Compare commits

..

39 Commits

Author SHA1 Message Date
Ryan Dick
ffc4ebb14c Merge branch 'ryan/remove-attention-map-saving' into ryan/regional-conditioning 2024-03-01 11:33:50 -05:00
Ryan Dick
5b3adf0740 Remove unused code for attention map saving. 2024-02-29 23:42:37 -05:00
Ryan Dick
a5c94fba43 Delete unused functions from shared_invokeai_diffusion.py. 2024-02-29 23:41:15 -05:00
Ryan Dick
3e14bd6c45 Remove unused constructor declared with typo in name: __int__. 2024-02-29 22:42:59 -05:00
Ryan Dick
8721926f14 Merge sequential conditioning and cac conditioning logic to eliminate a bunch of duplication. 2024-02-29 22:42:59 -05:00
Ryan Dick
d87ff3a206 Remove outdated comments related to T2I-Adapters and ControlNets. 2024-02-29 22:42:59 -05:00
Ryan Dick
7d9671014b Remove use of **kwargs in do_unet_step(...), where full parameter list is known and supported. 2024-02-29 22:42:59 -05:00
Ryan Dick
4a1acd4db9 Fix avoid storing extra conditioning info in two places. 2024-02-29 22:42:59 -05:00
Ryan Dick
8989a6cdc6 Get multi-prompt attention working simultaneously with IP-adapter. 2024-02-29 14:54:13 -05:00
Ryan Dick
f44d3da9b1 Add CustomAttnProcessor2_0 class with simultaneous support for IP-Adapter and regional prompting. 2024-02-29 12:48:55 -05:00
Ryan Dick
1bbd4f751d Fixup logic around compatibility of prompt-to-prompt, IP-Adapter, regional prompting. 2024-02-29 12:47:23 -05:00
Ryan Dick
bdf3691ad0 Improve the logic for selecting SDXL pooled embeds when handling multi-region prompts. 2024-02-28 22:14:41 -05:00
Ryan Dick
e7f7ae660d Raise a clear error message if prompt-to-prompt cross-attention control is triggered when using multiple prompts. 2024-02-28 21:38:25 -05:00
Ryan Dick
e132afb705 Make regional prompting work with sequential conditioning. 2024-02-28 21:21:50 -05:00
Ryan Dick
5f49e7ae26 Move regional prompt concatenation further up the stack. This solves a number of issues. 2024-02-28 20:11:47 -05:00
Ryan Dick
53ebca58ff Rename ConditioningData to TextConditioningData. 2024-02-28 13:53:56 -05:00
Ryan Dick
ee1b3157ce Split ip_adapter_conditioning out from ConditioningData. 2024-02-28 13:49:02 -05:00
Ryan Dick
e7ec13f209 Remove scheduler_args from ConditioningData structure. 2024-02-28 12:15:39 -05:00
Ryan Dick
cad3e5dbd7 Remove dead code related to an old symmetry feature. 2024-02-28 11:29:52 -05:00
Ryan Dick
845c4e93ae Update various comments related to regional prompting, and delete duplicate _preprocess_regional_prompt_mask(...) function. 2024-02-28 10:20:22 -05:00
Ryan Dick
54971afe44 Add symmetric support for regional negative text prompts. 2024-02-27 20:05:02 -05:00
Ryan Dick
cfba51aed5 Removed unused function: _prepare_text_embeddings(...) 2024-02-27 19:23:20 -05:00
Ryan Dick
2966c8de2c Handle conditioned and unconditioned text conditioning in the same way for regional prompt attention. 2024-02-27 18:16:01 -05:00
Ryan Dick
b0fcbe552e Tidy invocation interfaces for RectangleMaskInvocation and AddConditioningMaskInvocation. 2024-02-26 17:34:37 -05:00
Ryan Dick
d132fb4818 Get RegionalPromptAttnProcessor2_0 working with a ton of hacks. 2024-02-17 19:56:37 -05:00
Ryan Dick
2d5d370f38 Route masks into the RegionalPromptAttnProcessor2_0 processors. 2024-02-16 19:35:24 -05:00
Ryan Dick
878bbc3527 Add RectangleMaskInvocation. 2024-02-16 18:03:02 -05:00
Ryan Dick
caa690e24d Add concatenation of multiple text conditioning tensors, and patching of RegionalPromptAttnProcessor2_0 into the UNet. 2024-02-16 17:09:06 -05:00
Ryan Dick
38248b988f Fix a minor bug in the logic of the IPAttnProcessor2_0. The change won't have any functional effect, since this attention implementation was only being used for cross-attention, but the logic should be correct now in case we wanted to use it for self-attention. 2024-02-16 09:10:47 -05:00
Ryan Dick
ba4788007f Initialize a RegionalPromptAttnProcessor2_0 class by copying AttnProcessor2_0 from diffusers. 2024-02-15 17:52:44 -05:00
Ryan Dick
ef51005881 Remove unused code for attention map saving. 2024-02-15 17:28:55 -05:00
Ryan Dick
7b0326d7f7 Delete unused functions from shared_invokeai_diffusion.py. 2024-02-15 17:22:37 -05:00
Ryan Dick
f590b39f88 Add support for a list of ConditioningFields in DenoiseLatents. 2024-02-15 14:41:54 -05:00
Ryan Dick
58277c6ada Add a mask to the ConditioningField primitive type. 2024-02-15 13:53:32 -05:00
Ryan Dick
382fa57f3b Remove unused constructor declared with typo in name: __int__. 2024-02-14 18:18:58 -05:00
Ryan Dick
ee3abc171d Merge sequential conditioning and cac conditioning logic to eliminate a bunch of duplication. 2024-02-14 18:17:46 -05:00
Ryan Dick
bf72cee555 Remove outdated comments related to T2I-Adapters and ControlNets. 2024-02-14 17:37:40 -05:00
Ryan Dick
e866e3b19f Remove use of **kwargs in do_unet_step(...), where full parameter list is known and supported. 2024-02-14 17:37:32 -05:00
Ryan Dick
16e574825c Fix avoid storing extra conditioning info in two places. 2024-02-14 15:34:15 -05:00
155 changed files with 5518 additions and 4922 deletions

View File

@@ -1,33 +1,33 @@
name: install frontend dependencies
name: Install frontend dependencies
description: Installs frontend dependencies with pnpm, with caching
runs:
using: 'composite'
steps:
- name: setup node 18
- name: Setup Node 18
uses: actions/setup-node@v4
with:
node-version: '18'
- name: setup pnpm
- name: Setup pnpm
uses: pnpm/action-setup@v2
with:
version: 8
run_install: false
- name: get pnpm store directory
- name: Get pnpm store directory
shell: bash
run: |
echo "STORE_PATH=$(pnpm store path --silent)" >> $GITHUB_ENV
- name: setup cache
uses: actions/cache@v4
- uses: actions/cache@v3
name: Setup pnpm cache
with:
path: ${{ env.STORE_PATH }}
key: ${{ runner.os }}-pnpm-store-${{ hashFiles('**/pnpm-lock.yaml') }}
restore-keys: |
${{ runner.os }}-pnpm-store-
- name: install frontend dependencies
- name: Install frontend dependencies
run: pnpm install --prefer-frozen-lockfile
shell: bash
working-directory: invokeai/frontend/web

View File

@@ -0,0 +1,11 @@
name: Install python dependencies
description: Install python dependencies with pip, with caching
runs:
using: 'composite'
steps:
- name: Setup python
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml

28
.github/pr_labels.yml vendored
View File

@@ -1,59 +1,59 @@
root:
Root:
- changed-files:
- any-glob-to-any-file: '*'
python-deps:
PythonDeps:
- changed-files:
- any-glob-to-any-file: 'pyproject.toml'
python:
Python:
- changed-files:
- all-globs-to-any-file:
- 'invokeai/**'
- '!invokeai/frontend/web/**'
python-tests:
PythonTests:
- changed-files:
- any-glob-to-any-file: 'tests/**'
ci-cd:
CICD:
- changed-files:
- any-glob-to-any-file: .github/**
docker:
Docker:
- changed-files:
- any-glob-to-any-file: docker/**
installer:
Installer:
- changed-files:
- any-glob-to-any-file: installer/**
docs:
Documentation:
- changed-files:
- any-glob-to-any-file: docs/**
invocations:
Invocations:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/invocations/**'
backend:
Backend:
- changed-files:
- any-glob-to-any-file: 'invokeai/backend/**'
api:
Api:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/api/**'
services:
Services:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/services/**'
frontend-deps:
FrontendDeps:
- changed-files:
- any-glob-to-any-file:
- '**/*/package.json'
- '**/*/pnpm-lock.yaml'
frontend:
Frontend:
- changed-files:
- any-glob-to-any-file: 'invokeai/frontend/web/**'

View File

@@ -1,45 +0,0 @@
# Builds and uploads the installer and python build artifacts.
name: build installer
on:
workflow_dispatch:
workflow_call:
jobs:
build-installer:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <2 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: setup python
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install pypa/build
run: pip install --upgrade build
- name: setup frontend
uses: ./.github/actions/install-frontend-deps
- name: create installer
id: create_installer
run: ./create_installer.sh
working-directory: installer
- name: upload python distribution artifact
uses: actions/upload-artifact@v4
with:
name: dist
path: ${{ steps.create_installer.outputs.DIST_PATH }}
- name: upload installer artifact
uses: actions/upload-artifact@v4
with:
name: ${{ steps.create_installer.outputs.INSTALLER_FILENAME }}
path: ${{ steps.create_installer.outputs.INSTALLER_PATH }}

43
.github/workflows/check-frontend.yml vendored Normal file
View File

@@ -0,0 +1,43 @@
# This workflow runs the frontend code quality checks.
#
# It may be triggered via dispatch, or by another workflow.
name: 'Check: frontend'
on:
workflow_dispatch:
workflow_call:
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
check-frontend:
runs-on: ubuntu-latest
timeout-minutes: 10 # expected run time: <2 min
steps:
- uses: actions/checkout@v4
- name: Set up frontend
uses: ./.github/actions/install-frontend-deps
- name: Run tsc check
run: 'pnpm run lint:tsc'
shell: bash
- name: Run dpdm check
run: 'pnpm run lint:dpdm'
shell: bash
- name: Run eslint check
run: 'pnpm run lint:eslint'
shell: bash
- name: Run prettier check
run: 'pnpm run lint:prettier'
shell: bash
- name: Run knip check
run: 'pnpm run lint:knip'
shell: bash

72
.github/workflows/check-pytest.yml vendored Normal file
View File

@@ -0,0 +1,72 @@
# This workflow runs pytest on the codebase in a matrix of platforms.
#
# It may be triggered via dispatch, or by another workflow.
name: 'Check: pytest'
on:
workflow_dispatch:
workflow_call:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
matrix:
strategy:
matrix:
python-version:
- '3.10'
pytorch:
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
include:
- pytorch: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
- pytorch: linux-rocm-5_2
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
github-env: $GITHUB_ENV
- pytorch: linux-cpu
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- pytorch: macos-default
os: macOS-12
github-env: $GITHUB_ENV
- pytorch: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
name: ${{ matrix.pytorch }} on ${{ matrix.python-version }}
runs-on: ${{ matrix.os }}
timeout-minutes: 30 # expected run time: <10 min, depending on platform
env:
PIP_USE_PEP517: '1'
steps:
- uses: actions/checkout@v4
- name: set test prompt to main branch validation
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
- name: setup python
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: pip
cache-dependency-path: pyproject.toml
- name: install invokeai
env:
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
run: >
pip3 install
--editable=".[test]"
- name: run pytest
id: run-pytest
run: pytest

33
.github/workflows/check-python.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
# This workflow runs the python code quality checks.
#
# It may be triggered via dispatch, or by another workflow.
#
# TODO: Add mypy or pyright to the checks.
name: 'Check: python'
on:
workflow_dispatch:
workflow_call:
jobs:
check-backend:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
steps:
- uses: actions/checkout@v4
- name: Install python dependencies
uses: ./.github/actions/install-python-deps
- name: Install ruff
run: pip install ruff
shell: bash
- name: Ruff check
run: ruff check --output-format=github .
shell: bash
- name: Ruff format
run: ruff format --check .
shell: bash

View File

@@ -1,68 +0,0 @@
# Runs frontend code quality checks.
#
# Checks for changes to frontend files before running the checks.
# When manually triggered or when called from another workflow, always runs the checks.
name: 'frontend checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
workflow_call:
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
frontend-checks:
runs-on: ubuntu-latest
timeout-minutes: 10 # expected run time: <2 min
steps:
- uses: actions/checkout@v4
- name: check for changed frontend files
if: ${{ github.event_name != 'workflow_dispatch' && github.event_name != 'workflow_call' }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
frontend:
- 'invokeai/frontend/web/**'
- name: install dependencies
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
uses: ./.github/actions/install-frontend-deps
- name: tsc
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: 'pnpm lint:tsc'
shell: bash
- name: dpdm
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: 'pnpm lint:dpdm'
shell: bash
- name: eslint
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: 'pnpm lint:eslint'
shell: bash
- name: prettier
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: 'pnpm lint:prettier'
shell: bash
- name: knip
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: 'pnpm lint:knip'
shell: bash

View File

@@ -1,48 +0,0 @@
# Runs frontend tests.
#
# Checks for changes to frontend files before running the tests.
# When manually triggered or called from another workflow, always runs the tests.
name: 'frontend tests'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
workflow_call:
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
frontend-tests:
runs-on: ubuntu-latest
timeout-minutes: 10 # expected run time: <2 min
steps:
- uses: actions/checkout@v4
- name: check for changed frontend files
if: ${{ github.event_name != 'workflow_dispatch' && github.event_name != 'workflow_call' }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
frontend:
- 'invokeai/frontend/web/**'
- name: install dependencies
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
uses: ./.github/actions/install-frontend-deps
- name: vitest
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: 'pnpm test:no-watch'
shell: bash

View File

@@ -1,6 +1,6 @@
name: 'label PRs'
name: "Pull Request Labeler"
on:
- pull_request_target
- pull_request_target
jobs:
labeler:
@@ -9,10 +9,8 @@ jobs:
pull-requests: write
runs-on: ubuntu-latest
steps:
- name: checkout
- name: Checkout
uses: actions/checkout@v4
- name: label PRs
uses: actions/labeler@v5
- uses: actions/labeler@v5
with:
configuration-path: .github/pr_labels.yml
configuration-path: .github/pr_labels.yml

View File

@@ -21,29 +21,18 @@ jobs:
SITE_URL: 'https://${{ github.repository_owner }}.github.io/InvokeAI'
steps:
- name: checkout
uses: actions/checkout@v4
- name: setup python
uses: actions/setup-python@v5
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: set cache id
run: echo "cache_id=$(date --utc '+%V')" >> $GITHUB_ENV
- name: use cache
uses: actions/cache@v4
- run: echo "cache_id=$(date --utc '+%V')" >> $GITHUB_ENV
- uses: actions/cache@v4
with:
key: mkdocs-material-${{ env.cache_id }}
path: .cache
restore-keys: |
mkdocs-material-
- name: install dependencies
run: python -m pip install ".[docs]"
- name: build & deploy
run: mkdocs gh-deploy --force
- run: python -m pip install ".[docs]"
- run: mkdocs gh-deploy --force

View File

@@ -0,0 +1,39 @@
# This workflow runs of `check-frontend.yml` on push or pull request.
#
# The actual checks are in a separate workflow to support simpler workflow
# composition without awkward or complicated conditionals.
name: 'On change: run check-frontend'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
jobs:
check-changed-frontend-files:
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
outputs:
frontend_any_changed: ${{ steps.changed-files.outputs.frontend_any_changed }}
steps:
- uses: actions/checkout@v4
- name: Check for changed frontend files
id: changed-files
uses: tj-actions/changed-files@v41
with:
files_yaml: |
frontend:
- 'invokeai/frontend/web/**'
run-check-frontend:
needs: check-changed-frontend-files
if: ${{ needs.check-changed-frontend-files.outputs.frontend_any_changed == 'true' }}
uses: ./.github/workflows/check-frontend.yml

View File

@@ -0,0 +1,42 @@
# This workflow runs of `check-python.yml` on push or pull request.
#
# The actual checks are in a separate workflow to support simpler workflow
# composition without awkward or complicated conditionals.
name: 'On change: run check-python'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
jobs:
check-changed-python-files:
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
outputs:
python_any_changed: ${{ steps.changed-files.outputs.python_any_changed }}
steps:
- uses: actions/checkout@v4
- name: Check for changed python files
id: changed-files
uses: tj-actions/changed-files@v41
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
run-check-python:
needs: check-changed-python-files
if: ${{ needs.check-changed-python-files.outputs.python_any_changed == 'true' }}
uses: ./.github/workflows/check-python.yml

42
.github/workflows/on-change-pytest.yml vendored Normal file
View File

@@ -0,0 +1,42 @@
# This workflow runs of `check-pytest.yml` on push or pull request.
#
# The actual checks are in a separate workflow to support simpler workflow
# composition without awkward or complicated conditionals.
name: 'On change: run pytest'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
jobs:
check-changed-python-files:
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
outputs:
python_any_changed: ${{ steps.changed-files.outputs.python_any_changed }}
steps:
- uses: actions/checkout@v4
- name: Check for changed python files
id: changed-files
uses: tj-actions/changed-files@v41
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
run-pytest:
needs: check-changed-python-files
if: ${{ needs.check-changed-python-files.outputs.python_any_changed == 'true' }}
uses: ./.github/workflows/check-pytest.yml

View File

@@ -1,64 +0,0 @@
# Runs python code quality checks.
#
# Checks for changes to python files before running the checks.
# When manually triggered or called from another workflow, always runs the tests.
#
# TODO: Add mypy or pyright to the checks.
name: 'python checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
workflow_call:
jobs:
python-checks:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed python files
if: ${{ github.event_name != 'workflow_dispatch' && github.event_name != 'workflow_call' }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: setup python
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install ruff
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: pip install ruff
shell: bash
- name: ruff check
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: ruff check --output-format=github .
shell: bash
- name: ruff format
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: ruff format --check .
shell: bash

View File

@@ -1,94 +0,0 @@
# Runs python tests on a matrix of python versions and platforms.
#
# Checks for changes to python files before running the tests.
# When manually triggered or called from another workflow, always runs the tests.
name: 'python tests'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
workflow_call:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
matrix:
strategy:
matrix:
python-version:
- '3.10'
- '3.11'
platform:
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
include:
- platform: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
- platform: linux-rocm-5_2
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
github-env: $GITHUB_ENV
- platform: linux-cpu
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- platform: macos-default
os: macOS-12
github-env: $GITHUB_ENV
- platform: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
name: 'py${{ matrix.python-version }}: ${{ matrix.platform }}'
runs-on: ${{ matrix.os }}
timeout-minutes: 15 # expected run time: 2-6 min, depending on platform
env:
PIP_USE_PEP517: '1'
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed python files
if: ${{ github.event_name != 'workflow_dispatch' && github.event_name != 'workflow_call' }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: setup python
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: pip
cache-dependency-path: pyproject.toml
- name: install dependencies
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
env:
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
run: >
pip3 install --editable=".[test]"
- name: run pytest
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: pytest

View File

@@ -1,96 +1,103 @@
# Main release workflow. Triggered on tag push or manual trigger.
#
# - Runs all code checks and tests
# - Verifies the app version matches the tag version.
# - Builds the installer and build, uploading them as artifacts.
# - Publishes to TestPyPI and PyPI. Both are conditional on the previous steps passing and require a manual approval.
#
# See docs/RELEASE.md for more information on the release process.
name: release
name: Release
on:
push:
tags:
- 'v*'
workflow_dispatch:
inputs:
skip_code_checks:
description: 'Skip code checks'
required: true
default: true
type: boolean
jobs:
check-version:
runs-on: ubuntu-latest
steps:
- name: checkout
uses: actions/checkout@v4
- uses: actions/checkout@v4
- name: check python version
uses: samuelcolvin/check-python-version@v4
- uses: samuelcolvin/check-python-version@v4
id: check-python-version
with:
version_file_path: invokeai/version/invokeai_version.py
frontend-checks:
uses: ./.github/workflows/frontend-checks.yml
check-frontend:
if: github.event.inputs.skip_code_checks != 'true'
uses: ./.github/workflows/check-frontend.yml
frontend-tests:
uses: ./.github/workflows/frontend-tests.yml
check-python:
if: github.event.inputs.skip_code_checks != 'true'
uses: ./.github/workflows/check-python.yml
python-checks:
uses: ./.github/workflows/python-checks.yml
python-tests:
uses: ./.github/workflows/python-tests.yml
check-pytest:
if: github.event.inputs.skip_code_checks != 'true'
uses: ./.github/workflows/check-pytest.yml
build:
uses: ./.github/workflows/build-installer.yml
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Install python dependencies
uses: ./.github/actions/install-python-deps
- name: Install pypa/build
run: pip install --upgrade build
- name: Setup frontend
uses: ./.github/actions/install-frontend-deps
- name: Run create_installer.sh
id: create_installer
run: ./create_installer.sh --skip_frontend_checks
working-directory: installer
- name: Upload python distribution artifact
uses: actions/upload-artifact@v4
with:
name: dist
path: ${{ steps.create_installer.outputs.DIST_PATH }}
- name: Upload installer artifact
uses: actions/upload-artifact@v4
with:
name: ${{ steps.create_installer.outputs.INSTALLER_FILENAME }}
path: ${{ steps.create_installer.outputs.INSTALLER_PATH }}
publish-testpypi:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
needs:
[
check-version,
frontend-checks,
frontend-tests,
python-checks,
python-tests,
build,
]
needs: [check-version, check-frontend, check-python, check-pytest, build]
if: github.event_name != 'workflow_dispatch'
environment:
name: testpypi
url: https://test.pypi.org/p/invokeai
steps:
- name: download distribution from build job
- name: Download distribution from build job
uses: actions/download-artifact@v4
with:
name: dist
path: dist/
- name: publish distribution to TestPyPI
- name: Publish distribution to TestPyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: https://test.pypi.org/legacy/
publish-pypi:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
needs:
[
check-version,
frontend-checks,
frontend-tests,
python-checks,
python-tests,
build,
]
needs: [check-version, check-frontend, check-python, check-pytest, build]
if: github.event_name != 'workflow_dispatch'
environment:
name: pypi
url: https://pypi.org/p/invokeai
steps:
- name: download distribution from build job
- name: Download distribution from build job
uses: actions/download-artifact@v4
with:
name: dist
path: dist/
- name: publish distribution to PyPI
- name: Publish distribution to PyPI
uses: pypa/gh-action-pypi-publish@release/v1

View File

@@ -23,13 +23,13 @@ It is triggered on **tag push**, when the tag matches `v*`. It doesn't matter if
Run `make tag-release` to tag the current commit and kick off the workflow.
The release may also be dispatched [manually].
The release may also be run [manually].
### Workflow Jobs and Process
The workflow consists of a number of concurrently-run jobs, and two final publish jobs.
The publish jobs require manual approval and are only run if the other jobs succeed.
The publish jobs run if the 5 concurrent jobs all succeed and if/when the publish jobs are approved.
#### `check-version` Job
@@ -43,16 +43,17 @@ This job uses [samuelcolvin/check-python-version].
#### Check and Test Jobs
- **`python-tests`**: runs `pytest` on matrix of platforms
- **`python-checks`**: runs `ruff` (format and lint)
- **`frontend-tests`**: runs `vitest`
- **`frontend-checks`**: runs `prettier` (format), `eslint` (lint), `dpdm` (circular refs), `tsc` (static type check) and `knip` (unused imports)
This is our test suite.
- **`check-pytest`**: runs `pytest` on matrix of platforms
- **`check-python`**: runs `ruff` (format and lint)
- **`check-frontend`**: runs `prettier` (format), `eslint` (lint), `madge` (circular refs) and `tsc` (static type check)
> **TODO** We should add `mypy` or `pyright` to the **`check-python`** job.
> **TODO** We should add an end-to-end test job that generates an image.
#### `build-installer` Job
#### `build` Job
This sets up both python and frontend dependencies and builds the python package. Internally, this runs `installer/create_installer.sh` and uploads two artifacts:
@@ -61,7 +62,7 @@ This sets up both python and frontend dependencies and builds the python package
#### Sanity Check & Smoke Test
At this point, the release workflow pauses as the remaining publish jobs require approval.
At this point, the release workflow pauses (the remaining jobs all require approval).
A maintainer should go to the **Summary** tab of the workflow, download the installer and test it. Ensure the app loads and generates.
@@ -69,7 +70,7 @@ A maintainer should go to the **Summary** tab of the workflow, download the inst
#### PyPI Publish Jobs
The publish jobs will run if any of the previous jobs fail.
The publish jobs will skip if any of the previous jobs skip or fail.
They use [GitHub environments], which are configured as [trusted publishers] on PyPI.
@@ -118,17 +119,13 @@ Once the release is published to PyPI, it's time to publish the GitHub release.
> **TODO** Workflows can create a GitHub release from a template and upload release assets. One popular action to handle this is [ncipollo/release-action]. A future enhancement to the release process could set this up.
## Manual Build
## Manually Running the Release Workflow
The `build installer` workflow can be dispatched manually. This is useful to test the installer for a given branch or tag.
The release workflow can be run manually. This is useful to get an installer build and test it out without needing to push a tag.
No checks are run, it just builds.
When run this way, you'll see **Skip code checks** checkbox. This allows the workflow to run without the time-consuming 3 code quality check jobs.
## Manual Release
The `release` workflow can be dispatched manually. You must dispatch the workflow from the right tag, else it will fail the version check.
This functionality is available as a fallback in case something goes wonky. Typically, releases should be triggered via tag push as described above.
The publish jobs will skip if the workflow was run manually.
[InvokeAI Releases Page]: https://github.com/invoke-ai/InvokeAI/releases
[PyPI]: https://pypi.org/
@@ -139,4 +136,4 @@ This functionality is available as a fallback in case something goes wonky. Typi
[GitHub environments]: https://docs.github.com/en/actions/deployment/targeting-different-environments/using-environments-for-deployment
[trusted publishers]: https://docs.pypi.org/trusted-publishers/
[samuelcolvin/check-python-version]: https://github.com/samuelcolvin/check-python-version
[manually]: #manual-release
[manually]: #manually-running-the-release-workflow

