Compare commits

...

81 Commits

Author SHA1 Message Date
Ryan Dick
2144d21f80 Maintain a read-only CPU state dict copy in CachedModelWithPartialLoad. 2024-12-06 21:49:24 +00:00
Ryan Dick
958efa19d7 Memoize frequently accessed values in CachedModelWithPartialLoad. 2024-12-06 20:39:05 +00:00
Ryan Dick
11af57def3 More ModelCache logging improvements. 2024-12-06 18:38:36 +00:00
Ryan Dick
8b70a5b9bd Cleanup of ModelCache and added a bunch of debug logging. 2024-12-06 17:39:16 +00:00
Ryan Dick
5d9fdcd78d Fix a couple of bugs to get basic vanilla partial model load working with the model cache. 2024-12-06 00:50:58 +00:00
Ryan Dick
c7b84cf012 WIP - first pass at overhauling ModelCache to work with partial loads. 2024-12-05 23:03:40 +00:00
Ryan Dick
8e409e3436 Delete experimental torch device autocasting solutions and clean up TorchFunctionAutocastDeviceContext. 2024-12-05 19:36:44 +00:00
Ryan Dick
987393853c Create CachedModelOnlyFullLoad class. 2024-12-05 18:43:50 +00:00
Ryan Dick
91c5af1b95 Move CachedModelWithPartialLoad into the main model_cache/ directory. 2024-12-05 18:21:26 +00:00
Ryan Dick
5c67dd507a Get rid of ModelLocker. It was an unnecessary layer of indirection. 2024-12-05 16:59:40 +00:00
Ryan Dick
2ff928ec17 Move lock(...) and unlock(...) logic from ModelLocker to the ModelCache and make a bunch of ModelCache properties/methods private. 2024-12-05 16:11:40 +00:00
Ryan Dick
4327bbe77e Pull get_model_cache_key(...) out of ModelCache. The ModelCache should not be concerned with implementation details like the submodel_type. 2024-12-04 22:53:57 +00:00
Ryan Dick
ad1c0d37ef Rename model_cache_default.py -> model_cache.py. 2024-12-04 22:45:30 +00:00
Ryan Dick
9708d87946 Remove ModelCacheBase. 2024-12-04 22:05:34 +00:00
Ryan Dick
3ad44f7850 Move CacheStats to its own file. 2024-12-04 21:56:50 +00:00
Ryan Dick
9a482981b2 Move CacheRecord out to its own file. 2024-12-04 21:53:19 +00:00
Ryan Dick
6b02362b12 Rip out ModelLockerBase. 2024-12-04 21:47:11 +00:00
Ryan Dick
8fec4ec91c Tidy up CachedModel and improve unit test coverage. 2024-12-04 20:28:31 +00:00
Ryan Dick
693e421970 Alternative implementation with torch.nn.Linear module streaming. 2024-12-03 22:32:15 +00:00
Ryan Dick
dc14104bc8 Add TorchFunctionAutocastContext 2024-12-03 19:26:46 +00:00
Ryan Dick
f286a1d1f3 Remove debug logs. 2024-12-03 18:04:55 +00:00
Ryan Dick
9dc86b2b71 Add basic CachedModel class with features for partial load/unload. 2024-12-03 17:12:22 +00:00
Ryan Dick
2cab689b79 Naive TorchAutocastContext. 2024-12-03 14:55:43 +00:00
psychedelicious
f8c7adddd0 feat(ui): add vietnamese to language picker
Closes #7384
2024-12-02 08:12:14 -05:00
psychedelicious
17da1d92e9 fix(ui): remove "adding to" text on Invoke tooltip on Workflows/Upscaling tabs
The "adding to" text indicates if images are going to the gallery or staging area. This info is relevant only to the canvas tab, but was displayed on Upscaling and Workflows tabs. Removed it from those tabs.
2024-12-02 08:08:16 -05:00
psychedelicious
1cc57a4854 chore(ui): lint 2024-12-02 07:59:12 -05:00
psychedelicious
3993fae331 fix(ui): unable to invoke w/ empty inpaint mask or raster layer
Removed the empty state checks for these layer types - it's always OK to invoke when they are empty.
2024-12-02 07:59:12 -05:00
psychedelicious
1446526d55 tidy(ui): translation keys for canvas layer warnings 2024-12-02 07:59:12 -05:00
psychedelicious
62c024e725 feat(ui): add gallery image ctx menu items to create ref image from image
Appears these actions disappeared at some point. Restoring them.
2024-12-02 07:52:58 -05:00
psychedelicious
1e92bb4e94 fix(ui): ref image defaults to prev ref image's image selection
A redux selector is used to get the "default" IP Adapter. The selector uses the model list query result to select an IP Adapter model to be preset by default.

The selector is memoized, so if we mutate the returned default IP Adapter state, it mutates the result of the selector for all consumers.

For example, the `image` property of the default IP Adapter selector result is `null`. When we set the `image` property of the selector result while creating an IP Adapter, this does not trigger the selector to recompute its result. We end up setting the image for the selector result directly, and all other consumers now have that same image set.

Solution - we need to clone the selector result everywhere it is used. This was missed in a few spots, causing the issue.
2024-12-02 07:48:39 -05:00
psychedelicious
db6398fdf6 feat(ui): less confusing empty state for rg ref images
It was easy to misunderstand the empty state for a regional guidance reference image. There was no label, so it seemed like it was the whole region that was empty.

This small change adds the "Reference Image" heading to the empty state, so it's clear that the empty state messaging refers to this reference image, not the whole regional guidance layer.
2024-12-02 07:46:10 -05:00
Riccardo Giovanetti
ebd73a2ac2 translationBot(ui): update translation (Italian)
Currently translated at 98.7% (1622 of 1643 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-12-02 02:13:51 -08:00
Hosted Weblate
8ee95cab00 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-12-02 02:13:51 -08:00
Linos
d1184201a8 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1643 of 1643 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1638 of 1638 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2024-12-02 02:13:51 -08:00
Nik Nikovsky
5887891654 translationBot(ui): update translation (Polish)
Currently translated at 4.9% (81 of 1638 strings)

Co-authored-by: Nik Nikovsky <zejdzztegomaila@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/pl/
Translation: InvokeAI/Web UI
2024-12-02 02:13:51 -08:00
Riku
765ca4e004 translationBot(ui): update translation (German)
Currently translated at 69.7% (1142 of 1638 strings)

Co-authored-by: Riku <riku.block@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-12-02 02:13:51 -08:00
Riku
159b00a490 fix(app): adjust session queue api type 2024-12-01 20:06:05 -08:00
Riku
3fbf6f2d2a chore(ui): update typegen schema 2024-12-01 19:56:09 -08:00
Riku
931fca7cd1 fix(ui): call cancel instead of clear queue 2024-12-01 19:53:12 -08:00
Riku
db84a3a5d4 refactor(ui): move clear queue hook to separate file 2024-12-01 19:42:25 -08:00
psychedelicious
ca8313e805 feat(ui): add new layer from image menu items for staging area
The layers are disabled when created so as to not interfere with the canvas state.
2024-12-01 19:37:49 -08:00
psychedelicious
df849035ee feat(ui): allow setting isEnabled, isLocked and name in createNewCanvasEntityFromImage util 2024-12-01 19:37:49 -08:00
psychedelicious
8d97fe69ca feat(ui): use imageDTOToFile in staging area save to gallery button 2024-12-01 19:37:49 -08:00
psychedelicious
9044e53a9b feat(ui): add imageDTOToFile util 2024-12-01 19:37:49 -08:00
Jonathan
6012b0f912 Update flux_text_encoder.py
Updated version number for FLUX Text Encoding.
2024-11-30 08:29:21 -05:00
Jonathan
bb0ed5dc8a Update flux_denoise.py
Updated node version for FLUX Denoise.
2024-11-30 08:29:21 -05:00
Ryan Dick
021552fd81 Avoid unnecessary dtype conversions with rope encodings. 2024-11-29 12:32:50 -05:00
Ryan Dick
be73dbba92 Use view() instead of rearrange() for better performance. 2024-11-29 12:32:50 -05:00
Ryan Dick
db9c0cad7c Replace custom RMSNorm implementation with torch.nn.functional.rms_norm(...) for improved speed. 2024-11-29 12:32:50 -05:00
Ryan Dick
54b7f9a063 FLUX Regional Prompting (#7388)
## Summary

This PR adds support for regional prompting with FLUX.

### Example 1
Global prompt: `An architecture rendering of the reception area of a
corporate office with modern decor.`
<img width="1386" alt="image"
src="https://github.com/user-attachments/assets/c8169bdb-49a9-44bc-bd9e-58d98e09094b">

![image](https://github.com/user-attachments/assets/4a426be9-9d7a-4527-b27c-2d2514ee73fe)

## QA Instructions

- [x] Test that there is no slowdown in the base case with a single
global prompt.
- [x] Test image fully covered by regional masks.
- [x] Test image covered by region masks with small gaps.
- [x] Test region masks with large unmasked ‘background’ regions
- [x] Test region masks with significant overlap
- [x] Test multiple global prompts.
- [x] Test no global prompt.
- [x] Test regional negative prompts (It runs... but results are not
great. Needs more tuning to be useful.)
- Test compatibility with:
    - [x] ControlNet
    - [x] LoRA
    - [x] IP-Adapter

## Remaining TODO

- [x] Disable the following UI features for FLUX prompt regions:
negative prompts, reference images, auto-negative.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2024-11-29 08:56:42 -05:00
psychedelicious
7d488a5352 feat(ui): add delete button to regional ref image empty state 2024-11-29 15:51:24 +10:00
psychedelicious
4d7667f63d fix(ui): add missing translations 2024-11-29 15:43:49 +10:00
psychedelicious
08704ee8ec feat(ui): use canvas layer validators in control/ip adapter graph builders 2024-11-29 15:32:48 +10:00
psychedelicious
5910892c33 Merge remote-tracking branch 'origin/main' into ryan/flux-regional-prompting 2024-11-29 15:19:39 +10:00
psychedelicious
46a09d9e90 feat(ui): format warnings tooltip 2024-11-29 13:32:51 +10:00
psychedelicious
df0c7d73f3 feat(ui): use regional guidance validation utils in graph builders 2024-11-29 13:26:09 +10:00
psychedelicious
3905c97e32 feat(ui): return translation keys from validation utils instead of translated strings 2024-11-29 13:25:09 +10:00
psychedelicious
0be796a808 feat(ui): use layer validation utils in invoke readiness utils 2024-11-29 13:14:26 +10:00
psychedelicious
7dd33b0f39 feat(ui): add indicator to canvas layer headers, displaying validation warnings
If there are any issues with the layer, the icon is displayed. If the layer is disabled, the icon is greyed out but still visible.
2024-11-29 13:13:47 +10:00
psychedelicious
484aaf1595 feat(ui): add canvas layer validation utils
These helpers consolidate layer validation checks. For example, checking that the layer has content drawn, is compatible with the selected main model, has valid reference images, etc.
2024-11-29 13:12:32 +10:00
psychedelicious
c276b60af9 tidy(ui): use object for addRegions graph builder util arg 2024-11-29 08:49:41 +10:00
Ryan Dick
5d8dd6e26e Fix FLUX regional negative prompts. 2024-11-28 18:49:29 +00:00
Emmanuel Ferdman
5bca68d873 docs: update code of conduct reference
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2024-11-27 17:38:33 -08:00
Ryan Dick
64364e7911 Short-circuit if there are no region masks in FLUX and don't apply attention masking. 2024-11-27 22:40:10 +00:00
Ryan Dick
6565cea039 Comment unused _prepare_unrestricted_attn_mask(...) for future reference. 2024-11-27 22:16:44 +00:00
Ryan Dick
3ebd8d6c07 Delete outdated TODO comment. 2024-11-27 22:13:25 +00:00
Ryan Dick
e970185161 Tweak flux regional prompting attention scheme based on latest experimentation. 2024-11-27 22:13:07 +00:00
Ryan Dick
fa5653cdf7 Remove unused 'denoise' param to addRegions(). 2024-11-27 17:08:42 +00:00
Ryan Dick
9a7b000995 Update frontend to support regional prompts with FLUX in the canvas. 2024-11-27 17:04:43 +00:00
Ryan Dick
3a27242838 Bump transformers. The main motivation for this bump is to ingest a fix for DepthAnything postprocessing artifacts. 2024-11-27 07:46:16 -08:00
Ryan Dick
b54463d294 Allow regional prompting background regions to attend to themselves and to the entire txt embedding. 2024-11-26 17:57:31 +00:00
Ryan Dick
faee79dc95 Distinguish between restricted and unrestricted attn masks in FLUX regional prompting. 2024-11-26 16:55:52 +00:00
Ryan Dick
e01f66b026 Apply regional attention masks in the single stream blocks in addition to the double stream blocks. 2024-11-25 22:40:08 +00:00
Ryan Dick
53abdde242 Update Flux RegionalPromptingExtension to prepare both a mask with restricted image self-attention and a mask with unrestricted image self attention. 2024-11-25 22:04:23 +00:00
Ryan Dick
94c088300f Be smarter about selecting the global CLIP embedding for FLUX regional prompting. 2024-11-25 20:15:04 +00:00
Ryan Dick
3741a6f5e0 Fix device handling for regional masks and apply the attention mask in the FLUX double stream block. 2024-11-25 16:02:03 +00:00
Ryan Dick
2c23b8414c Use a single global CLIP embedding for FLUX regional guidance. 2024-11-22 23:01:43 +00:00
Ryan Dick
20356c0746 Fixup the logic for preparing FLUX regional prompt attention masks. 2024-11-21 22:46:25 +00:00
Ryan Dick
bad1149504 WIP - add rough logic for preparing the FLUX regional prompting attention mask. 2024-11-20 22:29:36 +00:00
Ryan Dick
fda7aaa7ca Pass RegionalPromptingExtension down to the CustomDoubleStreamBlockProcessor in FLUX. 2024-11-20 19:48:04 +00:00
Ryan Dick
85c616fa34 WIP - Pass prompt masks to FLUX model during denoising. 2024-11-20 18:51:43 +00:00
82 changed files with 3078 additions and 1327 deletions

View File

@@ -1364,7 +1364,6 @@ the in-memory loaded model:
|----------------|-----------------|------------------|
| `config` | AnyModelConfig | A copy of the model's configuration record for retrieving base type, etc. |
| `model` | AnyModel | The instantiated model (details below) |
| `locker` | ModelLockerBase | A context manager that mediates the movement of the model into VRAM |
### get_model_by_key(key, [submodel]) -> LoadedModel

View File

@@ -38,7 +38,7 @@ This project is a combined effort of dedicated people from across the world. [C
## Code of Conduct
The InvokeAI community is a welcoming place, and we want your help in maintaining that. Please review our [Code of Conduct](https://github.com/invoke-ai/InvokeAI/blob/main/CODE_OF_CONDUCT.md) to learn more - it's essential to maintaining a respectful and inclusive environment.
The InvokeAI community is a welcoming place, and we want your help in maintaining that. Please review our [Code of Conduct](https://github.com/invoke-ai/InvokeAI/blob/main/docs/CODE_OF_CONDUCT.md) to learn more - it's essential to maintaining a respectful and inclusive environment.
By making a contribution to this project, you certify that:

View File

@@ -37,7 +37,7 @@ from invokeai.backend.model_manager.config import (
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.load.model_cache.model_cache_base import CacheStats
from invokeai.backend.model_manager.load.model_cache.cache_stats import CacheStats
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
from invokeai.backend.model_manager.metadata.metadata_base import ModelMetadataWithFiles, UnknownMetadataException
from invokeai.backend.model_manager.search import ModelSearch

View File

@@ -110,7 +110,7 @@ async def cancel_by_batch_ids(
@session_queue_router.put(
"/{queue_id}/cancel_by_destination",
operation_id="cancel_by_destination",
responses={200: {"model": CancelByBatchIDsResult}},
responses={200: {"model": CancelByDestinationResult}},
)
async def cancel_by_destination(
queue_id: str = Path(description="The queue id to perform this operation on"),

View File

@@ -250,6 +250,11 @@ class FluxConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
mask: Optional[TensorField] = Field(
default=None,
description="The mask associated with this conditioning tensor. Excluded regions should be set to False, "
"included regions should be set to True.",
)
class SD3ConditioningField(BaseModel):

View File

@@ -30,6 +30,7 @@ from invokeai.backend.flux.controlnet.xlabs_controlnet_flux import XLabsControlN
from invokeai.backend.flux.denoise import denoise
from invokeai.backend.flux.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.ip_adapter.xlabs_ip_adapter_flux import XlabsIpAdapterFlux
@@ -42,6 +43,7 @@ from invokeai.backend.flux.sampling_utils import (
pack,
unpack,
)
from invokeai.backend.flux.text_conditioning import FluxTextConditioning
from invokeai.backend.lora.conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
@@ -56,7 +58,7 @@ from invokeai.backend.util.devices import TorchDevice
title="FLUX Denoise",
tags=["image", "flux"],
category="image",
version="3.2.1",
version="3.2.2",
classification=Classification.Prototype,
)
class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
@@ -87,10 +89,10 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
input=Input.Connection,
title="Transformer",
)
positive_text_conditioning: FluxConditioningField = InputField(
positive_text_conditioning: FluxConditioningField | list[FluxConditioningField] = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
negative_text_conditioning: FluxConditioningField | None = InputField(
negative_text_conditioning: FluxConditioningField | list[FluxConditioningField] | None = InputField(
default=None,
description="Negative conditioning tensor. Can be None if cfg_scale is 1.0.",
input=Input.Connection,
@@ -139,36 +141,12 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
def _load_text_conditioning(
self, context: InvocationContext, conditioning_name: str, dtype: torch.dtype
) -> Tuple[torch.Tensor, torch.Tensor]:
# Load the conditioning data.
cond_data = context.conditioning.load(conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
flux_conditioning = flux_conditioning.to(dtype=dtype)
t5_embeddings = flux_conditioning.t5_embeds
clip_embeddings = flux_conditioning.clip_embeds
return t5_embeddings, clip_embeddings
def _run_diffusion(
self,
context: InvocationContext,
):
inference_dtype = torch.bfloat16
# Load the conditioning data.
pos_t5_embeddings, pos_clip_embeddings = self._load_text_conditioning(
context, self.positive_text_conditioning.conditioning_name, inference_dtype
)
neg_t5_embeddings: torch.Tensor | None = None
neg_clip_embeddings: torch.Tensor | None = None
if self.negative_text_conditioning is not None:
neg_t5_embeddings, neg_clip_embeddings = self._load_text_conditioning(
context, self.negative_text_conditioning.conditioning_name, inference_dtype
)
# Load the input latents, if provided.
init_latents = context.tensors.load(self.latents.latents_name) if self.latents else None
if init_latents is not None:
@@ -183,15 +161,45 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
dtype=inference_dtype,
seed=self.seed,
)
b, _c, latent_h, latent_w = noise.shape
packed_h = latent_h // 2
packed_w = latent_w // 2
# Load the conditioning data.
pos_text_conditionings = self._load_text_conditioning(
context=context,
cond_field=self.positive_text_conditioning,
packed_height=packed_h,
packed_width=packed_w,
dtype=inference_dtype,
device=TorchDevice.choose_torch_device(),
)
neg_text_conditionings: list[FluxTextConditioning] | None = None
if self.negative_text_conditioning is not None:
neg_text_conditionings = self._load_text_conditioning(
context=context,
cond_field=self.negative_text_conditioning,
packed_height=packed_h,
packed_width=packed_w,
dtype=inference_dtype,
device=TorchDevice.choose_torch_device(),
)
pos_regional_prompting_extension = RegionalPromptingExtension.from_text_conditioning(
pos_text_conditionings, img_seq_len=packed_h * packed_w
)
neg_regional_prompting_extension = (
RegionalPromptingExtension.from_text_conditioning(neg_text_conditionings, img_seq_len=packed_h * packed_w)
if neg_text_conditionings
else None
)
transformer_info = context.models.load(self.transformer.transformer)
is_schnell = "schnell" in transformer_info.config.config_path
# Calculate the timestep schedule.
image_seq_len = noise.shape[-1] * noise.shape[-2] // 4
timesteps = get_schedule(
num_steps=self.num_steps,
image_seq_len=image_seq_len,
image_seq_len=packed_h * packed_w,
shift=not is_schnell,
)
@@ -228,28 +236,17 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
inpaint_mask = self._prep_inpaint_mask(context, x)
b, _c, latent_h, latent_w = x.shape
img_ids = generate_img_ids(h=latent_h, w=latent_w, batch_size=b, device=x.device, dtype=x.dtype)
pos_bs, pos_t5_seq_len, _ = pos_t5_embeddings.shape
pos_txt_ids = torch.zeros(
pos_bs, pos_t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device()
)
neg_txt_ids: torch.Tensor | None = None
if neg_t5_embeddings is not None:
neg_bs, neg_t5_seq_len, _ = neg_t5_embeddings.shape
neg_txt_ids = torch.zeros(
neg_bs, neg_t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device()
)
# Pack all latent tensors.
init_latents = pack(init_latents) if init_latents is not None else None
inpaint_mask = pack(inpaint_mask) if inpaint_mask is not None else None
noise = pack(noise)
x = pack(x)
# Now that we have 'packed' the latent tensors, verify that we calculated the image_seq_len correctly.
assert image_seq_len == x.shape[1]
# Now that we have 'packed' the latent tensors, verify that we calculated the image_seq_len, packed_h, and
# packed_w correctly.
assert packed_h * packed_w == x.shape[1]
# Prepare inpaint extension.
inpaint_extension: InpaintExtension | None = None
@@ -338,12 +335,8 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
model=transformer,
img=x,
img_ids=img_ids,
txt=pos_t5_embeddings,
txt_ids=pos_txt_ids,
vec=pos_clip_embeddings,
neg_txt=neg_t5_embeddings,
neg_txt_ids=neg_txt_ids,
neg_vec=neg_clip_embeddings,
pos_regional_prompting_extension=pos_regional_prompting_extension,
neg_regional_prompting_extension=neg_regional_prompting_extension,
timesteps=timesteps,
step_callback=self._build_step_callback(context),
guidance=self.guidance,
@@ -357,6 +350,43 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
x = unpack(x.float(), self.height, self.width)
return x
def _load_text_conditioning(
self,
context: InvocationContext,
cond_field: FluxConditioningField | list[FluxConditioningField],
packed_height: int,
packed_width: int,
dtype: torch.dtype,
device: torch.device,
) -> list[FluxTextConditioning]:
"""Load text conditioning data from a FluxConditioningField or a list of FluxConditioningFields."""
# Normalize to a list of FluxConditioningFields.
cond_list = [cond_field] if isinstance(cond_field, FluxConditioningField) else cond_field
text_conditionings: list[FluxTextConditioning] = []
for cond_field in cond_list:
# Load the text embeddings.
cond_data = context.conditioning.load(cond_field.conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
flux_conditioning = flux_conditioning.to(dtype=dtype, device=device)
t5_embeddings = flux_conditioning.t5_embeds
clip_embeddings = flux_conditioning.clip_embeds
# Load the mask, if provided.
mask: Optional[torch.Tensor] = None
if cond_field.mask is not None:
mask = context.tensors.load(cond_field.mask.tensor_name)
mask = mask.to(device=device)
mask = RegionalPromptingExtension.preprocess_regional_prompt_mask(
mask, packed_height, packed_width, dtype, device
)
text_conditionings.append(FluxTextConditioning(t5_embeddings, clip_embeddings, mask))
return text_conditionings
@classmethod
def prep_cfg_scale(
cls, cfg_scale: float | list[float], timesteps: list[float], cfg_scale_start_step: int, cfg_scale_end_step: int

View File

@@ -1,11 +1,18 @@
from contextlib import ExitStack
from typing import Iterator, Literal, Tuple
from typing import Iterator, Literal, Optional, Tuple
import torch
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, UIComponent
from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxConditioningField,
Input,
InputField,
TensorField,
UIComponent,
)
from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import FluxConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
@@ -22,7 +29,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import Condit
title="FLUX Text Encoding",
tags=["prompt", "conditioning", "flux"],
category="conditioning",
version="1.1.0",
version="1.1.1",
classification=Classification.Prototype,
)
class FluxTextEncoderInvocation(BaseInvocation):
@@ -41,9 +48,9 @@ class FluxTextEncoderInvocation(BaseInvocation):
t5_max_seq_len: Literal[256, 512] = InputField(
description="Max sequence length for the T5 encoder. Expected to be 256 for FLUX schnell models and 512 for FLUX dev models."
)
prompt: str = InputField(
description="Text prompt to encode.",
ui_component=UIComponent.Textarea,
prompt: str = InputField(description="Text prompt to encode.", ui_component=UIComponent.Textarea)
mask: Optional[TensorField] = InputField(
default=None, description="A mask defining the region that this conditioning prompt applies to."
)
@torch.no_grad()
@@ -57,7 +64,9 @@ class FluxTextEncoderInvocation(BaseInvocation):
)
conditioning_name = context.conditioning.save(conditioning_data)
return FluxConditioningOutput.build(conditioning_name)
return FluxConditioningOutput(
conditioning=FluxConditioningField(conditioning_name=conditioning_name, mask=self.mask)
)
def _t5_encode(self, context: InvocationContext) -> torch.Tensor:
t5_tokenizer_info = context.models.load(self.t5_encoder.tokenizer)

View File

@@ -20,7 +20,7 @@ from invokeai.app.services.invocation_stats.invocation_stats_common import (
NodeExecutionStatsSummary,
)
from invokeai.app.services.invoker import Invoker
from invokeai.backend.model_manager.load.model_cache import CacheStats
from invokeai.backend.model_manager.load.model_cache.cache_stats import CacheStats
# Size of 1GB in bytes.
GB = 2**30

View File

@@ -7,7 +7,7 @@ from typing import Callable, Optional
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
from invokeai.backend.model_manager.load import LoadedModel, LoadedModelWithoutConfig
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
class ModelLoadServiceBase(ABC):
@@ -24,7 +24,7 @@ class ModelLoadServiceBase(ABC):
@property
@abstractmethod
def ram_cache(self) -> ModelCacheBase[AnyModel]:
def ram_cache(self) -> ModelCache:
"""Return the RAM cache used by this loader."""
@abstractmethod

View File

@@ -18,7 +18,7 @@ from invokeai.backend.model_manager.load import (
ModelLoaderRegistry,
ModelLoaderRegistryBase,
)
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
@@ -30,7 +30,7 @@ class ModelLoadService(ModelLoadServiceBase):
def __init__(
self,
app_config: InvokeAIAppConfig,
ram_cache: ModelCacheBase[AnyModel],
ram_cache: ModelCache,
registry: Optional[Type[ModelLoaderRegistryBase]] = ModelLoaderRegistry,
):
"""Initialize the model load service."""
@@ -45,7 +45,7 @@ class ModelLoadService(ModelLoadServiceBase):
self._invoker = invoker
@property
def ram_cache(self) -> ModelCacheBase[AnyModel]:
def ram_cache(self) -> ModelCache:
"""Return the RAM cache used by this loader."""
return self._ram_cache
@@ -78,9 +78,8 @@ class ModelLoadService(ModelLoadServiceBase):
self, model_path: Path, loader: Optional[Callable[[Path], AnyModel]] = None
) -> LoadedModelWithoutConfig:
cache_key = str(model_path)
ram_cache = self.ram_cache
try:
return LoadedModelWithoutConfig(_locker=ram_cache.get(key=cache_key))
return LoadedModelWithoutConfig(cache_record=self._ram_cache.get(key=cache_key), cache=self._ram_cache)
except IndexError:
pass
@@ -109,5 +108,5 @@ class ModelLoadService(ModelLoadServiceBase):
)
assert loader is not None
raw_model = loader(model_path)
ram_cache.put(key=cache_key, model=raw_model)
return LoadedModelWithoutConfig(_locker=ram_cache.get(key=cache_key))
self._ram_cache.put(key=cache_key, model=raw_model)
return LoadedModelWithoutConfig(cache_record=self._ram_cache.get(key=cache_key), cache=self._ram_cache)

View File

@@ -16,7 +16,8 @@ from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBas
from invokeai.app.services.model_load.model_load_default import ModelLoadService
from invokeai.app.services.model_manager.model_manager_base import ModelManagerServiceBase
from invokeai.app.services.model_records.model_records_base import ModelRecordServiceBase
from invokeai.backend.model_manager.load import ModelCache, ModelLoaderRegistry
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger

