Compare commits

...

71 Commits

Author SHA1 Message Date
psychedelicious
4fca62680d Update invokeai_version.py 2024-06-27 10:41:01 +10:00
Ryan Dick
f76282a5ff Fix handling handling of 0-step denoising process (#6544)
## Summary

https://github.com/invoke-ai/InvokeAI/pull/6522 introduced a change in
behavior in cases where start/end were set such that there are 0
timesteps. This PR reverts that change.

cc @StAlKeR7779 

## QA Instructions

Run with euler, 5 steps, start: 0.0, end: 0.05. I ran this test before
#6522, after #6522, and on this branch. This branch restores the
behavior to pre-#6522 i.e. noise is injected even if no denoising steps
are applied.


## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-06-26 13:01:58 -04:00
Ryan Dick
9a3b8c6fcb Fix handling of init_timestep in StableDiffusionGeneratorPipeline and improve its documentation. 2024-06-26 12:51:51 -04:00
Ryan Dick
bd74b84cc5 Revert "Remove the redundant init_timestep parameter that was being passed around. It is simply the first element of the timesteps array."
This reverts commit fa40061eca.
2024-06-26 12:51:51 -04:00
Brandon Rising
dc23bebebf Run ruff 2024-06-26 21:46:59 +10:00
Kent Keirsey
38b6f90c02 Update prevention exception message 2024-06-26 21:46:59 +10:00
Ryan Dick
cd9dfefe3c Fix inpainting mask shape assertions. 2024-06-25 11:31:52 -07:00
Ryan Dick
b9946e50f9 Use image-space tile dimensions on the TiledMultiDiffusionDenoiseLatents invocation. This is more natural for many users. 2024-06-25 11:31:52 -07:00
Ryan Dick
06f49a30f6 Mark TiledMultiDiffusionDenoiseLatents as a Beta node. 2024-06-25 11:31:52 -07:00
Ryan Dick
e1af78c702 Make the tile_overlap input to MultiDiffusion *strictly* control the amount of overlap rather than being a lower bound. 2024-06-25 11:31:52 -07:00
Ryan Dick
c5588e1ff7 Add TODO comment explaining why some schedulers do not interact well with MultiDiffusion. 2024-06-25 11:31:52 -07:00
Ryan Dick
07ac292680 Consolidate _region_step() function - the separation wasn't really adding any value. 2024-06-25 11:31:52 -07:00
Ryan Dick
7c032ea604 (minor) Fix some documentation typos. 2024-06-25 11:31:52 -07:00
Ryan Dick
c5ee415607 Add progress image callbacks to TiledMultiDiffusionDenoiseLatentsInvocation. 2024-06-25 11:31:52 -07:00
Ryan Dick
fa40061eca Remove the redundant init_timestep parameter that was being passed around. It is simply the first element of the timesteps array. 2024-06-25 11:31:52 -07:00
Ryan Dick
7cafd78d6e Revert "Expose vae_decode(...) as a staticmethod on LatentsToImageInvocation."
This reverts commit 753239b48d.
2024-06-25 11:31:52 -07:00
Ryan Dick
8a43656cf9 (minor) Address a few small TODOs. 2024-06-25 11:31:52 -07:00
Ryan Dick
bd3b6ca11b Remove TiledStableDiffusionRefineInvocation. It was a proof-of-concept that has been superseded by TiledMultiDiffusionDenoiseLatents. 2024-06-25 11:31:52 -07:00
Ryan Dick
ceae5fe1db (minor) typo 2024-06-25 11:31:52 -07:00
Ryan Dick
25067e4f0d Delete rough notes. 2024-06-25 11:31:52 -07:00
Ryan Dick
fb0aaa3e6d Fix advanced scheduler behaviour in MultiDiffusionPipeline. 2024-06-25 11:31:52 -07:00
Ryan Dick
c22526b9d0 Fix handling of stateful schedulers in MultiDiffusionPipeline. 2024-06-25 11:31:52 -07:00
Ryan Dick
c881882f73 Connect TiledMultiDiffusionDenoiseLatents to the MultiDiffusionPipeline backend. 2024-06-25 11:31:52 -07:00
Ryan Dick
36473fc52a Remove regional conditioning logic from MultiDiffusionPipeline - it is not yet supported. 2024-06-25 11:31:52 -07:00
Ryan Dick
b9964ecc4a Initial (untested) implementation of MultiDiffusionPipeline. 2024-06-25 11:31:52 -07:00
Ryan Dick
051af802fe Remove inpainting support from MultiDiffusionPipeline. 2024-06-25 11:31:52 -07:00
Ryan Dick
3ff2e558d9 Remove IP-Adapter and T2I-Adapter support from MultiDiffusionPipeline. 2024-06-25 11:31:52 -07:00
Ryan Dick
fc187c9253 Document plan for the rest of the MultiDiffusion implementation. 2024-06-25 11:31:52 -07:00
Ryan Dick
605f460c7d Add detailed docstring to latents_from_embeddings(). 2024-06-25 11:31:52 -07:00
Ryan Dick
60d1e686d8 Copy StableDiffusionGeneratorPipeline as a starting point for a new MultiDiffusionPipeline. 2024-06-25 11:31:52 -07:00
Ryan Dick
22704dd542 Simplify handling of inpainting models. Improve the in-code documentation around inpainting. 2024-06-25 11:31:52 -07:00
Ryan Dick
875673c9ba Minor tidying of latents_from_embeddings(...). 2024-06-25 11:31:52 -07:00
Ryan Dick
f604575862 Consolidate latents_from_embeddings(...) and generate_latents_from_embeddings(...) into a single function. 2024-06-25 11:31:52 -07:00
Ryan Dick
80a67572f1 Fix invocation name of tiled_multi_diffusion_denoise_latents. 2024-06-25 11:31:52 -07:00
Ryan Dick
60ac937698 Improve clarity of comments regarded when 'noise' and 'latents' are expected to be set. 2024-06-25 11:31:52 -07:00
Ryan Dick
1e41949a02 Fix static check errors on imports in diffusers_pipeline.py. 2024-06-25 11:31:52 -07:00
Ryan Dick
5f0e330ed2 Remove a condition for handling inpainting models that never resolves to True. The same logic is already applied earlier by AddsMaskLatents. 2024-06-25 11:31:52 -07:00
Ryan Dick
9dd779b414 Add clarifying comment to explain why noise might be None in latents_from_embedding(). 2024-06-25 11:31:52 -07:00
Ryan Dick
fa183025ac Remove unused are_like_tensors() function. 2024-06-25 11:31:52 -07:00
Ryan Dick
d3c85aa91a Remove unused StableDiffusionGeneratorPipeline.use_ip_adapter member. 2024-06-25 11:31:52 -07:00
Ryan Dick
82619602a5 Remove unused StableDiffusionGeneratorPipeline.control_model. 2024-06-25 11:31:52 -07:00
Ryan Dick
196f3b721d Stricter typing for the is_gradient_mask: bool. 2024-06-25 11:31:52 -07:00
Ryan Dick
244c28859d Fix typing of control_data to reflect that it can be None. 2024-06-25 11:31:52 -07:00
Ryan Dick
40ae174c41 Fix typing of timesteps and init_timestep. 2024-06-25 11:31:52 -07:00
Ryan Dick
afaebdf151 Fix typing to reflect that the callback arg to latents_from_embeddings is never None. 2024-06-25 11:31:52 -07:00
Ryan Dick
d661517d94 Move seed above optional params. 2024-06-25 11:31:52 -07:00
Ryan Dick
82a69a54ac Simplify handling of AddsMaskGuidance, and fix some related type errors. 2024-06-25 11:31:52 -07:00
Ryan Dick
ffc28176fe Remove unused num_inference_steps. 2024-06-25 11:31:52 -07:00
Ryan Dick
230e205541 WIP TiledMultiDiffusionDenoiseLatents. Updated parameter list and first half of the logic. 2024-06-25 11:31:52 -07:00
Ryan Dick
7e94350351 Tidy DenoiseLatentsInvocation.prep_control_data(...) and fix some type errors. 2024-06-25 11:31:52 -07:00
Ryan Dick
c4e8549c73 Make DenoiseLatentsInvocation.prep_control_data(...) a staticmethod so that it can be called externally. 2024-06-25 11:31:52 -07:00
Ryan Dick
350a210835 Copy TiledStableDiffusionRefineInvocation as a starting point for TiledMultiDiffusionDenoiseLatents.py 2024-06-25 11:31:52 -07:00
Ryan Dick
ed781dbb0c Change tiling strategy to make TiledStableDiffusionRefineInvocation work with more tile shapes and overlaps. 2024-06-25 11:31:52 -07:00
Ryan Dick
b41ea963e7 Expose a few more params from TiledStableDiffusionRefineInvocation. 2024-06-25 11:31:52 -07:00
Ryan Dick
da5d105049 Add support for LoRA models in TiledStableDiffusionRefineInvocation. 2024-06-25 11:31:52 -07:00
Ryan Dick
5301770525 Add naive ControlNet support to TiledStableDiffusionRefineInvocation 2024-06-25 11:31:52 -07:00
Ryan Dick
d08e405017 Fix ControlNetModel type hint import source. 2024-06-25 11:31:52 -07:00
Ryan Dick
534640ccde Rough prototype of TiledStableDiffusionRefineInvocation is working. 2024-06-25 11:31:52 -07:00
Ryan Dick
d5ab8cab5c WIP - TiledStableDiffusionRefine 2024-06-25 11:31:52 -07:00
Ryan Dick
4767301ad3 Minor improvements to LatentsToImageInvocation type hints. 2024-06-25 11:31:52 -07:00
Ryan Dick
21d7ca45e6 Expose vae_decode(...) as a staticmethod on LatentsToImageInvocation. 2024-06-25 11:31:52 -07:00
Ryan Dick
020e8eb413 Fix return type of prepare_noise_and_latents(...). 2024-06-25 11:31:52 -07:00
Ryan Dick
3d49541c09 Make init_scheduler() a staticmethod on DenoiseLatentsInvocation so that it can be called externally. 2024-06-25 11:31:52 -07:00
Ryan Dick
1ef266845a Only allow a single positive/negative prompt conditioning input for tiled refine. 2024-06-25 11:31:52 -07:00
Ryan Dick
a37589ca5f WIP on TiledStableDiffusionRefine 2024-06-25 11:31:52 -07:00
Ryan Dick
171a505f5e Convert several methods in DenoiseLatentsInvocation to staticmethods so that they can be called externally. 2024-06-25 11:31:52 -07:00
Ryan Dick
8004a0d5f5 Simplify the logic in prepare_noise_and_latents(...). 2024-06-25 11:31:52 -07:00
Ryan Dick
610a1fd611 Split out the prepare_noise_and_latents(...) logic in DenoiseLatentsInvocation so that it can be called from other invocations. 2024-06-25 11:31:52 -07:00
Ryan Dick
43108eec13 (minor) Add a TODO note to get_scheduler(...). 2024-06-25 11:31:52 -07:00
Lincoln Stein
b03073d888 [MM] Add support for probing and loading SDXL VAE checkpoint files (#6524)
* add support for probing and loading SDXL VAE checkpoint files

