mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-20 17:58:07 -05:00
Compare commits
665 Commits
ryan/flux-
...
v4.2.9.dev
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d4165317aa | ||
|
|
92482bf50d | ||
|
|
0ad118f1e9 | ||
|
|
da6d0c139b | ||
|
|
3103b3e440 | ||
|
|
c9ac44b061 | ||
|
|
edfbf11a1c | ||
|
|
4807657ac9 | ||
|
|
e665ca0743 | ||
|
|
6ec6d978ac | ||
|
|
94da066d2d | ||
|
|
78c070ade1 | ||
|
|
f587d236ed | ||
|
|
129cd91267 | ||
|
|
8fb8916027 | ||
|
|
139cf29e32 | ||
|
|
7cc9aa5b99 | ||
|
|
a2ba8700d4 | ||
|
|
facd007d1e | ||
|
|
f63aab9730 | ||
|
|
eb230feb57 | ||
|
|
438fba478c | ||
|
|
4b65891b65 | ||
|
|
b3c2d4d4b2 | ||
|
|
d535ea6119 | ||
|
|
c4ab0c9c96 | ||
|
|
4b79d54b4f | ||
|
|
9226165530 | ||
|
|
292770e188 | ||
|
|
3347094254 | ||
|
|
491b049e12 | ||
|
|
6f8fac3f73 | ||
|
|
96ecf492cc | ||
|
|
22597f5e0e | ||
|
|
42e2812ed2 | ||
|
|
689dd24296 | ||
|
|
f2bb078a48 | ||
|
|
0ae1004520 | ||
|
|
89f3a8b91b | ||
|
|
3edef0fc73 | ||
|
|
aa0942e527 | ||
|
|
7145c91bd2 | ||
|
|
846a88c0b8 | ||
|
|
abc75e6b1b | ||
|
|
dc6bd98266 | ||
|
|
8df9c43079 | ||
|
|
ef95fee63a | ||
|
|
9674485723 | ||
|
|
0f70989f19 | ||
|
|
fa691fc8d0 | ||
|
|
4a6d901a2b | ||
|
|
2ea8f87d82 | ||
|
|
f4b654d37c | ||
|
|
7f4eab2400 | ||
|
|
c7c32d67ea | ||
|
|
571a5f9865 | ||
|
|
784c3b0454 | ||
|
|
1b3d415c35 | ||
|
|
c43cc0814a | ||
|
|
f0332efdf3 | ||
|
|
ff0109db52 | ||
|
|
d0f8f3995f | ||
|
|
4fd1d856b8 | ||
|
|
7697525f04 | ||
|
|
31fed50f11 | ||
|
|
440a75fec6 | ||
|
|
72fd370ba6 | ||
|
|
6f9085d2d9 | ||
|
|
dd5de2dc95 | ||
|
|
0f9708373d | ||
|
|
5f7e6379ad | ||
|
|
26e9936240 | ||
|
|
f863c08a55 | ||
|
|
ba7420c6e7 | ||
|
|
263c251cb3 | ||
|
|
5f21d01f35 | ||
|
|
db333c1c6f | ||
|
|
f6f077d0b8 | ||
|
|
5dfa5c9a48 | ||
|
|
bfc4f4a88b | ||
|
|
efb99695a7 | ||
|
|
a72c38273c | ||
|
|
7d06453086 | ||
|
|
35654c38dc | ||
|
|
e2fde5c152 | ||
|
|
35a74f99d0 | ||
|
|
48b4e00373 | ||
|
|
c51cdbec35 | ||
|
|
64ac64e9f6 | ||
|
|
550842fb61 | ||
|
|
647aae8dd1 | ||
|
|
b18acdda6b | ||
|
|
f501e6ea29 | ||
|
|
c3eb691e57 | ||
|
|
39a004c20e | ||
|
|
6f5674659e | ||
|
|
bbfaa60821 | ||
|
|
9aa3ffffee | ||
|
|
2b1d442269 | ||
|
|
4433cd2749 | ||
|
|
05931cc06b | ||
|
|
261dd0cb40 | ||
|
|
12298008c7 | ||
|
|
69f9932f37 | ||
|
|
a52060ca33 | ||
|
|
82e804ea2c | ||
|
|
ef4cff5113 | ||
|
|
9b2405f185 | ||
|
|
0359cb7365 | ||
|
|
57cb08a05b | ||
|
|
29ae30b974 | ||
|
|
4a74f67258 | ||
|
|
b02c4d6bf8 | ||
|
|
e7a8992f59 | ||
|
|
6875e72b40 | ||
|
|
7ca732b9bf | ||
|
|
0e6a11f53d | ||
|
|
1681ae0d49 | ||
|
|
0a6c63f10b | ||
|
|
2cb218e69a | ||
|
|
4ea1622260 | ||
|
|
78fff1c7bc | ||
|
|
8a860eeecd | ||
|
|
ba5fef621a | ||
|
|
0920a8f28f | ||
|
|
fbc6680773 | ||
|
|
1b945d2d42 | ||
|
|
4a934305f5 | ||
|
|
829b680b4d | ||
|
|
abb02ecdb7 | ||
|
|
db2003b3b6 | ||
|
|
86d3b60f54 | ||
|
|
2493d3f841 | ||
|
|
63c61c7fa6 | ||
|
|
a584453fb2 | ||
|
|
c2dd0bed17 | ||
|
|
4f793d750d | ||
|
|
6c49921c76 | ||
|
|
41ece76d61 | ||
|
|
6c4c58206d | ||
|
|
ee71ab3330 | ||
|
|
e83069ed94 | ||
|
|
4ad748514e | ||
|
|
b649bf2556 | ||
|
|
fbbbef4aef | ||
|
|
734fca622c | ||
|
|
958fae1370 | ||
|
|
eac0bdcd9b | ||
|
|
29b7d1f7a6 | ||
|
|
aff8209764 | ||
|
|
e9ec9840f1 | ||
|
|
afbe5d7e07 | ||
|
|
71c7dabb48 | ||
|
|
733266fdf7 | ||
|
|
2fb79a10be | ||
|
|
3dde01d642 | ||
|
|
0e95d7f729 | ||
|
|
5d76a3cb4f | ||
|
|
67531e0dc4 | ||
|
|
a903e6eab5 | ||
|
|
2ea921c2ca | ||
|
|
14caa82bc2 | ||
|
|
a8d2670622 | ||
|
|
708f2f2814 | ||
|
|
a92f82f06f | ||
|
|
45e6c5523d | ||
|
|
247378ed73 | ||
|
|
51146f760c | ||
|
|
6ee8de882b | ||
|
|
73804abb55 | ||
|
|
f075c1dcc1 | ||
|
|
b1dd3adddc | ||
|
|
0a10bba783 | ||
|
|
92c670c454 | ||
|
|
5b709dd458 | ||
|
|
bbdc736e1b | ||
|
|
c8e330101d | ||
|
|
ea6cd090c2 | ||
|
|
f50945ec89 | ||
|
|
6cffca5283 | ||
|
|
07c1b5b680 | ||
|
|
a55eb2fca9 | ||
|
|
f9e801782b | ||
|
|
7cd8beda56 | ||
|
|
8d1095bd72 | ||
|
|
9317831648 | ||
|
|
2de16d970c | ||
|
|
e99e1f3464 | ||
|
|
5f044f1eda | ||
|
|
d443afd1fc | ||
|
|
28ef63991c | ||
|
|
b60692d1ac | ||
|
|
4cffb7df6e | ||
|
|
1ce52dba41 | ||
|
|
047fa8a135 | ||
|
|
e664d6a6e0 | ||
|
|
3532c3414f | ||
|
|
d8447abd64 | ||
|
|
b06d4e25e1 | ||
|
|
aeac1edb0b | ||
|
|
594aa9da61 | ||
|
|
0918732f36 | ||
|
|
0a9bd3f691 | ||
|
|
12616cd073 | ||
|
|
19378199d4 | ||
|
|
36c2409dd6 | ||
|
|
849356485f | ||
|
|
f68f98e5cd | ||
|
|
c8abcd6f66 | ||
|
|
f81c87b685 | ||
|
|
a807957967 | ||
|
|
314f650b45 | ||
|
|
2a96554935 | ||
|
|
3dbe5b3755 | ||
|
|
eca4a2dec7 | ||
|
|
e8cb0b0971 | ||
|
|
90799d6f1b | ||
|
|
86791a0701 | ||
|
|
81052d9a18 | ||
|
|
f0baabf735 | ||
|
|
815d938cf6 | ||
|
|
81baa1e2fd | ||
|
|
151ee00273 | ||
|
|
949d3b016d | ||
|
|
49a2f3d7d7 | ||
|
|
22d0a02a66 | ||
|
|
ea5454f6b2 | ||
|
|
8fc881080f | ||
|
|
c5ba513873 | ||
|
|
53370b6580 | ||
|
|
527de60428 | ||
|
|
af048a134e | ||
|
|
40682b9695 | ||
|
|
0487c80615 | ||
|
|
303352dd1c | ||
|
|
01b34100b3 | ||
|
|
0dcfad50ec | ||
|
|
1f99426180 | ||
|
|
0b898906a5 | ||
|
|
0c46e694c8 | ||
|
|
80e71bd1f1 | ||
|
|
5013169170 | ||
|
|
59e0c86211 | ||
|
|
82cefce743 | ||
|
|
8f942603c6 | ||
|
|
228cea3e29 | ||
|
|
71639631c8 | ||
|
|
7f0d73fe3d | ||
|
|
51efa27514 | ||
|
|
25cf5239da | ||
|
|
3f0ade8bff | ||
|
|
8cfbb0083a | ||
|
|
af840b85bd | ||
|
|
b8a316acf7 | ||
|
|
f2b60ddfc3 | ||
|
|
8ba0293444 | ||
|
|
99e81d88c4 | ||
|
|
bb3812b4a3 | ||
|
|
1eee342b48 | ||
|
|
5c57c2af37 | ||
|
|
48907cce32 | ||
|
|
15e4106cc0 | ||
|
|
949ee5a758 | ||
|
|
28fa9ca731 | ||
|
|
8592e7bc77 | ||
|
|
82a8995c98 | ||
|
|
c8d1a894fc | ||
|
|
06f5b7980a | ||
|
|
f2d8c851c1 | ||
|
|
76b29e90b2 | ||
|
|
a87642950d | ||
|
|
b092817193 | ||
|
|
ecbf1712b0 | ||
|
|
f80c667f30 | ||
|
|
93f5e3c3a4 | ||
|
|
327bbcaa64 | ||
|
|
6e964e21ba | ||
|
|
355dd86994 | ||
|
|
15c0c4dc54 | ||
|
|
69219219e3 | ||
|
|
d18682b230 | ||
|
|
60a9d8a8a6 | ||
|
|
0d6a022730 | ||
|
|
af1df11bec | ||
|
|
fe6538bf9e | ||
|
|
2e4a2a77a3 | ||
|
|
456a6cdb8d | ||
|
|
62db00f5b2 | ||
|
|
c6a15bfb1a | ||
|
|
de9c72f7d5 | ||
|
|
29cb2a30ad | ||
|
|
9971ece2e5 | ||
|
|
4e7ae3e120 | ||
|
|
7b799ee51c | ||
|
|
e948d8454a | ||
|
|
eaf6fe571d | ||
|
|
13c607470d | ||
|
|
582e8be8b9 | ||
|
|
3239ba1a1c | ||
|
|
ae5d1e035a | ||
|
|
d3e245fd78 | ||
|
|
aea7efb031 | ||
|
|
3e61f9b405 | ||
|
|
840707606f | ||
|
|
68b97193cb | ||
|
|
00d73598d2 | ||
|
|
f9726dc904 | ||
|
|
25e3fa5990 | ||
|
|
b69d91f0ec | ||
|
|
6a1e34a030 | ||
|
|
2dde7d8925 | ||
|
|
1d284609f9 | ||
|
|
3f6873f0d3 | ||
|
|
ae78e90d53 | ||
|
|
7cca0a239b | ||
|
|
ffd6164f06 | ||
|
|
a3a370625b | ||
|
|
ae3064fc67 | ||
|
|
71c03b3b8b | ||
|
|
70b58197f3 | ||
|
|
6600b4790b | ||
|
|
b0854dcb13 | ||
|
|
7f613eaa91 | ||
|
|
56f731dce3 | ||
|
|
4dea5d0cb0 | ||
|
|
421c82b534 | ||
|
|
b5c86bf0dd | ||
|
|
ec01b1be31 | ||
|
|
1405fe8e2a | ||
|
|
51c40edf0a | ||
|
|
3a61f3992a | ||
|
|
c31f36ab17 | ||
|
|
270bb3c95a | ||
|
|
18e5e62466 | ||
|
|
b808df2aa0 | ||
|
|
63d0ea6757 | ||
|
|
dd49b6fa81 | ||
|
|
0d3764a44b | ||
|
|
626a404c44 | ||
|
|
b4e0581d2d | ||
|
|
3372887352 | ||
|
|
66f15a8629 | ||
|
|
be4e21068d | ||
|
|
41f200ef7d | ||
|
|
53fa36d71e | ||
|
|
9f661dc093 | ||
|
|
9b51dfb13a | ||
|
|
39171eed76 | ||
|
|
bab8432119 | ||
|
|
731efe7290 | ||
|
|
bb8815e5b3 | ||
|
|
300e2045b1 | ||
|
|
4514334bfc | ||
|
|
0a9c033d75 | ||
|
|
060c14964b | ||
|
|
345b06bf19 | ||
|
|
0e7c03c0d0 | ||
|
|
1226855fc5 | ||
|
|
732cb629b6 | ||
|
|
7dbad20416 | ||
|
|
dcd2f78f64 | ||
|
|
ad1623c385 | ||
|
|
8a5a5816f7 | ||
|
|
8f5bb55471 | ||
|
|
30624f63c1 | ||
|
|
5a787faca8 | ||
|
|
f42efc9b26 | ||
|
|
5c531dc920 | ||
|
|
85b96e3802 | ||
|
|
ada3ab14fb | ||
|
|
1cbd19b7cd | ||
|
|
bbbb22898d | ||
|
|
e68a670c36 | ||
|
|
09554c18dd | ||
|
|
d5e0a5f3de | ||
|
|
7bdec13226 | ||
|
|
53e0b9bd14 | ||
|
|
f92a926ab8 | ||
|
|
b472535527 | ||
|
|
e7a9648a91 | ||
|
|
418786f82f | ||
|
|
a1ada23930 | ||
|
|
5d367cc0e1 | ||
|
|
332dc8b13c | ||
|
|
a8fa2c5ec5 | ||
|
|
237af4007a | ||
|
|
8df59769a8 | ||
|
|
7ffa0e4345 | ||
|
|
b4483fde8c | ||
|
|
8bb984f13a | ||
|
|
7d9a8908c5 | ||
|
|
d6ca58992d | ||
|
|
6d9817742f | ||
|
|
a2b2d83841 | ||
|
|
daaa2f8d8e | ||
|
|
1c4099a53c | ||
|
|
09ad29a765 | ||
|
|
94a66b7850 | ||
|
|
5cb4bc0902 | ||
|
|
6752a47d2b | ||
|
|
f883f80409 | ||
|
|
b5b4c20b4e | ||
|
|
25c270931c | ||
|
|
5a93c4efcb | ||
|
|
1fbf2fad16 | ||
|
|
f9aa925a06 | ||
|
|
7b7c1c5af8 | ||
|
|
4024f83f73 | ||
|
|
aae6e62031 | ||
|
|
bf355fa602 | ||
|
|
cd1d576ff1 | ||
|
|
0bc72149fe | ||
|
|
75c0f03582 | ||
|
|
1b7288f437 | ||
|
|
65e51634e3 | ||
|
|
638835f6f0 | ||
|
|
27e6d8372a | ||
|
|
f3b3121edc | ||
|
|
da32803aef | ||
|
|
ef69a12532 | ||
|
|
b3d82838c6 | ||
|
|
b66eeafa9a | ||
|
|
ae8a0b7c04 | ||
|
|
655c0981eb | ||
|
|
d2d747869f | ||
|
|
998bdadc8d | ||
|
|
71dcc58e33 | ||
|
|
7485d30858 | ||
|
|
443d7b1176 | ||
|
|
6b494161ee | ||
|
|
90d3c8b630 | ||
|
|
7016a15566 | ||
|
|
2bbc3138c6 | ||
|
|
b80ffd3f02 | ||
|
|
d26e7095c5 | ||
|
|
82a496f6f4 | ||
|
|
2a2667a20d | ||
|
|
c018a031a2 | ||
|
|
f193200a88 | ||
|
|
11c3eeecdc | ||
|
|
979132d404 | ||
|
|
e55e866baf | ||
|
|
77b1315641 | ||
|
|
3e2902cb1b | ||
|
|
a48984c969 | ||
|
|
a640fa7d9b | ||
|
|
0ed1e28084 | ||
|
|
79789bbd20 | ||
|
|
4554a425d3 | ||
|
|
d153e5958e | ||
|
|
b4a7865cbb | ||
|
|
89baf9aa49 | ||
|
|
1ee37908f2 | ||
|
|
7fecf74368 | ||
|
|
770e9a92d6 | ||
|
|
37658c59b7 | ||
|
|
70eadc52f1 | ||
|
|
eacf30a55e | ||
|
|
33cf40b7a4 | ||
|
|
19f8f0677e | ||
|
|
f906fca4fc | ||
|
|
2417a97b56 | ||
|
|
3b0438cc69 | ||
|
|
aa4fe73b56 | ||
|
|
58064d835e | ||
|
|
f7ae63e758 | ||
|
|
6c8d6175aa | ||
|
|
348e4b1d38 | ||
|
|
822543c202 | ||
|
|
c3de34e7dc | ||
|
|
3ae61f2758 | ||
|
|
19e6cf3311 | ||
|
|
6f400846b8 | ||
|
|
c9f9b699e9 | ||
|
|
63bf4bd963 | ||
|
|
d03b3d4eb2 | ||
|
|
6e6852a604 | ||
|
|
bb2b526b82 | ||
|
|
d6b6dae63f | ||
|
|
fb02e72462 | ||
|
|
bc3568035b | ||
|
|
ea13ab4c9c | ||
|
|
f9b2f363c7 | ||
|
|
dba206ea98 | ||
|
|
6ca5a71a51 | ||
|
|
6e7022d006 | ||
|
|
8e2ca3b1a4 | ||
|
|
9d32629d5d | ||
|
|
0755734347 | ||
|
|
62ffefe9d1 | ||
|
|
a4e570e4a7 | ||
|
|
d569d10e46 | ||
|
|
cb622df45e | ||
|
|
6299214325 | ||
|
|
220ae6bef8 | ||
|
|
fd923f7e30 | ||
|
|
d62d63acfc | ||
|
|
3a2af003fe | ||
|
|
00d68ac460 | ||
|
|
fd1df7e8d7 | ||
|
|
8b4e2ce1b2 | ||
|
|
8a0936f3dc | ||
|
|
9b5962b4ed | ||
|
|
6c83153076 | ||
|
|
9fa65e59b4 | ||
|
|
491ae852af | ||
|
|
0f698f25bd | ||
|
|
adde7138b3 | ||
|
|
f808ff2830 | ||
|
|
0e1986e795 | ||
|
|
d34a2e2160 | ||
|
|
2752d45d2d | ||
|
|
f9b84555d2 | ||
|
|
9a723b189f | ||
|
|
8c7ce9865a | ||
|
|
ee2f162a8e | ||
|
|
2770233592 | ||
|
|
46f31fdd32 | ||
|
|
df1436cfac | ||
|
|
aced3754f3 | ||
|
|
723a04029f | ||
|
|
6f9fe23a32 | ||
|
|
9dd3d18a7d | ||
|
|
99e7055469 | ||
|
|
0c14bc5fed | ||
|
|
aae98b675b | ||
|
|
e795026210 | ||
|
|
120eaa5e82 | ||
|
|
6561fffe30 | ||
|
|
15e1046f99 | ||
|
|
930868466d | ||
|
|
813904d615 | ||
|
|
1bb06ba90b | ||
|
|
9d1b0dfcda | ||
|
|
69b5637fcf | ||
|
|
eb0cc4fc9d | ||
|
|
f9d9684237 | ||
|
|
7538a2b5ff | ||
|
|
c274d4bc43 | ||
|
|
8b0a06353a | ||
|
|
9d10ec763b | ||
|
|
5c20b35bad | ||
|
|
1df3197ded | ||
|
|
5b6bae5113 | ||
|
|
cdf5a61641 | ||
|
|
95e73d8e1e | ||
|
|
6120de332e | ||
|
|
815b58d3c5 | ||
|
|
71befa4ce0 | ||
|
|
10d3f3c2bf | ||
|
|
02c3c24f95 | ||
|
|
47075acf39 | ||
|
|
5c4438ed1b | ||
|
|
78c08222f4 | ||
|
|
edd2bd2184 | ||
|
|
0fee32c5b3 | ||
|
|
1d5151839c | ||
|
|
a916cb7efb | ||
|
|
88c95f6d8a | ||
|
|
f7d71c3cd0 | ||
|
|
20193028c3 | ||
|
|
ae8ee6709c | ||
|
|
4e298dae62 | ||
|
|
cb72467d1f | ||
|
|
d1596957c0 | ||
|
|
8bdec7cfba | ||
|
|
66c4bf260f | ||
|
|
1764df7446 | ||
|
|
ebf83518e3 | ||
|
|
4e6ff6033f | ||
|
|
fa0b8f34f0 | ||
|
|
d7ad0e082e | ||
|
|
b5df668753 | ||
|
|
2ff9803db0 | ||
|
|
5f6c155e4a | ||
|
|
8531f1b759 | ||
|
|
e9b1f9a87b | ||
|
|
5146150509 | ||
|
|
e221c30249 | ||
|
|
9890efdb2e | ||
|
|
ac32d4ca8a | ||
|
|
88f0c0bf23 | ||
|
|
198be69a7f | ||
|
|
ec1bb0e389 | ||
|
|
49aa7325cb | ||
|
|
5e292a7423 | ||
|
|
73593a88bb | ||
|
|
84e6b197a1 | ||
|
|
8aae372446 | ||
|
|
6657d501db | ||
|
|
354830144a | ||
|
|
2aa105379b | ||
|
|
ce1d6a1ede | ||
|
|
a20bf91f5d | ||
|
|
01215bbb99 | ||
|
|
75b40b95df | ||
|
|
19bbbf49d9 | ||
|
|
2688d83bd0 | ||
|
|
6e30f65a16 | ||
|
|
fcd3773804 | ||
|
|
3a3a1e076f | ||
|
|
566d9f99dd | ||
|
|
21090dee48 | ||
|
|
29c9e8f4b6 | ||
|
|
5156b82ca1 | ||
|
|
ff2371ce82 | ||
|
|
0cafbd7ba5 | ||
|
|
747a7d16c7 | ||
|
|
cf271700bf | ||
|
|
43a40d88be | ||
|
|
c761340871 | ||
|
|
6271d1c34d | ||
|
|
a7a09feaf0 | ||
|
|
4f0aea2592 | ||
|
|
e00ba3f6cd | ||
|
|
920873e009 | ||
|
|
e126ec9703 | ||
|
|
ceb81d6fed | ||
|
|
5088c9eae1 | ||
|
|
d41ad5115e | ||
|
|
4caab2d2e3 | ||
|
|
528254fdd4 | ||
|
|
939ae5a7c6 | ||
|
|
b75830086b | ||
|
|
0fea74a58a | ||
|
|
89e0fdadc5 | ||
|
|
a5a5e45a59 | ||
|
|
61bd9aac0f | ||
|
|
aba28f04f8 | ||
|
|
bc7b4c5d8e | ||
|
|
98359237c6 | ||
|
|
6982a9f41d | ||
|
|
5665f1db7b | ||
|
|
7a6c9a60b3 | ||
|
|
2e7ef452d5 | ||
|
|
5468b25c65 | ||
|
|
e4a1ef0c19 | ||
|
|
fcb31d3cd2 | ||
|
|
cb32ce6a41 | ||
|
|
a6c7f0d282 | ||
|
|
45f296a35e | ||
|
|
8e6469d9d7 | ||
|
|
3298875cda | ||
|
|
d1c6a37b76 | ||
|
|
31db9a178d | ||
|
|
1c766a43ee | ||
|
|
7b7a3fbd57 | ||
|
|
d12474d93d | ||
|
|
12ac78a490 | ||
|
|
125b459e56 | ||
|
|
33edee1ba6 | ||
|
|
d20335dabc | ||
|
|
d10d258213 | ||
|
|
d57ba1ed8b | ||
|
|
2d0e34e57b | ||
|
|
a005d06255 | ||
|
|
a301ef5a5a | ||
|
|
9422df2737 | ||
|
|
6dabe4d3ca | ||
|
|
00e4652d30 | ||
|
|
b6434c5318 | ||
|
|
3f7f9f8d61 | ||
|
|
f3bb592544 | ||
|
|
69f080fb75 | ||
|
|
04272a7cc8 |
37
.github/workflows/build-container.yml
vendored
37
.github/workflows/build-container.yml
vendored
@@ -13,6 +13,12 @@ on:
|
||||
tags:
|
||||
- 'v*.*.*'
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
push-to-registry:
|
||||
description: Push the built image to the container registry
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
@@ -50,16 +56,15 @@ jobs:
|
||||
df -h
|
||||
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Docker meta
|
||||
id: meta
|
||||
uses: docker/metadata-action@v4
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
images: |
|
||||
ghcr.io/${{ github.repository }}
|
||||
${{ env.DOCKERHUB_REPOSITORY }}
|
||||
tags: |
|
||||
type=ref,event=branch
|
||||
type=ref,event=tag
|
||||
@@ -72,49 +77,33 @@ jobs:
|
||||
suffix=-${{ matrix.gpu-driver }},onlatest=false
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
uses: docker/setup-qemu-action@v3
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
uses: docker/setup-buildx-action@v3
|
||||
with:
|
||||
platforms: ${{ env.PLATFORMS }}
|
||||
|
||||
- name: Login to GitHub Container Registry
|
||||
if: github.event_name != 'pull_request'
|
||||
uses: docker/login-action@v2
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
registry: ghcr.io
|
||||
username: ${{ github.repository_owner }}
|
||||
password: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
# - name: Login to Docker Hub
|
||||
# if: github.event_name != 'pull_request' && vars.DOCKERHUB_REPOSITORY != ''
|
||||
# uses: docker/login-action@v2
|
||||
# with:
|
||||
# username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
# password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
|
||||
- name: Build container
|
||||
timeout-minutes: 40
|
||||
id: docker_build
|
||||
uses: docker/build-push-action@v4
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
context: .
|
||||
file: docker/Dockerfile
|
||||
platforms: ${{ env.PLATFORMS }}
|
||||
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' }}
|
||||
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' || github.event.inputs.push-to-registry }}
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
cache-from: |
|
||||
type=gha,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
|
||||
type=gha,scope=main-${{ matrix.gpu-driver }}
|
||||
cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
|
||||
|
||||
# - name: Docker Hub Description
|
||||
# if: github.ref == 'refs/heads/main' || github.ref == 'refs/tags/*' && vars.DOCKERHUB_REPOSITORY != ''
|
||||
# uses: peter-evans/dockerhub-description@v3
|
||||
# with:
|
||||
# username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
# password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
# repository: ${{ vars.DOCKERHUB_REPOSITORY }}
|
||||
# short-description: ${{ github.event.repository.description }}
|
||||
|
||||
@@ -11,6 +11,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
|
||||
Batch,
|
||||
BatchStatus,
|
||||
CancelByBatchIDsResult,
|
||||
CancelByOriginResult,
|
||||
ClearResult,
|
||||
EnqueueBatchResult,
|
||||
PruneResult,
|
||||
@@ -105,6 +106,19 @@ async def cancel_by_batch_ids(
|
||||
return ApiDependencies.invoker.services.session_queue.cancel_by_batch_ids(queue_id=queue_id, batch_ids=batch_ids)
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
"/{queue_id}/cancel_by_origin",
|
||||
operation_id="cancel_by_origin",
|
||||
responses={200: {"model": CancelByBatchIDsResult}},
|
||||
)
|
||||
async def cancel_by_origin(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
origin: str = Query(description="The origin to cancel all queue items for"),
|
||||
) -> CancelByOriginResult:
|
||||
"""Immediately cancels all queue items with the given origin"""
|
||||
return ApiDependencies.invoker.services.session_queue.cancel_by_origin(queue_id=queue_id, origin=origin)
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
"/{queue_id}/clear",
|
||||
operation_id="clear",
|
||||
|
||||
@@ -20,7 +20,6 @@ from typing import (
|
||||
Type,
|
||||
TypeVar,
|
||||
Union,
|
||||
cast,
|
||||
)
|
||||
|
||||
import semver
|
||||
@@ -80,7 +79,7 @@ class UIConfigBase(BaseModel):
|
||||
version: str = Field(
|
||||
description='The node\'s version. Should be a valid semver string e.g. "1.0.0" or "3.8.13".',
|
||||
)
|
||||
node_pack: Optional[str] = Field(default=None, description="Whether or not this is a custom node")
|
||||
node_pack: str = Field(description="The node pack that this node belongs to, will be 'invokeai' for built-in nodes")
|
||||
classification: Classification = Field(default=Classification.Stable, description="The node's classification")
|
||||
|
||||
model_config = ConfigDict(
|
||||
@@ -230,18 +229,16 @@ class BaseInvocation(ABC, BaseModel):
|
||||
@staticmethod
|
||||
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseInvocation]) -> None:
|
||||
"""Adds various UI-facing attributes to the invocation's OpenAPI schema."""
|
||||
uiconfig = cast(UIConfigBase | None, getattr(model_class, "UIConfig", None))
|
||||
if uiconfig is not None:
|
||||
if uiconfig.title is not None:
|
||||
schema["title"] = uiconfig.title
|
||||
if uiconfig.tags is not None:
|
||||
schema["tags"] = uiconfig.tags
|
||||
if uiconfig.category is not None:
|
||||
schema["category"] = uiconfig.category
|
||||
if uiconfig.node_pack is not None:
|
||||
schema["node_pack"] = uiconfig.node_pack
|
||||
schema["classification"] = uiconfig.classification
|
||||
schema["version"] = uiconfig.version
|
||||
if title := model_class.UIConfig.title:
|
||||
schema["title"] = title
|
||||
if tags := model_class.UIConfig.tags:
|
||||
schema["tags"] = tags
|
||||
if category := model_class.UIConfig.category:
|
||||
schema["category"] = category
|
||||
if node_pack := model_class.UIConfig.node_pack:
|
||||
schema["node_pack"] = node_pack
|
||||
schema["classification"] = model_class.UIConfig.classification
|
||||
schema["version"] = model_class.UIConfig.version
|
||||
if "required" not in schema or not isinstance(schema["required"], list):
|
||||
schema["required"] = []
|
||||
schema["class"] = "invocation"
|
||||
@@ -312,7 +309,7 @@ class BaseInvocation(ABC, BaseModel):
|
||||
json_schema_extra={"field_kind": FieldKind.NodeAttribute},
|
||||
)
|
||||
|
||||
UIConfig: ClassVar[Type[UIConfigBase]]
|
||||
UIConfig: ClassVar[UIConfigBase]
|
||||
|
||||
model_config = ConfigDict(
|
||||
protected_namespaces=(),
|
||||
@@ -441,30 +438,25 @@ def invocation(
|
||||
validate_fields(cls.model_fields, invocation_type)
|
||||
|
||||
# Add OpenAPI schema extras
|
||||
uiconfig_name = cls.__qualname__ + ".UIConfig"
|
||||
if not hasattr(cls, "UIConfig") or cls.UIConfig.__qualname__ != uiconfig_name:
|
||||
cls.UIConfig = type(uiconfig_name, (UIConfigBase,), {})
|
||||
cls.UIConfig.title = title
|
||||
cls.UIConfig.tags = tags
|
||||
cls.UIConfig.category = category
|
||||
cls.UIConfig.classification = classification
|
||||
|
||||
# Grab the node pack's name from the module name, if it's a custom node
|
||||
is_custom_node = cls.__module__.rsplit(".", 1)[0] == "invokeai.app.invocations"
|
||||
if is_custom_node:
|
||||
cls.UIConfig.node_pack = cls.__module__.split(".")[0]
|
||||
else:
|
||||
cls.UIConfig.node_pack = None
|
||||
uiconfig: dict[str, Any] = {}
|
||||
uiconfig["title"] = title
|
||||
uiconfig["tags"] = tags
|
||||
uiconfig["category"] = category
|
||||
uiconfig["classification"] = classification
|
||||
# The node pack is the module name - will be "invokeai" for built-in nodes
|
||||
uiconfig["node_pack"] = cls.__module__.split(".")[0]
|
||||
|
||||
if version is not None:
|
||||
try:
|
||||
semver.Version.parse(version)
|
||||
except ValueError as e:
|
||||
raise InvalidVersionError(f'Invalid version string for node "{invocation_type}": "{version}"') from e
|
||||
cls.UIConfig.version = version
|
||||
uiconfig["version"] = version
|
||||
else:
|
||||
logger.warn(f'No version specified for node "{invocation_type}", using "1.0.0"')
|
||||
cls.UIConfig.version = "1.0.0"
|
||||
uiconfig["version"] = "1.0.0"
|
||||
|
||||
cls.UIConfig = UIConfigBase(**uiconfig)
|
||||
|
||||
if use_cache is not None:
|
||||
cls.model_fields["use_cache"].default = use_cache
|
||||
|
||||
@@ -19,8 +19,8 @@ from invokeai.app.invocations.model import CLIPField
|
||||
from invokeai.app.invocations.primitives import ConditioningOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.ti_utils import generate_ti_list
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.backend.peft.lora import LoRAModelRaw
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
BasicConditioningInfo,
|
||||
ConditioningFieldData,
|
||||
|
||||
@@ -36,9 +36,9 @@ from invokeai.app.invocations.t2i_adapter import T2IAdapterField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import prepare_control_image
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_manager import BaseModelType, ModelVariantType
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.backend.peft.lora import LoRAModelRaw
|
||||
from invokeai.backend.stable_diffusion import PipelineIntermediateState
|
||||
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext, DenoiseInputs
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Callable, Iterator, Optional, Tuple
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
import torchvision.transforms as tv_transforms
|
||||
@@ -17,7 +17,6 @@ from invokeai.app.invocations.fields import (
|
||||
)
|
||||
from invokeai.app.invocations.model import TransformerField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.session_processor.session_processor_common import CanceledException
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.flux.denoise import denoise
|
||||
from invokeai.backend.flux.inpaint_extension import InpaintExtension
|
||||
@@ -30,8 +29,7 @@ from invokeai.backend.flux.sampling_utils import (
|
||||
pack,
|
||||
unpack,
|
||||
)
|
||||
from invokeai.backend.peft.lora import LoRAModelRaw
|
||||
from invokeai.backend.peft.peft_patcher import PeftPatcher
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
@@ -189,16 +187,7 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
noise=noise,
|
||||
)
|
||||
|
||||
with (
|
||||
transformer_info.model_on_device() as (cached_weights, transformer),
|
||||
# Apply the LoRA after transformer has been moved to its target device for faster patching.
|
||||
PeftPatcher.apply_peft_patches(
|
||||
model=transformer,
|
||||
patches=self._lora_iterator(context),
|
||||
prefix="",
|
||||
cached_weights=cached_weights,
|
||||
),
|
||||
):
|
||||
with transformer_info as transformer:
|
||||
assert isinstance(transformer, Flux)
|
||||
|
||||
x = denoise(
|
||||
@@ -252,41 +241,9 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
# `latents`.
|
||||
return mask.expand_as(latents)
|
||||
|
||||
def _lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||
for lora in self.transformer.loras:
|
||||
lora_info = context.models.load(lora.lora)
|
||||
assert isinstance(lora_info.model, LoRAModelRaw)
|
||||
yield (lora_info.model, lora.weight)
|
||||
del lora_info
|
||||
|
||||
def _build_step_callback(self, context: InvocationContext) -> Callable[[], None]:
|
||||
def step_callback() -> None:
|
||||
if context.util.is_canceled():
|
||||
raise CanceledException
|
||||
|
||||
# TODO: Make this look like the image before re-enabling
|
||||
# latent_image = unpack(img.float(), self.height, self.width)
|
||||
# latent_image = latent_image.squeeze() # Remove unnecessary dimensions
|
||||
# flattened_tensor = latent_image.reshape(-1) # Flatten to shape [48*128*128]
|
||||
|
||||
# # Create a new tensor of the required shape [255, 255, 3]
|
||||
# latent_image = flattened_tensor[: 255 * 255 * 3].reshape(255, 255, 3) # Reshape to RGB format
|
||||
|
||||
# # Convert to a NumPy array and then to a PIL Image
|
||||
# image = Image.fromarray(latent_image.cpu().numpy().astype(np.uint8))
|
||||
|
||||
# (width, height) = image.size
|
||||
# width *= 8
|
||||
# height *= 8
|
||||
|
||||
# dataURL = image_to_dataURL(image, image_format="JPEG")
|
||||
|
||||
# # TODO: move this whole function to invocation context to properly reference these variables
|
||||
# context._services.events.emit_invocation_denoise_progress(
|
||||
# context._data.queue_item,
|
||||
# context._data.invocation,
|
||||
# state,
|
||||
# ProgressImage(dataURL=dataURL, width=width, height=height),
|
||||
# )
|
||||
def _build_step_callback(self, context: InvocationContext) -> Callable[[PipelineIntermediateState], None]:
|
||||
def step_callback(state: PipelineIntermediateState) -> None:
|
||||
state.latents = unpack(state.latents.float(), self.height, self.width).squeeze()
|
||||
context.util.flux_step_callback(state)
|
||||
|
||||
return step_callback
|
||||
|
||||
@@ -1,53 +0,0 @@
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.invocations.model import LoRAField, ModelIdentifierField, TransformerField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
|
||||
@invocation_output("flux_lora_loader_output")
|
||||
class FluxLoRALoaderOutput(BaseInvocationOutput):
|
||||
"""FLUX LoRA Loader Output"""
|
||||
|
||||
transformer: TransformerField = OutputField(
|
||||
default=None, description=FieldDescriptions.transformer, title="FLUX Transformer"
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"flux_lora_loader",
|
||||
title="FLUX LoRA",
|
||||
tags=["lora", "model", "flux"],
|
||||
category="model",
|
||||
version="1.0.0",
|
||||
)
|
||||
class FluxLoRALoaderInvocation(BaseInvocation):
|
||||
"""Apply a LoRA model to a FLUX transformer."""