View File

@@ -1,9 +1,10 @@
import einops
import torch
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.math import attention
from invokeai.backend.flux.modules.layers import DoubleStreamBlock
from invokeai.backend.flux.modules.layers import DoubleStreamBlock, SingleStreamBlock
class CustomDoubleStreamBlockProcessor:
@@ -13,7 +14,12 @@ class CustomDoubleStreamBlockProcessor:
@staticmethod
def _double_stream_block_forward(
block: DoubleStreamBlock, img: torch.Tensor, txt: torch.Tensor, vec: torch.Tensor, pe: torch.Tensor
block: DoubleStreamBlock,
img: torch.Tensor,
txt: torch.Tensor,
vec: torch.Tensor,
pe: torch.Tensor,
attn_mask: torch.Tensor | None = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""This function is a direct copy of DoubleStreamBlock.forward(), but it returns some of the intermediate
values.
@@ -40,7 +46,7 @@ class CustomDoubleStreamBlockProcessor:
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn = attention(q, k, v, pe=pe)
attn = attention(q, k, v, pe=pe, attn_mask=attn_mask)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
@@ -63,11 +69,15 @@ class CustomDoubleStreamBlockProcessor:
vec: torch.Tensor,
pe: torch.Tensor,
ip_adapter_extensions: list[XLabsIPAdapterExtension],
regional_prompting_extension: RegionalPromptingExtension,
) -> tuple[torch.Tensor, torch.Tensor]:
"""A custom implementation of DoubleStreamBlock.forward() with additional features:
- IP-Adapter support
"""
img, txt, img_q = CustomDoubleStreamBlockProcessor._double_stream_block_forward(block, img, txt, vec, pe)
attn_mask = regional_prompting_extension.get_double_stream_attn_mask(block_index)
img, txt, img_q = CustomDoubleStreamBlockProcessor._double_stream_block_forward(
block, img, txt, vec, pe, attn_mask=attn_mask
)
# Apply IP-Adapter conditioning.
for ip_adapter_extension in ip_adapter_extensions:
@@ -81,3 +91,48 @@ class CustomDoubleStreamBlockProcessor:
)
return img, txt
class CustomSingleStreamBlockProcessor:
"""A class containing a custom implementation of SingleStreamBlock.forward() with additional features (masking,
etc.)
"""
@staticmethod
def _single_stream_block_forward(
block: SingleStreamBlock,
x: torch.Tensor,
vec: torch.Tensor,
pe: torch.Tensor,
attn_mask: torch.Tensor | None = None,
) -> torch.Tensor:
"""This function is a direct copy of SingleStreamBlock.forward()."""
mod, _ = block.modulation(vec)
x_mod = (1 + mod.scale) * block.pre_norm(x) + mod.shift
qkv, mlp = torch.split(block.linear1(x_mod), [3 * block.hidden_size, block.mlp_hidden_dim], dim=-1)
q, k, v = einops.rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=block.num_heads)
q, k = block.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, attn_mask=attn_mask)
# compute activation in mlp stream, cat again and run second linear layer
output = block.linear2(torch.cat((attn, block.mlp_act(mlp)), 2))
return x + mod.gate * output
@staticmethod
def custom_single_block_forward(
timestep_index: int,
total_num_timesteps: int,
block_index: int,
block: SingleStreamBlock,
img: torch.Tensor,
vec: torch.Tensor,
pe: torch.Tensor,
regional_prompting_extension: RegionalPromptingExtension,
) -> torch.Tensor:
"""A custom implementation of SingleStreamBlock.forward() with additional features:
- Masking
"""
attn_mask = regional_prompting_extension.get_single_stream_attn_mask(block_index)
return CustomSingleStreamBlockProcessor._single_stream_block_forward(block, img, vec, pe, attn_mask=attn_mask)

View File

@@ -7,6 +7,7 @@ from tqdm import tqdm
from invokeai.backend.flux.controlnet.controlnet_flux_output import ControlNetFluxOutput, sum_controlnet_flux_outputs
from invokeai.backend.flux.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.model import Flux
@@ -18,14 +19,8 @@ def denoise(
# model input
img: torch.Tensor,
img_ids: torch.Tensor,
# positive text conditioning
txt: torch.Tensor,
txt_ids: torch.Tensor,
vec: torch.Tensor,
# negative text conditioning
neg_txt: torch.Tensor | None,
neg_txt_ids: torch.Tensor | None,
neg_vec: torch.Tensor | None,
pos_regional_prompting_extension: RegionalPromptingExtension,
neg_regional_prompting_extension: RegionalPromptingExtension | None,
# sampling parameters
timesteps: list[float],
step_callback: Callable[[PipelineIntermediateState], None],
@@ -61,9 +56,9 @@ def denoise(
total_num_timesteps=total_steps,
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
txt=pos_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=pos_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
y=pos_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
timesteps=t_vec,
guidance=guidance_vec,
)
@@ -78,9 +73,9 @@ def denoise(
pred = model(
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
txt=pos_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=pos_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
y=pos_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
timesteps=t_vec,
guidance=guidance_vec,
timestep_index=step_index,
@@ -88,6 +83,7 @@ def denoise(
controlnet_double_block_residuals=merged_controlnet_residuals.double_block_residuals,
controlnet_single_block_residuals=merged_controlnet_residuals.single_block_residuals,
ip_adapter_extensions=pos_ip_adapter_extensions,
regional_prompting_extension=pos_regional_prompting_extension,
)
step_cfg_scale = cfg_scale[step_index]
@@ -97,15 +93,15 @@ def denoise(
# TODO(ryand): Add option to run positive and negative predictions in a single batch for better performance
# on systems with sufficient VRAM.
if neg_txt is None or neg_txt_ids is None or neg_vec is None:
if neg_regional_prompting_extension is None:
raise ValueError("Negative text conditioning is required when cfg_scale is not 1.0.")
neg_pred = model(
img=img,
img_ids=img_ids,
txt=neg_txt,
txt_ids=neg_txt_ids,
y=neg_vec,
txt=neg_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=neg_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
y=neg_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
timesteps=t_vec,
guidance=guidance_vec,
timestep_index=step_index,
@@ -113,6 +109,7 @@ def denoise(
controlnet_double_block_residuals=None,
controlnet_single_block_residuals=None,
ip_adapter_extensions=neg_ip_adapter_extensions,
regional_prompting_extension=neg_regional_prompting_extension,
)
pred = neg_pred + step_cfg_scale * (pred - neg_pred)

View File

@@ -0,0 +1,276 @@
from typing import Optional
import torch
import torchvision
from invokeai.backend.flux.text_conditioning import FluxRegionalTextConditioning, FluxTextConditioning
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import Range
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.mask import to_standard_float_mask
class RegionalPromptingExtension:
"""A class for managing regional prompting with FLUX.
This implementation is inspired by https://arxiv.org/pdf/2411.02395 (though there are significant differences).
"""
def __init__(
self,
regional_text_conditioning: FluxRegionalTextConditioning,
restricted_attn_mask: torch.Tensor | None = None,
):
self.regional_text_conditioning = regional_text_conditioning
self.restricted_attn_mask = restricted_attn_mask
def get_double_stream_attn_mask(self, block_index: int) -> torch.Tensor | None:
order = [self.restricted_attn_mask, None]
return order[block_index % len(order)]
def get_single_stream_attn_mask(self, block_index: int) -> torch.Tensor | None:
order = [self.restricted_attn_mask, None]
return order[block_index % len(order)]
@classmethod
def from_text_conditioning(cls, text_conditioning: list[FluxTextConditioning], img_seq_len: int):
"""Create a RegionalPromptingExtension from a list of text conditionings.
Args:
text_conditioning (list[FluxTextConditioning]): The text conditionings to use for regional prompting.
img_seq_len (int): The image sequence length (i.e. packed_height * packed_width).
"""
regional_text_conditioning = cls._concat_regional_text_conditioning(text_conditioning)
attn_mask_with_restricted_img_self_attn = cls._prepare_restricted_attn_mask(
regional_text_conditioning, img_seq_len
)
return cls(
regional_text_conditioning=regional_text_conditioning,
restricted_attn_mask=attn_mask_with_restricted_img_self_attn,
)
# Keeping _prepare_unrestricted_attn_mask for reference as an alternative masking strategy:
#
# @classmethod
# def _prepare_unrestricted_attn_mask(
# cls,
# regional_text_conditioning: FluxRegionalTextConditioning,
# img_seq_len: int,
# ) -> torch.Tensor:
# """Prepare an 'unrestricted' attention mask. In this context, 'unrestricted' means that:
# - img self-attention is not masked.
# - img regions attend to both txt within their own region and to global prompts.
# """
# device = TorchDevice.choose_torch_device()
# # Infer txt_seq_len from the t5_embeddings tensor.
# txt_seq_len = regional_text_conditioning.t5_embeddings.shape[1]
# # In the attention blocks, the txt seq and img seq are concatenated and then attention is applied.
# # Concatenation happens in the following order: [txt_seq, img_seq].
# # There are 4 portions of the attention mask to consider as we prepare it:
# # 1. txt attends to itself
# # 2. txt attends to corresponding regional img
# # 3. regional img attends to corresponding txt
# # 4. regional img attends to itself
# # Initialize empty attention mask.
# regional_attention_mask = torch.zeros(
# (txt_seq_len + img_seq_len, txt_seq_len + img_seq_len), device=device, dtype=torch.float16
# )
# for image_mask, t5_embedding_range in zip(
# regional_text_conditioning.image_masks, regional_text_conditioning.t5_embedding_ranges, strict=True
# ):
# # 1. txt attends to itself
# regional_attention_mask[
# t5_embedding_range.start : t5_embedding_range.end, t5_embedding_range.start : t5_embedding_range.end
# ] = 1.0
# # 2. txt attends to corresponding regional img
# # Note that we reshape to (1, img_seq_len) to ensure broadcasting works as desired.
# fill_value = image_mask.view(1, img_seq_len) if image_mask is not None else 1.0
# regional_attention_mask[t5_embedding_range.start : t5_embedding_range.end, txt_seq_len:] = fill_value
# # 3. regional img attends to corresponding txt
# # Note that we reshape to (img_seq_len, 1) to ensure broadcasting works as desired.
# fill_value = image_mask.view(img_seq_len, 1) if image_mask is not None else 1.0
# regional_attention_mask[txt_seq_len:, t5_embedding_range.start : t5_embedding_range.end] = fill_value
# # 4. regional img attends to itself
# # Allow unrestricted img self attention.
# regional_attention_mask[txt_seq_len:, txt_seq_len:] = 1.0
# # Convert attention mask to boolean.
# regional_attention_mask = regional_attention_mask > 0.5
# return regional_attention_mask
@classmethod
def _prepare_restricted_attn_mask(
cls,
regional_text_conditioning: FluxRegionalTextConditioning,
img_seq_len: int,
) -> torch.Tensor | None:
"""Prepare a 'restricted' attention mask. In this context, 'restricted' means that:
- img self-attention is only allowed within regions.
- img regions only attend to txt within their own region, not to global prompts.
"""
# Identify background region. I.e. the region that is not covered by any region masks.
background_region_mask: None | torch.Tensor = None
for image_mask in regional_text_conditioning.image_masks:
if image_mask is not None:
if background_region_mask is None:
background_region_mask = torch.ones_like(image_mask)
background_region_mask *= 1 - image_mask
if background_region_mask is None:
# There are no region masks, short-circuit and return None.
# TODO(ryand): We could restrict txt-txt attention across multiple global prompts, but this would
# is a rare use case and would make the logic here significantly more complicated.
return None
device = TorchDevice.choose_torch_device()
# Infer txt_seq_len from the t5_embeddings tensor.
txt_seq_len = regional_text_conditioning.t5_embeddings.shape[1]
# In the attention blocks, the txt seq and img seq are concatenated and then attention is applied.
# Concatenation happens in the following order: [txt_seq, img_seq].
# There are 4 portions of the attention mask to consider as we prepare it:
# 1. txt attends to itself
# 2. txt attends to corresponding regional img
# 3. regional img attends to corresponding txt
# 4. regional img attends to itself
# Initialize empty attention mask.
regional_attention_mask = torch.zeros(
(txt_seq_len + img_seq_len, txt_seq_len + img_seq_len), device=device, dtype=torch.float16
)
for image_mask, t5_embedding_range in zip(
regional_text_conditioning.image_masks, regional_text_conditioning.t5_embedding_ranges, strict=True
):
# 1. txt attends to itself
regional_attention_mask[
t5_embedding_range.start : t5_embedding_range.end, t5_embedding_range.start : t5_embedding_range.end
] = 1.0
if image_mask is not None:
# 2. txt attends to corresponding regional img
# Note that we reshape to (1, img_seq_len) to ensure broadcasting works as desired.
regional_attention_mask[t5_embedding_range.start : t5_embedding_range.end, txt_seq_len:] = (
image_mask.view(1, img_seq_len)
)
# 3. regional img attends to corresponding txt
# Note that we reshape to (img_seq_len, 1) to ensure broadcasting works as desired.
regional_attention_mask[txt_seq_len:, t5_embedding_range.start : t5_embedding_range.end] = (
image_mask.view(img_seq_len, 1)
)
# 4. regional img attends to itself
image_mask = image_mask.view(img_seq_len, 1)
regional_attention_mask[txt_seq_len:, txt_seq_len:] += image_mask @ image_mask.T
else:
# We don't allow attention between non-background image regions and global prompts. This helps to ensure
# that regions focus on their local prompts. We do, however, allow attention between background regions
# and global prompts. If we didn't do this, then the background regions would not attend to any txt
# embeddings, which we found experimentally to cause artifacts.
# 2. global txt attends to background region
# Note that we reshape to (1, img_seq_len) to ensure broadcasting works as desired.
regional_attention_mask[t5_embedding_range.start : t5_embedding_range.end, txt_seq_len:] = (
background_region_mask.view(1, img_seq_len)
)
# 3. background region attends to global txt
# Note that we reshape to (img_seq_len, 1) to ensure broadcasting works as desired.
regional_attention_mask[txt_seq_len:, t5_embedding_range.start : t5_embedding_range.end] = (
background_region_mask.view(img_seq_len, 1)
)
# Allow background regions to attend to themselves.
regional_attention_mask[txt_seq_len:, txt_seq_len:] += background_region_mask.view(img_seq_len, 1)
regional_attention_mask[txt_seq_len:, txt_seq_len:] += background_region_mask.view(1, img_seq_len)
# Convert attention mask to boolean.
regional_attention_mask = regional_attention_mask > 0.5
return regional_attention_mask
@classmethod
def _concat_regional_text_conditioning(
cls,
text_conditionings: list[FluxTextConditioning],
) -> FluxRegionalTextConditioning:
"""Concatenate regional text conditioning data into a single conditioning tensor (with associated masks)."""
concat_t5_embeddings: list[torch.Tensor] = []
concat_t5_embedding_ranges: list[Range] = []
image_masks: list[torch.Tensor | None] = []
# Choose global CLIP embedding.
# Use the first global prompt's CLIP embedding as the global CLIP embedding. If there is no global prompt, use
# the first prompt's CLIP embedding.
global_clip_embedding: torch.Tensor = text_conditionings[0].clip_embeddings
for text_conditioning in text_conditionings:
if text_conditioning.mask is None:
global_clip_embedding = text_conditioning.clip_embeddings
break
cur_t5_embedding_len = 0
for text_conditioning in text_conditionings:
concat_t5_embeddings.append(text_conditioning.t5_embeddings)
concat_t5_embedding_ranges.append(
Range(start=cur_t5_embedding_len, end=cur_t5_embedding_len + text_conditioning.t5_embeddings.shape[1])
)
image_masks.append(text_conditioning.mask)
cur_t5_embedding_len += text_conditioning.t5_embeddings.shape[1]
t5_embeddings = torch.cat(concat_t5_embeddings, dim=1)
# Initialize the txt_ids tensor.
pos_bs, pos_t5_seq_len, _ = t5_embeddings.shape
t5_txt_ids = torch.zeros(
pos_bs, pos_t5_seq_len, 3, dtype=t5_embeddings.dtype, device=TorchDevice.choose_torch_device()
)
return FluxRegionalTextConditioning(
t5_embeddings=t5_embeddings,
clip_embeddings=global_clip_embedding,
t5_txt_ids=t5_txt_ids,
image_masks=image_masks,
t5_embedding_ranges=concat_t5_embedding_ranges,
)
@staticmethod
def preprocess_regional_prompt_mask(
mask: Optional[torch.Tensor], packed_height: int, packed_width: int, dtype: torch.dtype, device: torch.device
) -> torch.Tensor:
"""Preprocess a regional prompt mask to match the target height and width.
If mask is None, returns a mask of all ones with the target height and width.
If mask is not None, resizes the mask to the target height and width using 'nearest' interpolation.
packed_height and packed_width are the target height and width of the mask in the 'packed' latent space.
Returns:
torch.Tensor: The processed mask. shape: (1, 1, packed_height * packed_width).
"""
if mask is None:
return torch.ones((1, 1, packed_height * packed_width), dtype=dtype, device=device)
mask = to_standard_float_mask(mask, out_dtype=dtype)
tf = torchvision.transforms.Resize(
(packed_height, packed_width), interpolation=torchvision.transforms.InterpolationMode.NEAREST
)
# Add a batch dimension to the mask, because torchvision expects shape (batch, channels, h, w).
mask = mask.unsqueeze(0) # Shape: (1, h, w) -> (1, 1, h, w)
resized_mask = tf(mask)
# Flatten the height and width dimensions into a single image_seq_len dimension.
return resized_mask.flatten(start_dim=2)

View File

@@ -5,10 +5,10 @@ from einops import rearrange
from torch import Tensor
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, attn_mask: Tensor | None = None) -> Tensor:
q, k = apply_rope(q, k, pe)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
x = rearrange(x, "B H L D -> B L (H D)")
return x
@@ -24,12 +24,12 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
out = torch.einsum("...n,d->...nd", pos, omega)
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.float()
return out.to(dtype=pos.dtype, device=pos.device)
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_ = xq.view(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.view(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
return xq_out.view(*xq.shape), xk_out.view(*xk.shape)

View File

@@ -5,7 +5,11 @@ from dataclasses import dataclass
import torch
from torch import Tensor, nn
from invokeai.backend.flux.custom_block_processor import CustomDoubleStreamBlockProcessor
from invokeai.backend.flux.custom_block_processor import (
CustomDoubleStreamBlockProcessor,
CustomSingleStreamBlockProcessor,
)
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.modules.layers import (
DoubleStreamBlock,
@@ -95,6 +99,7 @@ class Flux(nn.Module):
controlnet_double_block_residuals: list[Tensor] | None,
controlnet_single_block_residuals: list[Tensor] | None,
ip_adapter_extensions: list[XLabsIPAdapterExtension],
regional_prompting_extension: RegionalPromptingExtension,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
@@ -117,7 +122,6 @@ class Flux(nn.Module):
assert len(controlnet_double_block_residuals) == len(self.double_blocks)
for block_index, block in enumerate(self.double_blocks):
assert isinstance(block, DoubleStreamBlock)
img, txt = CustomDoubleStreamBlockProcessor.custom_double_block_forward(
timestep_index=timestep_index,
total_num_timesteps=total_num_timesteps,
@@ -128,6 +132,7 @@ class Flux(nn.Module):
vec=vec,
pe=pe,
ip_adapter_extensions=ip_adapter_extensions,
regional_prompting_extension=regional_prompting_extension,
)
if controlnet_double_block_residuals is not None:
@@ -140,7 +145,17 @@ class Flux(nn.Module):
assert len(controlnet_single_block_residuals) == len(self.single_blocks)
for block_index, block in enumerate(self.single_blocks):
img = block(img, vec=vec, pe=pe)
assert isinstance(block, SingleStreamBlock)
img = CustomSingleStreamBlockProcessor.custom_single_block_forward(
timestep_index=timestep_index,
total_num_timesteps=total_num_timesteps,
block_index=block_index,
block=block,
img=img,
vec=vec,
pe=pe,
regional_prompting_extension=regional_prompting_extension,
)
if controlnet_single_block_residuals is not None:
img[:, txt.shape[1] :, ...] += controlnet_single_block_residuals[block_index]

View File

@@ -66,10 +66,7 @@ class RMSNorm(torch.nn.Module):
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x: Tensor):
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
return (x * rrms).to(dtype=x_dtype) * self.scale
return torch.nn.functional.rms_norm(x, self.scale.shape, self.scale, eps=1e-6)
class QKNorm(torch.nn.Module):

View File

@@ -0,0 +1,36 @@
from dataclasses import dataclass
import torch
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import Range
@dataclass
class FluxTextConditioning:
t5_embeddings: torch.Tensor
clip_embeddings: torch.Tensor
# If mask is None, the prompt is a global prompt.
mask: torch.Tensor | None
@dataclass
class FluxRegionalTextConditioning:
# Concatenated text embeddings.
# Shape: (1, concatenated_txt_seq_len, 4096)
t5_embeddings: torch.Tensor
# Shape: (1, concatenated_txt_seq_len, 3)
t5_txt_ids: torch.Tensor
# Global CLIP embeddings.
# Shape: (1, 768)
clip_embeddings: torch.Tensor
# A binary mask indicating the regions of the image that the prompt should be applied to. If None, the prompt is a
# global prompt.
# image_masks[i] is the mask for the ith prompt.
# image_masks[i] has shape (1, image_seq_len) and dtype torch.bool.
image_masks: list[torch.Tensor | None]
# List of ranges that represent the embedding ranges for each mask.
# t5_embedding_ranges[i] contains the range of the t5 embeddings that correspond to image_masks[i].
t5_embedding_ranges: list[Range]

View File

@@ -8,7 +8,7 @@ from pathlib import Path
from invokeai.backend.model_manager.load.load_base import LoadedModel, LoadedModelWithoutConfig, ModelLoaderBase
from invokeai.backend.model_manager.load.load_default import ModelLoader
from invokeai.backend.model_manager.load.model_cache.model_cache_default import ModelCache
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry, ModelLoaderRegistryBase
# This registers the subclasses that implement loaders of specific model types

View File

@@ -5,7 +5,6 @@ Base class for model loading in InvokeAI.
from abc import ABC, abstractmethod
from contextlib import contextmanager
from dataclasses import dataclass
from logging import Logger
from pathlib import Path
from typing import Any, Dict, Generator, Optional, Tuple
@@ -18,19 +17,17 @@ from invokeai.backend.model_manager.config import (
AnyModelConfig,
SubModelType,
)
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
from invokeai.backend.model_manager.load.model_cache.cache_record import CacheRecord
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
@dataclass
class LoadedModelWithoutConfig:
"""
Context manager object that mediates transfer from RAM<->VRAM.
"""Context manager object that mediates transfer from RAM<->VRAM.
This is a context manager object that has two distinct APIs:
1. Older API (deprecated):
Use the LoadedModel object directly as a context manager.
It will move the model into VRAM (on CUDA devices), and
Use the LoadedModel object directly as a context manager. It will move the model into VRAM (on CUDA devices), and
return the model in a form suitable for passing to torch.
Example:
```
@@ -40,13 +37,9 @@ class LoadedModelWithoutConfig:
```
2. Newer API (recommended):
Call the LoadedModel's `model_on_device()` method in a
context. It returns a tuple consisting of a copy of
the model's state dict in CPU RAM followed by a copy
of the model in VRAM. The state dict is provided to allow
LoRAs and other model patchers to return the model to
its unpatched state without expensive copy and restore
operations.
Call the LoadedModel's `model_on_device()` method in a context. It returns a tuple consisting of a copy of the
model's state dict in CPU RAM followed by a copy of the model in VRAM. The state dict is provided to allow LoRAs and
other model patchers to return the model to its unpatched state without expensive copy and restore operations.
Example:
```
@@ -55,43 +48,42 @@ class LoadedModelWithoutConfig:
image = vae.decode(latents)[0]
```
The state_dict should be treated as a read-only object and
never modified. Also be aware that some loadable models do
not have a state_dict, in which case this value will be None.
The state_dict should be treated as a read-only object and never modified. Also be aware that some loadable models
do not have a state_dict, in which case this value will be None.
"""
_locker: ModelLockerBase
def __init__(self, cache_record: CacheRecord, cache: ModelCache):
self._cache_record = cache_record
self._cache = cache
def __enter__(self) -> AnyModel:
"""Context entry."""
self._locker.lock()
self._cache.lock(self._cache_record.key)
return self.model
def __exit__(self, *args: Any, **kwargs: Any) -> None:
"""Context exit."""
self._locker.unlock()
self._cache.unlock(self._cache_record.key)
@contextmanager
def model_on_device(self) -> Generator[Tuple[Optional[Dict[str, torch.Tensor]], AnyModel], None, None]:
"""Return a tuple consisting of the model's state dict (if it exists) and the locked model on execution device."""
locked_model = self._locker.lock()
self._cache.lock(self._cache_record.key)
try:
state_dict = self._locker.get_state_dict()
yield (state_dict, locked_model)
yield (self._cache_record.cached_model.get_cpu_state_dict(), self._cache_record.cached_model.model)
finally:
self._locker.unlock()
self._cache.unlock(self._cache_record.key)
@property
def model(self) -> AnyModel:
"""Return the model without locking it."""
return self._locker.model
return self._cache_record.cached_model.model
@dataclass
class LoadedModel(LoadedModelWithoutConfig):
"""Context manager object that mediates transfer from RAM<->VRAM."""
config: Optional[AnyModelConfig] = None
def __init__(self, config: Optional[AnyModelConfig], cache_record: CacheRecord, cache: ModelCache):
super().__init__(cache_record=cache_record, cache=cache)
self.config = config
# TODO(MM2):
@@ -110,7 +102,7 @@ class ModelLoaderBase(ABC):
self,
app_config: InvokeAIAppConfig,
logger: Logger,
ram_cache: ModelCacheBase[AnyModel],
ram_cache: ModelCache,
):
"""Initialize the loader."""
pass
@@ -138,6 +130,6 @@ class ModelLoaderBase(ABC):
@property
@abstractmethod
def ram_cache(self) -> ModelCacheBase[AnyModel]:
def ram_cache(self) -> ModelCache:
"""Return the ram cache associated with this loader."""
pass

View File

@@ -14,7 +14,8 @@ from invokeai.backend.model_manager import (
)
from invokeai.backend.model_manager.config import DiffusersConfigBase
from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoaderBase
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
from invokeai.backend.model_manager.load.model_cache.cache_record import CacheRecord
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache, get_model_cache_key
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_fs
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
from invokeai.backend.util.devices import TorchDevice
@@ -28,7 +29,7 @@ class ModelLoader(ModelLoaderBase):
self,
app_config: InvokeAIAppConfig,
logger: Logger,
ram_cache: ModelCacheBase[AnyModel],
ram_cache: ModelCache,
):
"""Initialize the loader."""
self._app_config = app_config
@@ -54,11 +55,11 @@ class ModelLoader(ModelLoaderBase):
raise InvalidModelConfigException(f"Files for model '{model_config.name}' not found at {model_path}")
with skip_torch_weight_init():
locker = self._load_and_cache(model_config, submodel_type)
return LoadedModel(config=model_config, _locker=locker)
cache_record = self._load_and_cache(model_config, submodel_type)
return LoadedModel(config=model_config, cache_record=cache_record, cache=self._ram_cache)
@property
def ram_cache(self) -> ModelCacheBase[AnyModel]:
def ram_cache(self) -> ModelCache:
"""Return the ram cache associated with this loader."""
return self._ram_cache
@@ -66,10 +67,10 @@ class ModelLoader(ModelLoaderBase):
model_base = self._app_config.models_path
return (model_base / config.path).resolve()
def _load_and_cache(self, config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> ModelLockerBase:
def _load_and_cache(self, config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> CacheRecord:
stats_name = ":".join([config.base, config.type, config.name, (submodel_type or "")])
try:
return self._ram_cache.get(config.key, submodel_type, stats_name=stats_name)
return self._ram_cache.get(key=get_model_cache_key(config.key, submodel_type), stats_name=stats_name)
except IndexError:
pass
@@ -78,16 +79,11 @@ class ModelLoader(ModelLoaderBase):
loaded_model = self._load_model(config, submodel_type)
self._ram_cache.put(
config.key,
submodel_type=submodel_type,
get_model_cache_key(config.key, submodel_type),
model=loaded_model,
)
return self._ram_cache.get(
key=config.key,
submodel_type=submodel_type,
stats_name=stats_name,
)
return self._ram_cache.get(key=get_model_cache_key(config.key, submodel_type), stats_name=stats_name)
def get_size_fs(
self, config: AnyModelConfig, model_path: Path, submodel_type: Optional[SubModelType] = None

View File

@@ -1,6 +0,0 @@
"""Init file for ModelCache."""
from .model_cache_base import ModelCacheBase, CacheStats # noqa F401
from .model_cache_default import ModelCache # noqa F401
_all__ = ["ModelCacheBase", "ModelCache", "CacheStats"]

View File

@@ -0,0 +1,31 @@
from dataclasses import dataclass
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_only_full_load import (
CachedModelOnlyFullLoad,
)
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_with_partial_load import (
CachedModelWithPartialLoad,
)
@dataclass
class CacheRecord:
"""A class that represents a model in the model cache."""
# Cache key.
key: str
# Model in memory.
cached_model: CachedModelWithPartialLoad | CachedModelOnlyFullLoad
# If locks > 0, the model is actively being used, so we should do our best to keep it on the compute device.
_locks: int = 0
def lock(self) -> None:
self._locks += 1
def unlock(self) -> None:
self._locks -= 1
assert self._locks >= 0
@property
def is_locked(self) -> bool:
return self._locks > 0

View File

@@ -0,0 +1,15 @@
from dataclasses import dataclass, field
from typing import Dict
@dataclass
class CacheStats(object):
"""Collect statistics on cache performance."""
hits: int = 0 # cache hits
misses: int = 0 # cache misses
high_watermark: int = 0 # amount of cache used
in_cache: int = 0 # number of models in cache
cleared: int = 0 # number of models cleared to make space
cache_size: int = 0 # total size of cache
loaded_model_sizes: Dict[str, int] = field(default_factory=dict)

