Novedades en Invoke",
"items": [
"<StrongComponent>SD 3.5</StrongComponent>: compatibilidad con SD 3.5 Medium y Large.",
"<StrongComponent>Lienzo</StrongComponent>: Se ha simplificado el procesamiento de la capa de control y se ha mejorado la configuración predeterminada del control."
]
},
"invocationCache": {
"enableFailed": "Error al activar la cache",
"cacheSize": "Tamaño de la caché",
"hits": "Accesos a la caché",
"invocationCache": "Caché",
"misses": "Errores de la caché",
"clear": "Limpiar",
"maxCacheSize": "Tamaño máximo de la caché",
"enableSucceeded": "Cache activada",
"clearFailed": "Error al borrar la cache",
"enable": "Activar",
"useCache": "Uso de la caché",
"disableSucceeded": "Caché desactivada",
"clearSucceeded": "Caché borrada",
"disable": "Desactivar",
"disableFailed": "Error al desactivar la caché"
},
"hrf": {
"hrf": "Solución de alta resolución",
"enableHrf": "Activar corrección de alta resolución",
"metadata": {
"enabled": "Corrección de alta resolución activada",
"strength": "Forzar la corrección de alta resolución",
"method": "Método de corrección de alta resolución"
},
"upscaleMethod": "Método de expansión"
},
"prompt": {
"addPromptTrigger": "Añadir activador de los avisos",
"compatibleEmbeddings": "Incrustaciones compatibles",
"noMatchingTriggers": "No hay activadores coincidentes"
},
"hotkeys": {
"hotkeys": "Atajo del teclado",
"canvas": {
"selectViewTool": {
"desc": "Selecciona la herramienta de Visualización.",
"title": "Visualización"
},
"cancelFilter": {
"title": "Cancelar el filtro",
"desc": "Cancelar el filtro pendiente."
},
"applyTransform": {
"title": "Aplicar la transformación",
"desc": "Aplicar la transformación pendiente a la capa seleccionada."
},
"applyFilter": {
"desc": "Aplicar el filtro pendiente a la capa seleccionada.",
"title": "Aplicar filtro"
},
"selectBrushTool": {
"title": "Pincel",
"desc": "Selecciona la herramienta pincel."
},
"selectBboxTool": {
"desc": "Seleccionar la herramienta de selección del marco.",
"title": "Selección del marco"
},
"selectMoveTool": {
"desc": "Selecciona la herramienta Mover.",
"title": "Mover"
},
"selectRectTool": {
"title": "Rectángulo",
"desc": "Selecciona la herramienta Rectángulo."
},
"decrementToolWidth": {
"title": "Reducir el ancho de la herramienta",
"desc": "Disminuye la anchura de la herramienta pincel o goma de borrar, según la que esté seleccionada."
},
"incrementToolWidth": {
"title": "Incrementar la anchura de la herramienta",
"desc": "Aumenta la anchura de la herramienta pincel o goma de borrar, según la que esté seleccionada."
},
"fitBboxToCanvas": {
"title": "Ajustar bordes al lienzo",
"desc": "Escala y posiciona la vista para ajustarla a los bodes."
},
"fitLayersToCanvas": {
"title": "Ajustar capas al lienzo",
"desc": "Escala y posiciona la vista para que se ajuste a todas las capas visibles."
},
"setFillToWhite": {
"title": "Establecer color en blanco",
"desc": "Establece el color actual de la herramienta en blanco."
},
"resetSelected": {
"title": "Restablecer capa",
"desc": "Restablecer la capa seleccionada. Solo se aplica a Máscara de retoque y Guía regional."
},
"setZoomTo400Percent": {
"desc": "Ajuste la aplicación del lienzo al 400%.",
"title": "Ampliar al 400%"
},
"transformSelected": {
"desc": "Transformar la capa seleccionada.",
"title": "Transformar"
},
"selectColorPickerTool": {
"title": "Selector de color",
"desc": "Seleccione la herramienta de selección de color."
},
"selectEraserTool": {
"title": "Borrador",
"desc": "Selecciona la herramienta Borrador."
},
"setZoomTo100Percent": {
"title": "Ampliar al 100%",
"desc": "Ajuste ampliar el lienzo al 100%."
},
"undo": {
"title": "Deshacer",
"desc": "Deshacer la última acción en el lienzo."
},
"nextEntity": {
"desc": "Seleccione la siguiente capa de la lista.",
"title": "Capa siguiente"
},
"redo": {
"title": "Rehacer",
"desc": "Rehacer la última acción en el lienzo."
},
"prevEntity": {
"title": "Capa anterior",
"desc": "Seleccione la capa anterior de la lista."
},
"title": "Lienzo",
"setZoomTo200Percent": {
"title": "Ampliar al 200%",
"desc": "Ajuste la ampliación del lienzo al 200%."
},
"setZoomTo800Percent": {
"title": "Ampliar al 800%",
"desc": "Ajuste la ampliación del lienzo al 800%."
},
"filterSelected": {
"desc": "Filtra la capa seleccionada. Solo se aplica a las capas Ráster y Control.",
"title": "Filtrar"
},
"cancelTransform": {
"title": "Cancelar transformación",
"desc": "Cancelar la transformación pendiente."
},
"deleteSelected": {
"title": "Borrar la capa",
"desc": "Borrar la capa seleccionada."
},
"quickSwitch": {
"desc": "Cambiar entre las dos últimas capas seleccionadas. Si una capa está seleccionada, cambia siempre entre ella y la última capa no seleccionada.",
"title": "Cambio rápido de capa"
}
},
"app": {
"selectModelsTab": {
"title": "Seleccione la pestaña Modelos",
"desc": "Selecciona la pestaña Modelos."
},
"focusPrompt": {
"desc": "Mueve el foco del cursor a la indicación positiva.",
"title": "Enfoque"
},
"toggleLeftPanel": {
"title": "Alternar panel izquierdo",
"desc": "Mostrar u ocultar el panel izquierdo."
},
"selectQueueTab": {
"title": "Seleccione la pestaña Cola",
"desc": "Seleccione la pestaña Cola."
},
"selectCanvasTab": {
"title": "Seleccione la pestaña Lienzo",
"desc": "Selecciona la pestaña Lienzo."
},
"clearQueue": {
"title": "Vaciar cola",
"desc": "Cancelar y variar todos los elementos de la cola."
},
"selectUpscalingTab": {
"title": "Selecciona la pestaña Ampliar",
"desc": "Selecciona la pestaña Aumento de escala."
},
"togglePanels": {
"desc": "Muestra u oculta los paneles izquierdo y derecho a la vez.",
"title": "Alternar paneles"
},
"toggleRightPanel": {
"title": "Alternar panel derecho",
"desc": "Mostrar u ocultar el panel derecho."
},
"invokeFront": {
"desc": "Pone en cola la solicitud de compilación y la agrega al principio de la cola.",
"title": "Invocar (frente)"
},
"cancelQueueItem": {
"title": "Cancelar",
"desc": "Cancelar el elemento de la cola que se está procesando."
},
"invoke": {
"desc": "Pone en cola la solicitud de compilación y la agrega al final de la cola.",
"title": "Invocar"
},
"title": "Aplicación",
"selectWorkflowsTab": {
"title": "Seleccione la pestaña Flujos de trabajo",
"desc": "Selecciona la pestaña Flujos de trabajo."
},
"resetPanelLayout": {
"title": "Reiniciar la posición del panel",
"desc": "Restablece los paneles izquierdo y derecho a su tamaño y disposición por defecto."
}
},
"workflows": {
"addNode": {
"title": "Añadir nodo",
"desc": "Abrir añadir nodo."
},
"selectAll": {
"title": "Seleccionar todo",
"desc": "Seleccione todos los nodos y enlaces."
},
"deleteSelection": {
"desc": "Borrar todos los nodos y enlaces seleccionados.",
"title": "Borrar"
},
"undo": {
"desc": "Deshaga la última acción.",
"title": "Deshacer"
},
"redo": {
"desc": "Rehacer la última acción.",
"title": "Rehacer"
},
"pasteSelection": {
"desc": "Pegar nodos y bordes copiados.",
"title": "Pegar"
},
"title": "Flujos de trabajo",
"copySelection": {
"desc": "Copiar nodos y bordes seleccionados.",
"title": "Copiar"
},
"pasteSelectionWithEdges": {
"desc": "Pega los nodos copiados, los enlaces y todos los enlaces conectados a los nodos copiados.",
"title": "Pegar con enlaces"
}
},
"viewer": {
"useSize": {
"title": "Usar dimensiones",
"desc": "Utiliza las dimensiones de la imagen actual como el tamaño del borde."
},
"remix": {
"title": "Remezcla",
"desc": "Recupera todos los metadatos excepto la semilla de la imagen actual."
},
"loadWorkflow": {
"desc": "Carga el flujo de trabajo guardado de la imagen actual (si tiene uno).",
"title": "Cargar flujo de trabajo"
},
"recallAll": {
"desc": "Recupera todos los metadatos de la imagen actual.",
"title": "Recuperar todos los metadatos"
},
"recallPrompts": {
"desc": "Recuerde las indicaciones positivas y negativas de la imagen actual.",
"title": "Recordatorios"
},
"recallSeed": {
"title": "Recuperar semilla",
"desc": "Recupera la semilla de la imagen actual."
},
"runPostprocessing": {
"title": "Ejecutar posprocesamiento",
"desc": "Ejecutar el posprocesamiento seleccionado en la imagen actual."
},
"toggleMetadata": {
"title": "Mostrar/ocultar los metadatos",
"desc": "Mostrar u ocultar la superposición de metadatos de la imagen actual."
},
"nextComparisonMode": {
"desc": "Desplácese por los modos de comparación.",
"title": "Siguiente comparación"
},
"title": "Visor de imágenes",
"toggleViewer": {
"title": "Mostrar/Ocultar el visor de imágenes",
"desc": "Mostrar u ocultar el visor de imágenes. Solo disponible en la pestaña Lienzo."
},
"swapImages": {
"title": "Intercambiar imágenes en la comparación",
"desc": "Intercambia las imágenes que se están comparando."
}
},
"gallery": {
"clearSelection": {
"title": "Limpiar selección",
"desc": "Borrar la selección actual, si hay alguna."
},
"galleryNavUp": {
"title": "Subir",
"desc": "Navega hacia arriba en la cuadrícula de la galería y selecciona esa imagen. Si estás en la parte superior de la página, ve a la página anterior."
},
"galleryNavLeft": {
"title": "Izquierda",
"desc": "Navegue hacia la izquierda en la rejilla de la galería, seleccionando esa imagen. Si está en la primera imagen de la fila, vaya a la fila anterior. Si está en la primera imagen de la página, vaya a la página anterior."
},
"galleryNavDown": {
"title": "Bajar",
"desc": "Navegue hacia abajo en la parrilla de la galería, seleccionando esa imagen. Si se encuentra al final de la página, vaya a la página siguiente."
},
"galleryNavRight": {
"title": "A la derecha",
"desc": "Navegue hacia la derecha en la rejilla de la galería, seleccionando esa imagen. Si está en la última imagen de la fila, vaya a la fila siguiente. Si está en la última imagen de la página, vaya a la página siguiente."
},
"galleryNavUpAlt": {
"desc": "Igual que arriba, pero selecciona la imagen de comparación, abriendo el modo de comparación si no está ya abierto.",
"title": "Arriba (Comparar imagen)"
},
"deleteSelection": {
"desc": "Borrar todas las imágenes seleccionadas. Por defecto, se le pedirá que confirme la eliminación. Si las imágenes están actualmente en uso en la aplicación, se te avisará.",
"title": "Borrar"
},
"title": "Galería",
"selectAllOnPage": {
"title": "Seleccionar todo en la página",
"desc": "Seleccionar todas las imágenes en la página actual."