|
||||
|
||||
lora: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.lora_model, title="LoRA", ui_type=UIType.LoRAModel
|
||||
)
|
||||
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
|
||||
transformer: TransformerField = InputField(
|
||||
description=FieldDescriptions.transformer,
|
||||
input=Input.Connection,
|
||||
title="FLUX Transformer",
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> FluxLoRALoaderOutput:
|
||||
lora_key = self.lora.key
|
||||
|
||||
if not context.models.exists(lora_key):
|
||||
raise ValueError(f"Unknown lora: {lora_key}!")
|
||||
|
||||
if any(lora.lora.key == lora_key for lora in self.transformer.loras):
|
||||
raise Exception(f'LoRA "{lora_key}" already applied to transformer.')
|
||||
|
||||
transformer = self.transformer.model_copy(deep=True)
|
||||
transformer.loras.append(
|
||||
LoRAField(
|
||||
lora=self.lora,
|
||||
weight=self.weight,
|
||||
)
|
||||
)
|
||||
|
||||
return FluxLoRALoaderOutput(transformer=transformer)
|
||||
@@ -6,13 +6,19 @@ import cv2
|
||||
import numpy
|
||||
from PIL import Image, ImageChops, ImageFilter, ImageOps
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
Classification,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.constants import IMAGE_MODES
|
||||
from invokeai.app.invocations.fields import (
|
||||
ColorField,
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
InputField,
|
||||
OutputField,
|
||||
WithBoard,
|
||||
WithMetadata,
|
||||
)
|
||||
@@ -1007,3 +1013,62 @@ class MaskFromIDInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
image_dto = context.images.save(image=mask, image_category=ImageCategory.MASK)
|
||||
|
||||
return ImageOutput.build(image_dto)
|
||||
|
||||
|
||||
@invocation_output("canvas_v2_mask_and_crop_output")
|
||||
class CanvasV2MaskAndCropOutput(ImageOutput):
|
||||
offset_x: int = OutputField(description="The x offset of the image, after cropping")
|
||||
offset_y: int = OutputField(description="The y offset of the image, after cropping")
|
||||
|
||||
|
||||
@invocation(
|
||||
"canvas_v2_mask_and_crop",
|
||||
title="Canvas V2 Mask and Crop",
|
||||
tags=["image", "mask", "id"],
|
||||
category="image",
|
||||
version="1.0.0",
|
||||
classification=Classification.Prototype,
|
||||
)
|
||||
class CanvasV2MaskAndCropInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Handles Canvas V2 image output masking and cropping"""
|
||||
|
||||
source_image: ImageField | None = InputField(
|
||||
default=None,
|
||||
description="The source image onto which the masked generated image is pasted. If omitted, the masked generated image is returned with transparency.",
|
||||
)
|
||||
generated_image: ImageField = InputField(description="The image to apply the mask to")
|
||||
mask: ImageField = InputField(description="The mask to apply")
|
||||
mask_blur: int = InputField(default=0, ge=0, description="The amount to blur the mask by")
|
||||
|
||||
def _prepare_mask(self, mask: Image.Image) -> Image.Image:
|
||||
mask_array = numpy.array(mask)
|
||||
kernel = numpy.ones((self.mask_blur, self.mask_blur), numpy.uint8)
|
||||
dilated_mask_array = cv2.erode(mask_array, kernel, iterations=3)
|
||||
dilated_mask = Image.fromarray(dilated_mask_array)
|
||||
if self.mask_blur > 0:
|
||||
mask = dilated_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
|
||||
return ImageOps.invert(mask.convert("L"))
|
||||
|
||||
def invoke(self, context: InvocationContext) -> CanvasV2MaskAndCropOutput:
|
||||
mask = self._prepare_mask(context.images.get_pil(self.mask.image_name))
|
||||
|
||||
if self.source_image:
|
||||
generated_image = context.images.get_pil(self.generated_image.image_name)
|
||||
source_image = context.images.get_pil(self.source_image.image_name)
|
||||
source_image.paste(generated_image, (0, 0), mask)
|
||||
image_dto = context.images.save(image=source_image)
|
||||
else:
|
||||
generated_image = context.images.get_pil(self.generated_image.image_name)
|
||||
generated_image.putalpha(mask)
|
||||
image_dto = context.images.save(image=generated_image)
|
||||
|
||||
# bbox = image.getbbox()
|
||||
# image = image.crop(bbox)
|
||||
|
||||
return CanvasV2MaskAndCropOutput(
|
||||
image=ImageField(image_name=image_dto.image_name),
|
||||
offset_x=0,
|
||||
offset_y=0,
|
||||
width=image_dto.width,
|
||||
height=image_dto.height,
|
||||
)
|
||||
|
||||
@@ -69,7 +69,6 @@ class CLIPField(BaseModel):
|
||||
|
||||
class TransformerField(BaseModel):
|
||||
transformer: ModelIdentifierField = Field(description="Info to load Transformer submodel")
|
||||
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
|
||||
|
||||
|
||||
class T5EncoderField(BaseModel):
|
||||
@@ -203,7 +202,7 @@ class FluxModelLoaderInvocation(BaseInvocation):
|
||||
assert isinstance(transformer_config, CheckpointConfigBase)
|
||||
|
||||
return FluxModelLoaderOutput(
|
||||
transformer=TransformerField(transformer=transformer, loras=[]),
|
||||
transformer=TransformerField(transformer=transformer),
|
||||
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], skipped_layers=0),
|
||||
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder),
|
||||
vae=VAEField(vae=vae),
|
||||
|
||||
@@ -22,8 +22,8 @@ from invokeai.app.invocations.fields import (
|
||||
from invokeai.app.invocations.model import UNetField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.backend.peft.lora import LoRAModelRaw
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, PipelineIntermediateState
|
||||
from invokeai.backend.stable_diffusion.multi_diffusion_pipeline import (
|
||||
MultiDiffusionPipeline,
|
||||
|
||||
@@ -88,6 +88,8 @@ class QueueItemEventBase(QueueEventBase):
|
||||
|
||||
item_id: int = Field(description="The ID of the queue item")
|
||||
batch_id: str = Field(description="The ID of the queue batch")
|
||||
origin: str | None = Field(default=None, description="The origin of the queue item")
|
||||
destination: str | None = Field(default=None, description="The destination of the queue item")
|
||||
|
||||
|
||||
class InvocationEventBase(QueueItemEventBase):
|
||||
@@ -95,8 +97,6 @@ class InvocationEventBase(QueueItemEventBase):
|
||||
|
||||
session_id: str = Field(description="The ID of the session (aka graph execution state)")
|
||||
queue_id: str = Field(description="The ID of the queue")
|
||||
item_id: int = Field(description="The ID of the queue item")
|
||||
batch_id: str = Field(description="The ID of the queue batch")
|
||||
session_id: str = Field(description="The ID of the session (aka graph execution state)")
|
||||
invocation: AnyInvocation = Field(description="The ID of the invocation")
|
||||
invocation_source_id: str = Field(description="The ID of the prepared invocation's source node")
|
||||
@@ -114,6 +114,8 @@ class InvocationStartedEvent(InvocationEventBase):
|
||||
queue_id=queue_item.queue_id,
|
||||
item_id=queue_item.item_id,
|
||||
batch_id=queue_item.batch_id,
|
||||
origin=queue_item.origin,
|
||||
destination=queue_item.destination,
|
||||
session_id=queue_item.session_id,
|
||||
invocation=invocation,
|
||||
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
|
||||
@@ -147,6 +149,8 @@ class InvocationDenoiseProgressEvent(InvocationEventBase):
|
||||
queue_id=queue_item.queue_id,
|
||||
item_id=queue_item.item_id,
|
||||
batch_id=queue_item.batch_id,
|
||||
origin=queue_item.origin,
|
||||
destination=queue_item.destination,
|
||||
session_id=queue_item.session_id,
|
||||
invocation=invocation,
|
||||
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
|
||||
@@ -184,6 +188,8 @@ class InvocationCompleteEvent(InvocationEventBase):
|
||||
queue_id=queue_item.queue_id,
|
||||
item_id=queue_item.item_id,
|
||||
batch_id=queue_item.batch_id,
|
||||
origin=queue_item.origin,
|
||||
destination=queue_item.destination,
|
||||
session_id=queue_item.session_id,
|
||||
invocation=invocation,
|
||||
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
|
||||
@@ -216,6 +222,8 @@ class InvocationErrorEvent(InvocationEventBase):
|
||||
queue_id=queue_item.queue_id,
|
||||
item_id=queue_item.item_id,
|
||||
batch_id=queue_item.batch_id,
|
||||
origin=queue_item.origin,
|
||||
destination=queue_item.destination,
|
||||
session_id=queue_item.session_id,
|
||||
invocation=invocation,
|
||||
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
|
||||
@@ -253,6 +261,8 @@ class QueueItemStatusChangedEvent(QueueItemEventBase):
|
||||
queue_id=queue_item.queue_id,
|
||||
item_id=queue_item.item_id,
|
||||
batch_id=queue_item.batch_id,
|
||||
origin=queue_item.origin,
|
||||
destination=queue_item.destination,
|
||||
session_id=queue_item.session_id,
|
||||
status=queue_item.status,
|
||||
error_type=queue_item.error_type,
|
||||
@@ -279,12 +289,14 @@ class BatchEnqueuedEvent(QueueEventBase):
|
||||
description="The number of invocations initially requested to be enqueued (may be less than enqueued if queue was full)"
|
||||
)
|
||||
priority: int = Field(description="The priority of the batch")
|
||||
origin: str | None = Field(default=None, description="The origin of the batch")
|
||||
|
||||
@classmethod
|
||||
def build(cls, enqueue_result: EnqueueBatchResult) -> "BatchEnqueuedEvent":
|
||||
return cls(
|
||||
queue_id=enqueue_result.queue_id,
|
||||
batch_id=enqueue_result.batch.batch_id,
|
||||
origin=enqueue_result.batch.origin,
|
||||
enqueued=enqueue_result.enqueued,
|
||||
requested=enqueue_result.requested,
|
||||
priority=enqueue_result.priority,
|
||||
|
||||
@@ -6,6 +6,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
|
||||
Batch,
|
||||
BatchStatus,
|
||||
CancelByBatchIDsResult,
|
||||
CancelByOriginResult,
|
||||
CancelByQueueIDResult,
|
||||
ClearResult,
|
||||
EnqueueBatchResult,
|
||||
@@ -95,6 +96,11 @@ class SessionQueueBase(ABC):
|
||||
"""Cancels all queue items with matching batch IDs"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def cancel_by_origin(self, queue_id: str, origin: str) -> CancelByOriginResult:
|
||||
"""Cancels all queue items with the given batch origin"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def cancel_by_queue_id(self, queue_id: str) -> CancelByQueueIDResult:
|
||||
"""Cancels all queue items with matching queue ID"""
|
||||
|
||||
@@ -77,6 +77,14 @@ BatchDataCollection: TypeAlias = list[list[BatchDatum]]
|
||||
|
||||
class Batch(BaseModel):
|
||||
batch_id: str = Field(default_factory=uuid_string, description="The ID of the batch")
|
||||
origin: str | None = Field(
|
||||
default=None,
|
||||
description="The origin of this queue item. This data is used by the frontend to determine how to handle results.",
|
||||
)
|
||||
destination: str | None = Field(
|
||||
default=None,
|
||||
description="The origin of this queue item. This data is used by the frontend to determine how to handle results",
|
||||
)
|
||||
data: Optional[BatchDataCollection] = Field(default=None, description="The batch data collection.")
|
||||
graph: Graph = Field(description="The graph to initialize the session with")
|
||||
workflow: Optional[WorkflowWithoutID] = Field(
|
||||
@@ -195,6 +203,14 @@ class SessionQueueItemWithoutGraph(BaseModel):
|
||||
status: QUEUE_ITEM_STATUS = Field(default="pending", description="The status of this queue item")
|
||||
priority: int = Field(default=0, description="The priority of this queue item")
|
||||
batch_id: str = Field(description="The ID of the batch associated with this queue item")
|
||||
origin: str | None = Field(
|
||||
default=None,
|
||||
description="The origin of this queue item. This data is used by the frontend to determine how to handle results.",
|
||||
)
|
||||
destination: str | None = Field(
|
||||
default=None,
|
||||
description="The origin of this queue item. This data is used by the frontend to determine how to handle results",
|
||||
)
|
||||
session_id: str = Field(
|
||||
description="The ID of the session associated with this queue item. The session doesn't exist in graph_executions until the queue item is executed."
|
||||
)
|
||||
@@ -294,6 +310,8 @@ class SessionQueueStatus(BaseModel):
|
||||
class BatchStatus(BaseModel):
|
||||
queue_id: str = Field(..., description="The ID of the queue")
|
||||
batch_id: str = Field(..., description="The ID of the batch")
|
||||
origin: str | None = Field(..., description="The origin of the batch")
|
||||
destination: str | None = Field(..., description="The destination of the batch")
|
||||
pending: int = Field(..., description="Number of queue items with status 'pending'")
|
||||
in_progress: int = Field(..., description="Number of queue items with status 'in_progress'")
|
||||
completed: int = Field(..., description="Number of queue items with status 'complete'")
|
||||
@@ -328,6 +346,12 @@ class CancelByBatchIDsResult(BaseModel):
|
||||
canceled: int = Field(..., description="Number of queue items canceled")
|
||||
|
||||
|
||||
class CancelByOriginResult(BaseModel):
|
||||
"""Result of canceling by list of batch ids"""
|
||||
|
||||
canceled: int = Field(..., description="Number of queue items canceled")
|
||||
|
||||
|
||||
class CancelByQueueIDResult(CancelByBatchIDsResult):
|
||||
"""Result of canceling by queue id"""
|
||||
|
||||
@@ -433,6 +457,8 @@ class SessionQueueValueToInsert(NamedTuple):
|
||||
field_values: Optional[str] # field_values json
|
||||
priority: int # priority
|
||||
workflow: Optional[str] # workflow json
|
||||
origin: str | None
|
||||
destination: str | None
|
||||
|
||||
|
||||
ValuesToInsert: TypeAlias = list[SessionQueueValueToInsert]
|
||||
@@ -453,6 +479,8 @@ def prepare_values_to_insert(queue_id: str, batch: Batch, priority: int, max_new
|
||||
json.dumps(field_values, default=to_jsonable_python) if field_values else None, # field_values (json)
|
||||
priority, # priority
|
||||
json.dumps(workflow, default=to_jsonable_python) if workflow else None, # workflow (json)
|
||||
batch.origin, # origin
|
||||
batch.destination, # destination
|
||||
)
|
||||
)
|
||||
return values_to_insert
|
||||
|
||||
@@ -10,6 +10,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
|
||||
Batch,
|
||||
BatchStatus,
|
||||
CancelByBatchIDsResult,
|
||||
CancelByOriginResult,
|
||||
CancelByQueueIDResult,
|
||||
ClearResult,
|
||||
EnqueueBatchResult,
|
||||
@@ -127,8 +128,8 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
|
||||
self.__cursor.executemany(
|
||||
"""--sql
|
||||
INSERT INTO session_queue (queue_id, session, session_id, batch_id, field_values, priority, workflow)
|
||||
VALUES (?, ?, ?, ?, ?, ?, ?)
|
||||
INSERT INTO session_queue (queue_id, session, session_id, batch_id, field_values, priority, workflow, origin, destination)
|
||||
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
|
||||
""",
|
||||
values_to_insert,
|
||||
)
|
||||
@@ -417,11 +418,7 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
)
|
||||
self.__conn.commit()
|
||||
if current_queue_item is not None and current_queue_item.batch_id in batch_ids:
|
||||
batch_status = self.get_batch_status(queue_id=queue_id, batch_id=current_queue_item.batch_id)
|
||||
queue_status = self.get_queue_status(queue_id=queue_id)
|
||||
self.__invoker.services.events.emit_queue_item_status_changed(
|
||||
current_queue_item, batch_status, queue_status
|
||||
)
|
||||
self._set_queue_item_status(current_queue_item.item_id, "canceled")
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
@@ -429,6 +426,46 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
self.__lock.release()
|
||||
return CancelByBatchIDsResult(canceled=count)
|
||||
|
||||
def cancel_by_origin(self, queue_id: str, origin: str) -> CancelByOriginResult:
|
||||
try:
|
||||
current_queue_item = self.get_current(queue_id)
|
||||
self.__lock.acquire()
|
||||
where = """--sql
|
||||
WHERE
|
||||
queue_id == ?
|
||||
AND origin == ?
|
||||
AND status != 'canceled'
|
||||
AND status != 'completed'
|
||||
AND status != 'failed'
|
||||
"""
|
||||
params = (queue_id, origin)
|
||||
self.__cursor.execute(
|
||||
f"""--sql
|
||||
SELECT COUNT(*)
|
||||
FROM session_queue
|
||||
{where};
|
||||
""",
|
||||
params,
|
||||
)
|
||||
count = self.__cursor.fetchone()[0]
|
||||
self.__cursor.execute(
|
||||
f"""--sql
|
||||
UPDATE session_queue
|
||||
SET status = 'canceled'
|
||||
{where};
|
||||
""",
|
||||
params,
|
||||
)
|
||||
self.__conn.commit()
|
||||
if current_queue_item is not None and current_queue_item.origin == origin:
|
||||
self._set_queue_item_status(current_queue_item.item_id, "canceled")
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
return CancelByOriginResult(canceled=count)
|
||||
|
||||
def cancel_by_queue_id(self, queue_id: str) -> CancelByQueueIDResult:
|
||||
try:
|
||||
current_queue_item = self.get_current(queue_id)
|
||||
@@ -541,7 +578,9 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
started_at,
|
||||
session_id,
|
||||
batch_id,
|
||||
queue_id
|
||||
queue_id,
|
||||
origin,
|
||||
destination
|
||||
FROM session_queue
|
||||
WHERE queue_id = ?
|
||||
"""
|
||||
@@ -621,7 +660,7 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
self.__lock.acquire()
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
SELECT status, count(*)
|
||||
SELECT status, count(*), origin, destination
|
||||
FROM session_queue
|
||||
WHERE
|
||||
queue_id = ?
|
||||
@@ -633,6 +672,8 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
result = cast(list[sqlite3.Row], self.__cursor.fetchall())
|
||||
total = sum(row[1] for row in result)
|
||||
counts: dict[str, int] = {row[0]: row[1] for row in result}
|
||||
origin = result[0]["origin"] if result else None
|
||||
destination = result[0]["destination"] if result else None
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
@@ -641,6 +682,8 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
|
||||
return BatchStatus(
|
||||
batch_id=batch_id,
|
||||
origin=origin,
|
||||
destination=destination,
|
||||
queue_id=queue_id,
|
||||
pending=counts.get("pending", 0),
|
||||
in_progress=counts.get("in_progress", 0),
|
||||
|
||||
@@ -14,7 +14,7 @@ from invokeai.app.services.image_records.image_records_common import ImageCatego
|
||||
from invokeai.app.services.images.images_common import ImageDTO
|
||||
from invokeai.app.services.invocation_services import InvocationServices
|
||||
from invokeai.app.services.model_records.model_records_base import UnknownModelException
|
||||
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||
from invokeai.app.util.step_callback import flux_step_callback, stable_diffusion_step_callback
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModel,
|
||||
AnyModelConfig,
|
||||
@@ -557,6 +557,24 @@ class UtilInterface(InvocationContextInterface):
|
||||
is_canceled=self.is_canceled,
|
||||
)
|
||||
|
||||
def flux_step_callback(self, intermediate_state: PipelineIntermediateState) -> None:
|
||||
"""
|
||||
The step callback emits a progress event with the current step, the total number of
|
||||
steps, a preview image, and some other internal metadata.
|
||||
|
||||
This should be called after each denoising step.
|
||||
|
||||
Args:
|
||||
intermediate_state: The intermediate state of the diffusion pipeline.
|
||||
"""
|
||||
|
||||
flux_step_callback(
|
||||
context_data=self._data,
|
||||
intermediate_state=intermediate_state,
|
||||
events=self._services.events,
|
||||
is_canceled=self.is_canceled,
|
||||
)
|
||||
|
||||
|
||||
class InvocationContext:
|
||||
"""Provides access to various services and data for the current invocation.
|
||||
|
||||
@@ -17,6 +17,7 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_11 import
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_12 import build_migration_12
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_13 import build_migration_13
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_14 import build_migration_14
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_15 import build_migration_15
|
||||
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
|
||||
|
||||
|
||||
@@ -51,6 +52,7 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
|
||||
migrator.register_migration(build_migration_12(app_config=config))
|
||||
migrator.register_migration(build_migration_13())
|
||||
migrator.register_migration(build_migration_14())
|
||||
migrator.register_migration(build_migration_15())
|
||||
migrator.run_migrations()
|
||||
|
||||
return db
|
||||
|
||||
@@ -0,0 +1,34 @@
|
||||
import sqlite3
|
||||
|
||||
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
|
||||
|
||||
|
||||
class Migration15Callback:
|
||||
def __call__(self, cursor: sqlite3.Cursor) -> None:
|
||||
self._add_origin_col(cursor)
|
||||
|
||||
def _add_origin_col(self, cursor: sqlite3.Cursor) -> None:
|
||||
"""
|
||||
- Adds `origin` column to the session queue table.
|
||||
- Adds `destination` column to the session queue table.
|
||||
"""
|
||||
|
||||
cursor.execute("ALTER TABLE session_queue ADD COLUMN origin TEXT;")
|
||||
cursor.execute("ALTER TABLE session_queue ADD COLUMN destination TEXT;")
|
||||
|
||||
|
||||
def build_migration_15() -> Migration:
|
||||
"""
|
||||
Build the migration from database version 14 to 15.
|
||||
|
||||
This migration does the following:
|
||||
- Adds `origin` column to the session queue table.
|
||||
- Adds `destination` column to the session queue table.
|
||||
"""
|
||||
migration_15 = Migration(
|
||||
from_version=14,
|
||||
to_version=15,
|
||||
callback=Migration15Callback(),
|
||||
)
|
||||
|
||||
return migration_15
|
||||
@@ -38,6 +38,25 @@ SD1_5_LATENT_RGB_FACTORS = [
|
||||
[-0.1307, -0.1874, -0.7445], # L4
|
||||
]
|
||||
|
||||
FLUX_LATENT_RGB_FACTORS = [
|
||||
[-0.0412, 0.0149, 0.0521],
|
||||
[0.0056, 0.0291, 0.0768],
|
||||
[0.0342, -0.0681, -0.0427],
|
||||
[-0.0258, 0.0092, 0.0463],
|
||||
[0.0863, 0.0784, 0.0547],
|
||||
[-0.0017, 0.0402, 0.0158],
|
||||
[0.0501, 0.1058, 0.1152],
|
||||
[-0.0209, -0.0218, -0.0329],
|
||||
[-0.0314, 0.0083, 0.0896],
|
||||
[0.0851, 0.0665, -0.0472],
|
||||
[-0.0534, 0.0238, -0.0024],
|
||||
[0.0452, -0.0026, 0.0048],
|
||||
[0.0892, 0.0831, 0.0881],
|
||||
[-0.1117, -0.0304, -0.0789],
|
||||
[0.0027, -0.0479, -0.0043],
|
||||
[-0.1146, -0.0827, -0.0598],
|
||||
]
|
||||
|
||||
|
||||
def sample_to_lowres_estimated_image(
|
||||
samples: torch.Tensor, latent_rgb_factors: torch.Tensor, smooth_matrix: Optional[torch.Tensor] = None
|
||||
@@ -94,3 +113,32 @@ def stable_diffusion_step_callback(
|
||||
intermediate_state,
|
||||
ProgressImage(dataURL=dataURL, width=width, height=height),
|
||||
)
|
||||
|
||||
|
||||
def flux_step_callback(
|
||||
context_data: "InvocationContextData",
|
||||
intermediate_state: PipelineIntermediateState,
|
||||
events: "EventServiceBase",
|
||||
is_canceled: Callable[[], bool],
|
||||
) -> None:
|
||||
if is_canceled():
|
||||
raise CanceledException
|
||||
sample = intermediate_state.latents
|
||||
latent_rgb_factors = torch.tensor(FLUX_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
|
||||
latent_image_perm = sample.permute(1, 2, 0).to(dtype=sample.dtype, device=sample.device)
|
||||
latent_image = latent_image_perm @ latent_rgb_factors
|
||||
latents_ubyte = (
|
||||
((latent_image + 1) / 2).clamp(0, 1).mul(0xFF) # change scale from -1..1 to 0..1 # to 0..255
|
||||
).to(device="cpu", dtype=torch.uint8)
|
||||
image = Image.fromarray(latents_ubyte.cpu().numpy())
|
||||
(width, height) = image.size
|
||||
width *= 8
|
||||
height *= 8
|
||||
dataURL = image_to_dataURL(image, image_format="JPEG")
|
||||
|
||||
events.emit_invocation_denoise_progress(
|
||||
context_data.queue_item,
|
||||
context_data.invocation,
|
||||
intermediate_state,
|
||||
ProgressImage(dataURL=dataURL, width=width, height=height),
|
||||
)
|
||||
|
||||
@@ -5,6 +5,7 @@ from tqdm import tqdm
|
||||
|
||||
from invokeai.backend.flux.inpaint_extension import InpaintExtension
|
||||
from invokeai.backend.flux.model import Flux
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
|
||||
|
||||
|
||||
def denoise(
|
||||
@@ -17,10 +18,11 @@ def denoise(
|
||||
vec: torch.Tensor,
|
||||
# sampling parameters
|
||||
timesteps: list[float],
|
||||
step_callback: Callable[[], None],
|
||||
step_callback: Callable[[PipelineIntermediateState], None],
|
||||
guidance: float,
|
||||
inpaint_extension: InpaintExtension | None,
|
||||
):
|
||||
step = 0
|
||||
# guidance_vec is ignored for schnell.
|
||||
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
||||
for t_curr, t_prev in tqdm(list(zip(timesteps[:-1], timesteps[1:], strict=True))):
|
||||
@@ -34,12 +36,21 @@ def denoise(
|
||||
timesteps=t_vec,
|
||||
guidance=guidance_vec,
|
||||
)
|
||||
|
||||
preview_img = img - t_curr * pred
|
||||
img = img + (t_prev - t_curr) * pred
|
||||
|
||||
if inpaint_extension is not None:
|
||||
img = inpaint_extension.merge_intermediate_latents_with_init_latents(img, t_prev)
|
||||
|
||||
step_callback()
|
||||
step_callback(
|
||||
PipelineIntermediateState(
|
||||
step=step,
|
||||
order=1,
|
||||
total_steps=len(timesteps),
|
||||
timestep=int(t_curr),
|
||||
latents=preview_img,
|
||||
),
|
||||
)
|
||||
step += 1
|
||||
|
||||
return img
|
||||
|
||||
672
invokeai/backend/lora.py
Normal file
672
invokeai/backend/lora.py
Normal file
@@ -0,0 +1,672 @@
|
||||
# Copyright (c) 2024 The InvokeAI Development team
|
||||
"""LoRA model support."""
|
||||
|
||||
import bisect
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Set, Tuple, Union
|
||||
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
from typing_extensions import Self
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.model_manager import BaseModelType
|
||||
from invokeai.backend.raw_model import RawModel
|
||||
|
||||
|
||||
class LoRALayerBase:
|
||||
# rank: Optional[int]
|
||||
# alpha: Optional[float]
|
||||
# bias: Optional[torch.Tensor]
|
||||
# layer_key: str
|
||||
|
||||
# @property
|
||||
# def scale(self):
|
||||
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
if "alpha" in values:
|
||||
self.alpha = values["alpha"].item()
|
||||
else:
|
||||
self.alpha = None
|
||||
|
||||
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
|
||||
self.bias: Optional[torch.Tensor] = torch.sparse_coo_tensor(
|
||||
values["bias_indices"],
|
||||
values["bias_values"],
|
||||
tuple(values["bias_size"]),
|
||||
)
|
||||
|
||||
else:
|
||||
self.bias = None
|
||||
|
||||
self.rank = None # set in layer implementation
|
||||
self.layer_key = layer_key
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_bias(self, orig_bias: torch.Tensor) -> Optional[torch.Tensor]:
|
||||
return self.bias
|
||||
|
||||
def get_parameters(self, orig_module: torch.nn.Module) -> Dict[str, torch.Tensor]:
|
||||
params = {"weight": self.get_weight(orig_module.weight)}
|
||||
bias = self.get_bias(orig_module.bias)
|
||||
if bias is not None:
|
||||
params["bias"] = bias
|
||||
return params
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = 0
|
||||
for val in [self.bias]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
if self.bias is not None:
|
||||
self.bias = self.bias.to(device=device, dtype=dtype)
|
||||
|
||||
def check_keys(self, values: Dict[str, torch.Tensor], known_keys: Set[str]):
|
||||
"""Log a warning if values contains unhandled keys."""
