mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-16 16:07:54 -05:00
Compare commits
720 Commits
v4.2.9.dev
...
v4.2.9.dev
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d4165317aa | ||
|
|
92482bf50d | ||
|
|
0ad118f1e9 | ||
|
|
da6d0c139b | ||
|
|
3103b3e440 | ||
|
|
c9ac44b061 | ||
|
|
edfbf11a1c | ||
|
|
4807657ac9 | ||
|
|
e665ca0743 | ||
|
|
6ec6d978ac | ||
|
|
94da066d2d | ||
|
|
78c070ade1 | ||
|
|
f587d236ed | ||
|
|
129cd91267 | ||
|
|
8fb8916027 | ||
|
|
139cf29e32 | ||
|
|
7cc9aa5b99 | ||
|
|
a2ba8700d4 | ||
|
|
facd007d1e | ||
|
|
f63aab9730 | ||
|
|
eb230feb57 | ||
|
|
438fba478c | ||
|
|
4b65891b65 | ||
|
|
b3c2d4d4b2 | ||
|
|
d535ea6119 | ||
|
|
c4ab0c9c96 | ||
|
|
4b79d54b4f | ||
|
|
9226165530 | ||
|
|
292770e188 | ||
|
|
3347094254 | ||
|
|
491b049e12 | ||
|
|
6f8fac3f73 | ||
|
|
96ecf492cc | ||
|
|
22597f5e0e | ||
|
|
42e2812ed2 | ||
|
|
689dd24296 | ||
|
|
f2bb078a48 | ||
|
|
0ae1004520 | ||
|
|
89f3a8b91b | ||
|
|
3edef0fc73 | ||
|
|
aa0942e527 | ||
|
|
7145c91bd2 | ||
|
|
846a88c0b8 | ||
|
|
abc75e6b1b | ||
|
|
dc6bd98266 | ||
|
|
8df9c43079 | ||
|
|
ef95fee63a | ||
|
|
9674485723 | ||
|
|
0f70989f19 | ||
|
|
fa691fc8d0 | ||
|
|
4a6d901a2b | ||
|
|
2ea8f87d82 | ||
|
|
f4b654d37c | ||
|
|
7f4eab2400 | ||
|
|
c7c32d67ea | ||
|
|
571a5f9865 | ||
|
|
784c3b0454 | ||
|
|
1b3d415c35 | ||
|
|
c43cc0814a | ||
|
|
f0332efdf3 | ||
|
|
ff0109db52 | ||
|
|
d0f8f3995f | ||
|
|
4fd1d856b8 | ||
|
|
7697525f04 | ||
|
|
31fed50f11 | ||
|
|
440a75fec6 | ||
|
|
72fd370ba6 | ||
|
|
6f9085d2d9 | ||
|
|
dd5de2dc95 | ||
|
|
0f9708373d | ||
|
|
5f7e6379ad | ||
|
|
26e9936240 | ||
|
|
f863c08a55 | ||
|
|
ba7420c6e7 | ||
|
|
263c251cb3 | ||
|
|
5f21d01f35 | ||
|
|
db333c1c6f | ||
|
|
f6f077d0b8 | ||
|
|
5dfa5c9a48 | ||
|
|
bfc4f4a88b | ||
|
|
efb99695a7 | ||
|
|
a72c38273c | ||
|
|
7d06453086 | ||
|
|
35654c38dc | ||
|
|
e2fde5c152 | ||
|
|
35a74f99d0 | ||
|
|
48b4e00373 | ||
|
|
c51cdbec35 | ||
|
|
64ac64e9f6 | ||
|
|
550842fb61 | ||
|
|
647aae8dd1 | ||
|
|
b18acdda6b | ||
|
|
f501e6ea29 | ||
|
|
c3eb691e57 | ||
|
|
39a004c20e | ||
|
|
6f5674659e | ||
|
|
bbfaa60821 | ||
|
|
9aa3ffffee | ||
|
|
2b1d442269 | ||
|
|
4433cd2749 | ||
|
|
05931cc06b | ||
|
|
261dd0cb40 | ||
|
|
12298008c7 | ||
|
|
69f9932f37 | ||
|
|
a52060ca33 | ||
|
|
82e804ea2c | ||
|
|
ef4cff5113 | ||
|
|
9b2405f185 | ||
|
|
0359cb7365 | ||
|
|
57cb08a05b | ||
|
|
29ae30b974 | ||
|
|
4a74f67258 | ||
|
|
b02c4d6bf8 | ||
|
|
e7a8992f59 | ||
|
|
6875e72b40 | ||
|
|
7ca732b9bf | ||
|
|
0e6a11f53d | ||
|
|
1681ae0d49 | ||
|
|
0a6c63f10b | ||
|
|
2cb218e69a | ||
|
|
4ea1622260 | ||
|
|
78fff1c7bc | ||
|
|
8a860eeecd | ||
|
|
ba5fef621a | ||
|
|
0920a8f28f | ||
|
|
fbc6680773 | ||
|
|
1b945d2d42 | ||
|
|
4a934305f5 | ||
|
|
829b680b4d | ||
|
|
abb02ecdb7 | ||
|
|
db2003b3b6 | ||
|
|
86d3b60f54 | ||
|
|
2493d3f841 | ||
|
|
63c61c7fa6 | ||
|
|
a584453fb2 | ||
|
|
c2dd0bed17 | ||
|
|
4f793d750d | ||
|
|
6c49921c76 | ||
|
|
41ece76d61 | ||
|
|
6c4c58206d | ||
|
|
ee71ab3330 | ||
|
|
e83069ed94 | ||
|
|
4ad748514e | ||
|
|
b649bf2556 | ||
|
|
fbbbef4aef | ||
|
|
734fca622c | ||
|
|
958fae1370 | ||
|
|
eac0bdcd9b | ||
|
|
29b7d1f7a6 | ||
|
|
aff8209764 | ||
|
|
e9ec9840f1 | ||
|
|
afbe5d7e07 | ||
|
|
71c7dabb48 | ||
|
|
733266fdf7 | ||
|
|
2fb79a10be | ||
|
|
3dde01d642 | ||
|
|
0e95d7f729 | ||
|
|
5d76a3cb4f | ||
|
|
67531e0dc4 | ||
|
|
a903e6eab5 | ||
|
|
2ea921c2ca | ||
|
|
14caa82bc2 | ||
|
|
a8d2670622 | ||
|
|
708f2f2814 | ||
|
|
a92f82f06f | ||
|
|
45e6c5523d | ||
|
|
247378ed73 | ||
|
|
51146f760c | ||
|
|
6ee8de882b | ||
|
|
73804abb55 | ||
|
|
f075c1dcc1 | ||
|
|
b1dd3adddc | ||
|
|
0a10bba783 | ||
|
|
92c670c454 | ||
|
|
5b709dd458 | ||
|
|
bbdc736e1b | ||
|
|
c8e330101d | ||
|
|
ea6cd090c2 | ||
|
|
f50945ec89 | ||
|
|
6cffca5283 | ||
|
|
07c1b5b680 | ||
|
|
a55eb2fca9 | ||
|
|
f9e801782b | ||
|
|
7cd8beda56 | ||
|
|
8d1095bd72 | ||
|
|
9317831648 | ||
|
|
2de16d970c | ||
|
|
e99e1f3464 | ||
|
|
5f044f1eda | ||
|
|
d443afd1fc | ||
|
|
28ef63991c | ||
|
|
b60692d1ac | ||
|
|
4cffb7df6e | ||
|
|
1ce52dba41 | ||
|
|
047fa8a135 | ||
|
|
e664d6a6e0 | ||
|
|
3532c3414f | ||
|
|
d8447abd64 | ||
|
|
b06d4e25e1 | ||
|
|
aeac1edb0b | ||
|
|
594aa9da61 | ||
|
|
0918732f36 | ||
|
|
0a9bd3f691 | ||
|
|
12616cd073 | ||
|
|
19378199d4 | ||
|
|
36c2409dd6 | ||
|
|
849356485f | ||
|
|
f68f98e5cd | ||
|
|
c8abcd6f66 | ||
|
|
f81c87b685 | ||
|
|
a807957967 | ||
|
|
314f650b45 | ||
|
|
2a96554935 | ||
|
|
3dbe5b3755 | ||
|
|
eca4a2dec7 | ||
|
|
e8cb0b0971 | ||
|
|
90799d6f1b | ||
|
|
86791a0701 | ||
|
|
81052d9a18 | ||
|
|
f0baabf735 | ||
|
|
815d938cf6 | ||
|
|
81baa1e2fd | ||
|
|
151ee00273 | ||
|
|
949d3b016d | ||
|
|
49a2f3d7d7 | ||
|
|
22d0a02a66 | ||
|
|
ea5454f6b2 | ||
|
|
8fc881080f | ||
|
|
c5ba513873 | ||
|
|
53370b6580 | ||
|
|
527de60428 | ||
|
|
af048a134e | ||
|
|
40682b9695 | ||
|
|
0487c80615 | ||
|
|
303352dd1c | ||
|
|
01b34100b3 | ||
|
|
0dcfad50ec | ||
|
|
1f99426180 | ||
|
|
0b898906a5 | ||
|
|
0c46e694c8 | ||
|
|
80e71bd1f1 | ||
|
|
5013169170 | ||
|
|
59e0c86211 | ||
|
|
82cefce743 | ||
|
|
8f942603c6 | ||
|
|
228cea3e29 | ||
|
|
71639631c8 | ||
|
|
7f0d73fe3d | ||
|
|
51efa27514 | ||
|
|
25cf5239da | ||
|
|
3f0ade8bff | ||
|
|
8cfbb0083a | ||
|
|
af840b85bd | ||
|
|
b8a316acf7 | ||
|
|
f2b60ddfc3 | ||
|
|
8ba0293444 | ||
|
|
99e81d88c4 | ||
|
|
bb3812b4a3 | ||
|
|
1eee342b48 | ||
|
|
5c57c2af37 | ||
|
|
48907cce32 | ||
|
|
15e4106cc0 | ||
|
|
949ee5a758 | ||
|
|
28fa9ca731 | ||
|
|
8592e7bc77 | ||
|
|
82a8995c98 | ||
|
|
c8d1a894fc | ||
|
|
06f5b7980a | ||
|
|
f2d8c851c1 | ||
|
|
76b29e90b2 | ||
|
|
a87642950d | ||
|
|
b092817193 | ||
|
|
ecbf1712b0 | ||
|
|
f80c667f30 | ||
|
|
93f5e3c3a4 | ||
|
|
327bbcaa64 | ||
|
|
6e964e21ba | ||
|
|
355dd86994 | ||
|
|
15c0c4dc54 | ||
|
|
69219219e3 | ||
|
|
d18682b230 | ||
|
|
60a9d8a8a6 | ||
|
|
0d6a022730 | ||
|
|
af1df11bec | ||
|
|
fe6538bf9e | ||
|
|
2e4a2a77a3 | ||
|
|
456a6cdb8d | ||
|
|
62db00f5b2 | ||
|
|
c6a15bfb1a | ||
|
|
de9c72f7d5 | ||
|
|
29cb2a30ad | ||
|
|
9971ece2e5 | ||
|
|
4e7ae3e120 | ||
|
|
7b799ee51c | ||
|
|
e948d8454a | ||
|
|
eaf6fe571d | ||
|
|
13c607470d | ||
|
|
582e8be8b9 | ||
|
|
3239ba1a1c | ||
|
|
ae5d1e035a | ||
|
|
d3e245fd78 | ||
|
|
aea7efb031 | ||
|
|
3e61f9b405 | ||
|
|
840707606f | ||
|
|
68b97193cb | ||
|
|
00d73598d2 | ||
|
|
f9726dc904 | ||
|
|
25e3fa5990 | ||
|
|
b69d91f0ec | ||
|
|
6a1e34a030 | ||
|
|
2dde7d8925 | ||
|
|
1d284609f9 | ||
|
|
3f6873f0d3 | ||
|
|
ae78e90d53 | ||
|
|
7cca0a239b | ||
|
|
ffd6164f06 | ||
|
|
a3a370625b | ||
|
|
ae3064fc67 | ||
|
|
71c03b3b8b | ||
|
|
70b58197f3 | ||
|
|
6600b4790b | ||
|
|
b0854dcb13 | ||
|
|
7f613eaa91 | ||
|
|
56f731dce3 | ||
|
|
4dea5d0cb0 | ||
|
|
421c82b534 | ||
|
|
b5c86bf0dd | ||
|
|
ec01b1be31 | ||
|
|
1405fe8e2a | ||
|
|
51c40edf0a | ||
|
|
3a61f3992a | ||
|
|
c31f36ab17 | ||
|
|
270bb3c95a | ||
|
|
18e5e62466 | ||
|
|
b808df2aa0 | ||
|
|
63d0ea6757 | ||
|
|
dd49b6fa81 | ||
|
|
0d3764a44b | ||
|
|
626a404c44 | ||
|
|
b4e0581d2d | ||
|
|
3372887352 | ||
|
|
66f15a8629 | ||
|
|
be4e21068d | ||
|
|
41f200ef7d | ||
|
|
53fa36d71e | ||
|
|
9f661dc093 | ||
|
|
9b51dfb13a | ||
|
|
39171eed76 | ||
|
|
bab8432119 | ||
|
|
731efe7290 | ||
|
|
bb8815e5b3 | ||
|
|
300e2045b1 | ||
|
|
4514334bfc | ||
|
|
0a9c033d75 | ||
|
|
060c14964b | ||
|
|
345b06bf19 | ||
|
|
0e7c03c0d0 | ||
|
|
1226855fc5 | ||
|
|
732cb629b6 | ||
|
|
7dbad20416 | ||
|
|
dcd2f78f64 | ||
|
|
ad1623c385 | ||
|
|
8a5a5816f7 | ||
|
|
8f5bb55471 | ||
|
|
30624f63c1 | ||
|
|
5a787faca8 | ||
|
|
f42efc9b26 | ||
|
|
5c531dc920 | ||
|
|
85b96e3802 | ||
|
|
ada3ab14fb | ||
|
|
1cbd19b7cd | ||
|
|
bbbb22898d | ||
|
|
e68a670c36 | ||
|
|
09554c18dd | ||
|
|
d5e0a5f3de | ||
|
|
7bdec13226 | ||
|
|
53e0b9bd14 | ||
|
|
f92a926ab8 | ||
|
|
b472535527 | ||
|
|
e7a9648a91 | ||
|
|
418786f82f | ||
|
|
a1ada23930 | ||
|
|
5d367cc0e1 | ||
|
|
332dc8b13c | ||
|
|
a8fa2c5ec5 | ||
|
|
237af4007a | ||
|
|
8df59769a8 | ||
|
|
7ffa0e4345 | ||
|
|
b4483fde8c | ||
|
|
8bb984f13a | ||
|
|
7d9a8908c5 | ||
|
|
d6ca58992d | ||
|
|
6d9817742f | ||
|
|
a2b2d83841 | ||
|
|
daaa2f8d8e | ||
|
|
1c4099a53c | ||
|
|
09ad29a765 | ||
|
|
94a66b7850 | ||
|
|
5cb4bc0902 | ||
|
|
6752a47d2b | ||
|
|
f883f80409 | ||
|
|
b5b4c20b4e | ||
|
|
25c270931c | ||
|
|
5a93c4efcb | ||
|
|
1fbf2fad16 | ||
|
|
f9aa925a06 | ||
|
|
7b7c1c5af8 | ||
|
|
4024f83f73 | ||
|
|
aae6e62031 | ||
|
|
bf355fa602 | ||
|
|
cd1d576ff1 | ||
|
|
0bc72149fe | ||
|
|
75c0f03582 | ||
|
|
1b7288f437 | ||
|
|
65e51634e3 | ||
|
|
638835f6f0 | ||
|
|
27e6d8372a | ||
|
|
f3b3121edc | ||
|
|
da32803aef | ||
|
|
ef69a12532 | ||
|
|
b3d82838c6 | ||
|
|
b66eeafa9a | ||
|
|
ae8a0b7c04 | ||
|
|
655c0981eb | ||
|
|
d2d747869f | ||
|
|
998bdadc8d | ||
|
|
71dcc58e33 | ||
|
|
7485d30858 | ||
|
|
443d7b1176 | ||
|
|
6b494161ee | ||
|
|
90d3c8b630 | ||
|
|
7016a15566 | ||
|
|
2bbc3138c6 | ||
|
|
b80ffd3f02 | ||
|
|
d26e7095c5 | ||
|
|
82a496f6f4 | ||
|
|
2a2667a20d | ||
|
|
c018a031a2 | ||
|
|
f193200a88 | ||
|
|
11c3eeecdc | ||
|
|
979132d404 | ||
|
|
e55e866baf | ||
|
|
77b1315641 | ||
|
|
3e2902cb1b | ||
|
|
a48984c969 | ||
|
|
a640fa7d9b | ||
|
|
0ed1e28084 | ||
|
|
79789bbd20 | ||
|
|
4554a425d3 | ||
|
|
d153e5958e | ||
|
|
b4a7865cbb | ||
|
|
89baf9aa49 | ||
|
|
1ee37908f2 | ||
|
|
7fecf74368 | ||
|
|
770e9a92d6 | ||
|
|
37658c59b7 | ||
|
|
70eadc52f1 | ||
|
|
eacf30a55e | ||
|
|
33cf40b7a4 | ||
|
|
19f8f0677e | ||
|
|
f906fca4fc | ||
|
|
2417a97b56 | ||
|
|
3b0438cc69 | ||
|
|
aa4fe73b56 | ||
|
|
58064d835e | ||
|
|
f7ae63e758 | ||
|
|
6c8d6175aa | ||
|
|
348e4b1d38 | ||
|
|
822543c202 | ||
|
|
c3de34e7dc | ||
|
|
3ae61f2758 | ||
|
|
19e6cf3311 | ||
|
|
6f400846b8 | ||
|
|
c9f9b699e9 | ||
|
|
63bf4bd963 | ||
|
|
d03b3d4eb2 | ||
|
|
6e6852a604 | ||
|
|
bb2b526b82 | ||
|
|
d6b6dae63f | ||
|
|
fb02e72462 | ||
|
|
bc3568035b | ||
|
|
ea13ab4c9c | ||
|
|
f9b2f363c7 | ||
|
|
dba206ea98 | ||
|
|
6ca5a71a51 | ||
|
|
6e7022d006 | ||
|
|
8e2ca3b1a4 | ||
|
|
9d32629d5d | ||
|
|
0755734347 | ||
|
|
62ffefe9d1 | ||
|
|
a4e570e4a7 | ||
|
|
d569d10e46 | ||
|
|
cb622df45e | ||
|
|
6299214325 | ||
|
|
220ae6bef8 | ||
|
|
fd923f7e30 | ||
|
|
d62d63acfc | ||
|
|
3a2af003fe | ||
|
|
00d68ac460 | ||
|
|
fd1df7e8d7 | ||
|
|
8b4e2ce1b2 | ||
|
|
8a0936f3dc | ||
|
|
9b5962b4ed | ||
|
|
6c83153076 | ||
|
|
9fa65e59b4 | ||
|
|
491ae852af | ||
|
|
0f698f25bd | ||
|
|
adde7138b3 | ||
|
|
f808ff2830 | ||
|
|
0e1986e795 | ||
|
|
d34a2e2160 | ||
|
|
2752d45d2d | ||
|
|
f9b84555d2 | ||
|
|
9a723b189f | ||
|
|
8c7ce9865a | ||
|
|
ee2f162a8e | ||
|
|
2770233592 | ||
|
|
46f31fdd32 | ||
|
|
df1436cfac | ||
|
|
aced3754f3 | ||
|
|
723a04029f | ||
|
|
6f9fe23a32 | ||
|
|
9dd3d18a7d | ||
|
|
99e7055469 | ||
|
|
0c14bc5fed | ||
|
|
aae98b675b | ||
|
|
e795026210 | ||
|
|
120eaa5e82 | ||
|
|
6561fffe30 | ||
|
|
15e1046f99 | ||
|
|
930868466d | ||
|
|
813904d615 | ||
|
|
1bb06ba90b | ||
|
|
9d1b0dfcda | ||
|
|
69b5637fcf | ||
|
|
eb0cc4fc9d | ||
|
|
f9d9684237 | ||
|
|
7538a2b5ff | ||
|
|
c274d4bc43 | ||
|
|
8b0a06353a | ||
|
|
9d10ec763b | ||
|
|
5c20b35bad | ||
|
|
1df3197ded | ||
|
|
5b6bae5113 | ||
|
|
cdf5a61641 | ||
|
|
95e73d8e1e | ||
|
|
6120de332e | ||
|
|
815b58d3c5 | ||
|
|
71befa4ce0 | ||
|
|
10d3f3c2bf | ||
|
|
02c3c24f95 | ||
|
|
47075acf39 | ||
|
|
5c4438ed1b | ||
|
|
78c08222f4 | ||
|
|
edd2bd2184 | ||
|
|
0fee32c5b3 | ||
|
|
1d5151839c | ||
|
|
a916cb7efb | ||
|
|
88c95f6d8a | ||
|
|
f7d71c3cd0 | ||
|
|
20193028c3 | ||
|
|
ae8ee6709c | ||
|
|
4e298dae62 | ||
|
|
cb72467d1f | ||
|
|
d1596957c0 | ||
|
|
8bdec7cfba | ||
|
|
66c4bf260f | ||
|
|
1764df7446 | ||
|
|
ebf83518e3 | ||
|
|
4e6ff6033f | ||
|
|
fa0b8f34f0 | ||
|
|
d7ad0e082e | ||
|
|
b5df668753 | ||
|
|
2ff9803db0 | ||
|
|
5f6c155e4a | ||
|
|
8531f1b759 | ||
|
|
e9b1f9a87b | ||
|
|
5146150509 | ||
|
|
e221c30249 | ||
|
|
9890efdb2e | ||
|
|
ac32d4ca8a | ||
|
|
88f0c0bf23 | ||
|
|
198be69a7f | ||
|
|
ec1bb0e389 | ||
|
|
49aa7325cb | ||
|
|
5e292a7423 | ||
|
|
73593a88bb | ||
|
|
84e6b197a1 | ||
|
|
8aae372446 | ||
|
|
6657d501db | ||
|
|
354830144a | ||
|
|
2aa105379b | ||
|
|
ce1d6a1ede | ||
|
|
a20bf91f5d | ||
|
|
01215bbb99 | ||
|
|
75b40b95df | ||
|
|
19bbbf49d9 | ||
|
|
2688d83bd0 | ||
|
|
6e30f65a16 | ||
|
|
fcd3773804 | ||
|
|
3a3a1e076f | ||
|
|
566d9f99dd | ||
|
|
21090dee48 | ||
|
|
29c9e8f4b6 | ||
|
|
5156b82ca1 | ||
|
|
ff2371ce82 | ||
|
|
0cafbd7ba5 | ||
|
|
747a7d16c7 | ||
|
|
cf271700bf | ||
|
|
43a40d88be | ||
|
|
c761340871 | ||
|
|
6271d1c34d | ||
|
|
a7a09feaf0 | ||
|
|
4f0aea2592 | ||
|
|
e00ba3f6cd | ||
|
|
920873e009 | ||
|
|
e126ec9703 | ||
|
|
ceb81d6fed | ||
|
|
5088c9eae1 | ||
|
|
d41ad5115e | ||
|
|
4caab2d2e3 | ||
|
|
528254fdd4 | ||
|
|
939ae5a7c6 | ||
|
|
b75830086b | ||
|
|
0fea74a58a | ||
|
|
89e0fdadc5 | ||
|
|
a5a5e45a59 | ||
|
|
61bd9aac0f | ||
|
|
aba28f04f8 | ||
|
|
bc7b4c5d8e | ||
|
|
98359237c6 | ||
|
|
6982a9f41d | ||
|
|
5665f1db7b | ||
|
|
7a6c9a60b3 | ||
|
|
2e7ef452d5 | ||
|
|
5468b25c65 | ||
|
|
e4a1ef0c19 | ||
|
|
fcb31d3cd2 | ||
|
|
cb32ce6a41 | ||
|
|
a6c7f0d282 | ||
|
|
45f296a35e | ||
|
|
8e6469d9d7 | ||
|
|
3298875cda | ||
|
|
d1c6a37b76 | ||
|
|
31db9a178d | ||
|
|
1c766a43ee | ||
|
|
7b7a3fbd57 | ||
|
|
d12474d93d | ||
|
|
12ac78a490 | ||
|
|
125b459e56 | ||
|
|
33edee1ba6 | ||
|
|
d20335dabc | ||
|
|
d10d258213 | ||
|
|
d57ba1ed8b | ||
|
|
2d0e34e57b | ||
|
|
a005d06255 | ||
|
|
a301ef5a5a | ||
|
|
9422df2737 | ||
|
|
6dabe4d3ca | ||
|
|
00e4652d30 | ||
|
|
b6434c5318 | ||
|
|
3f7f9f8d61 | ||
|
|
f3bb592544 | ||
|
|
69f080fb75 | ||
|
|
04272a7cc8 | ||
|
|
8d35af946e | ||
|
|
24065ec6b6 | ||
|
|
627b0bf644 | ||
|
|
b43da46b82 | ||
|
|
4255a01c64 | ||
|
|
23adbd4002 | ||
|
|
fb5a24fcc6 | ||
|
|
cfdd5a1900 | ||
|
|
2313f326df | ||
|
|
2e092a2313 | ||
|
|
763ef06c18 | ||
|
|
8292f6cd42 | ||
|
|
278bba499e | ||
|
|
dd99ed28e0 | ||
|
|
9a8aca69bf | ||
|
|
7ad62512eb | ||
|
|
bd466661ec | ||
|
|
7ebb509d05 | ||
|
|
0aa13c046c | ||
|
|
a7a33d73f5 | ||
|
|
ffa39857d3 | ||
|
|
e85c3bc465 | ||
|
|
8185ba7054 | ||
|
|
d501865bec | ||
|
|
d62310bb5f | ||
|
|
1835bff196 | ||
|
|
87261bdbc9 | ||
|
|
4e4b6c6dbc | ||
|
|
5e8cf9fb6a | ||
|
|
c738fe051f | ||
|
|
29fe1533f2 | ||
|
|
77090070bd | ||
|
|
6ba9b1b6b0 | ||
|
|
c578b8df1e | ||
|
|
cad9a41433 | ||
|
|
5fefb3b0f4 | ||
|
|
5284a870b0 | ||
|
|
e064377c05 | ||
|
|
3e569c8312 | ||
|
|
16825ee6e9 | ||
|
|
3f5340fa53 | ||
|
|
f2a1a39b33 | ||
|
|
326de55d3e | ||
|
|
b2df909570 | ||
|
|
026ac36b06 | ||
|
|
92125e5fd2 | ||
|
|
c0c139da88 | ||
|
|
404ad6a7fd | ||
|
|
fc39086fb4 | ||
|
|
cd215700fe | ||
|
|
e97fd85904 | ||
|
|
0a263fa5b1 | ||
|
|
fae3836a8d | ||
|
|
b3d2eb4178 | ||
|
|
576f1cbb75 |
37
.github/workflows/build-container.yml
vendored
37
.github/workflows/build-container.yml
vendored
@@ -13,6 +13,12 @@ on:
|
||||
tags:
|
||||
- 'v*.*.*'
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
push-to-registry:
|
||||
description: Push the built image to the container registry
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
@@ -50,16 +56,15 @@ jobs:
|
||||
df -h
|
||||
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Docker meta
|
||||
id: meta
|
||||
uses: docker/metadata-action@v4
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
images: |
|
||||
ghcr.io/${{ github.repository }}
|
||||
${{ env.DOCKERHUB_REPOSITORY }}
|
||||
tags: |
|
||||
type=ref,event=branch
|
||||
type=ref,event=tag
|
||||
@@ -72,49 +77,33 @@ jobs:
|
||||
suffix=-${{ matrix.gpu-driver }},onlatest=false
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
uses: docker/setup-qemu-action@v3
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
uses: docker/setup-buildx-action@v3
|
||||
with:
|
||||
platforms: ${{ env.PLATFORMS }}
|
||||
|
||||
- name: Login to GitHub Container Registry
|
||||
if: github.event_name != 'pull_request'
|
||||
uses: docker/login-action@v2
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
registry: ghcr.io
|
||||
username: ${{ github.repository_owner }}
|
||||
password: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
# - name: Login to Docker Hub
|
||||
# if: github.event_name != 'pull_request' && vars.DOCKERHUB_REPOSITORY != ''
|
||||
# uses: docker/login-action@v2
|
||||
# with:
|
||||
# username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
# password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
|
||||
- name: Build container
|
||||
timeout-minutes: 40
|
||||
id: docker_build
|
||||
uses: docker/build-push-action@v4
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
context: .
|
||||
file: docker/Dockerfile
|
||||
platforms: ${{ env.PLATFORMS }}
|
||||
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' }}
|
||||
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' || github.event.inputs.push-to-registry }}
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
cache-from: |
|
||||
type=gha,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
|
||||
type=gha,scope=main-${{ matrix.gpu-driver }}
|
||||
cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
|
||||
|
||||
# - name: Docker Hub Description
|
||||
# if: github.ref == 'refs/heads/main' || github.ref == 'refs/tags/*' && vars.DOCKERHUB_REPOSITORY != ''
|
||||
# uses: peter-evans/dockerhub-description@v3
|
||||
# with:
|
||||
# username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
# password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
# repository: ${{ vars.DOCKERHUB_REPOSITORY }}
|
||||
# short-description: ${{ github.event.repository.description }}
|
||||
|
||||
@@ -196,6 +196,22 @@ tips to reduce the problem:
|
||||
=== "12GB VRAM GPU"
|
||||
|
||||
This should be sufficient to generate larger images up to about 1280x1280.
|
||||
|
||||
## Checkpoint Models Load Slowly or Use Too Much RAM
|
||||
|
||||
The difference between diffusers models (a folder containing multiple
|
||||
subfolders) and checkpoint models (a file ending with .safetensors or
|
||||
.ckpt) is that InvokeAI is able to load diffusers models into memory
|
||||
incrementally, while checkpoint models must be loaded all at
|
||||
once. With very large models, or systems with limited RAM, you may
|
||||
experience slowdowns and other memory-related issues when loading
|
||||
checkpoint models.
|
||||
|
||||
To solve this, go to the Model Manager tab (the cube), select the
|
||||
checkpoint model that's giving you trouble, and press the "Convert"
|
||||
button in the upper right of your browser window. This will conver the
|
||||
checkpoint into a diffusers model, after which loading should be
|
||||
faster and less memory-intensive.
|
||||
|
||||
## Memory Leak (Linux)
|
||||
|
||||
|
||||
@@ -3,8 +3,10 @@
|
||||
|
||||
import io
|
||||
import pathlib
|
||||
import shutil
|
||||
import traceback
|
||||
from copy import deepcopy
|
||||
from enum import Enum
|
||||
from tempfile import TemporaryDirectory
|
||||
from typing import List, Optional, Type
|
||||
|
||||
@@ -17,6 +19,7 @@ from starlette.exceptions import HTTPException
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.services.config import get_config
|
||||
from invokeai.app.services.model_images.model_images_common import ModelImageFileNotFoundException
|
||||
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
|
||||
from invokeai.app.services.model_records import (
|
||||
@@ -31,6 +34,7 @@ from invokeai.backend.model_manager.config import (
|
||||
ModelFormat,
|
||||
ModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import CacheStats
|
||||
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
|
||||
from invokeai.backend.model_manager.metadata.metadata_base import ModelMetadataWithFiles, UnknownMetadataException
|
||||
from invokeai.backend.model_manager.search import ModelSearch
|
||||
@@ -50,6 +54,13 @@ class ModelsList(BaseModel):
|
||||
model_config = ConfigDict(use_enum_values=True)
|
||||
|
||||
|
||||
class CacheType(str, Enum):
|
||||
"""Cache type - one of vram or ram."""
|
||||
|
||||
RAM = "RAM"
|
||||
VRAM = "VRAM"
|
||||
|
||||
|
||||
def add_cover_image_to_model_config(config: AnyModelConfig, dependencies: Type[ApiDependencies]) -> AnyModelConfig:
|
||||
"""Add a cover image URL to a model configuration."""
|
||||
cover_image = dependencies.invoker.services.model_images.get_url(config.key)
|
||||
@@ -797,3 +808,83 @@ async def get_starter_models() -> list[StarterModel]:
|
||||
model.dependencies = missing_deps
|
||||
|
||||
return starter_models
|
||||
|
||||
|
||||
@model_manager_router.get(
|
||||
"/model_cache",
|
||||
operation_id="get_cache_size",
|
||||
response_model=float,
|
||||
summary="Get maximum size of model manager RAM or VRAM cache.",
|
||||
)
|
||||
async def get_cache_size(cache_type: CacheType = Query(description="The cache type", default=CacheType.RAM)) -> float:
|
||||
"""Return the current RAM or VRAM cache size setting (in GB)."""
|
||||
cache = ApiDependencies.invoker.services.model_manager.load.ram_cache
|
||||
value = 0.0
|
||||
if cache_type == CacheType.RAM:
|
||||
value = cache.max_cache_size
|
||||
elif cache_type == CacheType.VRAM:
|
||||
value = cache.max_vram_cache_size
|
||||
return value
|
||||
|
||||
|
||||
@model_manager_router.put(
|
||||
"/model_cache",
|
||||
operation_id="set_cache_size",
|
||||
response_model=float,
|
||||
summary="Set maximum size of model manager RAM or VRAM cache, optionally writing new value out to invokeai.yaml config file.",
|
||||
)
|
||||
async def set_cache_size(
|
||||
value: float = Query(description="The new value for the maximum cache size"),
|
||||
cache_type: CacheType = Query(description="The cache type", default=CacheType.RAM),
|
||||
persist: bool = Query(description="Write new value out to invokeai.yaml", default=False),
|
||||
) -> float:
|
||||
"""Set the current RAM or VRAM cache size setting (in GB). ."""
|
||||
cache = ApiDependencies.invoker.services.model_manager.load.ram_cache
|
||||
app_config = get_config()
|
||||
# Record initial state.
|
||||
vram_old = app_config.vram
|
||||
ram_old = app_config.ram
|
||||
|
||||
# Prepare target state.
|
||||
vram_new = vram_old
|
||||
ram_new = ram_old
|
||||
if cache_type == CacheType.RAM:
|
||||
ram_new = value
|
||||
elif cache_type == CacheType.VRAM:
|
||||
vram_new = value
|
||||
else:
|
||||
raise ValueError(f"Unexpected {cache_type=}.")
|
||||
|
||||
config_path = app_config.config_file_path
|
||||
new_config_path = config_path.with_suffix(".yaml.new")
|
||||
|
||||
try:
|
||||
# Try to apply the target state.
|
||||
cache.max_vram_cache_size = vram_new
|
||||
cache.max_cache_size = ram_new
|
||||
app_config.ram = ram_new
|
||||
app_config.vram = vram_new
|
||||
if persist:
|
||||
app_config.write_file(new_config_path)
|
||||
shutil.move(new_config_path, config_path)
|
||||
except Exception as e:
|
||||
# If there was a failure, restore the initial state.
|
||||
cache.max_cache_size = ram_old
|
||||
cache.max_vram_cache_size = vram_old
|
||||
app_config.ram = ram_old
|
||||
app_config.vram = vram_old
|
||||
|
||||
raise RuntimeError("Failed to update cache size") from e
|
||||
return value
|
||||
|
||||
|
||||
@model_manager_router.get(
|
||||
"/stats",
|
||||
operation_id="get_stats",
|
||||
response_model=Optional[CacheStats],
|
||||
summary="Get model manager RAM cache performance statistics.",
|
||||
)
|
||||
async def get_stats() -> Optional[CacheStats]:
|
||||
"""Return performance statistics on the model manager's RAM cache. Will return null if no models have been loaded."""