}
},
"searchHotkeys": "Buscar teclas de acceso rápido",
"noHotkeysFound": "Sin teclas de acceso rápido",
"clearSearch": "Limpiar la búsqueda"
},
"metadata": {
"guidance": "Orientación",
"createdBy": "Creado por",
"noImageDetails": "Sin detalles en la imagen",
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)",
"height": "Altura",
"imageDimensions": "Dimensiones de la imagen",
"seamlessXAxis": "Eje X sin juntas",
"seamlessYAxis": "Eje Y sin juntas",
"generationMode": "Modo de generación",
"scheduler": "Programador",
"width": "Ancho",
"Threshold": "Umbral de ruido",
"canvasV2Metadata": "Lienzo",
"metadata": "Metadatos",
"model": "Modelo",
"allPrompts": "Todas las indicaciones",
"cfgScale": "Escala CFG",
"imageDetails": "Detalles de la imagen",
"negativePrompt": "Indicación negativa",
"noMetaData": "Sin metadatos",
"parameterSet": "Parámetro {{parameter}} establecido",
"vae": "Autocodificador",
"workflow": "Flujo de trabajo",
"seed": "Semilla",
"strength": "Forzar imagen a imagen",
"recallParameters": "Parámetros de recuperación",
"recallParameter": "Recuperar {{label}}",
"steps": "Pasos",
"noRecallParameters": "Sin parámetros para recuperar",
"parsingFailed": "Error al analizar"
},
"system": {
"logLevel": {
"debug": "Depurar",
"info": "Información",
"warn": "Advertir",
"fatal": "Grave",
"error": "Error",
"trace": "Rastro",
"logLevel": "Nivel del registro"
},
"enableLogging": "Activar registro",
"logNamespaces": {
"workflows": "Flujos de trabajo",
"system": "Sistema",
"metadata": "Metadatos",
"gallery": "Galería",
"logNamespaces": "Espacios para los nombres de registro",
"generation": "Generación",
"events": "Eventos",
"canvas": "Lienzo",
"config": "Ajustes",
"models": "Modelos",
"queue": "Cola"
}
},
"newUserExperience": {
"downloadStarterModels": "Descargar modelos de inicio",
"toGetStarted": "Para empezar, introduzca un mensaje en el cuadro y haga clic en <StrongComponent>Invocar</StrongComponent> para generar su primera imagen. Seleccione una plantilla para mejorar los resultados. Puede elegir guardar sus imágenes directamente en <StrongComponent>Galería</StrongComponent> o editarlas en <StrongComponent>Lienzo</StrongComponent>.",
"importModels": "Importar modelos",
"noModelsInstalled": "Parece que no tienes ningún modelo instalado",
"gettingStartedSeries": "¿Desea más orientación? Consulte nuestra <LinkComponent>Serie de introducción</LinkComponent> para obtener consejos sobre cómo aprovechar todo el potencial de Invoke Studio.",
"toGetStartedLocal": "Para empezar, asegúrate de descargar o importar los modelos necesarios para ejecutar Invoke. A continuación, introduzca un mensaje en el cuadro y haga clic en <StrongComponent>Invocar</StrongComponent> para generar su primera imagen. Seleccione una plantilla para mejorar los resultados. Puede elegir guardar sus imágenes directamente en <StrongComponent>Galería</StrongComponent> o editarlas en el <StrongComponent>Lienzo</StrongComponent>."
"layer_withCount_other": "({{count}}) capas"
}
}

View File

@@ -5,7 +5,7 @@
"reportBugLabel": "Signaler un bug",
"settingsLabel": "Paramètres",
"img2img": "Image vers Image",
"nodes": "Workflows",
"nodes": "Processus",
"upload": "Importer",
"load": "Charger",
"back": "Retour",
@@ -95,8 +95,7 @@
"positivePrompt": "Prompt Positif",
"negativePrompt": "Prompt Négatif",
"ok": "Ok",
"close": "Fermer",
"clipboard": "Presse-papier"
"close": "Fermer"
},
"gallery": {
"galleryImageSize": "Taille de l'image",
@@ -162,7 +161,7 @@
"unstarImage": "Retirer le marquage de l'Image",
"viewerImage": "Visualisation de l'Image",
"imagesSettings": "Paramètres des images de la galerie",
"assetsTab": "Fichiers que vous avez importés pour vos projets.",
"assetsTab": "Fichiers que vous avez importé pour vos projets.",
"imagesTab": "Images que vous avez créées et enregistrées dans Invoke.",
"boardsSettings": "Paramètres des planches"
},
@@ -220,6 +219,7 @@
"typePhraseHere": "Écrire une phrase ici",
"cancel": "Annuler",
"defaultSettingsSaved": "Paramètres par défaut enregistrés",
"hfToken": "Token HuggingFace",
"imageEncoderModelId": "ID du modèle d'encodeur d'image",
"path": "Chemin sur le disque",
"repoVariant": "Variante de dépôt",
@@ -254,6 +254,7 @@
"loraModels": "LoRAs",
"main": "Principal",
"urlOrLocalPathHelper": "Les URL doivent pointer vers un seul fichier. Les chemins locaux peuvent pointer vers un seul fichier ou un dossier pour un seul modèle de diffuseurs.",
"useDefaultSettings": "Utiliser les paramètres par défaut",
"modelImageUpdateFailed": "Mise à jour de l'image du modèle échouée",
"loraTriggerPhrases": "Phrases de déclenchement LoRA",
"mainModelTriggerPhrases": "Phrases de déclenchement du modèle principal",
@@ -283,28 +284,24 @@
"skippingXDuplicates_many": ", en ignorant {{count}} doublons",
"skippingXDuplicates_other": ", en ignorant {{count}} doublons",
"installingModel": "Modèle en cours d'installation",
"installingBundle": "Pack en cours d'installation",
"noDefaultSettings": "Aucun paramètre par défaut configuré pour ce modèle. Visitez le Gestionnaire de Modèles pour ajouter des paramètres par défaut.",
"usingDefaultSettings": "Utilisation des paramètres par défaut du modèle",
"defaultSettingsOutOfSync": "Certain paramètres ne correspondent pas aux valeurs par défaut du modèle :",
"restoreDefaultSettings": "Cliquez pour utiliser les paramètres par défaut du modèle."
"installingBundle": "Pack en cours d'installation"
},
"parameters": {
"images": "Images",
"steps": "Étapes",
"cfgScale": "Échelle CFG",
"steps": "Etapes",
"cfgScale": "CFG Echelle",
"width": "Largeur",
"height": "Hauteur",
"seed": "Graine",
"shuffle": "Nouvelle graine",
"shuffle": "Mélanger la graine",
"noiseThreshold": "Seuil de Bruit",
"perlinNoise": "Bruit de Perlin",
"type": "Type",
"strength": "Force",
"upscaling": "Agrandissement",
"scale": "Échelle",
"scale": "Echelle",
"imageFit": "Ajuster Image Initiale à la Taille de Sortie",
"scaleBeforeProcessing": "Échelle Avant Traitement",
"scaleBeforeProcessing": "Echelle Avant Traitement",
"scaledWidth": "Larg. Échelle",
"scaledHeight": "Haut. Échelle",
"infillMethod": "Méthode de Remplissage",
@@ -317,6 +314,19 @@
"info": "Info",
"showOptionsPanel": "Afficher le panneau latéral (O ou T)",
"invoke": {
"layer": {
"rgNoPromptsOrIPAdapters": "aucun prompts ou IP Adapters",
"t2iAdapterIncompatibleScaledBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, la largeur de la bounding box mise à l'échelle est {{width}}",
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, la hauteur de la bounding box mise à l'échelle est {{height}}",
"ipAdapterNoModelSelected": "aucun IP adapter sélectionné",
"ipAdapterNoImageSelected": "aucune image d'IP adapter sélectionnée",
"controlAdapterIncompatibleBaseModel": "modèle de base de Control Adapter incompatible",
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, la hauteur de la bounding box est {{height}}",
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, la largeur de la bounding box est {{width}}",
"ipAdapterIncompatibleBaseModel": "modèle de base d'IP adapter incompatible",
"rgNoRegion": "aucune zone sélectionnée",
"controlAdapterNoModelSelected": "aucun modèle de Control Adapter sélectionné"
},
"noPrompts": "Aucun prompts généré",
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}} entrée manquante",
"missingFieldTemplate": "Modèle de champ manquant",
@@ -412,10 +422,7 @@
"clearIntermediatesWithCount_other": "Effacé {{count}} Intermédiaires",
"informationalPopoversDisabled": "Pop-ups d'information désactivés",
"informationalPopoversDisabledDesc": "Les pop-ups d'information ont été désactivés. Activez-les dans les paramètres.",
"confirmOnNewSession": "Confirmer lors d'une nouvelle session",
"modelDescriptionsDisabledDesc": "Les descriptions des modèles dans les menus déroulants ont été désactivées. Activez-les dans les paramètres.",
"enableModelDescriptions": "Activer les descriptions de modèle dans les menus déroulants",
"modelDescriptionsDisabled": "Descriptions de modèle dans les menus déroulants désactivés"
"confirmOnNewSession": "Confirmer lors d'une nouvelle session"
},
"toast": {
"uploadFailed": "Importation échouée",
@@ -428,22 +435,22 @@
"parameterNotSet": "Paramètre non Rappelé",
"canceled": "Traitement annulé",
"addedToBoard": "Ajouté aux ressources de la planche {{name}}",
"workflowLoaded": "Workflow chargé",
"workflowLoaded": "Processus chargé",
"connected": "Connecté au serveur",
"setNodeField": "Définir comme champ de nœud",
"imageUploadFailed": "Échec de l'importation de l'image",
"loadedWithWarnings": "Workflow chargé avec des avertissements",
"loadedWithWarnings": "Processus chargé avec des avertissements",
"imageUploaded": "Image importée",
"modelAddedSimple": "Modèle ajouté à la file d'attente",
"setControlImage": "Définir comme image de contrôle",
"workflowDeleted": "Workflow supprimé",
"workflowDeleted": "Processus supprimé",
"baseModelChangedCleared_one": "Effacé ou désactivé {{count}} sous-modèle incompatible",
"baseModelChangedCleared_many": "Effacé ou désactivé {{count}} sous-modèles incompatibles",
"baseModelChangedCleared_other": "Effacé ou désactivé {{count}} sous-modèles incompatibles",
"invalidUpload": "Importation invalide",
"problemDownloadingImage": "Impossible de télécharger l'image",
"problemRetrievingWorkflow": "Problème de récupération du Workflow",
"problemDeletingWorkflow": "Problème de suppression du Workflow",
"problemRetrievingWorkflow": "Problème de récupération du processus",
"problemDeletingWorkflow": "Problème de suppression du processus",
"prunedQueue": "File d'attente vidée",
"parameters": "Paramètres",
"modelImportCanceled": "Importation du modèle annulée",
@@ -543,7 +550,7 @@
"accordions": {
"advanced": {
"title": "Avancé",
"options": "Options $t(accordions.advanced.title)"
"options": "$t(accordions.advanced.title) Options"
},
"image": {
"title": "Image"
@@ -624,7 +631,7 @@
"graphQueued": "Graph ajouté à la file d'attente",
"other": "Autre",
"generation": "Génération",
"workflows": "Workflows",
"workflows": "Processus",
"batchFailedToQueue": "Impossible d'ajouter le Lot dans à la file d'attente",
"graphFailedToQueue": "Impossible d'ajouter le graph à la file d'attente",
"item": "Élément",
@@ -697,8 +704,8 @@
"desc": "Rappelle toutes les métadonnées pour l'image actuelle."
},
"loadWorkflow": {
"title": "Ouvrir un Workflow",
"desc": "Charge le workflow enregistré lié à l'image actuelle (s'il en a un)."
"title": "Charger le processus",
"desc": "Charge le processus enregistré de l'image actuelle (s'il en a un)."
},
"recallSeed": {
"desc": "Rappelle la graine pour l'image actuelle.",
@@ -749,8 +756,8 @@
"desc": "Séléctionne l'onglet Agrandissement."
},
"selectWorkflowsTab": {
"desc": "Sélectionne l'onglet Workflows.",
"title": "Sélectionner l'onglet Workflows"
"desc": "Sélectionne l'onglet Processus.",
"title": "Sélectionner l'onglet Processus"
},
"togglePanels": {
"desc": "Affiche ou masque les panneaux gauche et droit en même temps.",
@@ -956,11 +963,11 @@
},
"undo": {
"title": "Annuler",
"desc": "Annule la dernière action de workflow."
"desc": "Annule la dernière action de processus."
},
"redo": {
"title": "Rétablir",
"desc": "Rétablit la dernière action de workflow."
"desc": "Rétablit la dernière action de processus."
},
"addNode": {
"desc": "Ouvre le menu d'ajout de nœud.",
@@ -978,7 +985,7 @@
"desc": "Colle les nœuds et les connections copiés.",
"title": "Coller"
},
"title": "Workflows"
"title": "Processus"
}
},
"popovers": {
@@ -1365,43 +1372,6 @@
"Des valeurs de guidage élevées peuvent entraîner une saturation excessive, et un guidage élevé ou faible peut entraîner des résultats de génération déformés. Le guidage ne s'applique qu'aux modèles FLUX DEV."
],
"heading": "Guidage"
},
"globalReferenceImage": {
"heading": "Image de Référence Globale",
"paragraphs": [
"Applique une image de référence pour influencer l'ensemble de la génération."
]
},
"regionalReferenceImage": {
"heading": "Image de Référence Régionale",
"paragraphs": [
"Pinceau pour appliquer une image de référence à des zones spécifiques."