View File

@@ -32,6 +32,7 @@ model. These are the:
Responsible for loading a model from disk
into RAM and VRAM and getting it ready for inference.
## Location of the Code
The four main services can be found in
@@ -62,21 +63,23 @@ provides the following fields:
|----------------|-----------------|------------------|
| `key` | str | Unique identifier for the model |
| `name` | str | Name of the model (not unique) |
| `model_type` | ModelType | The type of the model |
| `model_format` | ModelFormat | The format of the model (e.g. "diffusers"); also used as a Union discriminator |
| `base_model` | BaseModelType | The base model that the model is compatible with |
| `model_type` | ModelType | The type of the model |
| `model_format` | ModelFormat | The format of the model (e.g. "diffusers"); also used as a Union discriminator |
| `base_model` | BaseModelType | The base model that the model is compatible with |
| `path` | str | Location of model on disk |
| `hash` | str | Hash of the model |
| `original_hash` | str | Hash of the model when it was first installed |
| `current_hash` | str | Most recent hash of the model's contents |
| `description` | str | Human-readable description of the model (optional) |
| `source` | str | Model's source URL or repo id (optional) |
The `key` is a unique 32-character random ID which was generated at
install time. The `hash` field stores a hash of the model's
install time. The `original_hash` field stores a hash of the model's
contents at install time obtained by sampling several parts of the
model's files using the `imohash` library. Over the course of the
model's lifetime it may be transformed in various ways, such as
changing its precision or converting it from a .safetensors to a
diffusers model.
diffusers model. When this happens, `original_hash` is unchanged, but
`current_hash` is updated to indicate the current contents.
`ModelType`, `ModelFormat` and `BaseModelType` are string enums that
are defined in `invokeai.backend.model_manager.config`. They are also
@@ -91,6 +94,7 @@ The `path` field can be absolute or relative. If relative, it is taken
to be relative to the `models_dir` setting in the user's
`invokeai.yaml` file.
### CheckpointConfig
This adds support for checkpoint configurations, and adds the
@@ -170,7 +174,7 @@ store = context.services.model_manager.store
or from elsewhere in the code by accessing
`ApiDependencies.invoker.services.model_manager.store`.
### Creating a `ModelRecordService`
### Creating a `ModelRecordService`
To create a new `ModelRecordService` database or open an existing one,
you can directly create either a `ModelRecordServiceSQL` or a
@@ -213,27 +217,27 @@ for use in the InvokeAI web server. Its signature is:
```
def open(
cls,
config: InvokeAIAppConfig,
conn: Optional[sqlite3.Connection] = None,
lock: Optional[threading.Lock] = None
config: InvokeAIAppConfig,
conn: Optional[sqlite3.Connection] = None,
lock: Optional[threading.Lock] = None
) -> Union[ModelRecordServiceSQL, ModelRecordServiceFile]:
```
The way it works is as follows:
1. Retrieve the value of the `model_config_db` option from the user's
`invokeai.yaml` config file.
`invokeai.yaml` config file.
2. If `model_config_db` is `auto` (the default), then:
* Use the values of `conn` and `lock` to return a `ModelRecordServiceSQL` object
opened on the passed connection and lock.
* Open up a new connection to `databases/invokeai.db` if `conn`
- Use the values of `conn` and `lock` to return a `ModelRecordServiceSQL` object
opened on the passed connection and lock.
- Open up a new connection to `databases/invokeai.db` if `conn`
and/or `lock` are missing (see note below).
3. If `model_config_db` is a Path, then use `from_db_file`
to return the appropriate type of ModelRecordService.
4. If `model_config_db` is None, then retrieve the legacy
`conf_path` option from `invokeai.yaml` and use the Path
indicated there. This will default to `configs/models.yaml`.
So a typical startup pattern would be:
```
@@ -251,7 +255,7 @@ store = ModelRecordServiceBase.open(config, db_conn, lock)
Configurations can be retrieved in several ways.
#### get_model(key) -> AnyModelConfig
#### get_model(key) -> AnyModelConfig:
The basic functionality is to call the record store object's
`get_model()` method with the desired model's unique key. It returns
@@ -268,28 +272,28 @@ print(model_conf.path)
If the key is unrecognized, this call raises an
`UnknownModelException`.
#### exists(key) -> AnyModelConfig
#### exists(key) -> AnyModelConfig:
Returns True if a model with the given key exists in the databsae.
#### search_by_path(path) -> AnyModelConfig
#### search_by_path(path) -> AnyModelConfig:
Returns the configuration of the model whose path is `path`. The path
is matched using a simple string comparison and won't correctly match
models referred to by different paths (e.g. using symbolic links).
#### search_by_name(name, base, type) -> List[AnyModelConfig]
#### search_by_name(name, base, type) -> List[AnyModelConfig]:
This method searches for models that match some combination of `name`,
`BaseType` and `ModelType`. Calling without any arguments will return
all the models in the database.
#### all_models() -> List[AnyModelConfig]
#### all_models() -> List[AnyModelConfig]:
Return all the model configs in the database. Exactly equivalent to
calling `search_by_name()` with no arguments.
#### search_by_tag(tags) -> List[AnyModelConfig]
#### search_by_tag(tags) -> List[AnyModelConfig]:
`tags` is a list of strings. This method returns a list of model
configs that contain all of the given tags. Examples:
@@ -308,11 +312,11 @@ commercializable_models = [x for x in store.all_models() \
if x.license.contains('allowCommercialUse=Sell')]
```
#### version() -> str
#### version() -> str:
Returns the version of the database, currently at `3.2`
#### model_info_by_name(name, base_model, model_type) -> ModelConfigBase
#### model_info_by_name(name, base_model, model_type) -> ModelConfigBase:
This method exists to ease the transition from the previous version of
the model manager, in which `get_model()` took the three arguments
@@ -333,7 +337,7 @@ model and pass its key to `get_model()`.
Several methods allow you to create and update stored model config
records.
#### add_model(key, config) -> AnyModelConfig
#### add_model(key, config) -> AnyModelConfig:
Given a key and a configuration, this will add the model's
configuration record to the database. `config` can either be a subclass of
@@ -348,7 +352,7 @@ model with the same key is already in the database, or an
`InvalidModelConfigException` if a dict was passed and Pydantic
experienced a parse or validation error.
### update_model(key, config) -> AnyModelConfig
### update_model(key, config) -> AnyModelConfig:
Given a key and a configuration, this will update the model
configuration record in the database. `config` can be either a
@@ -366,31 +370,31 @@ The `ModelInstallService` class implements the
shop for all your model install needs. It provides the following
functionality:
* Registering a model config record for a model already located on the
- Registering a model config record for a model already located on the
local filesystem, without moving it or changing its path.
* Installing a model alreadiy located on the local filesystem, by
- Installing a model alreadiy located on the local filesystem, by
moving it into the InvokeAI root directory under the
`models` folder (or wherever config parameter `models_dir`
specifies).
* Probing of models to determine their type, base type and other key
- Probing of models to determine their type, base type and other key
information.
* Interface with the InvokeAI event bus to provide status updates on
- Interface with the InvokeAI event bus to provide status updates on
the download, installation and registration process.
* Downloading a model from an arbitrary URL and installing it in
- Downloading a model from an arbitrary URL and installing it in
`models_dir`.
* Special handling for Civitai model URLs which allow the user to
- Special handling for Civitai model URLs which allow the user to
paste in a model page's URL or download link
* Special handling for HuggingFace repo_ids to recursively download
- Special handling for HuggingFace repo_ids to recursively download
the contents of the repository, paying attention to alternative
variants such as fp16.
* Saving tags and other metadata about the model into the invokeai database
- Saving tags and other metadata about the model into the invokeai database
when fetching from a repo that provides that type of information,
(currently only Civitai and HuggingFace).
@@ -423,8 +427,8 @@ queue.start()
installer = ModelInstallService(app_config=config,
record_store=record_store,
download_queue=queue
)
download_queue=queue
)
installer.start()
```
@@ -439,6 +443,7 @@ required parameters:
| `metadata_store` | Optional[ModelMetadataStore] | Metadata storage object |
|`session` | Optional[requests.Session] | Swap in a different Session object (usually for debugging) |
Once initialized, the installer will provide the following methods:
#### install_job = installer.heuristic_import(source, [config], [access_token])
@@ -452,15 +457,15 @@ The `source` is a string that can be any of these forms
1. A path on the local filesystem (`C:\\users\\fred\\model.safetensors`)
2. A Url pointing to a single downloadable model file (`https://civitai.com/models/58390/detail-tweaker-lora-lora`)
3. A HuggingFace repo_id with any of the following formats:
* `model/name` -- entire model
* `model/name:fp32` -- entire model, using the fp32 variant
* `model/name:fp16:vae` -- vae submodel, using the fp16 variant
* `model/name::vae` -- vae submodel, using default precision
* `model/name:fp16:path/to/model.safetensors` -- an individual model file, fp16 variant
* `model/name::path/to/model.safetensors` -- an individual model file, default variant
- `model/name` -- entire model
- `model/name:fp32` -- entire model, using the fp32 variant
- `model/name:fp16:vae` -- vae submodel, using the fp16 variant
- `model/name::vae` -- vae submodel, using default precision
- `model/name:fp16:path/to/model.safetensors` -- an individual model file, fp16 variant
- `model/name::path/to/model.safetensors` -- an individual model file, default variant
Note that by specifying a relative path to the top of the HuggingFace
repo, you can download and install arbitrary models files.
repo, you can download and install arbitrary models files.
The variant, if not provided, will be automatically filled in with
`fp32` if the user has requested full precision, and `fp16`
@@ -486,9 +491,9 @@ following illustrates basic usage:
```
from invokeai.app.services.model_install import (
LocalModelSource,
HFModelSource,
URLModelSource,
LocalModelSource,
HFModelSource,
URLModelSource,
)
source1 = LocalModelSource(path='/opt/models/sushi.safetensors') # a local safetensors file
@@ -508,13 +513,13 @@ for source in [source1, source2, source3, source4, source5, source6, source7]:
source2job = installer.wait_for_installs(timeout=120)
for source in sources:
job = source2job[source]
if job.complete:
model_config = job.config_out
model_key = model_config.key
print(f"{source} installed as {model_key}")
elif job.errored:
print(f"{source}: {job.error_type}.\nStack trace:\n{job.error}")
if job.complete:
model_config = job.config_out
model_key = model_config.key
print(f"{source} installed as {model_key}")
elif job.errored:
print(f"{source}: {job.error_type}.\nStack trace:\n{job.error}")
```
As shown here, the `import_model()` method accepts a variety of
@@ -523,7 +528,7 @@ HuggingFace repo_ids with and without a subfolder designation,
Civitai model URLs and arbitrary URLs that point to checkpoint files
(but not to folders).
Each call to `import_model()` return a `ModelInstallJob` job,
Each call to `import_model()` return a `ModelInstallJob` job,
an object which tracks the progress of the install.
If a remote model is requested, the model's files are downloaded in
@@ -550,7 +555,7 @@ The full list of arguments to `import_model()` is as follows:
| `config` | Dict[str, Any] | None | Override all or a portion of model's probed attributes |
The next few sections describe the various types of ModelSource that
can be passed to `import_model()`.
can be passed to `import_model()`.
`config` can be used to override all or a portion of the configuration
attributes returned by the model prober. See the section below for
@@ -561,6 +566,7 @@ details.
This is used for a model that is located on a locally-accessible Posix
filesystem, such as a local disk or networked fileshare.
| **Argument** | **Type** | **Default** | **Description** |
|------------------|------------------------------|-------------|-------------------------------------------|
| `path` | str | Path | None | Path to the model file or directory |
@@ -619,6 +625,7 @@ HuggingFace has the most complicated `ModelSource` structure:
| `subfolder` | Path | None | Look for the model in a subfolder of the repo. |
| `access_token` | str | None | An access token needed to gain access to a subscriber's-only model. |
The `repo_id` is the repository ID, such as `stabilityai/sdxl-turbo`.
The `variant` is one of the various diffusers formats that HuggingFace
@@ -654,6 +661,7 @@ in. To download these files, you must provide an
`HfFolder.get_token()` will be called to fill it in with the cached
one.
#### Monitoring the install job process
When you create an install job with `import_model()`, it launches the
@@ -667,13 +675,14 @@ The `ModelInstallJob` class has the following structure:
| `id` | `int` | Integer ID for this job |
| `status` | `InstallStatus` | An enum of [`waiting`, `downloading`, `running`, `completed`, `error` and `cancelled`]|
| `config_in` | `dict` | Overriding configuration values provided by the caller |
| `config_out` | `AnyModelConfig`| After successful completion, contains the configuration record written to the database |
| `inplace` | `boolean` | True if the caller asked to install the model in place using its local path |
| `source` | `ModelSource` | The local path, remote URL or repo_id of the model to be installed |
| `config_out` | `AnyModelConfig`| After successful completion, contains the configuration record written to the database |
| `inplace` | `boolean` | True if the caller asked to install the model in place using its local path |
| `source` | `ModelSource` | The local path, remote URL or repo_id of the model to be installed |
| `local_path` | `Path` | If a remote model, holds the path of the model after it is downloaded; if a local model, same as `source` |
| `error_type` | `str` | Name of the exception that led to an error status |
| `error` | `str` | Traceback of the error |
If the `event_bus` argument was provided, events will also be
broadcast to the InvokeAI event bus. The events will appear on the bus
as an event of type `EventServiceBase.model_event`, a timestamp and
@@ -693,13 +702,14 @@ following keys:
| `total_bytes` | int | Total size of all the files that make up the model |
| `parts` | List[Dict]| Information on the progress of the individual files that make up the model |
The parts is a list of dictionaries that give information on each of
the components pieces of the download. The dictionary's keys are
`source`, `local_path`, `bytes` and `total_bytes`, and correspond to
the like-named keys in the main event.
Note that downloading events will not be issued for local models, and
that downloading events occur _before_ the running event.
that downloading events occur *before* the running event.
##### `model_install_running`
@@ -742,13 +752,14 @@ properties: `waiting`, `downloading`, `running`, `complete`, `errored`
and `cancelled`, as well as `in_terminal_state`. The last will return
True if the job is in the complete, errored or cancelled states.
#### Model configuration and probing
The install service uses the `invokeai.backend.model_manager.probe`
module during import to determine the model's type, base type, and
other configuration parameters. Among other things, it assigns a
default name and description for the model based on probed
fields.
fields.
When downloading remote models is implemented, additional
configuration information, such as list of trigger terms, will be
@@ -763,11 +774,11 @@ attributes. Here is an example of setting the
```
install_job = installer.import_model(
source=HFModelSource(repo_id='stabilityai/stable-diffusion-2-1',variant='fp32'),
config=dict(
prediction_type=SchedulerPredictionType('v_prediction')
name='stable diffusion 2 base model',
)
)
config=dict(
prediction_type=SchedulerPredictionType('v_prediction')
name='stable diffusion 2 base model',
)
)
```
### Other installer methods
@@ -851,6 +862,7 @@ This method is similar to `unregister()`, but also unconditionally
deletes the corresponding model weights file(s), regardless of whether
they are inside or outside the InvokeAI models hierarchy.
#### path = installer.download_and_cache(remote_source, [access_token], [timeout])
This utility routine will download the model file located at source,
@@ -941,7 +953,7 @@ following fields:
When you create a job, you can assign it a `priority`. If multiple
jobs are queued, the job with the lowest priority runs first. (Don't
blame me! The Unix developers came up with this convention.)
blame me! The Unix developers came up with this convention.)
Every job has a `source` and a `destination`. `source` is a string in
the base class, but subclassses redefine it more specifically.
@@ -962,7 +974,7 @@ is in its lifecycle. Values are defined in the string enum
`DownloadJobStatus`, a symbol available from
`invokeai.app.services.download_manager`. Possible values are:
| **Value** | **String Value** | **Description** |
| **Value** | **String Value** | ** Description ** |
|--------------|---------------------|-------------------|
| `IDLE` | idle | Job created, but not submitted to the queue |
| `ENQUEUED` | enqueued | Job is patiently waiting on the queue |
@@ -979,7 +991,7 @@ debugging and performance testing.
In case of an error, the Exception that caused the error will be
placed in the `error` field, and the job's status will be set to
`DownloadJobStatus.ERROR`.
`DownloadJobStatus.ERROR`.
After an error occurs, any partially downloaded files will be deleted
from disk, unless `preserve_partial_downloads` was set to True at job
@@ -1028,11 +1040,11 @@ While a job is being downloaded, the queue will emit events at
periodic intervals. A typical series of events during a successful
download session will look like this:
* enqueued
* running
* running
* running
* completed
- enqueued
- running
- running
- running
- completed
There will be a single enqueued event, followed by one or more running
events, and finally one `completed`, `error` or `cancelled`
@@ -1041,12 +1053,12 @@ events.
It is possible for a caller to pause download temporarily, in which
case the events may look something like this:
* enqueued
* running
* running
* paused
* running
* completed
- enqueued
- running
- running
- paused
- running
- completed
The download queue logs when downloads start and end (unless `quiet`
is set to True at initialization time) but doesn't log any progress
@@ -1108,11 +1120,11 @@ A typical initialization sequence will look like:
from invokeai.app.services.download_manager import DownloadQueueService
def log_download_event(job: DownloadJobBase):
logger.info(f'job={job.id}: status={job.status}')
logger.info(f'job={job.id}: status={job.status}')
queue = DownloadQueueService(
event_handlers=[log_download_event]
)
event_handlers=[log_download_event]
)
```
Event handlers can be provided to the queue at initialization time as
@@ -1143,9 +1155,9 @@ To use the former method, follow this example:
```
job = DownloadJobRemoteSource(
source='http://www.civitai.com/models/13456',
destination='/tmp/models/',
event_handlers=[my_handler1, my_handler2], # if desired
)
destination='/tmp/models/',
event_handlers=[my_handler1, my_handler2], # if desired
)
queue.submit_download_job(job, start=True)
```
@@ -1160,13 +1172,13 @@ To have the queue create the job for you, follow this example instead:
```
job = queue.create_download_job(
source='http://www.civitai.com/models/13456',
destdir='/tmp/models/',
filename='my_model.safetensors',
event_handlers=[my_handler1, my_handler2], # if desired
start=True,
)
destdir='/tmp/models/',
filename='my_model.safetensors',
event_handlers=[my_handler1, my_handler2], # if desired
start=True,
)
```
The `filename` argument forces the downloader to use the specified
name for the file rather than the name provided by the remote source,
and is equivalent to manually specifying a destination of
@@ -1175,6 +1187,7 @@ and is equivalent to manually specifying a destination of
Here is the full list of arguments that can be provided to
`create_download_job()`:
| **Argument** | **Type** | **Default** | **Description** |
|------------------|------------------------------|-------------|-------------------------------------------|
| `source` | Union[str, Path, AnyHttpUrl] | | Download remote or local source |
@@ -1187,7 +1200,7 @@ Here is the full list of arguments that can be provided to
Internally, `create_download_job()` has a little bit of internal logic
that looks at the type of the source and selects the right subclass of
`DownloadJobBase` to create and enqueue.
`DownloadJobBase` to create and enqueue.
**TODO**: move this logic into its own method for overriding in
subclasses.
@@ -1262,7 +1275,7 @@ for getting the model to run. For example "author" is metadata, while
"type", "base" and "format" are not. The latter fields are part of the
model's config, as defined in `invokeai.backend.model_manager.config`.
### Example Usage
### Example Usage:
```
from invokeai.backend.model_manager.metadata import (
@@ -1315,6 +1328,7 @@ This is the common base class for metadata:
| `author` | str | Model's author |
| `tags` | Set[str] | Model tags |
Note that the model config record also has a `name` field. It is
intended that the config record version be locally customizable, while
the metadata version is read-only. However, enforcing this is expected
@@ -1334,6 +1348,7 @@ This descends from `ModelMetadataBase` and adds the following fields:
| `last_modified`| datetime | Date of last commit of this model to the repo |
| `files` | List[Path] | List of the files in the model repo |
#### `CivitaiMetadata`
This descends from `ModelMetadataBase` and adds the following fields:
@@ -1400,6 +1415,7 @@ testing suite to avoid hitting the internet.
The HuggingFace and Civitai fetcher subclasses add additional
repo-specific fetching methods:
#### HuggingFaceMetadataFetch
This overrides its base class `from_json()` method to return a
@@ -1418,12 +1434,13 @@ retrieves its metadata. Functionally equivalent to `from_id()`, the
only difference is that it returna a `CivitaiMetadata` object rather
than an `AnyModelRepoMetadata`.
### Metadata Storage
The `ModelMetadataStore` provides a simple facility to store model
metadata in the `invokeai.db` database. The data is stored as a JSON
blob, with a few common fields (`name`, `author`, `tags`) broken out
to be searchable.
to be searchable.
When a metadata object is saved to the database, it is identified
using the model key, _and this key must correspond to an existing
@@ -1518,16 +1535,16 @@ from invokeai.app.services.model_load import ModelLoadService, ModelLoaderRegist
config = InvokeAIAppConfig.get_config()
ram_cache = ModelCache(
max_cache_size=config.ram_cache_size, max_vram_cache_size=config.vram_cache_size, logger=logger
max_cache_size=config.ram_cache_size, max_vram_cache_size=config.vram_cache_size, logger=logger
)
convert_cache = ModelConvertCache(
cache_path=config.models_convert_cache_path, max_size=config.convert_cache_size
cache_path=config.models_convert_cache_path, max_size=config.convert_cache_size
)
loader = ModelLoadService(
app_config=config,
ram_cache=ram_cache,
convert_cache=convert_cache,
registry=ModelLoaderRegistry
app_config=config,
ram_cache=ram_cache,
convert_cache=convert_cache,
registry=ModelLoaderRegistry
)
```
@@ -1550,6 +1567,7 @@ The returned `LoadedModel` object contains a copy of the configuration
record returned by the model record `get_model()` method, as well as
the in-memory loaded model:
| **Attribute Name** | **Type** | **Description** |
|----------------|-----------------|------------------|
| `config` | AnyModelConfig | A copy of the model's configuration record for retrieving base type, etc. |
@@ -1563,6 +1581,7 @@ return `AnyModel`, a Union `ModelMixin`, `torch.nn.Module`,
models, `EmbeddingModelRaw` is used for LoRA and TextualInversion
models. The others are obvious.
`LoadedModel` acts as a context manager. The context loads the model
into the execution device (e.g. VRAM on CUDA systems), locks the model
in the execution device for the duration of the context, and returns
@@ -1571,14 +1590,14 @@ the model. Use it like this:
```
model_info = loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
with model_info as vae:
image = vae.decode(latents)[0]
image = vae.decode(latents)[0]
```
`get_model_by_key()` may raise any of the following exceptions:
* `UnknownModelException` -- key not in database
* `ModelNotFoundException` -- key in database but model not found at path
* `NotImplementedException` -- the loader doesn't know how to load this type of model
- `UnknownModelException` -- key not in database
- `ModelNotFoundException` -- key in database but model not found at path
- `NotImplementedException` -- the loader doesn't know how to load this type of model
### Emitting model loading events
@@ -1590,15 +1609,15 @@ following payload:
```
payload=dict(
queue_id=queue_id,
queue_item_id=queue_item_id,
queue_batch_id=queue_batch_id,
graph_execution_state_id=graph_execution_state_id,
model_key=model_key,
submodel_type=submodel,
hash=model_info.hash,
location=str(model_info.location),
precision=str(model_info.precision),
queue_id=queue_id,
queue_item_id=queue_item_id,
queue_batch_id=queue_batch_id,
graph_execution_state_id=graph_execution_state_id,
model_key=model_key,
submodel_type=submodel,
hash=model_info.hash,
location=str(model_info.location),
precision=str(model_info.precision),
)
```
@@ -1705,7 +1724,6 @@ object, or in `context.services.model_manager` from within an
invocation.
In the examples below, we have retrieved the manager using:
```
mm = ApiDependencies.invoker.services.model_manager
```

View File

@@ -19,8 +19,6 @@ their descriptions.
| Conditioning Primitive | A conditioning tensor primitive value |
| Content Shuffle Processor | Applies content shuffle processing to image |
| ControlNet | Collects ControlNet info to pass to other nodes |
| Create Denoise Mask | Converts a greyscale or transparency image into a mask for denoising. |
| Create Gradient Mask | Creates a mask for Gradient ("soft", "differential") inpainting that gradually expands during denoising. Improves edge coherence. |
| Denoise Latents | Denoises noisy latents to decodable images |
| Divide Integers | Divides two numbers |
| Dynamic Prompt | Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator |

View File

@@ -26,6 +26,7 @@ from ..services.invocation_services import InvocationServices
from ..services.invocation_stats.invocation_stats_default import InvocationStatsService
from ..services.invoker import Invoker
from ..services.model_manager.model_manager_default import ModelManagerService
from ..services.model_metadata import ModelMetadataStoreSQL
from ..services.model_records import ModelRecordServiceSQL
from ..services.names.names_default import SimpleNameService
from ..services.session_processor.session_processor_default import DefaultSessionProcessor
@@ -92,9 +93,10 @@ class ApiDependencies:
ObjectSerializerDisk[ConditioningFieldData](output_folder / "conditioning", ephemeral=True)
)
download_queue_service = DownloadQueueService(event_bus=events)
model_metadata_service = ModelMetadataStoreSQL(db=db)
model_manager = ModelManagerService.build_model_manager(
app_config=configuration,
model_record_service=ModelRecordServiceSQL(db=db),
model_record_service=ModelRecordServiceSQL(db=db, metadata_store=model_metadata_service),
download_queue=download_queue_service,
events=events,
)

View File

@@ -3,7 +3,9 @@
import pathlib
import shutil
from typing import Any, Dict, List, Optional
from hashlib import sha1
from random import randbytes
from typing import Any, Dict, List, Optional, Set
from fastapi import Body, Path, Query, Response
from fastapi.routing import APIRouter
@@ -13,10 +15,13 @@ from typing_extensions import Annotated
from invokeai.app.services.model_install import ModelInstallJob
from invokeai.app.services.model_records import (
DuplicateModelException,
InvalidModelException,
ModelRecordOrderBy,
ModelSummary,
UnknownModelException,
)
from invokeai.app.services.model_records.model_records_base import DuplicateModelException, ModelRecordChanges
from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
@@ -25,6 +30,8 @@ from invokeai.backend.model_manager.config import (
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.merge import MergeInterpolationMethod, ModelMerger
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
from invokeai.backend.model_manager.search import ModelSearch
from ..dependencies import ApiDependencies
@@ -40,6 +47,15 @@ class ModelsList(BaseModel):
model_config = ConfigDict(use_enum_values=True)
class ModelTagSet(BaseModel):
"""Return tags for a set of models."""
key: str
name: str
author: str
tags: Set[str]
##############################################################################
# These are example inputs and outputs that are used in places where Swagger
# is unable to generate a correct example.
@@ -50,16 +66,19 @@ example_model_config = {
"base": "sd-1",
"type": "main",
"format": "checkpoint",
"config_path": "string",
"config": "string",
"key": "string",
"hash": "string",
"original_hash": "string",
"current_hash": "string",
"description": "string",
"source": "string",
"converted_at": 0,
"last_modified": 0,
"vae": "string",
"variant": "normal",
"prediction_type": "epsilon",
"repo_variant": "fp16",
"upcast_attention": False,
"ztsnr_training": False,
}
example_model_input = {
@@ -68,12 +87,50 @@ example_model_input = {
"base": "sd-1",
"type": "main",
"format": "checkpoint",
"config_path": "configs/stable-diffusion/v1-inference.yaml",
"config": "configs/stable-diffusion/v1-inference.yaml",
"description": "Model description",
"vae": None,
"variant": "normal",
}
example_model_metadata = {
"name": "ip_adapter_sd_image_encoder",
"author": "InvokeAI",
"tags": [
"transformers",
"safetensors",
"clip_vision_model",
"endpoints_compatible",
"region:us",
"has_space",
"license:apache-2.0",
],
"files": [
{
"url": "https://huggingface.co/InvokeAI/ip_adapter_sd_image_encoder/resolve/main/README.md",
"path": "ip_adapter_sd_image_encoder/README.md",
"size": 628,
"sha256": None,
},
{
"url": "https://huggingface.co/InvokeAI/ip_adapter_sd_image_encoder/resolve/main/config.json",
"path": "ip_adapter_sd_image_encoder/config.json",
"size": 560,
"sha256": None,
},
{
"url": "https://huggingface.co/InvokeAI/ip_adapter_sd_image_encoder/resolve/main/model.safetensors",
"path": "ip_adapter_sd_image_encoder/model.safetensors",
"size": 2528373448,
"sha256": "6ca9667da1ca9e0b0f75e46bb030f7e011f44f86cbfb8d5a36590fcd7507b030",
},
],
"type": "huggingface",
"id": "InvokeAI/ip_adapter_sd_image_encoder",
"tag_dict": {"license": "apache-2.0"},
"last_modified": "2023-09-23T17:33:25Z",
}
##############################################################################
# ROUTES
##############################################################################
@@ -153,16 +210,48 @@ async def get_model_record(
raise HTTPException(status_code=404, detail=str(e))
# @model_manager_router.get("/summary", operation_id="list_model_summary")
# async def list_model_summary(
# page: int = Query(default=0, description="The page to get"),
# per_page: int = Query(default=10, description="The number of models per page"),
# order_by: ModelRecordOrderBy = Query(default=ModelRecordOrderBy.Default, description="The attribute to order by"),
# ) -> PaginatedResults[ModelSummary]:
# """Gets a page of model summary data."""
# record_store = ApiDependencies.invoker.services.model_manager.store
# results: PaginatedResults[ModelSummary] = record_store.list_models(page=page, per_page=per_page, order_by=order_by)
# return results
@model_manager_router.get("/summary", operation_id="list_model_summary")
async def list_model_summary(
page: int = Query(default=0, description="The page to get"),
per_page: int = Query(default=10, description="The number of models per page"),
order_by: ModelRecordOrderBy = Query(default=ModelRecordOrderBy.Default, description="The attribute to order by"),
) -> PaginatedResults[ModelSummary]:
"""Gets a page of model summary data."""
record_store = ApiDependencies.invoker.services.model_manager.store
results: PaginatedResults[ModelSummary] = record_store.list_models(page=page, per_page=per_page, order_by=order_by)
return results
@model_manager_router.get(
"/i/{key}/metadata",
operation_id="get_model_metadata",
responses={
200: {
"description": "The model metadata was retrieved successfully",
"content": {"application/json": {"example": example_model_metadata}},
},
400: {"description": "Bad request"},
},
)
async def get_model_metadata(
key: str = Path(description="Key of the model repo metadata to fetch."),
) -> Optional[AnyModelRepoMetadata]:
"""Get a model metadata object."""
record_store = ApiDependencies.invoker.services.model_manager.store
result: Optional[AnyModelRepoMetadata] = record_store.get_metadata(key)
return result
@model_manager_router.get(
"/tags",
operation_id="list_tags",
)
async def list_tags() -> Set[str]:
"""Get a unique set of all the model tags."""
record_store = ApiDependencies.invoker.services.model_manager.store
result: Set[str] = record_store.list_tags()
return result
class FoundModel(BaseModel):
@@ -234,6 +323,19 @@ async def scan_for_models(
return scan_results
@model_manager_router.get(
"/tags/search",
operation_id="search_by_metadata_tags",
)
async def search_by_metadata_tags(
tags: Set[str] = Query(default=None, description="Tags to search for"),
) -> ModelsList:
"""Get a list of models."""
record_store = ApiDependencies.invoker.services.model_manager.store
results = record_store.search_by_metadata_tag(tags)
return ModelsList(models=results)
@model_manager_router.patch(
"/i/{key}",
operation_id="update_model_record",
@@ -250,13 +352,15 @@ async def scan_for_models(
)
async def update_model_record(
key: Annotated[str, Path(description="Unique key of model")],
changes: Annotated[ModelRecordChanges, Body(description="Model config", example=example_model_input)],
info: Annotated[
AnyModelConfig, Body(description="Model config", discriminator="type", example=example_model_input)
],
) -> AnyModelConfig:
"""Update a model's config."""
"""Update model contents with a new config. If the model name or base fields are changed, then the model is renamed."""
logger = ApiDependencies.invoker.services.logger
record_store = ApiDependencies.invoker.services.model_manager.store
try:
model_response: AnyModelConfig = record_store.update_model(key, changes=changes)
model_response: AnyModelConfig = record_store.update_model(key, config=info)
logger.info(f"Updated model: {key}")
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
@@ -268,14 +372,14 @@ async def update_model_record(
@model_manager_router.delete(
"/i/{key}",
operation_id="delete_model",
operation_id="del_model_record",
responses={
204: {"description": "Model deleted successfully"},
404: {"description": "Model not found"},
},
status_code=204,
)
async def delete_model(
async def del_model_record(
key: str = Path(description="Unique key of model to remove from model registry."),
) -> Response:
"""
@@ -296,39 +400,42 @@ async def delete_model(
raise HTTPException(status_code=404, detail=str(e))
# @model_manager_router.post(
# "/i/",
# operation_id="add_model_record",
# responses={
# 201: {
# "description": "The model added successfully",
# "content": {"application/json": {"example": example_model_config}},
# },
# 409: {"description": "There is already a model corresponding to this path or repo_id"},
# 415: {"description": "Unrecognized file/folder format"},
# },
# status_code=201,
# )
# async def add_model_record(
# config: Annotated[
# AnyModelConfig, Body(description="Model config", discriminator="type", example=example_model_input)
# ],
# ) -> AnyModelConfig:
# """Add a model using the configuration information appropriate for its type."""
# logger = ApiDependencies.invoker.services.logger
# record_store = ApiDependencies.invoker.services.model_manager.store
# try:
# record_store.add_model(config)
# except DuplicateModelException as e:
# logger.error(str(e))
# raise HTTPException(status_code=409, detail=str(e))
# except InvalidModelException as e:
# logger.error(str(e))
# raise HTTPException(status_code=415)
@model_manager_router.post(
"/i/",
operation_id="add_model_record",
responses={
201: {
"description": "The model added successfully",
"content": {"application/json": {"example": example_model_config}},
},
409: {"description": "There is already a model corresponding to this path or repo_id"},
415: {"description": "Unrecognized file/folder format"},
},
status_code=201,
)
async def add_model_record(
config: Annotated[
AnyModelConfig, Body(description="Model config", discriminator="type", example=example_model_input)
],
) -> AnyModelConfig:
"""Add a model using the configuration information appropriate for its type."""
logger = ApiDependencies.invoker.services.logger
record_store = ApiDependencies.invoker.services.model_manager.store
if config.key == "<NOKEY>":
config.key = sha1(randbytes(100)).hexdigest()
logger.info(f"Created model {config.key} for {config.name}")
try:
record_store.add_model(config.key, config)
except DuplicateModelException as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
except InvalidModelException as e:
logger.error(str(e))
raise HTTPException(status_code=415)
# # now fetch it out
# result: AnyModelConfig = record_store.get_model(config.key)
# return result
# now fetch it out
result: AnyModelConfig = record_store.get_model(config.key)
return result
@model_manager_router.post(
@@ -344,7 +451,6 @@ async def delete_model(
)
async def install_model(
source: str = Query(description="Model source to install, can be a local path, repo_id, or remote URL"),
inplace: Optional[bool] = Query(description="Whether or not to install a local model in place", default=False),
# TODO(MM2): Can we type this?
config: Optional[Dict[str, Any]] = Body(
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
@@ -387,7 +493,6 @@ async def install_model(
source=source,
config=config,
access_token=access_token,
inplace=bool(inplace),
)
logger.info(f"Started installation of {source}")
except UnknownModelException as e:
@@ -403,10 +508,10 @@ async def install_model(
@model_manager_router.get(
"/install",
operation_id="list_model_installs",
"/import",
operation_id="list_model_install_jobs",
)
async def list_model_installs() -> List[ModelInstallJob]:
async def list_model_install_jobs() -> List[ModelInstallJob]:
"""Return the list of model install jobs.
Install jobs have a numeric `id`, a `status`, and other fields that provide information on
@@ -420,8 +525,9 @@ async def list_model_installs() -> List[ModelInstallJob]:
* "cancelled" -- Job was cancelled before completion.
Once completed, information about the model such as its size, base
model and type can be retrieved from the `config_out` field. For multi-file models such as diffusers,
information on individual files can be retrieved from `download_parts`.
model, type, and metadata can be retrieved from the `config_out`
field. For multi-file models such as diffusers, information on individual files
can be retrieved from `download_parts`.
See the example and schema below for more information.
"""
@@ -430,7 +536,7 @@ async def list_model_installs() -> List[ModelInstallJob]:
@model_manager_router.get(
"/install/{id}",
"/import/{id}",
operation_id="get_model_install_job",
responses={
200: {"description": "Success"},
@@ -450,7 +556,7 @@ async def get_model_install_job(id: int = Path(description="Model install id"))
@model_manager_router.delete(
"/install/{id}",
"/import/{id}",
operation_id="cancel_model_install_job",
responses={
201: {"description": "The job was cancelled successfully"},
@@ -468,8 +574,8 @@ async def cancel_model_install_job(id: int = Path(description="Model install job
installer.cancel_job(job)
@model_manager_router.delete(
"/install",
@model_manager_router.patch(
"/import",
operation_id="prune_model_install_jobs",
responses={
204: {"description": "All completed and errored jobs have been pruned"},
@@ -548,8 +654,7 @@ async def convert_model(
# temporarily rename the original safetensors file so that there is no naming conflict
original_name = model_config.name
model_config.name = f"{original_name}.DELETE"
changes = ModelRecordChanges(name=model_config.name)
store.update_model(key, changes=changes)
store.update_model(key, config=model_config)
# install the diffusers
try:
@@ -558,7 +663,7 @@ async def convert_model(
config={
"name": original_name,
"description": model_config.description,
"hash": model_config.hash,
"original_hash": model_config.original_hash,
"source": model_config.source,
},
)
@@ -566,6 +671,10 @@ async def convert_model(
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
# get the original metadata
if orig_metadata := store.get_metadata(key):
store.metadata_store.add_metadata(new_key, orig_metadata)
# delete the original safetensors file
installer.delete(key)
@@ -577,66 +686,66 @@ async def convert_model(
return new_config
# @model_manager_router.put(
# "/merge",
# operation_id="merge",
# responses={
# 200: {
# "description": "Model converted successfully",
# "content": {"application/json": {"example": example_model_config}},
# },
# 400: {"description": "Bad request"},
# 404: {"description": "Model not found"},
# 409: {"description": "There is already a model registered at this location"},
# },
# )
# async def merge(
# keys: List[str] = Body(description="Keys for two to three models to merge", min_length=2, max_length=3),
# merged_model_name: Optional[str] = Body(description="Name of destination model", default=None),
# alpha: float = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
# force: bool = Body(
# description="Force merging of models created with different versions of diffusers",
# default=False,
# ),
# interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method", default=None),
# merge_dest_directory: Optional[str] = Body(
# description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
# default=None,
# ),
# ) -> AnyModelConfig:
# """
# Merge diffusers models. The process is controlled by a set parameters provided in the body of the request.
# ```
# Argument Description [default]
# -------- ----------------------
# keys List of 2-3 model keys to merge together. All models must use the same base type.
# merged_model_name Name for the merged model [Concat model names]
# alpha Alpha value (0.0-1.0). Higher values give more weight to the second model [0.5]
# force If true, force the merge even if the models were generated by different versions of the diffusers library [False]
# interp Interpolation method. One of "weighted_sum", "sigmoid", "inv_sigmoid" or "add_difference" [weighted_sum]
# merge_dest_directory Specify a directory to store the merged model in [models directory]
# ```
# """
# logger = ApiDependencies.invoker.services.logger
# try:
# logger.info(f"Merging models: {keys} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}")
# dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None
# installer = ApiDependencies.invoker.services.model_manager.install
# merger = ModelMerger(installer)
# model_names = [installer.record_store.get_model(x).name for x in keys]
# response = merger.merge_diffusion_models_and_save(
# model_keys=keys,
# merged_model_name=merged_model_name or "+".join(model_names),
# alpha=alpha,
# interp=interp,
# force=force,
# merge_dest_directory=dest,
# )
# except UnknownModelException:
# raise HTTPException(
# status_code=404,
# detail=f"One or more of the models '{keys}' not found",
# )
# except ValueError as e:
# raise HTTPException(status_code=400, detail=str(e))
# return response
@model_manager_router.put(
"/merge",
operation_id="merge",
responses={
200: {
"description": "Model converted successfully",
"content": {"application/json": {"example": example_model_config}},
},
400: {"description": "Bad request"},
404: {"description": "Model not found"},
409: {"description": "There is already a model registered at this location"},
},
)
async def merge(
keys: List[str] = Body(description="Keys for two to three models to merge", min_length=2, max_length=3),
merged_model_name: Optional[str] = Body(description="Name of destination model", default=None),
alpha: float = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
force: bool = Body(
description="Force merging of models created with different versions of diffusers",
default=False,
),
interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method", default=None),
merge_dest_directory: Optional[str] = Body(
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
default=None,
),
) -> AnyModelConfig:
"""
Merge diffusers models. The process is controlled by a set parameters provided in the body of the request.
```
Argument Description [default]
-------- ----------------------
keys List of 2-3 model keys to merge together. All models must use the same base type.
merged_model_name Name for the merged model [Concat model names]
alpha Alpha value (0.0-1.0). Higher values give more weight to the second model [0.5]
force If true, force the merge even if the models were generated by different versions of the diffusers library [False]
interp Interpolation method. One of "weighted_sum", "sigmoid", "inv_sigmoid" or "add_difference" [weighted_sum]
merge_dest_directory Specify a directory to store the merged model in [models directory]
```
"""
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Merging models: {keys} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}")
dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None
installer = ApiDependencies.invoker.services.model_manager.install
merger = ModelMerger(installer)
model_names = [installer.record_store.get_model(x).name for x in keys]
response = merger.merge_diffusion_models_and_save(
model_keys=keys,
merged_model_name=merged_model_name or "+".join(model_names),
alpha=alpha,
interp=interp,
force=force,
merge_dest_directory=dest,
)
except UnknownModelException:
raise HTTPException(
status_code=404,
detail=f"One or more of the models '{keys}' not found",
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return response

View File

@@ -0,0 +1,58 @@
import torch
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
InvocationContext,
invocation,
)
from invokeai.app.invocations.fields import InputField, WithMetadata
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, MaskField, MaskOutput
@invocation(
"add_conditioning_mask",
title="Add Conditioning Mask",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
)
class AddConditioningMaskInvocation(BaseInvocation):
"""Add a mask to an existing conditioning tensor."""
conditioning: ConditioningField = InputField(description="The conditioning tensor to add a mask to.")
mask: MaskField = InputField(description="A mask to add to the conditioning tensor.")
def invoke(self, context: InvocationContext) -> ConditioningOutput:
self.conditioning.mask = self.mask
return ConditioningOutput(conditioning=self.conditioning)
@invocation(
"rectangle_mask",
title="Create Rectangle Mask",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
)
class RectangleMaskInvocation(BaseInvocation, WithMetadata):
"""Create a rectangular mask."""
height: int = InputField(description="The height of the entire mask.")
width: int = InputField(description="The width of the entire mask.")
y_top: int = InputField(description="The top y-coordinate of the rectangular masked region (inclusive).")
x_left: int = InputField(description="The left x-coordinate of the rectangular masked region (inclusive).")
rectangle_height: int = InputField(description="The height of the rectangular masked region.")
rectangle_width: int = InputField(description="The width of the rectangular masked region.")
def invoke(self, context: InvocationContext) -> MaskOutput:
mask = torch.zeros((1, self.height, self.width), dtype=torch.bool)
mask[
:, self.y_top : self.y_top + self.rectangle_height, self.x_left : self.x_left + self.rectangle_width
] = True
mask_name = context.tensors.save(mask)
return MaskOutput(
mask=MaskField(mask_name=mask_name),
width=self.width,
height=self.height,
)

View File

@@ -194,6 +194,12 @@ class BoardField(BaseModel):
board_id: str = Field(description="The id of the board")
class MaskField(BaseModel):
"""A mask primitive field."""
mask_name: str = Field(description="The name of the mask.")
class DenoiseMaskField(BaseModel):
"""An inpaint mask field"""
@@ -225,7 +231,11 @@ class ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
# endregion
mask: Optional[MaskField] = Field(
default=None,
description="The bool mask associated with this conditioning tensor. Excluded regions should be set to False, "
"included regions should be set to True.",
)
class MetadataField(RootModel):

