Compare commits

..

170 Commits

Author SHA1 Message Date
psychedelicious
4688623711 ci: add missing permission to release workflow 2024-03-12 10:16:38 +11:00
Brandon Rising
be951da99d {release} 4.0.0rc1 2024-03-12 10:05:03 +11:00
Ryan Dick
9ee2e7ff25 Do not override log_memory_usage when debug logs are enabled. The speed cost of log_memory_usage=True is large. It is common to want debug log without enabling log_memory_usage. 2024-03-12 09:48:50 +11:00
Brandon Rising
149ff758b9 Run ruff 2024-03-11 15:53:00 -04:00
Brandon Rising
65d415d5aa Remove redundant with_suffix call 2024-03-11 15:53:00 -04:00
Brandon Rising
c74c1927ec Gracefully error without deleting invokeai.yaml 2024-03-11 15:53:00 -04:00
Brandon Rising
c454ccc65c Run ruff 2024-03-11 15:53:00 -04:00
Brandon Rising
46fd3465ce Skip list logic if the list only contains primitives 2024-03-11 15:53:00 -04:00
Brandon Rising
97afa6e2a6 Allow lists of basemodel objects in omegaconf 2024-03-11 15:53:00 -04:00
psychedelicious
96730107d1 chore(py): bump mkdocs deps 2024-03-12 02:21:43 +11:00
psychedelicious
6a9dede66f chore: bump app deps
- `fastapi-events`: 0.10.1 -> 1.11.0
- `fastapi`: 0.109.2 -> 0.110.0
- `pydantic-settings`: 2.1.0 -> 2.2.1
- `pydantic`: 2.6.1 -> 2.6.3
- `uvicorn`: 0.27.1 -> 0.28.0
2024-03-12 02:21:43 +11:00
psychedelicious
8c2ff794d5 fix(nodes): ip adapter uses valid ModelIdentifierField for image encoder model
- Add class method to `ModelIdentifierField` to construct the field from a model config
- Use this to construct a valid IP adapter model field
2024-03-10 17:28:58 -05:00
Ryan Dick
145bb45858 Remove dead code related to an old symmetry feature. 2024-03-10 00:13:18 -06:00
psychedelicious
9376b13435 fix(mm): models lose file extension when syncing
We were stripping the file extension from file models when  moving them in `_sync_model_path`. For example, `some_model.safetensors` would be moved to `some_model`, which of course breaks things.

Instead of using the model's name as the new path, use the model's path's last segment. This is the same behaviour for directories, but for files, it retains the file extension.
2024-03-10 13:36:09 +11:00
psychedelicious
eec82afd89 fix(mm): fix models.yaml backup filename
Was erroneously `models.bak`, now `models.yaml.bak`
2024-03-10 13:36:09 +11:00
psychedelicious
c47dbf7258 docs(mm): format docstrings for ModelSearch 2024-03-10 12:09:47 +11:00
psychedelicious
92b2e8186a tidy(mm): simplify types for ModelSearch
- Use `set` instead of `Set`
- Methods accept only `Path`s
2024-03-10 12:09:47 +11:00
psychedelicious
70a88c6b99 docs(mm): update docstrings for ModelSearch 2024-03-10 12:09:47 +11:00
psychedelicious
56e7c04475 tidy(mm): remove extraneous dependencies in model search
- `config` is unused
- `stats` is created on instantiation
- `logger` uses the app logger
2024-03-10 12:09:47 +11:00
psychedelicious
bd5b43c00d tidy(mm): ModelSearch cleanup
- No need for it to by a pydantic model. Just a class now.
- Remove ABC, it made it hard to understand what was going on as attributes were spread across the ABC and implementation. Also, there is no other implementation.
- Add tests
2024-03-10 12:09:47 +11:00
dunkeroni
631e789195 fix(canvas): create masked latents when None 2024-03-10 11:58:41 +11:00
psychedelicious
133c90e116 fix(ui): update all components and logic to use enriched ModelIdentifierField 2024-03-10 11:03:38 +11:00
psychedelicious
4433b78e59 chore(ui): typegen 2024-03-10 11:03:38 +11:00
psychedelicious
daeb766468 feat(api): add ModelIdentifierField to openapi schema
- Also add `ProgressImage`
2024-03-10 11:03:38 +11:00
psychedelicious
92b0d13d0e feat(nodes): "ModelField" -> "ModelIdentifierField", add hash/name/base/type 2024-03-10 11:03:38 +11:00
psychedelicious
67d26cd633 docs: update CONFIGURATION.md 2024-03-10 10:38:52 +11:00
psychedelicious
9e28317a12 docs: add DATABASE.md 2024-03-10 10:38:52 +11:00
psychedelicious
5b51ebf1c4 docs: regenerate config docstrings 2024-03-10 10:38:52 +11:00
psychedelicious
59228643a9 docs: skip_model_hash -> model install category, use_memory_db -> development category 2024-03-10 10:38:52 +11:00
psychedelicious
b24657df11 docs: roll back adding examples to config docstrings
This isn't a valid docstring syntax and breaks the autogeneration
2024-03-10 10:38:52 +11:00
psychedelicious
d4686b7f64 fix(mm): yaml migration fixup
- If the metadata yaml has an invalid version, exist the app. If we don't, the app will crawl the models dir and add models to the db without having first parsed `models.yaml`. This should not happen often, as the vast majority of users are on v3.0.0 models.yaml files.
- Fix off-by-one error with models count (need to pop the `__metadata__` stanza
- After a successful migration, rename `models.yaml` to `models.yaml.bak` to prevent the migration logic from re-running on subsequent app startups.
2024-03-09 08:37:45 -06:00
psychedelicious
67163c2224 fix(mm): only move model files if necessary
The old logic to check if a model needed to be moved relied on the model path being a relative path. Paths are now absolute, causing this check to fail. We then assumed the paths were different and moved the model from its current location to, well, its current location.

Use more resilient method to check if a model should be moved.
2024-03-09 22:58:26 +11:00
Brandon Rising
f01e81d382 Run ruff 2024-03-08 18:46:17 -05:00
maryhipp
a50e0a4802 use correct key name from yaml 2024-03-08 18:46:17 -05:00
maryhipp
df0a5aa92a pass config_path to migration path, make sure it uses absolute path 2024-03-08 18:46:17 -05:00
Brandon Rising
0bd9a0a9ea Add ability to provide config examples in docs 2024-03-08 16:31:39 -05:00
Brandon Rising
4ae2cd242e Update to include remote_api_tokens in the config docs 2024-03-08 16:31:39 -05:00
psychedelicious
0696094d95 tests: fix tests
The tests were testing deprecated settings (not the settings themselves, just the class's functionality).
2024-03-08 16:31:39 -05:00
psychedelicious
fb1ae55010 docs: update CONFIGURATION.md to use autogenerated docs 2024-03-08 16:31:39 -05:00
psychedelicious
deb1d4eb14 docs: run script to update config class's docstring 2024-03-08 16:31:39 -05:00
psychedelicious
d156fd2093 tests: validate config docstring is current 2024-03-08 16:31:39 -05:00
psychedelicious
c41e87160a scripts: add script to update config docstring
- Add script to call config docstring helper function and write the docstring to the file directly
- Add `make` target for this script
2024-03-08 16:31:39 -05:00
psychedelicious
eba1fc1355 docs: autogenerated app config docs
mkdocs can autogenerate python class docs from its docstrings. Our config is a pydantic model.

It's tedious and error-prone to duplicate docstrings from the pydantic field descriptions to the class docstrings.

- Add helper function to generate a mkdocs-compatible docstring from the InvokeAIAppConfig class fields
2024-03-08 16:31:39 -05:00
psychedelicious
96702c395e feat(config): add deprecated category for config settings
It's not clear why these are still in the config class.
2024-03-08 16:31:39 -05:00
psychedelicious
3361aec065 docs(nodes): update config field descriptions 2024-03-08 16:31:39 -05:00
Brandon Rising
8ba4b2a150 Run ruff 2024-03-08 15:36:14 -05:00
Brandon Rising
df12e12e09 Run ruff 2024-03-08 15:36:14 -05:00
Brandon Rising
ee38fbe89c Remove check for models dir in model deletion, update tests to always assume the model path is an absolute path 2024-03-08 15:36:14 -05:00
Brandon Rising
6e2cef1db5 Remove instances making models relative to the model dir 2024-03-08 15:36:14 -05:00
Brandon Rising
b1f5ac4548 fix path 2024-03-08 15:36:14 -05:00
Brandon Rising
e52274ecac Experiment with using absolute paths within model management 2024-03-08 15:36:14 -05:00
maryhipp
66f0ff5b13 add ordering to search_by_attr that is used for model lists 2024-03-08 13:38:38 -06:00
Mary Hipp
cab5b64f0b only render convert button if ckpt model 2024-03-08 13:19:08 -06:00
blessedcoolant
a42812d78d ui(model_manager): Remember Scan Path 2024-03-08 14:05:57 -05:00
maryhipp
281222df3c remove old data migration from previous schema version 2024-03-08 13:10:27 -05:00
maryhipp
d5674150fa ruff 2024-03-08 13:02:04 -05:00
maryhipp
0cb2cf6644 wrap version check in try/except 2024-03-08 13:02:04 -05:00
maryhipp
da87266c9c remove log 2024-03-08 13:02:04 -05:00
maryhipp
35731a6f51 fix null description, add logging 2024-03-08 13:02:04 -05:00
Brandon Rising
a3dfa161a8 Run ruff 2024-03-08 13:02:04 -05:00
Brandon Rising
42d606f07c use register instead of heuristic import, get rid of typing warnings 2024-03-08 13:02:04 -05:00
maryhipp
9063b1ae61 on model manager start, look to see if yaml needs to be migrated and do it if so 2024-03-08 13:02:04 -05:00
Brandon Rising
6aae88bd88 Rerun typegen 2024-03-08 12:44:58 -05:00
psychedelicious
57c1954da7 feat(ui): use control adapter processor helper in metadata parser 2024-03-08 12:44:58 -05:00
psychedelicious
2410ed689a tests(mm): add tests for control adapter probe default settings 2024-03-08 12:44:58 -05:00
psychedelicious
a10dccdd43 fix(mm): fix bug in control adapter probe default settings
Wasn't checking for matches correctly.
2024-03-08 12:44:58 -05:00
psychedelicious
a3570901f7 fix(ui): do not show default settings for refiner models 2024-03-08 12:44:58 -05:00
psychedelicious
fd457955bc feat(ui): update default settings for control adapters
- Split out main model defaults
- Add controlnet/t2i defaults (which includes only the preprocessor)
2024-03-08 12:44:58 -05:00
psychedelicious
1f69613f5d chore(ui): typegen 2024-03-08 12:44:58 -05:00
psychedelicious
7a87ebb3b2 fix(mm): add control adapter default settings to ModelRecordChanges schema
This is needed to update Control Adapter defaults.
2024-03-08 12:44:58 -05:00
psychedelicious
4ee4a801c6 feat(ui): update default settings for main models
Needed some massaging now that only main models get main model default settings.
2024-03-08 12:44:58 -05:00
psychedelicious
53b7f6be37 feat(ui): use default settings for control adapters for processor 2024-03-08 12:44:58 -05:00
psychedelicious
dbd7c94e7c chore(ui): typegen 2024-03-08 12:44:58 -05:00
psychedelicious
50bb9a6b41 fix(mm): remove default settings from IP adapter config 2024-03-08 12:44:58 -05:00
psychedelicious
13bb3c5e15 feat(mm): add control adapter default settings while probing 2024-03-08 12:44:58 -05:00
psychedelicious
80c2a4b925 feat(mm): add AnyDefaultSettings union 2024-03-08 12:44:58 -05:00
psychedelicious
8ce485b036 feat(mm): add default settings for control adapters
Only includes `preprocessor` at this time.
2024-03-08 12:44:58 -05:00
psychedelicious
6fc3e86061 tidy(mm): only main models get the main default settings 2024-03-08 12:44:58 -05:00
Brandon Rising
33ded359e6 Run typegen 2024-03-08 11:10:44 -05:00
psychedelicious
effbd8a1ba chore: ruff 2024-03-08 11:10:44 -05:00
psychedelicious
ddde355b09 fix(mm): add ui_type to model fields
Recently the schema for models was changed to a generic `ModelField`, and the UI was unable to derive the type of those fields. This didn't affect functionality, but it did break the styling of handles.