|
||||
# {"alpha", "bias_indices", "bias_values", "bias_size"} are hard-coded, because they are handled by
|
||||
# `LoRALayerBase`. Sub-classes should provide the known_keys that they handled.
|
||||
all_known_keys = known_keys | {"alpha", "bias_indices", "bias_values", "bias_size"}
|
||||
unknown_keys = set(values.keys()) - all_known_keys
|
||||
if unknown_keys:
|
||||
logger.warning(
|
||||
f"Unexpected keys found in LoRA/LyCORIS layer, model might work incorrectly! Keys: {unknown_keys}"
|
||||
)
|
||||
|
||||
|
||||
# TODO: find and debug lora/locon with bias
|
||||
class LoRALayer(LoRALayerBase):
|
||||
# up: torch.Tensor
|
||||
# mid: Optional[torch.Tensor]
|
||||
# down: torch.Tensor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.up = values["lora_up.weight"]
|
||||
self.down = values["lora_down.weight"]
|
||||
self.mid = values.get("lora_mid.weight", None)
|
||||
|
||||
self.rank = self.down.shape[0]
|
||||
self.check_keys(
|
||||
values,
|
||||
{
|
||||
"lora_up.weight",
|
||||
"lora_down.weight",
|
||||
"lora_mid.weight",
|
||||
},
|
||||
)
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
if self.mid is not None:
|
||||
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
|
||||
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
|
||||
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
|
||||
else:
|
||||
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
|
||||
|
||||
return weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
for val in [self.up, self.mid, self.down]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.up = self.up.to(device=device, dtype=dtype)
|
||||
self.down = self.down.to(device=device, dtype=dtype)
|
||||
|
||||
if self.mid is not None:
|
||||
self.mid = self.mid.to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
class LoHALayer(LoRALayerBase):
|
||||
# w1_a: torch.Tensor
|
||||
# w1_b: torch.Tensor
|
||||
# w2_a: torch.Tensor
|
||||
# w2_b: torch.Tensor
|
||||
# t1: Optional[torch.Tensor] = None
|
||||
# t2: Optional[torch.Tensor] = None
|
||||
|
||||
def __init__(self, layer_key: str, values: Dict[str, torch.Tensor]):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.w1_a = values["hada_w1_a"]
|
||||
self.w1_b = values["hada_w1_b"]
|
||||
self.w2_a = values["hada_w2_a"]
|
||||
self.w2_b = values["hada_w2_b"]
|
||||
self.t1 = values.get("hada_t1", None)
|
||||
self.t2 = values.get("hada_t2", None)
|
||||
|
||||
self.rank = self.w1_b.shape[0]
|
||||
self.check_keys(
|
||||
values,
|
||||
{
|
||||
"hada_w1_a",
|
||||
"hada_w1_b",
|
||||
"hada_w2_a",
|
||||
"hada_w2_b",
|
||||
"hada_t1",
|
||||
"hada_t2",
|
||||
},
|
||||
)
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
if self.t1 is None:
|
||||
weight: torch.Tensor = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
|
||||
|
||||
else:
|
||||
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
|
||||
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
|
||||
weight = rebuild1 * rebuild2
|
||||
|
||||
return weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
||||
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
||||
if self.t1 is not None:
|
||||
self.t1 = self.t1.to(device=device, dtype=dtype)
|
||||
|
||||
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
||||
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
||||
if self.t2 is not None:
|
||||
self.t2 = self.t2.to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
class LoKRLayer(LoRALayerBase):
|
||||
# w1: Optional[torch.Tensor] = None
|
||||
# w1_a: Optional[torch.Tensor] = None
|
||||
# w1_b: Optional[torch.Tensor] = None
|
||||
# w2: Optional[torch.Tensor] = None
|
||||
# w2_a: Optional[torch.Tensor] = None
|
||||
# w2_b: Optional[torch.Tensor] = None
|
||||
# t2: Optional[torch.Tensor] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.w1 = values.get("lokr_w1", None)
|
||||
if self.w1 is None:
|
||||
self.w1_a = values["lokr_w1_a"]
|
||||
self.w1_b = values["lokr_w1_b"]
|
||||
else:
|
||||
self.w1_b = None
|
||||
self.w1_a = None
|
||||
|
||||
self.w2 = values.get("lokr_w2", None)
|
||||
if self.w2 is None:
|
||||
self.w2_a = values["lokr_w2_a"]
|
||||
self.w2_b = values["lokr_w2_b"]
|
||||
else:
|
||||
self.w2_a = None
|
||||
self.w2_b = None
|
||||
|
||||
self.t2 = values.get("lokr_t2", None)
|
||||
|
||||
if self.w1_b is not None:
|
||||
self.rank = self.w1_b.shape[0]
|
||||
elif self.w2_b is not None:
|
||||
self.rank = self.w2_b.shape[0]
|
||||
else:
|
||||
self.rank = None # unscaled
|
||||
|
||||
self.check_keys(
|
||||
values,
|
||||
{
|
||||
"lokr_w1",
|
||||
"lokr_w1_a",
|
||||
"lokr_w1_b",
|
||||
"lokr_w2",
|
||||
"lokr_w2_a",
|
||||
"lokr_w2_b",
|
||||
"lokr_t2",
|
||||
},
|
||||
)
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
w1: Optional[torch.Tensor] = self.w1
|
||||
if w1 is None:
|
||||
assert self.w1_a is not None
|
||||
assert self.w1_b is not None
|
||||
w1 = self.w1_a @ self.w1_b
|
||||
|
||||
w2 = self.w2
|
||||
if w2 is None:
|
||||
if self.t2 is None:
|
||||
assert self.w2_a is not None
|
||||
assert self.w2_b is not None
|
||||
w2 = self.w2_a @ self.w2_b
|
||||
else:
|
||||
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
|
||||
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
w2 = w2.contiguous()
|
||||
assert w1 is not None
|
||||
assert w2 is not None
|
||||
weight = torch.kron(w1, w2)
|
||||
|
||||
return weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
if self.w1 is not None:
|
||||
self.w1 = self.w1.to(device=device, dtype=dtype)
|
||||
else:
|
||||
assert self.w1_a is not None
|
||||
assert self.w1_b is not None
|
||||
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
||||
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
||||
|
||||
if self.w2 is not None:
|
||||
self.w2 = self.w2.to(device=device, dtype=dtype)
|
||||
else:
|
||||
assert self.w2_a is not None
|
||||
assert self.w2_b is not None
|
||||
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
||||
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
||||
|
||||
if self.t2 is not None:
|
||||
self.t2 = self.t2.to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
class FullLayer(LoRALayerBase):
|
||||
# bias handled in LoRALayerBase(calc_size, to)
|
||||
# weight: torch.Tensor
|
||||
# bias: Optional[torch.Tensor]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.weight = values["diff"]
|
||||
self.bias = values.get("diff_b", None)
|
||||
|
||||
self.rank = None # unscaled
|
||||
self.check_keys(values, {"diff", "diff_b"})
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
return self.weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
model_size += self.weight.nelement() * self.weight.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
class IA3Layer(LoRALayerBase):
|
||||
# weight: torch.Tensor
|
||||
# on_input: torch.Tensor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.weight = values["weight"]
|
||||
self.on_input = values["on_input"]
|
||||
|
||||
self.rank = None # unscaled
|
||||
self.check_keys(values, {"weight", "on_input"})
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
weight = self.weight
|
||||
if not self.on_input:
|
||||
weight = weight.reshape(-1, 1)
|
||||
assert orig_weight is not None
|
||||
return orig_weight * weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
model_size += self.weight.nelement() * self.weight.element_size()
|
||||
model_size += self.on_input.nelement() * self.on_input.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
self.on_input = self.on_input.to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
class NormLayer(LoRALayerBase):
|
||||
# bias handled in LoRALayerBase(calc_size, to)
|
||||
# weight: torch.Tensor
|
||||
# bias: Optional[torch.Tensor]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.weight = values["w_norm"]
|
||||
self.bias = values.get("b_norm", None)
|
||||
|
||||
self.rank = None # unscaled
|
||||
self.check_keys(values, {"w_norm", "b_norm"})
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
return self.weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
model_size += self.weight.nelement() * self.weight.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer]
|
||||
|
||||
|
||||
class LoRAModelRaw(RawModel): # (torch.nn.Module):
|
||||
_name: str
|
||||
layers: Dict[str, AnyLoRALayer]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
name: str,
|
||||
layers: Dict[str, AnyLoRALayer],
|
||||
):
|
||||
self._name = name
|
||||
self.layers = layers
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return self._name
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
# TODO: try revert if exception?
|
||||
for _key, layer in self.layers.items():
|
||||
layer.to(device=device, dtype=dtype)
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = 0
|
||||
for _, layer in self.layers.items():
|
||||
model_size += layer.calc_size()
|
||||
return model_size
|
||||
|
||||
@classmethod
|
||||
def _convert_sdxl_keys_to_diffusers_format(cls, state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
||||
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
|
||||
|
||||
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
|
||||
diffusers format, then this function will have no effect.
|
||||
|
||||
This function is adapted from:
|
||||
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
|
||||
|
||||
Args:
|
||||
state_dict (Dict[str, Tensor]): The SDXL LoRA state_dict.
|
||||
|
||||
Raises:
|
||||
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
|
||||
|
||||
Returns:
|
||||
Dict[str, Tensor]: The diffusers-format state_dict.
|
||||
"""
|
||||
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
|
||||
not_converted_count = 0 # The number of keys that were not converted.
|
||||
|
||||
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
|
||||
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
|
||||
# `input_blocks_4_1_proj_in`.
|
||||
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
|
||||
stability_unet_keys.sort()
|
||||
|
||||
new_state_dict = {}
|
||||
for full_key, value in state_dict.items():
|
||||
if full_key.startswith("lora_unet_"):
|
||||
search_key = full_key.replace("lora_unet_", "")
|
||||
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
|
||||
position = bisect.bisect_right(stability_unet_keys, search_key)
|
||||
map_key = stability_unet_keys[position - 1]
|
||||
# Now, check if the map_key *actually* matches the search_key.
|
||||
if search_key.startswith(map_key):
|
||||
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
|
||||
new_state_dict[new_key] = value
|
||||
converted_count += 1
|
||||
else:
|
||||
new_state_dict[full_key] = value
|
||||
not_converted_count += 1
|
||||
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
|
||||
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
|
||||
new_state_dict[full_key] = value
|
||||
continue
|
||||
else:
|
||||
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
|
||||
|
||||
if converted_count > 0 and not_converted_count > 0:
|
||||
raise ValueError(
|
||||
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
|
||||
f" not_converted={not_converted_count}"
|
||||
)
|
||||
|
||||
return new_state_dict
|
||||
|
||||
@classmethod
|
||||
def from_checkpoint(
|
||||
cls,
|
||||
file_path: Union[str, Path],
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
base_model: Optional[BaseModelType] = None,
|
||||
) -> Self:
|
||||
device = device or torch.device("cpu")
|
||||
dtype = dtype or torch.float32
|
||||
|
||||
if isinstance(file_path, str):
|
||||
file_path = Path(file_path)
|
||||
|
||||
model = cls(
|
||||
name=file_path.stem,
|
||||
layers={},
|
||||
)
|
||||
|
||||
if file_path.suffix == ".safetensors":
|
||||
sd = load_file(file_path.absolute().as_posix(), device="cpu")
|
||||
else:
|
||||
sd = torch.load(file_path, map_location="cpu")
|
||||
|
||||
state_dict = cls._group_state(sd)
|
||||
|
||||
if base_model == BaseModelType.StableDiffusionXL:
|
||||
state_dict = cls._convert_sdxl_keys_to_diffusers_format(state_dict)
|
||||
|
||||
for layer_key, values in state_dict.items():
|
||||
# Detect layers according to LyCORIS detection logic(`weight_list_det`)
|
||||
# https://github.com/KohakuBlueleaf/LyCORIS/tree/8ad8000efb79e2b879054da8c9356e6143591bad/lycoris/modules
|
||||
|
||||
# lora and locon
|
||||
if "lora_up.weight" in values:
|
||||
layer: AnyLoRALayer = LoRALayer(layer_key, values)
|
||||
|
||||
# loha
|
||||
elif "hada_w1_a" in values:
|
||||
layer = LoHALayer(layer_key, values)
|
||||
|
||||
# lokr
|
||||
elif "lokr_w1" in values or "lokr_w1_a" in values:
|
||||
layer = LoKRLayer(layer_key, values)
|
||||
|
||||
# diff
|
||||
elif "diff" in values:
|
||||
layer = FullLayer(layer_key, values)
|
||||
|
||||
# ia3
|
||||
elif "on_input" in values:
|
||||
layer = IA3Layer(layer_key, values)
|
||||
|
||||
# norms
|
||||
elif "w_norm" in values:
|
||||
layer = NormLayer(layer_key, values)
|
||||
|
||||
else:
|
||||
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key} - {list(values.keys())}")
|
||||
raise Exception("Unknown lora format!")
|
||||
|
||||
# lower memory consumption by removing already parsed layer values
|
||||
state_dict[layer_key].clear()
|
||||
|
||||
layer.to(device=device, dtype=dtype)
|
||||
model.layers[layer_key] = layer
|
||||
|
||||
return model
|
||||
|
||||
@staticmethod
|
||||
def _group_state(state_dict: Dict[str, torch.Tensor]) -> Dict[str, Dict[str, torch.Tensor]]:
|
||||
state_dict_groupped: Dict[str, Dict[str, torch.Tensor]] = {}
|
||||
|
||||
for key, value in state_dict.items():
|
||||
stem, leaf = key.split(".", 1)
|
||||
if stem not in state_dict_groupped:
|
||||
state_dict_groupped[stem] = {}
|
||||
state_dict_groupped[stem][leaf] = value
|
||||
|
||||
return state_dict_groupped
|
||||
|
||||
|
||||
# code from
|
||||
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
|
||||
def make_sdxl_unet_conversion_map() -> List[Tuple[str, str]]:
|
||||
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format."""
|
||||
unet_conversion_map_layer = []
|
||||
|
||||
for i in range(3): # num_blocks is 3 in sdxl
|
||||
# loop over downblocks/upblocks
|
||||
for j in range(2):
|
||||
# loop over resnets/attentions for downblocks
|
||||
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
||||
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
||||
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no attention layers in down_blocks.3
|
||||
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
||||
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
||||
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
||||
|
||||
for j in range(3):
|
||||
# loop over resnets/attentions for upblocks
|
||||
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
||||
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
||||
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
||||
|
||||
# if i > 0: commentout for sdxl
|
||||
# no attention layers in up_blocks.0
|
||||
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
||||
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
||||
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no downsample in down_blocks.3
|
||||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
||||
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
||||
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
||||
|
||||
# no upsample in up_blocks.3
|
||||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||||
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
|
||||
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
||||
|
||||
hf_mid_atn_prefix = "mid_block.attentions.0."
|
||||
sd_mid_atn_prefix = "middle_block.1."
|
||||
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
||||
|
||||
for j in range(2):
|
||||
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
||||
sd_mid_res_prefix = f"middle_block.{2*j}."
|
||||
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||||
|
||||
unet_conversion_map_resnet = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("in_layers.0.", "norm1."),
|
||||
("in_layers.2.", "conv1."),
|
||||
("out_layers.0.", "norm2."),
|
||||
("out_layers.3.", "conv2."),
|
||||
("emb_layers.1.", "time_emb_proj."),
|
||||
("skip_connection.", "conv_shortcut."),
|
||||
]
|
||||
|
||||
unet_conversion_map = []
|
||||
for sd, hf in unet_conversion_map_layer:
|
||||
if "resnets" in hf:
|
||||
for sd_res, hf_res in unet_conversion_map_resnet:
|
||||
unet_conversion_map.append((sd + sd_res, hf + hf_res))
|
||||
else:
|
||||
unet_conversion_map.append((sd, hf))
|
||||
|
||||
for j in range(2):
|
||||
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
|
||||
sd_time_embed_prefix = f"time_embed.{j*2}."
|
||||
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
|
||||
|
||||
for j in range(2):
|
||||
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
|
||||
sd_label_embed_prefix = f"label_emb.0.{j*2}."
|
||||
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
|
||||
|
||||
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
|
||||
unet_conversion_map.append(("out.0.", "conv_norm_out."))
|
||||
unet_conversion_map.append(("out.2.", "conv_out."))
|
||||
|
||||
return unet_conversion_map
|
||||
|
||||
|
||||
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
|
||||
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()
|
||||
}
|
||||
@@ -32,6 +32,7 @@ from invokeai.backend.model_manager.config import (
|
||||
)
|
||||
from invokeai.backend.model_manager.load.load_default import ModelLoader
|
||||
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
|
||||
from invokeai.backend.model_manager.util.model_util import convert_bundle_to_flux_transformer_checkpoint
|
||||
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
||||
|
||||
try:
|
||||
@@ -190,6 +191,8 @@ class FluxCheckpointModel(ModelLoader):
|
||||
with SilenceWarnings():
|
||||
model = Flux(params[config.config_path])
|
||||
sd = load_file(model_path)
|
||||
if "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in sd:
|
||||
sd = convert_bundle_to_flux_transformer_checkpoint(sd)
|
||||
model.load_state_dict(sd, assign=True)
|
||||
return model
|
||||
|
||||
@@ -230,5 +233,7 @@ class FluxBnbQuantizednf4bCheckpointModel(ModelLoader):
|
||||
model = Flux(params[config.config_path])
|
||||
model = quantize_model_nf4(model, modules_to_not_convert=set(), compute_dtype=torch.bfloat16)
|
||||
sd = load_file(model_path)
|
||||
if "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in sd:
|
||||
sd = convert_bundle_to_flux_transformer_checkpoint(sd)
|
||||
model.load_state_dict(sd, assign=True)
|
||||
return model
|
||||
|
||||
@@ -5,10 +5,8 @@ from logging import Logger
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_manager import (
|
||||
AnyModel,
|
||||
AnyModelConfig,
|
||||
@@ -20,11 +18,6 @@ from invokeai.backend.model_manager import (
|
||||
from invokeai.backend.model_manager.load.load_default import ModelLoader
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
||||
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
|
||||
from invokeai.backend.peft.conversions.flux_kohya_lora_conversion_utils import (
|
||||
lora_model_from_flux_kohya_state_dict,
|
||||
)
|
||||
from invokeai.backend.peft.conversions.sd_lora_conversion_utils import lora_model_from_sd_state_dict
|
||||
from invokeai.backend.peft.conversions.sdxl_lora_conversion_utils import convert_sdxl_keys_to_diffusers_format
|
||||
|
||||
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.LoRA, format=ModelFormat.Diffusers)
|
||||
@@ -52,28 +45,14 @@ class LoRALoader(ModelLoader):
|
||||
raise ValueError("There are no submodels in a LoRA model.")
|
||||
model_path = Path(config.path)
|
||||
assert self._model_base is not None
|
||||
|
||||
# Load the state dict from the model file.
|
||||
if model_path.suffix == ".safetensors":
|
||||
state_dict = load_file(model_path.absolute().as_posix(), device="cpu")
|
||||
else:
|
||||
state_dict = torch.load(model_path, map_location="cpu")
|
||||
|
||||
# Apply state_dict key conversions, if necessary.
|
||||
if self._model_base == BaseModelType.StableDiffusionXL:
|
||||
state_dict = convert_sdxl_keys_to_diffusers_format(state_dict)
|
||||
model = lora_model_from_sd_state_dict(state_dict=state_dict)
|
||||
elif self._model_base == BaseModelType.Flux:
|
||||
model = lora_model_from_flux_kohya_state_dict(state_dict=state_dict)
|
||||
elif self._model_base in [BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2]:
|
||||
# Currently, we don't apply any conversions for SD1 and SD2 LoRA models.
|
||||
model = lora_model_from_sd_state_dict(state_dict=state_dict)
|
||||
else:
|
||||
raise ValueError(f"Unsupported LoRA base model: {self._model_base}")
|
||||
|
||||
model.to(dtype=self._torch_dtype)
|
||||
model = LoRAModelRaw.from_checkpoint(
|
||||
file_path=model_path,
|
||||
dtype=self._torch_dtype,
|
||||
base_model=self._model_base,
|
||||
)
|
||||
return model
|
||||
|
||||
# override
|
||||
def _get_model_path(self, config: AnyModelConfig) -> Path:
|
||||
# cheating a little - we remember this variable for using in the subsequent call to _load_model()
|
||||
self._model_base = config.base
|
||||
|
||||
@@ -15,9 +15,9 @@ from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import D
|
||||
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
|
||||
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_manager.config import AnyModel
|
||||
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
||||
from invokeai.backend.peft.lora import LoRAModelRaw
|
||||
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
|
||||
from invokeai.backend.textual_inversion import TextualInversionModelRaw
|
||||
|
||||
|
||||
@@ -26,7 +26,6 @@ from invokeai.backend.model_manager.config import (
|
||||
SchedulerPredictionType,
|
||||
)
|
||||
from invokeai.backend.model_manager.util.model_util import lora_token_vector_length, read_checkpoint_meta
|
||||
from invokeai.backend.peft.conversions.flux_kohya_lora_conversion_utils import is_state_dict_likely_in_flux_kohya_format
|
||||
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
|
||||
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
||||
|
||||
@@ -109,6 +108,8 @@ class ModelProbe(object):
|
||||
"CLIPVisionModelWithProjection": ModelType.CLIPVision,
|
||||
"T2IAdapter": ModelType.T2IAdapter,
|
||||
"CLIPModel": ModelType.CLIPEmbed,
|
||||
"CLIPTextModel": ModelType.CLIPEmbed,
|
||||
"T5EncoderModel": ModelType.T5Encoder,
|
||||
}
|
||||
|
||||
@classmethod
|
||||
@@ -225,7 +226,18 @@ class ModelProbe(object):
|
||||
ckpt = ckpt.get("state_dict", ckpt)
|
||||
|
||||
for key in [str(k) for k in ckpt.keys()]:
|
||||
if key.startswith(("cond_stage_model.", "first_stage_model.", "model.diffusion_model.", "double_blocks.")):
|
||||
if key.startswith(
|
||||
(
|
||||
"cond_stage_model.",
|
||||
"first_stage_model.",
|
||||
"model.diffusion_model.",
|
||||
# FLUX models in the official BFL format contain keys with the "double_blocks." prefix.
|
||||
"double_blocks.",
|
||||
# Some FLUX checkpoint files contain transformer keys prefixed with "model.diffusion_model".
|
||||
# This prefix is typically used to distinguish between multiple models bundled in a single file.
|
||||
"model.diffusion_model.double_blocks.",
|
||||
)
|
||||
):
|
||||
# Keys starting with double_blocks are associated with Flux models
|
||||
return ModelType.Main
|
||||
elif key.startswith(("encoder.conv_in", "decoder.conv_in")):
|
||||
@@ -284,9 +296,16 @@ class ModelProbe(object):
|
||||
if (folder_path / "image_encoder.txt").exists():
|
||||
return ModelType.IPAdapter
|
||||
|
||||
i = folder_path / "model_index.json"
|
||||
c = folder_path / "config.json"
|
||||
config_path = i if i.exists() else c if c.exists() else None
|
||||
config_path = None
|
||||
for p in [
|
||||
folder_path / "model_index.json", # pipeline
|
||||
folder_path / "config.json", # most diffusers
|
||||
folder_path / "text_encoder_2" / "config.json", # T5 text encoder
|
||||
folder_path / "text_encoder" / "config.json", # T5 CLIP
|
||||
]:
|
||||
if p.exists():
|
||||
config_path = p
|
||||
break
|
||||
|
||||
if config_path:
|
||||
with open(config_path, "r") as file:
|
||||
@@ -329,7 +348,10 @@ class ModelProbe(object):
|
||||
# TODO: Decide between dev/schnell
|
||||
checkpoint = ModelProbe._scan_and_load_checkpoint(model_path)
|
||||
state_dict = checkpoint.get("state_dict") or checkpoint
|
||||
if "guidance_in.out_layer.weight" in state_dict:
|
||||
if (
|
||||
"guidance_in.out_layer.weight" in state_dict
|
||||
or "model.diffusion_model.guidance_in.out_layer.weight" in state_dict
|
||||
):
|
||||
# For flux, this is a key in invokeai.backend.flux.util.params
|
||||
# Due to model type and format being the descriminator for model configs this
|
||||
# is used rather than attempting to support flux with separate model types and format
|
||||
@@ -337,7 +359,7 @@ class ModelProbe(object):
|
||||
config_file = "flux-dev"
|
||||
else:
|
||||
# For flux, this is a key in invokeai.backend.flux.util.params
|
||||
# Due to model type and format being the descriminator for model configs this
|
||||
# Due to model type and format being the discriminator for model configs this
|
||||
# is used rather than attempting to support flux with separate model types and format
|
||||
# If changed in the future, please fix me
|
||||
config_file = "flux-schnell"
|
||||
@@ -444,7 +466,10 @@ class CheckpointProbeBase(ProbeBase):
|
||||
|
||||
def get_format(self) -> ModelFormat:
|
||||
state_dict = self.checkpoint.get("state_dict") or self.checkpoint
|
||||
if "double_blocks.0.img_attn.proj.weight.quant_state.bitsandbytes__nf4" in state_dict:
|
||||
if (
|
||||
"double_blocks.0.img_attn.proj.weight.quant_state.bitsandbytes__nf4" in state_dict
|
||||
or "model.diffusion_model.double_blocks.0.img_attn.proj.weight.quant_state.bitsandbytes__nf4" in state_dict
|
||||
):
|
||||
return ModelFormat.BnbQuantizednf4b
|
||||
return ModelFormat("checkpoint")
|
||||
|
||||
@@ -471,7 +496,10 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
checkpoint = self.checkpoint
|
||||
state_dict = self.checkpoint.get("state_dict") or checkpoint
|
||||
if "double_blocks.0.img_attn.norm.key_norm.scale" in state_dict:
|
||||
if (
|
||||
"double_blocks.0.img_attn.norm.key_norm.scale" in state_dict
|
||||
or "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in state_dict
|
||||
):
|
||||
return BaseModelType.Flux
|
||||
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
|
||||
if key_name in state_dict and state_dict[key_name].shape[-1] == 768:
|
||||
@@ -529,11 +557,9 @@ class LoRACheckpointProbe(CheckpointProbeBase):
|
||||
return ModelFormat("lycoris")
|
||||
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
if is_state_dict_likely_in_flux_kohya_format(self.checkpoint):
|
||||
return BaseModelType.Flux
|
||||
checkpoint = self.checkpoint
|
||||
token_vector_length = lora_token_vector_length(checkpoint)
|
||||
|
||||
# If we've gotten here, we assume that the model is a Stable Diffusion model.
|
||||
token_vector_length = lora_token_vector_length(self.checkpoint)
|
||||
if token_vector_length == 768:
|
||||
return BaseModelType.StableDiffusion1
|
||||
elif token_vector_length == 1024:
|
||||
@@ -750,8 +776,27 @@ class TextualInversionFolderProbe(FolderProbeBase):
|
||||
|
||||
|
||||
class T5EncoderFolderProbe(FolderProbeBase):
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
return BaseModelType.Any
|
||||
|
||||
def get_format(self) -> ModelFormat:
|
||||
return ModelFormat.T5Encoder
|
||||
path = self.model_path / "text_encoder_2"
|
||||
if (path / "model.safetensors.index.json").exists():
|
||||
return ModelFormat.T5Encoder
|
||||
files = list(path.glob("*.safetensors"))
|
||||
if len(files) == 0:
|
||||
raise InvalidModelConfigException(f"{self.model_path.as_posix()}: no .safetensors files found")
|
||||
|
||||
# shortcut: look for the quantization in the name
|
||||
if any(x for x in files if "llm_int8" in x.as_posix()):
|
||||
return ModelFormat.BnbQuantizedLlmInt8b
|
||||
|
||||
# more reliable path: probe contents for a 'SCB' key
|
||||
ckpt = read_checkpoint_meta(files[0], scan=True)
|
||||
if any("SCB" in x for x in ckpt.keys()):
|
||||
return ModelFormat.BnbQuantizedLlmInt8b
|
||||
|
||||
raise InvalidModelConfigException(f"{self.model_path.as_posix()}: unknown model format")
|
||||
|
||||
|
||||
class ONNXFolderProbe(PipelineFolderProbe):
|
||||
|
||||
@@ -133,3 +133,29 @@ def lora_token_vector_length(checkpoint: Dict[str, torch.Tensor]) -> Optional[in
|
||||
break
|
||||
|
||||
return lora_token_vector_length
|
||||
|
||||
|
||||
def convert_bundle_to_flux_transformer_checkpoint(
|
||||
transformer_state_dict: dict[str, torch.Tensor],
|
||||
) -> dict[str, torch.Tensor]:
|
||||
original_state_dict: dict[str, torch.Tensor] = {}
|
||||
keys_to_remove: list[str] = []
|
||||
|
||||
for k, v in transformer_state_dict.items():
|
||||
if not k.startswith("model.diffusion_model"):
|
||||
keys_to_remove.append(k) # This can be removed in the future if we only want to delete transformer keys
|
||||
continue
|
||||
if k.endswith("scale"):
|
||||
# Scale math must be done at bfloat16 due to our current flux model
|
||||
# support limitations at inference time
|
||||
v = v.to(dtype=torch.bfloat16)
|
||||
new_key = k.replace("model.diffusion_model.", "")
|
||||
original_state_dict[new_key] = v
|
||||
keys_to_remove.append(k)
|
||||
|
||||
# Remove processed keys from the original dictionary, leaving others in case
|
||||
# other model state dicts need to be pulled
|
||||
for k in keys_to_remove:
|
||||
del transformer_state_dict[k]
|
||||
|
||||
return original_state_dict
|
||||
|
||||
@@ -13,10 +13,10 @@ from diffusers import OnnxRuntimeModel, UNet2DConditionModel
|
||||
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
||||
|
||||
from invokeai.app.shared.models import FreeUConfig
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_manager import AnyModel
|
||||
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
|
||||
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
||||
from invokeai.backend.peft.lora import LoRAModelRaw
|
||||
from invokeai.backend.stable_diffusion.extensions.lora import LoRAExt
|
||||
from invokeai.backend.textual_inversion import TextualInversionManager, TextualInversionModelRaw
|
||||
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
|
||||
|
||||
@@ -1,84 +0,0 @@
|
||||
import re
|
||||
from typing import Any, Dict, TypeVar
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.peft.layers.any_lora_layer import AnyLoRALayer
|
||||
from invokeai.backend.peft.layers.utils import peft_layer_from_state_dict
|
||||
from invokeai.backend.peft.lora import LoRAModelRaw
|
||||
|
||||
# A regex pattern that matches all of the keys in the Kohya FLUX LoRA format.
|
||||
# Example keys:
|
||||
# lora_unet_double_blocks_0_img_attn_proj.alpha
|
||||
# lora_unet_double_blocks_0_img_attn_proj.lora_down.weight
|
||||
# lora_unet_double_blocks_0_img_attn_proj.lora_up.weight
|
||||
FLUX_KOHYA_KEY_REGEX = (
|
||||
r"lora_unet_(\w+_blocks)_(\d+)_(img_attn|img_mlp|img_mod|txt_attn|txt_mlp|txt_mod|linear1|linear2|modulation)_?(.*)"
|
||||
)
|
||||
|
||||
|
||||
def is_state_dict_likely_in_flux_kohya_format(state_dict: Dict[str, Any]) -> bool:
|
||||
"""Checks if the provided state dict is likely in the Kohya FLUX LoRA format.
|
||||
|
||||
This is intended to be a high-precision detector, but it is not guaranteed to have perfect precision. (A
|
||||
perfect-precision detector would require checking all keys against a whitelist and verifying tensor shapes.)
|
||||
"""
|
||||
for k in state_dict.keys():
|
||||
if not re.match(FLUX_KOHYA_KEY_REGEX, k):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def lora_model_from_flux_kohya_state_dict(state_dict: Dict[str, torch.Tensor]) -> LoRAModelRaw:
|
||||
# Group keys by layer.
|
||||
grouped_state_dict: dict[str, dict[str, torch.Tensor]] = {}
|
||||
for key, value in state_dict.items():
|
||||
layer_name, param_name = key.split(".", 1)
|
||||
if layer_name not in grouped_state_dict:
|
||||
grouped_state_dict[layer_name] = {}
|
||||
grouped_state_dict[layer_name][param_name] = value
|
||||
|
||||
# Convert the state dict to the InvokeAI format.
|
||||
grouped_state_dict = convert_flux_kohya_state_dict_to_invoke_format(grouped_state_dict)
|
||||
|
||||
# Create LoRA layers.
|
||||
layers: dict[str, AnyLoRALayer] = {}
|
||||
for layer_key, layer_state_dict in grouped_state_dict.items():
|
||||
layer = peft_layer_from_state_dict(layer_key, layer_state_dict)
|
||||
layers[layer_key] = layer
|
||||
|
||||
# Create and return the LoRAModelRaw.
|
||||
return LoRAModelRaw(layers=layers)
|
||||
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
def convert_flux_kohya_state_dict_to_invoke_format(state_dict: Dict[str, T]) -> Dict[str, T]:
|
||||
"""Converts a state dict from the Kohya FLUX LoRA format to LoRA weight format used internally by InvokeAI.
|
||||
|
||||
Example key conversions:
|
||||
"lora_unet_double_blocks_0_img_attn_proj" -> "double_blocks.0.img_attn.proj"
|
||||
"lora_unet_double_blocks_0_img_attn_proj" -> "double_blocks.0.img_attn.proj"
|
||||
"lora_unet_double_blocks_0_img_attn_proj" -> "double_blocks.0.img_attn.proj"
|
||||
"lora_unet_double_blocks_0_img_attn_qkv" -> "double_blocks.0.img_attn.qkv"
|
||||
"lora_unet_double_blocks_0_img_attn_qkv" -> "double_blocks.0.img.attn.qkv"
|
||||
"lora_unet_double_blocks_0_img_attn_qkv" -> "double_blocks.0.img.attn.qkv"
|
||||
"""
|
||||
|
||||
def replace_func(match: re.Match[str]) -> str:
|
||||
s = f"{match.group(1)}.{match.group(2)}.{match.group(3)}"
|
||||
if match.group(4):
|
||||
s += f".{match.group(4)}"
|
||||
return s
|
||||
|
||||
converted_dict: dict[str, T] = {}
|
||||
for k, v in state_dict.items():
|
||||
match = re.match(FLUX_KOHYA_KEY_REGEX, k)
|
||||
if match:
|
||||
new_key = re.sub(FLUX_KOHYA_KEY_REGEX, replace_func, k)
|
||||
converted_dict[new_key] = v
|
||||
else:
|
||||
raise ValueError(f"Key '{k}' does not match the expected pattern for FLUX LoRA weights.")
|
||||
|
||||
return converted_dict
|
||||
@@ -1,30 +0,0 @@
|
||||
from typing import Dict
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.peft.layers.any_lora_layer import AnyLoRALayer
|
||||
from invokeai.backend.peft.layers.utils import peft_layer_from_state_dict
|
||||
from invokeai.backend.peft.lora import LoRAModelRaw
|
||||
|
||||
|
||||
def lora_model_from_sd_state_dict(state_dict: Dict[str, torch.Tensor]) -> LoRAModelRaw:
|
||||
grouped_state_dict: dict[str, dict[str, torch.Tensor]] = _group_state(state_dict)
|
||||
|
||||
layers: dict[str, AnyLoRALayer] = {}
|
||||
for layer_key, values in grouped_state_dict.items():
|
||||
layer = peft_layer_from_state_dict(layer_key, values)
|
||||
layers[layer_key] = layer
|
||||
|
||||
return LoRAModelRaw(layers=layers)
|
||||
|
||||
|
||||
def _group_state(state_dict: Dict[str, torch.Tensor]) -> Dict[str, Dict[str, torch.Tensor]]:
|
||||
state_dict_groupped: Dict[str, Dict[str, torch.Tensor]] = {}
|
||||
|
||||
for key, value in state_dict.items():
|
||||
stem, leaf = key.split(".", 1)
|
||||
if stem not in state_dict_groupped:
|
||||
state_dict_groupped[stem] = {}
|
||||
state_dict_groupped[stem][leaf] = value
|
||||
|
||||
return state_dict_groupped
|
||||
@@ -1,154 +0,0 @@
|
||||
import bisect
|
||||
from typing import Dict, List, Tuple, TypeVar
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
def convert_sdxl_keys_to_diffusers_format(state_dict: Dict[str, T]) -> dict[str, T]:
|
||||
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
|
||||
|
||||
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
|
||||
diffusers format, then this function will have no effect.