]
},
"inpainting": {
"heading": "Inpainting",
"paragraphs": [
"Contrôle la zone qui est modifiée, guidé par la force de débruitage."
]
},
"regionalGuidance": {
"heading": "Guide Régional",
"paragraphs": [
"Pinceau pour guider l'emplacement des éléments provenant des prompts globaux."
]
},
"regionalGuidanceAndReferenceImage": {
"heading": "Guide régional et image de référence régionale",
"paragraphs": [
"Pour le Guide Régional, utilisez le pinceau pour indiquer où les éléments des prompts globaux doivent apparaître.",
"Pour l'image de référence régionale, pinceau pour appliquer une image de référence à des zones spécifiques."
]
},
"rasterLayer": {
"heading": "Couche Rastérisation",
"paragraphs": [
"Contenu basé sur les pixels de votre toile, utilisé lors de la génération d'images."
]
}
},
"dynamicPrompts": {
@@ -1422,11 +1392,12 @@
"positivePrompt": "Prompt Positif",
"allPrompts": "Tous les Prompts",
"negativePrompt": "Prompt Négatif",
"seamless": "Sans jointure",
"metadata": "Métadonné",
"scheduler": "Planificateur",
"imageDetails": "Détails de l'Image",
"seed": "Graine",
"workflow": "Workflow",
"workflow": "Processus",
"width": "Largeur",
"Threshold": "Seuil de bruit",
"noMetaData": "Aucune métadonnée trouvée",
@@ -1475,8 +1446,8 @@
"hideMinimapnodes": "Masquer MiniCarte",
"zoomOutNodes": "Dézoomer",
"zoomInNodes": "Zoomer",
"downloadWorkflow": "Exporter le Workflow au format JSON",
"loadWorkflow": "Charger un Workflow",
"downloadWorkflow": "Télécharger processus en JSON",
"loadWorkflow": "Charger le processus",
"reloadNodeTemplates": "Recharger les modèles de nœuds",
"animatedEdges": "Connexions animées",
"cannotConnectToSelf": "Impossible de se connecter à soi-même",
@@ -1499,16 +1470,16 @@
"float": "Flottant",
"mismatchedVersion": "Nœud invalide : le nœud {{node}} de type {{type}} a une version incompatible (essayez de mettre à jour?)",
"missingTemplate": "Nœud invalide : le nœud {{node}} de type {{type}} modèle manquant (non installé?)",
"noWorkflow": "Pas de Workflow",
"noWorkflow": "Pas de processus",
"validateConnectionsHelp": "Prévenir la création de connexions invalides et l'invocation de graphes invalides",
"workflowSettings": "Paramètres de l'Éditeur de Workflow",
"workflowValidation": "Erreur de validation du Workflow",
"workflowSettings": "Paramètres de l'Éditeur de Processus",
"workflowValidation": "Erreur de validation du processus",
"executionStateInProgress": "En cours",
"node": "Noeud",
"scheduler": "Planificateur",
"notes": "Notes",
"notesDescription": "Ajouter des notes sur votre workflow",
"unableToLoadWorkflow": "Impossible de charger le Workflow",
"notesDescription": "Ajouter des notes sur votre processus",
"unableToLoadWorkflow": "Impossible de charger le processus",
"addNode": "Ajouter un nœud",
"problemSettingTitle": "Problème lors de définition du Titre",
"connectionWouldCreateCycle": "La connexion créerait un cycle",
@@ -1531,7 +1502,7 @@
"noOutputRecorded": "Aucun résultat enregistré",
"removeLinearView": "Retirer de la vue linéaire",
"snapToGrid": "Aligner sur la grille",
"workflow": "Workflow",
"workflow": "Processus",
"updateApp": "Mettre à jour l'application",
"updateNode": "Mettre à jour le nœud",
"nodeOutputs": "Sorties de nœud",
@@ -1544,7 +1515,7 @@
"string": "Chaîne de caractères",
"workflowName": "Nom",
"snapToGridHelp": "Aligner les nœuds sur la grille lors du déplacement",
"unableToValidateWorkflow": "Impossible de valider le Workflow",
"unableToValidateWorkflow": "Impossible de valider le processus",
"validateConnections": "Valider les connexions et le graphique",
"unableToUpdateNodes_one": "Impossible de mettre à jour {{count}} nœud",
"unableToUpdateNodes_many": "Impossible de mettre à jour {{count}} nœuds",
@@ -1557,15 +1528,15 @@
"nodePack": "Paquet de nœuds",
"sourceNodeDoesNotExist": "Connexion invalide : le nœud source/de sortie {{node}} n'existe pas",
"sourceNodeFieldDoesNotExist": "Connexion invalide : {{node}}.{{field}} n'existe pas",
"unableToGetWorkflowVersion": "Impossible d'obtenir la version du schéma du Workflow",
"newWorkflowDesc2": "Votre workflow actuel comporte des modifications non enregistrées.",
"unableToGetWorkflowVersion": "Impossible d'obtenir la version du schéma de processus",
"newWorkflowDesc2": "Votre processus actuel comporte des modifications non enregistrées.",
"deletedInvalidEdge": "Connexion invalide supprimé {{source}} -> {{target}}",
"targetNodeDoesNotExist": "Connexion invalide : le nœud cible/entrée {{node}} n'existe pas",
"targetNodeFieldDoesNotExist": "Connexion invalide : le champ {{node}}.{{field}} n'existe pas",
"nodeVersion": "Version du noeud",
"clearWorkflowDesc2": "Votre workflow actuel comporte des modifications non enregistrées.",
"clearWorkflow": "Effacer le Workflow",
"clearWorkflowDesc": "Effacer ce workflow et en commencer un nouveau?",
"clearWorkflowDesc2": "Votre processus actuel comporte des modifications non enregistrées.",
"clearWorkflow": "Effacer le Processus",
"clearWorkflowDesc": "Effacer ce processus et en commencer un nouveau?",
"unsupportedArrayItemType": "type d'élément de tableau non pris en charge \"{{type}}\"",
"addLinearView": "Ajouter à la vue linéaire",
"collectionOrScalarFieldType": "{{name}} (Unique ou Collection)",
@@ -1574,7 +1545,7 @@
"ipAdapter": "IP-Adapter",
"viewMode": "Utiliser en vue linéaire",
"collectionFieldType": "{{name}} (Collection)",
"newWorkflow": "Nouveau Workflow",
"newWorkflow": "Nouveau processus",
"reorderLinearView": "Réorganiser la vue linéaire",
"unknownOutput": "Sortie inconnue : {{name}}",
"outputFieldTypeParseError": "Impossible d'analyser le type du champ de sortie {{node}}.{{field}} ({{message}})",
@@ -1584,13 +1555,13 @@
"unknownFieldType": "$t(nodes.unknownField) type : {{type}}",
"inputFieldTypeParseError": "Impossible d'analyser le type du champ d'entrée {{node}}.{{field}} ({{message}})",
"unableToExtractSchemaNameFromRef": "impossible d'extraire le nom du schéma à partir de la référence",
"editMode": "Modifier dans l'éditeur de Workflow",
"unknownErrorValidatingWorkflow": "Erreur inconnue lors de la validation du Workflow",
"editMode": "Modifier dans l'éditeur de processus",
"unknownErrorValidatingWorkflow": "Erreur inconnue lors de la validation du processus",
"updateAllNodes": "Mettre à jour les nœuds",
"allNodesUpdated": "Tous les nœuds mis à jour",
"newWorkflowDesc": "Créer un nouveau workflow?",
"newWorkflowDesc": "Créer un nouveau processus?",
"edit": "Modifier",
"noFieldsViewMode": "Ce workflow n'a aucun champ sélectionné à afficher. Consultez le workflow complet pour configurer les valeurs.",
"noFieldsViewMode": "Ce processus n'a aucun champ sélectionné à afficher. Consultez le processus complet pour configurer les valeurs.",
"graph": "Graph",
"modelAccessError": "Impossible de trouver le modèle {{key}}, réinitialisation aux paramètres par défaut",
"showEdgeLabelsHelp": "Afficher le nom sur les connections, indiquant les nœuds connectés",
@@ -1604,9 +1575,9 @@
"missingInvocationTemplate": "Modèle d'invocation manquant",
"imageAccessError": "Impossible de trouver l'image {{image_name}}, réinitialisation à la valeur par défaut",
"boardAccessError": "Impossible de trouver la planche {{board_id}}, réinitialisation à la valeur par défaut",
"workflowHelpText": "Besoin d'aide? Consultez notre guide sur <LinkComponent>Comment commencer avec les Workflows</LinkComponent>.",
"noWorkflows": "Aucun Workflows",
"noMatchingWorkflows": "Aucun Workflows correspondant"
"workflowHelpText": "Besoin d'aide? Consultez notre guide sur <LinkComponent>Comment commencer avec les Processus</LinkComponent>.",
"noWorkflows": "Aucun Processus",
"noMatchingWorkflows": "Aucun processus correspondant"
},
"models": {
"noMatchingModels": "Aucun modèle correspondant",
@@ -1623,51 +1594,59 @@
},
"workflows": {
"workflowLibrary": "Bibliothèque",
"loading": "Chargement des Workflows",
"searchWorkflows": "Chercher des Workflows",
"workflowCleared": "Workflow effacé",
"loading": "Chargement des processus",
"searchWorkflows": "Rechercher des processus",
"workflowCleared": "Processus effacé",
"noDescription": "Aucune description",
"deleteWorkflow": "Supprimer le Workflow",
"openWorkflow": "Ouvrir le Workflow",
"deleteWorkflow": "Supprimer le processus",
"openWorkflow": "Ouvrir le processus",
"uploadWorkflow": "Charger à partir d'un fichier",
"workflowName": "Nom du Workflow",
"unnamedWorkflow": "Workflow sans nom",
"saveWorkflowAs": "Enregistrer le Workflow sous",
"workflows": "Workflows",
"savingWorkflow": "Enregistrement du Workflow...",
"saveWorkflowToProject": "Enregistrer le Workflow dans le projet",
"workflowName": "Nom du processus",
"unnamedWorkflow": "Processus sans nom",
"saveWorkflowAs": "Enregistrer le processus sous",
"workflows": "Processus",
"savingWorkflow": "Enregistrement du processus...",
"saveWorkflowToProject": "Enregistrer le processus dans le projet",
"downloadWorkflow": "Enregistrer dans le fichier",
"saveWorkflow": "Enregistrer le Workflow",
"problemSavingWorkflow": "Problème de sauvegarde du Workflow",
"workflowEditorMenu": "Menu de l'Éditeur de Workflow",
"newWorkflowCreated": "Nouveau Workflow créé",
"clearWorkflowSearchFilter": "Réinitialiser le filtre de recherche de Workflow",
"problemLoading": "Problème de chargement des Workflows",
"workflowSaved": "Workflow enregistré",
"noWorkflows": "Pas de Workflows",
"saveWorkflow": "Enregistrer le processus",
"problemSavingWorkflow": "Problème de sauvegarde du processus",
"workflowEditorMenu": "Menu de l'Éditeur de Processus",
"newWorkflowCreated": "Nouveau processus créé",
"clearWorkflowSearchFilter": "Réinitialiser le filtre de recherche de processus",
"problemLoading": "Problème de chargement des processus",
"workflowSaved": "Processus enregistré",
"noWorkflows": "Pas de processus",
"ascending": "Ascendant",
"loadFromGraph": "Charger le Workflow à partir du graphique",
"loadFromGraph": "Charger le processus à partir du graphique",
"descending": "Descendant",
"created": "Créé",
"updated": "Mis à jour",
"loadWorkflow": "$t(common.load) Workflow",
"loadWorkflow": "$t(common.load) Processus",
"convertGraph": "Convertir le graphique",
"opened": "Ouvert",
"name": "Nom",
"autoLayout": "Mise en page automatique",
"defaultWorkflows": "Workflows par défaut",
"userWorkflows": "Workflows de l'utilisateur",
"projectWorkflows": "Workflows du projet",
"defaultWorkflows": "Processus par défaut",
"userWorkflows": "Processus utilisateur",
"projectWorkflows": "Processus du projet",
"copyShareLink": "Copier le lien de partage",
"chooseWorkflowFromLibrary": "Choisir le Workflow dans la Bibliothèque",
"chooseWorkflowFromLibrary": "Choisir le Processus dans la Bibliothèque",
"uploadAndSaveWorkflow": "Importer dans la bibliothèque",
"edit": "Modifer",
"deleteWorkflow2": "Êtes-vous sûr de vouloir supprimer ce Workflow? Cette action ne peut pas être annulé.",
"deleteWorkflow2": "Êtes-vous sûr de vouloir supprimer ce processus? Ceci ne peut pas être annulé.",
"download": "Télécharger",
"copyShareLinkForWorkflow": "Copier le lien de partage pour le Workflow",
"copyShareLinkForWorkflow": "Copier le lien de partage pour le processus",
"delete": "Supprimer"
},
"whatsNew": {
"canvasV2Announcement": {
"watchReleaseVideo": "Regarder la vidéo de lancement",
"newLayerTypes": "Nouveaux types de couches pour un contrôle encore plus précis",
"fluxSupport": "Support pour la famille de modèles Flux",
"readReleaseNotes": "Lire les notes de version",
"newCanvas": "Une nouvelle Toile de contrôle puissant",
"watchUiUpdatesOverview": "Regarder l'aperçu des mises à jour de l'UI"
},
"whatsNewInInvoke": "Quoi de neuf dans Invoke"
},
"ui": {
@@ -1678,7 +1657,7 @@
"gallery": "Galerie",
"upscalingTab": "$t(ui.tabs.upscaling) $t(common.tab)",
"generation": "Génération",
"workflows": "Workflows",
"workflows": "Processus",
"workflowsTab": "$t(ui.tabs.workflows) $t(common.tab)",
"models": "Modèles",
"modelsTab": "$t(ui.tabs.models) $t(common.tab)"
@@ -1788,9 +1767,7 @@
"bboxGroup": "Créer à partir de la bounding box",
"newRegionalReferenceImage": "Nouvelle image de référence régionale",
"newGlobalReferenceImage": "Nouvelle image de référence globale",
"newControlLayer": "Nouveau couche de contrôle",
"newInpaintMask": "Nouveau Masque Inpaint",
"newRegionalGuidance": "Nouveau Guide Régional"
"newControlLayer": "Nouveau couche de contrôle"
},
"bookmark": "Marque-page pour Changement Rapide",
"saveLayerToAssets": "Enregistrer la couche dans les ressources",
@@ -1803,6 +1780,8 @@
"on": "Activé",
"label": "Aligner sur la grille"
},
"isolatedFilteringPreview": "Aperçu de filtrage isolé",
"isolatedTransformingPreview": "Aperçu de transformation isolée",
"invertBrushSizeScrollDirection": "Inverser le défilement pour la taille du pinceau",
"pressureSensitivity": "Sensibilité à la pression",
"preserveMask": {
@@ -1810,10 +1789,9 @@
"alert": "Préserver la zone masquée"
},
"isolatedPreview": "Aperçu Isolé",
"isolatedStagingPreview": "Aperçu de l'attente isolé",
"isolatedLayerPreview": "Aperçu de la couche isolée",
"isolatedLayerPreviewDesc": "Pour afficher uniquement cette couche lors de l'exécution d'opérations telles que le filtrage ou la transformation."