|
||||
|
||||
return ApiDependencies.invoker.services.model_manager.load.ram_cache.stats
|
||||
|
||||
@@ -185,7 +185,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
)
|
||||
denoise_mask: Optional[DenoiseMaskField] = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.mask,
|
||||
description=FieldDescriptions.denoise_mask,
|
||||
input=Input.Connection,
|
||||
ui_order=8,
|
||||
)
|
||||
|
||||
@@ -45,11 +45,13 @@ class UIType(str, Enum, metaclass=MetaEnum):
|
||||
SDXLRefinerModel = "SDXLRefinerModelField"
|
||||
ONNXModel = "ONNXModelField"
|
||||
VAEModel = "VAEModelField"
|
||||
FluxVAEModel = "FluxVAEModelField"
|
||||
LoRAModel = "LoRAModelField"
|
||||
ControlNetModel = "ControlNetModelField"
|
||||
IPAdapterModel = "IPAdapterModelField"
|
||||
T2IAdapterModel = "T2IAdapterModelField"
|
||||
T5EncoderModel = "T5EncoderModelField"
|
||||
CLIPEmbedModel = "CLIPEmbedModelField"
|
||||
SpandrelImageToImageModel = "SpandrelImageToImageModelField"
|
||||
# endregion
|
||||
|
||||
@@ -128,6 +130,7 @@ class FieldDescriptions:
|
||||
noise = "Noise tensor"
|
||||
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
|
||||
t5_encoder = "T5 tokenizer and text encoder"
|
||||
clip_embed_model = "CLIP Embed loader"
|
||||
unet = "UNet (scheduler, LoRAs)"
|
||||
transformer = "Transformer"
|
||||
vae = "VAE"
|
||||
@@ -178,7 +181,7 @@ class FieldDescriptions:
|
||||
)
|
||||
num_1 = "The first number"
|
||||
num_2 = "The second number"
|
||||
mask = "The mask to use for the operation"
|
||||
denoise_mask = "A mask of the region to apply the denoising process to."
|
||||
board = "The board to save the image to"
|
||||
image = "The image to process"
|
||||
tile_size = "Tile size"
|
||||
|
||||
249
invokeai/app/invocations/flux_denoise.py
Normal file
249
invokeai/app/invocations/flux_denoise.py
Normal file
@@ -0,0 +1,249 @@
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
import torchvision.transforms as tv_transforms
|
||||
from torchvision.transforms.functional import resize as tv_resize
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
|
||||
from invokeai.app.invocations.fields import (
|
||||
DenoiseMaskField,
|
||||
FieldDescriptions,
|
||||
FluxConditioningField,
|
||||
Input,
|
||||
InputField,
|
||||
LatentsField,
|
||||
WithBoard,
|
||||
WithMetadata,
|
||||
)
|
||||
from invokeai.app.invocations.model import TransformerField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.flux.denoise import denoise
|
||||
from invokeai.backend.flux.inpaint_extension import InpaintExtension
|
||||
from invokeai.backend.flux.model import Flux
|
||||
from invokeai.backend.flux.sampling_utils import (
|
||||
clip_timestep_schedule,
|
||||
generate_img_ids,
|
||||
get_noise,
|
||||
get_schedule,
|
||||
pack,
|
||||
unpack,
|
||||
)
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
@invocation(
|
||||
"flux_denoise",
|
||||
title="FLUX Denoise",
|
||||
tags=["image", "flux"],
|
||||
category="image",
|
||||
version="1.0.0",
|
||||
classification=Classification.Prototype,
|
||||
)
|
||||
class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Run denoising process with a FLUX transformer model."""
|
||||
|
||||
# If latents is provided, this means we are doing image-to-image.
|
||||
latents: Optional[LatentsField] = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
# denoise_mask is used for image-to-image inpainting. Only the masked region is modified.
|
||||
denoise_mask: Optional[DenoiseMaskField] = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.denoise_mask,
|
||||
input=Input.Connection,
|
||||
)
|
||||
denoising_start: float = InputField(
|
||||
default=0.0,
|
||||
ge=0,
|
||||
le=1,
|
||||
description=FieldDescriptions.denoising_start,
|
||||
)
|
||||
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
|
||||
transformer: TransformerField = InputField(
|
||||
description=FieldDescriptions.flux_model,
|
||||
input=Input.Connection,
|
||||
title="Transformer",
|
||||
)
|
||||
positive_text_conditioning: FluxConditioningField = InputField(
|
||||
description=FieldDescriptions.positive_cond, input=Input.Connection
|
||||
)
|
||||
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
|
||||
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
|
||||
num_steps: int = InputField(
|
||||
default=4, description="Number of diffusion steps. Recommended values are schnell: 4, dev: 50."
|
||||
)
|
||||
guidance: float = InputField(
|
||||
default=4.0,
|
||||
description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images. FLUX dev only, ignored for schnell.",
|
||||
)
|
||||
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = self._run_diffusion(context)
|
||||
latents = latents.detach().to("cpu")
|
||||
|
||||
name = context.tensors.save(tensor=latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
|
||||
|
||||
def _run_diffusion(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
):
|
||||
inference_dtype = torch.bfloat16
|
||||
|
||||
# Load the conditioning data.
|
||||
cond_data = context.conditioning.load(self.positive_text_conditioning.conditioning_name)
|
||||
assert len(cond_data.conditionings) == 1
|
||||
flux_conditioning = cond_data.conditionings[0]
|
||||
assert isinstance(flux_conditioning, FLUXConditioningInfo)
|
||||
flux_conditioning = flux_conditioning.to(dtype=inference_dtype)
|
||||
t5_embeddings = flux_conditioning.t5_embeds
|
||||
clip_embeddings = flux_conditioning.clip_embeds
|
||||
|
||||
# Load the input latents, if provided.
|
||||
init_latents = context.tensors.load(self.latents.latents_name) if self.latents else None
|
||||
if init_latents is not None:
|
||||
init_latents = init_latents.to(device=TorchDevice.choose_torch_device(), dtype=inference_dtype)
|
||||
|
||||
# Prepare input noise.
|
||||
noise = get_noise(
|
||||
num_samples=1,
|
||||
height=self.height,
|
||||
width=self.width,
|
||||
device=TorchDevice.choose_torch_device(),
|
||||
dtype=inference_dtype,
|
||||
seed=self.seed,
|
||||
)
|
||||
|
||||
transformer_info = context.models.load(self.transformer.transformer)
|
||||
is_schnell = "schnell" in transformer_info.config.config_path
|
||||
|
||||
# Calculate the timestep schedule.
|
||||
image_seq_len = noise.shape[-1] * noise.shape[-2] // 4
|
||||
timesteps = get_schedule(
|
||||
num_steps=self.num_steps,
|
||||
image_seq_len=image_seq_len,
|
||||
shift=not is_schnell,
|
||||
)
|
||||
|
||||
# Clip the timesteps schedule based on denoising_start and denoising_end.
|
||||
timesteps = clip_timestep_schedule(timesteps, self.denoising_start, self.denoising_end)
|
||||
|
||||
# Prepare input latent image.
|
||||
if init_latents is not None:
|
||||
# If init_latents is provided, we are doing image-to-image.
|
||||
|
||||
if is_schnell:
|
||||
context.logger.warning(
|
||||
"Running image-to-image with a FLUX schnell model. This is not recommended. The results are likely "
|
||||
"to be poor. Consider using a FLUX dev model instead."
|
||||
)
|
||||
|
||||
# Noise the orig_latents by the appropriate amount for the first timestep.
|
||||
t_0 = timesteps[0]
|
||||
x = t_0 * noise + (1.0 - t_0) * init_latents
|
||||
else:
|
||||
# init_latents are not provided, so we are not doing image-to-image (i.e. we are starting from pure noise).
|
||||
if self.denoising_start > 1e-5:
|
||||
raise ValueError("denoising_start should be 0 when initial latents are not provided.")
|
||||
|
||||
x = noise
|
||||
|
||||
# If len(timesteps) == 1, then short-circuit. We are just noising the input latents, but not taking any
|
||||
# denoising steps.
|
||||
if len(timesteps) <= 1:
|
||||
return x
|
||||
|
||||
inpaint_mask = self._prep_inpaint_mask(context, x)
|
||||
|
||||
b, _c, h, w = x.shape
|
||||
img_ids = generate_img_ids(h=h, w=w, batch_size=b, device=x.device, dtype=x.dtype)
|
||||
|
||||
bs, t5_seq_len, _ = t5_embeddings.shape
|
||||
txt_ids = torch.zeros(bs, t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device())
|
||||
|
||||
# Pack all latent tensors.
|
||||
init_latents = pack(init_latents) if init_latents is not None else None
|
||||
inpaint_mask = pack(inpaint_mask) if inpaint_mask is not None else None
|
||||
noise = pack(noise)
|
||||
x = pack(x)
|
||||
|
||||
# Now that we have 'packed' the latent tensors, verify that we calculated the image_seq_len correctly.
|
||||
assert image_seq_len == x.shape[1]
|
||||
|
||||
# Prepare inpaint extension.
|
||||
inpaint_extension: InpaintExtension | None = None
|
||||
if inpaint_mask is not None:
|
||||
assert init_latents is not None
|
||||
inpaint_extension = InpaintExtension(
|
||||
init_latents=init_latents,
|
||||
inpaint_mask=inpaint_mask,
|
||||
noise=noise,
|
||||
)
|
||||
|
||||
with transformer_info as transformer:
|
||||
assert isinstance(transformer, Flux)
|
||||
|
||||
x = denoise(
|
||||
model=transformer,
|
||||
img=x,
|
||||
img_ids=img_ids,
|
||||
txt=t5_embeddings,
|
||||
txt_ids=txt_ids,
|
||||
vec=clip_embeddings,
|
||||
timesteps=timesteps,
|
||||
step_callback=self._build_step_callback(context),
|
||||
guidance=self.guidance,
|
||||
inpaint_extension=inpaint_extension,
|
||||
)
|
||||
|
||||
x = unpack(x.float(), self.height, self.width)
|
||||
return x
|
||||
|
||||
def _prep_inpaint_mask(self, context: InvocationContext, latents: torch.Tensor) -> torch.Tensor | None:
|
||||
"""Prepare the inpaint mask.
|
||||
|
||||
- Loads the mask
|
||||
- Resizes if necessary
|
||||
- Casts to same device/dtype as latents
|
||||
- Expands mask to the same shape as latents so that they line up after 'packing'
|
||||
|
||||
Args:
|
||||
context (InvocationContext): The invocation context, for loading the inpaint mask.
|
||||
latents (torch.Tensor): A latent image tensor. In 'unpacked' format. Used to determine the target shape,
|
||||
device, and dtype for the inpaint mask.
|
||||
|
||||
Returns:
|
||||
torch.Tensor | None: Inpaint mask.
|
||||
"""
|
||||
if self.denoise_mask is None:
|
||||
return None
|
||||
|
||||
mask = context.tensors.load(self.denoise_mask.mask_name)
|
||||
|
||||
_, _, latent_height, latent_width = latents.shape
|
||||
mask = tv_resize(
|
||||
img=mask,
|
||||
size=[latent_height, latent_width],
|
||||
interpolation=tv_transforms.InterpolationMode.BILINEAR,
|
||||
antialias=False,
|
||||
)
|
||||
|
||||
mask = mask.to(device=latents.device, dtype=latents.dtype)
|
||||
|
||||
# Expand the inpaint mask to the same shape as `latents` so that when we 'pack' `mask` it lines up with
|
||||
# `latents`.
|
||||
return mask.expand_as(latents)
|
||||
|
||||
def _build_step_callback(self, context: InvocationContext) -> Callable[[PipelineIntermediateState], None]:
|
||||
def step_callback(state: PipelineIntermediateState) -> None:
|
||||
state.latents = unpack(state.latents.float(), self.height, self.width).squeeze()
|
||||
context.util.flux_step_callback(state)
|
||||
|
||||
return step_callback
|
||||
@@ -40,7 +40,10 @@ class FluxTextEncoderInvocation(BaseInvocation):
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> FluxConditioningOutput:
|
||||
t5_embeddings, clip_embeddings = self._encode_prompt(context)
|
||||
# Note: The T5 and CLIP encoding are done in separate functions to ensure that all model references are locally
|
||||
# scoped. This ensures that the T5 model can be freed and gc'd before loading the CLIP model (if necessary).
|
||||
t5_embeddings = self._t5_encode(context)
|
||||
clip_embeddings = self._clip_encode(context)
|
||||
conditioning_data = ConditioningFieldData(
|
||||
conditionings=[FLUXConditioningInfo(clip_embeds=clip_embeddings, t5_embeds=t5_embeddings)]
|
||||
)
|
||||
@@ -48,12 +51,7 @@ class FluxTextEncoderInvocation(BaseInvocation):
|
||||
conditioning_name = context.conditioning.save(conditioning_data)
|
||||
return FluxConditioningOutput.build(conditioning_name)
|
||||
|
||||
def _encode_prompt(self, context: InvocationContext) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
# Load CLIP.
|
||||
clip_tokenizer_info = context.models.load(self.clip.tokenizer)
|
||||
clip_text_encoder_info = context.models.load(self.clip.text_encoder)
|
||||
|
||||
# Load T5.
|
||||
def _t5_encode(self, context: InvocationContext) -> torch.Tensor:
|
||||
t5_tokenizer_info = context.models.load(self.t5_encoder.tokenizer)
|
||||
t5_text_encoder_info = context.models.load(self.t5_encoder.text_encoder)
|
||||
|
||||
@@ -70,6 +68,15 @@ class FluxTextEncoderInvocation(BaseInvocation):
|
||||
|
||||
prompt_embeds = t5_encoder(prompt)
|
||||
|
||||
assert isinstance(prompt_embeds, torch.Tensor)
|
||||
return prompt_embeds
|
||||
|
||||
def _clip_encode(self, context: InvocationContext) -> torch.Tensor:
|
||||
clip_tokenizer_info = context.models.load(self.clip.tokenizer)
|
||||
clip_text_encoder_info = context.models.load(self.clip.text_encoder)
|
||||
|
||||
prompt = [self.prompt]
|
||||
|
||||
with (
|
||||
clip_text_encoder_info as clip_text_encoder,
|
||||
clip_tokenizer_info as clip_tokenizer,
|
||||
@@ -81,6 +88,5 @@ class FluxTextEncoderInvocation(BaseInvocation):
|
||||
|
||||
pooled_prompt_embeds = clip_encoder(prompt)
|
||||
|
||||
assert isinstance(prompt_embeds, torch.Tensor)
|
||||
assert isinstance(pooled_prompt_embeds, torch.Tensor)
|
||||
return prompt_embeds, pooled_prompt_embeds
|
||||
return pooled_prompt_embeds
|
||||
|
||||
@@ -1,172 +0,0 @@
|
||||
import torch
|
||||
from einops import rearrange
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
FluxConditioningField,
|
||||
Input,
|
||||
InputField,
|
||||
WithBoard,
|
||||
WithMetadata,
|
||||
)
|
||||
from invokeai.app.invocations.model import TransformerField, VAEField
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.session_processor.session_processor_common import CanceledException
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.flux.model import Flux
|
||||
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
|
||||
from invokeai.backend.flux.sampling import denoise, get_noise, get_schedule, prepare_latent_img_patches, unpack
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
@invocation(
|
||||
"flux_text_to_image",
|
||||
title="FLUX Text to Image",
|
||||
tags=["image", "flux"],
|
||||
category="image",
|
||||
version="1.0.0",
|
||||
classification=Classification.Prototype,
|
||||
)
|
||||
class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Text-to-image generation using a FLUX model."""
|
||||
|
||||
transformer: TransformerField = InputField(
|
||||
description=FieldDescriptions.flux_model,
|
||||
input=Input.Connection,
|
||||
title="Transformer",
|
||||
)
|
||||
vae: VAEField = InputField(
|
||||
description=FieldDescriptions.vae,
|
||||
input=Input.Connection,
|
||||
)
|
||||
positive_text_conditioning: FluxConditioningField = InputField(
|
||||
description=FieldDescriptions.positive_cond, input=Input.Connection
|
||||
)
|
||||
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
|
||||
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
|
||||
num_steps: int = InputField(
|
||||
default=4, description="Number of diffusion steps. Recommend values are schnell: 4, dev: 50."
|
||||
)
|
||||
guidance: float = InputField(
|
||||
default=4.0,
|
||||
description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images. FLUX dev only, ignored for schnell.",
|
||||
)
|
||||
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
# Load the conditioning data.
|
||||
cond_data = context.conditioning.load(self.positive_text_conditioning.conditioning_name)
|
||||
assert len(cond_data.conditionings) == 1
|
||||
flux_conditioning = cond_data.conditionings[0]
|
||||
assert isinstance(flux_conditioning, FLUXConditioningInfo)
|
||||
|
||||
latents = self._run_diffusion(context, flux_conditioning.clip_embeds, flux_conditioning.t5_embeds)
|
||||
image = self._run_vae_decoding(context, latents)
|
||||
image_dto = context.images.save(image=image)
|
||||
return ImageOutput.build(image_dto)
|
||||
|
||||
def _run_diffusion(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
clip_embeddings: torch.Tensor,
|
||||
t5_embeddings: torch.Tensor,
|
||||
):
|
||||
transformer_info = context.models.load(self.transformer.transformer)
|
||||
inference_dtype = torch.bfloat16
|
||||
|
||||
# Prepare input noise.
|
||||
x = get_noise(
|
||||
num_samples=1,
|
||||
height=self.height,
|
||||
width=self.width,
|
||||
device=TorchDevice.choose_torch_device(),
|
||||
dtype=inference_dtype,
|
||||
seed=self.seed,
|
||||
)
|
||||
|
||||
img, img_ids = prepare_latent_img_patches(x)
|
||||
|
||||
is_schnell = "schnell" in transformer_info.config.config_path
|
||||
|
||||
timesteps = get_schedule(
|
||||
num_steps=self.num_steps,
|
||||
image_seq_len=img.shape[1],
|
||||
shift=not is_schnell,
|
||||
)
|
||||
|
||||
bs, t5_seq_len, _ = t5_embeddings.shape
|
||||
txt_ids = torch.zeros(bs, t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device())
|
||||
|
||||
# HACK(ryand): Manually empty the cache. Currently we don't check the size of the model before loading it from
|
||||
# disk. Since the transformer model is large (24GB), there's a good chance that it will OOM on 32GB RAM systems
|
||||
# if the cache is not empty.
|
||||
context.models._services.model_manager.load.ram_cache.make_room(24 * 2**30)
|
||||
|
||||
with transformer_info as transformer:
|
||||
assert isinstance(transformer, Flux)
|
||||
|
||||
def step_callback() -> None:
|
||||
if context.util.is_canceled():
|
||||
raise CanceledException
|
||||
|
||||
# TODO: Make this look like the image before re-enabling
|
||||
# latent_image = unpack(img.float(), self.height, self.width)
|
||||
# latent_image = latent_image.squeeze() # Remove unnecessary dimensions
|
||||
# flattened_tensor = latent_image.reshape(-1) # Flatten to shape [48*128*128]
|
||||
|
||||
# # Create a new tensor of the required shape [255, 255, 3]
|
||||
# latent_image = flattened_tensor[: 255 * 255 * 3].reshape(255, 255, 3) # Reshape to RGB format
|
||||
|
||||
# # Convert to a NumPy array and then to a PIL Image
|
||||
# image = Image.fromarray(latent_image.cpu().numpy().astype(np.uint8))
|
||||
|
||||
# (width, height) = image.size
|
||||
# width *= 8
|
||||
# height *= 8
|
||||
|
||||
# dataURL = image_to_dataURL(image, image_format="JPEG")
|
||||
|
||||
# # TODO: move this whole function to invocation context to properly reference these variables
|
||||
# context._services.events.emit_invocation_denoise_progress(
|
||||
# context._data.queue_item,
|
||||
# context._data.invocation,
|
||||
# state,
|
||||
# ProgressImage(dataURL=dataURL, width=width, height=height),
|
||||
# )
|
||||
|
||||
x = denoise(
|
||||
model=transformer,
|
||||
img=img,
|
||||
img_ids=img_ids,
|
||||
txt=t5_embeddings,
|
||||
txt_ids=txt_ids,
|
||||
vec=clip_embeddings,
|
||||
timesteps=timesteps,
|
||||
step_callback=step_callback,
|
||||
guidance=self.guidance,
|
||||
)
|
||||
|
||||
x = unpack(x.float(), self.height, self.width)
|
||||
|
||||
return x
|
||||
|
||||
def _run_vae_decoding(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
latents: torch.Tensor,
|
||||
) -> Image.Image:
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
with vae_info as vae:
|
||||
assert isinstance(vae, AutoEncoder)
|
||||
latents = latents.to(dtype=TorchDevice.choose_torch_dtype())
|
||||
img = vae.decode(latents)
|
||||
|
||||
img = img.clamp(-1, 1)
|
||||
img = rearrange(img[0], "c h w -> h w c")
|
||||
img_pil = Image.fromarray((127.5 * (img + 1.0)).byte().cpu().numpy())
|
||||
|
||||
return img_pil
|
||||
60
invokeai/app/invocations/flux_vae_decode.py
Normal file
60
invokeai/app/invocations/flux_vae_decode.py
Normal file
@@ -0,0 +1,60 @@
|
||||
import torch
|
||||
from einops import rearrange
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
InputField,
|
||||
LatentsField,
|
||||
WithBoard,
|
||||
WithMetadata,
|
||||
)
|
||||
from invokeai.app.invocations.model import VAEField
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
|
||||
from invokeai.backend.model_manager.load.load_base import LoadedModel
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
@invocation(
|
||||
"flux_vae_decode",
|
||||
title="FLUX Latents to Image",
|
||||
tags=["latents", "image", "vae", "l2i", "flux"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
)
|
||||
class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Generates an image from latents."""
|
||||
|
||||
latents: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
vae: VAEField = InputField(
|
||||
description=FieldDescriptions.vae,
|
||||
input=Input.Connection,
|
||||
)
|
||||
|
||||
def _vae_decode(self, vae_info: LoadedModel, latents: torch.Tensor) -> Image.Image:
|
||||
with vae_info as vae:
|
||||
assert isinstance(vae, AutoEncoder)
|
||||
latents = latents.to(device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype())
|
||||
img = vae.decode(latents)
|
||||
|
||||
img = img.clamp(-1, 1)
|
||||
img = rearrange(img[0], "c h w -> h w c") # noqa: F821
|
||||
img_pil = Image.fromarray((127.5 * (img + 1.0)).byte().cpu().numpy())
|
||||
return img_pil
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
image = self._vae_decode(vae_info=vae_info, latents=latents)
|
||||
|
||||
TorchDevice.empty_cache()
|
||||
image_dto = context.images.save(image=image)
|
||||
return ImageOutput.build(image_dto)
|
||||
67
invokeai/app/invocations/flux_vae_encode.py
Normal file
67
invokeai/app/invocations/flux_vae_encode.py
Normal file
@@ -0,0 +1,67 @@
|
||||
import einops
|
||||
import torch
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
Input,
|
||||
InputField,
|
||||
)
|
||||
from invokeai.app.invocations.model import VAEField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
|
||||
from invokeai.backend.model_manager import LoadedModel
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
@invocation(
|
||||
"flux_vae_encode",
|
||||
title="FLUX Image to Latents",
|
||||
tags=["latents", "image", "vae", "i2l", "flux"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
)
|
||||
class FluxVaeEncodeInvocation(BaseInvocation):
|
||||
"""Encodes an image into latents."""
|
||||
|
||||
image: ImageField = InputField(
|
||||
description="The image to encode.",
|
||||
)
|
||||
vae: VAEField = InputField(
|
||||
description=FieldDescriptions.vae,
|
||||
input=Input.Connection,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def vae_encode(vae_info: LoadedModel, image_tensor: torch.Tensor) -> torch.Tensor:
|
||||
# TODO(ryand): Expose seed parameter at the invocation level.
|
||||
# TODO(ryand): Write a util function for generating random tensors that is consistent across devices / dtypes.
|
||||
# There's a starting point in get_noise(...), but it needs to be extracted and generalized. This function
|
||||
# should be used for VAE encode sampling.
|
||||
generator = torch.Generator(device=TorchDevice.choose_torch_device()).manual_seed(0)
|
||||
with vae_info as vae:
|
||||
assert isinstance(vae, AutoEncoder)
|
||||
image_tensor = image_tensor.to(
|
||||
device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype()
|
||||
)
|
||||
latents = vae.encode(image_tensor, sample=True, generator=generator)
|
||||
return latents
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
|
||||
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||||
if image_tensor.dim() == 3:
|
||||
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
|
||||
|
||||
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
|
||||
|
||||
latents = latents.to("cpu")
|
||||
name = context.tensors.save(tensor=latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
|
||||
@@ -126,7 +126,7 @@ class ImageMaskToTensorInvocation(BaseInvocation, WithMetadata):
|
||||
title="Tensor Mask to Image",
|
||||
tags=["mask"],
|
||||
category="mask",
|
||||
version="1.0.0",
|
||||
version="1.1.0",
|
||||
)
|
||||
class MaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Convert a mask tensor to an image."""
|
||||
@@ -135,6 +135,11 @@ class MaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
mask = context.tensors.load(self.mask.tensor_name)
|
||||
|
||||
# Squeeze the channel dimension if it exists.
|
||||
if mask.dim() == 3:
|
||||
mask = mask.squeeze(0)
|
||||
|
||||
# Ensure that the mask is binary.
|
||||
if mask.dtype != torch.bool:
|
||||
mask = mask > 0.5
|
||||
|
||||
@@ -157,7 +157,7 @@ class FluxModelLoaderOutput(BaseInvocationOutput):
|
||||
title="Flux Main Model",
|
||||
tags=["model", "flux"],
|
||||
category="model",
|
||||
version="1.0.3",
|
||||
version="1.0.4",
|
||||
classification=Classification.Prototype,
|
||||
)
|
||||
class FluxModelLoaderInvocation(BaseInvocation):
|
||||
@@ -169,23 +169,35 @@ class FluxModelLoaderInvocation(BaseInvocation):
|
||||
input=Input.Direct,
|
||||
)
|
||||
|
||||
t5_encoder: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.t5_encoder,
|
||||
ui_type=UIType.T5EncoderModel,
|
||||
t5_encoder_model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.t5_encoder, ui_type=UIType.T5EncoderModel, input=Input.Direct, title="T5 Encoder"
|
||||
)
|
||||
|
||||
clip_embed_model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.clip_embed_model,
|
||||
ui_type=UIType.CLIPEmbedModel,
|
||||
input=Input.Direct,
|
||||
title="CLIP Embed",
|
||||
)
|
||||
|
||||
vae_model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.vae_model, ui_type=UIType.FluxVAEModel, title="VAE"
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> FluxModelLoaderOutput:
|
||||
model_key = self.model.key
|
||||
for key in [self.model.key, self.t5_encoder_model.key, self.clip_embed_model.key, self.vae_model.key]:
|
||||
if not context.models.exists(key):
|
||||
raise ValueError(f"Unknown model: {key}")
|
||||
|
||||
transformer = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
|
||||
vae = self.vae_model.model_copy(update={"submodel_type": SubModelType.VAE})
|
||||
|
||||
tokenizer = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
|
||||
clip_encoder = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
|
||||
|
||||
tokenizer2 = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
|
||||
t5_encoder = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
|
||||
|
||||
if not context.models.exists(model_key):
|
||||
raise ValueError(f"Unknown model: {model_key}")
|
||||
transformer = self._get_model(context, SubModelType.Transformer)
|
||||
tokenizer = self._get_model(context, SubModelType.Tokenizer)
|
||||
tokenizer2 = self._get_model(context, SubModelType.Tokenizer2)
|
||||
clip_encoder = self._get_model(context, SubModelType.TextEncoder)
|
||||
t5_encoder = self._get_model(context, SubModelType.TextEncoder2)
|
||||
vae = self._get_model(context, SubModelType.VAE)
|
||||
transformer_config = context.models.get_config(transformer)
|
||||
assert isinstance(transformer_config, CheckpointConfigBase)
|
||||
|
||||
@@ -197,52 +209,6 @@ class FluxModelLoaderInvocation(BaseInvocation):
|
||||
max_seq_len=max_seq_lengths[transformer_config.config_path],
|
||||
)
|
||||
|
||||
def _get_model(self, context: InvocationContext, submodel: SubModelType) -> ModelIdentifierField:
|
||||
match submodel:
|
||||
case SubModelType.Transformer:
|
||||
return self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
|
||||
case SubModelType.VAE:
|
||||
return self._pull_model_from_mm(
|
||||
context,
|
||||
SubModelType.VAE,
|
||||
"FLUX.1-schnell_ae",
|
||||
ModelType.VAE,
|
||||
BaseModelType.Flux,
|
||||
)
|
||||
case submodel if submodel in [SubModelType.Tokenizer, SubModelType.TextEncoder]:
|
||||
return self._pull_model_from_mm(
|
||||
context,
|
||||
submodel,
|
||||
"clip-vit-large-patch14",
|
||||
ModelType.CLIPEmbed,
|
||||
BaseModelType.Any,
|
||||
)
|
||||
case submodel if submodel in [SubModelType.Tokenizer2, SubModelType.TextEncoder2]:
|
||||
return self._pull_model_from_mm(
|
||||
context,
|
||||
submodel,
|
||||
self.t5_encoder.name,
|
||||
ModelType.T5Encoder,
|
||||
BaseModelType.Any,
|
||||
)
|
||||
case _:
|
||||
raise Exception(f"{submodel.value} is not a supported submodule for a flux model")
|
||||
|
||||
def _pull_model_from_mm(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
submodel: SubModelType,
|
||||
name: str,
|
||||
type: ModelType,
|
||||
base: BaseModelType,
|
||||
):
|
||||
if models := context.models.search_by_attrs(name=name, base=base, type=type):
|
||||
if len(models) != 1:
|
||||
raise Exception(f"Multiple models detected for selected model with name {name}")
|
||||
return ModelIdentifierField.from_config(models[0]).model_copy(update={"submodel_type": submodel})
|
||||
else:
|
||||
raise ValueError(f"Please install the {base}:{type} model named {name} via starter models")
|
||||
|
||||
|
||||
@invocation(
|
||||
"main_model_loader",
|
||||
|
||||
@@ -88,7 +88,8 @@ class QueueItemEventBase(QueueEventBase):
|
||||
|
||||
item_id: int = Field(description="The ID of the queue item")
|
||||
batch_id: str = Field(description="The ID of the queue batch")
|
||||
origin: str | None = Field(default=None, description="The origin of the batch")
|
||||
origin: str | None = Field(default=None, description="The origin of the queue item")
|
||||
destination: str | None = Field(default=None, description="The destination of the queue item")
|
||||
|
||||
|
||||
class InvocationEventBase(QueueItemEventBase):
|
||||
@@ -114,6 +115,7 @@ class InvocationStartedEvent(InvocationEventBase):
|
||||
item_id=queue_item.item_id,
|
||||
batch_id=queue_item.batch_id,
|
||||
origin=queue_item.origin,
|
||||
destination=queue_item.destination,
|
||||
session_id=queue_item.session_id,
|
||||
invocation=invocation,
|
||||
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
|
||||
@@ -148,6 +150,7 @@ class InvocationDenoiseProgressEvent(InvocationEventBase):
|
||||
item_id=queue_item.item_id,
|
||||
batch_id=queue_item.batch_id,
|
||||
origin=queue_item.origin,
|
||||
destination=queue_item.destination,
|
||||
session_id=queue_item.session_id,
|
||||
invocation=invocation,
|
||||
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
|
||||
@@ -186,6 +189,7 @@ class InvocationCompleteEvent(InvocationEventBase):
|
||||
item_id=queue_item.item_id,
|
||||
batch_id=queue_item.batch_id,
|
||||
origin=queue_item.origin,
|
||||
destination=queue_item.destination,
|
||||
session_id=queue_item.session_id,
|
||||
invocation=invocation,
|
||||
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
|
||||
@@ -219,6 +223,7 @@ class InvocationErrorEvent(InvocationEventBase):
|
||||
item_id=queue_item.item_id,
|
||||
batch_id=queue_item.batch_id,
|
||||
origin=queue_item.origin,
|
||||
destination=queue_item.destination,
|
||||
session_id=queue_item.session_id,
|
||||
invocation=invocation,
|
||||
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
|
||||
@@ -257,6 +262,7 @@ class QueueItemStatusChangedEvent(QueueItemEventBase):
|
||||
item_id=queue_item.item_id,
|
||||
batch_id=queue_item.batch_id,
|
||||
origin=queue_item.origin,
|
||||
destination=queue_item.destination,
|
||||
session_id=queue_item.session_id,
|
||||
status=queue_item.status,
|
||||
error_type=queue_item.error_type,
|
||||
|
||||
@@ -103,7 +103,7 @@ class HFModelSource(StringLikeSource):
|
||||
if self.variant:
|
||||
base += f":{self.variant or ''}"
|
||||
if self.subfolder:
|
||||
base += f":{self.subfolder}"
|
||||
base += f"::{self.subfolder.as_posix()}"
|
||||
return base
|
||||
|
||||
|
||||
|
||||
@@ -77,7 +77,14 @@ BatchDataCollection: TypeAlias = list[list[BatchDatum]]
|
||||
|
||||
class Batch(BaseModel):
|
||||
batch_id: str = Field(default_factory=uuid_string, description="The ID of the batch")
|
||||
origin: str | None = Field(default=None, description="The origin of this batch.")
|
||||
origin: str | None = Field(
|
||||
default=None,
|
||||
description="The origin of this queue item. This data is used by the frontend to determine how to handle results.",
|
||||
)
|
||||
destination: str | None = Field(
|
||||
default=None,
|
||||
description="The origin of this queue item. This data is used by the frontend to determine how to handle results",
|
||||
)
|
||||
data: Optional[BatchDataCollection] = Field(default=None, description="The batch data collection.")
|
||||
graph: Graph = Field(description="The graph to initialize the session with")
|
||||
workflow: Optional[WorkflowWithoutID] = Field(
|
||||
@@ -196,7 +203,14 @@ class SessionQueueItemWithoutGraph(BaseModel):
|
||||
status: QUEUE_ITEM_STATUS = Field(default="pending", description="The status of this queue item")
|
||||
priority: int = Field(default=0, description="The priority of this queue item")
|
||||
batch_id: str = Field(description="The ID of the batch associated with this queue item")
|
||||
origin: str | None = Field(default=None, description="The origin of this queue item. ")
|
||||
origin: str | None = Field(
|
||||
default=None,
|
||||
description="The origin of this queue item. This data is used by the frontend to determine how to handle results.",
|
||||
)
|
||||
destination: str | None = Field(
|
||||
default=None,
|
||||
description="The origin of this queue item. This data is used by the frontend to determine how to handle results",
|
||||
)
|
||||
session_id: str = Field(
|
||||
description="The ID of the session associated with this queue item. The session doesn't exist in graph_executions until the queue item is executed."
|
||||
)
|
||||
@@ -297,6 +311,7 @@ class BatchStatus(BaseModel):
|
||||
queue_id: str = Field(..., description="The ID of the queue")
|
||||
batch_id: str = Field(..., description="The ID of the batch")
|
||||
origin: str | None = Field(..., description="The origin of the batch")
|
||||
destination: str | None = Field(..., description="The destination of the batch")
|
||||
pending: int = Field(..., description="Number of queue items with status 'pending'")
|
||||
in_progress: int = Field(..., description="Number of queue items with status 'in_progress'")
|
||||
completed: int = Field(..., description="Number of queue items with status 'complete'")
|
||||
@@ -443,6 +458,7 @@ class SessionQueueValueToInsert(NamedTuple):
|
||||
priority: int # priority
|
||||
workflow: Optional[str] # workflow json
|
||||
origin: str | None
|
||||
destination: str | None
|
||||
|
||||
|
||||
ValuesToInsert: TypeAlias = list[SessionQueueValueToInsert]
|
||||
@@ -464,6 +480,7 @@ def prepare_values_to_insert(queue_id: str, batch: Batch, priority: int, max_new
|
||||
priority, # priority
|
||||
json.dumps(workflow, default=to_jsonable_python) if workflow else None, # workflow (json)
|
||||
batch.origin, # origin
|
||||
batch.destination, # destination
|
||||
)
|
||||
)
|
||||
return values_to_insert
|
||||
|
||||
@@ -128,8 +128,8 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
|
||||
self.__cursor.executemany(
|
||||
"""--sql
|
||||
INSERT INTO session_queue (queue_id, session, session_id, batch_id, field_values, priority, workflow, origin)
|
||||
VALUES (?, ?, ?, ?, ?, ?, ?, ?)
|
||||
INSERT INTO session_queue (queue_id, session, session_id, batch_id, field_values, priority, workflow, origin, destination)
|
||||
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
|
||||
""",
|
||||
values_to_insert,
|
||||
)
|
||||
@@ -579,7 +579,8 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
session_id,
|
||||
batch_id,
|
||||
queue_id,
|
||||
origin
|
||||
origin,
|
||||
destination
|
||||
FROM session_queue
|
||||
WHERE queue_id = ?
|
||||
"""
|
||||
@@ -659,7 +660,7 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
self.__lock.acquire()
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
SELECT status, count(*), origin
|
||||
SELECT status, count(*), origin, destination
|
||||
FROM session_queue
|
||||
WHERE
|
||||
queue_id = ?