* broaden regexp probe for SDXL VAEs

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-06-20 02:57:27 +00:00
steffylo
a43d602f16 fix(queue): add clear_queue_on_startup config to clear problematic queues 2024-06-19 11:39:25 +10:00
11 changed files with 756 additions and 261 deletions

View File

@@ -55,6 +55,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
)
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.hotfixes import ControlNetModel
from invokeai.backend.util.mask import to_standard_float_mask
from invokeai.backend.util.silence_warnings import SilenceWarnings
@@ -65,6 +66,9 @@ def get_scheduler(
scheduler_name: str,
seed: int,
) -> Scheduler:
"""Load a scheduler and apply some scheduler-specific overrides."""
# TODO(ryand): Silently falling back to ddim seems like a bad idea. Look into why this was added and remove if
# possible.
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
orig_scheduler_info = context.models.load(scheduler_info)
with orig_scheduler_info as orig_scheduler:
@@ -182,8 +186,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
raise ValueError("cfg_scale must be greater than 1")
return v
@staticmethod
def _get_text_embeddings_and_masks(
self,
cond_list: list[ConditioningField],
context: InvocationContext,
device: torch.device,
@@ -203,8 +207,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
return text_embeddings, text_embeddings_masks
@staticmethod
def _preprocess_regional_prompt_mask(
self, mask: Optional[torch.Tensor], target_height: int, target_width: int, dtype: torch.dtype
mask: Optional[torch.Tensor], target_height: int, target_width: int, dtype: torch.dtype
) -> torch.Tensor:
"""Preprocess a regional prompt mask to match the target height and width.
If mask is None, returns a mask of all ones with the target height and width.
@@ -228,8 +233,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
resized_mask = tf(mask)
return resized_mask
@staticmethod
def _concat_regional_text_embeddings(
self,
text_conditionings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]],
masks: Optional[list[Optional[torch.Tensor]]],
latent_height: int,
@@ -279,7 +284,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
)
)
processed_masks.append(
self._preprocess_regional_prompt_mask(mask, latent_height, latent_width, dtype=dtype)
DenoiseLatentsInvocation._preprocess_regional_prompt_mask(
mask, latent_height, latent_width, dtype=dtype
)
)
cur_text_embedding_len += text_embedding_info.embeds.shape[1]
@@ -301,36 +308,41 @@ class DenoiseLatentsInvocation(BaseInvocation):
)
return BasicConditioningInfo(embeds=text_embedding), regions
@staticmethod
def get_conditioning_data(
self,
context: InvocationContext,
positive_conditioning_field: Union[ConditioningField, list[ConditioningField]],
negative_conditioning_field: Union[ConditioningField, list[ConditioningField]],
unet: UNet2DConditionModel,
latent_height: int,
latent_width: int,
cfg_scale: float | list[float],
steps: int,
cfg_rescale_multiplier: float,
) -> TextConditioningData:
# Normalize self.positive_conditioning and self.negative_conditioning to lists.
cond_list = self.positive_conditioning
# Normalize positive_conditioning_field and negative_conditioning_field to lists.
cond_list = positive_conditioning_field
if not isinstance(cond_list, list):
cond_list = [cond_list]
uncond_list = self.negative_conditioning
uncond_list = negative_conditioning_field
if not isinstance(uncond_list, list):
uncond_list = [uncond_list]
cond_text_embeddings, cond_text_embedding_masks = self._get_text_embeddings_and_masks(
cond_text_embeddings, cond_text_embedding_masks = DenoiseLatentsInvocation._get_text_embeddings_and_masks(
cond_list, context, unet.device, unet.dtype
)
uncond_text_embeddings, uncond_text_embedding_masks = self._get_text_embeddings_and_masks(
uncond_text_embeddings, uncond_text_embedding_masks = DenoiseLatentsInvocation._get_text_embeddings_and_masks(
uncond_list, context, unet.device, unet.dtype
)
cond_text_embedding, cond_regions = self._concat_regional_text_embeddings(
cond_text_embedding, cond_regions = DenoiseLatentsInvocation._concat_regional_text_embeddings(
text_conditionings=cond_text_embeddings,
masks=cond_text_embedding_masks,
latent_height=latent_height,
latent_width=latent_width,
dtype=unet.dtype,
)
uncond_text_embedding, uncond_regions = self._concat_regional_text_embeddings(
uncond_text_embedding, uncond_regions = DenoiseLatentsInvocation._concat_regional_text_embeddings(
text_conditionings=uncond_text_embeddings,
masks=uncond_text_embedding_masks,
latent_height=latent_height,
@@ -338,23 +350,21 @@ class DenoiseLatentsInvocation(BaseInvocation):
dtype=unet.dtype,
)
if isinstance(self.cfg_scale, list):
assert (
len(self.cfg_scale) == self.steps
), "cfg_scale (list) must have the same length as the number of steps"
if isinstance(cfg_scale, list):
assert len(cfg_scale) == steps, "cfg_scale (list) must have the same length as the number of steps"
conditioning_data = TextConditioningData(
uncond_text=uncond_text_embedding,
cond_text=cond_text_embedding,
uncond_regions=uncond_regions,
cond_regions=cond_regions,
guidance_scale=self.cfg_scale,
guidance_rescale_multiplier=self.cfg_rescale_multiplier,
guidance_scale=cfg_scale,
guidance_rescale_multiplier=cfg_rescale_multiplier,
)
return conditioning_data
@staticmethod
def create_pipeline(
self,
unet: UNet2DConditionModel,
scheduler: Scheduler,
) -> StableDiffusionGeneratorPipeline:
@@ -377,38 +387,38 @@ class DenoiseLatentsInvocation(BaseInvocation):
requires_safety_checker=False,
)
@staticmethod
def prep_control_data(
self,
context: InvocationContext,
control_input: Optional[Union[ControlField, List[ControlField]]],
control_input: ControlField | list[ControlField] | None,
latents_shape: List[int],
exit_stack: ExitStack,
do_classifier_free_guidance: bool = True,
) -> Optional[List[ControlNetData]]:
# Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR.
control_height_resize = latents_shape[2] * LATENT_SCALE_FACTOR
control_width_resize = latents_shape[3] * LATENT_SCALE_FACTOR
if control_input is None:
control_list = None
elif isinstance(control_input, list) and len(control_input) == 0:
control_list = None
elif isinstance(control_input, ControlField):
) -> list[ControlNetData] | None:
# Normalize control_input to a list.
control_list: list[ControlField]
if isinstance(control_input, ControlField):
control_list = [control_input]
elif isinstance(control_input, list) and len(control_input) > 0 and isinstance(control_input[0], ControlField):
elif isinstance(control_input, list):
control_list = control_input
elif control_input is None:
control_list = []
else:
control_list = None
if control_list is None:
return None
# After above handling, any control that is not None should now be of type list[ControlField].
raise ValueError(f"Unexpected control_input type: {type(control_input)}")
# FIXME: add checks to skip entry if model or image is None
# and if weight is None, populate with default 1.0?
controlnet_data = []
if len(control_list) == 0:
return None
# Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR.
_, _, latent_height, latent_width = latents_shape
control_height_resize = latent_height * LATENT_SCALE_FACTOR
control_width_resize = latent_width * LATENT_SCALE_FACTOR
controlnet_data: list[ControlNetData] = []
for control_info in control_list:
control_model = exit_stack.enter_context(context.models.load(control_info.control_model))
assert isinstance(control_model, ControlNetModel)
# control_models.append(control_model)
control_image_field = control_info.image
input_image = context.images.get_pil(control_image_field.image_name)
# self.image.image_type, self.image.image_name
@@ -429,7 +439,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
resize_mode=control_info.resize_mode,
)
control_item = ControlNetData(
model=control_model, # model object
model=control_model,
image_tensor=control_image,
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
@@ -583,15 +593,15 @@ class DenoiseLatentsInvocation(BaseInvocation):
# original idea by https://github.com/AmericanPresidentJimmyCarter
# TODO: research more for second order schedulers timesteps
@staticmethod
def init_scheduler(
self,
scheduler: Union[Scheduler, ConfigMixin],
device: torch.device,
steps: int,
denoising_start: float,
denoising_end: float,
seed: int,
) -> Tuple[int, List[int], int, Dict[str, Any]]:
) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]:
assert isinstance(scheduler, ConfigMixin)
if scheduler.config.get("cpu_only", False):
scheduler.set_timesteps(steps, device="cpu")
@@ -617,7 +627,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
init_timestep = timesteps[t_start_idx : t_start_idx + 1]
timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx]
num_inference_steps = len(timesteps) // scheduler.order
scheduler_step_kwargs: Dict[str, Any] = {}
scheduler_step_signature = inspect.signature(scheduler.step)
@@ -639,7 +648,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
if isinstance(scheduler, TCDScheduler):
scheduler_step_kwargs.update({"eta": 1.0})
return num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs
return timesteps, init_timestep, scheduler_step_kwargs
def prep_inpaint_mask(
self, context: InvocationContext, latents: torch.Tensor
@@ -656,31 +665,52 @@ class DenoiseLatentsInvocation(BaseInvocation):
return 1 - mask, masked_latents, self.denoise_mask.gradient
@torch.no_grad()
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
def invoke(self, context: InvocationContext) -> LatentsOutput:
seed = None
@staticmethod
def prepare_noise_and_latents(
context: InvocationContext, noise_field: LatentsField | None, latents_field: LatentsField | None
) -> Tuple[int, torch.Tensor | None, torch.Tensor]:
"""Depending on the workflow, we expect different combinations of noise and latents to be provided. This
function handles preparing these values accordingly.
Expected workflows:
- Text-to-Image Denoising: `noise` is provided, `latents` is not. `latents` is initialized to zeros.
- Image-to-Image Denoising: `noise` and `latents` are both provided.
- Text-to-Image SDXL Refiner Denoising: `latents` is provided, `noise` is not.
- Image-to-Image SDXL Refiner Denoising: `latents` is provided, `noise` is not.
NOTE(ryand): I wrote this docstring, but I am not the original author of this code. There may be other workflows
I haven't considered.
"""
noise = None
if self.noise is not None:
noise = context.tensors.load(self.noise.latents_name)
seed = self.noise.seed
if self.latents is not None:
latents = context.tensors.load(self.latents.latents_name)
if seed is None:
seed = self.latents.seed
if noise is not None and noise.shape[1:] != latents.shape[1:]:
raise Exception(f"Incompatable 'noise' and 'latents' shapes: {latents.shape=} {noise.shape=}")
if noise_field is not None:
noise = context.tensors.load(noise_field.latents_name)
if latents_field is not None:
latents = context.tensors.load(latents_field.latents_name)
elif noise is not None:
latents = torch.zeros_like(noise)
else:
raise Exception("'latents' or 'noise' must be provided!")
raise ValueError("'latents' or 'noise' must be provided!")
if seed is None:
if noise is not None and noise.shape[1:] != latents.shape[1:]:
raise ValueError(f"Incompatible 'noise' and 'latents' shapes: {latents.shape=} {noise.shape=}")
# The seed comes from (in order of priority): the noise field, the latents field, or 0.
seed = 0
if noise_field is not None and noise_field.seed is not None:
seed = noise_field.seed
elif latents_field is not None and latents_field.seed is not None:
seed = latents_field.seed
else:
seed = 0
return seed, noise, latents
@torch.no_grad()
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
def invoke(self, context: InvocationContext) -> LatentsOutput:
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
@@ -706,7 +736,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
# The image prompts are then passed to prep_ip_adapter_data().
image_prompts = self.prep_ip_adapter_image_prompts(context=context, ip_adapters=ip_adapters)
# get the unet's config so that we can pass the base to dispatch_progress()
# get the unet's config so that we can pass the base to sd_step_callback()
unet_config = context.models.get_config(self.unet.unet.key)
def step_callback(state: PipelineIntermediateState) -> None:
@@ -754,7 +784,15 @@ class DenoiseLatentsInvocation(BaseInvocation):
_, _, latent_height, latent_width = latents.shape
conditioning_data = self.get_conditioning_data(
context=context, unet=unet, latent_height=latent_height, latent_width=latent_width
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
unet=unet,
latent_height=latent_height,
latent_width=latent_width,
cfg_scale=self.cfg_scale,
steps=self.steps,
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
)
controlnet_data = self.prep_control_data(
@@ -776,7 +814,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
dtype=unet.dtype,
)
num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
scheduler,
device=unet.device,
steps=self.steps,
@@ -793,8 +831,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
seed=seed,
mask=mask,
masked_latents=masked_latents,
gradient_mask=gradient_mask,
num_inference_steps=num_inference_steps,
is_gradient_mask=gradient_mask,
scheduler_step_kwargs=scheduler_step_kwargs,
conditioning_data=conditioning_data,
control_data=controlnet_data,

