mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-15 09:18:00 -05:00
Compare commits
248 Commits
ryan/multi
...
v4.2.6rc1
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3ecd14f394 | ||
|
|
7c0dfd74a5 | ||
|
|
2c1a91241e | ||
|
|
84f136e737 | ||
|
|
712cf00a82 | ||
|
|
fb1130c644 | ||
|
|
0f65a12cf3 | ||
|
|
84abdc5780 | ||
|
|
2320701929 | ||
|
|
69af099532 | ||
|
|
5795617f86 | ||
|
|
b533bc072e | ||
|
|
d7199c7ca6 | ||
|
|
a69284367b | ||
|
|
c4d2fe9c65 | ||
|
|
fe0d56de5c | ||
|
|
7aec5624f7 | ||
|
|
2f3ec41f94 | ||
|
|
de1235c980 | ||
|
|
88c3a71586 | ||
|
|
ec1b429d45 | ||
|
|
146e3a3377 | ||
|
|
38622b0d91 | ||
|
|
7db767b7c3 | ||
|
|
b70e87f25b | ||
|
|
fea1ec9085 | ||
|
|
2e7a95998c | ||
|
|
788f90a7d5 | ||
|
|
6bf29b20af | ||
|
|
8f0edcd4f4 | ||
|
|
a7c44b4a98 | ||
|
|
48a57f0da8 | ||
|
|
dfd94bbd0b | ||
|
|
2edfb2356d | ||
|
|
58d2c1557d | ||
|
|
8fdff33cf8 | ||
|
|
a96e34d2d1 | ||
|
|
8826adad24 | ||
|
|
cdacf2ecd0 | ||
|
|
f193a576a6 | ||
|
|
b7ebdca70a | ||
|
|
c90b5541e8 | ||
|
|
a79e9caab1 | ||
|
|
4313578d8e | ||
|
|
42c2dea202 | ||
|
|
b672cc37a7 | ||
|
|
476ebd13ae | ||
|
|
9ae808712e | ||
|
|
2460689c00 | ||
|
|
781b800ef7 | ||
|
|
d38d513d23 | ||
|
|
80e1b87b9e | ||
|
|
6014382c7b | ||
|
|
af63c538ed | ||
|
|
060d698a12 | ||
|
|
637802d803 | ||
|
|
2faf1e2ed3 | ||
|
|
81cf47dd99 | ||
|
|
907b257984 | ||
|
|
e2667f957c | ||
|
|
40c3b5e727 | ||
|
|
38c5804457 | ||
|
|
faf65c988a | ||
|
|
1785825690 | ||
|
|
0e092c0fb5 | ||
|
|
79a7b11214 | ||
|
|
3a85ab15a1 | ||
|
|
9ca6980c7a | ||
|
|
bdf4fcda23 | ||
|
|
35f8781ea2 | ||
|
|
3a24d70279 | ||
|
|
7c8846e309 | ||
|
|
bd42b75d1e | ||
|
|
36202d6d25 | ||
|
|
b35f5b3877 | ||
|
|
1d449097cc | ||
|
|
9da5925287 | ||
|
|
7bbd793064 | ||
|
|
414750a45d | ||
|
|
0fe92cd406 | ||
|
|
6437ef3f82 | ||
|
|
bb6ff4cf37 | ||
|
|
e719018ba1 | ||
|
|
a11dc62c2e | ||
|
|
7c01b69c12 | ||
|
|
5578660ccb | ||
|
|
e9936c27fb | ||
|
|
3752509066 | ||
|
|
a1b7dbfa54 | ||
|
|
79640ba14e | ||
|
|
4075a81676 | ||
|
|
4d39976909 | ||
|
|
d14894b3ae | ||
|
|
6f5c5b0757 | ||
|
|
93caa23ef8 | ||
|
|
977a77f4e6 | ||
|
|
57c0fcb93d | ||
|
|
8b55900035 | ||
|
|
b1cc413bbd | ||
|
|
face94ce33 | ||
|
|
f0b1f0e5b6 | ||
|
|
390dc47db5 | ||
|
|
20d5c3a8bf | ||
|
|
134d831ebf | ||
|
|
b65ed8e8f2 | ||
|
|
93951dcf82 | ||
|
|
da05034e20 | ||
|
|
d579aefb3e | ||
|
|
5d1f6db414 | ||
|
|
f9961eceb7 | ||
|
|
10076fb1e8 | ||
|
|
d6e85e5f67 | ||
|
|
1ce459198c | ||
|
|
17d337169d | ||
|
|
1468f4d37e | ||
|
|
2b744480d6 | ||
|
|
abb8d34b56 | ||
|
|
9e664d7c58 | ||
|
|
c96ccae70b | ||
|
|
f268fe126e | ||
|
|
6109a06f04 | ||
|
|
5df2a79549 | ||
|
|
10b9088312 | ||
|
|
41f46b846b | ||
|
|
6dfc406c52 | ||
|
|
0d4b80780b | ||
|
|
15b9ece411 | ||
|
|
89fcab34d0 | ||
|
|
132289de55 | ||
|
|
9f93e9d120 | ||
|
|
b5f23292d4 | ||
|
|
a63dbb2c2d | ||
|
|
740bf80f3e | ||
|
|
dc90de600d | ||
|
|
5709f82e5f | ||
|
|
20042d99ec | ||
|
|
8fce168dc5 | ||
|
|
a7ea096b28 | ||
|
|
29eb3c8b62 | ||
|
|
071e8bcee4 | ||
|
|
68c0aa898f | ||
|
|
5120a76ce5 | ||
|
|
38a948ac9f | ||
|
|
c33111468e | ||
|
|
3e0fb45dd7 | ||
|
|
aba16085a5 | ||
|
|
14775cc9c4 | ||
|
|
c7562dd6c0 | ||
|
|
a0a0c57789 | ||
|
|
32ebf82d1a | ||
|
|
2dd172c2c6 | ||
|
|
280ec9d4b3 | ||
|
|
fde8fc7575 | ||
|
|
6dcdc87eb1 | ||
|
|
93ffcb642e | ||
|
|
4c914ef2e8 | ||
|
|
c0ad5bc4a4 | ||
|
|
8c58a180de | ||
|
|
715dd983b0 | ||
|
|
84ffd36071 | ||
|
|
9f30f1bfec | ||
|
|
bdff5c4e87 | ||
|
|
afb0651f91 | ||
|
|
66e25628c3 | ||
|
|
3a531a3c88 | ||
|
|
f01df49128 | ||
|
|
7bbe236107 | ||
|
|
719c066ac4 | ||
|
|
689dc30f87 | ||
|
|
1f22f6ae02 | ||
|
|
9c931d9ca0 | ||
|
|
e0a241fa4f | ||
|
|
6a4b4ee340 | ||
|
|
488bf21925 | ||
|
|
c9c39c02b6 | ||
|
|
5101dc4bef | ||
|
|
98c77a3ed1 | ||
|
|
4fca62680d | ||
|
|
f76282a5ff | ||
|
|
9a3b8c6fcb | ||
|
|
bd74b84cc5 | ||
|
|
dc23bebebf | ||
|
|
38b6f90c02 | ||
|
|
cd9dfefe3c | ||
|
|
b9946e50f9 | ||
|
|
06f49a30f6 | ||
|
|
e1af78c702 | ||
|
|
c5588e1ff7 | ||
|
|
07ac292680 | ||
|
|
7c032ea604 | ||
|
|
c5ee415607 | ||
|
|
fa40061eca | ||
|
|
7cafd78d6e | ||
|
|
8a43656cf9 | ||
|
|
bd3b6ca11b | ||
|
|
ceae5fe1db | ||
|
|
25067e4f0d | ||
|
|
fb0aaa3e6d | ||
|
|
c22526b9d0 | ||
|
|
c881882f73 | ||
|
|
36473fc52a | ||
|
|
b9964ecc4a | ||
|
|
051af802fe | ||
|
|
3ff2e558d9 | ||
|
|
fc187c9253 | ||
|
|
605f460c7d | ||
|
|
60d1e686d8 | ||
|
|
22704dd542 | ||
|
|
875673c9ba | ||
|
|
f604575862 | ||
|
|
80a67572f1 | ||
|
|
60ac937698 | ||
|
|
1e41949a02 | ||
|
|
5f0e330ed2 | ||
|
|
9dd779b414 | ||
|
|
fa183025ac | ||
|
|
d3c85aa91a | ||
|
|
82619602a5 | ||
|
|
196f3b721d | ||
|
|
244c28859d | ||
|
|
40ae174c41 | ||
|
|
afaebdf151 | ||
|
|
d661517d94 | ||
|
|
82a69a54ac | ||
|
|
ffc28176fe | ||
|
|
230e205541 | ||
|
|
7e94350351 | ||
|
|
c4e8549c73 | ||
|
|
350a210835 | ||
|
|
ed781dbb0c | ||
|
|
b41ea963e7 | ||
|
|
da5d105049 | ||
|
|
5301770525 | ||
|
|
d08e405017 | ||
|
|
534640ccde | ||
|
|
d5ab8cab5c | ||
|
|
4767301ad3 | ||
|
|
21d7ca45e6 | ||
|
|
020e8eb413 | ||
|
|
3d49541c09 | ||
|
|
1ef266845a | ||
|
|
a37589ca5f | ||
|
|
171a505f5e | ||
|
|
8004a0d5f5 | ||
|
|
610a1fd611 | ||
|
|
43108eec13 | ||
|
|
b03073d888 | ||
|
|
a43d602f16 |
@@ -9,9 +9,9 @@ runs:
|
||||
node-version: '18'
|
||||
|
||||
- name: setup pnpm
|
||||
uses: pnpm/action-setup@v2
|
||||
uses: pnpm/action-setup@v4
|
||||
with:
|
||||
version: 8
|
||||
version: 8.15.6
|
||||
run_install: false
|
||||
|
||||
- name: get pnpm store directory
|
||||
|
||||
2
.github/pull_request_template.md
vendored
2
.github/pull_request_template.md
vendored
@@ -8,7 +8,7 @@
|
||||
|
||||
## QA Instructions
|
||||
|
||||
<!--WHEN APPLICABLE: Describe how we can test the changes in this PR.-->
|
||||
<!--WHEN APPLICABLE: Describe how you have tested the changes in this PR. Provide enough detail that a reviewer can reproduce your tests.-->
|
||||
|
||||
## Merge Plan
|
||||
|
||||
|
||||
45
README.md
45
README.md
@@ -12,12 +12,24 @@
|
||||
|
||||
Invoke is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. Invoke offers an industry leading web-based UI, and serves as the foundation for multiple commercial products.
|
||||
|
||||
[Installation and Updates][installation docs] - [Documentation and Tutorials][docs home] - [Bug Reports][github issues] - [Contributing][contributing docs]
|
||||
Invoke is available in two editions:
|
||||
|
||||
| **Community Edition** | **Professional Edition** |
|
||||
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|
||||
| **For users looking for a locally installed, self-hosted and self-managed service** | **For users or teams looking for a cloud-hosted, fully managed service** |
|
||||
| - Free to use under a commercially-friendly license | - Monthly subscription fee with three different plan levels |
|
||||
| - Download and install on compatible hardware | - Offers additional benefits, including multi-user support, improved model training, and more |
|
||||
| - Includes all core studio features: generate, refine, iterate on images, and build workflows | - Hosted in the cloud for easy, secure model access and scalability |
|
||||
| Quick Start -> [Installation and Updates][installation docs] | More Information -> [www.invoke.com/pricing](https://www.invoke.com/pricing) |
|
||||
|
||||
<div align="center">
|
||||
|
||||

|
||||
|
||||
# Documentation
|
||||
| **Quick Links** |
|
||||
|----------------------------------------------------------------------------------------------------------------------------|
|
||||
| [Installation and Updates][installation docs] - [Documentation and Tutorials][docs home] - [Bug Reports][github issues] - [Contributing][contributing docs] |
|
||||
|
||||
</div>
|
||||
|
||||
## Quick Start
|
||||
@@ -37,6 +49,33 @@ Invoke is a leading creative engine built to empower professionals and enthusias
|
||||
|
||||
More detail, including hardware requirements and manual install instructions, are available in the [installation documentation][installation docs].
|
||||
|
||||
## Docker Container
|
||||
|
||||
We publish official container images in Github Container Registry: https://github.com/invoke-ai/InvokeAI/pkgs/container/invokeai. Both CUDA and ROCm images are available. Check the above link for relevant tags.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Ensure that Docker is set up to use the GPU. Refer to [NVIDIA][nvidia docker docs] or [AMD][amd docker docs] documentation.
|
||||
|
||||
### Generate!
|
||||
|
||||
Run the container, modifying the command as necessary:
|
||||
|
||||
```bash
|
||||
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
|
||||
```
|
||||
|
||||
Then open `http://localhost:9090` and install some models using the Model Manager tab to begin generating.
|
||||
|
||||
For ROCm, add `--device /dev/kfd --device /dev/dri` to the `docker run` command.
|
||||
|
||||
### Persist your data
|
||||
|
||||
You will likely want to persist your workspace outside of the container. Use the `--volume /home/myuser/invokeai:/invokeai` flag to mount some local directory (using its **absolute** path) to the `/invokeai` path inside the container. Your generated images and models will reside there. You can use this directory with other InvokeAI installations, or switch between runtime directories as needed.
|
||||
|
||||
### DIY
|
||||
|
||||
Build your own image and customize the environment to match your needs using our `docker-compose` stack. See [README.md](./docker/README.md) in the [docker](./docker) directory.
|
||||
|
||||
## Troubleshooting, FAQ and Support
|
||||
|
||||
Please review our [FAQ][faq] for solutions to common installation problems and other issues.
|
||||
@@ -114,3 +153,5 @@ Original portions of the software are Copyright © 2024 by respective contributo
|
||||
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases/latest
|
||||
[translation status badge]: https://hosted.weblate.org/widgets/invokeai/-/svg-badge.svg
|
||||
[translation status link]: https://hosted.weblate.org/engage/invokeai/
|
||||
[nvidia docker docs]: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
|
||||
[amd docker docs]: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html
|
||||
|
||||
@@ -19,8 +19,9 @@
|
||||
## INVOKEAI_PORT is the port on which the InvokeAI web interface will be available
|
||||
# INVOKEAI_PORT=9090
|
||||
|
||||
## GPU_DRIVER can be set to either `nvidia` or `rocm` to enable GPU support in the container accordingly.
|
||||
# GPU_DRIVER=nvidia #| rocm
|
||||
## GPU_DRIVER can be set to either `cuda` or `rocm` to enable GPU support in the container accordingly.
|
||||
# GPU_DRIVER=cuda #| rocm
|
||||
|
||||
## CONTAINER_UID can be set to the UID of the user on the host system that should own the files in the container.
|
||||
## It is usually not necessary to change this. Use `id -u` on the host system to find the UID.
|
||||
# CONTAINER_UID=1000
|
||||
|
||||
@@ -1,41 +1,75 @@
|
||||
# InvokeAI Containerized
|
||||
# Invoke in Docker
|
||||
|
||||
All commands should be run within the `docker` directory: `cd docker`
|
||||
- Ensure that Docker can use the GPU on your system
|
||||
- This documentation assumes Linux, but should work similarly under Windows with WSL2
|
||||
- We don't recommend running Invoke in Docker on macOS at this time. It works, but very slowly.
|
||||
|
||||
## Quickstart :rocket:
|
||||
## Quickstart :lightning:
|
||||
|
||||
On a known working Linux+Docker+CUDA (Nvidia) system, execute `./run.sh` in this directory. It will take a few minutes - depending on your internet speed - to install the core models. Once the application starts up, open `http://localhost:9090` in your browser to Invoke!
|
||||
No `docker compose`, no persistence, just a simple one-liner using the official images:
|
||||
|
||||
For more configuration options (using an AMD GPU, custom root directory location, etc): read on.
|
||||
**CUDA:**
|
||||
|
||||
## Detailed setup
|
||||
```bash
|
||||
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
|
||||
```
|
||||
|
||||
**ROCm:**
|
||||
|
||||
```bash
|
||||
docker run --device /dev/kfd --device /dev/dri --publish 9090:9090 ghcr.io/invoke-ai/invokeai:main-rocm
|
||||
```
|
||||
|
||||
Open `http://localhost:9090` in your browser once the container finishes booting, install some models, and generate away!
|
||||
|
||||
> [!TIP]
|
||||
> To persist your data (including downloaded models) outside of the container, add a `--volume/-v` flag to the above command, e.g.: `docker run --volume /some/local/path:/invokeai <...the rest of the command>`
|
||||
|
||||
## Customize the container
|
||||
|
||||
We ship the `run.sh` script, which is a convenient wrapper around `docker compose` for cases where custom image build args are needed. Alternatively, the familiar `docker compose` commands work just as well.
|
||||
|
||||
```bash
|
||||
cd docker
|
||||
cp .env.sample .env
|
||||
# edit .env to your liking if you need to; it is well commented.
|
||||
./run.sh
|
||||
```
|
||||
|
||||
It will take a few minutes to build the image the first time. Once the application starts up, open `http://localhost:9090` in your browser to invoke!
|
||||
|
||||
## Docker setup in detail
|
||||
|
||||
#### Linux
|
||||
|
||||
1. Ensure builkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
|
||||
2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://docs.docker.com/compose/install/linux/#install-using-the-repository).
|
||||
- The deprecated `docker-compose` (hyphenated) CLI continues to work for now.
|
||||
- The deprecated `docker-compose` (hyphenated) CLI probably won't work. Update to a recent version.
|
||||
3. Ensure docker daemon is able to access the GPU.
|
||||
- You may need to install [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
|
||||
- [NVIDIA docs](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
|
||||
- [AMD docs](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html)
|
||||
|
||||
#### macOS
|
||||
|
||||
> [!TIP]
|
||||
> You'll be better off installing Invoke directly on your system, because Docker can not use the GPU on macOS.
|
||||
|
||||
If you are still reading:
|
||||
|
||||
1. Ensure Docker has at least 16GB RAM
|
||||
2. Enable VirtioFS for file sharing
|
||||
3. Enable `docker compose` V2 support
|
||||
|
||||
This is done via Docker Desktop preferences
|
||||
This is done via Docker Desktop preferences.
|
||||
|
||||
### Configure Invoke environment
|
||||
### Configure the Invoke Environment
|
||||
|
||||
1. Make a copy of `.env.sample` and name it `.env` (`cp .env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
|
||||
a. the desired location of the InvokeAI runtime directory, or
|
||||
b. an existing, v3.0.0 compatible runtime directory.
|
||||
1. Make a copy of `.env.sample` and name it `.env` (`cp .env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to the desired location of the InvokeAI runtime directory. It may be an existing directory from a previous installation (post 4.0.0).
|
||||
1. Execute `run.sh`
|
||||
|
||||
The image will be built automatically if needed.
|
||||
|
||||
The runtime directory (holding models and outputs) will be created in the location specified by `INVOKEAI_ROOT`. The default location is `~/invokeai`. The runtime directory will be populated with the base configs and models necessary to start generating.
|
||||
The runtime directory (holding models and outputs) will be created in the location specified by `INVOKEAI_ROOT`. The default location is `~/invokeai`. Navigate to the Model Manager tab and install some models before generating.
|
||||
|
||||
### Use a GPU
|
||||
|
||||
@@ -43,9 +77,9 @@ The runtime directory (holding models and outputs) will be created in the locati
|
||||
- WSL2 is *required* for Windows.
|
||||
- only `x86_64` architecture is supported.
|
||||
|
||||
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker.
|
||||
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker/NVIDIA/AMD documentation for the most up-to-date instructions for using your GPU with Docker.
|
||||
|
||||
To use an AMD GPU, set `GPU_DRIVER=rocm` in your `.env` file.
|
||||
To use an AMD GPU, set `GPU_DRIVER=rocm` in your `.env` file before running `./run.sh`.