|
||||
|
||||
This function is adapted from:
|
||||
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
|
||||
|
||||
Args:
|
||||
state_dict (Dict[str, Tensor]): The SDXL LoRA state_dict.
|
||||
|
||||
Raises:
|
||||
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
|
||||
|
||||
Returns:
|
||||
Dict[str, Tensor]: The diffusers-format state_dict.
|
||||
"""
|
||||
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
|
||||
not_converted_count = 0 # The number of keys that were not converted.
|
||||
|
||||
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
|
||||
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
|
||||
# `input_blocks_4_1_proj_in`.
|
||||
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
|
||||
stability_unet_keys.sort()
|
||||
|
||||
new_state_dict: dict[str, T] = {}
|
||||
for full_key, value in state_dict.items():
|
||||
if full_key.startswith("lora_unet_"):
|
||||
search_key = full_key.replace("lora_unet_", "")
|
||||
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
|
||||
position = bisect.bisect_right(stability_unet_keys, search_key)
|
||||
map_key = stability_unet_keys[position - 1]
|
||||
# Now, check if the map_key *actually* matches the search_key.
|
||||
if search_key.startswith(map_key):
|
||||
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
|
||||
new_state_dict[new_key] = value
|
||||
converted_count += 1
|
||||
else:
|
||||
new_state_dict[full_key] = value
|
||||
not_converted_count += 1
|
||||
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
|
||||
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
|
||||
new_state_dict[full_key] = value
|
||||
continue
|
||||
else:
|
||||
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
|
||||
|
||||
if converted_count > 0 and not_converted_count > 0:
|
||||
raise ValueError(
|
||||
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
|
||||
f" not_converted={not_converted_count}"
|
||||
)
|
||||
|
||||
return new_state_dict
|
||||
|
||||
|
||||
# code from
|
||||
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
|
||||
def _make_sdxl_unet_conversion_map() -> List[Tuple[str, str]]:
|
||||
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format."""
|
||||
unet_conversion_map_layer: list[tuple[str, str]] = []
|
||||
|
||||
for i in range(3): # num_blocks is 3 in sdxl
|
||||
# loop over downblocks/upblocks
|
||||
for j in range(2):
|
||||
# loop over resnets/attentions for downblocks
|
||||
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
||||
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
||||
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no attention layers in down_blocks.3
|
||||
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
||||
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
||||
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
||||
|
||||
for j in range(3):
|
||||
# loop over resnets/attentions for upblocks
|
||||
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
||||
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
||||
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
||||
|
||||
# if i > 0: commentout for sdxl
|
||||
# no attention layers in up_blocks.0
|
||||
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
||||
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
||||
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no downsample in down_blocks.3
|
||||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
||||
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
||||
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
||||
|
||||
# no upsample in up_blocks.3
|
||||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||||
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
|
||||
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
||||
|
||||
hf_mid_atn_prefix = "mid_block.attentions.0."
|
||||
sd_mid_atn_prefix = "middle_block.1."
|
||||
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
||||
|
||||
for j in range(2):
|
||||
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
||||
sd_mid_res_prefix = f"middle_block.{2*j}."
|
||||
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||||
|
||||
unet_conversion_map_resnet = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("in_layers.0.", "norm1."),
|
||||
("in_layers.2.", "conv1."),
|
||||
("out_layers.0.", "norm2."),
|
||||
("out_layers.3.", "conv2."),
|
||||
("emb_layers.1.", "time_emb_proj."),
|
||||
("skip_connection.", "conv_shortcut."),
|
||||
]
|
||||
|
||||
unet_conversion_map: list[tuple[str, str]] = []
|
||||
for sd, hf in unet_conversion_map_layer:
|
||||
if "resnets" in hf:
|
||||
for sd_res, hf_res in unet_conversion_map_resnet:
|
||||
unet_conversion_map.append((sd + sd_res, hf + hf_res))
|
||||
else:
|
||||
unet_conversion_map.append((sd, hf))
|
||||
|
||||
for j in range(2):
|
||||
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
|
||||
sd_time_embed_prefix = f"time_embed.{j*2}."
|
||||
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
|
||||
|
||||
for j in range(2):
|
||||
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
|
||||
sd_label_embed_prefix = f"label_emb.0.{j*2}."
|
||||
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
|
||||
|
||||
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
|
||||
unet_conversion_map.append(("out.0.", "conv_norm_out."))
|
||||
unet_conversion_map.append(("out.2.", "conv_out."))
|
||||
|
||||
return unet_conversion_map
|
||||
|
||||
|
||||
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
|
||||
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in _make_sdxl_unet_conversion_map()
|
||||
}
|
||||
@@ -1,10 +0,0 @@
|
||||
from typing import Union
|
||||
|
||||
from invokeai.backend.peft.layers.full_layer import FullLayer
|
||||
from invokeai.backend.peft.layers.ia3_layer import IA3Layer
|
||||
from invokeai.backend.peft.layers.loha_layer import LoHALayer
|
||||
from invokeai.backend.peft.layers.lokr_layer import LoKRLayer
|
||||
from invokeai.backend.peft.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.peft.layers.norm_layer import NormLayer
|
||||
|
||||
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer]
|
||||
@@ -1,37 +0,0 @@
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.peft.layers.lora_layer_base import LoRALayerBase
|
||||
|
||||
|
||||
class FullLayer(LoRALayerBase):
|
||||
# bias handled in LoRALayerBase(calc_size, to)
|
||||
# weight: torch.Tensor
|
||||
# bias: Optional[torch.Tensor]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.weight = values["diff"]
|
||||
self.bias = values.get("diff_b", None)
|
||||
|
||||
self.rank = None # unscaled
|
||||
self.check_keys(values, {"diff", "diff_b"})
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
return self.weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
model_size += self.weight.nelement() * self.weight.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
@@ -1,42 +0,0 @@
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.peft.layers.lora_layer_base import LoRALayerBase
|
||||
|
||||
|
||||
class IA3Layer(LoRALayerBase):
|
||||
# weight: torch.Tensor
|
||||
# on_input: torch.Tensor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.weight = values["weight"]
|
||||
self.on_input = values["on_input"]
|
||||
|
||||
self.rank = None # unscaled
|
||||
self.check_keys(values, {"weight", "on_input"})
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
weight = self.weight
|
||||
if not self.on_input:
|
||||
weight = weight.reshape(-1, 1)
|
||||
assert orig_weight is not None
|
||||
return orig_weight * weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
model_size += self.weight.nelement() * self.weight.element_size()
|
||||
model_size += self.on_input.nelement() * self.on_input.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
self.on_input = self.on_input.to(device=device, dtype=dtype)
|
||||
@@ -1,68 +0,0 @@
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.peft.layers.lora_layer_base import LoRALayerBase
|
||||
|
||||
|
||||
class LoHALayer(LoRALayerBase):
|
||||
# w1_a: torch.Tensor
|
||||
# w1_b: torch.Tensor
|
||||
# w2_a: torch.Tensor
|
||||
# w2_b: torch.Tensor
|
||||
# t1: Optional[torch.Tensor] = None
|
||||
# t2: Optional[torch.Tensor] = None
|
||||
|
||||
def __init__(self, layer_key: str, values: Dict[str, torch.Tensor]):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.w1_a = values["hada_w1_a"]
|
||||
self.w1_b = values["hada_w1_b"]
|
||||
self.w2_a = values["hada_w2_a"]
|
||||
self.w2_b = values["hada_w2_b"]
|
||||
self.t1 = values.get("hada_t1", None)
|
||||
self.t2 = values.get("hada_t2", None)
|
||||
|
||||
self.rank = self.w1_b.shape[0]
|
||||
self.check_keys(
|
||||
values,
|
||||
{
|
||||
"hada_w1_a",
|
||||
"hada_w1_b",
|
||||
"hada_w2_a",
|
||||
"hada_w2_b",
|
||||
"hada_t1",
|
||||
"hada_t2",
|
||||
},
|
||||
)
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
if self.t1 is None:
|
||||
weight: torch.Tensor = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
|
||||
|
||||
else:
|
||||
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
|
||||
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
|
||||
weight = rebuild1 * rebuild2
|
||||
|
||||
return weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
||||
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
||||
if self.t1 is not None:
|
||||
self.t1 = self.t1.to(device=device, dtype=dtype)
|
||||
|
||||
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
||||
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
||||
if self.t2 is not None:
|
||||
self.t2 = self.t2.to(device=device, dtype=dtype)
|
||||
@@ -1,114 +0,0 @@
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.peft.layers.lora_layer_base import LoRALayerBase
|
||||
|
||||
|
||||
class LoKRLayer(LoRALayerBase):
|
||||
# w1: Optional[torch.Tensor] = None
|
||||
# w1_a: Optional[torch.Tensor] = None
|
||||
# w1_b: Optional[torch.Tensor] = None
|
||||
# w2: Optional[torch.Tensor] = None
|
||||
# w2_a: Optional[torch.Tensor] = None
|
||||
# w2_b: Optional[torch.Tensor] = None
|
||||
# t2: Optional[torch.Tensor] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.w1 = values.get("lokr_w1", None)
|
||||
if self.w1 is None:
|
||||
self.w1_a = values["lokr_w1_a"]
|
||||
self.w1_b = values["lokr_w1_b"]
|
||||
else:
|
||||
self.w1_b = None
|
||||
self.w1_a = None
|
||||
|
||||
self.w2 = values.get("lokr_w2", None)
|
||||
if self.w2 is None:
|
||||
self.w2_a = values["lokr_w2_a"]
|
||||
self.w2_b = values["lokr_w2_b"]
|
||||
else:
|
||||
self.w2_a = None
|
||||
self.w2_b = None
|
||||
|
||||
self.t2 = values.get("lokr_t2", None)
|
||||
|
||||
if self.w1_b is not None:
|
||||
self.rank = self.w1_b.shape[0]
|
||||
elif self.w2_b is not None:
|
||||
self.rank = self.w2_b.shape[0]
|
||||
else:
|
||||
self.rank = None # unscaled
|
||||
|
||||
self.check_keys(
|
||||
values,
|
||||
{
|
||||
"lokr_w1",
|
||||
"lokr_w1_a",
|
||||
"lokr_w1_b",
|
||||
"lokr_w2",
|
||||
"lokr_w2_a",
|
||||
"lokr_w2_b",
|
||||
"lokr_t2",
|
||||
},
|
||||
)
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
w1: Optional[torch.Tensor] = self.w1
|
||||
if w1 is None:
|
||||
assert self.w1_a is not None
|
||||
assert self.w1_b is not None
|
||||
w1 = self.w1_a @ self.w1_b
|
||||
|
||||
w2 = self.w2
|
||||
if w2 is None:
|
||||
if self.t2 is None:
|
||||
assert self.w2_a is not None
|
||||
assert self.w2_b is not None
|
||||
w2 = self.w2_a @ self.w2_b
|
||||
else:
|
||||
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
|
||||
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
w2 = w2.contiguous()
|
||||
assert w1 is not None
|
||||
assert w2 is not None
|
||||
weight = torch.kron(w1, w2)
|
||||
|
||||
return weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
if self.w1 is not None:
|
||||
self.w1 = self.w1.to(device=device, dtype=dtype)
|
||||
else:
|
||||
assert self.w1_a is not None
|
||||
assert self.w1_b is not None
|
||||
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
||||
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
||||
|
||||
if self.w2 is not None:
|
||||
self.w2 = self.w2.to(device=device, dtype=dtype)
|
||||
else:
|
||||
assert self.w2_a is not None
|
||||
assert self.w2_b is not None
|
||||
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
||||
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
||||
|
||||
if self.t2 is not None:
|
||||
self.t2 = self.t2.to(device=device, dtype=dtype)
|
||||
@@ -1,59 +0,0 @@
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.peft.layers.lora_layer_base import LoRALayerBase
|
||||
|
||||
|
||||
# TODO: find and debug lora/locon with bias
|
||||
class LoRALayer(LoRALayerBase):
|
||||
# up: torch.Tensor
|
||||
# mid: Optional[torch.Tensor]
|
||||
# down: torch.Tensor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.up = values["lora_up.weight"]
|
||||
self.down = values["lora_down.weight"]
|
||||
self.mid = values.get("lora_mid.weight", None)
|
||||
|
||||
self.rank = self.down.shape[0]
|
||||
self.check_keys(
|
||||
values,
|
||||
{
|
||||
"lora_up.weight",
|
||||
"lora_down.weight",
|
||||
"lora_mid.weight",
|
||||
},
|
||||
)
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
if self.mid is not None:
|
||||
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
|
||||
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
|
||||
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
|
||||
else:
|
||||
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
|
||||
|
||||
return weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
for val in [self.up, self.mid, self.down]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.up = self.up.to(device=device, dtype=dtype)
|
||||
self.down = self.down.to(device=device, dtype=dtype)
|
||||
|
||||
if self.mid is not None:
|
||||
self.mid = self.mid.to(device=device, dtype=dtype)
|
||||
@@ -1,74 +0,0 @@
|
||||
from typing import Dict, Optional, Set
|
||||
|
||||
import torch
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
|
||||
|
||||
class LoRALayerBase:
|
||||
# rank: Optional[int]
|
||||
# alpha: Optional[float]
|
||||
# bias: Optional[torch.Tensor]
|
||||
# layer_key: str
|
||||
|
||||
# @property
|
||||
# def scale(self):
|
||||
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
if "alpha" in values:
|
||||
self.alpha = values["alpha"].item()
|
||||
else:
|
||||
self.alpha = None
|
||||
|
||||
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
|
||||
self.bias: Optional[torch.Tensor] = torch.sparse_coo_tensor(
|
||||
values["bias_indices"],
|
||||
values["bias_values"],
|
||||
tuple(values["bias_size"]),
|
||||
)
|
||||
|
||||
else:
|
||||
self.bias = None
|
||||
|
||||
self.rank = None # set in layer implementation
|
||||
self.layer_key = layer_key
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_bias(self, orig_bias: torch.Tensor) -> Optional[torch.Tensor]:
|
||||
return self.bias
|
||||
|
||||
def get_parameters(self, orig_module: torch.nn.Module) -> Dict[str, torch.Tensor]:
|
||||
params = {"weight": self.get_weight(orig_module.weight)}
|
||||
bias = self.get_bias(orig_module.bias)
|
||||
if bias is not None:
|
||||
params["bias"] = bias
|
||||
return params
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = 0
|
||||
for val in [self.bias]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
if self.bias is not None:
|
||||
self.bias = self.bias.to(device=device, dtype=dtype)
|
||||
|
||||
def check_keys(self, values: Dict[str, torch.Tensor], known_keys: Set[str]):
|
||||
"""Log a warning if values contains unhandled keys."""
|
||||
# {"alpha", "bias_indices", "bias_values", "bias_size"} are hard-coded, because they are handled by
|
||||
# `LoRALayerBase`. Sub-classes should provide the known_keys that they handled.
|
||||
all_known_keys = known_keys | {"alpha", "bias_indices", "bias_values", "bias_size"}
|
||||
unknown_keys = set(values.keys()) - all_known_keys
|
||||
if unknown_keys:
|
||||
logger.warning(
|
||||
f"Unexpected keys found in LoRA/LyCORIS layer, model might work incorrectly! Keys: {unknown_keys}"
|
||||
)
|
||||
@@ -1,37 +0,0 @@
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.peft.layers.lora_layer_base import LoRALayerBase
|
||||
|
||||
|
||||
class NormLayer(LoRALayerBase):
|
||||
# bias handled in LoRALayerBase(calc_size, to)
|
||||
# weight: torch.Tensor
|
||||
# bias: Optional[torch.Tensor]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.weight = values["w_norm"]
|
||||
self.bias = values.get("b_norm", None)
|
||||
|
||||
self.rank = None # unscaled
|
||||
self.check_keys(values, {"w_norm", "b_norm"})
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
return self.weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
model_size += self.weight.nelement() * self.weight.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
@@ -1,33 +0,0 @@
|
||||
from typing import Dict
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.peft.layers.any_lora_layer import AnyLoRALayer
|
||||
from invokeai.backend.peft.layers.full_layer import FullLayer
|
||||
from invokeai.backend.peft.layers.ia3_layer import IA3Layer
|
||||
from invokeai.backend.peft.layers.loha_layer import LoHALayer
|
||||
from invokeai.backend.peft.layers.lokr_layer import LoKRLayer
|
||||
from invokeai.backend.peft.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.peft.layers.norm_layer import NormLayer
|
||||
|
||||
|
||||
def peft_layer_from_state_dict(layer_key: str, state_dict: Dict[str, torch.Tensor]) -> AnyLoRALayer:
|
||||
# Detect layers according to LyCORIS detection logic(`weight_list_det`)
|
||||
# https://github.com/KohakuBlueleaf/LyCORIS/tree/8ad8000efb79e2b879054da8c9356e6143591bad/lycoris/modules
|
||||
|
||||
if "lora_up.weight" in state_dict:
|
||||
# LoRA a.k.a LoCon
|
||||
return LoRALayer(layer_key, state_dict)
|
||||
elif "hada_w1_a" in state_dict:
|
||||
return LoHALayer(layer_key, state_dict)
|
||||
elif "lokr_w1" in state_dict or "lokr_w1_a" in state_dict:
|
||||
return LoKRLayer(layer_key, state_dict)
|
||||
elif "diff" in state_dict:
|
||||
# Full a.k.a Diff
|
||||
return FullLayer(layer_key, state_dict)
|
||||
elif "on_input" in state_dict:
|
||||
return IA3Layer(layer_key, state_dict)
|
||||
elif "w_norm" in state_dict:
|
||||
return NormLayer(layer_key, state_dict)
|
||||
else:
|
||||
raise ValueError(f"Unsupported lora format: {state_dict.keys()}")
|
||||
@@ -1,22 +0,0 @@
|
||||
# Copyright (c) 2024 The InvokeAI Development team
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.peft.layers.any_lora_layer import AnyLoRALayer
|
||||
from invokeai.backend.raw_model import RawModel
|
||||
|
||||
|
||||
class LoRAModelRaw(RawModel): # (torch.nn.Module):
|
||||
def __init__(self, layers: Dict[str, AnyLoRALayer]):
|
||||
self.layers = layers
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
for _key, layer in self.layers.items():
|
||||
layer.to(device=device, dtype=dtype)
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = 0
|
||||
for _, layer in self.layers.items():
|
||||
model_size += layer.calc_size()
|
||||
return model_size
|
||||
@@ -1,102 +0,0 @@
|
||||
from contextlib import contextmanager
|
||||
from typing import Dict, Iterator, Optional, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.peft.lora import LoRAModelRaw
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
|
||||
|
||||
|
||||
class PeftPatcher:
|
||||
@classmethod
|
||||
@torch.no_grad()
|
||||
@contextmanager
|
||||
def apply_peft_patches(
|
||||
cls,
|
||||
model: torch.nn.Module,
|
||||
patches: Iterator[Tuple[LoRAModelRaw, float]],
|
||||
prefix: str,
|
||||
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
|
||||
):
|
||||
"""Apply one or more PEFT patches to a model.
|
||||
|
||||
:param model: The model to patch.
|
||||
:param loras: An iterator that returns tuples of PEFT patches and associated weights. An iterator is used so
|
||||
that the PEFT patches do not need to be loaded into memory all at once.
|
||||
:param prefix: The keys in the patches will be filtered to only include weights with this prefix.
|
||||
:cached_weights: Read-only copy of the model's state dict in CPU, for efficient unpatching purposes.
|
||||
"""
|
||||
original_weights = OriginalWeightsStorage(cached_weights)
|
||||
try:
|
||||
for patch, patch_weight in patches:
|
||||
cls._apply_peft_patch(
|
||||
model=model,
|
||||
prefix=prefix,
|
||||
patch=patch,
|
||||
patch_weight=patch_weight,
|
||||
original_weights=original_weights,
|
||||
)
|
||||
|
||||
yield
|
||||
finally:
|
||||
for param_key, weight in original_weights.get_changed_weights():
|
||||
model.get_parameter(param_key).copy_(weight)
|
||||
|
||||
@classmethod
|
||||
@torch.no_grad()
|
||||
def _apply_peft_patch(
|
||||
cls,
|
||||
model: torch.nn.Module,
|
||||
prefix: str,
|
||||
patch: LoRAModelRaw,
|
||||
patch_weight: float,
|
||||
original_weights: OriginalWeightsStorage,
|
||||
):
|
||||
"""
|
||||
Apply one a LoRA to a model.
|
||||
:param model: The model to patch.
|
||||
:param patch: LoRA model to patch in.
|
||||
:param patch_weight: LoRA patch weight.
|
||||
:param prefix: A string prefix that precedes keys used in the LoRAs weight layers.
|
||||
:param original_weights: Storage with original weights, filled by weights which lora patches, used for unpatching.
|
||||
"""
|
||||
|
||||
if patch_weight == 0:
|
||||
return
|
||||
|
||||
for layer_key, layer in patch.layers.items():
|
||||
if not layer_key.startswith(prefix):
|
||||
continue
|
||||
|
||||
module = model.get_submodule(layer_key)
|
||||
|
||||
# All of the LoRA weight calculations will be done on the same device as the module weight.
|
||||
# (Performance will be best if this is a CUDA device.)
|
||||
device = module.weight.device
|
||||
dtype = module.weight.dtype
|
||||
|
||||
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
|
||||
|
||||
# We intentionally move to the target device first, then cast. Experimentally, this was found to
|
||||
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
|
||||
# same thing in a single call to '.to(...)'.
|
||||
layer.to(device=device)
|
||||
layer.to(dtype=torch.float32)
|
||||
|
||||
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
|
||||
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
|
||||
for param_name, lora_param_weight in layer.get_parameters(module).items():
|
||||
param_key = layer_key + "." + param_name
|
||||
module_param = module.get_parameter(param_name)
|
||||
|
||||
# Save original weight
|
||||
original_weights.save(param_key, module_param)
|
||||
|
||||
if module_param.shape != lora_param_weight.shape:
|
||||
lora_param_weight = lora_param_weight.reshape(module_param.shape)
|
||||
|
||||
lora_param_weight *= patch_weight * layer_scale
|
||||
module_param += lora_param_weight.to(dtype=dtype)
|
||||
|
||||
layer.to(device=TorchDevice.CPU_DEVICE)
|
||||
@@ -12,7 +12,7 @@ from invokeai.backend.util.devices import TorchDevice
|
||||
if TYPE_CHECKING:
|
||||
from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.peft.lora import LoRAModelRaw
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
|
||||
|
||||
|
||||
|
||||
@@ -12,6 +12,10 @@ module.exports = {
|
||||
'i18next/no-literal-string': 'error',
|
||||
// https://eslint.org/docs/latest/rules/no-console
|
||||
'no-console': 'error',
|
||||
// https://eslint.org/docs/latest/rules/no-promise-executor-return
|
||||
'no-promise-executor-return': 'error',
|
||||
// https://eslint.org/docs/latest/rules/require-await
|
||||
'require-await': 'error',
|
||||
},
|
||||
overrides: [
|
||||
/**
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import { PropsWithChildren, memo, useEffect } from 'react';
|
||||
import { modelChanged } from '../src/features/parameters/store/generationSlice';
|
||||
import { modelChanged } from '../src/features/controlLayers/store/paramsSlice';
|
||||
import { useAppDispatch } from '../src/app/store/storeHooks';
|
||||
import { useGlobalModifiersInit } from '@invoke-ai/ui-library';
|
||||
/**
|
||||
@@ -10,7 +10,9 @@ export const ReduxInit = memo((props: PropsWithChildren) => {
|
||||
const dispatch = useAppDispatch();
|
||||
useGlobalModifiersInit();
|
||||
useEffect(() => {
|
||||
dispatch(modelChanged({ key: 'test_model', hash: 'some_hash', name: 'some name', base: 'sd-1', type: 'main' }));
|
||||
dispatch(
|
||||
modelChanged({ model: { key: 'test_model', hash: 'some_hash', name: 'some name', base: 'sd-1', type: 'main' } })
|
||||
);
|
||||
}, []);
|
||||
|
||||
return props.children;
|
||||
|
||||
@@ -9,6 +9,8 @@ const config: KnipConfig = {
|
||||
'src/services/api/schema.ts',
|
||||
'src/features/nodes/types/v1/**',
|
||||
'src/features/nodes/types/v2/**',
|
||||
// TODO(psyche): maybe we can clean up these utils after canvas v2 release
|
||||
'src/features/controlLayers/konva/util.ts',
|
||||
],
|
||||
ignoreBinaries: ['only-allow'],
|
||||
paths: {
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
"build": "pnpm run lint && vite build",
|
||||
"typegen": "node scripts/typegen.js",
|
||||
"preview": "vite preview",
|
||||
"lint:knip": "knip",
|
||||
"lint:knip": "knip --tags=-knipignore",
|
||||
"lint:dpdm": "dpdm --no-warning --no-tree --transform --exit-code circular:1 src/main.tsx",
|
||||
"lint:eslint": "eslint --max-warnings=0 .",
|
||||
"lint:prettier": "prettier --check .",
|
||||
@@ -52,18 +52,19 @@
|
||||
}
|
||||
},
|
||||
"dependencies": {
|
||||
"@chakra-ui/react-use-size": "^2.1.0",
|
||||
"@dagrejs/dagre": "^1.1.3",
|
||||
"@dagrejs/graphlib": "^2.2.3",
|
||||
"@dnd-kit/core": "^6.1.0",
|
||||
"@dnd-kit/sortable": "^8.0.0",
|
||||
"@dnd-kit/utilities": "^3.2.2",
|
||||
"@fontsource-variable/inter": "^5.0.20",
|
||||
"@invoke-ai/ui-library": "^0.0.29",
|
||||
"@invoke-ai/ui-library": "^0.0.32",
|
||||
"@nanostores/react": "^0.7.3",
|
||||
"@reduxjs/toolkit": "2.2.3",
|
||||
"@roarr/browser-log-writer": "^1.3.0",
|
||||
"async-mutex": "^0.5.0",
|
||||
"chakra-react-select": "^4.9.1",
|
||||
"cmdk": "^1.0.0",
|
||||
"compare-versions": "^6.1.1",
|
||||
"dateformat": "^5.0.3",
|
||||
"fracturedjsonjs": "^4.0.2",
|
||||
@@ -74,6 +75,8 @@
|
||||
"jsondiffpatch": "^0.6.0",
|
||||
"konva": "^9.3.14",
|
||||
"lodash-es": "^4.17.21",
|
||||
"lru-cache": "^11.0.0",
|
||||
"nanoid": "^5.0.7",
|
||||
"nanostores": "^0.11.2",
|
||||
"new-github-issue-url": "^1.0.0",
|
||||
"overlayscrollbars": "^2.10.0",
|
||||
@@ -88,10 +91,8 @@
|
||||
"react-hotkeys-hook": "4.5.0",
|
||||
"react-i18next": "^14.1.3",
|
||||
"react-icons": "^5.2.1",
|
||||
"react-konva": "^18.2.10",
|
||||
"react-redux": "9.1.2",
|
||||
"react-resizable-panels": "^2.0.23",
|
||||
"react-select": "5.8.0",
|
||||
"react-use": "^17.5.1",
|
||||
"react-virtuoso": "^4.9.0",
|
||||
"reactflow": "^11.11.4",
|
||||
@@ -102,9 +103,9 @@
|
||||
"roarr": "^7.21.1",
|
||||
"serialize-error": "^11.0.3",
|
||||
"socket.io-client": "^4.7.5",
|
||||
"stable-hash": "^0.0.4",
|
||||
"use-debounce": "^10.0.2",
|
||||
"use-device-pixel-ratio": "^1.1.2",
|
||||
"use-image": "^1.1.1",
|
||||
"uuid": "^10.0.0",
|
||||
"zod": "^3.23.8",
|
||||
"zod-validation-error": "^3.3.1"
|
||||
@@ -135,6 +136,7 @@
|
||||
"@vitest/coverage-v8": "^1.5.0",
|
||||
"@vitest/ui": "^1.5.0",
|
||||
"concurrently": "^8.2.2",
|
||||
"csstype": "^3.1.3",
|
||||
"dpdm": "^3.14.0",
|
||||
"eslint": "^8.57.0",
|
||||
"eslint-plugin-i18next": "^6.0.9",
|
||||
|
||||
629
invokeai/frontend/web/pnpm-lock.yaml
generated
629
invokeai/frontend/web/pnpm-lock.yaml
generated
File diff suppressed because it is too large
Load Diff
@@ -80,6 +80,7 @@
|
||||
"aboutDesc": "Using Invoke for work? Check out:",
|
||||
"aboutHeading": "Own Your Creative Power",
|
||||
"accept": "Accept",
|
||||
"apply": "Apply",
|
||||
"add": "Add",
|
||||
"advanced": "Advanced",
|
||||
"ai": "ai",
|
||||
@@ -115,6 +116,7 @@
|
||||
"githubLabel": "Github",
|
||||
"goTo": "Go to",
|
||||
"hotkeysLabel": "Hotkeys",
|
||||
"loadingImage": "Loading Image",
|
||||
"imageFailedToLoad": "Unable to Load Image",
|
||||
"img2img": "Image To Image",
|
||||
"inpaint": "inpaint",
|
||||
@@ -162,10 +164,10 @@
|
||||
"alpha": "Alpha",
|
||||
"selected": "Selected",
|
||||
"tab": "Tab",
|
||||
"viewing": "Viewing",
|
||||
"viewingDesc": "Review images in a large gallery view",
|
||||
"editing": "Editing",
|
||||
"editingDesc": "Edit on the Control Layers canvas",
|
||||
"view": "View",
|
||||
"viewDesc": "Review images in a large gallery view",
|
||||
"edit": "Edit",
|
||||
"editDesc": "Edit on the Canvas",
|
||||
"comparing": "Comparing",
|
||||
"comparingDesc": "Comparing two images",
|
||||
"enabled": "Enabled",
|
||||
@@ -325,6 +327,14 @@
|
||||
"canceled": "Canceled",
|
||||
"completedIn": "Completed in",
|
||||
"batch": "Batch",
|
||||
"origin": "Origin",
|
||||
"destination": "Destination",
|
||||
"upscaling": "Upscaling",
|
||||
"canvas": "Canvas",
|
||||
"generation": "Generation",
|
||||
"workflows": "Workflows",
|
||||
"other": "Other",
|
||||
"gallery": "Gallery",
|
||||
"batchFieldValues": "Batch Field Values",
|
||||
"item": "Item",
|
||||
"session": "Session",
|
||||
@@ -1100,7 +1110,6 @@
|
||||
"confirmOnDelete": "Confirm On Delete",
|
||||
"developer": "Developer",
|
||||
"displayInProgress": "Display Progress Images",
|
||||
"enableImageDebugging": "Enable Image Debugging",
|
||||
"enableInformationalPopovers": "Enable Informational Popovers",
|
||||
"informationalPopoversDisabled": "Informational Popovers Disabled",
|
||||
"informationalPopoversDisabledDesc": "Informational popovers have been disabled. Enable them in Settings.",
|
||||
@@ -1567,7 +1576,7 @@
|
||||
"copyToClipboard": "Copy to Clipboard",
|
||||
"cursorPosition": "Cursor Position",
|
||||
"darkenOutsideSelection": "Darken Outside Selection",
|
||||
"discardAll": "Discard All",
|
||||
"discardAll": "Discard All & Cancel Pending Generations",
|
||||
"discardCurrent": "Discard Current",
|
||||
"downloadAsImage": "Download As Image",
|
||||
"enableMask": "Enable Mask",
|
||||
@@ -1645,39 +1654,152 @@
|
||||
"storeNotInitialized": "Store is not initialized"
|
||||
},
|
||||
"controlLayers": {
|
||||
"deleteAll": "Delete All",
|
||||
"bookmark": "Bookmark for Quick Switch",
|
||||
"removeBookmark": "Remove Bookmark",
|
||||
"saveCanvasToGallery": "Save Canvas To Gallery",
|
||||
"saveBboxToGallery": "Save Bbox To Gallery",
|
||||
"savedToGalleryOk": "Saved to Gallery",
|
||||
"savedToGalleryError": "Error saving to gallery",
|
||||
"mergeVisible": "Merge Visible",
|
||||
"mergeVisibleOk": "Merged visible layers",
|
||||
"mergeVisibleError": "Error merging visible layers",
|
||||
"clearHistory": "Clear History",
|
||||
"generateMode": "Generate",
|
||||
"generateModeDesc": "Create individual images. Generated images are added directly to the gallery.",
|
||||
"composeMode": "Compose",
|
||||
"composeModeDesc": "Compose your work iterative. Generated images are added back to the canvas.",
|
||||
"autoSave": "Auto-save to Gallery",
|
||||
"resetCanvas": "Reset Canvas",
|
||||
"resetAll": "Reset All",
|
||||
"clearCaches": "Clear Caches",
|
||||
"recalculateRects": "Recalculate Rects",
|
||||
"clipToBbox": "Clip Strokes to Bbox",
|
||||
"compositeMaskedRegions": "Composite Masked Regions",
|
||||
"addLayer": "Add Layer",
|
||||
"duplicate": "Duplicate",
|
||||
"moveToFront": "Move to Front",
|
||||
"moveToBack": "Move to Back",
|
||||
"moveForward": "Move Forward",
|
||||
"moveBackward": "Move Backward",
|
||||
"brushSize": "Brush Size",
|
||||
"width": "Width",
|
||||
"zoom": "Zoom",
|
||||
"resetView": "Reset View",
|
||||
"controlLayers": "Control Layers",