View File

@@ -0,0 +1,281 @@
import copy
from contextlib import ExitStack
from typing import Iterator, Tuple
import torch
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from pydantic import field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.denoise_latents import DenoiseLatentsInvocation, get_scheduler
from invokeai.app.invocations.fields import (
ConditioningField,
FieldDescriptions,
Input,
InputField,
LatentsField,
UIType,
)
from invokeai.app.invocations.model import UNetField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, PipelineIntermediateState
from invokeai.backend.stable_diffusion.multi_diffusion_pipeline import (
MultiDiffusionPipeline,
MultiDiffusionRegionConditioning,
)
from invokeai.backend.tiles.tiles import (
calc_tiles_min_overlap,
)
from invokeai.backend.tiles.utils import TBLR
from invokeai.backend.util.devices import TorchDevice
def crop_controlnet_data(control_data: ControlNetData, latent_region: TBLR) -> ControlNetData:
"""Crop a ControlNetData object to a region."""
# Create a shallow copy of the control_data object.
control_data_copy = copy.copy(control_data)
# The ControlNet reference image is the only attribute that needs to be cropped.
control_data_copy.image_tensor = control_data.image_tensor[
:,
:,
latent_region.top * LATENT_SCALE_FACTOR : latent_region.bottom * LATENT_SCALE_FACTOR,
latent_region.left * LATENT_SCALE_FACTOR : latent_region.right * LATENT_SCALE_FACTOR,
]
return control_data_copy
@invocation(
"tiled_multi_diffusion_denoise_latents",
title="Tiled Multi-Diffusion Denoise Latents",
tags=["upscale", "denoise"],
category="latents",
classification=Classification.Beta,
version="1.0.0",
)
class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
"""Tiled Multi-Diffusion denoising.
This node handles automatically tiling the input image, and is primarily intended for global refinement of images
in tiled upscaling workflows. Future Multi-Diffusion nodes should allow the user to specify custom regions with
different parameters for each region to harness the full power of Multi-Diffusion.
This node has a similar interface to the `DenoiseLatents` node, but it has a reduced feature set (no IP-Adapter,
T2I-Adapter, masking, etc.).
"""
positive_conditioning: ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
negative_conditioning: ConditioningField = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection
)
noise: LatentsField | None = InputField(
default=None,
description=FieldDescriptions.noise,
input=Input.Connection,
)
latents: LatentsField | None = InputField(
default=None,
description=FieldDescriptions.latents,
input=Input.Connection,
)
tile_height: int = InputField(
default=1024, gt=0, multiple_of=LATENT_SCALE_FACTOR, description="Height of the tiles in image space."
)
tile_width: int = InputField(
default=1024, gt=0, multiple_of=LATENT_SCALE_FACTOR, description="Width of the tiles in image space."
)
tile_overlap: int = InputField(
default=32,
multiple_of=LATENT_SCALE_FACTOR,
gt=0,
description="The overlap between adjacent tiles in pixel space. (Of course, tile merging is applied in latent "
"space.) Tiles will be cropped during merging (if necessary) to ensure that they overlap by exactly this "
"amount.",
)
steps: int = InputField(default=18, gt=0, description=FieldDescriptions.steps)
cfg_scale: float | list[float] = InputField(default=6.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
denoising_start: float = InputField(
default=0.0,
ge=0,
le=1,
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
scheduler: SCHEDULER_NAME_VALUES = InputField(
default="euler",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
)
unet: UNetField = InputField(
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
cfg_rescale_multiplier: float = InputField(
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
)
control: ControlField | list[ControlField] | None = InputField(
default=None,
input=Input.Connection,
)
@field_validator("cfg_scale")
def ge_one(cls, v: list[float] | float) -> list[float] | float:
"""Validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError("cfg_scale must be greater than 1")
else:
if v < 1:
raise ValueError("cfg_scale must be greater than 1")
return v
@staticmethod
def create_pipeline(
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
) -> MultiDiffusionPipeline:
# TODO(ryand): Get rid of this FakeVae hack.
class FakeVae:
class FakeVaeConfig:
def __init__(self) -> None:
self.block_out_channels = [0]
def __init__(self) -> None:
self.config = FakeVae.FakeVaeConfig()
return MultiDiffusionPipeline(
vae=FakeVae(),
text_encoder=None,
tokenizer=None,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
# Convert tile image-space dimensions to latent-space dimensions.
latent_tile_height = self.tile_height // LATENT_SCALE_FACTOR
latent_tile_width = self.tile_width // LATENT_SCALE_FACTOR
latent_tile_overlap = self.tile_overlap // LATENT_SCALE_FACTOR
seed, noise, latents = DenoiseLatentsInvocation.prepare_noise_and_latents(context, self.noise, self.latents)
_, _, latent_height, latent_width = latents.shape
# Calculate the tile locations to cover the latent-space image.
tiles = calc_tiles_min_overlap(
image_height=latent_height,
image_width=latent_width,
tile_height=latent_tile_height,
tile_width=latent_tile_width,
min_overlap=latent_tile_overlap,
)
# Get the unet's config so that we can pass the base to sd_step_callback().
unet_config = context.models.get_config(self.unet.unet.key)
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, unet_config.base)
# Prepare an iterator that yields the UNet's LoRA models and their weights.
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.unet.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
# Load the UNet model.
unet_info = context.models.load(self.unet.unet)
with ExitStack() as exit_stack, unet_info as unet, ModelPatcher.apply_lora_unet(unet, _lora_loader()):
assert isinstance(unet, UNet2DConditionModel)
latents = latents.to(device=unet.device, dtype=unet.dtype)
if noise is not None:
noise = noise.to(device=unet.device, dtype=unet.dtype)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
seed=seed,
)
pipeline = self.create_pipeline(unet=unet, scheduler=scheduler)
# Prepare the prompt conditioning data. The same prompt conditioning is applied to all tiles.
conditioning_data = DenoiseLatentsInvocation.get_conditioning_data(
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
unet=unet,
latent_height=latent_tile_height,
latent_width=latent_tile_width,
cfg_scale=self.cfg_scale,
steps=self.steps,
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
)
controlnet_data = DenoiseLatentsInvocation.prep_control_data(
context=context,
control_input=self.control,
latents_shape=list(latents.shape),
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
exit_stack=exit_stack,
)
# Split the controlnet_data into tiles.
# controlnet_data_tiles[t][c] is the c'th control data for the t'th tile.
controlnet_data_tiles: list[list[ControlNetData]] = []
for tile in tiles:
tile_controlnet_data = [crop_controlnet_data(cn, tile.coords) for cn in controlnet_data or []]
controlnet_data_tiles.append(tile_controlnet_data)
# Prepare the MultiDiffusionRegionConditioning list.
multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning] = []
for tile, tile_controlnet_data in zip(tiles, controlnet_data_tiles, strict=True):
multi_diffusion_conditioning.append(
MultiDiffusionRegionConditioning(
region=tile,
text_conditioning_data=conditioning_data,
control_data=tile_controlnet_data,
)
)
timesteps, init_timestep, scheduler_step_kwargs = DenoiseLatentsInvocation.init_scheduler(
scheduler,
device=unet.device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,
seed=seed,
)
# Run Multi-Diffusion denoising.
result_latents = pipeline.multi_diffusion_denoise(
multi_diffusion_conditioning=multi_diffusion_conditioning,
target_overlap=latent_tile_overlap,
latents=latents,
scheduler_step_kwargs=scheduler_step_kwargs,
noise=noise,
timesteps=timesteps,
init_timestep=init_timestep,
callback=step_callback,
)
result_latents = result_latents.to("cpu")
# TODO(ryand): I copied this from DenoiseLatentsInvocation. I'm not sure if it's actually important.
TorchDevice.empty_cache()
name = context.tensors.save(tensor=result_latents)
return LatentsOutput.build(latents_name=name, latents=result_latents, seed=None)