|
||||
|
||||
## Customize
|
||||
|
||||
@@ -59,10 +93,10 @@ Values are optional, but setting `INVOKEAI_ROOT` is highly recommended. The defa
|
||||
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
|
||||
HUGGINGFACE_TOKEN=the_actual_token
|
||||
CONTAINER_UID=1000
|
||||
GPU_DRIVER=nvidia
|
||||
GPU_DRIVER=cuda
|
||||
```
|
||||
|
||||
Any environment variables supported by InvokeAI can be set here - please see the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
|
||||
Any environment variables supported by InvokeAI can be set here. See the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
|
||||
|
||||
## Even More Customizing!
|
||||
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
# Copyright (c) 2023 Eugene Brodsky https://github.com/ebr
|
||||
|
||||
version: '3.8'
|
||||
|
||||
x-invokeai: &invokeai
|
||||
image: "local/invokeai:latest"
|
||||
build:
|
||||
@@ -32,7 +30,7 @@ x-invokeai: &invokeai
|
||||
|
||||
|
||||
services:
|
||||
invokeai-nvidia:
|
||||
invokeai-cuda:
|
||||
<<: *invokeai
|
||||
deploy:
|
||||
resources:
|
||||
|
||||
@@ -23,18 +23,18 @@ usermod -u ${USER_ID} ${USER} 1>/dev/null
|
||||
# but it is useful to have the full SSH server e.g. on Runpod.
|
||||
# (use SCP to copy files to/from the image, etc)
|
||||
if [[ -v "PUBLIC_KEY" ]] && [[ ! -d "${HOME}/.ssh" ]]; then
|
||||
apt-get update
|
||||
apt-get install -y openssh-server
|
||||
pushd "$HOME"
|
||||
mkdir -p .ssh
|
||||
echo "${PUBLIC_KEY}" > .ssh/authorized_keys
|
||||
chmod -R 700 .ssh
|
||||
popd
|
||||
service ssh start
|
||||
apt-get update
|
||||
apt-get install -y openssh-server
|
||||
pushd "$HOME"
|
||||
mkdir -p .ssh
|
||||
echo "${PUBLIC_KEY}" >.ssh/authorized_keys
|
||||
chmod -R 700 .ssh
|
||||
popd
|
||||
service ssh start
|
||||
fi
|
||||
|
||||
mkdir -p "${INVOKEAI_ROOT}"
|
||||
chown --recursive ${USER} "${INVOKEAI_ROOT}"
|
||||
chown --recursive ${USER} "${INVOKEAI_ROOT}" || true
|
||||
cd "${INVOKEAI_ROOT}"
|
||||
|
||||
# Run the CMD as the Container User (not root).
|
||||
|
||||
@@ -8,11 +8,15 @@ run() {
|
||||
local build_args=""
|
||||
local profile=""
|
||||
|
||||
# create .env file if it doesn't exist, otherwise docker compose will fail
|
||||
touch .env
|
||||
|
||||
# parse .env file for build args
|
||||
build_args=$(awk '$1 ~ /=[^$]/ && $0 !~ /^#/ {print "--build-arg " $0 " "}' .env) &&
|
||||
profile="$(awk -F '=' '/GPU_DRIVER/ {print $2}' .env)"
|
||||
|
||||
[[ -z "$profile" ]] && profile="nvidia"
|
||||
# default to 'cuda' profile
|
||||
[[ -z "$profile" ]] && profile="cuda"
|
||||
|
||||
local service_name="invokeai-$profile"
|
||||
|
||||
|
||||
@@ -408,7 +408,7 @@ config = get_config()
|
||||
|
||||
logger = InvokeAILogger.get_logger(config=config)
|
||||
db = SqliteDatabase(config.db_path, logger)
|
||||
record_store = ModelRecordServiceSQL(db)
|
||||
record_store = ModelRecordServiceSQL(db, logger)
|
||||
queue = DownloadQueueService()
|
||||
queue.start()
|
||||
|
||||
|
||||
@@ -4,50 +4,37 @@ title: Installing with Docker
|
||||
|
||||
# :fontawesome-brands-docker: Docker
|
||||
|
||||
!!! warning "macOS and AMD GPU Users"
|
||||
!!! warning "macOS users"
|
||||
|
||||
We highly recommend to Install InvokeAI locally using [these instructions](INSTALLATION.md),
|
||||
because Docker containers can not access the GPU on macOS.
|
||||
|
||||
!!! warning "AMD GPU Users"
|
||||
|
||||
Container support for AMD GPUs has been reported to work by the community, but has not received
|
||||
extensive testing. Please make sure to set the `GPU_DRIVER=rocm` environment variable (see below), and
|
||||
use the `build.sh` script to build the image for this to take effect at build time.
|
||||
Docker can not access the GPU on macOS, so your generation speeds will be slow. [Install InvokeAI](INSTALLATION.md) instead.
|
||||
|
||||
!!! tip "Linux and Windows Users"
|
||||
|
||||
For optimal performance, configure your Docker daemon to access your machine's GPU.
|
||||
Configure Docker to access your machine's GPU.
|
||||
Docker Desktop on Windows [includes GPU support](https://www.docker.com/blog/wsl-2-gpu-support-for-docker-desktop-on-nvidia-gpus/).
|
||||
Linux users should install and configure the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
|
||||
|
||||
## Why containers?
|
||||
|
||||
They provide a flexible, reliable way to build and deploy InvokeAI.
|
||||
See [Processes](https://12factor.net/processes) under the Twelve-Factor App
|
||||
methodology for details on why running applications in such a stateless fashion is important.
|
||||
|
||||
The container is configured for CUDA by default, but can be built to support AMD GPUs
|
||||
by setting the `GPU_DRIVER=rocm` environment variable at Docker image build time.
|
||||
|
||||
Developers on Apple silicon (M1/M2/M3): You
|
||||
[can't access your GPU cores from Docker containers](https://github.com/pytorch/pytorch/issues/81224)
|
||||
and performance is reduced compared with running it directly on macOS but for
|
||||
development purposes it's fine. Once you're done with development tasks on your
|
||||
laptop you can build for the target platform and architecture and deploy to
|
||||
another environment with NVIDIA GPUs on-premises or in the cloud.
|
||||
Linux users should follow the [NVIDIA](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) or [AMD](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html) documentation.
|
||||
|
||||
## TL;DR
|
||||
|
||||
This assumes properly configured Docker on Linux or Windows/WSL2. Read on for detailed customization options.
|
||||
Ensure your Docker setup is able to use your GPU. Then:
|
||||
|
||||
```bash
|
||||
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
|
||||
```
|
||||
|
||||
Once the container starts up, open http://localhost:9090 in your browser, install some models, and start generating.
|
||||
|
||||
## Build-It-Yourself
|
||||
|
||||
All the docker materials are located inside the [docker](https://github.com/invoke-ai/InvokeAI/tree/main/docker) directory in the Git repo.
|
||||
|
||||
```bash
|
||||
# docker compose commands should be run from the `docker` directory
|
||||
cd docker
|
||||
cp .env.sample .env
|
||||
docker compose up
|
||||
```
|
||||
|
||||
## Installation in a Linux container (desktop)
|
||||
We also ship the `run.sh` convenience script. See the `docker/README.md` file for detailed instructions on how to customize the docker setup to your needs.
|
||||
|
||||
### Prerequisites
|
||||
|
||||
@@ -58,18 +45,9 @@ Preferences, Resources, Advanced. Increase the CPUs and Memory to avoid this
|
||||
[Issue](https://github.com/invoke-ai/InvokeAI/issues/342). You may need to
|
||||
increase Swap and Disk image size too.
|
||||
|
||||
#### Get a Huggingface-Token
|
||||
|
||||
Besides the Docker Agent you will need an Account on
|
||||
[huggingface.co](https://huggingface.co/join).
|
||||
|
||||
After you succesfully registered your account, go to
|
||||
[huggingface.co/settings/tokens](https://huggingface.co/settings/tokens), create
|
||||
a token and copy it, since you will need in for the next step.
|
||||
|
||||
### Setup
|
||||
|
||||
Set up your environmnent variables. In the `docker` directory, make a copy of `.env.sample` and name it `.env`. Make changes as necessary.
|
||||
Set up your environment variables. In the `docker` directory, make a copy of `.env.sample` and name it `.env`. Make changes as necessary.
|
||||
|
||||
Any environment variables supported by InvokeAI can be set here - please see the [CONFIGURATION](../features/CONFIGURATION.md) for further detail.
|
||||
|
||||
@@ -103,10 +81,9 @@ Once the container starts up (and configures the InvokeAI root directory if this
|
||||
## Troubleshooting / FAQ
|
||||
|
||||
- Q: I am running on Windows under WSL2, and am seeing a "no such file or directory" error.
|
||||
- A: Your `docker-entrypoint.sh` file likely has Windows (CRLF) as opposed to Unix (LF) line endings,
|
||||
and you may have cloned this repository before the issue was fixed. To solve this, please change
|
||||
the line endings in the `docker-entrypoint.sh` file to `LF`. You can do this in VSCode
|
||||
- A: Your `docker-entrypoint.sh` might have has Windows (CRLF) line endings, depending how you cloned the repository.
|
||||
To solve this, change the line endings in the `docker-entrypoint.sh` file to `LF`. You can do this in VSCode
|
||||
(`Ctrl+P` and search for "line endings"), or by using the `dos2unix` utility in WSL.
|
||||
Finally, you may delete `docker-entrypoint.sh` followed by `git pull; git checkout docker/docker-entrypoint.sh`
|
||||
to reset the file to its most recent version.
|
||||
For more information on this issue, please see the [Docker Desktop documentation](https://docs.docker.com/desktop/troubleshoot/topics/#avoid-unexpected-syntax-errors-use-unix-style-line-endings-for-files-in-containers)
|
||||
For more information on this issue, see [Docker Desktop documentation](https://docs.docker.com/desktop/troubleshoot/topics/#avoid-unexpected-syntax-errors-use-unix-style-line-endings-for-files-in-containers)
|
||||
|
||||
@@ -13,7 +13,7 @@ echo 2. Open the developer console
|
||||
echo 3. Command-line help
|
||||
echo Q - Quit
|
||||
echo.
|
||||
echo To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest.
|
||||
echo To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest
|
||||
echo.
|
||||
set /P choice="Please enter 1-4, Q: [1] "
|
||||
if not defined choice set choice=1
|
||||
|
||||
@@ -4,37 +4,39 @@ from logging import Logger
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.app.services.board_image_records.board_image_records_sqlite import SqliteBoardImageRecordStorage
|
||||
from invokeai.app.services.board_images.board_images_default import BoardImagesService
|
||||
from invokeai.app.services.board_records.board_records_sqlite import SqliteBoardRecordStorage
|
||||
from invokeai.app.services.boards.boards_default import BoardService
|
||||
from invokeai.app.services.bulk_download.bulk_download_default import BulkDownloadService
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
||||
from invokeai.app.services.download.download_default import DownloadQueueService
|
||||
from invokeai.app.services.events.events_fastapievents import FastAPIEventService
|
||||
from invokeai.app.services.image_files.image_files_disk import DiskImageFileStorage
|
||||
from invokeai.app.services.image_records.image_records_sqlite import SqliteImageRecordStorage
|
||||
from invokeai.app.services.images.images_default import ImageService
|
||||
from invokeai.app.services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
|
||||
from invokeai.app.services.invocation_services import InvocationServices
|
||||
from invokeai.app.services.invocation_stats.invocation_stats_default import InvocationStatsService
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.model_images.model_images_default import ModelImageFileStorageDisk
|
||||
from invokeai.app.services.model_manager.model_manager_default import ModelManagerService
|
||||
from invokeai.app.services.model_records.model_records_sql import ModelRecordServiceSQL
|
||||
from invokeai.app.services.names.names_default import SimpleNameService
|
||||
from invokeai.app.services.object_serializer.object_serializer_disk import ObjectSerializerDisk
|
||||
from invokeai.app.services.object_serializer.object_serializer_forward_cache import ObjectSerializerForwardCache
|
||||
from invokeai.app.services.session_processor.session_processor_default import (
|
||||
DefaultSessionProcessor,
|
||||
DefaultSessionRunner,
|
||||
)
|
||||
from invokeai.app.services.session_queue.session_queue_sqlite import SqliteSessionQueue
|
||||
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
|
||||
from invokeai.app.services.urls.urls_default import LocalUrlService
|
||||
from invokeai.app.services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
from invokeai.version.invokeai_version import __version__
|
||||
|
||||
from ..services.board_image_records.board_image_records_sqlite import SqliteBoardImageRecordStorage
|
||||
from ..services.board_images.board_images_default import BoardImagesService
|
||||
from ..services.board_records.board_records_sqlite import SqliteBoardRecordStorage
|
||||
from ..services.boards.boards_default import BoardService
|
||||
from ..services.bulk_download.bulk_download_default import BulkDownloadService
|
||||
from ..services.config import InvokeAIAppConfig
|
||||
from ..services.download import DownloadQueueService
|
||||
from ..services.events.events_fastapievents import FastAPIEventService
|
||||
from ..services.image_files.image_files_disk import DiskImageFileStorage
|
||||
from ..services.image_records.image_records_sqlite import SqliteImageRecordStorage
|
||||
from ..services.images.images_default import ImageService
|
||||
from ..services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
|
||||
from ..services.invocation_services import InvocationServices
|
||||
from ..services.invocation_stats.invocation_stats_default import InvocationStatsService
|
||||
from ..services.invoker import Invoker
|
||||
from ..services.model_images.model_images_default import ModelImageFileStorageDisk
|
||||
from ..services.model_manager.model_manager_default import ModelManagerService
|
||||
from ..services.model_records import ModelRecordServiceSQL
|
||||
from ..services.names.names_default import SimpleNameService
|
||||
from ..services.session_processor.session_processor_default import DefaultSessionProcessor, DefaultSessionRunner
|
||||
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue
|
||||
from ..services.urls.urls_default import LocalUrlService
|
||||
from ..services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
|
||||
|
||||
|
||||
# TODO: is there a better way to achieve this?
|
||||
def check_internet() -> bool:
|
||||
@@ -97,7 +99,7 @@ class ApiDependencies:
|
||||
model_images_service = ModelImageFileStorageDisk(model_images_folder / "model_images")
|
||||
model_manager = ModelManagerService.build_model_manager(
|
||||
app_config=configuration,
|
||||
model_record_service=ModelRecordServiceSQL(db=db),
|
||||
model_record_service=ModelRecordServiceSQL(db=db, logger=logger),
|
||||
download_queue=download_queue_service,
|
||||
events=events,
|
||||
)
|
||||
|
||||
@@ -10,14 +10,13 @@ from fastapi import Body
|
||||
from fastapi.routing import APIRouter
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.invocations.upscale import ESRGAN_MODELS
|
||||
from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus
|
||||
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch
|
||||
from invokeai.backend.util.logging import logging
|
||||
from invokeai.version import __version__
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
|
||||
class LogLevel(int, Enum):
|
||||
NotSet = logging.NOTSET
|
||||
|
||||
@@ -2,7 +2,7 @@ from fastapi import Body, HTTPException
|
||||
from fastapi.routing import APIRouter
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
|
||||
board_images_router = APIRouter(prefix="/v1/board_images", tags=["boards"])
|
||||
|
||||
|
||||
@@ -4,12 +4,11 @@ from fastapi import Body, HTTPException, Path, Query
|
||||
from fastapi.routing import APIRouter
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.services.board_records.board_records_common import BoardChanges
|
||||
from invokeai.app.services.boards.boards_common import BoardDTO
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
boards_router = APIRouter(prefix="/v1/boards", tags=["boards"])
|
||||
|
||||
|
||||
@@ -32,6 +31,7 @@ class DeleteBoardResult(BaseModel):
|
||||
)
|
||||
async def create_board(
|
||||
board_name: str = Query(description="The name of the board to create"),
|
||||
is_private: bool = Query(default=False, description="Whether the board is private"),
|
||||
) -> BoardDTO:
|
||||
"""Creates a board"""
|
||||
try:
|
||||
@@ -118,15 +118,13 @@ async def list_boards(
|
||||
all: Optional[bool] = Query(default=None, description="Whether to list all boards"),
|
||||
offset: Optional[int] = Query(default=None, description="The page offset"),
|
||||
limit: Optional[int] = Query(default=None, description="The number of boards per page"),
|
||||
include_archived: bool = Query(default=False, description="Whether or not to include archived boards in list"),
|
||||
) -> Union[OffsetPaginatedResults[BoardDTO], list[BoardDTO]]:
|
||||
"""Gets a list of boards"""
|
||||
if all:
|
||||
return ApiDependencies.invoker.services.boards.get_all()
|
||||
return ApiDependencies.invoker.services.boards.get_all(include_archived)
|
||||
elif offset is not None and limit is not None:
|
||||
return ApiDependencies.invoker.services.boards.get_many(
|
||||
offset,
|
||||
limit,
|
||||
)
|
||||
return ApiDependencies.invoker.services.boards.get_many(offset, limit, include_archived)
|
||||
else:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
|
||||
@@ -8,13 +8,12 @@ from fastapi.routing import APIRouter
|
||||
from pydantic.networks import AnyHttpUrl
|
||||
from starlette.exceptions import HTTPException
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.services.download import (
|
||||
DownloadJob,
|
||||
UnknownJobIDException,
|
||||
)
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
download_queue_router = APIRouter(prefix="/v1/download_queue", tags=["download_queue"])
|
||||
|
||||
|
||||
|
||||
@@ -8,12 +8,16 @@ from fastapi.routing import APIRouter
|
||||
from PIL import Image
|
||||
from pydantic import BaseModel, Field, JsonValue
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.invocations.fields import MetadataField
|
||||
from invokeai.app.services.image_records.image_records_common import ImageCategory, ImageRecordChanges, ResourceOrigin
|
||||
from invokeai.app.services.image_records.image_records_common import (
|
||||
ImageCategory,
|
||||
ImageRecordChanges,
|
||||
ResourceOrigin,
|
||||
)
|
||||
from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
|
||||
|
||||
images_router = APIRouter(prefix="/v1/images", tags=["images"])
|
||||
|
||||
@@ -229,21 +233,14 @@ async def get_image_workflow(
|
||||
)
|
||||
async def get_image_full(
|
||||
image_name: str = Path(description="The name of full-resolution image file to get"),
|
||||
) -> FileResponse:
|
||||
) -> Response:
|
||||
"""Gets a full-resolution image file"""
|
||||
|
||||
try:
|
||||
path = ApiDependencies.invoker.services.images.get_path(image_name)
|
||||
|
||||
if not ApiDependencies.invoker.services.images.validate_path(path):
|
||||
raise HTTPException(status_code=404)
|
||||
|
||||
response = FileResponse(
|
||||
path,
|
||||
media_type="image/png",
|
||||
filename=image_name,
|
||||
content_disposition_type="inline",
|
||||
)
|
||||
with open(path, "rb") as f:
|
||||
content = f.read()
|
||||
response = Response(content, media_type="image/png")
|
||||
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
|
||||
return response
|
||||
except Exception:
|
||||
@@ -264,15 +261,14 @@ async def get_image_full(
|
||||
)
|
||||
async def get_image_thumbnail(
|
||||
image_name: str = Path(description="The name of thumbnail image file to get"),
|
||||
) -> FileResponse:
|
||||
) -> Response:
|
||||
"""Gets a thumbnail image file"""
|
||||
|
||||
try:
|
||||
path = ApiDependencies.invoker.services.images.get_path(image_name, thumbnail=True)
|
||||
if not ApiDependencies.invoker.services.images.validate_path(path):
|
||||
raise HTTPException(status_code=404)
|
||||
|
||||
response = FileResponse(path, media_type="image/webp", content_disposition_type="inline")
|
||||
with open(path, "rb") as f:
|
||||
content = f.read()
|
||||
response = Response(content, media_type="image/webp")
|
||||
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
|
||||
return response
|
||||
except Exception:
|
||||
@@ -316,16 +312,14 @@ async def list_image_dtos(
|
||||
),
|
||||
offset: int = Query(default=0, description="The page offset"),
|
||||
limit: int = Query(default=10, description="The number of images per page"),
|
||||
order_dir: SQLiteDirection = Query(default=SQLiteDirection.Descending, description="The order of sort"),
|
||||
starred_first: bool = Query(default=True, description="Whether to sort by starred images first"),
|
||||
search_term: Optional[str] = Query(default=None, description="The term to search for"),
|
||||
) -> OffsetPaginatedResults[ImageDTO]:
|
||||
"""Gets a list of image DTOs"""
|
||||
|
||||
image_dtos = ApiDependencies.invoker.services.images.get_many(
|
||||
offset,
|
||||
limit,
|
||||
image_origin,
|
||||
categories,
|
||||
is_intermediate,
|
||||
board_id,
|
||||
offset, limit, starred_first, order_dir, image_origin, categories, is_intermediate, board_id, search_term
|
||||
)
|
||||
|
||||
return image_dtos
|
||||
|
||||
@@ -3,9 +3,9 @@
|
||||
|
||||
import io
|
||||
import pathlib
|
||||
import shutil
|
||||
import traceback
|
||||
from copy import deepcopy
|
||||
from tempfile import TemporaryDirectory
|
||||
from typing import Any, Dict, List, Optional, Type
|
||||
|
||||
from fastapi import Body, Path, Query, Response, UploadFile
|
||||
@@ -16,10 +16,10 @@ from pydantic import AnyHttpUrl, BaseModel, ConfigDict, Field
|
||||
from starlette.exceptions import HTTPException
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.services.model_images.model_images_common import ModelImageFileNotFoundException
|
||||
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
|
||||
from invokeai.app.services.model_records import (
|
||||
DuplicateModelException,
|
||||
InvalidModelException,
|
||||
ModelRecordChanges,
|
||||
UnknownModelException,
|
||||
@@ -30,15 +30,12 @@ from invokeai.backend.model_manager.config import (
|
||||
MainCheckpointConfig,
|
||||
ModelFormat,
|
||||
ModelType,
|
||||
SubModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
|
||||
from invokeai.backend.model_manager.metadata.metadata_base import ModelMetadataWithFiles, UnknownMetadataException
|
||||
from invokeai.backend.model_manager.search import ModelSearch
|
||||
from invokeai.backend.model_manager.starter_models import STARTER_MODELS, StarterModel, StarterModelWithoutDependencies
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
model_manager_router = APIRouter(prefix="/v2/models", tags=["model_manager"])
|
||||
|
||||
# images are immutable; set a high max-age
|
||||
@@ -174,18 +171,6 @@ async def get_model_record(
|
||||
raise HTTPException(status_code=404, detail=str(e))
|
||||
|
||||
|
||||
# @model_manager_router.get("/summary", operation_id="list_model_summary")
|
||||
# async def list_model_summary(
|
||||
# page: int = Query(default=0, description="The page to get"),
|
||||
# per_page: int = Query(default=10, description="The number of models per page"),
|
||||
# order_by: ModelRecordOrderBy = Query(default=ModelRecordOrderBy.Default, description="The attribute to order by"),
|
||||
# ) -> PaginatedResults[ModelSummary]:
|
||||
# """Gets a page of model summary data."""
|
||||
# record_store = ApiDependencies.invoker.services.model_manager.store
|
||||
# results: PaginatedResults[ModelSummary] = record_store.list_models(page=page, per_page=per_page, order_by=order_by)
|
||||
# return results
|
||||
|
||||
|
||||
class FoundModel(BaseModel):
|
||||
path: str = Field(description="Path to the model")
|
||||
is_installed: bool = Field(description="Whether or not the model is already installed")
|
||||
@@ -746,39 +731,36 @@ async def convert_model(
|
||||
logger.error(f"The model with key {key} is not a main checkpoint model.")