|
||||
@@ -672,6 +673,7 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
total = sum(row[1] for row in result)
|
||||
counts: dict[str, int] = {row[0]: row[1] for row in result}
|
||||
origin = result[0]["origin"] if result else None
|
||||
destination = result[0]["destination"] if result else None
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
@@ -681,6 +683,7 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
return BatchStatus(
|
||||
batch_id=batch_id,
|
||||
origin=origin,
|
||||
destination=destination,
|
||||
queue_id=queue_id,
|
||||
pending=counts.get("pending", 0),
|
||||
in_progress=counts.get("in_progress", 0),
|
||||
|
||||
@@ -14,7 +14,7 @@ from invokeai.app.services.image_records.image_records_common import ImageCatego
|
||||
from invokeai.app.services.images.images_common import ImageDTO
|
||||
from invokeai.app.services.invocation_services import InvocationServices
|
||||
from invokeai.app.services.model_records.model_records_base import UnknownModelException
|
||||
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||
from invokeai.app.util.step_callback import flux_step_callback, stable_diffusion_step_callback
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModel,
|
||||
AnyModelConfig,
|
||||
@@ -557,6 +557,24 @@ class UtilInterface(InvocationContextInterface):
|
||||
is_canceled=self.is_canceled,
|
||||
)
|
||||
|
||||
def flux_step_callback(self, intermediate_state: PipelineIntermediateState) -> None:
|
||||
"""
|
||||
The step callback emits a progress event with the current step, the total number of
|
||||
steps, a preview image, and some other internal metadata.
|
||||
|
||||
This should be called after each denoising step.
|
||||
|
||||
Args:
|
||||
intermediate_state: The intermediate state of the diffusion pipeline.
|
||||
"""
|
||||
|
||||
flux_step_callback(
|
||||
context_data=self._data,
|
||||
intermediate_state=intermediate_state,
|
||||
events=self._services.events,
|
||||
is_canceled=self.is_canceled,
|
||||
)
|
||||
|
||||
|
||||
class InvocationContext:
|
||||
"""Provides access to various services and data for the current invocation.
|
||||
|
||||
@@ -10,9 +10,11 @@ class Migration15Callback:
|
||||
def _add_origin_col(self, cursor: sqlite3.Cursor) -> None:
|
||||
"""
|
||||
- Adds `origin` column to the session queue table.
|
||||
- Adds `destination` column to the session queue table.
|
||||
"""
|
||||
|
||||
cursor.execute("ALTER TABLE session_queue ADD COLUMN origin TEXT;")
|
||||
cursor.execute("ALTER TABLE session_queue ADD COLUMN destination TEXT;")
|
||||
|
||||
|
||||
def build_migration_15() -> Migration:
|
||||
@@ -21,6 +23,7 @@ def build_migration_15() -> Migration:
|
||||
|
||||
This migration does the following:
|
||||
- Adds `origin` column to the session queue table.
|
||||
- Adds `destination` column to the session queue table.
|
||||
"""
|
||||
migration_15 = Migration(
|
||||
from_version=14,
|
||||
|
||||
@@ -0,0 +1,407 @@
|
||||
{
|
||||
"name": "FLUX Image to Image",
|
||||
"author": "InvokeAI",
|
||||
"description": "A simple image-to-image workflow using a FLUX dev model. ",
|
||||
"version": "1.0.4",
|
||||
"contact": "",
|
||||
"tags": "image2image, flux, image-to-image",
|
||||
"notes": "Prerequisite model downloads: T5 Encoder, CLIP-L Encoder, and FLUX VAE. Quantized and un-quantized versions can be found in the starter models tab within your Model Manager. We recommend using FLUX dev models for image-to-image workflows. The image-to-image performance with FLUX schnell models is poor.",
|
||||
"exposedFields": [
|
||||
{
|
||||
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"fieldName": "model"
|
||||
},
|
||||
{
|
||||
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"fieldName": "t5_encoder_model"
|
||||
},
|
||||
{
|
||||
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"fieldName": "clip_embed_model"
|
||||
},
|
||||
{
|
||||
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"fieldName": "vae_model"
|
||||
},
|
||||
{
|
||||
"nodeId": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"fieldName": "denoising_start"
|
||||
},
|
||||
{
|
||||
"nodeId": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"fieldName": "prompt"
|
||||
},
|
||||
{
|
||||
"nodeId": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"fieldName": "num_steps"
|
||||
}
|
||||
],
|
||||
"meta": {
|
||||
"version": "3.0.0",
|
||||
"category": "default"
|
||||
},
|
||||
"nodes": [
|
||||
{
|
||||
"id": "2981a67c-480f-4237-9384-26b68dbf912b",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "2981a67c-480f-4237-9384-26b68dbf912b",
|
||||
"type": "flux_vae_encode",
|
||||
"version": "1.0.0",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"inputs": {
|
||||
"image": {
|
||||
"name": "image",
|
||||
"label": "",
|
||||
"value": {
|
||||
"image_name": "8a5c62aa-9335-45d2-9c71-89af9fc1f8d4.png"
|
||||
}
|
||||
},
|
||||
"vae": {
|
||||
"name": "vae",
|
||||
"label": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 732.7680166609682,
|
||||
"y": -24.37398171806909
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"type": "flux_denoise",
|
||||
"version": "1.0.0",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"inputs": {
|
||||
"board": {
|
||||
"name": "board",
|
||||
"label": ""
|
||||
},
|
||||
"metadata": {
|
||||
"name": "metadata",
|
||||
"label": ""
|
||||
},
|
||||
"latents": {
|
||||
"name": "latents",
|
||||
"label": ""
|
||||
},
|
||||
"denoise_mask": {
|
||||
"name": "denoise_mask",
|
||||
"label": ""
|
||||
},
|
||||
"denoising_start": {
|
||||
"name": "denoising_start",
|
||||
"label": "",
|
||||
"value": 0.04
|
||||
},
|
||||
"denoising_end": {
|
||||
"name": "denoising_end",
|
||||
"label": "",
|
||||
"value": 1
|
||||
},
|
||||
"transformer": {
|
||||
"name": "transformer",
|
||||
"label": ""
|
||||
},
|
||||
"positive_text_conditioning": {
|
||||
"name": "positive_text_conditioning",
|
||||
"label": ""
|
||||
},
|
||||
"width": {
|
||||
"name": "width",
|
||||
"label": "",
|
||||
"value": 1024
|
||||
},
|
||||
"height": {
|
||||
"name": "height",
|
||||
"label": "",
|
||||
"value": 1024
|
||||
},
|
||||
"num_steps": {
|
||||
"name": "num_steps",
|
||||
"label": "Steps (Recommend 30 for Dev, 4 for Schnell)",
|
||||
"value": 30
|
||||
},
|
||||
"guidance": {
|
||||
"name": "guidance",
|
||||
"label": "",
|
||||
"value": 4
|
||||
},
|
||||
"seed": {
|
||||
"name": "seed",
|
||||
"label": "",
|
||||
"value": 0
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 1182.8836633018684,
|
||||
"y": -251.38882958913183
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
|
||||
"type": "flux_vae_decode",
|
||||
"version": "1.0.0",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": false,
|
||||
"useCache": true,
|
||||
"inputs": {
|
||||
"board": {
|
||||
"name": "board",
|
||||
"label": ""
|
||||
},
|
||||
"metadata": {
|
||||
"name": "metadata",
|
||||
"label": ""
|
||||
},
|
||||
"latents": {
|
||||
"name": "latents",
|
||||
"label": ""
|
||||
},
|
||||
"vae": {
|
||||
"name": "vae",
|
||||
"label": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 1575.5797431839133,
|
||||
"y": -209.00150975507415
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"type": "flux_model_loader",
|
||||
"version": "1.0.4",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": true,
|
||||
"useCache": false,
|
||||
"inputs": {
|
||||
"model": {
|
||||
"name": "model",
|
||||
"label": "Model (dev variant recommended for Image-to-Image)"
|
||||
},
|
||||
"t5_encoder_model": {
|
||||
"name": "t5_encoder_model",
|
||||
"label": ""
|
||||
},
|
||||
"clip_embed_model": {
|
||||
"name": "clip_embed_model",
|
||||
"label": "",
|
||||
"value": {
|
||||
"key": "fa23a584-b623-415d-832a-21b5098ff1a1",
|
||||
"hash": "blake3:17c19f0ef941c3b7609a9c94a659ca5364de0be364a91d4179f0e39ba17c3b70",
|
||||
"name": "clip-vit-large-patch14",
|
||||
"base": "any",
|
||||
"type": "clip_embed"
|
||||
}
|
||||
},
|
||||
"vae_model": {
|
||||
"name": "vae_model",
|
||||
"label": "",
|
||||
"value": {
|
||||
"key": "74fc82ba-c0a8-479d-a890-2126f82da758",
|
||||
"hash": "blake3:ce21cb76364aa6e2421311cf4a4b5eb052a76c4f1cd207b50703d8978198a068",
|
||||
"name": "FLUX.1-schnell_ae",
|
||||
"base": "flux",
|
||||
"type": "vae"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 328.1809894659957,
|
||||
"y": -90.2241133566946
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"type": "flux_text_encoder",
|
||||
"version": "1.0.0",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"inputs": {
|
||||
"clip": {
|
||||
"name": "clip",
|
||||
"label": ""
|
||||
},
|
||||
"t5_encoder": {
|
||||
"name": "t5_encoder",
|
||||
"label": ""
|
||||
},
|
||||
"t5_max_seq_len": {
|
||||
"name": "t5_max_seq_len",
|
||||
"label": "T5 Max Seq Len",
|
||||
"value": 256
|
||||
},
|
||||
"prompt": {
|
||||
"name": "prompt",
|
||||
"label": "",
|
||||
"value": "a cat wearing a birthday hat"
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 745.8823365057267,
|
||||
"y": -299.60249175851914
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "4754c534-a5f3-4ad0-9382-7887985e668c",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "4754c534-a5f3-4ad0-9382-7887985e668c",
|
||||
"type": "rand_int",
|
||||
"version": "1.0.1",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": true,
|
||||
"useCache": false,
|
||||
"inputs": {
|
||||
"low": {
|
||||
"name": "low",
|
||||
"label": "",
|
||||
"value": 0
|
||||
},
|
||||
"high": {
|
||||
"name": "high",
|
||||
"label": "",
|
||||
"value": 2147483647
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 725.834098928012,
|
||||
"y": 496.2710031089931
|
||||
}
|
||||
}
|
||||
],
|
||||
"edges": [
|
||||
{
|
||||
"id": "reactflow__edge-2981a67c-480f-4237-9384-26b68dbf912bheight-ace0258f-67d7-4eee-a218-6fff27065214height",
|
||||
"type": "default",
|
||||
"source": "2981a67c-480f-4237-9384-26b68dbf912b",
|
||||
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"sourceHandle": "height",
|
||||
"targetHandle": "height"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-2981a67c-480f-4237-9384-26b68dbf912bwidth-ace0258f-67d7-4eee-a218-6fff27065214width",
|
||||
"type": "default",
|
||||
"source": "2981a67c-480f-4237-9384-26b68dbf912b",
|
||||
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"sourceHandle": "width",
|
||||
"targetHandle": "width"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-2981a67c-480f-4237-9384-26b68dbf912blatents-ace0258f-67d7-4eee-a218-6fff27065214latents",
|
||||
"type": "default",
|
||||
"source": "2981a67c-480f-4237-9384-26b68dbf912b",
|
||||
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"sourceHandle": "latents",
|
||||
"targetHandle": "latents"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90vae-2981a67c-480f-4237-9384-26b68dbf912bvae",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "2981a67c-480f-4237-9384-26b68dbf912b",
|
||||
"sourceHandle": "vae",
|
||||
"targetHandle": "vae"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-ace0258f-67d7-4eee-a218-6fff27065214latents-7e5172eb-48c1-44db-a770-8fd83e1435d1latents",
|
||||
"type": "default",
|
||||
"source": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"target": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
|
||||
"sourceHandle": "latents",
|
||||
"targetHandle": "latents"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-4754c534-a5f3-4ad0-9382-7887985e668cvalue-ace0258f-67d7-4eee-a218-6fff27065214seed",
|
||||
"type": "default",
|
||||
"source": "4754c534-a5f3-4ad0-9382-7887985e668c",
|
||||
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"sourceHandle": "value",
|
||||
"targetHandle": "seed"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90transformer-ace0258f-67d7-4eee-a218-6fff27065214transformer",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"sourceHandle": "transformer",
|
||||
"targetHandle": "transformer"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-01f674f8-b3d1-4df1-acac-6cb8e0bfb63cconditioning-ace0258f-67d7-4eee-a218-6fff27065214positive_text_conditioning",
|
||||
"type": "default",
|
||||
"source": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"sourceHandle": "conditioning",
|
||||
"targetHandle": "positive_text_conditioning"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90vae-7e5172eb-48c1-44db-a770-8fd83e1435d1vae",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
|
||||
"sourceHandle": "vae",
|
||||
"targetHandle": "vae"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90max_seq_len-01f674f8-b3d1-4df1-acac-6cb8e0bfb63ct5_max_seq_len",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"sourceHandle": "max_seq_len",
|
||||
"targetHandle": "t5_max_seq_len"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90t5_encoder-01f674f8-b3d1-4df1-acac-6cb8e0bfb63ct5_encoder",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"sourceHandle": "t5_encoder",
|
||||
"targetHandle": "t5_encoder"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90clip-01f674f8-b3d1-4df1-acac-6cb8e0bfb63cclip",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"sourceHandle": "clip",
|
||||
"targetHandle": "clip"
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -1,27 +1,35 @@
|
||||
{
|
||||
"name": "FLUX Text to Image",
|
||||
"author": "InvokeAI",
|
||||
"description": "A simple text-to-image workflow using FLUX dev or schnell models. Prerequisite model downloads: T5 Encoder, CLIP-L Encoder, and FLUX VAE. Quantized and un-quantized versions can be found in the starter models tab within your Model Manager. We recommend 4 steps for FLUX schnell models and 30 steps for FLUX dev models.",
|
||||
"version": "1.0.0",
|
||||
"description": "A simple text-to-image workflow using FLUX dev or schnell models.",
|
||||
"version": "1.0.4",
|
||||
"contact": "",
|
||||
"tags": "text2image, flux",
|
||||
"notes": "Prerequisite model downloads: T5 Encoder, CLIP-L Encoder, and FLUX VAE. Quantized and un-quantized versions can be found in the starter models tab within your Model Manager. We recommend 4 steps for FLUX schnell models and 30 steps for FLUX dev models.",
|
||||
"exposedFields": [
|
||||
{
|
||||
"nodeId": "4f0207c2-ff40-41fd-b047-ad33fbb1c33a",
|
||||
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"fieldName": "model"
|
||||
},
|
||||
{
|
||||
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"fieldName": "t5_encoder_model"
|
||||
},
|
||||
{
|
||||
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"fieldName": "clip_embed_model"
|
||||
},
|
||||
{
|
||||
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"fieldName": "vae_model"
|
||||
},
|
||||
{
|
||||
"nodeId": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"fieldName": "prompt"
|
||||
},
|
||||
{
|
||||
"nodeId": "159bdf1b-79e7-4174-b86e-d40e646964c8",
|
||||
"nodeId": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
|
||||
"fieldName": "num_steps"
|
||||
},
|
||||
{
|
||||
"nodeId": "4f0207c2-ff40-41fd-b047-ad33fbb1c33a",
|
||||
"fieldName": "t5_encoder"
|
||||
}
|
||||
],
|
||||
"meta": {
|
||||
@@ -30,12 +38,127 @@
|
||||
},
|
||||
"nodes": [
|
||||
{
|
||||
"id": "4f0207c2-ff40-41fd-b047-ad33fbb1c33a",
|
||||
"id": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "4f0207c2-ff40-41fd-b047-ad33fbb1c33a",
|
||||
"id": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
|
||||
"type": "flux_denoise",
|
||||
"version": "1.0.0",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"inputs": {
|
||||
"board": {
|
||||
"name": "board",
|
||||
"label": ""
|
||||
},
|
||||
"metadata": {
|
||||
"name": "metadata",
|
||||
"label": ""
|
||||
},
|
||||
"latents": {
|
||||
"name": "latents",
|
||||
"label": ""
|
||||
},
|
||||
"denoise_mask": {
|
||||
"name": "denoise_mask",
|
||||
"label": ""
|
||||
},
|
||||
"denoising_start": {
|
||||
"name": "denoising_start",
|
||||
"label": "",
|
||||
"value": 0
|
||||
},
|
||||
"denoising_end": {
|
||||
"name": "denoising_end",
|
||||
"label": "",
|
||||
"value": 1
|
||||
},
|
||||
"transformer": {
|
||||
"name": "transformer",
|
||||
"label": ""
|
||||
},
|
||||
"positive_text_conditioning": {
|
||||
"name": "positive_text_conditioning",
|
||||
"label": ""
|
||||
},
|
||||
"width": {
|
||||
"name": "width",
|
||||
"label": "",
|
||||
"value": 1024
|
||||
},
|
||||
"height": {
|
||||
"name": "height",
|
||||
"label": "",
|
||||
"value": 1024
|
||||
},
|
||||
"num_steps": {
|
||||
"name": "num_steps",
|
||||
"label": "Steps (Recommend 30 for Dev, 4 for Schnell)",
|
||||
"value": 30
|
||||
},
|
||||
"guidance": {
|
||||
"name": "guidance",
|
||||
"label": "",
|
||||
"value": 4
|
||||
},
|
||||
"seed": {
|
||||
"name": "seed",
|
||||
"label": "",
|
||||
"value": 0
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 1186.1868226120378,
|
||||
"y": -214.9459927686657
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
|
||||
"type": "flux_vae_decode",
|
||||
"version": "1.0.0",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": false,
|
||||
"useCache": true,
|
||||
"inputs": {
|
||||
"board": {
|
||||
"name": "board",
|
||||
"label": ""
|
||||
},
|
||||
"metadata": {
|
||||
"name": "metadata",
|
||||
"label": ""
|
||||
},
|
||||
"latents": {
|
||||
"name": "latents",
|
||||
"label": ""
|
||||
},
|
||||
"vae": {
|
||||
"name": "vae",
|
||||
"label": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 1575.5797431839133,
|
||||
"y": -209.00150975507415
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"type": "flux_model_loader",
|
||||
"version": "1.0.3",
|
||||
"version": "1.0.4",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
@@ -44,31 +167,25 @@
|
||||
"inputs": {
|
||||
"model": {
|
||||
"name": "model",
|
||||
"label": "Model (Starter Models can be found in Model Manager)",
|
||||
"value": {
|
||||
"key": "f04a7a2f-c74d-4538-8d5e-879a53501662",
|
||||
"hash": "random:4875da7a9508444ffa706f61961c260d0c6729f6181a86b31fad06df1277b850",
|
||||
"name": "FLUX Dev (Quantized)",
|
||||
"base": "flux",
|
||||
"type": "main"
|
||||
}
|
||||
"label": ""
|
||||
},
|
||||
"t5_encoder": {
|
||||
"name": "t5_encoder",
|
||||
"label": "T 5 Encoder (Starter Models can be found in Model Manager)",
|
||||
"value": {
|
||||
"key": "20dcd9ec-5fbb-4012-8401-049e707da5e5",
|
||||
"hash": "random:f986be43ff3502169e4adbdcee158afb0e0a65a1edc4cab16ae59963630cfd8f",
|
||||
"name": "t5_bnb_int8_quantized_encoder",
|
||||
"base": "any",
|
||||
"type": "t5_encoder"
|
||||
}
|
||||
"t5_encoder_model": {
|
||||
"name": "t5_encoder_model",
|
||||
"label": ""
|
||||
},
|
||||
"clip_embed_model": {
|
||||
"name": "clip_embed_model",
|
||||
"label": ""
|
||||
},
|
||||
"vae_model": {
|
||||
"name": "vae_model",
|
||||
"label": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 337.09365228062825,
|
||||
"y": 40.63469521079861
|
||||
"x": 381.1882713063478,
|
||||
"y": -95.89663532854017
|
||||
}
|
||||
},
|
||||
{
|
||||
@@ -105,8 +222,8 @@
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 824.1970602278849,
|
||||
"y": 146.98251001061735
|
||||
"x": 778.4899149328337,
|
||||
"y": -100.36469216659502
|
||||
}
|
||||
},
|
||||
{
|
||||
@@ -135,132 +252,75 @@
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 822.9899179655476,
|
||||
"y": 360.9657214885052
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "159bdf1b-79e7-4174-b86e-d40e646964c8",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "159bdf1b-79e7-4174-b86e-d40e646964c8",
|
||||
"type": "flux_text_to_image",
|
||||
"version": "1.0.0",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": false,
|
||||
"useCache": true,
|
||||
"inputs": {
|
||||
"board": {
|
||||
"name": "board",
|
||||
"label": ""
|
||||
},
|
||||
"metadata": {
|
||||
"name": "metadata",
|
||||
"label": ""
|
||||
},
|
||||
"transformer": {
|
||||
"name": "transformer",
|
||||
"label": ""
|
||||
},
|
||||
"vae": {
|
||||
"name": "vae",
|
||||
"label": ""
|
||||
},
|
||||
"positive_text_conditioning": {
|
||||
"name": "positive_text_conditioning",
|
||||
"label": ""
|
||||
},
|
||||
"width": {
|
||||
"name": "width",
|
||||
"label": "",
|
||||
"value": 1024
|
||||
},
|
||||
"height": {
|
||||
"name": "height",
|
||||
"label": "",
|
||||
"value": 1024
|
||||
},
|
||||
"num_steps": {
|
||||
"name": "num_steps",
|
||||
"label": "Steps (Recommend 30 for Dev, 4 for Schnell)",
|
||||
"value": 30
|
||||
},
|
||||
"guidance": {
|
||||
"name": "guidance",
|
||||
"label": "",
|
||||
"value": 4
|
||||
},
|
||||
"seed": {
|
||||
"name": "seed",
|
||||
"label": "",
|
||||
"value": 0
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 1216.3900791301849,
|
||||
"y": 5.500841807102248
|
||||
"x": 800.9667463219505,
|
||||
"y": 285.8297267547506
|
||||
}
|
||||
}
|
||||
],
|
||||
"edges": [
|
||||
{
|
||||
"id": "reactflow__edge-4f0207c2-ff40-41fd-b047-ad33fbb1c33amax_seq_len-01f674f8-b3d1-4df1-acac-6cb8e0bfb63ct5_max_seq_len",
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90transformer-4fe24f07-f906-4f55-ab2c-9beee56ef5bdtransformer",
|
||||
"type": "default",
|
||||
"source": "4f0207c2-ff40-41fd-b047-ad33fbb1c33a",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
|
||||
"sourceHandle": "transformer",
|
||||
"targetHandle": "transformer"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-01f674f8-b3d1-4df1-acac-6cb8e0bfb63cconditioning-4fe24f07-f906-4f55-ab2c-9beee56ef5bdpositive_text_conditioning",
|
||||
"type": "default",
|
||||
"source": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"target": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
|
||||
"sourceHandle": "conditioning",
|
||||
"targetHandle": "positive_text_conditioning"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-4754c534-a5f3-4ad0-9382-7887985e668cvalue-4fe24f07-f906-4f55-ab2c-9beee56ef5bdseed",
|
||||
"type": "default",
|
||||
"source": "4754c534-a5f3-4ad0-9382-7887985e668c",
|
||||
"target": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
|
||||
"sourceHandle": "value",
|
||||
"targetHandle": "seed"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-4fe24f07-f906-4f55-ab2c-9beee56ef5bdlatents-7e5172eb-48c1-44db-a770-8fd83e1435d1latents",
|
||||
"type": "default",
|
||||
"source": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
|
||||
"target": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
|
||||
"sourceHandle": "latents",
|
||||
"targetHandle": "latents"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90vae-7e5172eb-48c1-44db-a770-8fd83e1435d1vae",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
|
||||
"sourceHandle": "vae",
|
||||
"targetHandle": "vae"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90max_seq_len-01f674f8-b3d1-4df1-acac-6cb8e0bfb63ct5_max_seq_len",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"sourceHandle": "max_seq_len",
|
||||
"targetHandle": "t5_max_seq_len"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-4f0207c2-ff40-41fd-b047-ad33fbb1c33avae-159bdf1b-79e7-4174-b86e-d40e646964c8vae",
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90t5_encoder-01f674f8-b3d1-4df1-acac-6cb8e0bfb63ct5_encoder",
|
||||
"type": "default",
|
||||
"source": "4f0207c2-ff40-41fd-b047-ad33fbb1c33a",
|
||||
"target": "159bdf1b-79e7-4174-b86e-d40e646964c8",
|
||||
"sourceHandle": "vae",
|
||||
"targetHandle": "vae"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-4f0207c2-ff40-41fd-b047-ad33fbb1c33atransformer-159bdf1b-79e7-4174-b86e-d40e646964c8transformer",
|
||||
"type": "default",
|
||||
"source": "4f0207c2-ff40-41fd-b047-ad33fbb1c33a",
|
||||
"target": "159bdf1b-79e7-4174-b86e-d40e646964c8",
|
||||
"sourceHandle": "transformer",
|
||||
"targetHandle": "transformer"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-4f0207c2-ff40-41fd-b047-ad33fbb1c33at5_encoder-01f674f8-b3d1-4df1-acac-6cb8e0bfb63ct5_encoder",
|
||||
"type": "default",
|
||||
"source": "4f0207c2-ff40-41fd-b047-ad33fbb1c33a",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"sourceHandle": "t5_encoder",
|
||||
"targetHandle": "t5_encoder"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-4f0207c2-ff40-41fd-b047-ad33fbb1c33aclip-01f674f8-b3d1-4df1-acac-6cb8e0bfb63cclip",
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90clip-01f674f8-b3d1-4df1-acac-6cb8e0bfb63cclip",
|
||||
"type": "default",
|
||||
"source": "4f0207c2-ff40-41fd-b047-ad33fbb1c33a",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"sourceHandle": "clip",
|
||||
"targetHandle": "clip"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-01f674f8-b3d1-4df1-acac-6cb8e0bfb63cconditioning-159bdf1b-79e7-4174-b86e-d40e646964c8positive_text_conditioning",
|
||||
"type": "default",
|
||||
"source": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"target": "159bdf1b-79e7-4174-b86e-d40e646964c8",
|
||||
"sourceHandle": "conditioning",
|
||||
"targetHandle": "positive_text_conditioning"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-4754c534-a5f3-4ad0-9382-7887985e668cvalue-159bdf1b-79e7-4174-b86e-d40e646964c8seed",
|
||||
"type": "default",
|
||||
"source": "4754c534-a5f3-4ad0-9382-7887985e668c",
|
||||
"target": "159bdf1b-79e7-4174-b86e-d40e646964c8",
|
||||
"sourceHandle": "value",
|
||||
"targetHandle": "seed"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
@@ -38,6 +38,25 @@ SD1_5_LATENT_RGB_FACTORS = [
|
||||
[-0.1307, -0.1874, -0.7445], # L4
|
||||
]
|
||||
|
||||
FLUX_LATENT_RGB_FACTORS = [
|
||||
[-0.0412, 0.0149, 0.0521],
|
||||
[0.0056, 0.0291, 0.0768],
|
||||
[0.0342, -0.0681, -0.0427],
|
||||
[-0.0258, 0.0092, 0.0463],
|
||||
[0.0863, 0.0784, 0.0547],
|
||||
[-0.0017, 0.0402, 0.0158],
|
||||
[0.0501, 0.1058, 0.1152],
|
||||
[-0.0209, -0.0218, -0.0329],
|
||||
[-0.0314, 0.0083, 0.0896],
|
||||
[0.0851, 0.0665, -0.0472],
|
||||
[-0.0534, 0.0238, -0.0024],
|
||||
[0.0452, -0.0026, 0.0048],
|
||||
[0.0892, 0.0831, 0.0881],
|
||||
[-0.1117, -0.0304, -0.0789],
|
||||
[0.0027, -0.0479, -0.0043],
|
||||
[-0.1146, -0.0827, -0.0598],
|
||||
]
|
||||
|
||||
|
||||
def sample_to_lowres_estimated_image(
|
||||
samples: torch.Tensor, latent_rgb_factors: torch.Tensor, smooth_matrix: Optional[torch.Tensor] = None
|
||||
@@ -94,3 +113,32 @@ def stable_diffusion_step_callback(
|
||||
intermediate_state,
|
||||
ProgressImage(dataURL=dataURL, width=width, height=height),
|
||||
)
|
||||
|
||||
|
||||
def flux_step_callback(
|
||||
context_data: "InvocationContextData",
|
||||
intermediate_state: PipelineIntermediateState,
|
||||
events: "EventServiceBase",
|
||||
is_canceled: Callable[[], bool],
|
||||
) -> None:
|
||||
if is_canceled():
|
||||
raise CanceledException
|
||||
sample = intermediate_state.latents
|
||||
latent_rgb_factors = torch.tensor(FLUX_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
|
||||
latent_image_perm = sample.permute(1, 2, 0).to(dtype=sample.dtype, device=sample.device)
|
||||
latent_image = latent_image_perm @ latent_rgb_factors
|
||||
latents_ubyte = (
|
||||
((latent_image + 1) / 2).clamp(0, 1).mul(0xFF) # change scale from -1..1 to 0..1 # to 0..255
|
||||
).to(device="cpu", dtype=torch.uint8)
|
||||
image = Image.fromarray(latents_ubyte.cpu().numpy())
|
||||
(width, height) = image.size
|
||||
width *= 8
|
||||
height *= 8
|
||||
dataURL = image_to_dataURL(image, image_format="JPEG")
|
||||
|
||||
events.emit_invocation_denoise_progress(
|
||||
context_data.queue_item,
|
||||
context_data.invocation,
|
||||
intermediate_state,
|
||||
ProgressImage(dataURL=dataURL, width=width, height=height),
|
||||
)
|
||||
|
||||
56
invokeai/backend/flux/denoise.py
Normal file
56
invokeai/backend/flux/denoise.py
Normal file
@@ -0,0 +1,56 @@
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from invokeai.backend.flux.inpaint_extension import InpaintExtension
|
||||
from invokeai.backend.flux.model import Flux
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
|
||||
|
||||
|
||||
def denoise(
|
||||
model: Flux,
|
||||
# model input
|
||||
img: torch.Tensor,
|
||||
img_ids: torch.Tensor,
|
||||
txt: torch.Tensor,
|
||||
txt_ids: torch.Tensor,
|
||||
vec: torch.Tensor,
|
||||
# sampling parameters
|
||||
timesteps: list[float],
|
||||
step_callback: Callable[[PipelineIntermediateState], None],
|
||||
guidance: float,
|
||||
inpaint_extension: InpaintExtension | None,
|
||||
):
|
||||
step = 0
|
||||
# guidance_vec is ignored for schnell.
|
||||
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
||||
for t_curr, t_prev in tqdm(list(zip(timesteps[:-1], timesteps[1:], strict=True))):
|
||||
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
|
||||
pred = model(
|
||||
img=img,
|
||||
img_ids=img_ids,
|
||||
txt=txt,
|
||||
txt_ids=txt_ids,
|
||||
y=vec,
|
||||
timesteps=t_vec,
|
||||
guidance=guidance_vec,
|
||||
)
|
||||
preview_img = img - t_curr * pred
|
||||
img = img + (t_prev - t_curr) * pred
|
||||
|
||||
if inpaint_extension is not None:
|
||||
img = inpaint_extension.merge_intermediate_latents_with_init_latents(img, t_prev)
|
||||
|
||||
step_callback(
|
||||
PipelineIntermediateState(
|
||||
step=step,
|
||||
order=1,
|
||||
total_steps=len(timesteps),
|
||||
timestep=int(t_curr),
|
||||
latents=preview_img,
|
||||
),
|
||||
)
|
||||
step += 1
|
||||
|
||||
return img
|
||||
35
invokeai/backend/flux/inpaint_extension.py
Normal file
35
invokeai/backend/flux/inpaint_extension.py
Normal file
@@ -0,0 +1,35 @@
|
||||
import torch
|
||||
|
||||
|
||||
class InpaintExtension:
|
||||
"""A class for managing inpainting with FLUX."""
|
||||
|
||||
def __init__(self, init_latents: torch.Tensor, inpaint_mask: torch.Tensor, noise: torch.Tensor):
|
||||
"""Initialize InpaintExtension.
|
||||
|
||||
Args:
|
||||
init_latents (torch.Tensor): The initial latents (i.e. un-noised at timestep 0). In 'packed' format.
|
||||
inpaint_mask (torch.Tensor): A mask specifying which elements to inpaint. Range [0, 1]. Values of 1 will be
|
||||
re-generated. Values of 0 will remain unchanged. Values between 0 and 1 can be used to blend the
|
||||
inpainted region with the background. In 'packed' format.
|
||||
noise (torch.Tensor): The noise tensor used to noise the init_latents. In 'packed' format.
|
||||
"""
|
||||
assert init_latents.shape == inpaint_mask.shape == noise.shape
|
||||
self._init_latents = init_latents
|
||||
self._inpaint_mask = inpaint_mask
|
||||
self._noise = noise
|
||||
|
||||
def merge_intermediate_latents_with_init_latents(
|
||||
self, intermediate_latents: torch.Tensor, timestep: float
|
||||
) -> torch.Tensor:
|
||||
"""Merge the intermediate latents with the initial latents for the current timestep using the inpaint mask. I.e.
|
||||
update the intermediate latents to keep the regions that are not being inpainted on the correct noise
|
||||
trajectory.
|
||||
|
||||
This function should be called after each denoising step.
|
||||
"""
|
||||
# Noise the init latents for the current timestep.
|
||||
noised_init_latents = self._noise * timestep + (1.0 - timestep) * self._init_latents
|
||||
|
||||
# Merge the intermediate latents with the noised_init_latents using the inpaint_mask.
|
||||
return intermediate_latents * self._inpaint_mask + noised_init_latents * (1.0 - self._inpaint_mask)
|
||||
@@ -258,16 +258,17 @@ class Decoder(nn.Module):
|
||||
|
||||
|
||||
class DiagonalGaussian(nn.Module):
|
||||
def __init__(self, sample: bool = True, chunk_dim: int = 1):
|
||||
def __init__(self, chunk_dim: int = 1):
|
||||
super().__init__()
|
||||
self.sample = sample
|
||||
self.chunk_dim = chunk_dim
|
||||
|
||||
def forward(self, z: Tensor) -> Tensor:
|
||||
def forward(self, z: Tensor, sample: bool = True, generator: torch.Generator | None = None) -> Tensor:
|
||||
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
|
||||
if self.sample:
|
||||
if sample:
|
||||
std = torch.exp(0.5 * logvar)
|
||||
return mean + std * torch.randn_like(mean)
|
||||
# Unfortunately, torch.randn_like(...) does not accept a generator argument at the time of writing, so we
|
||||
# have to use torch.randn(...) instead.
|
||||
return mean + std * torch.randn(size=mean.size(), generator=generator, dtype=mean.dtype, device=mean.device)
|
||||
else:
|
||||
return mean
|
||||
|
||||
@@ -297,8 +298,21 @@ class AutoEncoder(nn.Module):
|
||||
self.scale_factor = params.scale_factor
|
||||
self.shift_factor = params.shift_factor
|
||||
|
||||
def encode(self, x: Tensor) -> Tensor:
|
||||
z = self.reg(self.encoder(x))
|
||||
def encode(self, x: Tensor, sample: bool = True, generator: torch.Generator | None = None) -> Tensor:
|
||||
"""Run VAE encoding on input tensor x.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input image tensor. Shape: (batch_size, in_channels, height, width).
|
||||
sample (bool, optional): If True, sample from the encoded distribution, else, return the distribution mean.
|
||||
Defaults to True.
|
||||
generator (torch.Generator | None, optional): Optional random number generator for reproducibility.
|
||||
Defaults to None.
|
||||
|
||||
Returns:
|
||||
Tensor: Encoded latent tensor. Shape: (batch_size, z_channels, latent_height, latent_width).