View File

@@ -0,0 +1,81 @@
from typing import Any
import torch
class CachedModelOnlyFullLoad:
"""A wrapper around a PyTorch model to handle full loads and unloads between the CPU and the compute device.
Note: "VRAM" is used throughout this class to refer to the memory on the compute device. It could be CUDA memory,
MPS memory, etc.
"""
def __init__(self, model: torch.nn.Module | Any, compute_device: torch.device, total_bytes: int):
"""Initialize a CachedModelOnlyFullLoad.
Args:
model (torch.nn.Module | Any): The model to wrap. Should be on the CPU.
compute_device (torch.device): The compute device to move the model to.
total_bytes (int): The total size (in bytes) of all the weights in the model.
"""
# model is often a torch.nn.Module, but could be any model type. Throughout this class, we handle both cases.
self._model = model
self._compute_device = compute_device
self._total_bytes = total_bytes
self._is_in_vram = False
@property
def model(self) -> torch.nn.Module:
return self._model
def get_cpu_state_dict(self) -> dict[str, torch.Tensor] | None:
"""Get a read-only copy of the model's state dict in RAM."""
# TODO(ryand): Document this better and implement it.
return None
def total_bytes(self) -> int:
"""Get the total size (in bytes) of all the weights in the model."""
return self._total_bytes
def cur_vram_bytes(self) -> int:
"""Get the size (in bytes) of the weights that are currently in VRAM."""
if self._is_in_vram:
return self._total_bytes
else:
return 0
def is_in_vram(self) -> bool:
"""Return true if the model is currently in VRAM."""
return self._is_in_vram
def full_load_to_vram(self) -> int:
"""Load all weights into VRAM (if supported by the model).
Returns:
The number of bytes loaded into VRAM.
"""
if self._is_in_vram:
# Already in VRAM.
return 0
if not hasattr(self._model, "to"):
# Model doesn't support moving to a device.
return 0
self._model.to(self._compute_device)
self._is_in_vram = True
return self._total_bytes
def full_unload_from_vram(self) -> int:
"""Unload all weights from VRAM.
Returns:
The number of bytes unloaded from VRAM.
"""
if not self._is_in_vram:
# Already in RAM.
return 0
self._model.to("cpu")
self._is_in_vram = False
return self._total_bytes

View File

@@ -0,0 +1,139 @@
import torch
from invokeai.backend.model_manager.load.model_cache.torch_function_autocast_context import (
add_autocast_to_module_forward,
)
from invokeai.backend.util.calc_tensor_size import calc_tensor_size
def set_nested_attr(obj: object, attr: str, value: object):
"""A helper function that extends setattr() to support nested attributes.
Example:
set_nested_attr(model, "module.encoder.conv1.weight", new_conv1_weight)
"""
attrs = attr.split(".")
for attr in attrs[:-1]:
obj = getattr(obj, attr)
setattr(obj, attrs[-1], value)
class CachedModelWithPartialLoad:
"""A wrapper around a PyTorch model to handle partial loads and unloads between the CPU and the compute device.
Note: "VRAM" is used throughout this class to refer to the memory on the compute device. It could be CUDA memory,
MPS memory, etc.
"""
def __init__(self, model: torch.nn.Module, compute_device: torch.device):
self._model = model
self._compute_device = compute_device
# A CPU read-only copy of the model's state dict.
self._cpu_state_dict: dict[str, torch.Tensor] = model.state_dict()
# Monkey-patch the model to add autocasting to the model's forward method.
add_autocast_to_module_forward(model, compute_device)
# TODO(ryand): Manage a read-only CPU copy of the model state dict.
# TODO(ryand): Add memoization for total_bytes and cur_vram_bytes?
self._total_bytes = sum(calc_tensor_size(p) for p in self._model.parameters())
self._cur_vram_bytes: int | None = None
@property
def model(self) -> torch.nn.Module:
return self._model
def get_cpu_state_dict(self) -> dict[str, torch.Tensor] | None:
"""Get a read-only copy of the model's state dict in RAM."""
# TODO(ryand): Document this better.
return self._cpu_state_dict
def total_bytes(self) -> int:
"""Get the total size (in bytes) of all the weights in the model."""
return self._total_bytes
def cur_vram_bytes(self) -> int:
"""Get the size (in bytes) of the weights that are currently in VRAM."""
if self._cur_vram_bytes is None:
self._cur_vram_bytes = sum(
calc_tensor_size(p) for p in self._model.parameters() if p.device.type == self._compute_device.type
)
return self._cur_vram_bytes
def full_load_to_vram(self) -> int:
"""Load all weights into VRAM."""
return self.partial_load_to_vram(self.total_bytes())
def full_unload_from_vram(self) -> int:
"""Unload all weights from VRAM."""
return self.partial_unload_from_vram(self.total_bytes())
@torch.no_grad()
def partial_load_to_vram(self, vram_bytes_to_load: int) -> int:
"""Load more weights into VRAM without exceeding vram_bytes_to_load.
Returns:
The number of bytes loaded into VRAM.
"""
vram_bytes_loaded = 0
# TODO(ryand): Iterate over buffers too?
for key, param in self._model.named_parameters():
# Skip parameters that are already on the compute device.
if param.device.type == self._compute_device.type:
continue
# Check the size of the parameter.
param_size = calc_tensor_size(param)
if vram_bytes_loaded + param_size > vram_bytes_to_load:
# TODO(ryand): Should we just break here? If we couldn't fit this parameter into VRAM, is it really
# worth continuing to search for a smaller parameter that would fit?
continue
# Copy the parameter to the compute device.
# We use the 'overwrite' strategy from torch.nn.Module._apply().
# TODO(ryand): For some edge cases (e.g. quantized models?), we may need to support other strategies (e.g.
# swap).
assert isinstance(param, torch.nn.Parameter)
assert param.is_leaf
out_param = torch.nn.Parameter(param.to(self._compute_device, copy=True), requires_grad=param.requires_grad)
set_nested_attr(self._model, key, out_param)
# We did not port the param.grad handling from torch.nn.Module._apply(), because we do not expect to be
# handling gradients. We assert that this assumption is true.
assert param.grad is None
vram_bytes_loaded += param_size
if self._cur_vram_bytes is not None:
self._cur_vram_bytes += vram_bytes_loaded
return vram_bytes_loaded
@torch.no_grad()
def partial_unload_from_vram(self, vram_bytes_to_free: int) -> int:
"""Unload weights from VRAM until vram_bytes_to_free bytes are freed. Or the entire model is unloaded.
Returns:
The number of bytes unloaded from VRAM.
"""
vram_bytes_freed = 0
# TODO(ryand): Iterate over buffers too?
for key, param in self._model.named_parameters():
if vram_bytes_freed >= vram_bytes_to_free:
break
if param.device.type != self._compute_device.type:
continue
# Create a new parameter, but inject the existing CPU tensor into it.
out_param = torch.nn.Parameter(self._cpu_state_dict[key], requires_grad=param.requires_grad)
set_nested_attr(self._model, key, out_param)
vram_bytes_freed += calc_tensor_size(param)
if self._cur_vram_bytes is not None:
self._cur_vram_bytes -= vram_bytes_freed
return vram_bytes_freed

View File

@@ -0,0 +1,534 @@
import gc
from logging import Logger
from typing import Dict, List, Optional
import torch
from invokeai.backend.model_manager import AnyModel, SubModelType
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot
from invokeai.backend.model_manager.load.model_cache.cache_record import CacheRecord
from invokeai.backend.model_manager.load.model_cache.cache_stats import CacheStats
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_only_full_load import (
CachedModelOnlyFullLoad,
)
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_with_partial_load import (
CachedModelWithPartialLoad,
)
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.backend.util.prefix_logger_adapter import PrefixedLoggerAdapter
# Size of a GB in bytes.
GB = 2**30
# Size of a MB in bytes.
MB = 2**20
# TODO(ryand): Where should this go? The ModelCache shouldn't be concerned with submodels.
def get_model_cache_key(model_key: str, submodel_type: Optional[SubModelType] = None) -> str:
"""Get the cache key for a model based on the optional submodel type."""
if submodel_type:
return f"{model_key}:{submodel_type.value}"
else:
return model_key
class ModelCache:
"""A cache for managing models in memory.
The cache is based on two levels of model storage:
- execution_device: The device where most models are executed (typically "cuda", "mps", or "cpu").
- storage_device: The device where models are offloaded when not in active use (typically "cpu").
The model cache is based on the following assumptions:
- storage_device_mem_size > execution_device_mem_size
- disk_to_storage_device_transfer_time >> storage_device_to_execution_device_transfer_time
A copy of all models in the cache is always kept on the storage_device. A subset of the models also have a copy on
the execution_device.
Models are moved between the storage_device and the execution_device as necessary. Cache size limits are enforced
on both the storage_device and the execution_device. The execution_device cache uses a smallest-first offload
policy. The storage_device cache uses a least-recently-used (LRU) offload policy.
Note: Neither of these offload policies has really been compared against alternatives. It's likely that different
policies would be better, although the optimal policies are likely heavily dependent on usage patterns and HW
configuration.
The cache returns context manager generators designed to load the model into the execution device (often GPU) within
the context, and unload outside the context.
Example usage:
```
cache = ModelCache(max_cache_size=7.5, max_vram_cache_size=6.0)
with cache.get_model('runwayml/stable-diffusion-1-5') as SD1:
do_something_on_gpu(SD1)
```
"""
def __init__(
self,
max_cache_size: float,
max_vram_cache_size: float,
execution_device: torch.device = torch.device("cuda"),
storage_device: torch.device = torch.device("cpu"),
lazy_offloading: bool = True,
log_memory_usage: bool = False,
logger: Optional[Logger] = None,
):
"""
Initialize the model RAM cache.
:param max_cache_size: Maximum size of the storage_device cache in GBs.
:param max_vram_cache_size: Maximum size of the execution_device cache in GBs.
:param execution_device: Torch device to load active model into [torch.device('cuda')]
:param storage_device: Torch device to save inactive model in [torch.device('cpu')]
:param lazy_offloading: Keep model in VRAM until another model needs to be loaded
:param log_memory_usage: If True, a memory snapshot will be captured before and after every model cache
operation, and the result will be logged (at debug level). There is a time cost to capturing the memory
snapshots, so it is recommended to disable this feature unless you are actively inspecting the model cache's
behaviour.
:param logger: InvokeAILogger to use (otherwise creates one)
"""
# allow lazy offloading only when vram cache enabled
# TODO(ryand): Think about what lazy_offloading should mean in the new model cache.
self._lazy_offloading = lazy_offloading and max_vram_cache_size > 0
self._max_cache_size: float = max_cache_size
self._max_vram_cache_size: float = max_vram_cache_size
self._execution_device: torch.device = execution_device
self._storage_device: torch.device = storage_device
self._logger = PrefixedLoggerAdapter(
logger or InvokeAILogger.get_logger(self.__class__.__name__), "MODEL CACHE"
)
self._log_memory_usage = log_memory_usage
self._stats: Optional[CacheStats] = None
self._cached_models: Dict[str, CacheRecord] = {}
self._cache_stack: List[str] = []
@property
def max_cache_size(self) -> float:
"""Return the cap on cache size."""
return self._max_cache_size
@max_cache_size.setter
def max_cache_size(self, value: float) -> None:
"""Set the cap on cache size."""
self._max_cache_size = value
@property
def max_vram_cache_size(self) -> float:
"""Return the cap on vram cache size."""
return self._max_vram_cache_size
@max_vram_cache_size.setter
def max_vram_cache_size(self, value: float) -> None:
"""Set the cap on vram cache size."""
self._max_vram_cache_size = value
@property
def stats(self) -> Optional[CacheStats]:
"""Return collected CacheStats object."""
return self._stats
@stats.setter
def stats(self, stats: CacheStats) -> None:
"""Set the CacheStats object for collecting cache statistics."""
self._stats = stats
def put(self, key: str, model: AnyModel) -> None:
"""Add a model to the cache."""
if key in self._cached_models:
self._logger.debug(
f"Attempted to add model {key} ({model.__class__.__name__}), but it already exists in the cache. No action necessary."
)
return
size = calc_model_size_by_data(self._logger, model)
self.make_room(size)
# Wrap model.
if isinstance(model, torch.nn.Module):
wrapped_model = CachedModelWithPartialLoad(model, self._execution_device)
else:
wrapped_model = CachedModelOnlyFullLoad(model, self._execution_device, size)
# running_on_cpu = self._execution_device == torch.device("cpu")
# state_dict = model.state_dict() if isinstance(model, torch.nn.Module) and not running_on_cpu else None
cache_record = CacheRecord(key=key, cached_model=wrapped_model)
self._cached_models[key] = cache_record
self._cache_stack.append(key)
self._logger.debug(
f"Added model {key} (Type: {model.__class__.__name__}, Wrap mode: {wrapped_model.__class__.__name__}, Model size: {size/MB:.2f}MB)"
)
def get(self, key: str, stats_name: Optional[str] = None) -> CacheRecord:
"""Retrieve a model from the cache.
:param key: Model key
:param stats_name: A human-readable id for the model for the purposes of stats reporting.
Raises IndexError if the model is not in the cache.
"""
if key in self._cached_models:
if self.stats:
self.stats.hits += 1
else:
if self.stats:
self.stats.misses += 1
self._logger.debug(f"Cache miss: {key}")
raise IndexError(f"The model with key {key} is not in the cache.")
cache_entry = self._cached_models[key]
# more stats
if self.stats:
stats_name = stats_name or key
self.stats.cache_size = int(self._max_cache_size * GB)
self.stats.high_watermark = max(self.stats.high_watermark, self._get_ram_in_use())
self.stats.in_cache = len(self._cached_models)
self.stats.loaded_model_sizes[stats_name] = max(
self.stats.loaded_model_sizes.get(stats_name, 0), cache_entry.cached_model.total_bytes()
)
# this moves the entry to the top (right end) of the stack
self._cache_stack = [k for k in self._cache_stack if k != key]
self._cache_stack.append(key)
self._logger.debug(f"Cache hit: {key} (Type: {cache_entry.cached_model.model.__class__.__name__})")
return cache_entry
def lock(self, key: str) -> None:
"""Lock a model for use and move it into VRAM."""
cache_entry = self._cached_models[key]
cache_entry.lock()
self._logger.debug(f"Locking model {key} (Type: {cache_entry.cached_model.model.__class__.__name__})")
try:
self._load_locked_model(cache_entry)
self._logger.debug(
f"Finished locking model {key} (Type: {cache_entry.cached_model.model.__class__.__name__})"
)
except torch.cuda.OutOfMemoryError:
self._logger.warning("Insufficient GPU memory to load model. Aborting")
cache_entry.unlock()
raise
except Exception:
cache_entry.unlock()
raise
self._log_cache_state()
def unlock(self, key: str) -> None:
"""Unlock a model."""
cache_entry = self._cached_models[key]
cache_entry.unlock()
self._logger.debug(f"Unlocked model {key} (Type: {cache_entry.cached_model.model.__class__.__name__})")
def _load_locked_model(self, cache_entry: CacheRecord) -> None:
"""Helper function for self.lock(). Loads a locked model into VRAM."""
vram_available = self._get_vram_available()
# The amount of additional VRAM that will be used if we fully load the model into VRAM.
model_cur_vram_bytes = cache_entry.cached_model.cur_vram_bytes()
model_total_bytes = cache_entry.cached_model.total_bytes()
model_vram_needed = model_total_bytes - model_cur_vram_bytes
self._logger.debug(
f"Before unloading: {self._get_vram_state_str(model_cur_vram_bytes, model_total_bytes, vram_available)}"
)
# Make room for the model in VRAM.
# 1. If the model can fit entirely in VRAM, then make enough room for it to be loaded fully.
# 2. If the model can't fit fully into VRAM, then unload all other models and load as much of the model as
# possible.
vram_bytes_freed = self._offload_unlocked_models(model_vram_needed)
self._logger.debug(f"Unloaded models (if necessary): vram_bytes_freed={(vram_bytes_freed/MB):.2f}MB")
# Check the updated vram_available after offloading.
vram_available = self._get_vram_available()
self._logger.debug(
f"After unloading: {self._get_vram_state_str(model_cur_vram_bytes, model_total_bytes, vram_available)}"
)
# Move as much of the model as possible into VRAM.
model_bytes_loaded = 0
if isinstance(cache_entry.cached_model, CachedModelWithPartialLoad):
model_bytes_loaded = cache_entry.cached_model.partial_load_to_vram(vram_available)
elif isinstance(cache_entry.cached_model, CachedModelOnlyFullLoad): # type: ignore
# Partial load is not supported, so we have not choice but to try and fit it all into VRAM.
model_bytes_loaded = cache_entry.cached_model.full_load_to_vram()
else:
raise ValueError(f"Unsupported cached model type: {type(cache_entry.cached_model)}")
model_cur_vram_bytes = cache_entry.cached_model.cur_vram_bytes()
vram_available = self._get_vram_available()
self._logger.debug(f"Loaded model onto execution device: model_bytes_loaded={(model_bytes_loaded/MB):.2f}MB, ")
self._logger.debug(
f"After loading: {self._get_vram_state_str(model_cur_vram_bytes, model_total_bytes, vram_available)}"
)
def _get_vram_available(self) -> int:
"""Get the amount of VRAM available in the cache."""
return int(self._max_vram_cache_size * GB) - self._get_vram_in_use()
def _get_vram_in_use(self) -> int:
"""Get the amount of VRAM currently in use."""
return sum(ce.cached_model.cur_vram_bytes() for ce in self._cached_models.values())
def _get_ram_available(self) -> int:
"""Get the amount of RAM available in the cache."""
return int(self._max_cache_size * GB) - self._get_ram_in_use()
def _get_ram_in_use(self) -> int:
"""Get the amount of RAM currently in use."""
return sum(ce.cached_model.total_bytes() for ce in self._cached_models.values())
def _capture_memory_snapshot(self) -> Optional[MemorySnapshot]:
if self._log_memory_usage:
return MemorySnapshot.capture()
return None
def _get_vram_state_str(self, model_cur_vram_bytes: int, model_total_bytes: int, vram_available: int) -> str:
"""Helper function for preparing a VRAM state log string."""
model_cur_vram_bytes_percent = model_cur_vram_bytes / model_total_bytes if model_total_bytes > 0 else 0
return (
f"model_total={model_total_bytes/MB:.0f} MB, "
+ f"model_vram={model_cur_vram_bytes/MB:.0f} MB ({model_cur_vram_bytes_percent:.1%} %), "
+ f"vram_total={int(self._max_vram_cache_size * GB)/MB:.0f} MB, "
+ f"vram_available={(vram_available/MB):.0f} MB, "
)
def _offload_unlocked_models(self, vram_bytes_to_free: int) -> int:
"""Offload models from the execution_device until vram_bytes_to_free bytes are freed, or all models are
offloaded. Of course, locked models are not offloaded.
Returns:
int: The number of bytes freed.
"""
self._logger.debug(f"Offloading unlocked models with goal of freeing {vram_bytes_to_free/MB:.2f}MB of VRAM.")
vram_bytes_freed = 0
# TODO(ryand): Give more thought to the offloading policy used here.
cache_entries_increasing_size = sorted(self._cached_models.values(), key=lambda x: x.cached_model.total_bytes())
for cache_entry in cache_entries_increasing_size:
if vram_bytes_freed >= vram_bytes_to_free:
break
if cache_entry.is_locked:
continue
if isinstance(cache_entry.cached_model, CachedModelWithPartialLoad):
cache_entry_bytes_freed = cache_entry.cached_model.partial_unload_from_vram(
vram_bytes_to_free - vram_bytes_freed
)
elif isinstance(cache_entry.cached_model, CachedModelOnlyFullLoad): # type: ignore
cache_entry_bytes_freed = cache_entry.cached_model.full_unload_from_vram()
else:
raise ValueError(f"Unsupported cached model type: {type(cache_entry.cached_model)}")
if cache_entry_bytes_freed > 0:
self._logger.debug(
f"Unloaded {cache_entry.key} from VRAM to free {(cache_entry_bytes_freed/MB):.0f} MB."
)
vram_bytes_freed += cache_entry_bytes_freed
TorchDevice.empty_cache()
return vram_bytes_freed
# def _move_model_to_device(self, cache_entry: CacheRecord, target_device: torch.device) -> None:
# """Move model into the indicated device.
# :param cache_entry: The CacheRecord for the model
# :param target_device: The torch.device to move the model into
# May raise a torch.cuda.OutOfMemoryError
# """
# self._logger.debug(f"Called to move {cache_entry.key} to {target_device}")
# source_device = cache_entry.device
# # Note: We compare device types only so that 'cuda' == 'cuda:0'.
# # This would need to be revised to support multi-GPU.
# if torch.device(source_device).type == torch.device(target_device).type:
# return
# # Some models don't have a `to` method, in which case they run in RAM/CPU.
# if not hasattr(cache_entry.model, "to"):
# return
# # This roundabout method for moving the model around is done to avoid
# # the cost of moving the model from RAM to VRAM and then back from VRAM to RAM.
# # When moving to VRAM, we copy (not move) each element of the state dict from
# # RAM to a new state dict in VRAM, and then inject it into the model.
# # This operation is slightly faster than running `to()` on the whole model.
# #
# # When the model needs to be removed from VRAM we simply delete the copy
# # of the state dict in VRAM, and reinject the state dict that is cached
# # in RAM into the model. So this operation is very fast.
# start_model_to_time = time.time()
# snapshot_before = self._capture_memory_snapshot()
# try:
# if cache_entry.state_dict is not None:
# assert hasattr(cache_entry.model, "load_state_dict")
# if target_device == self._storage_device:
# cache_entry.model.load_state_dict(cache_entry.state_dict, assign=True)
# else:
# new_dict: Dict[str, torch.Tensor] = {}
# for k, v in cache_entry.state_dict.items():
# new_dict[k] = v.to(target_device, copy=True)
# cache_entry.model.load_state_dict(new_dict, assign=True)
# cache_entry.model.to(target_device)
# cache_entry.device = target_device
# except Exception as e: # blow away cache entry
# self._delete_cache_entry(cache_entry)
# raise e
# snapshot_after = self._capture_memory_snapshot()
# end_model_to_time = time.time()
# self._logger.debug(
# f"Moved model '{cache_entry.key}' from {source_device} to"
# f" {target_device} in {(end_model_to_time-start_model_to_time):.2f}s."
# f"Estimated model size: {(cache_entry.size/GB):.3f} GB."
# f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
# )
# if (
# snapshot_before is not None
# and snapshot_after is not None
# and snapshot_before.vram is not None
# and snapshot_after.vram is not None
# ):
# vram_change = abs(snapshot_before.vram - snapshot_after.vram)
# # If the estimated model size does not match the change in VRAM, log a warning.
# if not math.isclose(
# vram_change,
# cache_entry.size,
# rel_tol=0.1,
# abs_tol=10 * MB,
# ):
# self._logger.debug(
# f"Moving model '{cache_entry.key}' from {source_device} to"
# f" {target_device} caused an unexpected change in VRAM usage. The model's"
# " estimated size may be incorrect. Estimated model size:"
# f" {(cache_entry.size/GB):.3f} GB.\n"
# f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
# )
def _log_cache_state(self, title: str = "Model cache state:", include_entry_details: bool = True):
ram_size_bytes = self._max_cache_size * GB
ram_in_use_bytes = self._get_ram_in_use()
ram_in_use_bytes_percent = ram_in_use_bytes / ram_size_bytes if ram_size_bytes > 0 else 0
ram_available_bytes = self._get_ram_available()
ram_available_bytes_percent = ram_available_bytes / ram_size_bytes if ram_size_bytes > 0 else 0
vram_size_bytes = self._max_vram_cache_size * GB
vram_in_use_bytes = self._get_vram_in_use()
vram_in_use_bytes_percent = vram_in_use_bytes / vram_size_bytes if vram_size_bytes > 0 else 0
vram_available_bytes = self._get_vram_available()
vram_available_bytes_percent = vram_available_bytes / vram_size_bytes if vram_size_bytes > 0 else 0
log = f"{title}\n"
log_format = " {:<30} Limit: {:>7.1f} MB, Used: {:>7.1f} MB ({:>5.1%}), Available: {:>7.1f} MB ({:>5.1%})\n"
log += log_format.format(
f"Storage Device ({self._storage_device.type})",
ram_size_bytes / MB,
ram_in_use_bytes / MB,
ram_in_use_bytes_percent,
ram_available_bytes / MB,
ram_available_bytes_percent,
)
log += log_format.format(
f"Compute Device ({self._execution_device.type})",
vram_size_bytes / MB,
vram_in_use_bytes / MB,
vram_in_use_bytes_percent,
vram_available_bytes / MB,
vram_available_bytes_percent,
)
if torch.cuda.is_available():
log += " {:<30} {} MB\n".format("CUDA Memory Allocated:", torch.cuda.memory_allocated() / MB)
log += " {:<30} {}\n".format("Total models:", len(self._cached_models))
if include_entry_details and len(self._cached_models) > 0:
log += " Models:\n"
log_format = (
" {:<80} total={:>7.1f} MB, vram={:>7.1f} MB ({:>5.1%}), ram={:>7.1f} MB ({:>5.1%}), locked={}\n"
)
for cache_record in self._cached_models.values():
total_bytes = cache_record.cached_model.total_bytes()
cur_vram_bytes = cache_record.cached_model.cur_vram_bytes()
cur_vram_bytes_percent = cur_vram_bytes / total_bytes if total_bytes > 0 else 0
cur_ram_bytes = total_bytes - cur_vram_bytes
cur_ram_bytes_percent = cur_ram_bytes / total_bytes if total_bytes > 0 else 0
log += log_format.format(
f"{cache_record.key} ({cache_record.cached_model.model.__class__.__name__}):",
total_bytes / MB,
cur_vram_bytes / MB,
cur_vram_bytes_percent,
cur_ram_bytes / MB,
cur_ram_bytes_percent,
cache_record.is_locked,
)
self._logger.debug(log)
def make_room(self, bytes_needed: int) -> None:
"""Make enough room in the cache to accommodate a new model of indicated size.
Note: This function deletes all of the cache's internal references to a model in order to free it. If there are
external references to the model, there's nothing that the cache can do about it, and those models will not be
garbage-collected.
"""
self._logger.debug(f"Making room for {bytes_needed/MB:.2f}MB of RAM.")
self._log_cache_state(title="Before dropping models:")
ram_bytes_available = self._get_ram_available()
ram_bytes_to_free = max(0, bytes_needed - ram_bytes_available)
ram_bytes_freed = 0
pos = 0
models_cleared = 0
while ram_bytes_freed < ram_bytes_to_free and pos < len(self._cache_stack):
model_key = self._cache_stack[pos]
cache_entry = self._cached_models[model_key]
if not cache_entry.is_locked:
ram_bytes_freed += cache_entry.cached_model.total_bytes()
self._logger.debug(
f"Dropping {model_key} from RAM cache to free {(cache_entry.cached_model.total_bytes()/MB):.2f}MB."
)
self._delete_cache_entry(cache_entry)
del cache_entry
models_cleared += 1
else:
pos += 1
if models_cleared > 0:
# There would likely be some 'garbage' to be collected regardless of whether a model was cleared or not, but
# there is a significant time cost to calling `gc.collect()`, so we want to use it sparingly. (The time cost
# is high even if no garbage gets collected.)
#
# Calling gc.collect(...) when a model is cleared seems like a good middle-ground:
# - If models had to be cleared, it's a signal that we are close to our memory limit.
# - If models were cleared, there's a good chance that there's a significant amount of garbage to be
# collected.
#
# Keep in mind that gc is only responsible for handling reference cycles. Most objects should be cleaned up
# immediately when their reference count hits 0.
if self.stats:
self.stats.cleared = models_cleared
gc.collect()
TorchDevice.empty_cache()
self._logger.debug(f"Dropped {models_cleared} models to free {ram_bytes_freed/MB:.2f}MB of RAM.")
self._log_cache_state(title="After dropping models:")
def _delete_cache_entry(self, cache_entry: CacheRecord) -> None:
self._cache_stack.remove(cache_entry.key)
del self._cached_models[cache_entry.key]