Add `ui_type` to the affected fields and update the UI to use the correct capitalizations.
2024-03-08 11:10:44 -05:00
psychedelicious
fe2c6f621a fix(ui): do not allow model add when no location is provided 2024-03-08 14:41:03 +11:00
psychedelicious
d0fcdbe8a3 tweak(ui): simplify layout of inplace install form elements 2024-03-08 14:41:03 +11:00
Mary Hipp
a28547b3dd make inplace optional, default to true 2024-03-08 14:41:03 +11:00
Mary Hipp
c7b2bdb846 allow inplace installs 2024-03-08 14:41:03 +11:00
psychedelicious
4a20377fef tidy(config): move version "setting" to new CLIArgs category
It's not actually a setting.
2024-03-08 13:59:59 +11:00
psychedelicious
ed803640f7 tidy(mm): move remote_api_tokens to new ModelInstall category 2024-03-08 13:59:59 +11:00
psychedelicious
576bb4a61d feat(mm): support generic API tokens via regex/token pairs in config
A list of regex and token pairs is accepted. As a file is downloaded by the model installer, the URL is tested against the provided regex/token pairs. The token for the first matching regex is used during download, added as a bearer token.
2024-03-08 13:59:59 +11:00
Brandon Rising
b6065d6328 Run ruff with newest version of ruff 2024-03-08 13:59:59 +11:00
Brandon Rising
04229f4a21 Run ruff 2024-03-08 13:59:59 +11:00
Brandon Rising
73a190fb6e Add remote_repo_api_key config to be added as a token query param for all remote url model downloads 2024-03-08 13:59:59 +11:00
Brandon Rising
952d97741e Remove civit ai from tests and documentation 2024-03-08 13:59:59 +11:00
Brandon Rising
afd08c5f46 Regenerate typegen 2024-03-08 13:59:59 +11:00
Brandon Rising
d1f859a446 Remove civit AI model install resources 2024-03-08 13:59:59 +11:00
psychedelicious
5118160282 docs(mm): update comment about model images 2024-03-08 12:26:35 +11:00
psychedelicious
8e694992bb chore(ui): lint 2024-03-08 12:26:35 +11:00
psychedelicious
4077dfe0c3 fix(ui): clear pending trigger phrase immediately
If we don't clear it, there's an awkward flash of error state as the mutation completes.
2024-03-08 12:26:35 +11:00
psychedelicious
fe8e391aad fix(ui): display trigger phrases for loras in mm editor 2024-03-08 12:26:35 +11:00
psychedelicious
ac8f606d99 fix(ui): default settings linked incorrectly 2024-03-08 12:26:35 +11:00
psychedelicious
0aa2070ce0 perf(mm): add manual query cache updates for the update model route
This greatly reduces the number of network requests when editing models.
2024-03-08 12:26:35 +11:00
psychedelicious
ff66779aa3 tweak(ui): add colors to base/format badges 2024-03-08 12:26:35 +11:00
psychedelicious
2ca65ab9fa tweak(ui): style trigger phrases 2024-03-08 12:26:35 +11:00
psychedelicious
b34624a2a8 tweak(ui): style model edit 2024-03-08 12:26:35 +11:00
psychedelicious
b8aa9752f1 tweak(ui): update default settings layouts 2024-03-08 12:26:35 +11:00
psychedelicious
1b5d8eb9e7 tweak(ui): use check icon for model save button 2024-03-08 12:26:35 +11:00
psychedelicious
773182f425 fix(ui): reset model edit form state with new values
Without this, the form will incorrectly compare its state to its initial default values to determine if it is dirty. Instead, it should reset its default values to the new values after successful submit.
2024-03-08 12:26:35 +11:00
psychedelicious
6386109fc5 feat(ui): move model save/close buttons to model header 2024-03-08 12:26:35 +11:00
psychedelicious
c008704bc8 feat(ui): model header styling 2024-03-08 12:26:35 +11:00
psychedelicious
a3a42d25d3 fix(mm): model images reload when changed
When we change a model image, its URL remains the same. The browser will aggressively cache the image. The easiest way to fix this is to append a random query parameter to the URL whenever we build a model config in the API.
2024-03-08 12:26:35 +11:00
psychedelicious
8959d1bf51 fix(ui): do not persist model manager state 2024-03-08 12:26:35 +11:00
psychedelicious
8fd9342712 fix(ui): typing issues related to trigger phrase changes 2024-03-08 12:26:35 +11:00
psychedelicious
f0b815aa9b fix(ui): missing translation 2024-03-08 12:26:35 +11:00
psychedelicious
3a5b0b819c chore(ui): typegen 2024-03-08 12:26:35 +11:00
psychedelicious
bbcbcd9b63 fix(mm): only loras and main models get trigger_phrases 2024-03-08 12:26:35 +11:00
psychedelicious
fdecb886b2 feat(ui): add main model trigger phrases 2024-03-08 12:26:35 +11:00
psychedelicious
2f0a653a7f feat(ui): improved model list styling 2024-03-08 12:26:35 +11:00
psychedelicious
b0add805c5 feat(ui): use stickyscrollable for models list 2024-03-08 12:26:35 +11:00
psychedelicious
ed4e8624dd feat(ui): model manager UI tweaks
- Move image display to left
- Move description into model header
- Move model edit & convert buttons to top right of model header
- Tweak styles for model display component
2024-03-08 12:26:35 +11:00
Josh Corbett
ad70cdfe87 feat: undo/redo discard canvas staged image 2024-03-07 19:24:55 +11:00
Josh Corbett
549d461107 refactor: 🚨 satisfy the linter 2024-03-07 19:24:55 +11:00
Josh Corbett
cab3748010 feat: discard current inpaint item 2024-03-07 19:24:55 +11:00
psychedelicious
779b3e0e8e tidy(ui): remove npm lockfile 2024-03-06 21:57:41 -05:00
psychedelicious
9b48029bc9 tidy(mm): ModelImages service 2024-03-06 21:57:41 -05:00
Jennifer Player
347f1fd0b7 fix tests 2024-03-06 21:57:41 -05:00
Jennifer Player
4af5a09a68 cleanup 2024-03-06 21:57:41 -05:00
Jennifer Player
8df02623f2 cleanup 2024-03-06 21:57:41 -05:00
Jennifer Player
aa88fadc30 use webp images 2024-03-06 21:57:41 -05:00
Jennifer Player
8411029d93 get model image url from model config, added thumbnail formatting for images 2024-03-06 21:57:41 -05:00
Jennifer Player
239b1e8cc7 moved upload image field and added delete image functionality 2024-03-06 21:57:41 -05:00
Jennifer Player
8a68355926 got model images displaying, still need to clean up types and unused code 2024-03-06 21:57:41 -05:00
Jennifer Player
86aef9f31d removed modelimage for now 2024-03-06 21:57:41 -05:00
Jennifer Player
2f6964bfa5 fetching model image, still not working 2024-03-06 21:57:41 -05:00
Jennifer Player
c1cdfd132b moved model image to edit page, added model_images service 2024-03-06 21:57:41 -05:00
Jennifer Player
f6bfe5e6f2 created ugly model image upload component 2024-03-06 21:57:41 -05:00
Васянатор
b5a8455b5f translationBot(ui): update translation (Russian)
Currently translated at 94.6% (1431 of 1512 strings)

translationBot(ui): update translation (Russian)