"isolatedStagingPreview": "Aperçu de l'attente isolé"
},
"convertToRasterLayer": "Convertir en Couche de Rastérisation",
"transparency": "Transparence",
"moveBackward": "Reculer",
"rectangle": "Rectangle",
@@ -1936,6 +1914,7 @@
"globalReferenceImage_withCount_one": "$t(controlLayers.globalReferenceImage)",
"globalReferenceImage_withCount_many": "Images de référence globales",
"globalReferenceImage_withCount_other": "Images de référence globales",
"convertToControlLayer": "Convertir en Couche de Contrôle",
"layer_withCount_one": "Couche {{count}}",
"layer_withCount_many": "Couches {{count}}",
"layer_withCount_other": "Couches {{count}}",
@@ -1972,6 +1951,7 @@
"inpaintMask_withCount_many": "Remplir les masques",
"inpaintMask_withCount_other": "Remplir les masques",
"newImg2ImgCanvasFromImage": "Nouvelle Img2Img à partir de l'image",
"resetCanvas": "Réinitialiser la Toile",
"bboxOverlay": "Afficher la superposition des Bounding Box",
"moveToFront": "Déplacer vers le permier plan",
"moveToBack": "Déplacer vers l'arrière plan",
@@ -1997,39 +1977,7 @@
"pullBboxIntoReferenceImageOk": "Bounding Box insérée dans l'Image de référence",
"controlLayer_withCount_one": "$t(controlLayers.controlLayer)",
"controlLayer_withCount_many": "Controler les couches",
"controlLayer_withCount_other": "Controler les couches",
"copyInpaintMaskTo": "Copier $t(controlLayers.inpaintMask) vers",
"copyRegionalGuidanceTo": "Copier $t(controlLayers.regionalGuidance) vers",
"convertRasterLayerTo": "Convertir $t(controlLayers.rasterLayer) vers",
"selectObject": {
"selectObject": "Sélectionner l'objet",
"clickToAdd": "Cliquez sur la couche pour ajouter un point",
"apply": "Appliquer",
"cancel": "Annuler",
"dragToMove": "Faites glisser un point pour le déplacer",
"clickToRemove": "Cliquez sur un point pour le supprimer",
"include": "Inclure",
"invertSelection": "Sélection Inversée",
"saveAs": "Enregistrer sous",
"neutral": "Neutre",
"pointType": "Type de point",
"exclude": "Exclure",
"process": "Traiter",
"reset": "Réinitialiser",
"help1": "Sélectionnez un seul objet cible. Ajoutez des points <Bold>Inclure</Bold> et <Bold>Exclure</Bold> pour indiquer quelles parties de la couche font partie de l'objet cible.",
"help2": "Commencez par un point <Bold>Inclure</Bold> au sein de l'objet cible. Ajoutez d'autres points pour affiner la sélection. Moins de points produisent généralement de meilleurs résultats.",
"help3": "Inversez la sélection pour sélectionner tout sauf l'objet cible."
},
"convertRegionalGuidanceTo": "Convertir $t(controlLayers.regionalGuidance) vers",
"copyRasterLayerTo": "Copier $t(controlLayers.rasterLayer) vers",
"newControlLayer": "Nouveau $t(controlLayers.controlLayer)",
"newRegionalGuidance": "Nouveau $t(controlLayers.regionalGuidance)",
"replaceCurrent": "Remplacer Actuel",
"convertControlLayerTo": "Convertir $t(controlLayers.controlLayer) vers",
"convertInpaintMaskTo": "Convertir $t(controlLayers.inpaintMask) vers",
"copyControlLayerTo": "Copier $t(controlLayers.controlLayer) vers",
"newInpaintMask": "Nouveau $t(controlLayers.inpaintMask)",
"newRasterLayer": "Nouveau $t(controlLayers.rasterLayer)"
"controlLayer_withCount_other": "Controler les couches"
},
"upscaling": {
"exceedsMaxSizeDetails": "La limite maximale d'agrandissement est de {{maxUpscaleDimension}}x{{maxUpscaleDimension}} pixels. Veuillez essayer une image plus petite ou réduire votre sélection d'échelle.",
@@ -2100,7 +2048,7 @@
"config": "Configuration",
"canvas": "Toile",
"generation": "Génération",
"workflows": "Workflows",
"workflows": "Processus",
"system": "Système",
"models": "Modèles",
"logNamespaces": "Journalisation des espaces de noms",
@@ -2123,9 +2071,9 @@
"newUserExperience": {
"toGetStarted": "Pour commencer, saisissez un prompt dans la boîte et cliquez sur <StrongComponent>Invoke</StrongComponent> pour générer votre première image. Sélectionnez un template de prompt pour améliorer les résultats. Vous pouvez choisir de sauvegarder vos images directement dans la <StrongComponent>Galerie</StrongComponent> ou de les modifier sur la <StrongComponent>Toile</StrongComponent>.",
"gettingStartedSeries": "Vous souhaitez plus de conseils? Consultez notre <LinkComponent>Série de démarrage</LinkComponent> pour des astuces sur l'exploitation du plein potentiel de l'Invoke Studio.",
"noModelsInstalled": "Il semble qu'aucun modèle ne soit installé",
"noModelsInstalled": "Il semblerait qu'aucun modèle ne soit installé",
"downloadStarterModels": "Télécharger les modèles de démarrage",
"importModels": "Importer des Modèles",
"importModels": "Importer Modèles",
"toGetStartedLocal": "Pour commencer, assurez-vous de télécharger ou d'importer des modèles nécessaires pour exécuter Invoke. Ensuite, saisissez le prompt dans la boîte et cliquez sur <StrongComponent>Invoke</StrongComponent> pour générer votre première image. Sélectionnez un template de prompt pour améliorer les résultats. Vous pouvez choisir de sauvegarder vos images directement sur <StrongComponent>Galerie</StrongComponent> ou les modifier sur la <StrongComponent>Toile</StrongComponent>."
},
"upsell": {

View File

@@ -92,12 +92,7 @@
"none": "Niente",
"new": "Nuovo",
"view": "Vista",
"close": "Chiudi",
"clipboard": "Appunti",
"ok": "Ok",
"generating": "Generazione",
"loadingModel": "Caricamento del modello",
"warnings": "Avvisi"
"close": "Chiudi"
},
"gallery": {
"galleryImageSize": "Dimensione dell'immagine",
@@ -547,6 +542,7 @@
"defaultSettingsSaved": "Impostazioni predefinite salvate",
"defaultSettings": "Impostazioni predefinite",
"metadata": "Metadati",
"useDefaultSettings": "Usa le impostazioni predefinite",
"triggerPhrases": "Frasi Trigger",
"deleteModelImage": "Elimina l'immagine del modello",
"localOnly": "solo locale",
@@ -592,26 +588,7 @@
"installingXModels_many": "Installazione di {{count}} modelli",
"installingXModels_other": "Installazione di {{count}} modelli",
"includesNModels": "Include {{n}} modelli e le loro dipendenze",
"starterBundleHelpText": "Installa facilmente tutti i modelli necessari per iniziare con un modello base, tra cui un modello principale, controlnet, adattatori IP e altro. Selezionando un pacchetto salterai tutti i modelli che hai già installato.",
"noDefaultSettings": "Nessuna impostazione predefinita configurata per questo modello. Visita Gestione Modelli per aggiungere impostazioni predefinite.",
"defaultSettingsOutOfSync": "Alcune impostazioni non corrispondono a quelle predefinite del modello:",
"restoreDefaultSettings": "Fare clic per utilizzare le impostazioni predefinite del modello.",
"usingDefaultSettings": "Utilizzo delle impostazioni predefinite del modello",
"huggingFace": "HuggingFace",
"huggingFaceRepoID": "HuggingFace Repository ID",
"clipEmbed": "CLIP Embed",
"t5Encoder": "T5 Encoder",
"hfTokenInvalidErrorMessage": "Gettone HuggingFace non valido o mancante.",
"hfTokenRequired": "Stai tentando di scaricare un modello che richiede un gettone HuggingFace valido.",
"hfTokenUnableToVerifyErrorMessage": "Impossibile verificare il gettone HuggingFace. Ciò è probabilmente dovuto a un errore di rete. Riprova più tardi.",
"hfTokenHelperText": "Per utilizzare alcuni modelli è necessario un gettone HF. Fai clic qui per creare o ottenere il tuo gettone.",
"hfTokenInvalid": "Gettone HF non valido o mancante",
"hfTokenUnableToVerify": "Impossibile verificare il gettone HF",
"hfTokenSaved": "Gettone HF salvato",
"hfForbidden": "Non hai accesso a questo modello HF",
"hfTokenLabel": "Gettone HuggingFace (richiesto per alcuni modelli)",
"hfForbiddenErrorMessage": "Consigliamo di visitare la pagina del repository su HuggingFace.com. Il proprietario potrebbe richiedere l'accettazione dei termini per poter effettuare il download.",
"hfTokenInvalidErrorMessage2": "Aggiornalo in "
"starterBundleHelpText": "Installa facilmente tutti i modelli necessari per iniziare con un modello base, tra cui un modello principale, controlnet, adattatori IP e altro. Selezionando un pacchetto salterai tutti i modelli che hai già installato."