View File

@@ -1,221 +0,0 @@
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Development team
# TODO: Add Stalker's proper name to copyright
"""
Manage a RAM cache of diffusion/transformer models for fast switching.
They are moved between GPU VRAM and CPU RAM as necessary. If the cache
grows larger than a preset maximum, then the least recently used
model will be cleared and (re)loaded from disk when next needed.
"""
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from logging import Logger
from typing import Dict, Generic, Optional, TypeVar
import torch
from invokeai.backend.model_manager.config import AnyModel, SubModelType
class ModelLockerBase(ABC):
"""Base class for the model locker used by the loader."""
@abstractmethod
def lock(self) -> AnyModel:
"""Lock the contained model and move it into VRAM."""
pass
@abstractmethod
def unlock(self) -> None:
"""Unlock the contained model, and remove it from VRAM."""
pass
@abstractmethod
def get_state_dict(self) -> Optional[Dict[str, torch.Tensor]]:
"""Return the state dict (if any) for the cached model."""
pass
@property
@abstractmethod
def model(self) -> AnyModel:
"""Return the model."""
pass
T = TypeVar("T")
@dataclass
class CacheRecord(Generic[T]):
"""
Elements of the cache:
key: Unique key for each model, same as used in the models database.
model: Model in memory.
state_dict: A read-only copy of the model's state dict in RAM. It will be
used as a template for creating a copy in the VRAM.
size: Size of the model
loaded: True if the model's state dict is currently in VRAM
Before a model is executed, the state_dict template is copied into VRAM,
and then injected into the model. When the model is finished, the VRAM
copy of the state dict is deleted, and the RAM version is reinjected
into the model.
The state_dict should be treated as a read-only attribute. Do not attempt
to patch or otherwise modify it. Instead, patch the copy of the state_dict
after it is loaded into the execution device (e.g. CUDA) using the `LoadedModel`
context manager call `model_on_device()`.
"""
key: str
model: T
device: torch.device
state_dict: Optional[Dict[str, torch.Tensor]]
size: int
loaded: bool = False
_locks: int = 0
def lock(self) -> None:
"""Lock this record."""
self._locks += 1
def unlock(self) -> None:
"""Unlock this record."""
self._locks -= 1
assert self._locks >= 0
@property
def locked(self) -> bool:
"""Return true if record is locked."""
return self._locks > 0
@dataclass
class CacheStats(object):
"""Collect statistics on cache performance."""
hits: int = 0 # cache hits
misses: int = 0 # cache misses
high_watermark: int = 0 # amount of cache used
in_cache: int = 0 # number of models in cache
cleared: int = 0 # number of models cleared to make space
cache_size: int = 0 # total size of cache
loaded_model_sizes: Dict[str, int] = field(default_factory=dict)
class ModelCacheBase(ABC, Generic[T]):
"""Virtual base class for RAM model cache."""
@property
@abstractmethod
def storage_device(self) -> torch.device:
"""Return the storage device (e.g. "CPU" for RAM)."""
pass
@property
@abstractmethod
def execution_device(self) -> torch.device:
"""Return the exection device (e.g. "cuda" for VRAM)."""
pass
@property
@abstractmethod
def lazy_offloading(self) -> bool:
"""Return true if the cache is configured to lazily offload models in VRAM."""
pass
@property
@abstractmethod
def max_cache_size(self) -> float:
"""Return the maximum size the RAM cache can grow to."""
pass
@max_cache_size.setter
@abstractmethod
def max_cache_size(self, value: float) -> None:
"""Set the cap on vram cache size."""
@property
@abstractmethod
def max_vram_cache_size(self) -> float:
"""Return the maximum size the VRAM cache can grow to."""
pass
@max_vram_cache_size.setter
@abstractmethod
def max_vram_cache_size(self, value: float) -> float:
"""Set the maximum size the VRAM cache can grow to."""
pass
@abstractmethod
def offload_unlocked_models(self, size_required: int) -> None:
"""Offload from VRAM any models not actively in use."""
pass
@abstractmethod
def move_model_to_device(self, cache_entry: CacheRecord[AnyModel], target_device: torch.device) -> None:
"""Move model into the indicated device."""
pass
@property
@abstractmethod
def stats(self) -> Optional[CacheStats]:
"""Return collected CacheStats object."""
pass
@stats.setter
@abstractmethod
def stats(self, stats: CacheStats) -> None:
"""Set the CacheStats object for collectin cache statistics."""
pass
@property
@abstractmethod
def logger(self) -> Logger:
"""Return the logger used by the cache."""
pass
@abstractmethod
def make_room(self, size: int) -> None:
"""Make enough room in the cache to accommodate a new model of indicated size."""
pass
@abstractmethod
def put(
self,
key: str,
model: T,
submodel_type: Optional[SubModelType] = None,
) -> None:
"""Store model under key and optional submodel_type."""
pass
@abstractmethod
def get(
self,
key: str,
submodel_type: Optional[SubModelType] = None,
stats_name: Optional[str] = None,
) -> ModelLockerBase:
"""
Retrieve model using key and optional submodel_type.
:param key: Opaque model key
:param submodel_type: Type of the submodel to fetch
:param stats_name: A human-readable id for the model for the purposes of
stats reporting.
This may raise an IndexError if the model is not in the cache.
"""
pass
@abstractmethod
def cache_size(self) -> int:
"""Get the total size of the models currently cached."""
pass
@abstractmethod
def print_cuda_stats(self) -> None:
"""Log debugging information on CUDA usage."""
pass

View File

@@ -1,426 +0,0 @@
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Development team
# TODO: Add Stalker's proper name to copyright
""" """
import gc
import math
import time
from contextlib import suppress
from logging import Logger
from typing import Dict, List, Optional
import torch
from invokeai.backend.model_manager import AnyModel, SubModelType
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff
from invokeai.backend.model_manager.load.model_cache.model_cache_base import (
CacheRecord,
CacheStats,
ModelCacheBase,
ModelLockerBase,
)
from invokeai.backend.model_manager.load.model_cache.model_locker import ModelLocker
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
# Size of a GB in bytes.
GB = 2**30
# Size of a MB in bytes.
MB = 2**20
class ModelCache(ModelCacheBase[AnyModel]):
"""A cache for managing models in memory.
The cache is based on two levels of model storage:
- execution_device: The device where most models are executed (typically "cuda", "mps", or "cpu").
- storage_device: The device where models are offloaded when not in active use (typically "cpu").
The model cache is based on the following assumptions:
- storage_device_mem_size > execution_device_mem_size
- disk_to_storage_device_transfer_time >> storage_device_to_execution_device_transfer_time
A copy of all models in the cache is always kept on the storage_device. A subset of the models also have a copy on
the execution_device.
Models are moved between the storage_device and the execution_device as necessary. Cache size limits are enforced
on both the storage_device and the execution_device. The execution_device cache uses a smallest-first offload
policy. The storage_device cache uses a least-recently-used (LRU) offload policy.
Note: Neither of these offload policies has really been compared against alternatives. It's likely that different
policies would be better, although the optimal policies are likely heavily dependent on usage patterns and HW
configuration.
The cache returns context manager generators designed to load the model into the execution device (often GPU) within
the context, and unload outside the context.
Example usage:
```
cache = ModelCache(max_cache_size=7.5, max_vram_cache_size=6.0)
with cache.get_model('runwayml/stable-diffusion-1-5') as SD1:
do_something_on_gpu(SD1)
```
"""
def __init__(
self,
max_cache_size: float,
max_vram_cache_size: float,
execution_device: torch.device = torch.device("cuda"),
storage_device: torch.device = torch.device("cpu"),
precision: torch.dtype = torch.float16,
lazy_offloading: bool = True,
log_memory_usage: bool = False,
logger: Optional[Logger] = None,
):
"""
Initialize the model RAM cache.
:param max_cache_size: Maximum size of the storage_device cache in GBs.
:param max_vram_cache_size: Maximum size of the execution_device cache in GBs.
:param execution_device: Torch device to load active model into [torch.device('cuda')]
:param storage_device: Torch device to save inactive model in [torch.device('cpu')]
:param precision: Precision for loaded models [torch.float16]
:param lazy_offloading: Keep model in VRAM until another model needs to be loaded
:param log_memory_usage: If True, a memory snapshot will be captured before and after every model cache
operation, and the result will be logged (at debug level). There is a time cost to capturing the memory
snapshots, so it is recommended to disable this feature unless you are actively inspecting the model cache's
behaviour.
:param logger: InvokeAILogger to use (otherwise creates one)
"""
# allow lazy offloading only when vram cache enabled
self._lazy_offloading = lazy_offloading and max_vram_cache_size > 0
self._max_cache_size: float = max_cache_size
self._max_vram_cache_size: float = max_vram_cache_size
self._execution_device: torch.device = execution_device
self._storage_device: torch.device = storage_device
self._logger = logger or InvokeAILogger.get_logger(self.__class__.__name__)
self._log_memory_usage = log_memory_usage
self._stats: Optional[CacheStats] = None
self._cached_models: Dict[str, CacheRecord[AnyModel]] = {}
self._cache_stack: List[str] = []
@property
def logger(self) -> Logger:
"""Return the logger used by the cache."""
return self._logger
@property
def lazy_offloading(self) -> bool:
"""Return true if the cache is configured to lazily offload models in VRAM."""
return self._lazy_offloading
@property
def storage_device(self) -> torch.device:
"""Return the storage device (e.g. "CPU" for RAM)."""
return self._storage_device
@property
def execution_device(self) -> torch.device:
"""Return the exection device (e.g. "cuda" for VRAM)."""
return self._execution_device
@property
def max_cache_size(self) -> float:
"""Return the cap on cache size."""
return self._max_cache_size
@max_cache_size.setter
def max_cache_size(self, value: float) -> None:
"""Set the cap on cache size."""
self._max_cache_size = value
@property
def max_vram_cache_size(self) -> float:
"""Return the cap on vram cache size."""
return self._max_vram_cache_size
@max_vram_cache_size.setter
def max_vram_cache_size(self, value: float) -> None:
"""Set the cap on vram cache size."""
self._max_vram_cache_size = value
@property
def stats(self) -> Optional[CacheStats]:
"""Return collected CacheStats object."""
return self._stats
@stats.setter
def stats(self, stats: CacheStats) -> None:
"""Set the CacheStats object for collectin cache statistics."""
self._stats = stats
def cache_size(self) -> int:
"""Get the total size of the models currently cached."""
total = 0
for cache_record in self._cached_models.values():
total += cache_record.size
return total
def put(
self,
key: str,
model: AnyModel,
submodel_type: Optional[SubModelType] = None,
) -> None:
"""Store model under key and optional submodel_type."""
key = self._make_cache_key(key, submodel_type)
if key in self._cached_models:
return
size = calc_model_size_by_data(self.logger, model)
self.make_room(size)
running_on_cpu = self.execution_device == torch.device("cpu")
state_dict = model.state_dict() if isinstance(model, torch.nn.Module) and not running_on_cpu else None
cache_record = CacheRecord(key=key, model=model, device=self.storage_device, state_dict=state_dict, size=size)
self._cached_models[key] = cache_record
self._cache_stack.append(key)
def get(
self,
key: str,
submodel_type: Optional[SubModelType] = None,
stats_name: Optional[str] = None,
) -> ModelLockerBase:
"""
Retrieve model using key and optional submodel_type.
:param key: Opaque model key
:param submodel_type: Type of the submodel to fetch
:param stats_name: A human-readable id for the model for the purposes of
stats reporting.
This may raise an IndexError if the model is not in the cache.
"""
key = self._make_cache_key(key, submodel_type)
if key in self._cached_models:
if self.stats:
self.stats.hits += 1
else:
if self.stats:
self.stats.misses += 1
raise IndexError(f"The model with key {key} is not in the cache.")
cache_entry = self._cached_models[key]
# more stats
if self.stats:
stats_name = stats_name or key
self.stats.cache_size = int(self._max_cache_size * GB)
self.stats.high_watermark = max(self.stats.high_watermark, self.cache_size())
self.stats.in_cache = len(self._cached_models)
self.stats.loaded_model_sizes[stats_name] = max(
self.stats.loaded_model_sizes.get(stats_name, 0), cache_entry.size
)
# this moves the entry to the top (right end) of the stack
with suppress(Exception):
self._cache_stack.remove(key)
self._cache_stack.append(key)
return ModelLocker(
cache=self,
cache_entry=cache_entry,
)
def _capture_memory_snapshot(self) -> Optional[MemorySnapshot]:
if self._log_memory_usage:
return MemorySnapshot.capture()
return None
def _make_cache_key(self, model_key: str, submodel_type: Optional[SubModelType] = None) -> str:
if submodel_type:
return f"{model_key}:{submodel_type.value}"
else:
return model_key
def offload_unlocked_models(self, size_required: int) -> None:
"""Offload models from the execution_device to make room for size_required.
:param size_required: The amount of space to clear in the execution_device cache, in bytes.
"""
reserved = self._max_vram_cache_size * GB
vram_in_use = torch.cuda.memory_allocated() + size_required
self.logger.debug(f"{(vram_in_use/GB):.2f}GB VRAM needed for models; max allowed={(reserved/GB):.2f}GB")
for _, cache_entry in sorted(self._cached_models.items(), key=lambda x: x[1].size):
if vram_in_use <= reserved:
break
if not cache_entry.loaded:
continue
if not cache_entry.locked:
self.move_model_to_device(cache_entry, self.storage_device)
cache_entry.loaded = False
vram_in_use = torch.cuda.memory_allocated() + size_required
self.logger.debug(
f"Removing {cache_entry.key} from VRAM to free {(cache_entry.size/GB):.2f}GB; vram free = {(torch.cuda.memory_allocated()/GB):.2f}GB"
)
TorchDevice.empty_cache()
def move_model_to_device(self, cache_entry: CacheRecord[AnyModel], target_device: torch.device) -> None:
"""Move model into the indicated device.
:param cache_entry: The CacheRecord for the model
:param target_device: The torch.device to move the model into
May raise a torch.cuda.OutOfMemoryError
"""
self.logger.debug(f"Called to move {cache_entry.key} to {target_device}")
source_device = cache_entry.device
# Note: We compare device types only so that 'cuda' == 'cuda:0'.
# This would need to be revised to support multi-GPU.
if torch.device(source_device).type == torch.device(target_device).type:
return
# Some models don't have a `to` method, in which case they run in RAM/CPU.
if not hasattr(cache_entry.model, "to"):
return
# This roundabout method for moving the model around is done to avoid
# the cost of moving the model from RAM to VRAM and then back from VRAM to RAM.
# When moving to VRAM, we copy (not move) each element of the state dict from
# RAM to a new state dict in VRAM, and then inject it into the model.
# This operation is slightly faster than running `to()` on the whole model.
#
# When the model needs to be removed from VRAM we simply delete the copy
# of the state dict in VRAM, and reinject the state dict that is cached
# in RAM into the model. So this operation is very fast.
start_model_to_time = time.time()
snapshot_before = self._capture_memory_snapshot()
try:
if cache_entry.state_dict is not None:
assert hasattr(cache_entry.model, "load_state_dict")
if target_device == self.storage_device:
cache_entry.model.load_state_dict(cache_entry.state_dict, assign=True)
else:
new_dict: Dict[str, torch.Tensor] = {}
for k, v in cache_entry.state_dict.items():
new_dict[k] = v.to(target_device, copy=True)
cache_entry.model.load_state_dict(new_dict, assign=True)
cache_entry.model.to(target_device)
cache_entry.device = target_device
except Exception as e: # blow away cache entry
self._delete_cache_entry(cache_entry)
raise e
snapshot_after = self._capture_memory_snapshot()
end_model_to_time = time.time()
self.logger.debug(
f"Moved model '{cache_entry.key}' from {source_device} to"
f" {target_device} in {(end_model_to_time-start_model_to_time):.2f}s."
f"Estimated model size: {(cache_entry.size/GB):.3f} GB."
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
)
if (
snapshot_before is not None
and snapshot_after is not None
and snapshot_before.vram is not None
and snapshot_after.vram is not None
):
vram_change = abs(snapshot_before.vram - snapshot_after.vram)
# If the estimated model size does not match the change in VRAM, log a warning.
if not math.isclose(
vram_change,
cache_entry.size,
rel_tol=0.1,
abs_tol=10 * MB,
):
self.logger.debug(
f"Moving model '{cache_entry.key}' from {source_device} to"
f" {target_device} caused an unexpected change in VRAM usage. The model's"
" estimated size may be incorrect. Estimated model size:"
f" {(cache_entry.size/GB):.3f} GB.\n"
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
)
def print_cuda_stats(self) -> None:
"""Log CUDA diagnostics."""
vram = "%4.2fG" % (torch.cuda.memory_allocated() / GB)
ram = "%4.2fG" % (self.cache_size() / GB)
in_ram_models = 0
in_vram_models = 0
locked_in_vram_models = 0
for cache_record in self._cached_models.values():
if hasattr(cache_record.model, "device"):
if cache_record.model.device == self.storage_device:
in_ram_models += 1
else:
in_vram_models += 1
if cache_record.locked:
locked_in_vram_models += 1
self.logger.debug(
f"Current VRAM/RAM usage: {vram}/{ram}; models_in_ram/models_in_vram(locked) ="
f" {in_ram_models}/{in_vram_models}({locked_in_vram_models})"
)
def make_room(self, size: int) -> None:
"""Make enough room in the cache to accommodate a new model of indicated size.
Note: This function deletes all of the cache's internal references to a model in order to free it. If there are
external references to the model, there's nothing that the cache can do about it, and those models will not be
garbage-collected.
"""
bytes_needed = size
maximum_size = self.max_cache_size * GB # stored in GB, convert to bytes
current_size = self.cache_size()
if current_size + bytes_needed > maximum_size:
self.logger.debug(
f"Max cache size exceeded: {(current_size/GB):.2f}/{self.max_cache_size:.2f} GB, need an additional"
f" {(bytes_needed/GB):.2f} GB"
)
self.logger.debug(f"Before making_room: cached_models={len(self._cached_models)}")
pos = 0
models_cleared = 0
while current_size + bytes_needed > maximum_size and pos < len(self._cache_stack):
model_key = self._cache_stack[pos]
cache_entry = self._cached_models[model_key]
device = cache_entry.model.device if hasattr(cache_entry.model, "device") else None
self.logger.debug(
f"Model: {model_key}, locks: {cache_entry._locks}, device: {device}, loaded: {cache_entry.loaded}"
)
if not cache_entry.locked:
self.logger.debug(
f"Removing {model_key} from RAM cache to free at least {(size/GB):.2f} GB (-{(cache_entry.size/GB):.2f} GB)"
)
current_size -= cache_entry.size
models_cleared += 1
self._delete_cache_entry(cache_entry)
del cache_entry
else:
pos += 1
if models_cleared > 0:
# There would likely be some 'garbage' to be collected regardless of whether a model was cleared or not, but
# there is a significant time cost to calling `gc.collect()`, so we want to use it sparingly. (The time cost
# is high even if no garbage gets collected.)
#
# Calling gc.collect(...) when a model is cleared seems like a good middle-ground:
# - If models had to be cleared, it's a signal that we are close to our memory limit.
# - If models were cleared, there's a good chance that there's a significant amount of garbage to be
# collected.
#
# Keep in mind that gc is only responsible for handling reference cycles. Most objects should be cleaned up
# immediately when their reference count hits 0.
if self.stats:
self.stats.cleared = models_cleared
gc.collect()
TorchDevice.empty_cache()
self.logger.debug(f"After making room: cached_models={len(self._cached_models)}")
def _delete_cache_entry(self, cache_entry: CacheRecord[AnyModel]) -> None:
self._cache_stack.remove(cache_entry.key)
del self._cached_models[cache_entry.key]

View File

@@ -1,64 +0,0 @@
"""
Base class and implementation of a class that moves models in and out of VRAM.
"""
from typing import Dict, Optional
import torch
from invokeai.backend.model_manager import AnyModel
from invokeai.backend.model_manager.load.model_cache.model_cache_base import (
CacheRecord,
ModelCacheBase,
ModelLockerBase,
)
class ModelLocker(ModelLockerBase):
"""Internal class that mediates movement in and out of GPU."""
def __init__(self, cache: ModelCacheBase[AnyModel], cache_entry: CacheRecord[AnyModel]):
"""
Initialize the model locker.
:param cache: The ModelCache object
:param cache_entry: The entry in the model cache
"""
self._cache = cache
self._cache_entry = cache_entry
@property
def model(self) -> AnyModel:
"""Return the model without moving it around."""
return self._cache_entry.model
def get_state_dict(self) -> Optional[Dict[str, torch.Tensor]]:
"""Return the state dict (if any) for the cached model."""
return self._cache_entry.state_dict
def lock(self) -> AnyModel:
"""Move the model into the execution device (GPU) and lock it."""
self._cache_entry.lock()
try:
if self._cache.lazy_offloading:
self._cache.offload_unlocked_models(self._cache_entry.size)
self._cache.move_model_to_device(self._cache_entry, self._cache.execution_device)
self._cache_entry.loaded = True
self._cache.logger.debug(f"Locking {self._cache_entry.key} in {self._cache.execution_device}")
self._cache.print_cuda_stats()
except torch.cuda.OutOfMemoryError:
self._cache.logger.warning("Insufficient GPU memory to load model. Aborting")
self._cache_entry.unlock()
raise
except Exception:
self._cache_entry.unlock()
raise
return self.model
def unlock(self) -> None:
"""Call upon exit from context."""
self._cache_entry.unlock()
if not self._cache.lazy_offloading:
self._cache.offload_unlocked_models(0)
self._cache.print_cuda_stats()

View File

@@ -0,0 +1,33 @@
from typing import Any, Callable
import torch
from torch.overrides import TorchFunctionMode
def add_autocast_to_module_forward(m: torch.nn.Module, to_device: torch.device):
"""Monkey-patch m.forward(...) with a new forward(...) method that activates device autocasting for its duration."""
old_forward = m.forward
def new_forward(*args: Any, **kwargs: Any):
with TorchFunctionAutocastDeviceContext(to_device):
return old_forward(*args, **kwargs)
m.forward = new_forward
def _cast_to_device_and_run(
func: Callable[..., Any], args: tuple[Any, ...], kwargs: dict[str, Any], to_device: torch.device
):
args_on_device = [a.to(to_device) if isinstance(a, torch.Tensor) else a for a in args]
kwargs_on_device = {k: v.to(to_device) if isinstance(v, torch.Tensor) else v for k, v in kwargs.items()}
return func(*args_on_device, **kwargs_on_device)
class TorchFunctionAutocastDeviceContext(TorchFunctionMode):
def __init__(self, to_device: torch.device):
self._to_device = to_device
def __torch_function__(
self, func: Callable[..., Any], types, args: tuple[Any, ...] = (), kwargs: dict[str, Any] | None = None
):
return _cast_to_device_and_run(func, args, kwargs or {}, self._to_device)

View File

@@ -26,7 +26,7 @@ from invokeai.backend.model_manager import (
SubModelType,
)
from invokeai.backend.model_manager.load.load_default import ModelLoader
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
@@ -40,7 +40,7 @@ class LoRALoader(ModelLoader):
self,
app_config: InvokeAIAppConfig,
logger: Logger,
ram_cache: ModelCacheBase[AnyModel],
ram_cache: ModelCache,
):
"""Initialize the loader."""
super().__init__(app_config, logger, ram_cache)

View File

@@ -25,6 +25,7 @@ from invokeai.backend.model_manager.config import (
DiffusersConfigBase,
MainCheckpointConfig,
)
from invokeai.backend.model_manager.load.model_cache.model_cache import get_model_cache_key
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
from invokeai.backend.util.silence_warnings import SilenceWarnings
@@ -132,5 +133,5 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
if subtype == submodel_type:
continue
if submodel := getattr(pipeline, subtype.value, None):
self._ram_cache.put(config.key, submodel_type=subtype, model=submodel)
self._ram_cache.put(get_model_cache_key(config.key, subtype), model=submodel)
return getattr(pipeline, submodel_type.value)

View File

@@ -0,0 +1,12 @@
import logging
from typing import Any, MutableMapping
# Issue with type hints related to LoggerAdapter: https://github.com/python/typeshed/issues/7855
class PrefixedLoggerAdapter(logging.LoggerAdapter): # type: ignore
def __init__(self, logger: logging.Logger, prefix: str):
super().__init__(logger, {})
self.prefix = prefix
def process(self, msg: str, kwargs: MutableMapping[str, Any]) -> tuple[str, MutableMapping[str, Any]]:
return f"[{self.prefix}] {msg}", kwargs

View File

@@ -96,7 +96,9 @@
"new": "Neu",
"ok": "OK",
"close": "Schließen",
"clipboard": "Zwischenablage"
"clipboard": "Zwischenablage",
"generating": "Generieren",
"loadingModel": "Lade Modell"
},
"gallery": {
"galleryImageSize": "Bildgröße",
@@ -591,7 +593,15 @@
"loraTriggerPhrases": "LoRA-Auslösephrasen",
"installingBundle": "Bündel wird installiert",
"triggerPhrases": "Auslösephrasen",
"mainModelTriggerPhrases": "Hauptmodell-Auslösephrasen"
"mainModelTriggerPhrases": "Hauptmodell-Auslösephrasen",
"noDefaultSettings": "Für dieses Modell sind keine Standardeinstellungen konfiguriert. Besuchen Sie den Modell-Manager, um Standardeinstellungen hinzuzufügen.",
"defaultSettingsOutOfSync": "Einige Einstellungen stimmen nicht mit den Standardeinstellungen des Modells überein:",
"clipLEmbed": "CLIP-L einbetten",
"clipGEmbed": "CLIP-G einbetten",
"hfTokenLabel": "HuggingFace-Token (für einige Modelle erforderlich)",
"hfTokenHelperText": "Für die Nutzung einiger Modelle ist ein HF-Token erforderlich. Klicken Sie hier, um Ihr Token zu erstellen oder zu erhalten.",
"hfForbidden": "Sie haben keinen Zugriff auf dieses HF-Modell",
"hfTokenInvalid": "Ungültiges oder fehlendes HF-Token"
},
"parameters": {
"images": "Bilder",
@@ -841,7 +851,8 @@
"upscaling": "Hochskalierung",
"canvas": "Leinwand",
"prompts_one": "Prompt",
"prompts_other": "Prompts"
"prompts_other": "Prompts",
"batchSize": "Stapelgröße"
},
"metadata": {
"negativePrompt": "Negativ Beschreibung",
@@ -1081,6 +1092,21 @@
},
"patchmatchDownScaleSize": {
"heading": "Herunterskalieren"
},
"paramHeight": {
"heading": "Höhe",
"paragraphs": [
"Höhe des generierten Bildes. Muss ein Vielfaches von 8 sein."
]
},
"paramUpscaleMethod": {
"heading": "Vergrößerungsmethode",
"paragraphs": [
"Methode zum Hochskalieren des Bildes für High Resolution Fix."
]
},
"paramHrf": {
"heading": "High Resolution Fix aktivieren"
}
},
"invocationCache": {

View File

@@ -176,7 +176,8 @@
"reset": "Reset",
"none": "None",
"new": "New",
"generating": "Generating"
"generating": "Generating",
"warnings": "Warnings"
},
"hrf": {
"hrf": "High Resolution Fix",
@@ -1038,20 +1039,7 @@
"canvasIsSelectingObject": "Canvas is busy (selecting object)",
"noPrompts": "No prompts generated",
"noNodesInGraph": "No nodes in graph",
"systemDisconnected": "System disconnected",
"layer": {
"controlAdapterNoModelSelected": "no Control Adapter model selected",
"controlAdapterIncompatibleBaseModel": "incompatible Control Adapter base model",
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, bbox width is {{width}}",
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, bbox height is {{height}}",
"t2iAdapterIncompatibleScaledBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, scaled bbox width is {{width}}",
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, scaled bbox height is {{height}}",
"ipAdapterNoModelSelected": "no IP adapter selected",
"ipAdapterIncompatibleBaseModel": "incompatible IP Adapter base model",
"ipAdapterNoImageSelected": "no IP Adapter image selected",
"rgNoPromptsOrIPAdapters": "no text prompts or IP Adapters",
"rgNoRegion": "no region selected"
}
"systemDisconnected": "System disconnected"
},
"maskBlur": "Mask Blur",
"negativePromptPlaceholder": "Negative Prompt",
@@ -1713,6 +1701,8 @@
"controlLayer": "Control Layer",
"inpaintMask": "Inpaint Mask",
"regionalGuidance": "Regional Guidance",
"referenceImageRegional": "Reference Image (Regional)",
"referenceImageGlobal": "Reference Image (Global)",
"asRasterLayer": "As $t(controlLayers.rasterLayer)",
"asRasterLayerResize": "As $t(controlLayers.rasterLayer) (Resize)",
"asControlLayer": "As $t(controlLayers.controlLayer)",
@@ -1798,6 +1788,21 @@
"replaceCurrent": "Replace Current",
"controlLayerEmptyState": "<UploadButton>Upload an image</UploadButton>, drag an image from the <GalleryButton>gallery</GalleryButton> onto this layer, or draw on the canvas to get started.",
"referenceImageEmptyState": "<UploadButton>Upload an image</UploadButton> or drag an image from the <GalleryButton>gallery</GalleryButton> onto this layer to get started.",
"warnings": {
"problemsFound": "Problems found",
"unsupportedModel": "layer not supported for selected base model",
"controlAdapterNoModelSelected": "no Control Layer model selected",
"controlAdapterIncompatibleBaseModel": "incompatible Control Layer base model",
"controlAdapterNoControl": "no control selected/drawn",
"ipAdapterNoModelSelected": "no Reference Image model selected",
"ipAdapterIncompatibleBaseModel": "incompatible Reference Image base model",
"ipAdapterNoImageSelected": "no Reference Image image selected",
"rgNoPromptsOrIPAdapters": "no text prompts or Reference Images",
"rgNegativePromptNotSupported": "Negative Prompt not supported for selected base model",
"rgReferenceImagesNotSupported": "regional Reference Images not supported for selected base model",
"rgAutoNegativeNotSupported": "Auto-Negative not supported for selected base model",
"rgNoRegion": "no region drawn"
},
"controlMode": {
"controlMode": "Control Mode",
"balanced": "Balanced (recommended)",

View File

@@ -327,7 +327,6 @@
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, la hauteur de la bounding box est {{height}}",
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, la largeur de la bounding box est {{width}}",
"ipAdapterIncompatibleBaseModel": "modèle de base d'IP adapter incompatible",
"rgNoRegion": "aucune zone sélectionnée",
"controlAdapterNoModelSelected": "aucun modèle de Control Adapter sélectionné"
},
"noPrompts": "Aucun prompts généré",