|
||||
raise HTTPException(400, f"The model with key {key} is not a main checkpoint model.")
|
||||
|
||||
# loading the model will convert it into a cached diffusers file
|
||||
try:
|
||||
cc_size = loader.convert_cache.max_size
|
||||
if cc_size == 0: # temporary set the convert cache to a positive number so that cached model is written
|
||||
loader._convert_cache.max_size = 1.0
|
||||
loader.load_model(model_config, submodel_type=SubModelType.Scheduler)
|
||||
finally:
|
||||
loader._convert_cache.max_size = cc_size
|
||||
with TemporaryDirectory(dir=ApiDependencies.invoker.services.configuration.models_path) as tmpdir:
|
||||
convert_path = pathlib.Path(tmpdir) / pathlib.Path(model_config.path).stem
|
||||
converted_model = loader.load_model(model_config)
|
||||
# write the converted file to the convert path
|
||||
raw_model = converted_model.model
|
||||
assert hasattr(raw_model, "save_pretrained")
|
||||
raw_model.save_pretrained(convert_path)
|
||||
assert convert_path.exists()
|
||||
|
||||
# Get the path of the converted model from the loader
|
||||
cache_path = loader.convert_cache.cache_path(key)
|
||||
assert cache_path.exists()
|
||||
# temporarily rename the original safetensors file so that there is no naming conflict
|
||||
original_name = model_config.name
|
||||
model_config.name = f"{original_name}.DELETE"
|
||||
changes = ModelRecordChanges(name=model_config.name)
|
||||
store.update_model(key, changes=changes)
|
||||
|
||||
# temporarily rename the original safetensors file so that there is no naming conflict
|
||||
original_name = model_config.name
|
||||
model_config.name = f"{original_name}.DELETE"
|
||||
changes = ModelRecordChanges(name=model_config.name)
|
||||
store.update_model(key, changes=changes)
|
||||
|
||||
# install the diffusers
|
||||
try:
|
||||
new_key = installer.install_path(
|
||||
cache_path,
|
||||
config={
|
||||
"name": original_name,
|
||||
"description": model_config.description,
|
||||
"hash": model_config.hash,
|
||||
"source": model_config.source,
|
||||
},
|
||||
)
|
||||
except DuplicateModelException as e:
|
||||
logger.error(str(e))
|
||||
raise HTTPException(status_code=409, detail=str(e))
|
||||
# install the diffusers
|
||||
try:
|
||||
new_key = installer.install_path(
|
||||
convert_path,
|
||||
config={
|
||||
"name": original_name,
|
||||
"description": model_config.description,
|
||||
"hash": model_config.hash,
|
||||
"source": model_config.source,
|
||||
},
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
store.update_model(key, changes=ModelRecordChanges(name=original_name))
|
||||
raise HTTPException(status_code=409, detail=str(e))
|
||||
|
||||
# Update the model image if the model had one
|
||||
try:
|
||||
@@ -791,8 +773,8 @@ async def convert_model(
|
||||
# delete the original safetensors file
|
||||
installer.delete(key)
|
||||
|
||||
# delete the cached version
|
||||
shutil.rmtree(cache_path)
|
||||
# delete the temporary directory
|
||||
# shutil.rmtree(cache_path)
|
||||
|
||||
# return the config record for the new diffusers directory
|
||||
new_config = store.get_model(new_key)
|
||||
|
||||
@@ -4,6 +4,7 @@ from fastapi import Body, Path, Query
|
||||
from fastapi.routing import APIRouter
|
||||
from pydantic import BaseModel
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.services.session_processor.session_processor_common import SessionProcessorStatus
|
||||
from invokeai.app.services.session_queue.session_queue_common import (
|
||||
QUEUE_ITEM_STATUS,
|
||||
@@ -19,8 +20,6 @@ from invokeai.app.services.session_queue.session_queue_common import (
|
||||
)
|
||||
from invokeai.app.services.shared.pagination import CursorPaginatedResults
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
session_queue_router = APIRouter(prefix="/v1/queue", tags=["queue"])
|
||||
|
||||
|
||||
|
||||
@@ -20,14 +20,9 @@ from torch.backends.mps import is_available as is_mps_available
|
||||
# noinspection PyUnresolvedReferences
|
||||
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
|
||||
import invokeai.frontend.web as web_dir
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.app.util.custom_openapi import get_openapi_func
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from ..backend.util.logging import InvokeAILogger
|
||||
from .api.dependencies import ApiDependencies
|
||||
from .api.routers import (
|
||||
from invokeai.app.api.routers import (
|
||||
app_info,
|
||||
board_images,
|
||||
boards,
|
||||
@@ -38,7 +33,11 @@ from .api.routers import (
|
||||
utilities,
|
||||
workflows,
|
||||
)
|
||||
from .api.sockets import SocketIO
|
||||
from invokeai.app.api.sockets import SocketIO
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.app.util.custom_openapi import get_openapi_func
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
app_config = get_config()
|
||||
|
||||
@@ -162,6 +161,7 @@ def invoke_api() -> None:
|
||||
# Taken from https://waylonwalker.com/python-find-available-port/, thanks Waylon!
|
||||
# https://github.com/WaylonWalker
|
||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
||||
s.settimeout(1)
|
||||
if s.connect_ex(("localhost", port)) == 0:
|
||||
return find_port(port=port + 1)
|
||||
else:
|
||||
|
||||
@@ -40,7 +40,7 @@ from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..services.invocation_services import InvocationServices
|
||||
from invokeai.app.services.invocation_services import InvocationServices
|
||||
|
||||
logger = InvokeAILogger.get_logger()
|
||||
|
||||
|
||||
@@ -4,13 +4,12 @@
|
||||
import numpy as np
|
||||
from pydantic import ValidationInfo, field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import InputField
|
||||
from invokeai.app.invocations.primitives import IntegerCollectionOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.misc import SEED_MAX
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField
|
||||
|
||||
|
||||
@invocation(
|
||||
"range", title="Integer Range", tags=["collection", "integer", "range"], category="collections", version="1.0.0"
|
||||
|
||||
@@ -5,6 +5,7 @@ from compel import Compel, ReturnedEmbeddingsType
|
||||
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
|
||||
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.fields import (
|
||||
ConditioningField,
|
||||
FieldDescriptions,
|
||||
@@ -14,6 +15,7 @@ from invokeai.app.invocations.fields import (
|
||||
TensorField,
|
||||
UIComponent,
|
||||
)
|
||||
from invokeai.app.invocations.model import CLIPField
|
||||
from invokeai.app.invocations.primitives import ConditioningOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.ti_utils import generate_ti_list
|
||||
@@ -26,9 +28,6 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
)
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from .model import CLIPField
|
||||
|
||||
# unconditioned: Optional[torch.Tensor]
|
||||
|
||||
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
from typing import Literal
|
||||
|
||||
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
LATENT_SCALE_FACTOR = 8
|
||||
@@ -11,9 +10,6 @@ factor is hard-coded to a literal '8' rather than using this constant.
|
||||
The ratio of image:latent dimensions is LATENT_SCALE_FACTOR:1, or 8:1.
|
||||
"""
|
||||
|
||||
SCHEDULER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())]
|
||||
"""A literal type representing the valid scheduler names."""
|
||||
|
||||
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
|
||||
"""A literal type for PIL image modes supported by Invoke"""
|
||||
|
||||
|
||||
@@ -22,6 +22,13 @@ from controlnet_aux.util import HWC3, ade_palette
|
||||
from PIL import Image
|
||||
from pydantic import BaseModel, Field, field_validator, model_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
Classification,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
@@ -45,8 +52,6 @@ from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
|
||||
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, Classification, invocation, invocation_output
|
||||
|
||||
|
||||
class ControlField(BaseModel):
|
||||
image: ImageField = Field(description="The control image")
|
||||
|
||||
@@ -5,13 +5,11 @@ import cv2 as cv
|
||||
import numpy
|
||||
from PIL import Image, ImageOps
|
||||
|
||||
from invokeai.app.invocations.fields import ImageField
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField, WithBoard, WithMetadata
|
||||
|
||||
|
||||
@invocation("cv_inpaint", title="OpenCV Inpaint", tags=["opencv", "inpaint"], category="inpaint", version="1.3.1")
|
||||
class CvInpaintInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
|
||||
@@ -17,7 +17,7 @@ from torchvision.transforms.functional import resize as tv_resize
|
||||
from transformers import CLIPVisionModelWithProjection
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.controlnet_image_processors import ControlField
|
||||
from invokeai.app.invocations.fields import (
|
||||
ConditioningField,
|
||||
@@ -54,7 +54,9 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
TextConditioningRegions,
|
||||
)
|
||||
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.hotfixes import ControlNetModel
|
||||
from invokeai.backend.util.mask import to_standard_float_mask
|
||||
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
||||
|
||||
@@ -65,6 +67,9 @@ def get_scheduler(
|
||||
scheduler_name: str,
|
||||
seed: int,
|
||||
) -> Scheduler:
|
||||
"""Load a scheduler and apply some scheduler-specific overrides."""
|
||||
# TODO(ryand): Silently falling back to ddim seems like a bad idea. Look into why this was added and remove if
|
||||
# possible.
|
||||
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
|
||||
orig_scheduler_info = context.models.load(scheduler_info)
|
||||
with orig_scheduler_info as orig_scheduler:
|
||||
@@ -182,8 +187,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
raise ValueError("cfg_scale must be greater than 1")
|
||||
return v
|
||||
|
||||
@staticmethod
|
||||
def _get_text_embeddings_and_masks(
|
||||
self,
|
||||
cond_list: list[ConditioningField],
|
||||
context: InvocationContext,
|
||||
device: torch.device,
|
||||
@@ -203,8 +208,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
|
||||
return text_embeddings, text_embeddings_masks
|
||||
|
||||
@staticmethod
|
||||
def _preprocess_regional_prompt_mask(
|
||||
self, mask: Optional[torch.Tensor], target_height: int, target_width: int, dtype: torch.dtype
|
||||
mask: Optional[torch.Tensor], target_height: int, target_width: int, dtype: torch.dtype
|
||||
) -> torch.Tensor:
|
||||
"""Preprocess a regional prompt mask to match the target height and width.
|
||||
If mask is None, returns a mask of all ones with the target height and width.
|
||||
@@ -228,8 +234,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
resized_mask = tf(mask)
|
||||
return resized_mask
|
||||
|
||||
@staticmethod
|
||||
def _concat_regional_text_embeddings(
|
||||
self,
|
||||
text_conditionings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]],
|
||||
masks: Optional[list[Optional[torch.Tensor]]],
|
||||
latent_height: int,
|
||||
@@ -279,7 +285,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
)
|
||||
)
|
||||
processed_masks.append(
|
||||
self._preprocess_regional_prompt_mask(mask, latent_height, latent_width, dtype=dtype)
|
||||
DenoiseLatentsInvocation._preprocess_regional_prompt_mask(
|
||||
mask, latent_height, latent_width, dtype=dtype
|
||||
)
|
||||
)
|
||||
|
||||
cur_text_embedding_len += text_embedding_info.embeds.shape[1]
|
||||
@@ -301,36 +309,41 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
)
|
||||
return BasicConditioningInfo(embeds=text_embedding), regions
|
||||
|
||||
@staticmethod
|
||||
def get_conditioning_data(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
positive_conditioning_field: Union[ConditioningField, list[ConditioningField]],
|
||||
negative_conditioning_field: Union[ConditioningField, list[ConditioningField]],
|
||||
unet: UNet2DConditionModel,
|
||||
latent_height: int,
|
||||
latent_width: int,
|
||||
cfg_scale: float | list[float],
|
||||
steps: int,
|
||||
cfg_rescale_multiplier: float,
|
||||
) -> TextConditioningData:
|
||||
# Normalize self.positive_conditioning and self.negative_conditioning to lists.
|
||||
cond_list = self.positive_conditioning
|
||||
# Normalize positive_conditioning_field and negative_conditioning_field to lists.
|
||||
cond_list = positive_conditioning_field
|
||||
if not isinstance(cond_list, list):
|
||||
cond_list = [cond_list]
|
||||
uncond_list = self.negative_conditioning
|
||||
uncond_list = negative_conditioning_field
|
||||
if not isinstance(uncond_list, list):
|
||||
uncond_list = [uncond_list]
|
||||
|
||||
cond_text_embeddings, cond_text_embedding_masks = self._get_text_embeddings_and_masks(
|
||||
cond_text_embeddings, cond_text_embedding_masks = DenoiseLatentsInvocation._get_text_embeddings_and_masks(
|
||||
cond_list, context, unet.device, unet.dtype
|
||||
)
|
||||
uncond_text_embeddings, uncond_text_embedding_masks = self._get_text_embeddings_and_masks(
|
||||
uncond_text_embeddings, uncond_text_embedding_masks = DenoiseLatentsInvocation._get_text_embeddings_and_masks(
|
||||
uncond_list, context, unet.device, unet.dtype
|
||||
)
|
||||
|
||||
cond_text_embedding, cond_regions = self._concat_regional_text_embeddings(
|
||||
cond_text_embedding, cond_regions = DenoiseLatentsInvocation._concat_regional_text_embeddings(
|
||||
text_conditionings=cond_text_embeddings,
|
||||
masks=cond_text_embedding_masks,
|
||||
latent_height=latent_height,
|
||||
latent_width=latent_width,
|
||||
dtype=unet.dtype,
|
||||
)
|
||||
uncond_text_embedding, uncond_regions = self._concat_regional_text_embeddings(
|
||||
uncond_text_embedding, uncond_regions = DenoiseLatentsInvocation._concat_regional_text_embeddings(
|
||||
text_conditionings=uncond_text_embeddings,
|
||||
masks=uncond_text_embedding_masks,
|
||||
latent_height=latent_height,
|
||||
@@ -338,23 +351,21 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
dtype=unet.dtype,
|
||||
)
|
||||
|
||||
if isinstance(self.cfg_scale, list):
|
||||
assert (
|
||||
len(self.cfg_scale) == self.steps
|
||||
), "cfg_scale (list) must have the same length as the number of steps"
|
||||
if isinstance(cfg_scale, list):
|
||||
assert len(cfg_scale) == steps, "cfg_scale (list) must have the same length as the number of steps"
|
||||
|
||||
conditioning_data = TextConditioningData(
|
||||
uncond_text=uncond_text_embedding,
|
||||
cond_text=cond_text_embedding,
|
||||
uncond_regions=uncond_regions,
|
||||
cond_regions=cond_regions,
|
||||
guidance_scale=self.cfg_scale,
|
||||
guidance_rescale_multiplier=self.cfg_rescale_multiplier,
|
||||
guidance_scale=cfg_scale,
|
||||
guidance_rescale_multiplier=cfg_rescale_multiplier,
|
||||
)
|
||||
return conditioning_data
|
||||
|
||||
@staticmethod
|
||||
def create_pipeline(
|
||||
self,
|
||||
unet: UNet2DConditionModel,
|
||||
scheduler: Scheduler,
|
||||
) -> StableDiffusionGeneratorPipeline:
|
||||
@@ -377,38 +388,38 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
requires_safety_checker=False,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def prep_control_data(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
control_input: Optional[Union[ControlField, List[ControlField]]],
|
||||
control_input: ControlField | list[ControlField] | None,
|
||||
latents_shape: List[int],
|
||||
exit_stack: ExitStack,
|
||||
do_classifier_free_guidance: bool = True,
|
||||
) -> Optional[List[ControlNetData]]:
|
||||
# Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR.
|
||||
control_height_resize = latents_shape[2] * LATENT_SCALE_FACTOR
|
||||
control_width_resize = latents_shape[3] * LATENT_SCALE_FACTOR
|
||||
if control_input is None:
|
||||
control_list = None
|
||||
elif isinstance(control_input, list) and len(control_input) == 0:
|
||||
control_list = None
|
||||
elif isinstance(control_input, ControlField):
|
||||
) -> list[ControlNetData] | None:
|
||||
# Normalize control_input to a list.
|
||||
control_list: list[ControlField]
|
||||
if isinstance(control_input, ControlField):
|
||||
control_list = [control_input]
|
||||
elif isinstance(control_input, list) and len(control_input) > 0 and isinstance(control_input[0], ControlField):
|
||||
elif isinstance(control_input, list):
|
||||
control_list = control_input
|
||||
elif control_input is None:
|
||||
control_list = []
|
||||
else:
|
||||
control_list = None
|
||||
if control_list is None:
|
||||
return None
|
||||
# After above handling, any control that is not None should now be of type list[ControlField].
|
||||
raise ValueError(f"Unexpected control_input type: {type(control_input)}")
|
||||
|
||||
# FIXME: add checks to skip entry if model or image is None
|
||||
# and if weight is None, populate with default 1.0?
|
||||
controlnet_data = []
|
||||
if len(control_list) == 0:
|
||||
return None
|
||||
|
||||
# Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR.