View File

@@ -1,5 +1,5 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import inspect
import math
from contextlib import ExitStack
from functools import singledispatchmethod
@@ -9,6 +9,7 @@ import einops
import numpy as np
import numpy.typing as npt
import torch
import torchvision
import torchvision.transforms as T
from diffusers import AutoencoderKL, AutoencoderTiny
from diffusers.configuration_utils import ConfigMixin
@@ -50,12 +51,20 @@ from invokeai.app.invocations.primitives import (
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import BaseModelType, LoadedModel
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData, IPAdapterConditioningInfo
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
IPAdapterConditioningInfo,
Range,
SDXLConditioningInfo,
TextConditioningData,
TextConditioningRegions,
)
from invokeai.backend.util.silence_warnings import SilenceWarnings
from ...backend.stable_diffusion.diffusers_pipeline import (
@@ -65,7 +74,6 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
T2IAdapterData,
image_resized_to_grid_as_tensor,
)
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import choose_precision, choose_torch_device
from .baseinvocation import (
@@ -173,16 +181,6 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
)
@invocation_output("gradient_mask_output")
class GradientMaskOutput(BaseInvocationOutput):
"""Outputs a denoise mask and an image representing the total gradient of the mask."""
denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run")
expanded_mask_area: ImageField = OutputField(
description="Image representing the total gradient area of the mask. For paste-back purposes."
)
@invocation(
"create_gradient_mask",
title="Create Gradient Mask",
@@ -203,42 +201,38 @@ class CreateGradientMaskInvocation(BaseInvocation):
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> GradientMaskOutput:
def invoke(self, context: InvocationContext) -> DenoiseMaskOutput:
mask_image = context.images.get_pil(self.mask.image_name, mode="L")
if self.edge_radius > 0:
if self.coherence_mode == "Box Blur":
blur_mask = mask_image.filter(ImageFilter.BoxBlur(self.edge_radius))
else: # Gaussian Blur OR Staged
# Gaussian Blur uses standard deviation. 1/2 radius is a good approximation
blur_mask = mask_image.filter(ImageFilter.GaussianBlur(self.edge_radius / 2))
if self.coherence_mode == "Box Blur":
blur_mask = mask_image.filter(ImageFilter.BoxBlur(self.edge_radius))
else: # Gaussian Blur OR Staged
# Gaussian Blur uses standard deviation. 1/2 radius is a good approximation
blur_mask = mask_image.filter(ImageFilter.GaussianBlur(self.edge_radius / 2))
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(blur_mask, normalize=False)
mask_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(blur_mask, normalize=False)
# redistribute blur so that the original edges are 0 and blur outwards to 1
blur_tensor = (blur_tensor - 0.5) * 2
# redistribute blur so that the edges are 0 and blur out to 1
blur_tensor = (blur_tensor - 0.5) * 2
threshold = 1 - self.minimum_denoise
if self.coherence_mode == "Staged":
# wherever the blur_tensor is less than fully masked, convert it to threshold
blur_tensor = torch.where((blur_tensor < 1) & (blur_tensor > 0), threshold, blur_tensor)
else:
# wherever the blur_tensor is above threshold but less than 1, drop it to threshold
blur_tensor = torch.where((blur_tensor > threshold) & (blur_tensor < 1), threshold, blur_tensor)
threshold = 1 - self.minimum_denoise
if self.coherence_mode == "Staged":
# wherever the blur_tensor is masked to any degree, convert it to threshold
blur_tensor = torch.where((blur_tensor < 1), threshold, blur_tensor)
else:
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
# wherever the blur_tensor is above threshold but less than 1, drop it to threshold
blur_tensor = torch.where((blur_tensor > threshold) & (blur_tensor < 1), threshold, blur_tensor)
# multiply original mask to force actually masked regions to 0
blur_tensor = mask_tensor * blur_tensor
mask_name = context.tensors.save(tensor=blur_tensor.unsqueeze(1))
# compute a [0, 1] mask from the blur_tensor
expanded_mask = torch.where((blur_tensor < 1), 0, 1)
expanded_mask_image = Image.fromarray((expanded_mask.squeeze(0).numpy() * 255).astype(np.uint8), mode="L")
expanded_image_dto = context.images.save(expanded_mask_image)
return GradientMaskOutput(
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=None, gradient=True),
expanded_mask_area=ImageField(image_name=expanded_image_dto.image_name),
return DenoiseMaskOutput.build(
mask_name=mask_name,
masked_latents_name=None,
gradient=True,
)
@@ -284,11 +278,11 @@ def get_scheduler(
class DenoiseLatentsInvocation(BaseInvocation):
"""Denoises noisy latents to decodable images"""
positive_conditioning: ConditioningField = InputField(
positive_conditioning: Union[ConditioningField, list[ConditioningField]] = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection, ui_order=0
)
negative_conditioning: ConditioningField = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=1
negative_conditioning: Union[ConditioningField, list[ConditioningField]] = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=0
)
noise: Optional[LatentsField] = InputField(
default=None,
@@ -365,39 +359,185 @@ class DenoiseLatentsInvocation(BaseInvocation):
raise ValueError("cfg_scale must be greater than 1")
return v
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
base_model: BaseModelType,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.model_dump(),
source_node_id=source_node_id,
base_model=base_model,
)
def _get_text_embeddings_and_masks(
self,
cond_field: Union[ConditioningField, list[ConditioningField]],
context: InvocationContext,
device: torch.device,
dtype: torch.dtype,
) -> tuple[Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]], list[Optional[torch.Tensor]]]:
"""Get the text embeddings and masks from the input conditioning fields."""
# Normalize cond_field to a list.
cond_list = cond_field
if not isinstance(cond_list, list):
cond_list = [cond_list]
text_embeddings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]] = []
text_embeddings_masks: list[Optional[torch.Tensor]] = []
for cond in cond_list:
cond_data = context.conditioning.load(cond.conditioning_name)
text_embeddings.append(cond_data.conditionings[0].to(device=device, dtype=dtype))
mask = cond.mask
if mask is not None:
mask = context.tensors.load(mask.mask_name)
text_embeddings_masks.append(mask)
return text_embeddings, text_embeddings_masks
def _preprocess_regional_prompt_mask(
self, mask: Optional[torch.Tensor], target_height: int, target_width: int
) -> torch.Tensor:
"""Preprocess a regional prompt mask to match the target height and width.
If mask is None, returns a mask of all ones with the target height and width.
If mask is not None, resizes the mask to the target height and width using nearest neighbor interpolation.
Returns:
torch.Tensor: The processed mask. dtype: torch.bool, shape: (1, 1, target_height, target_width).
"""
if mask is None:
return torch.ones((1, 1, target_height, target_width), dtype=torch.bool)
tf = torchvision.transforms.Resize(
(target_height, target_width), interpolation=torchvision.transforms.InterpolationMode.NEAREST
)
mask = mask.unsqueeze(0) # Shape: (1, h, w) -> (1, 1, h, w)
mask = tf(mask)
return mask
def concat_regional_text_embeddings(
self,
text_conditionings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]],
masks: Optional[list[Optional[torch.Tensor]]],
latent_height: int,
latent_width: int,
) -> tuple[Union[BasicConditioningInfo, SDXLConditioningInfo], Optional[TextConditioningRegions]]:
"""Concatenate regional text embeddings into a single embedding and track the region masks accordingly."""
if masks is None:
masks = [None] * len(text_conditionings)
assert len(text_conditionings) == len(masks)
is_sdxl = type(text_conditionings[0]) is SDXLConditioningInfo
all_masks_are_none = all(mask is None for mask in masks)
text_embedding = []
pooled_embedding = None
add_time_ids = None
cur_text_embedding_len = 0
processed_masks = []
embedding_ranges = []
extra_conditioning = None
for text_embedding_info, mask in zip(text_conditionings, masks, strict=True):
if (
text_embedding_info.extra_conditioning is not None
and text_embedding_info.extra_conditioning.wants_cross_attention_control
):
extra_conditioning = text_embedding_info.extra_conditioning
if is_sdxl:
# We choose a random SDXLConditioningInfo's pooled_embeds and add_time_ids here, with a preference for
# prompts without a mask. We prefer prompts without a mask, because they are more likely to contain
# global prompt information. In an ideal case, there should be exactly one global prompt without a
# mask, but we don't enforce this.
# HACK(ryand): The fact that we have to choose a single pooled_embedding and add_time_ids here is a
# fundamental interface issue. The SDXL Compel nodes are not designed to be used in the way that we use
# them for regional prompting. Ideally, the DenoiseLatents invocation should accept a single
# pooled_embeds tensor and a list of standard text embeds with region masks. This change would be a
# pretty major breaking change to a popular node, so for now we use this hack.
if pooled_embedding is None or mask is None:
pooled_embedding = text_embedding_info.pooled_embeds
if add_time_ids is None or mask is None:
add_time_ids = text_embedding_info.add_time_ids
text_embedding.append(text_embedding_info.embeds)
if not all_masks_are_none:
embedding_ranges.append(
Range(
start=cur_text_embedding_len, end=cur_text_embedding_len + text_embedding_info.embeds.shape[1]
)
)
processed_masks.append(self._preprocess_regional_prompt_mask(mask, latent_height, latent_width))
cur_text_embedding_len += text_embedding_info.embeds.shape[1]
text_embedding = torch.cat(text_embedding, dim=1)
assert len(text_embedding.shape) == 3 # batch_size, seq_len, token_len
regions = None
if not all_masks_are_none:
regions = TextConditioningRegions(masks=torch.cat(processed_masks, dim=1), ranges=embedding_ranges)
if extra_conditioning is not None and len(text_conditionings) > 1:
raise ValueError(
"Prompt-to-prompt cross-attention control (a.k.a. `swap()`) is not supported when using multiple "
"prompts."
)
if is_sdxl:
return SDXLConditioningInfo(
embeds=text_embedding,
extra_conditioning=extra_conditioning,
pooled_embeds=pooled_embedding,
add_time_ids=add_time_ids,
), regions
return BasicConditioningInfo(
embeds=text_embedding,
extra_conditioning=extra_conditioning,
), regions
def get_conditioning_data(
self,
context: InvocationContext,
scheduler: Scheduler,
unet: UNet2DConditionModel,
seed: int,
) -> ConditioningData:
positive_cond_data = context.conditioning.load(self.positive_conditioning.conditioning_name)
c = positive_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype)
negative_cond_data = context.conditioning.load(self.negative_conditioning.conditioning_name)
uc = negative_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype)
conditioning_data = ConditioningData(
unconditioned_embeddings=uc,
text_embeddings=c,
unet,
latent_height: int,
latent_width: int,
) -> TextConditioningData:
cond_text_embeddings, cond_text_embedding_masks = self._get_text_embeddings_and_masks(
self.positive_conditioning, context, unet.device, unet.dtype
)
uncond_text_embeddings, uncond_text_embedding_masks = self._get_text_embeddings_and_masks(
self.negative_conditioning, context, unet.device, unet.dtype
)
cond_text_embedding, cond_regions = self.concat_regional_text_embeddings(
text_conditionings=cond_text_embeddings,
masks=cond_text_embedding_masks,
latent_height=latent_height,
latent_width=latent_width,
)
uncond_text_embedding, uncond_regions = self.concat_regional_text_embeddings(
text_conditionings=uncond_text_embeddings,
masks=uncond_text_embedding_masks,
latent_height=latent_height,
latent_width=latent_width,
)
conditioning_data = TextConditioningData(
uncond_text=uncond_text_embedding,
cond_text=cond_text_embedding,
uncond_regions=uncond_regions,
cond_regions=cond_regions,
guidance_scale=self.cfg_scale,
guidance_rescale_multiplier=self.cfg_rescale_multiplier,
postprocessing_settings=PostprocessingSettings(
threshold=0.0, # threshold,
warmup=0.2, # warmup,
h_symmetry_time_pct=None, # h_symmetry_time_pct,
v_symmetry_time_pct=None, # v_symmetry_time_pct,
),
)
conditioning_data = conditioning_data.add_scheduler_args_if_applicable( # FIXME
scheduler,
# for ddim scheduler
eta=0.0, # ddim_eta
# for ancestral and sde schedulers
# flip all bits to have noise different from initial
generator=torch.Generator(device=unet.device).manual_seed(seed ^ 0xFFFFFFFF),
)
return conditioning_data
@@ -503,7 +643,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
self,
context: InvocationContext,
ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]],
conditioning_data: ConditioningData,
exit_stack: ExitStack,
) -> Optional[list[IPAdapterData]]:
"""If IP-Adapter is enabled, then this function loads the requisite models, and adds the image prompt embeddings
@@ -520,7 +659,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
return None
ip_adapter_data_list = []
conditioning_data.ip_adapter_conditioning = []
for single_ip_adapter in ip_adapter:
ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context(
context.models.load(key=single_ip_adapter.ip_adapter_model.key)
@@ -543,16 +681,13 @@ class DenoiseLatentsInvocation(BaseInvocation):
single_ipa_images, image_encoder_model
)
conditioning_data.ip_adapter_conditioning.append(
IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds)
)
ip_adapter_data_list.append(
IPAdapterData(
ip_adapter_model=ip_adapter_model,
weight=single_ip_adapter.weight,
begin_step_percent=single_ip_adapter.begin_step_percent,
end_step_percent=single_ip_adapter.end_step_percent,
ip_adapter_conditioning=IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds),
)
)
@@ -642,6 +777,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
steps: int,
denoising_start: float,
denoising_end: float,
seed: int,
) -> Tuple[int, List[int], int]:
assert isinstance(scheduler, ConfigMixin)
if scheduler.config.get("cpu_only", False):
@@ -670,7 +806,15 @@ class DenoiseLatentsInvocation(BaseInvocation):
timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx]
num_inference_steps = len(timesteps) // scheduler.order
return num_inference_steps, timesteps, init_timestep
scheduler_step_kwargs = {}
scheduler_step_signature = inspect.signature(scheduler.step)
if "generator" in scheduler_step_signature.parameters:
# At some point, someone decided that schedulers that accept a generator should use the original seed with
# all bits flipped. I don't know the original rationale for this, but now we must keep it like this for
# reproducibility.
scheduler_step_kwargs = {"generator": torch.Generator(device=device).manual_seed(seed ^ 0xFFFFFFFF)}
return num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs
def prep_inpaint_mask(
self, context: InvocationContext, latents: torch.Tensor
@@ -763,7 +907,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
)
pipeline = self.create_pipeline(unet, scheduler)
conditioning_data = self.get_conditioning_data(context, scheduler, unet, seed)
_, _, latent_height, latent_width = latents.shape
conditioning_data = self.get_conditioning_data(
context=context, unet=unet, latent_height=latent_height, latent_width=latent_width
)
controlnet_data = self.prep_control_data(
context=context,
@@ -777,16 +924,16 @@ class DenoiseLatentsInvocation(BaseInvocation):
ip_adapter_data = self.prep_ip_adapter_data(
context=context,
ip_adapter=self.ip_adapter,
conditioning_data=conditioning_data,
exit_stack=exit_stack,
)
num_inference_steps, timesteps, init_timestep = self.init_scheduler(
num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
scheduler,
device=unet.device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,
seed=seed,
)
result_latents = pipeline.latents_from_embeddings(
@@ -799,6 +946,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
masked_latents=masked_latents,
gradient_mask=gradient_mask,
num_inference_steps=num_inference_steps,
scheduler_step_kwargs=scheduler_step_kwargs,
conditioning_data=conditioning_data,
control_data=controlnet_data,
ip_adapter_data=ip_adapter_data,

View File

@@ -133,7 +133,7 @@ class MainModelLoaderInvocation(BaseInvocation):
vae=VaeField(
vae=ModelInfo(
key=key,
submodel_type=SubModelType.VAE,
submodel_type=SubModelType.Vae,
),
),
)

View File

@@ -14,6 +14,7 @@ from invokeai.app.invocations.fields import (
Input,
InputField,
LatentsField,
MaskField,
OutputField,
UIComponent,
)
@@ -229,6 +230,18 @@ class StringCollectionInvocation(BaseInvocation):
# region Image
@invocation_output("mask_output")
class MaskOutput(BaseInvocationOutput):
"""A torch mask tensor.
dtype: torch.bool
shape: (1, height, width).
"""
mask: MaskField = OutputField(description="The mask.")
width: int = OutputField(description="The width of the mask in pixels.")
height: int = OutputField(description="The height of the mask in pixels.")
@invocation_output("image_output")
class ImageOutput(BaseInvocationOutput):
"""Base class for nodes that output a single image"""

View File

@@ -85,7 +85,7 @@ class SDXLModelLoaderInvocation(BaseInvocation):
vae=VaeField(
vae=ModelInfo(
key=model_key,
submodel_type=SubModelType.VAE,
submodel_type=SubModelType.Vae,
),
),
)
@@ -142,7 +142,7 @@ class SDXLRefinerModelLoaderInvocation(BaseInvocation):
vae=VaeField(
vae=ModelInfo(
key=model_key,
submodel_type=SubModelType.VAE,
submodel_type=SubModelType.Vae,
),
),
)

View File

@@ -256,7 +256,6 @@ class InvokeAIAppConfig(InvokeAISettings):
profile_graphs : bool = Field(default=False, description="Enable graph profiling", json_schema_extra=Categories.Development)
profile_prefix : Optional[str] = Field(default=None, description="An optional prefix for profile output files.", json_schema_extra=Categories.Development)
profiles_dir : Path = Field(default=Path('profiles'), description="Directory for graph profiles", json_schema_extra=Categories.Development)
skip_model_hash : bool = Field(default=False, description="Skip model hashing, instead assigning a UUID to models. Useful when using a memory db to reduce startup time.", json_schema_extra=Categories.Development)
version : bool = Field(default=False, description="Show InvokeAI version and exit", json_schema_extra=Categories.Other)

View File

@@ -18,9 +18,10 @@ from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_records import ModelRecordServiceBase
from invokeai.backend.model_manager import AnyModelConfig, ModelRepoVariant
from invokeai.backend.model_manager.config import ModelSourceType
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
from ..model_metadata import ModelMetadataStoreBase
class InstallStatus(str, Enum):
"""State of an install job running in the background."""
@@ -150,13 +151,6 @@ ModelSource = Annotated[
Union[LocalModelSource, HFModelSource, CivitaiModelSource, URLModelSource], Field(discriminator="type")
]
MODEL_SOURCE_TO_TYPE_MAP = {
URLModelSource: ModelSourceType.Url,
HFModelSource: ModelSourceType.HFRepoID,
CivitaiModelSource: ModelSourceType.CivitAI,
LocalModelSource: ModelSourceType.Path,
}
class ModelInstallJob(BaseModel):
"""Object that tracks the current status of an install request."""
@@ -266,6 +260,7 @@ class ModelInstallServiceBase(ABC):
app_config: InvokeAIAppConfig,
record_store: ModelRecordServiceBase,
download_queue: DownloadQueueServiceBase,
metadata_store: ModelMetadataStoreBase,
event_bus: Optional["EventServiceBase"] = None,
):
"""
@@ -352,7 +347,6 @@ class ModelInstallServiceBase(ABC):
source: str,
config: Optional[Dict[str, Any]] = None,
access_token: Optional[str] = None,
inplace: Optional[bool] = False,
) -> ModelInstallJob:
r"""Install the indicated model using heuristics to interpret user intentions.
@@ -398,7 +392,7 @@ class ModelInstallServiceBase(ABC):
will override corresponding autoassigned probe fields in the
model's config record. Use it to override
`name`, `description`, `base_type`, `model_type`, `format`,
`prediction_type`, and/or `image_size`.
`prediction_type`, `image_size`, and/or `ztsnr_training`.
This will download the model located at `source`,
probe it, and install it into the models directory.

View File

@@ -7,6 +7,7 @@ import time
from hashlib import sha256
from pathlib import Path
from queue import Empty, Queue
from random import randbytes
from shutil import copyfile, copytree, move, rmtree
from tempfile import mkdtemp
from typing import Any, Dict, List, Optional, Set, Union
@@ -20,15 +21,11 @@ from invokeai.app.services.download import DownloadJob, DownloadQueueServiceBase
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_records import DuplicateModelException, ModelRecordServiceBase
from invokeai.app.services.model_records.model_records_base import ModelRecordChanges
from invokeai.app.util.misc import uuid_string
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
CheckpointConfigBase,
InvalidModelConfigException,
ModelRepoVariant,
ModelSourceType,
ModelType,
)
from invokeai.backend.model_manager.metadata import (
@@ -38,14 +35,12 @@ from invokeai.backend.model_manager.metadata import (
ModelMetadataWithFiles,
RemoteModelFile,
)
from invokeai.backend.model_manager.metadata.metadata_base import CivitaiMetadata, HuggingFaceMetadata
from invokeai.backend.model_manager.probe import ModelProbe
from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.util import Chdir, InvokeAILogger
from invokeai.backend.util.devices import choose_precision, choose_torch_device
from .model_install_base import (
MODEL_SOURCE_TO_TYPE_MAP,
CivitaiModelSource,
HFModelSource,
InstallStatus,
@@ -95,6 +90,7 @@ class ModelInstallService(ModelInstallServiceBase):
self._running = False
self._session = session
self._next_job_id = 0
self._metadata_store = record_store.metadata_store # for convenience
@property
def app_config(self) -> InvokeAIAppConfig: # noqa D102
@@ -143,7 +139,6 @@ class ModelInstallService(ModelInstallServiceBase):
config = config or {}
if not config.get("source"):
config["source"] = model_path.resolve().as_posix()
config["source_type"] = ModelSourceType.Path
return self._register(model_path, config)
def install_path(
@@ -153,11 +148,11 @@ class ModelInstallService(ModelInstallServiceBase):
) -> str: # noqa D102
model_path = Path(model_path)
config = config or {}
if not config.get("source"):
config["source"] = model_path.resolve().as_posix()
config["key"] = config.get("key", self._create_key())
if self._app_config.skip_model_hash:
config["hash"] = uuid_string()
info: AnyModelConfig = ModelProbe.probe(Path(model_path), config)
info: AnyModelConfig = self._probe_model(Path(model_path), config)
if preferred_name := config.get("name"):
preferred_name = Path(preferred_name).with_suffix(model_path.suffix)
@@ -183,14 +178,13 @@ class ModelInstallService(ModelInstallServiceBase):
source: str,
config: Optional[Dict[str, Any]] = None,
access_token: Optional[str] = None,
inplace: Optional[bool] = False,
) -> ModelInstallJob:
variants = "|".join(ModelRepoVariant.__members__.values())
hf_repoid_re = f"^([^/:]+/[^/:]+)(?::({variants})?(?::/?([^:]+))?)?$"
source_obj: Optional[StringLikeSource] = None
if Path(source).exists(): # A local file or directory
source_obj = LocalModelSource(path=Path(source), inplace=inplace)
source_obj = LocalModelSource(path=Path(source))
elif match := re.match(hf_repoid_re, source):
source_obj = HFModelSource(
repo_id=match.group(1),
@@ -379,18 +373,15 @@ class ModelInstallService(ModelInstallServiceBase):
job.bytes = job.total_bytes
self._signal_job_running(job)
job.config_in["source"] = str(job.source)
job.config_in["source_type"] = MODEL_SOURCE_TO_TYPE_MAP[job.source.__class__]
# enter the metadata, if there is any
if isinstance(job.source_metadata, (CivitaiMetadata, HuggingFaceMetadata)):
job.config_in["source_api_response"] = job.source_metadata.api_response
if isinstance(job.source_metadata, CivitaiMetadata) and job.source_metadata.trigger_phrases:
job.config_in["trigger_phrases"] = job.source_metadata.trigger_phrases
if job.inplace:
key = self.register_path(job.local_path, job.config_in)
else:
key = self.install_path(job.local_path, job.config_in)
job.config_out = self.record_store.get_model(key)
# enter the metadata, if there is any
if job.source_metadata:
self._metadata_store.add_metadata(key, job.source_metadata)
self._signal_job_completed(job)
except InvalidModelConfigException as excp:
@@ -476,7 +467,7 @@ class ModelInstallService(ModelInstallServiceBase):
self._logger.info(f"Moving {model.name} to {new_path}.")
new_path = self._move_model(old_path, new_path)
model.path = new_path.relative_to(models_dir).as_posix()
self.record_store.update_model(key, ModelRecordChanges(path=model.path))
self.record_store.update_model(key, model)
return model
def _scan_register(self, model: Path) -> bool:
@@ -528,14 +519,22 @@ class ModelInstallService(ModelInstallServiceBase):
move(old_path, new_path)
return new_path
def _probe_model(self, model_path: Path, config: Optional[Dict[str, Any]] = None) -> AnyModelConfig:
info: AnyModelConfig = ModelProbe.probe(Path(model_path))
if config: # used to override probe fields
for key, value in config.items():
setattr(info, key, value)
return info
def _create_key(self) -> str:
return sha256(randbytes(100)).hexdigest()[0:32]
def _register(
self, model_path: Path, config: Optional[Dict[str, Any]] = None, info: Optional[AnyModelConfig] = None
) -> str:
config = config or {}
if self._app_config.skip_model_hash:
config["hash"] = uuid_string()
# Note that we may be passed a pre-populated AnyModelConfig object,
# in which case the key field should have been populated by the caller (e.g. in `install_path`).
config["key"] = config.get("key", self._create_key())
info = info or ModelProbe.probe(model_path, config)
model_path = model_path.absolute()
@@ -545,11 +544,11 @@ class ModelInstallService(ModelInstallServiceBase):
info.path = model_path.as_posix()
# add 'main' specific fields
if isinstance(info, CheckpointConfigBase):
if hasattr(info, "config"):
# make config relative to our root
legacy_conf = (self.app_config.root_dir / self.app_config.legacy_conf_dir / info.config_path).resolve()
info.config_path = legacy_conf.relative_to(self.app_config.root_dir).as_posix()
self.record_store.add_model(info)
legacy_conf = (self.app_config.root_dir / self.app_config.legacy_conf_dir / info.config).resolve()
info.config = legacy_conf.relative_to(self.app_config.root_dir).as_posix()
self.record_store.add_model(info.key, info)
return info.key
def _next_id(self) -> int:
@@ -570,15 +569,13 @@ class ModelInstallService(ModelInstallServiceBase):
source=source,
config_in=config or {},
local_path=Path(source.path),
inplace=source.inplace or False,
inplace=source.inplace,
)
def _import_from_civitai(self, source: CivitaiModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
if not source.access_token:
self._logger.info("No Civitai access token provided; some models may not be downloadable.")
metadata = CivitaiMetadataFetch(self._session, self.app_config.get_config().civitai_api_key).from_id(
str(source.version_id)
)
metadata = CivitaiMetadataFetch(self._session).from_id(str(source.version_id))
assert isinstance(metadata, ModelMetadataWithFiles)
remote_files = metadata.download_urls(session=self._session)
return self._import_remote_model(source=source, config=config, metadata=metadata, remote_files=remote_files)
@@ -606,17 +603,15 @@ class ModelInstallService(ModelInstallServiceBase):
def _import_from_url(self, source: URLModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
# URLs from Civitai or HuggingFace will be handled specially
url_patterns = {
r"^https?://civitai.com/": CivitaiMetadataFetch,
r"^https?://huggingface.co/[^/]+/[^/]+$": HuggingFaceMetadataFetch,
}
metadata = None
fetcher = None
try:
fetcher = self.get_fetcher_from_url(str(source.url))
except ValueError:
pass
kwargs: dict[str, Any] = {"session": self._session}
if fetcher is CivitaiMetadataFetch:
kwargs["api_key"] = self._app_config.get_config().civitai_api_key
if fetcher is not None:
metadata = fetcher(**kwargs).from_url(source.url)
for pattern, fetcher in url_patterns.items():
if re.match(pattern, str(source.url), re.IGNORECASE):
metadata = fetcher(self._session).from_url(source.url)
break
self._logger.debug(f"metadata={metadata}")
if metadata and isinstance(metadata, ModelMetadataWithFiles):
remote_files = metadata.download_urls(session=self._session)
@@ -631,7 +626,7 @@ class ModelInstallService(ModelInstallServiceBase):
def _import_remote_model(
self,
source: HFModelSource | CivitaiModelSource | URLModelSource,
source: ModelSource,
remote_files: List[RemoteModelFile],
metadata: Optional[AnyModelRepoMetadata],
config: Optional[Dict[str, Any]],
@@ -659,7 +654,7 @@ class ModelInstallService(ModelInstallServiceBase):
# In the event that there is a subfolder specified in the source,
# we need to remove it from the destination path in order to avoid
# creating unwanted subfolders
if isinstance(source, HFModelSource) and source.subfolder:
if hasattr(source, "subfolder") and source.subfolder:
root = Path(remote_files[0].path.parts[0])
subfolder = root / source.subfolder
else:
@@ -846,11 +841,3 @@ class ModelInstallService(ModelInstallServiceBase):
self._logger.info(f"{job.source}: model installation was cancelled")
if self._event_bus:
self._event_bus.emit_model_install_cancelled(str(job.source))
@staticmethod
def get_fetcher_from_url(url: str):
if re.match(r"^https?://civitai.com/", url.lower()):
return CivitaiMetadataFetch
elif re.match(r"^https?://huggingface.co/[^/]+/[^/]+$", url.lower()):
return HuggingFaceMetadataFetch
raise ValueError(f"Unsupported model source: '{url}'")

View File

@@ -0,0 +1,9 @@
"""Init file for ModelMetadataStoreService module."""
from .metadata_store_base import ModelMetadataStoreBase
from .metadata_store_sql import ModelMetadataStoreSQL
__all__ = [
"ModelMetadataStoreBase",
"ModelMetadataStoreSQL",
]

View File

@@ -0,0 +1,65 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
Storage for Model Metadata
"""
from abc import ABC, abstractmethod
from typing import List, Set, Tuple
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
class ModelMetadataStoreBase(ABC):
"""Store, search and fetch model metadata retrieved from remote repositories."""
@abstractmethod
def add_metadata(self, model_key: str, metadata: AnyModelRepoMetadata) -> None:
"""
Add a block of repo metadata to a model record.
The model record config must already exist in the database with the
same key. Otherwise a FOREIGN KEY constraint exception will be raised.
:param model_key: Existing model key in the `model_config` table
:param metadata: ModelRepoMetadata object to store
"""
@abstractmethod
def get_metadata(self, model_key: str) -> AnyModelRepoMetadata:
"""Retrieve the ModelRepoMetadata corresponding to model key."""
@abstractmethod
def list_all_metadata(self) -> List[Tuple[str, AnyModelRepoMetadata]]: # key, metadata
"""Dump out all the metadata."""
@abstractmethod
def update_metadata(self, model_key: str, metadata: AnyModelRepoMetadata) -> AnyModelRepoMetadata:
"""
Update metadata corresponding to the model with the indicated key.
:param model_key: Existing model key in the `model_config` table
:param metadata: ModelRepoMetadata object to update
"""
@abstractmethod
def list_tags(self) -> Set[str]:
"""Return all tags in the tags table."""
@abstractmethod
def search_by_tag(self, tags: Set[str]) -> Set[str]:
"""Return the keys of models containing all of the listed tags."""
@abstractmethod
def search_by_author(self, author: str) -> Set[str]:
"""Return the keys of models authored by the indicated author."""
@abstractmethod
def search_by_name(self, name: str) -> Set[str]:
"""
Return the keys of models with the indicated name.
Note that this is the name of the model given to it by
the remote source. The user may have changed the local
name. The local name will be located in the model config
record object.
"""

View File

@@ -0,0 +1,222 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
SQL Storage for Model Metadata
"""
import sqlite3
from typing import List, Optional, Set, Tuple
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata, UnknownMetadataException
from invokeai.backend.model_manager.metadata.fetch import ModelMetadataFetchBase
from .metadata_store_base import ModelMetadataStoreBase
class ModelMetadataStoreSQL(ModelMetadataStoreBase):
"""Store, search and fetch model metadata retrieved from remote repositories."""
def __init__(self, db: SqliteDatabase):
"""
Initialize a new object from preexisting sqlite3 connection and threading lock objects.
:param conn: sqlite3 connection object
:param lock: threading Lock object
"""
super().__init__()
self._db = db
self._cursor = self._db.conn.cursor()
def add_metadata(self, model_key: str, metadata: AnyModelRepoMetadata) -> None:
"""
Add a block of repo metadata to a model record.
The model record config must already exist in the database with the
same key. Otherwise a FOREIGN KEY constraint exception will be raised.
:param model_key: Existing model key in the `model_config` table
:param metadata: ModelRepoMetadata object to store
"""
json_serialized = metadata.model_dump_json()
with self._db.lock:
try:
self._cursor.execute(
"""--sql
INSERT INTO model_metadata(
id,
metadata
)
VALUES (?,?);
""",
(
model_key,
json_serialized,
),
)
self._update_tags(model_key, metadata.tags)
self._db.conn.commit()
except sqlite3.IntegrityError as excp: # FOREIGN KEY error: the key was not in model_config table
self._db.conn.rollback()
raise UnknownMetadataException from excp
except sqlite3.Error as excp:
self._db.conn.rollback()
raise excp
def get_metadata(self, model_key: str) -> AnyModelRepoMetadata:
"""Retrieve the ModelRepoMetadata corresponding to model key."""
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT metadata FROM model_metadata
WHERE id=?;
""",
(model_key,),
)
rows = self._cursor.fetchone()
if not rows:
raise UnknownMetadataException("model metadata not found")
return ModelMetadataFetchBase.from_json(rows[0])
def list_all_metadata(self) -> List[Tuple[str, AnyModelRepoMetadata]]: # key, metadata
"""Dump out all the metadata."""
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT id,metadata FROM model_metadata;
""",
(),
)
rows = self._cursor.fetchall()
return [(x[0], ModelMetadataFetchBase.from_json(x[1])) for x in rows]
def update_metadata(self, model_key: str, metadata: AnyModelRepoMetadata) -> AnyModelRepoMetadata:
"""
Update metadata corresponding to the model with the indicated key.
:param model_key: Existing model key in the `model_config` table
:param metadata: ModelRepoMetadata object to update
"""
json_serialized = metadata.model_dump_json() # turn it into a json string.
with self._db.lock:
try:
self._cursor.execute(
"""--sql
UPDATE model_metadata
SET
metadata=?
WHERE id=?;
""",
(json_serialized, model_key),
)
if self._cursor.rowcount == 0:
raise UnknownMetadataException("model metadata not found")
self._update_tags(model_key, metadata.tags)
self._db.conn.commit()
except sqlite3.Error as e:
self._db.conn.rollback()
raise e
return self.get_metadata(model_key)
def list_tags(self) -> Set[str]:
"""Return all tags in the tags table."""
self._cursor.execute(
"""--sql
select tag_text from tags;
"""
)
return {x[0] for x in self._cursor.fetchall()}
def search_by_tag(self, tags: Set[str]) -> Set[str]:
"""Return the keys of models containing all of the listed tags."""
with self._db.lock:
try:
matches: Optional[Set[str]] = None
for tag in tags:
self._cursor.execute(
"""--sql
SELECT a.model_id FROM model_tags AS a,
tags AS b
WHERE a.tag_id=b.tag_id
AND b.tag_text=?;
""",
(tag,),
)
model_keys = {x[0] for x in self._cursor.fetchall()}
if matches is None:
matches = model_keys
matches = matches.intersection(model_keys)
except sqlite3.Error as e:
raise e
return matches if matches else set()
def search_by_author(self, author: str) -> Set[str]:
"""Return the keys of models authored by the indicated author."""
self._cursor.execute(
"""--sql
SELECT id FROM model_metadata
WHERE author=?;
""",
(author,),
)
return {x[0] for x in self._cursor.fetchall()}
def search_by_name(self, name: str) -> Set[str]:
"""
Return the keys of models with the indicated name.
Note that this is the name of the model given to it by
the remote source. The user may have changed the local
name. The local name will be located in the model config
record object.
"""
self._cursor.execute(
"""--sql
SELECT id FROM model_metadata
WHERE name=?;
""",
(name,),
)
return {x[0] for x in self._cursor.fetchall()}
def _update_tags(self, model_key: str, tags: Set[str]) -> None:
"""Update tags for the model referenced by model_key."""
# remove previous tags from this model
self._cursor.execute(
"""--sql
DELETE FROM model_tags
WHERE model_id=?;
""",
(model_key,),
)
for tag in tags:
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO tags (
tag_text
)
VALUES (?);
""",
(tag,),
)
self._cursor.execute(
"""--sql
SELECT tag_id
FROM tags
WHERE tag_text = ?
LIMIT 1;
""",
(tag,),
)
tag_id = self._cursor.fetchone()[0]
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO model_tags (
model_id,
tag_id
)
VALUES (?,?);
""",
(model_key, tag_id),
)

View File

@@ -6,19 +6,20 @@ Abstract base class for storing and retrieving model configuration records.
from abc import ABC, abstractmethod
from enum import Enum
from pathlib import Path
from typing import List, Optional, Set, Union
from typing import Any, Dict, List, Optional, Set, Tuple, Union
from pydantic import BaseModel, Field
from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
from invokeai.backend.model_manager import (
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.config import ModelDefaultSettings, ModelVariantType, SchedulerPredictionType
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
from ..model_metadata import ModelMetadataStoreBase
class DuplicateModelException(Exception):
@@ -59,33 +60,11 @@ class ModelSummary(BaseModel):
tags: Set[str] = Field(description="tags associated with model")
class ModelRecordChanges(BaseModelExcludeNull):
"""A set of changes to apply to a model."""
# Changes applicable to all models
name: Optional[str] = Field(description="Name of the model.", default=None)
path: Optional[str] = Field(description="Path to the model.", default=None)
description: Optional[str] = Field(description="Model description", default=None)
base: Optional[BaseModelType] = Field(description="The base model.", default=None)
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
default_settings: Optional[ModelDefaultSettings] = Field(
description="Default settings for this model", default=None
)
# Checkpoint-specific changes
# TODO(MM2): Should we expose these? Feels footgun-y...
variant: Optional[ModelVariantType] = Field(description="The variant of the model.", default=None)
prediction_type: Optional[SchedulerPredictionType] = Field(
description="The prediction type of the model.", default=None
)
upcast_attention: Optional[bool] = Field(description="Whether to upcast attention.", default=None)
class ModelRecordServiceBase(ABC):
"""Abstract base class for storage and retrieval of model configs."""
@abstractmethod
def add_model(self, config: AnyModelConfig) -> AnyModelConfig:
def add_model(self, key: str, config: Union[Dict[str, Any], AnyModelConfig]) -> AnyModelConfig:
"""
Add a model to the database.
@@ -109,12 +88,13 @@ class ModelRecordServiceBase(ABC):
pass
@abstractmethod
def update_model(self, key: str, changes: ModelRecordChanges) -> AnyModelConfig:
def update_model(self, key: str, config: Union[Dict[str, Any], AnyModelConfig]) -> AnyModelConfig:
"""
Update the model, returning the updated version.
:param key: Unique key for the model to be updated.
:param changes: A set of changes to apply to this model. Changes are validated before being written.
:param key: Unique key for the model to be updated
:param config: Model configuration record. Either a dict with the
required fields, or a ModelConfigBase instance.
"""
pass
@@ -129,6 +109,40 @@ class ModelRecordServiceBase(ABC):
"""
pass
@property
@abstractmethod
def metadata_store(self) -> ModelMetadataStoreBase:
"""Return a ModelMetadataStore initialized on the same database."""
pass
@abstractmethod
def get_metadata(self, key: str) -> Optional[AnyModelRepoMetadata]:
"""
Retrieve metadata (if any) from when model was downloaded from a repo.
:param key: Model key
"""
pass
@abstractmethod
def list_all_metadata(self) -> List[Tuple[str, AnyModelRepoMetadata]]:
"""List metadata for all models that have it."""
pass
@abstractmethod
def search_by_metadata_tag(self, tags: Set[str]) -> List[AnyModelConfig]:
"""
Search model metadata for ones with all listed tags and return their corresponding configs.
:param tags: Set of tags to search for. All tags must be present.
"""
pass
@abstractmethod
def list_tags(self) -> Set[str]:
"""Return a unique set of all the model tags in the metadata database."""
pass
@abstractmethod
def list_models(
self, page: int = 0, per_page: int = 10, order_by: ModelRecordOrderBy = ModelRecordOrderBy.Default
@@ -203,3 +217,21 @@ class ModelRecordServiceBase(ABC):
f"More than one model matched the search criteria: base_model='{base_model}', model_type='{model_type}', model_name='{model_name}'."
)
return model_configs[0]
def rename_model(
self,
key: str,
new_name: str,
) -> AnyModelConfig:
"""
Rename the indicated model. Just a special case of update_model().
In some implementations, renaming the model may involve changing where
it is stored on the filesystem. So this is broken out.
:param key: Model key
:param new_name: New name for model
"""
config = self.get_model(key)
config.name = new_name
return self.update_model(key, config)