View File

@@ -96,7 +96,8 @@
"clipboard": "Appunti",
"ok": "Ok",
"generating": "Generazione",
"loadingModel": "Caricamento del modello"
"loadingModel": "Caricamento del modello",
"warnings": "Avvisi"
},
"gallery": {
"galleryImageSize": "Dimensione dell'immagine",
@@ -671,11 +672,15 @@
"ipAdapterIncompatibleBaseModel": "Il modello base dell'adattatore IP non è compatibile",
"ipAdapterNoImageSelected": "Nessuna immagine dell'adattatore IP selezionata",
"rgNoPromptsOrIPAdapters": "Nessun prompt o adattatore IP",
"rgNoRegion": "Nessuna regione selezionata",
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, larghezza riquadro è {{width}}",
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, altezza riquadro è {{height}}",
"t2iAdapterIncompatibleScaledBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, larghezza del riquadro scalato {{width}}",
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, altezza del riquadro scalato {{height}}"
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, altezza del riquadro scalato {{height}}",
"rgNegativePromptNotSupported": "prompt negativo non supportato per il modello base selezionato",
"rgAutoNegativeNotSupported": "auto-negativo non supportato per il modello base selezionato",
"emptyLayer": "livello vuoto",
"unsupportedModel": "livello non supportato per il modello base selezionato",
"rgReferenceImagesNotSupported": "immagini di riferimento regionali non supportate per il modello base selezionato"
},
"fluxModelIncompatibleBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), altezza riquadro è {{height}}",
"fluxModelIncompatibleBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), larghezza riquadro è {{width}}",
@@ -687,7 +692,11 @@
"canvasIsTransforming": "La tela sta trasformando",
"canvasIsRasterizing": "La tela sta rasterizzando",
"canvasIsCompositing": "La tela è in fase di composizione",
"canvasIsFiltering": "La tela sta filtrando"
"canvasIsFiltering": "La tela sta filtrando",
"collectionTooManyItems": "{{nodeLabel}} -> {{fieldLabel}}: troppi elementi, massimo {{maxItems}}",
"canvasIsSelectingObject": "La tela è occupata (selezione dell'oggetto)",
"collectionTooFewItems": "{{nodeLabel}} -> {{fieldLabel}}: troppi pochi elementi, minimo {{minItems}}",
"collectionEmpty": "{{nodeLabel}} -> {{fieldLabel}} raccolta vuota"
},
"useCpuNoise": "Usa la CPU per generare rumore",
"iterations": "Iterazioni",
@@ -972,7 +981,9 @@
"saveToGallery": "Salva nella Galleria",
"noMatchingWorkflows": "Nessun flusso di lavoro corrispondente",
"noWorkflows": "Nessun flusso di lavoro",
"workflowHelpText": "Hai bisogno di aiuto? Consulta la nostra guida <LinkComponent>Introduzione ai flussi di lavoro</LinkComponent>."
"workflowHelpText": "Hai bisogno di aiuto? Consulta la nostra guida <LinkComponent>Introduzione ai flussi di lavoro</LinkComponent>.",
"specialDesc": "Questa invocazione comporta una gestione speciale nell'applicazione. Ad esempio, i nodi Lotto vengono utilizzati per mettere in coda più grafici da un singolo flusso di lavoro.",
"internalDesc": "Questa invocazione è utilizzata internamente da Invoke. Potrebbe subire modifiche significative durante gli aggiornamenti dell'app e potrebbe essere rimossa in qualsiasi momento."
},
"boards": {
"autoAddBoard": "Aggiungi automaticamente bacheca",
@@ -1093,7 +1104,8 @@
"workflows": "Flussi di lavoro",
"generation": "Generazione",
"other": "Altro",
"gallery": "Galleria"
"gallery": "Galleria",
"batchSize": "Dimensione del lotto"
},
"models": {
"noMatchingModels": "Nessun modello corrispondente",
@@ -1196,7 +1208,8 @@
"heading": "Percentuale passi Inizio / Fine",
"paragraphs": [
"La parte del processo di rimozione del rumore in cui verrà applicato l'adattatore di controllo.",
"In genere, gli adattatori di controllo applicati all'inizio del processo guidano la composizione, mentre quelli applicati alla fine guidano i dettagli."
"In genere, gli adattatori di controllo applicati all'inizio del processo guidano la composizione, mentre quelli applicati alla fine guidano i dettagli.",
"• Passo finale (%): specifica quando interrompere l'applicazione della guida di questo livello e ripristinare la guida generale dal modello e altre impostazioni."
]
},
"noiseUseCPU": {
@@ -1300,7 +1313,9 @@
"controlNetWeight": {
"heading": "Peso",
"paragraphs": [
"Peso dell'adattatore di controllo. Un peso maggiore porterà a impatti maggiori sull'immagine finale."
"Regola la forza con cui il livello influenza il processo di generazione",
"• Peso maggiore (0.75-2): crea un impatto più significativo sul risultato finale.",
"• Peso inferiore (0-0.75): crea un impatto minore sul risultato finale."
]
},
"paramCFGScale": {
@@ -1801,7 +1816,10 @@
"full": "Stile e Composizione",
"style": "Solo Stile",
"composition": "Solo Composizione",
"ipAdapterMethod": "Metodo Adattatore IP"
"ipAdapterMethod": "Metodo Adattatore IP",
"fullDesc": "Applica lo stile visivo (colori, texture) e la composizione (disposizione, struttura).",
"styleDesc": "Applica lo stile visivo (colori, texture) senza considerare la disposizione.",
"compositionDesc": "Replica disposizione e struttura ignorando lo stile di riferimento."
},
"showingType": "Mostra {{type}}",
"dynamicGrid": "Griglia dinamica",
@@ -2044,7 +2062,16 @@
"replaceCurrent": "Sostituisci corrente",
"mergeDown": "Unire in basso",
"mergingLayers": "Unione dei livelli",
"controlLayerEmptyState": "<UploadButton>Carica un'immagine</UploadButton>, trascina un'immagine dalla <GalleryButton>galleria</GalleryButton> su questo livello oppure disegna sulla tela per iniziare."
"controlLayerEmptyState": "<UploadButton>Carica un'immagine</UploadButton>, trascina un'immagine dalla <GalleryButton>galleria</GalleryButton> su questo livello oppure disegna sulla tela per iniziare.",
"useImage": "Usa immagine",
"resetGenerationSettings": "Ripristina impostazioni di generazione",
"referenceImageEmptyState": "Per iniziare, <UploadButton>carica un'immagine</UploadButton> oppure trascina un'immagine dalla <GalleryButton>galleria</GalleryButton> su questo livello.",
"asRasterLayer": "Come $t(controlLayers.rasterLayer)",
"asRasterLayerResize": "Come $t(controlLayers.rasterLayer) (Ridimensiona)",
"asControlLayer": "Come $t(controlLayers.controlLayer)",
"asControlLayerResize": "Come $t(controlLayers.controlLayer) (Ridimensiona)",
"newSession": "Nuova sessione",
"resetCanvasLayers": "Ripristina livelli Tela"
},
"ui": {
"tabs": {
@@ -2144,7 +2171,7 @@
"watchRecentReleaseVideos": "Guarda i video su questa versione",
"watchUiUpdatesOverview": "Guarda le novità dell'interfaccia",
"items": [
"<StrongComponent>SD 3.5</StrongComponent>: supporto per SD 3.5 Medium e Large.",
"<StrongComponent>Flussi di lavoro</StrongComponent>: esegui un flusso di lavoro per una raccolta di immagini utilizzando il nuovo nodo <StrongComponent>Lotto di immagini</StrongComponent>.",
"<StrongComponent>Tela</StrongComponent>: elaborazione semplificata del livello di controllo e impostazioni di controllo predefinite migliorate."
]
},
@@ -2172,5 +2199,67 @@
"logNamespaces": "Elementi del registro"
},
"enableLogging": "Abilita la registrazione"
},
"supportVideos": {
"gettingStarted": "Iniziare",
"supportVideos": "Video di supporto",
"videos": {
"usingControlLayersAndReferenceGuides": {
"title": "Utilizzo di livelli di controllo e guide di riferimento",
"description": "Scopri come guidare la creazione delle tue immagini con livelli di controllo e immagini di riferimento."
},
"creatingYourFirstImage": {
"description": "Introduzione alla creazione di un'immagine da zero utilizzando gli strumenti di Invoke.",
"title": "Creazione della tua prima immagine"
},
"understandingImageToImageAndDenoising": {
"description": "Panoramica delle trasformazioni immagine-a-immagine e della riduzione del rumore in Invoke.",
"title": "Comprendere immagine-a-immagine e riduzione del rumore"
},
"howDoIDoImageToImageTransformation": {
"description": "Tutorial su come eseguire trasformazioni da immagine a immagine in Invoke.",
"title": "Come si esegue la trasformazione da immagine-a-immagine?"
},
"howDoIUseInpaintMasks": {
"title": "Come si usano le maschere Inpaint?",
"description": "Come applicare maschere inpaint per la correzione e la variazione delle immagini."
},
"howDoIOutpaint": {
"description": "Guida all'outpainting oltre i confini dell'immagine originale.",
"title": "Come posso eseguire l'outpainting?"
},
"exploringAIModelsAndConceptAdapters": {
"description": "Approfondisci i modelli di intelligenza artificiale e scopri come utilizzare gli adattatori concettuali per il controllo creativo.",
"title": "Esplorazione dei modelli di IA e degli adattatori concettuali"
},
"upscaling": {
"title": "Ampliamento",
"description": "Come ampliare le immagini con gli strumenti di Invoke per migliorarne la risoluzione."
},
"creatingAndComposingOnInvokesControlCanvas": {
"description": "Impara a comporre immagini utilizzando la tela di controllo di Invoke.",
"title": "Creare e comporre sulla tela di controllo di Invoke"
},
"howDoIGenerateAndSaveToTheGallery": {
"description": "Passaggi per generare e salvare le immagini nella galleria.",
"title": "Come posso generare e salvare nella Galleria?"
},
"howDoIEditOnTheCanvas": {
"title": "Come posso apportare modifiche sulla tela?",
"description": "Guida alla modifica delle immagini direttamente sulla tela."
},
"howDoIUseControlNetsAndControlLayers": {
"title": "Come posso utilizzare le Reti di Controllo e i Livelli di Controllo?",
"description": "Impara ad applicare livelli di controllo e reti di controllo alle tue immagini."
},
"howDoIUseGlobalIPAdaptersAndReferenceImages": {
"title": "Come si utilizzano gli adattatori IP globali e le immagini di riferimento?",
"description": "Introduzione all'aggiunta di immagini di riferimento e adattatori IP globali."
}
},
"controlCanvas": "Tela di Controllo",
"watch": "Guarda",
"studioSessionsDesc1": "Dai un'occhiata a <StudioSessionsPlaylistLink /> per approfondimenti su Invoke.",
"studioSessionsDesc2": "Unisciti al nostro <DiscordLink /> per partecipare alle sessioni live e fare domande. Le sessioni vengono caricate sulla playlist la settimana successiva."
}
}

View File

@@ -236,7 +236,6 @@
"controlAdapterIncompatibleBaseModel": "niet-compatibele basismodel voor controle-adapter",
"ipAdapterIncompatibleBaseModel": "niet-compatibele basismodel voor IP-adapter",
"ipAdapterNoImageSelected": "geen afbeelding voor IP-adapter geselecteerd",
"rgNoRegion": "geen gebied geselecteerd",
"rgNoPromptsOrIPAdapters": "geen tekstprompts of IP-adapters",
"ipAdapterNoModelSelected": "geen IP-adapter geselecteerd"
}

View File

@@ -10,7 +10,24 @@
"load": "Załaduj",
"statusDisconnected": "Odłączono od serwera",
"githubLabel": "GitHub",
"discordLabel": "Discord"
"discordLabel": "Discord",
"clipboard": "Schowek",
"aboutDesc": "Wykorzystujesz Invoke do pracy? Sprawdź:",
"ai": "SI",
"areYouSure": "Czy jesteś pewien?",
"copyError": "$t(gallery.copy) Błąd",
"apply": "Zastosuj",
"copy": "Kopiuj",
"or": "albo",
"add": "Dodaj",
"off": "Wyłączony",
"accept": "Zaakceptuj",
"cancel": "Anuluj",
"advanced": "Zawansowane",
"back": "Do tyłu",
"auto": "Automatyczny",
"beta": "Beta",
"close": "Wyjdź"
},
"gallery": {
"galleryImageSize": "Rozmiar obrazów",
@@ -65,6 +82,42 @@
"uploadImage": "Wgrywanie obrazu",
"previousImage": "Poprzedni obraz",
"nextImage": "Następny obraz",
"menu": "Menu"
"menu": "Menu",
"mode": "Tryb"
},
"boards": {
"cancel": "Anuluj",
"noBoards": "Brak tablic typu {{boardType}}",
"imagesWithCount_one": "{{count}} zdjęcie",
"imagesWithCount_few": "{{count}} zdjęcia",
"imagesWithCount_many": "{{count}} zdjęcia",
"private": "Prywatne tablice",
"updateBoardError": "Błąd aktualizacji tablicy",
"uncategorized": "Nieskategoryzowane",
"selectBoard": "Wybierz tablicę",
"downloadBoard": "Pobierz tablice",
"loading": "Ładowanie...",
"move": "Przenieś",
"noMatching": "Brak pasujących tablic"
},
"accordions": {
"compositing": {
"title": "Kompozycja",
"infillTab": "Inskrypcja",
"coherenceTab": "Przebieg Koherencji"
},
"generation": {
"title": "Generowanie"
},
"image": {
"title": "Zdjęcie"
},
"advanced": {
"options": "$t(accordions.advanced.title) Opcje",
"title": "Zaawansowane"
},
"control": {
"title": "Kontrola"
}
}
}

View File

@@ -652,7 +652,6 @@
"ipAdapterNoModelSelected": "IP адаптер не выбран",
"controlAdapterNoModelSelected": "не выбрана модель адаптера контроля",
"controlAdapterIncompatibleBaseModel": "несовместимая базовая модель адаптера контроля",
"rgNoRegion": "регион не выбран",
"rgNoPromptsOrIPAdapters": "нет текстовых запросов или IP-адаптеров",
"ipAdapterIncompatibleBaseModel": "несовместимая базовая модель IP-адаптера",
"ipAdapterNoImageSelected": "изображение IP-адаптера не выбрано",

View File

@@ -217,7 +217,10 @@
"direction": "Phương Hướng",
"unknownError": "Lỗi Không Rõ",
"selected": "Đã chọn",
"tab": "Tab"
"tab": "Tab",
"loadingModel": "Đang Tải Model",
"generating": "Đang Tạo Sinh",
"warnings": "Cảnh Báo"
},
"prompt": {
"addPromptTrigger": "Thêm Prompt Trigger",
@@ -290,7 +293,8 @@
"cancelSucceeded": "Mục Đã Huỷ Bỏ",
"completedIn": "Hoàn tất trong",
"graphQueued": "Đồ Thị Đã Vào Hàng",
"batchQueuedDesc_other": "Thêm {{count}} phiên vào {{direction}} của hàng"
"batchQueuedDesc_other": "Thêm {{count}} phiên vào {{direction}} của hàng",
"batchSize": "Kích Thước Vùng Hàng Loạt"
},
"hotkeys": {
"canvas": {
@@ -733,7 +737,9 @@
"textualInversions": "Bộ Đảo Ngược Văn Bản",
"loraTriggerPhrases": "Từ Ngữ Kích Hoạt Cho LoRA",
"width": "Chiều Rộng",
"starterModelsInModelManager": "Model khởi đầu có thể tìm thấy ở Trình Quản Lý Model"
"starterModelsInModelManager": "Model khởi đầu có thể tìm thấy ở Trình Quản Lý Model",
"clipLEmbed": "CLIP-L Embed",
"clipGEmbed": "CLIP-G Embed"
},
"metadata": {
"guidance": "Hướng Dẫn",
@@ -905,7 +911,7 @@
"unknownNode": "Node Không Rõ",
"unknownNodeType": "Loại Node Không Rõ",
"unknownTemplate": "Mẫu Trình Bày Không Rõ",
"cannotConnectOutputToOutput": "Không thế kết nối đầu ra với đầu vào",
"cannotConnectOutputToOutput": "Không thế kết nối đầu ra với đầu ra",
"cannotConnectToSelf": "Không thể kết nối với chính nó",
"workflow": "Workflow",
"addNodeToolTip": "Thêm Node (Shift+A, Space)",
@@ -952,7 +958,9 @@
"executionStateInProgress": "Đang Xử Lý",
"showLegendNodes": "Hiển Thị Vùng Nhập",
"outputFieldTypeParseError": "Không thể phân tích loại dữ liệu đầu ra của {{node}}.{{field}} ({{message}})",
"modelAccessError": "Không thể tìm thấy model {{key}}, chuyển về mặc định"
"modelAccessError": "Không thể tìm thấy model {{key}}, chuyển về mặc định",
"internalDesc": "Trình kích hoạt này được dùng bên trong bởi Invoke. Nó có thể phá hỏng thay đổi trong khi cập nhật ứng dụng và có thể bị xoá bất cứ lúc nào.",
"specialDesc": "Trình kích hoạt này có một số xử lý đặc biệt trong ứng dụng. Ví dụ, Node Hàng Loạt được dùng để xếp vào nhiều đồ thị từ một workflow."
},
"popovers": {
"paramCFGRescaleMultiplier": {
@@ -1105,7 +1113,9 @@
},
"controlNetWeight": {
"paragraphs": [
"Trọng lượng của Control Adapter. Trọng lượng càng cao sẽ dẫn đến tác động càng lớn lên ảnh cuối cùng."
"Điều chỉnh mức độ layer ảnh hưởng đến quá trình xử lý tạo sinh.",
"• Trọng Lượng Lớn Hơn (.75-2): Gây ra ảnh hưởng lớn hơn lên kết quả cuối cùng.",
"• Trọng Lượng Nhỏ Hơn (0-.75): Gây ra ảnh hưởng nhỏ hơn lên kết quả cuối cùng."
],
"heading": "Trọng Lượng"
},
@@ -1149,7 +1159,7 @@
},
"ipAdapterMethod": {
"paragraphs": [
"Cách thức dùng để áp dụng IP Adapter hiện tại."
"Phương thức định nghĩa cách ảnh mẫu sẽ chỉ dẫn quá trình xử lý tạo sinh."
],
"heading": "Cách Thức"
},
@@ -1196,8 +1206,9 @@
},
"controlNetBeginEnd": {
"paragraphs": [
"Một phần trong quá trình xử lý khử nhiễu mà sẽ được Control Adapter áp dụng.",
"Nói chung, Control Adapter áp dụng vào lúc bắt đầu của quá trình hướng dẫn thành phần, và cũng áp dụng vào lúc kết thúc hướng dẫn chi tiết."
"Cài đặt này xác định phần xử lý khử nhiễu (trong khi tạo sinh) kết hợp với chỉ dẫn từ layer này.",
"• Bước Bắt Đầu (%): Chỉ định lúc bắt đầu áp dụng chỉ dẫn từ layer này trong quá trình tạo sinh.",
"• Bước Kết Thúc (%): Chỉ định lúc dừng áp dụng chỉ dẫn của layer này và trở về chỉ dẫn chung từ model và các thiết lập khác."
],
"heading": "Phần Trăm Tham Số Bước Khi Bắt Đầu/Kết Thúc"
},
@@ -1401,7 +1412,6 @@
"invoke": {
"layer": {
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, tỉ lệ chiều dài hộp giới hạn là {{height}}",
"rgNoRegion": "không có vùng được chọn",
"ipAdapterNoModelSelected": "không có IP Adapter được lựa chọn",
"ipAdapterNoImageSelected": "không có ảnh IP Adapter được lựa chọn",
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, chiều dài hộp giới hạn là {{height}}",
@@ -1410,15 +1420,20 @@
"rgNoPromptsOrIPAdapters": "không có lệnh chữ hoặc IP Adapter",
"controlAdapterIncompatibleBaseModel": "model cơ sở của Control Adapter không tương thích",
"ipAdapterIncompatibleBaseModel": "dạng model cơ sở của IP Adapter không tương thích",
"controlAdapterNoModelSelected": "không có model Control Adapter được chọn"
"controlAdapterNoModelSelected": "không có model Control Adapter được chọn",
"emptyLayer": "layer trống",
"rgAutoNegativeNotSupported": "trình tự động đảo chiều không được hỗ trợ cho model cơ sở đang dùng",
"rgNegativePromptNotSupported": "lệnh tiêu cực không được hỗ trợ cho model cơ sở đang dùng",
"unsupportedModel": "layer không được hỗ trợ cho model cơ sở đang dùng",
"rgReferenceImagesNotSupported": "ảnh mẫu khu vực không được hỗ trợ cho model cơ sở đang dùng"
},
"fluxModelIncompatibleBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), chiều rộng hộp giới hạn là {{width}}",
"noModelSelected": "Không có model được lựa chọn",
"fluxModelIncompatibleScaledBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), tỉ lệ chiều dài hộp giới hạn là {{height}}",
"canvasIsFiltering": "Canvas đang được lọc",
"canvasIsRasterizing": "Canvas đang được raster hoá",
"canvasIsTransforming": "Canvas đang được biến đổi",
"canvasIsCompositing": "Canvas đang được kết hợp",
"canvasIsFiltering": "Canvas đang bận (đang lọc)",
"canvasIsRasterizing": "Canvas đang bận (đang raster hoá)",
"canvasIsTransforming": "Canvas đang bận (đang biến đổi)",
"canvasIsCompositing": "Canvas đang bận (đang kết hợp)",
"noPrompts": "Không có lệnh được tạo",
"noNodesInGraph": "Không có node trong đồ thị",
"addingImagesTo": "Thêm ảnh vào",
@@ -1430,8 +1445,12 @@
"missingNodeTemplate": "Thiếu mẫu trình bày node",
"fluxModelIncompatibleBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), chiều dài hộp giới hạn là {{height}}",
"fluxModelIncompatibleScaledBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), tỉ lệ chiều rộng hộp giới hạn là {{width}}",
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}} thiếu đầu ra",
"missingFieldTemplate": "Thiếu vùng mẫu trình bày"
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}}: thiếu đầu vào",
"missingFieldTemplate": "Thiếu vùng mẫu trình bày",
"collectionEmpty": "{{nodeLabel}} -> {{fieldLabel}} tài nguyên trống",
"collectionTooFewItems": "{{nodeLabel}} -> {{fieldLabel}}: quá ít mục, tối thiểu {{minItems}}",
"collectionTooManyItems": "{{nodeLabel}} -> {{fieldLabel}}: quá nhiều mục, tối đa {{maxItems}}",
"canvasIsSelectingObject": "Canvas đang bận (đang chọn đồ vật)"
},
"cfgScale": "Thước Đo CFG",
"useSeed": "Dùng Tham Số Hạt Giống",
@@ -1542,7 +1561,8 @@
"resetWebUIDesc2": "Nếu ảnh không được xuất hiện trong thư viện hoặc điều gì đó không ổn đang diễn ra, hãy thử khởi động lại trước khi báo lỗi trên Github.",
"displayInProgress": "Hiển Thị Hình Ảnh Đang Xử Lý",
"intermediatesClearedFailed": "Có Vấn Đề Khi Dọn Sạch Sản Phẩm Trung Gian",
"enableInvisibleWatermark": "Bật Chế Độ Ẩn Watermark"
"enableInvisibleWatermark": "Bật Chế Độ Ẩn Watermark",
"showDetailedInvocationProgress": "Hiện Dữ Liệu Xử Lý"
},
"sdxl": {
"loading": "Đang Tải...",
@@ -1594,7 +1614,7 @@
"pullBboxIntoLayerError": "Có Vấn Đề Khi Chuyển Hộp Giới Hạn Thành Layer",
"pullBboxIntoReferenceImageOk": "Chuyển Hộp Giới Hạn Thành Ảnh Mẫu",
"clearCaches": "Xoá Bộ Nhớ Đệm",
"outputOnlyMaskedRegions": "Chỉ Xuất Đầu Ra Ở Vùng Phủ",
"outputOnlyMaskedRegions": "Chỉ Xuất Đầu Ra Ở Vùng Tạo Sinh",
"addLayer": "Thêm Layer",
"regional": "Khu Vực",
"regionIsEmpty": "Vùng được chọn trống",
@@ -1608,10 +1628,13 @@
"moveForward": "Chuyển Lên Đầu",
"fitBboxToLayers": "Xếp Vừa Hộp Giới Hạn Vào Layer",
"ipAdapterMethod": {
"full": "Đầy Đủ",
"full": "Phong Cách Và Thành Phần",
"style": "Chỉ Lấy Phong Cách",
"composition": "Chỉ Lấy Thành Phần",
"ipAdapterMethod": "Cách Thức IP Adapter"
"ipAdapterMethod": "Cách Thức",
"compositionDesc": "Áp dụng cách trình bày và bỏ qua phong cách mẫu.",
"fullDesc": "Áp dụng phong cách trực quan (màu, cấu tạo) & thành phần (cách trình bày).",
"styleDesc": "Áp dụng phong cách trực quan (màu, cấu tạo) và bỏ qua cách trình bày."
},
"deletePrompt": "Xoá Lệnh",
"rasterLayer": "Layer Dạng Raster",
@@ -1899,7 +1922,16 @@
"colorPicker": "Chọn Màu"
},
"mergingLayers": "Đang gộp layer",
"controlLayerEmptyState": "<UploadButton>Tải lên ảnh</UploadButton>, kéo thả ảnh từ <GalleryButton>thư viện</GalleryButton> vào layer này, hoặc vẽ trên canvas để bắt đầu."
"controlLayerEmptyState": "<UploadButton>Tải lên ảnh</UploadButton>, kéo thả ảnh từ <GalleryButton>thư viện</GalleryButton> vào layer này, hoặc vẽ trên canvas để bắt đầu.",
"referenceImageEmptyState": "<UploadButton>Tải lên ảnh</UploadButton> hoặc kéo thả ảnh từ <GalleryButton>thư viện</GalleryButton> vào layer này để bắt đầu.",
"useImage": "Dùng Hình Ảnh",
"resetCanvasLayers": "Khởi Động Lại Layer Canvas",
"asRasterLayer": "Như $t(controlLayers.rasterLayer)",
"asRasterLayerResize": "Như $t(controlLayers.rasterLayer) (Thay Đổi Kích Thước)",
"asControlLayer": "Như $t(controlLayers.controlLayer)",
"asControlLayerResize": "Như $t(controlLayers.controlLayer) (Thay Đổi Kích Thước)",
"newSession": "Phiên Làm Việc Mới",
"resetGenerationSettings": "Khởi Động Lại Cài Đặt Tạo Sinh"
},
"stylePresets": {
"negativePrompt": "Lệnh Tiêu Cực",
@@ -2124,8 +2156,8 @@
"watchRecentReleaseVideos": "Xem Video Phát Hành Mới Nhất",
"watchUiUpdatesOverview": "Xem Tổng Quan Về Những Cập Nhật Cho Giao Diện Người Dùng",
"items": [
"<StrongComponent>SD 3.5</StrongComponent>: Hỗ trợ cho Từ ngữ Sang Hình Ảnh trong Workflow với phiên bản SD 3.5 Medium hoặc Large.",
"<StrongComponent>Canvas</StrongComponent>: Hợp lý hoá cách xử lý Layer Điều Khiển Được và cải thiện thiết lập điều khiển mặc định."
"<StrongComponent>Workflows</StrongComponent>: Chạy một workflow cho nhiều ảnh bằng node <StrongComponent>Ảnh Hàng Loạt</StrongComponent> mới.",
"<StrongComponent>FLUX</StrongComponent>: Hỗ trợ cho XLabs IP Adapter v2."
]
},
"upsell": {
@@ -2133,5 +2165,67 @@
"inviteTeammates": "Thêm Đồng Đội",
"shareAccess": "Chia Sẻ Quyền Truy Cập",
"professionalUpsell": "Không có sẵn Phiên Bản Chuyên Nghiệp cho Invoke. Bấm vào đây hoặc đến invoke.com/pricing để thêm chi tiết."
},
"supportVideos": {
"supportVideos": "Video Hỗ Trợ",
"gettingStarted": "Bắt Đầu Làm Quen",
"studioSessionsDesc1": "Xem thử <StudioSessionsPlaylistLink /> để hiểu rõ Invoke hơn.",
"studioSessionsDesc2": "Đến <DiscordLink /> để tham gia vào phiên trực tiếp và hỏi câu hỏi. Các phiên được tải lên danh sách phát vào các tuần.",
"videos": {
"howDoIDoImageToImageTransformation": {
"title": "Làm Sao Để Tôi Dùng Trình Biến Đổi Hình Ảnh Sang Hình Ảnh?",
"description": "Hướng dẫn cách thực hiện biến đổi ảnh sang ảnh trong Invoke."
},
"howDoIUseGlobalIPAdaptersAndReferenceImages": {
"description": "Giới thiệu về ảnh mẫu và IP adapter toàn vùng.",
"title": "Làm Sao Để Tôi Dùng IP Adapter Toàn Vùng Và Ảnh Mẫu?"
},
"creatingAndComposingOnInvokesControlCanvas": {
"description": "Học cách sáng tạo ảnh bằng trình điều khiển canvas của Invoke.",
"title": "Sáng Tạo Trong Trình Kiểm Soát Canvas Của Invoke"
},
"upscaling": {
"description": "Cách upscale ảnh bằng bộ công cụ của Invoke để nâng cấp độ phân giải.",
"title": "Upscale (Nâng Cấp Chất Lượng Hình Ảnh)"
},
"howDoIGenerateAndSaveToTheGallery": {
"title": "Làm Sao Để Tôi Tạo Sinh Và Lưu Vào Thư Viện?",
"description": "Các bước để tạo sinh và lưu ảnh vào thư viện."
},
"howDoIEditOnTheCanvas": {
"description": "Hướng dẫn chỉnh sửa ảnh trực tiếp trên canvas.",
"title": "Làm Sao Để Tôi Chỉnh Sửa Trên Canvas?"
},
"howDoIUseControlNetsAndControlLayers": {
"title": "Làm Sao Để Tôi Dùng ControlNet và Layer Điều Khiển Được?",
"description": "Học cách áp dụng layer điều khiển được và controlnet vào ảnh của bạn."
},
"howDoIUseInpaintMasks": {
"title": "Làm Sao Để Tôi Dùng Lớp Phủ Inpaint?",
"description": "Cách áp dụng lớp phủ inpaint vào chỉnh sửa và thay đổi ảnh."
},
"howDoIOutpaint": {
"title": "Làm Sao Để Tôi Outpaint?",
"description": "Hướng dẫn outpaint bên ngoài viền ảnh gốc."
},
"creatingYourFirstImage": {
"description": "Giới thiệu về cách tạo ảnh từ ban đầu bằng công cụ Invoke.",
"title": "Tạo Hình Ảnh Đầu Tiên Của Bạn"
},
"usingControlLayersAndReferenceGuides": {
"description": "Học cách chỉ dẫn ảnh được tạo ra bằng layer điều khiển được và ảnh mẫu.",
"title": "Dùng Layer Điều Khiển Được và Chỉ Dẫn Mẫu"
},
"understandingImageToImageAndDenoising": {
"title": "Hiểu Rõ Trình Hình Ảnh Sang Hình Ảnh Và Trình Khử Nhiễu",
"description": "Tổng quan về trình biến đổi ảnh sang ảnh và trình khử nhiễu trong Invoke."
},
"exploringAIModelsAndConceptAdapters": {
"title": "Khám Phá Model AI Và Khái Niệm Về Adapter",
"description": "Đào sâu vào model AI và cách dùng những adapter để điều khiển một cách sáng tạo."
}
},
"controlCanvas": "Điều Khiển Canvas",
"watch": "Xem"
}
}