|
||||
"""
|
||||
|
||||
z = self.reg(self.encoder(x), sample=sample, generator=generator)
|
||||
z = self.scale_factor * (z - self.shift_factor)
|
||||
return z
|
||||
|
||||
|
||||
@@ -1,176 +0,0 @@
|
||||
# Initially pulled from https://github.com/black-forest-labs/flux
|
||||
|
||||
import math
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from einops import rearrange, repeat
|
||||
from torch import Tensor
|
||||
from tqdm import tqdm
|
||||
|
||||
from invokeai.backend.flux.model import Flux
|
||||
from invokeai.backend.flux.modules.conditioner import HFEncoder
|
||||
|
||||
|
||||
def get_noise(
|
||||
num_samples: int,
|
||||
height: int,
|
||||
width: int,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
seed: int,
|
||||
):
|
||||
# We always generate noise on the same device and dtype then cast to ensure consistency across devices/dtypes.
|
||||
rand_device = "cpu"
|
||||
rand_dtype = torch.float16
|
||||
return torch.randn(
|
||||
num_samples,
|
||||
16,
|
||||
# allow for packing
|
||||
2 * math.ceil(height / 16),
|
||||
2 * math.ceil(width / 16),
|
||||
device=rand_device,
|
||||
dtype=rand_dtype,
|
||||
generator=torch.Generator(device=rand_device).manual_seed(seed),
|
||||
).to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
def prepare(t5: HFEncoder, clip: HFEncoder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
|
||||
bs, c, h, w = img.shape
|
||||
if bs == 1 and not isinstance(prompt, str):
|
||||
bs = len(prompt)
|
||||
|
||||
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
||||
if img.shape[0] == 1 and bs > 1:
|
||||
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
||||
|
||||
img_ids = torch.zeros(h // 2, w // 2, 3)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
if isinstance(prompt, str):
|
||||
prompt = [prompt]
|
||||
txt = t5(prompt)
|
||||
if txt.shape[0] == 1 and bs > 1:
|
||||
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
|
||||
txt_ids = torch.zeros(bs, txt.shape[1], 3)
|
||||
|
||||
vec = clip(prompt)
|
||||
if vec.shape[0] == 1 and bs > 1:
|
||||
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
|
||||
|
||||
return {
|
||||
"img": img,
|
||||
"img_ids": img_ids.to(img.device),
|
||||
"txt": txt.to(img.device),
|
||||
"txt_ids": txt_ids.to(img.device),
|
||||
"vec": vec.to(img.device),
|
||||
}
|
||||
|
||||
|
||||
def time_shift(mu: float, sigma: float, t: Tensor):
|
||||
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
||||
|
||||
|
||||
def get_lin_function(x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15) -> Callable[[float], float]:
|
||||
m = (y2 - y1) / (x2 - x1)
|
||||
b = y1 - m * x1
|
||||
return lambda x: m * x + b
|
||||
|
||||
|
||||
def get_schedule(
|
||||
num_steps: int,
|
||||
image_seq_len: int,
|
||||
base_shift: float = 0.5,
|
||||
max_shift: float = 1.15,
|
||||
shift: bool = True,
|
||||
) -> list[float]:
|
||||
# extra step for zero
|
||||
timesteps = torch.linspace(1, 0, num_steps + 1)
|
||||
|
||||
# shifting the schedule to favor high timesteps for higher signal images
|
||||
if shift:
|
||||
# eastimate mu based on linear estimation between two points
|
||||
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
|
||||
timesteps = time_shift(mu, 1.0, timesteps)
|
||||
|
||||
return timesteps.tolist()
|
||||
|
||||
|
||||
def denoise(
|
||||
model: Flux,
|
||||
# model input
|
||||
img: Tensor,
|
||||
img_ids: Tensor,
|
||||
txt: Tensor,
|
||||
txt_ids: Tensor,
|
||||
vec: Tensor,
|
||||
# sampling parameters
|
||||
timesteps: list[float],
|
||||
step_callback: Callable[[], None],
|
||||
guidance: float = 4.0,
|
||||
):
|
||||
dtype = model.txt_in.bias.dtype
|
||||
|
||||
# TODO(ryand): This shouldn't be necessary if we manage the dtypes properly in the caller.
|
||||
img = img.to(dtype=dtype)
|
||||
img_ids = img_ids.to(dtype=dtype)
|
||||
txt = txt.to(dtype=dtype)
|
||||
txt_ids = txt_ids.to(dtype=dtype)
|
||||
vec = vec.to(dtype=dtype)
|
||||
|
||||
# this is ignored for schnell
|
||||
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
||||
for t_curr, t_prev in tqdm(list(zip(timesteps[:-1], timesteps[1:], strict=True))):
|
||||
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
|
||||
pred = model(
|
||||
img=img,
|
||||
img_ids=img_ids,
|
||||
txt=txt,
|
||||
txt_ids=txt_ids,
|
||||
y=vec,
|
||||
timesteps=t_vec,
|
||||
guidance=guidance_vec,
|
||||
)
|
||||
|
||||
img = img + (t_prev - t_curr) * pred
|
||||
step_callback()
|
||||
|
||||
return img
|
||||
|
||||
|
||||
def unpack(x: Tensor, height: int, width: int) -> Tensor:
|
||||
return rearrange(
|
||||
x,
|
||||
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
||||
h=math.ceil(height / 16),
|
||||
w=math.ceil(width / 16),
|
||||
ph=2,
|
||||
pw=2,
|
||||
)
|
||||
|
||||
|
||||
def prepare_latent_img_patches(latent_img: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Convert an input image in latent space to patches for diffusion.
|
||||
|
||||
This implementation was extracted from:
|
||||
https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/sampling.py#L32
|
||||
|
||||
Returns:
|
||||
tuple[Tensor, Tensor]: (img, img_ids), as defined in the original flux repo.
|
||||
"""
|
||||
bs, c, h, w = latent_img.shape
|
||||
|
||||
# Pixel unshuffle with a scale of 2, and flatten the height/width dimensions to get an array of patches.
|
||||
img = rearrange(latent_img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
||||
if img.shape[0] == 1 and bs > 1:
|
||||
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
||||
|
||||
# Generate patch position ids.
|
||||
img_ids = torch.zeros(h // 2, w // 2, 3, device=img.device)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2, device=img.device)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2, device=img.device)[None, :]
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
return img, img_ids
|
||||
135
invokeai/backend/flux/sampling_utils.py
Normal file
135
invokeai/backend/flux/sampling_utils.py
Normal file
@@ -0,0 +1,135 @@
|
||||
# Initially pulled from https://github.com/black-forest-labs/flux
|
||||
|
||||
import math
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from einops import rearrange, repeat
|
||||
|
||||
|
||||
def get_noise(
|
||||
num_samples: int,
|
||||
height: int,
|
||||
width: int,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
seed: int,
|
||||
):
|
||||
# We always generate noise on the same device and dtype then cast to ensure consistency across devices/dtypes.
|
||||
rand_device = "cpu"
|
||||
rand_dtype = torch.float16
|
||||
return torch.randn(
|
||||
num_samples,
|
||||
16,
|
||||
# allow for packing
|
||||
2 * math.ceil(height / 16),
|
||||
2 * math.ceil(width / 16),
|
||||
device=rand_device,
|
||||
dtype=rand_dtype,
|
||||
generator=torch.Generator(device=rand_device).manual_seed(seed),
|
||||
).to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
def time_shift(mu: float, sigma: float, t: torch.Tensor) -> torch.Tensor:
|
||||
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
||||
|
||||
|
||||
def get_lin_function(x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15) -> Callable[[float], float]:
|
||||
m = (y2 - y1) / (x2 - x1)
|
||||
b = y1 - m * x1
|
||||
return lambda x: m * x + b
|
||||
|
||||
|
||||
def get_schedule(
|
||||
num_steps: int,
|
||||
image_seq_len: int,
|
||||
base_shift: float = 0.5,
|
||||
max_shift: float = 1.15,
|
||||
shift: bool = True,
|
||||
) -> list[float]:
|
||||
# extra step for zero
|
||||
timesteps = torch.linspace(1, 0, num_steps + 1)
|
||||
|
||||
# shifting the schedule to favor high timesteps for higher signal images
|
||||
if shift:
|
||||
# estimate mu based on linear estimation between two points
|
||||
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
|
||||
timesteps = time_shift(mu, 1.0, timesteps)
|
||||
|
||||
return timesteps.tolist()
|
||||
|
||||
|
||||
def _find_last_index_ge_val(timesteps: list[float], val: float, eps: float = 1e-6) -> int:
|
||||
"""Find the last index in timesteps that is >= val.
|
||||
|
||||
We use epsilon-close equality to avoid potential floating point errors.
|
||||
"""
|
||||
idx = len(list(filter(lambda t: t >= (val - eps), timesteps))) - 1
|
||||
assert idx >= 0
|
||||
return idx
|
||||
|
||||
|
||||
def clip_timestep_schedule(timesteps: list[float], denoising_start: float, denoising_end: float) -> list[float]:
|
||||
"""Clip the timestep schedule to the denoising range.
|
||||
|
||||
Args:
|
||||
timesteps (list[float]): The original timestep schedule: [1.0, ..., 0.0].
|
||||
denoising_start (float): A value in [0, 1] specifying the start of the denoising process. E.g. a value of 0.2
|
||||
would mean that the denoising process start at the last timestep in the schedule >= 0.8.
|
||||
denoising_end (float): A value in [0, 1] specifying the end of the denoising process. E.g. a value of 0.8 would
|
||||
mean that the denoising process end at the last timestep in the schedule >= 0.2.
|
||||
|
||||
Returns:
|
||||
list[float]: The clipped timestep schedule.
|
||||
"""
|
||||
assert 0.0 <= denoising_start <= 1.0
|
||||
assert 0.0 <= denoising_end <= 1.0
|
||||
assert denoising_start <= denoising_end
|
||||
|
||||
t_start_val = 1.0 - denoising_start
|
||||
t_end_val = 1.0 - denoising_end
|
||||
|
||||
t_start_idx = _find_last_index_ge_val(timesteps, t_start_val)
|
||||
t_end_idx = _find_last_index_ge_val(timesteps, t_end_val)
|
||||
|
||||
clipped_timesteps = timesteps[t_start_idx : t_end_idx + 1]
|
||||
|
||||
return clipped_timesteps
|
||||
|
||||
|
||||
def unpack(x: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
||||
"""Unpack flat array of patch embeddings to latent image."""
|
||||
return rearrange(
|
||||
x,
|
||||
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
||||
h=math.ceil(height / 16),
|
||||
w=math.ceil(width / 16),
|
||||
ph=2,
|
||||
pw=2,
|
||||
)
|
||||
|
||||
|
||||
def pack(x: torch.Tensor) -> torch.Tensor:
|
||||
"""Pack latent image to flattented array of patch embeddings."""
|
||||
# Pixel unshuffle with a scale of 2, and flatten the height/width dimensions to get an array of patches.
|
||||
return rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
||||
|
||||
|
||||
def generate_img_ids(h: int, w: int, batch_size: int, device: torch.device, dtype: torch.dtype) -> torch.Tensor:
|
||||
"""Generate tensor of image position ids.
|
||||
|
||||
Args:
|
||||
h (int): Height of image in latent space.
|
||||
w (int): Width of image in latent space.
|
||||
batch_size (int): Batch size.
|
||||
device (torch.device): Device.
|
||||
dtype (torch.dtype): dtype.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Image position ids.
|
||||
"""
|
||||
img_ids = torch.zeros(h // 2, w // 2, 3, device=device, dtype=dtype)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2, device=device, dtype=dtype)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2, device=device, dtype=dtype)[None, :]
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
|
||||
return img_ids
|
||||
@@ -66,12 +66,14 @@ class ModelLoader(ModelLoaderBase):
|
||||
return (model_base / config.path).resolve()
|
||||
|
||||
def _load_and_cache(self, config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> ModelLockerBase:
|
||||
stats_name = ":".join([config.base, config.type, config.name, (submodel_type or "")])
|
||||
try:
|
||||
return self._ram_cache.get(config.key, submodel_type)
|
||||
return self._ram_cache.get(config.key, submodel_type, stats_name=stats_name)
|
||||
except IndexError:
|
||||
pass
|
||||
|
||||
config.path = str(self._get_model_path(config))
|
||||
self._ram_cache.make_room(self.get_size_fs(config, Path(config.path), submodel_type))
|
||||
loaded_model = self._load_model(config, submodel_type)
|
||||
|
||||
self._ram_cache.put(
|
||||
@@ -83,7 +85,7 @@ class ModelLoader(ModelLoaderBase):
|
||||
return self._ram_cache.get(
|
||||
key=config.key,
|
||||
submodel_type=submodel_type,
|
||||
stats_name=":".join([config.base, config.type, config.name, (submodel_type or "")]),
|
||||
stats_name=stats_name,
|
||||
)
|
||||
|
||||
def get_size_fs(
|
||||
|
||||
@@ -128,7 +128,24 @@ class ModelCacheBase(ABC, Generic[T]):
|
||||
@property
|
||||
@abstractmethod
|
||||
def max_cache_size(self) -> float:
|
||||
"""Return true if the cache is configured to lazily offload models in VRAM."""
|
||||
"""Return the maximum size the RAM cache can grow to."""
|
||||
pass
|
||||
|
||||
@max_cache_size.setter
|
||||
@abstractmethod
|
||||
def max_cache_size(self, value: float) -> None:
|
||||
"""Set the cap on vram cache size."""
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def max_vram_cache_size(self) -> float:
|
||||
"""Return the maximum size the VRAM cache can grow to."""
|
||||
pass
|
||||
|
||||
@max_vram_cache_size.setter
|
||||
@abstractmethod
|
||||
def max_vram_cache_size(self, value: float) -> float:
|
||||
"""Set the maximum size the VRAM cache can grow to."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
@@ -193,15 +210,6 @@ class ModelCacheBase(ABC, Generic[T]):
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def exists(
|
||||
self,
|
||||
key: str,
|
||||
submodel_type: Optional[SubModelType] = None,
|
||||
) -> bool:
|
||||
"""Return true if the model identified by key and submodel_type is in the cache."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def cache_size(self) -> int:
|
||||
"""Get the total size of the models currently cached."""
|
||||
|
||||
@@ -1,22 +1,6 @@
|
||||
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Development team
|
||||
# TODO: Add Stalker's proper name to copyright
|
||||
"""
|
||||
Manage a RAM cache of diffusion/transformer models for fast switching.
|
||||
They are moved between GPU VRAM and CPU RAM as necessary. If the cache
|
||||
grows larger than a preset maximum, then the least recently used
|
||||
model will be cleared and (re)loaded from disk when next needed.
|
||||
|
||||
The cache returns context manager generators designed to load the
|
||||
model into the GPU within the context, and unload outside the
|
||||
context. Use like this:
|
||||
|
||||
cache = ModelCache(max_cache_size=7.5)
|
||||
with cache.get_model('runwayml/stable-diffusion-1-5') as SD1,
|
||||
cache.get_model('stabilityai/stable-diffusion-2') as SD2:
|
||||
do_something_in_GPU(SD1,SD2)
|
||||
|
||||
|
||||
"""
|
||||
""" """
|
||||
|
||||
import gc
|
||||
import math
|
||||
@@ -40,53 +24,74 @@ from invokeai.backend.model_manager.load.model_util import calc_model_size_by_da
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
# Maximum size of the cache, in gigs
|
||||
# Default is roughly enough to hold three fp16 diffusers models in RAM simultaneously
|
||||
DEFAULT_MAX_CACHE_SIZE = 6.0
|
||||
|
||||
# amount of GPU memory to hold in reserve for use by generations (GB)
|
||||
DEFAULT_MAX_VRAM_CACHE_SIZE = 2.75
|
||||
|
||||
# actual size of a gig
|
||||
GIG = 1073741824
|
||||
# Size of a GB in bytes.
|
||||
GB = 2**30
|
||||
|
||||
# Size of a MB in bytes.
|
||||
MB = 2**20
|
||||
|
||||
|
||||
class ModelCache(ModelCacheBase[AnyModel]):
|
||||
"""Implementation of ModelCacheBase."""
|
||||
"""A cache for managing models in memory.
|
||||
|
||||
The cache is based on two levels of model storage:
|
||||
- execution_device: The device where most models are executed (typically "cuda", "mps", or "cpu").
|
||||
- storage_device: The device where models are offloaded when not in active use (typically "cpu").
|
||||
|
||||
The model cache is based on the following assumptions:
|
||||
- storage_device_mem_size > execution_device_mem_size
|
||||
- disk_to_storage_device_transfer_time >> storage_device_to_execution_device_transfer_time
|
||||
|
||||
A copy of all models in the cache is always kept on the storage_device. A subset of the models also have a copy on
|
||||
the execution_device.
|
||||
|
||||
Models are moved between the storage_device and the execution_device as necessary. Cache size limits are enforced
|
||||
on both the storage_device and the execution_device. The execution_device cache uses a smallest-first offload
|
||||
policy. The storage_device cache uses a least-recently-used (LRU) offload policy.
|
||||
|
||||
Note: Neither of these offload policies has really been compared against alternatives. It's likely that different
|
||||
policies would be better, although the optimal policies are likely heavily dependent on usage patterns and HW
|
||||
configuration.
|
||||
|
||||
The cache returns context manager generators designed to load the model into the execution device (often GPU) within
|
||||
the context, and unload outside the context.
|
||||
|
||||
Example usage:
|
||||
```
|
||||
cache = ModelCache(max_cache_size=7.5, max_vram_cache_size=6.0)
|
||||
with cache.get_model('runwayml/stable-diffusion-1-5') as SD1:
|
||||
do_something_on_gpu(SD1)
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_cache_size: float = DEFAULT_MAX_CACHE_SIZE,
|
||||
max_vram_cache_size: float = DEFAULT_MAX_VRAM_CACHE_SIZE,
|
||||
max_cache_size: float,
|
||||
max_vram_cache_size: float,
|
||||
execution_device: torch.device = torch.device("cuda"),
|
||||
storage_device: torch.device = torch.device("cpu"),
|
||||
precision: torch.dtype = torch.float16,
|
||||
sequential_offload: bool = False,
|
||||
lazy_offloading: bool = True,
|
||||
sha_chunksize: int = 16777216,
|
||||
log_memory_usage: bool = False,
|
||||
logger: Optional[Logger] = None,
|
||||
):
|
||||
"""
|
||||
Initialize the model RAM cache.
|
||||
|
||||
:param max_cache_size: Maximum size of the RAM cache [6.0 GB]
|
||||
:param max_cache_size: Maximum size of the storage_device cache in GBs.
|
||||
:param max_vram_cache_size: Maximum size of the execution_device cache in GBs.
|
||||
:param execution_device: Torch device to load active model into [torch.device('cuda')]
|
||||
:param storage_device: Torch device to save inactive model in [torch.device('cpu')]
|
||||
:param precision: Precision for loaded models [torch.float16]
|
||||
:param lazy_offloading: Keep model in VRAM until another model needs to be loaded
|
||||
:param sequential_offload: Conserve VRAM by loading and unloading each stage of the pipeline sequentially
|
||||
:param log_memory_usage: If True, a memory snapshot will be captured before and after every model cache
|
||||
operation, and the result will be logged (at debug level). There is a time cost to capturing the memory
|
||||
snapshots, so it is recommended to disable this feature unless you are actively inspecting the model cache's
|
||||
behaviour.
|
||||
:param logger: InvokeAILogger to use (otherwise creates one)
|
||||
"""
|
||||
# allow lazy offloading only when vram cache enabled
|
||||
self._lazy_offloading = lazy_offloading and max_vram_cache_size > 0
|
||||
self._precision: torch.dtype = precision
|
||||
self._max_cache_size: float = max_cache_size
|
||||
self._max_vram_cache_size: float = max_vram_cache_size
|
||||
self._execution_device: torch.device = execution_device
|
||||
@@ -128,6 +133,16 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
"""Set the cap on cache size."""
|
||||
self._max_cache_size = value
|
||||
|
||||
@property
|
||||
def max_vram_cache_size(self) -> float:
|
||||
"""Return the cap on vram cache size."""
|
||||
return self._max_vram_cache_size
|
||||
|
||||
@max_vram_cache_size.setter
|
||||
def max_vram_cache_size(self, value: float) -> None:
|
||||
"""Set the cap on vram cache size."""
|
||||
self._max_vram_cache_size = value
|
||||
|
||||
@property
|
||||
def stats(self) -> Optional[CacheStats]:
|
||||
"""Return collected CacheStats object."""
|
||||
@@ -145,15 +160,6 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
total += cache_record.size
|
||||
return total
|
||||
|
||||
def exists(
|
||||
self,
|
||||
key: str,
|
||||
submodel_type: Optional[SubModelType] = None,
|
||||
) -> bool:
|
||||
"""Return true if the model identified by key and submodel_type is in the cache."""
|
||||
key = self._make_cache_key(key, submodel_type)
|
||||
return key in self._cached_models
|
||||
|
||||
def put(
|
||||
self,
|
||||
key: str,
|
||||
@@ -203,7 +209,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
# more stats
|
||||
if self.stats:
|
||||
stats_name = stats_name or key
|
||||
self.stats.cache_size = int(self._max_cache_size * GIG)
|
||||
self.stats.cache_size = int(self._max_cache_size * GB)
|
||||
self.stats.high_watermark = max(self.stats.high_watermark, self.cache_size())
|
||||
self.stats.in_cache = len(self._cached_models)
|
||||
self.stats.loaded_model_sizes[stats_name] = max(
|
||||
@@ -231,10 +237,13 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
return model_key
|
||||
|
||||
def offload_unlocked_models(self, size_required: int) -> None:
|
||||
"""Move any unused models from VRAM."""
|
||||
reserved = self._max_vram_cache_size * GIG
|
||||
"""Offload models from the execution_device to make room for size_required.
|
||||
|
||||
:param size_required: The amount of space to clear in the execution_device cache, in bytes.
|
||||
"""
|
||||
reserved = self._max_vram_cache_size * GB
|
||||
vram_in_use = torch.cuda.memory_allocated() + size_required
|
||||
self.logger.debug(f"{(vram_in_use/GIG):.2f}GB VRAM needed for models; max allowed={(reserved/GIG):.2f}GB")
|
||||
self.logger.debug(f"{(vram_in_use/GB):.2f}GB VRAM needed for models; max allowed={(reserved/GB):.2f}GB")
|
||||
for _, cache_entry in sorted(self._cached_models.items(), key=lambda x: x[1].size):
|
||||
if vram_in_use <= reserved:
|
||||
break
|
||||
@@ -245,7 +254,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
cache_entry.loaded = False
|
||||
vram_in_use = torch.cuda.memory_allocated() + size_required
|
||||
self.logger.debug(
|
||||
f"Removing {cache_entry.key} from VRAM to free {(cache_entry.size/GIG):.2f}GB; vram free = {(torch.cuda.memory_allocated()/GIG):.2f}GB"
|
||||
f"Removing {cache_entry.key} from VRAM to free {(cache_entry.size/GB):.2f}GB; vram free = {(torch.cuda.memory_allocated()/GB):.2f}GB"
|
||||
)
|
||||
|
||||
TorchDevice.empty_cache()
|
||||
@@ -303,7 +312,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
self.logger.debug(
|
||||
f"Moved model '{cache_entry.key}' from {source_device} to"
|
||||
f" {target_device} in {(end_model_to_time-start_model_to_time):.2f}s."
|
||||
f"Estimated model size: {(cache_entry.size/GIG):.3f} GB."
|
||||
f"Estimated model size: {(cache_entry.size/GB):.3f} GB."
|
||||
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
|
||||
)
|
||||
|
||||
@@ -326,14 +335,14 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
f"Moving model '{cache_entry.key}' from {source_device} to"
|
||||
f" {target_device} caused an unexpected change in VRAM usage. The model's"
|
||||
" estimated size may be incorrect. Estimated model size:"
|
||||
f" {(cache_entry.size/GIG):.3f} GB.\n"
|
||||
f" {(cache_entry.size/GB):.3f} GB.\n"
|
||||
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
|
||||
)
|
||||
|
||||
def print_cuda_stats(self) -> None:
|
||||
"""Log CUDA diagnostics."""
|
||||
vram = "%4.2fG" % (torch.cuda.memory_allocated() / GIG)
|
||||
ram = "%4.2fG" % (self.cache_size() / GIG)
|
||||
vram = "%4.2fG" % (torch.cuda.memory_allocated() / GB)
|
||||
ram = "%4.2fG" % (self.cache_size() / GB)
|
||||
|
||||
in_ram_models = 0
|
||||
in_vram_models = 0
|
||||
@@ -353,17 +362,20 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
)
|
||||
|
||||
def make_room(self, size: int) -> None:
|
||||
"""Make enough room in the cache to accommodate a new model of indicated size."""
|
||||
# calculate how much memory this model will require
|
||||
# multiplier = 2 if self.precision==torch.float32 else 1
|
||||
"""Make enough room in the cache to accommodate a new model of indicated size.
|
||||
|
||||
Note: This function deletes all of the cache's internal references to a model in order to free it. If there are
|
||||
external references to the model, there's nothing that the cache can do about it, and those models will not be
|
||||
garbage-collected.
|
||||
"""
|
||||
bytes_needed = size
|
||||
maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes
|
||||
maximum_size = self.max_cache_size * GB # stored in GB, convert to bytes
|
||||
current_size = self.cache_size()
|
||||
|
||||
if current_size + bytes_needed > maximum_size:
|
||||
self.logger.debug(
|
||||
f"Max cache size exceeded: {(current_size/GIG):.2f}/{self.max_cache_size:.2f} GB, need an additional"
|
||||
f" {(bytes_needed/GIG):.2f} GB"
|
||||
f"Max cache size exceeded: {(current_size/GB):.2f}/{self.max_cache_size:.2f} GB, need an additional"
|
||||
f" {(bytes_needed/GB):.2f} GB"
|
||||
)
|
||||
|
||||
self.logger.debug(f"Before making_room: cached_models={len(self._cached_models)}")
|
||||
@@ -380,7 +392,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
|
||||
if not cache_entry.locked:
|
||||
self.logger.debug(
|
||||
f"Removing {model_key} from RAM cache to free at least {(size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
|
||||
f"Removing {model_key} from RAM cache to free at least {(size/GB):.2f} GB (-{(cache_entry.size/GB):.2f} GB)"
|
||||
)
|
||||
current_size -= cache_entry.size
|
||||
models_cleared += 1
|
||||
|
||||
@@ -32,6 +32,7 @@ from invokeai.backend.model_manager.config import (
|
||||
)
|
||||
from invokeai.backend.model_manager.load.load_default import ModelLoader
|
||||
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
|
||||
from invokeai.backend.model_manager.util.model_util import convert_bundle_to_flux_transformer_checkpoint
|
||||
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
||||
|
||||
try:
|
||||
@@ -190,6 +191,8 @@ class FluxCheckpointModel(ModelLoader):
|
||||
with SilenceWarnings():
|
||||
model = Flux(params[config.config_path])
|
||||
sd = load_file(model_path)
|
||||
if "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in sd:
|
||||
sd = convert_bundle_to_flux_transformer_checkpoint(sd)
|
||||
model.load_state_dict(sd, assign=True)
|
||||
return model
|
||||
|
||||
@@ -230,5 +233,7 @@ class FluxBnbQuantizednf4bCheckpointModel(ModelLoader):
|
||||
model = Flux(params[config.config_path])
|
||||
model = quantize_model_nf4(model, modules_to_not_convert=set(), compute_dtype=torch.bfloat16)
|
||||
sd = load_file(model_path)
|
||||
if "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in sd:
|
||||
sd = convert_bundle_to_flux_transformer_checkpoint(sd)
|
||||
model.load_state_dict(sd, assign=True)
|
||||
return model
|
||||
|
||||
@@ -108,6 +108,8 @@ class ModelProbe(object):
|
||||
"CLIPVisionModelWithProjection": ModelType.CLIPVision,
|
||||
"T2IAdapter": ModelType.T2IAdapter,
|
||||
"CLIPModel": ModelType.CLIPEmbed,
|
||||
"CLIPTextModel": ModelType.CLIPEmbed,
|
||||
"T5EncoderModel": ModelType.T5Encoder,
|
||||
}
|
||||
|
||||
@classmethod
|
||||
@@ -224,7 +226,18 @@ class ModelProbe(object):
|
||||
ckpt = ckpt.get("state_dict", ckpt)
|
||||
|
||||
for key in [str(k) for k in ckpt.keys()]:
|
||||
if key.startswith(("cond_stage_model.", "first_stage_model.", "model.diffusion_model.", "double_blocks.")):
|
||||
if key.startswith(
|
||||
(
|
||||
"cond_stage_model.",
|
||||
"first_stage_model.",
|
||||
"model.diffusion_model.",
|
||||
# FLUX models in the official BFL format contain keys with the "double_blocks." prefix.
|
||||
"double_blocks.",
|
||||
# Some FLUX checkpoint files contain transformer keys prefixed with "model.diffusion_model".
|
||||
# This prefix is typically used to distinguish between multiple models bundled in a single file.
|
||||
"model.diffusion_model.double_blocks.",
|
||||
)
|
||||
):
|
||||
# Keys starting with double_blocks are associated with Flux models
|
||||
return ModelType.Main
|
||||
elif key.startswith(("encoder.conv_in", "decoder.conv_in")):
|
||||
@@ -283,9 +296,16 @@ class ModelProbe(object):
|
||||
if (folder_path / "image_encoder.txt").exists():
|
||||
return ModelType.IPAdapter
|
||||
|
||||
i = folder_path / "model_index.json"
|
||||
c = folder_path / "config.json"
|
||||
config_path = i if i.exists() else c if c.exists() else None
|
||||
config_path = None
|
||||
for p in [
|
||||
folder_path / "model_index.json", # pipeline
|
||||
folder_path / "config.json", # most diffusers
|
||||
folder_path / "text_encoder_2" / "config.json", # T5 text encoder
|
||||
folder_path / "text_encoder" / "config.json", # T5 CLIP
|
||||
]:
|
||||
if p.exists():
|
||||
config_path = p
|
||||
break
|
||||
|
||||
if config_path:
|
||||
with open(config_path, "r") as file:
|
||||
@@ -328,7 +348,10 @@ class ModelProbe(object):
|
||||
# TODO: Decide between dev/schnell
|
||||
checkpoint = ModelProbe._scan_and_load_checkpoint(model_path)
|
||||
state_dict = checkpoint.get("state_dict") or checkpoint
|
||||
if "guidance_in.out_layer.weight" in state_dict:
|
||||
if (
|
||||
"guidance_in.out_layer.weight" in state_dict
|
||||
or "model.diffusion_model.guidance_in.out_layer.weight" in state_dict
|
||||
):
|
||||
# For flux, this is a key in invokeai.backend.flux.util.params
|
||||
# Due to model type and format being the descriminator for model configs this
|
||||
# is used rather than attempting to support flux with separate model types and format
|
||||
@@ -336,7 +359,7 @@ class ModelProbe(object):
|
||||
config_file = "flux-dev"
|
||||
else:
|
||||
# For flux, this is a key in invokeai.backend.flux.util.params
|
||||
# Due to model type and format being the descriminator for model configs this
|
||||
# Due to model type and format being the discriminator for model configs this
|
||||
# is used rather than attempting to support flux with separate model types and format
|
||||
# If changed in the future, please fix me
|
||||
config_file = "flux-schnell"
|
||||
@@ -443,7 +466,10 @@ class CheckpointProbeBase(ProbeBase):
|
||||
|
||||
def get_format(self) -> ModelFormat:
|
||||
state_dict = self.checkpoint.get("state_dict") or self.checkpoint
|
||||
if "double_blocks.0.img_attn.proj.weight.quant_state.bitsandbytes__nf4" in state_dict:
|
||||
if (
|
||||
"double_blocks.0.img_attn.proj.weight.quant_state.bitsandbytes__nf4" in state_dict
|
||||
or "model.diffusion_model.double_blocks.0.img_attn.proj.weight.quant_state.bitsandbytes__nf4" in state_dict
|
||||
):
|
||||
return ModelFormat.BnbQuantizednf4b
|
||||
return ModelFormat("checkpoint")
|
||||
|
||||
@@ -470,7 +496,10 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
checkpoint = self.checkpoint
|
||||
state_dict = self.checkpoint.get("state_dict") or checkpoint
|
||||
if "double_blocks.0.img_attn.norm.key_norm.scale" in state_dict:
|
||||
if (
|
||||
"double_blocks.0.img_attn.norm.key_norm.scale" in state_dict
|
||||
or "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in state_dict
|
||||
):
|
||||
return BaseModelType.Flux
|
||||
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
|
||||
if key_name in state_dict and state_dict[key_name].shape[-1] == 768:
|
||||
@@ -747,8 +776,27 @@ class TextualInversionFolderProbe(FolderProbeBase):
|
||||
|
||||
|
||||
class T5EncoderFolderProbe(FolderProbeBase):
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
return BaseModelType.Any
|
||||
|
||||
def get_format(self) -> ModelFormat:
|
||||
return ModelFormat.T5Encoder
|
||||
path = self.model_path / "text_encoder_2"
|
||||
if (path / "model.safetensors.index.json").exists():
|
||||
return ModelFormat.T5Encoder
|
||||
files = list(path.glob("*.safetensors"))
|
||||
if len(files) == 0:
|
||||
raise InvalidModelConfigException(f"{self.model_path.as_posix()}: no .safetensors files found")
|
||||
|
||||
# shortcut: look for the quantization in the name
|
||||
if any(x for x in files if "llm_int8" in x.as_posix()):
|
||||
return ModelFormat.BnbQuantizedLlmInt8b
|
||||
|
||||
# more reliable path: probe contents for a 'SCB' key
|
||||
ckpt = read_checkpoint_meta(files[0], scan=True)
|
||||
if any("SCB" in x for x in ckpt.keys()):
|
||||
return ModelFormat.BnbQuantizedLlmInt8b
|
||||
|
||||
raise InvalidModelConfigException(f"{self.model_path.as_posix()}: unknown model format")
|
||||
|
||||
|
||||
class ONNXFolderProbe(PipelineFolderProbe):
|
||||
|
||||
@@ -133,3 +133,29 @@ def lora_token_vector_length(checkpoint: Dict[str, torch.Tensor]) -> Optional[in
|
||||
break
|
||||
|
||||
return lora_token_vector_length
|
||||
|
||||
|
||||
def convert_bundle_to_flux_transformer_checkpoint(
|
||||
transformer_state_dict: dict[str, torch.Tensor],
|
||||
) -> dict[str, torch.Tensor]:
|
||||
original_state_dict: dict[str, torch.Tensor] = {}
|
||||
keys_to_remove: list[str] = []
|
||||
|
||||
for k, v in transformer_state_dict.items():
|
||||
if not k.startswith("model.diffusion_model"):
|
||||
keys_to_remove.append(k) # This can be removed in the future if we only want to delete transformer keys
|
||||
continue
|
||||
if k.endswith("scale"):
|
||||
# Scale math must be done at bfloat16 due to our current flux model
|
||||
# support limitations at inference time
|
||||
v = v.to(dtype=torch.bfloat16)
|
||||
new_key = k.replace("model.diffusion_model.", "")
|
||||
original_state_dict[new_key] = v
|
||||
keys_to_remove.append(k)
|
||||
|
||||
# Remove processed keys from the original dictionary, leaving others in case
|
||||
# other model state dicts need to be pulled
|
||||
for k in keys_to_remove:
|
||||
del transformer_state_dict[k]
|
||||
|
||||
return original_state_dict
|
||||
|
||||
@@ -54,8 +54,10 @@ class InvokeLinear8bitLt(bnb.nn.Linear8bitLt):
|
||||
|
||||
# See `bnb.nn.Linear8bitLt._save_to_state_dict()` for the serialization logic of SCB and weight_format.
|
||||
scb = state_dict.pop(prefix + "SCB", None)
|
||||
# weight_format is unused, but we pop it so we can validate that there are no unexpected keys.
|
||||
_weight_format = state_dict.pop(prefix + "weight_format", None)
|
||||
|
||||
# Currently, we only support weight_format=0.
|
||||
weight_format = state_dict.pop(prefix + "weight_format", None)
|
||||
assert weight_format == 0
|
||||
|
||||
# TODO(ryand): Technically, we should be using `strict`, `missing_keys`, `unexpected_keys`, and `error_msgs`
|
||||
# rather than raising an exception to correctly implement this API.
|
||||
@@ -89,6 +91,14 @@ class InvokeLinear8bitLt(bnb.nn.Linear8bitLt):
|
||||
)
|
||||
self.bias = bias if bias is None else torch.nn.Parameter(bias)