Currently translated at 94.6% (1431 of 1512 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-03-07 11:47:01 +11:00
Riccardo Giovanetti
645ef081ea translationBot(ui): update translation (Italian)
Currently translated at 98.0% (1487 of 1516 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.0% (1482 of 1512 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.0% (1475 of 1505 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-03-07 11:47:01 +11:00
psychedelicious
e68d7fa6d7 fix(ui): update types 2024-03-07 10:56:59 +11:00
psychedelicious
c5ab1c7ad6 chore(ui): typegen 2024-03-07 10:56:59 +11:00
psychedelicious
5a561cab78 fix(ui): typo 2024-03-07 10:56:59 +11:00
psychedelicious
132790eebe tidy(nodes): use canonical capitalizations 2024-03-07 10:56:59 +11:00
psychedelicious
c57f6ee885 fix(ui): fix metadata for graphs to use new enriched format 2024-03-07 10:56:59 +11:00
psychedelicious
d4a2ea68fc chore(ui): typegen 2024-03-07 10:56:59 +11:00
psychedelicious
528ac5dd25 refactor(nodes): model identifiers
- All models are identified by a key and optionally a submodel type via new model `ModelField`. Previously, a few model types had their own class, but not all of them. This inconsistency just added complexity without any benefit.
- Update all invocation to use the new format.
- In the node API, models are loaded by key or an instance of `ModelField` as a convenience.
- Add an enriched model schema for metadata. It includes key, hash, name, base and type.
2024-03-07 10:56:59 +11:00
psychedelicious
afd9ae7712 tidy(mm): remove convenience methods from high level model manager service
These were added as a hold-me-over for the nodes API changes, no longer needed. A followup commit will fix the nodes API to not rely on these.
2024-03-07 10:56:59 +11:00
Josh Corbett
4eefed12f0 refactor: 🚨 please the almighty linter 2024-03-07 10:44:40 +11:00
Josh Corbett
4301a3d6fd feat: invert scroll direction for brush size 2024-03-07 10:44:40 +11:00
psychedelicious
99c0662e3f fix(nodes): load config before doing anything else
This was preventing custom nodes from loading if a custom nodes dir was specified

Closes #5862
2024-03-07 10:36:27 +11:00
maryhipp
cdc0d0c182 add config_path to ModelRecordChanges 2024-03-07 10:29:29 +11:00
Mary Hipp
a00369a67a add config path as field in model update form when model is a checkpoint 2024-03-07 10:29:29 +11:00
psychedelicious
4f096ac3ba feat(scripts): add frontend-types to Makefile to generate types 2024-03-07 10:16:44 +11:00
psychedelicious
f5e3341465 feat(scripts): add support for file path & stdin to frontend typegen script 2024-03-07 10:16:44 +11:00
psychedelicious
474852ef7e feat(scripts): add script to generate openapi schema 2024-03-07 10:16:44 +11:00
Mary Hipp
b1d72d411e only show default settings on main models 2024-03-07 09:07:43 +11:00
Mary Hipp
46614ee28f lint fix 2024-03-06 15:06:27 -05:00
Mary Hipp
b019f9bb8b make sure all metadata in viewer is rendered at correct font size - specifically fixes control adapter metadata being too big 2024-03-06 15:06:27 -05:00
Mary Hipp
b857692073 update uploads from canvas to controlnet to be intermediates so they do not appear in gallery 2024-03-06 15:06:27 -05:00
Mary Hipp
90fb7a1a59 move linear tab to be first on workflow edit mode 2024-03-06 15:06:27 -05:00
Mary Hipp
56fcf6af78 empty state for workflow with no linear fields in view mode 2024-03-06 15:06:27 -05:00
Mary Hipp
c4fe7e697b add right-padding to prompt textareas so that text does not go behind icons 2024-03-06 15:06:27 -05:00
Mary Hipp
2fd483dfc8 use base.800 on invokeBlue.400 for all gallery selected states 2024-03-06 15:06:27 -05:00
Mary Hipp
b9a9507422 update padding in color picker 2024-03-06 15:06:27 -05:00
Mary Hipp Rogers
f2744fd7d1 fix URL for get image workflow (#5882)
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2024-03-06 12:46:16 -05:00
psychedelicious
fe6e879d38 fix(ui): invalidate InvocationCacheStatus query cache after clearing intermediates 2024-03-06 08:14:12 -05:00
psychedelicious
d3ab08fe10 tests: add invocation cache tests 2024-03-06 08:14:12 -05:00
psychedelicious
b0615bdfd4 fix(nodes): correctly serialize outputs
In order for delete by match to work, we need the whole invocation output to be stringified.

For some reason, the serialization of the output was set to only include the `type` field. It should instead include the whole output.

I don't understand how this ever worked unless pydantic had different serialization behaviour in v1 (though it appears to have been the same).

Closes #5805
2024-03-06 08:14:12 -05:00
psychedelicious
bab20467fb fix(nodes): fix invocation cache clear method args 2024-03-06 08:14:12 -05:00
psychedelicious
e24624109e fix(nodes): fix invocation cache ABC typing 2024-03-06 08:14:12 -05:00
Josh Corbett
458e7185b8 fix: 🐛 didn't include renamed file 2024-03-06 20:06:14 +11:00
Josh Corbett
a95128f5f2 refactor: ✏️ canvas mask compositor naming
changes `...MaskCompositer` spelling to `...MaskCompositor`
2024-03-06 20:06:14 +11:00
Brandon Rising
46f32c5e3c Remove references to the no longer existing invokeai.app.services.model_metadata package 2024-03-05 19:58:25 -05:00
193 changed files with 4568 additions and 3217 deletions

View File

@@ -58,6 +58,8 @@ jobs:
environment:
name: testpypi
url: https://test.pypi.org/p/invokeai
permissions:
id-token: write
steps:
- name: download distribution from build job
uses: actions/download-artifact@v4
@@ -85,6 +87,8 @@ jobs:
environment:
name: pypi
url: https://pypi.org/p/invokeai
permissions:
id-token: write
steps:
- name: download distribution from build job
uses: actions/download-artifact@v4

View File

@@ -6,16 +6,18 @@ default: help
help:
@echo Developer commands:
@echo
@echo "ruff Run ruff, fixing any safely-fixable errors and formatting"
@echo "ruff-unsafe Run ruff, fixing all fixable errors and formatting"
@echo "mypy Run mypy using the config in pyproject.toml to identify type mismatches and other coding errors"
@echo "mypy-all Run mypy ignoring the config in pyproject.tom but still ignoring missing imports"
@echo "test" Run the unit tests.
@echo "frontend-install" Install the pnpm modules needed for the front end
@echo "frontend-build Build the frontend in order to run on localhost:9090"
@echo "frontend-dev Run the frontend in developer mode on localhost:5173"
@echo "installer-zip Build the installer .zip file for the current version"
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
@echo "ruff Run ruff, fixing any safely-fixable errors and formatting"
@echo "ruff-unsafe Run ruff, fixing all fixable errors and formatting"
@echo "mypy Run mypy using the config in pyproject.toml to identify type mismatches and other coding errors"
@echo "mypy-all Run mypy ignoring the config in pyproject.tom but still ignoring missing imports"
@echo "test Run the unit tests."
@echo "update-config-docstring Update the app's config docstring so mkdocs can autogenerate it correctly."
@echo "frontend-install Install the pnpm modules needed for the front end"
@echo "frontend-build Build the frontend in order to run on localhost:9090"
@echo "frontend-dev Run the frontend in developer mode on localhost:5173"
@echo "frontend-typegen Generate types for the frontend from the OpenAPI schema"
@echo "installer-zip Build the installer .zip file for the current version"
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
# Runs ruff, fixing any safely-fixable errors and formatting
ruff:
@@ -40,6 +42,10 @@ mypy-all:
test:
pytest ./tests
# Update config docstring
update-config-docstring:
python scripts/update_config_docstring.py
# Install the pnpm modules needed for the front end
frontend-install:
rm -rf invokeai/frontend/web/node_modules
@@ -53,6 +59,9 @@ frontend-build:
frontend-dev:
cd invokeai/frontend/web && pnpm dev
frontend-typegen:
cd invokeai/frontend/web && python ../../../scripts/generate_openapi_schema.py | pnpm typegen
# Installer zip file
installer-zip:
cd installer && ./create_installer.sh