|
||||
_, _, latent_height, latent_width = latents_shape
|
||||
control_height_resize = latent_height * LATENT_SCALE_FACTOR
|
||||
control_width_resize = latent_width * LATENT_SCALE_FACTOR
|
||||
|
||||
controlnet_data: list[ControlNetData] = []
|
||||
for control_info in control_list:
|
||||
control_model = exit_stack.enter_context(context.models.load(control_info.control_model))
|
||||
assert isinstance(control_model, ControlNetModel)
|
||||
|
||||
# control_models.append(control_model)
|
||||
control_image_field = control_info.image
|
||||
input_image = context.images.get_pil(control_image_field.image_name)
|
||||
# self.image.image_type, self.image.image_name
|
||||
@@ -429,7 +440,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
resize_mode=control_info.resize_mode,
|
||||
)
|
||||
control_item = ControlNetData(
|
||||
model=control_model, # model object
|
||||
model=control_model,
|
||||
image_tensor=control_image,
|
||||
weight=control_info.control_weight,
|
||||
begin_step_percent=control_info.begin_step_percent,
|
||||
@@ -583,15 +594,15 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
|
||||
# original idea by https://github.com/AmericanPresidentJimmyCarter
|
||||
# TODO: research more for second order schedulers timesteps
|
||||
@staticmethod
|
||||
def init_scheduler(
|
||||
self,
|
||||
scheduler: Union[Scheduler, ConfigMixin],
|
||||
device: torch.device,
|
||||
steps: int,
|
||||
denoising_start: float,
|
||||
denoising_end: float,
|
||||
seed: int,
|
||||
) -> Tuple[int, List[int], int, Dict[str, Any]]:
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]:
|
||||
assert isinstance(scheduler, ConfigMixin)
|
||||
if scheduler.config.get("cpu_only", False):
|
||||
scheduler.set_timesteps(steps, device="cpu")
|
||||
@@ -617,7 +628,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
|
||||
init_timestep = timesteps[t_start_idx : t_start_idx + 1]
|
||||
timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx]
|
||||
num_inference_steps = len(timesteps) // scheduler.order
|
||||
|
||||
scheduler_step_kwargs: Dict[str, Any] = {}
|
||||
scheduler_step_signature = inspect.signature(scheduler.step)
|
||||
@@ -639,7 +649,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
if isinstance(scheduler, TCDScheduler):
|
||||
scheduler_step_kwargs.update({"eta": 1.0})
|
||||
|
||||
return num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs
|
||||
return timesteps, init_timestep, scheduler_step_kwargs
|
||||
|
||||
def prep_inpaint_mask(
|
||||
self, context: InvocationContext, latents: torch.Tensor
|
||||
@@ -656,31 +666,52 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
|
||||
return 1 - mask, masked_latents, self.denoise_mask.gradient
|
||||
|
||||
@torch.no_grad()
|
||||
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
seed = None
|
||||
@staticmethod
|
||||
def prepare_noise_and_latents(
|
||||
context: InvocationContext, noise_field: LatentsField | None, latents_field: LatentsField | None
|
||||
) -> Tuple[int, torch.Tensor | None, torch.Tensor]:
|
||||
"""Depending on the workflow, we expect different combinations of noise and latents to be provided. This
|
||||
function handles preparing these values accordingly.
|
||||
|
||||
Expected workflows:
|
||||
- Text-to-Image Denoising: `noise` is provided, `latents` is not. `latents` is initialized to zeros.
|
||||
- Image-to-Image Denoising: `noise` and `latents` are both provided.
|
||||
- Text-to-Image SDXL Refiner Denoising: `latents` is provided, `noise` is not.
|
||||
- Image-to-Image SDXL Refiner Denoising: `latents` is provided, `noise` is not.
|
||||
|
||||
NOTE(ryand): I wrote this docstring, but I am not the original author of this code. There may be other workflows
|
||||
I haven't considered.
|
||||
"""
|
||||
noise = None
|
||||
if self.noise is not None:
|
||||
noise = context.tensors.load(self.noise.latents_name)
|
||||
seed = self.noise.seed
|
||||
|
||||
if self.latents is not None:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
if seed is None:
|
||||
seed = self.latents.seed
|
||||
|
||||
if noise is not None and noise.shape[1:] != latents.shape[1:]:
|
||||
raise Exception(f"Incompatable 'noise' and 'latents' shapes: {latents.shape=} {noise.shape=}")
|
||||
if noise_field is not None:
|
||||
noise = context.tensors.load(noise_field.latents_name)
|
||||
|
||||
if latents_field is not None:
|
||||
latents = context.tensors.load(latents_field.latents_name)
|
||||
elif noise is not None:
|
||||
latents = torch.zeros_like(noise)
|
||||
else:
|
||||
raise Exception("'latents' or 'noise' must be provided!")
|
||||
raise ValueError("'latents' or 'noise' must be provided!")
|
||||
|
||||
if seed is None:
|
||||
if noise is not None and noise.shape[1:] != latents.shape[1:]:
|
||||
raise ValueError(f"Incompatible 'noise' and 'latents' shapes: {latents.shape=} {noise.shape=}")
|
||||
|
||||
# The seed comes from (in order of priority): the noise field, the latents field, or 0.
|
||||
seed = 0
|
||||
if noise_field is not None and noise_field.seed is not None:
|
||||
seed = noise_field.seed
|
||||
elif latents_field is not None and latents_field.seed is not None:
|
||||
seed = latents_field.seed
|
||||
else:
|
||||
seed = 0
|
||||
|
||||
return seed, noise, latents
|
||||
|
||||
@torch.no_grad()
|
||||
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
|
||||
|
||||
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
|
||||
|
||||
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
|
||||
@@ -706,7 +737,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
# The image prompts are then passed to prep_ip_adapter_data().
|
||||
image_prompts = self.prep_ip_adapter_image_prompts(context=context, ip_adapters=ip_adapters)
|
||||
|
||||
# get the unet's config so that we can pass the base to dispatch_progress()
|
||||
# get the unet's config so that we can pass the base to sd_step_callback()
|
||||
unet_config = context.models.get_config(self.unet.unet.key)
|
||||
|
||||
def step_callback(state: PipelineIntermediateState) -> None:
|
||||
@@ -754,7 +785,15 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
|
||||
_, _, latent_height, latent_width = latents.shape
|
||||
conditioning_data = self.get_conditioning_data(
|
||||
context=context, unet=unet, latent_height=latent_height, latent_width=latent_width
|
||||
context=context,
|
||||
positive_conditioning_field=self.positive_conditioning,
|
||||
negative_conditioning_field=self.negative_conditioning,
|
||||
unet=unet,
|
||||
latent_height=latent_height,
|
||||
latent_width=latent_width,
|
||||
cfg_scale=self.cfg_scale,
|
||||
steps=self.steps,
|
||||
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
|
||||
)
|
||||
|
||||
controlnet_data = self.prep_control_data(
|
||||
@@ -776,7 +815,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
dtype=unet.dtype,
|
||||
)
|
||||
|
||||
num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
|
||||
timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
|
||||
scheduler,
|
||||
device=unet.device,
|
||||
steps=self.steps,
|
||||
@@ -793,8 +832,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
seed=seed,
|
||||
mask=mask,
|
||||
masked_latents=masked_latents,
|
||||
gradient_mask=gradient_mask,
|
||||
num_inference_steps=num_inference_steps,
|
||||
is_gradient_mask=gradient_mask,
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
conditioning_data=conditioning_data,
|
||||
control_data=controlnet_data,
|
||||
|
||||
@@ -160,6 +160,7 @@ class FieldDescriptions:
|
||||
fp32 = "Whether or not to use full float32 precision"
|
||||
precision = "Precision to use"
|
||||
tiled = "Processing using overlapping tiles (reduce memory consumption)"
|
||||
vae_tile_size = "The tile size for VAE tiling in pixels (image space). If set to 0, the default tile size for the model will be used. Larger tile sizes generally produce better results at the cost of higher memory usage."
|
||||
detect_res = "Pixel resolution for detection"
|
||||
image_res = "Pixel resolution for output image"
|
||||
safe_mode = "Whether or not to use safe mode"
|
||||
|
||||
@@ -6,6 +6,7 @@ import cv2
|
||||
import numpy
|
||||
from PIL import Image, ImageChops, ImageFilter, ImageOps
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
|
||||
from invokeai.app.invocations.constants import IMAGE_MODES
|
||||
from invokeai.app.invocations.fields import (
|
||||
ColorField,
|
||||
@@ -21,8 +22,6 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
|
||||
from invokeai.backend.image_util.safety_checker import SafetyChecker
|
||||
|
||||
from .baseinvocation import BaseInvocation, Classification, invocation
|
||||
|
||||
|
||||
@invocation("show_image", title="Show Image", tags=["image"], category="image", version="1.0.1")
|
||||
class ShowImageInvocation(BaseInvocation):
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
from contextlib import nullcontext
|
||||
from functools import singledispatchmethod
|
||||
|
||||
import einops
|
||||
@@ -12,7 +13,7 @@ from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
||||
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
@@ -24,6 +25,7 @@ from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager import LoadedModel
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||||
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
|
||||
|
||||
|
||||
@invocation(
|
||||
@@ -31,7 +33,7 @@ from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_t
|
||||
title="Image to Latents",
|
||||
tags=["latents", "image", "vae", "i2l"],
|
||||
category="latents",
|
||||
version="1.0.2",
|
||||
version="1.1.0",
|
||||
)
|
||||
class ImageToLatentsInvocation(BaseInvocation):
|
||||
"""Encodes an image into latents."""
|
||||
@@ -44,12 +46,17 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
input=Input.Connection,
|
||||
)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
|
||||
# NOTE: tile_size = 0 is a special value. We use this rather than `int | None`, because the workflow UI does not
|
||||
# offer a way to directly set None values.
|
||||
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
|
||||
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
|
||||
|
||||
@staticmethod
|
||||
def vae_encode(vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor) -> torch.Tensor:
|
||||
def vae_encode(
|
||||
vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor, tile_size: int = 0
|
||||
) -> torch.Tensor:
|
||||
with vae_info as vae:
|
||||
assert isinstance(vae, torch.nn.Module)
|
||||
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
|
||||
orig_dtype = vae.dtype
|
||||
if upcast:
|
||||
vae.to(dtype=torch.float32)
|
||||
@@ -81,9 +88,18 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
else:
|
||||
vae.disable_tiling()
|
||||
|
||||
tiling_context = nullcontext()
|
||||
if tile_size > 0:
|
||||
tiling_context = patch_vae_tiling_params(
|
||||
vae,
|
||||
tile_sample_min_size=tile_size,
|
||||
tile_latent_min_size=tile_size // LATENT_SCALE_FACTOR,
|
||||
tile_overlap_factor=0.25,
|
||||
)
|
||||
|
||||
# non_noised_latents_from_image
|
||||
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
|
||||
with torch.inference_mode():
|
||||
with torch.inference_mode(), tiling_context:
|
||||
latents = ImageToLatentsInvocation._encode_to_tensor(vae, image_tensor)
|
||||
|
||||
latents = vae.config.scaling_factor * latents
|
||||
@@ -101,7 +117,9 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
if image_tensor.dim() == 3:
|
||||
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
|
||||
|
||||
latents = self.vae_encode(vae_info, self.fp32, self.tiled, image_tensor)
|
||||
latents = self.vae_encode(
|
||||
vae_info=vae_info, upcast=self.fp32, tiled=self.tiled, image_tensor=image_tensor, tile_size=self.tile_size
|
||||
)
|
||||
|
||||
latents = latents.to("cpu")
|
||||
name = context.tensors.save(tensor=latents)
|
||||
|
||||
@@ -3,7 +3,9 @@ from typing import Literal, get_args
|
||||
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.app.invocations.fields import ColorField, ImageField
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import ColorField, ImageField, InputField, WithBoard, WithMetadata
|
||||
from invokeai.app.invocations.image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.misc import SEED_MAX
|
||||
@@ -14,10 +16,6 @@ from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch, in
|
||||
from invokeai.backend.image_util.infill_methods.tile import infill_tile
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField, WithBoard, WithMetadata
|
||||
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
|
||||
|
||||
logger = InvokeAILogger.get_logger()
|
||||
|
||||
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
from diffusers.image_processor import VaeImageProcessor
|
||||
from diffusers.models.attention_processor import (
|
||||
@@ -8,10 +10,9 @@ from diffusers.models.attention_processor import (
|
||||
)
|
||||
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
||||
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
|
||||
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
@@ -24,6 +25,7 @@ from invokeai.app.invocations.model import VAEField
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.stable_diffusion import set_seamless
|
||||
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
@@ -32,7 +34,7 @@ from invokeai.backend.util.devices import TorchDevice
|
||||
title="Latents to Image",
|
||||
tags=["latents", "image", "vae", "l2i"],
|
||||
category="latents",
|
||||
version="1.2.2",
|
||||
version="1.3.0",
|
||||
)
|
||||
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Generates an image from latents."""
|
||||
@@ -46,6 +48,9 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
input=Input.Connection,
|
||||
)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
|
||||
# NOTE: tile_size = 0 is a special value. We use this rather than `int | None`, because the workflow UI does not
|
||||
# offer a way to directly set None values.
|
||||
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
|
||||
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -53,9 +58,9 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
assert isinstance(vae_info.model, (UNet2DConditionModel, AutoencoderKL, AutoencoderTiny))
|
||||
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
|
||||
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
|
||||
assert isinstance(vae, torch.nn.Module)
|
||||
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
|
||||
latents = latents.to(vae.device)
|
||||
if self.fp32:
|
||||
vae.to(dtype=torch.float32)
|
||||
@@ -87,10 +92,19 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
else:
|
||||
vae.disable_tiling()
|
||||
|
||||
tiling_context = nullcontext()
|
||||
if self.tile_size > 0:
|
||||
tiling_context = patch_vae_tiling_params(
|
||||
vae,
|
||||
tile_sample_min_size=self.tile_size,
|
||||
tile_latent_min_size=self.tile_size // LATENT_SCALE_FACTOR,
|
||||
tile_overlap_factor=0.25,
|
||||
)
|
||||
|
||||
# clear memory as vae decode can request a lot
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
with torch.inference_mode():
|
||||
with torch.inference_mode(), tiling_context:
|
||||
# copied from diffusers pipeline
|
||||
latents = latents / vae.config.scaling_factor
|
||||
image = vae.decode(latents, return_dict=False)[0]
|
||||
|
||||
@@ -5,12 +5,11 @@ from typing import Literal
|
||||
import numpy as np
|
||||
from pydantic import ValidationInfo, field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, InputField
|
||||
from invokeai.app.invocations.primitives import FloatOutput, IntegerOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
|
||||
|
||||
@invocation("add", title="Add Integers", tags=["math", "add"], category="math", version="1.0.1")
|
||||
class AddInvocation(BaseInvocation):
|
||||
|
||||
@@ -14,8 +14,7 @@ from invokeai.app.invocations.fields import (
|
||||
from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES
|
||||
|
||||
from ...version import __version__
|
||||
from invokeai.version.invokeai_version import __version__
|
||||
|
||||
|
||||
class MetadataItemField(BaseModel):
|
||||
|
||||
@@ -3,18 +3,17 @@ from typing import List, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.shared.models import FreeUConfig
|
||||
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
|
||||
|
||||
from .baseinvocation import (
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
Classification,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.shared.models import FreeUConfig
|
||||
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
|
||||
|
||||
|
||||
class ModelIdentifierField(BaseModel):
|
||||
|
||||
@@ -4,18 +4,12 @@
|
||||
import torch
|
||||
from pydantic import field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, InputField, LatentsField, OutputField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.misc import SEED_MAX
|
||||
|
||||
from ...backend.util.devices import TorchDevice
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
"""
|
||||
Utilities
|
||||
|
||||
@@ -39,12 +39,11 @@ from easing_functions import (
|
||||
)
|
||||
from matplotlib.ticker import MaxNLocator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import InputField
|
||||
from invokeai.app.invocations.primitives import FloatCollectionOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField
|
||||
|
||||
|
||||
@invocation(
|
||||
"float_range",
|
||||
|
||||
@@ -4,6 +4,7 @@ from typing import Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import (
|
||||
ColorField,
|
||||
@@ -21,13 +22,6 @@ from invokeai.app.invocations.fields import (
|
||||
from invokeai.app.services.images.images_common import ImageDTO
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
|
||||
"""
|
||||
Primitives: Boolean, Integer, Float, String, Image, Latents, Conditioning, Color
|
||||
- primitive nodes
|
||||
|
||||
@@ -5,12 +5,11 @@ import numpy as np
|
||||
from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator
|
||||
from pydantic import field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import InputField, UIComponent
|
||||
from invokeai.app.invocations.primitives import StringCollectionOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField, UIComponent
|
||||
|
||||
|
||||
@invocation(
|
||||
"dynamic_prompt",
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
InputField,
|
||||
@@ -7,6 +6,7 @@ from invokeai.app.invocations.fields import (
|
||||
UIType,
|
||||
)
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||
|
||||
|
||||
@invocation_output("scheduler_output")
|
||||
|
||||
@@ -1,15 +1,9 @@
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField, UIType
|
||||
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, UNetField, VAEField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager import SubModelType
|
||||
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from .model import CLIPField, ModelIdentifierField, UNetField, VAEField
|
||||
|
||||
|
||||
@invocation_output("sdxl_model_loader_output")
|
||||
class SDXLModelLoaderOutput(BaseInvocationOutput):
|
||||
|
||||
@@ -2,17 +2,11 @@
|
||||
|
||||
import re
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.fields import InputField, OutputField, UIComponent
|
||||
from invokeai.app.invocations.primitives import StringOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from .fields import InputField, OutputField, UIComponent
|
||||
from .primitives import StringOutput
|
||||
|
||||
|
||||
@invocation_output("string_pos_neg_output")
|
||||
class StringPosNegOutput(BaseInvocationOutput):
|
||||
|
||||
@@ -0,0 +1,282 @@
|
||||
import copy
|
||||
from contextlib import ExitStack
|
||||
from typing import Iterator, Tuple
|
||||
|
||||
import torch
|
||||
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
||||
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
||||
from pydantic import field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.controlnet_image_processors import ControlField
|
||||
from invokeai.app.invocations.denoise_latents import DenoiseLatentsInvocation, get_scheduler
|
||||
from invokeai.app.invocations.fields import (
|
||||
ConditioningField,
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
InputField,
|
||||
LatentsField,
|
||||
UIType,
|
||||
)
|
||||
from invokeai.app.invocations.model import UNetField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, PipelineIntermediateState
|
||||
from invokeai.backend.stable_diffusion.multi_diffusion_pipeline import (
|
||||
MultiDiffusionPipeline,
|
||||
MultiDiffusionRegionConditioning,
|
||||
)
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||
from invokeai.backend.tiles.tiles import (
|
||||
calc_tiles_min_overlap,
|
||||
)
|
||||
from invokeai.backend.tiles.utils import TBLR
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
def crop_controlnet_data(control_data: ControlNetData, latent_region: TBLR) -> ControlNetData:
|
||||
"""Crop a ControlNetData object to a region."""
|
||||
# Create a shallow copy of the control_data object.
|
||||
control_data_copy = copy.copy(control_data)
|
||||
# The ControlNet reference image is the only attribute that needs to be cropped.
|
||||
control_data_copy.image_tensor = control_data.image_tensor[
|
||||
:,
|
||||
:,
|
||||
latent_region.top * LATENT_SCALE_FACTOR : latent_region.bottom * LATENT_SCALE_FACTOR,
|
||||
latent_region.left * LATENT_SCALE_FACTOR : latent_region.right * LATENT_SCALE_FACTOR,
|
||||
]
|
||||
return control_data_copy
|
||||
|
||||
|
||||
@invocation(
|
||||
"tiled_multi_diffusion_denoise_latents",
|
||||
title="Tiled Multi-Diffusion Denoise Latents",
|
||||
tags=["upscale", "denoise"],
|
||||
category="latents",
|
||||
classification=Classification.Beta,
|
||||
version="1.0.0",
|
||||
)
|
||||
class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
|
||||
"""Tiled Multi-Diffusion denoising.
|
||||
|
||||
This node handles automatically tiling the input image, and is primarily intended for global refinement of images
|
||||
in tiled upscaling workflows. Future Multi-Diffusion nodes should allow the user to specify custom regions with
|
||||
different parameters for each region to harness the full power of Multi-Diffusion.
|
||||
|
||||
This node has a similar interface to the `DenoiseLatents` node, but it has a reduced feature set (no IP-Adapter,
|
||||
T2I-Adapter, masking, etc.).
|
||||
"""
|
||||
|
||||
positive_conditioning: ConditioningField = InputField(
|
||||
description=FieldDescriptions.positive_cond, input=Input.Connection
|
||||
)
|
||||
negative_conditioning: ConditioningField = InputField(
|
||||
description=FieldDescriptions.negative_cond, input=Input.Connection
|
||||
)
|
||||
noise: LatentsField | None = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.noise,
|
||||
input=Input.Connection,
|
||||
)
|
||||
latents: LatentsField | None = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
tile_height: int = InputField(
|
||||
default=1024, gt=0, multiple_of=LATENT_SCALE_FACTOR, description="Height of the tiles in image space."
|
||||
)
|
||||
tile_width: int = InputField(
|
||||
default=1024, gt=0, multiple_of=LATENT_SCALE_FACTOR, description="Width of the tiles in image space."