|
||||
|
||||
# Reset the state. The persisted fields are based on the initialization behaviour in
|
||||
# `bnb.nn.Linear8bitLt.__init__()`.
|
||||
new_state = bnb.MatmulLtState()
|
||||
new_state.threshold = self.state.threshold
|
||||
new_state.has_fp16_weights = False
|
||||
new_state.use_pool = self.state.use_pool
|
||||
self.state = new_state
|
||||
|
||||
|
||||
def _convert_linear_layers_to_llm_8bit(
|
||||
module: torch.nn.Module, ignore_modules: set[str], outlier_threshold: float, prefix: str = ""
|
||||
|
||||
@@ -43,6 +43,11 @@ class FLUXConditioningInfo:
|
||||
clip_embeds: torch.Tensor
|
||||
t5_embeds: torch.Tensor
|
||||
|
||||
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
|
||||
self.clip_embeds = self.clip_embeds.to(device=device, dtype=dtype)
|
||||
self.t5_embeds = self.t5_embeds.to(device=device, dtype=dtype)
|
||||
return self
|
||||
|
||||
|
||||
@dataclass
|
||||
class ConditioningFieldData:
|
||||
|
||||
@@ -3,10 +3,9 @@ Initialization file for invokeai.backend.util
|
||||
"""
|
||||
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
from invokeai.backend.util.util import GIG, Chdir, directory_size
|
||||
from invokeai.backend.util.util import Chdir, directory_size
|
||||
|
||||
__all__ = [
|
||||
"GIG",
|
||||
"directory_size",
|
||||
"Chdir",
|
||||
"InvokeAILogger",
|
||||
|
||||
@@ -7,9 +7,6 @@ from pathlib import Path
|
||||
|
||||
from PIL import Image
|
||||
|
||||
# actual size of a gig
|
||||
GIG = 1073741824
|
||||
|
||||
|
||||
def slugify(value: str, allow_unicode: bool = False) -> str:
|
||||
"""
|
||||
|
||||
@@ -136,6 +136,7 @@
|
||||
"@vitest/coverage-v8": "^1.5.0",
|
||||
"@vitest/ui": "^1.5.0",
|
||||
"concurrently": "^8.2.2",
|
||||
"csstype": "^3.1.3",
|
||||
"dpdm": "^3.14.0",
|
||||
"eslint": "^8.57.0",
|
||||
"eslint-plugin-i18next": "^6.0.9",
|
||||
|
||||
3
invokeai/frontend/web/pnpm-lock.yaml
generated
3
invokeai/frontend/web/pnpm-lock.yaml
generated
@@ -238,6 +238,9 @@ devDependencies:
|
||||
concurrently:
|
||||
specifier: ^8.2.2
|
||||
version: 8.2.2
|
||||
csstype:
|
||||
specifier: ^3.1.3
|
||||
version: 3.1.3
|
||||
dpdm:
|
||||
specifier: ^3.14.0
|
||||
version: 3.14.0
|
||||
|
||||
@@ -164,10 +164,10 @@
|
||||
"alpha": "Alpha",
|
||||
"selected": "Selected",
|
||||
"tab": "Tab",
|
||||
"viewing": "Viewing",
|
||||
"viewingDesc": "Review images in a large gallery view",
|
||||
"editing": "Editing",
|
||||
"editingDesc": "Edit on the Control Layers canvas",
|
||||
"view": "View",
|
||||
"viewDesc": "Review images in a large gallery view",
|
||||
"edit": "Edit",
|
||||
"editDesc": "Edit on the Canvas",
|
||||
"comparing": "Comparing",
|
||||
"comparingDesc": "Comparing two images",
|
||||
"enabled": "Enabled",
|
||||
@@ -328,9 +328,13 @@
|
||||
"completedIn": "Completed in",
|
||||
"batch": "Batch",
|
||||
"origin": "Origin",
|
||||
"originCanvas": "Canvas",
|
||||
"originWorkflows": "Workflows",
|
||||
"originOther": "Other",
|
||||
"destination": "Destination",
|
||||
"upscaling": "Upscaling",
|
||||
"canvas": "Canvas",
|
||||
"generation": "Generation",
|
||||
"workflows": "Workflows",
|
||||
"other": "Other",
|
||||
"gallery": "Gallery",
|
||||
"batchFieldValues": "Batch Field Values",
|
||||
"item": "Item",
|
||||
"session": "Session",
|
||||
@@ -702,6 +706,8 @@
|
||||
"availableModels": "Available Models",
|
||||
"baseModel": "Base Model",
|
||||
"cancel": "Cancel",
|
||||
"clipEmbed": "CLIP Embed",
|
||||
"clipVision": "CLIP Vision",
|
||||
"config": "Config",
|
||||
"convert": "Convert",
|
||||
"convertingModelBegin": "Converting Model. Please wait.",
|
||||
@@ -789,6 +795,7 @@
|
||||
"settings": "Settings",
|
||||
"simpleModelPlaceholder": "URL or path to a local file or diffusers folder",
|
||||
"source": "Source",
|
||||
"spandrelImageToImage": "Image to Image (Spandrel)",
|
||||
"starterModels": "Starter Models",
|
||||
"starterModelsInModelManager": "Starter Models can be found in Model Manager",
|
||||
"syncModels": "Sync Models",
|
||||
@@ -797,6 +804,7 @@
|
||||
"loraTriggerPhrases": "LoRA Trigger Phrases",
|
||||
"mainModelTriggerPhrases": "Main Model Trigger Phrases",
|
||||
"typePhraseHere": "Type phrase here",
|
||||
"t5Encoder": "T5 Encoder",
|
||||
"upcastAttention": "Upcast Attention",
|
||||
"uploadImage": "Upload Image",
|
||||
"urlOrLocalPath": "URL or Local Path",
|
||||
@@ -1646,6 +1654,15 @@
|
||||
"storeNotInitialized": "Store is not initialized"
|
||||
},
|
||||
"controlLayers": {
|
||||
"bookmark": "Bookmark for Quick Switch",
|
||||
"removeBookmark": "Remove Bookmark",
|
||||
"saveCanvasToGallery": "Save Canvas To Gallery",
|
||||
"saveBboxToGallery": "Save Bbox To Gallery",
|
||||
"savedToGalleryOk": "Saved to Gallery",
|
||||
"savedToGalleryError": "Error saving to gallery",
|
||||
"mergeVisible": "Merge Visible",
|
||||
"mergeVisibleOk": "Merged visible layers",
|
||||
"mergeVisibleError": "Error merging visible layers",
|
||||
"clearHistory": "Clear History",
|
||||
"generateMode": "Generate",
|
||||
"generateModeDesc": "Create individual images. Generated images are added directly to the gallery.",
|
||||
@@ -1657,6 +1674,7 @@
|
||||
"clearCaches": "Clear Caches",
|
||||
"recalculateRects": "Recalculate Rects",
|
||||
"clipToBbox": "Clip Strokes to Bbox",
|
||||
"compositeMaskedRegions": "Composite Masked Regions",
|
||||
"addLayer": "Add Layer",
|
||||
"duplicate": "Duplicate",
|
||||
"moveToFront": "Move to Front",
|
||||
@@ -1675,35 +1693,47 @@
|
||||
"deletePrompt": "Delete Prompt",
|
||||
"resetRegion": "Reset Region",
|
||||
"debugLayers": "Debug Layers",
|
||||
"showHUD": "Show HUD",
|
||||
"rectangle": "Rectangle",
|
||||
"maskFill": "Mask Fill",
|
||||
"addPositivePrompt": "Add $t(common.positivePrompt)",
|
||||
"addNegativePrompt": "Add $t(common.negativePrompt)",
|
||||
"addIPAdapter": "Add $t(common.ipAdapter)",
|
||||
"addRasterLayer": "Add $t(controlLayers.rasterLayer)",
|
||||
"addControlLayer": "Add $t(controlLayers.controlLayer)",
|
||||
"addInpaintMask": "Add $t(controlLayers.inpaintMask)",
|
||||
"addRegionalGuidance": "Add $t(controlLayers.regionalGuidance)",
|
||||
"regionalGuidanceLayer": "$t(controlLayers.regionalGuidance) $t(unifiedCanvas.layer)",
|
||||
"raster": "Raster",
|
||||
"rasterLayer_one": "Raster Layer",
|
||||
"controlLayer_one": "Control Layer",
|
||||
"inpaintMask_one": "Inpaint Mask",
|
||||
"regionalGuidance_one": "Regional Guidance",
|
||||
"ipAdapter_one": "IP Adapter",
|
||||
"rasterLayer_other": "Raster Layers",
|
||||
"controlLayer_other": "Control Layers",
|
||||
"inpaintMask_other": "Inpaint Masks",
|
||||
"regionalGuidance_other": "Regional Guidance",
|
||||
"ipAdapter_other": "IP Adapters",
|
||||
"rasterLayer": "Raster Layer",
|
||||
"controlLayer": "Control Layer",
|
||||
"inpaintMask": "Inpaint Mask",
|
||||
"regionalGuidance": "Regional Guidance",
|
||||
"ipAdapter": "IP Adapter",
|
||||
"sendToGallery": "Send To Gallery",
|
||||
"sendToGalleryDesc": "Generations will be sent to the gallery.",
|
||||
"sendToCanvas": "Send To Canvas",
|
||||
"sendToCanvasDesc": "Generations will be staged onto the canvas.",
|
||||
"rasterLayer_withCount_one": "$t(controlLayers.rasterLayer)",
|
||||
"controlLayer_withCount_one": "$t(controlLayers.controlLayer)",
|
||||
"inpaintMask_withCount_one": "$t(controlLayers.inpaintMask)",
|
||||
"regionalGuidance_withCount_one": "$t(controlLayers.regionalGuidance)",
|
||||
"ipAdapter_withCount_one": "$t(controlLayers.ipAdapter)",
|
||||
"rasterLayer_withCount_other": "Raster Layers",
|
||||
"controlLayer_withCount_other": "Control Layers",
|
||||
"inpaintMask_withCount_other": "Inpaint Masks",
|
||||
"regionalGuidance_withCount_other": "Regional Guidance",
|
||||
"ipAdapter_withCount_other": "IP Adapters",
|
||||
"opacity": "Opacity",
|
||||
"regionalGuidance_withCount_hidden": "Regional Guidance ({{count}} hidden)",
|
||||
"controlAdapters_withCount_hidden": "Control Adapters ({{count}} hidden)",
|
||||
"controlLayers_withCount_hidden": "Control Layers ({{count}} hidden)",
|
||||
"rasterLayers_withCount_hidden": "Raster Layers ({{count}} hidden)",
|
||||
"ipAdapters_withCount_hidden": "IP Adapters ({{count}} hidden)",
|
||||
"globalIPAdapters_withCount_hidden": "Global IP Adapters ({{count}} hidden)",
|
||||
"inpaintMasks_withCount_hidden": "Inpaint Masks ({{count}} hidden)",
|
||||
"regionalGuidance_withCount_visible": "Regional Guidance ({{count}})",
|
||||
"controlAdapters_withCount_visible": "Control Adapters ({{count}})",
|
||||
"controlLayers_withCount_visible": "Control Layers ({{count}})",
|
||||
"rasterLayers_withCount_visible": "Raster Layers ({{count}})",
|
||||
"ipAdapters_withCount_visible": "IP Adapters ({{count}})",
|
||||
"globalIPAdapters_withCount_visible": "Global IP Adapters ({{count}})",
|
||||
"inpaintMasks_withCount_visible": "Inpaint Masks ({{count}})",
|
||||
"globalControlAdapter": "Global $t(controlnet.controlAdapter_one)",
|
||||
"globalControlAdapterLayer": "Global $t(controlnet.controlAdapter_one) $t(unifiedCanvas.layer)",
|
||||
@@ -1716,8 +1746,8 @@
|
||||
"clearProcessor": "Clear Processor",
|
||||
"resetProcessor": "Reset Processor to Defaults",
|
||||
"noLayersAdded": "No Layers Added",
|
||||
"layers_one": "Layer",
|
||||
"layers_other": "Layers",
|
||||
"layer_one": "Layer",
|
||||
"layer_other": "Layers",
|
||||
"objects_zero": "empty",
|
||||
"objects_one": "{{count}} object",
|
||||
"objects_other": "{{count}} objects",
|
||||
@@ -1737,6 +1767,7 @@
|
||||
"flipHorizontal": "Flip Horizontal",
|
||||
"flipVertical": "Flip Vertical",
|
||||
"fill": {
|
||||
"fillColor": "Fill Color",
|
||||
"fillStyle": "Fill Style",
|
||||
"solid": "Solid",
|
||||
"grid": "Grid",
|
||||
@@ -1752,7 +1783,6 @@
|
||||
"bbox": "Bbox",
|
||||
"move": "Move",
|
||||
"view": "View",
|
||||
"transform": "Transform",
|
||||
"colorPicker": "Color Picker"
|
||||
},
|
||||
"filter": {
|
||||
@@ -1762,6 +1792,13 @@
|
||||
"preview": "Preview",
|
||||
"apply": "Apply",
|
||||
"cancel": "Cancel"
|
||||
},
|
||||
"transform": {
|
||||
"transform": "Transform",
|
||||
"fitToBbox": "Fit to Bbox",
|
||||
"reset": "Reset",
|
||||
"apply": "Apply",
|
||||
"cancel": "Cancel"
|
||||
}
|
||||
},
|
||||
"upscaling": {
|
||||
|
||||
@@ -16,6 +16,7 @@ import { DynamicPromptsModal } from 'features/dynamicPrompts/components/DynamicP
|
||||
import { useStarterModelsToast } from 'features/modelManagerV2/hooks/useStarterModelsToast';
|
||||
import { ClearQueueConfirmationsAlertDialog } from 'features/queue/components/ClearQueueConfirmationAlertDialog';
|
||||
import { StylePresetModal } from 'features/stylePresets/components/StylePresetForm/StylePresetModal';
|
||||
import { activeStylePresetIdChanged } from 'features/stylePresets/store/stylePresetSlice';
|
||||
import RefreshAfterResetModal from 'features/system/components/SettingsModal/RefreshAfterResetModal';
|
||||
import SettingsModal from 'features/system/components/SettingsModal/SettingsModal';
|
||||
import { configChanged } from 'features/system/store/configSlice';
|
||||
@@ -43,10 +44,17 @@ interface Props {
|
||||
action: 'sendToImg2Img' | 'sendToCanvas' | 'useAllParameters';
|
||||
};
|
||||
selectedWorkflowId?: string;
|
||||
destination?: TabName | undefined;
|
||||
selectedStylePresetId?: string;
|
||||
destination?: TabName;
|
||||
}
|
||||
|
||||
const App = ({ config = DEFAULT_CONFIG, selectedImage, selectedWorkflowId, destination }: Props) => {
|
||||
const App = ({
|
||||
config = DEFAULT_CONFIG,
|
||||
selectedImage,
|
||||
selectedWorkflowId,
|
||||
selectedStylePresetId,
|
||||
destination,
|
||||
}: Props) => {
|
||||
const language = useAppSelector(selectLanguage);
|
||||
const logger = useLogger('system');
|
||||
const dispatch = useAppDispatch();
|
||||
@@ -85,6 +93,12 @@ const App = ({ config = DEFAULT_CONFIG, selectedImage, selectedWorkflowId, desti
|
||||
}
|
||||
}, [selectedWorkflowId, getAndLoadWorkflow]);
|
||||
|
||||
useEffect(() => {
|
||||
if (selectedStylePresetId) {
|
||||
dispatch(activeStylePresetIdChanged(selectedStylePresetId));
|
||||
}
|
||||
}, [dispatch, selectedStylePresetId]);
|
||||
|
||||
useEffect(() => {
|
||||
if (destination) {
|
||||
dispatch(setActiveTab(destination));
|
||||
|
||||
@@ -45,6 +45,7 @@ interface Props extends PropsWithChildren {
|
||||
action: 'sendToImg2Img' | 'sendToCanvas' | 'useAllParameters';
|
||||
};
|
||||
selectedWorkflowId?: string;
|
||||
selectedStylePresetId?: string;
|
||||
destination?: TabName;
|
||||
customStarUi?: CustomStarUi;
|
||||
socketOptions?: Partial<ManagerOptions & SocketOptions>;
|
||||
@@ -66,6 +67,7 @@ const InvokeAIUI = ({
|
||||
queueId,
|
||||
selectedImage,
|
||||
selectedWorkflowId,
|
||||
selectedStylePresetId,
|
||||
destination,
|
||||
customStarUi,
|
||||
socketOptions,
|
||||
@@ -227,6 +229,7 @@ const InvokeAIUI = ({
|
||||
config={config}
|
||||
selectedImage={selectedImage}
|
||||
selectedWorkflowId={selectedWorkflowId}
|
||||
selectedStylePresetId={selectedStylePresetId}
|
||||
destination={destination}
|
||||
/>
|
||||
</AppDndContext>
|
||||
|
||||
@@ -68,7 +68,7 @@ export const addStagingListeners = (startAppListening: AppStartListening) => {
|
||||
objects: [imageObject],
|
||||
};
|
||||
|
||||
api.dispatch(rasterLayerAdded({ overrides, isSelected: true }));
|
||||
api.dispatch(rasterLayerAdded({ overrides, isSelected: false }));
|
||||
api.dispatch(sessionStagingAreaReset());
|
||||
},
|
||||
});
|
||||
|
||||
@@ -31,7 +31,7 @@ export const addEnqueueRequestedLinear = (startAppListening: AppStartListening)
|
||||
|
||||
let didStartStaging = false;
|
||||
|
||||
if (!state.canvasSession.isStaging && state.canvasSession.mode === 'compose') {
|
||||
if (!state.canvasSession.isStaging && state.canvasSettings.sendToCanvas) {
|
||||
dispatch(sessionStartedStaging());
|
||||
didStartStaging = true;
|
||||
}
|
||||
@@ -70,7 +70,11 @@ export const addEnqueueRequestedLinear = (startAppListening: AppStartListening)
|
||||
|
||||
const { g, noise, posCond } = buildGraphResult.value;
|
||||
|
||||
const prepareBatchResult = withResult(() => prepareLinearUIBatch(state, g, prepend, noise, posCond));
|
||||
const destination = state.canvasSettings.sendToCanvas ? 'canvas' : 'gallery';
|
||||
|
||||
const prepareBatchResult = withResult(() =>
|
||||
prepareLinearUIBatch(state, g, prepend, noise, posCond, 'generation', destination)
|
||||
);
|
||||
|
||||
if (isErr(prepareBatchResult)) {
|
||||
log.error({ error: serializeError(prepareBatchResult.error) }, 'Failed to prepare batch');
|
||||
|
||||
@@ -32,6 +32,7 @@ export const addEnqueueRequestedNodes = (startAppListening: AppStartListening) =
|
||||
workflow: builtWorkflow,
|
||||
runs: state.params.iterations,
|
||||
origin: 'workflows',
|
||||
destination: 'gallery',
|
||||
},
|
||||
prepend: action.payload.prepend,
|
||||
};
|
||||
|
||||
@@ -16,7 +16,7 @@ export const addEnqueueRequestedUpscale = (startAppListening: AppStartListening)
|
||||
|
||||
const { g, noise, posCond } = await buildMultidiffusionUpscaleGraph(state);
|
||||
|
||||
const batchConfig = prepareLinearUIBatch(state, g, prepend, noise, posCond);
|
||||
const batchConfig = prepareLinearUIBatch(state, g, prepend, noise, posCond, 'upscaling', 'gallery');
|
||||
|
||||
const req = dispatch(
|
||||
queueApi.endpoints.enqueueBatch.initiate(batchConfig, {
|
||||
|
||||
@@ -11,7 +11,6 @@ import { canvasSettingsPersistConfig, canvasSettingsSlice } from 'features/contr
|
||||
import { canvasPersistConfig, canvasSlice, canvasUndoableConfig } from 'features/controlLayers/store/canvasSlice';
|
||||
import { lorasPersistConfig, lorasSlice } from 'features/controlLayers/store/lorasSlice';
|
||||
import { paramsPersistConfig, paramsSlice } from 'features/controlLayers/store/paramsSlice';
|
||||
import { toolPersistConfig, toolSlice } from 'features/controlLayers/store/toolSlice';
|
||||
import { deleteImageModalSlice } from 'features/deleteImageModal/store/slice';
|
||||
import { dynamicPromptsPersistConfig, dynamicPromptsSlice } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
|
||||
import { galleryPersistConfig, gallerySlice } from 'features/gallery/store/gallerySlice';
|
||||
@@ -63,7 +62,6 @@ const allReducers = {
|
||||
[upscaleSlice.name]: upscaleSlice.reducer,
|
||||
[stylePresetSlice.name]: stylePresetSlice.reducer,
|
||||
[paramsSlice.name]: paramsSlice.reducer,
|
||||
[toolSlice.name]: toolSlice.reducer,
|
||||
[canvasSettingsSlice.name]: canvasSettingsSlice.reducer,
|
||||
[canvasSessionSlice.name]: canvasSessionSlice.reducer,
|
||||
[lorasSlice.name]: lorasSlice.reducer,
|
||||
@@ -109,7 +107,6 @@ const persistConfigs: { [key in keyof typeof allReducers]?: PersistConfig } = {
|
||||
[upscalePersistConfig.name]: upscalePersistConfig,
|
||||
[stylePresetPersistConfig.name]: stylePresetPersistConfig,
|
||||
[paramsPersistConfig.name]: paramsPersistConfig,
|
||||
[toolPersistConfig.name]: toolPersistConfig,
|
||||
[canvasSettingsPersistConfig.name]: canvasSettingsPersistConfig,
|
||||
[canvasSessionPersistConfig.name]: canvasSessionPersistConfig,
|
||||
[lorasPersistConfig.name]: lorasPersistConfig,
|
||||
|
||||
104
invokeai/frontend/web/src/common/components/IconSwitch.tsx
Normal file
104
invokeai/frontend/web/src/common/components/IconSwitch.tsx
Normal file
@@ -0,0 +1,104 @@
|
||||
import type { SystemStyleObject } from '@invoke-ai/ui-library';
|
||||
import { Box, Flex, IconButton, Tooltip, useToken } from '@invoke-ai/ui-library';
|
||||
import type { ReactElement, ReactNode } from 'react';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
|
||||
type IconSwitchProps = {
|
||||
isChecked: boolean;
|
||||
onChange: (checked: boolean) => void;
|
||||
iconChecked: ReactElement;
|
||||
tooltipChecked?: ReactNode;
|
||||
iconUnchecked: ReactElement;
|
||||
tooltipUnchecked?: ReactNode;
|
||||
ariaLabel: string;
|
||||
};
|
||||
|
||||
const getSx = (padding: string | number): SystemStyleObject => ({
|
||||
transition: 'left 0.1s ease-in-out, transform 0.1s ease-in-out',
|
||||
'&[data-checked="true"]': {
|
||||
left: `calc(100% - ${padding})`,
|
||||
transform: 'translateX(-100%)',
|
||||
},
|
||||
'&[data-checked="false"]': {
|
||||
left: padding,
|
||||
transform: 'translateX(0)',
|
||||
},
|
||||
});
|
||||
|
||||
export const IconSwitch = memo(
|
||||
({
|
||||
isChecked,
|
||||
onChange,
|
||||
iconChecked,
|
||||
tooltipChecked,
|
||||
iconUnchecked,
|
||||
tooltipUnchecked,
|
||||
ariaLabel,
|
||||
}: IconSwitchProps) => {
|
||||
const onUncheck = useCallback(() => {
|
||||
onChange(false);
|
||||
}, [onChange]);
|
||||
const onCheck = useCallback(() => {
|
||||
onChange(true);
|
||||
}, [onChange]);
|
||||
|
||||
const gap = useToken('space', 1.5);
|
||||
const sx = useMemo(() => getSx(gap), [gap]);
|
||||
|
||||
return (
|
||||
<Flex
|
||||
position="relative"
|
||||
bg="base.800"
|
||||
borderRadius="base"
|
||||
alignItems="center"
|
||||
justifyContent="center"
|
||||
h="full"
|
||||
p={gap}
|
||||
gap={gap}
|
||||
>
|
||||
<Box
|
||||
position="absolute"
|
||||
borderRadius="base"
|
||||
bg="invokeBlue.400"
|
||||
w={12}
|
||||
top={gap}
|
||||
bottom={gap}
|
||||
data-checked={isChecked}
|
||||
sx={sx}
|
||||
/>
|
||||
<Tooltip hasArrow label={tooltipUnchecked}>
|
||||
<IconButton
|
||||
size="sm"
|
||||
fontSize={16}
|
||||
icon={iconUnchecked}
|
||||
onClick={onUncheck}
|
||||
variant={!isChecked ? 'solid' : 'ghost'}
|
||||
colorScheme={!isChecked ? 'invokeBlue' : 'base'}
|
||||
aria-label={ariaLabel}
|
||||
data-checked={!isChecked}
|
||||
w={12}
|
||||
alignSelf="stretch"
|
||||
h="auto"
|
||||
/>
|
||||
</Tooltip>
|
||||
<Tooltip hasArrow label={tooltipChecked}>
|
||||
<IconButton
|
||||
size="sm"
|
||||
fontSize={16}
|
||||
icon={iconChecked}
|
||||
onClick={onCheck}
|
||||
variant={isChecked ? 'solid' : 'ghost'}
|
||||
colorScheme={isChecked ? 'invokeBlue' : 'base'}
|
||||
aria-label={ariaLabel}
|
||||
data-checked={isChecked}
|
||||
w={12}
|
||||
alignSelf="stretch"
|
||||
h="auto"
|
||||
/>
|
||||
</Tooltip>
|
||||
</Flex>
|
||||
);
|
||||
}
|
||||
);
|
||||
|
||||
IconSwitch.displayName = 'IconSwitch';
|
||||
@@ -1,52 +1,74 @@
|
||||
import { useStore } from '@nanostores/react';
|
||||
import type { WritableAtom } from 'nanostores';
|
||||
import { useCallback, useMemo, useState } from 'react';
|
||||
import { atom } from 'nanostores';
|
||||
import { useCallback, useState } from 'react';
|
||||
|
||||
export const useBoolean = (initialValue: boolean) => {
|
||||
const [isTrue, set] = useState(initialValue);
|
||||
const setTrue = useCallback(() => set(true), []);
|
||||
const setFalse = useCallback(() => set(false), []);
|
||||
const toggle = useCallback(() => set((v) => !v), []);
|
||||
type UseBoolean = {
|
||||
isTrue: boolean;
|
||||
setTrue: () => void;
|
||||
setFalse: () => void;
|
||||
set: (value: boolean) => void;
|
||||
toggle: () => void;
|
||||
};
|
||||
|
||||
const api = useMemo(
|
||||
() => ({
|
||||
/**
|
||||
* Creates a hook to manage a boolean state. The boolean is stored in a nanostores atom.
|
||||
* Returns a tuple containing the hook and the atom. Use this for global boolean state.
|
||||
* @param initialValue Initial value of the boolean
|
||||
*/
|
||||
export const buildUseBoolean = (initialValue: boolean): [() => UseBoolean, WritableAtom<boolean>] => {
|
||||
const $boolean = atom(initialValue);
|
||||
|
||||
const setTrue = () => {
|
||||
$boolean.set(true);
|
||||
};
|
||||
const setFalse = () => {
|
||||
$boolean.set(false);
|
||||
};
|
||||
const set = (value: boolean) => {
|
||||
$boolean.set(value);
|
||||
};
|
||||
const toggle = () => {
|
||||
$boolean.set(!$boolean.get());
|
||||
};
|
||||
|
||||
const useBoolean = () => {
|
||||
const isTrue = useStore($boolean);
|
||||
|
||||
return {
|
||||
isTrue,
|
||||
set,
|
||||
setTrue,
|
||||
setFalse,
|
||||
set,
|
||||
toggle,
|
||||
}),
|
||||
[isTrue, set, setTrue, setFalse, toggle]
|
||||
);
|
||||
};
|
||||
};
|
||||
|
||||
return api;
|
||||
return [useBoolean, $boolean] as const;
|
||||
};
|
||||
|
||||
export const buildUseBoolean = ($boolean: WritableAtom<boolean>) => {
|
||||
return () => {
|
||||
const setTrue = useCallback(() => {
|
||||
$boolean.set(true);
|
||||
}, []);
|
||||
const setFalse = useCallback(() => {
|
||||
$boolean.set(false);
|
||||
}, []);
|
||||
const set = useCallback((value: boolean) => {
|
||||
$boolean.set(value);
|
||||
}, []);
|
||||
const toggle = useCallback(() => {
|
||||
$boolean.set(!$boolean.get());
|
||||
}, []);
|
||||
/**
|
||||
* Hook to manage a boolean state. Use this for a local boolean state.