View File

@@ -16,11 +16,6 @@ model. These are the:
information. It is also responsible for managing the InvokeAI
`models` directory and its contents.
* _ModelMetadataStore_ and _ModelMetaDataFetch_ Backend modules that
are able to retrieve metadata from online model repositories,
transform them into Pydantic models, and cache them to the InvokeAI
SQL database.
* _DownloadQueueServiceBase_
A multithreaded downloader responsible
for downloading models from a remote source to disk. The download
@@ -382,17 +377,14 @@ functionality:
* Downloading a model from an arbitrary URL and installing it in
`models_dir`.
* Special handling for Civitai model URLs which allow the user to
paste in a model page's URL or download link
* Special handling for HuggingFace repo_ids to recursively download
the contents of the repository, paying attention to alternative
variants such as fp16.
* Saving tags and other metadata about the model into the invokeai database
when fetching from a repo that provides that type of information,
(currently only Civitai and HuggingFace).
(currently only HuggingFace).
### Initializing the installer
@@ -436,7 +428,6 @@ required parameters:
| `app_config` | InvokeAIAppConfig | InvokeAI app configuration object |
| `record_store` | ModelRecordServiceBase | Config record storage database |
| `download_queue` | DownloadQueueServiceBase | Download queue object |
| `metadata_store` | Optional[ModelMetadataStore] | Metadata storage object |
|`session` | Optional[requests.Session] | Swap in a different Session object (usually for debugging) |
Once initialized, the installer will provide the following methods:
@@ -580,33 +571,7 @@ The `AnyHttpUrl` class can be imported from `pydantic.networks`.
Ordinarily, no metadata is retrieved from these sources. However,
there is special-case code in the installer that looks for HuggingFace
and Civitai URLs and fetches the corresponding model metadata from
the corresponding repo.
#### CivitaiModelSource
This is used for a model that is hosted by the Civitai web site.
| **Argument** | **Type** | **Default** | **Description** |
|------------------|------------------------------|-------------|-------------------------------------------|
| `version_id` | int | None | The ID of the particular version of the desired model. |
| `access_token` | str | None | An access token needed to gain access to a subscriber's-only model. |
Civitai has two model IDs, both of which are integers. The `model_id`
corresponds to a collection of model versions that may different in
arbitrary ways, such as derivation from different checkpoint training
steps, SFW vs NSFW generation, pruned vs non-pruned, etc. The
`version_id` points to a specific version. Please use the latter.
Some Civitai models require an access token to download. These can be
generated from the Civitai profile page of a logged-in
account. Somewhat annoyingly, if you fail to provide the access token
when downloading a model that needs it, Civitai generates a redirect
to a login page rather than a 403 Forbidden error. The installer
attempts to catch this event and issue an informative error
message. Otherwise you will get an "unrecognized model suffix" error
when the model prober tries to identify the type of the HTML login
page.
and fetches the corresponding model metadata from the corresponding repo.
#### HFModelSource
@@ -1253,9 +1218,9 @@ queue and have not yet reached a terminal state.
The modules found under `invokeai.backend.model_manager.metadata`
provide a straightforward API for fetching model metadatda from online
repositories. Currently two repositories are supported: HuggingFace
and Civitai. However, the modules are easily extended for additional
repos, provided that they have defined APIs for metadata access.
repositories. Currently only HuggingFace is supported. However, the
modules are easily extended for additional repos, provided that they
have defined APIs for metadata access.
Metadata comprises any descriptive information that is not essential
for getting the model to run. For example "author" is metadata, while
@@ -1267,37 +1232,16 @@ model's config, as defined in `invokeai.backend.model_manager.config`.
```
from invokeai.backend.model_manager.metadata import (
AnyModelRepoMetadata,
CivitaiMetadataFetch,
CivitaiMetadata
ModelMetadataStore,
)
# to access the initialized sql database
from invokeai.app.api.dependencies import ApiDependencies
civitai = CivitaiMetadataFetch()
hf = HuggingFaceMetadataFetch()
# fetch the metadata
model_metadata = civitai.from_url("https://civitai.com/models/215796")
model_metadata = hf.from_id("<repo_id>")
# get some common metadata fields
author = model_metadata.author
tags = model_metadata.tags
# get some Civitai-specific fields
assert isinstance(model_metadata, CivitaiMetadata)
trained_words = model_metadata.trained_words
base_model = model_metadata.base_model_trained_on
thumbnail = model_metadata.thumbnail_url
# cache the metadata to the database using the key corresponding to
# an existing model config record in the `model_config` table
sql_cache = ModelMetadataStore(ApiDependencies.invoker.services.db)
sql_cache.add_metadata('fb237ace520b6716adc98bcb16e8462c', model_metadata)
# now we can search the database by tag, author or model name
# matches will contain a list of model keys that match the search
matches = sql_cache.search_by_tag({"tool", "turbo"})
assert isinstance(model_metadata, HuggingFaceMetadata)
```
### Structure of the Metadata objects
@@ -1334,52 +1278,14 @@ This descends from `ModelMetadataBase` and adds the following fields:
| `last_modified`| datetime | Date of last commit of this model to the repo |
| `files` | List[Path] | List of the files in the model repo |
#### `CivitaiMetadata`
This descends from `ModelMetadataBase` and adds the following fields:
| **Field Name** | **Type** | **Description** |
|----------------|-----------------|------------------|
| `type` | Literal["civitai"] | Used for the discriminated union of metadata classes|
| `id` | int | Civitai model id |
| `version_name` | str | Name of this version of the model (distinct from model name) |
| `version_id` | int | Civitai model version id (distinct from model id) |
| `created` | datetime | Date this version of the model was created |
| `updated` | datetime | Date this version of the model was last updated |
| `published` | datetime | Date this version of the model was published to Civitai |
| `description` | str | Model description. Quite verbose and contains HTML tags |
| `version_description` | str | Model version description, usually describes changes to the model |
| `nsfw` | bool | Whether the model tends to generate NSFW content |
| `restrictions` | LicenseRestrictions | An object that describes what is and isn't allowed with this model |
| `trained_words`| Set[str] | Trigger words for this model, if any |
| `download_url` | AnyHttpUrl | URL for downloading this version of the model |
| `base_model_trained_on` | str | Name of the model that this version was trained on |
| `thumbnail_url` | AnyHttpUrl | URL to access a representative thumbnail image of the model's output |
| `weight_min` | int | For LoRA sliders, the minimum suggested weight to apply |
| `weight_max` | int | For LoRA sliders, the maximum suggested weight to apply |
Note that `weight_min` and `weight_max` are not currently populated
and take the default values of (-1.0, +2.0). The issue is that these
values aren't part of the structured data but appear in the text
description. Some regular expression or LLM coding may be able to
extract these values.
Also be aware that `base_model_trained_on` is free text and doesn't
correspond to our `ModelType` enum.
`CivitaiMetadata` also defines some convenience properties relating to
licensing restrictions: `credit_required`, `allow_commercial_use`,
`allow_derivatives` and `allow_different_license`.
#### `AnyModelRepoMetadata`
This is a discriminated Union of `CivitaiMetadata` and
`HuggingFaceMetadata`.
This is a discriminated Union of `HuggingFaceMetadata`.
### Fetching Metadata from Online Repos
The `HuggingFaceMetadataFetch` and `CivitaiMetadataFetch` classes will
retrieve metadata from their corresponding repositories and return
The `HuggingFaceMetadataFetch` class will
retrieve metadata from its corresponding repository and return
`AnyModelRepoMetadata` objects. Their base class
`ModelMetadataFetchBase` is an abstract class that defines two
methods: `from_url()` and `from_id()`. The former accepts the type of
@@ -1397,96 +1303,17 @@ provide a `requests.Session` argument. This allows you to customize
the low-level HTTP fetch requests and is used, for instance, in the
testing suite to avoid hitting the internet.
The HuggingFace and Civitai fetcher subclasses add additional
repo-specific fetching methods:
The HuggingFace fetcher subclass add additional repo-specific fetching methods:
#### HuggingFaceMetadataFetch
This overrides its base class `from_json()` method to return a
`HuggingFaceMetadata` object directly.
#### CivitaiMetadataFetch
This adds the following methods:
`from_civitai_modelid()` This takes the ID of a model, finds the
default version of the model, and then retrieves the metadata for
that version, returning a `CivitaiMetadata` object directly.
`from_civitai_versionid()` This takes the ID of a model version and
retrieves its metadata. Functionally equivalent to `from_id()`, the
only difference is that it returna a `CivitaiMetadata` object rather
than an `AnyModelRepoMetadata`.
### Metadata Storage
The `ModelMetadataStore` provides a simple facility to store model
metadata in the `invokeai.db` database. The data is stored as a JSON
blob, with a few common fields (`name`, `author`, `tags`) broken out
to be searchable.
When a metadata object is saved to the database, it is identified
using the model key, _and this key must correspond to an existing
model key in the model_config table_. There is a foreign key integrity
constraint between the `model_config.id` field and the
`model_metadata.id` field such that if you attempt to save metadata
under an unknown key, the attempt will result in an
`UnknownModelException`. Likewise, when a model is deleted from
`model_config`, the deletion of the corresponding metadata record will
be triggered.
Tags are stored in a normalized fashion in the tables `model_tags` and
`tags`. Triggers keep the tag table in sync with the `model_metadata`
table.
To create the storage object, initialize it with the InvokeAI
`SqliteDatabase` object. This is often done this way:
```
from invokeai.app.api.dependencies import ApiDependencies
metadata_store = ModelMetadataStore(ApiDependencies.invoker.services.db)
```
You can then access the storage with the following methods:
#### `add_metadata(key, metadata)`
Add the metadata using a previously-defined model key.
There is currently no `delete_metadata()` method. The metadata will
persist until the matching config is deleted from the `model_config`
table.
#### `get_metadata(key) -> AnyModelRepoMetadata`
Retrieve the metadata corresponding to the model key.
#### `update_metadata(key, new_metadata)`
Update an existing metadata record with new metadata.
#### `search_by_tag(tags: Set[str]) -> Set[str]`
Given a set of tags, find models that are tagged with them. If
multiple tags are provided then a matching model must be tagged with
*all* the tags in the set. This method returns a set of model keys and
is intended to be used in conjunction with the `ModelRecordService`:
```
model_config_store = ApiDependencies.invoker.services.model_records
matches = metadata_store.search_by_tag({'license:other'})
models = [model_config_store.get(x) for x in matches]
```
#### `search_by_name(name: str) -> Set[str]
Find all model metadata records that have the given name and return a
set of keys to the corresponding model config objects.
#### `search_by_author(author: str) -> Set[str]
Find all model metadata records that have the given author and return
a set of keys to the corresponding model config objects.
The `ModelConfigBase` stores this response in the `source_api_response` field
as a JSON blob.
***