View File

@@ -43,7 +43,7 @@ import json
import sqlite3
from math import ceil
from pathlib import Path
from typing import List, Optional, Union
from typing import Any, Dict, List, Optional, Set, Tuple, Union
from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.backend.model_manager.config import (
@@ -53,11 +53,12 @@ from invokeai.backend.model_manager.config import (
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata, UnknownMetadataException
from ..model_metadata import ModelMetadataStoreBase, ModelMetadataStoreSQL
from ..shared.sqlite.sqlite_database import SqliteDatabase
from .model_records_base import (
DuplicateModelException,
ModelRecordChanges,
ModelRecordOrderBy,
ModelRecordServiceBase,
ModelSummary,
@@ -68,7 +69,7 @@ from .model_records_base import (
class ModelRecordServiceSQL(ModelRecordServiceBase):
"""Implementation of the ModelConfigStore ABC using a SQL database."""
def __init__(self, db: SqliteDatabase):
def __init__(self, db: SqliteDatabase, metadata_store: ModelMetadataStoreBase):
"""
Initialize a new object from preexisting sqlite3 connection and threading lock objects.
@@ -77,13 +78,14 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
super().__init__()
self._db = db
self._cursor = db.conn.cursor()
self._metadata_store = metadata_store
@property
def db(self) -> SqliteDatabase:
"""Return the underlying database."""
return self._db
def add_model(self, config: AnyModelConfig) -> AnyModelConfig:
def add_model(self, key: str, config: Union[Dict[str, Any], AnyModelConfig]) -> AnyModelConfig:
"""
Add a model to the database.
@@ -93,19 +95,23 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
Can raise DuplicateModelException and InvalidModelConfigException exceptions.
"""
record = ModelConfigFactory.make_config(config, key=key) # ensure it is a valid config obect.
json_serialized = record.model_dump_json() # and turn it into a json string.
with self._db.lock:
try:
self._cursor.execute(
"""--sql
INSERT INTO models (
INSERT INTO model_config (
id,
original_hash,
config
)
VALUES (?,?);
VALUES (?,?,?);
""",
(
config.key,
config.model_dump_json(),
key,
record.original_hash,
json_serialized,
),
)
self._db.conn.commit()
@@ -113,12 +119,12 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
except sqlite3.IntegrityError as e:
self._db.conn.rollback()
if "UNIQUE constraint failed" in str(e):
if "models.path" in str(e):
msg = f"A model with path '{config.path}' is already installed"
elif "models.name" in str(e):
msg = f"A model with name='{config.name}', type='{config.type}', base='{config.base}' is already installed"
if "model_config.path" in str(e):
msg = f"A model with path '{record.path}' is already installed"
elif "model_config.name" in str(e):
msg = f"A model with name='{record.name}', type='{record.type}', base='{record.base}' is already installed"
else:
msg = f"A model with key '{config.key}' is already installed"
msg = f"A model with key '{key}' is already installed"
raise DuplicateModelException(msg) from e
else:
raise e
@@ -126,7 +132,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
self._db.conn.rollback()
raise e
return self.get_model(config.key)
return self.get_model(key)
def del_model(self, key: str) -> None:
"""
@@ -140,7 +146,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
try:
self._cursor.execute(
"""--sql
DELETE FROM models
DELETE FROM model_config
WHERE id=?;
""",
(key,),
@@ -152,20 +158,21 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
self._db.conn.rollback()
raise e
def update_model(self, key: str, changes: ModelRecordChanges) -> AnyModelConfig:
record = self.get_model(key)
# Model configs use pydantic's `validate_assignment`, so each change is validated by pydantic.
for field_name in changes.model_fields_set:
setattr(record, field_name, getattr(changes, field_name))
json_serialized = record.model_dump_json()
def update_model(self, key: str, config: Union[Dict[str, Any], AnyModelConfig]) -> AnyModelConfig:
"""
Update the model, returning the updated version.
:param key: Unique key for the model to be updated
:param config: Model configuration record. Either a dict with the
required fields, or a ModelConfigBase instance.
"""
record = ModelConfigFactory.make_config(config, key=key) # ensure it is a valid config obect
json_serialized = record.model_dump_json() # and turn it into a json string.
with self._db.lock:
try:
self._cursor.execute(
"""--sql
UPDATE models
UPDATE model_config
SET
config=?
WHERE id=?;
@@ -192,7 +199,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
SELECT config, strftime('%s',updated_at) FROM model_config
WHERE id=?;
""",
(key,),
@@ -213,7 +220,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
with self._db.lock:
self._cursor.execute(
"""--sql
select count(*) FROM models
select count(*) FROM model_config
WHERE id=?;
""",
(key,),
@@ -239,8 +246,9 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
If none of the optional filters are passed, will return all
models in the database.
"""
where_clause: list[str] = []
bindings: list[str] = []
results = []
where_clause = []
bindings = []
if model_name:
where_clause.append("name=?")
bindings.append(model_name)
@@ -257,13 +265,14 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
with self._db.lock:
self._cursor.execute(
f"""--sql
SELECT config, strftime('%s',updated_at) FROM models
select config, strftime('%s',updated_at) FROM model_config
{where};
""",
tuple(bindings),
)
result = self._cursor.fetchall()
results = [ModelConfigFactory.make_config(json.loads(x[0]), timestamp=x[1]) for x in result]
results = [
ModelConfigFactory.make_config(json.loads(x[0]), timestamp=x[1]) for x in self._cursor.fetchall()
]
return results
def search_by_path(self, path: Union[str, Path]) -> List[AnyModelConfig]:
@@ -272,7 +281,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
SELECT config, strftime('%s',updated_at) FROM model_config
WHERE path=?;
""",
(str(path),),
@@ -283,13 +292,13 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
return results
def search_by_hash(self, hash: str) -> List[AnyModelConfig]:
"""Return models with the indicated hash."""
"""Return models with the indicated original_hash."""
results = []
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE hash=?;
SELECT config, strftime('%s',updated_at) FROM model_config
WHERE original_hash=?;
""",
(hash,),
)
@@ -298,35 +307,83 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
]
return results
@property
def metadata_store(self) -> ModelMetadataStoreBase:
"""Return a ModelMetadataStore initialized on the same database."""
return self._metadata_store
def get_metadata(self, key: str) -> Optional[AnyModelRepoMetadata]:
"""
Retrieve metadata (if any) from when model was downloaded from a repo.
:param key: Model key
"""
store = self.metadata_store
try:
metadata = store.get_metadata(key)
return metadata
except UnknownMetadataException:
return None
def search_by_metadata_tag(self, tags: Set[str]) -> List[AnyModelConfig]:
"""
Search model metadata for ones with all listed tags and return their corresponding configs.
:param tags: Set of tags to search for. All tags must be present.
"""
store = ModelMetadataStoreSQL(self._db)
keys = store.search_by_tag(tags)
return [self.get_model(x) for x in keys]
def list_tags(self) -> Set[str]:
"""Return a unique set of all the model tags in the metadata database."""
store = ModelMetadataStoreSQL(self._db)
return store.list_tags()
def list_all_metadata(self) -> List[Tuple[str, AnyModelRepoMetadata]]:
"""List metadata for all models that have it."""
store = ModelMetadataStoreSQL(self._db)
return store.list_all_metadata()
def list_models(
self, page: int = 0, per_page: int = 10, order_by: ModelRecordOrderBy = ModelRecordOrderBy.Default
) -> PaginatedResults[ModelSummary]:
"""Return a paginated summary listing of each model in the database."""
assert isinstance(order_by, ModelRecordOrderBy)
ordering = {
ModelRecordOrderBy.Default: "type, base, format, name",
ModelRecordOrderBy.Type: "type",
ModelRecordOrderBy.Base: "base",
ModelRecordOrderBy.Name: "name",
ModelRecordOrderBy.Format: "format",
ModelRecordOrderBy.Default: "a.type, a.base, a.format, a.name",
ModelRecordOrderBy.Type: "a.type",
ModelRecordOrderBy.Base: "a.base",
ModelRecordOrderBy.Name: "a.name",
ModelRecordOrderBy.Format: "a.format",
}
def _fixup(summary: Dict[str, str]) -> Dict[str, Union[str, int, Set[str]]]:
"""Fix up results so that there are no null values."""
result: Dict[str, Union[str, int, Set[str]]] = {}
for key, item in summary.items():
result[key] = item or ""
result["tags"] = set(json.loads(summary["tags"] or "[]"))
return result
# Lock so that the database isn't updated while we're doing the two queries.
with self._db.lock:
# query1: get the total number of model configs
self._cursor.execute(
"""--sql
select count(*) from models;
select count(*) from model_config;
""",
(),
)
total = int(self._cursor.fetchone()[0])
# query2: fetch key fields
# query2: fetch key fields from the join of model_config and model_metadata
self._cursor.execute(
f"""--sql
SELECT config
FROM models
SELECT a.id as key, a.type, a.base, a.format, a.name,
json_extract(a.config, '$.description') as description,
json_extract(b.metadata, '$.tags') as tags
FROM model_config AS a
LEFT JOIN model_metadata AS b on a.id=b.id
ORDER BY {ordering[order_by]} -- using ? to bind doesn't work here for some reason
LIMIT ?
OFFSET ?;
@@ -337,7 +394,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
),
)
rows = self._cursor.fetchall()
items = [ModelSummary.model_validate(dict(x)) for x in rows]
items = [ModelSummary.model_validate(_fixup(dict(x))) for x in rows]
return PaginatedResults(
page=page, pages=ceil(total / per_page), per_page=per_page, total=total, items=items
)

View File

@@ -1,35 +1,6 @@
from abc import ABC, abstractmethod
from threading import Event
from invokeai.app.services.invocation_services import InvocationServices
from invokeai.app.services.session_processor.session_processor_common import SessionProcessorStatus
from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem
class SessionRunnerBase(ABC):
"""
Base class for session runner.
"""
@abstractmethod
def start(self, services: InvocationServices, cancel_event: Event) -> None:
"""Starts the session runner"""
pass
@abstractmethod
def run(self, queue_item: SessionQueueItem) -> None:
"""Runs the session"""
pass
@abstractmethod
def complete(self, queue_item: SessionQueueItem) -> None:
"""Completes the session"""
pass
@abstractmethod
def run_node(self, node_id: str, queue_item: SessionQueueItem) -> None:
"""Runs an already prepared node on the session"""
pass
class SessionProcessorBase(ABC):

View File

@@ -2,14 +2,13 @@ import traceback
from contextlib import suppress
from threading import BoundedSemaphore, Thread
from threading import Event as ThreadEvent
from typing import Callable, Optional, Union
from typing import Optional
from fastapi_events.handlers.local import local_handler
from fastapi_events.typing import Event as FastAPIEvent
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invocation_services import InvocationServices
from invokeai.app.services.invocation_stats.invocation_stats_common import GESStatsNotFoundError
from invokeai.app.services.session_processor.session_processor_common import CanceledException
from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem
@@ -17,164 +16,15 @@ from invokeai.app.services.shared.invocation_context import InvocationContextDat
from invokeai.app.util.profiler import Profiler
from ..invoker import Invoker
from .session_processor_base import SessionProcessorBase, SessionRunnerBase
from .session_processor_base import SessionProcessorBase
from .session_processor_common import SessionProcessorStatus
class DefaultSessionRunner(SessionRunnerBase):
"""Processes a single session's invocations"""
def __init__(
self,
on_before_run_node: Union[Callable[[BaseInvocation, SessionQueueItem], bool], None] = None,
on_after_run_node: Union[Callable[[BaseInvocation, SessionQueueItem], bool], None] = None,
):
self.on_before_run_node = on_before_run_node
self.on_after_run_node = on_after_run_node
def start(self, services: InvocationServices, cancel_event: ThreadEvent):
"""Start the session runner"""
self.services = services
self.cancel_event = cancel_event
def run(self, queue_item: SessionQueueItem):
"""Run the graph"""
if not queue_item.session:
raise ValueError("Queue item has no session")
# Loop over invocations until the session is complete or canceled
while not (queue_item.session.is_complete() or self.cancel_event.is_set()):
# Prepare the next node
invocation = queue_item.session.next()
if invocation is None:
# If there are no more invocations, complete the graph
break
# Build invocation context (the node-facing API
self.run_node(invocation.id, queue_item)
self.complete(queue_item)
def complete(self, queue_item: SessionQueueItem):
"""Complete the graph"""
self.services.events.emit_graph_execution_complete(
queue_batch_id=queue_item.batch_id,
queue_item_id=queue_item.item_id,
queue_id=queue_item.queue_id,
graph_execution_state_id=queue_item.session.id,
)
def _on_before_run_node(self, invocation: BaseInvocation, queue_item: SessionQueueItem):
"""Run before a node is executed"""
# Send starting event
self.services.events.emit_invocation_started(
queue_batch_id=queue_item.batch_id,
queue_item_id=queue_item.item_id,
queue_id=queue_item.queue_id,
graph_execution_state_id=queue_item.session_id,
node=invocation.model_dump(),
source_node_id=queue_item.session.prepared_source_mapping[invocation.id],
)
if self.on_before_run_node is not None:
self.on_before_run_node(invocation, queue_item)
def _on_after_run_node(self, invocation: BaseInvocation, queue_item: SessionQueueItem):
"""Run after a node is executed"""
if self.on_after_run_node is not None:
self.on_after_run_node(invocation, queue_item)
def run_node(self, node_id: str, queue_item: SessionQueueItem):
"""Run a single node in the graph"""
# If this error raises a NodeNotFoundError that's handled by the processor
invocation = queue_item.session.execution_graph.get_node(node_id)
try:
self._on_before_run_node(invocation, queue_item)
data = InvocationContextData(
invocation=invocation,
source_invocation_id=queue_item.session.prepared_source_mapping[invocation.id],
queue_item=queue_item,
)
# Innermost processor try block; any unhandled exception is an invocation error & will fail the graph
with self.services.performance_statistics.collect_stats(invocation, queue_item.session_id):
context = build_invocation_context(
data=data,
services=self.services,
cancel_event=self.cancel_event,
)
# Invoke the node
outputs = invocation.invoke_internal(context=context, services=self.services)
# Save outputs and history
queue_item.session.complete(invocation.id, outputs)
self._on_after_run_node(invocation, queue_item)
# Send complete event on successful runs
self.services.events.emit_invocation_complete(
queue_batch_id=queue_item.batch_id,
queue_item_id=queue_item.item_id,
queue_id=queue_item.queue_id,
graph_execution_state_id=queue_item.session.id,
node=invocation.model_dump(),
source_node_id=data.source_invocation_id,
result=outputs.model_dump(),
)
except KeyboardInterrupt:
# TODO(MM2): Create an event for this
pass
except CanceledException:
# When the user cancels the graph, we first set the cancel event. The event is checked
# between invocations, in this loop. Some invocations are long-running, and we need to
# be able to cancel them mid-execution.
#
# For example, denoising is a long-running invocation with many steps. A step callback
# is executed after each step. This step callback checks if the canceled event is set,
# then raises a CanceledException to stop execution immediately.
#
# When we get a CanceledException, we don't need to do anything - just pass and let the
# loop go to its next iteration, and the cancel event will be handled correctly.
pass
except Exception as e:
error = traceback.format_exc()
# Save error
queue_item.session.set_node_error(invocation.id, error)
self.services.logger.error(
f"Error while invoking session {queue_item.session_id}, invocation {invocation.id} ({invocation.get_type()}):\n{e}"
)
self.services.logger.error(error)
# Send error event
self.services.events.emit_invocation_error(
queue_batch_id=queue_item.session_id,
queue_item_id=queue_item.item_id,
queue_id=queue_item.queue_id,
graph_execution_state_id=queue_item.session.id,
node=invocation.model_dump(),
source_node_id=queue_item.session.prepared_source_mapping[invocation.id],
error_type=e.__class__.__name__,
error=error,
)
class DefaultSessionProcessor(SessionProcessorBase):
"""Processes sessions from the session queue"""
def __init__(self, session_runner: Union[SessionRunnerBase, None] = None) -> None:
super().__init__()
self.session_runner = session_runner if session_runner else DefaultSessionRunner()
def start(
self,
invoker: Invoker,
thread_limit: int = 1,
polling_interval: int = 1,
on_before_run_session: Union[Callable[[SessionQueueItem], bool], None] = None,
on_after_run_session: Union[Callable[[SessionQueueItem], bool], None] = None,
) -> None:
def start(self, invoker: Invoker, thread_limit: int = 1, polling_interval: int = 1) -> None:
self._invoker: Invoker = invoker
self._queue_item: Optional[SessionQueueItem] = None
self._invocation: Optional[BaseInvocation] = None
self.on_before_run_session = on_before_run_session
self.on_after_run_session = on_after_run_session
self._resume_event = ThreadEvent()
self._stop_event = ThreadEvent()
@@ -209,7 +59,6 @@ class DefaultSessionProcessor(SessionProcessorBase):
"cancel_event": self._cancel_event,
},
)
self.session_runner.start(services=invoker.services, cancel_event=self._cancel_event)
self._thread.start()
def stop(self, *args, **kwargs) -> None:
@@ -268,34 +117,130 @@ class DefaultSessionProcessor(SessionProcessorBase):
self._invoker.services.logger.debug(f"Executing queue item {self._queue_item.item_id}")
cancel_event.clear()
# If we have a on_before_run_session callback, call it
if self.on_before_run_session is not None:
self.on_before_run_session(self._queue_item)
# If profiling is enabled, start the profiler
if self._profiler is not None:
self._profiler.start(profile_id=self._queue_item.session_id)
# Run the graph
self.session_runner.run(queue_item=self._queue_item)
# Prepare invocations and take the first
self._invocation = self._queue_item.session.next()
# If we are profiling, stop the profiler and dump the profile & stats
if self._profiler:
profile_path = self._profiler.stop()
stats_path = profile_path.with_suffix(".json")
self._invoker.services.performance_statistics.dump_stats(
graph_execution_state_id=self._queue_item.session.id, output_path=stats_path
# Loop over invocations until the session is complete or canceled
while self._invocation is not None and not cancel_event.is_set():
# get the source node id to provide to clients (the prepared node id is not as useful)
source_invocation_id = self._queue_item.session.prepared_source_mapping[self._invocation.id]
# Send starting event
self._invoker.services.events.emit_invocation_started(
queue_batch_id=self._queue_item.batch_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session_id,
node=self._invocation.model_dump(),
source_node_id=source_invocation_id,
)
# We'll get a GESStatsNotFoundError if we try to log stats for an untracked graph, but in the processor
# we don't care about that - suppress the error.
with suppress(GESStatsNotFoundError):
self._invoker.services.performance_statistics.log_stats(self._queue_item.session.id)
self._invoker.services.performance_statistics.reset_stats()
# Innermost processor try block; any unhandled exception is an invocation error & will fail the graph
try:
with self._invoker.services.performance_statistics.collect_stats(
self._invocation, self._queue_item.session.id
):
# Build invocation context (the node-facing API)
data = InvocationContextData(
invocation=self._invocation,
source_invocation_id=source_invocation_id,
queue_item=self._queue_item,
)
context = build_invocation_context(
data=data,
services=self._invoker.services,
cancel_event=self._cancel_event,
)
# If we have a on_after_run_session callback, call it
if self.on_after_run_session is not None:
self.on_after_run_session(self._queue_item)
# Invoke the node
outputs = self._invocation.invoke_internal(
context=context, services=self._invoker.services
)
# Save outputs and history
self._queue_item.session.complete(self._invocation.id, outputs)
# Send complete event
self._invoker.services.events.emit_invocation_complete(
queue_batch_id=self._queue_item.batch_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session.id,
node=self._invocation.model_dump(),
source_node_id=source_invocation_id,
result=outputs.model_dump(),
)
except KeyboardInterrupt:
# TODO(MM2): Create an event for this
pass
except CanceledException:
# When the user cancels the graph, we first set the cancel event. The event is checked
# between invocations, in this loop. Some invocations are long-running, and we need to
# be able to cancel them mid-execution.
#
# For example, denoising is a long-running invocation with many steps. A step callback
# is executed after each step. This step callback checks if the canceled event is set,
# then raises a CanceledException to stop execution immediately.
#
# When we get a CanceledException, we don't need to do anything - just pass and let the
# loop go to its next iteration, and the cancel event will be handled correctly.
pass
except Exception as e:
error = traceback.format_exc()
# Save error
self._queue_item.session.set_node_error(self._invocation.id, error)
self._invoker.services.logger.error(
f"Error while invoking session {self._queue_item.session_id}, invocation {self._invocation.id} ({self._invocation.get_type()}):\n{e}"
)
# Send error event
self._invoker.services.events.emit_invocation_error(
queue_batch_id=self._queue_item.session_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session.id,
node=self._invocation.model_dump(),
source_node_id=source_invocation_id,
error_type=e.__class__.__name__,
error=error,
)
pass
# The session is complete if the all invocations are complete or there was an error
if self._queue_item.session.is_complete() or cancel_event.is_set():
# Send complete event
self._invoker.services.events.emit_graph_execution_complete(
queue_batch_id=self._queue_item.batch_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session.id,
)
# If we are profiling, stop the profiler and dump the profile & stats
if self._profiler:
profile_path = self._profiler.stop()
stats_path = profile_path.with_suffix(".json")
self._invoker.services.performance_statistics.dump_stats(
graph_execution_state_id=self._queue_item.session.id, output_path=stats_path
)
# We'll get a GESStatsNotFoundError if we try to log stats for an untracked graph, but in the processor
# we don't care about that - suppress the error.
with suppress(GESStatsNotFoundError):
self._invoker.services.performance_statistics.log_stats(self._queue_item.session.id)
self._invoker.services.performance_statistics.reset_stats()
# Set the invocation to None to prepare for the next session
self._invocation = None
else:
# Prepare the next invocation
self._invocation = self._queue_item.session.next()
# The session is complete, immediately poll for next session
self._queue_item = None
@@ -329,4 +274,3 @@ class DefaultSessionProcessor(SessionProcessorBase):
poll_now_event.clear()
self._queue_item = None
self._thread_semaphore.release()
self._invoker.services.logger.debug("Session processor stopped")

View File

@@ -9,7 +9,6 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_3 import
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_4 import build_migration_4
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_5 import build_migration_5
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_6 import build_migration_6
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_7 import build_migration_7
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
@@ -36,7 +35,6 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
migrator.register_migration(build_migration_4())
migrator.register_migration(build_migration_5())
migrator.register_migration(build_migration_6())
migrator.register_migration(build_migration_7())
migrator.run_migrations()
return db

View File

@@ -1,88 +0,0 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration7Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._create_models_table(cursor)
self._drop_old_models_tables(cursor)
def _drop_old_models_tables(self, cursor: sqlite3.Cursor) -> None:
"""Drops the old model_records, model_metadata, model_tags and tags tables."""
tables = ["model_records", "model_metadata", "model_tags", "tags"]
for table in tables:
cursor.execute(f"DROP TABLE IF EXISTS {table};")
def _create_models_table(self, cursor: sqlite3.Cursor) -> None:
"""Creates the v4.0.0 models table."""
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS models (
id TEXT NOT NULL PRIMARY KEY,
hash TEXT GENERATED ALWAYS as (json_extract(config, '$.hash')) VIRTUAL NOT NULL,
base TEXT GENERATED ALWAYS as (json_extract(config, '$.base')) VIRTUAL NOT NULL,
type TEXT GENERATED ALWAYS as (json_extract(config, '$.type')) VIRTUAL NOT NULL,
path TEXT GENERATED ALWAYS as (json_extract(config, '$.path')) VIRTUAL NOT NULL,
format TEXT GENERATED ALWAYS as (json_extract(config, '$.format')) VIRTUAL NOT NULL,
name TEXT GENERATED ALWAYS as (json_extract(config, '$.name')) VIRTUAL NOT NULL,
description TEXT GENERATED ALWAYS as (json_extract(config, '$.description')) VIRTUAL,
source TEXT GENERATED ALWAYS as (json_extract(config, '$.source')) VIRTUAL NOT NULL,
source_type TEXT GENERATED ALWAYS as (json_extract(config, '$.source_type')) VIRTUAL NOT NULL,
source_api_response TEXT GENERATED ALWAYS as (json_extract(config, '$.source_api_response')) VIRTUAL,
trigger_phrases TEXT GENERATED ALWAYS as (json_extract(config, '$.trigger_phrases')) VIRTUAL,
-- Serialized JSON representation of the whole config object, which will contain additional fields from subclasses
config TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- unique constraint on combo of name, base and type
UNIQUE(name, base, type)
);
"""
]
# Add trigger for `updated_at`.
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS models_updated_at
AFTER UPDATE
ON models FOR EACH ROW
BEGIN
UPDATE models SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE id = old.id;
END;
"""
]
# Add indexes for searchable fields
indices = [
"CREATE INDEX IF NOT EXISTS base_index ON models(base);",
"CREATE INDEX IF NOT EXISTS type_index ON models(type);",
"CREATE INDEX IF NOT EXISTS name_index ON models(name);",
"CREATE UNIQUE INDEX IF NOT EXISTS path_index ON models(path);",
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def build_migration_7() -> Migration:
"""
Build the migration from database version 6 to 7.
This migration does the following:
- Adds the new models table
- Drops the old model_records, model_metadata, model_tags and tags tables.
- TODO(MM2): Migrates model names and descriptions from `models.yaml` to the new table (?).
"""
migration_7 = Migration(
from_version=6,
to_version=7,
callback=Migration7Callback(),
)
return migration_7

View File

@@ -3,6 +3,7 @@
import json
import sqlite3
from hashlib import sha1
from logging import Logger
from pathlib import Path
from typing import Optional
@@ -21,7 +22,7 @@ from invokeai.backend.model_manager.config import (
ModelConfigFactory,
ModelType,
)
from invokeai.backend.model_manager.hash import ModelHash
from invokeai.backend.model_manager.hash import FastModelHash
ModelsValidator = TypeAdapter(AnyModelConfig)
@@ -72,27 +73,19 @@ class MigrateModelYamlToDb1:
base_type, model_type, model_name = str(model_key).split("/")
try:
hash = ModelHash().hash(self.config.models_path / stanza.path)
hash = FastModelHash.hash(self.config.models_path / stanza.path)
except OSError:
self.logger.warning(f"The model at {stanza.path} is not a valid file or directory. Skipping migration.")
continue
assert isinstance(model_key, str)
new_key = sha1(model_key.encode("utf-8")).hexdigest()
stanza["base"] = BaseModelType(base_type)
stanza["type"] = ModelType(model_type)
stanza["name"] = model_name
stanza["original_hash"] = hash
stanza["current_hash"] = hash
new_key = hash # deterministic key assignment
# special case for ip adapters, which need the new `image_encoder_model_id` field
if stanza["type"] == ModelType.IPAdapter:
try:
stanza["image_encoder_model_id"] = self._get_image_encoder_model_id(
self.config.models_path / stanza.path
)
except OSError:
self.logger.warning(f"Could not determine image encoder for {stanza.path}. Skipping.")
continue
new_config: AnyModelConfig = ModelsValidator.validate_python(stanza) # type: ignore # see https://github.com/pydantic/pydantic/discussions/7094
@@ -102,7 +95,7 @@ class MigrateModelYamlToDb1:
self.logger.info(f"Updating model {model_name} with information from models.yaml using key {key}")
self._update_model(key, new_config)
else:
self.logger.info(f"Adding model {model_name} with key {new_key}")
self.logger.info(f"Adding model {model_name} with key {model_key}")
self._add_model(new_key, new_config)
except DuplicateModelException:
self.logger.warning(f"Model {model_name} is already in the database")
@@ -150,14 +143,9 @@ class MigrateModelYamlToDb1:
""",
(
key,
record.hash,
record.original_hash,
json_serialized,
),
)
except sqlite3.IntegrityError as exc:
raise DuplicateModelException(f"{record.name}: model is already in database") from exc
def _get_image_encoder_model_id(self, model_path: Path) -> str:
with open(model_path / "image_encoder.txt") as f:
encoder = f.read()
return encoder.strip()

View File

@@ -17,8 +17,7 @@ class MigrateCallback(Protocol):
See :class:`Migration` for an example.
"""
def __call__(self, cursor: sqlite3.Cursor) -> None:
...
def __call__(self, cursor: sqlite3.Cursor) -> None: ...
class MigrationError(RuntimeError):

View File

@@ -0,0 +1,55 @@
import json
from typing import Optional
from pydantic import ValidationError
from invokeai.app.services.shared.graph import Edge
def get_metadata_graph_from_raw_session(session_raw: str) -> Optional[dict]:
"""
Parses raw session string, returning a dict of the graph.
Only the general graph shape is validated; none of the fields are validated.
Any `metadata_accumulator` nodes and edges are removed.
Any validation failure will return None.
"""
graph = json.loads(session_raw).get("graph", None)
# sanity check make sure the graph is at least reasonably shaped
if (
not isinstance(graph, dict)
or "nodes" not in graph
or not isinstance(graph["nodes"], dict)
or "edges" not in graph
or not isinstance(graph["edges"], list)
):
# something has gone terribly awry, return an empty dict
return None
try:
# delete the `metadata_accumulator` node
del graph["nodes"]["metadata_accumulator"]
except KeyError:
# no accumulator node, all good
pass
# delete any edges to or from it
for i, edge in enumerate(graph["edges"]):
try:
# try to parse the edge
Edge(**edge)
except ValidationError:
# something has gone terribly awry, return an empty dict
return None
if (
edge["source"]["node_id"] == "metadata_accumulator"
or edge["destination"]["node_id"] == "metadata_accumulator"
):
del graph["edges"][i]
return graph

View File

@@ -1,182 +0,0 @@
# copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0)
# and modified as needed
# tencent-ailab comment:
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models.attention_processor import AttnProcessor2_0 as DiffusersAttnProcessor2_0
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionProcessorWeights
# Create a version of AttnProcessor2_0 that is a sub-class of nn.Module. This is required for IP-Adapter state_dict
# loading.
class AttnProcessor2_0(DiffusersAttnProcessor2_0, nn.Module):
def __init__(self):
DiffusersAttnProcessor2_0.__init__(self)
nn.Module.__init__(self)
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
ip_adapter_image_prompt_embeds=None,
):
"""Re-definition of DiffusersAttnProcessor2_0.__call__(...) that accepts and ignores the
ip_adapter_image_prompt_embeds parameter.
"""
return DiffusersAttnProcessor2_0.__call__(
self, attn, hidden_states, encoder_hidden_states, attention_mask, temb
)
class IPAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
"""
def __init__(self, weights: list[IPAttentionProcessorWeights], scales: list[float]):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
assert len(weights) == len(scales)
self._weights = weights
self._scales = scales
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
ip_adapter_image_prompt_embeds=None,
):
"""Apply IP-Adapter attention.
Args:
ip_adapter_image_prompt_embeds (torch.Tensor): The image prompt embeddings.
Shape: (batch_size, num_ip_images, seq_len, ip_embedding_len).
"""
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
# If encoder_hidden_states is not None, then we are doing cross-attention, not self-attention. In this case,
# we will apply IP-Adapter conditioning. We validate the inputs for IP-Adapter conditioning here.
assert ip_adapter_image_prompt_embeds is not None
assert len(ip_adapter_image_prompt_embeds) == len(self._weights)
for ipa_embed, ipa_weights, scale in zip(
ip_adapter_image_prompt_embeds, self._weights, self._scales, strict=True
):
# The batch dimensions should match.
assert ipa_embed.shape[0] == encoder_hidden_states.shape[0]
# The token_len dimensions should match.
assert ipa_embed.shape[-1] == encoder_hidden_states.shape[-1]
ip_hidden_states = ipa_embed
# Expected ip_hidden_state shape: (batch_size, num_ip_images, ip_seq_len, ip_image_embedding)
ip_key = ipa_weights.to_k_ip(ip_hidden_states)
ip_value = ipa_weights.to_v_ip(ip_hidden_states)
# Expected ip_key and ip_value shape: (batch_size, num_ip_images, ip_seq_len, head_dim * num_heads)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# Expected ip_key and ip_value shape: (batch_size, num_heads, num_ip_images * ip_seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
# Expected ip_hidden_states shape: (batch_size, num_heads, query_seq_len, head_dim)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
# Expected ip_hidden_states shape: (batch_size, query_seq_len, num_heads * head_dim)
hidden_states = hidden_states + scale * ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states