|
||||
* @param initialValue Initial value of the boolean
|
||||
*/
|
||||
export const useBoolean = (initialValue: boolean) => {
|
||||
const [isTrue, set] = useState(initialValue);
|
||||
|
||||
const api = useMemo(
|
||||
() => ({
|
||||
setTrue,
|
||||
setFalse,
|
||||
set,
|
||||
toggle,
|
||||
$boolean,
|
||||
}),
|
||||
[set, setFalse, setTrue, toggle]
|
||||
);
|
||||
const setTrue = useCallback(() => {
|
||||
set(true);
|
||||
}, [set]);
|
||||
const setFalse = useCallback(() => {
|
||||
set(false);
|
||||
}, [set]);
|
||||
const toggle = useCallback(() => {
|
||||
set((val) => !val);
|
||||
}, [set]);
|
||||
|
||||
return api;
|
||||
return {
|
||||
isTrue,
|
||||
setTrue,
|
||||
setFalse,
|
||||
set,
|
||||
toggle,
|
||||
};
|
||||
};
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { addScope, removeScope, setScopes } from 'common/hooks/interactionScopes';
|
||||
import { useClearQueue } from 'features/queue/components/ClearQueueConfirmationAlertDialog';
|
||||
import { useCancelCurrentQueueItem } from 'features/queue/hooks/useCancelCurrentQueueItem';
|
||||
import { useClearQueue } from 'features/queue/hooks/useClearQueue';
|
||||
import { useQueueBack } from 'features/queue/hooks/useQueueBack';
|
||||
import { useQueueFront } from 'features/queue/hooks/useQueueFront';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
|
||||
@@ -128,7 +128,7 @@ const createSelector = (templates: Templates, isConnected: boolean) =>
|
||||
canvas.controlLayers.entities
|
||||
.filter((controlLayer) => controlLayer.isEnabled)
|
||||
.forEach((controlLayer, i) => {
|
||||
const layerLiteral = i18n.t('controlLayers.layers_one');
|
||||
const layerLiteral = i18n.t('controlLayers.layer_one');
|
||||
const layerNumber = i + 1;
|
||||
const layerType = i18n.t(LAYER_TYPE_TO_TKEY['control_layer']);
|
||||
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
|
||||
@@ -158,7 +158,7 @@ const createSelector = (templates: Templates, isConnected: boolean) =>
|
||||
canvas.ipAdapters.entities
|
||||
.filter((entity) => entity.isEnabled)
|
||||
.forEach((entity, i) => {
|
||||
const layerLiteral = i18n.t('controlLayers.layers_one');
|
||||
const layerLiteral = i18n.t('controlLayers.layer_one');
|
||||
const layerNumber = i + 1;
|
||||
const layerType = i18n.t(LAYER_TYPE_TO_TKEY[entity.type]);
|
||||
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
|
||||
@@ -186,7 +186,7 @@ const createSelector = (templates: Templates, isConnected: boolean) =>
|
||||
canvas.regions.entities
|
||||
.filter((entity) => entity.isEnabled)
|
||||
.forEach((entity, i) => {
|
||||
const layerLiteral = i18n.t('controlLayers.layers_one');
|
||||
const layerLiteral = i18n.t('controlLayers.layer_one');
|
||||
const layerNumber = i + 1;
|
||||
const layerType = i18n.t(LAYER_TYPE_TO_TKEY[entity.type]);
|
||||
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
|
||||
@@ -223,7 +223,7 @@ const createSelector = (templates: Templates, isConnected: boolean) =>
|
||||
canvas.rasterLayers.entities
|
||||
.filter((entity) => entity.isEnabled)
|
||||
.forEach((entity, i) => {
|
||||
const layerLiteral = i18n.t('controlLayers.layers_one');
|
||||
const layerLiteral = i18n.t('controlLayers.layer_one');
|
||||
const layerNumber = i + 1;
|
||||
const layerType = i18n.t(LAYER_TYPE_TO_TKEY[entity.type]);
|
||||
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
|
||||
|
||||
@@ -31,22 +31,22 @@ export const CanvasAddEntityButtons = memo(() => {
|
||||
}, [dispatch]);
|
||||
|
||||
return (
|
||||
<Flex flexDir="column" w="full" h="full" alignItems="center" justifyContent="center">
|
||||
<ButtonGroup orientation="vertical" isAttached={false}>
|
||||
<Flex flexDir="column" w="full" h="full" alignItems="center">
|
||||
<ButtonGroup position="relative" orientation="vertical" isAttached={false} top="20%">
|
||||
<Button variant="ghost" justifyContent="flex-start" leftIcon={<PiPlusBold />} onClick={addInpaintMask}>
|
||||
{t('controlLayers.inpaintMask', { count: 1 })}
|
||||
{t('controlLayers.inpaintMask')}
|
||||
</Button>
|
||||
<Button variant="ghost" justifyContent="flex-start" leftIcon={<PiPlusBold />} onClick={addRegionalGuidance}>
|
||||
{t('controlLayers.regionalGuidance', { count: 1 })}
|
||||
{t('controlLayers.regionalGuidance')}
|
||||
</Button>
|
||||
<Button variant="ghost" justifyContent="flex-start" leftIcon={<PiPlusBold />} onClick={addRasterLayer}>
|
||||
{t('controlLayers.rasterLayer', { count: 1 })}
|
||||
{t('controlLayers.rasterLayer')}
|
||||
</Button>
|
||||
<Button variant="ghost" justifyContent="flex-start" leftIcon={<PiPlusBold />} onClick={addControlLayer}>
|
||||
{t('controlLayers.controlLayer', { count: 1 })}
|
||||
{t('controlLayers.controlLayer')}
|
||||
</Button>
|
||||
<Button variant="ghost" justifyContent="flex-start" leftIcon={<PiPlusBold />} onClick={addIPAdapter}>
|
||||
{t('controlLayers.ipAdapter', { count: 1 })}
|
||||
{t('controlLayers.globalIPAdapter')}
|
||||
</Button>
|
||||
</ButtonGroup>
|
||||
</Flex>
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import { Flex } from '@invoke-ai/ui-library';
|
||||
import type { Meta, StoryObj } from '@storybook/react';
|
||||
import { CanvasEditor } from 'features/controlLayers/components/ControlLayersEditor';
|
||||
import { CanvasEditor } from 'features/controlLayers/components/CanvasEditor';
|
||||
|
||||
const meta: Meta<typeof CanvasEditor> = {
|
||||
title: 'Feature/ControlLayers',
|
||||
@@ -2,12 +2,12 @@
|
||||
import { Flex } from '@invoke-ai/ui-library';
|
||||
import { useScopeOnFocus } from 'common/hooks/interactionScopes';
|
||||
import { CanvasDropArea } from 'features/controlLayers/components/CanvasDropArea';
|
||||
import { ControlLayersToolbar } from 'features/controlLayers/components/ControlLayersToolbar';
|
||||
import { Filter } from 'features/controlLayers/components/Filters/Filter';
|
||||
import { StageComponent } from 'features/controlLayers/components/StageComponent';
|
||||
import { StagingAreaIsStagingGate } from 'features/controlLayers/components/StagingArea/StagingAreaIsStagingGate';
|
||||
import { StagingAreaToolbar } from 'features/controlLayers/components/StagingArea/StagingAreaToolbar';
|
||||
import { Transform } from 'features/controlLayers/components/Transform';
|
||||
import { CanvasToolbar } from 'features/controlLayers/components/Toolbar/CanvasToolbar';
|
||||
import { Transform } from 'features/controlLayers/components/Transform/Transform';
|
||||
import { CanvasManagerProviderGate } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
|
||||
import { memo, useRef } from 'react';
|
||||
|
||||
@@ -28,16 +28,16 @@ export const CanvasEditor = memo(() => {
|
||||
alignItems="center"
|
||||
justifyContent="center"
|
||||
>
|
||||
<ControlLayersToolbar />
|
||||
<CanvasToolbar />
|
||||
<StageComponent />
|
||||
<Flex position="absolute" bottom={8} gap={2} align="center" justify="center">
|
||||
<Flex position="absolute" bottom={4} gap={2} align="center" justify="center">
|
||||
<CanvasManagerProviderGate>
|
||||
<StagingAreaIsStagingGate>
|
||||
<StagingAreaToolbar />
|
||||
</StagingAreaIsStagingGate>
|
||||
</CanvasManagerProviderGate>
|
||||
</Flex>
|
||||
<Flex position="absolute" bottom={8}>
|
||||
<Flex position="absolute" bottom={4}>
|
||||
<CanvasManagerProviderGate>
|
||||
<Filter />
|
||||
<Transform />
|
||||
@@ -1,5 +1,6 @@
|
||||
import { MenuItem } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { useDefaultIPAdapter } from 'features/controlLayers/hooks/useLayerControlAdapter';
|
||||
import {
|
||||
controlLayerAdded,
|
||||
inpaintMaskAdded,
|
||||
@@ -14,6 +15,7 @@ import { PiPlusBold } from 'react-icons/pi';
|
||||
export const CanvasEntityListMenuItems = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const defaultIPAdapter = useDefaultIPAdapter();
|
||||
const addInpaintMask = useCallback(() => {
|
||||
dispatch(inpaintMaskAdded({ isSelected: true }));
|
||||
}, [dispatch]);
|
||||
@@ -27,25 +29,26 @@ export const CanvasEntityListMenuItems = memo(() => {
|
||||
dispatch(controlLayerAdded({ isSelected: true }));
|
||||
}, [dispatch]);
|
||||
const addIPAdapter = useCallback(() => {
|
||||
dispatch(ipaAdded({ isSelected: true }));
|
||||
}, [dispatch]);
|
||||
const overrides = { ipAdapter: defaultIPAdapter };
|
||||
dispatch(ipaAdded({ isSelected: true, overrides }));
|
||||
}, [defaultIPAdapter, dispatch]);
|
||||
|
||||
return (
|
||||
<>
|
||||
<MenuItem icon={<PiPlusBold />} onClick={addInpaintMask}>
|
||||
{t('controlLayers.inpaintMask', { count: 1 })}
|
||||
{t('controlLayers.inpaintMask')}
|
||||
</MenuItem>
|
||||
<MenuItem icon={<PiPlusBold />} onClick={addRegionalGuidance}>
|
||||
{t('controlLayers.regionalGuidance', { count: 1 })}
|
||||
{t('controlLayers.regionalGuidance')}
|
||||
</MenuItem>
|
||||
<MenuItem icon={<PiPlusBold />} onClick={addRasterLayer}>
|
||||
{t('controlLayers.rasterLayer', { count: 1 })}
|
||||
{t('controlLayers.rasterLayer')}
|
||||
</MenuItem>
|
||||
<MenuItem icon={<PiPlusBold />} onClick={addControlLayer}>
|
||||
{t('controlLayers.controlLayer', { count: 1 })}
|
||||
{t('controlLayers.controlLayer')}
|
||||
</MenuItem>
|
||||
<MenuItem icon={<PiPlusBold />} onClick={addIPAdapter}>
|
||||
{t('controlLayers.ipAdapter', { count: 1 })}
|
||||
{t('controlLayers.globalIPAdapter')}
|
||||
</MenuItem>
|
||||
</>
|
||||
);
|
||||
|
||||
@@ -22,7 +22,7 @@ import {
|
||||
selectEntity,
|
||||
selectSelectedEntityIdentifier,
|
||||
} from 'features/controlLayers/store/selectors';
|
||||
import { isDrawableEntity } from 'features/controlLayers/store/types';
|
||||
import { isRenderableEntity } from 'features/controlLayers/store/types';
|
||||
import { clamp, round } from 'lodash-es';
|
||||
import type { KeyboardEvent } from 'react';
|
||||
import { memo, useCallback, useEffect, useState } from 'react';
|
||||
@@ -37,11 +37,11 @@ function formatPct(v: number | string) {
|
||||
return `${round(Number(v), 2).toLocaleString()}%`;
|
||||
}
|
||||
|
||||
function mapSliderValueToOpacity(value: number) {
|
||||
function mapSliderValueToRawValue(value: number) {
|
||||
return value / 100;
|
||||
}
|
||||
|
||||
function mapOpacityToSliderValue(opacity: number) {
|
||||
function mapRawValueToSliderValue(opacity: number) {
|
||||
return opacity * 100;
|
||||
}
|
||||
|
||||
@@ -50,14 +50,14 @@ function formatSliderValue(value: number) {
|
||||
}
|
||||
|
||||
const marks = [
|
||||
mapOpacityToSliderValue(0),
|
||||
mapOpacityToSliderValue(0.25),
|
||||
mapOpacityToSliderValue(0.5),
|
||||
mapOpacityToSliderValue(0.75),
|
||||
mapOpacityToSliderValue(1),
|
||||
mapRawValueToSliderValue(0),
|
||||
mapRawValueToSliderValue(0.25),
|
||||
mapRawValueToSliderValue(0.5),
|
||||
mapRawValueToSliderValue(0.75),
|
||||
mapRawValueToSliderValue(1),
|
||||
];
|
||||
|
||||
const sliderDefaultValue = mapOpacityToSliderValue(1);
|
||||
const sliderDefaultValue = mapRawValueToSliderValue(1);
|
||||
|
||||
const snapCandidates = marks.slice(1, marks.length - 1);
|
||||
|
||||
@@ -70,7 +70,7 @@ const selectOpacity = createSelector(selectCanvasSlice, (canvas) => {
|
||||
if (!selectedEntity) {
|
||||
return 1; // fallback to 100% opacity
|
||||
}
|
||||
if (!isDrawableEntity(selectedEntity)) {
|
||||
if (!isRenderableEntity(selectedEntity)) {
|
||||
return 1; // fallback to 100% opacity
|
||||
}
|
||||
// Opacity is a float from 0-1, but we want to display it as a percentage
|
||||
@@ -95,7 +95,7 @@ export const SelectedEntityOpacity = memo(() => {
|
||||
if (!$shift.get()) {
|
||||
snappedOpacity = snapToNearest(opacity, snapCandidates, 2);
|
||||
}
|
||||
const mappedOpacity = mapSliderValueToOpacity(snappedOpacity);
|
||||
const mappedOpacity = mapSliderValueToRawValue(snappedOpacity);
|
||||
|
||||
dispatch(entityOpacityChanged({ entityIdentifier: selectedEntityIdentifier, opacity: mappedOpacity }));
|
||||
},
|
||||
@@ -157,7 +157,7 @@ export const SelectedEntityOpacity = memo(() => {
|
||||
clampValueOnBlur={false}
|
||||
variant="outline"
|
||||
>
|
||||
<NumberInputField paddingInlineEnd={7} />
|
||||
<NumberInputField paddingInlineEnd={7} _focusVisible={{ zIndex: 0 }} />
|
||||
<PopoverTrigger>
|
||||
<IconButton
|
||||
aria-label="open-slider"
|
||||
|
||||
@@ -1,29 +0,0 @@
|
||||
import { Button, ButtonGroup } from '@invoke-ai/ui-library';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { selectCanvasSessionSlice, sessionModeChanged } from 'features/controlLayers/store/canvasSessionSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const selectCanvasMode = createSelector(selectCanvasSessionSlice, (canvasSession) => canvasSession.mode);
|
||||
|
||||
export const CanvasModeSwitcher = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const mode = useAppSelector(selectCanvasMode);
|
||||
const onClickGenerate = useCallback(() => dispatch(sessionModeChanged({ mode: 'generate' })), [dispatch]);
|
||||
const onClickCompose = useCallback(() => dispatch(sessionModeChanged({ mode: 'compose' })), [dispatch]);
|
||||
|
||||
return (
|
||||
<ButtonGroup variant="outline">
|
||||
<Button onClick={onClickGenerate} colorScheme={mode === 'generate' ? 'invokeBlue' : 'base'}>
|
||||
{t('controlLayers.generateMode')}
|
||||
</Button>
|
||||
<Button onClick={onClickCompose} colorScheme={mode === 'compose' ? 'invokeBlue' : 'base'}>
|
||||
{t('controlLayers.composeMode')}
|
||||
</Button>
|
||||
</ButtonGroup>
|
||||
);
|
||||
});
|
||||
|
||||
CanvasModeSwitcher.displayName = 'CanvasModeSwitcher';
|
||||
@@ -9,6 +9,7 @@ import { memo } from 'react';
|
||||
|
||||
export const CanvasPanelContent = memo(() => {
|
||||
const hasEntities = useAppSelector(selectHasEntities);
|
||||
|
||||
return (
|
||||
<CanvasManagerProviderGate>
|
||||
<Flex flexDir="column" gap={2} w="full" h="full">
|
||||
|
||||
@@ -0,0 +1,65 @@
|
||||
import { Flex, Text } from '@invoke-ai/ui-library';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { IconSwitch } from 'common/components/IconSwitch';
|
||||
import {
|
||||
selectCanvasSettingsSlice,
|
||||
settingsSendToCanvasChanged,
|
||||
} from 'features/controlLayers/store/canvasSettingsSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiImageBold, PiPaintBrushBold } from 'react-icons/pi';
|
||||
|
||||
const TooltipSendToGallery = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
|
||||
return (
|
||||
<Flex flexDir="column">
|
||||
<Text fontWeight="semibold">{t('controlLayers.sendToGallery')}</Text>
|
||||
<Text fontWeight="normal">{t('controlLayers.sendToGalleryDesc')}</Text>
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
TooltipSendToGallery.displayName = 'TooltipSendToGallery';
|
||||
|
||||
const TooltipSendToCanvas = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
|
||||
return (
|
||||
<Flex flexDir="column">
|
||||
<Text fontWeight="semibold">{t('controlLayers.sendToCanvas')}</Text>
|
||||
<Text fontWeight="normal">{t('controlLayers.sendToCanvasDesc')}</Text>
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
TooltipSendToCanvas.displayName = 'TooltipSendToCanvas';
|
||||
|
||||
const selectSendToCanvas = createSelector(selectCanvasSettingsSlice, (canvasSettings) => canvasSettings.sendToCanvas);
|
||||
|
||||
export const CanvasSendToToggle = memo(() => {
|
||||
const dispatch = useAppDispatch();
|
||||
const sendToCanvas = useAppSelector(selectSendToCanvas);
|
||||
|
||||
const onChange = useCallback(
|
||||
(isChecked: boolean) => {
|
||||
dispatch(settingsSendToCanvasChanged(isChecked));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
return (
|
||||
<IconSwitch
|
||||
isChecked={sendToCanvas}
|
||||
onChange={onChange}
|
||||
iconUnchecked={<PiImageBold />}
|
||||
tooltipUnchecked={<TooltipSendToGallery />}
|
||||
iconChecked={<PiPaintBrushBold />}
|
||||
tooltipChecked={<TooltipSendToCanvas />}
|
||||
ariaLabel="Toggle canvas mode"
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
CanvasSendToToggle.displayName = 'CanvasSendToToggle';
|
||||
@@ -1,14 +1,13 @@
|
||||
import { Spacer } from '@invoke-ai/ui-library';
|
||||
import { CanvasEntityContainer } from 'features/controlLayers/components/common/CanvasEntityContainer';
|
||||
import { CanvasEntityEnabledToggle } from 'features/controlLayers/components/common/CanvasEntityEnabledToggle';
|
||||
import { CanvasEntityHeader } from 'features/controlLayers/components/common/CanvasEntityHeader';
|
||||
import { CanvasEntityIsLockedToggle } from 'features/controlLayers/components/common/CanvasEntityIsLockedToggle';
|
||||
import { CanvasEntityHeaderCommonActions } from 'features/controlLayers/components/common/CanvasEntityHeaderCommonActions';
|
||||
import { CanvasEntityPreviewImage } from 'features/controlLayers/components/common/CanvasEntityPreviewImage';
|
||||
import { CanvasEntitySettingsWrapper } from 'features/controlLayers/components/common/CanvasEntitySettingsWrapper';
|
||||
import { CanvasEntityEditableTitle } from 'features/controlLayers/components/common/CanvasEntityTitleEdit';
|
||||
import { ControlLayerBadges } from 'features/controlLayers/components/ControlLayer/ControlLayerBadges';
|
||||
import { ControlLayerControlAdapter } from 'features/controlLayers/components/ControlLayer/ControlLayerControlAdapter';
|
||||
import { EntityLayerAdapterGate } from 'features/controlLayers/contexts/EntityAdapterContext';
|
||||
import { ControlLayerAdapterGate } from 'features/controlLayers/contexts/EntityAdapterContext';
|
||||
import { EntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
|
||||
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
|
||||
import { memo, useMemo } from 'react';
|
||||
@@ -22,21 +21,20 @@ export const ControlLayer = memo(({ id }: Props) => {
|
||||
|
||||
return (
|
||||
<EntityIdentifierContext.Provider value={entityIdentifier}>
|
||||
<EntityLayerAdapterGate>
|
||||
<ControlLayerAdapterGate>
|
||||
<CanvasEntityContainer>
|
||||
<CanvasEntityHeader>
|
||||
<CanvasEntityPreviewImage />
|
||||
<CanvasEntityEditableTitle />
|
||||
<Spacer />
|
||||
<ControlLayerBadges />
|
||||
<CanvasEntityIsLockedToggle />
|
||||
<CanvasEntityEnabledToggle />
|
||||
<CanvasEntityHeaderCommonActions />
|
||||
</CanvasEntityHeader>
|
||||
<CanvasEntitySettingsWrapper>
|
||||
<ControlLayerControlAdapter />
|
||||
</CanvasEntitySettingsWrapper>
|
||||
</CanvasEntityContainer>
|
||||
</EntityLayerAdapterGate>
|
||||
</ControlLayerAdapterGate>
|
||||
</EntityIdentifierContext.Provider>
|
||||
);
|
||||
});
|
||||
|
||||
@@ -47,7 +47,7 @@ export const ControlLayerControlAdapterModel = memo(({ modelKey, onChange: onCha
|
||||
} else {
|
||||
canvasManager.filter.$config.set(IMAGE_FILTERS.canny_image_processor.buildDefaults(modelConfig.base));
|
||||
}
|
||||
canvasManager.filter.initialize(entityIdentifier);
|
||||
canvasManager.filter.startFilter(entityIdentifier);
|
||||
canvasManager.filter.previewFilter();
|
||||
}
|
||||
},
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import { MenuItem } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
|
||||
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
|
||||
import { controlLayerConvertedToRasterLayer } from 'features/controlLayers/store/canvasSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
@@ -9,6 +10,7 @@ import { PiLightningBold } from 'react-icons/pi';
|
||||
export const ControlLayerMenuItemsControlToRaster = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const isBusy = useCanvasIsBusy();
|
||||
const entityIdentifier = useEntityIdentifierContext('control_layer');
|
||||
|
||||
const convertControlLayerToRasterLayer = useCallback(() => {
|
||||
@@ -16,7 +18,7 @@ export const ControlLayerMenuItemsControlToRaster = memo(() => {
|
||||
}, [dispatch, entityIdentifier]);
|
||||
|
||||
return (
|
||||
<MenuItem onClick={convertControlLayerToRasterLayer} icon={<PiLightningBold />}>
|
||||
<MenuItem onClick={convertControlLayerToRasterLayer} icon={<PiLightningBold />} isDisabled={isBusy}>
|
||||
{t('controlLayers.convertToRasterLayer')}
|
||||
</MenuItem>
|
||||
);
|
||||
|
||||
@@ -1,38 +0,0 @@
|
||||
/* eslint-disable i18next/no-literal-string */
|
||||
import { Flex, Spacer } from '@invoke-ai/ui-library';
|
||||
import { CanvasModeSwitcher } from 'features/controlLayers/components/CanvasModeSwitcher';
|
||||
import { CanvasResetViewButton } from 'features/controlLayers/components/CanvasResetViewButton';
|
||||
import { CanvasScale } from 'features/controlLayers/components/CanvasScale';
|
||||
import { CanvasSettingsPopover } from 'features/controlLayers/components/Settings/CanvasSettingsPopover';
|
||||
import { ToolChooser } from 'features/controlLayers/components/Tool/ToolChooser';
|
||||
import { ToolFillColorPicker } from 'features/controlLayers/components/Tool/ToolFillColorPicker';
|
||||
import { ToolSettings } from 'features/controlLayers/components/Tool/ToolSettings';
|
||||
import { UndoRedoButtonGroup } from 'features/controlLayers/components/UndoRedoButtonGroup';
|
||||
import { CanvasManagerProviderGate } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
|
||||
import { ToggleProgressButton } from 'features/gallery/components/ImageViewer/ToggleProgressButton';
|
||||
import { ViewerToggleMenu } from 'features/gallery/components/ImageViewer/ViewerToggleMenu';
|
||||
import { memo } from 'react';
|
||||
|
||||
export const ControlLayersToolbar = memo(() => {
|
||||
return (
|
||||
<CanvasManagerProviderGate>
|
||||
<Flex w="full" gap={2} alignItems="center">
|
||||
<ToggleProgressButton />
|
||||
<ToolChooser />
|
||||
<Spacer />
|
||||
<ToolSettings />
|
||||
<Spacer />
|
||||
<CanvasScale />
|
||||
<CanvasResetViewButton />
|
||||
<Spacer />
|
||||
<ToolFillColorPicker />
|
||||
<CanvasModeSwitcher />
|
||||
<UndoRedoButtonGroup />
|
||||
<CanvasSettingsPopover />
|
||||
<ViewerToggleMenu />
|
||||
</Flex>
|
||||
</CanvasManagerProviderGate>
|
||||
);
|
||||
});
|
||||
|
||||
ControlLayersToolbar.displayName = 'ControlLayersToolbar';
|
||||
@@ -1,53 +1,27 @@
|
||||
import { Box, Flex, Text } from '@invoke-ai/ui-library';
|
||||
import { useStore } from '@nanostores/react';
|
||||
import { Grid, GridItem, Text } from '@invoke-ai/ui-library';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
|
||||
import { selectCanvasSlice } from 'features/controlLayers/store/selectors';
|
||||
import { round } from 'lodash-es';
|
||||
import { memo } from 'react';
|
||||
|
||||
const selectBbox = createSelector(selectCanvasSlice, (canvas) => canvas.bbox);
|
||||
|
||||
export const HeadsUpDisplay = memo(() => {
|
||||
const canvasManager = useCanvasManager();
|
||||
const stageAttrs = useStore(canvasManager.stateApi.$stageAttrs);
|
||||
const cursorPos = useStore(canvasManager.stateApi.$lastCursorPos);
|
||||
const isDrawing = useStore(canvasManager.stateApi.$isDrawing);
|
||||
const isMouseDown = useStore(canvasManager.stateApi.$isMouseDown);
|
||||
const lastMouseDownPos = useStore(canvasManager.stateApi.$lastMouseDownPos);
|
||||
const lastAddedPoint = useStore(canvasManager.stateApi.$lastAddedPoint);
|
||||
const bbox = useAppSelector(selectBbox);
|
||||
|
||||
return (
|
||||
<Flex flexDir="column" bg="blackAlpha.400" borderBottomEndRadius="base" p={2} minW={64} gap={2}>
|
||||
<HUDItem label="Zoom" value={`${round(stageAttrs.scale * 100, 2)}%`} />
|
||||
<HUDItem label="Stage Pos" value={`${round(stageAttrs.x, 3)}, ${round(stageAttrs.y, 3)}`} />
|
||||
<HUDItem
|
||||
label="Stage Size"
|
||||
value={`${round(stageAttrs.width / stageAttrs.scale, 2)}×${round(stageAttrs.height / stageAttrs.scale, 2)} px`}
|
||||
/>
|
||||
<HUDItem label="BBox Size" value={`${bbox.rect.width}×${bbox.rect.height} px`} />
|
||||
<HUDItem label="BBox Position" value={`${bbox.rect.x}, ${bbox.rect.y}`} />
|
||||
<HUDItem label="BBox Width % 8" value={round(bbox.rect.width % 8, 2)} />
|
||||
<HUDItem label="BBox Height % 8" value={round(bbox.rect.height % 8, 2)} />
|
||||
<HUDItem label="BBox X % 8" value={round(bbox.rect.x % 8, 2)} />
|
||||
<HUDItem label="BBox Y % 8" value={round(bbox.rect.y % 8, 2)} />
|
||||
<HUDItem
|
||||
label="Cursor Position"
|
||||
value={cursorPos ? `${round(cursorPos.x, 2)}, ${round(cursorPos.y, 2)}` : '?, ?'}
|
||||
/>
|
||||
<HUDItem label="Is Drawing" value={isDrawing ? 'True' : 'False'} />
|
||||
<HUDItem label="Is Mouse Down" value={isMouseDown ? 'True' : 'False'} />
|
||||
<HUDItem
|
||||
label="Last Mouse Down Pos"
|
||||
value={lastMouseDownPos ? `${round(lastMouseDownPos.x, 2)}, ${round(lastMouseDownPos.y, 2)}` : '?, ?'}
|
||||
/>
|
||||
<HUDItem
|
||||
label="Last Added Point"
|
||||
value={lastAddedPoint ? `${round(lastAddedPoint.x, 2)}, ${round(lastAddedPoint.y, 2)}` : '?, ?'}
|
||||
/>
|
||||
</Flex>
|
||||
<Grid
|
||||
bg="base.900"
|
||||
borderBottomEndRadius="base"
|
||||
p={2}
|
||||
gap={2}
|
||||
borderRadius="base"
|
||||
templateColumns="auto auto"
|
||||
opacity={0.6}
|
||||
>
|
||||
<HUDItem label="BBox" value={`${bbox.rect.width}×${bbox.rect.height} px`} />
|
||||
<HUDItem label="Scaled BBox" value={`${bbox.scaledSize.width}×${bbox.scaledSize.height} px`} />
|
||||
</Grid>
|
||||
);
|
||||
});
|
||||
|
||||
@@ -55,12 +29,14 @@ HeadsUpDisplay.displayName = 'HeadsUpDisplay';
|
||||
|
||||
const HUDItem = memo(({ label, value }: { label: string; value: string | number }) => {
|
||||
return (
|
||||
<Box display="inline-block" lineHeight={1}>
|
||||
<Text as="span">{label}: </Text>
|
||||
<Text as="span" fontWeight="semibold">
|
||||
{value}
|
||||
</Text>
|
||||
</Box>
|
||||
<>
|
||||
<GridItem>
|
||||
<Text textAlign="end">{label}: </Text>
|
||||
</GridItem>
|
||||
<GridItem fontWeight="semibold">
|
||||
<Text>{value}</Text>
|
||||
</GridItem>
|
||||
</>
|
||||
);
|
||||
});
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import { Spacer } from '@invoke-ai/ui-library';
|
||||
import { CanvasEntityContainer } from 'features/controlLayers/components/common/CanvasEntityContainer';
|
||||
import { CanvasEntityEnabledToggle } from 'features/controlLayers/components/common/CanvasEntityEnabledToggle';
|
||||
import { CanvasEntityHeader } from 'features/controlLayers/components/common/CanvasEntityHeader';
|
||||
import { CanvasEntityHeaderCommonActions } from 'features/controlLayers/components/common/CanvasEntityHeaderCommonActions';
|
||||
import { CanvasEntityEditableTitle } from 'features/controlLayers/components/common/CanvasEntityTitleEdit';
|
||||
import { IPAdapterSettings } from 'features/controlLayers/components/IPAdapter/IPAdapterSettings';
|
||||
import { EntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
|
||||
@@ -18,10 +18,10 @@ export const IPAdapter = memo(({ id }: Props) => {
|
||||
return (
|
||||
<EntityIdentifierContext.Provider value={entityIdentifier}>
|
||||
<CanvasEntityContainer>
|
||||
<CanvasEntityHeader ps={4}>
|
||||
<CanvasEntityHeader ps={4} py={5}>
|
||||
<CanvasEntityEditableTitle />
|
||||
<Spacer />
|
||||
<CanvasEntityEnabledToggle />
|
||||
<CanvasEntityHeaderCommonActions />
|
||||
</CanvasEntityHeader>
|
||||
<IPAdapterSettings />
|
||||
</CanvasEntityContainer>
|
||||
|
||||
@@ -1,11 +1,10 @@
|
||||
import { Spacer } from '@invoke-ai/ui-library';
|
||||
import { CanvasEntityContainer } from 'features/controlLayers/components/common/CanvasEntityContainer';
|
||||
import { CanvasEntityEnabledToggle } from 'features/controlLayers/components/common/CanvasEntityEnabledToggle';
|
||||
import { CanvasEntityHeader } from 'features/controlLayers/components/common/CanvasEntityHeader';
|
||||
import { CanvasEntityIsLockedToggle } from 'features/controlLayers/components/common/CanvasEntityIsLockedToggle';
|
||||
import { CanvasEntityHeaderCommonActions } from 'features/controlLayers/components/common/CanvasEntityHeaderCommonActions';
|
||||
import { CanvasEntityPreviewImage } from 'features/controlLayers/components/common/CanvasEntityPreviewImage';
|
||||
import { CanvasEntityEditableTitle } from 'features/controlLayers/components/common/CanvasEntityTitleEdit';
|
||||
import { EntityMaskAdapterGate } from 'features/controlLayers/contexts/EntityAdapterContext';
|
||||
import { InpaintMaskAdapterGate } from 'features/controlLayers/contexts/EntityAdapterContext';
|
||||
import { EntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
|
||||
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
|
||||
import { memo, useMemo } from 'react';
|
||||
@@ -19,17 +18,16 @@ export const InpaintMask = memo(({ id }: Props) => {
|
||||
|
||||
return (
|
||||
<EntityIdentifierContext.Provider value={entityIdentifier}>
|
||||
<EntityMaskAdapterGate>
|
||||
<InpaintMaskAdapterGate>
|
||||
<CanvasEntityContainer>
|
||||
<CanvasEntityHeader>
|
||||
<CanvasEntityPreviewImage />
|
||||
<CanvasEntityEditableTitle />
|
||||
<Spacer />
|
||||
<CanvasEntityIsLockedToggle />
|
||||
<CanvasEntityEnabledToggle />
|
||||
<CanvasEntityHeaderCommonActions />
|
||||
</CanvasEntityHeader>
|
||||
</CanvasEntityContainer>
|
||||
</EntityMaskAdapterGate>
|
||||
</InpaintMaskAdapterGate>
|
||||
</EntityIdentifierContext.Provider>
|
||||
);
|
||||
});
|
||||
|
||||
@@ -1,11 +1,10 @@
|
||||
import { Spacer } from '@invoke-ai/ui-library';
|
||||
import { CanvasEntityContainer } from 'features/controlLayers/components/common/CanvasEntityContainer';
|
||||
import { CanvasEntityEnabledToggle } from 'features/controlLayers/components/common/CanvasEntityEnabledToggle';
|
||||
import { CanvasEntityHeader } from 'features/controlLayers/components/common/CanvasEntityHeader';
|
||||
import { CanvasEntityIsLockedToggle } from 'features/controlLayers/components/common/CanvasEntityIsLockedToggle';
|
||||
import { CanvasEntityHeaderCommonActions } from 'features/controlLayers/components/common/CanvasEntityHeaderCommonActions';
|
||||
import { CanvasEntityPreviewImage } from 'features/controlLayers/components/common/CanvasEntityPreviewImage';
|
||||
import { CanvasEntityEditableTitle } from 'features/controlLayers/components/common/CanvasEntityTitleEdit';
|
||||
import { EntityLayerAdapterGate } from 'features/controlLayers/contexts/EntityAdapterContext';
|
||||
import { RasterLayerAdapterGate } from 'features/controlLayers/contexts/EntityAdapterContext';
|
||||
import { EntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
|
||||
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
|
||||
import { memo, useMemo } from 'react';
|
||||
@@ -19,17 +18,16 @@ export const RasterLayer = memo(({ id }: Props) => {
|
||||
|
||||
return (
|
||||
<EntityIdentifierContext.Provider value={entityIdentifier}>
|
||||
<EntityLayerAdapterGate>
|
||||
<RasterLayerAdapterGate>
|
||||
<CanvasEntityContainer>
|
||||
<CanvasEntityHeader>
|
||||
<CanvasEntityPreviewImage />
|
||||
<CanvasEntityEditableTitle />
|
||||
<Spacer />
|
||||
<CanvasEntityIsLockedToggle />
|
||||
<CanvasEntityEnabledToggle />
|
||||
<CanvasEntityHeaderCommonActions />
|
||||
</CanvasEntityHeader>
|
||||
</CanvasEntityContainer>
|
||||
</EntityLayerAdapterGate>
|
||||
</RasterLayerAdapterGate>
|
||||
</EntityIdentifierContext.Provider>
|
||||
);
|
||||
});
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import { MenuItem } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
|
||||
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
|
||||
import { rasterLayerConvertedToControlLayer } from 'features/controlLayers/store/canvasSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
@@ -10,13 +11,14 @@ export const RasterLayerMenuItemsRasterToControl = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const entityIdentifier = useEntityIdentifierContext('raster_layer');
|
||||
const isBusy = useCanvasIsBusy();
|
||||
|
||||
const convertRasterLayerToControlLayer = useCallback(() => {
|
||||
dispatch(rasterLayerConvertedToControlLayer({ entityIdentifier }));
|
||||
}, [dispatch, entityIdentifier]);
|
||||
|
||||
return (
|
||||
<MenuItem onClick={convertRasterLayerToControlLayer} icon={<PiLightningBold />}>
|
||||
<MenuItem onClick={convertRasterLayerToControlLayer} icon={<PiLightningBold />} isDisabled={isBusy}>
|
||||
{t('controlLayers.convertToControlLayer')}
|
||||
</MenuItem>
|
||||
);
|
||||
|
||||
@@ -1,13 +1,12 @@
|
||||
import { Spacer } from '@invoke-ai/ui-library';
|
||||
import { CanvasEntityContainer } from 'features/controlLayers/components/common/CanvasEntityContainer';
|
||||
import { CanvasEntityEnabledToggle } from 'features/controlLayers/components/common/CanvasEntityEnabledToggle';
|
||||
import { CanvasEntityHeader } from 'features/controlLayers/components/common/CanvasEntityHeader';
|
||||
import { CanvasEntityIsLockedToggle } from 'features/controlLayers/components/common/CanvasEntityIsLockedToggle';
|
||||
import { CanvasEntityHeaderCommonActions } from 'features/controlLayers/components/common/CanvasEntityHeaderCommonActions';
|
||||
import { CanvasEntityPreviewImage } from 'features/controlLayers/components/common/CanvasEntityPreviewImage';
|
||||
import { CanvasEntityEditableTitle } from 'features/controlLayers/components/common/CanvasEntityTitleEdit';
|
||||
import { RegionalGuidanceBadges } from 'features/controlLayers/components/RegionalGuidance/RegionalGuidanceBadges';
|
||||
import { RegionalGuidanceSettings } from 'features/controlLayers/components/RegionalGuidance/RegionalGuidanceSettings';
|
||||
import { EntityMaskAdapterGate } from 'features/controlLayers/contexts/EntityAdapterContext';
|
||||
import { RegionalGuidanceAdapterGate } from 'features/controlLayers/contexts/EntityAdapterContext';
|
||||
import { EntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
|
||||
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
|
||||
import { memo, useMemo } from 'react';
|
||||
@@ -21,19 +20,18 @@ export const RegionalGuidance = memo(({ id }: Props) => {
|
||||
|
||||
return (
|
||||
<EntityIdentifierContext.Provider value={entityIdentifier}>
|
||||
<EntityMaskAdapterGate>
|
||||
<RegionalGuidanceAdapterGate>
|
||||
<CanvasEntityContainer>
|
||||
<CanvasEntityHeader>
|
||||
<CanvasEntityPreviewImage />
|
||||
<CanvasEntityEditableTitle />
|
||||
<Spacer />
|
||||
<RegionalGuidanceBadges />
|
||||
<CanvasEntityIsLockedToggle />
|
||||
<CanvasEntityEnabledToggle />
|
||||
<CanvasEntityHeaderCommonActions />
|
||||
</CanvasEntityHeader>
|
||||
<RegionalGuidanceSettings />
|
||||
</CanvasEntityContainer>
|
||||
</EntityMaskAdapterGate>
|
||||
</RegionalGuidanceAdapterGate>
|
||||
</EntityIdentifierContext.Provider>
|
||||
);
|
||||
});
|
||||
|
||||
@@ -2,6 +2,7 @@ import { MenuItem } from '@invoke-ai/ui-library';
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
|
||||
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
|
||||
import {
|
||||
rgIPAdapterAdded,
|
||||
rgNegativePromptChanged,
|
||||
@@ -15,6 +16,7 @@ export const RegionalGuidanceMenuItemsAddPromptsAndIPAdapter = memo(() => {
|
||||
const entityIdentifier = useEntityIdentifierContext('regional_guidance');
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const isBusy = useCanvasIsBusy();
|
||||
const selectValidActions = useMemo(
|
||||
() =>
|
||||
createMemoizedSelector(selectCanvasSlice, (canvas) => {
|
||||
@@ -39,13 +41,15 @@ export const RegionalGuidanceMenuItemsAddPromptsAndIPAdapter = memo(() => {
|
||||
|
||||
return (
|
||||
<>
|
||||
<MenuItem onClick={addPositivePrompt} isDisabled={!validActions.canAddPositivePrompt}>
|
||||
<MenuItem onClick={addPositivePrompt} isDisabled={!validActions.canAddPositivePrompt || isBusy}>
|
||||
{t('controlLayers.addPositivePrompt')}
|
||||
</MenuItem>
|
||||
<MenuItem onClick={addNegativePrompt} isDisabled={!validActions.canAddNegativePrompt}>
|
||||
<MenuItem onClick={addNegativePrompt} isDisabled={!validActions.canAddNegativePrompt || isBusy}>
|
||||
{t('controlLayers.addNegativePrompt')}
|
||||
</MenuItem>
|
||||
<MenuItem onClick={addIPAdapter}>{t('controlLayers.addIPAdapter')}</MenuItem>
|
||||
<MenuItem onClick={addIPAdapter} isDisabled={isBusy}>
|
||||
{t('controlLayers.addIPAdapter')}
|
||||
</MenuItem>
|
||||
</>
|
||||
);
|
||||
});
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import { Checkbox, FormControl, FormLabel } from '@invoke-ai/ui-library';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { clipToBboxChanged, selectCanvasSettingsSlice } from 'features/controlLayers/store/canvasSettingsSlice';
|
||||
import { selectCanvasSettingsSlice, settingsClipToBboxChanged } from 'features/controlLayers/store/canvasSettingsSlice';
|
||||
import type { ChangeEvent } from 'react';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
@@ -13,7 +13,7 @@ export const CanvasSettingsClipToBboxCheckbox = memo(() => {
|
||||
const dispatch = useAppDispatch();
|
||||
const clipToBbox = useAppSelector(selectClipToBbox);
|
||||
const onChange = useCallback(
|
||||
(e: ChangeEvent<HTMLInputElement>) => dispatch(clipToBboxChanged(e.target.checked)),
|
||||
(e: ChangeEvent<HTMLInputElement>) => dispatch(settingsClipToBboxChanged(e.target.checked)),
|
||||
[dispatch]
|
||||
);
|
||||
return (
|
||||
|
||||
@@ -0,0 +1,33 @@
|
||||
import { Checkbox, FormControl, FormLabel } from '@invoke-ai/ui-library';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import {
|
||||
selectCanvasSettingsSlice,
|
||||
settingsCompositeMaskedRegionsChanged,
|
||||
} from 'features/controlLayers/store/canvasSettingsSlice';
|
||||
import type { ChangeEvent } from 'react';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const selectCompositeMaskedRegions = createSelector(
|
||||
selectCanvasSettingsSlice,
|
||||
(canvasSettings) => canvasSettings.compositeMaskedRegions
|
||||
);
|
||||
|
||||
export const CanvasSettingsCompositeMaskedRegionsCheckbox = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const compositeMaskedRegions = useAppSelector(selectCompositeMaskedRegions);
|
||||
const onChange = useCallback(
|
||||
(e: ChangeEvent<HTMLInputElement>) => dispatch(settingsCompositeMaskedRegionsChanged(e.target.checked)),
|
||||
[dispatch]
|
||||
);
|
||||
return (
|
||||
<FormControl w="full">
|
||||
<FormLabel flexGrow={1}>{t('controlLayers.compositeMaskedRegions')}</FormLabel>
|
||||
<Checkbox isChecked={compositeMaskedRegions} onChange={onChange} />
|
||||
</FormControl>
|
||||
);
|
||||
});
|
||||
|
||||
CanvasSettingsCompositeMaskedRegionsCheckbox.displayName = 'CanvasSettingsCompositeMaskedRegionsCheckbox';
|
||||
@@ -1,15 +1,9 @@
|
||||
import { FormControl, FormLabel, Switch } from '@invoke-ai/ui-library';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import {
|
||||
selectCanvasSettingsSlice,
|
||||
settingsDynamicGridToggled,
|
||||
} from 'features/controlLayers/store/canvasSettingsSlice';
|
||||
import { selectDynamicGrid, settingsDynamicGridToggled } from 'features/controlLayers/store/canvasSettingsSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const selectDynamicGrid = createSelector(selectCanvasSettingsSlice, (canvasSettings) => canvasSettings.dynamicGrid);
|
||||
|
||||
export const CanvasSettingsDynamicGridSwitch = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
@@ -1,25 +1,33 @@
|
||||
import { Checkbox, FormControl, FormLabel } from '@invoke-ai/ui-library';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { invertScrollChanged, selectToolSlice } from 'features/controlLayers/store/toolSlice';
|
||||
import {
|
||||
selectCanvasSettingsSlice,
|
||||
settingsInvertScrollForToolWidthChanged,
|
||||
} from 'features/controlLayers/store/canvasSettingsSlice';
|
||||
import type { ChangeEvent } from 'react';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const selectInvertScroll = createSelector(selectToolSlice, (tool) => tool.invertScroll);
|
||||
const selectInvertScrollForToolWidth = createSelector(
|
||||
selectCanvasSettingsSlice,
|
||||
(settings) => settings.invertScrollForToolWidth
|
||||
);
|
||||
|
||||
export const CanvasSettingsInvertScrollCheckbox = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const invertScroll = useAppSelector(selectInvertScroll);
|
||||
const invertScrollForToolWidth = useAppSelector(selectInvertScrollForToolWidth);
|
||||
const onChange = useCallback(
|
||||
(e: ChangeEvent<HTMLInputElement>) => dispatch(invertScrollChanged(e.target.checked)),
|
||||
(e: ChangeEvent<HTMLInputElement>) => {
|
||||
dispatch(settingsInvertScrollForToolWidthChanged(e.target.checked));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
return (
|
||||
<FormControl w="full">
|
||||
<FormLabel flexGrow={1}>{t('unifiedCanvas.invertBrushSizeScrollDirection')}</FormLabel>
|
||||
<Checkbox isChecked={invertScroll} onChange={onChange} />
|
||||
<Checkbox isChecked={invertScrollForToolWidth} onChange={onChange} />
|
||||
</FormControl>
|
||||
);
|
||||
});
|
||||
|
||||
@@ -13,11 +13,13 @@ import { CanvasSettingsAutoSaveCheckbox } from 'features/controlLayers/component
|
||||
import { CanvasSettingsClearCachesButton } from 'features/controlLayers/components/Settings/CanvasSettingsClearCachesButton';
|
||||
import { CanvasSettingsClearHistoryButton } from 'features/controlLayers/components/Settings/CanvasSettingsClearHistoryButton';
|
||||
import { CanvasSettingsClipToBboxCheckbox } from 'features/controlLayers/components/Settings/CanvasSettingsClipToBboxCheckbox';
|
||||
import { CanvasSettingsCompositeMaskedRegionsCheckbox } from 'features/controlLayers/components/Settings/CanvasSettingsCompositeMaskedRegionsCheckbox';
|
||||
import { CanvasSettingsDynamicGridSwitch } from 'features/controlLayers/components/Settings/CanvasSettingsDynamicGridSwitch';
|
||||
import { CanvasSettingsInvertScrollCheckbox } from 'features/controlLayers/components/Settings/CanvasSettingsInvertScrollCheckbox';
|
||||
import { CanvasSettingsLogDebugInfoButton } from 'features/controlLayers/components/Settings/CanvasSettingsLogDebugInfo';
|
||||
import { CanvasSettingsRecalculateRectsButton } from 'features/controlLayers/components/Settings/CanvasSettingsRecalculateRectsButton';
|
||||
import { CanvasSettingsResetButton } from 'features/controlLayers/components/Settings/CanvasSettingsResetButton';
|
||||
import { CanvasSettingsShowHUDSwitch } from 'features/controlLayers/components/Settings/CanvasSettingsShowHUDSwitch';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { RiSettings4Fill } from 'react-icons/ri';
|
||||
@@ -36,7 +38,9 @@ export const CanvasSettingsPopover = memo(() => {
|
||||
<CanvasSettingsAutoSaveCheckbox />
|
||||
<CanvasSettingsInvertScrollCheckbox />
|
||||
<CanvasSettingsClipToBboxCheckbox />
|
||||
<CanvasSettingsCompositeMaskedRegionsCheckbox />
|
||||
<CanvasSettingsDynamicGridSwitch />
|
||||
<CanvasSettingsShowHUDSwitch />
|
||||
<CanvasSettingsResetButton />
|
||||
<DebugSettings />
|
||||
</Flex>
|
||||
|
||||
@@ -7,7 +7,7 @@ export const CanvasSettingsRecalculateRectsButton = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const canvasManager = useCanvasManager();
|
||||
const onClick = useCallback(() => {
|
||||
for (const adapter of canvasManager.adapters.getAll()) {
|
||||
for (const adapter of canvasManager.getAllAdapters()) {
|
||||
adapter.transformer.requestRectCalculation();
|
||||
}
|
||||
}, [canvasManager]);
|
||||
|
||||
@@ -0,0 +1,28 @@
|
||||
import { FormControl, FormLabel, Switch } from '@invoke-ai/ui-library';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { selectCanvasSettingsSlice, settingsShowHUDToggled } from 'features/controlLayers/store/canvasSettingsSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const selectShowHUD = createSelector(selectCanvasSettingsSlice, (canvasSettings) => canvasSettings.showHUD);
|
||||
|
||||
export const CanvasSettingsShowHUDSwitch = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const showHUD = useAppSelector(selectShowHUD);
|
||||
const onChange = useCallback(() => {
|
||||
dispatch(settingsShowHUDToggled());
|
||||
}, [dispatch]);
|
||||
|
||||
return (
|
||||
<FormControl>
|
||||
<FormLabel m={0} flexGrow={1}>
|
||||
{t('controlLayers.showHUD')}
|
||||
</FormLabel>
|
||||
<Switch size="sm" isChecked={showHUD} onChange={onChange} />
|
||||
</FormControl>
|
||||
);
|
||||
});
|
||||
|
||||
CanvasSettingsShowHUDSwitch.displayName = 'CanvasSettingsShowHUDSwitch';
|
||||
@@ -1,27 +1,24 @@
|
||||
import { Flex } from '@invoke-ai/ui-library';
|
||||
import { useStore } from '@nanostores/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { $socket } from 'app/hooks/useSocketIO';
|
||||
import { logger } from 'app/logging/logger';
|
||||
import { useAppStore } from 'app/store/nanostores/store';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { HeadsUpDisplay } from 'features/controlLayers/components/HeadsUpDisplay';
|
||||
import { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
|
||||
import { TRANSPARENCY_CHECKER_PATTERN } from 'features/controlLayers/konva/constants';
|
||||
import { selectCanvasSettingsSlice } from 'features/controlLayers/store/canvasSettingsSlice';
|
||||
import { TRANSPARENCY_CHECKERBOARD_PATTERN_DATAURL } from 'features/controlLayers/konva/patterns/transparency-checkerboard-pattern';
|
||||
import { getPrefixedId } from 'features/controlLayers/konva/util';
|
||||
import { selectDynamicGrid, selectShowHUD } from 'features/controlLayers/store/canvasSettingsSlice';
|
||||
import Konva from 'konva';
|
||||
import { memo, useCallback, useEffect, useLayoutEffect, useState } from 'react';
|
||||
import { useDevicePixelRatio } from 'use-device-pixel-ratio';
|
||||
import { v4 as uuidv4 } from 'uuid';
|
||||
|
||||
const log = logger('canvas');
|
||||
|
||||
const showHud = false;
|
||||
|
||||
// This will log warnings when layers > 5 - maybe use `import.meta.env.MODE === 'development'` instead?