},
"parameters": {
"images": "Immagini",
@@ -663,8 +640,21 @@
"addingImagesTo": "Aggiungi immagini a",
"systemDisconnected": "Sistema disconnesso",
"missingNodeTemplate": "Modello di nodo mancante",
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}}: ingresso mancante",
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}} ingresso mancante",
"missingFieldTemplate": "Modello di campo mancante",
"layer": {
"controlAdapterNoModelSelected": "Nessun modello di adattatore di controllo selezionato",
"controlAdapterIncompatibleBaseModel": "Il modello base dell'adattatore di controllo non è compatibile",
"ipAdapterNoModelSelected": "Nessun adattatore IP selezionato",
"ipAdapterIncompatibleBaseModel": "Il modello base dell'adattatore IP non è compatibile",
"ipAdapterNoImageSelected": "Nessuna immagine dell'adattatore IP selezionata",
"rgNoPromptsOrIPAdapters": "Nessun prompt o adattatore IP",
"rgNoRegion": "Nessuna regione selezionata",
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, larghezza riquadro è {{width}}",
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, altezza riquadro è {{height}}",
"t2iAdapterIncompatibleScaledBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, larghezza del riquadro scalato {{width}}",
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, altezza del riquadro scalato {{height}}"
},
"fluxModelIncompatibleBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), altezza riquadro è {{height}}",
"fluxModelIncompatibleBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), larghezza riquadro è {{width}}",
"fluxModelIncompatibleScaledBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), larghezza del riquadro scalato è {{width}}",
@@ -672,14 +662,10 @@
"noT5EncoderModelSelected": "Nessun modello di encoder T5 selezionato per la generazione con FLUX",
"noCLIPEmbedModelSelected": "Nessun modello CLIP Embed selezionato per la generazione con FLUX",
"noFLUXVAEModelSelected": "Nessun modello VAE selezionato per la generazione con FLUX",
"canvasIsTransforming": "La tela è occupata (sta trasformando)",
"canvasIsRasterizing": "La tela è occupata (sta rasterizzando)",
"canvasIsCompositing": "La tela è occupata (in composizione)",
"canvasIsFiltering": "La tela è occupata (sta filtrando)",
"collectionTooManyItems": "{{nodeLabel}} -> {{fieldLabel}}: troppi elementi, massimo {{maxItems}}",
"canvasIsSelectingObject": "La tela è occupata (selezione dell'oggetto)",
"collectionTooFewItems": "{{nodeLabel}} -> {{fieldLabel}}: troppi pochi elementi, minimo {{minItems}}",
"collectionEmpty": "{{nodeLabel}} -> {{fieldLabel}} raccolta vuota"
"canvasIsTransforming": "La tela sta trasformando",
"canvasIsRasterizing": "La tela sta rasterizzando",
"canvasIsCompositing": "La tela è in fase di composizione",
"canvasIsFiltering": "La tela sta filtrando"
},
"useCpuNoise": "Usa la CPU per generare rumore",
"iterations": "Iterazioni",
@@ -703,10 +689,7 @@
"boxBlur": "Sfocatura Box",
"staged": "Maschera espansa",
"optimizedImageToImage": "Immagine-a-immagine ottimizzata",
"sendToCanvas": "Invia alla Tela",
"coherenceMinDenoise": "Min rid. rumore",
"recallMetadata": "Richiama i metadati",
"disabledNoRasterContent": "Disabilitato (nessun contenuto Raster)"
"sendToCanvas": "Invia alla Tela"
},
"settings": {
"models": "Modelli",
@@ -741,11 +724,7 @@
"reloadingIn": "Ricaricando in",
"informationalPopoversDisabled": "Testo informativo a comparsa disabilitato",
"informationalPopoversDisabledDesc": "I testi informativi a comparsa sono disabilitati. Attivali nelle impostazioni.",
"confirmOnNewSession": "Conferma su nuova sessione",
"enableModelDescriptions": "Abilita le descrizioni dei modelli nei menu a discesa",
"modelDescriptionsDisabled": "Descrizioni dei modelli nei menu a discesa disabilitate",
"modelDescriptionsDisabledDesc": "Le descrizioni dei modelli nei menu a discesa sono state disabilitate. Abilitale nelle Impostazioni.",
"showDetailedInvocationProgress": "Mostra dettagli avanzamento"
"confirmOnNewSession": "Conferma su nuova sessione"
},
"toast": {
"uploadFailed": "Caricamento fallito",
@@ -964,9 +943,7 @@
"saveToGallery": "Salva nella Galleria",
"noMatchingWorkflows": "Nessun flusso di lavoro corrispondente",
"noWorkflows": "Nessun flusso di lavoro",
"workflowHelpText": "Hai bisogno di aiuto? Consulta la nostra guida <LinkComponent>Introduzione ai flussi di lavoro</LinkComponent>.",
"specialDesc": "Questa invocazione comporta una gestione speciale nell'applicazione. Ad esempio, i nodi Lotto vengono utilizzati per mettere in coda più grafici da un singolo flusso di lavoro.",
"internalDesc": "Questa invocazione è utilizzata internamente da Invoke. Potrebbe subire modifiche significative durante gli aggiornamenti dell'app e potrebbe essere rimossa in qualsiasi momento."
"workflowHelpText": "Hai bisogno di aiuto? Consulta la nostra guida <LinkComponent>Introduzione ai flussi di lavoro</LinkComponent>."
},
"boards": {
"autoAddBoard": "Aggiungi automaticamente bacheca",
@@ -1087,8 +1064,7 @@
"workflows": "Flussi di lavoro",
"generation": "Generazione",
"other": "Altro",
"gallery": "Galleria",
"batchSize": "Dimensione del lotto"
"gallery": "Galleria"
},
"models": {
"noMatchingModels": "Nessun modello corrispondente",
@@ -1100,8 +1076,7 @@
"noLoRAsInstalled": "Nessun LoRA installato",
"addLora": "Aggiungi LoRA",
"defaultVAE": "VAE predefinito",
"concepts": "Concetti",
"lora": "LoRA"
"concepts": "Concetti"
},
"invocationCache": {
"disable": "Disabilita",
@@ -1158,8 +1133,7 @@
"paragraphs": [
"Scegli quanti livelli del modello CLIP saltare.",
"Alcuni modelli funzionano meglio con determinate impostazioni di CLIP Skip."
],
"heading": "CLIP Skip"
]
},
"compositingCoherencePass": {
"heading": "Passaggio di Coerenza",
@@ -1190,9 +1164,8 @@
"controlNetBeginEnd": {
"heading": "Percentuale passi Inizio / Fine",
"paragraphs": [
"Questa impostazione determina quale parte del processo di rimozione del rumore (generazione) incorpora la guida da questo livello.",
"• Passo iniziale (%): specifica quando iniziare ad applicare la guida da questo livello durante il processo di generazione.",
"• Passo finale (%): specifica quando interrompere l'applicazione della guida di questo livello e ripristinare la guida generale dal modello e altre impostazioni."
"La parte del processo di rimozione del rumore in cui verrà applicato l'adattatore di controllo.",
"In genere, gli adattatori di controllo applicati all'inizio del processo guidano la composizione, mentre quelli applicati alla fine guidano i dettagli."
]
},
"noiseUseCPU": {
@@ -1275,9 +1248,8 @@
},
"paramDenoisingStrength": {
"paragraphs": [
"Controlla la differenza tra l'immagine generata e il/i livello/i raster.",
"Una forza inferiore rimane più vicina ai livelli raster visibili combinati. Una forza superiore si basa maggiormente sul prompt globale.",
"Se non sono presenti livelli raster con contenuto visibile, questa impostazione viene ignorata."
"Quanto rumore viene aggiunto all'immagine in ingresso.",
"0 risulterà in un'immagine identica, mentre 1 risulterà in un'immagine completamente nuova."
],
"heading": "Forza di riduzione del rumore"
},
@@ -1289,16 +1261,14 @@
},
"infillMethod": {
"paragraphs": [
"Metodo di riempimento durante il processo di Outpaint o Inpaint."
"Metodo di riempimento durante il processo di Outpainting o Inpainting."
],
"heading": "Metodo di riempimento"
},
"controlNetWeight": {
"heading": "Peso",
"paragraphs": [
"Regola la forza con cui il livello influenza il processo di generazione",
"• Peso maggiore (0.75-2): crea un impatto più significativo sul risultato finale.",
"• Peso inferiore (0-0.75): crea un impatto minore sul risultato finale."
"Peso dell'adattatore di controllo. Un peso maggiore porterà a impatti maggiori sull'immagine finale."
]
},
"paramCFGScale": {
@@ -1459,7 +1429,7 @@
"heading": "Livello minimo di riduzione del rumore",
"paragraphs": [
"Intensità minima di riduzione rumore per la modalità di Coerenza",
"L'intensità minima di riduzione del rumore per la regione di coerenza durante l'inpaint o l'outpaint"
"L'intensità minima di riduzione del rumore per la regione di coerenza durante l'inpainting o l'outpainting"
]
},
"compositingMaskBlur": {
@@ -1475,9 +1445,9 @@
]
},
"ipAdapterMethod": {
"heading": "Modalità",
"heading": "Metodo",
"paragraphs": [
"La modalità definisce il modo in cui l'immagine di riferimento guiderà il processo di generazione."
"Metodo con cui applicare l'adattatore IP corrente."
]
},
"scale": {
@@ -1513,7 +1483,7 @@
"optimizedDenoising": {
"heading": "Immagine-a-immagine ottimizzata",
"paragraphs": [
"Abilita 'Immagine-a-immagine ottimizzata' per una scala di riduzione del rumore più graduale per le trasformazioni da immagine a immagine e di inpaint con modelli Flux. Questa impostazione migliora la capacità di controllare la quantità di modifica applicata a un'immagine, ma può essere disattivata se preferisci usare la scala di riduzione rumore standard. Questa impostazione è ancora in fase di messa a punto ed è in stato beta."
"Abilita 'Immagine-a-immagine ottimizzata' per una scala di riduzione del rumore più graduale per le trasformazioni da immagine a immagine e di inpainting con modelli Flux. Questa impostazione migliora la capacità di controllare la quantità di modifica applicata a un'immagine, ma può essere disattivata se preferisci usare la scala di riduzione rumore standard. Questa impostazione è ancora in fase di messa a punto ed è in stato beta."
]
},
"paramGuidance": {
@@ -1522,42 +1492,6 @@
"Controlla quanto il prompt influenza il processo di generazione.",
"Valori di guida elevati possono causare sovrasaturazione e una guida elevata o bassa può causare risultati di generazione distorti. La guida si applica solo ai modelli FLUX DEV."
]
},
"regionalReferenceImage": {
"paragraphs": [
"Pennello per applicare un'immagine di riferimento ad aree specifiche."
],
"heading": "Immagine di riferimento Regionale"
},
"rasterLayer": {
"paragraphs": [
"Contenuto basato sui pixel della tua tela, utilizzato durante la generazione dell'immagine."
],
"heading": "Livello Raster"
},
"regionalGuidance": {
"heading": "Guida Regionale",
"paragraphs": [
"Pennello per guidare la posizione in cui devono apparire gli elementi dei prompt globali."
]
},
"regionalGuidanceAndReferenceImage": {
"heading": "Guida regionale e immagine di riferimento regionale",
"paragraphs": [
"Per la Guida Regionale, utilizzare il pennello per indicare dove devono apparire gli elementi dei prompt globali.",
"Per l'immagine di riferimento regionale, utilizzare il pennello per applicare un'immagine di riferimento ad aree specifiche."
]
},
"globalReferenceImage": {
"heading": "Immagine di riferimento Globale",
"paragraphs": [
"Applica un'immagine di riferimento per influenzare l'intera generazione."
]
},
"inpainting": {
"paragraphs": [
"Controlla quale area viene modificata, in base all'intensità di riduzione del rumore."
]
}
},
"sdxl": {
@@ -1579,6 +1513,7 @@
"refinerSteps": "Passi Affinamento"
},
"metadata": {
"seamless": "Senza giunture",
"positivePrompt": "Prompt positivo",
"negativePrompt": "Prompt negativo",
"generationMode": "Modalità generazione",
@@ -1606,10 +1541,7 @@
"parsingFailed": "Analisi non riuscita",
"recallParameter": "Richiama {{label}}",
"canvasV2Metadata": "Tela",
"guidance": "Guida",
"seamlessXAxis": "Asse X senza giunte",
"seamlessYAxis": "Asse Y senza giunte",
"vae": "VAE"
"guidance": "Guida"
},
"hrf": {
"enableHrf": "Abilita Correzione Alta Risoluzione",
@@ -1706,11 +1638,11 @@
"regionalGuidance": "Guida regionale",
"opacity": "Opacità",
"mergeVisible": "Fondi il visibile",
"mergeVisibleOk": "Livelli uniti",
"mergeVisibleOk": "Livelli visibili uniti",
"deleteReferenceImage": "Elimina l'immagine di riferimento",
"referenceImage": "Immagine di riferimento",
"fitBboxToLayers": "Adatta il riquadro di delimitazione ai livelli",
"mergeVisibleError": "Errore durante l'unione dei livelli",
"mergeVisibleError": "Errore durante l'unione dei livelli visibili",
"regionalReferenceImage": "Immagine di riferimento Regionale",
"newLayerFromImage": "Nuovo livello da immagine",
"newCanvasFromImage": "Nuova tela da immagine",
@@ -1748,7 +1680,8 @@
"newRegionalReferenceImageError": "Problema nella creazione dell'immagine di riferimento regionale",
"newControlLayerOk": "Livello di controllo creato",
"bboxOverlay": "Mostra sovrapposizione riquadro",
"outputOnlyMaskedRegions": "In uscita solo le regioni generate",
"resetCanvas": "Reimposta la tela",
"outputOnlyMaskedRegions": "Solo regioni mascherate in uscita",
"enableAutoNegative": "Abilita Auto Negativo",
"disableAutoNegative": "Disabilita Auto Negativo",
"showHUD": "Mostra HUD",
@@ -1785,7 +1718,7 @@
"globalReferenceImage_withCount_many": "Immagini di riferimento Globali",
"globalReferenceImage_withCount_other": "Immagini di riferimento Globali",
"controlMode": {
"balanced": "Bilanciato (consigliato)",
"balanced": "Bilanciato",
"controlMode": "Modalità di controllo",
"prompt": "Prompt",
"control": "Controllo",
@@ -1796,15 +1729,12 @@
"beginEndStepPercentShort": "Inizio/Fine %",
"stagingOnCanvas": "Genera immagini nella",
"ipAdapterMethod": {
"full": "Stile e Composizione",
"full": "Completo",
"style": "Solo Stile",
"composition": "Solo Composizione",
"ipAdapterMethod": "Modalità",
"fullDesc": "Applica lo stile visivo (colori, texture) e la composizione (disposizione, struttura).",
"styleDesc": "Applica lo stile visivo (colori, texture) senza considerare la disposizione.",
"compositionDesc": "Replica disposizione e struttura ignorando lo stile di riferimento."