|
||||
)
|
||||
tile_overlap: int = InputField(
|
||||
default=32,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
gt=0,
|
||||
description="The overlap between adjacent tiles in pixel space. (Of course, tile merging is applied in latent "
|
||||
"space.) Tiles will be cropped during merging (if necessary) to ensure that they overlap by exactly this "
|
||||
"amount.",
|
||||
)
|
||||
steps: int = InputField(default=18, gt=0, description=FieldDescriptions.steps)
|
||||
cfg_scale: float | list[float] = InputField(default=6.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
|
||||
denoising_start: float = InputField(
|
||||
default=0.0,
|
||||
ge=0,
|
||||
le=1,
|
||||
description=FieldDescriptions.denoising_start,
|
||||
)
|
||||
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
|
||||
scheduler: SCHEDULER_NAME_VALUES = InputField(
|
||||
default="euler",
|
||||
description=FieldDescriptions.scheduler,
|
||||
ui_type=UIType.Scheduler,
|
||||
)
|
||||
unet: UNetField = InputField(
|
||||
description=FieldDescriptions.unet,
|
||||
input=Input.Connection,
|
||||
title="UNet",
|
||||
)
|
||||
cfg_rescale_multiplier: float = InputField(
|
||||
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
|
||||
)
|
||||
control: ControlField | list[ControlField] | None = InputField(
|
||||
default=None,
|
||||
input=Input.Connection,
|
||||
)
|
||||
|
||||
@field_validator("cfg_scale")
|
||||
def ge_one(cls, v: list[float] | float) -> list[float] | float:
|
||||
"""Validate that all cfg_scale values are >= 1"""
|
||||
if isinstance(v, list):
|
||||
for i in v:
|
||||
if i < 1:
|
||||
raise ValueError("cfg_scale must be greater than 1")
|
||||
else:
|
||||
if v < 1:
|
||||
raise ValueError("cfg_scale must be greater than 1")
|
||||
return v
|
||||
|
||||
@staticmethod
|
||||
def create_pipeline(
|
||||
unet: UNet2DConditionModel,
|
||||
scheduler: SchedulerMixin,
|
||||
) -> MultiDiffusionPipeline:
|
||||
# TODO(ryand): Get rid of this FakeVae hack.
|
||||
class FakeVae:
|
||||
class FakeVaeConfig:
|
||||
def __init__(self) -> None:
|
||||
self.block_out_channels = [0]
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.config = FakeVae.FakeVaeConfig()
|
||||
|
||||
return MultiDiffusionPipeline(
|
||||
vae=FakeVae(),
|
||||
text_encoder=None,
|
||||
tokenizer=None,
|
||||
unet=unet,
|
||||
scheduler=scheduler,
|
||||
safety_checker=None,
|
||||
feature_extractor=None,
|
||||
requires_safety_checker=False,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
# Convert tile image-space dimensions to latent-space dimensions.
|
||||
latent_tile_height = self.tile_height // LATENT_SCALE_FACTOR
|
||||
latent_tile_width = self.tile_width // LATENT_SCALE_FACTOR
|
||||
latent_tile_overlap = self.tile_overlap // LATENT_SCALE_FACTOR
|
||||
|
||||
seed, noise, latents = DenoiseLatentsInvocation.prepare_noise_and_latents(context, self.noise, self.latents)
|
||||
_, _, latent_height, latent_width = latents.shape
|
||||
|
||||
# Calculate the tile locations to cover the latent-space image.
|
||||
tiles = calc_tiles_min_overlap(
|
||||
image_height=latent_height,
|
||||
image_width=latent_width,
|
||||
tile_height=latent_tile_height,
|
||||
tile_width=latent_tile_width,
|
||||
min_overlap=latent_tile_overlap,
|
||||
)
|
||||
|
||||
# Get the unet's config so that we can pass the base to sd_step_callback().
|
||||
unet_config = context.models.get_config(self.unet.unet.key)
|
||||
|
||||
def step_callback(state: PipelineIntermediateState) -> None:
|
||||
context.util.sd_step_callback(state, unet_config.base)
|
||||
|
||||
# Prepare an iterator that yields the UNet's LoRA models and their weights.
|
||||
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||
for lora in self.unet.loras:
|
||||
lora_info = context.models.load(lora.lora)
|
||||
assert isinstance(lora_info.model, LoRAModelRaw)
|
||||
yield (lora_info.model, lora.weight)
|
||||
del lora_info
|
||||
|
||||
# Load the UNet model.
|
||||
unet_info = context.models.load(self.unet.unet)
|
||||
|
||||
with ExitStack() as exit_stack, unet_info as unet, ModelPatcher.apply_lora_unet(unet, _lora_loader()):
|
||||
assert isinstance(unet, UNet2DConditionModel)
|
||||
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
||||
if noise is not None:
|
||||
noise = noise.to(device=unet.device, dtype=unet.dtype)
|
||||
scheduler = get_scheduler(
|
||||
context=context,
|
||||
scheduler_info=self.unet.scheduler,
|
||||
scheduler_name=self.scheduler,
|
||||
seed=seed,
|
||||
)
|
||||
pipeline = self.create_pipeline(unet=unet, scheduler=scheduler)
|
||||
|
||||
# Prepare the prompt conditioning data. The same prompt conditioning is applied to all tiles.
|
||||
conditioning_data = DenoiseLatentsInvocation.get_conditioning_data(
|
||||
context=context,
|
||||
positive_conditioning_field=self.positive_conditioning,
|
||||
negative_conditioning_field=self.negative_conditioning,
|
||||
unet=unet,
|
||||
latent_height=latent_tile_height,
|
||||
latent_width=latent_tile_width,
|
||||
cfg_scale=self.cfg_scale,
|
||||
steps=self.steps,
|
||||
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
|
||||
)
|
||||
|
||||
controlnet_data = DenoiseLatentsInvocation.prep_control_data(
|
||||
context=context,
|
||||
control_input=self.control,
|
||||
latents_shape=list(latents.shape),
|
||||
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
|
||||
do_classifier_free_guidance=True,
|
||||
exit_stack=exit_stack,
|
||||
)
|
||||
|
||||
# Split the controlnet_data into tiles.
|
||||
# controlnet_data_tiles[t][c] is the c'th control data for the t'th tile.
|
||||
controlnet_data_tiles: list[list[ControlNetData]] = []
|
||||
for tile in tiles:
|
||||
tile_controlnet_data = [crop_controlnet_data(cn, tile.coords) for cn in controlnet_data or []]
|
||||
controlnet_data_tiles.append(tile_controlnet_data)
|
||||
|
||||
# Prepare the MultiDiffusionRegionConditioning list.
|
||||
multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning] = []
|
||||
for tile, tile_controlnet_data in zip(tiles, controlnet_data_tiles, strict=True):
|
||||
multi_diffusion_conditioning.append(
|
||||
MultiDiffusionRegionConditioning(
|
||||
region=tile,
|
||||
text_conditioning_data=conditioning_data,
|
||||
control_data=tile_controlnet_data,
|
||||
)
|
||||
)
|
||||
|
||||
timesteps, init_timestep, scheduler_step_kwargs = DenoiseLatentsInvocation.init_scheduler(
|
||||
scheduler,
|
||||
device=unet.device,
|
||||
steps=self.steps,
|
||||
denoising_start=self.denoising_start,
|
||||
denoising_end=self.denoising_end,
|
||||
seed=seed,
|
||||
)
|
||||
|
||||
# Run Multi-Diffusion denoising.
|
||||
result_latents = pipeline.multi_diffusion_denoise(
|
||||
multi_diffusion_conditioning=multi_diffusion_conditioning,
|
||||
target_overlap=latent_tile_overlap,
|
||||
latents=latents,
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
noise=noise,
|
||||
timesteps=timesteps,
|
||||
init_timestep=init_timestep,
|
||||
callback=step_callback,
|
||||
)
|
||||
|
||||
result_latents = result_latents.to("cpu")
|
||||
# TODO(ryand): I copied this from DenoiseLatentsInvocation. I'm not sure if it's actually important.
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
name = context.tensors.save(tensor=result_latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=result_latents, seed=None)
|
||||
@@ -6,15 +6,13 @@ import numpy as np
|
||||
from PIL import Image
|
||||
from pydantic import ConfigDict
|
||||
|
||||
from invokeai.app.invocations.fields import ImageField
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
|
||||
from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField, WithBoard, WithMetadata
|
||||
|
||||
# TODO: Populate this from disk?
|
||||
# TODO: Use model manager to load?
|
||||
ESRGAN_MODELS = Literal[
|
||||
|
||||
@@ -2,12 +2,11 @@ import sqlite3
|
||||
import threading
|
||||
from typing import Optional, cast
|
||||
|
||||
from invokeai.app.services.board_image_records.board_image_records_base import BoardImageRecordStorageBase
|
||||
from invokeai.app.services.image_records.image_records_common import ImageRecord, deserialize_image_record
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
|
||||
from .board_image_records_base import BoardImageRecordStorageBase
|
||||
|
||||
|
||||
class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
|
||||
_conn: sqlite3.Connection
|
||||
|
||||
@@ -1,9 +1,8 @@
|
||||
from typing import Optional
|
||||
|
||||
from invokeai.app.services.board_images.board_images_base import BoardImagesServiceABC
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
|
||||
from .board_images_base import BoardImagesServiceABC
|
||||
|
||||
|
||||
class BoardImagesService(BoardImagesServiceABC):
|
||||
__invoker: Invoker
|
||||
|
||||
@@ -1,9 +1,8 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from invokeai.app.services.board_records.board_records_common import BoardChanges, BoardRecord
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from .board_records_common import BoardChanges, BoardRecord
|
||||
|
||||
|
||||
class BoardRecordStorageBase(ABC):
|
||||
"""Low-level service responsible for interfacing with the board record store."""
|
||||
@@ -40,16 +39,12 @@ class BoardRecordStorageBase(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def get_many(
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
self, offset: int = 0, limit: int = 10, include_archived: bool = False
|
||||
) -> OffsetPaginatedResults[BoardRecord]:
|
||||
"""Gets many board records."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_all(
|
||||
self,
|
||||
) -> list[BoardRecord]:
|
||||
def get_all(self, include_archived: bool = False) -> list[BoardRecord]:
|
||||
"""Gets all board records."""
|
||||
pass
|
||||
|
||||
@@ -22,6 +22,10 @@ class BoardRecord(BaseModelExcludeNull):
|
||||
"""The updated timestamp of the image."""
|
||||
cover_image_name: Optional[str] = Field(default=None, description="The name of the cover image of the board.")
|
||||
"""The name of the cover image of the board."""
|
||||
archived: bool = Field(description="Whether or not the board is archived.")
|
||||
"""Whether or not the board is archived."""
|
||||
is_private: Optional[bool] = Field(default=None, description="Whether the board is private.")
|
||||
"""Whether the board is private."""
|
||||
|
||||
|
||||
def deserialize_board_record(board_dict: dict) -> BoardRecord:
|
||||
@@ -35,6 +39,8 @@ def deserialize_board_record(board_dict: dict) -> BoardRecord:
|
||||
created_at = board_dict.get("created_at", get_iso_timestamp())
|
||||
updated_at = board_dict.get("updated_at", get_iso_timestamp())
|
||||
deleted_at = board_dict.get("deleted_at", get_iso_timestamp())
|
||||
archived = board_dict.get("archived", False)
|
||||
is_private = board_dict.get("is_private", False)
|
||||
|
||||
return BoardRecord(
|
||||
board_id=board_id,
|
||||
@@ -43,12 +49,15 @@ def deserialize_board_record(board_dict: dict) -> BoardRecord:
|
||||
created_at=created_at,
|
||||
updated_at=updated_at,
|
||||
deleted_at=deleted_at,
|
||||
archived=archived,
|
||||
is_private=is_private,
|
||||
)
|
||||
|
||||
|
||||
class BoardChanges(BaseModel, extra="forbid"):
|
||||
board_name: Optional[str] = Field(default=None, description="The board's new name.")
|
||||
cover_image_name: Optional[str] = Field(default=None, description="The name of the board's new cover image.")
|
||||
archived: Optional[bool] = Field(default=None, description="Whether or not the board is archived")
|
||||
|
||||
|
||||
class BoardRecordNotFoundException(Exception):
|
||||
|
||||
@@ -2,12 +2,8 @@ import sqlite3
|
||||
import threading
|
||||
from typing import Union, cast
|
||||
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
|
||||
from .board_records_base import BoardRecordStorageBase
|
||||
from .board_records_common import (
|
||||
from invokeai.app.services.board_records.board_records_base import BoardRecordStorageBase
|
||||
from invokeai.app.services.board_records.board_records_common import (
|
||||
BoardChanges,
|
||||
BoardRecord,
|
||||
BoardRecordDeleteException,
|
||||
@@ -15,6 +11,9 @@ from .board_records_common import (
|
||||
BoardRecordSaveException,
|
||||
deserialize_board_record,
|
||||
)
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
|
||||
|
||||
class SqliteBoardRecordStorage(BoardRecordStorageBase):
|
||||
@@ -125,6 +124,17 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
|
||||
(changes.cover_image_name, board_id),
|
||||
)
|
||||
|
||||
# Change the archived status of a board
|
||||
if changes.archived is not None:
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
UPDATE boards
|
||||
SET archived = ?
|
||||
WHERE board_id = ?;
|
||||
""",
|
||||
(changes.archived, board_id),
|
||||
)
|
||||
|
||||
self._conn.commit()
|
||||
except sqlite3.Error as e:
|
||||
self._conn.rollback()
|
||||
@@ -134,35 +144,49 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
|
||||
return self.get(board_id)
|
||||
|
||||
def get_many(
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
self, offset: int = 0, limit: int = 10, include_archived: bool = False
|
||||
) -> OffsetPaginatedResults[BoardRecord]:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
|
||||
# Get all the boards
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
# Build base query
|
||||
base_query = """
|
||||
SELECT *
|
||||
FROM boards
|
||||
{archived_filter}
|
||||
ORDER BY created_at DESC
|
||||
LIMIT ? OFFSET ?;
|
||||
""",
|
||||
(limit, offset),
|
||||
)
|
||||
"""
|
||||
|
||||
# Determine archived filter condition
|
||||
if include_archived:
|
||||
archived_filter = ""
|
||||
else:
|
||||
archived_filter = "WHERE archived = 0"
|
||||
|
||||
final_query = base_query.format(archived_filter=archived_filter)
|
||||
|
||||
# Execute query to fetch boards
|
||||
self._cursor.execute(final_query, (limit, offset))
|
||||
|
||||
result = cast(list[sqlite3.Row], self._cursor.fetchall())
|
||||
boards = [deserialize_board_record(dict(r)) for r in result]
|
||||
|
||||
# Get the total number of boards
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
SELECT COUNT(*)
|
||||
FROM boards
|
||||
WHERE 1=1;
|
||||
# Determine count query
|
||||
if include_archived:
|
||||
count_query = """
|
||||
SELECT COUNT(*)
|
||||
FROM boards;
|
||||
"""
|
||||
)
|
||||
else:
|
||||
count_query = """
|
||||
SELECT COUNT(*)
|
||||
FROM boards
|
||||
WHERE archived = 0;
|
||||
"""
|
||||
|
||||
# Execute count query
|
||||
self._cursor.execute(count_query)
|
||||
|
||||
count = cast(int, self._cursor.fetchone()[0])
|
||||
|
||||
@@ -174,20 +198,25 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
|
||||
finally:
|
||||
self._lock.release()
|
||||
|
||||
def get_all(
|
||||
self,
|
||||
) -> list[BoardRecord]:
|
||||
def get_all(self, include_archived: bool = False) -> list[BoardRecord]:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
|
||||
# Get all the boards
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
base_query = """
|
||||
SELECT *
|
||||
FROM boards
|
||||
{archived_filter}
|
||||
ORDER BY created_at DESC
|
||||
"""
|
||||
)
|
||||
"""
|
||||
|
||||
if include_archived:
|
||||
archived_filter = ""
|
||||
else:
|
||||
archived_filter = "WHERE archived = 0"
|
||||
|
||||
final_query = base_query.format(archived_filter=archived_filter)
|
||||
|
||||
self._cursor.execute(final_query)
|
||||
|
||||
result = cast(list[sqlite3.Row], self._cursor.fetchall())
|
||||
boards = [deserialize_board_record(dict(r)) for r in result]
|
||||
|
||||
@@ -1,10 +1,9 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from invokeai.app.services.board_records.board_records_common import BoardChanges
|
||||
from invokeai.app.services.boards.boards_common import BoardDTO
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from .boards_common import BoardDTO
|
||||
|
||||
|
||||
class BoardServiceABC(ABC):
|
||||
"""High-level service for board management."""
|
||||
@@ -44,16 +43,12 @@ class BoardServiceABC(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def get_many(
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
self, offset: int = 0, limit: int = 10, include_archived: bool = False
|
||||
) -> OffsetPaginatedResults[BoardDTO]:
|
||||
"""Gets many boards."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_all(
|
||||
self,
|
||||
) -> list[BoardDTO]:
|
||||
def get_all(self, include_archived: bool = False) -> list[BoardDTO]:
|
||||
"""Gets all boards."""
|
||||
pass
|
||||
|
||||
@@ -2,7 +2,7 @@ from typing import Optional
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
from ..board_records.board_records_common import BoardRecord
|
||||
from invokeai.app.services.board_records.board_records_common import BoardRecord
|
||||
|
||||
|
||||
class BoardDTO(BoardRecord):
|
||||
|
||||
@@ -1,11 +1,9 @@
|
||||
from invokeai.app.services.board_records.board_records_common import BoardChanges
|
||||
from invokeai.app.services.boards.boards_common import BoardDTO
|
||||
from invokeai.app.services.boards.boards_base import BoardServiceABC
|
||||
from invokeai.app.services.boards.boards_common import BoardDTO, board_record_to_dto
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from .boards_base import BoardServiceABC
|
||||
from .boards_common import board_record_to_dto
|
||||
|
||||
|
||||
class BoardService(BoardServiceABC):
|
||||
__invoker: Invoker
|
||||
@@ -48,8 +46,10 @@ class BoardService(BoardServiceABC):
|
||||
def delete(self, board_id: str) -> None:
|
||||
self.__invoker.services.board_records.delete(board_id)
|
||||
|
||||
def get_many(self, offset: int = 0, limit: int = 10) -> OffsetPaginatedResults[BoardDTO]:
|
||||
board_records = self.__invoker.services.board_records.get_many(offset, limit)
|
||||
def get_many(
|
||||
self, offset: int = 0, limit: int = 10, include_archived: bool = False
|
||||
) -> OffsetPaginatedResults[BoardDTO]:
|
||||
board_records = self.__invoker.services.board_records.get_many(offset, limit, include_archived)
|
||||
board_dtos = []
|
||||
for r in board_records.items:
|
||||
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(r.board_id)
|
||||
@@ -63,8 +63,8 @@ class BoardService(BoardServiceABC):
|
||||
|
||||
return OffsetPaginatedResults[BoardDTO](items=board_dtos, offset=offset, limit=limit, total=len(board_dtos))
|
||||
|
||||
def get_all(self) -> list[BoardDTO]:
|
||||
board_records = self.__invoker.services.board_records.get_all()
|
||||
def get_all(self, include_archived: bool = False) -> list[BoardDTO]:
|
||||
board_records = self.__invoker.services.board_records.get_all(include_archived)
|
||||
board_dtos = []
|
||||
for r in board_records:
|
||||
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(r.board_id)
|
||||
|
||||
@@ -4,6 +4,7 @@ from typing import Optional, Union
|
||||
from zipfile import ZipFile
|
||||
|
||||
from invokeai.app.services.board_records.board_records_common import BoardRecordNotFoundException
|
||||
from invokeai.app.services.bulk_download.bulk_download_base import BulkDownloadBase
|
||||
from invokeai.app.services.bulk_download.bulk_download_common import (
|
||||
DEFAULT_BULK_DOWNLOAD_ID,
|
||||
BulkDownloadException,
|
||||
@@ -15,8 +16,6 @@ from invokeai.app.services.images.images_common import ImageDTO
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
|
||||
from .bulk_download_base import BulkDownloadBase
|
||||
|
||||
|
||||
class BulkDownloadService(BulkDownloadBase):
|
||||
def start(self, invoker: Invoker) -> None:
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
"""Init file for InvokeAI configure package."""