|
||||
Konva.showWarnings = false;
|
||||
|
||||
const useStageRenderer = (stage: Konva.Stage, container: HTMLDivElement | null, asPreview: boolean) => {
|
||||
const useStageRenderer = (stage: Konva.Stage, container: HTMLDivElement | null) => {
|
||||
const store = useAppStore();
|
||||
const socket = useStore($socket);
|
||||
const dpr = useDevicePixelRatio({ round: false });
|
||||
@@ -42,28 +39,22 @@ const useStageRenderer = (stage: Konva.Stage, container: HTMLDivElement | null,
|
||||
const manager = new CanvasManager(stage, container, store, socket);
|
||||
manager.initialize();
|
||||
return manager.destroy;
|
||||
}, [asPreview, container, socket, stage, store]);
|
||||
}, [container, socket, stage, store]);
|
||||
|
||||
useLayoutEffect(() => {
|
||||
Konva.pixelRatio = dpr;
|
||||
}, [dpr]);
|
||||
};
|
||||
|
||||
type Props = {
|
||||
asPreview?: boolean;
|
||||
};
|
||||
|
||||
const selectDynamicGrid = createSelector(selectCanvasSettingsSlice, (canvasSettings) => canvasSettings.dynamicGrid);
|
||||
|
||||
export const StageComponent = memo(({ asPreview = false }: Props) => {
|
||||
export const StageComponent = memo(() => {
|
||||
const dynamicGrid = useAppSelector(selectDynamicGrid);
|
||||
const showHUD = useAppSelector(selectShowHUD);
|
||||
|
||||
const [stage] = useState(
|
||||
() =>
|
||||
new Konva.Stage({
|
||||
id: uuidv4(),
|
||||
id: getPrefixedId('konva_stage'),
|
||||
container: document.createElement('div'),
|
||||
listening: !asPreview,
|
||||
})
|
||||
);
|
||||
const [container, setContainer] = useState<HTMLDivElement | null>(null);
|
||||
@@ -72,7 +63,7 @@ export const StageComponent = memo(({ asPreview = false }: Props) => {
|
||||
setContainer(el);
|
||||
}, []);
|
||||
|
||||
useStageRenderer(stage, container, asPreview);
|
||||
useStageRenderer(stage, container);
|
||||
|
||||
useEffect(
|
||||
() => () => {
|
||||
@@ -87,7 +78,7 @@ export const StageComponent = memo(({ asPreview = false }: Props) => {
|
||||
<Flex
|
||||
position="absolute"
|
||||
borderRadius="base"
|
||||
bgImage={TRANSPARENCY_CHECKER_PATTERN}
|
||||
bgImage={TRANSPARENCY_CHECKERBOARD_PATTERN_DATAURL}
|
||||
top={0}
|
||||
right={0}
|
||||
bottom={0}
|
||||
@@ -106,9 +97,9 @@ export const StageComponent = memo(({ asPreview = false }: Props) => {
|
||||
overflow="hidden"
|
||||
data-testid="control-layers-canvas"
|
||||
/>
|
||||
{!asPreview && (
|
||||
<Flex position="absolute" top={0} insetInlineStart={0} pointerEvents="none">
|
||||
{showHud && <HeadsUpDisplay />}
|
||||
{showHUD && (
|
||||
<Flex position="absolute" top={1} insetInlineStart={1} pointerEvents="none">
|
||||
<HeadsUpDisplay />
|
||||
</Flex>
|
||||
)}
|
||||
</Flex>
|
||||
|
||||
@@ -45,7 +45,7 @@ export const StagingAreaToolbar = memo(() => {
|
||||
const index = useAppSelector(selectStagedImageIndex);
|
||||
const selectedImage = useAppSelector(selectSelectedImage);
|
||||
const imageCount = useAppSelector(selectImageCount);
|
||||
const shouldShowStagedImage = useStore(canvasManager.stateApi.$shouldShowStagedImage);
|
||||
const shouldShowStagedImage = useStore(canvasManager.stagingArea.$shouldShowStagedImage);
|
||||
const isCanvasActive = useStore(INTERACTION_SCOPES.canvas.$isActive);
|
||||
const [changeIsImageIntermediate] = useChangeImageIsIntermediateMutation();
|
||||
useScopeOnMount('stagingArea');
|
||||
@@ -83,8 +83,8 @@ export const StagingAreaToolbar = memo(() => {
|
||||
}, [dispatch]);
|
||||
|
||||
const onToggleShouldShowStagedImage = useCallback(() => {
|
||||
canvasManager.stateApi.$shouldShowStagedImage.set(!shouldShowStagedImage);
|
||||
}, [canvasManager.stateApi.$shouldShowStagedImage, shouldShowStagedImage]);
|
||||
canvasManager.stagingArea.$shouldShowStagedImage.set(!shouldShowStagedImage);
|
||||
}, [canvasManager.stagingArea.$shouldShowStagedImage, shouldShowStagedImage]);
|
||||
|
||||
const onSaveStagingImage = useCallback(() => {
|
||||
if (!selectedImage) {
|
||||
@@ -98,9 +98,9 @@ export const StagingAreaToolbar = memo(() => {
|
||||
onPrev,
|
||||
{
|
||||
preventDefault: true,
|
||||
enabled: isCanvasActive,
|
||||
enabled: isCanvasActive && shouldShowStagedImage && imageCount > 1,
|
||||
},
|
||||
[isCanvasActive]
|
||||
[isCanvasActive, shouldShowStagedImage, imageCount]
|
||||
);
|
||||
|
||||
useHotkeys(
|
||||
@@ -108,9 +108,9 @@ export const StagingAreaToolbar = memo(() => {
|
||||
onNext,
|
||||
{
|
||||
preventDefault: true,
|
||||
enabled: isCanvasActive,
|
||||
enabled: isCanvasActive && shouldShowStagedImage && imageCount > 1,
|
||||
},
|
||||
[isCanvasActive]
|
||||
[isCanvasActive, shouldShowStagedImage, imageCount]
|
||||
);
|
||||
|
||||
useHotkeys(
|
||||
@@ -118,9 +118,9 @@ export const StagingAreaToolbar = memo(() => {
|
||||
onAccept,
|
||||
{
|
||||
preventDefault: true,
|
||||
enabled: isCanvasActive,
|
||||
enabled: isCanvasActive && shouldShowStagedImage && imageCount > 1,
|
||||
},
|
||||
[isCanvasActive]
|
||||
[isCanvasActive, shouldShowStagedImage, imageCount]
|
||||
);
|
||||
|
||||
const counterText = useMemo(() => {
|
||||
|
||||
@@ -1,10 +1,6 @@
|
||||
import { IconButton } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { useSelectTool, useToolIsSelected } from 'features/controlLayers/components/Tool/hooks';
|
||||
import { useIsFiltering } from 'features/controlLayers/hooks/useIsFiltering';
|
||||
import { useIsTransforming } from 'features/controlLayers/hooks/useIsTransforming';
|
||||
import { selectIsStaging } from 'features/controlLayers/store/canvasSessionSlice';
|
||||
import { memo, useMemo } from 'react';
|
||||
import { memo } from 'react';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiBoundingBoxBold } from 'react-icons/pi';
|
||||
@@ -13,24 +9,18 @@ export const ToolBboxButton = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const selectBbox = useSelectTool('bbox');
|
||||
const isSelected = useToolIsSelected('bbox');
|
||||
const isFiltering = useIsFiltering();
|
||||
const isTransforming = useIsTransforming();
|
||||
const isStaging = useAppSelector(selectIsStaging);
|
||||
const isDisabled = useMemo(() => {
|
||||
return isTransforming || isFiltering || isStaging;
|
||||
}, [isFiltering, isStaging, isTransforming]);
|
||||
|
||||
useHotkeys('q', selectBbox, { enabled: !isDisabled || isSelected }, [selectBbox, isSelected, isDisabled]);
|
||||
useHotkeys('c', selectBbox, { enabled: !isSelected }, [selectBbox, isSelected]);
|
||||
|
||||
return (
|
||||
<IconButton
|
||||
aria-label={`${t('controlLayers.tool.bbox')} (Q)`}
|
||||
tooltip={`${t('controlLayers.tool.bbox')} (Q)`}
|
||||
aria-label={`${t('controlLayers.tool.bbox')} (C)`}
|
||||
tooltip={`${t('controlLayers.tool.bbox')} (C)`}
|
||||
icon={<PiBoundingBoxBold />}
|
||||
colorScheme={isSelected ? 'invokeBlue' : 'base'}
|
||||
variant="outline"
|
||||
variant="solid"
|
||||
onClick={selectBbox}
|
||||
isDisabled={isDisabled}
|
||||
isDisabled={isSelected}
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
@@ -1,29 +1,16 @@
|
||||
import { IconButton } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { useSelectTool, useToolIsSelected } from 'features/controlLayers/components/Tool/hooks';
|
||||
import { useIsFiltering } from 'features/controlLayers/hooks/useIsFiltering';
|
||||
import { useIsTransforming } from 'features/controlLayers/hooks/useIsTransforming';
|
||||
import { selectIsStaging } from 'features/controlLayers/store/canvasSessionSlice';
|
||||
import { selectIsSelectedEntityDrawable } from 'features/controlLayers/store/selectors';
|
||||
import { memo, useMemo } from 'react';
|
||||
import { memo } from 'react';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiPaintBrushBold } from 'react-icons/pi';
|
||||
|
||||
export const ToolBrushButton = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const isFiltering = useIsFiltering();
|
||||
const isTransforming = useIsTransforming();
|
||||
const isStaging = useAppSelector(selectIsStaging);
|
||||
const selectBrush = useSelectTool('brush');
|
||||
const isSelected = useToolIsSelected('brush');
|
||||
const isDrawingToolAllowed = useAppSelector(selectIsSelectedEntityDrawable);
|
||||
const selectBrush = useSelectTool('brush');
|
||||
|
||||
const isDisabled = useMemo(() => {
|
||||
return isTransforming || isFiltering || isStaging || !isDrawingToolAllowed;
|
||||
}, [isDrawingToolAllowed, isFiltering, isStaging, isTransforming]);
|
||||
|
||||
useHotkeys('b', selectBrush, { enabled: !isDisabled || isSelected }, [isDisabled, isSelected, selectBrush]);
|
||||
useHotkeys('b', selectBrush, { enabled: !isSelected }, [isSelected, selectBrush]);
|
||||
|
||||
return (
|
||||
<IconButton
|
||||
@@ -31,9 +18,9 @@ export const ToolBrushButton = memo(() => {
|
||||
tooltip={`${t('controlLayers.tool.brush')} (B)`}
|
||||
icon={<PiPaintBrushBold />}
|
||||
colorScheme={isSelected ? 'invokeBlue' : 'base'}
|
||||
variant="outline"
|
||||
variant="solid"
|
||||
onClick={selectBrush}
|
||||
isDisabled={isDisabled}
|
||||
isDisabled={isSelected}
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
@@ -1,9 +1,12 @@
|
||||
import {
|
||||
CompositeNumberInput,
|
||||
CompositeSlider,
|
||||
FormControl,
|
||||
FormLabel,
|
||||
IconButton,
|
||||
NumberInput,
|
||||
NumberInputField,
|
||||
Popover,
|
||||
PopoverAnchor,
|
||||
PopoverArrow,
|
||||
PopoverBody,
|
||||
PopoverContent,
|
||||
@@ -11,47 +14,172 @@ import {
|
||||
} from '@invoke-ai/ui-library';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { brushWidthChanged, selectToolSlice } from 'features/controlLayers/store/toolSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useToolIsSelected } from 'features/controlLayers/components/Tool/hooks';
|
||||
import { selectCanvasSettingsSlice, settingsBrushWidthChanged } from 'features/controlLayers/store/canvasSettingsSlice';
|
||||
import { clamp } from 'lodash-es';
|
||||
import type { KeyboardEvent } from 'react';
|
||||
import { memo, useCallback, useEffect, useState } from 'react';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiCaretDownBold } from 'react-icons/pi';
|
||||
|
||||
const marks = [0, 100, 200, 300];
|
||||
const selectBrushWidth = createSelector(selectCanvasSettingsSlice, (settings) => settings.brushWidth);
|
||||
const formatPx = (v: number | string) => `${v} px`;
|
||||
const selectBrushWidth = createSelector(selectToolSlice, (tool) => tool.brush.width);
|
||||
|
||||
function mapSliderValueToRawValue(value: number) {
|
||||
if (value <= 40) {
|
||||
// 0 to 40 on the slider -> 1px to 50px
|
||||
return 1 + (49 * value) / 40;
|
||||
} else if (value <= 70) {
|
||||
// 40 to 70 on the slider -> 50px to 200px
|
||||
return 50 + (150 * (value - 40)) / 30;
|
||||
} else {
|
||||
// 70 to 100 on the slider -> 200px to 600px
|
||||
return 200 + (400 * (value - 70)) / 30;
|
||||
}
|
||||
}
|
||||
|
||||
function mapRawValueToSliderValue(value: number) {
|
||||
if (value <= 50) {
|
||||
// 1px to 50px -> 0 to 40 on the slider
|
||||
return ((value - 1) * 40) / 49;
|
||||
} else if (value <= 200) {
|
||||
// 50px to 200px -> 40 to 70 on the slider
|
||||
return 40 + ((value - 50) * 30) / 150;
|
||||
} else {
|
||||
// 200px to 600px -> 70 to 100 on the slider
|
||||
return 70 + ((value - 200) * 30) / 400;
|
||||
}
|
||||
}
|
||||
|
||||
function formatSliderValue(value: number) {
|
||||
return `${String(mapSliderValueToRawValue(value))} px`;
|
||||
}
|
||||
|
||||
const marks = [
|
||||
mapRawValueToSliderValue(1),
|
||||
mapRawValueToSliderValue(50),
|
||||
mapRawValueToSliderValue(200),
|
||||
mapRawValueToSliderValue(600),
|
||||
];
|
||||
|
||||
const sliderDefaultValue = mapRawValueToSliderValue(50);
|
||||
|
||||
export const ToolBrushWidth = memo(() => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
const isSelected = useToolIsSelected('brush');
|
||||
const width = useAppSelector(selectBrushWidth);
|
||||
const [localValue, setLocalValue] = useState(width);
|
||||
const onChange = useCallback(
|
||||
(v: number) => {
|
||||
dispatch(brushWidthChanged(Math.round(v)));
|
||||
dispatch(settingsBrushWidthChanged(clamp(Math.round(v), 1, 600)));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
const increment = useCallback(() => {
|
||||
let newWidth = Math.round(width * 1.15);
|
||||
if (newWidth === width) {
|
||||
newWidth += 1;
|
||||
}
|
||||
onChange(newWidth);
|
||||
}, [onChange, width]);
|
||||
|
||||
const decrement = useCallback(() => {
|
||||
let newWidth = Math.round(width * 0.85);
|
||||
if (newWidth === width) {
|
||||
newWidth -= 1;
|
||||
}
|
||||
onChange(newWidth);
|
||||
}, [onChange, width]);
|
||||
|
||||
const onChangeSlider = useCallback(
|
||||
(value: number) => {
|
||||
onChange(mapSliderValueToRawValue(value));
|
||||
},
|
||||
[onChange]
|
||||
);
|
||||
|
||||
const onBlur = useCallback(() => {
|
||||
if (isNaN(Number(localValue))) {
|
||||
onChange(50);
|
||||
setLocalValue(50);
|
||||
} else {
|
||||
onChange(localValue);
|
||||
}
|
||||
}, [localValue, onChange]);
|
||||
|
||||
const onChangeNumberInput = useCallback((valueAsString: string, valueAsNumber: number) => {
|
||||
setLocalValue(valueAsNumber);
|
||||
}, []);
|
||||
|
||||
const onKeyDown = useCallback(
|
||||
(e: KeyboardEvent<HTMLInputElement>) => {
|
||||
if (e.key === 'Enter') {
|
||||
onBlur();
|
||||
}
|
||||
},
|
||||
[onBlur]
|
||||
);
|
||||
|
||||
useEffect(() => {
|
||||
setLocalValue(width);
|
||||
}, [width]);
|
||||
|
||||
useHotkeys('[', decrement, { enabled: isSelected }, [decrement, isSelected]);
|
||||
useHotkeys(']', increment, { enabled: isSelected }, [increment, isSelected]);
|
||||
|
||||
return (
|
||||
<FormControl w="min-content" gap={2}>
|
||||
<FormLabel m={0}>{t('controlLayers.width')}</FormLabel>
|
||||
<Popover isLazy>
|
||||
<PopoverTrigger>
|
||||
<CompositeNumberInput
|
||||
<Popover>
|
||||
<FormControl w="min-content" gap={2}>
|
||||
<FormLabel m={0}>{t('controlLayers.width')}</FormLabel>
|
||||
<PopoverAnchor>
|
||||
<NumberInput
|
||||
display="flex"
|
||||
alignItems="center"
|
||||
min={1}
|
||||
max={600}
|
||||
defaultValue={50}
|
||||
value={width}
|
||||
onChange={onChange}
|
||||
w={24}
|
||||
value={localValue}
|
||||
onChange={onChangeNumberInput}
|
||||
onBlur={onBlur}
|
||||
w="76px"
|
||||
format={formatPx}
|
||||
defaultValue={50}
|
||||
onKeyDown={onKeyDown}
|
||||
clampValueOnBlur={false}
|
||||
>
|
||||
<NumberInputField paddingInlineEnd={7} />
|
||||
<PopoverTrigger>
|
||||
<IconButton
|
||||
aria-label="open-slider"
|
||||
icon={<PiCaretDownBold />}
|
||||
size="sm"
|
||||
variant="link"
|
||||
position="absolute"
|
||||
insetInlineEnd={0}
|
||||
h="full"
|
||||
/>
|
||||
</PopoverTrigger>
|
||||
</NumberInput>
|
||||
</PopoverAnchor>
|
||||
</FormControl>
|
||||
<PopoverContent w={200} pt={0} pb={2} px={4}>
|
||||
<PopoverArrow />
|
||||
<PopoverBody>
|
||||
<CompositeSlider
|
||||
min={0}
|
||||
max={100}
|
||||
value={mapRawValueToSliderValue(localValue)}
|
||||
onChange={onChangeSlider}
|
||||
defaultValue={sliderDefaultValue}
|
||||
marks={marks}
|
||||
formatValue={formatSliderValue}
|
||||
alwaysShowMarks
|
||||
/>
|
||||
</PopoverTrigger>
|
||||
<PopoverContent w={200} py={2} px={4}>
|
||||
<PopoverArrow />
|
||||
<PopoverBody>
|
||||
<CompositeSlider min={1} max={300} defaultValue={50} value={width} onChange={onChange} marks={marks} />
|
||||
</PopoverBody>
|
||||
</PopoverContent>
|
||||
</Popover>
|
||||
</FormControl>
|
||||
</PopoverBody>
|
||||
</PopoverContent>
|
||||
</Popover>
|
||||
);
|
||||
});
|
||||
|
||||
|
||||
@@ -4,16 +4,11 @@ import { ToolBrushButton } from 'features/controlLayers/components/Tool/ToolBrus
|
||||
import { ToolColorPickerButton } from 'features/controlLayers/components/Tool/ToolColorPickerButton';
|
||||
import { ToolMoveButton } from 'features/controlLayers/components/Tool/ToolMoveButton';
|
||||
import { ToolRectButton } from 'features/controlLayers/components/Tool/ToolRectButton';
|
||||
import { useCanvasDeleteLayerHotkey } from 'features/controlLayers/hooks/useCanvasDeleteLayerHotkey';
|
||||
import { useCanvasResetLayerHotkey } from 'features/controlLayers/hooks/useCanvasResetLayerHotkey';
|
||||
|
||||
import { ToolEraserButton } from './ToolEraserButton';
|
||||
import { ToolViewButton } from './ToolViewButton';
|
||||
|
||||
export const ToolChooser: React.FC = () => {
|
||||
useCanvasResetLayerHotkey();
|
||||
useCanvasDeleteLayerHotkey();
|
||||
|
||||
return (
|
||||
<>
|
||||
<ButtonGroup isAttached>
|
||||
|
||||
@@ -1,31 +1,16 @@
|
||||
import { IconButton } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { useSelectTool, useToolIsSelected } from 'features/controlLayers/components/Tool/hooks';
|
||||
import { useIsFiltering } from 'features/controlLayers/hooks/useIsFiltering';
|
||||
import { useIsTransforming } from 'features/controlLayers/hooks/useIsTransforming';
|
||||
import { selectIsStaging } from 'features/controlLayers/store/canvasSessionSlice';
|
||||
import { memo, useMemo } from 'react';
|
||||
import { memo } from 'react';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiEyedropperBold } from 'react-icons/pi';
|
||||
|
||||
export const ToolColorPickerButton = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const isFiltering = useIsFiltering();
|
||||
const isTransforming = useIsTransforming();
|
||||
const selectColorPicker = useSelectTool('colorPicker');
|
||||
const isSelected = useToolIsSelected('colorPicker');
|
||||
const isStaging = useAppSelector(selectIsStaging);
|
||||
const selectColorPicker = useSelectTool('colorPicker');
|
||||
|
||||
const isDisabled = useMemo(() => {
|
||||
return isTransforming || isFiltering || isStaging;
|
||||
}, [isFiltering, isStaging, isTransforming]);
|
||||
|
||||
useHotkeys('i', selectColorPicker, { enabled: !isDisabled || isSelected }, [
|
||||
selectColorPicker,
|
||||
isSelected,
|
||||
isDisabled,
|
||||
]);
|
||||
useHotkeys('i', selectColorPicker, { enabled: !isSelected }, [selectColorPicker, isSelected]);
|
||||
|
||||
return (
|
||||
<IconButton
|
||||
@@ -33,9 +18,9 @@ export const ToolColorPickerButton = memo(() => {
|
||||
tooltip={`${t('controlLayers.tool.colorPicker')} (I)`}
|
||||
icon={<PiEyedropperBold />}
|
||||
colorScheme={isSelected ? 'invokeBlue' : 'base'}
|
||||
variant="outline"
|
||||
variant="solid"
|
||||
onClick={selectColorPicker}
|
||||
isDisabled={isDisabled}
|
||||
isDisabled={isSelected}
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
@@ -1,28 +1,16 @@
|
||||
import { IconButton } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { useSelectTool, useToolIsSelected } from 'features/controlLayers/components/Tool/hooks';
|
||||
import { useIsFiltering } from 'features/controlLayers/hooks/useIsFiltering';
|
||||
import { useIsTransforming } from 'features/controlLayers/hooks/useIsTransforming';
|
||||
import { selectIsStaging } from 'features/controlLayers/store/canvasSessionSlice';
|
||||
import { selectIsSelectedEntityDrawable } from 'features/controlLayers/store/selectors';
|
||||
import { memo, useMemo } from 'react';
|
||||
import { memo } from 'react';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiEraserBold } from 'react-icons/pi';
|
||||
|
||||
export const ToolEraserButton = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const isFiltering = useIsFiltering();
|
||||
const isTransforming = useIsTransforming();
|
||||
const isStaging = useAppSelector(selectIsStaging);
|
||||
const selectEraser = useSelectTool('eraser');
|
||||
const isSelected = useToolIsSelected('eraser');
|
||||
const isDrawingToolAllowed = useAppSelector(selectIsSelectedEntityDrawable);
|
||||
const isDisabled = useMemo(() => {
|
||||
return isTransforming || isFiltering || isStaging || !isDrawingToolAllowed;
|
||||
}, [isDrawingToolAllowed, isFiltering, isStaging, isTransforming]);
|
||||
const selectEraser = useSelectTool('eraser');
|
||||
|
||||
useHotkeys('e', selectEraser, { enabled: !isDisabled || isSelected }, [isDisabled, isSelected, selectEraser]);
|
||||
useHotkeys('e', selectEraser, { enabled: !isSelected }, [isSelected, selectEraser]);
|
||||
|
||||
return (
|
||||
<IconButton
|
||||
@@ -30,9 +18,9 @@ export const ToolEraserButton = memo(() => {
|
||||
tooltip={`${t('controlLayers.tool.eraser')} (E)`}
|
||||
icon={<PiEraserBold />}
|
||||
colorScheme={isSelected ? 'invokeBlue' : 'base'}
|
||||
variant="outline"
|
||||
variant="solid"
|
||||
onClick={selectEraser}
|
||||
isDisabled={isDisabled}
|
||||
isDisabled={isSelected}
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
@@ -1,9 +1,12 @@
|
||||
import {
|
||||
CompositeNumberInput,
|
||||
CompositeSlider,
|
||||
FormControl,
|
||||
FormLabel,
|
||||
IconButton,
|
||||
NumberInput,
|
||||
NumberInputField,
|
||||
Popover,
|
||||
PopoverAnchor,
|
||||
PopoverArrow,
|
||||
PopoverBody,
|
||||
PopoverContent,
|
||||
@@ -11,47 +14,175 @@ import {
|
||||
} from '@invoke-ai/ui-library';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { eraserWidthChanged, selectToolSlice } from 'features/controlLayers/store/toolSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useToolIsSelected } from 'features/controlLayers/components/Tool/hooks';
|
||||
import {
|
||||
selectCanvasSettingsSlice,
|
||||
settingsEraserWidthChanged,
|
||||
} from 'features/controlLayers/store/canvasSettingsSlice';
|
||||
import { clamp } from 'lodash-es';
|
||||
import type { KeyboardEvent } from 'react';
|
||||
import { memo, useCallback, useEffect, useState } from 'react';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiCaretDownBold } from 'react-icons/pi';
|
||||
|
||||
const marks = [0, 100, 200, 300];
|
||||
const selectEraserWidth = createSelector(selectCanvasSettingsSlice, (settings) => settings.eraserWidth);
|
||||
const formatPx = (v: number | string) => `${v} px`;
|
||||
const selectEraserWidth = createSelector(selectToolSlice, (tool) => tool.eraser.width);
|
||||
|
||||
function mapSliderValueToRawValue(value: number) {
|
||||
if (value <= 40) {
|
||||
// 0 to 40 on the slider -> 1px to 50px
|
||||
return 1 + (49 * value) / 40;
|
||||
} else if (value <= 70) {
|
||||
// 40 to 70 on the slider -> 50px to 200px
|
||||
return 50 + (150 * (value - 40)) / 30;
|
||||
} else {
|
||||
// 70 to 100 on the slider -> 200px to 600px
|
||||
return 200 + (400 * (value - 70)) / 30;
|
||||
}
|
||||
}
|
||||
|
||||
function mapRawValueToSliderValue(value: number) {
|
||||
if (value <= 50) {
|
||||
// 1px to 50px -> 0 to 40 on the slider
|
||||
return ((value - 1) * 40) / 49;
|
||||
} else if (value <= 200) {
|
||||
// 50px to 200px -> 40 to 70 on the slider
|
||||
return 40 + ((value - 50) * 30) / 150;
|
||||
} else {
|
||||
// 200px to 600px -> 70 to 100 on the slider
|
||||
return 70 + ((value - 200) * 30) / 400;
|
||||
}
|
||||
}
|
||||
|
||||
function formatSliderValue(value: number) {
|
||||
return `${String(mapSliderValueToRawValue(value))} px`;
|
||||
}
|
||||
|
||||
const marks = [
|
||||
mapRawValueToSliderValue(1),
|
||||
mapRawValueToSliderValue(50),
|
||||
mapRawValueToSliderValue(200),
|
||||
mapRawValueToSliderValue(600),
|
||||
];
|
||||
|
||||
const sliderDefaultValue = mapRawValueToSliderValue(50);
|
||||
|
||||
export const ToolEraserWidth = memo(() => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
const isSelected = useToolIsSelected('eraser');
|
||||
const width = useAppSelector(selectEraserWidth);
|
||||
const [localValue, setLocalValue] = useState(width);
|
||||
const onChange = useCallback(
|
||||
(v: number) => {
|
||||
dispatch(eraserWidthChanged(Math.round(v)));
|
||||
dispatch(settingsEraserWidthChanged(clamp(Math.round(v), 1, 600)));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
const increment = useCallback(() => {
|
||||
let newWidth = Math.round(width * 1.15);
|
||||
if (newWidth === width) {
|
||||
newWidth += 1;
|
||||
}
|
||||
onChange(newWidth);
|
||||
}, [onChange, width]);
|
||||
|
||||
const decrement = useCallback(() => {
|
||||
let newWidth = Math.round(width * 0.85);
|
||||
if (newWidth === width) {
|
||||
newWidth -= 1;
|
||||
}
|
||||
onChange(newWidth);
|
||||
}, [onChange, width]);
|
||||
|
||||
const onChangeSlider = useCallback(
|
||||
(value: number) => {
|
||||
onChange(mapSliderValueToRawValue(value));
|
||||
},
|
||||
[onChange]
|
||||
);
|
||||
|
||||
const onBlur = useCallback(() => {
|
||||
if (isNaN(Number(localValue))) {
|
||||
onChange(50);
|
||||
setLocalValue(50);
|
||||
} else {
|
||||
onChange(localValue);
|
||||
}
|
||||
}, [localValue, onChange]);
|
||||
|
||||
const onChangeNumberInput = useCallback((valueAsString: string, valueAsNumber: number) => {
|
||||
setLocalValue(valueAsNumber);
|
||||
}, []);
|
||||
|
||||
const onKeyDown = useCallback(
|
||||
(e: KeyboardEvent<HTMLInputElement>) => {
|
||||
if (e.key === 'Enter') {
|
||||
onBlur();
|
||||
}
|
||||
},
|
||||
[onBlur]
|
||||
);
|
||||
|
||||
useEffect(() => {
|
||||
setLocalValue(width);
|
||||
}, [width]);
|
||||
|
||||
useHotkeys('[', decrement, { enabled: isSelected }, [decrement, isSelected]);
|
||||
useHotkeys(']', increment, { enabled: isSelected }, [increment, isSelected]);
|
||||
|
||||
return (
|
||||
<FormControl w="min-content" gap={2}>
|
||||
<FormLabel m={0}>{t('controlLayers.width')}</FormLabel>
|
||||
<Popover isLazy>
|
||||
<PopoverTrigger>
|
||||
<CompositeNumberInput
|
||||
<Popover>
|
||||
<FormControl w="min-content" gap={2}>
|
||||
<FormLabel m={0}>{t('controlLayers.width')}</FormLabel>
|
||||
<PopoverAnchor>
|
||||
<NumberInput
|
||||
display="flex"
|
||||
alignItems="center"
|
||||
min={1}
|
||||
max={600}
|
||||
defaultValue={50}
|
||||
value={width}
|
||||
onChange={onChange}
|
||||
w={24}
|
||||
value={localValue}
|
||||
onChange={onChangeNumberInput}
|
||||
onBlur={onBlur}
|
||||
w="76px"
|
||||
format={formatPx}
|
||||
defaultValue={50}
|
||||
onKeyDown={onKeyDown}
|
||||
clampValueOnBlur={false}
|
||||
>
|
||||
<NumberInputField paddingInlineEnd={7} />
|
||||
<PopoverTrigger>
|
||||
<IconButton
|
||||
aria-label="open-slider"
|
||||
icon={<PiCaretDownBold />}
|
||||
size="sm"
|
||||
variant="link"
|
||||
position="absolute"
|
||||
insetInlineEnd={0}
|
||||
h="full"
|
||||
/>
|
||||
</PopoverTrigger>
|
||||
</NumberInput>
|
||||
</PopoverAnchor>
|
||||
</FormControl>
|
||||
<PopoverContent w={200} pt={0} pb={2} px={4}>
|
||||
<PopoverArrow />
|
||||
<PopoverBody>
|
||||
<CompositeSlider
|
||||
min={0}
|
||||
max={100}
|
||||
value={mapRawValueToSliderValue(localValue)}
|
||||
onChange={onChangeSlider}
|
||||
defaultValue={sliderDefaultValue}
|
||||
marks={marks}
|
||||
formatValue={formatSliderValue}
|
||||
alwaysShowMarks
|
||||
/>
|
||||
</PopoverTrigger>
|
||||
<PopoverContent w={200} py={2} px={4}>
|
||||
<PopoverArrow />
|
||||
<PopoverBody>
|
||||
<CompositeSlider min={1} max={300} defaultValue={50} value={width} onChange={onChange} marks={marks} />
|
||||
</PopoverBody>
|
||||
</PopoverContent>
|
||||
</Popover>
|
||||
</FormControl>
|
||||
</PopoverBody>
|
||||
</PopoverContent>
|
||||
</Popover>
|
||||
);
|
||||
});
|
||||
|
||||
|
||||
@@ -1,39 +1,35 @@
|
||||
import { Flex, Popover, PopoverBody, PopoverContent, PopoverTrigger } from '@invoke-ai/ui-library';
|
||||
import { Box, Flex, Popover, PopoverBody, PopoverContent, PopoverTrigger, Tooltip } from '@invoke-ai/ui-library';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIColorPicker from 'common/components/IAIColorPicker';
|
||||
import { rgbaColorToString } from 'common/util/colorCodeTransformers';
|
||||
import { fillChanged, selectToolSlice } from 'features/controlLayers/store/toolSlice';
|
||||
import { selectCanvasSettingsSlice, settingsColorChanged } from 'features/controlLayers/store/canvasSettingsSlice';
|
||||
import type { RgbaColor } from 'features/controlLayers/store/types';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const selectFill = createSelector(selectToolSlice, (tool) => tool.fill);
|
||||
const selectColor = createSelector(selectCanvasSettingsSlice, (settings) => settings.color);
|
||||
|
||||
export const ToolFillColorPicker = memo(() => {
|
||||
export const ToolColorPicker = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const fill = useAppSelector(selectFill);
|
||||
const fill = useAppSelector(selectColor);
|
||||
const dispatch = useAppDispatch();
|
||||
const onChange = useCallback(
|
||||
(color: RgbaColor) => {
|
||||