View File

@@ -25,13 +25,10 @@ from enum import Enum
from typing import Literal, Optional, Type, Union
import torch
from diffusers.models.modeling_utils import ModelMixin
from pydantic import BaseModel, ConfigDict, Discriminator, Field, Tag, TypeAdapter
from diffusers import ModelMixin
from pydantic import BaseModel, ConfigDict, Field, TypeAdapter
from typing_extensions import Annotated, Any, Dict
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
from invokeai.app.util.misc import uuid_string
from ..raw_model import RawModel
# ModelMixin is the base class for all diffusers and transformers models
@@ -59,8 +56,8 @@ class ModelType(str, Enum):
ONNX = "onnx"
Main = "main"
VAE = "vae"
LoRA = "lora"
Vae = "vae"
Lora = "lora"
ControlNet = "controlnet" # used by model_probe
TextualInversion = "embedding"
IPAdapter = "ip_adapter"
@@ -76,9 +73,9 @@ class SubModelType(str, Enum):
TextEncoder2 = "text_encoder_2"
Tokenizer = "tokenizer"
Tokenizer2 = "tokenizer_2"
VAE = "vae"
VAEDecoder = "vae_decoder"
VAEEncoder = "vae_encoder"
Vae = "vae"
VaeDecoder = "vae_decoder"
VaeEncoder = "vae_encoder"
Scheduler = "scheduler"
SafetyChecker = "safety_checker"
@@ -96,8 +93,8 @@ class ModelFormat(str, Enum):
Diffusers = "diffusers"
Checkpoint = "checkpoint"
LyCORIS = "lycoris"
ONNX = "onnx"
Lycoris = "lycoris"
Onnx = "onnx"
Olive = "olive"
EmbeddingFile = "embedding_file"
EmbeddingFolder = "embedding_folder"
@@ -115,186 +112,127 @@ class SchedulerPredictionType(str, Enum):
class ModelRepoVariant(str, Enum):
"""Various hugging face variants on the diffusers format."""
Default = "" # model files without "fp16" or other qualifier - empty str
DEFAULT = "" # model files without "fp16" or other qualifier - empty str
FP16 = "fp16"
FP32 = "fp32"
ONNX = "onnx"
OpenVINO = "openvino"
Flax = "flax"
class ModelSourceType(str, Enum):
"""Model source type."""
Path = "path"
Url = "url"
HFRepoID = "hf_repo_id"
CivitAI = "civitai"
class ModelDefaultSettings(BaseModel):
vae: str | None
vae_precision: str | None
scheduler: SCHEDULER_NAME_VALUES | None
steps: int | None
cfg_scale: float | None
cfg_rescale_multiplier: float | None
OPENVINO = "openvino"
FLAX = "flax"
class ModelConfigBase(BaseModel):
"""Base class for model configuration information."""
key: str = Field(description="A unique key for this model.", default_factory=uuid_string)
hash: str = Field(description="The hash of the model file(s).")
path: str = Field(
description="Path to the model on the filesystem. Relative paths are relative to the Invoke root directory."
)
name: str = Field(description="Name of the model.")
base: BaseModelType = Field(description="The base model.")
description: Optional[str] = Field(description="Model description", default=None)
source: str = Field(description="The original source of the model (path, URL or repo_id).")
source_type: ModelSourceType = Field(description="The type of source")
source_api_response: Optional[str] = Field(
description="The original API response from the source, as stringified JSON.", default=None
)
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
default_settings: Optional[ModelDefaultSettings] = Field(
description="Default settings for this model", default=None
)
path: str = Field(description="filesystem path to the model file or directory")
name: str = Field(description="model name")
base: BaseModelType = Field(description="base model")
type: ModelType = Field(description="type of the model")
format: ModelFormat = Field(description="model format")
key: str = Field(description="unique key for model", default="<NOKEY>")
original_hash: Optional[str] = Field(
description="original fasthash of model contents", default=None
) # this is assigned at install time and will not change
current_hash: Optional[str] = Field(
description="current fasthash of model contents", default=None
) # if model is converted or otherwise modified, this will hold updated hash
description: Optional[str] = Field(description="human readable description of the model", default=None)
source: Optional[str] = Field(description="model original source (path, URL or repo_id)", default=None)
last_modified: Optional[float] = Field(description="timestamp for modification time", default_factory=time.time)
@staticmethod
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
schema["required"].extend(["key", "type", "format"])
schema["required"].extend(
["key", "base", "type", "format", "original_hash", "current_hash", "source", "last_modified"]
)
model_config = ConfigDict(validate_assignment=True, json_schema_extra=json_schema_extra)
model_config = ConfigDict(
use_enum_values=False,
validate_assignment=True,
json_schema_extra=json_schema_extra,
)
def update(self, attributes: Dict[str, Any]) -> None:
"""Update the object with fields in dict."""
for key, value in attributes.items():
setattr(self, key, value) # may raise a validation error
class CheckpointConfigBase(ModelConfigBase):
class _CheckpointConfig(ModelConfigBase):
"""Model config for checkpoint-style models."""
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
config_path: str = Field(description="path to the checkpoint model config file")
converted_at: Optional[float] = Field(
description="When this model was last converted to diffusers", default_factory=time.time
)
config: str = Field(description="path to the checkpoint model config file")
class DiffusersConfigBase(ModelConfigBase):
class _DiffusersConfig(ModelConfigBase):
"""Model config for diffusers-style models."""
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
repo_variant: Optional[ModelRepoVariant] = ModelRepoVariant.Default
repo_variant: Optional[ModelRepoVariant] = ModelRepoVariant.DEFAULT
class LoRALyCORISConfig(ModelConfigBase):
class LoRAConfig(ModelConfigBase):
"""Model config for LoRA/Lycoris models."""
type: Literal[ModelType.LoRA] = ModelType.LoRA
format: Literal[ModelFormat.LyCORIS] = ModelFormat.LyCORIS
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.LoRA.value}.{ModelFormat.LyCORIS.value}")
type: Literal[ModelType.Lora] = ModelType.Lora
format: Literal[ModelFormat.Lycoris, ModelFormat.Diffusers]
class LoRADiffusersConfig(ModelConfigBase):
"""Model config for LoRA/Diffusers models."""
type: Literal[ModelType.LoRA] = ModelType.LoRA
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.LoRA.value}.{ModelFormat.Diffusers.value}")
class VAECheckpointConfig(CheckpointConfigBase):
class VaeCheckpointConfig(ModelConfigBase):
"""Model config for standalone VAE models."""
type: Literal[ModelType.VAE] = ModelType.VAE
type: Literal[ModelType.Vae] = ModelType.Vae
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.VAE.value}.{ModelFormat.Checkpoint.value}")
class VAEDiffusersConfig(ModelConfigBase):
class VaeDiffusersConfig(ModelConfigBase):
"""Model config for standalone VAE models (diffusers version)."""
type: Literal[ModelType.VAE] = ModelType.VAE
type: Literal[ModelType.Vae] = ModelType.Vae
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.VAE.value}.{ModelFormat.Diffusers.value}")
class ControlNetDiffusersConfig(DiffusersConfigBase):
class ControlNetDiffusersConfig(_DiffusersConfig):
"""Model config for ControlNet models (diffusers version)."""
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.ControlNet.value}.{ModelFormat.Diffusers.value}")
class ControlNetCheckpointConfig(CheckpointConfigBase):
class ControlNetCheckpointConfig(_CheckpointConfig):
"""Model config for ControlNet models (diffusers version)."""
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.ControlNet.value}.{ModelFormat.Checkpoint.value}")
class TextualInversionFileConfig(ModelConfigBase):
class TextualInversionConfig(ModelConfigBase):
"""Model config for textual inversion embeddings."""
type: Literal[ModelType.TextualInversion] = ModelType.TextualInversion
format: Literal[ModelFormat.EmbeddingFile] = ModelFormat.EmbeddingFile
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.TextualInversion.value}.{ModelFormat.EmbeddingFile.value}")
format: Literal[ModelFormat.EmbeddingFile, ModelFormat.EmbeddingFolder]
class TextualInversionFolderConfig(ModelConfigBase):
"""Model config for textual inversion embeddings."""
class _MainConfig(ModelConfigBase):
"""Model config for main models."""
type: Literal[ModelType.TextualInversion] = ModelType.TextualInversion
format: Literal[ModelFormat.EmbeddingFolder] = ModelFormat.EmbeddingFolder
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.TextualInversion.value}.{ModelFormat.EmbeddingFolder.value}")
class MainCheckpointConfig(CheckpointConfigBase):
"""Model config for main checkpoint models."""
type: Literal[ModelType.Main] = ModelType.Main
vae: Optional[str] = Field(default=None)
variant: ModelVariantType = ModelVariantType.Normal
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
upcast_attention: bool = False
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.Main.value}.{ModelFormat.Checkpoint.value}")
ztsnr_training: bool = False
class MainDiffusersConfig(DiffusersConfigBase):
"""Model config for main diffusers models."""
class MainCheckpointConfig(_CheckpointConfig, _MainConfig):
"""Model config for main checkpoint models."""
type: Literal[ModelType.Main] = ModelType.Main
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.Main.value}.{ModelFormat.Diffusers.value}")
class MainDiffusersConfig(_DiffusersConfig, _MainConfig):
"""Model config for main diffusers models."""
type: Literal[ModelType.Main] = ModelType.Main
class IPAdapterConfig(ModelConfigBase):
@@ -304,10 +242,6 @@ class IPAdapterConfig(ModelConfigBase):
image_encoder_model_id: str
format: Literal[ModelFormat.InvokeAI]
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.InvokeAI.value}")
class CLIPVisionDiffusersConfig(ModelConfigBase):
"""Model config for ClipVision."""
@@ -315,65 +249,58 @@ class CLIPVisionDiffusersConfig(ModelConfigBase):
type: Literal[ModelType.CLIPVision] = ModelType.CLIPVision
format: Literal[ModelFormat.Diffusers]
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.CLIPVision.value}.{ModelFormat.Diffusers.value}")
class T2IAdapterConfig(ModelConfigBase):
class T2IConfig(ModelConfigBase):
"""Model config for T2I."""
type: Literal[ModelType.T2IAdapter] = ModelType.T2IAdapter
format: Literal[ModelFormat.Diffusers]
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.T2IAdapter.value}.{ModelFormat.Diffusers.value}")
_ControlNetConfig = Annotated[
Union[ControlNetDiffusersConfig, ControlNetCheckpointConfig],
Field(discriminator="format"),
]
_VaeConfig = Annotated[Union[VaeDiffusersConfig, VaeCheckpointConfig], Field(discriminator="format")]
_MainModelConfig = Annotated[Union[MainDiffusersConfig, MainCheckpointConfig], Field(discriminator="format")]
def get_model_discriminator_value(v: Any) -> str:
"""
Computes the discriminator value for a model config.
https://docs.pydantic.dev/latest/concepts/unions/#discriminated-unions-with-callable-discriminator
"""
format_ = None
type_ = None
if isinstance(v, dict):
format_ = v.get("format")
if isinstance(format_, Enum):
format_ = format_.value
type_ = v.get("type")
if isinstance(type_, Enum):
type_ = type_.value
else:
format_ = v.format.value
type_ = v.type.value
v = f"{type_}.{format_}"
return v
AnyModelConfig = Annotated[
Union[
Annotated[MainDiffusersConfig, MainDiffusersConfig.get_tag()],
Annotated[MainCheckpointConfig, MainCheckpointConfig.get_tag()],
Annotated[VAEDiffusersConfig, VAEDiffusersConfig.get_tag()],
Annotated[VAECheckpointConfig, VAECheckpointConfig.get_tag()],
Annotated[ControlNetDiffusersConfig, ControlNetDiffusersConfig.get_tag()],
Annotated[ControlNetCheckpointConfig, ControlNetCheckpointConfig.get_tag()],
Annotated[LoRALyCORISConfig, LoRALyCORISConfig.get_tag()],
Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()],
Annotated[TextualInversionFileConfig, TextualInversionFileConfig.get_tag()],
Annotated[TextualInversionFolderConfig, TextualInversionFolderConfig.get_tag()],
Annotated[IPAdapterConfig, IPAdapterConfig.get_tag()],
Annotated[T2IAdapterConfig, T2IAdapterConfig.get_tag()],
Annotated[CLIPVisionDiffusersConfig, CLIPVisionDiffusersConfig.get_tag()],
],
Discriminator(get_model_discriminator_value),
AnyModelConfig = Union[
_MainModelConfig,
_VaeConfig,
_ControlNetConfig,
# ModelConfigBase,
LoRAConfig,
TextualInversionConfig,
IPAdapterConfig,
CLIPVisionDiffusersConfig,
T2IConfig,
]
AnyModelConfigValidator = TypeAdapter(AnyModelConfig)
# IMPLEMENTATION NOTE:
# The preferred alternative to the above is a discriminated Union as shown
# below. However, it breaks FastAPI when used as the input Body parameter in a route.
# This is a known issue. Please see:
# https://github.com/tiangolo/fastapi/discussions/9761 and
# https://github.com/tiangolo/fastapi/discussions/9287
# AnyModelConfig = Annotated[
# Union[
# _MainModelConfig,
# _ONNXConfig,
# _VaeConfig,
# _ControlNetConfig,
# LoRAConfig,
# TextualInversionConfig,
# IPAdapterConfig,
# CLIPVisionDiffusersConfig,
# T2IConfig,
# ],
# Field(discriminator="type"),
# ]
class ModelConfigFactory(object):
"""Class for parsing config dicts into StableDiffusion Config obects."""
@@ -405,6 +332,6 @@ class ModelConfigFactory(object):
assert model is not None
if key:
model.key = key
if isinstance(model, CheckpointConfigBase) and timestamp is not None:
model.converted_at = timestamp
if timestamp:
model.last_modified = timestamp
return model # type: ignore

View File

@@ -11,175 +11,56 @@ from invokeai.backend.model_managre.model_hash import FastModelHash
import hashlib
import os
from pathlib import Path
from typing import Callable, Literal, Optional, Union
from typing import Dict, Union
from blake3 import blake3
MODEL_FILE_EXTENSIONS = (".ckpt", ".safetensors", ".bin", ".pt", ".pth")
ALGORITHM = Literal[
"md5",
"sha1",
"sha224",
"sha256",
"sha384",
"sha512",
"blake2b",
"blake2s",
"sha3_224",
"sha3_256",
"sha3_384",
"sha3_512",
"shake_128",
"shake_256",
"blake3",
]
from imohash import hashfile
class ModelHash:
"""
Creates a hash of a model using a specified algorithm.
class FastModelHash(object):
"""FastModelHash obect provides one public class method, hash()."""
Args:
algorithm: Hashing algorithm to use. Defaults to BLAKE3.
file_filter: A function that takes a file name and returns True if the file should be included in the hash.
@classmethod
def hash(cls, model_location: Union[str, Path]) -> str:
"""
Return hexdigest string for model located at model_location.
If the model is a single file, it is hashed directly using the provided algorithm.
If the model is a directory, each model weights file in the directory is hashed using the provided algorithm.
Only files with the following extensions are hashed: .ckpt, .safetensors, .bin, .pt, .pth
The final hash is computed by hashing the hashes of all model files in the directory using BLAKE3, ensuring
that directory hashes are never weaker than the file hashes.
Usage:
```py
# BLAKE3 hash
ModelHash().hash("path/to/some/model.safetensors")
# MD5
ModelHash("md5").hash("path/to/model/dir/")
```
"""
def __init__(self, algorithm: ALGORITHM = "blake3", file_filter: Optional[Callable[[str], bool]] = None) -> None:
if algorithm == "blake3":
self._hash_file = self._blake3
elif algorithm in hashlib.algorithms_available:
self._hash_file = self._get_hashlib(algorithm)
:param model_location: Path to the model
"""
model_location = Path(model_location)
if model_location.is_file():
return cls._hash_file(model_location)
elif model_location.is_dir():
return cls._hash_dir(model_location)
else:
raise ValueError(f"Algorithm {algorithm} not available")
raise OSError(f"Not a valid file or directory: {model_location}")
self._file_filter = file_filter or self._default_file_filter
def hash(self, model_path: Union[str, Path]) -> str:
@classmethod
def _hash_file(cls, model_location: Union[str, Path]) -> str:
"""
Return hexdigest of hash of model located at model_path using the algorithm provided at class instantiation.
Fasthash a single file and return its hexdigest.
If model_path is a directory, the hash is computed by hashing the hashes of all model files in the
directory. The final composite hash is always computed using BLAKE3.
Args:
model_path: Path to the model
Returns:
str: Hexdigest of the hash of the model
:param model_location: Path to the model file
"""
# we return md5 hash of the filehash to make it shorter
# cryptographic security not needed here
return hashlib.md5(hashfile(model_location)).hexdigest()
model_path = Path(model_path)
if model_path.is_file():
return self._hash_file(model_path)
elif model_path.is_dir():
return self._hash_dir(model_path)
else:
raise OSError(f"Not a valid file or directory: {model_path}")
@classmethod
def _hash_dir(cls, model_location: Union[str, Path]) -> str:
components: Dict[str, str] = {}
def _hash_dir(self, dir: Path) -> str:
"""Compute the hash for all files in a directory and return a hexdigest.
for root, _dirs, files in os.walk(model_location):
for file in files:
# only tally tensor files because diffusers config files change slightly
# depending on how the model was downloaded/converted.
if not file.endswith((".ckpt", ".safetensors", ".bin", ".pt", ".pth")):
continue
path = (Path(root) / file).as_posix()
fast_hash = cls._hash_file(path)
components.update({path: fast_hash})
Args:
dir: Path to the directory
Returns:
str: Hexdigest of the hash of the directory
"""
model_component_paths = self._get_file_paths(dir, self._file_filter)
component_hashes: list[str] = []
for component in sorted(model_component_paths):
component_hashes.append(self._hash_file(component))
# BLAKE3 is cryptographically secure. We may as well fall back on a secure algorithm
# for the composite hash
composite_hasher = blake3()
for h in component_hashes:
composite_hasher.update(h.encode("utf-8"))
return composite_hasher.hexdigest()
@staticmethod
def _get_file_paths(model_path: Path, file_filter: Callable[[str], bool]) -> list[Path]:
"""Return a list of all model files in the directory.
Args:
model_path: Path to the model
file_filter: Function that takes a file name and returns True if the file should be included in the list.
Returns:
List of all model files in the directory
"""
files: list[Path] = []
for root, _dirs, _files in os.walk(model_path):
for file in _files:
if file_filter(file):
files.append(Path(root, file))
return files
@staticmethod
def _blake3(file_path: Path) -> str:
"""Hashes a file using BLAKE3
Args:
file_path: Path to the file to hash
Returns:
Hexdigest of the hash of the file
"""
file_hasher = blake3(max_threads=blake3.AUTO)
file_hasher.update_mmap(file_path)
return file_hasher.hexdigest()
@staticmethod
def _get_hashlib(algorithm: ALGORITHM) -> Callable[[Path], str]:
"""Factory function that returns a function to hash a file with the given algorithm.
Args:
algorithm: Hashing algorithm to use
Returns:
A function that hashes a file using the given algorithm
"""
def hashlib_hasher(file_path: Path) -> str:
"""Hashes a file using a hashlib algorithm. Uses `memoryview` to avoid reading the entire file into memory."""
hasher = hashlib.new(algorithm)
buffer = bytearray(128 * 1024)
mv = memoryview(buffer)
with open(file_path, "rb", buffering=0) as f:
while n := f.readinto(mv):
hasher.update(mv[:n])
return hasher.hexdigest()
return hashlib_hasher
@staticmethod
def _default_file_filter(file_path: str) -> bool:
"""A default file filter that only includes files with the following extensions: .ckpt, .safetensors, .bin, .pt, .pth
Args:
file_path: Path to the file
Returns:
True if the file matches the given extensions, otherwise False
"""
return file_path.endswith(MODEL_FILE_EXTENSIONS)
# hash all the model hashes together, using alphabetic file order
md5 = hashlib.md5()
for _path, fast_hash in sorted(components.items()):
md5.update(fast_hash.encode("utf-8"))
return md5.hexdigest()

View File

@@ -13,7 +13,6 @@ from invokeai.backend.model_manager import (
ModelRepoVariant,
SubModelType,
)
from invokeai.backend.model_manager.config import DiffusersConfigBase, ModelType
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoaderBase
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
@@ -51,7 +50,7 @@ class ModelLoader(ModelLoaderBase):
:param submodel_type: an ModelType enum indicating the portion of
the model to retrieve (e.g. ModelType.Vae)
"""
if model_config.type is ModelType.Main and not submodel_type:
if model_config.type == "main" and not submodel_type:
raise InvalidModelConfigException("submodel_type is required when loading a main model")
model_path, model_config, submodel_type = self._get_model_path(model_config, submodel_type)
@@ -81,7 +80,7 @@ class ModelLoader(ModelLoaderBase):
self._convert_cache.make_room(self.get_size_fs(config, model_path, submodel_type))
return self._convert_model(config, model_path, cache_path)
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, dest_path: Path) -> bool:
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, cache_path: Path) -> bool:
return False
def _load_if_needed(
@@ -120,7 +119,7 @@ class ModelLoader(ModelLoaderBase):
return calc_model_size_by_fs(
model_path=model_path,
subfolder=submodel_type.value if submodel_type else None,
variant=config.repo_variant if isinstance(config, DiffusersConfigBase) else None,
variant=config.repo_variant if hasattr(config, "repo_variant") else None,
)
# This needs to be implemented in subclasses that handle checkpoints

View File

@@ -15,8 +15,10 @@ Use like this:
"""
import hashlib
from abc import ABC, abstractmethod
from typing import Callable, Dict, Optional, Tuple, Type, TypeVar
from pathlib import Path
from typing import Callable, Dict, Optional, Tuple, Type
from ..config import (
AnyModelConfig,
@@ -25,6 +27,8 @@ from ..config import (
ModelFormat,
ModelType,
SubModelType,
VaeCheckpointConfig,
VaeDiffusersConfig,
)
from . import ModelLoaderBase
@@ -57,9 +61,6 @@ class ModelLoaderRegistryBase(ABC):
"""
TModelLoader = TypeVar("TModelLoader", bound=ModelLoaderBase)
class ModelLoaderRegistry:
"""
This class allows model loaders to register their type, base and format.
@@ -70,10 +71,10 @@ class ModelLoaderRegistry:
@classmethod
def register(
cls, type: ModelType, format: ModelFormat, base: BaseModelType = BaseModelType.Any
) -> Callable[[Type[TModelLoader]], Type[TModelLoader]]:
) -> Callable[[Type[ModelLoaderBase]], Type[ModelLoaderBase]]:
"""Define a decorator which registers the subclass of loader."""
def decorator(subclass: Type[TModelLoader]) -> Type[TModelLoader]:
def decorator(subclass: Type[ModelLoaderBase]) -> Type[ModelLoaderBase]:
key = cls._to_registry_key(base, type, format)
if key in cls._registry:
raise Exception(
@@ -89,15 +90,33 @@ class ModelLoaderRegistry:
cls, config: AnyModelConfig, submodel_type: Optional[SubModelType]
) -> Tuple[Type[ModelLoaderBase], ModelConfigBase, Optional[SubModelType]]:
"""Get subclass of ModelLoaderBase registered to handle base and type."""
# We have to handle VAE overrides here because this will change the model type and the corresponding implementation returned
conf2, submodel_type = cls._handle_subtype_overrides(config, submodel_type)
key1 = cls._to_registry_key(config.base, config.type, config.format) # for a specific base type
key2 = cls._to_registry_key(BaseModelType.Any, config.type, config.format) # with wildcard Any
key1 = cls._to_registry_key(conf2.base, conf2.type, conf2.format) # for a specific base type
key2 = cls._to_registry_key(BaseModelType.Any, conf2.type, conf2.format) # with wildcard Any
implementation = cls._registry.get(key1) or cls._registry.get(key2)
if not implementation:
raise NotImplementedError(
f"No subclass of LoadedModel is registered for base={config.base}, type={config.type}, format={config.format}"
)
return implementation, config, submodel_type
return implementation, conf2, submodel_type
@classmethod
def _handle_subtype_overrides(
cls, config: AnyModelConfig, submodel_type: Optional[SubModelType]
) -> Tuple[ModelConfigBase, Optional[SubModelType]]:
if submodel_type == SubModelType.Vae and hasattr(config, "vae") and config.vae is not None:
model_path = Path(config.vae)
config_class = (
VaeCheckpointConfig if model_path.suffix in [".pt", ".safetensors", ".ckpt"] else VaeDiffusersConfig
)
hash = hashlib.md5(model_path.as_posix().encode("utf-8")).hexdigest()
new_conf = config_class(path=model_path.as_posix(), name=model_path.stem, base=config.base, key=hash)
submodel_type = None
else:
new_conf = config
return new_conf, submodel_type
@staticmethod
def _to_registry_key(base: BaseModelType, type: ModelType, format: ModelFormat) -> str:

View File

@@ -3,8 +3,8 @@
from pathlib import Path
import safetensors
import torch
from safetensors.torch import load_file as safetensors_load_file
from invokeai.backend.model_manager import (
AnyModelConfig,
@@ -12,7 +12,6 @@ from invokeai.backend.model_manager import (
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.config import CheckpointConfigBase
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_controlnet_to_diffusers
from .. import ModelLoaderRegistry
@@ -21,15 +20,15 @@ from .generic_diffusers import GenericDiffusersLoader
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.ControlNet, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.ControlNet, format=ModelFormat.Checkpoint)
class ControlNetLoader(GenericDiffusersLoader):
class ControlnetLoader(GenericDiffusersLoader):
"""Class to load ControlNet models."""
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, dest_path: Path) -> bool:
if not isinstance(config, CheckpointConfigBase):
if config.format != ModelFormat.Checkpoint:
return False
elif (
dest_path.exists()
and (dest_path / "config.json").stat().st_mtime >= (config.converted_at or 0.0)
and (dest_path / "config.json").stat().st_mtime >= (config.last_modified or 0.0)
and (dest_path / "config.json").stat().st_mtime >= model_path.stat().st_mtime
):
return False
@@ -38,13 +37,13 @@ class ControlNetLoader(GenericDiffusersLoader):
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path:
if config.base not in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}:
raise Exception(f"ControlNet conversion not supported for model type: {config.base}")
raise Exception(f"Vae conversion not supported for model type: {config.base}")
else:
assert isinstance(config, CheckpointConfigBase)
config_file = config.config_path
assert hasattr(config, "config")
config_file = config.config
if model_path.suffix == ".safetensors":
checkpoint = safetensors_load_file(model_path, device="cpu")
checkpoint = safetensors.torch.load_file(model_path, device="cpu")
else:
checkpoint = torch.load(model_path, map_location="cpu")

View File

@@ -3,10 +3,9 @@
import sys
from pathlib import Path
from typing import Any, Optional
from typing import Any, Dict, Optional
from diffusers.configuration_utils import ConfigMixin
from diffusers.models.modeling_utils import ModelMixin
from diffusers import ConfigMixin, ModelMixin
from invokeai.backend.model_manager import (
AnyModel,
@@ -42,7 +41,6 @@ class GenericDiffusersLoader(ModelLoader):
# TO DO: Add exception handling
def get_hf_load_class(self, model_path: Path, submodel_type: Optional[SubModelType] = None) -> ModelMixin:
"""Given the model path and submodel, returns the diffusers ModelMixin subclass needed to load."""
result = None
if submodel_type:
try:
config = self._load_diffusers_config(model_path, config_name="model_index.json")
@@ -66,7 +64,6 @@ class GenericDiffusersLoader(ModelLoader):
raise InvalidModelConfigException("Unable to decifer Load Class based on given config.json")
except KeyError as e:
raise InvalidModelConfigException("An expected config.json file is missing from this model.") from e
assert result is not None
return result
# TO DO: Add exception handling
@@ -78,7 +75,7 @@ class GenericDiffusersLoader(ModelLoader):
result: ModelMixin = getattr(res_type, class_name)
return result
def _load_diffusers_config(self, model_path: Path, config_name: str = "config.json") -> dict[str, Any]:
def _load_diffusers_config(self, model_path: Path, config_name: str = "config.json") -> Dict[str, Any]:
return ConfigLoader.load_config(model_path, config_name=config_name)
@@ -86,8 +83,8 @@ class ConfigLoader(ConfigMixin):
"""Subclass of ConfigMixin for loading diffusers configuration files."""
@classmethod
def load_config(cls, *args: Any, **kwargs: Any) -> dict[str, Any]: # pyright: ignore [reportIncompatibleMethodOverride]
def load_config(cls, *args: Any, **kwargs: Any) -> Dict[str, Any]:
"""Load a diffusrs ConfigMixin configuration."""
cls.config_name = kwargs.pop("config_name")
# TODO(psyche): the types on this diffusers method are not correct
# Diffusers doesn't provide typing info
return super().load_config(*args, **kwargs) # type: ignore

View File

@@ -31,7 +31,7 @@ class IPAdapterInvokeAILoader(ModelLoader):
if submodel_type is not None:
raise ValueError("There are no submodels in an IP-Adapter model.")
model = build_ip_adapter(
ip_adapter_ckpt_path=str(model_path / "ip_adapter.bin"),
ip_adapter_ckpt_path=model_path / "ip_adapter.bin",
device=torch.device("cpu"),
dtype=self._torch_dtype,
)

View File

@@ -22,8 +22,8 @@ from invokeai.backend.model_manager.load.model_cache.model_cache_base import Mod
from .. import ModelLoader, ModelLoaderRegistry
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.LoRA, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.LoRA, format=ModelFormat.LyCORIS)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.Lora, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.Lora, format=ModelFormat.Lycoris)
class LoraLoader(ModelLoader):
"""Class to load LoRA models."""

View File

@@ -18,7 +18,7 @@ from .. import ModelLoaderRegistry
from .generic_diffusers import GenericDiffusersLoader
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.ONNX, format=ModelFormat.ONNX)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.ONNX, format=ModelFormat.Onnx)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.ONNX, format=ModelFormat.Olive)
class OnnyxDiffusersModel(GenericDiffusersLoader):
"""Class to load onnx models."""

View File

@@ -4,8 +4,7 @@
from pathlib import Path
from typing import Optional
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionPipeline
from invokeai.backend.model_manager import (
AnyModel,
@@ -17,7 +16,7 @@ from invokeai.backend.model_manager import (
ModelVariantType,
SubModelType,
)
from invokeai.backend.model_manager.config import CheckpointConfigBase, MainCheckpointConfig
from invokeai.backend.model_manager.config import MainCheckpointConfig
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_ckpt_to_diffusers
from .. import ModelLoaderRegistry
@@ -55,11 +54,11 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
return result
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, dest_path: Path) -> bool:
if not isinstance(config, CheckpointConfigBase):
if config.format != ModelFormat.Checkpoint:
return False
elif (
dest_path.exists()
and (dest_path / "model_index.json").stat().st_mtime >= (config.converted_at or 0.0)
and (dest_path / "model_index.json").stat().st_mtime >= (config.last_modified or 0.0)
and (dest_path / "model_index.json").stat().st_mtime >= model_path.stat().st_mtime
):
return False
@@ -74,7 +73,7 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
StableDiffusionInpaintPipeline if variant == ModelVariantType.Inpaint else StableDiffusionPipeline
)
config_file = config.config_path
config_file = config.config
self._logger.info(f"Converting {model_path} to diffusers format")
convert_ckpt_to_diffusers(

View File

@@ -3,9 +3,9 @@
from pathlib import Path
import safetensors
import torch
from omegaconf import DictConfig, OmegaConf
from safetensors.torch import load_file as safetensors_load_file
from invokeai.backend.model_manager import (
AnyModelConfig,
@@ -13,25 +13,24 @@ from invokeai.backend.model_manager import (
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.config import CheckpointConfigBase
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers
from .. import ModelLoaderRegistry
from .generic_diffusers import GenericDiffusersLoader
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.VAE, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion1, type=ModelType.VAE, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion2, type=ModelType.VAE, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.Vae, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion1, type=ModelType.Vae, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion2, type=ModelType.Vae, format=ModelFormat.Checkpoint)
class VaeLoader(GenericDiffusersLoader):
"""Class to load VAE models."""
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, dest_path: Path) -> bool:
if not isinstance(config, CheckpointConfigBase):
if config.format != ModelFormat.Checkpoint:
return False
elif (
dest_path.exists()
and (dest_path / "config.json").stat().st_mtime >= (config.converted_at or 0.0)
and (dest_path / "config.json").stat().st_mtime >= (config.last_modified or 0.0)
and (dest_path / "config.json").stat().st_mtime >= model_path.stat().st_mtime
):
return False
@@ -39,15 +38,16 @@ class VaeLoader(GenericDiffusersLoader):
return True
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path:
# TODO(MM2): check whether sdxl VAE models convert.
# TO DO: check whether sdxl VAE models convert.
if config.base not in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}:
raise Exception(f"VAE conversion not supported for model type: {config.base}")
raise Exception(f"Vae conversion not supported for model type: {config.base}")
else:
assert isinstance(config, CheckpointConfigBase)
config_file = config.config_path
config_file = (
"v1-inference.yaml" if config.base == BaseModelType.StableDiffusion1 else "v2-inference-v.yaml"
)
if model_path.suffix == ".safetensors":
checkpoint = safetensors_load_file(model_path, device="cpu")
checkpoint = safetensors.torch.load_file(model_path, device="cpu")
else:
checkpoint = torch.load(model_path, map_location="cpu")
@@ -55,7 +55,7 @@ class VaeLoader(GenericDiffusersLoader):
if "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
ckpt_config = OmegaConf.load(self._app_config.root_path / config_file)
ckpt_config = OmegaConf.load(self._app_config.legacy_conf_path / config_file)
assert isinstance(ckpt_config, DictConfig)
vae_model = convert_ldm_vae_to_diffusers(

View File

@@ -16,7 +16,6 @@ from diffusers import AutoPipelineForText2Image
from diffusers.utils import logging as dlogging
from invokeai.app.services.model_install import ModelInstallServiceBase
from invokeai.app.services.model_records.model_records_base import ModelRecordChanges
from invokeai.backend.util.devices import choose_torch_device, torch_dtype
from . import (
@@ -118,6 +117,7 @@ class ModelMerger(object):
config = self._installer.app_config
store = self._installer.record_store
base_models: Set[BaseModelType] = set()
vae = None
variant = None if self._installer.app_config.full_precision else "fp16"
assert (
@@ -134,6 +134,10 @@ class ModelMerger(object):
"normal"
), f"{info.name} ({info.key}) is a {info.variant} model, which cannot currently be merged"
# pick up the first model's vae
if key == model_keys[0]:
vae = info.vae
# tally base models used
base_models.add(info.base)
model_paths.extend([config.models_path / info.path])
@@ -159,10 +163,12 @@ class ModelMerger(object):
# update model's config
model_config = self._installer.record_store.get_model(key)
model_config.name = merged_model_name
model_config.description = f"Merge of models {', '.join(model_names)}"
self._installer.record_store.update_model(
key, ModelRecordChanges(name=model_config.name, description=model_config.description)
model_config.update(
{
"name": merged_model_name,
"description": f"Merge of models {', '.join(model_names)}",
"vae": vae,
}
)
self._installer.record_store.update_model(key, model_config)
return model_config

View File

@@ -25,7 +25,9 @@ from .metadata_base import (
AnyModelRepoMetadataValidator,
BaseMetadata,
CivitaiMetadata,
CommercialUsage,
HuggingFaceMetadata,
LicenseRestrictions,
ModelMetadataWithFiles,
RemoteModelFile,
UnknownMetadataException,
@@ -36,8 +38,10 @@ __all__ = [
"AnyModelRepoMetadataValidator",
"CivitaiMetadata",
"CivitaiMetadataFetch",
"CommercialUsage",
"HuggingFaceMetadata",
"HuggingFaceMetadataFetch",
"LicenseRestrictions",
"ModelMetadataFetchBase",
"BaseMetadata",
"ModelMetadataWithFiles",

View File

@@ -23,21 +23,22 @@ metadata = fetcher.from_url("https://civitai.com/models/206883/split")
print(metadata.trained_words)
"""
import json
import re
from datetime import datetime
from pathlib import Path
from typing import Any, Optional
from typing import Any, Dict, Optional
import requests
from pydantic import TypeAdapter, ValidationError
from pydantic.networks import AnyHttpUrl
from requests.sessions import Session
from invokeai.backend.model_manager.config import ModelRepoVariant
from invokeai.backend.model_manager import ModelRepoVariant
from ..metadata_base import (
AnyModelRepoMetadata,
CivitaiMetadata,
CommercialUsage,
LicenseRestrictions,
RemoteModelFile,
UnknownMetadataException,
)
@@ -51,13 +52,10 @@ CIVITAI_VERSION_ENDPOINT = "https://civitai.com/api/v1/model-versions/"
CIVITAI_MODEL_ENDPOINT = "https://civitai.com/api/v1/models/"
StringSetAdapter = TypeAdapter(set[str])
class CivitaiMetadataFetch(ModelMetadataFetchBase):
"""Fetch model metadata from Civitai."""
def __init__(self, session: Optional[Session] = None, api_key: Optional[str] = None):
def __init__(self, session: Optional[Session] = None):
"""
Initialize the fetcher with an optional requests.sessions.Session object.
@@ -65,7 +63,6 @@ class CivitaiMetadataFetch(ModelMetadataFetchBase):
this module without an internet connection.
"""
self._requests = session or requests.Session()
self._api_key = api_key
def from_url(self, url: AnyHttpUrl) -> AnyModelRepoMetadata:
"""
@@ -105,21 +102,22 @@ class CivitaiMetadataFetch(ModelMetadataFetchBase):
May raise an `UnknownMetadataException`.
"""
model_url = CIVITAI_MODEL_ENDPOINT + str(model_id)
model_json = self._requests.get(self._get_url_with_api_key(model_url)).json()
return self._from_api_response(model_json)
model_json = self._requests.get(model_url).json()
return self._from_model_json(model_json)
def _from_api_response(self, api_response: dict[str, Any], version_id: Optional[int] = None) -> CivitaiMetadata:
def _from_model_json(self, model_json: Dict[str, Any], version_id: Optional[int] = None) -> CivitaiMetadata:
try:
version_id = version_id or api_response["modelVersions"][0]["id"]
version_id = version_id or model_json["modelVersions"][0]["id"]
except TypeError as excp:
raise UnknownMetadataException from excp
# loop till we find the section containing the version requested
version_sections = [x for x in api_response["modelVersions"] if x["id"] == version_id]
version_sections = [x for x in model_json["modelVersions"] if x["id"] == version_id]
if not version_sections:
raise UnknownMetadataException(f"Version {version_id} not found in model metadata")
version_json = version_sections[0]
safe_thumbnails = [x["url"] for x in version_json["images"] if x["nsfw"] == "None"]
# Civitai has one "primary" file plus others such as VAEs. We only fetch the primary.
primary = [x for x in version_json["files"] if x.get("primary")]
@@ -136,23 +134,36 @@ class CivitaiMetadataFetch(ModelMetadataFetchBase):
url = url + f"?type={primary_file['type']}{metadata_string}"
model_files = [
RemoteModelFile(
url=self._get_url_with_api_key(url),
url=url,
path=Path(primary_file["name"]),
size=int(primary_file["sizeKB"] * 1024),
sha256=primary_file["hashes"]["SHA256"],
)
]
try:
trigger_phrases = StringSetAdapter.validate_python(version_json.get("trainedWords"))
except ValidationError:
trigger_phrases: set[str] = set()
return CivitaiMetadata(
id=model_json["id"],
name=version_json["name"],
version_id=version_json["id"],
version_name=version_json["name"],
created=datetime.fromisoformat(_fix_timezone(version_json["createdAt"])),
updated=datetime.fromisoformat(_fix_timezone(version_json["updatedAt"])),
published=datetime.fromisoformat(_fix_timezone(version_json["publishedAt"])),
base_model_trained_on=version_json["baseModel"], # note - need a dictionary to turn into a BaseModelType
files=model_files,
trigger_phrases=trigger_phrases,
api_response=json.dumps(version_json),
download_url=version_json["downloadUrl"],
thumbnail_url=safe_thumbnails[0] if safe_thumbnails else None,
author=model_json["creator"]["username"],
description=model_json["description"],
version_description=version_json["description"] or "",
tags=model_json["tags"],
trained_words=version_json["trainedWords"],
nsfw=model_json["nsfw"],
restrictions=LicenseRestrictions(
AllowNoCredit=model_json["allowNoCredit"],
AllowCommercialUse={CommercialUsage(x) for x in model_json["allowCommercialUse"]},
AllowDerivatives=model_json["allowDerivatives"],
AllowDifferentLicense=model_json["allowDifferentLicense"],
),
)
def from_civitai_versionid(self, version_id: int, model_id: Optional[int] = None) -> CivitaiMetadata:
@@ -163,14 +174,14 @@ class CivitaiMetadataFetch(ModelMetadataFetchBase):
"""
if model_id is None:
version_url = CIVITAI_VERSION_ENDPOINT + str(version_id)
version = self._requests.get(self._get_url_with_api_key(version_url)).json()
version = self._requests.get(version_url).json()
if error := version.get("error"):
raise UnknownMetadataException(error)
model_id = version["modelId"]
model_url = CIVITAI_MODEL_ENDPOINT + str(model_id)
model_json = self._requests.get(self._get_url_with_api_key(model_url)).json()
return self._from_api_response(model_json, version_id)
model_json = self._requests.get(model_url).json()
return self._from_model_json(model_json, version_id)
@classmethod
def from_json(cls, json: str) -> CivitaiMetadata:
@@ -178,11 +189,6 @@ class CivitaiMetadataFetch(ModelMetadataFetchBase):
metadata = CivitaiMetadata.model_validate_json(json)
return metadata
def _get_url_with_api_key(self, url: str) -> str:
if not self._api_key:
return url
if "?" in url:
return f"{url}&token={self._api_key}"
return f"{url}?token={self._api_key}"
def _fix_timezone(date: str) -> str:
return re.sub(r"Z$", "+00:00", date)