|
||||
|
||||
from invokeai.app.services.config.config_common import PagingArgumentParser
|
||||
|
||||
from .config_default import InvokeAIAppConfig, get_config
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig, get_config
|
||||
|
||||
__all__ = ["InvokeAIAppConfig", "get_config", "PagingArgumentParser"]
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
import locale
|
||||
import os
|
||||
import re
|
||||
@@ -25,14 +26,13 @@ DB_FILE = Path("invokeai.db")
|
||||
LEGACY_INIT_FILE = Path("invokeai.init")
|
||||
DEFAULT_RAM_CACHE = 10.0
|
||||
DEFAULT_VRAM_CACHE = 0.25
|
||||
DEFAULT_CONVERT_CACHE = 20.0
|
||||
DEVICE = Literal["auto", "cpu", "cuda", "cuda:1", "mps"]
|
||||
PRECISION = Literal["auto", "float16", "bfloat16", "float32"]
|
||||
ATTENTION_TYPE = Literal["auto", "normal", "xformers", "sliced", "torch-sdp"]
|
||||
ATTENTION_SLICE_SIZE = Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8]
|
||||
LOG_FORMAT = Literal["plain", "color", "syslog", "legacy"]
|
||||
LOG_LEVEL = Literal["debug", "info", "warning", "error", "critical"]
|
||||
CONFIG_SCHEMA_VERSION = "4.0.1"
|
||||
CONFIG_SCHEMA_VERSION = "4.0.2"
|
||||
|
||||
|
||||
def get_default_ram_cache_size() -> float:
|
||||
@@ -85,7 +85,7 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
log_tokenization: Enable logging of parsed prompt tokens.
|
||||
patchmatch: Enable patchmatch inpaint code.
|
||||
models_dir: Path to the models directory.
|
||||
convert_cache_dir: Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.
|
||||
convert_cache_dir: Path to the converted models cache directory (DEPRECATED, but do not delete because it is needed for migration from previous versions).
|
||||
download_cache_dir: Path to the directory that contains dynamically downloaded models.
|
||||
legacy_conf_dir: Path to directory of legacy checkpoint config files.
|
||||
db_dir: Path to InvokeAI databases directory.
|
||||
@@ -102,7 +102,6 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
profiles_dir: Path to profiles output directory.
|
||||
ram: Maximum memory amount used by memory model cache for rapid switching (GB).
|
||||
vram: Amount of VRAM reserved for model storage (GB).
|
||||
convert_cache: Maximum size of on-disk converted models cache (GB).
|
||||
lazy_offload: Keep models in VRAM until their space is needed.
|
||||
log_memory_usage: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.
|
||||
device: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda`, `cuda:1`, `mps`
|
||||
@@ -113,6 +112,7 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
force_tiled_decode: Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).
|
||||
pil_compress_level: The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.
|
||||
max_queue_size: Maximum number of items in the session queue.
|
||||
clear_queue_on_startup: Empties session queue on startup.
|
||||
allow_nodes: List of nodes to allow. Omit to allow all.
|
||||
deny_nodes: List of nodes to deny. Omit to deny none.
|
||||
node_cache_size: How many cached nodes to keep in memory.
|
||||
@@ -147,7 +147,7 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
|
||||
# PATHS
|
||||
models_dir: Path = Field(default=Path("models"), description="Path to the models directory.")
|
||||
convert_cache_dir: Path = Field(default=Path("models/.convert_cache"), description="Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.")
|
||||
convert_cache_dir: Path = Field(default=Path("models/.convert_cache"), description="Path to the converted models cache directory (DEPRECATED, but do not delete because it is needed for migration from previous versions).")
|
||||
download_cache_dir: Path = Field(default=Path("models/.download_cache"), description="Path to the directory that contains dynamically downloaded models.")
|
||||
legacy_conf_dir: Path = Field(default=Path("configs"), description="Path to directory of legacy checkpoint config files.")
|
||||
db_dir: Path = Field(default=Path("databases"), description="Path to InvokeAI databases directory.")
|
||||
@@ -169,9 +169,8 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
profiles_dir: Path = Field(default=Path("profiles"), description="Path to profiles output directory.")
|
||||
|
||||
# CACHE
|
||||
ram: float = Field(default_factory=get_default_ram_cache_size, gt=0, description="Maximum memory amount used by memory model cache for rapid switching (GB).")
|
||||
vram: float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (GB).")
|
||||
convert_cache: float = Field(default=DEFAULT_CONVERT_CACHE, ge=0, description="Maximum size of on-disk converted models cache (GB).")
|
||||
ram: float = Field(default_factory=get_default_ram_cache_size, gt=0, description="Maximum memory amount used by memory model cache for rapid switching (GB).")
|
||||
vram: float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (GB).")
|
||||
lazy_offload: bool = Field(default=True, description="Keep models in VRAM until their space is needed.")
|
||||
log_memory_usage: bool = Field(default=False, description="If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.")
|
||||
|
||||
@@ -186,6 +185,7 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
force_tiled_decode: bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).")
|
||||
pil_compress_level: int = Field(default=1, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.")
|
||||
max_queue_size: int = Field(default=10000, gt=0, description="Maximum number of items in the session queue.")
|
||||
clear_queue_on_startup: bool = Field(default=False, description="Empties session queue on startup.")
|
||||
|
||||
# NODES
|
||||
allow_nodes: Optional[list[str]] = Field(default=None, description="List of nodes to allow. Omit to allow all.")
|
||||
@@ -355,14 +355,14 @@ class DefaultInvokeAIAppConfig(InvokeAIAppConfig):
|
||||
return (init_settings,)
|
||||
|
||||
|
||||
def migrate_v3_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
|
||||
"""Migrate a v3 config dictionary to a current config object.
|
||||
def migrate_v3_config_dict(config_dict: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Migrate a v3 config dictionary to a v4.0.0.
|
||||
|
||||
Args:
|
||||
config_dict: A dictionary of settings from a v3 config file.
|
||||
|
||||
Returns:
|
||||
An instance of `InvokeAIAppConfig` with the migrated settings.
|
||||
An `InvokeAIAppConfig` config dict.
|
||||
|
||||
"""
|
||||
parsed_config_dict: dict[str, Any] = {}
|
||||
@@ -396,32 +396,41 @@ def migrate_v3_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
|
||||
elif k in InvokeAIAppConfig.model_fields:
|
||||
# skip unknown fields
|
||||
parsed_config_dict[k] = v
|
||||
# When migrating the config file, we should not include currently-set environment variables.
|
||||
config = DefaultInvokeAIAppConfig.model_validate(parsed_config_dict)
|
||||
|
||||
return config
|
||||
parsed_config_dict["schema_version"] = "4.0.0"
|
||||
return parsed_config_dict
|
||||
|
||||
|
||||
def migrate_v4_0_0_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
|
||||
"""Migrate v4.0.0 config dictionary to a current config object.
|
||||
def migrate_v4_0_0_to_4_0_1_config_dict(config_dict: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Migrate v4.0.0 config dictionary to a v4.0.1 config dictionary
|
||||
|
||||
Args:
|
||||
config_dict: A dictionary of settings from a v4.0.0 config file.
|
||||
|
||||
Returns:
|
||||
An instance of `InvokeAIAppConfig` with the migrated settings.
|
||||
A config dict with the settings migrated to v4.0.1.
|
||||
"""
|
||||
parsed_config_dict: dict[str, Any] = {}
|
||||
for k, v in config_dict.items():
|
||||
# autocast was removed from precision in v4.0.1
|
||||
if k == "precision" and v == "autocast":
|
||||
parsed_config_dict["precision"] = "auto"
|
||||
else:
|
||||
parsed_config_dict[k] = v
|
||||
if k == "schema_version":
|
||||
parsed_config_dict[k] = CONFIG_SCHEMA_VERSION
|
||||
config = DefaultInvokeAIAppConfig.model_validate(parsed_config_dict)
|
||||
return config
|
||||
parsed_config_dict: dict[str, Any] = copy.deepcopy(config_dict)
|
||||
# precision "autocast" was replaced by "auto" in v4.0.1
|
||||
if parsed_config_dict.get("precision") == "autocast":
|
||||
parsed_config_dict["precision"] = "auto"
|
||||
parsed_config_dict["schema_version"] = "4.0.1"
|
||||
return parsed_config_dict
|
||||
|
||||
|
||||
def migrate_v4_0_1_to_4_0_2_config_dict(config_dict: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Migrate v4.0.1 config dictionary to a v4.0.2 config dictionary.
|
||||
|
||||
Args:
|
||||
config_dict: A dictionary of settings from a v4.0.1 config file.
|
||||
|
||||
Returns:
|
||||
An config dict with the settings migrated to v4.0.2.
|
||||
"""
|
||||
parsed_config_dict: dict[str, Any] = copy.deepcopy(config_dict)
|
||||
# convert_cache was removed in 4.0.2
|
||||
parsed_config_dict.pop("convert_cache", None)
|
||||
parsed_config_dict["schema_version"] = "4.0.2"
|
||||
return parsed_config_dict
|
||||
|
||||
|
||||
def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
|
||||
@@ -435,27 +444,31 @@ def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
|
||||
"""
|
||||
assert config_path.suffix == ".yaml"
|
||||
with open(config_path, "rt", encoding=locale.getpreferredencoding()) as file:
|
||||
loaded_config_dict = yaml.safe_load(file)
|
||||
loaded_config_dict: dict[str, Any] = yaml.safe_load(file)
|
||||
|
||||
assert isinstance(loaded_config_dict, dict)
|
||||
|
||||
migrated = False
|
||||
if "InvokeAI" in loaded_config_dict:
|
||||
# This is a v3 config file, attempt to migrate it
|
||||
migrated = True
|
||||
loaded_config_dict = migrate_v3_config_dict(loaded_config_dict) # pyright: ignore [reportUnknownArgumentType]
|
||||
if loaded_config_dict["schema_version"] == "4.0.0":
|
||||
migrated = True
|
||||
loaded_config_dict = migrate_v4_0_0_to_4_0_1_config_dict(loaded_config_dict)
|
||||
if loaded_config_dict["schema_version"] == "4.0.1":
|
||||
migrated = True
|
||||
loaded_config_dict = migrate_v4_0_1_to_4_0_2_config_dict(loaded_config_dict)
|
||||
|
||||
if migrated:
|
||||
shutil.copy(config_path, config_path.with_suffix(".yaml.bak"))
|
||||
try:
|
||||
# loaded_config_dict could be the wrong shape, but we will catch all exceptions below
|
||||
migrated_config = migrate_v3_config_dict(loaded_config_dict) # pyright: ignore [reportUnknownArgumentType]
|
||||
# load and write without environment variables
|
||||
migrated_config = DefaultInvokeAIAppConfig.model_validate(loaded_config_dict)
|
||||
migrated_config.write_file(config_path)
|
||||
except Exception as e:
|
||||
shutil.copy(config_path.with_suffix(".yaml.bak"), config_path)
|
||||
raise RuntimeError(f"Failed to load and migrate v3 config file {config_path}: {e}") from e
|
||||
migrated_config.write_file(config_path)
|
||||
return migrated_config
|
||||
|
||||
if loaded_config_dict["schema_version"] == "4.0.0":
|
||||
loaded_config_dict = migrate_v4_0_0_config_dict(loaded_config_dict)
|
||||
loaded_config_dict.write_file(config_path)
|
||||
|
||||
# Attempt to load as a v4 config file
|
||||
try:
|
||||
# Meta is not included in the model fields, so we need to validate it separately
|
||||
config = InvokeAIAppConfig.model_validate(loaded_config_dict)
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
"""Init file for download queue."""
|
||||
|
||||
from .download_base import (
|
||||
from invokeai.app.services.download.download_base import (
|
||||
DownloadJob,
|
||||
DownloadJobStatus,
|
||||
DownloadQueueServiceBase,
|
||||
MultiFileDownloadJob,
|
||||
UnknownJobIDException,
|
||||
)
|
||||
from .download_default import DownloadQueueService, TqdmProgress
|
||||
from invokeai.app.services.download.download_default import DownloadQueueService, TqdmProgress
|
||||
|
||||
__all__ = [
|
||||
"DownloadJob",
|
||||
|
||||
@@ -16,12 +16,7 @@ from requests import HTTPError
|
||||
from tqdm import tqdm
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig, get_config
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.util.misc import get_iso_timestamp
|
||||
from invokeai.backend.model_manager.metadata import RemoteModelFile
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from .download_base import (
|
||||
from invokeai.app.services.download.download_base import (
|
||||
DownloadEventHandler,
|
||||
DownloadExceptionHandler,
|
||||
DownloadJob,
|
||||
@@ -33,6 +28,10 @@ from .download_base import (
|
||||
ServiceInactiveException,
|
||||
UnknownJobIDException,
|
||||
)
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.util.misc import get_iso_timestamp
|
||||
from invokeai.backend.model_manager.metadata import RemoteModelFile
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
# Maximum number of bytes to download during each call to requests.iter_content()
|
||||
DOWNLOAD_CHUNK_SIZE = 100000
|
||||
@@ -185,7 +184,7 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
job = DownloadJob(
|
||||
source=url,
|
||||
dest=path,
|
||||
access_token=access_token,
|
||||
access_token=access_token or self._lookup_access_token(url),
|
||||
)
|
||||
mfdj.download_parts.add(job)
|
||||
self._download_part2parent[job.source] = mfdj
|
||||
|
||||
@@ -6,12 +6,11 @@ from queue import Empty, Queue
|
||||
|
||||
from fastapi_events.dispatcher import dispatch
|
||||
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.events.events_common import (
|
||||
EventBase,
|
||||
)
|
||||
|
||||
from .events_base import EventServiceBase
|
||||
|
||||
|
||||
class FastAPIEventService(EventServiceBase):
|
||||
def __init__(self, event_handler_id: int) -> None:
|
||||
|
||||
@@ -7,12 +7,15 @@ from PIL import Image, PngImagePlugin
|
||||
from PIL.Image import Image as PILImageType
|
||||
from send2trash import send2trash
|
||||
|
||||
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
|
||||
from invokeai.app.services.image_files.image_files_common import (
|
||||
ImageFileDeleteException,
|
||||
ImageFileNotFoundException,
|
||||
ImageFileSaveException,
|
||||
)
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
|
||||
|
||||
from .image_files_base import ImageFileStorageBase
|
||||
from .image_files_common import ImageFileDeleteException, ImageFileNotFoundException, ImageFileSaveException
|
||||
|
||||
|
||||
class DiskImageFileStorage(ImageFileStorageBase):
|
||||
"""Stores images on disk"""
|
||||
|
||||
@@ -3,9 +3,14 @@ from datetime import datetime
|
||||
from typing import Optional
|
||||
|
||||
from invokeai.app.invocations.fields import MetadataField
|
||||
from invokeai.app.services.image_records.image_records_common import (
|
||||
ImageCategory,
|
||||
ImageRecord,
|
||||
ImageRecordChanges,
|
||||
ResourceOrigin,
|
||||
)
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from .image_records_common import ImageCategory, ImageRecord, ImageRecordChanges, ResourceOrigin
|
||||
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
|
||||
|
||||
|
||||
class ImageRecordStorageBase(ABC):
|
||||
@@ -37,10 +42,13 @@ class ImageRecordStorageBase(ABC):
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
starred_first: bool = True,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageRecord]:
|
||||
"""Gets a page of image records."""
|
||||
pass
|
||||
|
||||
@@ -4,11 +4,8 @@ from datetime import datetime
|
||||
from typing import Optional, Union, cast
|
||||
|
||||
from invokeai.app.invocations.fields import MetadataField, MetadataFieldValidator
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
|
||||
from .image_records_base import ImageRecordStorageBase
|
||||
from .image_records_common import (
|
||||
from invokeai.app.services.image_records.image_records_base import ImageRecordStorageBase
|
||||
from invokeai.app.services.image_records.image_records_common import (
|
||||
IMAGE_DTO_COLS,
|
||||
ImageCategory,
|
||||
ImageRecord,
|
||||
@@ -19,6 +16,9 @@ from .image_records_common import (
|
||||
ResourceOrigin,
|
||||
deserialize_image_record,
|
||||
)
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
|
||||
|
||||
class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
@@ -144,10 +144,13 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
starred_first: bool = True,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageRecord]:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
@@ -208,9 +211,21 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
"""
|
||||
query_params.append(board_id)
|
||||
|
||||
query_pagination = """--sql
|
||||
ORDER BY images.starred DESC, images.created_at DESC LIMIT ? OFFSET ?
|
||||
"""
|
||||
# Search term condition
|
||||
if search_term:
|
||||
query_conditions += """--sql
|
||||
AND images.metadata LIKE ?
|
||||
"""
|
||||
query_params.append(f"%{search_term.lower()}%")
|
||||
|
||||
if starred_first:
|
||||
query_pagination = f"""--sql
|
||||
ORDER BY images.starred DESC, images.created_at {order_dir.value} LIMIT ? OFFSET ?
|
||||
"""
|
||||
else:
|
||||
query_pagination = f"""--sql
|
||||
ORDER BY images.created_at {order_dir.value} LIMIT ? OFFSET ?
|
||||
"""
|
||||
|
||||
# Final images query with pagination
|
||||
images_query += query_conditions + query_pagination + ";"
|
||||
|
||||
@@ -12,6 +12,7 @@ from invokeai.app.services.image_records.image_records_common import (
|
||||
)
|
||||
from invokeai.app.services.images.images_common import ImageDTO
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
|
||||
|
||||
|
||||
class ImageServiceABC(ABC):
|
||||
@@ -116,10 +117,13 @@ class ImageServiceABC(ABC):
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
starred_first: bool = True,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageDTO]:
|
||||
"""Gets a paginated list of image DTOs."""