|
||||
"globalMaskOpacity": "Global Mask Opacity",
|
||||
"autoNegative": "Auto Negative",
|
||||
"enableAutoNegative": "Enable Auto Negative",
|
||||
"disableAutoNegative": "Disable Auto Negative",
|
||||
"deletePrompt": "Delete Prompt",
|
||||
"resetRegion": "Reset Region",
|
||||
"debugLayers": "Debug Layers",
|
||||
"showHUD": "Show HUD",
|
||||
"rectangle": "Rectangle",
|
||||
"maskPreviewColor": "Mask Preview Color",
|
||||
"maskFill": "Mask Fill",
|
||||
"addPositivePrompt": "Add $t(common.positivePrompt)",
|
||||
"addNegativePrompt": "Add $t(common.negativePrompt)",
|
||||
"addIPAdapter": "Add $t(common.ipAdapter)",
|
||||
"regionalGuidance": "Regional Guidance",
|
||||
"addRasterLayer": "Add $t(controlLayers.rasterLayer)",
|
||||
"addControlLayer": "Add $t(controlLayers.controlLayer)",
|
||||
"addInpaintMask": "Add $t(controlLayers.inpaintMask)",
|
||||
"addRegionalGuidance": "Add $t(controlLayers.regionalGuidance)",
|
||||
"regionalGuidanceLayer": "$t(controlLayers.regionalGuidance) $t(unifiedCanvas.layer)",
|
||||
"raster": "Raster",
|
||||
"rasterLayer": "Raster Layer",
|
||||
"controlLayer": "Control Layer",
|
||||
"inpaintMask": "Inpaint Mask",
|
||||
"regionalGuidance": "Regional Guidance",
|
||||
"ipAdapter": "IP Adapter",
|
||||
"sendToGallery": "Send To Gallery",
|
||||
"sendToGalleryDesc": "Generations will be sent to the gallery.",
|
||||
"sendToCanvas": "Send To Canvas",
|
||||
"sendToCanvasDesc": "Generations will be staged onto the canvas.",
|
||||
"rasterLayer_withCount_one": "$t(controlLayers.rasterLayer)",
|
||||
"controlLayer_withCount_one": "$t(controlLayers.controlLayer)",
|
||||
"inpaintMask_withCount_one": "$t(controlLayers.inpaintMask)",
|
||||
"regionalGuidance_withCount_one": "$t(controlLayers.regionalGuidance)",
|
||||
"ipAdapter_withCount_one": "$t(controlLayers.ipAdapter)",
|
||||
"rasterLayer_withCount_other": "Raster Layers",
|
||||
"controlLayer_withCount_other": "Control Layers",
|
||||
"inpaintMask_withCount_other": "Inpaint Masks",
|
||||
"regionalGuidance_withCount_other": "Regional Guidance",
|
||||
"ipAdapter_withCount_other": "IP Adapters",
|
||||
"opacity": "Opacity",
|
||||
"regionalGuidance_withCount_hidden": "Regional Guidance ({{count}} hidden)",
|
||||
"controlLayers_withCount_hidden": "Control Layers ({{count}} hidden)",
|
||||
"rasterLayers_withCount_hidden": "Raster Layers ({{count}} hidden)",
|
||||
"globalIPAdapters_withCount_hidden": "Global IP Adapters ({{count}} hidden)",
|
||||
"inpaintMasks_withCount_hidden": "Inpaint Masks ({{count}} hidden)",
|
||||
"regionalGuidance_withCount_visible": "Regional Guidance ({{count}})",
|
||||
"controlLayers_withCount_visible": "Control Layers ({{count}})",
|
||||
"rasterLayers_withCount_visible": "Raster Layers ({{count}})",
|
||||
"globalIPAdapters_withCount_visible": "Global IP Adapters ({{count}})",
|
||||
"inpaintMasks_withCount_visible": "Inpaint Masks ({{count}})",
|
||||
"globalControlAdapter": "Global $t(controlnet.controlAdapter_one)",
|
||||
"globalControlAdapterLayer": "Global $t(controlnet.controlAdapter_one) $t(unifiedCanvas.layer)",
|
||||
"globalIPAdapter": "Global $t(common.ipAdapter)",
|
||||
"globalIPAdapterLayer": "Global $t(common.ipAdapter) $t(unifiedCanvas.layer)",
|
||||
"globalInitialImage": "Global Initial Image",
|
||||
"globalInitialImageLayer": "$t(controlLayers.globalInitialImage) $t(unifiedCanvas.layer)",
|
||||
"layer": "Layer",
|
||||
"opacityFilter": "Opacity Filter",
|
||||
"clearProcessor": "Clear Processor",
|
||||
"resetProcessor": "Reset Processor to Defaults",
|
||||
"noLayersAdded": "No Layers Added",
|
||||
"layers_one": "Layer",
|
||||
"layers_other": "Layers"
|
||||
"layer_one": "Layer",
|
||||
"layer_other": "Layers",
|
||||
"objects_zero": "empty",
|
||||
"objects_one": "{{count}} object",
|
||||
"objects_other": "{{count}} objects",
|
||||
"convertToControlLayer": "Convert to Control Layer",
|
||||
"convertToRasterLayer": "Convert to Raster Layer",
|
||||
"transparency": "Transparency",
|
||||
"enableTransparencyEffect": "Enable Transparency Effect",
|
||||
"disableTransparencyEffect": "Disable Transparency Effect",
|
||||
"hidingType": "Hiding {{type}}",
|
||||
"showingType": "Showing {{type}}",
|
||||
"dynamicGrid": "Dynamic Grid",
|
||||
"logDebugInfo": "Log Debug Info",
|
||||
"locked": "Locked",
|
||||
"unlocked": "Unlocked",
|
||||
"deleteSelected": "Delete Selected",
|
||||
"deleteAll": "Delete All",
|
||||
"flipHorizontal": "Flip Horizontal",
|
||||
"flipVertical": "Flip Vertical",
|
||||
"fill": {
|
||||
"fillColor": "Fill Color",
|
||||
"fillStyle": "Fill Style",
|
||||
"solid": "Solid",
|
||||
"grid": "Grid",
|
||||
"crosshatch": "Crosshatch",
|
||||
"vertical": "Vertical",
|
||||
"horizontal": "Horizontal",
|
||||
"diagonal": "Diagonal"
|
||||
},
|
||||
"tool": {
|
||||
"brush": "Brush",
|
||||
"eraser": "Eraser",
|
||||
"rectangle": "Rectangle",
|
||||
"bbox": "Bbox",
|
||||
"move": "Move",
|
||||
"view": "View",
|
||||
"colorPicker": "Color Picker"
|
||||
},
|
||||
"filter": {
|
||||
"filter": "Filter",
|
||||
"filters": "Filters",
|
||||
"filterType": "Filter Type",
|
||||
"preview": "Preview",
|
||||
"apply": "Apply",
|
||||
"cancel": "Cancel"
|
||||
},
|
||||
"transform": {
|
||||
"transform": "Transform",
|
||||
"fitToBbox": "Fit to Bbox",
|
||||
"reset": "Reset",
|
||||
"apply": "Apply",
|
||||
"cancel": "Cancel"
|
||||
}
|
||||
},
|
||||
"upscaling": {
|
||||
"upscale": "Upscale",
|
||||
@@ -1765,5 +1887,30 @@
|
||||
"upscaling": "Upscaling",
|
||||
"upscalingTab": "$t(ui.tabs.upscaling) $t(common.tab)"
|
||||
}
|
||||
},
|
||||
"system": {
|
||||
"enableLogging": "Enable Logging",
|
||||
"logLevel": {
|
||||
"logLevel": "Log Level",
|
||||
"trace": "Trace",
|
||||
"debug": "Debug",
|
||||
"info": "Info",
|
||||
"warn": "Warn",
|
||||
"error": "Error",
|
||||
"fatal": "Fatal"
|
||||
},
|
||||
"logNamespaces": {
|
||||
"logNamespaces": "Log Namespaces",
|
||||
"gallery": "Gallery",
|
||||
"models": "Models",
|
||||
"config": "Config",
|
||||
"canvas": "Canvas",
|
||||
"generation": "Generation",
|
||||
"workflows": "Workflows",
|
||||
"system": "System",
|
||||
"events": "Events",
|
||||
"queue": "Queue",
|
||||
"metadata": "Metadata"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -38,7 +38,7 @@ async function generateTypes(schema) {
|
||||
process.stdout.write(`\nOK!\r\n`);
|
||||
}
|
||||
|
||||
async function main() {
|
||||
function main() {
|
||||
const encoding = 'utf-8';
|
||||
|
||||
if (process.stdin.isTTY) {
|
||||
|
||||
@@ -6,6 +6,7 @@ import { appStarted } from 'app/store/middleware/listenerMiddleware/listeners/ap
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import type { PartialAppConfig } from 'app/types/invokeai';
|
||||
import ImageUploadOverlay from 'common/components/ImageUploadOverlay';
|
||||
import { useScopeFocusWatcher } from 'common/hooks/interactionScopes';
|
||||
import { useClearStorage } from 'common/hooks/useClearStorage';
|
||||
import { useFullscreenDropzone } from 'common/hooks/useFullscreenDropzone';
|
||||
import { useGlobalHotkeys } from 'common/hooks/useGlobalHotkeys';
|
||||
@@ -13,13 +14,16 @@ import ChangeBoardModal from 'features/changeBoardModal/components/ChangeBoardMo
|
||||
import DeleteImageModal from 'features/deleteImageModal/components/DeleteImageModal';
|
||||
import { DynamicPromptsModal } from 'features/dynamicPrompts/components/DynamicPromptsPreviewModal';
|
||||
import { useStarterModelsToast } from 'features/modelManagerV2/hooks/useStarterModelsToast';
|
||||
import { ClearQueueConfirmationsAlertDialog } from 'features/queue/components/ClearQueueConfirmationAlertDialog';
|
||||
import { StylePresetModal } from 'features/stylePresets/components/StylePresetForm/StylePresetModal';
|
||||
import { activeStylePresetIdChanged } from 'features/stylePresets/store/stylePresetSlice';
|
||||
import RefreshAfterResetModal from 'features/system/components/SettingsModal/RefreshAfterResetModal';
|
||||
import SettingsModal from 'features/system/components/SettingsModal/SettingsModal';
|
||||
import { configChanged } from 'features/system/store/configSlice';
|
||||
import { languageSelector } from 'features/system/store/systemSelectors';
|
||||
import InvokeTabs from 'features/ui/components/InvokeTabs';
|
||||
import type { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
import { selectLanguage } from 'features/system/store/systemSelectors';
|
||||
import { AppContent } from 'features/ui/components/AppContent';
|
||||
import { setActiveTab } from 'features/ui/store/uiSlice';
|
||||
import type { TabName } from 'features/ui/store/uiTypes';
|
||||
import { useGetAndLoadLibraryWorkflow } from 'features/workflowLibrary/hooks/useGetAndLoadLibraryWorkflow';
|
||||
import { AnimatePresence } from 'framer-motion';
|
||||
import i18n from 'i18n';
|
||||
@@ -41,7 +45,7 @@ interface Props {
|
||||
};
|
||||
selectedWorkflowId?: string;
|
||||
selectedStylePresetId?: string;
|
||||
destination?: InvokeTabName | undefined;
|
||||
destination?: TabName;
|
||||
}
|
||||
|
||||
const App = ({
|
||||
@@ -51,7 +55,7 @@ const App = ({
|
||||
selectedStylePresetId,
|
||||
destination,
|
||||
}: Props) => {
|
||||
const language = useAppSelector(languageSelector);
|
||||
const language = useAppSelector(selectLanguage);
|
||||
const logger = useLogger('system');
|
||||
const dispatch = useAppDispatch();
|
||||
const clearStorage = useClearStorage();
|
||||
@@ -107,6 +111,7 @@ const App = ({
|
||||
|
||||
useStarterModelsToast();
|
||||
useSyncQueueStatus();
|
||||
useScopeFocusWatcher();
|
||||
|
||||
return (
|
||||
<ErrorBoundary onReset={handleReset} FallbackComponent={AppErrorBoundaryFallback}>
|
||||
@@ -119,7 +124,7 @@ const App = ({
|
||||
{...dropzone.getRootProps()}
|
||||
>
|
||||
<input {...dropzone.getInputProps()} />
|
||||
<InvokeTabs />
|
||||
<AppContent />
|
||||
<AnimatePresence>
|
||||
{dropzone.isDragActive && isHandlingUpload && (
|
||||
<ImageUploadOverlay dropzone={dropzone} setIsHandlingUpload={setIsHandlingUpload} />
|
||||
@@ -130,7 +135,10 @@ const App = ({
|
||||
<ChangeBoardModal />
|
||||
<DynamicPromptsModal />
|
||||
<StylePresetModal />
|
||||
<ClearQueueConfirmationsAlertDialog />
|
||||
<PreselectedImage selectedImage={selectedImage} />
|
||||
<SettingsModal />
|
||||
<RefreshAfterResetModal />
|
||||
</ErrorBoundary>
|
||||
);
|
||||
};
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
import { Button, Flex, Heading, Image, Link, Text } from '@invoke-ai/ui-library';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { selectConfigSlice } from 'features/system/store/configSlice';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import newGithubIssueUrl from 'new-github-issue-url';
|
||||
import InvokeLogoYellow from 'public/assets/images/invoke-symbol-ylw-lrg.svg';
|
||||
@@ -13,9 +15,11 @@ type Props = {
|
||||
resetErrorBoundary: () => void;
|
||||
};
|
||||
|
||||
const selectIsLocal = createSelector(selectConfigSlice, (config) => config.isLocal);
|
||||
|
||||
const AppErrorBoundaryFallback = ({ error, resetErrorBoundary }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const isLocal = useAppSelector((s) => s.config.isLocal);
|
||||
const isLocal = useAppSelector(selectIsLocal);
|
||||
|
||||
const handleCopy = useCallback(() => {
|
||||
const text = JSON.stringify(serializeError(error), null, 2);
|
||||
|
||||
@@ -19,7 +19,7 @@ import type { PartialAppConfig } from 'app/types/invokeai';
|
||||
import Loading from 'common/components/Loading/Loading';
|
||||
import AppDndContext from 'features/dnd/components/AppDndContext';
|
||||
import type { WorkflowCategory } from 'features/nodes/types/workflow';
|
||||
import type { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
import type { TabName } from 'features/ui/store/uiTypes';
|
||||
import type { PropsWithChildren, ReactNode } from 'react';
|
||||
import React, { lazy, memo, useEffect, useMemo } from 'react';
|
||||
import { Provider } from 'react-redux';
|
||||
@@ -46,7 +46,7 @@ interface Props extends PropsWithChildren {
|
||||
};
|
||||
selectedWorkflowId?: string;
|
||||
selectedStylePresetId?: string;
|
||||
destination?: InvokeTabName;
|
||||
destination?: TabName;
|
||||
customStarUi?: CustomStarUi;
|
||||
socketOptions?: Partial<ManagerOptions & SocketOptions>;
|
||||
isDebugging?: boolean;
|
||||
|
||||
@@ -2,7 +2,7 @@ import { useStore } from '@nanostores/react';
|
||||
import { $authToken } from 'app/store/nanostores/authToken';
|
||||
import { $baseUrl } from 'app/store/nanostores/baseUrl';
|
||||
import { $isDebugging } from 'app/store/nanostores/isDebugging';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { useAppStore } from 'app/store/nanostores/store';
|
||||
import type { MapStore } from 'nanostores';
|
||||
import { atom, map } from 'nanostores';
|
||||
import { useEffect, useMemo } from 'react';
|
||||
@@ -18,14 +18,19 @@ declare global {
|
||||
}
|
||||
}
|
||||
|
||||
export type AppSocket = Socket<ServerToClientEvents, ClientToServerEvents>;
|
||||
|
||||
export const $socket = atom<AppSocket | null>(null);
|
||||
export const $socketOptions = map<Partial<ManagerOptions & SocketOptions>>({});
|
||||
|
||||
const $isSocketInitialized = atom<boolean>(false);
|
||||
export const $isConnected = atom<boolean>(false);
|
||||
|
||||
/**
|
||||
* Initializes the socket.io connection and sets up event listeners.
|
||||
*/
|
||||
export const useSocketIO = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { dispatch, getState } = useAppStore();
|
||||
const baseUrl = useStore($baseUrl);
|
||||
const authToken = useStore($authToken);
|
||||
const addlSocketOptions = useStore($socketOptions);
|
||||
@@ -61,8 +66,9 @@ export const useSocketIO = () => {
|
||||
return;
|
||||
}
|
||||
|
||||
const socket: Socket<ServerToClientEvents, ClientToServerEvents> = io(socketUrl, socketOptions);
|
||||
setEventListeners({ dispatch, socket });
|
||||
const socket: AppSocket = io(socketUrl, socketOptions);
|
||||
$socket.set(socket);
|
||||
setEventListeners({ socket, dispatch, getState, setIsConnected: $isConnected.set });
|
||||
socket.connect();
|
||||
|
||||
if ($isDebugging.get() || import.meta.env.MODE === 'development') {
|
||||
@@ -84,5 +90,5 @@ export const useSocketIO = () => {
|
||||
socket.disconnect();
|
||||
$isSocketInitialized.set(false);
|
||||
};
|
||||
}, [dispatch, socketOptions, socketUrl]);
|
||||
}, [dispatch, getState, socketOptions, socketUrl]);
|
||||
};
|
||||
|
||||
@@ -15,21 +15,21 @@ export const BASE_CONTEXT = {};
|
||||
|
||||
export const $logger = atom<Logger>(Roarr.child(BASE_CONTEXT));
|
||||
|
||||
export type LoggerNamespace =
|
||||
| 'images'
|
||||
| 'models'
|
||||
| 'config'
|
||||
| 'canvas'
|
||||
| 'generation'
|
||||
| 'nodes'
|
||||
| 'system'
|
||||
| 'socketio'
|
||||
| 'session'
|
||||
| 'queue'
|
||||
| 'dnd'
|
||||
| 'controlLayers';
|
||||
export const zLogNamespace = z.enum([
|
||||
'canvas',
|
||||
'config',
|
||||
'events',
|
||||
'gallery',
|
||||
'generation',
|
||||
'metadata',
|
||||
'models',
|
||||
'system',
|
||||
'queue',
|
||||
'workflows',
|
||||
]);
|
||||
export type LogNamespace = z.infer<typeof zLogNamespace>;
|
||||
|
||||
export const logger = (namespace: LoggerNamespace) => $logger.get().child({ namespace });
|
||||
export const logger = (namespace: LogNamespace) => $logger.get().child({ namespace });
|
||||
|
||||
export const zLogLevel = z.enum(['trace', 'debug', 'info', 'warn', 'error', 'fatal']);
|
||||
export type LogLevel = z.infer<typeof zLogLevel>;
|
||||
|
||||
@@ -1,29 +1,41 @@
|
||||
import { createLogWriter } from '@roarr/browser-log-writer';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import {
|
||||
selectSystemLogIsEnabled,
|
||||
selectSystemLogLevel,
|
||||
selectSystemLogNamespaces,
|
||||
} from 'features/system/store/systemSlice';
|
||||
import { useEffect, useMemo } from 'react';
|
||||
import { ROARR, Roarr } from 'roarr';
|
||||
|
||||
import type { LoggerNamespace } from './logger';
|
||||
import type { LogNamespace } from './logger';
|
||||
import { $logger, BASE_CONTEXT, LOG_LEVEL_MAP, logger } from './logger';
|
||||
|
||||
export const useLogger = (namespace: LoggerNamespace) => {
|
||||
const consoleLogLevel = useAppSelector((s) => s.system.consoleLogLevel);
|
||||
const shouldLogToConsole = useAppSelector((s) => s.system.shouldLogToConsole);
|
||||
export const useLogger = (namespace: LogNamespace) => {
|
||||
const logLevel = useAppSelector(selectSystemLogLevel);
|
||||
const logNamespaces = useAppSelector(selectSystemLogNamespaces);
|
||||
const logIsEnabled = useAppSelector(selectSystemLogIsEnabled);
|
||||
|
||||
// The provided Roarr browser log writer uses localStorage to config logging to console
|
||||
useEffect(() => {
|
||||
if (shouldLogToConsole) {
|
||||
if (logIsEnabled) {
|
||||
// Enable console log output
|
||||
localStorage.setItem('ROARR_LOG', 'true');
|
||||
|
||||
// Use a filter to show only logs of the given level
|
||||
localStorage.setItem('ROARR_FILTER', `context.logLevel:>=${LOG_LEVEL_MAP[consoleLogLevel]}`);
|
||||
let filter = `context.logLevel:>=${LOG_LEVEL_MAP[logLevel]}`;
|
||||
if (logNamespaces.length > 0) {
|
||||
filter += ` AND (${logNamespaces.map((ns) => `context.namespace:${ns}`).join(' OR ')})`;
|
||||
} else {
|
||||
filter += ' AND context.namespace:undefined';
|
||||
}
|
||||
localStorage.setItem('ROARR_FILTER', filter);
|
||||
} else {
|
||||
// Disable console log output
|
||||
localStorage.setItem('ROARR_LOG', 'false');
|
||||
}
|
||||
ROARR.write = createLogWriter();
|
||||
}, [consoleLogLevel, shouldLogToConsole]);
|
||||
}, [logLevel, logIsEnabled, logNamespaces]);
|
||||
|
||||
// Update the module-scoped logger context as needed
|
||||
useEffect(() => {
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import { createAction } from '@reduxjs/toolkit';
|
||||
import type { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
import type { TabName } from 'features/ui/store/uiTypes';
|
||||
|
||||
export const enqueueRequested = createAction<{
|
||||
tabName: InvokeTabName;
|
||||
tabName: TabName;
|
||||
prepend: boolean;
|
||||
}>('app/enqueueRequested');
|
||||
|
||||
@@ -1,2 +1,3 @@
|
||||
export const STORAGE_PREFIX = '@@invokeai-';
|
||||
export const EMPTY_ARRAY = [];
|
||||
export const EMPTY_OBJECT = {};
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import { createDraftSafeSelectorCreator, createSelectorCreator, lruMemoize } from '@reduxjs/toolkit';
|
||||
import type { GetSelectorsOptions } from '@reduxjs/toolkit/dist/entities/state_selectors';
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
/**
|
||||
@@ -19,3 +20,5 @@ export const getSelectorsOptions: GetSelectorsOptions = {
|
||||
argsMemoize: lruMemoize,
|
||||
}),
|
||||
};
|
||||
|
||||
export const createMemoizedAppSelector = createMemoizedSelector.withTypes<RootState>();
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import { PersistError, RehydrateError } from 'redux-remember';
|
||||
import { serializeError } from 'serialize-error';
|
||||
|
||||
@@ -41,6 +40,6 @@ export const errorHandler = (err: PersistError | RehydrateError) => {
|
||||
} else if (err instanceof RehydrateError) {
|
||||
log.error({ error: serializeError(err) }, 'Problem rehydrating state');
|
||||
} else {
|
||||
log.error({ error: parseify(err) }, 'Problem in persistence layer');
|
||||
log.error({ error: serializeError(err) }, 'Problem in persistence layer');
|
||||
}
|
||||
};
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
import type { UnknownAction } from '@reduxjs/toolkit';
|
||||
import { deepClone } from 'common/util/deepClone';
|
||||
import { isAnyGraphBuilt } from 'features/nodes/store/actions';
|
||||
import { appInfoApi } from 'services/api/endpoints/appInfo';
|
||||
import type { Graph } from 'services/api/types';
|
||||
import { socketGeneratorProgress } from 'services/events/actions';
|
||||
|
||||
export const actionSanitizer = <A extends UnknownAction>(action: A): A => {
|
||||
if (isAnyGraphBuilt(action)) {
|
||||
@@ -24,13 +22,5 @@ export const actionSanitizer = <A extends UnknownAction>(action: A): A => {
|
||||
};
|
||||
}
|
||||
|
||||
if (socketGeneratorProgress.match(action)) {
|
||||
const sanitized = deepClone(action);
|
||||
if (sanitized.payload.data.progress_image) {
|
||||
sanitized.payload.data.progress_image.dataURL = '<Progress image omitted>';
|
||||
}
|
||||
return sanitized;
|
||||
}
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import type { TypedStartListening } from '@reduxjs/toolkit';
|
||||
import { createListenerMiddleware } from '@reduxjs/toolkit';
|
||||
import { addAdHocPostProcessingRequestedListener } from 'app/store/middleware/listenerMiddleware/listeners/addAdHocPostProcessingRequestedListener';
|
||||
import { addCommitStagingAreaImageListener } from 'app/store/middleware/listenerMiddleware/listeners/addCommitStagingAreaImageListener';
|
||||
import { addStagingListeners } from 'app/store/middleware/listenerMiddleware/listeners/addCommitStagingAreaImageListener';
|
||||
import { addAnyEnqueuedListener } from 'app/store/middleware/listenerMiddleware/listeners/anyEnqueued';
|
||||
import { addAppConfigReceivedListener } from 'app/store/middleware/listenerMiddleware/listeners/appConfigReceived';
|
||||
import { addAppStartedListener } from 'app/store/middleware/listenerMiddleware/listeners/appStarted';
|
||||
@@ -9,17 +9,6 @@ import { addBatchEnqueuedListener } from 'app/store/middleware/listenerMiddlewar
|
||||
import { addDeleteBoardAndImagesFulfilledListener } from 'app/store/middleware/listenerMiddleware/listeners/boardAndImagesDeleted';
|
||||
import { addBoardIdSelectedListener } from 'app/store/middleware/listenerMiddleware/listeners/boardIdSelected';
|
||||
import { addBulkDownloadListeners } from 'app/store/middleware/listenerMiddleware/listeners/bulkDownload';
|
||||
import { addCanvasCopiedToClipboardListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasCopiedToClipboard';
|
||||
import { addCanvasDownloadedAsImageListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasDownloadedAsImage';
|
||||
import { addCanvasImageToControlNetListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasImageToControlNet';
|
||||
import { addCanvasMaskSavedToGalleryListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasMaskSavedToGallery';
|
||||
import { addCanvasMaskToControlNetListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasMaskToControlNet';
|
||||
import { addCanvasMergedListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasMerged';
|
||||
import { addCanvasSavedToGalleryListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasSavedToGallery';
|
||||
import { addControlAdapterPreprocessor } from 'app/store/middleware/listenerMiddleware/listeners/controlAdapterPreprocessor';
|
||||
import { addControlNetAutoProcessListener } from 'app/store/middleware/listenerMiddleware/listeners/controlNetAutoProcess';
|
||||
import { addControlNetImageProcessedListener } from 'app/store/middleware/listenerMiddleware/listeners/controlNetImageProcessed';
|
||||
import { addEnqueueRequestedCanvasListener } from 'app/store/middleware/listenerMiddleware/listeners/enqueueRequestedCanvas';
|
||||
import { addEnqueueRequestedLinear } from 'app/store/middleware/listenerMiddleware/listeners/enqueueRequestedLinear';
|
||||
import { addEnqueueRequestedNodes } from 'app/store/middleware/listenerMiddleware/listeners/enqueueRequestedNodes';
|
||||
import { addGalleryImageClickedListener } from 'app/store/middleware/listenerMiddleware/listeners/galleryImageClicked';
|
||||
@@ -37,16 +26,7 @@ import { addModelSelectedListener } from 'app/store/middleware/listenerMiddlewar
|
||||
import { addModelsLoadedListener } from 'app/store/middleware/listenerMiddleware/listeners/modelsLoaded';
|
||||
import { addDynamicPromptsListener } from 'app/store/middleware/listenerMiddleware/listeners/promptChanged';
|
||||
import { addSetDefaultSettingsListener } from 'app/store/middleware/listenerMiddleware/listeners/setDefaultSettings';
|
||||
import { addSocketConnectedEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketConnected';
|
||||
import { addSocketDisconnectedEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketDisconnected';
|
||||
import { addGeneratorProgressEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketGeneratorProgress';
|
||||
import { addInvocationCompleteEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketInvocationComplete';
|
||||
import { addInvocationErrorEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketInvocationError';
|
||||
import { addInvocationStartedEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketInvocationStarted';
|
||||
import { addModelInstallEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketModelInstall';
|
||||
import { addModelLoadEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketModelLoad';
|
||||
import { addSocketQueueItemStatusChangedEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketQueueItemStatusChanged';
|
||||
import { addStagingAreaImageSavedListener } from 'app/store/middleware/listenerMiddleware/listeners/stagingAreaImageSaved';
|
||||
import { addSocketConnectedEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketConnected';
|
||||
import { addUpdateAllNodesRequestedListener } from 'app/store/middleware/listenerMiddleware/listeners/updateAllNodesRequested';
|
||||
import { addWorkflowLoadRequestedListener } from 'app/store/middleware/listenerMiddleware/listeners/workflowLoadRequested';
|
||||
import type { AppDispatch, RootState } from 'app/store/store';
|
||||
@@ -83,7 +63,6 @@ addGalleryImageClickedListener(startAppListening);
|
||||
addGalleryOffsetChangedListener(startAppListening);
|
||||
|
||||
// User Invoked
|
||||
addEnqueueRequestedCanvasListener(startAppListening);
|
||||
addEnqueueRequestedNodes(startAppListening);
|
||||
addEnqueueRequestedLinear(startAppListening);
|
||||
addEnqueueRequestedUpscale(startAppListening);
|
||||
@@ -91,31 +70,22 @@ addAnyEnqueuedListener(startAppListening);
|
||||
addBatchEnqueuedListener(startAppListening);
|
||||
|
||||
// Canvas actions
|
||||
addCanvasSavedToGalleryListener(startAppListening);
|
||||
addCanvasMaskSavedToGalleryListener(startAppListening);
|
||||
addCanvasImageToControlNetListener(startAppListening);
|
||||
addCanvasMaskToControlNetListener(startAppListening);
|
||||
addCanvasDownloadedAsImageListener(startAppListening);
|
||||
addCanvasCopiedToClipboardListener(startAppListening);
|
||||
addCanvasMergedListener(startAppListening);
|
||||
addStagingAreaImageSavedListener(startAppListening);
|
||||
addCommitStagingAreaImageListener(startAppListening);
|
||||
// addCanvasSavedToGalleryListener(startAppListening);
|
||||
// addCanvasMaskSavedToGalleryListener(startAppListening);
|
||||
// addCanvasImageToControlNetListener(startAppListening);
|
||||
// addCanvasMaskToControlNetListener(startAppListening);
|
||||
// addCanvasDownloadedAsImageListener(startAppListening);
|
||||
// addCanvasCopiedToClipboardListener(startAppListening);
|
||||
// addCanvasMergedListener(startAppListening);
|
||||
// addStagingAreaImageSavedListener(startAppListening);
|
||||
// addCommitStagingAreaImageListener(startAppListening);
|
||||
addStagingListeners(startAppListening);
|
||||
|
||||
// Socket.IO
|
||||
addGeneratorProgressEventListener(startAppListening);
|
||||
addInvocationCompleteEventListener(startAppListening);
|
||||
addInvocationErrorEventListener(startAppListening);
|
||||
addInvocationStartedEventListener(startAppListening);
|
||||
addSocketConnectedEventListener(startAppListening);
|
||||
addSocketDisconnectedEventListener(startAppListening);
|
||||
addModelLoadEventListener(startAppListening);
|
||||
addModelInstallEventListener(startAppListening);
|
||||
addSocketQueueItemStatusChangedEventListener(startAppListening);
|
||||
addBulkDownloadListeners(startAppListening);
|
||||
|
||||
// ControlNet
|
||||
addControlNetImageProcessedListener(startAppListening);
|
||||
addControlNetAutoProcessListener(startAppListening);
|
||||
// Gallery bulk download
|
||||
addBulkDownloadListeners(startAppListening);
|
||||
|
||||
// Boards
|
||||
addImageAddedToBoardFulfilledListener(startAppListening);
|
||||
@@ -148,4 +118,4 @@ addAdHocPostProcessingRequestedListener(startAppListening);
|
||||
addDynamicPromptsListener(startAppListening);
|
||||
|
||||
addSetDefaultSettingsListener(startAppListening);
|
||||
addControlAdapterPreprocessor(startAppListening);
|
||||
// addControlAdapterPreprocessor(startAppListening);
|
||||
|
||||
@@ -1,21 +1,21 @@
|
||||
import { createAction } from '@reduxjs/toolkit';
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import type { SerializableObject } from 'common/types';
|
||||
import { buildAdHocPostProcessingGraph } from 'features/nodes/util/graph/buildAdHocPostProcessingGraph';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { queueApi } from 'services/api/endpoints/queue';
|
||||
import type { BatchConfig, ImageDTO } from 'services/api/types';
|
||||
|
||||
const log = logger('queue');
|
||||
|
||||
export const adHocPostProcessingRequested = createAction<{ imageDTO: ImageDTO }>(`upscaling/postProcessingRequested`);
|
||||
|
||||
export const addAdHocPostProcessingRequestedListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: adHocPostProcessingRequested,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const log = logger('session');
|
||||
|
||||
const { imageDTO } = action.payload;
|
||||
const state = getState();
|
||||
|
||||
@@ -39,9 +39,9 @@ export const addAdHocPostProcessingRequestedListener = (startAppListening: AppSt
|
||||
|
||||
const enqueueResult = await req.unwrap();
|
||||
req.reset();
|
||||
log.debug({ enqueueResult: parseify(enqueueResult) }, t('queue.graphQueued'));
|
||||
log.debug({ enqueueResult } as SerializableObject, t('queue.graphQueued'));
|
||||
} catch (error) {
|
||||
log.error({ enqueueBatchArg: parseify(enqueueBatchArg) }, t('queue.graphFailedToQueue'));
|
||||
log.error({ enqueueBatchArg } as SerializableObject, t('queue.graphFailedToQueue'));
|
||||
|
||||
if (error instanceof Object && 'status' in error && error.status === 403) {
|
||||
return;
|
||||
|
||||
@@ -23,7 +23,7 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
|
||||
*/
|
||||
startAppListening({
|
||||
matcher: matchAnyBoardDeleted,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const state = getState();
|
||||
const deletedBoardId = action.meta.arg.originalArgs;
|
||||
const { autoAddBoardId, selectedBoardId } = state.gallery;
|
||||
@@ -44,7 +44,7 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
|
||||
// If we archived a board, it may end up hidden. If it's selected or the auto-add board, we should reset those.
|
||||
startAppListening({
|
||||
matcher: boardsApi.endpoints.updateBoard.matchFulfilled,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const state = getState();
|
||||
const { shouldShowArchivedBoards } = state.gallery;
|
||||
|
||||
@@ -61,7 +61,7 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
|
||||
// When we hide archived boards, if the selected or the auto-add board is archived, we should reset those.
|
||||
startAppListening({
|
||||
actionCreator: shouldShowArchivedBoardsChanged,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const shouldShowArchivedBoards = action.payload;
|
||||
|
||||
// We only need to take action if we have just hidden archived boards.