View File

@@ -31,18 +31,18 @@ be referred to as ROOT.
To find its root directory, InvokeAI uses the following recipe:
1. It first looks for the argument `--root <path>` on the command line
it was launched from, and uses the indicated path if present.
it was launched from, and uses the indicated path if present.
2. Next it looks for the environment variable INVOKEAI_ROOT, and uses
the directory path found there if present.
the directory path found there if present.
3. If neither of these are present, then InvokeAI looks for the
folder containing the `.venv` Python virtual environment directory for
the currently active environment. This directory is checked for files
expected inside the InvokeAI root before it is used.
folder containing the `.venv` Python virtual environment directory for
the currently active environment. This directory is checked for files
expected inside the InvokeAI root before it is used.
4. Finally, InvokeAI looks for a directory in the current user's home
directory named `invokeai`.
directory named `invokeai`.
#### Reading the InvokeAI Configuration File
@@ -149,104 +149,65 @@ usage: InvokeAI [-h] [--host HOST] [--port PORT] [--allow_origins [ALLOW_ORIGINS
## The Configuration Settings
The configuration settings are divided into several distinct
groups in `invokeia.yaml`:
The config is managed by the `InvokeAIAppConfig` class, which is a pydantic model. The below docs are autogenerated from the class.
### Web Server
When editing your `invokeai.yaml` file, you'll need to put settings under their appropriate group. The group for each setting is denoted in the table below.
| Setting | Default Value | Description |
|---------------------|---------------|----------------------------------------------------------------------------------------------------------------------------|
| `host` | `localhost` | Name or IP address of the network interface that the web server will listen on |
| `port` | `9090` | Network port number that the web server will listen on |
| `allow_origins` | `[]` | A list of host names or IP addresses that are allowed to connect to the InvokeAI API in the format `['host1','host2',...]` |
| `allow_credentials` | `true` | Require credentials for a foreign host to access the InvokeAI API (don't change this) |
| `allow_methods` | `*` | List of HTTP methods ("GET", "POST") that the web server is allowed to use when accessing the API |
| `allow_headers` | `*` | List of HTTP headers that the web server will accept when accessing the API |
| `ssl_certfile` | null | Path to an SSL certificate file, used to enable HTTPS. |
| `ssl_keyfile` | null | Path to an SSL keyfile, if the key is not included in the certificate file. |
Following the table are additional explanations for certain settings.
The documentation for InvokeAI's API can be accessed by browsing to the following URL: [http://localhost:9090/docs].
<!-- prettier-ignore-start -->
::: invokeai.app.services.config.config_default.InvokeAIAppConfig
options:
heading_level: 3
members: false
<!-- prettier-ignore-end -->
### Features
### Model Marketplace API Keys
These configuration settings allow you to enable and disable various InvokeAI features:
Some model marketplaces require an API key to download models. You can provide a URL pattern and appropriate token in your `invokeai.yaml` file to provide that API key.
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `esrgan` | `true` | Activate the ESRGAN upscaling options|
| `internet_available` | `true` | When a resource is not available locally, try to fetch it via the internet |
| `log_tokenization` | `false` | Before each text2image generation, print a color-coded representation of the prompt to the console; this can help understand why a prompt is not working as expected |
| `patchmatch` | `true` | Activate the "patchmatch" algorithm for improved inpainting |
The pattern can be any valid regex (you may need to surround the pattern with quotes):
### Generation
```yaml
InvokeAI:
Model Install:
remote_api_tokens:
# Any URL containing `models.com` will automatically use `your_models_com_token`
- url_regex: models.com
token: your_models_com_token
# Any URL matching this contrived regex will use `some_other_token`
- url_regex: '^[a-z]{3}whatever.*\.com$'
token: some_other_token
```
These options tune InvokeAI's memory and performance characteristics.
The provided token will be added as a `Bearer` token to the network requests to download the model files. As far as we know, this works for all model marketplaces that require authorization.
| Setting | Default Value | Description |
|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `sequential_guidance` | `false` | Calculate guidance in serial rather than in parallel, lowering memory requirements at the cost of some performance loss |
| `attention_type` | `auto` | Select the type of attention to use. One of `auto`,`normal`,`xformers`,`sliced`, or `torch-sdp` |
| `attention_slice_size` | `auto` | When "sliced" attention is selected, set the slice size. One of `auto`, `balanced`, `max` or the integers 1-8|
| `force_tiled_decode` | `false` | Force the VAE step to decode in tiles, reducing memory consumption at the cost of performance |
### Model Hashing
### Device
Models are hashed during installation with the `BLAKE3` algorithm, providing a stable identifier for models across all platforms.
These options configure the generation execution device.
| Setting | Default Value | Description |
|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `device` | `auto` | Preferred execution device. One of `auto`, `cpu`, `cuda`, `cuda:1`, `mps`. `auto` will choose the device depending on the hardware platform and the installed torch capabilities. |
| `precision` | `auto` | Floating point precision. One of `auto`, `float16` or `float32`. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system |
Model hashing is a one-time operation, but it may take a couple minutes to hash a large model collection. You may opt out of model hashing and instead have a random UUID assigned instead:
```yaml
InvokeAI:
Model Install:
skip_model_hash: true
```
### Paths
These options set the paths of various directories and files used by
InvokeAI. Relative paths are interpreted relative to INVOKEAI_ROOT, so
if INVOKEAI_ROOT is `/home/fred/invokeai` and the path is
InvokeAI. Relative paths are interpreted relative to the root directory, so
if root is `/home/fred/invokeai` and the path is
`autoimport/main`, then the corresponding directory will be located at
`/home/fred/invokeai/autoimport/main`.
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `autoimport_dir` | `autoimport/main` | At startup time, read and import any main model files found in this directory |
| `lora_dir` | `autoimport/lora` | At startup time, read and import any LoRA/LyCORIS models found in this directory |
| `embedding_dir` | `autoimport/embedding` | At startup time, read and import any textual inversion (embedding) models found in this directory |
| `controlnet_dir` | `autoimport/controlnet` | At startup time, read and import any ControlNet models found in this directory |
| `conf_path` | `configs/models.yaml` | Location of the `models.yaml` model configuration file |
| `models_dir` | `models` | Location of the directory containing models installed by InvokeAI's model manager |
| `legacy_conf_dir` | `configs/stable-diffusion` | Location of the directory containing the .yaml configuration files for legacy checkpoint models |
| `db_dir` | `databases` | Location of the directory containing InvokeAI's image, schema and session database |
| `outdir` | `outputs` | Location of the directory in which the gallery of generated and uploaded images will be stored |
| `use_memory_db` | `false` | Keep database information in memory rather than on disk; this will not preserve image gallery information across restarts |
Note that the autoimport directories will be searched recursively,
Note that the autoimport directory will be searched recursively,
allowing you to organize the models into folders and subfolders in any
way you wish. In addition, while we have split up autoimport
directories by the type of model they contain, this isn't
necessary. You can combine different model types in the same folder
and InvokeAI will figure out what they are. So you can easily use just
one autoimport directory by commenting out the unneeded paths:
```
Paths:
autoimport_dir: autoimport
# lora_dir: null
# embedding_dir: null
# controlnet_dir: null
```
way you wish.
### Logging
These settings control the information, warning, and debugging
messages printed to the console log while InvokeAI is running:
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `log_handlers` | `console` | This controls where log messages are sent, and can be a list of one or more destinations. Values include `console`, `file`, `syslog` and `http`. These are described in more detail below |
| `log_format` | `color` | This controls the formatting of the log messages. Values are `plain`, `color`, `legacy` and `syslog` |
| `log_level` | `debug` | This filters messages according to the level of severity and can be one of `debug`, `info`, `warning`, `error` and `critical`. For example, setting to `warning` will display all messages at the warning level or higher, but won't display "debug" or "info" messages |
Several different log handler destinations are available, and multiple destinations are supported by providing a list:
```
@@ -256,9 +217,9 @@ Several different log handler destinations are available, and multiple destinati
- file=/var/log/invokeai.log
```
* `console` is the default. It prints log messages to the command-line window from which InvokeAI was launched.
- `console` is the default. It prints log messages to the command-line window from which InvokeAI was launched.
* `syslog` is only available on Linux and Macintosh systems. It uses
- `syslog` is only available on Linux and Macintosh systems. It uses
the operating system's "syslog" facility to write log file entries
locally or to a remote logging machine. `syslog` offers a variety
of configuration options:
@@ -271,7 +232,7 @@ Several different log handler destinations are available, and multiple destinati
- Log to LAN-connected server "fredserver" using the facility LOG_USER and datagram packets.
```
* `http` can be used to log to a remote web server. The server must be
- `http` can be used to log to a remote web server. The server must be
properly configured to receive and act on log messages. The option
accepts the URL to the web server, and a `method` argument
indicating whether the message should be submitted using the GET or
@@ -283,7 +244,7 @@ Several different log handler destinations are available, and multiple destinati
The `log_format` option provides several alternative formats:
* `color` - default format providing time, date and a message, using text colors to distinguish different log severities
* `plain` - same as above, but monochrome text only
* `syslog` - the log level and error message only, allowing the syslog system to attach the time and date
* `legacy` - a format similar to the one used by the legacy 2.3 InvokeAI releases.
- `color` - default format providing time, date and a message, using text colors to distinguish different log severities
- `plain` - same as above, but monochrome text only
- `syslog` - the log level and error message only, allowing the syslog system to attach the time and date
- `legacy` - a format similar to the one used by the legacy 2.3 InvokeAI releases.

35
docs/features/DATABASE.md Normal file
View File

@@ -0,0 +1,35 @@
---
title: Database
---
# Invoke's SQLite Database
Invoke uses a SQLite database to store image, workflow, model, and execution data.
We take great care to ensure your data is safe, by utilizing transactions and a database migration system.
Even so, when testing an prerelease version of the app, we strongly suggest either backing up your database or using an in-memory database. This ensures any prelease hiccups or databases schema changes will not cause problems for your data.
## Database Backup
Backing up your database is very simple. Invoke's data is stored in an `$INVOKEAI_ROOT` directory - where your `invoke.sh`/`invoke.bat` and `invokeai.yaml` files live.