|
||||
pass
|
||||
|
||||
@@ -3,15 +3,12 @@ from typing import Optional
|
||||
from PIL.Image import Image as PILImageType
|
||||
|
||||
from invokeai.app.invocations.fields import MetadataField
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from ..image_files.image_files_common import (
|
||||
from invokeai.app.services.image_files.image_files_common import (
|
||||
ImageFileDeleteException,
|
||||
ImageFileNotFoundException,
|
||||
ImageFileSaveException,
|
||||
)
|
||||
from ..image_records.image_records_common import (
|
||||
from invokeai.app.services.image_records.image_records_common import (
|
||||
ImageCategory,
|
||||
ImageRecord,
|
||||
ImageRecordChanges,
|
||||
@@ -22,8 +19,11 @@ from ..image_records.image_records_common import (
|
||||
InvalidOriginException,
|
||||
ResourceOrigin,
|
||||
)
|
||||
from .images_base import ImageServiceABC
|
||||
from .images_common import ImageDTO, image_record_to_dto
|
||||
from invokeai.app.services.images.images_base import ImageServiceABC
|
||||
from invokeai.app.services.images.images_common import ImageDTO, image_record_to_dto
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
|
||||
|
||||
|
||||
class ImageService(ImageServiceABC):
|
||||
@@ -73,7 +73,12 @@ class ImageService(ImageServiceABC):
|
||||
session_id=session_id,
|
||||
)
|
||||
if board_id is not None:
|
||||
self.__invoker.services.board_image_records.add_image_to_board(board_id=board_id, image_name=image_name)
|
||||
try:
|
||||
self.__invoker.services.board_image_records.add_image_to_board(
|
||||
board_id=board_id, image_name=image_name
|
||||
)
|
||||
except Exception as e:
|
||||
self.__invoker.services.logger.warn(f"Failed to add image to board {board_id}: {str(e)}")
|
||||
self.__invoker.services.image_files.save(
|
||||
image_name=image_name, image=image, metadata=metadata, workflow=workflow, graph=graph
|
||||
)
|
||||
@@ -202,19 +207,25 @@ class ImageService(ImageServiceABC):
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
starred_first: bool = True,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageDTO]:
|
||||
try:
|
||||
results = self.__invoker.services.image_records.get_many(
|
||||
offset,
|
||||
limit,
|
||||
starred_first,
|
||||
order_dir,
|
||||
image_origin,
|
||||
categories,
|
||||
is_intermediate,
|
||||
board_id,
|
||||
search_term,
|
||||
)
|
||||
|
||||
image_dtos = [
|
||||
|
||||
@@ -10,29 +10,28 @@ if TYPE_CHECKING:
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.app.services.board_image_records.board_image_records_base import BoardImageRecordStorageBase
|
||||
from invokeai.app.services.board_images.board_images_base import BoardImagesServiceABC
|
||||
from invokeai.app.services.board_records.board_records_base import BoardRecordStorageBase
|
||||
from invokeai.app.services.boards.boards_base import BoardServiceABC
|
||||
from invokeai.app.services.bulk_download.bulk_download_base import BulkDownloadBase
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.download import DownloadQueueServiceBase
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
|
||||
from invokeai.app.services.image_records.image_records_base import ImageRecordStorageBase
|
||||
from invokeai.app.services.images.images_base import ImageServiceABC
|
||||
from invokeai.app.services.invocation_cache.invocation_cache_base import InvocationCacheBase
|
||||
from invokeai.app.services.invocation_stats.invocation_stats_base import InvocationStatsServiceBase
|
||||
from invokeai.app.services.model_images.model_images_base import ModelImageFileStorageBase
|
||||
from invokeai.app.services.model_manager.model_manager_base import ModelManagerServiceBase
|
||||
from invokeai.app.services.names.names_base import NameServiceBase
|
||||
from invokeai.app.services.session_processor.session_processor_base import SessionProcessorBase
|
||||
from invokeai.app.services.session_queue.session_queue_base import SessionQueueBase
|
||||
from invokeai.app.services.urls.urls_base import UrlServiceBase
|
||||
from invokeai.app.services.workflow_records.workflow_records_base import WorkflowRecordsStorageBase
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
|
||||
|
||||
from .board_image_records.board_image_records_base import BoardImageRecordStorageBase
|
||||
from .board_images.board_images_base import BoardImagesServiceABC
|
||||
from .board_records.board_records_base import BoardRecordStorageBase
|
||||
from .boards.boards_base import BoardServiceABC
|
||||
from .bulk_download.bulk_download_base import BulkDownloadBase
|
||||
from .config import InvokeAIAppConfig
|
||||
from .download import DownloadQueueServiceBase
|
||||
from .events.events_base import EventServiceBase
|
||||
from .image_files.image_files_base import ImageFileStorageBase
|
||||
from .image_records.image_records_base import ImageRecordStorageBase
|
||||
from .images.images_base import ImageServiceABC
|
||||
from .invocation_cache.invocation_cache_base import InvocationCacheBase
|
||||
from .invocation_stats.invocation_stats_base import InvocationStatsServiceBase
|
||||
from .model_images.model_images_base import ModelImageFileStorageBase
|
||||
from .model_manager.model_manager_base import ModelManagerServiceBase
|
||||
from .names.names_base import NameServiceBase
|
||||
from .session_processor.session_processor_base import SessionProcessorBase
|
||||
from .session_queue.session_queue_base import SessionQueueBase
|
||||
from .urls.urls_base import UrlServiceBase
|
||||
from .workflow_records.workflow_records_base import WorkflowRecordsStorageBase
|
||||
|
||||
|
||||
class InvocationServices:
|
||||
"""Services that can be used by invocations"""
|
||||
|
||||
@@ -9,11 +9,8 @@ import torch
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.backend.model_manager.load.model_cache import CacheStats
|
||||
|
||||
from .invocation_stats_base import InvocationStatsServiceBase
|
||||
from .invocation_stats_common import (
|
||||
from invokeai.app.services.invocation_stats.invocation_stats_base import InvocationStatsServiceBase
|
||||
from invokeai.app.services.invocation_stats.invocation_stats_common import (
|
||||
GESStatsNotFoundError,
|
||||
GraphExecutionStats,
|
||||
GraphExecutionStatsSummary,
|
||||
@@ -22,6 +19,8 @@ from .invocation_stats_common import (
|
||||
NodeExecutionStats,
|
||||
NodeExecutionStatsSummary,
|
||||
)
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.backend.model_manager.load.model_cache import CacheStats
|
||||
|
||||
# Size of 1GB in bytes.
|
||||
GB = 2**30
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
|
||||
from .invocation_services import InvocationServices
|
||||
from invokeai.app.services.invocation_services import InvocationServices
|
||||
|
||||
|
||||
class Invoker:
|
||||
|
||||
@@ -5,15 +5,14 @@ from PIL.Image import Image as PILImageType
|
||||
from send2trash import send2trash
|
||||
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.app.util.thumbnails import make_thumbnail
|
||||
|
||||
from .model_images_base import ModelImageFileStorageBase
|
||||
from .model_images_common import (
|
||||
from invokeai.app.services.model_images.model_images_base import ModelImageFileStorageBase
|
||||
from invokeai.app.services.model_images.model_images_common import (
|
||||
ModelImageFileDeleteException,
|
||||
ModelImageFileNotFoundException,
|
||||
ModelImageFileSaveException,
|
||||
)
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.app.util.thumbnails import make_thumbnail
|
||||
|
||||
|
||||
class ModelImageFileStorageDisk(ModelImageFileStorageBase):
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
"""Initialization file for model install service package."""
|
||||
|
||||
from .model_install_base import (
|
||||
ModelInstallServiceBase,
|
||||
)
|
||||
from .model_install_common import (
|
||||
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
|
||||
from invokeai.app.services.model_install.model_install_common import (
|
||||
HFModelSource,
|
||||
InstallStatus,
|
||||
LocalModelSource,
|
||||
@@ -12,7 +10,7 @@ from .model_install_common import (
|
||||
UnknownInstallJobException,
|
||||
URLModelSource,
|
||||
)
|
||||
from .model_install_default import ModelInstallService
|
||||
from invokeai.app.services.model_install.model_install_default import ModelInstallService
|
||||
|
||||
__all__ = [
|
||||
"ModelInstallServiceBase",
|
||||
|
||||
@@ -23,6 +23,16 @@ from invokeai.app.services.download import DownloadQueueServiceBase, MultiFileDo
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
|
||||
from invokeai.app.services.model_install.model_install_common import (
|
||||
MODEL_SOURCE_TO_TYPE_MAP,
|
||||
HFModelSource,
|
||||
InstallStatus,
|
||||
LocalModelSource,
|
||||
ModelInstallJob,
|
||||
ModelSource,
|
||||
StringLikeSource,
|
||||
URLModelSource,
|
||||
)
|
||||
from invokeai.app.services.model_records import DuplicateModelException, ModelRecordServiceBase
|
||||
from invokeai.app.services.model_records.model_records_base import ModelRecordChanges
|
||||
from invokeai.backend.model_manager.config import (
|
||||
@@ -47,17 +57,6 @@ from invokeai.backend.util.catch_sigint import catch_sigint
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.util import slugify
|
||||
|
||||
from .model_install_common import (
|
||||
MODEL_SOURCE_TO_TYPE_MAP,
|
||||
HFModelSource,
|
||||
InstallStatus,
|
||||
LocalModelSource,
|
||||
ModelInstallJob,
|
||||
ModelSource,
|
||||
StringLikeSource,
|
||||
URLModelSource,
|
||||
)
|
||||
|
||||
TMPDIR_PREFIX = "tmpinstall_"
|
||||
|
||||
|
||||
@@ -848,7 +847,7 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
with self._lock:
|
||||
if install_job := self._download_cache.pop(download_job.id, None):
|
||||
assert excp is not None
|
||||
install_job.set_error(excp)
|
||||
self._set_error(install_job, excp)
|
||||
self._download_queue.cancel_job(download_job)
|
||||
|
||||
# Let other threads know that the number of downloads has changed
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
"""Initialization file for model load service module."""
|
||||
|
||||
from .model_load_base import ModelLoadServiceBase
|
||||
from .model_load_default import ModelLoadService
|
||||
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
|
||||
from invokeai.app.services.model_load.model_load_default import ModelLoadService
|
||||
|
||||
__all__ = ["ModelLoadServiceBase", "ModelLoadService"]
|
||||
|
||||
@@ -7,7 +7,6 @@ from typing import Callable, Optional
|
||||
|
||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
|
||||
from invokeai.backend.model_manager.load import LoadedModel, LoadedModelWithoutConfig
|
||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
||||
|
||||
|
||||
@@ -28,11 +27,6 @@ class ModelLoadServiceBase(ABC):
|
||||
def ram_cache(self) -> ModelCacheBase[AnyModel]:
|
||||
"""Return the RAM cache used by this loader."""
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def convert_cache(self) -> ModelConvertCacheBase:
|
||||
"""Return the checkpoint convert cache used by this loader."""
|
||||
|
||||
@abstractmethod
|
||||
def load_model_from_path(
|
||||
self, model_path: Path, loader: Optional[Callable[[Path], AnyModel]] = None
|
||||
|
||||
@@ -10,6 +10,7 @@ from torch import load as torch_load
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
|
||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
|
||||
from invokeai.backend.model_manager.load import (
|
||||
LoadedModel,
|
||||
@@ -17,14 +18,11 @@ from invokeai.backend.model_manager.load import (
|
||||
ModelLoaderRegistry,
|
||||
ModelLoaderRegistryBase,
|
||||
)
|
||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
||||
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from .model_load_base import ModelLoadServiceBase
|
||||
|
||||
|
||||
class ModelLoadService(ModelLoadServiceBase):
|
||||
"""Wrapper around ModelLoaderRegistry."""
|
||||
@@ -33,7 +31,6 @@ class ModelLoadService(ModelLoadServiceBase):
|
||||
self,
|
||||
app_config: InvokeAIAppConfig,
|
||||
ram_cache: ModelCacheBase[AnyModel],
|
||||
convert_cache: ModelConvertCacheBase,
|
||||
registry: Optional[Type[ModelLoaderRegistryBase]] = ModelLoaderRegistry,
|
||||
):
|
||||
"""Initialize the model load service."""
|
||||
@@ -42,7 +39,6 @@ class ModelLoadService(ModelLoadServiceBase):
|
||||
self._logger = logger
|
||||
self._app_config = app_config
|
||||
self._ram_cache = ram_cache
|
||||
self._convert_cache = convert_cache
|
||||
self._registry = registry
|
||||
|
||||
def start(self, invoker: Invoker) -> None:
|
||||
@@ -53,11 +49,6 @@ class ModelLoadService(ModelLoadServiceBase):
|
||||
"""Return the RAM cache used by this loader."""
|
||||
return self._ram_cache
|
||||
|
||||
@property
|
||||
def convert_cache(self) -> ModelConvertCacheBase:
|
||||
"""Return the checkpoint convert cache used by this loader."""
|
||||
return self._convert_cache
|
||||
|
||||
def load_model(self, model_config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
|
||||
"""
|
||||
Given a model's configuration, load it and return the LoadedModel object.
|
||||
@@ -76,7 +67,6 @@ class ModelLoadService(ModelLoadServiceBase):
|
||||
app_config=self._app_config,
|
||||
logger=self._logger,
|
||||
ram_cache=self._ram_cache,
|
||||
convert_cache=self._convert_cache,
|
||||
).load_model(model_config, submodel_type)
|
||||
|
||||
if hasattr(self, "_invoker"):
|
||||
|
||||
@@ -1,10 +1,9 @@
|
||||
"""Initialization file for model manager service."""
|
||||
|
||||
from invokeai.app.services.model_manager.model_manager_default import ModelManagerService, ModelManagerServiceBase
|
||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, BaseModelType, ModelType, SubModelType
|
||||
from invokeai.backend.model_manager.load import LoadedModel
|
||||
|
||||
from .model_manager_default import ModelManagerService, ModelManagerServiceBase
|
||||
|
||||
__all__ = [
|
||||
"ModelManagerServiceBase",
|
||||
"ModelManagerService",
|
||||
|
||||
@@ -5,14 +5,13 @@ from abc import ABC, abstractmethod
|
||||
import torch
|
||||
from typing_extensions import Self
|
||||
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
||||
from invokeai.app.services.download.download_base import DownloadQueueServiceBase
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
|
||||
from ..config import InvokeAIAppConfig
|
||||
from ..download import DownloadQueueServiceBase
|
||||
from ..events.events_base import EventServiceBase
|
||||
from ..model_install import ModelInstallServiceBase
|
||||
from ..model_load import ModelLoadServiceBase
|
||||
from ..model_records import ModelRecordServiceBase
|
||||
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
|
||||
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
|
||||
from invokeai.app.services.model_records.model_records_base import ModelRecordServiceBase
|
||||
|
||||
|
||||
class ModelManagerServiceBase(ABC):
|
||||
|
||||
@@ -6,19 +6,20 @@ from typing import Optional
|
||||
import torch
|
||||
from typing_extensions import Self
|
||||
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
||||
from invokeai.app.services.download.download_base import DownloadQueueServiceBase
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.backend.model_manager.load import ModelCache, ModelConvertCache, ModelLoaderRegistry
|
||||
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
|
||||
from invokeai.app.services.model_install.model_install_default import ModelInstallService
|
||||
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
|
||||
from invokeai.app.services.model_load.model_load_default import ModelLoadService
|
||||
from invokeai.app.services.model_manager.model_manager_base import ModelManagerServiceBase
|
||||
from invokeai.app.services.model_records.model_records_base import ModelRecordServiceBase
|
||||
from invokeai.backend.model_manager.load import ModelCache, ModelLoaderRegistry
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from ..config import InvokeAIAppConfig
|
||||
from ..download import DownloadQueueServiceBase
|
||||
from ..events.events_base import EventServiceBase
|
||||
from ..model_install import ModelInstallService, ModelInstallServiceBase
|
||||
from ..model_load import ModelLoadService, ModelLoadServiceBase
|
||||
from ..model_records import ModelRecordServiceBase
|
||||
from .model_manager_base import ModelManagerServiceBase
|
||||
|
||||
|
||||
class ModelManagerService(ModelManagerServiceBase):
|
||||
"""
|
||||
@@ -86,11 +87,9 @@ class ModelManagerService(ModelManagerServiceBase):
|
||||
logger=logger,
|
||||
execution_device=execution_device or TorchDevice.choose_torch_device(),
|
||||
)
|
||||
convert_cache = ModelConvertCache(cache_path=app_config.convert_cache_path, max_size=app_config.convert_cache)
|
||||
loader = ModelLoadService(
|
||||
app_config=app_config,
|
||||
ram_cache=ram_cache,
|
||||
convert_cache=convert_cache,
|
||||
registry=ModelLoaderRegistry,
|
||||
)
|
||||
installer = ModelInstallService(
|
||||
|
||||
@@ -40,12 +40,24 @@ Typical usage:
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import sqlite3
|
||||
from math import ceil
|
||||
from pathlib import Path
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import pydantic
|
||||
|
||||
from invokeai.app.services.model_records.model_records_base import (
|
||||
DuplicateModelException,
|
||||
ModelRecordChanges,
|
||||
ModelRecordOrderBy,
|
||||
ModelRecordServiceBase,
|
||||
ModelSummary,
|
||||
UnknownModelException,
|
||||
)
|
||||
from invokeai.app.services.shared.pagination import PaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
@@ -54,21 +66,11 @@ from invokeai.backend.model_manager.config import (
|
||||
ModelType,
|
||||
)
|
||||
|
||||
from ..shared.sqlite.sqlite_database import SqliteDatabase
|
||||
from .model_records_base import (
|
||||
DuplicateModelException,
|
||||
ModelRecordChanges,
|
||||
ModelRecordOrderBy,
|
||||
ModelRecordServiceBase,
|
||||
ModelSummary,
|
||||
UnknownModelException,
|
||||
)
|
||||
|
||||
|
||||
class ModelRecordServiceSQL(ModelRecordServiceBase):
|
||||
"""Implementation of the ModelConfigStore ABC using a SQL database."""
|
||||
|
||||
def __init__(self, db: SqliteDatabase):
|
||||
def __init__(self, db: SqliteDatabase, logger: logging.Logger):
|
||||
"""
|
||||
Initialize a new object from preexisting sqlite3 connection and threading lock objects.
|
||||
|
||||
@@ -77,6 +79,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
|
||||
super().__init__()
|
||||
self._db = db
|
||||
self._cursor = db.conn.cursor()
|
||||
self._logger = logger
|
||||
|
||||
@property
|
||||
def db(self) -> SqliteDatabase:
|
||||
@@ -292,7 +295,20 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
|
||||
tuple(bindings),
|
||||
)
|
||||
result = self._cursor.fetchall()
|
||||
results = [ModelConfigFactory.make_config(json.loads(x[0]), timestamp=x[1]) for x in result]
|
||||
|
||||
# Parse the model configs.
|
||||
results: list[AnyModelConfig] = []
|
||||
for row in result:
|
||||
try:
|
||||
model_config = ModelConfigFactory.make_config(json.loads(row[0]), timestamp=row[1])
|
||||
except pydantic.ValidationError:
|
||||
# We catch this error so that the app can still run if there are invalid model configs in the database.
|
||||
# One reason that an invalid model config might be in the database is if someone had to rollback from a
|
||||
# newer version of the app that added a new model type.
|
||||
self._logger.warning(f"Found an invalid model config in the database. Ignoring this model. ({row[0]})")
|
||||
else:
|
||||
results.append(model_config)
|
||||
|
||||
return results
|
||||
|
||||
def search_by_path(self, path: Union[str, Path]) -> List[AnyModelConfig]:
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
from invokeai.app.services.names.names_base import NameServiceBase
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
|
||||
from .names_base import NameServiceBase
|
||||
|
||||
|
||||
class SimpleNameService(NameServiceBase):
|
||||
"""Creates image names from UUIDs."""
|
||||
|
||||
@@ -13,24 +13,24 @@ from invokeai.app.services.events.events_common import (
|
||||
register_events,
|
||||
)
|
||||
from invokeai.app.services.invocation_stats.invocation_stats_common import GESStatsNotFoundError
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.session_processor.session_processor_base import (
|
||||
InvocationServices,
|
||||
OnAfterRunNode,
|
||||
OnAfterRunSession,
|
||||
OnBeforeRunNode,
|
||||
OnBeforeRunSession,
|
||||
OnNodeError,
|
||||
OnNonFatalProcessorError,
|
||||
SessionProcessorBase,
|
||||
SessionRunnerBase,
|
||||
)
|
||||
from invokeai.app.services.session_processor.session_processor_common import CanceledException
|
||||
from invokeai.app.services.session_processor.session_processor_common import CanceledException, SessionProcessorStatus
|
||||
from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem, SessionQueueItemNotFoundError
|
||||
from invokeai.app.services.shared.graph import NodeInputError
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContextData, build_invocation_context
|
||||
from invokeai.app.util.profiler import Profiler
|
||||
|
||||
from ..invoker import Invoker
|
||||
from .session_processor_base import InvocationServices, SessionProcessorBase, SessionRunnerBase
|
||||
from .session_processor_common import SessionProcessorStatus
|
||||
|
||||
|
||||
class DefaultSessionRunner(SessionRunnerBase):
|
||||
"""Processes a single session's invocations."""
|
||||
|
||||
@@ -37,10 +37,14 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
def start(self, invoker: Invoker) -> None:
|
||||
self.__invoker = invoker
|
||||
self._set_in_progress_to_canceled()
|
||||
prune_result = self.prune(DEFAULT_QUEUE_ID)
|
||||
|
||||
if prune_result.deleted > 0:
|
||||
self.__invoker.services.logger.info(f"Pruned {prune_result.deleted} finished queue items")
|
||||
if self.__invoker.services.configuration.clear_queue_on_startup:
|
||||
clear_result = self.clear(DEFAULT_QUEUE_ID)
|
||||
if clear_result.deleted > 0:
|
||||
self.__invoker.services.logger.info(f"Cleared all {clear_result.deleted} queue items")
|
||||
else:
|
||||
prune_result = self.prune(DEFAULT_QUEUE_ID)
|
||||
if prune_result.deleted > 0:
|
||||
self.__invoker.services.logger.info(f"Pruned {prune_result.deleted} finished queue items")
|
||||
|
||||
def __init__(self, db: SqliteDatabase) -> None:
|
||||
super().__init__()
|
||||
|
||||
@@ -652,7 +652,7 @@ class Graph(BaseModel):
|
||||
output_fields = [get_input_field(self.get_node(e.node_id), e.field) for e in outputs]
|
||||
|
||||
# Input type must be a list
|
||||
if get_origin(input_field) != list:
|
||||
if get_origin(input_field) is not list:
|
||||
return False
|
||||
|
||||
# Validate that all outputs match the input type
|
||||
|
||||
@@ -14,6 +14,8 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_8 import
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_9 import build_migration_9
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_10 import build_migration_10
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_11 import build_migration_11
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_12 import build_migration_12
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_13 import build_migration_13
|
||||
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
|
||||
|
||||
|
||||
@@ -45,6 +47,8 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
|
||||
migrator.register_migration(build_migration_9())
|
||||
migrator.register_migration(build_migration_10())
|
||||
migrator.register_migration(build_migration_11(app_config=config, logger=logger))
|
||||
migrator.register_migration(build_migration_12(app_config=config))
|
||||
migrator.register_migration(build_migration_13())
|
||||
migrator.run_migrations()
|
||||
|
||||
return db
|
||||
|
||||
@@ -0,0 +1,35 @@
|
||||
import shutil
|
||||
import sqlite3
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
|
||||
|
||||
|
||||
class Migration12Callback:
|
||||
def __init__(self, app_config: InvokeAIAppConfig) -> None:
|
||||
self._app_config = app_config
|
||||
|
||||
def __call__(self, cursor: sqlite3.Cursor) -> None:
|
||||
self._remove_model_convert_cache_dir()
|
||||
|
||||
def _remove_model_convert_cache_dir(self) -> None:
|
||||
"""
|
||||
Removes unused model convert cache directory
|
||||
"""
|
||||
convert_cache = self._app_config.convert_cache_path
|
||||
shutil.rmtree(convert_cache, ignore_errors=True)
|
||||
|
||||
|
||||
def build_migration_12(app_config: InvokeAIAppConfig) -> Migration:
|
||||
"""
|
||||
Build the migration from database version 11 to 12.