"ipAdapterMethod": "Metodo Adattatore IP"
},
"showingType": "Mostra {{type}}",
"showingType": "Mostrare {{type}}",
"dynamicGrid": "Griglia dinamica",
"tool": {
"view": "Muovi",
@@ -1898,10 +1828,7 @@
"lineart_anime_edge_detection": {
"description": "Genera una mappa dei bordi dal livello selezionato utilizzando il modello di rilevamento dei bordi Lineart Anime.",
"label": "Rilevamento bordi Lineart Anime"
},
"forMoreControl": "Per un maggiore controllo, fare clic su Avanzate qui sotto.",
"advanced": "Avanzate",
"processingLayerWith": "Elaborazione del livello con il filtro {{type}}."
}
},
"controlLayers_withCount_hidden": "Livelli di controllo ({{count}} nascosti)",
"regionalGuidance_withCount_hidden": "Guida regionale ({{count}} nascosti)",
@@ -1935,6 +1862,8 @@
"layer_withCount_one": "Livello ({{count}})",
"layer_withCount_many": "Livelli ({{count}})",
"layer_withCount_other": "Livelli ({{count}})",
"convertToControlLayer": "Converti in livello di controllo",
"convertToRasterLayer": "Converti in livello raster",
"unlocked": "Sbloccato",
"enableTransparencyEffect": "Abilita l'effetto trasparenza",
"replaceLayer": "Sostituisci livello",
@@ -1947,7 +1876,9 @@
"newCanvasSession": "Nuova sessione Tela",
"deleteSelected": "Elimina selezione",
"settings": {
"isolatedFilteringPreview": "Anteprima del filtraggio isolata",
"isolatedStagingPreview": "Anteprima di generazione isolata",
"isolatedTransformingPreview": "Anteprima di trasformazione isolata",
"isolatedPreview": "Anteprima isolata",
"invertBrushSizeScrollDirection": "Inverti scorrimento per dimensione pennello",
"snapToGrid": {
@@ -1959,9 +1890,7 @@
"preserveMask": {
"alert": "Preservare la regione mascherata",
"label": "Preserva la regione mascherata"
},
"isolatedLayerPreview": "Anteprima livello isolato",
"isolatedLayerPreviewDesc": "Se visualizzare solo questo livello quando si eseguono operazioni come il filtraggio o la trasformazione."
}
},
"transform": {
"reset": "Reimposta",
@@ -2006,72 +1935,9 @@
"canvasGroup": "Tela",
"newRasterLayer": "Nuovo Livello Raster",
"saveCanvasToGallery": "Salva la Tela nella Galleria",
"saveToGalleryGroup": "Salva nella Galleria",
"newInpaintMask": "Nuova maschera Inpaint",
"newRegionalGuidance": "Nuova Guida Regionale"
"saveToGalleryGroup": "Salva nella Galleria"
},
"newImg2ImgCanvasFromImage": "Nuova Immagine da immagine",
"copyRasterLayerTo": "Copia $t(controlLayers.rasterLayer) in",
"copyControlLayerTo": "Copia $t(controlLayers.controlLayer) in",
"copyInpaintMaskTo": "Copia $t(controlLayers.inpaintMask) in",
"selectObject": {
"dragToMove": "Trascina un punto per spostarlo",
"clickToAdd": "Fare clic sul livello per aggiungere un punto",
"clickToRemove": "Clicca su un punto per rimuoverlo",
"help3": "Inverte la selezione per selezionare tutto tranne l'oggetto di destinazione.",
"pointType": "Tipo punto",
"apply": "Applica",
"reset": "Reimposta",
"cancel": "Annulla",
"selectObject": "Seleziona oggetto",
"invertSelection": "Inverti selezione",
"exclude": "Escludi",
"include": "Includi",
"neutral": "Neutro",
"saveAs": "Salva come",
"process": "Elabora",
"help1": "Seleziona un singolo oggetto di destinazione. Aggiungi i punti <Bold>Includi</Bold> e <Bold>Escludi</Bold> per indicare quali parti del livello fanno parte dell'oggetto di destinazione.",
"help2": "Inizia con un punto <Bold>Include</Bold> all'interno dell'oggetto di destinazione. Aggiungi altri punti per perfezionare la selezione. Meno punti in genere producono risultati migliori."
},
"convertControlLayerTo": "Converti $t(controlLayers.controlLayer) in",
"newRasterLayer": "Nuovo $t(controlLayers.rasterLayer)",
"newRegionalGuidance": "Nuova $t(controlLayers.regionalGuidance)",
"convertInpaintMaskTo": "Converti $t(controlLayers.inpaintMask) in",
"copyRegionalGuidanceTo": "Copia $t(controlLayers.regionalGuidance) in",
"convertRasterLayerTo": "Converti $t(controlLayers.rasterLayer) in",
"convertRegionalGuidanceTo": "Converti $t(controlLayers.regionalGuidance) in",
"newControlLayer": "Nuovo $t(controlLayers.controlLayer)",
"newInpaintMask": "Nuova $t(controlLayers.inpaintMask)",
"replaceCurrent": "Sostituisci corrente",
"mergeDown": "Unire in basso",
"mergingLayers": "Unione dei livelli",
"controlLayerEmptyState": "<UploadButton>Carica un'immagine</UploadButton>, trascina un'immagine dalla <GalleryButton>galleria</GalleryButton> su questo livello oppure disegna sulla tela per iniziare.",
"useImage": "Usa immagine",
"resetGenerationSettings": "Ripristina impostazioni di generazione",
"referenceImageEmptyState": "Per iniziare, <UploadButton>carica un'immagine</UploadButton> oppure trascina un'immagine dalla <GalleryButton>galleria</GalleryButton> su questo livello.",
"asRasterLayer": "Come $t(controlLayers.rasterLayer)",
"asRasterLayerResize": "Come $t(controlLayers.rasterLayer) (Ridimensiona)",
"asControlLayer": "Come $t(controlLayers.controlLayer)",
"asControlLayerResize": "Come $t(controlLayers.controlLayer) (Ridimensiona)",
"newSession": "Nuova sessione",
"resetCanvasLayers": "Ripristina livelli Tela",
"referenceImageRegional": "Immagine di riferimento (regionale)",
"referenceImageGlobal": "Immagine di riferimento (globale)",
"warnings": {
"controlAdapterNoModelSelected": "nessun modello selezionato per il livello di controllo",
"controlAdapterNoControl": "nessun controllo selezionato/disegnato",
"ipAdapterNoModelSelected": "nessun modello di immagine di riferimento selezionato",
"rgNoPromptsOrIPAdapters": "nessun prompt testuale o immagini di riferimento",
"rgReferenceImagesNotSupported": "Immagini di riferimento regionali non supportate per il modello base selezionato",
"rgNoRegion": "nessuna regione disegnata",
"problemsFound": "Problemi riscontrati",
"unsupportedModel": "livello non supportato per il modello base selezionato",
"controlAdapterIncompatibleBaseModel": "modello di base del livello di controllo incompatibile",
"rgNegativePromptNotSupported": "Prompt negativo non supportato per il modello base selezionato",
"ipAdapterIncompatibleBaseModel": "modello base dell'immagine di riferimento incompatibile",
"ipAdapterNoImageSelected": "nessuna immagine di riferimento selezionata",
"rgAutoNegativeNotSupported": "Auto-Negativo non supportato per il modello base selezionato"
}
"newImg2ImgCanvasFromImage": "Nuova Immagine da immagine"
},
"ui": {
"tabs": {
@@ -2103,9 +1969,7 @@
"postProcessingMissingModelWarning": "Visita <LinkComponent>Gestione modelli</LinkComponent> per installare un modello di post-elaborazione (da immagine a immagine).",
"exceedsMaxSize": "Le impostazioni di ampliamento superano il limite massimo delle dimensioni",
"exceedsMaxSizeDetails": "Il limite massimo di ampliamento è {{maxUpscaleDimension}}x{{maxUpscaleDimension}} pixel. Prova un'immagine più piccola o diminuisci la scala selezionata.",
"upscale": "Amplia",
"incompatibleBaseModel": "Architettura del modello principale non supportata per l'ampliamento",
"incompatibleBaseModelDesc": "L'ampliamento è supportato solo per i modelli di architettura SD1.5 e SDXL. Cambia il modello principale per abilitare l'ampliamento."
"upscale": "Amplia"
},
"upsell": {
"inviteTeammates": "Invita collaboratori",
@@ -2166,14 +2030,15 @@
"toGetStartedLocal": "Per iniziare, assicurati di scaricare o importare i modelli necessari per eseguire Invoke. Quindi, inserisci un prompt nella casella e fai clic su <StrongComponent>Invoke</StrongComponent> per generare la tua prima immagine. Seleziona un modello di prompt per migliorare i risultati. Puoi scegliere di salvare le tue immagini direttamente nella <StrongComponent>Galleria</StrongComponent> o modificarle nella <StrongComponent>Tela</StrongComponent>."
},
"whatsNew": {
"whatsNewInInvoke": "Novità in Invoke",
"readReleaseNotes": "Leggi le note di rilascio",
"watchRecentReleaseVideos": "Guarda i video su questa versione",
"watchUiUpdatesOverview": "Guarda le novità dell'interfaccia",
"items": [
"<StrongComponent>Flussi di lavoro</StrongComponent>: esegui un flusso di lavoro per una raccolta di immagini utilizzando il nuovo nodo <StrongComponent>Lotto di immagini</StrongComponent>.",
"<StrongComponent>FLUX</StrongComponent>: Supporto per XLabs IP Adapter v2."
]
"canvasV2Announcement": {
"readReleaseNotes": "Leggi le Note di Rilascio",
"fluxSupport": "Supporto per la famiglia di modelli Flux",
"newCanvas": "Una nuova potente tela di controllo",
"watchReleaseVideo": "Guarda il video di rilascio",
"watchUiUpdatesOverview": "Guarda le novità dell'interfaccia",
"newLayerTypes": "Nuovi tipi di livello per un miglior controllo"
},
"whatsNewInInvoke": "Novità in Invoke"
},
"system": {
"logLevel": {
@@ -2199,67 +2064,5 @@
"logNamespaces": "Elementi del registro"
},
"enableLogging": "Abilita la registrazione"
},
"supportVideos": {
"gettingStarted": "Iniziare",
"supportVideos": "Video di supporto",
"videos": {
"usingControlLayersAndReferenceGuides": {
"title": "Utilizzo di livelli di controllo e guide di riferimento",
"description": "Scopri come guidare la creazione delle tue immagini con livelli di controllo e immagini di riferimento."
},
"creatingYourFirstImage": {
"description": "Introduzione alla creazione di un'immagine da zero utilizzando gli strumenti di Invoke.",
"title": "Creazione della tua prima immagine"
},
"understandingImageToImageAndDenoising": {
"description": "Panoramica delle trasformazioni immagine-a-immagine e della riduzione del rumore in Invoke.",
"title": "Comprendere immagine-a-immagine e riduzione del rumore"
},
"howDoIDoImageToImageTransformation": {
"description": "Tutorial su come eseguire trasformazioni da immagine a immagine in Invoke.",
"title": "Come si esegue la trasformazione da immagine-a-immagine?"