View File

@@ -668,7 +668,6 @@
"controlAdapterIncompatibleBaseModel": "Control Adapter的基础模型不兼容",
"ipAdapterIncompatibleBaseModel": "IP Adapter的基础模型不兼容",
"ipAdapterNoImageSelected": "未选择IP Adapter图像",
"rgNoRegion": "未选择区域",
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}},边界框宽度为 {{width}}",
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}},缩放后的边界框高度为 {{height}}",
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}},边界框高度为 {{height}}",

View File

@@ -1,6 +1,6 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { useClearQueue } from 'features/queue/components/ClearQueueConfirmationAlertDialog';
import { useCancelCurrentQueueItem } from 'features/queue/hooks/useCancelCurrentQueueItem';
import { useClearQueue } from 'features/queue/hooks/useClearQueue';
import { useInvoke } from 'features/queue/hooks/useInvoke';
import { useRegisteredHotkeys } from 'features/system/components/HotkeysModal/useHotkeyData';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';

View File

@@ -63,7 +63,7 @@ export const CanvasAddEntityButtons = memo(() => {
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addRegionalGuidance}
isDisabled={isFLUX || isSD3}
isDisabled={isSD3}
>
{t('controlLayers.regionalGuidance')}
</Button>

View File

@@ -49,7 +49,7 @@ export const EntityListGlobalActionBarAddLayerMenu = memo(() => {
<MenuItem icon={<PiPlusBold />} onClick={addInpaintMask}>
{t('controlLayers.inpaintMask')}
</MenuItem>
<MenuItem icon={<PiPlusBold />} onClick={addRegionalGuidance} isDisabled={isFLUX || isSD3}>
<MenuItem icon={<PiPlusBold />} onClick={addRegionalGuidance} isDisabled={isSD3}>
{t('controlLayers.regionalGuidance')}
</MenuItem>
<MenuItem icon={<PiPlusBold />} onClick={addRegionalReferenceImage} isDisabled={isFLUX || isSD3}>

View File

@@ -1,27 +1,28 @@
import { IconButton, Tooltip } from '@invoke-ai/ui-library';
import type { IconButtonProps } from '@invoke-ai/ui-library';
import { IconButton } from '@invoke-ai/ui-library';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiTrashSimpleFill } from 'react-icons/pi';
import { PiXBold } from 'react-icons/pi';
type Props = {
type Props = Omit<IconButtonProps, 'aria-label'> & {
onDelete: () => void;
};
export const RegionalGuidanceDeletePromptButton = memo(({ onDelete }: Props) => {
export const RegionalGuidanceDeletePromptButton = memo(({ onDelete, ...rest }: Props) => {
const { t } = useTranslation();
return (
<Tooltip label={t('controlLayers.deletePrompt')}>
<IconButton
variant="link"
aria-label={t('controlLayers.deletePrompt')}
icon={<PiTrashSimpleFill />}
onClick={onDelete}
flexGrow={0}
size="sm"
p={0}
colorScheme="error"
/>
</Tooltip>
<IconButton
tooltip={t('common.delete')}
variant="link"
aria-label={t('common.delete')}
icon={<PiXBold />}
onClick={onDelete}
flexGrow={0}
size="sm"
p={0}
colorScheme="error"
{...rest}
/>
);
});

View File

@@ -1,8 +1,9 @@
import { Button, Flex, Text } from '@invoke-ai/ui-library';
import { Button, Flex, IconButton, Spacer, Text } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useImageUploadButton } from 'common/hooks/useImageUploadButton';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { rgIPAdapterDeleted } from 'features/controlLayers/store/canvasSlice';
import type { SetRegionalGuidanceReferenceImageDndTargetData } from 'features/dnd/dnd';
import { setRegionalGuidanceReferenceImageDndTarget } from 'features/dnd/dnd';
import { DndDropTarget } from 'features/dnd/DndDropTarget';
@@ -10,6 +11,7 @@ import { setRegionalGuidanceReferenceImage } from 'features/imageActions/actions
import { activeTabCanvasRightPanelChanged } from 'features/ui/store/uiSlice';
import { memo, useCallback, useMemo } from 'react';
import { Trans, useTranslation } from 'react-i18next';
import { PiXBold } from 'react-icons/pi';
import type { ImageDTO } from 'services/api/types';
type Props = {
@@ -31,6 +33,9 @@ export const RegionalGuidanceIPAdapterSettingsEmptyState = memo(({ referenceImag
const onClickGalleryButton = useCallback(() => {
dispatch(activeTabCanvasRightPanelChanged('gallery'));
}, [dispatch]);
const onDeleteIPAdapter = useCallback(() => {
dispatch(rgIPAdapterDeleted({ entityIdentifier, referenceImageId }));
}, [dispatch, entityIdentifier, referenceImageId]);
const dndTargetData = useMemo<SetRegionalGuidanceReferenceImageDndTargetData>(
() =>
@@ -42,26 +47,44 @@ export const RegionalGuidanceIPAdapterSettingsEmptyState = memo(({ referenceImag
);
return (
<Flex flexDir="column" gap={3} position="relative" w="full" p={4}>
<Text textAlign="center" color="base.300">
<Trans
i18nKey="controlLayers.referenceImageEmptyState"
components={{
UploadButton: (
<Button
isDisabled={isBusy}
size="sm"
variant="link"
color="base.300"
{...uploadApi.getUploadButtonProps()}
/>
),
GalleryButton: (
<Button onClick={onClickGalleryButton} isDisabled={isBusy} size="sm" variant="link" color="base.300" />
),
}}
<Flex flexDir="column" gap={2} position="relative" w="full">
<Flex alignItems="center" gap={2}>
<Text fontWeight="semibold" color="base.400">
{t('controlLayers.referenceImage')}
</Text>
<Spacer />
<IconButton
size="sm"
variant="link"
alignSelf="stretch"
icon={<PiXBold />}
tooltip={t('controlLayers.deleteReferenceImage')}
aria-label={t('controlLayers.deleteReferenceImage')}
onClick={onDeleteIPAdapter}
colorScheme="error"
/>
</Text>
</Flex>
<Flex alignItems="center" gap={2} p={4}>
<Text textAlign="center" color="base.300">
<Trans
i18nKey="controlLayers.referenceImageEmptyState"
components={{
UploadButton: (
<Button
isDisabled={isBusy}
size="sm"
variant="link"
color="base.300"
{...uploadApi.getUploadButtonProps()}
/>
),
GalleryButton: (
<Button onClick={onClickGalleryButton} isDisabled={isBusy} size="sm" variant="link" color="base.300" />
),
}}
/>
</Text>
</Flex>
<input {...uploadApi.getUploadInputProps()} />
<DndDropTarget
dndTarget={setRegionalGuidanceReferenceImageDndTarget}

View File

@@ -5,6 +5,7 @@ import { StagingAreaToolbarDiscardSelectedButton } from 'features/controlLayers/
import { StagingAreaToolbarImageCountButton } from 'features/controlLayers/components/StagingArea/StagingAreaToolbarImageCountButton';
import { StagingAreaToolbarNextButton } from 'features/controlLayers/components/StagingArea/StagingAreaToolbarNextButton';
import { StagingAreaToolbarPrevButton } from 'features/controlLayers/components/StagingArea/StagingAreaToolbarPrevButton';
import { StagingAreaToolbarSaveAsMenu } from 'features/controlLayers/components/StagingArea/StagingAreaToolbarSaveAsMenu';
import { StagingAreaToolbarSaveSelectedToGalleryButton } from 'features/controlLayers/components/StagingArea/StagingAreaToolbarSaveSelectedToGalleryButton';
import { StagingAreaToolbarToggleShowResultsButton } from 'features/controlLayers/components/StagingArea/StagingAreaToolbarToggleShowResultsButton';
import { memo } from 'react';
@@ -21,6 +22,7 @@ export const StagingAreaToolbar = memo(() => {
<StagingAreaToolbarAcceptButton />
<StagingAreaToolbarToggleShowResultsButton />
<StagingAreaToolbarSaveSelectedToGalleryButton />
<StagingAreaToolbarSaveAsMenu />
<StagingAreaToolbarDiscardSelectedButton />
<StagingAreaToolbarDiscardAllButton />
</ButtonGroup>

View File

@@ -0,0 +1,136 @@
import { IconButton, Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppStore } from 'app/store/nanostores/store';
import { useAppSelector } from 'app/store/storeHooks';
import { NewLayerIcon } from 'features/controlLayers/components/common/icons';
import { selectSelectedImage } from 'features/controlLayers/store/canvasStagingAreaSlice';
import { createNewCanvasEntityFromImage } from 'features/imageActions/actions';
import { toast } from 'features/toast/toast';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiDotsThreeBold } from 'react-icons/pi';
import { imageDTOToFile, uploadImage } from 'services/api/endpoints/images';
const uploadImageArg = { image_category: 'general', is_intermediate: true, silent: true } as const;
export const StagingAreaToolbarSaveAsMenu = memo(() => {
const { t } = useTranslation();
const selectedImage = useAppSelector(selectSelectedImage);
const store = useAppStore();
const onClickNewRasterLayerFromImage = useCallback(async () => {
if (!selectedImage) {
return;
}
const { dispatch, getState } = store;
const file = await imageDTOToFile(selectedImage.imageDTO);
const imageDTO = await uploadImage({ file, ...uploadImageArg });
createNewCanvasEntityFromImage({
imageDTO,
type: 'raster_layer',
dispatch,
getState,
overrides: { isEnabled: false }, // We are adding the layer while staging, it should be disabled by default
});
toast({
id: 'SENT_TO_CANVAS',
title: t('toast.sentToCanvas'),
status: 'success',
});
}, [selectedImage, store, t]);
const onClickNewControlLayerFromImage = useCallback(async () => {
if (!selectedImage) {
return;
}
const { dispatch, getState } = store;
const file = await imageDTOToFile(selectedImage.imageDTO);
const imageDTO = await uploadImage({ file, ...uploadImageArg });
createNewCanvasEntityFromImage({
imageDTO,
type: 'control_layer',
dispatch,
getState,
overrides: { isEnabled: false }, // We are adding the layer while staging, it should be disabled by default
});
toast({
id: 'SENT_TO_CANVAS',
title: t('toast.sentToCanvas'),
status: 'success',
});
}, [selectedImage, store, t]);
const onClickNewInpaintMaskFromImage = useCallback(async () => {
if (!selectedImage) {
return;
}
const { dispatch, getState } = store;
const file = await imageDTOToFile(selectedImage.imageDTO);
const imageDTO = await uploadImage({ file, ...uploadImageArg });
createNewCanvasEntityFromImage({
imageDTO,
type: 'inpaint_mask',
dispatch,
getState,
overrides: { isEnabled: false }, // We are adding the layer while staging, it should be disabled by default
});
toast({
id: 'SENT_TO_CANVAS',
title: t('toast.sentToCanvas'),
status: 'success',
});
}, [selectedImage, store, t]);
const onClickNewRegionalGuidanceFromImage = useCallback(async () => {
if (!selectedImage) {
return;
}
const { dispatch, getState } = store;
const file = await imageDTOToFile(selectedImage.imageDTO);
const imageDTO = await uploadImage({ file, ...uploadImageArg });
createNewCanvasEntityFromImage({
imageDTO,
type: 'regional_guidance',
dispatch,
getState,
overrides: { isEnabled: false }, // We are adding the layer while staging, it should be disabled by default
});
toast({
id: 'SENT_TO_CANVAS',
title: t('toast.sentToCanvas'),
status: 'success',
});
}, [selectedImage, store, t]);
return (
<Menu>
<MenuButton
as={IconButton}
aria-label={t('controlLayers.newLayerFromImage')}
tooltip={t('controlLayers.newLayerFromImage')}
icon={<PiDotsThreeBold />}
colorScheme="invokeBlue"
isDisabled={!selectedImage}
/>
<MenuList>
<MenuItem icon={<NewLayerIcon />} onClickCapture={onClickNewInpaintMaskFromImage} isDisabled={!selectedImage}>
{t('controlLayers.inpaintMask')}
</MenuItem>
<MenuItem
icon={<NewLayerIcon />}
onClickCapture={onClickNewRegionalGuidanceFromImage}
isDisabled={!selectedImage}
>
{t('controlLayers.regionalGuidance')}
</MenuItem>
<MenuItem icon={<NewLayerIcon />} onClickCapture={onClickNewControlLayerFromImage} isDisabled={!selectedImage}>
{t('controlLayers.controlLayer')}
</MenuItem>
<MenuItem icon={<NewLayerIcon />} onClickCapture={onClickNewRasterLayerFromImage} isDisabled={!selectedImage}>
{t('controlLayers.rasterLayer')}
</MenuItem>
</MenuList>
</Menu>
);
});
StagingAreaToolbarSaveAsMenu.displayName = 'StagingAreaToolbarSaveAsMenu';

View File

@@ -1,6 +1,4 @@
import { IconButton } from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { $authToken } from 'app/store/nanostores/authToken';
import { useAppSelector } from 'app/store/storeHooks';
import { withResultAsync } from 'common/util/result';
import { selectSelectedImage } from 'features/controlLayers/store/canvasStagingAreaSlice';
@@ -9,14 +7,13 @@ import { toast } from 'features/toast/toast';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiFloppyDiskBold } from 'react-icons/pi';
import { uploadImage } from 'services/api/endpoints/images';
import { imageDTOToFile, uploadImage } from 'services/api/endpoints/images';
const TOAST_ID = 'SAVE_STAGING_AREA_IMAGE_TO_GALLERY';
export const StagingAreaToolbarSaveSelectedToGalleryButton = memo(() => {
const autoAddBoardId = useAppSelector(selectAutoAddBoardId);
const selectedImage = useAppSelector(selectSelectedImage);
const authToken = useStore($authToken);
const { t } = useTranslation();
@@ -28,18 +25,8 @@ export const StagingAreaToolbarSaveSelectedToGalleryButton = memo(() => {
// To save the image to gallery, we will download it and re-upload it. This allows the user to delete the image
// the gallery without borking the canvas, which may need this image to exist.
const result = await withResultAsync(async () => {
// Download the image
const requestOpts = authToken
? {
headers: {
Authorization: `Bearer ${authToken}`,
},
}
: {};
const res = await fetch(selectedImage.imageDTO.image_url, requestOpts);
const blob = await res.blob();
// Create a new file with the same name, which we will upload
const file = new File([blob], `copy_of_${selectedImage.imageDTO.image_name}`, { type: 'image/png' });
const file = await imageDTOToFile(selectedImage.imageDTO);
await uploadImage({
file,
@@ -66,7 +53,7 @@ export const StagingAreaToolbarSaveSelectedToGalleryButton = memo(() => {
status: 'error',
});
}
}, [autoAddBoardId, selectedImage, t, authToken]);
}, [autoAddBoardId, selectedImage, t]);
return (
<IconButton

View File

@@ -1,6 +1,7 @@
import { Flex } from '@invoke-ai/ui-library';
import { CanvasEntityDeleteButton } from 'features/controlLayers/components/common/CanvasEntityDeleteButton';
import { CanvasEntityEnabledToggle } from 'features/controlLayers/components/common/CanvasEntityEnabledToggle';
import { CanvasEntityHeaderWarnings } from 'features/controlLayers/components/common/CanvasEntityHeaderWarnings';
import { CanvasEntityIsBookmarkedForQuickSwitchToggle } from 'features/controlLayers/components/common/CanvasEntityIsBookmarkedForQuickSwitchToggle';
import { CanvasEntityIsLockedToggle } from 'features/controlLayers/components/common/CanvasEntityIsLockedToggle';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
@@ -11,6 +12,7 @@ export const CanvasEntityHeaderCommonActions = memo(() => {
return (
<Flex alignSelf="stretch">
<CanvasEntityHeaderWarnings />
<CanvasEntityIsBookmarkedForQuickSwitchToggle />
{entityIdentifier.type !== 'reference_image' && <CanvasEntityIsLockedToggle />}
<CanvasEntityEnabledToggle />

View File

@@ -0,0 +1,101 @@
import { Flex, IconButton, ListItem, Text, UnorderedList } from '@invoke-ai/ui-library';
import { createSelector } from '@reduxjs/toolkit';
import { EMPTY_ARRAY } from 'app/store/constants';
import { useAppSelector } from 'app/store/storeHooks';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useEntityIsEnabled } from 'features/controlLayers/hooks/useEntityIsEnabled';
import { selectModel } from 'features/controlLayers/store/paramsSlice';
import { selectCanvasSlice, selectEntityOrThrow } from 'features/controlLayers/store/selectors';
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
import {
getControlLayerWarnings,
getGlobalReferenceImageWarnings,
getInpaintMaskWarnings,
getRasterLayerWarnings,
getRegionalGuidanceWarnings,
} from 'features/controlLayers/store/validators';
import type { TFunction } from 'i18next';
import { upperFirst } from 'lodash-es';
import { memo, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiWarningBold } from 'react-icons/pi';
import type { Equals } from 'tsafe';
import { assert } from 'tsafe';
const buildSelectWarnings = (entityIdentifier: CanvasEntityIdentifier, t: TFunction) => {
return createSelector(selectCanvasSlice, selectModel, (canvas, model) => {
// This component is used within a <CanvasEntityStateGate /> so we can safely assume that the entity exists.
// Should never throw.
const entity = selectEntityOrThrow(canvas, entityIdentifier, 'CanvasEntityHeaderWarnings');
let warnings: string[] = [];
const entityType = entity.type;
if (entityType === 'control_layer') {
warnings = getControlLayerWarnings(entity, model);
} else if (entityType === 'regional_guidance') {
warnings = getRegionalGuidanceWarnings(entity, model);
} else if (entityType === 'inpaint_mask') {
warnings = getInpaintMaskWarnings(entity, model);
} else if (entityType === 'raster_layer') {
warnings = getRasterLayerWarnings(entity, model);
} else if (entityType === 'reference_image') {
warnings = getGlobalReferenceImageWarnings(entity, model);
} else {
assert<Equals<typeof entityType, never>>(false, 'Unexpected entity type');
}
// Return a stable reference if there are no warnings
if (warnings.length === 0) {
return EMPTY_ARRAY;
}
return warnings.map((w) => t(w)).map(upperFirst);
});
};
export const CanvasEntityHeaderWarnings = memo(() => {
const entityIdentifier = useEntityIdentifierContext();
const { t } = useTranslation();
const isEnabled = useEntityIsEnabled(entityIdentifier);
const selectWarnings = useMemo(() => buildSelectWarnings(entityIdentifier, t), [entityIdentifier, t]);
const warnings = useAppSelector(selectWarnings);
if (warnings.length === 0) {
return null;
}
return (
// Using IconButton here bc it matches the styling of the actual buttons in the header without any fanagling, but
// it's not a button
<IconButton
as="span"
size="sm"
variant="link"
alignSelf="stretch"
aria-label="warnings"
tooltip={<TooltipContent warnings={warnings} />}
icon={<PiWarningBold />}
colorScheme="warning"
isDisabled={!isEnabled}
/>
);
});
CanvasEntityHeaderWarnings.displayName = 'CanvasEntityHeaderWarnings';
const TooltipContent = memo((props: { warnings: string[] }) => {
const { t } = useTranslation();
return (
<Flex flexDir="column">
<Text>{t('controlLayers.warnings.problemsFound')}:</Text>
<UnorderedList>
{props.warnings.map((warning, index) => (
<ListItem key={index}>{warning}</ListItem>
))}
</UnorderedList>
</Flex>
);
});
TooltipContent.displayName = 'TooltipContent';

View File

@@ -29,7 +29,13 @@ import { modelConfigsAdapterSelectors, selectModelConfigsQuery } from 'services/
import type { ControlNetModelConfig, IPAdapterModelConfig, T2IAdapterModelConfig } from 'services/api/types';
import { isControlNetOrT2IAdapterModelConfig, isIPAdapterModelConfig } from 'services/api/types';
/** @knipignore */
/**
* Selects the default control adapter configuration based on the model configurations and the base.
*
* Be sure to clone the output of this selector before modifying it!
*
* @knipignore
*/
export const selectDefaultControlAdapter = createSelector(
selectModelConfigsQuery,
selectBase,
@@ -52,6 +58,11 @@ export const selectDefaultControlAdapter = createSelector(
}
);
/**
* Selects the default IP adapter configuration based on the model configurations and the base.
*
* Be sure to clone the output of this selector before modifying it!
*/
export const selectDefaultIPAdapter = createSelector(
selectModelConfigsQuery,
selectBase,
@@ -117,7 +128,9 @@ export const useAddRegionalReferenceImage = () => {
const func = useCallback(() => {
const overrides: Partial<CanvasRegionalGuidanceState> = {
referenceImages: [{ id: getPrefixedId('regional_guidance_reference_image'), ipAdapter: defaultIPAdapter }],
referenceImages: [
{ id: getPrefixedId('regional_guidance_reference_image'), ipAdapter: deepClone(defaultIPAdapter) },
],
};
dispatch(rgAdded({ isSelected: true, overrides }));
}, [defaultIPAdapter, dispatch]);
@@ -129,7 +142,7 @@ export const useAddGlobalReferenceImage = () => {
const dispatch = useAppDispatch();
const defaultIPAdapter = useAppSelector(selectDefaultIPAdapter);
const func = useCallback(() => {
const overrides = { ipAdapter: defaultIPAdapter };
const overrides = { ipAdapter: deepClone(defaultIPAdapter) };
dispatch(referenceImageAdded({ isSelected: true, overrides }));
}, [defaultIPAdapter, dispatch]);
@@ -140,7 +153,7 @@ export const useAddRegionalGuidanceIPAdapter = (entityIdentifier: CanvasEntityId
const dispatch = useAppDispatch();
const defaultIPAdapter = useAppSelector(selectDefaultIPAdapter);
const func = useCallback(() => {
dispatch(rgIPAdapterAdded({ entityIdentifier, overrides: { ipAdapter: defaultIPAdapter } }));
dispatch(rgIPAdapterAdded({ entityIdentifier, overrides: { ipAdapter: deepClone(defaultIPAdapter) } }));
}, [defaultIPAdapter, dispatch, entityIdentifier]);
return func;

View File

@@ -0,0 +1,153 @@
import type {
CanvasControlLayerState,
CanvasInpaintMaskState,
CanvasRasterLayerState,
CanvasReferenceImageState,
CanvasRegionalGuidanceState,
} from 'features/controlLayers/store/types';
import type { ParameterModel } from 'features/parameters/types/parameterSchemas';
const WARNINGS = {
UNSUPPORTED_MODEL: 'controlLayers.warnings.unsupportedModel',
RG_NO_PROMPTS_OR_IP_ADAPTERS: 'controlLayers.warnings.rgNoPromptsOrIPAdapters',
RG_NEGATIVE_PROMPT_NOT_SUPPORTED: 'controlLayers.warnings.rgNegativePromptNotSupported',
RG_REFERENCE_IMAGES_NOT_SUPPORTED: 'controlLayers.warnings.rgReferenceImagesNotSupported',
RG_AUTO_NEGATIVE_NOT_SUPPORTED: 'controlLayers.warnings.rgAutoNegativeNotSupported',
RG_NO_REGION: 'controlLayers.warnings.rgNoRegion',
IP_ADAPTER_NO_MODEL_SELECTED: 'controlLayers.warnings.ipAdapterNoModelSelected',
IP_ADAPTER_INCOMPATIBLE_BASE_MODEL: 'controlLayers.warnings.ipAdapterIncompatibleBaseModel',
IP_ADAPTER_NO_IMAGE_SELECTED: 'controlLayers.warnings.ipAdapterNoImageSelected',
CONTROL_ADAPTER_NO_MODEL_SELECTED: 'controlLayers.warnings.controlAdapterNoModelSelected',
CONTROL_ADAPTER_INCOMPATIBLE_BASE_MODEL: 'controlLayers.warnings.controlAdapterIncompatibleBaseModel',
CONTROL_ADAPTER_NO_CONTROL: 'controlLayers.warnings.controlAdapterNoControl',
} as const;
type WarningTKey = (typeof WARNINGS)[keyof typeof WARNINGS];
export const getRegionalGuidanceWarnings = (
entity: CanvasRegionalGuidanceState,
model: ParameterModel | null
): WarningTKey[] => {
const warnings: WarningTKey[] = [];
if (entity.objects.length === 0) {
// Layer is in empty state
warnings.push(WARNINGS.RG_NO_REGION);
}
if (entity.positivePrompt === null && entity.negativePrompt === null && entity.referenceImages.length === 0) {
// Must have at least 1 prompt or IP Adapter
warnings.push(WARNINGS.RG_NO_PROMPTS_OR_IP_ADAPTERS);
}
if (model) {
if (model.base === 'sd-3' || model.base === 'sd-2') {
// Unsupported model architecture
warnings.push(WARNINGS.UNSUPPORTED_MODEL);
} else if (model.base === 'flux') {
// Some features are not supported for flux models
if (entity.negativePrompt !== null) {
warnings.push(WARNINGS.RG_NEGATIVE_PROMPT_NOT_SUPPORTED);
}
if (entity.referenceImages.length > 0) {
warnings.push(WARNINGS.RG_REFERENCE_IMAGES_NOT_SUPPORTED);
}
if (entity.autoNegative) {
warnings.push(WARNINGS.RG_AUTO_NEGATIVE_NOT_SUPPORTED);
}
} else {
entity.referenceImages.forEach(({ ipAdapter }) => {
if (!ipAdapter.model) {
// No model selected
warnings.push(WARNINGS.IP_ADAPTER_NO_MODEL_SELECTED);
} else if (ipAdapter.model.base !== model.base) {
// Supported model architecture but doesn't match
warnings.push(WARNINGS.IP_ADAPTER_INCOMPATIBLE_BASE_MODEL);
}
if (!ipAdapter.image) {
// No image selected
warnings.push(WARNINGS.IP_ADAPTER_NO_IMAGE_SELECTED);
}
});
}
}
return warnings;
};
export const getGlobalReferenceImageWarnings = (
entity: CanvasReferenceImageState,
model: ParameterModel | null
): WarningTKey[] => {
const warnings: WarningTKey[] = [];
if (!entity.ipAdapter.model) {
// No model selected
warnings.push(WARNINGS.IP_ADAPTER_NO_MODEL_SELECTED);
} else if (model) {
if (model.base === 'sd-3' || model.base === 'sd-2') {
// Unsupported model architecture
warnings.push(WARNINGS.UNSUPPORTED_MODEL);
} else if (entity.ipAdapter.model.base !== model.base) {
// Supported model architecture but doesn't match
warnings.push(WARNINGS.IP_ADAPTER_INCOMPATIBLE_BASE_MODEL);
}
}
if (!entity.ipAdapter.image) {
// No image selected
warnings.push(WARNINGS.IP_ADAPTER_NO_IMAGE_SELECTED);
}
return warnings;
};
export const getControlLayerWarnings = (
entity: CanvasControlLayerState,
model: ParameterModel | null
): WarningTKey[] => {
const warnings: WarningTKey[] = [];
if (entity.objects.length === 0) {
// Layer is in empty state
warnings.push(WARNINGS.CONTROL_ADAPTER_NO_CONTROL);
}
if (!entity.controlAdapter.model) {
// No model selected
warnings.push(WARNINGS.CONTROL_ADAPTER_NO_MODEL_SELECTED);
} else if (model) {
if (model.base === 'sd-3' || model.base === 'sd-2') {
// Unsupported model architecture
warnings.push(WARNINGS.UNSUPPORTED_MODEL);
} else if (entity.controlAdapter.model.base !== model.base) {
// Supported model architecture but doesn't match
warnings.push(WARNINGS.CONTROL_ADAPTER_INCOMPATIBLE_BASE_MODEL);
}
}
return warnings;
};
export const getRasterLayerWarnings = (
_entity: CanvasRasterLayerState,
_model: ParameterModel | null
): WarningTKey[] => {
const warnings: WarningTKey[] = [];
// There are no warnings at the moment for raster layers.
return warnings;
};
export const getInpaintMaskWarnings = (
_entity: CanvasInpaintMaskState,
_model: ParameterModel | null
): WarningTKey[] => {
const warnings: WarningTKey[] = [];
// There are no warnings at the moment for inpaint masks.
return warnings;
};