View File

@@ -13,7 +13,6 @@ metadata = fetcher.from_url("https://huggingface.co/stabilityai/sdxl-turbo")
print(metadata.tags)
"""
import json
import re
from pathlib import Path
from typing import Optional
@@ -24,7 +23,7 @@ from huggingface_hub.utils._errors import RepositoryNotFoundError, RevisionNotFo
from pydantic.networks import AnyHttpUrl
from requests.sessions import Session
from invokeai.backend.model_manager.config import ModelRepoVariant
from invokeai.backend.model_manager import ModelRepoVariant
from ..metadata_base import (
AnyModelRepoMetadata,
@@ -61,7 +60,6 @@ class HuggingFaceMetadataFetch(ModelMetadataFetchBase):
# Little loop which tries fetching a revision corresponding to the selected variant.
# If not available, then set variant to None and get the default.
# If this too fails, raise exception.
model_info = None
while not model_info:
try:
@@ -74,24 +72,23 @@ class HuggingFaceMetadataFetch(ModelMetadataFetchBase):
else:
variant = None
files: list[RemoteModelFile] = []
_, name = id.split("/")
for s in model_info.siblings or []:
assert s.rfilename is not None
assert s.size is not None
files.append(
RemoteModelFile(
url=hf_hub_url(id, s.rfilename, revision=variant),
path=Path(name, s.rfilename),
size=s.size,
sha256=s.lfs.get("sha256") if s.lfs else None,
)
)
return HuggingFaceMetadata(
id=model_info.id, name=name, files=files, api_response=json.dumps(model_info.__dict__, default=str)
id=model_info.id,
author=model_info.author,
name=name,
last_modified=model_info.last_modified,
tag_dict=model_info.card_data.to_dict() if model_info.card_data else {},
tags=model_info.tags,
files=[
RemoteModelFile(
url=hf_hub_url(id, x.rfilename, revision=variant),
path=Path(name, x.rfilename),
size=x.size,
sha256=x.lfs.get("sha256") if x.lfs else None,
)
for x in model_info.siblings
],
)
def from_url(self, url: AnyHttpUrl) -> AnyModelRepoMetadata:

View File

@@ -14,8 +14,10 @@ versions of these fields are intended to be kept in sync with the
remote repo.
"""
from datetime import datetime
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional, Union
from typing import Any, Dict, List, Literal, Optional, Set, Tuple, Union
from huggingface_hub import configure_http_backend, hf_hub_url
from pydantic import BaseModel, Field, TypeAdapter
@@ -32,6 +34,31 @@ class UnknownMetadataException(Exception):
"""Raised when no metadata is available for a model."""
class CommercialUsage(str, Enum):
"""Type of commercial usage allowed."""
No = "None"
Image = "Image"
Rent = "Rent"
RentCivit = "RentCivit"
Sell = "Sell"
class LicenseRestrictions(BaseModel):
"""Broad categories of licensing restrictions."""
AllowNoCredit: bool = Field(
description="if true, model can be redistributed without crediting author", default=False
)
AllowDerivatives: bool = Field(description="if true, derivatives of this model can be redistributed", default=False)
AllowDifferentLicense: bool = Field(
description="if true, derivatives of this model be redistributed under a different license", default=False
)
AllowCommercialUse: Optional[Set[CommercialUsage] | CommercialUsage] = Field(
description="Type of commercial use allowed if no commercial use is allowed.", default=None
)
class RemoteModelFile(BaseModel):
"""Information about a downloadable file that forms part of a model."""
@@ -45,6 +72,8 @@ class ModelMetadataBase(BaseModel):
"""Base class for model metadata information."""
name: str = Field(description="model's name")
author: str = Field(description="model's author")
tags: Set[str] = Field(description="tags provided by model source")
class BaseMetadata(ModelMetadataBase):
@@ -82,16 +111,60 @@ class CivitaiMetadata(ModelMetadataWithFiles):
"""Extended metadata fields provided by Civitai."""
type: Literal["civitai"] = "civitai"
trigger_phrases: set[str] = Field(description="Trigger phrases extracted from the API response")
api_response: Optional[str] = Field(description="Response from the Civitai API as stringified JSON", default=None)
id: int = Field(description="Civitai version identifier")
version_name: str = Field(description="Version identifier, such as 'V2-alpha'")
version_id: int = Field(description="Civitai model version identifier")
created: datetime = Field(description="date the model was created")
updated: datetime = Field(description="date the model was last modified")
published: datetime = Field(description="date the model was published to Civitai")
description: str = Field(description="text description of model; may contain HTML")
version_description: str = Field(
description="text description of the model's reversion; usually change history; may contain HTML"
)
nsfw: bool = Field(description="whether the model tends to generate NSFW content", default=False)
restrictions: LicenseRestrictions = Field(description="license terms", default_factory=LicenseRestrictions)
trained_words: Set[str] = Field(description="words to trigger the model", default_factory=set)
download_url: AnyHttpUrl = Field(description="download URL for this model")
base_model_trained_on: str = Field(description="base model on which this model was trained (currently not an enum)")
thumbnail_url: Optional[AnyHttpUrl] = Field(description="a thumbnail image for this model", default=None)
weight_minmax: Tuple[float, float] = Field(
description="minimum and maximum slider values for a LoRA or other secondary model", default=(-1.0, +2.0)
) # note: For future use
@property
def credit_required(self) -> bool:
"""Return True if you must give credit for derivatives of this model and images generated from it."""
return not self.restrictions.AllowNoCredit
@property
def allow_commercial_use(self) -> bool:
"""Return True if commercial use is allowed."""
if self.restrictions.AllowCommercialUse is None:
return False
else:
# accommodate schema change
acu = self.restrictions.AllowCommercialUse
commercial_usage = acu if isinstance(acu, set) else {acu}
return CommercialUsage.No not in commercial_usage
@property
def allow_derivatives(self) -> bool:
"""Return True if derivatives of this model can be redistributed."""
return self.restrictions.AllowDerivatives
@property
def allow_different_license(self) -> bool:
"""Return true if derivatives of this model can use a different license."""
return self.restrictions.AllowDifferentLicense
class HuggingFaceMetadata(ModelMetadataWithFiles):
"""Extended metadata fields provided by HuggingFace."""
type: Literal["huggingface"] = "huggingface"
id: str = Field(description="The HF model id")
api_response: Optional[str] = Field(description="Response from the HF API as stringified JSON", default=None)
id: str = Field(description="huggingface model id")
tag_dict: Dict[str, Any]
last_modified: datetime = Field(description="date of last commit to repo")
def download_urls(
self,
@@ -120,7 +193,7 @@ class HuggingFaceMetadata(ModelMetadataWithFiles):
# the next step reads model_index.json to determine which subdirectories belong
# to the model
if Path(f"{prefix}model_index.json") in paths:
url = hf_hub_url(self.id, filename="model_index.json", subfolder=str(subfolder) if subfolder else None)
url = hf_hub_url(self.id, filename="model_index.json", subfolder=subfolder)
resp = session.get(url)
resp.raise_for_status()
submodels = resp.json()

View File

@@ -0,0 +1,221 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
SQL Storage for Model Metadata
"""
import sqlite3
from typing import List, Optional, Set, Tuple
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from .fetch import ModelMetadataFetchBase
from .metadata_base import AnyModelRepoMetadata, UnknownMetadataException
class ModelMetadataStore:
"""Store, search and fetch model metadata retrieved from remote repositories."""
def __init__(self, db: SqliteDatabase):
"""
Initialize a new object from preexisting sqlite3 connection and threading lock objects.
:param conn: sqlite3 connection object
:param lock: threading Lock object
"""
super().__init__()
self._db = db
self._cursor = self._db.conn.cursor()
def add_metadata(self, model_key: str, metadata: AnyModelRepoMetadata) -> None:
"""
Add a block of repo metadata to a model record.
The model record config must already exist in the database with the
same key. Otherwise a FOREIGN KEY constraint exception will be raised.
:param model_key: Existing model key in the `model_config` table
:param metadata: ModelRepoMetadata object to store
"""
json_serialized = metadata.model_dump_json()
with self._db.lock:
try:
self._cursor.execute(
"""--sql
INSERT INTO model_metadata(
id,
metadata
)
VALUES (?,?);
""",
(
model_key,
json_serialized,
),
)
self._update_tags(model_key, metadata.tags)
self._db.conn.commit()
except sqlite3.IntegrityError as excp: # FOREIGN KEY error: the key was not in model_config table
self._db.conn.rollback()
raise UnknownMetadataException from excp
except sqlite3.Error as excp:
self._db.conn.rollback()
raise excp
def get_metadata(self, model_key: str) -> AnyModelRepoMetadata:
"""Retrieve the ModelRepoMetadata corresponding to model key."""
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT metadata FROM model_metadata
WHERE id=?;
""",
(model_key,),
)
rows = self._cursor.fetchone()
if not rows:
raise UnknownMetadataException("model metadata not found")
return ModelMetadataFetchBase.from_json(rows[0])
def list_all_metadata(self) -> List[Tuple[str, AnyModelRepoMetadata]]: # key, metadata
"""Dump out all the metadata."""
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT id,metadata FROM model_metadata;
""",
(),
)
rows = self._cursor.fetchall()
return [(x[0], ModelMetadataFetchBase.from_json(x[1])) for x in rows]
def update_metadata(self, model_key: str, metadata: AnyModelRepoMetadata) -> AnyModelRepoMetadata:
"""
Update metadata corresponding to the model with the indicated key.
:param model_key: Existing model key in the `model_config` table
:param metadata: ModelRepoMetadata object to update
"""
json_serialized = metadata.model_dump_json() # turn it into a json string.
with self._db.lock:
try:
self._cursor.execute(
"""--sql
UPDATE model_metadata
SET
metadata=?
WHERE id=?;
""",
(json_serialized, model_key),
)
if self._cursor.rowcount == 0:
raise UnknownMetadataException("model metadata not found")
self._update_tags(model_key, metadata.tags)
self._db.conn.commit()
except sqlite3.Error as e:
self._db.conn.rollback()
raise e
return self.get_metadata(model_key)
def list_tags(self) -> Set[str]:
"""Return all tags in the tags table."""
self._cursor.execute(
"""--sql
select tag_text from tags;
"""
)
return {x[0] for x in self._cursor.fetchall()}
def search_by_tag(self, tags: Set[str]) -> Set[str]:
"""Return the keys of models containing all of the listed tags."""
with self._db.lock:
try:
matches: Optional[Set[str]] = None
for tag in tags:
self._cursor.execute(
"""--sql
SELECT a.model_id FROM model_tags AS a,
tags AS b
WHERE a.tag_id=b.tag_id
AND b.tag_text=?;
""",
(tag,),
)
model_keys = {x[0] for x in self._cursor.fetchall()}
if matches is None:
matches = model_keys
matches = matches.intersection(model_keys)
except sqlite3.Error as e:
raise e
return matches if matches else set()
def search_by_author(self, author: str) -> Set[str]:
"""Return the keys of models authored by the indicated author."""
self._cursor.execute(
"""--sql
SELECT id FROM model_metadata
WHERE author=?;
""",
(author,),
)
return {x[0] for x in self._cursor.fetchall()}
def search_by_name(self, name: str) -> Set[str]:
"""
Return the keys of models with the indicated name.
Note that this is the name of the model given to it by
the remote source. The user may have changed the local
name. The local name will be located in the model config
record object.
"""
self._cursor.execute(
"""--sql
SELECT id FROM model_metadata
WHERE name=?;
""",
(name,),
)
return {x[0] for x in self._cursor.fetchall()}
def _update_tags(self, model_key: str, tags: Set[str]) -> None:
"""Update tags for the model referenced by model_key."""
# remove previous tags from this model
self._cursor.execute(
"""--sql
DELETE FROM model_tags
WHERE model_id=?;
""",
(model_key,),
)
for tag in tags:
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO tags (
tag_text
)
VALUES (?);
""",
(tag,),
)
self._cursor.execute(
"""--sql
SELECT tag_id
FROM tags
WHERE tag_text = ?
LIMIT 1;
""",
(tag,),
)
tag_id = self._cursor.fetchone()[0]
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO model_tags (
model_id,
tag_id
)
VALUES (?,?);
""",
(model_key, tag_id),
)

View File

@@ -8,7 +8,6 @@ import torch
from picklescan.scanner import scan_file_path
import invokeai.backend.util.logging as logger
from invokeai.app.util.misc import uuid_string
from invokeai.backend.util.util import SilenceWarnings
from .config import (
@@ -18,12 +17,11 @@ from .config import (
ModelConfigFactory,
ModelFormat,
ModelRepoVariant,
ModelSourceType,
ModelType,
ModelVariantType,
SchedulerPredictionType,
)
from .hash import ModelHash
from .hash import FastModelHash
from .util.model_util import lora_token_vector_length, read_checkpoint_meta
CkptType = Dict[str, Any]
@@ -97,8 +95,8 @@ class ModelProbe(object):
"StableDiffusionXLImg2ImgPipeline": ModelType.Main,
"StableDiffusionXLInpaintPipeline": ModelType.Main,
"LatentConsistencyModelPipeline": ModelType.Main,
"AutoencoderKL": ModelType.VAE,
"AutoencoderTiny": ModelType.VAE,
"AutoencoderKL": ModelType.Vae,
"AutoencoderTiny": ModelType.Vae,
"ControlNetModel": ModelType.ControlNet,
"CLIPVisionModelWithProjection": ModelType.CLIPVision,
"T2IAdapter": ModelType.T2IAdapter,
@@ -110,6 +108,14 @@ class ModelProbe(object):
) -> None:
cls.PROBES[format][model_type] = probe_class
@classmethod
def heuristic_probe(
cls,
model_path: Path,
fields: Optional[Dict[str, Any]] = None,
) -> AnyModelConfig:
return cls.probe(model_path, fields)
@classmethod
def probe(
cls,
@@ -131,21 +137,19 @@ class ModelProbe(object):
format_type = ModelFormat.Diffusers if model_path.is_dir() else ModelFormat.Checkpoint
model_info = None
model_type = None
if format_type is ModelFormat.Diffusers:
if format_type == "diffusers":
model_type = cls.get_model_type_from_folder(model_path)
else:
model_type = cls.get_model_type_from_checkpoint(model_path)
format_type = ModelFormat.ONNX if model_type == ModelType.ONNX else format_type
format_type = ModelFormat.Onnx if model_type == ModelType.ONNX else format_type
probe_class = cls.PROBES[format_type].get(model_type)
if not probe_class:
raise InvalidModelConfigException(f"Unhandled combination of {format_type} and {model_type}")
hash = FastModelHash.hash(model_path)
probe = probe_class(model_path)
fields["source_type"] = fields.get("source_type") or ModelSourceType.Path
fields["source"] = fields.get("source") or model_path.as_posix()
fields["key"] = fields.get("key", uuid_string())
fields["path"] = model_path.as_posix()
fields["type"] = fields.get("type") or model_type
fields["base"] = fields.get("base") or probe.get_base_type()
@@ -157,17 +161,15 @@ class ModelProbe(object):
fields.get("description") or f"{fields['base'].value} {fields['type'].value} model {fields['name']}"
)
fields["format"] = fields.get("format") or probe.get_format()
fields["hash"] = fields.get("hash") or ModelHash().hash(model_path)
fields["original_hash"] = fields.get("original_hash") or hash
fields["current_hash"] = fields.get("current_hash") or hash
if format_type == ModelFormat.Diffusers and isinstance(probe, FolderProbeBase):
if format_type == ModelFormat.Diffusers and hasattr(probe, "get_repo_variant"):
fields["repo_variant"] = fields.get("repo_variant") or probe.get_repo_variant()
# additional fields needed for main and controlnet models
if (
fields["type"] in [ModelType.Main, ModelType.ControlNet, ModelType.VAE]
and fields["format"] is ModelFormat.Checkpoint
):
fields["config_path"] = cls._get_checkpoint_config_path(
if fields["type"] in [ModelType.Main, ModelType.ControlNet] and fields["format"] == ModelFormat.Checkpoint:
fields["config"] = cls._get_checkpoint_config_path(
model_path,
model_type=fields["type"],
base_type=fields["base"],
@@ -177,7 +179,7 @@ class ModelProbe(object):
# additional fields needed for main non-checkpoint models
elif fields["type"] == ModelType.Main and fields["format"] in [
ModelFormat.ONNX,
ModelFormat.Onnx,
ModelFormat.Olive,
ModelFormat.Diffusers,
]:
@@ -211,11 +213,11 @@ class ModelProbe(object):
if any(key.startswith(v) for v in {"cond_stage_model.", "first_stage_model.", "model.diffusion_model."}):
return ModelType.Main
elif any(key.startswith(v) for v in {"encoder.conv_in", "decoder.conv_in"}):
return ModelType.VAE
return ModelType.Vae
elif any(key.startswith(v) for v in {"lora_te_", "lora_unet_"}):
return ModelType.LoRA
return ModelType.Lora
elif any(key.endswith(v) for v in {"to_k_lora.up.weight", "to_q_lora.down.weight"}):
return ModelType.LoRA
return ModelType.Lora
elif any(key.startswith(v) for v in {"control_model", "input_blocks"}):
return ModelType.ControlNet
elif key in {"emb_params", "string_to_param"}:
@@ -237,7 +239,7 @@ class ModelProbe(object):
if (folder_path / f"learned_embeds.{suffix}").exists():
return ModelType.TextualInversion
if (folder_path / f"pytorch_lora_weights.{suffix}").exists():
return ModelType.LoRA
return ModelType.Lora
if (folder_path / "unet/model.onnx").exists():
return ModelType.ONNX
if (folder_path / "image_encoder.txt").exists():
@@ -283,21 +285,13 @@ class ModelProbe(object):
if possible_conf.exists():
return possible_conf.absolute()
if model_type is ModelType.Main:
if model_type == ModelType.Main:
config_file = LEGACY_CONFIGS[base_type][variant_type]
if isinstance(config_file, dict): # need another tier for sd-2.x models
config_file = config_file[prediction_type]
elif model_type is ModelType.ControlNet:
elif model_type == ModelType.ControlNet:
config_file = (
"../controlnet/cldm_v15.yaml"
if base_type is BaseModelType.StableDiffusion1
else "../controlnet/cldm_v21.yaml"
)
elif model_type is ModelType.VAE:
config_file = (
"../stable-diffusion/v1-inference.yaml"
if base_type is BaseModelType.StableDiffusion1
else "../stable-diffusion/v2-inference.yaml"
"../controlnet/cldm_v15.yaml" if base_type == BaseModelType("sd-1") else "../controlnet/cldm_v21.yaml"
)
else:
raise InvalidModelConfigException(
@@ -503,12 +497,12 @@ class FolderProbeBase(ProbeBase):
if ".fp16" in x.suffixes:
return ModelRepoVariant.FP16
if "openvino_model" in x.name:
return ModelRepoVariant.OpenVINO
return ModelRepoVariant.OPENVINO
if "flax_model" in x.name:
return ModelRepoVariant.Flax
return ModelRepoVariant.FLAX
if x.suffix == ".onnx":
return ModelRepoVariant.ONNX
return ModelRepoVariant.Default
return ModelRepoVariant.DEFAULT
class PipelineFolderProbe(FolderProbeBase):
@@ -714,8 +708,8 @@ class T2IAdapterFolderProbe(FolderProbeBase):
############## register probe classes ######
ModelProbe.register_probe("diffusers", ModelType.Main, PipelineFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.VAE, VaeFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.LoRA, LoRAFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.Vae, VaeFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.Lora, LoRAFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.TextualInversion, TextualInversionFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.ControlNet, ControlNetFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.IPAdapter, IPAdapterFolderProbe)
@@ -723,8 +717,8 @@ ModelProbe.register_probe("diffusers", ModelType.CLIPVision, CLIPVisionFolderPro
ModelProbe.register_probe("diffusers", ModelType.T2IAdapter, T2IAdapterFolderProbe)
ModelProbe.register_probe("checkpoint", ModelType.Main, PipelineCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.VAE, VaeCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.LoRA, LoRACheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.Vae, VaeCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.Lora, LoRACheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.TextualInversion, TextualInversionCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.ControlNet, ControlNetCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.IPAdapter, IPAdapterCheckpointProbe)

View File

@@ -13,7 +13,6 @@ files_to_download = select_hf_model_files(metadata.files, variant='onnx')
"""
import re
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, List, Optional, Set
@@ -35,7 +34,7 @@ def filter_files(
The file list can be obtained from the `files` field of HuggingFaceMetadata,
as defined in `invokeai.backend.model_manager.metadata.metadata_base`.
"""
variant = variant or ModelRepoVariant.Default
variant = variant or ModelRepoVariant.DEFAULT
paths: List[Path] = []
root = files[0].parts[0]
@@ -74,81 +73,64 @@ def filter_files(
return sorted(_filter_by_variant(paths, variant))
@dataclass
class SubfolderCandidate:
path: Path
score: int
def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path]:
"""Select the proper variant files from a list of HuggingFace repo_id paths."""
result: set[Path] = set()
subfolder_weights: dict[Path, list[SubfolderCandidate]] = {}
result = set()
basenames: Dict[Path, Path] = {}
for path in files:
if path.suffix in [".onnx", ".pb", ".onnx_data"]:
if variant == ModelRepoVariant.ONNX:
result.add(path)
elif "openvino_model" in path.name:
if variant == ModelRepoVariant.OpenVINO:
if variant == ModelRepoVariant.OPENVINO:
result.add(path)
elif "flax_model" in path.name:
if variant == ModelRepoVariant.Flax:
if variant == ModelRepoVariant.FLAX:
result.add(path)
elif path.suffix in [".json", ".txt"]:
result.add(path)
elif variant in [
elif path.suffix in [".bin", ".safetensors", ".pt", ".ckpt"] and variant in [
ModelRepoVariant.FP16,
ModelRepoVariant.FP32,
ModelRepoVariant.Default,
] and path.suffix in [".bin", ".safetensors", ".pt", ".ckpt"]:
# For weights files, we want to select the best one for each subfolder. For example, we may have multiple
# text encoders:
#
# - text_encoder/model.fp16.safetensors
# - text_encoder/model.safetensors
# - text_encoder/pytorch_model.bin
# - text_encoder/pytorch_model.fp16.bin
#
# We prefer safetensors over other file formats and an exact variant match. We'll score each file based on
# variant and format and select the best one.
ModelRepoVariant.DEFAULT,
]:
parent = path.parent
score = 0
suffixes = path.suffixes
if len(suffixes) == 2:
variant_label, suffix = suffixes
basename = parent / Path(path.stem).stem
else:
variant_label = ""
suffix = suffixes[0]
basename = parent / path.stem
if path.suffix == ".safetensors":
score += 1
candidate_variant_label = path.suffixes[0] if len(path.suffixes) == 2 else None
# Some special handling is needed here if there is not an exact match and if we cannot infer the variant
# from the file name. In this case, we only give this file a point if the requested variant is FP32 or DEFAULT.
if candidate_variant_label == f".{variant}" or (
not candidate_variant_label and variant in [ModelRepoVariant.FP32, ModelRepoVariant.Default]
):
score += 1
if parent not in subfolder_weights:
subfolder_weights[parent] = []
subfolder_weights[parent].append(SubfolderCandidate(path=path, score=score))
if previous := basenames.get(basename):
if (
previous.suffix != ".safetensors" and suffix == ".safetensors"
): # replace non-safetensors with safetensors when available
basenames[basename] = path
if variant_label == f".{variant}":
basenames[basename] = path
elif not variant_label and variant in [ModelRepoVariant.FP32, ModelRepoVariant.DEFAULT]:
basenames[basename] = path
else:
basenames[basename] = path
else:
continue
for candidate_list in subfolder_weights.values():
highest_score_candidate = max(candidate_list, key=lambda candidate: candidate.score)
if highest_score_candidate:
result.add(highest_score_candidate.path)
for v in basenames.values():
result.add(v)
# If one of the architecture-related variants was specified and no files matched other than
# config and text files then we return an empty list
if (
variant
and variant in [ModelRepoVariant.ONNX, ModelRepoVariant.OpenVINO, ModelRepoVariant.Flax]
and variant in [ModelRepoVariant.ONNX, ModelRepoVariant.OPENVINO, ModelRepoVariant.FLAX]
and not any(variant.value in x.name for x in result)
):
return set()

View File

@@ -23,9 +23,12 @@ from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.ip_adapter.unet_patcher import UNetPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
IPAdapterConditioningInfo,
TextConditioningData,
)
from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher
from ..util import auto_detect_slice_size, normalize_device
@@ -170,10 +173,11 @@ class ControlNetData:
@dataclass
class IPAdapterData:
ip_adapter_model: IPAdapter = Field(default=None)
# TODO: change to polymorphic so can do different weights per step (once implemented...)
ip_adapter_model: IPAdapter
ip_adapter_conditioning: IPAdapterConditioningInfo
# Either a single weight applied to all steps, or a list of weights for each step.
weight: Union[float, List[float]] = Field(default=1.0)
# weight: float = Field(default=1.0)
begin_step_percent: float = Field(default=0.0)
end_step_percent: float = Field(default=1.0)
@@ -314,7 +318,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
self,
latents: torch.Tensor,
num_inference_steps: int,
conditioning_data: ConditioningData,
scheduler_step_kwargs: dict[str, Any],
conditioning_data: TextConditioningData,
*,
noise: Optional[torch.Tensor],
timesteps: torch.Tensor,
@@ -374,6 +379,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
latents,
timesteps,
conditioning_data,
scheduler_step_kwargs=scheduler_step_kwargs,
additional_guidance=additional_guidance,
control_data=control_data,
ip_adapter_data=ip_adapter_data,
@@ -393,7 +399,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
self,
latents: torch.Tensor,
timesteps,
conditioning_data: ConditioningData,
conditioning_data: TextConditioningData,
scheduler_step_kwargs: dict[str, Any],
*,
additional_guidance: List[Callable] = None,
control_data: List[ControlNetData] = None,
@@ -410,22 +417,35 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
if timesteps.shape[0] == 0:
return latents
ip_adapter_unet_patcher = None
extra_conditioning_info = conditioning_data.text_embeddings.extra_conditioning
if extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control:
extra_conditioning_info = conditioning_data.cond_text.extra_conditioning
use_cross_attention_control = (
extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control
)
use_ip_adapter = ip_adapter_data is not None
use_regional_prompting = (
conditioning_data.cond_regions is not None or conditioning_data.uncond_regions is not None
)
if use_cross_attention_control and use_ip_adapter:
raise ValueError(
"Prompt-to-prompt cross-attention control (`.swap()`) and IP-Adapter cannot be used simultaneously."
)
if use_cross_attention_control and use_regional_prompting:
raise ValueError(
"Prompt-to-prompt cross-attention control (`.swap()`) and regional prompting cannot be used simultaneously."
)
unet_attention_patcher = None
self.use_ip_adapter = use_ip_adapter
attn_ctx = nullcontext()
if use_cross_attention_control:
attn_ctx = self.invokeai_diffuser.custom_attention_context(
self.invokeai_diffuser.model,
extra_conditioning_info=extra_conditioning_info,
)
self.use_ip_adapter = False
elif ip_adapter_data is not None:
# TODO(ryand): Should we raise an exception if both custom attention and IP-Adapter attention are active?
# As it is now, the IP-Adapter will silently be skipped.
ip_adapter_unet_patcher = UNetPatcher([ipa.ip_adapter_model for ipa in ip_adapter_data])
attn_ctx = ip_adapter_unet_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
self.use_ip_adapter = True
else:
attn_ctx = nullcontext()
if use_ip_adapter or use_regional_prompting:
ip_adapters = [ipa.ip_adapter_model for ipa in ip_adapter_data] if use_ip_adapter else None
unet_attention_patcher = UNetAttentionPatcher(ip_adapters)
attn_ctx = unet_attention_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
with attn_ctx:
if callback is not None:
@@ -448,22 +468,14 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
conditioning_data,
step_index=i,
total_step_count=len(timesteps),
scheduler_step_kwargs=scheduler_step_kwargs,
additional_guidance=additional_guidance,
control_data=control_data,
ip_adapter_data=ip_adapter_data,
t2i_adapter_data=t2i_adapter_data,
ip_adapter_unet_patcher=ip_adapter_unet_patcher,
unet_attention_patcher=unet_attention_patcher,
)
latents = step_output.prev_sample
latents = self.invokeai_diffuser.do_latent_postprocessing(
postprocessing_settings=conditioning_data.postprocessing_settings,
latents=latents,
sigma=batched_t,
step_index=i,
total_step_count=len(timesteps),
)
predicted_original = getattr(step_output, "pred_original_sample", None)
if callback is not None:
@@ -485,14 +497,15 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
self,
t: torch.Tensor,
latents: torch.Tensor,
conditioning_data: ConditioningData,
conditioning_data: TextConditioningData,
step_index: int,
total_step_count: int,
scheduler_step_kwargs: dict[str, Any],
additional_guidance: List[Callable] = None,
control_data: List[ControlNetData] = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
ip_adapter_unet_patcher: Optional[UNetPatcher] = None,
unet_attention_patcher: Optional[UNetAttentionPatcher] = None,
):
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
timestep = t[0]
@@ -515,10 +528,10 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
)
if step_index >= first_adapter_step and step_index <= last_adapter_step:
# Only apply this IP-Adapter if the current step is within the IP-Adapter's begin/end step range.
ip_adapter_unet_patcher.set_scale(i, weight)
unet_attention_patcher.set_scale(i, weight)
else:
# Otherwise, set the IP-Adapter's scale to 0, so it has no effect.
ip_adapter_unet_patcher.set_scale(i, 0.0)
unet_attention_patcher.set_scale(i, 0.0)
# Handle ControlNet(s)
down_block_additional_residuals = None
@@ -562,12 +575,17 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
down_intrablock_additional_residuals = accum_adapter_state
ip_adapter_conditioning = None
if ip_adapter_data is not None:
ip_adapter_conditioning = [ipa.ip_adapter_conditioning for ipa in ip_adapter_data]
uc_noise_pred, c_noise_pred = self.invokeai_diffuser.do_unet_step(
sample=latent_model_input,
timestep=t, # TODO: debug how handled batched and non batched timesteps
step_index=step_index,
total_step_count=total_step_count,
conditioning_data=conditioning_data,
ip_adapter_conditioning=ip_adapter_conditioning,
down_block_additional_residuals=down_block_additional_residuals, # for ControlNet
mid_block_additional_residual=mid_block_additional_residual, # for ControlNet
down_intrablock_additional_residuals=down_intrablock_additional_residuals, # for T2I-Adapter
@@ -587,7 +605,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
)
# compute the previous noisy sample x_t -> x_t-1
step_output = self.scheduler.step(noise_pred, timestep, latents, **conditioning_data.scheduler_args)
step_output = self.scheduler.step(noise_pred, timestep, latents, **scheduler_step_kwargs)
# TODO: issue to diffusers?
# undo internal counter increment done by scheduler.step, so timestep can be resolved as before call

View File

@@ -1,7 +1,5 @@
import dataclasses
import inspect
from dataclasses import dataclass, field
from typing import Any, List, Optional, Union
from dataclasses import dataclass
from typing import List, Optional, Union
import torch
@@ -10,6 +8,11 @@ from .cross_attention_control import Arguments
@dataclass
class ExtraConditioningInfo:
"""Extra conditioning information produced by Compel.
This is used for prompt-to-prompt cross-attention control (a.k.a. `.swap()` in Compel).
"""
tokens_count_including_eos_bos: int
cross_attention_control_args: Optional[Arguments] = None
@@ -20,6 +23,8 @@ class ExtraConditioningInfo:
@dataclass
class BasicConditioningInfo:
"""SD 1/2 text conditioning information produced by Compel."""
embeds: torch.Tensor
extra_conditioning: Optional[ExtraConditioningInfo]
@@ -35,6 +40,8 @@ class ConditioningFieldData:
@dataclass
class SDXLConditioningInfo(BasicConditioningInfo):
"""SDXL text conditioning information produced by Compel."""
pooled_embeds: torch.Tensor
add_time_ids: torch.Tensor
@@ -44,14 +51,6 @@ class SDXLConditioningInfo(BasicConditioningInfo):
return super().to(device=device, dtype=dtype)
@dataclass(frozen=True)
class PostprocessingSettings:
threshold: float
warmup: float
h_symmetry_time_pct: Optional[float]
v_symmetry_time_pct: Optional[float]
@dataclass
class IPAdapterConditioningInfo:
cond_image_prompt_embeds: torch.Tensor
@@ -65,41 +64,48 @@ class IPAdapterConditioningInfo:
@dataclass
class ConditioningData:
unconditioned_embeddings: BasicConditioningInfo
text_embeddings: BasicConditioningInfo
"""
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate
images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
"""
guidance_scale: Union[float, List[float]]
""" for models trained using zero-terminal SNR ("ztsnr"), it's suggested to use guidance_rescale_multiplier of 0.7 .
ref [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf)
"""
guidance_rescale_multiplier: float = 0
scheduler_args: dict[str, Any] = field(default_factory=dict)
"""
Additional arguments to pass to invokeai_diffuser.do_latent_postprocessing().
"""
postprocessing_settings: Optional[PostprocessingSettings] = None
class Range:
start: int
end: int
ip_adapter_conditioning: Optional[list[IPAdapterConditioningInfo]] = None
@property
def dtype(self):
return self.text_embeddings.dtype
class TextConditioningRegions:
def __init__(self, masks: torch.Tensor, ranges: list[Range]):
# A binary mask indicating the regions of the image that the prompt should be applied to.
# Shape: (1, num_prompts, height, width)
# Dtype: torch.bool
self.masks = masks
def add_scheduler_args_if_applicable(self, scheduler, **kwargs):
scheduler_args = dict(self.scheduler_args)
step_method = inspect.signature(scheduler.step)
for name, value in kwargs.items():
try:
step_method.bind_partial(**{name: value})
except TypeError:
# FIXME: don't silently discard arguments
pass # debug("%s does not accept argument named %r", scheduler, name)
else:
scheduler_args[name] = value
return dataclasses.replace(self, scheduler_args=scheduler_args)
# A list of ranges indicating the start and end indices of the embeddings that corresponding mask applies to.
# ranges[i] contains the embedding range for the i'th prompt / mask.
self.ranges = ranges
assert self.masks.shape[1] == len(self.ranges)
class TextConditioningData:
def __init__(
self,
uncond_text: Union[BasicConditioningInfo, SDXLConditioningInfo],
cond_text: Union[BasicConditioningInfo, SDXLConditioningInfo],
uncond_regions: Optional[TextConditioningRegions],
cond_regions: Optional[TextConditioningRegions],
guidance_scale: Union[float, List[float]],
guidance_rescale_multiplier: float = 0,
):
self.uncond_text = uncond_text
self.cond_text = cond_text
self.uncond_regions = uncond_regions
self.cond_regions = cond_regions
# Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
# `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
# Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate
# images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
self.guidance_scale = guidance_scale
# For models trained using zero-terminal SNR ("ztsnr"), it's suggested to use guidance_rescale_multiplier of 0.7.
# See [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
self.guidance_rescale_multiplier = guidance_rescale_multiplier
def is_sdxl(self):
assert isinstance(self.uncond_text, SDXLConditioningInfo) == isinstance(self.cond_text, SDXLConditioningInfo)
return isinstance(self.cond_text, SDXLConditioningInfo)