},
"howDoIUseInpaintMasks": {
"title": "Come si usano le maschere Inpaint?",
"description": "Come applicare maschere inpaint per la correzione e la variazione delle immagini."
},
"howDoIOutpaint": {
"description": "Guida all'outpainting oltre i confini dell'immagine originale.",
"title": "Come posso eseguire l'outpainting?"
},
"exploringAIModelsAndConceptAdapters": {
"description": "Approfondisci i modelli di intelligenza artificiale e scopri come utilizzare gli adattatori concettuali per il controllo creativo.",
"title": "Esplorazione dei modelli di IA e degli adattatori concettuali"
},
"upscaling": {
"title": "Ampliamento",
"description": "Come ampliare le immagini con gli strumenti di Invoke per migliorarne la risoluzione."
},
"creatingAndComposingOnInvokesControlCanvas": {
"description": "Impara a comporre immagini utilizzando la tela di controllo di Invoke.",
"title": "Creare e comporre sulla tela di controllo di Invoke"
},
"howDoIGenerateAndSaveToTheGallery": {
"description": "Passaggi per generare e salvare le immagini nella galleria.",
"title": "Come posso generare e salvare nella Galleria?"
},
"howDoIEditOnTheCanvas": {
"title": "Come posso apportare modifiche sulla tela?",
"description": "Guida alla modifica delle immagini direttamente sulla tela."
},
"howDoIUseControlNetsAndControlLayers": {
"title": "Come posso utilizzare le Reti di Controllo e i Livelli di Controllo?",
"description": "Impara ad applicare livelli di controllo e reti di controllo alle tue immagini."
},
"howDoIUseGlobalIPAdaptersAndReferenceImages": {
"title": "Come si utilizzano gli adattatori IP globali e le immagini di riferimento?",
"description": "Introduzione all'aggiunta di immagini di riferimento e adattatori IP globali."
}
},
"controlCanvas": "Tela di Controllo",
"watch": "Guarda",
"studioSessionsDesc1": "Dai un'occhiata a <StudioSessionsPlaylistLink /> per approfondimenti su Invoke.",
"studioSessionsDesc2": "Unisciti al nostro <DiscordLink /> per partecipare alle sessioni live e fare domande. Le sessioni vengono caricate sulla playlist la settimana successiva."
}
}

View File

@@ -16,7 +16,7 @@
"discordLabel": "Discord",
"nodes": "ワークフロー",
"txt2img": "txt2img",
"postprocessing": "ポストプロセス",
"postprocessing": "Post Processing",
"t2iAdapter": "T2I アダプター",
"communityLabel": "コミュニティ",
"dontAskMeAgain": "次回から確認しない",
@@ -71,8 +71,8 @@
"orderBy": "並び順:",
"enabled": "有効",
"notInstalled": "未インストール",
"positivePrompt": "ポジティブプロンプト",
"negativePrompt": "ネガティブプロンプト",
"positivePrompt": "プロンプト",
"negativePrompt": "除外する要素",
"selected": "選択済み",
"aboutDesc": "Invokeを業務で利用する場合はマークしてください:",
"beta": "ベータ",
@@ -80,20 +80,7 @@
"editor": "エディタ",
"safetensors": "Safetensors",
"tab": "タブ",
"toResolve": "解決方法",
"openInViewer": "ビューアで開く",
"placeholderSelectAModel": "モデルを選択",
"clipboard": "クリップボード",
"apply": "適用",
"loadingImage": "画像をロード中",
"off": "オフ",
"view": "ビュー",
"edit": "編集",
"ok": "OK",
"reset": "リセット",
"none": "なし",
"new": "新規",
"close": "閉じる"
"toResolve": "解決方法"
},
"gallery": {
"galleryImageSize": "画像のサイズ",
@@ -138,114 +125,12 @@
"compareHelp1": "<Kbd>Alt</Kbd> キーを押しながらギャラリー画像をクリックするか、矢印キーを使用して比較画像を変更します。",
"compareHelp3": "<Kbd>C</Kbd>を押して、比較した画像を入れ替えます。",
"compareHelp4": "<Kbd>[Z</Kbd>]または<Kbd>[Esc</Kbd>]を押して終了します。",
"compareHelp2": "<Kbd>M</Kbd> キーを押して比較モードを切り替えます。",
"move": "移動",
"openViewer": "ビューアを開く",
"closeViewer": "ビューアを閉じる",
"exitSearch": "画像検索を終了",
"oldestFirst": "最古から",
"showStarredImagesFirst": "スター付き画像を最初に",
"exitBoardSearch": "ボード検索を終了",
"showArchivedBoards": "アーカイブされたボードを表示",
"searchImages": "メタデータで検索",
"gallery": "ギャラリー",
"newestFirst": "最新から",
"jump": "ジャンプ",
"go": "進む",
"sortDirection": "並び替え順",
"displayBoardSearch": "ボード検索",
"displaySearch": "画像を検索",
"boardsSettings": "ボード設定",
"imagesSettings": "ギャラリー画像設定"
"compareHelp2": "<Kbd>M</Kbd> キーを押して比較モードを切り替えます。"
},
"hotkeys": {
"searchHotkeys": "ホットキーを検索",
"clearSearch": "検索をクリア",
"noHotkeysFound": "ホットキーが見つかりません",
"viewer": {
"runPostprocessing": {
"title": "ポストプロセスを実行"
},
"useSize": {
"title": "サイズを使用"
},
"recallPrompts": {
"title": "プロンプトを再使用"
},
"recallAll": {
"title": "全てのメタデータを再使用"
},
"recallSeed": {
"title": "シード値を再使用"
}
},
"canvas": {
"redo": {
"title": "やり直し"
},
"transformSelected": {
"title": "変形"
},
"undo": {
"title": "取り消し"
},
"selectEraserTool": {
"title": "消しゴムツール"
},
"cancelTransform": {
"title": "変形をキャンセル"
},
"resetSelected": {
"title": "レイヤーをリセット"
},
"applyTransform": {
"title": "変形を適用"
},
"selectColorPickerTool": {
"title": "スポイトツール"
},
"fitBboxToCanvas": {
"title": "バウンディングボックスをキャンバスにフィット"
},
"selectBrushTool": {
"title": "ブラシツール"
},
"selectMoveTool": {
"title": "移動ツール"
},
"selectBboxTool": {
"title": "バウンディングボックスツール"
},
"title": "キャンバス",
"fitLayersToCanvas": {
"title": "レイヤーをキャンバスにフィット"
}
},
"workflows": {
"undo": {
"title": "取り消し"
},
"redo": {
"title": "やり直し"
}
},
"app": {
"toggleLeftPanel": {
"title": "左パネルをトグル",
"desc": "左パネルを表示または非表示。"
},
"title": "アプリケーション",
"invoke": {
"title": "Invoke"
},
"cancelQueueItem": {
"title": "キャンセル"
},
"clearQueue": {
"title": "キューをクリア"
}
},
"hotkeys": "ホットキー"
"noHotkeysFound": "ホットキーが見つかりません"
},
"modelManager": {
"modelManager": "モデルマネージャ",
@@ -280,7 +165,7 @@
"convertToDiffusers": "ディフューザーに変換",
"alpha": "アルファ",
"modelConverted": "モデル変換が完了しました",
"predictionType": "予測タイプ(SD 2.x モデルおよび一部のSD 1.x モデル用)",
"predictionType": "予測タイプ(安定したディフュージョン 2.x モデルおよび一部の安定したディフュージョン 1.x モデル用)",
"selectModel": "モデルを選択",
"advanced": "高度な設定",
"modelDeleted": "モデルが削除されました",
@@ -293,9 +178,7 @@
"convertToDiffusersHelpText1": "このモデルは 🧨 Diffusers フォーマットに変換されます。",
"convertToDiffusersHelpText3": "チェックポイントファイルは、InvokeAIルートフォルダ内にある場合、ディスクから削除されます。カスタムロケーションにある場合は、削除されません。",
"convertToDiffusersHelpText4": "これは一回限りのプロセスです。コンピュータの仕様によっては、約30秒から60秒かかる可能性があります。",
"cancel": "キャンセル",
"uploadImage": "画像をアップロード",
"addModels": "モデルを追加"
"cancel": "キャンセル"
},
"parameters": {
"images": "画像",
@@ -317,19 +200,7 @@
"info": "情報",
"showOptionsPanel": "オプションパネルを表示",
"iterations": "生成回数",
"general": "基本設定",
"setToOptimalSize": "サイズをモデルに最適化",
"invoke": {
"addingImagesTo": "画像の追加先"
},
"aspect": "縦横比",
"lockAspectRatio": "縦横比を固定",
"scheduler": "スケジューラー",
"sendToUpscale": "アップスケーラーに転送",
"useSize": "サイズを使用",
"postProcessing": "ポストプロセス (Shift + U)",
"denoisingStrength": "ノイズ除去強度",
"recallMetadata": "メタデータを再使用"
"general": "基本設定"
},
"settings": {
"models": "モデル",
@@ -342,11 +213,7 @@
},
"toast": {
"uploadFailed": "アップロード失敗",
"imageCopied": "画像をコピー",
"imageUploadFailed": "画像のアップロードに失敗しました",
"uploadFailedInvalidUploadDesc": "画像はPNGかJPGである必要があります。",
"sentToUpscale": "アップスケーラーに転送しました",
"imageUploaded": "画像をアップロードしました"
"imageCopied": "画像をコピー"
},
"accessibility": {
"invokeProgressBar": "進捗バー",
@@ -359,12 +226,10 @@
"resetUI": "$t(accessibility.reset) UI",
"mode": "モード:",
"about": "Invoke について",
"submitSupportTicket": "サポート依頼を送信する",
"uploadImages": "画像をアップロード",
"toggleLeftPanel": "左パネルをトグル (T)",
"toggleRightPanel": "右パネルをトグル (G)"
"submitSupportTicket": "サポート依頼を送信する"
},
"metadata": {
"seamless": "シームレス",
"Threshold": "ノイズ閾値",
"seed": "シード",
"width": "幅",
@@ -373,8 +238,7 @@
"scheduler": "スケジューラー",
"positivePrompt": "ポジティブプロンプト",
"strength": "Image to Image 強度",
"recallParameters": "パラメータを再使用",
"recallParameter": "{{label}} を再使用"
"recallParameters": "パラメータを呼び出す"
},
"queue": {
"queueEmpty": "キューが空です",
@@ -434,22 +298,14 @@
"prune": "刈り込み",
"prompts_other": "プロンプト",
"iterations_other": "繰り返し",
"generations_other": "生成",
"canvas": "キャンバス",
"workflows": "ワークフロー",
"upscaling": "アップスケール",
"generation": "生成",
"other": "その他",
"gallery": "ギャラリー"
"generations_other": "生成"
},
"models": {
"noMatchingModels": "一致するモデルがありません",
"loading": "読み込み中",
"noMatchingLoRAs": "一致するLoRAがありません",
"noModelsAvailable": "使用可能なモデルがありません",
"selectModel": "モデルを選択してください",
"concepts": "コンセプト",
"addLora": "LoRAを追加"
"selectModel": "モデルを選択してください"
},
"nodes": {
"addNode": "ノードを追加",
@@ -484,8 +340,7 @@
"cannotConnectOutputToOutput": "出力から出力には接続できません",
"cannotConnectToSelf": "自身のノードには接続できません",
"colorCodeEdges": "カラー-Code Edges",
"loadingNodes": "ノードを読み込み中...",
"scheduler": "スケジューラー"
"loadingNodes": "ノードを読み込み中..."