View File

@@ -77,6 +77,32 @@ export const ImageMenuItemNewLayerFromImageSubMenu = memo(() => {
});
}, [imageDTO, imageViewer, store, t]);
const onClickNewRegionalReferenceImageFromImage = useCallback(() => {
const { dispatch, getState } = store;
createNewCanvasEntityFromImage({ imageDTO, type: 'reference_image', dispatch, getState });
dispatch(sentImageToCanvas());
dispatch(setActiveTab('canvas'));
imageViewer.close();
toast({
id: 'SENT_TO_CANVAS',
title: t('toast.sentToCanvas'),
status: 'success',
});
}, [imageDTO, imageViewer, store, t]);
const onClickNewGlobalReferenceImageFromImage = useCallback(() => {
const { dispatch, getState } = store;
createNewCanvasEntityFromImage({ imageDTO, type: 'regional_guidance_with_reference_image', dispatch, getState });
dispatch(sentImageToCanvas());
dispatch(setActiveTab('canvas'));
imageViewer.close();
toast({
id: 'SENT_TO_CANVAS',
title: t('toast.sentToCanvas'),
status: 'success',
});
}, [imageDTO, imageViewer, store, t]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiPlusBold />}>
<Menu {...subMenu.menuProps}>
@@ -104,6 +130,20 @@ export const ImageMenuItemNewLayerFromImageSubMenu = memo(() => {
<MenuItem icon={<NewLayerIcon />} onClickCapture={onClickNewRasterLayerFromImage} isDisabled={isBusy}>
{t('controlLayers.rasterLayer')}
</MenuItem>
<MenuItem
icon={<NewLayerIcon />}
onClickCapture={onClickNewRegionalReferenceImageFromImage}
isDisabled={isBusy}
>
{t('controlLayers.referenceImageRegional')}
</MenuItem>
<MenuItem
icon={<NewLayerIcon />}
onClickCapture={onClickNewGlobalReferenceImageFromImage}
isDisabled={isBusy}
>
{t('controlLayers.referenceImageGlobal')}
</MenuItem>
</MenuList>
</Menu>
</MenuItem>

View File

@@ -20,6 +20,7 @@ import { selectBboxModelBase, selectBboxRect } from 'features/controlLayers/stor
import type {
CanvasControlLayerState,
CanvasEntityIdentifier,
CanvasEntityState,
CanvasEntityType,
CanvasInpaintMaskState,
CanvasRasterLayerState,
@@ -134,14 +135,16 @@ export const createNewCanvasEntityFromImage = (arg: {
type: CanvasEntityType | 'regional_guidance_with_reference_image';
dispatch: AppDispatch;
getState: () => RootState;
overrides?: Partial<Pick<CanvasEntityState, 'isEnabled' | 'isLocked' | 'name'>>;
}) => {
const { type, imageDTO, dispatch, getState } = arg;
const { type, imageDTO, dispatch, getState, overrides: _overrides } = arg;
const state = getState();
const imageObject = imageDTOToImageObject(imageDTO);
const { x, y } = selectBboxRect(state);
const overrides = {
objects: [imageObject],
position: { x, y },
..._overrides,
};
switch (type) {
case 'raster_layer': {
@@ -166,13 +169,13 @@ export const createNewCanvasEntityFromImage = (arg: {
break;
}
case 'reference_image': {
const ipAdapter = selectDefaultIPAdapter(getState());
const ipAdapter = deepClone(selectDefaultIPAdapter(getState()));
ipAdapter.image = imageDTOToImageWithDims(imageDTO);
dispatch(referenceImageAdded({ overrides: { ipAdapter }, isSelected: true }));
break;
}
case 'regional_guidance_with_reference_image': {
const ipAdapter = selectDefaultIPAdapter(getState());
const ipAdapter = deepClone(selectDefaultIPAdapter(getState()));
ipAdapter.image = imageDTOToImageWithDims(imageDTO);
const referenceImages = [{ id: getPrefixedId('regional_guidance_reference_image'), ipAdapter }];
dispatch(rgAdded({ overrides: { referenceImages }, isSelected: true }));
@@ -288,14 +291,14 @@ export const newCanvasFromImage = (arg: {
break;
}
case 'reference_image': {
const ipAdapter = selectDefaultIPAdapter(getState());
const ipAdapter = deepClone(selectDefaultIPAdapter(getState()));
ipAdapter.image = imageDTOToImageWithDims(imageDTO);
dispatch(canvasReset());
dispatch(referenceImageAdded({ overrides: { ipAdapter }, isSelected: true }));
break;
}
case 'regional_guidance_with_reference_image': {
const ipAdapter = selectDefaultIPAdapter(getState());
const ipAdapter = deepClone(selectDefaultIPAdapter(getState()));
ipAdapter.image = imageDTOToImageWithDims(imageDTO);
const referenceImages = [{ id: getPrefixedId('regional_guidance_reference_image'), ipAdapter }];
dispatch(canvasReset());

View File

@@ -1,35 +1,41 @@
import { logger } from 'app/logging/logger';
import { withResultAsync } from 'common/util/result';
import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
import type {
CanvasControlLayerState,
ControlNetConfig,
Rect,
T2IAdapterConfig,
} from 'features/controlLayers/store/types';
import type { CanvasControlLayerState, Rect } from 'features/controlLayers/store/types';
import { getControlLayerWarnings } from 'features/controlLayers/store/validators';
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
import type { ParameterModel } from 'features/parameters/types/parameterSchemas';
import { serializeError } from 'serialize-error';
import type { BaseModelType, ImageDTO, Invocation } from 'services/api/types';
import type { ImageDTO, Invocation } from 'services/api/types';
import { assert } from 'tsafe';
const log = logger('system');
type AddControlNetsArg = {
manager: CanvasManager;
entities: CanvasControlLayerState[];
g: Graph;
rect: Rect;
collector: Invocation<'collect'>;
model: ParameterModel;
};
type AddControlNetsResult = {
addedControlNets: number;
};
export const addControlNets = async (
manager: CanvasManager,
layers: CanvasControlLayerState[],
g: Graph,
rect: Rect,
collector: Invocation<'collect'>,
base: BaseModelType
): Promise<AddControlNetsResult> => {
const validControlLayers = layers
.filter((layer) => layer.isEnabled)
.filter((layer) => isValidControlAdapter(layer.controlAdapter, base))
.filter((layer) => layer.controlAdapter.type === 'controlnet');
export const addControlNets = async ({
manager,
entities,
g,
rect,
collector,
model,
}: AddControlNetsArg): Promise<AddControlNetsResult> => {
const validControlLayers = entities
.filter((entity) => entity.isEnabled)
.filter((entity) => entity.controlAdapter.type === 'controlnet')
.filter((entity) => getControlLayerWarnings(entity, model).length === 0);
const result: AddControlNetsResult = {
addedControlNets: 0,
@@ -54,22 +60,31 @@ export const addControlNets = async (
return result;
};
type AddT2IAdaptersArg = {
manager: CanvasManager;
entities: CanvasControlLayerState[];
g: Graph;
rect: Rect;
collector: Invocation<'collect'>;
model: ParameterModel;
};
type AddT2IAdaptersResult = {
addedT2IAdapters: number;
};
export const addT2IAdapters = async (
manager: CanvasManager,
layers: CanvasControlLayerState[],
g: Graph,
rect: Rect,
collector: Invocation<'collect'>,
base: BaseModelType
): Promise<AddT2IAdaptersResult> => {
const validControlLayers = layers
.filter((layer) => layer.isEnabled)
.filter((layer) => isValidControlAdapter(layer.controlAdapter, base))
.filter((layer) => layer.controlAdapter.type === 't2i_adapter');
export const addT2IAdapters = async ({
manager,
entities,
g,
rect,
collector,
model,
}: AddT2IAdaptersArg): Promise<AddT2IAdaptersResult> => {
const validControlLayers = entities
.filter((entity) => entity.isEnabled)
.filter((entity) => entity.controlAdapter.type === 't2i_adapter')
.filter((entity) => getControlLayerWarnings(entity, model).length === 0);
const result: AddT2IAdaptersResult = {
addedT2IAdapters: 0,
@@ -145,11 +160,3 @@ const addT2IAdapterToGraph = (
g.addEdge(t2iAdapter, 't2i_adapter', collector, 'item');
};
const isValidControlAdapter = (controlAdapter: ControlNetConfig | T2IAdapterConfig, base: BaseModelType): boolean => {
// Must be have a model
const hasModel = Boolean(controlAdapter.model);
// Model must match the current base model
const modelMatchesBase = controlAdapter.model?.base === base;
return hasModel && modelMatchesBase;
};

View File

@@ -1,19 +1,23 @@
import type { CanvasReferenceImageState } from 'features/controlLayers/store/types';
import { getGlobalReferenceImageWarnings } from 'features/controlLayers/store/validators';
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
import type { BaseModelType, Invocation } from 'services/api/types';
import type { ParameterModel } from 'features/parameters/types/parameterSchemas';
import type { Invocation } from 'services/api/types';
import { assert } from 'tsafe';
type AddIPAdaptersResult = {
addedIPAdapters: number;
};
export const addIPAdapters = (
ipAdapters: CanvasReferenceImageState[],
g: Graph,
collector: Invocation<'collect'>,
base: BaseModelType
): AddIPAdaptersResult => {
const validIPAdapters = ipAdapters.filter((entity) => isValidIPAdapter(entity, base));
type AddIPAdaptersArg = {
entities: CanvasReferenceImageState[];
g: Graph;
collector: Invocation<'collect'>;
model: ParameterModel;
};
export const addIPAdapters = ({ entities, g, collector, model }: AddIPAdaptersArg): AddIPAdaptersResult => {
const validIPAdapters = entities.filter((entity) => getGlobalReferenceImageWarnings(entity, model).length === 0);
const result: AddIPAdaptersResult = {
addedIPAdapters: 0,
@@ -76,11 +80,3 @@ const addIPAdapter = (entity: CanvasReferenceImageState, g: Graph, collector: In
g.addEdge(ipAdapterNode, 'ip_adapter', collector, 'item');
};
const isValidIPAdapter = ({ isEnabled, ipAdapter }: CanvasReferenceImageState, base: BaseModelType): boolean => {
// Must be have a model that matches the current base and must have a control image
const hasModel = Boolean(ipAdapter.model);
const modelMatchesBase = ipAdapter.model?.base === base;
const hasImage = Boolean(ipAdapter.image);
return isEnabled && hasModel && modelMatchesBase && hasImage;
};

View File

@@ -3,15 +3,12 @@ import { deepClone } from 'common/util/deepClone';
import { withResultAsync } from 'common/util/result';
import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
import { getPrefixedId } from 'features/controlLayers/konva/util';
import type {
CanvasRegionalGuidanceState,
IPAdapterConfig,
Rect,
RegionalGuidanceReferenceImageState,
} from 'features/controlLayers/store/types';
import type { CanvasRegionalGuidanceState, Rect } from 'features/controlLayers/store/types';
import { getRegionalGuidanceWarnings } from 'features/controlLayers/store/validators';
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
import type { ParameterModel } from 'features/parameters/types/parameterSchemas';
import { serializeError } from 'serialize-error';
import type { BaseModelType, Invocation } from 'services/api/types';
import type { Invocation } from 'services/api/types';
import { assert } from 'tsafe';
const log = logger('system');
@@ -23,19 +20,26 @@ type AddedRegionResult = {
addedIPAdapters: number;
};
const isValidRegion = (rg: CanvasRegionalGuidanceState, base: BaseModelType) => {
const isEnabled = rg.isEnabled;
const hasTextPrompt = Boolean(rg.positivePrompt || rg.negativePrompt);
const hasIPAdapter = rg.referenceImages.filter(({ ipAdapter }) => isValidIPAdapter(ipAdapter, base)).length > 0;
return isEnabled && (hasTextPrompt || hasIPAdapter);
type AddRegionsArg = {
manager: CanvasManager;
regions: CanvasRegionalGuidanceState[];
g: Graph;
bbox: Rect;
model: ParameterModel;
posCond: Invocation<'compel' | 'sdxl_compel_prompt' | 'flux_text_encoder'>;
negCond: Invocation<'compel' | 'sdxl_compel_prompt' | 'flux_text_encoder'> | null;
posCondCollect: Invocation<'collect'>;
negCondCollect: Invocation<'collect'> | null;
ipAdapterCollect: Invocation<'collect'>;
};
/**
* Adds regional guidance to the graph
* @param manager The canvas manager
* @param regions Array of regions to add
* @param g The graph to add the layers to
* @param base The base model type
* @param denoise The main denoise node
* @param bbox The bounding box
* @param model The main model
* @param posCond The positive conditioning node
* @param negCond The negative conditioning node
* @param posCondCollect The positive conditioning collector
@@ -44,22 +48,28 @@ const isValidRegion = (rg: CanvasRegionalGuidanceState, base: BaseModelType) =>
* @returns A promise that resolves to the regions that were successfully added to the graph
*/
export const addRegions = async (
manager: CanvasManager,
regions: CanvasRegionalGuidanceState[],
g: Graph,
bbox: Rect,
base: BaseModelType,
denoise: Invocation<'denoise_latents'>,
posCond: Invocation<'compel'> | Invocation<'sdxl_compel_prompt'>,
negCond: Invocation<'compel'> | Invocation<'sdxl_compel_prompt'>,
posCondCollect: Invocation<'collect'>,
negCondCollect: Invocation<'collect'>,
ipAdapterCollect: Invocation<'collect'>
): Promise<AddedRegionResult[]> => {
const isSDXL = base === 'sdxl';
export const addRegions = async ({
manager,
regions,
g,
bbox,
model,
posCond,
negCond,
posCondCollect,
negCondCollect,
ipAdapterCollect,
}: AddRegionsArg): Promise<AddedRegionResult[]> => {
const isSDXL = model.base === 'sdxl';
const isFLUX = model.base === 'flux';
const validRegions = regions.filter((rg) => {
if (!rg.isEnabled) {
return false;
}
return getRegionalGuidanceWarnings(rg, model).length === 0;
});
const validRegions = regions.filter((rg) => isValidRegion(rg, base));
const results: AddedRegionResult[] = [];
for (const region of validRegions) {
@@ -94,20 +104,27 @@ export const addRegions = async (
if (region.positivePrompt) {
// The main positive conditioning node
result.addedPositivePrompt = true;
const regionalPosCond = g.addNode(
isSDXL
? {
type: 'sdxl_compel_prompt',
id: getPrefixedId('prompt_region_positive_cond'),
prompt: region.positivePrompt,
style: region.positivePrompt, // TODO: Should we put the positive prompt in both fields?
}
: {
type: 'compel',
id: getPrefixedId('prompt_region_positive_cond'),
prompt: region.positivePrompt,
}
);
let regionalPosCond: Invocation<'compel' | 'sdxl_compel_prompt' | 'flux_text_encoder'>;
if (isSDXL) {
regionalPosCond = g.addNode({
type: 'sdxl_compel_prompt',
id: getPrefixedId('prompt_region_positive_cond'),
prompt: region.positivePrompt,
style: region.positivePrompt, // TODO: Should we put the positive prompt in both fields?
});
} else if (isFLUX) {
regionalPosCond = g.addNode({
type: 'flux_text_encoder',
id: getPrefixedId('prompt_region_positive_cond'),
prompt: region.positivePrompt,
});
} else {
regionalPosCond = g.addNode({
type: 'compel',
id: getPrefixedId('prompt_region_positive_cond'),
prompt: region.positivePrompt,
});
}
// Connect the mask to the conditioning
g.addEdge(maskToTensor, 'mask', regionalPosCond, 'mask');
// Connect the conditioning to the collector
@@ -115,38 +132,55 @@ export const addRegions = async (
// Copy the connections to the "global" positive conditioning node to the regional cond
if (posCond.type === 'compel') {
for (const edge of g.getEdgesTo(posCond, ['clip', 'mask'])) {
// Clone the edge, but change the destination node to the regional conditioning node
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCond.id;
g.addEdgeFromObj(clone);
}
} else if (posCond.type === 'sdxl_compel_prompt') {
for (const edge of g.getEdgesTo(posCond, ['clip', 'clip2', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCond.id;
g.addEdgeFromObj(clone);
}
} else if (posCond.type === 'flux_text_encoder') {
for (const edge of g.getEdgesTo(posCond, ['clip', 't5_encoder', 't5_max_seq_len', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCond.id;
g.addEdgeFromObj(clone);
}
} else {
for (const edge of g.getEdgesTo(posCond, ['clip', 'clip2', 'mask'])) {
// Clone the edge, but change the destination node to the regional conditioning node
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCond.id;
g.addEdgeFromObj(clone);
}
assert(false, 'Unsupported positive conditioning node type.');
}
}
if (region.negativePrompt) {
result.addedNegativePrompt = true;
assert(negCond, 'Negative conditioning node is required if there is a negative prompt');
assert(negCondCollect, 'Negative conditioning collector is required if there is a negative prompt');
// The main negative conditioning node
const regionalNegCond = g.addNode(
isSDXL
? {
type: 'sdxl_compel_prompt',
id: getPrefixedId('prompt_region_negative_cond'),
prompt: region.negativePrompt,
style: region.negativePrompt,
}
: {
type: 'compel',
id: getPrefixedId('prompt_region_negative_cond'),
prompt: region.negativePrompt,
}
);
result.addedNegativePrompt = true;
let regionalNegCond: Invocation<'compel' | 'sdxl_compel_prompt' | 'flux_text_encoder'>;
if (isSDXL) {
regionalNegCond = g.addNode({
type: 'sdxl_compel_prompt',
id: getPrefixedId('prompt_region_negative_cond'),
prompt: region.negativePrompt,
style: region.negativePrompt,
});
} else if (isFLUX) {
regionalNegCond = g.addNode({
type: 'flux_text_encoder',
id: getPrefixedId('prompt_region_negative_cond'),
prompt: region.negativePrompt,
});
} else {
regionalNegCond = g.addNode({
type: 'compel',
id: getPrefixedId('prompt_region_negative_cond'),
prompt: region.negativePrompt,
});
}
// Connect the mask to the conditioning
g.addEdge(maskToTensor, 'mask', regionalNegCond, 'mask');
// Connect the conditioning to the collector
@@ -158,17 +192,27 @@ export const addRegions = async (
clone.destination.node_id = regionalNegCond.id;
g.addEdgeFromObj(clone);
}
} else {
} else if (negCond.type === 'sdxl_compel_prompt') {
for (const edge of g.getEdgesTo(negCond, ['clip', 'clip2', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalNegCond.id;
g.addEdgeFromObj(clone);
}
} else if (negCond.type === 'flux_text_encoder') {
for (const edge of g.getEdgesTo(negCond, ['clip', 't5_encoder', 't5_max_seq_len', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalNegCond.id;
g.addEdgeFromObj(clone);
}
} else {
assert(false, 'Unsupported negative conditioning node type.');
}
}
// If we are using the "invert" auto-negative setting, we need to add an additional negative conditioning node
if (region.autoNegative && region.positivePrompt) {
assert(negCondCollect, 'Negative conditioning collector is required if there is an auto-negative setting');
result.addedAutoNegativePositivePrompt = true;
// We re-use the mask image, but invert it when converting to tensor
const invertTensorMask = g.addNode({
@@ -178,20 +222,27 @@ export const addRegions = async (
// Connect the OG mask image to the inverted mask-to-tensor node
g.addEdge(maskToTensor, 'mask', invertTensorMask, 'mask');
// Create the conditioning node. It's going to be connected to the negative cond collector, but it uses the positive prompt
const regionalPosCondInverted = g.addNode(
isSDXL
? {
type: 'sdxl_compel_prompt',
id: getPrefixedId('prompt_region_positive_cond_inverted'),
prompt: region.positivePrompt,
style: region.positivePrompt,
}
: {
type: 'compel',
id: getPrefixedId('prompt_region_positive_cond_inverted'),
prompt: region.positivePrompt,
}
);
let regionalPosCondInverted: Invocation<'compel' | 'sdxl_compel_prompt' | 'flux_text_encoder'>;
if (isSDXL) {
regionalPosCondInverted = g.addNode({
type: 'sdxl_compel_prompt',
id: getPrefixedId('prompt_region_positive_cond_inverted'),
prompt: region.positivePrompt,
style: region.positivePrompt,
});
} else if (isFLUX) {
regionalPosCondInverted = g.addNode({
type: 'flux_text_encoder',
id: getPrefixedId('prompt_region_positive_cond_inverted'),
prompt: region.positivePrompt,
});
} else {
regionalPosCondInverted = g.addNode({
type: 'compel',
id: getPrefixedId('prompt_region_positive_cond_inverted'),
prompt: region.positivePrompt,
});
}
// Connect the inverted mask to the conditioning
g.addEdge(invertTensorMask, 'mask', regionalPosCondInverted, 'mask');
// Connect the conditioning to the negative collector
@@ -203,20 +254,26 @@ export const addRegions = async (
clone.destination.node_id = regionalPosCondInverted.id;
g.addEdgeFromObj(clone);
}
} else {
} else if (posCond.type === 'sdxl_compel_prompt') {
for (const edge of g.getEdgesTo(posCond, ['clip', 'clip2', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCondInverted.id;
g.addEdgeFromObj(clone);
}
} else if (posCond.type === 'flux_text_encoder') {
for (const edge of g.getEdgesTo(posCond, ['clip', 't5_encoder', 't5_max_seq_len', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCondInverted.id;
g.addEdgeFromObj(clone);
}
} else {
assert(false, 'Unsupported positive conditioning node type.');
}
}
const validRGIPAdapters: RegionalGuidanceReferenceImageState[] = region.referenceImages.filter(({ ipAdapter }) =>
isValidIPAdapter(ipAdapter, base)
);
for (const { id, ipAdapter } of region.referenceImages) {
assert(!isFLUX, 'Regional IP adapters are not supported for FLUX.');
for (const { id, ipAdapter } of validRGIPAdapters) {
result.addedIPAdapters++;
const { weight, model, clipVisionModel, method, beginEndStepPct, image } = ipAdapter;
assert(model, 'IP Adapter model is required');
@@ -248,11 +305,3 @@ export const addRegions = async (
return results;
};
const isValidIPAdapter = (ipAdapter: IPAdapterConfig, base: BaseModelType): boolean => {
// Must be have a model that matches the current base and must have a control image
const hasModel = Boolean(ipAdapter.model);
const modelMatchesBase = ipAdapter.model?.base === base;
const hasImage = Boolean(ipAdapter.image);
return hasModel && modelMatchesBase && hasImage;
};

View File

@@ -11,6 +11,7 @@ import { addImageToImage } from 'features/nodes/util/graph/generation/addImageTo
import { addInpaint } from 'features/nodes/util/graph/generation/addInpaint';
import { addNSFWChecker } from 'features/nodes/util/graph/generation/addNSFWChecker';
import { addOutpaint } from 'features/nodes/util/graph/generation/addOutpaint';
import { addRegions } from 'features/nodes/util/graph/generation/addRegions';
import { addTextToImage } from 'features/nodes/util/graph/generation/addTextToImage';
import { addWatermarker } from 'features/nodes/util/graph/generation/addWatermarker';
import { Graph } from 'features/nodes/util/graph/generation/Graph';
@@ -79,7 +80,10 @@ export const buildFLUXGraph = async (
id: getPrefixedId('flux_text_encoder'),
prompt: positivePrompt,
});
const posCondCollect = g.addNode({
type: 'collect',
id: getPrefixedId('pos_cond_collect'),
});
const denoise = g.addNode({
type: 'flux_denoise',
id: getPrefixedId('flux_denoise'),
@@ -104,13 +108,12 @@ export const buildFLUXGraph = async (
g.addEdge(modelLoader, 'clip', posCond, 'clip');
g.addEdge(modelLoader, 't5_encoder', posCond, 't5_encoder');
g.addEdge(modelLoader, 'max_seq_len', posCond, 't5_max_seq_len');
g.addEdge(posCond, 'conditioning', posCondCollect, 'item');
g.addEdge(posCondCollect, 'collection', denoise, 'positive_text_conditioning');
g.addEdge(denoise, 'latents', l2i, 'latents');
addFLUXLoRAs(state, g, denoise, modelLoader, posCond);
g.addEdge(posCond, 'conditioning', denoise, 'positive_text_conditioning');
g.addEdge(denoise, 'latents', l2i, 'latents');
const modelConfig = await fetchModelConfigWithTypeGuard(model.key, isNonRefinerMainModelConfig);
assert(modelConfig.base === 'flux');
@@ -196,31 +199,50 @@ export const buildFLUXGraph = async (
type: 'collect',
id: getPrefixedId('control_net_collector'),
});
const controlNetResult = await addControlNets(
const controlNetResult = await addControlNets({
manager,
canvas.controlLayers.entities,
entities: canvas.controlLayers.entities,
g,
canvas.bbox.rect,
controlNetCollector,
modelConfig.base
);
rect: canvas.bbox.rect,
collector: controlNetCollector,
model: modelConfig,
});
if (controlNetResult.addedControlNets > 0) {
g.addEdge(controlNetCollector, 'collection', denoise, 'control');
} else {
g.deleteNode(controlNetCollector.id);
}
const ipAdapterCollector = g.addNode({
const ipAdapterCollect = g.addNode({
type: 'collect',
id: getPrefixedId('ip_adapter_collector'),
});
const ipAdapterResult = addIPAdapters(canvas.referenceImages.entities, g, ipAdapterCollector, modelConfig.base);
const ipAdapterResult = addIPAdapters({
entities: canvas.referenceImages.entities,
g,
collector: ipAdapterCollect,
model: modelConfig,
});
const totalIPAdaptersAdded = ipAdapterResult.addedIPAdapters;
const regionsResult = await addRegions({
manager,
regions: canvas.regionalGuidance.entities,
g,
bbox: canvas.bbox.rect,
model: modelConfig,
posCond,
negCond: null,
posCondCollect,
negCondCollect: null,
ipAdapterCollect,
});
const totalIPAdaptersAdded =
ipAdapterResult.addedIPAdapters + regionsResult.reduce((acc, r) => acc + r.addedIPAdapters, 0);
if (totalIPAdaptersAdded > 0) {
g.addEdge(ipAdapterCollector, 'collection', denoise, 'ip_adapter');
g.addEdge(ipAdapterCollect, 'collection', denoise, 'ip_adapter');
} else {
g.deleteNode(ipAdapterCollector.id);
g.deleteNode(ipAdapterCollect.id);
}
if (state.system.shouldUseNSFWChecker) {

View File

@@ -227,14 +227,14 @@ export const buildSD1Graph = async (
type: 'collect',
id: getPrefixedId('control_net_collector'),
});
const controlNetResult = await addControlNets(
const controlNetResult = await addControlNets({
manager,
canvas.controlLayers.entities,
entities: canvas.controlLayers.entities,
g,
canvas.bbox.rect,
controlNetCollector,
modelConfig.base
);
rect: canvas.bbox.rect,
collector: controlNetCollector,
model: modelConfig,
});
if (controlNetResult.addedControlNets > 0) {
g.addEdge(controlNetCollector, 'collection', denoise, 'control');
} else {
@@ -245,46 +245,50 @@ export const buildSD1Graph = async (
type: 'collect',
id: getPrefixedId('t2i_adapter_collector'),
});
const t2iAdapterResult = await addT2IAdapters(
const t2iAdapterResult = await addT2IAdapters({
manager,
canvas.controlLayers.entities,
entities: canvas.controlLayers.entities,
g,
canvas.bbox.rect,
t2iAdapterCollector,
modelConfig.base
);
rect: canvas.bbox.rect,
collector: t2iAdapterCollector,
model: modelConfig,
});
if (t2iAdapterResult.addedT2IAdapters > 0) {
g.addEdge(t2iAdapterCollector, 'collection', denoise, 't2i_adapter');
} else {
g.deleteNode(t2iAdapterCollector.id);
}
const ipAdapterCollector = g.addNode({
const ipAdapterCollect = g.addNode({
type: 'collect',
id: getPrefixedId('ip_adapter_collector'),
});
const ipAdapterResult = addIPAdapters(canvas.referenceImages.entities, g, ipAdapterCollector, modelConfig.base);
const regionsResult = await addRegions(
manager,
canvas.regionalGuidance.entities,
const ipAdapterResult = addIPAdapters({
entities: canvas.referenceImages.entities,
g,
canvas.bbox.rect,
modelConfig.base,
denoise,
collector: ipAdapterCollect,
model: modelConfig,
});
const regionsResult = await addRegions({
manager,
regions: canvas.regionalGuidance.entities,
g,
bbox: canvas.bbox.rect,
model: modelConfig,
posCond,
negCond,
posCondCollect,
negCondCollect,
ipAdapterCollector
);
ipAdapterCollect,
});
const totalIPAdaptersAdded =
ipAdapterResult.addedIPAdapters + regionsResult.reduce((acc, r) => acc + r.addedIPAdapters, 0);
if (totalIPAdaptersAdded > 0) {
g.addEdge(ipAdapterCollector, 'collection', denoise, 'ip_adapter');
g.addEdge(ipAdapterCollect, 'collection', denoise, 'ip_adapter');
} else {
g.deleteNode(ipAdapterCollector.id);
g.deleteNode(ipAdapterCollect.id);
}
if (state.system.shouldUseNSFWChecker) {