View File

@@ -0,0 +1,209 @@
from typing import Optional
import torch
import torch.nn.functional as F
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
from diffusers.utils import USE_PEFT_BACKEND
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionProcessorWeights
from invokeai.backend.stable_diffusion.diffusion.regional_prompt_data import RegionalPromptData
class CustomAttnProcessor2_0(AttnProcessor2_0):
"""A custom implementation of AttnProcessor2_0 that supports additional Invoke features.
This implementation is based on
https://github.com/huggingface/diffusers/blame/fcfa270fbd1dc294e2f3a505bae6bcb791d721c3/src/diffusers/models/attention_processor.py#L1204
Supported custom features:
- IP-Adapter
- Regional prompt attention
"""
def __init__(
self,
ip_adapter_weights: Optional[list[IPAttentionProcessorWeights]] = None,
ip_adapter_scales: Optional[list[float]] = None,
):
"""Initialize a CustomAttnProcessor2_0.
Note: Arguments that are the same for all attention layers are passed to __call__(). Arguments that are
layer-specific are passed to __init__().
Args:
ip_adapter_weights: The IP-Adapter attention weights. ip_adapter_weights[i] contains the attention weights
for the i'th IP-Adapter.
ip_adapter_scales: The IP-Adapter attention scales. ip_adapter_scales[i] contains the attention scale for
the i'th IP-Adapter.
"""
super().__init__()
self._ip_adapter_weights = ip_adapter_weights
self._ip_adapter_scales = ip_adapter_scales
assert (self._ip_adapter_weights is None) == (self._ip_adapter_scales is None)
if self._ip_adapter_weights is not None:
assert len(ip_adapter_weights) == len(ip_adapter_scales)
def _is_ip_adapter_enabled(self) -> bool:
return self._ip_adapter_weights is not None
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
# For regional prompting:
regional_prompt_data: Optional[RegionalPromptData] = None,
# For IP-Adapter:
ip_adapter_image_prompt_embeds: Optional[list[torch.Tensor]] = None,
) -> torch.FloatTensor:
"""Apply attention.
Args:
regional_prompt_data: The regional prompt data for the current batch. If not None, this will be used to
apply regional prompt masking.
ip_adapter_image_prompt_embeds: The IP-Adapter image prompt embeddings for the current batch.
ip_adapter_image_prompt_embeds[i] contains the image prompt embeddings for the i'th IP-Adapter. Each
tensor has shape (batch_size, num_ip_images, seq_len, ip_embedding_len).
"""
# If true, we are doing cross-attention, if false we are doing self-attention.
is_cross_attention = encoder_hidden_states is not None
# Start unmodified block from AttnProcessor2_0.
# vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# End unmodified block from AttnProcessor2_0.
# Handle regional prompt attention masks.
if is_cross_attention and regional_prompt_data is not None:
_, query_seq_len, _ = hidden_states.shape
prompt_region_attention_mask = regional_prompt_data.get_attn_mask(query_seq_len)
# TODO(ryand): Avoid redundant type/device conversion here.
prompt_region_attention_mask = prompt_region_attention_mask.to(
dtype=encoder_hidden_states.dtype, device=encoder_hidden_states.device
)
prompt_region_attention_mask[prompt_region_attention_mask < 0.5] = -10000.0
prompt_region_attention_mask[prompt_region_attention_mask >= 0.5] = 0.0
if attention_mask is None:
attention_mask = prompt_region_attention_mask
else:
attention_mask = prompt_region_attention_mask + attention_mask
# Start unmodified block from AttnProcessor2_0.
# vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
args = () if USE_PEFT_BACKEND else (scale,)
query = attn.to_q(hidden_states, *args)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states, *args)
value = attn.to_v(encoder_hidden_states, *args)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# End unmodified block from AttnProcessor2_0.
# Apply IP-Adapter conditioning.
if is_cross_attention and self._is_ip_adapter_enabled():
if self._is_ip_adapter_enabled():
assert ip_adapter_image_prompt_embeds is not None
for ipa_embed, ipa_weights, scale in zip(
ip_adapter_image_prompt_embeds, self._ip_adapter_weights, self._ip_adapter_scales, strict=True
):
# The batch dimensions should match.
assert ipa_embed.shape[0] == encoder_hidden_states.shape[0]
# The token_len dimensions should match.
assert ipa_embed.shape[-1] == encoder_hidden_states.shape[-1]
ip_hidden_states = ipa_embed
# Expected ip_hidden_state shape: (batch_size, num_ip_images, ip_seq_len, ip_image_embedding)
ip_key = ipa_weights.to_k_ip(ip_hidden_states)
ip_value = ipa_weights.to_v_ip(ip_hidden_states)
# Expected ip_key and ip_value shape: (batch_size, num_ip_images, ip_seq_len, head_dim * num_heads)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# Expected ip_key and ip_value shape: (batch_size, num_heads, num_ip_images * ip_seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
# Expected ip_hidden_states shape: (batch_size, num_heads, query_seq_len, head_dim)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
# Expected ip_hidden_states shape: (batch_size, query_seq_len, num_heads * head_dim)
hidden_states = hidden_states + scale * ip_hidden_states
else:
# If IP-Adapter is not enabled, then ip_adapter_image_prompt_embeds should not be passed in.
assert ip_adapter_image_prompt_embeds is None
# Start unmodified block from AttnProcessor2_0.
# vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
# linear proj
hidden_states = attn.to_out[0](hidden_states, *args)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states

View File

@@ -0,0 +1,93 @@
import torch
import torch.nn.functional as F
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
TextConditioningRegions,
)
class RegionalPromptData:
def __init__(self, attn_masks_by_seq_len: dict[int, torch.Tensor]):
self._attn_masks_by_seq_len = attn_masks_by_seq_len
@classmethod
def from_regions(
cls,
regions: list[TextConditioningRegions],
key_seq_len: int,
# TODO(ryand): Pass in a list of downscale factors?
max_downscale_factor: int = 8,
):
"""Construct a `RegionalPromptData` object.
Args:
regions (list[TextConditioningRegions]): regions[i] contains the prompt regions for the i'th sample in the
batch.
key_seq_len (int): The sequence length of the expected prompt embeddings (which act as the key in the
cross-attention layers). This is most likely equal to the max embedding range end, but we pass it
explicitly to be sure.
"""
attn_masks_by_seq_len = {}
# batch_attn_mask_by_seq_len[b][s] contains the attention mask for the b'th batch sample with a query sequence
# length of s.
batch_attn_masks_by_seq_len: list[dict[int, torch.Tensor]] = []
for batch_sample_regions in regions:
batch_attn_masks_by_seq_len.append({})
# Convert the bool masks to float masks so that max pooling can be applied.
batch_masks = batch_sample_regions.masks.to(dtype=torch.float32)
# Downsample the spatial dimensions by factors of 2 until max_downscale_factor is reached.
downscale_factor = 1
while downscale_factor <= max_downscale_factor:
_, num_prompts, h, w = batch_masks.shape
query_seq_len = h * w
# Flatten the spatial dimensions of the mask by reshaping to (1, num_prompts, query_seq_len, 1).
batch_query_masks = batch_masks.reshape((1, num_prompts, -1, 1))
# Create a cross-attention mask for each prompt that selects the corresponding embeddings from
# `encoder_hidden_states`.
# attn_mask shape: (batch_size, query_seq_len, key_seq_len)
# TODO(ryand): What device / dtype should this be?
attn_mask = torch.zeros((1, query_seq_len, key_seq_len))
for prompt_idx, embedding_range in enumerate(batch_sample_regions.ranges):
attn_mask[0, :, embedding_range.start : embedding_range.end] = batch_query_masks[
:, prompt_idx, :, :
]
batch_attn_masks_by_seq_len[-1][query_seq_len] = attn_mask
downscale_factor *= 2
if downscale_factor <= max_downscale_factor:
# We use max pooling because we downscale to a pretty low resolution, so we don't want small prompt
# regions to be lost entirely.
# TODO(ryand): In the future, we may want to experiment with other downsampling methods, and could
# potentially use a weighted mask rather than a binary mask.
batch_masks = F.max_pool2d(batch_masks, kernel_size=2, stride=2)
# Merge the batch_attn_masks_by_seq_len into a single attn_masks_by_seq_len.
for query_seq_len in batch_attn_masks_by_seq_len[0].keys():
attn_masks_by_seq_len[query_seq_len] = torch.cat(
[batch_attn_masks_by_seq_len[i][query_seq_len] for i in range(len(batch_attn_masks_by_seq_len))]
)
return cls(attn_masks_by_seq_len)
def get_attn_mask(self, query_seq_len: int) -> torch.Tensor:
"""Get the attention mask for the given query sequence length (i.e. downscaling level).
This is called during cross-attention, where query_seq_len is the length of the flattened spatial features, so
it changes at each downscaling level in the model.
key_seq_len is the length of the expected prompt embeddings.
Returns:
torch.Tensor: The masks.
shape: (batch_size, query_seq_len, key_seq_len).
dtype: float
The mask is a binary mask with values of 0.0 and 1.0.
"""
return self._attn_masks_by_seq_len[query_seq_len]

View File

@@ -10,11 +10,13 @@ from typing_extensions import TypeAlias
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
ConditioningData,
ExtraConditioningInfo,
PostprocessingSettings,
SDXLConditioningInfo,
IPAdapterConditioningInfo,
Range,
TextConditioningData,
TextConditioningRegions,
)
from invokeai.backend.stable_diffusion.diffusion.regional_prompt_data import RegionalPromptData
from .cross_attention_control import (
CrossAttentionType,
@@ -56,7 +58,6 @@ class InvokeAIDiffuserComponent:
:param model_forward_callback: a lambda with arguments (x, sigma, conditioning_to_apply). will be called repeatedly. most likely, this should simply call model.forward(x, sigma, conditioning)
"""
config = InvokeAIAppConfig.get_config()
self.conditioning = None
self.model = model
self.model_forward_callback = model_forward_callback
self.cross_attention_control_context = None
@@ -91,7 +92,7 @@ class InvokeAIDiffuserComponent:
timestep: torch.Tensor,
step_index: int,
total_step_count: int,
conditioning_data,
conditioning_data: TextConditioningData,
):
down_block_res_samples, mid_block_res_sample = None, None
@@ -124,38 +125,30 @@ class InvokeAIDiffuserComponent:
added_cond_kwargs = None
if cfg_injection: # only applying ControlNet to conditional instead of in unconditioned
if type(conditioning_data.text_embeddings) is SDXLConditioningInfo:
if conditioning_data.is_sdxl():
added_cond_kwargs = {
"text_embeds": conditioning_data.text_embeddings.pooled_embeds,
"time_ids": conditioning_data.text_embeddings.add_time_ids,
"text_embeds": conditioning_data.cond_text.pooled_embeds,
"time_ids": conditioning_data.cond_text.add_time_ids,
}
encoder_hidden_states = conditioning_data.text_embeddings.embeds
encoder_hidden_states = conditioning_data.cond_text.embeds
encoder_attention_mask = None
else:
if type(conditioning_data.text_embeddings) is SDXLConditioningInfo:
if conditioning_data.is_sdxl():
added_cond_kwargs = {
"text_embeds": torch.cat(
[
# TODO: how to pad? just by zeros? or even truncate?
conditioning_data.unconditioned_embeddings.pooled_embeds,
conditioning_data.text_embeddings.pooled_embeds,
conditioning_data.uncond_text.pooled_embeds,
conditioning_data.cond_text.pooled_embeds,
],
dim=0,
),
"time_ids": torch.cat(
[
conditioning_data.unconditioned_embeddings.add_time_ids,
conditioning_data.text_embeddings.add_time_ids,
],
[conditioning_data.uncond_text.add_time_ids, conditioning_data.cond_text.add_time_ids],
dim=0,
),
}
(
encoder_hidden_states,
encoder_attention_mask,
) = self._concat_conditionings_for_batch(
conditioning_data.unconditioned_embeddings.embeds,
conditioning_data.text_embeddings.embeds,
(encoder_hidden_states, encoder_attention_mask) = self._concat_conditionings_for_batch(
conditioning_data.uncond_text.embeds, conditioning_data.cond_text.embeds
)
if isinstance(control_datum.weight, list):
# if controlnet has multiple weights, use the weight for the current step
@@ -199,7 +192,8 @@ class InvokeAIDiffuserComponent:
self,
sample: torch.Tensor,
timestep: torch.Tensor,
conditioning_data: ConditioningData,
conditioning_data: TextConditioningData,
ip_adapter_conditioning: Optional[list[IPAdapterConditioningInfo]],
step_index: int,
total_step_count: int,
down_block_additional_residuals: Optional[torch.Tensor] = None, # for ControlNet
@@ -224,6 +218,7 @@ class InvokeAIDiffuserComponent:
x=sample,
sigma=timestep,
conditioning_data=conditioning_data,
ip_adapter_conditioning=ip_adapter_conditioning,
cross_attention_control_types_to_do=cross_attention_control_types_to_do,
down_block_additional_residuals=down_block_additional_residuals,
mid_block_additional_residual=mid_block_additional_residual,
@@ -237,6 +232,7 @@ class InvokeAIDiffuserComponent:
x=sample,
sigma=timestep,
conditioning_data=conditioning_data,
ip_adapter_conditioning=ip_adapter_conditioning,
down_block_additional_residuals=down_block_additional_residuals,
mid_block_additional_residual=mid_block_additional_residual,
down_intrablock_additional_residuals=down_intrablock_additional_residuals,
@@ -244,19 +240,6 @@ class InvokeAIDiffuserComponent:
return unconditioned_next_x, conditioned_next_x
def do_latent_postprocessing(
self,
postprocessing_settings: PostprocessingSettings,
latents: torch.Tensor,
sigma,
step_index,
total_step_count,
) -> torch.Tensor:
if postprocessing_settings is not None:
percent_through = step_index / total_step_count
latents = self.apply_symmetry(postprocessing_settings, latents, percent_through)
return latents
def _concat_conditionings_for_batch(self, unconditioning, conditioning):
def _pad_conditioning(cond, target_len, encoder_attention_mask):
conditioning_attention_mask = torch.ones(
@@ -304,13 +287,12 @@ class InvokeAIDiffuserComponent:
return torch.cat([unconditioning, conditioning]), encoder_attention_mask
# methods below are called from do_diffusion_step and should be considered private to this class.
def _apply_standard_conditioning(
self,
x,
sigma,
conditioning_data: ConditioningData,
conditioning_data: TextConditioningData,
ip_adapter_conditioning: Optional[list[IPAdapterConditioningInfo]],
down_block_additional_residuals: Optional[torch.Tensor] = None, # for ControlNet
mid_block_additional_residual: Optional[torch.Tensor] = None, # for ControlNet
down_intrablock_additional_residuals: Optional[torch.Tensor] = None, # for T2I-Adapter
@@ -321,41 +303,53 @@ class InvokeAIDiffuserComponent:
x_twice = torch.cat([x] * 2)
sigma_twice = torch.cat([sigma] * 2)
cross_attention_kwargs = None
if conditioning_data.ip_adapter_conditioning is not None:
cross_attention_kwargs = {}
if ip_adapter_conditioning is not None:
# Note that we 'stack' to produce tensors of shape (batch_size, num_ip_images, seq_len, token_len).
cross_attention_kwargs = {
"ip_adapter_image_prompt_embeds": [
torch.stack(
[ipa_conditioning.uncond_image_prompt_embeds, ipa_conditioning.cond_image_prompt_embeds]
)
for ipa_conditioning in conditioning_data.ip_adapter_conditioning
]
}
cross_attention_kwargs["ip_adapter_image_prompt_embeds"] = [
torch.stack([ipa_conditioning.uncond_image_prompt_embeds, ipa_conditioning.cond_image_prompt_embeds])
for ipa_conditioning in ip_adapter_conditioning
]
uncond_text = conditioning_data.uncond_text
cond_text = conditioning_data.cond_text
added_cond_kwargs = None
if type(conditioning_data.text_embeddings) is SDXLConditioningInfo:
if conditioning_data.is_sdxl():
added_cond_kwargs = {
"text_embeds": torch.cat(
[
# TODO: how to pad? just by zeros? or even truncate?
conditioning_data.unconditioned_embeddings.pooled_embeds,
conditioning_data.text_embeddings.pooled_embeds,
],
dim=0,
),
"time_ids": torch.cat(
[
conditioning_data.unconditioned_embeddings.add_time_ids,
conditioning_data.text_embeddings.add_time_ids,
],
dim=0,
),
"text_embeds": torch.cat([uncond_text.pooled_embeds, cond_text.pooled_embeds], dim=0),
"time_ids": torch.cat([uncond_text.add_time_ids, cond_text.add_time_ids], dim=0),
}
both_conditionings, encoder_attention_mask = self._concat_conditionings_for_batch(
conditioning_data.unconditioned_embeddings.embeds, conditioning_data.text_embeddings.embeds
uncond_text.embeds, cond_text.embeds
)
if conditioning_data.cond_regions is not None or conditioning_data.uncond_regions is not None:
# TODO(ryand): We currently call from_regions(...) for every denoising step. The text conditionings and
# masks are not changing from step-to-step, so this really only needs to be done once. While this seems
# painfully inefficient, the time spent is typically negligible compared to the forward inference pass of
# the UNet. The main reason that this hasn't been moved up to eliminate redundancy is that it is slightly
# awkward to handle both standard conditioning and sequential conditioning further up the stack.
regions = []
for c, r in [
(conditioning_data.uncond_text, conditioning_data.uncond_regions),
(conditioning_data.cond_text, conditioning_data.cond_regions),
]:
if r is None:
# Create a dummy mask and range for text conditioning that doesn't have region masks.
_, _, h, w = x.shape
r = TextConditioningRegions(
masks=torch.ones((1, 1, h, w), dtype=torch.bool),
ranges=[Range(start=0, end=c.embeds.shape[1])],
)
regions.append(r)
_, key_seq_len, _ = both_conditionings.shape
cross_attention_kwargs["regional_prompt_data"] = RegionalPromptData.from_regions(
regions=regions, key_seq_len=key_seq_len
)
both_results = self.model_forward_callback(
x_twice,
sigma_twice,
@@ -374,7 +368,8 @@ class InvokeAIDiffuserComponent:
self,
x: torch.Tensor,
sigma,
conditioning_data: ConditioningData,
conditioning_data: TextConditioningData,
ip_adapter_conditioning: Optional[list[IPAdapterConditioningInfo]],
cross_attention_control_types_to_do: list[CrossAttentionType],
down_block_additional_residuals: Optional[torch.Tensor] = None, # for ControlNet
mid_block_additional_residual: Optional[torch.Tensor] = None, # for ControlNet
@@ -422,36 +417,40 @@ class InvokeAIDiffuserComponent:
# Unconditioned pass
#####################
cross_attention_kwargs = None
cross_attention_kwargs = {}
# Prepare IP-Adapter cross-attention kwargs for the unconditioned pass.
if conditioning_data.ip_adapter_conditioning is not None:
if ip_adapter_conditioning is not None:
# Note that we 'unsqueeze' to produce tensors of shape (batch_size=1, num_ip_images, seq_len, token_len).
cross_attention_kwargs = {
"ip_adapter_image_prompt_embeds": [
torch.unsqueeze(ipa_conditioning.uncond_image_prompt_embeds, dim=0)
for ipa_conditioning in conditioning_data.ip_adapter_conditioning
]
}
cross_attention_kwargs["ip_adapter_image_prompt_embeds"] = [
torch.unsqueeze(ipa_conditioning.uncond_image_prompt_embeds, dim=0)
for ipa_conditioning in ip_adapter_conditioning
]
# Prepare cross-attention control kwargs for the unconditioned pass.
if cross_attn_processor_context is not None:
cross_attention_kwargs = {"swap_cross_attn_context": cross_attn_processor_context}
cross_attention_kwargs["swap_cross_attn_context"] = cross_attn_processor_context
# Prepare SDXL conditioning kwargs for the unconditioned pass.
added_cond_kwargs = None
is_sdxl = type(conditioning_data.text_embeddings) is SDXLConditioningInfo
if is_sdxl:
if conditioning_data.is_sdxl():
added_cond_kwargs = {
"text_embeds": conditioning_data.unconditioned_embeddings.pooled_embeds,
"time_ids": conditioning_data.unconditioned_embeddings.add_time_ids,
"text_embeds": conditioning_data.uncond_text.pooled_embeds,
"time_ids": conditioning_data.uncond_text.add_time_ids,
}
# Prepare prompt regions for the unconditioned pass.
if conditioning_data.uncond_regions is not None:
_, key_seq_len, _ = conditioning_data.uncond_text.embeds.shape
cross_attention_kwargs["regional_prompt_data"] = RegionalPromptData.from_regions(
regions=[conditioning_data.uncond_regions], key_seq_len=key_seq_len
)
# Run unconditioned UNet denoising (i.e. negative prompt).
unconditioned_next_x = self.model_forward_callback(
x,
sigma,
conditioning_data.unconditioned_embeddings.embeds,
conditioning_data.uncond_text.embeds,
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=uncond_down_block,
mid_block_additional_residual=uncond_mid_block,
@@ -463,36 +462,41 @@ class InvokeAIDiffuserComponent:
# Conditioned pass
###################
cross_attention_kwargs = None
cross_attention_kwargs = {}
# Prepare IP-Adapter cross-attention kwargs for the conditioned pass.
if conditioning_data.ip_adapter_conditioning is not None:
if ip_adapter_conditioning is not None:
# Note that we 'unsqueeze' to produce tensors of shape (batch_size=1, num_ip_images, seq_len, token_len).
cross_attention_kwargs = {
"ip_adapter_image_prompt_embeds": [
torch.unsqueeze(ipa_conditioning.cond_image_prompt_embeds, dim=0)
for ipa_conditioning in conditioning_data.ip_adapter_conditioning
]
}
cross_attention_kwargs["ip_adapter_image_prompt_embeds"] = [
torch.unsqueeze(ipa_conditioning.cond_image_prompt_embeds, dim=0)
for ipa_conditioning in ip_adapter_conditioning
]
# Prepare cross-attention control kwargs for the conditioned pass.
if cross_attn_processor_context is not None:
cross_attn_processor_context.cross_attention_types_to_do = cross_attention_control_types_to_do
cross_attention_kwargs = {"swap_cross_attn_context": cross_attn_processor_context}
cross_attention_kwargs["swap_cross_attn_context"] = cross_attn_processor_context
# Prepare SDXL conditioning kwargs for the conditioned pass.
added_cond_kwargs = None
if is_sdxl:
if conditioning_data.is_sdxl():
added_cond_kwargs = {
"text_embeds": conditioning_data.text_embeddings.pooled_embeds,
"time_ids": conditioning_data.text_embeddings.add_time_ids,
"text_embeds": conditioning_data.cond_text.pooled_embeds,
"time_ids": conditioning_data.cond_text.add_time_ids,
}
# Prepare prompt regions for the conditioned pass.
if conditioning_data.cond_regions is not None:
_, key_seq_len, _ = conditioning_data.cond_text.embeds.shape
cross_attention_kwargs["regional_prompt_data"] = RegionalPromptData.from_regions(
regions=[conditioning_data.cond_regions], key_seq_len=key_seq_len
)
# Run conditioned UNet denoising (i.e. positive prompt).
conditioned_next_x = self.model_forward_callback(
x,
sigma,
conditioning_data.text_embeddings.embeds,
conditioning_data.cond_text.embeds,
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=cond_down_block,
mid_block_additional_residual=cond_mid_block,
@@ -506,64 +510,3 @@ class InvokeAIDiffuserComponent:
scaled_delta = (conditioned_next_x - unconditioned_next_x) * guidance_scale
combined_next_x = unconditioned_next_x + scaled_delta
return combined_next_x
def apply_symmetry(
self,
postprocessing_settings: PostprocessingSettings,
latents: torch.Tensor,
percent_through: float,
) -> torch.Tensor:
# Reset our last percent through if this is our first step.
if percent_through == 0.0:
self.last_percent_through = 0.0
if postprocessing_settings is None:
return latents
# Check for out of bounds
h_symmetry_time_pct = postprocessing_settings.h_symmetry_time_pct
if h_symmetry_time_pct is not None and (h_symmetry_time_pct <= 0.0 or h_symmetry_time_pct > 1.0):
h_symmetry_time_pct = None
v_symmetry_time_pct = postprocessing_settings.v_symmetry_time_pct
if v_symmetry_time_pct is not None and (v_symmetry_time_pct <= 0.0 or v_symmetry_time_pct > 1.0):
v_symmetry_time_pct = None
dev = latents.device.type
latents.to(device="cpu")
if (
h_symmetry_time_pct is not None
and self.last_percent_through < h_symmetry_time_pct
and percent_through >= h_symmetry_time_pct
):
# Horizontal symmetry occurs on the 3rd dimension of the latent
width = latents.shape[3]
x_flipped = torch.flip(latents, dims=[3])
latents = torch.cat(
[
latents[:, :, :, 0 : int(width / 2)],
x_flipped[:, :, :, int(width / 2) : int(width)],
],
dim=3,
)
if (
v_symmetry_time_pct is not None
and self.last_percent_through < v_symmetry_time_pct
and percent_through >= v_symmetry_time_pct
):
# Vertical symmetry occurs on the 2nd dimension of the latent
height = latents.shape[2]
y_flipped = torch.flip(latents, dims=[2])
latents = torch.cat(
[
latents[:, :, 0 : int(height / 2)],
y_flipped[:, :, int(height / 2) : int(height)],
],
dim=2,
)
self.last_percent_through = percent_through
return latents.to(device=dev)

View File

@@ -1,52 +1,55 @@
from contextlib import contextmanager
from typing import Optional
from diffusers.models import UNet2DConditionModel
from invokeai.backend.ip_adapter.attention_processor import AttnProcessor2_0, IPAttnProcessor2_0
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.stable_diffusion.diffusion.custom_attention import CustomAttnProcessor2_0
class UNetPatcher:
"""A class that contains multiple IP-Adapters and can apply them to a UNet."""
class UNetAttentionPatcher:
"""A class for patching a UNet with CustomAttnProcessor2_0 attention layers."""
def __init__(self, ip_adapters: list[IPAdapter]):
def __init__(self, ip_adapters: Optional[list[IPAdapter]]):
self._ip_adapters = ip_adapters
self._scales = [1.0] * len(self._ip_adapters)
self._ip_adapter_scales = None
if self._ip_adapters is not None:
self._ip_adapter_scales = [1.0] * len(self._ip_adapters)
def set_scale(self, idx: int, value: float):
self._scales[idx] = value
self._ip_adapter_scales[idx] = value
def _prepare_attention_processors(self, unet: UNet2DConditionModel):
"""Prepare a dict of attention processors that can be injected into a unet, and load the IP-Adapter attention
weights into them.
weights into them (if IP-Adapters are being applied).
Note that the `unet` param is only used to determine attention block dimensions and naming.
"""
# Construct a dict of attention processors based on the UNet's architecture.
attn_procs = {}
for idx, name in enumerate(unet.attn_processors.keys()):
if name.endswith("attn1.processor"):
attn_procs[name] = AttnProcessor2_0()
if name.endswith("attn1.processor") or self._ip_adapters is None:
# "attn1" processors do not use IP-Adapters.
attn_procs[name] = CustomAttnProcessor2_0()
else:
# Collect the weights from each IP Adapter for the idx'th attention processor.
attn_procs[name] = IPAttnProcessor2_0(
attn_procs[name] = CustomAttnProcessor2_0(
[ip_adapter.attn_weights.get_attention_processor_weights(idx) for ip_adapter in self._ip_adapters],
self._scales,
self._ip_adapter_scales,
)
return attn_procs
@contextmanager
def apply_ip_adapter_attention(self, unet: UNet2DConditionModel):
"""A context manager that patches `unet` with IP-Adapter attention processors."""
"""A context manager that patches `unet` with CustomAttnProcessor2_0 attention layers."""
attn_procs = self._prepare_attention_processors(unet)
orig_attn_processors = unet.attn_processors
try:
# Note to future devs: set_attn_processor(...) does something slightly unexpected - it pops elements from the
# passed dict. So, if you wanted to keep the dict for future use, you'd have to make a moderately-shallow copy
# of it. E.g. `attn_procs_copy = {k: v for k, v in attn_procs.items()}`.
# Note to future devs: set_attn_processor(...) does something slightly unexpected - it pops elements from
# the passed dict. So, if you wanted to keep the dict for future use, you'd have to make a
# moderately-shallow copy of it. E.g. `attn_procs_copy = {k: v for k, v in attn_procs.items()}`.
unet.set_attn_processor(attn_procs)
yield None
finally:

View File

@@ -858,9 +858,9 @@ def do_textual_inversion_training(
# Let's make sure we don't update any embedding weights besides the newly added token
index_no_updates = torch.arange(len(tokenizer)) != placeholder_token_id
with torch.no_grad():
accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[
index_no_updates
] = orig_embeds_params[index_no_updates]
accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[index_no_updates] = (
orig_embeds_params[index_no_updates]
)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:

View File

@@ -144,7 +144,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
self.nextrely = top_of_table
self.lora_models = self.add_model_widgets(
model_type=ModelType.LoRA,
model_type=ModelType.Lora,
window_width=window_width,
)
bottom_of_table = max(bottom_of_table, self.nextrely)

View File

@@ -30,7 +30,7 @@
"lint:prettier": "prettier --check .",
"lint:tsc": "tsc --noEmit",
"lint": "concurrently -g -c red,green,yellow,blue,magenta pnpm:lint:*",
"fix": "eslint --fix . && prettier --log-level warn --write .",
"fix": "knip --fix && eslint --fix . && prettier --log-level warn --write .",
"preinstall": "npx only-allow pnpm",
"storybook": "storybook dev -p 6006",
"build-storybook": "storybook build",

View File

@@ -134,6 +134,8 @@
"loadMore": "Mehr laden",
"noImagesInGallery": "Keine Bilder in der Galerie",
"loading": "Lade",
"preparingDownload": "bereite Download vor",
"preparingDownloadFailed": "Problem beim Download vorbereiten",
"deleteImage": "Lösche Bild",
"copy": "Kopieren",
"download": "Runterladen",
@@ -965,7 +967,7 @@
"resumeFailed": "Problem beim Fortsetzen des Prozesses",
"pruneFailed": "Problem beim leeren der Warteschlange",
"pauseTooltip": "Prozess anhalten",
"back": "Ende",
"back": "Hinten",
"resumeSucceeded": "Prozess wird fortgesetzt",
"resumeTooltip": "Prozess wieder aufnehmen",
"time": "Zeit",

View File

@@ -78,7 +78,6 @@
"aboutDesc": "Using Invoke for work? Check out:",
"aboutHeading": "Own Your Creative Power",
"accept": "Accept",
"add": "Add",
"advanced": "Advanced",
"advancedOptions": "Advanced Options",
"ai": "ai",
@@ -304,12 +303,6 @@
"method": "High Resolution Fix Method"
}
},
"prompt": {
"addPromptTrigger": "Add Prompt Trigger",
"compatibleEmbeddings": "Compatible Embeddings",
"noPromptTriggers": "No triggers available",
"noMatchingTriggers": "No matching triggers"
},
"embedding": {
"addEmbedding": "Add Embedding",
"incompatibleModel": "Incompatible base model:",
@@ -741,8 +734,6 @@
"customConfig": "Custom Config",
"customConfigFileLocation": "Custom Config File Location",
"customSaveLocation": "Custom Save Location",
"defaultSettings": "Default Settings",
"defaultSettingsSaved": "Default Settings Saved",
"delete": "Delete",
"deleteConfig": "Delete Config",
"deleteModel": "Delete Model",
@@ -777,7 +768,6 @@
"mergedModelName": "Merged Model Name",
"mergedModelSaveLocation": "Save Location",
"mergeModels": "Merge Models",
"metadata": "Metadata",
"model": "Model",
"modelAdded": "Model Added",
"modelConversionFailed": "Model Conversion Failed",
@@ -849,12 +839,9 @@
"statusConverting": "Converting",
"syncModels": "Sync Models",
"syncModelsDesc": "If your models are out of sync with the backend, you can refresh them up using this option. This is generally handy in cases where you add models to the InvokeAI root folder or autoimport directory after the application has booted.",
"triggerPhrases": "Trigger Phrases",
"typePhraseHere": "Type phrase here",
"upcastAttention": "Upcast Attention",
"updateModel": "Update Model",
"useCustomConfig": "Use Custom Config",
"useDefaultSettings": "Use Default Settings",
"v1": "v1",
"v2_768": "v2 (768px)",
"v2_base": "v2 (512px)",
@@ -873,7 +860,6 @@
"models": {
"addLora": "Add LoRA",
"allLoRAsAdded": "All LoRAs added",
"concepts": "Concepts",
"loraAlreadyAdded": "LoRA already added",
"esrganModel": "ESRGAN Model",
"loading": "loading",

View File

@@ -505,6 +505,8 @@
"seamLowThreshold": "Bajo",
"coherencePassHeader": "Parámetros de la coherencia",
"compositingSettingsHeader": "Ajustes de la composición",
"coherenceSteps": "Pasos",
"coherenceStrength": "Fuerza",
"patchmatchDownScaleSize": "Reducir a escala",
"coherenceMode": "Modo"
},

View File

@@ -114,8 +114,7 @@
"checkpoint": "Checkpoint",
"safetensors": "Safetensors",
"ai": "ia",
"file": "File",
"toResolve": "Da risolvere"
"file": "File"
},
"gallery": {
"generations": "Generazioni",
@@ -143,6 +142,8 @@
"copy": "Copia",
"download": "Scarica",
"setCurrentImage": "Imposta come immagine corrente",
"preparingDownload": "Preparazione del download",
"preparingDownloadFailed": "Problema durante la preparazione del download",
"downloadSelection": "Scarica gli elementi selezionati",
"noImageSelected": "Nessuna immagine selezionata",
"deleteSelection": "Elimina la selezione",
@@ -608,6 +609,8 @@
"seamLowThreshold": "Basso",
"seamHighThreshold": "Alto",
"coherencePassHeader": "Passaggio di coerenza",
"coherenceSteps": "Passi",
"coherenceStrength": "Forza",
"compositingSettingsHeader": "Impostazioni di composizione",
"patchmatchDownScaleSize": "Ridimensiona",
"coherenceMode": "Modalità",
@@ -1397,6 +1400,19 @@
"Regola la maschera."
]
},
"compositingCoherenceSteps": {
"heading": "Passi",
"paragraphs": [
"Numero di passi utilizzati nel Passaggio di Coerenza.",
"Simile ai passi di generazione."
]
},
"compositingBlur": {
"heading": "Sfocatura",
"paragraphs": [
"Il raggio di sfocatura della maschera."
]
},
"compositingCoherenceMode": {
"heading": "Modalità",
"paragraphs": [
@@ -1415,6 +1431,13 @@
"Un secondo ciclo di riduzione del rumore aiuta a comporre l'immagine Inpaint/Outpaint."
]
},
"compositingStrength": {
"heading": "Forza",
"paragraphs": [
"Quantità di rumore aggiunta per il Passaggio di Coerenza.",
"Simile alla forza di riduzione del rumore."
]
},
"paramNegativeConditioning": {
"paragraphs": [
"Il processo di generazione evita i concetti nel prompt negativo. Utilizzatelo per escludere qualità o oggetti dall'output.",

View File

@@ -123,6 +123,8 @@
"autoSwitchNewImages": "새로운 이미지로 자동 전환",
"loading": "불러오는 중",
"unableToLoad": "갤러리를 로드할 수 없음",
"preparingDownload": "다운로드 준비",
"preparingDownloadFailed": "다운로드 준비 중 발생한 문제",
"singleColumnLayout": "단일 열 레이아웃",
"image": "이미지",
"loadMore": "더 불러오기",

View File

@@ -97,6 +97,8 @@
"featuresWillReset": "Als je deze afbeelding verwijdert, dan worden deze functies onmiddellijk teruggezet.",
"loading": "Bezig met laden",
"unableToLoad": "Kan galerij niet laden",
"preparingDownload": "Bezig met voorbereiden van download",
"preparingDownloadFailed": "Fout bij voorbereiden van download",
"downloadSelection": "Download selectie",
"currentlyInUse": "Deze afbeelding is momenteel in gebruik door de volgende functies:",
"copy": "Kopieer",
@@ -533,6 +535,8 @@
"coherencePassHeader": "Coherentiestap",
"maskBlur": "Vervaag",
"maskBlurMethod": "Vervagingsmethode",
"coherenceSteps": "Stappen",
"coherenceStrength": "Sterkte",
"seamHighThreshold": "Hoog",
"seamLowThreshold": "Laag",
"invoke": {
@@ -1135,6 +1139,13 @@
"Een afbeeldingsgrootte (in aantal pixels) equivalent aan 512x512 wordt aanbevolen voor SD1.5-modellen. Een grootte-equivalent van 1024x1024 wordt aanbevolen voor SDXL-modellen."
]
},
"compositingCoherenceSteps": {
"heading": "Stappen",
"paragraphs": [
"Het aantal te gebruiken ontruisingsstappen in de coherentiefase.",
"Gelijk aan de hoofdparameter Stappen."
]
},
"dynamicPrompts": {
"paragraphs": [
"Dynamische prompts vormt een enkele prompt om in vele.",
@@ -1149,6 +1160,12 @@
],
"heading": "VAE"
},
"compositingBlur": {
"heading": "Vervaging",
"paragraphs": [
"De vervagingsstraal van het masker."
]
},
"paramIterations": {
"paragraphs": [
"Het aantal te genereren afbeeldingen.",
@@ -1223,6 +1240,13 @@
],
"heading": "Ontruisingssterkte"
},
"compositingStrength": {
"heading": "Sterkte",
"paragraphs": [
"Ontruisingssterkte voor de coherentiefase.",
"Gelijk aan de parameter Ontruisingssterkte Afbeelding naar afbeelding."
]
},
"paramNegativeConditioning": {
"paragraphs": [
"Het genereerproces voorkomt de gegeven begrippen in de negatieve prompt. Gebruik dit om bepaalde zaken of voorwerpen uit te sluiten van de uitvoerafbeelding.",

View File

@@ -143,6 +143,8 @@
"problemDeletingImagesDesc": "Не удалось удалить одно или несколько изображений",
"loading": "Загрузка",
"unableToLoad": "Невозможно загрузить галерею",
"preparingDownload": "Подготовка к скачиванию",
"preparingDownloadFailed": "Проблема с подготовкой к скачиванию",
"image": "изображение",
"drop": "перебросить",
"problemDeletingImages": "Проблема с удалением изображений",
@@ -610,7 +612,9 @@
"maskBlurMethod": "Метод размытия",
"seamLowThreshold": "Низкий",
"seamHighThreshold": "Высокий",
"coherenceSteps": "Шагов",
"coherencePassHeader": "Порог Coherence",
"coherenceStrength": "Сила",
"compositingSettingsHeader": "Настройки компоновки",
"invoke": {
"noNodesInGraph": "Нет узлов в графе",
@@ -1317,6 +1321,13 @@
"Размер изображения (в пикселях), эквивалентный 512x512, рекомендуется для моделей SD1.5, а размер, эквивалентный 1024x1024, рекомендуется для моделей SDXL."
]
},
"compositingCoherenceSteps": {
"heading": "Шаги",
"paragraphs": [
"Количество шагов снижения шума, используемых при прохождении когерентности.",
"То же, что и основной параметр «Шаги»."
]
},
"dynamicPrompts": {
"paragraphs": [
"Динамические запросы превращают одно приглашение на множество.",
@@ -1331,6 +1342,12 @@
],
"heading": "VAE"
},
"compositingBlur": {
"heading": "Размытие",
"paragraphs": [
"Радиус размытия маски."
]
},
"paramIterations": {
"paragraphs": [
"Количество изображений, которые нужно сгенерировать.",
@@ -1405,6 +1422,13 @@
],
"heading": "Шумоподавление"
},
"compositingStrength": {
"heading": "Сила",
"paragraphs": [
null,
"То же, что параметр «Сила шумоподавления img2img»."
]
},
"paramNegativeConditioning": {
"paragraphs": [
"Stable Diffusion пытается избежать указанных в отрицательном запросе концепций. Используйте это, чтобы исключить качества или объекты из вывода.",