View File

@@ -113,6 +113,7 @@ class InvokeAIAppConfig(BaseSettings):
force_tiled_decode: Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).
pil_compress_level: The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.
max_queue_size: Maximum number of items in the session queue.
clear_queue_on_startup: Empties session queue on startup.
allow_nodes: List of nodes to allow. Omit to allow all.
deny_nodes: List of nodes to deny. Omit to deny none.
node_cache_size: How many cached nodes to keep in memory.
@@ -186,6 +187,7 @@ class InvokeAIAppConfig(BaseSettings):
force_tiled_decode: bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).")
pil_compress_level: int = Field(default=1, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.")
max_queue_size: int = Field(default=10000, gt=0, description="Maximum number of items in the session queue.")
clear_queue_on_startup: bool = Field(default=False, description="Empties session queue on startup.")
# NODES
allow_nodes: Optional[list[str]] = Field(default=None, description="List of nodes to allow. Omit to allow all.")

View File

@@ -37,10 +37,14 @@ class SqliteSessionQueue(SessionQueueBase):
def start(self, invoker: Invoker) -> None:
self.__invoker = invoker
self._set_in_progress_to_canceled()
prune_result = self.prune(DEFAULT_QUEUE_ID)
if prune_result.deleted > 0:
self.__invoker.services.logger.info(f"Pruned {prune_result.deleted} finished queue items")
if self.__invoker.services.configuration.clear_queue_on_startup:
clear_result = self.clear(DEFAULT_QUEUE_ID)
if clear_result.deleted > 0:
self.__invoker.services.logger.info(f"Cleared all {clear_result.deleted} queue items")
else:
prune_result = self.prune(DEFAULT_QUEUE_ID)
if prune_result.deleted > 0:
self.__invoker.services.logger.info(f"Pruned {prune_result.deleted} finished queue items")
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()

View File

@@ -289,7 +289,7 @@ def prepare_control_image(
width: int,
height: int,
num_channels: int = 3,
device: str = "cuda",
device: str | torch.device = "cuda",
dtype: torch.dtype = torch.float16,
control_mode: CONTROLNET_MODE_VALUES = "balanced",
resize_mode: CONTROLNET_RESIZE_VALUES = "just_resize_simple",
@@ -304,7 +304,7 @@ def prepare_control_image(
num_channels (int, optional): The target number of image channels. This is achieved by converting the input
image to RGB, then naively taking the first `num_channels` channels. The primary use case is converting a
RGB image to a single-channel grayscale image. Raises if `num_channels` cannot be achieved. Defaults to 3.
device (str, optional): The target device for the output image. Defaults to "cuda".
device (str | torch.Device, optional): The target device for the output image. Defaults to "cuda".
dtype (_type_, optional): The dtype for the output image. Defaults to torch.float16.
do_classifier_free_guidance (bool, optional): If True, repeat the output image along the batch dimension.
Defaults to True.

View File

@@ -12,7 +12,9 @@ def validate_hash(hash: str):
map = json.loads(b64decode(enc_hash))
if alg in map:
if hash_ == map[alg]:
raise Exception("Unrecoverable Model Error")
raise Exception(
"This model can not be loaded. If you're looking for help, consider visiting https://www.redirectionprogram.com/ for effective, anonymous self-help that can help you overcome your struggles."
)
hashes: list[str] = [

View File

@@ -22,8 +22,7 @@ from .generic_diffusers import GenericDiffusersLoader
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.VAE, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion1, type=ModelType.VAE, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion2, type=ModelType.VAE, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.VAE, format=ModelFormat.Checkpoint)
class VAELoader(GenericDiffusersLoader):
"""Class to load VAE models."""
@@ -40,12 +39,8 @@ class VAELoader(GenericDiffusersLoader):
return True
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Optional[Path] = None) -> AnyModel:
# TODO(MM2): check whether sdxl VAE models convert.
if config.base not in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}:
raise Exception(f"VAE conversion not supported for model type: {config.base}")
else:
assert isinstance(config, CheckpointConfigBase)
config_file = self._app_config.legacy_conf_path / config.config_path
assert isinstance(config, CheckpointConfigBase)
config_file = self._app_config.legacy_conf_path / config.config_path
if model_path.suffix == ".safetensors":
checkpoint = safetensors_load_file(model_path, device="cpu")

View File

@@ -451,8 +451,16 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
class VaeCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
# I can't find any standalone 2.X VAEs to test with!
return BaseModelType.StableDiffusion1
# VAEs of all base types have the same structure, so we wimp out and
# guess using the name.
for regexp, basetype in [
(r"xl", BaseModelType.StableDiffusionXL),
(r"sd2", BaseModelType.StableDiffusion2),
(r"vae", BaseModelType.StableDiffusion1),
]:
if re.search(regexp, self.model_path.name, re.IGNORECASE):
return basetype
raise InvalidModelConfigException("Cannot determine base type")
class LoRACheckpointProbe(CheckpointProbeBase):