|
||||
|
||||
This migration removes the now-unused model convert cache directory.
|
||||
"""
|
||||
migration_12 = Migration(
|
||||
from_version=11,
|
||||
to_version=12,
|
||||
callback=Migration12Callback(app_config),
|
||||
)
|
||||
|
||||
return migration_12
|
||||
@@ -0,0 +1,31 @@
|
||||
import sqlite3
|
||||
|
||||
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
|
||||
|
||||
|
||||
class Migration13Callback:
|
||||
def __call__(self, cursor: sqlite3.Cursor) -> None:
|
||||
self._add_archived_col(cursor)
|
||||
|
||||
def _add_archived_col(self, cursor: sqlite3.Cursor) -> None:
|
||||
"""
|
||||
- Adds `archived` columns to the board table.
|
||||
"""
|
||||
|
||||
cursor.execute("ALTER TABLE boards ADD COLUMN archived BOOLEAN DEFAULT FALSE;")
|
||||
|
||||
|
||||
def build_migration_13() -> Migration:
|
||||
"""
|
||||
Build the migration from database version 12 to 13..
|
||||
|
||||
This migration does the following:
|
||||
- Adds `archived` columns to the board table.
|
||||
"""
|
||||
migration_13 = Migration(
|
||||
from_version=12,
|
||||
to_version=13,
|
||||
callback=Migration13Callback(),
|
||||
)
|
||||
|
||||
return migration_13
|
||||
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
|
||||
from .urls_base import UrlServiceBase
|
||||
from invokeai.app.services.urls.urls_base import UrlServiceBase
|
||||
|
||||
|
||||
class LocalUrlService(UrlServiceBase):
|
||||
|
||||
@@ -289,7 +289,7 @@ def prepare_control_image(
|
||||
width: int,
|
||||
height: int,
|
||||
num_channels: int = 3,
|
||||
device: str = "cuda",
|
||||
device: str | torch.device = "cuda",
|
||||
dtype: torch.dtype = torch.float16,
|
||||
control_mode: CONTROLNET_MODE_VALUES = "balanced",
|
||||
resize_mode: CONTROLNET_RESIZE_VALUES = "just_resize_simple",
|
||||
@@ -304,7 +304,7 @@ def prepare_control_image(
|
||||
num_channels (int, optional): The target number of image channels. This is achieved by converting the input
|
||||
image to RGB, then naively taking the first `num_channels` channels. The primary use case is converting a
|
||||
RGB image to a single-channel grayscale image. Raises if `num_channels` cannot be achieved. Defaults to 3.
|
||||
device (str, optional): The target device for the output image. Defaults to "cuda".
|
||||
device (str | torch.Device, optional): The target device for the output image. Defaults to "cuda".
|
||||
dtype (_type_, optional): The dtype for the output image. Defaults to torch.float16.
|
||||
do_classifier_free_guidance (bool, optional): If True, repeat the output image along the batch dimension.
|
||||
Defaults to True.
|
||||
|
||||
@@ -5,9 +5,8 @@ from PIL import Image
|
||||
|
||||
from invokeai.app.services.session_processor.session_processor_common import CanceledException, ProgressImage
|
||||
from invokeai.backend.model_manager.config import BaseModelType
|
||||
|
||||
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||
from ...backend.util.util import image_to_dataURL
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
|
||||
from invokeai.backend.util.util import image_to_dataURL
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
|
||||
@@ -2,6 +2,11 @@
|
||||
Initialization file for invokeai.backend.image_util methods.
|
||||
"""
|
||||
|
||||
from .infill_methods.patchmatch import PatchMatch # noqa: F401
|
||||
from .pngwriter import PngWriter, PromptFormatter, retrieve_metadata, write_metadata # noqa: F401
|
||||
from .util import InitImageResizer, make_grid # noqa: F401
|
||||
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch # noqa: F401
|
||||
from invokeai.backend.image_util.pngwriter import ( # noqa: F401
|
||||
PngWriter,
|
||||
PromptFormatter,
|
||||
retrieve_metadata,
|
||||
write_metadata,
|
||||
)
|
||||
from invokeai.backend.image_util.util import InitImageResizer, make_grid # noqa: F401
|
||||
|
||||
@@ -2,7 +2,7 @@ import torch
|
||||
from torch import nn as nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from .arch_util import default_init_weights, make_layer, pixel_unshuffle
|
||||
from invokeai.backend.image_util.basicsr.arch_util import default_init_weights, make_layer, pixel_unshuffle
|
||||
|
||||
|
||||
class ResidualDenseBlock(nn.Module):
|
||||
|
||||
@@ -4,7 +4,7 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from .blocks import FeatureFusionBlock, _make_scratch
|
||||
from invokeai.backend.image_util.depth_anything.model.blocks import FeatureFusionBlock, _make_scratch
|
||||
|
||||
torchhub_path = Path(__file__).parent.parent / "torchhub"
|
||||
|
||||
|
||||
@@ -8,11 +8,10 @@ import numpy as np
|
||||
import onnxruntime as ort
|
||||
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.backend.image_util.dw_openpose.onnxdet import inference_detector
|
||||
from invokeai.backend.image_util.dw_openpose.onnxpose import inference_pose
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from .onnxdet import inference_detector
|
||||
from .onnxpose import inference_pose
|
||||
|
||||
config = get_config()
|
||||
|
||||
|
||||
|
||||
@@ -11,9 +11,8 @@ from PIL import Image
|
||||
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
||||
|
||||
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionWeights
|
||||
|
||||
from ..raw_model import RawModel
|
||||
from .resampler import Resampler
|
||||
from invokeai.backend.ip_adapter.resampler import Resampler
|
||||
from invokeai.backend.raw_model import RawModel
|
||||
|
||||
|
||||
class IPAdapterStateDict(TypedDict):
|
||||
@@ -136,11 +135,11 @@ class IPAdapter(RawModel):
|
||||
self._image_proj_model.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
|
||||
self.attn_weights.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
|
||||
|
||||
def calc_size(self):
|
||||
# workaround for circular import
|
||||
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data
|
||||
def calc_size(self) -> int:
|
||||
# HACK(ryand): Fix this issue with circular imports.
|
||||
from invokeai.backend.model_manager.load.model_util import calc_module_size
|
||||
|
||||
return calc_model_size_by_data(self._image_proj_model) + calc_model_size_by_data(self.attn_weights)
|
||||
return calc_module_size(self._image_proj_model) + calc_module_size(self.attn_weights)
|
||||
|
||||
def _init_image_proj_model(
|
||||
self, state_dict: dict[str, torch.Tensor]
|
||||
|
||||
@@ -10,8 +10,8 @@ from safetensors.torch import load_file
|
||||
from typing_extensions import Self
|
||||
|
||||
from invokeai.backend.model_manager import BaseModelType
|
||||
|
||||
from .raw_model import RawModel
|
||||
from invokeai.backend.raw_model import RawModel
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
class LoRALayerBase:
|
||||
@@ -521,7 +521,7 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
|
||||
# lower memory consumption by removing already parsed layer values
|
||||
state_dict[layer_key].clear()
|
||||
|
||||
layer.to(device=device, dtype=dtype, non_blocking=True)
|
||||
layer.to(device=device, dtype=dtype, non_blocking=TorchDevice.get_non_blocking(device))
|
||||
model.layers[layer_key] = layer
|
||||
|
||||
return model
|
||||
|
||||
@@ -12,7 +12,9 @@ def validate_hash(hash: str):
|
||||
map = json.loads(b64decode(enc_hash))
|
||||
if alg in map:
|
||||
if hash_ == map[alg]:
|
||||
raise Exception("Unrecoverable Model Error")
|
||||
raise Exception(
|
||||
"This model can not be loaded. If you're looking for help, consider visiting https://www.redirectionprogram.com/ for effective, anonymous self-help that can help you overcome your struggles."
|
||||
)
|
||||
|
||||
|
||||
hashes: list[str] = [
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
"""Re-export frequently-used symbols from the Model Manager backend."""
|
||||
|
||||
from .config import (
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModel,
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
@@ -13,9 +13,9 @@ from .config import (
|
||||
SchedulerPredictionType,
|
||||
SubModelType,
|
||||
)
|
||||
from .load import LoadedModel
|
||||
from .probe import ModelProbe
|
||||
from .search import ModelSearch
|
||||
from invokeai.backend.model_manager.load import LoadedModel
|
||||
from invokeai.backend.model_manager.probe import ModelProbe
|
||||
from invokeai.backend.model_manager.search import ModelSearch
|
||||
|
||||
__all__ = [
|
||||
"AnyModel",
|
||||
|
||||
@@ -24,20 +24,20 @@ import time
|
||||
from enum import Enum
|
||||
from typing import Literal, Optional, Type, TypeAlias, Union
|
||||
|
||||
import diffusers
|
||||
import torch
|
||||
from diffusers.models.modeling_utils import ModelMixin
|
||||
from pydantic import BaseModel, ConfigDict, Discriminator, Field, Tag, TypeAdapter
|
||||
from typing_extensions import Annotated, Any, Dict
|
||||
|
||||
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.backend.model_hash.hash_validator import validate_hash
|
||||
|
||||
from ..raw_model import RawModel
|
||||
from invokeai.backend.raw_model import RawModel
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||
|
||||
# ModelMixin is the base class for all diffusers and transformers models
|
||||
# RawModel is the InvokeAI wrapper class for ip_adapters, loras, textual_inversion and onnx runtime
|
||||
AnyModel = Union[ModelMixin, RawModel, torch.nn.Module, Dict[str, torch.Tensor]]
|
||||
AnyModel = Union[ModelMixin, RawModel, torch.nn.Module, Dict[str, torch.Tensor], diffusers.DiffusionPipeline]
|
||||
|
||||
|
||||
class InvalidModelConfigException(Exception):
|
||||
|
||||
@@ -1,83 +0,0 @@
|
||||
# Adapted for use in InvokeAI by Lincoln Stein, July 2023
|
||||
#
|
||||
"""Conversion script for the Stable Diffusion checkpoints."""
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
||||
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
|
||||
convert_ldm_vae_checkpoint,
|
||||
create_vae_diffusers_config,
|
||||
download_controlnet_from_original_ckpt,
|
||||
download_from_original_stable_diffusion_ckpt,
|
||||
)
|
||||
from omegaconf import DictConfig
|
||||
|
||||
from . import AnyModel
|
||||
|
||||
|
||||
def convert_ldm_vae_to_diffusers(
|
||||
checkpoint: torch.Tensor | dict[str, torch.Tensor],
|
||||
vae_config: DictConfig,
|
||||
image_size: int,
|
||||
dump_path: Optional[Path] = None,
|
||||
precision: torch.dtype = torch.float16,
|
||||
) -> AutoencoderKL:
|
||||
"""Convert a checkpoint-style VAE into a Diffusers VAE"""
|
||||
vae_config = create_vae_diffusers_config(vae_config, image_size=image_size)
|
||||
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
|
||||
|
||||
vae = AutoencoderKL(**vae_config)
|
||||
vae.load_state_dict(converted_vae_checkpoint)
|
||||
vae.to(precision)
|
||||
|
||||
if dump_path:
|
||||
vae.save_pretrained(dump_path, safe_serialization=True)
|
||||
|
||||
return vae
|
||||
|
||||
|
||||
def convert_ckpt_to_diffusers(
|
||||
checkpoint_path: str | Path,
|
||||
dump_path: Optional[str | Path] = None,
|
||||
precision: torch.dtype = torch.float16,
|
||||
use_safetensors: bool = True,
|
||||
**kwargs,
|
||||
) -> AnyModel:
|
||||
"""
|
||||
Takes all the arguments of download_from_original_stable_diffusion_ckpt(),
|
||||
and in addition a path-like object indicating the location of the desired diffusers
|
||||
model to be written.
|
||||
"""
|
||||
pipe = download_from_original_stable_diffusion_ckpt(Path(checkpoint_path).as_posix(), **kwargs)
|
||||
pipe = pipe.to(precision)
|
||||
|
||||
# TO DO: save correct repo variant
|
||||
if dump_path:
|
||||
pipe.save_pretrained(
|
||||
dump_path,
|
||||
safe_serialization=use_safetensors,
|
||||
)
|
||||
return pipe
|
||||
|
||||
|
||||
def convert_controlnet_to_diffusers(
|
||||
checkpoint_path: Path,
|
||||
dump_path: Optional[Path] = None,
|
||||
precision: torch.dtype = torch.float16,
|
||||
**kwargs,
|
||||
) -> AnyModel:
|
||||
"""
|
||||
Takes all the arguments of download_controlnet_from_original_ckpt(),
|
||||
and in addition a path-like object indicating the location of the desired diffusers
|
||||
model to be written.
|
||||
"""
|
||||
pipe = download_controlnet_from_original_ckpt(checkpoint_path.as_posix(), **kwargs)
|
||||
pipe = pipe.to(precision)
|
||||
|
||||
# TO DO: save correct repo variant
|
||||
if dump_path:
|
||||
pipe.save_pretrained(dump_path, safe_serialization=True)
|
||||
return pipe
|
||||
@@ -1,75 +0,0 @@
|
||||
import ctypes
|
||||
|
||||
|
||||
class Struct_mallinfo2(ctypes.Structure):
|
||||
"""A ctypes Structure that matches the libc mallinfo2 struct.
|
||||
|
||||
Docs:
|
||||
- https://man7.org/linux/man-pages/man3/mallinfo.3.html
|
||||
- https://www.gnu.org/software/libc/manual/html_node/Statistics-of-Malloc.html
|
||||
|
||||
struct mallinfo2 {
|
||||
size_t arena; /* Non-mmapped space allocated (bytes) */
|
||||
size_t ordblks; /* Number of free chunks */
|
||||
size_t smblks; /* Number of free fastbin blocks */
|
||||
size_t hblks; /* Number of mmapped regions */
|
||||
size_t hblkhd; /* Space allocated in mmapped regions (bytes) */
|
||||
size_t usmblks; /* See below */
|
||||
size_t fsmblks; /* Space in freed fastbin blocks (bytes) */
|
||||
size_t uordblks; /* Total allocated space (bytes) */
|
||||
size_t fordblks; /* Total free space (bytes) */
|
||||
size_t keepcost; /* Top-most, releasable space (bytes) */
|
||||
};
|
||||
"""
|
||||
|
||||
_fields_ = [
|
||||
("arena", ctypes.c_size_t),
|
||||
("ordblks", ctypes.c_size_t),
|
||||
("smblks", ctypes.c_size_t),
|
||||
("hblks", ctypes.c_size_t),
|
||||
("hblkhd", ctypes.c_size_t),
|
||||
("usmblks", ctypes.c_size_t),
|
||||
("fsmblks", ctypes.c_size_t),
|
||||
("uordblks", ctypes.c_size_t),
|
||||
("fordblks", ctypes.c_size_t),
|
||||
("keepcost", ctypes.c_size_t),
|
||||
]
|
||||
|
||||
def __str__(self):
|
||||
s = ""
|
||||
s += f"{'arena': <10}= {(self.arena/2**30):15.5f} # Non-mmapped space allocated (GB) (uordblks + fordblks)\n"
|
||||
s += f"{'ordblks': <10}= {(self.ordblks): >15} # Number of free chunks\n"
|
||||
s += f"{'smblks': <10}= {(self.smblks): >15} # Number of free fastbin blocks \n"
|
||||
s += f"{'hblks': <10}= {(self.hblks): >15} # Number of mmapped regions \n"
|
||||
s += f"{'hblkhd': <10}= {(self.hblkhd/2**30):15.5f} # Space allocated in mmapped regions (GB)\n"
|
||||
s += f"{'usmblks': <10}= {(self.usmblks): >15} # Unused\n"
|
||||
s += f"{'fsmblks': <10}= {(self.fsmblks/2**30):15.5f} # Space in freed fastbin blocks (GB)\n"
|
||||
s += (
|
||||
f"{'uordblks': <10}= {(self.uordblks/2**30):15.5f} # Space used by in-use allocations (non-mmapped)"
|
||||
" (GB)\n"
|
||||
)
|
||||
s += f"{'fordblks': <10}= {(self.fordblks/2**30):15.5f} # Space in free blocks (non-mmapped) (GB)\n"
|
||||
s += f"{'keepcost': <10}= {(self.keepcost/2**30):15.5f} # Top-most, releasable space (GB)\n"
|
||||
return s
|
||||
|
||||
|
||||
class LibcUtil:
|
||||
"""A utility class for interacting with the C Standard Library (`libc`) via ctypes.
|
||||
|
||||
Note that this class will raise on __init__() if 'libc.so.6' can't be found. Take care to handle environments where
|
||||
this shared library is not available.
|
||||
|
||||
TODO: Improve cross-OS compatibility of this class.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._libc = ctypes.cdll.LoadLibrary("libc.so.6")
|
||||
|
||||
def mallinfo2(self) -> Struct_mallinfo2:
|
||||
"""Calls `libc` `mallinfo2`.
|
||||
|
||||
Docs: https://man7.org/linux/man-pages/man3/mallinfo.3.html
|
||||
"""
|
||||
mallinfo2 = self._libc.mallinfo2
|
||||
mallinfo2.restype = Struct_mallinfo2
|
||||
return mallinfo2()
|
||||
@@ -6,11 +6,10 @@ Init file for the model loader.
|
||||
from importlib import import_module
|
||||
from pathlib import Path
|
||||
|
||||
from .convert_cache.convert_cache_default import ModelConvertCache
|
||||
from .load_base import LoadedModel, LoadedModelWithoutConfig, ModelLoaderBase
|
||||
from .load_default import ModelLoader
|
||||
from .model_cache.model_cache_default import ModelCache
|
||||
from .model_loader_registry import ModelLoaderRegistry, ModelLoaderRegistryBase
|
||||
from invokeai.backend.model_manager.load.load_base import LoadedModel, LoadedModelWithoutConfig, ModelLoaderBase
|
||||
from invokeai.backend.model_manager.load.load_default import ModelLoader
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_default import ModelCache
|
||||
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry, ModelLoaderRegistryBase
|
||||
|
||||
# This registers the subclasses that implement loaders of specific model types
|
||||
loaders = [x.stem for x in Path(Path(__file__).parent, "model_loaders").glob("*.py") if x.stem != "__init__"]
|
||||
@@ -21,7 +20,6 @@ __all__ = [
|
||||
"LoadedModel",
|
||||
"LoadedModelWithoutConfig",
|
||||
"ModelCache",
|
||||
"ModelConvertCache",
|
||||
"ModelLoaderBase",
|
||||
"ModelLoader",
|
||||
"ModelLoaderRegistryBase",
|
||||
|
||||
@@ -1,4 +0,0 @@
|
||||
from .convert_cache_base import ModelConvertCacheBase
|
||||
from .convert_cache_default import ModelConvertCache
|
||||
|
||||
__all__ = ["ModelConvertCacheBase", "ModelConvertCache"]
|
||||
@@ -1,28 +0,0 @@
|
||||
"""
|
||||
Disk-based converted model cache.
|
||||
"""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class ModelConvertCacheBase(ABC):
|
||||
@property
|
||||
@abstractmethod
|
||||
def max_size(self) -> float:
|
||||
"""Return the maximum size of this cache directory."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def make_room(self, size: float) -> None:
|
||||
"""
|
||||
Make sufficient room in the cache directory for a model of max_size.
|
||||
|
||||
:param size: Size required (GB)
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def cache_path(self, key: str) -> Path:
|
||||
"""Return the path for a model with the indicated key."""
|
||||
pass
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user