View File

@@ -355,6 +355,7 @@
"starImage": "Yıldız Koy",
"download": "İndir",
"deleteSelection": "Seçileni Sil",
"preparingDownloadFailed": "İndirme Hazırlanırken Sorun",
"problemDeletingImages": "Görsel Silmede Sorun",
"featuresWillReset": "Bu görseli silerseniz, o özellikler resetlenecektir.",
"galleryImageResetSize": "Boyutu Resetle",
@@ -376,6 +377,7 @@
"setCurrentImage": "Çalışma Görseli Yap",
"unableToLoad": "Galeri Yüklenemedi",
"downloadSelection": "Seçileni İndir",
"preparingDownload": "İndirmeye Hazırlanıyor",
"singleColumnLayout": "Tek Sütun Düzen",
"generations": ıktılar",
"showUploads": "Yüklenenleri Göster",
@@ -721,6 +723,7 @@
"clipSkip": "CLIP Atlama",
"randomizeSeed": "Rastgele Tohum",
"cfgScale": "CFG Ölçeği",
"coherenceStrength": "Etki",
"controlNetControlMode": "Yönetim Kipi",
"general": "Genel",
"img2imgStrength": "Görselden Görsel Ölçüsü",
@@ -790,6 +793,7 @@
"cfgRescaleMultiplier": "CFG Rescale Çarpanı",
"cfgRescale": "CFG Rescale",
"coherencePassHeader": "Uyum Geçişi",
"coherenceSteps": "Adım",
"infillMethod": "Doldurma Yöntemi",
"maskBlurMethod": "Bulandırma Yöntemi",
"steps": "Adım",

View File

@@ -136,6 +136,8 @@
"copy": "复制",
"download": "下载",
"setCurrentImage": "设为当前图像",
"preparingDownload": "准备下载",
"preparingDownloadFailed": "准备下载时出现问题",
"downloadSelection": "下载所选内容",
"noImageSelected": "无选中的图像",
"deleteSelection": "删除所选内容",
@@ -614,9 +616,11 @@
"incompatibleBaseModelForControlAdapter": "有 #{{number}} 个 Control Adapter 模型与主模型不兼容。"
},
"patchmatchDownScaleSize": "缩小",
"coherenceSteps": "步数",
"clipSkip": "CLIP 跳过层",
"compositingSettingsHeader": "合成设置",
"useCpuNoise": "使用 CPU 噪声",
"coherenceStrength": "强度",
"enableNoiseSettings": "启用噪声设置",
"coherenceMode": "模式",
"cpuNoise": "CPU 噪声",
@@ -1398,6 +1402,19 @@
"图像尺寸(单位:像素)建议 SD 1.5 模型使用等效 512x512 的尺寸SDXL 模型使用等效 1024x1024 的尺寸。"
]
},
"compositingCoherenceSteps": {
"heading": "步数",
"paragraphs": [
"一致性层中使用的去噪步数。",
"与主参数中的步数相同。"
]
},
"compositingBlur": {
"heading": "模糊",
"paragraphs": [
"遮罩模糊半径。"
]
},
"noiseUseCPU": {
"heading": "使用 CPU 噪声",
"paragraphs": [
@@ -1450,6 +1467,13 @@
"第二轮去噪有助于合成内补/外扩图像。"
]
},
"compositingStrength": {
"heading": "强度",
"paragraphs": [
"一致性层使用的去噪强度。",
"去噪强度与图生图的参数相同。"
]
},
"paramNegativeConditioning": {
"paragraphs": [
"生成过程会避免生成负向提示词中的概念。使用此选项来使输出排除部分质量或对象。",

View File

@@ -55,8 +55,6 @@ import { addUpscaleRequestedListener } from 'app/store/middleware/listenerMiddle
import { addWorkflowLoadRequestedListener } from 'app/store/middleware/listenerMiddleware/listeners/workflowLoadRequested';
import type { AppDispatch, RootState } from 'app/store/store';
import { addSetDefaultSettingsListener } from './listeners/setDefaultSettings';
export const listenerMiddleware = createListenerMiddleware();
export type AppStartListening = TypedStartListening<RootState, AppDispatch>;
@@ -153,7 +151,5 @@ addFirstListImagesListener(startAppListening);
// Ad-hoc upscale workflwo
addUpscaleRequestedListener(startAppListening);
// Prompts
// Dynamic prompts
addDynamicPromptsListener(startAppListening);
addSetDefaultSettingsListener(startAppListening);

View File

@@ -7,10 +7,8 @@ import {
selectAllT2IAdapters,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { loraRemoved } from 'features/lora/store/loraSlice';
import { calculateNewSize } from 'features/parameters/components/ImageSize/calculateNewSize';
import { heightChanged, modelChanged, vaeSelected, widthChanged } from 'features/parameters/store/generationSlice';
import { modelChanged, vaeSelected } from 'features/parameters/store/generationSlice';
import { zParameterModel, zParameterVAEModel } from 'features/parameters/types/parameterSchemas';
import { getIsSizeOptimal, getOptimalDimension } from 'features/parameters/util/optimalDimension';
import { refinerModelChanged } from 'features/sdxl/store/sdxlSlice';
import { forEach, some } from 'lodash-es';
import { mainModelsAdapterSelectors, modelsApi, vaeModelsAdapterSelectors } from 'services/api/endpoints/models';
@@ -26,9 +24,7 @@ export const addModelsLoadedListener = (startAppListening: AppStartListening) =>
const log = logger('models');
log.info({ models: action.payload.entities }, `Main models loaded (${action.payload.ids.length})`);
const state = getState();
const currentModel = state.generation.model;
const currentModel = getState().generation.model;
const models = mainModelsAdapterSelectors.selectAll(action.payload);
if (models.length === 0) {
@@ -43,29 +39,6 @@ export const addModelsLoadedListener = (startAppListening: AppStartListening) =>
return;
}
const defaultModel = state.config.sd.defaultModel;
const defaultModelInList = defaultModel ? models.find((m) => m.key === defaultModel) : false;
if (defaultModelInList) {
const result = zParameterModel.safeParse(defaultModelInList);
if (result.success) {
dispatch(modelChanged(defaultModelInList, currentModel));
const optimalDimension = getOptimalDimension(defaultModelInList);
if (getIsSizeOptimal(state.generation.width, state.generation.height, optimalDimension)) {
return;
}
const { width, height } = calculateNewSize(
state.generation.aspectRatio.value,
optimalDimension * optimalDimension
);
dispatch(widthChanged(width));
dispatch(heightChanged(height));
return;
}
}
const result = zParameterModel.safeParse(models[0]);
if (!result.success) {

View File

@@ -1,96 +0,0 @@
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { setDefaultSettings } from 'features/parameters/store/actions';
import {
setCfgRescaleMultiplier,
setCfgScale,
setScheduler,
setSteps,
vaePrecisionChanged,
vaeSelected,
} from 'features/parameters/store/generationSlice';
import {
isParameterCFGRescaleMultiplier,
isParameterCFGScale,
isParameterPrecision,
isParameterScheduler,
isParameterSteps,
zParameterVAEModel,
} from 'features/parameters/types/parameterSchemas';
import { addToast } from 'features/system/store/systemSlice';
import { makeToast } from 'features/system/util/makeToast';
import { t } from 'i18next';
import { map } from 'lodash-es';
import { modelsApi } from 'services/api/endpoints/models';
export const addSetDefaultSettingsListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: setDefaultSettings,
effect: async (action, { dispatch, getState }) => {
const state = getState();
const currentModel = state.generation.model;
if (!currentModel) {
return;
}
const modelConfig = await dispatch(modelsApi.endpoints.getModelConfig.initiate(currentModel.key)).unwrap();
if (!modelConfig || !modelConfig.default_settings) {
return;
}
const { vae, vae_precision, cfg_scale, cfg_rescale_multiplier, steps, scheduler } = modelConfig.default_settings;
if (vae) {
// we store this as "default" within default settings
// to distinguish it from no default set
if (vae === 'default') {
dispatch(vaeSelected(null));
} else {
const { data } = modelsApi.endpoints.getVaeModels.select()(state);
const vaeArray = map(data?.entities);
const validVae = vaeArray.find((model) => model.key === vae);
const result = zParameterVAEModel.safeParse(validVae);
if (!result.success) {
return;
}
dispatch(vaeSelected(result.data));
}
}
if (vae_precision) {
if (isParameterPrecision(vae_precision)) {
dispatch(vaePrecisionChanged(vae_precision));
}
}
if (cfg_scale) {
if (isParameterCFGScale(cfg_scale)) {
dispatch(setCfgScale(cfg_scale));
}
}
if (cfg_rescale_multiplier) {
if (isParameterCFGRescaleMultiplier(cfg_rescale_multiplier)) {
dispatch(setCfgRescaleMultiplier(cfg_rescale_multiplier));
}
}
if (steps) {
if (isParameterSteps(steps)) {
dispatch(setSteps(steps));
}
}
if (scheduler) {
if (isParameterScheduler(scheduler)) {
dispatch(setScheduler(scheduler));
}
}
dispatch(addToast(makeToast({ title: t('toast.parameterSet', { parameter: 'Default settings' }) })));
},
});
};

View File

@@ -14,7 +14,7 @@ export const addModelInstallEventListener = (startAppListening: AppStartListenin
const { bytes, total_bytes, id } = action.payload.data;
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
modelsApi.util.updateQueryData('getModelImports', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.bytes = bytes;
@@ -33,7 +33,7 @@ export const addModelInstallEventListener = (startAppListening: AppStartListenin
const { id } = action.payload.data;
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
modelsApi.util.updateQueryData('getModelImports', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'completed';
@@ -41,7 +41,7 @@ export const addModelInstallEventListener = (startAppListening: AppStartListenin
return draft;
})
);
dispatch(api.util.invalidateTags(['Model']));
dispatch(api.util.invalidateTags([{ type: 'ModelConfig' }]));
},
});
@@ -51,7 +51,7 @@ export const addModelInstallEventListener = (startAppListening: AppStartListenin
const { id, error, error_type } = action.payload.data;
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
modelsApi.util.updateQueryData('getModelImports', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'error';

View File

@@ -1,5 +1,4 @@
import type { CONTROLNET_PROCESSORS } from 'features/controlAdapters/store/constants';
import type { ParameterPrecision, ParameterScheduler } from 'features/parameters/types/parameterSchemas';
import type { InvokeTabName } from 'features/ui/store/tabMap';
import type { O } from 'ts-toolbelt';
@@ -83,8 +82,6 @@ export type AppConfig = {
guidance: NumericalParameterConfig;
cfgRescaleMultiplier: NumericalParameterConfig;
img2imgStrength: NumericalParameterConfig;
scheduler?: ParameterScheduler;
vaePrecision?: ParameterPrecision;
// Canvas
boundingBoxHeight: NumericalParameterConfig; // initial value comes from model
boundingBoxWidth: NumericalParameterConfig; // initial value comes from model

View File

@@ -8,15 +8,15 @@ type Props = {
onOpen: () => void;
};
export const AddPromptTriggerButton = memo((props: Props) => {
export const AddEmbeddingButton = memo((props: Props) => {
const { onOpen, isOpen } = props;
const { t } = useTranslation();
return (
<Tooltip label={t('prompt.addPromptTrigger')}>
<Tooltip label={t('embedding.addEmbedding')}>
<IconButton
variant="promptOverlay"
isDisabled={isOpen}
aria-label={t('prompt.addPromptTrigger')}
aria-label={t('embedding.addEmbedding')}
icon={<PiCodeBold />}
onClick={onOpen}
/>
@@ -24,4 +24,4 @@ export const AddPromptTriggerButton = memo((props: Props) => {
);
});
AddPromptTriggerButton.displayName = 'AddPromptTriggerButton';
AddEmbeddingButton.displayName = 'AddEmbeddingButton';

View File

@@ -1,9 +1,9 @@
import { Popover, PopoverAnchor, PopoverBody, PopoverContent } from '@invoke-ai/ui-library';
import { PromptTriggerSelect } from 'features/prompt/PromptTriggerSelect';
import type { PromptPopoverProps } from 'features/prompt/types';
import { EmbeddingSelect } from 'features/embedding/EmbeddingSelect';
import type { EmbeddingPopoverProps } from 'features/embedding/types';
import { memo } from 'react';
export const PromptPopover = memo((props: PromptPopoverProps) => {
export const EmbeddingPopover = memo((props: EmbeddingPopoverProps) => {
const { onSelect, isOpen, onClose, width, children } = props;
return (
@@ -14,7 +14,7 @@ export const PromptPopover = memo((props: PromptPopoverProps) => {
openDelay={0}
closeDelay={0}
closeOnBlur={true}
returnFocusOnClose={false}
returnFocusOnClose={true}
isLazy
>
<PopoverAnchor>{children}</PopoverAnchor>
@@ -27,11 +27,11 @@ export const PromptPopover = memo((props: PromptPopoverProps) => {
borderStyle="solid"
>
<PopoverBody p={0} width={`calc(${width}px - 0.25rem)`}>
<PromptTriggerSelect onClose={onClose} onSelect={onSelect} />
<EmbeddingSelect onClose={onClose} onSelect={onSelect} />
</PopoverBody>
</PopoverContent>
</Popover>
);
});
PromptPopover.displayName = 'PromptPopover';
EmbeddingPopover.displayName = 'EmbeddingPopover';

View File

@@ -0,0 +1,21 @@
import type { Meta, StoryObj } from '@storybook/react';
import { EmbeddingSelect } from './EmbeddingSelect';
import type { EmbeddingSelectProps } from './types';
const meta: Meta<typeof EmbeddingSelect> = {
title: 'Feature/Prompt/EmbeddingSelect',
tags: ['autodocs'],
component: EmbeddingSelect,
};
export default meta;
type Story = StoryObj<typeof EmbeddingSelect>;
const Component = (props: EmbeddingSelectProps) => {
return <EmbeddingSelect {...props}>Invoke</EmbeddingSelect>;
};
export const Default: Story = {
render: Component,
};

View File

@@ -0,0 +1,67 @@
import type { ChakraProps } from '@invoke-ai/ui-library';
import { Combobox, FormControl } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
import type { EmbeddingSelectProps } from 'features/embedding/types';
import { t } from 'i18next';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { useGetTextualInversionModelsQuery } from 'services/api/endpoints/models';
import type { TextualInversionModelConfig } from 'services/api/types';
const noOptionsMessage = () => t('embedding.noMatchingEmbedding');
export const EmbeddingSelect = memo(({ onSelect, onClose }: EmbeddingSelectProps) => {
const { t } = useTranslation();
const currentBaseModel = useAppSelector((s) => s.generation.model?.base);
const getIsDisabled = useCallback(
(embedding: TextualInversionModelConfig): boolean => {
const isCompatible = currentBaseModel === embedding.base;
const hasMainModel = Boolean(currentBaseModel);
return !hasMainModel || !isCompatible;
},
[currentBaseModel]
);
const { data, isLoading } = useGetTextualInversionModelsQuery();
const _onChange = useCallback(
(embedding: TextualInversionModelConfig | null) => {
if (!embedding) {
return;
}
onSelect(embedding.name);
},
[onSelect]
);
const { options, onChange } = useGroupedModelCombobox({
modelEntities: data,
getIsDisabled,
onChange: _onChange,
});
return (
<FormControl>
<Combobox
placeholder={isLoading ? t('common.loading') : t('embedding.addEmbedding')}
defaultMenuIsOpen
autoFocus
value={null}
options={options}
noOptionsMessage={noOptionsMessage}
onChange={onChange}
onMenuClose={onClose}
data-testid="add-embedding"
sx={selectStyles}
/>
</FormControl>
);
});
EmbeddingSelect.displayName = 'EmbeddingSelect';
const selectStyles: ChakraProps['sx'] = {
w: 'full',
};

View File

@@ -1,12 +1,12 @@
import type { PropsWithChildren } from 'react';
export type PromptTriggerSelectProps = {
export type EmbeddingSelectProps = {
onSelect: (v: string) => void;
onClose: () => void;
};
export type PromptPopoverProps = PropsWithChildren &
PromptTriggerSelectProps & {
export type EmbeddingPopoverProps = PropsWithChildren &
EmbeddingSelectProps & {
isOpen: boolean;
width?: number | string;
};

View File

@@ -4,13 +4,13 @@ import type { ChangeEventHandler, KeyboardEventHandler, RefObject } from 'react'
import { useCallback } from 'react';
import { flushSync } from 'react-dom';
type UseInsertTriggerArg = {
type UseInsertEmbeddingArg = {
prompt: string;
textareaRef: RefObject<HTMLTextAreaElement>;
onChange: (v: string) => void;
};
export const usePrompt = ({ prompt, textareaRef, onChange: _onChange }: UseInsertTriggerArg) => {
export const usePrompt = ({ prompt, textareaRef, onChange: _onChange }: UseInsertEmbeddingArg) => {
const { isOpen, onClose, onOpen } = useDisclosure();
const onChange: ChangeEventHandler<HTMLTextAreaElement> = useCallback(
@@ -20,13 +20,13 @@ export const usePrompt = ({ prompt, textareaRef, onChange: _onChange }: UseInser
[_onChange]
);
const insertTrigger = useCallback(
const insertEmbedding = useCallback(
(v: string) => {
if (!textareaRef.current) {
return;
}
// this is where we insert the trigger
// this is where we insert the TI trigger
const caret = textareaRef.current.selectionStart;
if (isNil(caret)) {
@@ -35,9 +35,13 @@ export const usePrompt = ({ prompt, textareaRef, onChange: _onChange }: UseInser
let newPrompt = prompt.slice(0, caret);
newPrompt += `${v}`;
if (newPrompt[newPrompt.length - 1] !== '<') {
newPrompt += '<';
}
// we insert the cursor after the end of trigger
newPrompt += `${v}>`;
// we insert the cursor after the `>`
const finalCaretPos = newPrompt.length;
newPrompt += prompt.slice(caret);
@@ -47,7 +51,7 @@ export const usePrompt = ({ prompt, textareaRef, onChange: _onChange }: UseInser
_onChange(newPrompt);
});
// set the cursor position to just after the trigger
// set the caret position to just after the TI trigger
textareaRef.current.selectionStart = finalCaretPos;
textareaRef.current.selectionEnd = finalCaretPos;
},
@@ -58,17 +62,17 @@ export const usePrompt = ({ prompt, textareaRef, onChange: _onChange }: UseInser
textareaRef.current?.focus();
}, [textareaRef]);
const handleClosePopover = useCallback(() => {
const handleClose = useCallback(() => {
onClose();
onFocus();
}, [onFocus, onClose]);
const onSelect = useCallback(
const onSelectEmbedding = useCallback(
(v: string) => {
insertTrigger(v);
handleClosePopover();
insertEmbedding(v);
handleClose();
},
[handleClosePopover, insertTrigger]
[handleClose, insertEmbedding]
);
const onKeyDown: KeyboardEventHandler<HTMLTextAreaElement> = useCallback(
@@ -86,7 +90,7 @@ export const usePrompt = ({ prompt, textareaRef, onChange: _onChange }: UseInser
isOpen,
onClose,
onOpen,
onSelect,
onSelectEmbedding,
onKeyDown,
onFocus,
};

View File

@@ -59,7 +59,7 @@ const LoRASelect = () => {
return (
<FormControl isDisabled={!options.length}>
<InformationalPopover feature="lora">
<FormLabel>{t('models.concepts')} </FormLabel>
<FormLabel>{t('models.lora')} </FormLabel>
</InformationalPopover>
<Combobox
placeholder={placeholder}

View File

@@ -0,0 +1,228 @@
import { Button, Flex, FormControl, FormErrorMessage, FormLabel, Input, Text, Textarea } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import ScrollableContent from 'common/components/OverlayScrollbars/ScrollableContent';
import BaseModelSelect from 'features/modelManagerV2/subpanels/ModelPanel/Fields/BaseModelSelect';
import BooleanSelect from 'features/modelManagerV2/subpanels/ModelPanel/Fields/BooleanSelect';
import ModelFormatSelect from 'features/modelManagerV2/subpanels/ModelPanel/Fields/ModelFormatSelect';
import ModelTypeSelect from 'features/modelManagerV2/subpanels/ModelPanel/Fields/ModelTypeSelect';
import ModelVariantSelect from 'features/modelManagerV2/subpanels/ModelPanel/Fields/ModelVariantSelect';
import PredictionTypeSelect from 'features/modelManagerV2/subpanels/ModelPanel/Fields/PredictionTypeSelect';
import RepoVariantSelect from 'features/modelManagerV2/subpanels/ModelPanel/Fields/RepoVariantSelect';
import { addToast } from 'features/system/store/systemSlice';
import { makeToast } from 'features/system/util/makeToast';
import { isNil, omitBy } from 'lodash-es';
import { useCallback, useEffect } from 'react';
import type { SubmitHandler } from 'react-hook-form';
import { useForm } from 'react-hook-form';
import { useTranslation } from 'react-i18next';
import { useInstallModelMutation } from 'services/api/endpoints/models';
import type { AnyModelConfig } from 'services/api/types';
export const AdvancedImport = () => {
const dispatch = useAppDispatch();
const [installModel] = useInstallModelMutation();
const { t } = useTranslation();
const {
register,
handleSubmit,
control,
formState: { errors },
setValue,
resetField,
reset,
watch,
} = useForm<AnyModelConfig>({
defaultValues: {
name: '',
base: 'sd-1',
type: 'main',
path: '',
description: '',
format: 'diffusers',
vae: '',
variant: 'normal',
},
mode: 'onChange',
});
const onSubmit = useCallback<SubmitHandler<AnyModelConfig>>(
(values) => {
installModel({
source: values.path,
config: omitBy(values, isNil),
})
.unwrap()
.then((_) => {
dispatch(
addToast(
makeToast({
title: t('modelManager.modelAdded', {
modelName: values.name,
}),
status: 'success',
})
)
);
reset();
})
.catch((error) => {
if (error) {
dispatch(
addToast(
makeToast({
title: t('toast.modelAddFailed'),
status: 'error',
})
)
);
}
});
},
[installModel, dispatch, t, reset]
);
const watchedModelType = watch('type');
const watchedModelFormat = watch('format');
useEffect(() => {
if (watchedModelType === 'main') {
setValue('format', 'diffusers');
setValue('repo_variant', '');
setValue('variant', 'normal');
}
if (watchedModelType === 'lora') {
setValue('format', 'lycoris');
} else if (watchedModelType === 'embedding') {
setValue('format', 'embedding_file');
} else if (watchedModelType === 'ip_adapter') {
setValue('format', 'invokeai');
} else {
setValue('format', 'diffusers');
}
resetField('upcast_attention');
resetField('ztsnr_training');
resetField('vae');
resetField('config');
resetField('prediction_type');
resetField('image_encoder_model_id');
}, [watchedModelType, resetField, setValue]);
return (
<ScrollableContent>
<form onSubmit={handleSubmit(onSubmit)}>
<Flex flexDirection="column" gap={4} width="100%" pb={10}>
<Flex alignItems="flex-end" gap="4">
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('modelManager.modelType')}</FormLabel>
<ModelTypeSelect<AnyModelConfig> control={control} name="type" />
</FormControl>
<Text px="2" fontSize="xs" textAlign="center">
{t('modelManager.advancedImportInfo')}
</Text>
</Flex>
<Flex p={4} borderRadius={4} bg="base.850" height="100%" direction="column" gap="3">
<FormControl isInvalid={Boolean(errors.name)}>
<Flex direction="column" width="full">
<FormLabel>{t('modelManager.name')}</FormLabel>
<Input
{...register('name', {
validate: (value) => value.trim().length >= 3 || 'Must be at least 3 characters',
})}
/>
{errors.name?.message && <FormErrorMessage>{errors.name?.message}</FormErrorMessage>}
</Flex>
</FormControl>
<Flex>
<FormControl>
<Flex direction="column" width="full">
<FormLabel>{t('modelManager.description')}</FormLabel>
<Textarea size="sm" {...register('description')} />
{errors.name?.message && <FormErrorMessage>{errors.name?.message}</FormErrorMessage>}
</Flex>
</FormControl>
</Flex>
<Flex gap={4}>
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('modelManager.baseModel')}</FormLabel>
<BaseModelSelect control={control} name="base" />
</FormControl>
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('common.format')}</FormLabel>
<ModelFormatSelect control={control} name="format" />
</FormControl>
</Flex>
<Flex gap={4}>
<FormControl flexDir="column" alignItems="flex-start" gap={1} isInvalid={Boolean(errors.path)}>
<FormLabel>{t('modelManager.path')}</FormLabel>
<Input
{...register('path', {
validate: (value) => value.trim().length > 0 || 'Must provide a path',
})}
/>
{errors.path?.message && <FormErrorMessage>{errors.path?.message}</FormErrorMessage>}
</FormControl>
</Flex>
{watchedModelType === 'main' && (
<>
<Flex gap={4}>
{watchedModelFormat === 'diffusers' && (
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('modelManager.repoVariant')}</FormLabel>
<RepoVariantSelect<AnyModelConfig> control={control} name="repo_variant" />
</FormControl>
)}
{watchedModelFormat === 'checkpoint' && (
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('modelManager.pathToConfig')}</FormLabel>
<Input {...register('config')} />
</FormControl>
)}
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('modelManager.variant')}</FormLabel>
<ModelVariantSelect<AnyModelConfig> control={control} name="variant" />
</FormControl>
</Flex>
<Flex gap={4}>
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('modelManager.predictionType')}</FormLabel>
<PredictionTypeSelect<AnyModelConfig> control={control} name="prediction_type" />
</FormControl>
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('modelManager.upcastAttention')}</FormLabel>
<BooleanSelect<AnyModelConfig> control={control} name="upcast_attention" />
</FormControl>
</Flex>
<Flex gap={4}>
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('modelManager.ztsnrTraining')}</FormLabel>
<BooleanSelect<AnyModelConfig> control={control} name="ztsnr_training" />
</FormControl>
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('modelManager.vaeLocation')}</FormLabel>
<Input {...register('vae')} />
</FormControl>
</Flex>
</>
)}
{watchedModelType === 'ip_adapter' && (
<Flex gap={4}>
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('modelManager.imageEncoderModelId')}</FormLabel>
<Input {...register('image_encoder_model_id')} />
</FormControl>
</Flex>
)}
<Button mt={2} type="submit">
{t('modelManager.addModel')}
</Button>
</Flex>
</Flex>
</form>
</ScrollableContent>
);
};

View File

@@ -5,19 +5,19 @@ import { addToast } from 'features/system/store/systemSlice';
import { makeToast } from 'features/system/util/makeToast';
import { t } from 'i18next';
import { useCallback, useMemo } from 'react';
import { useListModelInstallsQuery, usePruneCompletedModelInstallsMutation } from 'services/api/endpoints/models';
import { useGetModelImportsQuery, usePruneModelImportsMutation } from 'services/api/endpoints/models';
import { ModelInstallQueueItem } from './ModelInstallQueueItem';
import { ImportQueueItem } from './ImportQueueItem';
export const ModelInstallQueue = () => {
export const ImportQueue = () => {
const dispatch = useAppDispatch();
const { data } = useListModelInstallsQuery();
const { data } = useGetModelImportsQuery();
const [_pruneCompletedModelInstalls] = usePruneCompletedModelInstallsMutation();
const [pruneModelImports] = usePruneModelImportsMutation();
const pruneCompletedModelInstalls = useCallback(() => {
_pruneCompletedModelInstalls()
const pruneQueue = useCallback(() => {
pruneModelImports()
.unwrap()
.then((_) => {
dispatch(
@@ -41,7 +41,7 @@ export const ModelInstallQueue = () => {
);
}
});
}, [_pruneCompletedModelInstalls, dispatch]);
}, [pruneModelImports, dispatch]);
const pruneAvailable = useMemo(() => {
return data?.some(
@@ -53,19 +53,14 @@ export const ModelInstallQueue = () => {
<Flex flexDir="column" p={3} h="full">
<Flex justifyContent="space-between" alignItems="center">
<Text>{t('modelManager.importQueue')}</Text>
<Button
size="sm"
isDisabled={!pruneAvailable}
onClick={pruneCompletedModelInstalls}
tooltip={t('modelManager.pruneTooltip')}
>
<Button size="sm" isDisabled={!pruneAvailable} onClick={pruneQueue} tooltip={t('modelManager.pruneTooltip')}>
{t('modelManager.prune')}
</Button>
</Flex>
<Box mt={3} layerStyle="first" p={3} borderRadius="base" w="full" h="full">
<ScrollableContent>
<Flex flexDir="column-reverse" gap="2">
{data?.map((model) => <ModelInstallQueueItem key={model.id} installJob={model} />)}
{data?.map((model) => <ImportQueueItem key={model.id} model={model} />)}
</Flex>
</ScrollableContent>
</Box>

View File

@@ -6,24 +6,17 @@ import type { ModelInstallStatus } from 'services/api/types';
const STATUSES = {
waiting: { colorScheme: 'cyan', translationKey: 'queue.pending' },
downloading: { colorScheme: 'yellow', translationKey: 'queue.in_progress' },
downloads_done: { colorScheme: 'yellow', translationKey: 'queue.in_progress' },
running: { colorScheme: 'yellow', translationKey: 'queue.in_progress' },
completed: { colorScheme: 'green', translationKey: 'queue.completed' },
error: { colorScheme: 'red', translationKey: 'queue.failed' },
cancelled: { colorScheme: 'orange', translationKey: 'queue.canceled' },
};
const ModelInstallQueueBadge = ({
status,
errorReason,
}: {
status?: ModelInstallStatus;
errorReason?: string | null;
}) => {
const ImportQueueBadge = ({ status, errorReason }: { status?: ModelInstallStatus; errorReason?: string | null }) => {
const { t } = useTranslation();
if (!status || !Object.keys(STATUSES).includes(status)) {
return null;
if (!status) {
return <></>;
}
return (
@@ -32,4 +25,4 @@ const ModelInstallQueueBadge = ({
</Tooltip>
);
};
export default memo(ModelInstallQueueBadge);
export default memo(ImportQueueBadge);

View File

@@ -3,16 +3,15 @@ import { useAppDispatch } from 'app/store/storeHooks';
import { addToast } from 'features/system/store/systemSlice';
import { makeToast } from 'features/system/util/makeToast';
import { t } from 'i18next';
import { isNil } from 'lodash-es';
import { useCallback, useMemo } from 'react';
import { PiXBold } from 'react-icons/pi';
import { useCancelModelInstallMutation } from 'services/api/endpoints/models';
import { useDeleteModelImportMutation } from 'services/api/endpoints/models';
import type { HFModelSource, LocalModelSource, ModelInstallJob, URLModelSource } from 'services/api/types';
import ModelInstallQueueBadge from './ModelInstallQueueBadge';
import ImportQueueBadge from './ImportQueueBadge';
type ModelListItemProps = {
installJob: ModelInstallJob;
model: ModelInstallJob;
};
const formatBytes = (bytes: number) => {
@@ -27,26 +26,26 @@ const formatBytes = (bytes: number) => {
return `${bytes.toFixed(2)} ${units[i]}`;
};
export const ModelInstallQueueItem = (props: ModelListItemProps) => {
const { installJob } = props;
export const ImportQueueItem = (props: ModelListItemProps) => {
const { model } = props;
const dispatch = useAppDispatch();
const [deleteImportModel] = useCancelModelInstallMutation();
const [deleteImportModel] = useDeleteModelImportMutation();
const source = useMemo(() => {
if (installJob.source.type === 'hf') {
return installJob.source as HFModelSource;
} else if (installJob.source.type === 'local') {
return installJob.source as LocalModelSource;
} else if (installJob.source.type === 'url') {
return installJob.source as URLModelSource;
if (model.source.type === 'hf') {
return model.source as HFModelSource;
} else if (model.source.type === 'local') {
return model.source as LocalModelSource;
} else if (model.source.type === 'url') {
return model.source as URLModelSource;
} else {
return installJob.source as LocalModelSource;
return model.source as LocalModelSource;
}
}, [installJob.source]);
}, [model.source]);
const handleDeleteModelImport = useCallback(() => {
deleteImportModel(installJob.id)
deleteImportModel(model.id)
.unwrap()
.then((_) => {
dispatch(
@@ -70,7 +69,7 @@ export const ModelInstallQueueItem = (props: ModelListItemProps) => {
);
}
});
}, [deleteImportModel, installJob, dispatch]);
}, [deleteImportModel, model, dispatch]);
const modelName = useMemo(() => {
switch (source.type) {
@@ -86,23 +85,19 @@ export const ModelInstallQueueItem = (props: ModelListItemProps) => {
}, [source]);
const progressValue = useMemo(() => {
if (isNil(installJob.bytes) || isNil(installJob.total_bytes)) {
return null;
}
if (installJob.total_bytes === 0) {
if (model.bytes === undefined || model.total_bytes === undefined) {
return 0;
}
return (installJob.bytes / installJob.total_bytes) * 100;
}, [installJob.bytes, installJob.total_bytes]);
return (model.bytes / model.total_bytes) * 100;
}, [model.bytes, model.total_bytes]);
const progressString = useMemo(() => {
if (installJob.status !== 'downloading' || installJob.bytes === undefined || installJob.total_bytes === undefined) {
if (model.status !== 'downloading' || model.bytes === undefined || model.total_bytes === undefined) {
return '';
}
return `${formatBytes(installJob.bytes)} / ${formatBytes(installJob.total_bytes)}`;
}, [installJob.bytes, installJob.total_bytes, installJob.status]);
return `${formatBytes(model.bytes)} / ${formatBytes(model.total_bytes)}`;
}, [model.bytes, model.total_bytes, model.status]);
return (
<Flex gap="2" w="full" alignItems="center">
@@ -114,21 +109,19 @@ export const ModelInstallQueueItem = (props: ModelListItemProps) => {
<Flex flexDir="column" flex={1}>
<Tooltip label={progressString}>
<Progress
value={progressValue ?? 0}
isIndeterminate={progressValue === null}
value={progressValue}
isIndeterminate={progressValue === undefined}
aria-label={t('accessibility.invokeProgressBar')}
h={2}
/>
</Tooltip>
</Flex>
<Box minW="100px" textAlign="center">
<ModelInstallQueueBadge status={installJob.status} errorReason={installJob.error_reason} />
<ImportQueueBadge status={model.status} errorReason={model.error_reason} />
</Box>
<Box minW="20px">
{(installJob.status === 'downloading' ||
installJob.status === 'waiting' ||
installJob.status === 'running') && (
{(model.status === 'downloading' || model.status === 'waiting' || model.status === 'running') && (
<IconButton
isRound={true}
size="xs"

View File

@@ -2,24 +2,24 @@ import { Button, Flex, FormControl, FormErrorMessage, FormLabel, Input } from '@
import type { ChangeEventHandler } from 'react';
import { useCallback, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { useLazyScanFolderQuery } from 'services/api/endpoints/models';
import { useLazyScanModelsQuery } from 'services/api/endpoints/models';
import { ScanModelsResults } from './ScanFolderResults';
import { ScanModelsResults } from './ScanModelsResults';
export const ScanModelsForm = () => {
const [scanPath, setScanPath] = useState('');
const [errorMessage, setErrorMessage] = useState('');
const { t } = useTranslation();
const [_scanFolder, { isLoading, data }] = useLazyScanFolderQuery();
const [_scanModels, { isLoading, data }] = useLazyScanModelsQuery();
const scanFolder = useCallback(async () => {
_scanFolder({ scan_path: scanPath }).catch((error) => {
const handleSubmitScan = useCallback(async () => {
_scanModels({ scan_path: scanPath }).catch((error) => {
if (error) {
setErrorMessage(error.data.detail);
}
});
}, [_scanFolder, scanPath]);
}, [_scanModels, scanPath]);
const handleSetScanPath: ChangeEventHandler<HTMLInputElement> = useCallback((e) => {
setScanPath(e.target.value);
@@ -36,7 +36,7 @@ export const ScanModelsForm = () => {
<Input value={scanPath} onChange={handleSetScanPath} />
</Flex>
<Button onClick={scanFolder} isLoading={isLoading} isDisabled={scanPath.length === 0}>
<Button onClick={handleSubmitScan} isLoading={isLoading} isDisabled={scanPath.length === 0}>
{t('modelManager.scanFolder')}
</Button>
</Flex>

View File

@@ -18,7 +18,7 @@ import { useTranslation } from 'react-i18next';
import { PiXBold } from 'react-icons/pi';
import { type ScanFolderResponse, useInstallModelMutation } from 'services/api/endpoints/models';
import { ScanModelResultItem } from './ScanFolderResultItem';
import { ScanModelResultItem } from './ScanModelResultItem';
type ScanModelResultsProps = {
results: ScanFolderResponse;

Some files were not shown because too many files have changed in this diff Show More