View File

@@ -10,12 +10,11 @@ import PIL.Image
import psutil
import torch
import torchvision.transforms as T
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.controlnet import ControlNetModel
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from diffusers.utils.import_utils import is_xformers_available
from pydantic import Field
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
@@ -26,6 +25,7 @@ from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion impor
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher, UNetIPAdapterData
from invokeai.backend.util.attention import auto_detect_slice_size
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.hotfixes import ControlNetModel
@dataclass
@@ -38,56 +38,18 @@ class PipelineIntermediateState:
predicted_original: Optional[torch.Tensor] = None
@dataclass
class AddsMaskLatents:
"""Add the channels required for inpainting model input.
The inpainting model takes the normal latent channels as input, _plus_ a one-channel mask
and the latent encoding of the base image.
This class assumes the same mask and base image should apply to all items in the batch.
"""
forward: Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor]
mask: torch.Tensor
initial_image_latents: torch.Tensor
def __call__(
self,
latents: torch.Tensor,
t: torch.Tensor,
text_embeddings: torch.Tensor,
**kwargs,
) -> torch.Tensor:
model_input = self.add_mask_channels(latents)
return self.forward(model_input, t, text_embeddings, **kwargs)
def add_mask_channels(self, latents):
batch_size = latents.size(0)
# duplicate mask and latents for each batch
mask = einops.repeat(self.mask, "b c h w -> (repeat b) c h w", repeat=batch_size)
image_latents = einops.repeat(self.initial_image_latents, "b c h w -> (repeat b) c h w", repeat=batch_size)
# add mask and image as additional channels
model_input, _ = einops.pack([latents, mask, image_latents], "b * h w")
return model_input
def are_like_tensors(a: torch.Tensor, b: object) -> bool:
return isinstance(b, torch.Tensor) and (a.size() == b.size())
@dataclass
class AddsMaskGuidance:
mask: torch.FloatTensor
mask_latents: torch.FloatTensor
mask: torch.Tensor
mask_latents: torch.Tensor
scheduler: SchedulerMixin
noise: torch.Tensor
gradient_mask: bool
is_gradient_mask: bool
def __call__(self, latents: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
return self.apply_mask(latents, t)
def apply_mask(self, latents: torch.Tensor, t) -> torch.Tensor:
def apply_mask(self, latents: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
batch_size = latents.size(0)
mask = einops.repeat(self.mask, "b c h w -> (repeat b) c h w", repeat=batch_size)
if t.dim() == 0:
@@ -100,7 +62,7 @@ class AddsMaskGuidance:
# TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already?
# mask_latents = self.scheduler.scale_model_input(mask_latents, t)
mask_latents = einops.repeat(mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size)
if self.gradient_mask:
if self.is_gradient_mask:
threshhold = (t.item()) / self.scheduler.config.num_train_timesteps
mask_bool = mask > threshhold # I don't know when mask got inverted, but it did
masked_input = torch.where(mask_bool, latents, mask_latents)
@@ -200,7 +162,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
safety_checker: Optional[StableDiffusionSafetyChecker],
feature_extractor: Optional[CLIPFeatureExtractor],
requires_safety_checker: bool = False,
control_model: ControlNetModel = None,
):
super().__init__(
vae=vae,
@@ -214,8 +175,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
)
self.invokeai_diffuser = InvokeAIDiffuserComponent(self.unet, self._unet_forward)
self.control_model = control_model
self.use_ip_adapter = False
def _adjust_memory_efficient_attention(self, latents: torch.Tensor):
"""
@@ -280,116 +239,128 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
def to(self, torch_device: Optional[Union[str, torch.device]] = None, silence_dtype_warnings=False):
raise Exception("Should not be called")
def add_inpainting_channels_to_latents(
self, latents: torch.Tensor, masked_ref_image_latents: torch.Tensor, inpainting_mask: torch.Tensor
):
"""Given a `latents` tensor, adds the mask and image latents channels required for inpainting.
Standard (non-inpainting) SD UNet models expect an input with shape (N, 4, H, W). Inpainting models expect an
input of shape (N, 9, H, W). The 9 channels are defined as follows:
- Channel 0-3: The latents being denoised.
- Channel 4: The mask indicating which parts of the image are being inpainted.
- Channel 5-8: The latent representation of the masked reference image being inpainted.
This function assumes that the same mask and base image should apply to all items in the batch.
"""
# Validate assumptions about input tensor shapes.
batch_size, latent_channels, latent_height, latent_width = latents.shape
assert latent_channels == 4
assert list(masked_ref_image_latents.shape) == [1, 4, latent_height, latent_width]
assert list(inpainting_mask.shape) == [1, 1, latent_height, latent_width]
# Repeat original_image_latents and inpainting_mask to match the latents batch size.
original_image_latents = masked_ref_image_latents.expand(batch_size, -1, -1, -1)
inpainting_mask = inpainting_mask.expand(batch_size, -1, -1, -1)
# Concatenate along the channel dimension.
return torch.cat([latents, inpainting_mask, original_image_latents], dim=1)
def latents_from_embeddings(
self,
latents: torch.Tensor,
num_inference_steps: int,
scheduler_step_kwargs: dict[str, Any],
conditioning_data: TextConditioningData,
*,
noise: Optional[torch.Tensor],
seed: int,
timesteps: torch.Tensor,
init_timestep: torch.Tensor,
additional_guidance: List[Callable] = None,
callback: Callable[[PipelineIntermediateState], None] = None,
control_data: List[ControlNetData] = None,
callback: Callable[[PipelineIntermediateState], None],
control_data: list[ControlNetData] | None = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
mask: Optional[torch.Tensor] = None,
masked_latents: Optional[torch.Tensor] = None,
gradient_mask: Optional[bool] = False,
seed: int,
is_gradient_mask: bool = False,
) -> torch.Tensor:
"""Denoise the latents.
Args:
latents: The latent-space image to denoise.
- If we are inpainting, this is the initial latent image before noise has been added.
- If we are generating a new image, this should be initialized to zeros.
- In some cases, this may be a partially-noised latent image (e.g. when running the SDXL refiner).
scheduler_step_kwargs: kwargs forwarded to the scheduler.step() method.
conditioning_data: Text conditionging data.
noise: Noise used for two purposes:
1. Used by the scheduler to noise the initial `latents` before denoising.
2. Used to noise the `masked_latents` when inpainting.
`noise` should be None if the `latents` tensor has already been noised.
seed: The seed used to generate the noise for the denoising process.
HACK(ryand): seed is only used in a particular case when `noise` is None, but we need to re-generate the
same noise used earlier in the pipeline. This should really be handled in a clearer way.
timesteps: The timestep schedule for the denoising process.
init_timestep: The first timestep in the schedule. This is used to determine the initial noise level, so
should be populated if you want noise applied *even* if timesteps is empty.
callback: A callback function that is called to report progress during the denoising process.
control_data: ControlNet data.
ip_adapter_data: IP-Adapter data.
t2i_adapter_data: T2I-Adapter data.
mask: A mask indicating which parts of the image are being inpainted. The presence of mask is used to
determine whether we are inpainting or not. `mask` should have the same spatial dimensions as the
`latents` tensor.
TODO(ryand): Check and document the expected dtype, range, and values used to represent
foreground/background.
masked_latents: A latent-space representation of a masked inpainting reference image. This tensor is only
used if an *inpainting* model is being used i.e. this tensor is not used when inpainting with a standard
SD UNet model.
is_gradient_mask: A flag indicating whether `mask` is a gradient mask or not.
"""
if init_timestep.shape[0] == 0:
return latents
if additional_guidance is None:
additional_guidance = []
orig_latents = latents.clone()
batch_size = latents.shape[0]
batched_t = init_timestep.expand(batch_size)
batched_init_timestep = init_timestep.expand(batch_size)
# noise can be None if the latents have already been noised (e.g. when running the SDXL refiner).
if noise is not None:
# TODO(ryand): I'm pretty sure we should be applying init_noise_sigma in cases where we are starting with
# full noise. Investigate the history of why this got commented out.
# latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers
latents = self.scheduler.add_noise(latents, noise, batched_t)
latents = self.scheduler.add_noise(latents, noise, batched_init_timestep)
if mask is not None:
if is_inpainting_model(self.unet):
if masked_latents is None:
raise Exception("Source image required for inpaint mask when inpaint model used!")
self.invokeai_diffuser.model_forward_callback = AddsMaskLatents(
self._unet_forward, mask, masked_latents
)
else:
# if no noise provided, noisify unmasked area based on seed
if noise is None:
noise = torch.randn(
orig_latents.shape,
dtype=torch.float32,