|
||||
@@ -100,7 +100,7 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
|
||||
*/
|
||||
startAppListening({
|
||||
matcher: boardsApi.endpoints.listAllBoards.matchFulfilled,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const boards = action.payload;
|
||||
const state = getState();
|
||||
const { selectedBoardId, autoAddBoardId } = state.gallery;
|
||||
|
||||
@@ -1,33 +1,37 @@
|
||||
import { isAnyOf } from '@reduxjs/toolkit';
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import {
|
||||
canvasBatchIdsReset,
|
||||
commitStagingAreaImage,
|
||||
discardStagedImages,
|
||||
resetCanvas,
|
||||
setInitialCanvasImage,
|
||||
} from 'features/canvas/store/canvasSlice';
|
||||
sessionStagingAreaImageAccepted,
|
||||
sessionStagingAreaReset,
|
||||
} from 'features/controlLayers/store/canvasSessionSlice';
|
||||
import { rasterLayerAdded } from 'features/controlLayers/store/canvasSlice';
|
||||
import { selectCanvasSlice } from 'features/controlLayers/store/selectors';
|
||||
import type { CanvasRasterLayerState } from 'features/controlLayers/store/types';
|
||||
import { imageDTOToImageObject } from 'features/controlLayers/store/types';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { queueApi } from 'services/api/endpoints/queue';
|
||||
import { $lastCanvasProgressEvent } from 'services/events/setEventListeners';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
const matcher = isAnyOf(commitStagingAreaImage, discardStagedImages, resetCanvas, setInitialCanvasImage);
|
||||
const log = logger('canvas');
|
||||
|
||||
export const addCommitStagingAreaImageListener = (startAppListening: AppStartListening) => {
|
||||
export const addStagingListeners = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
matcher,
|
||||
effect: async (_, { dispatch, getState }) => {
|
||||
const log = logger('canvas');
|
||||
const state = getState();
|
||||
const { batchIds } = state.canvas;
|
||||
|
||||
actionCreator: sessionStagingAreaReset,
|
||||
effect: async (_, { dispatch }) => {
|
||||
try {
|
||||
const req = dispatch(
|
||||
queueApi.endpoints.cancelByBatchIds.initiate({ batch_ids: batchIds }, { fixedCacheKey: 'cancelByBatchIds' })
|
||||
queueApi.endpoints.cancelByBatchOrigin.initiate(
|
||||
{ origin: 'canvas' },
|
||||
{ fixedCacheKey: 'cancelByBatchOrigin' }
|
||||
)
|
||||
);
|
||||
const { canceled } = await req.unwrap();
|
||||
req.reset();
|
||||
|
||||
$lastCanvasProgressEvent.set(null);
|
||||
|
||||
if (canceled > 0) {
|
||||
log.debug(`Canceled ${canceled} canvas batches`);
|
||||
toast({
|
||||
@@ -36,7 +40,6 @@ export const addCommitStagingAreaImageListener = (startAppListening: AppStartLis
|
||||
status: 'success',
|
||||
});
|
||||
}
|
||||
dispatch(canvasBatchIdsReset());
|
||||
} catch {
|
||||
log.error('Failed to cancel canvas batches');
|
||||
toast({
|
||||
@@ -47,4 +50,26 @@ export const addCommitStagingAreaImageListener = (startAppListening: AppStartLis
|
||||
}
|
||||
},
|
||||
});
|
||||
|
||||
startAppListening({
|
||||
actionCreator: sessionStagingAreaImageAccepted,
|
||||
effect: (action, api) => {
|
||||
const { index } = action.payload;
|
||||
const state = api.getState();
|
||||
const stagingAreaImage = state.canvasSession.stagedImages[index];
|
||||
|
||||
assert(stagingAreaImage, 'No staged image found to accept');
|
||||
const { x, y } = selectCanvasSlice(state).bbox.rect;
|
||||
|
||||
const { imageDTO, offsetX, offsetY } = stagingAreaImage;
|
||||
const imageObject = imageDTOToImageObject(imageDTO);
|
||||
const overrides: Partial<CanvasRasterLayerState> = {
|
||||
position: { x: x + offsetX, y: y + offsetY },
|
||||
objects: [imageObject],
|
||||
};
|
||||
|
||||
api.dispatch(rasterLayerAdded({ overrides, isSelected: false }));
|
||||
api.dispatch(sessionStagingAreaReset());
|
||||
},
|
||||
});
|
||||
};
|
||||
|
||||
@@ -4,7 +4,7 @@ import { queueApi, selectQueueStatus } from 'services/api/endpoints/queue';
|
||||
export const addAnyEnqueuedListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
matcher: queueApi.endpoints.enqueueBatch.matchFulfilled,
|
||||
effect: async (_, { dispatch, getState }) => {
|
||||
effect: (_, { dispatch, getState }) => {
|
||||
const { data } = selectQueueStatus(getState());
|
||||
|
||||
if (!data || data.processor.is_started) {
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { setInfillMethod } from 'features/parameters/store/generationSlice';
|
||||
import { setInfillMethod } from 'features/controlLayers/store/paramsSlice';
|
||||
import { shouldUseNSFWCheckerChanged, shouldUseWatermarkerChanged } from 'features/system/store/systemSlice';
|
||||
import { appInfoApi } from 'services/api/endpoints/appInfo';
|
||||
|
||||
export const addAppConfigReceivedListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
matcher: appInfoApi.endpoints.getAppConfig.matchFulfilled,
|
||||
effect: async (action, { getState, dispatch }) => {
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
const { infill_methods = [], nsfw_methods = [], watermarking_methods = [] } = action.payload;
|
||||
const infillMethod = getState().generation.infillMethod;
|
||||
const infillMethod = getState().params.infillMethod;
|
||||
|
||||
if (!infill_methods.includes(infillMethod)) {
|
||||
// if there is no infill method, set it to the first one
|
||||
|
||||
@@ -6,7 +6,7 @@ export const appStarted = createAction('app/appStarted');
|
||||
export const addAppStartedListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: appStarted,
|
||||
effect: async (action, { unsubscribe, cancelActiveListeners }) => {
|
||||
effect: (action, { unsubscribe, cancelActiveListeners }) => {
|
||||
// this should only run once
|
||||
cancelActiveListeners();
|
||||
unsubscribe();
|
||||
|
||||
@@ -1,27 +1,30 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import type { SerializableObject } from 'common/types';
|
||||
import { zPydanticValidationError } from 'features/system/store/zodSchemas';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { truncate, upperFirst } from 'lodash-es';
|
||||
import { serializeError } from 'serialize-error';
|
||||
import { queueApi } from 'services/api/endpoints/queue';
|
||||
|
||||
const log = logger('queue');
|
||||
|
||||
export const addBatchEnqueuedListener = (startAppListening: AppStartListening) => {
|
||||
// success
|
||||
startAppListening({
|
||||
matcher: queueApi.endpoints.enqueueBatch.matchFulfilled,
|
||||
effect: async (action) => {
|
||||
const response = action.payload;
|
||||
effect: (action) => {
|
||||
const enqueueResult = action.payload;
|
||||
const arg = action.meta.arg.originalArgs;
|
||||
logger('queue').debug({ enqueueResult: parseify(response) }, 'Batch enqueued');
|
||||
log.debug({ enqueueResult } as SerializableObject, 'Batch enqueued');
|
||||
|
||||
toast({
|
||||
id: 'QUEUE_BATCH_SUCCEEDED',
|
||||
title: t('queue.batchQueued'),
|
||||
status: 'success',
|
||||
description: t('queue.batchQueuedDesc', {
|
||||
count: response.enqueued,
|
||||
count: enqueueResult.enqueued,
|
||||
direction: arg.prepend ? t('queue.front') : t('queue.back'),
|
||||
}),
|
||||
});
|
||||
@@ -31,9 +34,9 @@ export const addBatchEnqueuedListener = (startAppListening: AppStartListening) =
|
||||
// error
|
||||
startAppListening({
|
||||
matcher: queueApi.endpoints.enqueueBatch.matchRejected,
|
||||
effect: async (action) => {
|
||||
effect: (action) => {
|
||||
const response = action.payload;
|
||||
const arg = action.meta.arg.originalArgs;
|
||||
const batchConfig = action.meta.arg.originalArgs;
|
||||
|
||||
if (!response) {
|
||||
toast({
|
||||
@@ -42,7 +45,7 @@ export const addBatchEnqueuedListener = (startAppListening: AppStartListening) =
|
||||
status: 'error',
|
||||
description: t('common.unknownError'),
|
||||
});
|
||||
logger('queue').error({ batchConfig: parseify(arg), error: parseify(response) }, t('queue.batchFailedToQueue'));
|
||||
log.error({ batchConfig } as SerializableObject, t('queue.batchFailedToQueue'));
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -68,7 +71,7 @@ export const addBatchEnqueuedListener = (startAppListening: AppStartListening) =
|
||||
description: t('common.unknownError'),
|
||||
});
|
||||
}
|
||||
logger('queue').error({ batchConfig: parseify(arg), error: parseify(response) }, t('queue.batchFailedToQueue'));
|
||||
log.error({ batchConfig, error: serializeError(response) } as SerializableObject, t('queue.batchFailedToQueue'));
|
||||
},
|
||||
});
|
||||
};
|
||||
|
||||
@@ -1,47 +1,31 @@
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { resetCanvas } from 'features/canvas/store/canvasSlice';
|
||||
import { controlAdaptersReset } from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { allLayersDeleted } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { selectCanvasSlice } from 'features/controlLayers/store/selectors';
|
||||
import { getImageUsage } from 'features/deleteImageModal/store/selectors';
|
||||
import { nodeEditorReset } from 'features/nodes/store/nodesSlice';
|
||||
import { selectNodesSlice } from 'features/nodes/store/selectors';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
export const addDeleteBoardAndImagesFulfilledListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
matcher: imagesApi.endpoints.deleteBoardAndImages.matchFulfilled,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const { deleted_images } = action.payload;
|
||||
|
||||
// Remove all deleted images from the UI
|
||||
|
||||
let wasCanvasReset = false;
|
||||
let wasNodeEditorReset = false;
|
||||
let wereControlAdaptersReset = false;
|
||||
let wereControlLayersReset = false;
|
||||
|
||||
const { canvas, nodes, controlAdapters, controlLayers } = getState();
|
||||
const state = getState();
|
||||
const nodes = selectNodesSlice(state);
|
||||
const canvas = selectCanvasSlice(state);
|
||||
|
||||
deleted_images.forEach((image_name) => {
|
||||
const imageUsage = getImageUsage(canvas, nodes.present, controlAdapters, controlLayers.present, image_name);
|
||||
|
||||
if (imageUsage.isCanvasImage && !wasCanvasReset) {
|
||||
dispatch(resetCanvas());
|
||||
wasCanvasReset = true;
|
||||
}
|
||||
const imageUsage = getImageUsage(nodes, canvas, image_name);
|
||||
|
||||
if (imageUsage.isNodesImage && !wasNodeEditorReset) {
|
||||
dispatch(nodeEditorReset());
|
||||
wasNodeEditorReset = true;
|
||||
}
|
||||
|
||||
if (imageUsage.isControlImage && !wereControlAdaptersReset) {
|
||||
dispatch(controlAdaptersReset());
|
||||
wereControlAdaptersReset = true;
|
||||
}
|
||||
|
||||
if (imageUsage.isControlLayerImage && !wereControlLayersReset) {
|
||||
dispatch(allLayersDeleted());
|
||||
wereControlLayersReset = true;
|
||||
}
|
||||
});
|
||||
},
|
||||
});
|
||||
|
||||
@@ -1,21 +1,15 @@
|
||||
import { ExternalLink } from '@invoke-ai/ui-library';
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
import {
|
||||
socketBulkDownloadComplete,
|
||||
socketBulkDownloadError,
|
||||
socketBulkDownloadStarted,
|
||||
} from 'services/events/actions';
|
||||
|
||||
const log = logger('images');
|
||||
const log = logger('gallery');
|
||||
|
||||
export const addBulkDownloadListeners = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
matcher: imagesApi.endpoints.bulkDownloadImages.matchFulfilled,
|
||||
effect: async (action) => {
|
||||
effect: (action) => {
|
||||
log.debug(action.payload, 'Bulk download requested');
|
||||
|
||||
// If we have an item name, we are processing the bulk download locally and should use it as the toast id to
|
||||
@@ -33,7 +27,7 @@ export const addBulkDownloadListeners = (startAppListening: AppStartListening) =
|
||||
|
||||
startAppListening({
|
||||
matcher: imagesApi.endpoints.bulkDownloadImages.matchRejected,
|
||||
effect: async () => {
|
||||
effect: () => {
|
||||
log.debug('Bulk download request failed');
|
||||
|
||||
// There isn't any toast to update if we get this event.
|
||||
@@ -44,55 +38,4 @@ export const addBulkDownloadListeners = (startAppListening: AppStartListening) =
|
||||
});
|
||||
},
|
||||
});
|
||||
|
||||
startAppListening({
|
||||
actionCreator: socketBulkDownloadStarted,
|
||||
effect: async (action) => {
|
||||
// This should always happen immediately after the bulk download request, so we don't need to show a toast here.
|
||||
log.debug(action.payload.data, 'Bulk download preparation started');
|
||||
},
|
||||
});
|
||||
|
||||
startAppListening({
|
||||
actionCreator: socketBulkDownloadComplete,
|
||||
effect: async (action) => {
|
||||
log.debug(action.payload.data, 'Bulk download preparation completed');
|
||||
|
||||
const { bulk_download_item_name } = action.payload.data;
|
||||
|
||||
// TODO(psyche): This URL may break in in some environments (e.g. Nvidia workbench) but we need to test it first
|
||||
const url = `/api/v1/images/download/${bulk_download_item_name}`;
|
||||
|
||||
toast({
|
||||
id: bulk_download_item_name,
|
||||
title: t('gallery.bulkDownloadReady', 'Download ready'),
|
||||
status: 'success',
|
||||
description: (
|
||||
<ExternalLink
|
||||
label={t('gallery.clickToDownload', 'Click here to download')}
|
||||
href={url}
|
||||
download={bulk_download_item_name}
|
||||
/>
|
||||
),
|
||||
duration: null,
|
||||
});
|
||||
},
|
||||
});
|
||||
|
||||
startAppListening({
|
||||
actionCreator: socketBulkDownloadError,
|
||||
effect: async (action) => {
|
||||
log.debug(action.payload.data, 'Bulk download preparation failed');
|
||||
|
||||
const { bulk_download_item_name } = action.payload.data;
|
||||
|
||||
toast({
|
||||
id: bulk_download_item_name,
|
||||
title: t('gallery.bulkDownloadFailed'),
|
||||
status: 'error',
|
||||
description: action.payload.data.error,
|
||||
duration: null,
|
||||
});
|
||||
},
|
||||
});
|
||||
};
|
||||
|
||||
@@ -1,38 +0,0 @@
|
||||
import { $logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { canvasCopiedToClipboard } from 'features/canvas/store/actions';
|
||||
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
|
||||
import { copyBlobToClipboard } from 'features/system/util/copyBlobToClipboard';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
|
||||
export const addCanvasCopiedToClipboardListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: canvasCopiedToClipboard,
|
||||
effect: async (action, { getState }) => {
|
||||
const moduleLog = $logger.get().child({ namespace: 'canvasCopiedToClipboardListener' });
|
||||
const state = getState();
|
||||
|
||||
try {
|
||||
const blob = getBaseLayerBlob(state);
|
||||
|
||||
copyBlobToClipboard(blob);
|
||||
} catch (err) {
|
||||
moduleLog.error(String(err));
|
||||
toast({
|
||||
id: 'CANVAS_COPY_FAILED',
|
||||
title: t('toast.problemCopyingCanvas'),
|
||||
description: t('toast.problemCopyingCanvasDesc'),
|
||||
status: 'error',
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
toast({
|
||||
id: 'CANVAS_COPY_SUCCEEDED',
|
||||
title: t('toast.canvasCopiedClipboard'),
|
||||
status: 'success',
|
||||
});
|
||||
},
|
||||
});
|
||||
};
|
||||
@@ -1,34 +0,0 @@
|
||||
import { $logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { canvasDownloadedAsImage } from 'features/canvas/store/actions';
|
||||
import { downloadBlob } from 'features/canvas/util/downloadBlob';
|
||||
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
|
||||
export const addCanvasDownloadedAsImageListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: canvasDownloadedAsImage,
|
||||
effect: async (action, { getState }) => {
|
||||
const moduleLog = $logger.get().child({ namespace: 'canvasSavedToGalleryListener' });
|
||||
const state = getState();
|
||||
|
||||
let blob;
|
||||
try {
|
||||
blob = await getBaseLayerBlob(state);
|
||||
} catch (err) {
|
||||
moduleLog.error(String(err));
|
||||
toast({
|
||||
id: 'CANVAS_DOWNLOAD_FAILED',
|
||||
title: t('toast.problemDownloadingCanvas'),
|
||||
description: t('toast.problemDownloadingCanvasDesc'),
|
||||
status: 'error',
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
downloadBlob(blob, 'canvas.png');
|
||||
toast({ id: 'CANVAS_DOWNLOAD_SUCCEEDED', title: t('toast.canvasDownloaded'), status: 'success' });
|
||||
},
|
||||
});
|
||||
};
|
||||
@@ -1,60 +0,0 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { canvasImageToControlAdapter } from 'features/canvas/store/actions';
|
||||
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
|
||||
import { controlAdapterImageChanged } from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
export const addCanvasImageToControlNetListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: canvasImageToControlAdapter,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const log = logger('canvas');
|
||||
const state = getState();
|
||||
const { id } = action.payload;
|
||||
|
||||
let blob: Blob;
|
||||
try {
|
||||
blob = await getBaseLayerBlob(state, true);
|
||||
} catch (err) {
|
||||
log.error(String(err));
|
||||
toast({
|
||||
id: 'PROBLEM_SAVING_CANVAS',
|
||||
title: t('toast.problemSavingCanvas'),
|
||||
description: t('toast.problemSavingCanvasDesc'),
|
||||
status: 'error',
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const { autoAddBoardId } = state.gallery;
|
||||
|
||||
const imageDTO = await dispatch(
|
||||
imagesApi.endpoints.uploadImage.initiate({
|
||||
file: new File([blob], 'savedCanvas.png', {
|
||||
type: 'image/png',
|
||||
}),
|
||||
image_category: 'control',
|
||||
is_intermediate: true,
|
||||
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
|
||||
crop_visible: false,
|
||||
postUploadAction: {
|
||||
type: 'TOAST',
|
||||
title: t('toast.canvasSentControlnetAssets'),
|
||||
},
|
||||
})
|
||||
).unwrap();
|
||||
|
||||
const { image_name } = imageDTO;
|
||||
|
||||
dispatch(
|
||||
controlAdapterImageChanged({
|
||||
id,
|
||||
controlImage: image_name,
|
||||
})
|
||||
);
|
||||
},
|
||||
});
|
||||
};
|
||||
@@ -1,60 +0,0 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { canvasMaskSavedToGallery } from 'features/canvas/store/actions';
|
||||
import { getCanvasData } from 'features/canvas/util/getCanvasData';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
export const addCanvasMaskSavedToGalleryListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: canvasMaskSavedToGallery,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const log = logger('canvas');
|
||||
const state = getState();
|
||||
|
||||
const canvasBlobsAndImageData = await getCanvasData(
|
||||
state.canvas.layerState,
|
||||
state.canvas.boundingBoxCoordinates,
|
||||
state.canvas.boundingBoxDimensions,
|
||||
state.canvas.isMaskEnabled,
|
||||
state.canvas.shouldPreserveMaskedArea
|
||||
);
|
||||
|
||||
if (!canvasBlobsAndImageData) {
|
||||
return;
|
||||
}
|
||||
|
||||
const { maskBlob } = canvasBlobsAndImageData;
|
||||
|
||||
if (!maskBlob) {
|
||||
log.error('Problem getting mask layer blob');
|
||||
toast({
|
||||
id: 'PROBLEM_SAVING_MASK',
|
||||
title: t('toast.problemSavingMask'),
|
||||
description: t('toast.problemSavingMaskDesc'),
|
||||
status: 'error',
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const { autoAddBoardId } = state.gallery;
|
||||
|
||||
dispatch(
|
||||
imagesApi.endpoints.uploadImage.initiate({
|
||||
file: new File([maskBlob], 'canvasMaskImage.png', {
|
||||
type: 'image/png',
|
||||
}),
|
||||
image_category: 'mask',
|
||||
is_intermediate: false,
|
||||
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
|
||||
crop_visible: true,
|
||||
postUploadAction: {
|
||||
type: 'TOAST',
|
||||
title: t('toast.maskSavedAssets'),
|
||||
},
|
||||
})
|
||||
);
|
||||
},
|
||||
});
|
||||
};
|
||||
@@ -1,70 +0,0 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { canvasMaskToControlAdapter } from 'features/canvas/store/actions';
|
||||
import { getCanvasData } from 'features/canvas/util/getCanvasData';
|
||||
import { controlAdapterImageChanged } from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
export const addCanvasMaskToControlNetListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: canvasMaskToControlAdapter,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const log = logger('canvas');
|
||||
const state = getState();
|
||||
const { id } = action.payload;
|
||||
const canvasBlobsAndImageData = await getCanvasData(
|
||||
state.canvas.layerState,
|
||||
state.canvas.boundingBoxCoordinates,
|
||||
state.canvas.boundingBoxDimensions,
|
||||
state.canvas.isMaskEnabled,
|
||||
state.canvas.shouldPreserveMaskedArea
|
||||
);
|
||||
|
||||
if (!canvasBlobsAndImageData) {
|
||||
return;
|
||||
}
|
||||
|
||||
const { maskBlob } = canvasBlobsAndImageData;
|
||||
|
||||
if (!maskBlob) {
|
||||
log.error('Problem getting mask layer blob');
|
||||
toast({
|
||||
id: 'PROBLEM_IMPORTING_MASK',
|
||||
title: t('toast.problemImportingMask'),
|
||||
description: t('toast.problemImportingMaskDesc'),
|
||||
status: 'error',
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const { autoAddBoardId } = state.gallery;
|
||||
|
||||
const imageDTO = await dispatch(
|
||||
imagesApi.endpoints.uploadImage.initiate({
|
||||
file: new File([maskBlob], 'canvasMaskImage.png', {
|
||||
type: 'image/png',
|
||||
}),
|
||||
image_category: 'mask',
|
||||
is_intermediate: true,
|
||||
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
|
||||
crop_visible: false,
|
||||
postUploadAction: {
|
||||
type: 'TOAST',
|
||||
title: t('toast.maskSentControlnetAssets'),
|
||||
},
|
||||
})
|
||||
).unwrap();
|
||||
|
||||
const { image_name } = imageDTO;
|
||||
|
||||
dispatch(
|
||||
controlAdapterImageChanged({
|
||||
id,
|
||||
controlImage: image_name,
|
||||
})
|
||||
);
|
||||
},
|
||||
});
|
||||
};
|
||||
@@ -1,73 +0,0 @@
|
||||
import { $logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { canvasMerged } from 'features/canvas/store/actions';
|
||||
import { $canvasBaseLayer } from 'features/canvas/store/canvasNanostore';
|
||||
import { setMergedCanvas } from 'features/canvas/store/canvasSlice';
|
||||
import { getFullBaseLayerBlob } from 'features/canvas/util/getFullBaseLayerBlob';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
export const addCanvasMergedListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: canvasMerged,
|
||||
effect: async (action, { dispatch }) => {
|
||||
const moduleLog = $logger.get().child({ namespace: 'canvasCopiedToClipboardListener' });
|
||||
const blob = await getFullBaseLayerBlob();
|
||||
|
||||
if (!blob) {
|
||||
moduleLog.error('Problem getting base layer blob');
|
||||
toast({
|
||||
id: 'PROBLEM_MERGING_CANVAS',
|
||||
title: t('toast.problemMergingCanvas'),
|
||||
description: t('toast.problemMergingCanvasDesc'),
|
||||
status: 'error',
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const canvasBaseLayer = $canvasBaseLayer.get();
|
||||
|
||||
if (!canvasBaseLayer) {
|
||||
moduleLog.error('Problem getting canvas base layer');
|
||||
toast({
|
||||
id: 'PROBLEM_MERGING_CANVAS',
|
||||
title: t('toast.problemMergingCanvas'),
|
||||
description: t('toast.problemMergingCanvasDesc'),
|
||||
status: 'error',
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const baseLayerRect = canvasBaseLayer.getClientRect({
|
||||
relativeTo: canvasBaseLayer.getParent() ?? undefined,
|
||||
});
|
||||
|
||||
const imageDTO = await dispatch(
|
||||
imagesApi.endpoints.uploadImage.initiate({
|
||||
file: new File([blob], 'mergedCanvas.png', {
|
||||
type: 'image/png',
|
||||
}),
|
||||
image_category: 'general',
|
||||
is_intermediate: true,
|
||||
postUploadAction: {
|
||||
type: 'TOAST',
|
||||
title: t('toast.canvasMerged'),
|
||||
},
|
||||
})
|
||||
).unwrap();
|
||||
|
||||
// TODO: I can't figure out how to do the type narrowing in the `take()` so just brute forcing it here
|
||||
const { image_name } = imageDTO;
|
||||
|
||||
dispatch(
|
||||
setMergedCanvas({
|
||||
kind: 'image',
|
||||
layer: 'base',
|
||||
imageName: image_name,
|
||||
...baseLayerRect,
|
||||
})
|
||||
);
|
||||
},
|
||||
});
|
||||
};
|
||||
@@ -1,53 +0,0 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import { canvasSavedToGallery } from 'features/canvas/store/actions';
|
||||
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
export const addCanvasSavedToGalleryListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: canvasSavedToGallery,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const log = logger('canvas');
|
||||
const state = getState();
|
||||
|
||||
let blob;
|
||||
try {
|
||||
blob = await getBaseLayerBlob(state);
|
||||
} catch (err) {
|
||||
log.error(String(err));
|
||||
toast({
|
||||
id: 'CANVAS_SAVE_FAILED',
|
||||
title: t('toast.problemSavingCanvas'),
|
||||
description: t('toast.problemSavingCanvasDesc'),
|
||||
status: 'error',
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const { autoAddBoardId } = state.gallery;
|
||||
|
||||
dispatch(
|
||||
imagesApi.endpoints.uploadImage.initiate({
|
||||
file: new File([blob], 'savedCanvas.png', {
|
||||
type: 'image/png',
|
||||
}),
|
||||
image_category: 'general',
|
||||
is_intermediate: false,
|
||||
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
|
||||
crop_visible: true,
|
||||
postUploadAction: {
|
||||
type: 'TOAST',
|
||||
title: t('toast.canvasSavedGallery'),
|
||||
},
|
||||
metadata: {
|
||||
_canvas_objects: parseify(state.canvas.layerState.objects),
|
||||
},
|
||||
})
|
||||
);
|
||||
},
|
||||
});
|
||||
};
|
||||
@@ -1,194 +0,0 @@
|
||||
import { isAnyOf } from '@reduxjs/toolkit';
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import type { AppDispatch } from 'app/store/store';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import {
|
||||
caLayerImageChanged,
|
||||
caLayerModelChanged,
|
||||
caLayerProcessedImageChanged,
|
||||
caLayerProcessorConfigChanged,
|
||||
caLayerProcessorPendingBatchIdChanged,
|
||||
caLayerRecalled,
|
||||
isControlAdapterLayer,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { CA_PROCESSOR_DATA } from 'features/controlLayers/util/controlAdapters';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { isEqual } from 'lodash-es';
|
||||
import { getImageDTO } from 'services/api/endpoints/images';
|
||||
import { queueApi } from 'services/api/endpoints/queue';
|
||||
import type { BatchConfig } from 'services/api/types';
|
||||
import { socketInvocationComplete } from 'services/events/actions';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
const matcher = isAnyOf(
|
||||
caLayerImageChanged,
|
||||
caLayerProcessedImageChanged,
|
||||
caLayerProcessorConfigChanged,
|
||||
caLayerModelChanged,
|
||||
caLayerRecalled
|
||||
);
|
||||
|
||||
const DEBOUNCE_MS = 300;
|
||||
const log = logger('session');
|
||||
|
||||
/**
|
||||
* Simple helper to cancel a batch and reset the pending batch ID
|
||||
*/
|
||||
const cancelProcessorBatch = async (dispatch: AppDispatch, layerId: string, batchId: string) => {
|
||||
const req = dispatch(queueApi.endpoints.cancelByBatchIds.initiate({ batch_ids: [batchId] }));
|
||||
log.trace({ batchId }, 'Cancelling existing preprocessor batch');
|
||||
try {
|
||||
await req.unwrap();
|
||||
} catch {
|
||||
// no-op
|
||||
} finally {
|
||||
req.reset();
|
||||
// Always reset the pending batch ID - the cancel req could fail if the batch doesn't exist
|
||||
dispatch(caLayerProcessorPendingBatchIdChanged({ layerId, batchId: null }));
|
||||
}
|
||||
};
|
||||
|
||||
export const addControlAdapterPreprocessor = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
matcher,
|
||||
effect: async (action, { dispatch, getState, getOriginalState, cancelActiveListeners, delay, take, signal }) => {
|
||||
const layerId = caLayerRecalled.match(action) ? action.payload.id : action.payload.layerId;
|
||||
const state = getState();
|
||||
const originalState = getOriginalState();
|
||||
|
||||
// Cancel any in-progress instances of this listener
|
||||
cancelActiveListeners();
|
||||
log.trace('Control Layer CA auto-process triggered');
|
||||
|
||||
// Delay before starting actual work
|
||||
await delay(DEBOUNCE_MS);
|
||||
|
||||
const layer = state.controlLayers.present.layers.filter(isControlAdapterLayer).find((l) => l.id === layerId);
|
||||
|
||||
if (!layer) {
|
||||
return;
|
||||
}
|
||||
|
||||
// We should only process if the processor settings or image have changed
|
||||
const originalLayer = originalState.controlLayers.present.layers
|
||||
.filter(isControlAdapterLayer)
|
||||
.find((l) => l.id === layerId);
|
||||
const originalImage = originalLayer?.controlAdapter.image;
|
||||
const originalConfig = originalLayer?.controlAdapter.processorConfig;
|
||||
|
||||
const image = layer.controlAdapter.image;
|
||||
const processedImage = layer.controlAdapter.processedImage;
|
||||
const config = layer.controlAdapter.processorConfig;
|
||||
|
||||
if (isEqual(config, originalConfig) && isEqual(image, originalImage) && processedImage) {
|
||||
// Neither config nor image have changed, we can bail
|
||||
return;
|
||||
}
|
||||
|
||||
if (!image || !config) {
|
||||
// - If we have no image, we have nothing to process
|
||||
// - If we have no processor config, we have nothing to process
|
||||
// Clear the processed image and bail
|
||||
dispatch(caLayerProcessedImageChanged({ layerId, imageDTO: null }));
|
||||
return;
|
||||
}
|
||||
|
||||
// At this point, the user has stopped fiddling with the processor settings and there is a processor selected.
|
||||
|
||||
// If there is a pending processor batch, cancel it.
|
||||
if (layer.controlAdapter.processorPendingBatchId) {
|
||||
cancelProcessorBatch(dispatch, layerId, layer.controlAdapter.processorPendingBatchId);
|
||||
}
|
||||
|
||||
// TODO(psyche): I can't get TS to be happy, it thinkgs `config` is `never` but it should be inferred from the generic... I'll just cast it for now
|
||||
const processorNode = CA_PROCESSOR_DATA[config.type].buildNode(image, config as never);
|
||||
const enqueueBatchArg: BatchConfig = {
|
||||
prepend: true,
|
||||
batch: {
|
||||
graph: {
|
||||
nodes: {
|
||||
[processorNode.id]: {
|
||||
...processorNode,
|
||||
// Control images are always intermediate - do not save to gallery
|
||||
is_intermediate: true,
|
||||
},
|
||||
},
|
||||
edges: [],
|
||||
},
|
||||
runs: 1,
|
||||
},
|
||||
};
|
||||
|
||||
// Kick off the processor batch
|
||||
const req = dispatch(
|
||||
queueApi.endpoints.enqueueBatch.initiate(enqueueBatchArg, {
|
||||
fixedCacheKey: 'enqueueBatch',
|
||||
})
|
||||
);
|
||||
|
||||
try {
|
||||
const enqueueResult = await req.unwrap();
|
||||
// TODO(psyche): Update the pydantic models, pretty sure we will _always_ have a batch_id here, but the model says it's optional
|
||||
assert(enqueueResult.batch.batch_id, 'Batch ID not returned from queue');
|
||||
dispatch(caLayerProcessorPendingBatchIdChanged({ layerId, batchId: enqueueResult.batch.batch_id }));
|
||||
log.debug({ enqueueResult: parseify(enqueueResult) }, t('queue.graphQueued'));
|
||||
|
||||
// Wait for the processor node to complete
|
||||
const [invocationCompleteAction] = await take(
|
||||
(action): action is ReturnType<typeof socketInvocationComplete> =>
|
||||
socketInvocationComplete.match(action) &&
|
||||
action.payload.data.batch_id === enqueueResult.batch.batch_id &&
|
||||
action.payload.data.invocation_source_id === processorNode.id
|
||||
);
|
||||
|
||||
// We still have to check the output type
|
||||
assert(
|
||||
invocationCompleteAction.payload.data.result.type === 'image_output',
|
||||
`Processor did not return an image output, got: ${invocationCompleteAction.payload.data.result}`
|
||||
);
|
||||
const { image_name } = invocationCompleteAction.payload.data.result.image;
|
||||
|
||||
const imageDTO = await getImageDTO(image_name);
|
||||
assert(imageDTO, "Failed to fetch processor output's image DTO");
|
||||
|
||||
// Whew! We made it. Update the layer with the processed image
|
||||
log.debug({ layerId, imageDTO }, 'ControlNet image processed');
|
||||
dispatch(caLayerProcessedImageChanged({ layerId, imageDTO }));
|
||||
dispatch(caLayerProcessorPendingBatchIdChanged({ layerId, batchId: null }));
|
||||
} catch (error) {
|
||||
if (signal.aborted) {
|
||||
// The listener was canceled - we need to cancel the pending processor batch, if there is one (could have changed by now).
|
||||
const pendingBatchId = getState()
|
||||
.controlLayers.present.layers.filter(isControlAdapterLayer)
|
||||
.find((l) => l.id === layerId)?.controlAdapter.processorPendingBatchId;
|
||||
if (pendingBatchId) {
|
||||
cancelProcessorBatch(dispatch, layerId, pendingBatchId);
|
||||
}
|
||||
log.trace('Control Adapter preprocessor cancelled');
|
||||
} else {
|
||||
// Some other error condition...