View File

@@ -232,14 +232,14 @@ export const buildSDXLGraph = async (
type: 'collect',
id: getPrefixedId('control_net_collector'),
});
const controlNetResult = await addControlNets(
const controlNetResult = await addControlNets({
manager,
canvas.controlLayers.entities,
entities: canvas.controlLayers.entities,
g,
canvas.bbox.rect,
controlNetCollector,
modelConfig.base
);
rect: canvas.bbox.rect,
collector: controlNetCollector,
model: modelConfig,
});
if (controlNetResult.addedControlNets > 0) {
g.addEdge(controlNetCollector, 'collection', denoise, 'control');
} else {
@@ -250,46 +250,50 @@ export const buildSDXLGraph = async (
type: 'collect',
id: getPrefixedId('t2i_adapter_collector'),
});
const t2iAdapterResult = await addT2IAdapters(
const t2iAdapterResult = await addT2IAdapters({
manager,
canvas.controlLayers.entities,
entities: canvas.controlLayers.entities,
g,
canvas.bbox.rect,
t2iAdapterCollector,
modelConfig.base
);
rect: canvas.bbox.rect,
collector: t2iAdapterCollector,
model: modelConfig,
});
if (t2iAdapterResult.addedT2IAdapters > 0) {
g.addEdge(t2iAdapterCollector, 'collection', denoise, 't2i_adapter');
} else {
g.deleteNode(t2iAdapterCollector.id);
}
const ipAdapterCollector = g.addNode({
const ipAdapterCollect = g.addNode({
type: 'collect',
id: getPrefixedId('ip_adapter_collector'),
});
const ipAdapterResult = addIPAdapters(canvas.referenceImages.entities, g, ipAdapterCollector, modelConfig.base);
const regionsResult = await addRegions(
manager,
canvas.regionalGuidance.entities,
const ipAdapterResult = addIPAdapters({
entities: canvas.referenceImages.entities,
g,
canvas.bbox.rect,
modelConfig.base,
denoise,
collector: ipAdapterCollect,
model: modelConfig,
});
const regionsResult = await addRegions({
manager,
regions: canvas.regionalGuidance.entities,
g,
bbox: canvas.bbox.rect,
model: modelConfig,
posCond,
negCond,
posCondCollect,
negCondCollect,
ipAdapterCollector
);
ipAdapterCollect,
});
const totalIPAdaptersAdded =
ipAdapterResult.addedIPAdapters + regionsResult.reduce((acc, r) => acc + r.addedIPAdapters, 0);
if (totalIPAdaptersAdded > 0) {
g.addEdge(ipAdapterCollector, 'collection', denoise, 'ip_adapter');
g.addEdge(ipAdapterCollect, 'collection', denoise, 'ip_adapter');
} else {
g.deleteNode(ipAdapterCollector.id);
g.deleteNode(ipAdapterCollect.id);
}
if (state.system.shouldUseNSFWChecker) {

View File

@@ -4,13 +4,13 @@ import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiTrashSimpleFill } from 'react-icons/pi';
import { useClearQueue } from './ClearQueueConfirmationAlertDialog';
import { useClearQueueDialog } from './ClearQueueConfirmationAlertDialog';
type Props = ButtonProps;
const ClearQueueButton = (props: Props) => {
const { t } = useTranslation();
const clearQueue = useClearQueue();
const clearQueue = useClearQueueDialog();
return (
<>

View File

@@ -1,51 +1,15 @@
import { ConfirmationAlertDialog, Text } from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { useAppDispatch } from 'app/store/storeHooks';
import { useAssertSingleton } from 'common/hooks/useAssertSingleton';
import { buildUseBoolean } from 'common/hooks/useBoolean';
import { listCursorChanged, listPriorityChanged } from 'features/queue/store/queueSlice';
import { toast } from 'features/toast/toast';
import { memo, useCallback, useMemo } from 'react';
import { useClearQueue } from 'features/queue/hooks/useClearQueue';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { useClearQueueMutation, useGetQueueStatusQuery } from 'services/api/endpoints/queue';
import { $isConnected } from 'services/events/stores';
const [useClearQueueConfirmationAlertDialog] = buildUseBoolean(false);
export const useClearQueue = () => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
export const useClearQueueDialog = () => {
const dialog = useClearQueueConfirmationAlertDialog();
const { data: queueStatus } = useGetQueueStatusQuery();
const isConnected = useStore($isConnected);
const [trigger, { isLoading }] = useClearQueueMutation({
fixedCacheKey: 'clearQueue',
});
const clearQueue = useCallback(async () => {
if (!queueStatus?.queue.total) {
return;
}
try {
await trigger().unwrap();
toast({
id: 'QUEUE_CLEAR_SUCCEEDED',
title: t('queue.clearSucceeded'),
status: 'success',
});
dispatch(listCursorChanged(undefined));
dispatch(listPriorityChanged(undefined));
} catch {
toast({
id: 'QUEUE_CLEAR_FAILED',
title: t('queue.clearFailed'),
status: 'error',
});
}
}, [queueStatus?.queue.total, trigger, dispatch, t]);
const isDisabled = useMemo(() => !isConnected || !queueStatus?.queue.total, [isConnected, queueStatus?.queue.total]);
const { clearQueue, isLoading, isDisabled, queueStatus } = useClearQueue();
return {
clearQueue,
@@ -61,7 +25,7 @@ export const useClearQueue = () => {
export const ClearQueueConfirmationsAlertDialog = memo(() => {
useAssertSingleton('ClearQueueConfirmationsAlertDialog');
const { t } = useTranslation();
const clearQueue = useClearQueue();
const clearQueue = useClearQueueDialog();
return (
<ConfirmationAlertDialog

View File

@@ -4,11 +4,11 @@ import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiTrashSimpleBold, PiXBold } from 'react-icons/pi';
import { useClearQueue } from './ClearQueueConfirmationAlertDialog';
import { useClearQueueDialog } from './ClearQueueConfirmationAlertDialog';
export const ClearQueueIconButton = memo((_) => {
const { t } = useTranslation();
const clearQueue = useClearQueue();
const clearQueue = useClearQueueDialog();
const cancelCurrentQueueItem = useCancelCurrentQueueItem();
// Show the single item clear button when shift is pressed

View File

@@ -147,8 +147,6 @@ const UpscaleTabTooltipContent = memo(({ prepend = false }: { prepend?: boolean
<ReasonsList reasons={reasons} />
</>
)}
<StyledDivider />
<AddingToText />
</Flex>
);
});
@@ -180,8 +178,6 @@ const WorkflowsTabTooltipContent = memo(({ prepend = false }: { prepend?: boolea
<ReasonsList reasons={reasons} />
</>
)}
<StyledDivider />
<AddingToText />
</Flex>
);
});

View File

@@ -1,8 +1,9 @@
import { IconButton, Menu, MenuButton, MenuGroup, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { SessionMenuItems } from 'common/components/SessionMenuItems';
import { useClearQueue } from 'features/queue/components/ClearQueueConfirmationAlertDialog';
import { useClearQueueDialog } from 'features/queue/components/ClearQueueConfirmationAlertDialog';
import { QueueCountBadge } from 'features/queue/components/QueueCountBadge';
import { useCancelCurrentQueueItem } from 'features/queue/hooks/useCancelCurrentQueueItem';
import { usePauseProcessor } from 'features/queue/hooks/usePauseProcessor';
import { useResumeProcessor } from 'features/queue/hooks/useResumeProcessor';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
@@ -17,7 +18,8 @@ export const QueueActionsMenuButton = memo(() => {
const { t } = useTranslation();
const isPauseEnabled = useFeatureStatus('pauseQueue');
const isResumeEnabled = useFeatureStatus('resumeQueue');
const clearQueue = useClearQueue();
const cancelCurrent = useCancelCurrentQueueItem();
const clearQueue = useClearQueueDialog();
const {
resumeProcessor,
isLoading: isLoadingResumeProcessor,
@@ -44,9 +46,9 @@ export const QueueActionsMenuButton = memo(() => {
<MenuItem
isDestructive
icon={<PiXBold />}
onClick={clearQueue.openDialog}
isLoading={clearQueue.isLoading}
isDisabled={clearQueue.isDisabled}
onClick={cancelCurrent.cancelQueueItem}
isLoading={cancelCurrent.isLoading}
isDisabled={cancelCurrent.isDisabled}
>
{t('queue.cancelTooltip')}
</MenuItem>

View File

@@ -0,0 +1,50 @@
import { useStore } from '@nanostores/react';
import { useAppDispatch } from 'app/store/storeHooks';
import { listCursorChanged, listPriorityChanged } from 'features/queue/store/queueSlice';
import { toast } from 'features/toast/toast';
import { useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { useClearQueueMutation, useGetQueueStatusQuery } from 'services/api/endpoints/queue';
import { $isConnected } from 'services/events/stores';
export const useClearQueue = () => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const { data: queueStatus } = useGetQueueStatusQuery();
const isConnected = useStore($isConnected);
const [trigger, { isLoading }] = useClearQueueMutation({
fixedCacheKey: 'clearQueue',
});
const clearQueue = useCallback(async () => {
if (!queueStatus?.queue.total) {
return;
}
try {
await trigger().unwrap();
toast({
id: 'QUEUE_CLEAR_SUCCEEDED',
title: t('queue.clearSucceeded'),
status: 'success',
});
dispatch(listCursorChanged(undefined));
dispatch(listPriorityChanged(undefined));
} catch {
toast({
id: 'QUEUE_CLEAR_FAILED',
title: t('queue.clearFailed'),
status: 'error',
});
}
}, [queueStatus?.queue.total, trigger, dispatch, t]);
const isDisabled = useMemo(() => !isConnected || !queueStatus?.queue.total, [isConnected, queueStatus?.queue.total]);
return {
clearQueue,
isLoading,
queueStatus,
isDisabled,
};
};

View File

@@ -4,6 +4,13 @@ import type { ParamsState } from 'features/controlLayers/store/paramsSlice';
import { selectParamsSlice } from 'features/controlLayers/store/paramsSlice';
import { selectCanvasSlice } from 'features/controlLayers/store/selectors';
import type { CanvasState } from 'features/controlLayers/store/types';
import {
getControlLayerWarnings,
getGlobalReferenceImageWarnings,
getInpaintMaskWarnings,
getRasterLayerWarnings,
getRegionalGuidanceWarnings,
} from 'features/controlLayers/store/validators';
import type { DynamicPromptsState } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { selectDynamicPromptsSlice } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { getShouldProcessPrompt } from 'features/dynamicPrompts/util/getShouldProcessPrompt';
@@ -278,17 +285,10 @@ const getReasonsWhyCannotEnqueueCanvasTab = (arg: {
const layerNumber = i + 1;
const layerType = i18n.t(LAYER_TYPE_TO_TKEY['control_layer']);
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
const problems: string[] = [];
// Must have model
if (!controlLayer.controlAdapter.model) {
problems.push(i18n.t('parameters.invoke.layer.controlAdapterNoModelSelected'));
}
// Model base must match
if (controlLayer.controlAdapter.model?.base !== model?.base) {
problems.push(i18n.t('parameters.invoke.layer.controlAdapterIncompatibleBaseModel'));
}
const problems = getControlLayerWarnings(controlLayer, model);
if (problems.length) {
const content = upperFirst(problems.join(', '));
const content = upperFirst(problems.map((p) => i18n.t(p)).join(', '));
reasons.push({ prefix, content });
}
});
@@ -300,23 +300,10 @@ const getReasonsWhyCannotEnqueueCanvasTab = (arg: {
const layerNumber = i + 1;
const layerType = i18n.t(LAYER_TYPE_TO_TKEY[entity.type]);
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
const problems: string[] = [];
// Must have model
if (!entity.ipAdapter.model) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoModelSelected'));
}
// Model base must match
if (entity.ipAdapter.model?.base !== model?.base) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterIncompatibleBaseModel'));
}
// Must have an image
if (!entity.ipAdapter.image) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoImageSelected'));
}
const problems = getGlobalReferenceImageWarnings(entity, model);
if (problems.length) {
const content = upperFirst(problems.join(', '));
const content = upperFirst(problems.map((p) => i18n.t(p)).join(', '));
reasons.push({ prefix, content });
}
});
@@ -328,32 +315,10 @@ const getReasonsWhyCannotEnqueueCanvasTab = (arg: {
const layerNumber = i + 1;
const layerType = i18n.t(LAYER_TYPE_TO_TKEY[entity.type]);
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
const problems: string[] = [];
// Must have a region
if (entity.objects.length === 0) {
problems.push(i18n.t('parameters.invoke.layer.rgNoRegion'));
}
// Must have at least 1 prompt or IP Adapter
if (entity.positivePrompt === null && entity.negativePrompt === null && entity.referenceImages.length === 0) {
problems.push(i18n.t('parameters.invoke.layer.rgNoPromptsOrIPAdapters'));
}
entity.referenceImages.forEach(({ ipAdapter }) => {
// Must have model
if (!ipAdapter.model) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoModelSelected'));
}
// Model base must match
if (ipAdapter.model?.base !== model?.base) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterIncompatibleBaseModel'));
}
// Must have an image
if (!ipAdapter.image) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoImageSelected'));
}
});
const problems = getRegionalGuidanceWarnings(entity, model);
if (problems.length) {
const content = upperFirst(problems.join(', '));
const content = upperFirst(problems.map((p) => i18n.t(p)).join(', '));
reasons.push({ prefix, content });
}
});
@@ -365,10 +330,25 @@ const getReasonsWhyCannotEnqueueCanvasTab = (arg: {
const layerNumber = i + 1;
const layerType = i18n.t(LAYER_TYPE_TO_TKEY[entity.type]);
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
const problems: string[] = [];
const problems = getRasterLayerWarnings(entity, model);
if (problems.length) {
const content = upperFirst(problems.join(', '));
const content = upperFirst(problems.map((p) => i18n.t(p)).join(', '));
reasons.push({ prefix, content });
}
});
canvas.inpaintMasks.entities
.filter((entity) => entity.isEnabled)
.forEach((entity, i) => {
const layerLiteral = i18n.t('controlLayers.layer_one');
const layerNumber = i + 1;
const layerType = i18n.t(LAYER_TYPE_TO_TKEY[entity.type]);
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
const problems = getInpaintMaskWarnings(entity, model);
if (problems.length) {
const content = upperFirst(problems.map((p) => i18n.t(p)).join(', '));
reasons.push({ prefix, content });
}
});

View File

@@ -31,6 +31,7 @@ const optionsObject: Record<Language, string> = {
sv: 'Svenska',
tr: 'Türkçe',
ua: 'Украї́нська',
vi: 'tiếng Việt',
zh_CN: '简体中文',
zh_Hant: '漢語',
};

View File

@@ -22,6 +22,7 @@ const zLanguage = z.enum([
'sv',
'tr',
'ua',
'vi',
'zh_CN',
'zh_Hant',
]);

View File

@@ -3,7 +3,7 @@ import { useAppSelector } from 'app/store/storeHooks';
import { ToolChooser } from 'features/controlLayers/components/Tool/ToolChooser';
import { CanvasManagerProviderGate } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
import { useClearQueue } from 'features/queue/components/ClearQueueConfirmationAlertDialog';
import { useClearQueueDialog } from 'features/queue/components/ClearQueueConfirmationAlertDialog';
import { InvokeButtonTooltip } from 'features/queue/components/InvokeButtonTooltip/InvokeButtonTooltip';
import { useCancelCurrentQueueItem } from 'features/queue/hooks/useCancelCurrentQueueItem';
import { useInvoke } from 'features/queue/hooks/useInvoke';
@@ -31,7 +31,7 @@ const FloatingSidePanelButtons = (props: Props) => {
const shift = useShiftModifier();
const tab = useAppSelector(selectActiveTab);
const imageViewer = useImageViewer();
const clearQueue = useClearQueue();
const clearQueue = useClearQueueDialog();
const { data: queueStatus } = useGetQueueStatusQuery();
const cancelCurrent = useCancelCurrentQueueItem();

View File

@@ -1,4 +1,5 @@
import type { StartQueryActionCreatorOptions } from '@reduxjs/toolkit/dist/query/core/buildInitiate';
import { $authToken } from 'app/store/nanostores/authToken';
import { getStore } from 'app/store/nanostores/store';
import type { BoardId } from 'features/gallery/store/types';
import { ASSETS_CATEGORIES, IMAGE_CATEGORIES } from 'features/gallery/store/types';
@@ -624,3 +625,20 @@ export const uploadImages = async (args: UploadImageArg[]): Promise<ImageDTO[]>
);
return results.filter((r): r is PromiseFulfilledResult<ImageDTO> => r.status === 'fulfilled').map((r) => r.value);
};
/**
* Convert an ImageDTO to a File by downloading the image from the server.
* @param imageDTO The image to download and convert to a File
*/
export const imageDTOToFile = async (imageDTO: ImageDTO): Promise<File> => {
const init: RequestInit = {};
const authToken = $authToken.get();
if (authToken) {
init.headers = { Authorization: `Bearer ${authToken}` };
}
const res = await fetch(imageDTO.image_url, init);
const blob = await res.blob();
// Create a new file with the same name, which we will upload
const file = new File([blob], `copy_of_${imageDTO.image_name}`, { type: 'image/png' });
return file;
};

File diff suppressed because one or more lines are too long

View File

@@ -56,7 +56,7 @@ dependencies = [
"torchmetrics",
"torchsde",
"torchvision",
"transformers==4.41.1",
"transformers==4.46.3",
# Core application dependencies, pinned for reproducible builds.
"fastapi-events==0.11.1",

View File

@@ -0,0 +1,50 @@
import pytest
import torch
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_only_full_load import (
CachedModelOnlyFullLoad,
)
from tests.backend.model_manager.load.model_cache.dummy_module import DummyModule
parameterize_mps_and_cuda = pytest.mark.parametrize(
("device"),
[
pytest.param(
"mps", marks=pytest.mark.skipif(not torch.backends.mps.is_available(), reason="MPS is not available.")
),
pytest.param("cuda", marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is not available.")),
],
)
@parameterize_mps_and_cuda
def test_cached_model_total_bytes(device: str):
model = DummyModule()
cached_model = CachedModelOnlyFullLoad(model=model, compute_device=torch.device(device), total_bytes=100)
assert cached_model.total_bytes() == 100
@parameterize_mps_and_cuda
def test_cached_model_is_in_vram(device: str):
model = DummyModule()
cached_model = CachedModelOnlyFullLoad(model=model, compute_device=torch.device(device), total_bytes=100)
assert not cached_model.is_in_vram()
cached_model.full_load_to_vram()
assert cached_model.is_in_vram()
cached_model.full_unload_from_vram()
assert not cached_model.is_in_vram()
@parameterize_mps_and_cuda
def test_cached_model_full_load_and_unload(device: str):
model = DummyModule()
cached_model = CachedModelOnlyFullLoad(model=model, compute_device=torch.device(device), total_bytes=100)
assert cached_model.full_load_to_vram() == 100
assert cached_model.is_in_vram()
assert all(p.device.type == device for p in cached_model.model.parameters())
assert cached_model.full_unload_from_vram() == 100
assert not cached_model.is_in_vram()
assert all(p.device.type == "cpu" for p in cached_model.model.parameters())

View File

@@ -0,0 +1,174 @@
import pytest
import torch
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_with_partial_load import (
CachedModelWithPartialLoad,
)
from invokeai.backend.util.calc_tensor_size import calc_tensor_size
from tests.backend.model_manager.load.model_cache.dummy_module import DummyModule
parameterize_mps_and_cuda = pytest.mark.parametrize(
("device"),
[
pytest.param(
"mps", marks=pytest.mark.skipif(not torch.backends.mps.is_available(), reason="MPS is not available.")
),
pytest.param("cuda", marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is not available.")),
],
)
@parameterize_mps_and_cuda
def test_cached_model_total_bytes(device: str):
if device == "cuda" and not torch.cuda.is_available():
pytest.skip("CUDA is not available.")
if device == "mps" and not torch.backends.mps.is_available():
pytest.skip("MPS is not available.")
model = DummyModule()
cached_model = CachedModelWithPartialLoad(model=model, compute_device=torch.device(device))
linear_numel = 10 * 10 + 10
assert cached_model.total_bytes() == linear_numel * 4 * 2
@parameterize_mps_and_cuda
def test_cached_model_cur_vram_bytes(device: str):
model = DummyModule()
# Model starts in CPU memory.
cached_model = CachedModelWithPartialLoad(model=model, compute_device=torch.device(device))
assert cached_model.cur_vram_bytes() == 0
# Full load the model into VRAM.
cached_model.full_load_to_vram()
assert cached_model.cur_vram_bytes() > 0
assert cached_model.cur_vram_bytes() == cached_model.total_bytes()
assert all(p.device.type == device for p in model.parameters())
@parameterize_mps_and_cuda
def test_cached_model_partial_load(device: str):
model = DummyModule()
# Model starts in CPU memory.
cached_model = CachedModelWithPartialLoad(model=model, compute_device=torch.device(device))
model_total_bytes = cached_model.total_bytes()
assert cached_model.cur_vram_bytes() == 0
# Partially load the model into VRAM.
target_vram_bytes = int(model_total_bytes * 0.6)
loaded_bytes = cached_model.partial_load_to_vram(target_vram_bytes)
assert loaded_bytes > 0
assert loaded_bytes < model_total_bytes
assert loaded_bytes == cached_model.cur_vram_bytes()
assert loaded_bytes == sum(calc_tensor_size(p) for p in model.parameters() if p.device.type == device)
@parameterize_mps_and_cuda
def test_cached_model_partial_unload(device: str):
model = DummyModule()
# Model starts in CPU memory.
cached_model = CachedModelWithPartialLoad(model=model, compute_device=torch.device(device))
model_total_bytes = cached_model.total_bytes()
assert cached_model.cur_vram_bytes() == 0
# Full load the model into VRAM.
cached_model.full_load_to_vram()
assert cached_model.cur_vram_bytes() == model_total_bytes
# Partially unload the model from VRAM.
bytes_to_free = int(model_total_bytes * 0.4)
freed_bytes = cached_model.partial_unload_from_vram(bytes_to_free)
assert freed_bytes >= bytes_to_free
assert freed_bytes < model_total_bytes
assert freed_bytes == model_total_bytes - cached_model.cur_vram_bytes()
assert freed_bytes == sum(calc_tensor_size(p) for p in model.parameters() if p.device.type == "cpu")
@parameterize_mps_and_cuda
def test_cached_model_full_load(device: str):
model = DummyModule()
cached_model = CachedModelWithPartialLoad(model=model, compute_device=torch.device(device))
# Model starts in CPU memory.
model_total_bytes = cached_model.total_bytes()
assert cached_model.cur_vram_bytes() == 0
# Full load the model into VRAM.
loaded_bytes = cached_model.full_load_to_vram()
assert loaded_bytes > 0
assert loaded_bytes == model_total_bytes
assert loaded_bytes == cached_model.cur_vram_bytes()
assert all(p.device.type == device for p in model.parameters())
@parameterize_mps_and_cuda
def test_cached_model_full_load_from_partial(device: str):
model = DummyModule()
cached_model = CachedModelWithPartialLoad(model=model, compute_device=torch.device(device))
# Model starts in CPU memory.
model_total_bytes = cached_model.total_bytes()
assert cached_model.cur_vram_bytes() == 0
# Partially load the model into VRAM.
target_vram_bytes = int(model_total_bytes * 0.6)
loaded_bytes = cached_model.partial_load_to_vram(target_vram_bytes)
assert loaded_bytes > 0
assert loaded_bytes < model_total_bytes
assert loaded_bytes == cached_model.cur_vram_bytes()
# Full load the rest of the model into VRAM.
loaded_bytes_2 = cached_model.full_load_to_vram()
assert loaded_bytes_2 > 0
assert loaded_bytes_2 < model_total_bytes
assert loaded_bytes + loaded_bytes_2 == cached_model.cur_vram_bytes()
assert loaded_bytes + loaded_bytes_2 == model_total_bytes
assert all(p.device.type == device for p in model.parameters())
@parameterize_mps_and_cuda
def test_cached_model_full_unload_from_partial(device: str):
model = DummyModule()
cached_model = CachedModelWithPartialLoad(model=model, compute_device=torch.device(device))
# Model starts in CPU memory.
model_total_bytes = cached_model.total_bytes()
assert cached_model.cur_vram_bytes() == 0
# Partially load the model into VRAM.
target_vram_bytes = int(model_total_bytes * 0.6)
loaded_bytes = cached_model.partial_load_to_vram(target_vram_bytes)
assert loaded_bytes > 0
assert loaded_bytes < model_total_bytes
assert loaded_bytes == cached_model.cur_vram_bytes()
# Full unload the model from VRAM.
unloaded_bytes = cached_model.full_unload_from_vram()
assert unloaded_bytes > 0
assert unloaded_bytes == loaded_bytes
assert cached_model.cur_vram_bytes() == 0
assert all(p.device.type == "cpu" for p in model.parameters())
@parameterize_mps_and_cuda
def test_cached_model_get_cpu_state_dict(device: str):
model = DummyModule()
cached_model = CachedModelWithPartialLoad(model=model, compute_device=torch.device(device))
# Model starts in CPU memory.
assert cached_model.cur_vram_bytes() == 0
# The CPU state dict can be accessed and has the expected properties.
cpu_state_dict = cached_model.get_cpu_state_dict()
assert cpu_state_dict is not None
assert len(cpu_state_dict) == len(model.state_dict())
assert all(p.device.type == "cpu" for p in cpu_state_dict.values())
# Full load the model into VRAM.
cached_model.full_load_to_vram()
assert cached_model.cur_vram_bytes() == cached_model.total_bytes()
# The CPU state dict is still available, and still on the CPU.
cpu_state_dict = cached_model.get_cpu_state_dict()
assert cpu_state_dict is not None
assert len(cpu_state_dict) == len(model.state_dict())
assert all(p.device.type == "cpu" for p in cpu_state_dict.values())

View File

@@ -0,0 +1,13 @@
import torch
class DummyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(10, 10)
self.linear2 = torch.nn.Linear(10, 10)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.linear1(x)
x = self.linear2(x)
return x

View File

@@ -0,0 +1,50 @@
import pytest
import torch
from invokeai.backend.model_manager.load.model_cache.torch_function_autocast_context import (
TorchFunctionAutocastDeviceContext,
add_autocast_to_module_forward,
)
from tests.backend.model_manager.load.model_cache.dummy_module import DummyModule
def test_torch_function_autocast_device_context():
if not torch.cuda.is_available():
pytest.skip("CUDA is not available.")
model = DummyModule()
# Model parameters should start off on the CPU.
assert all(p.device.type == "cpu" for p in model.parameters())
with TorchFunctionAutocastDeviceContext(to_device=torch.device("cuda")):
x = torch.randn(10, 10, device="cuda")
y = model(x)
# The model output should be on the GPU.
assert y.device.type == "cuda"
# The model parameters should still be on the CPU.
assert all(p.device.type == "cpu" for p in model.parameters())
def test_add_autocast_to_module_forward():
model = DummyModule()
assert all(p.device.type == "cpu" for p in model.parameters())
add_autocast_to_module_forward(model, torch.device("cuda"))
# After adding autocast, the model parameters should still be on the CPU.
assert all(p.device.type == "cpu" for p in model.parameters())
x = torch.randn(10, 10, device="cuda")
y = model(x)
# The model output should be on the GPU.
assert y.device.type == "cuda"
# The model parameters should still be on the CPU.
assert all(p.device.type == "cpu" for p in model.parameters())
# The autocast context should automatically be disabled after the model forward call completes.
# So, attempting to perform an operation with comflicting devices should raise an error.
with pytest.raises(RuntimeError):
_ = torch.randn(10, device="cuda") * torch.randn(10, device="cpu")

View File

@@ -25,7 +25,7 @@ from invokeai.backend.model_manager.config import (
ModelVariantType,
VAEDiffusersConfig,
)
from invokeai.backend.model_manager.load import ModelCache
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
from invokeai.backend.util.logging import InvokeAILogger
from tests.backend.model_manager.model_metadata.metadata_examples import (
HFTestLoraMetadata,