To back up your database, copy the `invokeai.db` file from `$INVOKEAI_ROOT/databases/invokeai.db` to somewhere safe.
If anything comes up during prelease testing, you can simply copy your backup back into `$INVOKEAI_ROOT/databases/`.
## In-Memory Database
SQLite can run on an in-memory database. Your existing database is untouched when this mode is enabled, but your existing data won't be accessible.
This is very useful for testing, as there is no chance of a database change modifying your "physical" database.
To run Invoke with a memory database, edit your `invokeai.yaml` file, and add `use_memory_db: true` to the `Paths:` stanza:
```yaml
InvokeAI:
Development:
use_memory_db: true
```
Delete this line (or set it to `false`) to use your main database.

View File

@@ -25,6 +25,7 @@ from ..services.invocation_cache.invocation_cache_memory import MemoryInvocation
from ..services.invocation_services import InvocationServices
from ..services.invocation_stats.invocation_stats_default import InvocationStatsService
from ..services.invoker import Invoker
from ..services.model_images.model_images_default import ModelImageFileStorageDisk
from ..services.model_manager.model_manager_default import ModelManagerService
from ..services.model_records import ModelRecordServiceSQL
from ..services.names.names_default import SimpleNameService
@@ -71,6 +72,8 @@ class ApiDependencies:
image_files = DiskImageFileStorage(f"{output_folder}/images")
model_images_folder = config.models_path
db = init_db(config=config, logger=logger, image_files=image_files)
configuration = config
@@ -92,6 +95,7 @@ class ApiDependencies:
ObjectSerializerDisk[ConditioningFieldData](output_folder / "conditioning", ephemeral=True)
)
download_queue_service = DownloadQueueService(event_bus=events)
model_images_service = ModelImageFileStorageDisk(model_images_folder / "model_images")
model_manager = ModelManagerService.build_model_manager(
app_config=configuration,
model_record_service=ModelRecordServiceSQL(db=db),
@@ -118,6 +122,7 @@ class ApiDependencies:
images=images,
invocation_cache=invocation_cache,
logger=logger,
model_images=model_images_service,
model_manager=model_manager,
download_queue=download_queue_service,
names=names,

View File

@@ -1,12 +1,16 @@
# Copyright (c) 2023 Lincoln D. Stein
"""FastAPI route for model configuration records."""
import io
import pathlib
import shutil
import traceback
from typing import Any, Dict, List, Optional
from fastapi import Body, Path, Query, Response
from fastapi import Body, Path, Query, Response, UploadFile
from fastapi.responses import FileResponse
from fastapi.routing import APIRouter
from PIL import Image
from pydantic import BaseModel, ConfigDict, Field
from starlette.exceptions import HTTPException
from typing_extensions import Annotated
@@ -31,6 +35,9 @@ from ..dependencies import ApiDependencies
model_manager_router = APIRouter(prefix="/v2/models", tags=["model_manager"])
# images are immutable; set a high max-age
IMAGE_MAX_AGE = 31536000
class ModelsList(BaseModel):
"""Return list of configs."""
@@ -105,6 +112,9 @@ async def list_model_records(
found_models.extend(
record_store.search_by_attr(model_type=model_type, model_name=model_name, model_format=model_format)
)
for model in found_models:
cover_image = ApiDependencies.invoker.services.model_images.get_url(model.key)
model.cover_image = cover_image
return ModelsList(models=found_models)
@@ -148,6 +158,8 @@ async def get_model_record(
record_store = ApiDependencies.invoker.services.model_manager.store
try:
config: AnyModelConfig = record_store.get_model(key)
cover_image = ApiDependencies.invoker.services.model_images.get_url(key)
config.cover_image = cover_image
return config
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
@@ -266,6 +278,75 @@ async def update_model_record(
return model_response
@model_manager_router.get(
"/i/{key}/image",
operation_id="get_model_image",
responses={
200: {
"description": "The model image was fetched successfully",
},
400: {"description": "Bad request"},
404: {"description": "The model image could not be found"},
},
status_code=200,
)
async def get_model_image(
key: str = Path(description="The name of model image file to get"),
) -> FileResponse:
"""Gets an image file that previews the model"""
try:
path = ApiDependencies.invoker.services.model_images.get_path(key)
response = FileResponse(
path,
media_type="image/png",
filename=key + ".png",
content_disposition_type="inline",
)
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
return response
except Exception:
raise HTTPException(status_code=404)
@model_manager_router.patch(
"/i/{key}/image",
operation_id="update_model_image",
responses={
200: {
"description": "The model image was updated successfully",
},
400: {"description": "Bad request"},
},
status_code=200,
)
async def update_model_image(
key: Annotated[str, Path(description="Unique key of model")],
image: UploadFile,
) -> None:
if not image.content_type or not image.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
contents = await image.read()
try:
pil_image = Image.open(io.BytesIO(contents))
except Exception:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail="Failed to read image")
logger = ApiDependencies.invoker.services.logger
model_images = ApiDependencies.invoker.services.model_images
try:
model_images.save(pil_image, key)
logger.info(f"Updated image for model: {key}")
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
return
@model_manager_router.delete(
"/i/{key}",
operation_id="delete_model",
@@ -296,6 +377,29 @@ async def delete_model(
raise HTTPException(status_code=404, detail=str(e))
@model_manager_router.delete(
"/i/{key}/image",
operation_id="delete_model_image",
responses={
204: {"description": "Model image deleted successfully"},
404: {"description": "Model image not found"},
},
status_code=204,
)
async def delete_model_image(
key: str = Path(description="Unique key of model image to remove from model_images directory."),
) -> None:
logger = ApiDependencies.invoker.services.logger
model_images = ApiDependencies.invoker.services.model_images
try:
model_images.delete(key)
logger.info(f"Deleted model image: {key}")
return
except UnknownModelException as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
# @model_manager_router.post(
# "/i/",
# operation_id="add_model_record",
@@ -539,7 +643,7 @@ async def convert_model(
raise HTTPException(400, f"The model with key {key} is not a main checkpoint model.")
# loading the model will convert it into a cached diffusers file
model_manager.load_model_by_config(model_config, submodel_type=SubModelType.Scheduler)
model_manager.load.load_model(model_config, submodel_type=SubModelType.Scheduler)
# Get the path of the converted model from the loader
cache_path = loader.convert_cache.cache_path(key)

View File

@@ -2,12 +2,11 @@
# which are imported/used before parse_args() is called will get the default config values instead of the
# values from the command line or config file.
import sys
from contextlib import asynccontextmanager
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
from invokeai.version.invokeai_version import __version__
from .invocations.fields import InputFieldJSONSchemaExtra, OutputFieldJSONSchemaExtra
from .services.config import InvokeAIAppConfig
app_config = InvokeAIAppConfig.get_config()
@@ -20,6 +19,7 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
import asyncio
import mimetypes
import socket
from contextlib import asynccontextmanager
from inspect import signature
from pathlib import Path
from typing import Any
@@ -40,6 +40,7 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
# noinspection PyUnresolvedReferences
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
import invokeai.frontend.web as web_dir
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
from ..backend.util.logging import InvokeAILogger
from .api.dependencies import ApiDependencies
@@ -59,6 +60,7 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
BaseInvocation,
UIConfigBase,
)
from .invocations.fields import InputFieldJSONSchemaExtra, OutputFieldJSONSchemaExtra
if is_mps_available():
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
@@ -156,17 +158,19 @@ def custom_openapi() -> dict[str, Any]:
openapi_schema["components"]["schemas"][schema_key] = output_schema
openapi_schema["components"]["schemas"][schema_key]["class"] = "output"
# Add Node Editor UI helper schemas
ui_config_schemas = models_json_schema(
# Some models don't end up in the schemas as standalone definitions
additional_schemas = models_json_schema(
[
(UIConfigBase, "serialization"),
(InputFieldJSONSchemaExtra, "serialization"),
(OutputFieldJSONSchemaExtra, "serialization"),
(ModelIdentifierField, "serialization"),
(ProgressImage, "serialization"),
],
ref_template="#/components/schemas/{model}",
)
for schema_key, ui_config_schema in ui_config_schemas[1]["$defs"].items():
openapi_schema["components"]["schemas"][schema_key] = ui_config_schema
for schema_key, schema_json in additional_schemas[1]["$defs"].items():
openapi_schema["components"]["schemas"][schema_key] = schema_json
# Add a reference to the output type to additionalProperties of the invoker schema
for invoker in all_invocations:

View File

@@ -20,7 +20,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
from invokeai.backend.util.devices import torch_dtype
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from .model import ClipField
from .model import CLIPField
# unconditioned: Optional[torch.Tensor]
@@ -46,7 +46,7 @@ class CompelInvocation(BaseInvocation):
description=FieldDescriptions.compel_prompt,
ui_component=UIComponent.Textarea,
)
clip: ClipField = InputField(
clip: CLIPField = InputField(
title="CLIP",
description=FieldDescriptions.clip,
input=Input.Connection,
@@ -54,16 +54,16 @@ class CompelInvocation(BaseInvocation):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.models.load(**self.clip.tokenizer.model_dump())
tokenizer_info = context.models.load(self.clip.tokenizer)
tokenizer_model = tokenizer_info.model
assert isinstance(tokenizer_model, CLIPTokenizer)
text_encoder_info = context.models.load(**self.clip.text_encoder.model_dump())
text_encoder_info = context.models.load(self.clip.text_encoder)
text_encoder_model = text_encoder_info.model
assert isinstance(text_encoder_model, CLIPTextModel)
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.clip.loras:
lora_info = context.models.load(**lora.model_dump(exclude={"weight"}))
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
@@ -127,16 +127,16 @@ class SDXLPromptInvocationBase:
def run_clip_compel(
self,
context: InvocationContext,
clip_field: ClipField,
clip_field: CLIPField,
prompt: str,
get_pooled: bool,
lora_prefix: str,
zero_on_empty: bool,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[ExtraConditioningInfo]]:
tokenizer_info = context.models.load(**clip_field.tokenizer.model_dump())
tokenizer_info = context.models.load(clip_field.tokenizer)
tokenizer_model = tokenizer_info.model
assert isinstance(tokenizer_model, CLIPTokenizer)
text_encoder_info = context.models.load(**clip_field.text_encoder.model_dump())
text_encoder_info = context.models.load(clip_field.text_encoder)
text_encoder_model = text_encoder_info.model
assert isinstance(text_encoder_model, (CLIPTextModel, CLIPTextModelWithProjection))
@@ -163,7 +163,7 @@ class SDXLPromptInvocationBase:
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in clip_field.loras:
lora_info = context.models.load(**lora.model_dump(exclude={"weight"}))
lora_info = context.models.load(lora.lora)
lora_model = lora_info.model
assert isinstance(lora_model, LoRAModelRaw)
yield (lora_model, lora.weight)
@@ -253,8 +253,8 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
crop_left: int = InputField(default=0, description="")
target_width: int = InputField(default=1024, description="")
target_height: int = InputField(default=1024, description="")
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1")
clip2: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2")
clip: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1")
clip2: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