|
||||
log.error({ enqueueBatchArg: parseify(enqueueBatchArg) }, t('queue.graphFailedToQueue'));
|
||||
|
||||
if (error instanceof Object) {
|
||||
if ('data' in error && 'status' in error) {
|
||||
if (error.status === 403) {
|
||||
dispatch(caLayerImageChanged({ layerId, imageDTO: null }));
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
toast({
|
||||
id: 'GRAPH_QUEUE_FAILED',
|
||||
title: t('queue.graphFailedToQueue'),
|
||||
status: 'error',
|
||||
});
|
||||
}
|
||||
} finally {
|
||||
req.reset();
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
||||
@@ -1,85 +0,0 @@
|
||||
import type { AnyListenerPredicate } from '@reduxjs/toolkit';
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { controlAdapterImageProcessed } from 'features/controlAdapters/store/actions';
|
||||
import {
|
||||
controlAdapterAutoConfigToggled,
|
||||
controlAdapterImageChanged,
|
||||
controlAdapterModelChanged,
|
||||
controlAdapterProcessorParamsChanged,
|
||||
controlAdapterProcessortTypeChanged,
|
||||
selectControlAdapterById,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { isControlNetOrT2IAdapter } from 'features/controlAdapters/store/types';
|
||||
|
||||
type AnyControlAdapterParamChangeAction =
|
||||
| ReturnType<typeof controlAdapterProcessorParamsChanged>
|
||||
| ReturnType<typeof controlAdapterModelChanged>
|
||||
| ReturnType<typeof controlAdapterImageChanged>
|
||||
| ReturnType<typeof controlAdapterProcessortTypeChanged>
|
||||
| ReturnType<typeof controlAdapterAutoConfigToggled>;
|
||||
|
||||
const predicate: AnyListenerPredicate<RootState> = (action, state, prevState) => {
|
||||
const isActionMatched =
|
||||
controlAdapterProcessorParamsChanged.match(action) ||
|
||||
controlAdapterModelChanged.match(action) ||
|
||||
controlAdapterImageChanged.match(action) ||
|
||||
controlAdapterProcessortTypeChanged.match(action) ||
|
||||
controlAdapterAutoConfigToggled.match(action);
|
||||
|
||||
if (!isActionMatched) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const { id } = action.payload;
|
||||
const prevCA = selectControlAdapterById(prevState.controlAdapters, id);
|
||||
const ca = selectControlAdapterById(state.controlAdapters, id);
|
||||
if (!prevCA || !isControlNetOrT2IAdapter(prevCA) || !ca || !isControlNetOrT2IAdapter(ca)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (controlAdapterAutoConfigToggled.match(action)) {
|
||||
// do not process if the user just disabled auto-config
|
||||
if (prevCA.shouldAutoConfig === true) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
const { controlImage, processorType, shouldAutoConfig } = ca;
|
||||
if (controlAdapterModelChanged.match(action) && !shouldAutoConfig) {
|
||||
// do not process if the action is a model change but the processor settings are dirty
|
||||
return false;
|
||||
}
|
||||
|
||||
const isProcessorSelected = processorType !== 'none';
|
||||
|
||||
const hasControlImage = Boolean(controlImage);
|
||||
|
||||
return isProcessorSelected && hasControlImage;
|
||||
};
|
||||
|
||||
const DEBOUNCE_MS = 300;
|
||||
|
||||
/**
|
||||
* Listener that automatically processes a ControlNet image when its processor parameters are changed.
|
||||
*
|
||||
* The network request is debounced.
|
||||
*/
|
||||
export const addControlNetAutoProcessListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
predicate,
|
||||
effect: async (action, { dispatch, cancelActiveListeners, delay }) => {
|
||||
const log = logger('session');
|
||||
const { id } = (action as AnyControlAdapterParamChangeAction).payload;
|
||||
|
||||
// Cancel any in-progress instances of this listener
|
||||
cancelActiveListeners();
|
||||
log.trace('ControlNet auto-process triggered');
|
||||
// Delay before starting actual work
|
||||
await delay(DEBOUNCE_MS);
|
||||
|
||||
dispatch(controlAdapterImageProcessed({ id }));
|
||||
},
|
||||
});
|
||||
};
|
||||
@@ -1,118 +0,0 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import { controlAdapterImageProcessed } from 'features/controlAdapters/store/actions';
|
||||
import {
|
||||
controlAdapterImageChanged,
|
||||
controlAdapterProcessedImageChanged,
|
||||
pendingControlImagesCleared,
|
||||
selectControlAdapterById,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { isControlNetOrT2IAdapter } from 'features/controlAdapters/store/types';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
import { queueApi } from 'services/api/endpoints/queue';
|
||||
import type { BatchConfig, ImageDTO } from 'services/api/types';
|
||||
import { socketInvocationComplete } from 'services/events/actions';
|
||||
|
||||
export const addControlNetImageProcessedListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: controlAdapterImageProcessed,
|
||||
effect: async (action, { dispatch, getState, take }) => {
|
||||
const log = logger('session');
|
||||
const { id } = action.payload;
|
||||
const ca = selectControlAdapterById(getState().controlAdapters, id);
|
||||
|
||||
if (!ca?.controlImage || !isControlNetOrT2IAdapter(ca)) {
|
||||
log.error('Unable to process ControlNet image');
|
||||
return;
|
||||
}
|
||||
|
||||
if (ca.processorType === 'none' || ca.processorNode.type === 'none') {
|
||||
return;
|
||||
}
|
||||
|
||||
// ControlNet one-off procressing graph is just the processor node, no edges.
|
||||
// Also we need to grab the image.
|
||||
|
||||
const nodeId = ca.processorNode.id;
|
||||
const enqueueBatchArg: BatchConfig = {
|
||||
prepend: true,
|
||||
batch: {
|
||||
graph: {
|
||||
nodes: {
|
||||
[ca.processorNode.id]: {
|
||||
...ca.processorNode,
|
||||
is_intermediate: true,
|
||||
use_cache: false,
|
||||
image: { image_name: ca.controlImage },
|
||||
},
|
||||
},
|
||||
edges: [],
|
||||
},
|
||||
runs: 1,
|
||||
},
|
||||
};
|
||||
|
||||
try {
|
||||
const req = dispatch(
|
||||
queueApi.endpoints.enqueueBatch.initiate(enqueueBatchArg, {
|
||||
fixedCacheKey: 'enqueueBatch',
|
||||
})
|
||||
);
|
||||
const enqueueResult = await req.unwrap();
|
||||
req.reset();
|
||||
log.debug({ enqueueResult: parseify(enqueueResult) }, t('queue.graphQueued'));
|
||||
|
||||
const [invocationCompleteAction] = await take(
|
||||
(action): action is ReturnType<typeof socketInvocationComplete> =>
|
||||
socketInvocationComplete.match(action) &&
|
||||
action.payload.data.batch_id === enqueueResult.batch.batch_id &&
|
||||
action.payload.data.invocation_source_id === nodeId
|
||||
);
|
||||
|
||||
// We still have to check the output type
|
||||
if (invocationCompleteAction.payload.data.result.type === 'image_output') {
|
||||
const { image_name } = invocationCompleteAction.payload.data.result.image;
|
||||
|
||||
// Wait for the ImageDTO to be received
|
||||
const [{ payload }] = await take(
|
||||
(action) =>
|
||||
imagesApi.endpoints.getImageDTO.matchFulfilled(action) && action.payload.image_name === image_name
|
||||
);
|
||||
|
||||
const processedControlImage = payload as ImageDTO;
|
||||
|
||||
log.debug({ controlNetId: action.payload, processedControlImage }, 'ControlNet image processed');
|
||||
|
||||
// Update the processed image in the store
|
||||
dispatch(
|
||||
controlAdapterProcessedImageChanged({
|
||||
id,
|
||||
processedControlImage: processedControlImage.image_name,
|
||||
})
|
||||
);
|
||||
}
|
||||
} catch (error) {
|
||||
log.error({ enqueueBatchArg: parseify(enqueueBatchArg) }, t('queue.graphFailedToQueue'));
|
||||
|
||||
if (error instanceof Object) {
|
||||
if ('data' in error && 'status' in error) {
|
||||
if (error.status === 403) {
|
||||
dispatch(pendingControlImagesCleared());
|
||||
dispatch(controlAdapterImageChanged({ id, controlImage: null }));
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
toast({
|
||||
id: 'GRAPH_QUEUE_FAILED',
|
||||
title: t('queue.graphFailedToQueue'),
|
||||
status: 'error',
|
||||
});
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
||||
@@ -1,144 +0,0 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import { enqueueRequested } from 'app/store/actions';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import openBase64ImageInTab from 'common/util/openBase64ImageInTab';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import { canvasBatchIdAdded, stagingAreaInitialized } from 'features/canvas/store/canvasSlice';
|
||||
import { blobToDataURL } from 'features/canvas/util/blobToDataURL';
|
||||
import { getCanvasData } from 'features/canvas/util/getCanvasData';
|
||||
import { getCanvasGenerationMode } from 'features/canvas/util/getCanvasGenerationMode';
|
||||
import { canvasGraphBuilt } from 'features/nodes/store/actions';
|
||||
import { prepareLinearUIBatch } from 'features/nodes/util/graph/buildLinearBatchConfig';
|
||||
import { buildCanvasGraph } from 'features/nodes/util/graph/canvas/buildCanvasGraph';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
import { queueApi } from 'services/api/endpoints/queue';
|
||||
import type { ImageDTO } from 'services/api/types';
|
||||
|
||||
/**
|
||||
* This listener is responsible invoking the canvas. This involves a number of steps:
|
||||
*
|
||||
* 1. Generate image blobs from the canvas layers
|
||||
* 2. Determine the generation mode from the layers (txt2img, img2img, inpaint)
|
||||
* 3. Build the canvas graph
|
||||
* 4. Create the session with the graph
|
||||
* 5. Upload the init image if necessary
|
||||
* 6. Upload the mask image if necessary
|
||||
* 7. Update the init and mask images with the session ID
|
||||
* 8. Initialize the staging area if not yet initialized
|
||||
* 9. Dispatch the sessionReadyToInvoke action to invoke the session
|
||||
*/
|
||||
export const addEnqueueRequestedCanvasListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
predicate: (action): action is ReturnType<typeof enqueueRequested> =>
|
||||
enqueueRequested.match(action) && action.payload.tabName === 'canvas',
|
||||
effect: async (action, { getState, dispatch }) => {
|
||||
const log = logger('queue');
|
||||
const { prepend } = action.payload;
|
||||
const state = getState();
|
||||
|
||||
const { layerState, boundingBoxCoordinates, boundingBoxDimensions, isMaskEnabled, shouldPreserveMaskedArea } =
|
||||
state.canvas;
|
||||
|
||||
// Build canvas blobs
|
||||
const canvasBlobsAndImageData = await getCanvasData(
|
||||
layerState,
|
||||
boundingBoxCoordinates,
|
||||
boundingBoxDimensions,
|
||||
isMaskEnabled,
|
||||
shouldPreserveMaskedArea
|
||||
);
|
||||
|
||||
if (!canvasBlobsAndImageData) {
|
||||
log.error('Unable to create canvas data');
|
||||
return;
|
||||
}
|
||||
|
||||
const { baseBlob, baseImageData, maskBlob, maskImageData } = canvasBlobsAndImageData;
|
||||
|
||||
// Determine the generation mode
|
||||
const generationMode = getCanvasGenerationMode(baseImageData, maskImageData);
|
||||
|
||||
if (state.system.enableImageDebugging) {
|
||||
const baseDataURL = await blobToDataURL(baseBlob);
|
||||
const maskDataURL = await blobToDataURL(maskBlob);
|
||||
openBase64ImageInTab([
|
||||
{ base64: maskDataURL, caption: 'mask b64' },
|
||||
{ base64: baseDataURL, caption: 'image b64' },
|
||||
]);
|
||||
}
|
||||
|
||||
log.debug(`Generation mode: ${generationMode}`);
|
||||
|
||||
// Temp placeholders for the init and mask images
|
||||
let canvasInitImage: ImageDTO | undefined;
|
||||
let canvasMaskImage: ImageDTO | undefined;
|
||||
|
||||
// For img2img and inpaint/outpaint, we need to upload the init images
|
||||
if (['img2img', 'inpaint', 'outpaint'].includes(generationMode)) {
|
||||
// upload the image, saving the request id
|
||||
canvasInitImage = await dispatch(
|
||||
imagesApi.endpoints.uploadImage.initiate({
|
||||
file: new File([baseBlob], 'canvasInitImage.png', {
|
||||
type: 'image/png',
|
||||
}),
|
||||
image_category: 'general',
|
||||
is_intermediate: true,
|
||||
})
|
||||
).unwrap();
|
||||
}
|
||||
|
||||
// For inpaint/outpaint, we also need to upload the mask layer
|
||||
if (['inpaint', 'outpaint'].includes(generationMode)) {
|
||||
// upload the image, saving the request id
|
||||
canvasMaskImage = await dispatch(
|
||||
imagesApi.endpoints.uploadImage.initiate({
|
||||
file: new File([maskBlob], 'canvasMaskImage.png', {
|
||||
type: 'image/png',
|
||||
}),
|
||||
image_category: 'mask',
|
||||
is_intermediate: true,
|
||||
})
|
||||
).unwrap();
|
||||
}
|
||||
|
||||
const graph = await buildCanvasGraph(state, generationMode, canvasInitImage, canvasMaskImage);
|
||||
|
||||
log.debug({ graph: parseify(graph) }, `Canvas graph built`);
|
||||
|
||||
// currently this action is just listened to for logging
|
||||
dispatch(canvasGraphBuilt(graph));
|
||||
|
||||
const batchConfig = prepareLinearUIBatch(state, graph, prepend);
|
||||
|
||||
try {
|
||||
const req = dispatch(
|
||||
queueApi.endpoints.enqueueBatch.initiate(batchConfig, {
|
||||
fixedCacheKey: 'enqueueBatch',
|
||||
})
|
||||
);
|
||||
|
||||
const enqueueResult = await req.unwrap();
|
||||
req.reset();
|
||||
|
||||
const batchId = enqueueResult.batch.batch_id as string; // we know the is a string, backend provides it
|
||||
|
||||
// Prep the canvas staging area if it is not yet initialized
|
||||
if (!state.canvas.layerState.stagingArea.boundingBox) {
|
||||
dispatch(
|
||||
stagingAreaInitialized({
|
||||
boundingBox: {
|
||||
...state.canvas.boundingBoxCoordinates,
|
||||
...state.canvas.boundingBoxDimensions,
|
||||
},
|
||||
})
|
||||
);
|
||||
}
|
||||
|
||||
// Associate the session with the canvas session ID
|
||||
dispatch(canvasBatchIdAdded(batchId));
|
||||
} catch {
|
||||
// no-op
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
||||
@@ -1,10 +1,21 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import { enqueueRequested } from 'app/store/actions';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { isImageViewerOpenChanged } from 'features/gallery/store/gallerySlice';
|
||||
import type { SerializableObject } from 'common/types';
|
||||
import type { Result } from 'common/util/result';
|
||||
import { isErr, withResult, withResultAsync } from 'common/util/result';
|
||||
import { $canvasManager } from 'features/controlLayers/konva/CanvasManager';
|
||||
import { sessionStagingAreaReset, sessionStartedStaging } from 'features/controlLayers/store/canvasSessionSlice';
|
||||
import { prepareLinearUIBatch } from 'features/nodes/util/graph/buildLinearBatchConfig';
|
||||
import { buildGenerationTabGraph } from 'features/nodes/util/graph/generation/buildGenerationTabGraph';
|
||||
import { buildGenerationTabSDXLGraph } from 'features/nodes/util/graph/generation/buildGenerationTabSDXLGraph';
|
||||
import { buildSD1Graph } from 'features/nodes/util/graph/generation/buildSD1Graph';
|
||||
import { buildSDXLGraph } from 'features/nodes/util/graph/generation/buildSDXLGraph';
|
||||
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
|
||||
import { serializeError } from 'serialize-error';
|
||||
import { queueApi } from 'services/api/endpoints/queue';
|
||||
import type { Invocation } from 'services/api/types';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
const log = logger('generation');
|
||||
|
||||
export const addEnqueueRequestedLinear = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
@@ -12,33 +23,81 @@ export const addEnqueueRequestedLinear = (startAppListening: AppStartListening)
|
||||
enqueueRequested.match(action) && action.payload.tabName === 'generation',
|
||||
effect: async (action, { getState, dispatch }) => {
|
||||
const state = getState();
|
||||
const { shouldShowProgressInViewer } = state.ui;
|
||||
const model = state.generation.model;
|
||||
const model = state.params.model;
|
||||
const { prepend } = action.payload;
|
||||
|
||||
let graph;
|
||||
const manager = $canvasManager.get();
|
||||
assert(manager, 'No model found in state');
|
||||
|
||||
if (model?.base === 'sdxl') {
|
||||
graph = await buildGenerationTabSDXLGraph(state);
|
||||
} else {
|
||||
graph = await buildGenerationTabGraph(state);
|
||||
let didStartStaging = false;
|
||||
|
||||
if (!state.canvasSession.isStaging && state.canvasSettings.sendToCanvas) {
|
||||
dispatch(sessionStartedStaging());
|
||||
didStartStaging = true;
|
||||
}
|
||||
|
||||
const batchConfig = prepareLinearUIBatch(state, graph, prepend);
|
||||
const abortStaging = () => {
|
||||
if (didStartStaging && getState().canvasSession.isStaging) {
|
||||
dispatch(sessionStagingAreaReset());
|
||||
}
|
||||
};
|
||||
|
||||
let buildGraphResult: Result<
|
||||
{ g: Graph; noise: Invocation<'noise'>; posCond: Invocation<'compel' | 'sdxl_compel_prompt'> },
|
||||
Error
|
||||
>;
|
||||
|
||||
assert(model, 'No model found in state');
|
||||
const base = model.base;
|
||||
|
||||
switch (base) {
|
||||
case 'sdxl':
|
||||
buildGraphResult = await withResultAsync(() => buildSDXLGraph(state, manager));
|
||||
break;
|
||||
case 'sd-1':
|
||||
case `sd-2`:
|
||||
buildGraphResult = await withResultAsync(() => buildSD1Graph(state, manager));
|
||||
break;
|
||||
default:
|
||||
assert(false, `No graph builders for base ${base}`);
|
||||
}
|
||||
|
||||
if (isErr(buildGraphResult)) {
|
||||
log.error({ error: serializeError(buildGraphResult.error) }, 'Failed to build graph');
|
||||
abortStaging();
|
||||
return;
|
||||
}
|
||||
|
||||
const { g, noise, posCond } = buildGraphResult.value;
|
||||
|
||||
const destination = state.canvasSettings.sendToCanvas ? 'canvas' : 'gallery';
|
||||
|
||||
const prepareBatchResult = withResult(() =>
|
||||
prepareLinearUIBatch(state, g, prepend, noise, posCond, 'generation', destination)
|
||||
);
|
||||
|
||||
if (isErr(prepareBatchResult)) {
|
||||
log.error({ error: serializeError(prepareBatchResult.error) }, 'Failed to prepare batch');
|
||||
abortStaging();
|
||||
return;
|
||||
}
|
||||
|
||||
const req = dispatch(
|
||||
queueApi.endpoints.enqueueBatch.initiate(batchConfig, {
|
||||
queueApi.endpoints.enqueueBatch.initiate(prepareBatchResult.value, {
|
||||
fixedCacheKey: 'enqueueBatch',
|
||||
})
|
||||
);
|
||||
try {
|
||||
await req.unwrap();
|
||||
if (shouldShowProgressInViewer) {
|
||||
dispatch(isImageViewerOpenChanged(true));
|
||||
}
|
||||
} finally {
|
||||
req.reset();
|
||||
req.reset();
|
||||
|
||||
const enqueueResult = await withResultAsync(() => req.unwrap());
|
||||
|
||||
if (isErr(enqueueResult)) {
|
||||
log.error({ error: serializeError(enqueueResult.error) }, 'Failed to enqueue batch');
|
||||
abortStaging();
|
||||
return;
|
||||
}
|
||||
|
||||
log.debug({ batchConfig: prepareBatchResult.value } as SerializableObject, 'Enqueued batch');
|
||||
},
|
||||
});
|
||||
};
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import { enqueueRequested } from 'app/store/actions';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { selectNodesSlice } from 'features/nodes/store/selectors';
|
||||
import { buildNodesGraph } from 'features/nodes/util/graph/buildNodesGraph';
|
||||
import { buildWorkflowWithValidation } from 'features/nodes/util/workflow/buildWorkflow';
|
||||
import { queueApi } from 'services/api/endpoints/queue';
|
||||
@@ -11,12 +12,12 @@ export const addEnqueueRequestedNodes = (startAppListening: AppStartListening) =
|
||||
enqueueRequested.match(action) && action.payload.tabName === 'workflows',
|
||||
effect: async (action, { getState, dispatch }) => {
|
||||
const state = getState();
|
||||
const { nodes, edges } = state.nodes.present;
|
||||
const nodes = selectNodesSlice(state);
|
||||
const workflow = state.workflow;
|
||||
const graph = buildNodesGraph(state.nodes.present);
|
||||
const graph = buildNodesGraph(nodes);
|
||||
const builtWorkflow = buildWorkflowWithValidation({
|
||||
nodes,
|
||||
edges,
|
||||
nodes: nodes.nodes,
|
||||
edges: nodes.edges,
|
||||
workflow,
|
||||
});
|
||||
|
||||
@@ -29,7 +30,9 @@ export const addEnqueueRequestedNodes = (startAppListening: AppStartListening) =
|
||||
batch: {
|
||||
graph,
|
||||
workflow: builtWorkflow,
|
||||
runs: state.generation.iterations,
|
||||
runs: state.params.iterations,
|
||||
origin: 'workflows',
|
||||
destination: 'gallery',
|
||||
},
|
||||
prepend: action.payload.prepend,
|
||||
};
|
||||
|
||||
@@ -14,9 +14,9 @@ export const addEnqueueRequestedUpscale = (startAppListening: AppStartListening)
|
||||
const { shouldShowProgressInViewer } = state.ui;
|
||||
const { prepend } = action.payload;
|
||||
|
||||
const graph = await buildMultidiffusionUpscaleGraph(state);
|
||||
const { g, noise, posCond } = await buildMultidiffusionUpscaleGraph(state);
|
||||
|
||||
const batchConfig = prepareLinearUIBatch(state, graph, prepend);
|
||||
const batchConfig = prepareLinearUIBatch(state, g, prepend, noise, posCond, 'upscaling', 'gallery');
|
||||
|
||||
const req = dispatch(
|
||||
queueApi.endpoints.enqueueBatch.initiate(batchConfig, {
|
||||
|
||||
@@ -27,7 +27,7 @@ export const galleryImageClicked = createAction<{
|
||||
export const addGalleryImageClickedListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: galleryImageClicked,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const { imageDTO, shiftKey, ctrlKey, metaKey, altKey } = action.payload;
|
||||
const state = getState();
|
||||
const queryArgs = selectListImagesQueryArgs(state);
|
||||
|
||||
@@ -1,24 +1,27 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import type { SerializableObject } from 'common/types';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import { $templates } from 'features/nodes/store/nodesSlice';
|
||||
import { parseSchema } from 'features/nodes/util/schema/parseSchema';
|
||||
import { size } from 'lodash-es';
|
||||
import { serializeError } from 'serialize-error';
|
||||
import { appInfoApi } from 'services/api/endpoints/appInfo';
|
||||
|
||||
const log = logger('system');
|
||||
|
||||
export const addGetOpenAPISchemaListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
matcher: appInfoApi.endpoints.getOpenAPISchema.matchFulfilled,
|
||||
effect: (action, { getState }) => {
|
||||
const log = logger('system');
|
||||
const schemaJSON = action.payload;
|
||||
|
||||
log.debug({ schemaJSON: parseify(schemaJSON) }, 'Received OpenAPI schema');
|
||||
log.debug({ schemaJSON: parseify(schemaJSON) } as SerializableObject, 'Received OpenAPI schema');
|
||||
const { nodesAllowlist, nodesDenylist } = getState().config;
|
||||
|
||||
const nodeTemplates = parseSchema(schemaJSON, nodesAllowlist, nodesDenylist);
|
||||
|
||||
log.debug({ nodeTemplates: parseify(nodeTemplates) }, `Built ${size(nodeTemplates)} node templates`);
|
||||
log.debug({ nodeTemplates } as SerializableObject, `Built ${size(nodeTemplates)} node templates`);
|
||||
|
||||
$templates.set(nodeTemplates);
|
||||
},
|
||||
@@ -30,8 +33,7 @@ export const addGetOpenAPISchemaListener = (startAppListening: AppStartListening
|
||||
// If action.meta.condition === true, the request was canceled/skipped because another request was in flight or
|
||||
// the value was already in the cache. We don't want to log these errors.
|
||||
if (!action.meta.condition) {
|
||||
const log = logger('system');
|
||||
log.error({ error: parseify(action.error) }, 'Problem retrieving OpenAPI Schema');
|
||||
log.error({ error: serializeError(action.error) }, 'Problem retrieving OpenAPI Schema');
|
||||
}
|
||||
},
|
||||
});
|
||||
|
||||
@@ -2,15 +2,13 @@ import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
const log = logger('gallery');
|
||||
|
||||
export const addImageAddedToBoardFulfilledListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
matcher: imagesApi.endpoints.addImageToBoard.matchFulfilled,
|
||||
effect: (action) => {
|
||||
const log = logger('images');
|
||||
const { board_id, imageDTO } = action.meta.arg.originalArgs;
|
||||
|
||||
// TODO: update listImages cache for this board
|
||||
|
||||
log.debug({ board_id, imageDTO }, 'Image added to board');
|
||||
},
|
||||
});
|
||||
@@ -18,9 +16,7 @@ export const addImageAddedToBoardFulfilledListener = (startAppListening: AppStar
|
||||
startAppListening({
|
||||
matcher: imagesApi.endpoints.addImageToBoard.matchRejected,
|
||||
effect: (action) => {
|
||||
const log = logger('images');
|
||||
const { board_id, imageDTO } = action.meta.arg.originalArgs;
|
||||
|
||||
log.debug({ board_id, imageDTO }, 'Problem adding image to board');
|
||||
},
|
||||
});
|
||||
|
||||
@@ -1,20 +1,9 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import type { AppDispatch, RootState } from 'app/store/store';
|
||||
import { resetCanvas } from 'features/canvas/store/canvasSlice';
|
||||
import {
|
||||
controlAdapterImageChanged,
|
||||
controlAdapterProcessedImageChanged,
|
||||
selectControlAdapterAll,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { isControlNetOrT2IAdapter } from 'features/controlAdapters/store/types';
|
||||
import {
|
||||
isControlAdapterLayer,
|
||||
isInitialImageLayer,
|
||||
isIPAdapterLayer,
|
||||
isRegionalGuidanceLayer,
|
||||
layerDeleted,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { entityDeleted, ipaImageChanged } from 'features/controlLayers/store/canvasSlice';
|
||||
import { selectCanvasSlice } from 'features/controlLayers/store/selectors';
|
||||
import { getEntityIdentifier } from 'features/controlLayers/store/types';
|
||||
import { imageDeletionConfirmed } from 'features/deleteImageModal/store/actions';
|
||||
import { isModalOpenChanged } from 'features/deleteImageModal/store/slice';
|
||||
import { selectListImagesQueryArgs } from 'features/gallery/store/gallerySelectors';
|
||||
@@ -26,6 +15,10 @@ import { forEach, intersectionBy } from 'lodash-es';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
import type { ImageDTO } from 'services/api/types';
|
||||
|
||||
const log = logger('gallery');
|
||||
|
||||
//TODO(psyche): handle image deletion (canvas sessions?)