},
"boards": {
"autoAddBoard": "自動追加するボード",
@@ -508,18 +363,7 @@
"deleteBoardAndImages": "ボードと画像の削除",
"deleteBoardOnly": "ボードのみ削除",
"deletedBoardsCannotbeRestored": "削除されたボードは復元できません",
"movingImagesToBoard_other": "{{count}} の画像をボードに移動:",
"hideBoards": "ボードを隠す",
"assetsWithCount_other": "{{count}} のアセット",
"addPrivateBoard": "プライベートボードを追加",
"addSharedBoard": "共有ボードを追加",
"boards": "ボード",
"private": "プライベートボード",
"shared": "共有ボード",
"archiveBoard": "ボードをアーカイブ",
"archived": "アーカイブ完了",
"unarchiveBoard": "アーカイブされていないボード",
"imagesWithCount_other": "{{count}} の画像"
"movingImagesToBoard_other": "{{count}} の画像をボードに移動:"
},
"invocationCache": {
"invocationCache": "呼び出しキャッシュ",
@@ -544,33 +388,6 @@
"paragraphs": [
"生成された画像の縦横比。"
]
},
"regionalGuidanceAndReferenceImage": {
"heading": "領域ガイダンスと領域参照画像"
},
"regionalReferenceImage": {
"heading": "領域参照画像"
},
"paramScheduler": {
"heading": "スケジューラー"
},
"regionalGuidance": {
"heading": "領域ガイダンス"
},
"rasterLayer": {
"heading": "ラスターレイヤー"
},
"globalReferenceImage": {
"heading": "全域参照画像"
},
"paramUpscaleMethod": {
"heading": "アップスケール手法"
},
"upscaleModel": {
"heading": "アップスケールモデル"
},
"paramAspect": {
"heading": "縦横比"
}
},
"accordions": {
@@ -611,79 +428,5 @@
"tabs": {
"queue": "キュー"
}
},
"controlLayers": {
"globalReferenceImage_withCount_other": "全域参照画像",
"regionalReferenceImage": "領域参照画像",
"saveLayerToAssets": "レイヤーをアセットに保存",
"global": "全域",
"inpaintMasks_withCount_hidden": "インペイントマスク ({{count}} hidden)",
"opacity": "透明度",
"canvasContextMenu": {
"newRegionalGuidance": "新規領域ガイダンス",
"bboxGroup": "バウンディングボックスから作成",
"cropCanvasToBbox": "キャンバスをバウンディングボックスでクロップ",
"newGlobalReferenceImage": "新規全域参照画像",
"newRegionalReferenceImage": "新規領域参照画像"
},
"regionalGuidance": "領域ガイダンス",
"globalReferenceImage": "全域参照画像",
"moveForward": "前面へ移動",
"copyInpaintMaskTo": "$t(controlLayers.inpaintMask) をコピー",
"transform": {
"fitToBbox": "バウンディングボックスにフィット",
"transform": "変形",
"apply": "適用",
"cancel": "キャンセル",
"reset": "リセット"
},
"cropLayerToBbox": "レイヤーをバウンディングボックスでクロップ",
"convertInpaintMaskTo": "$t(controlLayers.inpaintMask)を変換",
"regionalGuidance_withCount_other": "領域ガイダンス",
"tool": {
"colorPicker": "スポイト",
"brush": "ブラシ",
"rectangle": "矩形",
"move": "移動",
"eraser": "消しゴム"
},
"saveCanvasToGallery": "キャンバスをギャラリーに保存",
"saveBboxToGallery": "バウンディングボックスをギャラリーへ保存",
"moveToBack": "最背面へ移動",
"duplicate": "複製",
"addLayer": "レイヤーを追加",
"rasterLayer": "ラスターレイヤー",
"inpaintMasks_withCount_visible": "({{count}}) インペイントマスク",
"regional": "領域",
"rectangle": "矩形",
"moveBackward": "背面へ移動",
"moveToFront": "最前面へ移動",
"mergeDown": "レイヤーを統合",
"inpaintMask_withCount_other": "インペイントマスク",
"canvas": "キャンバス",
"fitBboxToLayers": "バウンディングボックスをレイヤーにフィット",
"removeBookmark": "ブックマークを外す",
"savedToGalleryOk": "ギャラリーに保存しました"
},
"stylePresets": {
"clearTemplateSelection": "選択したテンプレートをクリア",
"choosePromptTemplate": "プロンプトテンプレートを選択",
"myTemplates": "自分のテンプレート",
"flatten": "選択中のテンプレートをプロンプトに展開",
"uploadImage": "画像をアップロード",
"defaultTemplates": "デフォルトテンプレート",
"createPromptTemplate": "プロンプトテンプレートを作成",
"promptTemplateCleared": "プロンプトテンプレートをクリアしました",
"searchByName": "名前で検索",
"toggleViewMode": "表示モードを切り替え"
},
"upscaling": {
"upscaleModel": "アップスケールモデル",
"postProcessingModel": "ポストプロセスモデル",
"upscale": "アップスケール"
},
"sdxl": {
"denoisingStrength": "ノイズ除去強度",
"scheduler": "スケジューラー"
}
}

View File

@@ -155,6 +155,7 @@
"path": "Pad",
"triggerPhrases": "Triggerzinnen",
"typePhraseHere": "Typ zin hier in",
"useDefaultSettings": "Gebruik standaardinstellingen",
"modelImageDeleteFailed": "Fout bij verwijderen modelafbeelding",
"modelImageUpdated": "Modelafbeelding bijgewerkt",
"modelImageUpdateFailed": "Fout bij bijwerken modelafbeelding",
@@ -230,7 +231,16 @@
"systemDisconnected": "Systeem is niet verbonden",
"missingNodeTemplate": "Knooppuntsjabloon ontbreekt",
"missingFieldTemplate": "Veldsjabloon ontbreekt",
"addingImagesTo": "Bezig met toevoegen van afbeeldingen aan"
"addingImagesTo": "Bezig met toevoegen van afbeeldingen aan",
"layer": {
"controlAdapterNoModelSelected": "geen controle-adaptermodel geselecteerd",
"controlAdapterIncompatibleBaseModel": "niet-compatibele basismodel voor controle-adapter",
"ipAdapterIncompatibleBaseModel": "niet-compatibele basismodel voor IP-adapter",
"ipAdapterNoImageSelected": "geen afbeelding voor IP-adapter geselecteerd",
"rgNoRegion": "geen gebied geselecteerd",
"rgNoPromptsOrIPAdapters": "geen tekstprompts of IP-adapters",
"ipAdapterNoModelSelected": "geen IP-adapter geselecteerd"
}
},
"patchmatchDownScaleSize": "Verklein",
"useCpuNoise": "Gebruik CPU-ruis",
@@ -656,6 +666,7 @@
}
},
"metadata": {
"seamless": "Naadloos",
"positivePrompt": "Positieve prompt",
"negativePrompt": "Negatieve prompt",
"generationMode": "Genereermodus",

View File

@@ -10,24 +10,7 @@
"load": "Załaduj",
"statusDisconnected": "Odłączono od serwera",
"githubLabel": "GitHub",
"discordLabel": "Discord",
"clipboard": "Schowek",
"aboutDesc": "Wykorzystujesz Invoke do pracy? Sprawdź:",
"ai": "SI",
"areYouSure": "Czy jesteś pewien?",
"copyError": "$t(gallery.copy) Błąd",
"apply": "Zastosuj",
"copy": "Kopiuj",
"or": "albo",
"add": "Dodaj",
"off": "Wyłączony",
"accept": "Zaakceptuj",
"cancel": "Anuluj",
"advanced": "Zawansowane",
"back": "Do tyłu",
"auto": "Automatyczny",
"beta": "Beta",
"close": "Wyjdź"
"discordLabel": "Discord"
},
"gallery": {
"galleryImageSize": "Rozmiar obrazów",
@@ -82,42 +65,6 @@
"uploadImage": "Wgrywanie obrazu",
"previousImage": "Poprzedni obraz",
"nextImage": "Następny obraz",
"menu": "Menu",
"mode": "Tryb"
},
"boards": {
"cancel": "Anuluj",
"noBoards": "Brak tablic typu {{boardType}}",
"imagesWithCount_one": "{{count}} zdjęcie",
"imagesWithCount_few": "{{count}} zdjęcia",
"imagesWithCount_many": "{{count}} zdjęcia",
"private": "Prywatne tablice",
"updateBoardError": "Błąd aktualizacji tablicy",
"uncategorized": "Nieskategoryzowane",
"selectBoard": "Wybierz tablicę",
"downloadBoard": "Pobierz tablice",
"loading": "Ładowanie...",
"move": "Przenieś",
"noMatching": "Brak pasujących tablic"
},
"accordions": {
"compositing": {
"title": "Kompozycja",
"infillTab": "Inskrypcja",
"coherenceTab": "Przebieg Koherencji"
},
"generation": {
"title": "Generowanie"
},
"image": {
"title": "Zdjęcie"
},
"advanced": {
"options": "$t(accordions.advanced.title) Opcje",
"title": "Zaawansowane"
},
"control": {
"title": "Kontrola"
}
"menu": "Menu"
}
}

View File

@@ -544,6 +544,7 @@
"scanResults": "Результаты сканирования",
"source": "Источник",
"triggerPhrases": "Триггерные фразы",
"useDefaultSettings": "Использовать стандартные настройки",
"modelName": "Название модели",
"modelSettings": "Настройки модели",
"upcastAttention": "Внимание",
@@ -572,6 +573,7 @@
"simpleModelPlaceholder": "URL или путь к локальному файлу или папке diffusers",
"urlOrLocalPath": "URL или локальный путь",
"urlOrLocalPathHelper": "URL-адреса должны указывать на один файл. Локальные пути могут указывать на один файл или папку для одной модели диффузоров.",
"hfToken": "Токен HuggingFace",
"starterModels": "Стартовые модели",
"textualInversions": "Текстовые инверсии",
"loraModels": "LoRAs",
@@ -648,6 +650,19 @@
"missingFieldTemplate": "Отсутствует шаблон поля",
"addingImagesTo": "Добавление изображений в",
"invoke": "Создать",
"layer": {
"ipAdapterNoModelSelected": "IP адаптер не выбран",
"controlAdapterNoModelSelected": "не выбрана модель адаптера контроля",
"controlAdapterIncompatibleBaseModel": "несовместимая базовая модель адаптера контроля",
"rgNoRegion": "регион не выбран",
"rgNoPromptsOrIPAdapters": "нет текстовых запросов или IP-адаптеров",
"ipAdapterIncompatibleBaseModel": "несовместимая базовая модель IP-адаптера",
"ipAdapterNoImageSelected": "изображение IP-адаптера не выбрано",
"t2iAdapterIncompatibleScaledBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, масштабированная ширина рамки {{width}}",
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, высота рамки {{height}}",
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, ширина рамки {{width}}",
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, масштабированная высота рамки {{height}}"
},
"fluxModelIncompatibleBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), ширина рамки {{width}}",
"fluxModelIncompatibleBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), высота рамки {{height}}",
"fluxModelIncompatibleScaledBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), масштабированная высота рамки {{height}}",
@@ -1387,6 +1402,7 @@
}
},
"metadata": {
"seamless": "Бесшовность",
"positivePrompt": "Запрос",
"negativePrompt": "Негативный запрос",
"generationMode": "Режим генерации",
@@ -1647,6 +1663,7 @@
"clearCaches": "Очистить кэши",
"recalculateRects": "Пересчитать прямоугольники",
"saveBboxToGallery": "Сохранить рамку в галерею",
"resetCanvas": "Сбросить холст",
"canvas": "Холст",
"global": "Глобальный",
"newGlobalReferenceImageError": "Проблема с созданием глобального эталонного изображения",
@@ -1819,12 +1836,14 @@
},
"settings": {
"isolatedPreview": "Изолированный предпросмотр",
"isolatedTransformingPreview": "Изолированный предпросмотр преобразования",
"invertBrushSizeScrollDirection": "Инвертировать прокрутку для размера кисти",
"snapToGrid": {
"label": "Привязка к сетке",
"on": "Вкл",
"off": "Выкл"
},
"isolatedFilteringPreview": "Изолированный предпросмотр фильтрации",
"pressureSensitivity": "Чувствительность к давлению",
"isolatedStagingPreview": "Изолированный предпросмотр на промежуточной стадии",
"preserveMask": {
@@ -1846,6 +1865,7 @@
"enableAutoNegative": "Включить авто негатив",
"maskFill": "Заполнение маски",
"viewProgressInViewer": "Просматривайте прогресс и результаты в <Btn>Просмотрщике изображений</Btn>.",
"convertToRasterLayer": "Конвертировать в растровый слой",
"tool": {
"move": "Двигать",
"bbox": "Ограничительная рамка",
@@ -1913,6 +1933,7 @@
"newGallerySession": "Новая сессия галереи",
"sendToCanvasDesc": "Нажатие кнопки Invoke отображает вашу текущую работу на холсте.",
"globalReferenceImages_withCount_hidden": "Глобальные эталонные изображения ({{count}} скрыто)",
"convertToControlLayer": "Конвертировать в контрольный слой",
"layer_withCount_one": "Слой ({{count}})",
"layer_withCount_few": "Слои ({{count}})",
"layer_withCount_many": "Слои ({{count}})",
@@ -2042,6 +2063,14 @@
}
},
"whatsNew": {
"canvasV2Announcement": {
"newLayerTypes": "Новые типы слоев для еще большего контроля",
"readReleaseNotes": "Прочитать информацию о выпуске",
"watchReleaseVideo": "Смотреть видео о выпуске",
"fluxSupport": "Поддержка семейства моделей Flux",
"newCanvas": "Новый мощный холст управления",
"watchUiUpdatesOverview": "Обзор обновлений пользовательского интерфейса"
},
"whatsNewInInvoke": "Что нового в Invoke"
},
"newUserExperience": {

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More