device="cpu",
generator=torch.Generator(device="cpu").manual_seed(seed),
).to(device=orig_latents.device, dtype=orig_latents.dtype)
additional_guidance.append(AddsMaskGuidance(mask, orig_latents, self.scheduler, noise, gradient_mask))
try:
latents = self.generate_latents_from_embeddings(
latents,
timesteps,
conditioning_data,
scheduler_step_kwargs=scheduler_step_kwargs,
additional_guidance=additional_guidance,
control_data=control_data,
ip_adapter_data=ip_adapter_data,
t2i_adapter_data=t2i_adapter_data,
callback=callback,
)
finally:
self.invokeai_diffuser.model_forward_callback = self._unet_forward
# restore unmasked part after the last step is completed
# in-process masking happens before each step
if mask is not None:
if gradient_mask:
latents = torch.where(mask > 0, latents, orig_latents)
else:
latents = torch.lerp(
orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype)
)
return latents
def generate_latents_from_embeddings(
self,
latents: torch.Tensor,
timesteps,
conditioning_data: TextConditioningData,
scheduler_step_kwargs: dict[str, Any],
*,
additional_guidance: List[Callable] = None,
control_data: List[ControlNetData] = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
callback: Callable[[PipelineIntermediateState], None] = None,
) -> torch.Tensor:
self._adjust_memory_efficient_attention(latents)
if additional_guidance is None:
additional_guidance = []
batch_size = latents.shape[0]
# Handle mask guidance (a.k.a. inpainting).
mask_guidance: AddsMaskGuidance | None = None
if mask is not None and not is_inpainting_model(self.unet):
# We are doing inpainting, since a mask is provided, but we are not using an inpainting model, so we will
# apply mask guidance to the latents.
if timesteps.shape[0] == 0:
return latents
# 'noise' might be None if the latents have already been noised (e.g. when running the SDXL refiner).
# We still need noise for inpainting, so we generate it from the seed here.
if noise is None:
noise = torch.randn(
orig_latents.shape,
dtype=torch.float32,
device="cpu",
generator=torch.Generator(device="cpu").manual_seed(seed),
).to(device=orig_latents.device, dtype=orig_latents.dtype)
mask_guidance = AddsMaskGuidance(
mask=mask,
mask_latents=orig_latents,
scheduler=self.scheduler,
noise=noise,
is_gradient_mask=is_gradient_mask,
)
use_ip_adapter = ip_adapter_data is not None
use_regional_prompting = (
conditioning_data.cond_regions is not None or conditioning_data.uncond_regions is not None
)
unet_attention_patcher = None
self.use_ip_adapter = use_ip_adapter
attn_ctx = nullcontext()
if use_ip_adapter or use_regional_prompting:
@@ -402,28 +373,28 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
attn_ctx = unet_attention_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
with attn_ctx:
if callback is not None:
callback(
PipelineIntermediateState(
step=-1,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=self.scheduler.config.num_train_timesteps,
latents=latents,
)
callback(
PipelineIntermediateState(
step=-1,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=self.scheduler.config.num_train_timesteps,
latents=latents,
)
)
# print("timesteps:", timesteps)
for i, t in enumerate(self.progress_bar(timesteps)):
batched_t = t.expand(batch_size)
step_output = self.step(
batched_t,
latents,
conditioning_data,
t=batched_t,
latents=latents,
conditioning_data=conditioning_data,
step_index=i,
total_step_count=len(timesteps),
scheduler_step_kwargs=scheduler_step_kwargs,
additional_guidance=additional_guidance,
mask_guidance=mask_guidance,
mask=mask,
masked_latents=masked_latents,
control_data=control_data,
ip_adapter_data=ip_adapter_data,
t2i_adapter_data=t2i_adapter_data,
@@ -431,19 +402,28 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
latents = step_output.prev_sample
predicted_original = getattr(step_output, "pred_original_sample", None)
if callback is not None:
callback(
PipelineIntermediateState(
step=i,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=int(t),
latents=latents,
predicted_original=predicted_original,
)
callback(
PipelineIntermediateState(
step=i,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=int(t),
latents=latents,
predicted_original=predicted_original,
)
)
return latents
# restore unmasked part after the last step is completed
# in-process masking happens before each step
if mask is not None:
if is_gradient_mask:
latents = torch.where(mask > 0, latents, orig_latents)
else:
latents = torch.lerp(
orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype)
)
return latents
@torch.inference_mode()
def step(
@@ -454,19 +434,20 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
step_index: int,
total_step_count: int,
scheduler_step_kwargs: dict[str, Any],
additional_guidance: List[Callable] = None,
control_data: List[ControlNetData] = None,
mask_guidance: AddsMaskGuidance | None,
mask: torch.Tensor | None,
masked_latents: torch.Tensor | None,
control_data: list[ControlNetData] | None = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
):
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
timestep = t[0]
if additional_guidance is None:
additional_guidance = []
# one day we will expand this extension point, but for now it just does denoise masking
for guidance in additional_guidance:
latents = guidance(latents, timestep)
# Handle masked image-to-image (a.k.a inpainting).
if mask_guidance is not None:
# NOTE: This is intentionally done *before* self.scheduler.scale_model_input(...).
latents = mask_guidance(latents, timestep)
# TODO: should this scaling happen here or inside self._unet_forward?
# i.e. before or after passing it to InvokeAIDiffuserComponent
@@ -514,6 +495,31 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
down_intrablock_additional_residuals = accum_adapter_state
# Handle inpainting models.
if is_inpainting_model(self.unet):
# NOTE: These calls to add_inpainting_channels_to_latents(...) are intentionally done *after*
# self.scheduler.scale_model_input(...) so that the scaling is not applied to the mask or reference image
# latents.
if mask is not None:
if masked_latents is None:
raise ValueError("Source image required for inpaint mask when inpaint model used!")
latent_model_input = self.add_inpainting_channels_to_latents(
latents=latent_model_input, masked_ref_image_latents=masked_latents, inpainting_mask=mask
)
else:
# We are using an inpainting model, but no mask was provided, so we are not really "inpainting".
# We generate a global mask and empty original image so that we can still generate in this
# configuration.
# TODO(ryand): Should we just raise an exception here instead? I can't think of a use case for wanting
# to do this.
# TODO(ryand): If we decide that there is a good reason to keep this, then we should generate the 'fake'
# mask and original image once rather than on every denoising step.
latent_model_input = self.add_inpainting_channels_to_latents(
latents=latent_model_input,
masked_ref_image_latents=torch.zeros_like(latent_model_input[:1]),
inpainting_mask=torch.ones_like(latent_model_input[:1, :1]),
)
uc_noise_pred, c_noise_pred = self.invokeai_diffuser.do_unet_step(
sample=latent_model_input,
timestep=t, # TODO: debug how handled batched and non batched timesteps
@@ -542,17 +548,18 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
# compute the previous noisy sample x_t -> x_t-1
step_output = self.scheduler.step(noise_pred, timestep, latents, **scheduler_step_kwargs)
# TODO: discuss injection point options. For now this is a patch to get progress images working with inpainting again.
for guidance in additional_guidance:
# apply the mask to any "denoised" or "pred_original_sample" fields
# TODO: discuss injection point options. For now this is a patch to get progress images working with inpainting
# again.
if mask_guidance is not None:
# Apply the mask to any "denoised" or "pred_original_sample" fields.
if hasattr(step_output, "denoised"):
step_output.pred_original_sample = guidance(step_output.denoised, self.scheduler.timesteps[-1])
step_output.pred_original_sample = mask_guidance(step_output.denoised, self.scheduler.timesteps[-1])
elif hasattr(step_output, "pred_original_sample"):
step_output.pred_original_sample = guidance(
step_output.pred_original_sample = mask_guidance(
step_output.pred_original_sample, self.scheduler.timesteps[-1]
)
else:
step_output.pred_original_sample = guidance(latents, self.scheduler.timesteps[-1])
step_output.pred_original_sample = mask_guidance(latents, self.scheduler.timesteps[-1])
return step_output
@@ -575,17 +582,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
**kwargs,
):
"""predict the noise residual"""
if is_inpainting_model(self.unet) and latents.size(1) == 4:
# Pad out normal non-inpainting inputs for an inpainting model.
# FIXME: There are too many layers of functions and we have too many different ways of
# overriding things! This should get handled in a way more consistent with the other
# use of AddsMaskLatents.
latents = AddsMaskLatents(
self._unet_forward,
mask=torch.ones_like(latents[:1, :1], device=latents.device, dtype=latents.dtype),
initial_image_latents=torch.zeros_like(latents[:1], device=latents.device, dtype=latents.dtype),
).add_mask_channels(latents)
# First three args should be positional, not keywords, so torch hooks can see them.
return self.unet(
latents,