|
||||
|
||||
// Some utils to delete images from different parts of the app
|
||||
const deleteNodesImages = (state: RootState, dispatch: AppDispatch, imageDTO: ImageDTO) => {
|
||||
state.nodes.present.nodes.forEach((node) => {
|
||||
@@ -47,52 +40,37 @@ const deleteNodesImages = (state: RootState, dispatch: AppDispatch, imageDTO: Im
|
||||
});
|
||||
};
|
||||
|
||||
const deleteControlAdapterImages = (state: RootState, dispatch: AppDispatch, imageDTO: ImageDTO) => {
|
||||
forEach(selectControlAdapterAll(state.controlAdapters), (ca) => {
|
||||
if (
|
||||
ca.controlImage === imageDTO.image_name ||
|
||||
(isControlNetOrT2IAdapter(ca) && ca.processedControlImage === imageDTO.image_name)
|
||||
) {
|
||||
dispatch(
|
||||
controlAdapterImageChanged({
|
||||
id: ca.id,
|
||||
controlImage: null,
|
||||
})
|
||||
);
|
||||
dispatch(
|
||||
controlAdapterProcessedImageChanged({
|
||||
id: ca.id,
|
||||
processedControlImage: null,
|
||||
})
|
||||
);
|
||||
// const deleteControlAdapterImages = (state: RootState, dispatch: AppDispatch, imageDTO: ImageDTO) => {
|
||||
// state.canvas.present.controlAdapters.entities.forEach(({ id, imageObject, processedImageObject }) => {
|
||||
// if (
|
||||
// imageObject?.image.image_name === imageDTO.image_name ||
|
||||
// processedImageObject?.image.image_name === imageDTO.image_name
|
||||
// ) {
|
||||
// dispatch(caImageChanged({ id, imageDTO: null }));
|
||||
// dispatch(caProcessedImageChanged({ id, imageDTO: null }));
|
||||
// }
|
||||
// });
|
||||
// };
|
||||
|
||||
const deleteIPAdapterImages = (state: RootState, dispatch: AppDispatch, imageDTO: ImageDTO) => {
|
||||
selectCanvasSlice(state).ipAdapters.entities.forEach((entity) => {
|
||||
if (entity.ipAdapter.image?.image_name === imageDTO.image_name) {
|
||||
dispatch(ipaImageChanged({ entityIdentifier: getEntityIdentifier(entity), imageDTO: null }));
|
||||
}
|
||||
});
|
||||
};
|
||||
|
||||
const deleteControlLayerImages = (state: RootState, dispatch: AppDispatch, imageDTO: ImageDTO) => {
|
||||
state.controlLayers.present.layers.forEach((l) => {
|
||||
if (isRegionalGuidanceLayer(l)) {
|
||||
if (l.ipAdapters.some((ipa) => ipa.image?.name === imageDTO.image_name)) {
|
||||
dispatch(layerDeleted(l.id));
|
||||
const deleteLayerImages = (state: RootState, dispatch: AppDispatch, imageDTO: ImageDTO) => {
|
||||
selectCanvasSlice(state).rasterLayers.entities.forEach(({ id, objects }) => {
|
||||
let shouldDelete = false;
|
||||
for (const obj of objects) {
|
||||
if (obj.type === 'image' && obj.image.image_name === imageDTO.image_name) {
|
||||
shouldDelete = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (isControlAdapterLayer(l)) {
|
||||
if (
|
||||
l.controlAdapter.image?.name === imageDTO.image_name ||
|
||||
l.controlAdapter.processedImage?.name === imageDTO.image_name
|
||||
) {
|
||||
dispatch(layerDeleted(l.id));
|
||||
}
|
||||
}
|
||||
if (isIPAdapterLayer(l)) {
|
||||
if (l.ipAdapter.image?.name === imageDTO.image_name) {
|
||||
dispatch(layerDeleted(l.id));
|
||||
}
|
||||
}
|
||||
if (isInitialImageLayer(l)) {
|
||||
if (l.image?.name === imageDTO.image_name) {
|
||||
dispatch(layerDeleted(l.id));
|
||||
}
|
||||
if (shouldDelete) {
|
||||
dispatch(entityDeleted({ entityIdentifier: { id, type: 'raster_layer' } }));
|
||||
}
|
||||
});
|
||||
};
|
||||
@@ -145,14 +123,10 @@ export const addImageDeletionListeners = (startAppListening: AppStartListening)
|
||||
}
|
||||
}
|
||||
|
||||
// We need to reset the features where the image is in use - none of these work if their image(s) don't exist
|
||||
if (imageUsage.isCanvasImage) {
|
||||
dispatch(resetCanvas());
|
||||
}
|
||||
|
||||
deleteControlAdapterImages(state, dispatch, imageDTO);
|
||||
deleteNodesImages(state, dispatch, imageDTO);
|
||||
deleteControlLayerImages(state, dispatch, imageDTO);
|
||||
// deleteControlAdapterImages(state, dispatch, imageDTO);
|
||||
deleteIPAdapterImages(state, dispatch, imageDTO);
|
||||
deleteLayerImages(state, dispatch, imageDTO);
|
||||
} catch {
|
||||
// no-op
|
||||
} finally {
|
||||
@@ -189,14 +163,11 @@ export const addImageDeletionListeners = (startAppListening: AppStartListening)
|
||||
|
||||
// We need to reset the features where the image is in use - none of these work if their image(s) don't exist
|
||||
|
||||
if (imagesUsage.some((i) => i.isCanvasImage)) {
|
||||
dispatch(resetCanvas());
|
||||
}
|
||||
|
||||
imageDTOs.forEach((imageDTO) => {
|
||||
deleteControlAdapterImages(state, dispatch, imageDTO);
|
||||
deleteNodesImages(state, dispatch, imageDTO);
|
||||
deleteControlLayerImages(state, dispatch, imageDTO);
|
||||
// deleteControlAdapterImages(state, dispatch, imageDTO);
|
||||
deleteIPAdapterImages(state, dispatch, imageDTO);
|
||||
deleteLayerImages(state, dispatch, imageDTO);
|
||||
});
|
||||
} catch {
|
||||
// no-op
|
||||
@@ -220,7 +191,6 @@ export const addImageDeletionListeners = (startAppListening: AppStartListening)
|
||||
startAppListening({
|
||||
matcher: imagesApi.endpoints.deleteImage.matchFulfilled,
|
||||
effect: (action) => {
|
||||
const log = logger('images');
|
||||
log.debug({ imageDTO: action.meta.arg.originalArgs }, 'Image deleted');
|
||||
},
|
||||
});
|
||||
@@ -228,7 +198,6 @@ export const addImageDeletionListeners = (startAppListening: AppStartListening)
|
||||
startAppListening({
|
||||
matcher: imagesApi.endpoints.deleteImage.matchRejected,
|
||||
effect: (action) => {
|
||||
const log = logger('images');
|
||||
log.debug({ imageDTO: action.meta.arg.originalArgs }, 'Unable to delete image');
|
||||
},
|
||||
});
|
||||
|
||||
@@ -1,28 +1,19 @@
|
||||
import { createAction } from '@reduxjs/toolkit';
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import { setInitialCanvasImage } from 'features/canvas/store/canvasSlice';
|
||||
import {
|
||||
controlAdapterImageChanged,
|
||||
controlAdapterIsEnabledChanged,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import {
|
||||
caLayerImageChanged,
|
||||
iiLayerImageChanged,
|
||||
ipaLayerImageChanged,
|
||||
rgLayerIPAdapterImageChanged,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
controlLayerAdded,
|
||||
ipaImageChanged,
|
||||
rasterLayerAdded,
|
||||
rgIPAdapterImageChanged,
|
||||
} from 'features/controlLayers/store/canvasSlice';
|
||||
import { selectCanvasSlice } from 'features/controlLayers/store/selectors';
|
||||
import type { CanvasControlLayerState, CanvasRasterLayerState } from 'features/controlLayers/store/types';
|
||||
import { imageDTOToImageObject } from 'features/controlLayers/store/types';
|
||||
import type { TypesafeDraggableData, TypesafeDroppableData } from 'features/dnd/types';
|
||||
import { isValidDrop } from 'features/dnd/util/isValidDrop';
|
||||
import {
|
||||
imageSelected,
|
||||
imageToCompareChanged,
|
||||
isImageViewerOpenChanged,
|
||||
selectionChanged,
|
||||
} from 'features/gallery/store/gallerySlice';
|
||||
import { imageToCompareChanged, isImageViewerOpenChanged, selectionChanged } from 'features/gallery/store/gallerySlice';
|
||||
import { fieldImageValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import { selectOptimalDimension } from 'features/parameters/store/generationSlice';
|
||||
import { upscaleInitialImageChanged } from 'features/parameters/store/upscaleSlice';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
@@ -31,11 +22,12 @@ export const dndDropped = createAction<{
|
||||
activeData: TypesafeDraggableData;
|
||||
}>('dnd/dndDropped');
|
||||
|
||||
const log = logger('system');
|
||||
|
||||
export const addImageDroppedListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: dndDropped,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const log = logger('dnd');
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const { activeData, overData } = action.payload;
|
||||
if (!isValidDrop(overData, activeData)) {
|
||||
return;
|
||||
@@ -46,80 +38,22 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
|
||||
} else if (activeData.payloadType === 'GALLERY_SELECTION') {
|
||||
log.debug({ activeData, overData }, `Images (${getState().gallery.selection.length}) dropped`);
|
||||
} else if (activeData.payloadType === 'NODE_FIELD') {
|
||||
log.debug({ activeData: parseify(activeData), overData: parseify(overData) }, 'Node field dropped');
|
||||
log.debug({ activeData, overData }, 'Node field dropped');
|
||||
} else {
|
||||
log.debug({ activeData, overData }, `Unknown payload dropped`);
|
||||
}
|
||||
|
||||
/**
|
||||
* Image dropped on current image
|
||||
*/
|
||||
if (
|
||||
overData.actionType === 'SET_CURRENT_IMAGE' &&
|
||||
activeData.payloadType === 'IMAGE_DTO' &&
|
||||
activeData.payload.imageDTO
|
||||
) {
|
||||
dispatch(imageSelected(activeData.payload.imageDTO));
|
||||
dispatch(isImageViewerOpenChanged(true));
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
* Image dropped on ControlNet
|
||||
*/
|
||||
if (
|
||||
overData.actionType === 'SET_CONTROL_ADAPTER_IMAGE' &&
|
||||
activeData.payloadType === 'IMAGE_DTO' &&
|
||||
activeData.payload.imageDTO
|
||||
) {
|
||||
const { id } = overData.context;
|
||||
dispatch(
|
||||
controlAdapterImageChanged({
|
||||
id,
|
||||
controlImage: activeData.payload.imageDTO.image_name,
|
||||
})
|
||||
);
|
||||
dispatch(
|
||||
controlAdapterIsEnabledChanged({
|
||||
id,
|
||||
isEnabled: true,
|
||||
})
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
* Image dropped on Control Adapter Layer
|
||||
*/
|
||||
if (
|
||||
overData.actionType === 'SET_CA_LAYER_IMAGE' &&
|
||||
activeData.payloadType === 'IMAGE_DTO' &&
|
||||
activeData.payload.imageDTO
|
||||
) {
|
||||
const { layerId } = overData.context;
|
||||
dispatch(
|
||||
caLayerImageChanged({
|
||||
layerId,
|
||||
imageDTO: activeData.payload.imageDTO,
|
||||
})
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
* Image dropped on IP Adapter Layer
|
||||
*/
|
||||
if (
|
||||
overData.actionType === 'SET_IPA_LAYER_IMAGE' &&
|
||||
overData.actionType === 'SET_IPA_IMAGE' &&
|
||||
activeData.payloadType === 'IMAGE_DTO' &&
|
||||
activeData.payload.imageDTO
|
||||
) {
|
||||
const { layerId } = overData.context;
|
||||
const { id } = overData.context;
|
||||
dispatch(
|
||||
ipaLayerImageChanged({
|
||||
layerId,
|
||||
imageDTO: activeData.payload.imageDTO,
|
||||
})
|
||||
ipaImageChanged({ entityIdentifier: { id, type: 'ip_adapter' }, imageDTO: activeData.payload.imageDTO })
|
||||
);
|
||||
return;
|
||||
}
|
||||
@@ -128,14 +62,14 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
|
||||
* Image dropped on RG Layer IP Adapter
|
||||
*/
|
||||
if (
|
||||
overData.actionType === 'SET_RG_LAYER_IP_ADAPTER_IMAGE' &&
|
||||
overData.actionType === 'SET_RG_IP_ADAPTER_IMAGE' &&
|
||||
activeData.payloadType === 'IMAGE_DTO' &&
|
||||
activeData.payload.imageDTO
|
||||
) {
|
||||
const { layerId, ipAdapterId } = overData.context;
|
||||
const { id, ipAdapterId } = overData.context;
|
||||
dispatch(
|
||||
rgLayerIPAdapterImageChanged({
|
||||
layerId,
|
||||
rgIPAdapterImageChanged({
|
||||
entityIdentifier: { id, type: 'regional_guidance' },
|
||||
ipAdapterId,
|
||||
imageDTO: activeData.payload.imageDTO,
|
||||
})
|
||||
@@ -144,32 +78,38 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
|
||||
}
|
||||
|
||||
/**
|
||||
* Image dropped on II Layer Image
|
||||
* Image dropped on Raster layer
|
||||
*/
|
||||
if (
|
||||
overData.actionType === 'SET_II_LAYER_IMAGE' &&
|
||||
overData.actionType === 'ADD_RASTER_LAYER_FROM_IMAGE' &&
|
||||
activeData.payloadType === 'IMAGE_DTO' &&
|
||||
activeData.payload.imageDTO
|
||||
) {
|
||||
const { layerId } = overData.context;
|
||||
dispatch(
|
||||
iiLayerImageChanged({
|
||||
layerId,
|
||||
imageDTO: activeData.payload.imageDTO,
|
||||
})
|
||||
);
|
||||
const imageObject = imageDTOToImageObject(activeData.payload.imageDTO);
|
||||
const { x, y } = selectCanvasSlice(getState()).bbox.rect;
|
||||
const overrides: Partial<CanvasRasterLayerState> = {
|
||||
objects: [imageObject],
|
||||
position: { x, y },
|
||||
};
|
||||
dispatch(rasterLayerAdded({ overrides, isSelected: true }));
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
* Image dropped on Canvas
|
||||
* Image dropped on Raster layer
|
||||
*/
|
||||
if (
|
||||
overData.actionType === 'SET_CANVAS_INITIAL_IMAGE' &&
|
||||
overData.actionType === 'ADD_CONTROL_LAYER_FROM_IMAGE' &&
|
||||
activeData.payloadType === 'IMAGE_DTO' &&
|
||||
activeData.payload.imageDTO
|
||||
) {
|
||||
dispatch(setInitialCanvasImage(activeData.payload.imageDTO, selectOptimalDimension(getState())));
|
||||
const imageObject = imageDTOToImageObject(activeData.payload.imageDTO);
|
||||
const { x, y } = selectCanvasSlice(getState()).bbox.rect;
|
||||
const overrides: Partial<CanvasControlLayerState> = {
|
||||
objects: [imageObject],
|
||||
position: { x, y },
|
||||
};
|
||||
dispatch(controlLayerAdded({ overrides, isSelected: true }));
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
@@ -2,13 +2,13 @@ import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
const log = logger('gallery');
|
||||
|
||||
export const addImageRemovedFromBoardFulfilledListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
matcher: imagesApi.endpoints.removeImageFromBoard.matchFulfilled,
|
||||
effect: (action) => {
|
||||
const log = logger('images');
|
||||
const imageDTO = action.meta.arg.originalArgs;
|
||||
|
||||
log.debug({ imageDTO }, 'Image removed from board');
|
||||
},
|
||||
});
|
||||
@@ -16,9 +16,7 @@ export const addImageRemovedFromBoardFulfilledListener = (startAppListening: App
|
||||
startAppListening({
|
||||
matcher: imagesApi.endpoints.removeImageFromBoard.matchRejected,
|
||||
effect: (action) => {
|
||||
const log = logger('images');
|
||||
const imageDTO = action.meta.arg.originalArgs;
|
||||
|
||||
log.debug({ imageDTO }, 'Problem removing image from board');
|
||||
},
|
||||
});
|
||||
|
||||
@@ -6,16 +6,17 @@ import { imagesToDeleteSelected, isModalOpenChanged } from 'features/deleteImage
|
||||
export const addImageToDeleteSelectedListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: imagesToDeleteSelected,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const imageDTOs = action.payload;
|
||||
const state = getState();
|
||||
const { shouldConfirmOnDelete } = state.system;
|
||||
const imagesUsage = selectImageUsage(getState());
|
||||
|
||||
const isImageInUse =
|
||||
imagesUsage.some((i) => i.isCanvasImage) ||
|
||||
imagesUsage.some((i) => i.isControlImage) ||
|
||||
imagesUsage.some((i) => i.isNodesImage);
|
||||
imagesUsage.some((i) => i.isLayerImage) ||
|
||||
imagesUsage.some((i) => i.isControlAdapterImage) ||
|
||||
imagesUsage.some((i) => i.isIPAdapterImage) ||
|
||||
imagesUsage.some((i) => i.isLayerImage);
|
||||
|
||||
if (shouldConfirmOnDelete || isImageInUse) {
|
||||
dispatch(isModalOpenChanged(true));
|
||||
|
||||
@@ -1,19 +1,8 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { setInitialCanvasImage } from 'features/canvas/store/canvasSlice';
|
||||
import {
|
||||
controlAdapterImageChanged,
|
||||
controlAdapterIsEnabledChanged,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import {
|
||||
caLayerImageChanged,
|
||||
iiLayerImageChanged,
|
||||
ipaLayerImageChanged,
|
||||
rgLayerIPAdapterImageChanged,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { ipaImageChanged, rgIPAdapterImageChanged } from 'features/controlLayers/store/canvasSlice';
|
||||
import { selectListBoardsQueryArgs } from 'features/gallery/store/gallerySelectors';
|
||||
import { fieldImageValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import { selectOptimalDimension } from 'features/parameters/store/generationSlice';
|
||||
import { upscaleInitialImageChanged } from 'features/parameters/store/upscaleSlice';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
@@ -21,11 +10,12 @@ import { omit } from 'lodash-es';
|
||||
import { boardsApi } from 'services/api/endpoints/boards';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
const log = logger('gallery');
|
||||
|
||||
export const addImageUploadedFulfilledListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
matcher: imagesApi.endpoints.uploadImage.matchFulfilled,
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const log = logger('images');
|
||||
const imageDTO = action.payload;
|
||||
const state = getState();
|
||||
const { autoAddBoardId } = state.gallery;
|
||||
@@ -81,15 +71,6 @@ export const addImageUploadedFulfilledListener = (startAppListening: AppStartLis
|
||||
return;
|
||||
}
|
||||
|
||||
if (postUploadAction?.type === 'SET_CANVAS_INITIAL_IMAGE') {
|
||||
dispatch(setInitialCanvasImage(imageDTO, selectOptimalDimension(state)));
|
||||
toast({
|
||||
...DEFAULT_UPLOADED_TOAST,
|
||||
description: t('toast.setAsCanvasInitialImage'),
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
if (postUploadAction?.type === 'SET_UPSCALE_INITIAL_IMAGE') {
|
||||
dispatch(upscaleInitialImageChanged(imageDTO));
|
||||
toast({
|
||||
@@ -99,70 +80,33 @@ export const addImageUploadedFulfilledListener = (startAppListening: AppStartLis
|
||||
return;
|
||||
}
|
||||
|
||||
if (postUploadAction?.type === 'SET_CONTROL_ADAPTER_IMAGE') {
|
||||
// if (postUploadAction?.type === 'SET_CA_IMAGE') {
|
||||
// const { id } = postUploadAction;
|
||||
// dispatch(caImageChanged({ id, imageDTO }));
|
||||
// toast({ ...DEFAULT_UPLOADED_TOAST, description: t('toast.setControlImage') });
|
||||
// return;
|
||||
// }
|
||||
|
||||
if (postUploadAction?.type === 'SET_IPA_IMAGE') {
|
||||
const { id } = postUploadAction;
|
||||
dispatch(
|
||||
controlAdapterIsEnabledChanged({
|
||||
id,
|
||||
isEnabled: true,
|
||||
})
|
||||
);
|
||||
dispatch(
|
||||
controlAdapterImageChanged({
|
||||
id,
|
||||
controlImage: imageDTO.image_name,
|
||||
})
|
||||
);
|
||||
toast({
|
||||
...DEFAULT_UPLOADED_TOAST,
|
||||
description: t('toast.setControlImage'),
|
||||
});
|
||||
dispatch(ipaImageChanged({ entityIdentifier: { id, type: 'ip_adapter' }, imageDTO }));
|
||||
toast({ ...DEFAULT_UPLOADED_TOAST, description: t('toast.setControlImage') });
|
||||
return;
|
||||
}
|
||||
|
||||
if (postUploadAction?.type === 'SET_CA_LAYER_IMAGE') {
|
||||
const { layerId } = postUploadAction;
|
||||
dispatch(caLayerImageChanged({ layerId, imageDTO }));
|
||||
toast({
|
||||
...DEFAULT_UPLOADED_TOAST,
|
||||
description: t('toast.setControlImage'),
|
||||
});
|
||||
}
|
||||
|
||||
if (postUploadAction?.type === 'SET_IPA_LAYER_IMAGE') {
|
||||
const { layerId } = postUploadAction;
|
||||
dispatch(ipaLayerImageChanged({ layerId, imageDTO }));
|
||||
toast({
|
||||
...DEFAULT_UPLOADED_TOAST,
|
||||
description: t('toast.setControlImage'),
|
||||
});
|
||||
}
|
||||
|
||||
if (postUploadAction?.type === 'SET_RG_LAYER_IP_ADAPTER_IMAGE') {
|
||||
const { layerId, ipAdapterId } = postUploadAction;
|
||||
dispatch(rgLayerIPAdapterImageChanged({ layerId, ipAdapterId, imageDTO }));
|
||||
toast({
|
||||
...DEFAULT_UPLOADED_TOAST,
|
||||
description: t('toast.setControlImage'),
|
||||
});
|
||||
}
|
||||
|
||||
if (postUploadAction?.type === 'SET_II_LAYER_IMAGE') {
|
||||
const { layerId } = postUploadAction;
|
||||
dispatch(iiLayerImageChanged({ layerId, imageDTO }));
|
||||
toast({
|
||||
...DEFAULT_UPLOADED_TOAST,
|
||||
description: t('toast.setControlImage'),
|
||||
});
|
||||
if (postUploadAction?.type === 'SET_RG_IP_ADAPTER_IMAGE') {
|
||||
const { id, ipAdapterId } = postUploadAction;
|
||||
dispatch(
|
||||
rgIPAdapterImageChanged({ entityIdentifier: { id, type: 'regional_guidance' }, ipAdapterId, imageDTO })
|
||||
);
|
||||
toast({ ...DEFAULT_UPLOADED_TOAST, description: t('toast.setControlImage') });
|
||||
return;
|
||||
}
|
||||
|
||||
if (postUploadAction?.type === 'SET_NODES_IMAGE') {
|
||||
const { nodeId, fieldName } = postUploadAction;
|
||||
dispatch(fieldImageValueChanged({ nodeId, fieldName, value: imageDTO }));
|
||||
toast({
|
||||
...DEFAULT_UPLOADED_TOAST,
|
||||
description: `${t('toast.setNodeField')} ${fieldName}`,
|
||||
});
|
||||
toast({ ...DEFAULT_UPLOADED_TOAST, description: `${t('toast.setNodeField')} ${fieldName}` });
|
||||
return;
|
||||
}
|
||||
},
|
||||
@@ -171,7 +115,6 @@ export const addImageUploadedFulfilledListener = (startAppListening: AppStartLis
|
||||
startAppListening({
|
||||
matcher: imagesApi.endpoints.uploadImage.matchRejected,
|
||||
effect: (action) => {
|
||||
const log = logger('images');
|
||||
const sanitizedData = {
|
||||
arg: {
|
||||
...omit(action.meta.arg.originalArgs, ['file', 'postUploadAction']),
|
||||
|
||||
@@ -6,7 +6,7 @@ import type { ImageDTO } from 'services/api/types';
|
||||
export const addImagesStarredListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
matcher: imagesApi.endpoints.starImages.matchFulfilled,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const { updated_image_names: starredImages } = action.payload;
|
||||
|
||||
const state = getState();
|
||||
|
||||
@@ -6,7 +6,7 @@ import type { ImageDTO } from 'services/api/types';
|
||||
export const addImagesUnstarredListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
matcher: imagesApi.endpoints.unstarImages.matchFulfilled,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const { updated_image_names: unstarredImages } = action.payload;
|
||||
|
||||
const state = getState();
|
||||
|
||||
@@ -1,23 +1,18 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import {
|
||||
controlAdapterIsEnabledChanged,
|
||||
selectControlAdapterAll,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { loraRemoved } from 'features/lora/store/loraSlice';
|
||||
import { loraDeleted } from 'features/controlLayers/store/lorasSlice';
|
||||
import { modelChanged, vaeSelected } from 'features/controlLayers/store/paramsSlice';
|
||||
import { modelSelected } from 'features/parameters/store/actions';
|
||||
import { modelChanged, vaeSelected } from 'features/parameters/store/generationSlice';
|
||||
import { zParameterModel } from 'features/parameters/types/parameterSchemas';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { forEach } from 'lodash-es';
|
||||
|
||||
const log = logger('models');
|
||||
|
||||
export const addModelSelectedListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: modelSelected,
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
const log = logger('models');
|
||||
|
||||
const state = getState();
|
||||
const result = zParameterModel.safeParse(action.payload);
|
||||
|
||||
@@ -29,34 +24,36 @@ export const addModelSelectedListener = (startAppListening: AppStartListening) =
|
||||
const newModel = result.data;
|
||||
|
||||
const newBaseModel = newModel.base;
|
||||
const didBaseModelChange = state.generation.model?.base !== newBaseModel;
|
||||
const didBaseModelChange = state.params.model?.base !== newBaseModel;
|
||||
|
||||
if (didBaseModelChange) {
|
||||
// we may need to reset some incompatible submodels
|
||||
let modelsCleared = 0;
|
||||
|
||||
// handle incompatible loras
|
||||
forEach(state.lora.loras, (lora, id) => {
|
||||
state.loras.loras.forEach((lora) => {
|
||||
if (lora.model.base !== newBaseModel) {
|
||||
dispatch(loraRemoved(id));
|
||||
dispatch(loraDeleted({ id: lora.id }));
|
||||
modelsCleared += 1;
|
||||
}
|
||||
});
|
||||
|
||||
// handle incompatible vae
|
||||
const { vae } = state.generation;
|
||||
const { vae } = state.params;
|
||||
if (vae && vae.base !== newBaseModel) {
|
||||
dispatch(vaeSelected(null));
|
||||
modelsCleared += 1;
|
||||
}
|
||||
|
||||
// handle incompatible controlnets
|
||||
selectControlAdapterAll(state.controlAdapters).forEach((ca) => {
|
||||
if (ca.model?.base !== newBaseModel) {
|
||||
dispatch(controlAdapterIsEnabledChanged({ id: ca.id, isEnabled: false }));
|
||||
modelsCleared += 1;
|
||||
}
|
||||
});
|
||||
// state.canvas.present.controlAdapters.entities.forEach((ca) => {
|
||||
// if (ca.model?.base !== newBaseModel) {
|
||||
// modelsCleared += 1;
|
||||
// if (ca.isEnabled) {
|
||||
// dispatch(entityIsEnabledToggled({ entityIdentifier: { id: ca.id, type: 'control_adapter' } }));
|
||||
// }
|
||||
// }
|
||||
// });
|
||||
|
||||
if (modelsCleared > 0) {
|
||||
toast({
|
||||
@@ -70,7 +67,7 @@ export const addModelSelectedListener = (startAppListening: AppStartListening) =
|
||||
}
|
||||
}
|
||||
|
||||
dispatch(modelChanged(newModel, state.generation.model));
|
||||
dispatch(modelChanged({ model: newModel, previousModel: state.params.model }));
|
||||
},
|
||||
});
|
||||
};
|
||||
|
||||
@@ -1,36 +1,42 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import type { AppDispatch, RootState } from 'app/store/store';
|
||||
import type { JSONObject } from 'common/types';
|
||||
import type { SerializableObject } from 'common/types';
|
||||
import {
|
||||
controlAdapterModelCleared,
|
||||
selectControlAdapterAll,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { heightChanged, widthChanged } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { loraRemoved } from 'features/lora/store/loraSlice';
|
||||
import { calculateNewSize } from 'features/parameters/components/ImageSize/calculateNewSize';
|
||||
import { modelChanged, vaeSelected } from 'features/parameters/store/generationSlice';
|
||||
bboxHeightChanged,
|
||||
bboxWidthChanged,
|
||||
controlLayerModelChanged,
|
||||
ipaModelChanged,
|
||||
rgIPAdapterModelChanged,
|
||||
} from 'features/controlLayers/store/canvasSlice';
|
||||
import { loraDeleted } from 'features/controlLayers/store/lorasSlice';
|
||||
import { modelChanged, refinerModelChanged, vaeSelected } from 'features/controlLayers/store/paramsSlice';
|
||||
import { selectCanvasSlice } from 'features/controlLayers/store/selectors';
|
||||
import { getEntityIdentifier } from 'features/controlLayers/store/types';
|
||||
import { calculateNewSize } from 'features/parameters/components/DocumentSize/calculateNewSize';
|
||||
import { postProcessingModelChanged, upscaleModelChanged } from 'features/parameters/store/upscaleSlice';
|
||||
import { zParameterModel, zParameterVAEModel } from 'features/parameters/types/parameterSchemas';
|
||||
import { getIsSizeOptimal, getOptimalDimension } from 'features/parameters/util/optimalDimension';
|
||||
import { refinerModelChanged } from 'features/sdxl/store/sdxlSlice';
|
||||
import { forEach } from 'lodash-es';
|
||||
import type { Logger } from 'roarr';
|
||||
import { modelConfigsAdapterSelectors, modelsApi } from 'services/api/endpoints/models';
|
||||
import type { AnyModelConfig } from 'services/api/types';
|
||||
import {
|
||||
isControlNetOrT2IAdapterModelConfig,
|
||||
isIPAdapterModelConfig,
|
||||
isLoRAModelConfig,
|
||||
isNonRefinerMainModelConfig,
|
||||
isRefinerMainModelModelConfig,
|
||||
isSpandrelImageToImageModelConfig,
|
||||
isVAEModelConfig,
|
||||
} from 'services/api/types';
|
||||
|
||||
const log = logger('models');
|
||||
|
||||
export const addModelsLoadedListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
predicate: modelsApi.endpoints.getModelConfigs.matchFulfilled,
|
||||
effect: async (action, { getState, dispatch }) => {
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
// models loaded, we need to ensure the selected model is available and if not, select the first one
|
||||
const log = logger('models');
|
||||
log.info({ models: action.payload.entities }, `Models loaded (${action.payload.ids.length})`);
|
||||
|
||||
const state = getState();
|
||||
@@ -43,6 +49,7 @@ export const addModelsLoadedListener = (startAppListening: AppStartListening) =>
|
||||
handleLoRAModels(models, state, dispatch, log);
|
||||
handleControlAdapterModels(models, state, dispatch, log);
|
||||
handleSpandrelImageToImageModels(models, state, dispatch, log);
|
||||
handleIPAdapterModels(models, state, dispatch, log);
|
||||
},
|
||||
});
|
||||
};
|
||||
@@ -51,15 +58,15 @@ type ModelHandler = (
|
||||
models: AnyModelConfig[],
|
||||
state: RootState,
|
||||
dispatch: AppDispatch,
|
||||
log: Logger<JSONObject>
|
||||
log: Logger<SerializableObject>
|
||||
) => undefined;
|
||||
|
||||
const handleMainModels: ModelHandler = (models, state, dispatch, log) => {
|
||||
const currentModel = state.generation.model;
|
||||
const currentModel = state.params.model;
|
||||
const mainModels = models.filter(isNonRefinerMainModelConfig);
|
||||
if (mainModels.length === 0) {
|
||||
// No models loaded at all
|
||||
dispatch(modelChanged(null));
|
||||
dispatch(modelChanged({ model: null }));
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -74,25 +81,16 @@ const handleMainModels: ModelHandler = (models, state, dispatch, log) => {
|
||||
if (defaultModelInList) {
|
||||
const result = zParameterModel.safeParse(defaultModelInList);
|
||||
if (result.success) {
|
||||
dispatch(modelChanged(defaultModelInList, currentModel));
|
||||
|
||||
dispatch(modelChanged({ model: defaultModelInList, previousModel: currentModel }));
|
||||
const { bbox } = selectCanvasSlice(state);
|
||||
const optimalDimension = getOptimalDimension(defaultModelInList);
|
||||
if (
|
||||
getIsSizeOptimal(
|
||||
state.controlLayers.present.size.width,
|
||||
state.controlLayers.present.size.height,
|
||||
optimalDimension
|
||||
)
|
||||
) {
|
||||
if (getIsSizeOptimal(bbox.rect.width, bbox.rect.height, optimalDimension)) {
|
||||
return;
|
||||
}
|
||||
const { width, height } = calculateNewSize(
|
||||
state.controlLayers.present.size.aspectRatio.value,
|
||||
optimalDimension * optimalDimension
|
||||
);
|
||||
const { width, height } = calculateNewSize(bbox.aspectRatio.value, optimalDimension * optimalDimension);
|
||||
|
||||
dispatch(widthChanged({ width }));
|
||||
dispatch(heightChanged({ height }));
|
||||
dispatch(bboxWidthChanged({ width }));
|
||||
dispatch(bboxHeightChanged({ height }));
|
||||
return;
|
||||
}
|
||||
}
|
||||
@@ -104,11 +102,11 @@ const handleMainModels: ModelHandler = (models, state, dispatch, log) => {
|
||||
return;
|
||||
}
|
||||
|
||||
dispatch(modelChanged(result.data, currentModel));
|
||||
dispatch(modelChanged({ model: result.data, previousModel: currentModel }));
|
||||
};
|
||||
|
||||
const handleRefinerModels: ModelHandler = (models, state, dispatch, _log) => {
|
||||
const currentRefinerModel = state.sdxl.refinerModel;
|
||||
const currentRefinerModel = state.params.refinerModel;
|
||||
const refinerModels = models.filter(isRefinerMainModelModelConfig);
|
||||
if (models.length === 0) {
|
||||
// No models loaded at all
|
||||
@@ -127,7 +125,7 @@ const handleRefinerModels: ModelHandler = (models, state, dispatch, _log) => {
|
||||
};
|
||||
|
||||
const handleVAEModels: ModelHandler = (models, state, dispatch, log) => {
|
||||
const currentVae = state.generation.vae;
|
||||
const currentVae = state.params.vae;
|
||||
|
||||
if (currentVae === null) {
|
||||
// null is a valid VAE! it means "use the default with the main model"
|
||||
@@ -160,28 +158,47 @@ const handleVAEModels: ModelHandler = (models, state, dispatch, log) => {
|
||||
};
|
||||
|
||||
const handleLoRAModels: ModelHandler = (models, state, dispatch, _log) => {
|
||||
const loras = state.lora.loras;
|
||||
|
||||
forEach(loras, (lora, id) => {
|
||||
const isLoRAAvailable = models.some((m) => m.key === lora.model.key);
|
||||
|
||||
const loraModels = models.filter(isLoRAModelConfig);
|
||||
state.loras.loras.forEach((lora) => {
|
||||
const isLoRAAvailable = loraModels.some((m) => m.key === lora.model.key);
|
||||
if (isLoRAAvailable) {
|
||||
return;
|
||||
}
|
||||
|
||||
dispatch(loraRemoved(id));
|
||||
dispatch(loraDeleted({ id: lora.id }));
|
||||
});
|
||||
};
|
||||
|
||||
const handleControlAdapterModels: ModelHandler = (models, state, dispatch, _log) => {
|
||||
selectControlAdapterAll(state.controlAdapters).forEach((ca) => {
|
||||
const isModelAvailable = models.some((m) => m.key === ca.model?.key);
|
||||
|
||||
const caModels = models.filter(isControlNetOrT2IAdapterModelConfig);
|
||||
selectCanvasSlice(state).controlLayers.entities.forEach((entity) => {
|
||||
const isModelAvailable = caModels.some((m) => m.key === entity.controlAdapter.model?.key);
|
||||
if (isModelAvailable) {
|
||||
return;
|
||||
}
|
||||
dispatch(controlLayerModelChanged({ entityIdentifier: getEntityIdentifier(entity), modelConfig: null }));
|
||||
});
|
||||
};
|
||||
|
||||
dispatch(controlAdapterModelCleared({ id: ca.id }));
|
||||
const handleIPAdapterModels: ModelHandler = (models, state, dispatch, _log) => {
|
||||
const ipaModels = models.filter(isIPAdapterModelConfig);
|
||||
selectCanvasSlice(state).ipAdapters.entities.forEach((entity) => {
|
||||
const isModelAvailable = ipaModels.some((m) => m.key === entity.ipAdapter.model?.key);
|
||||
if (isModelAvailable) {
|
||||
return;
|
||||
}
|
||||
dispatch(ipaModelChanged({ entityIdentifier: getEntityIdentifier(entity), modelConfig: null }));
|
||||
});
|
||||
|
||||
selectCanvasSlice(state).regions.entities.forEach((entity) => {
|
||||
entity.ipAdapters.forEach(({ id: ipAdapterId, model }) => {
|
||||
const isModelAvailable = ipaModels.some((m) => m.key === model?.key);
|
||||
if (isModelAvailable) {
|
||||
return;
|
||||
}
|
||||
dispatch(
|
||||
rgIPAdapterModelChanged({ entityIdentifier: getEntityIdentifier(entity), ipAdapterId, modelConfig: null })
|
||||
);
|
||||
});
|
||||
});
|
||||
};
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import { isAnyOf } from '@reduxjs/toolkit';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { positivePromptChanged } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { positivePromptChanged } from 'features/controlLayers/store/paramsSlice';
|
||||
import {
|
||||
combinatorialToggled,
|
||||
isErrorChanged,
|
||||
@@ -15,7 +15,7 @@ import { getPresetModifiedPrompts } from 'features/nodes/util/graph/graphBuilder
|
||||
import { activeStylePresetIdChanged } from 'features/stylePresets/store/stylePresetSlice';
|
||||
import { stylePresetsApi } from 'services/api/endpoints/stylePresets';
|
||||
import { utilitiesApi } from 'services/api/endpoints/utilities';
|
||||
import { socketConnected } from 'services/events/actions';
|
||||
import { socketConnected } from 'services/events/setEventListeners';
|
||||
|
||||
const matcher = isAnyOf(
|
||||
positivePromptChanged,
|
||||
@@ -24,8 +24,6 @@ const matcher = isAnyOf(
|
||||
maxPromptsReset,
|
||||
socketConnected,
|
||||
activeStylePresetIdChanged,
|
||||
stylePresetsApi.endpoints.deleteStylePreset.matchFulfilled,
|
||||
stylePresetsApi.endpoints.updateStylePreset.matchFulfilled,
|
||||
stylePresetsApi.endpoints.listStylePresets.matchFulfilled
|
||||
);
|
||||
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { heightChanged, widthChanged } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { setDefaultSettings } from 'features/parameters/store/actions';
|
||||
import { bboxHeightChanged, bboxWidthChanged } from 'features/controlLayers/store/canvasSlice';
|
||||
import {
|
||||
setCfgRescaleMultiplier,
|
||||
setCfgScale,
|
||||
@@ -8,7 +7,8 @@ import {
|
||||
setSteps,
|
||||
vaePrecisionChanged,
|
||||
vaeSelected,
|
||||
} from 'features/parameters/store/generationSlice';
|
||||
} from 'features/controlLayers/store/paramsSlice';
|
||||
import { setDefaultSettings } from 'features/parameters/store/actions';
|
||||
import {
|
||||
isParameterCFGRescaleMultiplier,
|
||||
isParameterCFGScale,
|
||||
@@ -30,7 +30,7 @@ export const addSetDefaultSettingsListener = (startAppListening: AppStartListeni
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const state = getState();
|
||||
|
||||
const currentModel = state.generation.model;
|
||||
const currentModel = state.params.model;
|
||||
|
||||
if (!currentModel) {
|
||||
return;
|
||||
@@ -98,13 +98,13 @@ export const addSetDefaultSettingsListener = (startAppListening: AppStartListeni
|
||||
const setSizeOptions = { updateAspectRatio: true, clamp: true };
|
||||
if (width) {
|
||||
if (isParameterWidth(width)) {
|
||||
dispatch(widthChanged({ width, ...setSizeOptions }));
|
||||
dispatch(bboxWidthChanged({ width, ...setSizeOptions }));
|
||||
}
|
||||
}
|
||||
|
||||
if (height) {
|
||||
if (isParameterHeight(height)) {
|
||||
dispatch(heightChanged({ height, ...setSizeOptions }));
|
||||
dispatch(bboxHeightChanged({ height, ...setSizeOptions }));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user