dispatch(fillChanged(color));
|
||||
dispatch(settingsColorChanged(color));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
return (
|
||||
<Popover isLazy>
|
||||
<PopoverTrigger>
|
||||
<Flex
|
||||
as="button"
|
||||
aria-label={t('controlLayers.brushColor')}
|
||||
borderRadius="full"
|
||||
borderWidth={1}
|
||||
bg={rgbaColorToString(fill)}
|
||||
w={8}
|
||||
h={8}
|
||||
cursor="pointer"
|
||||
tabIndex={-1}
|
||||
/>
|
||||
<Flex role="button" aria-label={t('controlLayers.fill.fillColor')} tabIndex={-1} w={8} h={8}>
|
||||
<Tooltip label={t('controlLayers.fill.fillColor')}>
|
||||
<Flex w="full" h="full" alignItems="center" justifyContent="center">
|
||||
<Box borderRadius="full" w={6} h={6} borderWidth={1} bg={rgbaColorToString(fill)} />
|
||||
</Flex>
|
||||
</Tooltip>
|
||||
</Flex>
|
||||
</PopoverTrigger>
|
||||
<PopoverContent>
|
||||
<PopoverBody minH={64}>
|
||||
@@ -44,4 +40,4 @@ export const ToolFillColorPicker = memo(() => {
|
||||
);
|
||||
});
|
||||
|
||||
ToolFillColorPicker.displayName = 'ToolFillColorPicker';
|
||||
ToolColorPicker.displayName = 'ToolFillColorPicker';
|
||||
|
||||
@@ -1,28 +1,16 @@
|
||||
import { IconButton } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { useSelectTool, useToolIsSelected } from 'features/controlLayers/components/Tool/hooks';
|
||||
import { useIsFiltering } from 'features/controlLayers/hooks/useIsFiltering';
|
||||
import { useIsTransforming } from 'features/controlLayers/hooks/useIsTransforming';
|
||||
import { selectIsStaging } from 'features/controlLayers/store/canvasSessionSlice';
|
||||
import { selectIsSelectedEntityDrawable } from 'features/controlLayers/store/selectors';
|
||||
import { memo, useMemo } from 'react';
|
||||
import { memo } from 'react';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiCursorBold } from 'react-icons/pi';
|
||||
|
||||
export const ToolMoveButton = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const isFiltering = useIsFiltering();
|
||||
const isTransforming = useIsTransforming();
|
||||
const selectMove = useSelectTool('move');
|
||||
const isSelected = useToolIsSelected('move');
|
||||
const isStaging = useAppSelector(selectIsStaging);
|
||||
const isDrawingToolAllowed = useAppSelector(selectIsSelectedEntityDrawable);
|
||||
const isDisabled = useMemo(() => {
|
||||
return isTransforming || isFiltering || isStaging || !isDrawingToolAllowed;
|
||||
}, [isDrawingToolAllowed, isFiltering, isStaging, isTransforming]);
|
||||
const selectMove = useSelectTool('move');
|
||||
|
||||
useHotkeys('v', selectMove, { enabled: !isDisabled || isSelected }, [isDisabled, isSelected, selectMove]);
|
||||
useHotkeys('v', selectMove, { enabled: !isSelected }, [isSelected, selectMove]);
|
||||
|
||||
return (
|
||||
<IconButton
|
||||
@@ -30,9 +18,9 @@ export const ToolMoveButton = memo(() => {
|
||||
tooltip={`${t('controlLayers.tool.move')} (V)`}
|
||||
icon={<PiCursorBold />}
|
||||
colorScheme={isSelected ? 'invokeBlue' : 'base'}
|
||||
variant="outline"
|
||||
variant="solid"
|
||||
onClick={selectMove}
|
||||
isDisabled={isDisabled}
|
||||
isDisabled={isSelected}
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
@@ -1,29 +1,16 @@
|
||||
import { IconButton } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { useSelectTool, useToolIsSelected } from 'features/controlLayers/components/Tool/hooks';
|
||||
import { useIsFiltering } from 'features/controlLayers/hooks/useIsFiltering';
|
||||
import { useIsTransforming } from 'features/controlLayers/hooks/useIsTransforming';
|
||||
import { selectIsStaging } from 'features/controlLayers/store/canvasSessionSlice';
|
||||
import { selectIsSelectedEntityDrawable } from 'features/controlLayers/store/selectors';
|
||||
import { memo, useMemo } from 'react';
|
||||
import { memo } from 'react';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiRectangleBold } from 'react-icons/pi';
|
||||
|
||||
export const ToolRectButton = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const selectRect = useSelectTool('rect');
|
||||
const isSelected = useToolIsSelected('rect');
|
||||
const isFiltering = useIsFiltering();
|
||||
const isTransforming = useIsTransforming();
|
||||
const isStaging = useAppSelector(selectIsStaging);
|
||||
const isDrawingToolAllowed = useAppSelector(selectIsSelectedEntityDrawable);
|
||||
const selectRect = useSelectTool('rect');
|
||||
|
||||
const isDisabled = useMemo(() => {
|
||||
return isTransforming || isFiltering || isStaging || !isDrawingToolAllowed;
|
||||
}, [isDrawingToolAllowed, isFiltering, isStaging, isTransforming]);
|
||||
|
||||
useHotkeys('u', selectRect, { enabled: !isDisabled || isSelected }, [isDisabled, isSelected, selectRect]);
|
||||
useHotkeys('u', selectRect, { enabled: !isSelected }, [isSelected, selectRect]);
|
||||
|
||||
return (
|
||||
<IconButton
|
||||
@@ -31,9 +18,9 @@ export const ToolRectButton = memo(() => {
|
||||
tooltip={`${t('controlLayers.tool.rectangle')} (U)`}
|
||||
icon={<PiRectangleBold />}
|
||||
colorScheme={isSelected ? 'invokeBlue' : 'base'}
|
||||
variant="outline"
|
||||
variant="solid"
|
||||
onClick={selectRect}
|
||||
isDisabled={isDisabled}
|
||||
isDisabled={isSelected}
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
@@ -6,7 +6,7 @@ import { memo } from 'react';
|
||||
|
||||
export const ToolSettings = memo(() => {
|
||||
const canvasManager = useCanvasManager();
|
||||
const tool = useStore(canvasManager.stateApi.$tool);
|
||||
const tool = useStore(canvasManager.tool.$tool);
|
||||
if (tool === 'brush') {
|
||||
return <ToolBrushWidth />;
|
||||
}
|
||||
|
||||
@@ -1,26 +1,16 @@
|
||||
import { IconButton } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { useSelectTool, useToolIsSelected } from 'features/controlLayers/components/Tool/hooks';
|
||||
import { useIsFiltering } from 'features/controlLayers/hooks/useIsFiltering';
|
||||
import { useIsTransforming } from 'features/controlLayers/hooks/useIsTransforming';
|
||||
import { selectIsStaging } from 'features/controlLayers/store/canvasSessionSlice';
|
||||
import { memo, useMemo } from 'react';
|
||||
import { memo } from 'react';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiHandBold } from 'react-icons/pi';
|
||||
|
||||
export const ToolViewButton = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const isTransforming = useIsTransforming();
|
||||
const isFiltering = useIsFiltering();
|
||||
const isStaging = useAppSelector(selectIsStaging);
|
||||
const selectView = useSelectTool('view');
|
||||
const isSelected = useToolIsSelected('view');
|
||||
const isDisabled = useMemo(() => {
|
||||
return isTransforming || isFiltering || isStaging;
|
||||
}, [isFiltering, isStaging, isTransforming]);
|
||||
const selectView = useSelectTool('view');
|
||||
|
||||
useHotkeys('h', selectView, { enabled: !isDisabled || isSelected }, [selectView, isSelected, isDisabled]);
|
||||
useHotkeys('h', selectView, { enabled: !isSelected }, [selectView, isSelected]);
|
||||
|
||||
return (
|
||||
<IconButton
|
||||
@@ -28,9 +18,9 @@ export const ToolViewButton = memo(() => {
|
||||
tooltip={`${t('controlLayers.tool.view')} (H)`}
|
||||
icon={<PiHandBold />}
|
||||
colorScheme={isSelected ? 'invokeBlue' : 'base'}
|
||||
variant="outline"
|
||||
variant="solid"
|
||||
onClick={selectView}
|
||||
isDisabled={isDisabled}
|
||||
isDisabled={isSelected}
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
@@ -6,14 +6,14 @@ import { useCallback } from 'react';
|
||||
|
||||
export const useToolIsSelected = (tool: Tool) => {
|
||||
const canvasManager = useCanvasManager();
|
||||
const isSelected = useStore(computed(canvasManager.stateApi.$tool, (t) => t === tool));
|
||||
const isSelected = useStore(computed(canvasManager.tool.$tool, (t) => t === tool));
|
||||
return isSelected;
|
||||
};
|
||||
|
||||
export const useSelectTool = (tool: Tool) => {
|
||||
const canvasManager = useCanvasManager();
|
||||
const setTool = useCallback(() => {
|
||||
canvasManager.stateApi.$tool.set(tool);
|
||||
}, [canvasManager.stateApi.$tool, tool]);
|
||||
canvasManager.tool.$tool.set(tool);
|
||||
}, [canvasManager.tool.$tool, tool]);
|
||||
return setTool;
|
||||
};
|
||||
|
||||
@@ -0,0 +1,47 @@
|
||||
/* eslint-disable i18next/no-literal-string */
|
||||
import { Flex, Spacer } from '@invoke-ai/ui-library';
|
||||
import { CanvasSettingsPopover } from 'features/controlLayers/components/Settings/CanvasSettingsPopover';
|
||||
import { ToolChooser } from 'features/controlLayers/components/Tool/ToolChooser';
|
||||
import { ToolColorPicker } from 'features/controlLayers/components/Tool/ToolFillColorPicker';
|
||||
import { ToolSettings } from 'features/controlLayers/components/Tool/ToolSettings';
|
||||
import { CanvasToolbarResetViewButton } from 'features/controlLayers/components/Toolbar/CanvasToolbarResetViewButton';
|
||||
import { CanvasToolbarSaveToGalleryButton } from 'features/controlLayers/components/Toolbar/CanvasToolbarSaveToGalleryButton';
|
||||
import { CanvasToolbarScale } from 'features/controlLayers/components/Toolbar/CanvasToolbarScale';
|
||||
import { CanvasManagerProviderGate } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
|
||||
import { useCanvasDeleteLayerHotkey } from 'features/controlLayers/hooks/useCanvasDeleteLayerHotkey';
|
||||
import { useCanvasEntityQuickSwitchHotkey } from 'features/controlLayers/hooks/useCanvasEntityQuickSwitchHotkey';
|
||||
import { useCanvasResetLayerHotkey } from 'features/controlLayers/hooks/useCanvasResetLayerHotkey';
|
||||
import { useCanvasUndoRedoHotkeys } from 'features/controlLayers/hooks/useCanvasUndoRedoHotkeys';
|
||||
import { useNextPrevEntityHotkeys } from 'features/controlLayers/hooks/useNextPrevEntity';
|
||||
import { ToggleProgressButton } from 'features/gallery/components/ImageViewer/ToggleProgressButton';
|
||||
import { ViewerToggle } from 'features/gallery/components/ImageViewer/ViewerToggleMenu';
|
||||
import { memo } from 'react';
|
||||
|
||||
export const CanvasToolbar = memo(() => {
|
||||
useCanvasResetLayerHotkey();
|
||||
useCanvasDeleteLayerHotkey();
|
||||
useCanvasUndoRedoHotkeys();
|
||||
useCanvasEntityQuickSwitchHotkey();
|
||||
useNextPrevEntityHotkeys();
|
||||
|
||||
return (
|
||||
<CanvasManagerProviderGate>
|
||||
<Flex w="full" gap={2} alignItems="center">
|
||||
<ToggleProgressButton />
|
||||
<ToolChooser />
|
||||
<Spacer />
|
||||
<ToolSettings />
|
||||
<Spacer />
|
||||
<CanvasToolbarScale />
|
||||
<CanvasToolbarResetViewButton />
|
||||
<Spacer />
|
||||
<ToolColorPicker />
|
||||
<CanvasToolbarSaveToGalleryButton />
|
||||
<CanvasSettingsPopover />
|
||||
<ViewerToggle />
|
||||
</Flex>
|
||||
</CanvasManagerProviderGate>
|
||||
);
|
||||
});
|
||||
|
||||
CanvasToolbar.displayName = 'CanvasToolbar';
|
||||
@@ -1,4 +1,4 @@
|
||||
import { $shift, IconButton } from '@invoke-ai/ui-library';
|
||||
import { $alt, IconButton } from '@invoke-ai/ui-library';
|
||||
import { useStore } from '@nanostores/react';
|
||||
import { INTERACTION_SCOPES } from 'common/hooks/interactionScopes';
|
||||
import { $canvasManager } from 'features/controlLayers/konva/CanvasManager';
|
||||
@@ -7,7 +7,7 @@ import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiArrowCounterClockwiseBold } from 'react-icons/pi';
|
||||
|
||||
export const CanvasResetViewButton = memo(() => {
|
||||
export const CanvasToolbarResetViewButton = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const canvasManager = useStore($canvasManager);
|
||||
const isCanvasActive = useStore(INTERACTION_SCOPES.canvas.$isActive);
|
||||
@@ -27,7 +27,7 @@ export const CanvasResetViewButton = memo(() => {
|
||||
}, [canvasManager]);
|
||||
|
||||
const onReset = useCallback(() => {
|
||||
if ($shift.get()) {
|
||||
if ($alt.get()) {
|
||||
resetView();
|
||||
} else {
|
||||
resetZoom();
|
||||
@@ -35,7 +35,7 @@ export const CanvasResetViewButton = memo(() => {
|
||||
}, [resetView, resetZoom]);
|
||||
|
||||
useHotkeys('r', resetView, { enabled: isCanvasActive }, [isCanvasActive]);
|
||||
useHotkeys('shift+r', resetZoom, { enabled: isCanvasActive }, [isCanvasActive]);
|
||||
useHotkeys('alt+r', resetZoom, { enabled: isCanvasActive }, [isCanvasActive]);
|
||||
|
||||
return (
|
||||
<IconButton
|
||||
@@ -48,4 +48,4 @@ export const CanvasResetViewButton = memo(() => {
|
||||
);
|
||||
});
|
||||
|
||||
CanvasResetViewButton.displayName = 'CanvasResetViewButton';
|
||||
CanvasToolbarResetViewButton.displayName = 'CanvasToolbarResetViewButton';
|
||||
@@ -0,0 +1,53 @@
|
||||
import { IconButton, useShiftModifier } from '@invoke-ai/ui-library';
|
||||
import { logger } from 'app/logging/logger';
|
||||
import { buildUseBoolean } from 'common/hooks/useBoolean';
|
||||
import { isOk, withResultAsync } from 'common/util/result';
|
||||
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiFloppyDiskBold } from 'react-icons/pi';
|
||||
import { serializeError } from 'serialize-error';
|
||||
|
||||
const log = logger('canvas');
|
||||
|
||||
const [useIsSaving] = buildUseBoolean(false);
|
||||
|
||||
export const CanvasToolbarSaveToGalleryButton = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const shift = useShiftModifier();
|
||||
const canvasManager = useCanvasManager();
|
||||
const isSaving = useIsSaving();
|
||||
|
||||
const onClick = useCallback(async () => {
|
||||
isSaving.setTrue();
|
||||
|
||||
const rect = shift ? canvasManager.stateApi.getBbox().rect : canvasManager.stage.getVisibleRect('raster_layer');
|
||||
|
||||
const result = await withResultAsync(() =>
|
||||
canvasManager.compositor.rasterizeAndUploadCompositeRasterLayer(rect, true)
|
||||
);
|
||||
|
||||
if (isOk(result)) {
|
||||
toast({ title: t('controlLayers.savedToGalleryOk') });
|
||||
} else {
|
||||
log.error({ error: serializeError(result.error) }, 'Failed to save canvas to gallery');
|
||||
toast({ title: t('controlLayers.savedToGalleryError'), status: 'error' });
|
||||
}
|
||||
|
||||
isSaving.setFalse();
|
||||
}, [canvasManager.compositor, canvasManager.stage, canvasManager.stateApi, isSaving, shift, t]);
|
||||
|
||||
return (
|
||||
<IconButton
|
||||
variant="ghost"
|
||||
onClick={onClick}
|
||||
icon={<PiFloppyDiskBold />}
|
||||
isLoading={isSaving.isTrue}
|
||||
aria-label={shift ? t('controlLayers.saveBboxToGallery') : t('controlLayers.saveCanvasToGallery')}
|
||||
tooltip={shift ? t('controlLayers.saveBboxToGallery') : t('controlLayers.saveCanvasToGallery')}
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
CanvasToolbarSaveToGalleryButton.displayName = 'CanvasToolbarSaveToGalleryButton';
|
||||
@@ -15,9 +15,8 @@ import {
|
||||
} from '@invoke-ai/ui-library';
|
||||
import { useStore } from '@nanostores/react';
|
||||
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
|
||||
import { MAX_CANVAS_SCALE, MIN_CANVAS_SCALE } from 'features/controlLayers/konva/constants';
|
||||
import { snapToNearest } from 'features/controlLayers/konva/util';
|
||||
import { clamp, round } from 'lodash-es';
|
||||
import { round } from 'lodash-es';
|
||||
import { computed } from 'nanostores';
|
||||
import type { KeyboardEvent } from 'react';
|
||||
import { memo, useCallback, useEffect, useState } from 'react';
|
||||
@@ -32,7 +31,7 @@ function formatPct(v: number | string) {
|
||||
return `${round(Number(v), 2).toLocaleString()}%`;
|
||||
}
|
||||
|
||||
function mapSliderValueToScale(value: number) {
|
||||
function mapSliderValueToRawValue(value: number) {
|
||||
if (value <= 40) {
|
||||
// 0 to 40 -> 10% to 100%
|
||||
return 10 + (90 * value) / 40;
|
||||
@@ -45,64 +44,58 @@ function mapSliderValueToScale(value: number) {
|
||||
}
|
||||
}
|
||||
|
||||
function mapScaleToSliderValue(scale: number) {
|
||||
if (scale <= 100) {
|
||||
return ((scale - 10) * 40) / 90;
|
||||
} else if (scale <= 500) {
|
||||
return 40 + ((scale - 100) * 30) / 400;
|
||||
function mapRawValueToSliderValue(value: number) {
|
||||
if (value <= 100) {
|
||||
return ((value - 10) * 40) / 90;
|
||||
} else if (value <= 500) {
|
||||
return 40 + ((value - 100) * 30) / 400;
|
||||
} else {
|
||||
return 70 + ((scale - 500) * 30) / 1500;
|
||||
return 70 + ((value - 500) * 30) / 1500;
|
||||
}
|
||||
}
|
||||
|
||||
function formatSliderValue(value: number) {
|
||||
return String(mapSliderValueToScale(value));
|
||||
return String(mapSliderValueToRawValue(value));
|
||||
}
|
||||
|
||||
const marks = [
|
||||
mapScaleToSliderValue(10),
|
||||
mapScaleToSliderValue(50),
|
||||
mapScaleToSliderValue(100),
|
||||
mapScaleToSliderValue(500),
|
||||
mapScaleToSliderValue(2000),
|
||||
mapRawValueToSliderValue(10),
|
||||
mapRawValueToSliderValue(50),
|
||||
mapRawValueToSliderValue(100),
|
||||
mapRawValueToSliderValue(500),
|
||||
mapRawValueToSliderValue(2000),
|
||||
];
|
||||
|
||||
const sliderDefaultValue = mapScaleToSliderValue(100);
|
||||
const sliderDefaultValue = mapRawValueToSliderValue(100);
|
||||
|
||||
const snapCandidates = marks.slice(1, marks.length - 1);
|
||||
|
||||
export const CanvasScale = memo(() => {
|
||||
export const CanvasToolbarScale = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const canvasManager = useCanvasManager();
|
||||
const scale = useStore(computed(canvasManager.stateApi.$stageAttrs, (attrs) => attrs.scale));
|
||||
const scale = useStore(computed(canvasManager.stage.$stageAttrs, (attrs) => attrs.scale));
|
||||
const [localScale, setLocalScale] = useState(scale * 100);
|
||||
|
||||
const onChangeSlider = useCallback(
|
||||
(scale: number) => {
|
||||
if (!canvasManager) {
|
||||
return;
|
||||
}
|
||||
let snappedScale = scale;
|
||||
// Do not snap if shift key is held
|
||||
if (!$shift.get()) {
|
||||
snappedScale = snapToNearest(scale, snapCandidates, 2);
|
||||
}
|
||||
const mappedScale = mapSliderValueToScale(snappedScale);
|
||||
const mappedScale = mapSliderValueToRawValue(snappedScale);
|
||||
canvasManager.stage.setScale(mappedScale / 100);
|
||||
},
|
||||
[canvasManager]
|
||||
);
|
||||
|
||||
const onBlur = useCallback(() => {
|
||||
if (!canvasManager) {
|
||||
return;
|
||||
}
|
||||
if (isNaN(Number(localScale))) {
|
||||
canvasManager.stage.setScale(1);
|
||||
setLocalScale(100);
|
||||
return;
|
||||
}
|
||||
canvasManager.stage.setScale(clamp(localScale / 100, MIN_CANVAS_SCALE, MAX_CANVAS_SCALE));
|
||||
canvasManager.stage.setScale(localScale / 100);
|
||||
}, [canvasManager, localScale]);
|
||||
|
||||
const onChangeNumberInput = useCallback((valueAsString: string, valueAsNumber: number) => {
|
||||
@@ -130,8 +123,8 @@ export const CanvasScale = memo(() => {
|
||||
<NumberInput
|
||||
display="flex"
|
||||
alignItems="center"
|
||||
min={MIN_CANVAS_SCALE * 100}
|
||||
max={MAX_CANVAS_SCALE * 100}
|
||||
min={canvasManager.stage.config.MIN_SCALE * 100}
|
||||
max={canvasManager.stage.config.MAX_SCALE * 100}
|
||||
value={localScale}
|
||||
onChange={onChangeNumberInput}
|
||||
onBlur={onBlur}
|
||||
@@ -162,7 +155,7 @@ export const CanvasScale = memo(() => {
|
||||
<CompositeSlider
|
||||
min={0}
|
||||
max={100}
|
||||
value={mapScaleToSliderValue(localScale)}
|
||||
value={mapRawValueToSliderValue(localScale)}
|
||||
onChange={onChangeSlider}
|
||||
defaultValue={sliderDefaultValue}
|
||||
marks={marks}
|
||||
@@ -175,4 +168,4 @@ export const CanvasScale = memo(() => {
|
||||
);
|
||||
});
|
||||
|
||||
CanvasScale.displayName = 'CanvasScale';
|
||||
CanvasToolbarScale.displayName = 'CanvasToolbarScale';
|
||||
@@ -1,19 +1,13 @@
|
||||
import { Button, ButtonGroup, Flex, Heading, Spacer } from '@invoke-ai/ui-library';
|
||||
import { useStore } from '@nanostores/react';
|
||||
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
|
||||
import {
|
||||
EntityIdentifierContext,
|
||||
useEntityIdentifierContext,
|
||||
} from 'features/controlLayers/contexts/EntityIdentifierContext';
|
||||
import { useEntityAdapter } from 'features/controlLayers/hooks/useEntityAdapter';
|
||||
import type { CanvasEntityAdapter } from 'features/controlLayers/konva/CanvasEntityAdapter/types';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiArrowsCounterClockwiseBold, PiCheckBold, PiXBold } from 'react-icons/pi';
|
||||
import { PiArrowsCounterClockwiseBold, PiArrowsOutBold, PiCheckBold, PiXBold } from 'react-icons/pi';
|
||||
|
||||
const TransformBox = memo(() => {
|
||||
const TransformBox = memo(({ adapter }: { adapter: CanvasEntityAdapter }) => {
|
||||
const { t } = useTranslation();
|
||||
const entityIdentifier = useEntityIdentifierContext();
|
||||
const adapter = useEntityAdapter(entityIdentifier);
|
||||
const isProcessing = useStore(adapter.transformer.$isProcessing);
|
||||
|
||||
return (
|
||||
@@ -30,9 +24,19 @@ const TransformBox = memo(() => {
|
||||
transitionDuration="normal"
|
||||
>
|
||||
<Heading size="md" color="base.300" userSelect="none">
|
||||
{t('controlLayers.tool.transform')}
|
||||
{t('controlLayers.transform.transform')}
|
||||
</Heading>
|
||||
<ButtonGroup isAttached={false} size="sm" w="full">
|
||||
<Button
|
||||
leftIcon={<PiArrowsOutBold />}
|
||||
onClick={adapter.transformer.fitProxyRectToBbox}
|
||||
isLoading={isProcessing}
|
||||
loadingText={t('controlLayers.transform.reset')}
|
||||
variant="ghost"
|
||||
>
|
||||
{t('controlLayers.transform.fitToBbox')}
|
||||
</Button>
|
||||
<Spacer />
|
||||
<Button
|
||||
leftIcon={<PiArrowsCounterClockwiseBold />}
|
||||
onClick={adapter.transformer.resetTransform}
|
||||
@@ -40,9 +44,8 @@ const TransformBox = memo(() => {
|
||||
loadingText={t('controlLayers.reset')}
|
||||
variant="ghost"
|
||||
>
|
||||
{t('accessibility.reset')}
|
||||
{t('controlLayers.transform.reset')}
|
||||
</Button>
|
||||
<Spacer />
|
||||
<Button
|
||||
leftIcon={<PiCheckBold />}
|
||||
onClick={adapter.transformer.applyTransform}
|
||||
@@ -50,7 +53,7 @@ const TransformBox = memo(() => {
|
||||
loadingText={t('common.apply')}
|
||||
variant="ghost"
|
||||
>
|
||||
{t('common.apply')}
|
||||
{t('controlLayers.transform.apply')}
|
||||
</Button>
|
||||
<Button
|
||||
leftIcon={<PiXBold />}
|
||||
@@ -59,7 +62,7 @@ const TransformBox = memo(() => {
|
||||
loadingText={t('common.cancel')}
|
||||
variant="ghost"
|
||||
>
|
||||
{t('common.cancel')}
|
||||
{t('controlLayers.transform.cancel')}
|
||||
</Button>
|
||||
</ButtonGroup>
|
||||
</Flex>
|
||||
@@ -70,15 +73,11 @@ TransformBox.displayName = 'Transform';
|
||||
|
||||
export const Transform = () => {
|
||||
const canvasManager = useCanvasManager();
|
||||
const transformingEntity = useStore(canvasManager.stateApi.$transformingEntity);
|
||||
const adapter = useStore(canvasManager.stateApi.$transformingAdapter);
|
||||
|
||||
if (!transformingEntity) {
|
||||
if (!adapter) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<EntityIdentifierContext.Provider value={transformingEntity}>
|
||||
<TransformBox />
|
||||
</EntityIdentifierContext.Provider>
|
||||
);
|
||||
return <TransformBox adapter={adapter} />;
|
||||
};
|
||||
@@ -1,53 +0,0 @@
|
||||
/* eslint-disable i18next/no-literal-string */
|
||||
import { ButtonGroup, IconButton } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { canvasRedo, canvasUndo } from 'features/controlLayers/store/canvasSlice';
|
||||
import { selectCanvasMayRedo, selectCanvasMayUndo } from 'features/controlLayers/store/selectors';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiArrowClockwiseBold, PiArrowCounterClockwiseBold } from 'react-icons/pi';
|
||||
import { useDispatch } from 'react-redux';
|
||||
|
||||
export const UndoRedoButtonGroup = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useDispatch();
|
||||
|
||||
const mayUndo = useAppSelector(selectCanvasMayUndo);
|
||||
const handleUndo = useCallback(() => {
|
||||
dispatch(canvasUndo());
|
||||
}, [dispatch]);
|
||||
useHotkeys(['meta+z', 'ctrl+z'], handleUndo, { enabled: mayUndo, preventDefault: true }, [mayUndo, handleUndo]);
|
||||
|
||||
const mayRedo = useAppSelector(selectCanvasMayRedo);
|
||||
const handleRedo = useCallback(() => {
|
||||
dispatch(canvasRedo());
|
||||
}, [dispatch]);
|
||||
useHotkeys(['meta+shift+z', 'ctrl+shift+z'], handleRedo, { enabled: mayRedo, preventDefault: true }, [
|
||||
mayRedo,
|
||||
handleRedo,
|
||||
]);
|
||||
|
||||
return (
|
||||
<ButtonGroup isAttached={false}>
|
||||
<IconButton
|
||||
aria-label={t('unifiedCanvas.undo')}
|
||||
tooltip={t('unifiedCanvas.undo')}
|
||||
onClick={handleUndo}
|
||||
icon={<PiArrowCounterClockwiseBold />}
|
||||
isDisabled={!mayUndo}
|
||||
variant="ghost"
|
||||
/>
|
||||
<IconButton
|
||||
aria-label={t('unifiedCanvas.redo')}
|
||||
tooltip={t('unifiedCanvas.redo')}
|
||||
onClick={handleRedo}
|
||||
icon={<PiArrowClockwiseBold />}
|
||||
isDisabled={!mayRedo}
|
||||
variant="ghost"
|
||||
/>
|
||||
</ButtonGroup>
|
||||
);
|
||||
});
|
||||
|
||||
UndoRedoButtonGroup.displayName = 'UndoRedoButtonGroup';
|
||||
@@ -0,0 +1,70 @@
|
||||
import { IconButton } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import {
|
||||
controlLayerAdded,
|
||||
inpaintMaskAdded,
|
||||
ipaAdded,
|
||||
rasterLayerAdded,
|
||||
rgAdded,
|
||||
} from 'features/controlLayers/store/canvasSlice';
|
||||
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiPlusBold } from 'react-icons/pi';
|
||||
|
||||
type Props = {
|
||||
type: CanvasEntityIdentifier['type'];
|
||||
};
|
||||
|
||||
export const CanvasEntityAddOfTypeButton = memo(({ type }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const onClick = useCallback(() => {
|
||||
switch (type) {
|
||||
case 'inpaint_mask':
|
||||
dispatch(inpaintMaskAdded({ isSelected: true }));
|
||||
break;
|
||||
case 'regional_guidance':
|
||||
dispatch(rgAdded({ isSelected: true }));
|
||||
break;
|
||||
case 'raster_layer':
|
||||
dispatch(rasterLayerAdded({ isSelected: true }));
|
||||
break;
|
||||
case 'control_layer':
|
||||
dispatch(controlLayerAdded({ isSelected: true }));
|
||||
break;
|
||||
case 'ip_adapter':
|
||||
dispatch(ipaAdded({ isSelected: true }));
|
||||
break;
|
||||
}
|
||||
}, [dispatch, type]);
|
||||
|
||||
const label = useMemo(() => {
|
||||
switch (type) {
|
||||
case 'inpaint_mask':
|
||||
return t('controlLayers.addInpaintMask');
|
||||
case 'regional_guidance':
|
||||
return t('controlLayers.addRegionalGuidance');
|
||||
case 'raster_layer':
|
||||
return t('controlLayers.addRasterLayer');
|
||||
case 'control_layer':
|
||||
return t('controlLayers.addControlLayer');
|
||||
case 'ip_adapter':
|
||||
return t('controlLayers.addIPAdapter');
|
||||
}
|
||||
}, [type, t]);
|
||||
|
||||
return (
|
||||
<IconButton
|
||||
size="sm"
|
||||
aria-label={label}
|
||||
tooltip={label}
|
||||
variant="link"
|
||||
icon={<PiPlusBold />}
|
||||
onClick={onClick}
|
||||
alignSelf="stretch"
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
CanvasEntityAddOfTypeButton.displayName = 'CanvasEntityAddOfTypeButton';
|
||||
@@ -0,0 +1,31 @@
|
||||
import { IconButton } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
|
||||
import { entityDeleted } from 'features/controlLayers/store/canvasSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiTrashSimpleFill } from 'react-icons/pi';
|
||||
|
||||
export const CanvasEntityDeleteButton = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const entityIdentifier = useEntityIdentifierContext();
|
||||
const dispatch = useAppDispatch();
|
||||
const onClick = useCallback(() => {
|
||||
dispatch(entityDeleted({ entityIdentifier }));
|
||||
}, [dispatch, entityIdentifier]);
|
||||
|
||||
return (
|
||||
<IconButton
|
||||
size="sm"
|
||||
aria-label={t('common.delete')}
|
||||
tooltip={t('common.delete')}
|
||||
variant="link"
|
||||
alignSelf="stretch"
|
||||
icon={<PiTrashSimpleFill />}
|
||||
onClick={onClick}
|
||||
colorScheme="error"
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
CanvasEntityDeleteButton.displayName = 'CanvasEntityDeleteButton';
|
||||
@@ -21,7 +21,8 @@ export const CanvasEntityEnabledToggle = memo(() => {
|
||||
size="sm"
|
||||
aria-label={t(isEnabled ? 'common.enabled' : 'common.disabled')}
|
||||
tooltip={t(isEnabled ? 'common.enabled' : 'common.disabled')}
|
||||
variant="ghost"
|
||||
variant="link"
|
||||
alignSelf="stretch"
|
||||
icon={isEnabled ? <PiCircleFill /> : <PiCircleBold />}
|
||||
onClick={onClick}
|
||||
/>
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user