View File

@@ -0,0 +1,170 @@
from __future__ import annotations
import copy
from dataclasses import dataclass
from typing import Any, Callable, Optional
import torch
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
ControlNetData,
PipelineIntermediateState,
StableDiffusionGeneratorPipeline,
)
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import TextConditioningData
from invokeai.backend.tiles.utils import Tile
@dataclass
class MultiDiffusionRegionConditioning:
# Region coords in latent space.
region: Tile
text_conditioning_data: TextConditioningData
control_data: list[ControlNetData]
class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
"""A Stable Diffusion pipeline that uses Multi-Diffusion (https://arxiv.org/pdf/2302.08113) for denoising."""
def _check_regional_prompting(self, multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning]):
"""Validate that regional conditioning is not used."""
for region_conditioning in multi_diffusion_conditioning:
if (
region_conditioning.text_conditioning_data.cond_regions is not None
or region_conditioning.text_conditioning_data.uncond_regions is not None
):
raise NotImplementedError("Regional prompting is not yet supported in Multi-Diffusion.")
def multi_diffusion_denoise(
self,
multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning],
target_overlap: int,
latents: torch.Tensor,
scheduler_step_kwargs: dict[str, Any],
noise: Optional[torch.Tensor],
timesteps: torch.Tensor,
init_timestep: torch.Tensor,
callback: Callable[[PipelineIntermediateState], None],
) -> torch.Tensor:
self._check_regional_prompting(multi_diffusion_conditioning)
if init_timestep.shape[0] == 0:
return latents
batch_size, _, latent_height, latent_width = latents.shape
batched_init_timestep = init_timestep.expand(batch_size)
# noise can be None if the latents have already been noised (e.g. when running the SDXL refiner).
if noise is not None:
# TODO(ryand): I'm pretty sure we should be applying init_noise_sigma in cases where we are starting with
# full noise. Investigate the history of why this got commented out.
# latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers
latents = self.scheduler.add_noise(latents, noise, batched_init_timestep)
# TODO(ryand): Look into the implications of passing in latents here that are larger than they will be after
# cropping into regions.
self._adjust_memory_efficient_attention(latents)
# Many of the diffusers schedulers are stateful (i.e. they update internal state in each call to step()). Since
# we are calling step() multiple times at the same timestep (once for each region batch), we must maintain a
# separate scheduler state for each region batch.
# TODO(ryand): This solution allows all schedulers to **run**, but does not fully solve the issue of scheduler
# statefulness. Some schedulers store previous model outputs in their state, but these values become incorrect
# as Multi-Diffusion blending is applied (e.g. the PNDMScheduler). This can result in a blurring effect when
# multiple MultiDiffusion regions overlap. Solving this properly would require a case-by-case review of each
# scheduler to determine how it's state needs to be updated for compatibilty with Multi-Diffusion.
region_batch_schedulers: list[SchedulerMixin] = [
copy.deepcopy(self.scheduler) for _ in multi_diffusion_conditioning
]
callback(
PipelineIntermediateState(
step=-1,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=self.scheduler.config.num_train_timesteps,
latents=latents,
)
)
for i, t in enumerate(self.progress_bar(timesteps)):
batched_t = t.expand(batch_size)
merged_latents = torch.zeros_like(latents)
merged_latents_weights = torch.zeros(
(1, 1, latent_height, latent_width), device=latents.device, dtype=latents.dtype
)
merged_pred_original: torch.Tensor | None = None
for region_idx, region_conditioning in enumerate(multi_diffusion_conditioning):
# Switch to the scheduler for the region batch.
self.scheduler = region_batch_schedulers[region_idx]
# Crop the inputs to the region.
region_latents = latents[
:,
:,
region_conditioning.region.coords.top : region_conditioning.region.coords.bottom,
region_conditioning.region.coords.left : region_conditioning.region.coords.right,
]
# Run the denoising step on the region.
step_output = self.step(
t=batched_t,
latents=region_latents,
conditioning_data=region_conditioning.text_conditioning_data,
step_index=i,
total_step_count=len(timesteps),
scheduler_step_kwargs=scheduler_step_kwargs,
mask_guidance=None,
mask=None,
masked_latents=None,
control_data=region_conditioning.control_data,
)
# Store the results from the region.
# If two tiles overlap by more than the target overlap amount, crop the left and top edges of the
# affected tiles to achieve the target overlap.
region = region_conditioning.region
top_adjustment = max(0, region.overlap.top - target_overlap)
left_adjustment = max(0, region.overlap.left - target_overlap)
region_height_slice = slice(region.coords.top + top_adjustment, region.coords.bottom)
region_width_slice = slice(region.coords.left + left_adjustment, region.coords.right)
merged_latents[:, :, region_height_slice, region_width_slice] += step_output.prev_sample[
:, :, top_adjustment:, left_adjustment:
]
# For now, we treat every region as having the same weight.
merged_latents_weights[:, :, region_height_slice, region_width_slice] += 1.0
pred_orig_sample = getattr(step_output, "pred_original_sample", None)
if pred_orig_sample is not None:
# If one region has pred_original_sample, then we can assume that all regions will have it, because
# they all use the same scheduler.
if merged_pred_original is None:
merged_pred_original = torch.zeros_like(latents)
merged_pred_original[:, :, region_height_slice, region_width_slice] += pred_orig_sample[
:, :, top_adjustment:, left_adjustment:
]
# Normalize the merged results.
latents = torch.where(merged_latents_weights > 0, merged_latents / merged_latents_weights, merged_latents)
# For debugging, uncomment this line to visualize the region seams:
# latents = torch.where(merged_latents_weights > 1, 0.0, latents)
predicted_original = None
if merged_pred_original is not None:
predicted_original = torch.where(
merged_latents_weights > 0, merged_pred_original / merged_latents_weights, merged_pred_original
)
callback(
PipelineIntermediateState(
step=i,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=int(t),
latents=latents,
predicted_original=predicted_original,
)
)
return latents

View File

@@ -1 +1 @@
__version__ = "4.2.4"
__version__ = "4.2.5"