@@ -340,7 +340,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
crop_top: int = InputField(default=0, description="")
crop_left: int = InputField(default=0, description="")
aesthetic_score: float = InputField(default=6.0, description=FieldDescriptions.sdxl_aesthetic)
clip2: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection)
clip2: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
@@ -370,10 +370,10 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
"""Clip skip node output"""
class CLIPSkipInvocationOutput(BaseInvocationOutput):
"""CLIP skip node output"""
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
clip: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
@invocation(
@@ -383,15 +383,15 @@ class ClipSkipInvocationOutput(BaseInvocationOutput):
category="conditioning",
version="1.0.0",
)
class ClipSkipInvocation(BaseInvocation):
class CLIPSkipInvocation(BaseInvocation):
"""Skip layers in clip text_encoder model."""
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP")
clip: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP")
skipped_layers: int = InputField(default=0, ge=0, description=FieldDescriptions.skipped_layers)
def invoke(self, context: InvocationContext) -> ClipSkipInvocationOutput:
def invoke(self, context: InvocationContext) -> CLIPSkipInvocationOutput:
self.clip.skipped_layers += self.skipped_layers
return ClipSkipInvocationOutput(
return CLIPSkipInvocationOutput(
clip=self.clip,
)

View File

@@ -31,9 +31,11 @@ from invokeai.app.invocations.fields import (
Input,
InputField,
OutputField,
UIType,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
@@ -51,15 +53,9 @@ CONTROLNET_RESIZE_VALUES = Literal[
]
class ControlNetModelField(BaseModel):
"""ControlNet model field"""
key: str = Field(description="Model config record key for the ControlNet model")
class ControlField(BaseModel):
image: ImageField = Field(description="The control image")
control_model: ControlNetModelField = Field(description="The ControlNet model to use")
control_model: ModelIdentifierField = Field(description="The ControlNet model to use")
control_weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
@@ -95,7 +91,9 @@ class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
image: ImageField = InputField(description="The control image")
control_model: ControlNetModelField = InputField(description=FieldDescriptions.controlnet_model, input=Input.Direct)
control_model: ModelIdentifierField = InputField(
description=FieldDescriptions.controlnet_model, input=Input.Direct, ui_type=UIType.ControlNetModel
)
control_weight: Union[float, List[float]] = InputField(
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"
)

View File

@@ -39,13 +39,15 @@ class UIType(str, Enum, metaclass=MetaEnum):
"""
# region Model Field Types
MainModel = "MainModelField"
SDXLMainModel = "SDXLMainModelField"
SDXLRefinerModel = "SDXLRefinerModelField"
ONNXModel = "ONNXModelField"
VaeModel = "VAEModelField"
VAEModel = "VAEModelField"
LoRAModel = "LoRAModelField"
ControlNetModel = "ControlNetModelField"
IPAdapterModel = "IPAdapterModelField"
T2IAdapterModel = "T2IAdapterModelField"
# endregion
# region Misc Field Types
@@ -86,7 +88,6 @@ class UIType(str, Enum, metaclass=MetaEnum):
IntegerPolymorphic = "DEPRECATED_IntegerPolymorphic"
LatentsPolymorphic = "DEPRECATED_LatentsPolymorphic"
StringPolymorphic = "DEPRECATED_StringPolymorphic"
MainModel = "DEPRECATED_MainModel"
UNet = "DEPRECATED_UNet"
Vae = "DEPRECATED_Vae"
CLIP = "DEPRECATED_CLIP"
@@ -228,7 +229,7 @@ class ConditioningField(BaseModel):
# endregion
class MetadataField(RootModel):
class MetadataField(RootModel[dict[str, Any]]):
"""
Pydantic model for metadata with custom root of type dict[str, Any].
Metadata is stored without a strict schema.

View File

@@ -10,26 +10,18 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import BaseModelType, ModelType
# LS: Consider moving these two classes into model.py
class IPAdapterModelField(BaseModel):
key: str = Field(description="Key to the IP-Adapter model")
class CLIPVisionModelField(BaseModel):
key: str = Field(description="Key to the CLIP Vision image encoder model")
from invokeai.backend.model_manager.config import BaseModelType, IPAdapterConfig, ModelType
class IPAdapterField(BaseModel):
image: Union[ImageField, List[ImageField]] = Field(description="The IP-Adapter image prompt(s).")
ip_adapter_model: IPAdapterModelField = Field(description="The IP-Adapter model to use.")
image_encoder_model: CLIPVisionModelField = Field(description="The name of the CLIP image encoder model.")
ip_adapter_model: ModelIdentifierField = Field(description="The IP-Adapter model to use.")
image_encoder_model: ModelIdentifierField = Field(description="The name of the CLIP image encoder model.")
weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
@@ -62,8 +54,12 @@ class IPAdapterInvocation(BaseInvocation):
# Inputs
image: Union[ImageField, List[ImageField]] = InputField(description="The IP-Adapter image prompt(s).")
ip_adapter_model: IPAdapterModelField = InputField(
description="The IP-Adapter model.", title="IP-Adapter Model", input=Input.Direct, ui_order=-1
ip_adapter_model: ModelIdentifierField = InputField(
description="The IP-Adapter model.",
title="IP-Adapter Model",
input=Input.Direct,
ui_order=-1,
ui_type=UIType.IPAdapterModel,
)
weight: Union[float, List[float]] = InputField(
@@ -90,18 +86,18 @@ class IPAdapterInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> IPAdapterOutput:
# Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model.
ip_adapter_info = context.models.get_config(self.ip_adapter_model.key)
assert isinstance(ip_adapter_info, IPAdapterConfig)
image_encoder_model_id = ip_adapter_info.image_encoder_model_id
image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip()
image_encoder_models = context.models.search_by_attrs(
name=image_encoder_model_name, base=BaseModelType.Any, type=ModelType.CLIPVision
)
assert len(image_encoder_models) == 1
image_encoder_model = CLIPVisionModelField(key=image_encoder_models[0].key)
return IPAdapterOutput(
ip_adapter=IPAdapterField(
image=self.image,
ip_adapter_model=self.ip_adapter_model,
image_encoder_model=image_encoder_model,
image_encoder_model=ModelIdentifierField.from_config(image_encoder_models[0]),
weight=self.weight,
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,

View File

@@ -26,6 +26,7 @@ from diffusers.schedulers import SchedulerMixin as Scheduler
from PIL import Image, ImageFilter
from pydantic import field_validator
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPVisionModelWithProjection
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
from invokeai.app.invocations.fields import (
@@ -65,7 +66,6 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
T2IAdapterData,
image_resized_to_grid_as_tensor,
)
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import choose_precision, choose_torch_device
from .baseinvocation import (
@@ -75,7 +75,7 @@ from .baseinvocation import (
invocation_output,
)
from .controlnet_image_processors import ControlField
from .model import ModelInfo, UNetField, VaeField
from .model import ModelIdentifierField, UNetField, VAEField
if choose_torch_device() == torch.device("mps"):
from torch import mps
@@ -118,7 +118,7 @@ class SchedulerInvocation(BaseInvocation):
class CreateDenoiseMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
vae: VaeField = InputField(description=FieldDescriptions.vae, input=Input.Connection, ui_order=0)
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection, ui_order=0)
image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1)
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3)
@@ -153,7 +153,7 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
)
if image_tensor is not None:
vae_info = context.models.load(**self.vae.vae.model_dump())
vae_info = context.models.load(self.vae.vae)
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
@@ -244,12 +244,12 @@ class CreateGradientMaskInvocation(BaseInvocation):
def get_scheduler(
context: InvocationContext,
scheduler_info: ModelInfo,
scheduler_info: ModelIdentifierField,
scheduler_name: str,
seed: int,
) -> Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
orig_scheduler_info = context.models.load(**scheduler_info.model_dump())
orig_scheduler_info = context.models.load(scheduler_info)
with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config
@@ -383,12 +383,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
text_embeddings=c,
guidance_scale=self.cfg_scale,
guidance_rescale_multiplier=self.cfg_rescale_multiplier,
postprocessing_settings=PostprocessingSettings(
threshold=0.0, # threshold,
warmup=0.2, # warmup,
h_symmetry_time_pct=None, # h_symmetry_time_pct,
v_symmetry_time_pct=None, # v_symmetry_time_pct,
),
)
conditioning_data = conditioning_data.add_scheduler_args_if_applicable( # FIXME
@@ -461,7 +455,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
# and if weight is None, populate with default 1.0?
controlnet_data = []
for control_info in control_list:
control_model = exit_stack.enter_context(context.models.load(key=control_info.control_model.key))
control_model = exit_stack.enter_context(context.models.load(control_info.control_model))
# control_models.append(control_model)
control_image_field = control_info.image
@@ -523,11 +517,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
conditioning_data.ip_adapter_conditioning = []
for single_ip_adapter in ip_adapter:
ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context(
context.models.load(key=single_ip_adapter.ip_adapter_model.key)
context.models.load(single_ip_adapter.ip_adapter_model)
)
image_encoder_model_info = context.models.load(key=single_ip_adapter.image_encoder_model.key)
image_encoder_model_info = context.models.load(single_ip_adapter.image_encoder_model)
# `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here.
single_ipa_image_fields = single_ip_adapter.image
if not isinstance(single_ipa_image_fields, list):
@@ -538,6 +531,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
# TODO(ryand): With some effort, the step of running the CLIP Vision encoder could be done before any other
# models are needed in memory. This would help to reduce peak memory utilization in low-memory environments.
with image_encoder_model_info as image_encoder_model:
assert isinstance(image_encoder_model, CLIPVisionModelWithProjection)
# Get image embeddings from CLIP and ImageProjModel.
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
single_ipa_images, image_encoder_model
@@ -577,8 +571,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
t2i_adapter_data = []
for t2i_adapter_field in t2i_adapter:
t2i_adapter_model_config = context.models.get_config(key=t2i_adapter_field.t2i_adapter_model.key)
t2i_adapter_loaded_model = context.models.load(key=t2i_adapter_field.t2i_adapter_model.key)
t2i_adapter_model_config = context.models.get_config(t2i_adapter_field.t2i_adapter_model.key)
t2i_adapter_loaded_model = context.models.load(t2i_adapter_field.t2i_adapter_model)
image = context.images.get_pil(t2i_adapter_field.image.image_name)
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
@@ -683,7 +677,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
if self.denoise_mask.masked_latents_name is not None:
masked_latents = context.tensors.load(self.denoise_mask.masked_latents_name)
else:
masked_latents = None
masked_latents = torch.where(mask < 0.5, 0.0, latents)
return 1 - mask, masked_latents, self.denoise_mask.gradient
@@ -731,12 +725,13 @@ class DenoiseLatentsInvocation(BaseInvocation):
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.unet.loras:
lora_info = context.models.load(**lora.model_dump(exclude={"weight"}))
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
return
unet_info = context.models.load(**self.unet.unet.model_dump())
unet_info = context.models.load(self.unet.unet)
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
ExitStack() as exit_stack,
@@ -830,7 +825,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
description=FieldDescriptions.latents,
input=Input.Connection,
)
vae: VaeField = InputField(
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
@@ -841,8 +836,8 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(**self.vae.vae.model_dump())
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (UNet2DConditionModel, AutoencoderKL))
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
assert isinstance(vae, torch.nn.Module)
latents = latents.to(vae.device)
@@ -1008,7 +1003,7 @@ class ImageToLatentsInvocation(BaseInvocation):
image: ImageField = InputField(
description="The image to encode",
)
vae: VaeField = InputField(
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
@@ -1064,7 +1059,7 @@ class ImageToLatentsInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.images.get_pil(self.image.image_name)
vae_info = context.models.load(**self.vae.vae.model_dump())
vae_info = context.models.load(self.vae.vae)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:

View File

@@ -8,7 +8,10 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.controlnet_image_processors import (
CONTROLNET_MODE_VALUES,
CONTROLNET_RESIZE_VALUES,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
@@ -17,10 +20,8 @@ from invokeai.app.invocations.fields import (
OutputField,
UIType,
)
from invokeai.app.invocations.ip_adapter import IPAdapterModelField
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import BaseModelType, ModelType
from ...version import __version__
@@ -30,10 +31,20 @@ class MetadataItemField(BaseModel):
value: Any = Field(description=FieldDescriptions.metadata_item_value)
class ModelMetadataField(BaseModel):
"""Model Metadata Field"""
key: str
hash: str
name: str
base: BaseModelType
type: ModelType
class LoRAMetadataField(BaseModel):
"""LoRA Metadata Field"""
model: LoRAModelField = Field(description=FieldDescriptions.lora_model)
model: ModelMetadataField = Field(description=FieldDescriptions.lora_model)
weight: float = Field(description=FieldDescriptions.lora_weight)
@@ -41,7 +52,7 @@ class IPAdapterMetadataField(BaseModel):
"""IP Adapter Field, minus the CLIP Vision Encoder model"""
image: ImageField = Field(description="The IP-Adapter image prompt.")
ip_adapter_model: IPAdapterModelField = Field(
ip_adapter_model: ModelMetadataField = Field(
description="The IP-Adapter model.",
)
weight: Union[float, list[float]] = Field(
@@ -51,6 +62,33 @@ class IPAdapterMetadataField(BaseModel):
end_step_percent: float = Field(description="When the IP-Adapter is last applied (% of total steps)")
class T2IAdapterMetadataField(BaseModel):
image: ImageField = Field(description="The T2I-Adapter image prompt.")
t2i_adapter_model: ModelMetadataField = Field(description="The T2I-Adapter model to use.")
weight: Union[float, list[float]] = Field(default=1, description="The weight given to the T2I-Adapter")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the T2I-Adapter is first applied (% of total steps)"
)
end_step_percent: float = Field(
default=1, ge=0, le=1, description="When the T2I-Adapter is last applied (% of total steps)"
)
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
class ControlNetMetadataField(BaseModel):
image: ImageField = Field(description="The control image")
control_model: ModelMetadataField = Field(description="The ControlNet model to use")
control_weight: Union[float, list[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = Field(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
)
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@invocation_output("metadata_item_output")
class MetadataItemOutput(BaseInvocationOutput):
"""Metadata Item Output"""
@@ -140,14 +178,14 @@ class CoreMetadataInvocation(BaseInvocation):
default=None,
description="The number of skipped CLIP layers",
)
model: Optional[MainModelField] = InputField(default=None, description="The main model used for inference")
controlnets: Optional[list[ControlField]] = InputField(
model: Optional[ModelMetadataField] = InputField(default=None, description="The main model used for inference")
controlnets: Optional[list[ControlNetMetadataField]] = InputField(
default=None, description="The ControlNets used for inference"
)
ipAdapters: Optional[list[IPAdapterMetadataField]] = InputField(
default=None, description="The IP Adapters used for inference"
)
t2iAdapters: Optional[list[T2IAdapterField]] = InputField(
t2iAdapters: Optional[list[T2IAdapterMetadataField]] = InputField(
default=None, description="The IP Adapters used for inference"
)
loras: Optional[list[LoRAMetadataField]] = InputField(default=None, description="The LoRAs used for inference")
@@ -159,7 +197,7 @@ class CoreMetadataInvocation(BaseInvocation):
default=None,
description="The name of the initial image",
)
vae: Optional[VAEModelField] = InputField(
vae: Optional[ModelMetadataField] = InputField(
default=None,
description="The VAE used for decoding, if the main model's default was not used",
)
@@ -190,7 +228,7 @@ class CoreMetadataInvocation(BaseInvocation):
)
# SDXL Refiner
refiner_model: Optional[MainModelField] = InputField(
refiner_model: Optional[ModelMetadataField] = InputField(
default=None,
description="The SDXL Refiner model used",
)
@@ -222,10 +260,9 @@ class CoreMetadataInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> MetadataOutput:
"""Collects and outputs a CoreMetadata object"""
return MetadataOutput(
metadata=MetadataField.model_validate(
self.model_dump(exclude_none=True, exclude={"id", "type", "is_intermediate", "use_cache"})
)
)
as_dict = self.model_dump(exclude_none=True, exclude={"id", "type", "is_intermediate", "use_cache"})
as_dict["app_version"] = __version__
return MetadataOutput(metadata=MetadataField.model_validate(as_dict))
model_config = ConfigDict(extra="allow")

View File

@@ -3,11 +3,11 @@ from typing import List, Optional
from pydantic import BaseModel, Field
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
from ...backend.model_manager import SubModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
@@ -16,33 +16,52 @@ from .baseinvocation import (
)
class ModelInfo(BaseModel):
key: str = Field(description="Key of model as returned by ModelRecordServiceBase.get_model()")
submodel_type: Optional[SubModelType] = Field(default=None, description="Info to load submodel")
class ModelIdentifierField(BaseModel):
key: str = Field(description="The model's unique key")
hash: str = Field(description="The model's BLAKE3 hash")
name: str = Field(description="The model's name")
base: BaseModelType = Field(description="The model's base model type")
type: ModelType = Field(description="The model's type")
submodel_type: Optional[SubModelType] = Field(
description="The submodel to load, if this is a main model", default=None
)
@classmethod
def from_config(
cls, config: "AnyModelConfig", submodel_type: Optional[SubModelType] = None
) -> "ModelIdentifierField":
return cls(
key=config.key,
hash=config.hash,
name=config.name,
base=config.base,
type=config.type,
submodel_type=submodel_type,
)
class LoraInfo(ModelInfo):
weight: float = Field(description="Lora's weight which to use when apply to model")
class LoRAField(BaseModel):
lora: ModelIdentifierField = Field(description="Info to load lora model")
weight: float = Field(description="Weight to apply to lora model")
class UNetField(BaseModel):
unet: ModelInfo = Field(description="Info to load unet submodel")
scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
unet: ModelIdentifierField = Field(description="Info to load unet submodel")
scheduler: ModelIdentifierField = Field(description="Info to load scheduler submodel")
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
freeu_config: Optional[FreeUConfig] = Field(default=None, description="FreeU configuration")
class ClipField(BaseModel):
tokenizer: ModelInfo = Field(description="Info to load tokenizer submodel")
text_encoder: ModelInfo = Field(description="Info to load text_encoder submodel")
class CLIPField(BaseModel):
tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel")
text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel")
skipped_layers: int = Field(description="Number of skipped layers in text_encoder")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
class VaeField(BaseModel):
# TODO: better naming?
vae: ModelInfo = Field(description="Info to load vae submodel")
class VAEField(BaseModel):
vae: ModelIdentifierField = Field(description="Info to load vae submodel")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
@@ -57,14 +76,14 @@ class UNetOutput(BaseInvocationOutput):
class VAEOutput(BaseInvocationOutput):
"""Base class for invocations that output a VAE field"""
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation_output("clip_output")
class CLIPOutput(BaseInvocationOutput):
"""Base class for invocations that output a CLIP field"""
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP")
clip: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP")
@invocation_output("model_loader_output")
@@ -74,18 +93,6 @@ class ModelLoaderOutput(UNetOutput, CLIPOutput, VAEOutput):
pass
class MainModelField(BaseModel):
"""Main model field"""
key: str = Field(description="Model key")
class LoRAModelField(BaseModel):
"""LoRA model field"""
key: str = Field(description="LoRA model key")
@invocation(
"main_model_loader",
title="Main Model",
@@ -96,62 +103,44 @@ class LoRAModelField(BaseModel):
class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
model: MainModelField = InputField(description=FieldDescriptions.main_model, input=Input.Direct)
model: ModelIdentifierField = InputField(
description=FieldDescriptions.main_model, input=Input.Direct, ui_type=UIType.MainModel
)
# TODO: precision?
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
key = self.model.key
# TODO: not found exceptions
if not context.models.exists(key):
raise Exception(f"Unknown model {key}")
if not context.models.exists(self.model.key):
raise Exception(f"Unknown model {self.model.key}")
unet = self.model.model_copy(update={"submodel_type": SubModelType.UNet})
scheduler = self.model.model_copy(update={"submodel_type": SubModelType.Scheduler})
tokenizer = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
text_encoder = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
vae = self.model.model_copy(update={"submodel_type": SubModelType.VAE})
return ModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
key=key,
submodel_type=SubModelType.UNet,
),
scheduler=ModelInfo(
key=key,
submodel_type=SubModelType.Scheduler,
),
loras=[],
),
clip=ClipField(
tokenizer=ModelInfo(
key=key,
submodel_type=SubModelType.Tokenizer,
),
text_encoder=ModelInfo(
key=key,
submodel_type=SubModelType.TextEncoder,
),
loras=[],
skipped_layers=0,
),
vae=VaeField(
vae=ModelInfo(
key=key,
submodel_type=SubModelType.VAE,
),
),
unet=UNetField(unet=unet, scheduler=scheduler, loras=[]),
clip=CLIPField(tokenizer=tokenizer, text_encoder=text_encoder, loras=[], skipped_layers=0),
vae=VAEField(vae=vae),
)
@invocation_output("lora_loader_output")
class LoraLoaderOutput(BaseInvocationOutput):
class LoRALoaderOutput(BaseInvocationOutput):
"""Model loader output"""
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
clip: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
@invocation("lora_loader", title="LoRA", tags=["model"], category="model", version="1.0.1")
class LoraLoaderInvocation(BaseInvocation):
class LoRALoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA", ui_type=UIType.LoRAModel
)
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
default=None,
@@ -159,46 +148,41 @@ class LoraLoaderInvocation(BaseInvocation):
input=Input.Connection,
title="UNet",
)
clip: Optional[ClipField] = InputField(
clip: Optional[CLIPField] = InputField(
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP",
)
def invoke(self, context: InvocationContext) -> LoraLoaderOutput:
if self.lora is None:
raise Exception("No LoRA provided")
def invoke(self, context: InvocationContext) -> LoRALoaderOutput:
lora_key = self.lora.key
if not context.models.exists(lora_key):
raise Exception(f"Unkown lora: {lora_key}!")
if self.unet is not None and any(lora.key == lora_key for lora in self.unet.loras):
raise Exception(f'Lora "{lora_key}" already applied to unet')
if self.unet is not None and any(lora.lora.key == lora_key for lora in self.unet.loras):
raise Exception(f'LoRA "{lora_key}" already applied to unet')
if self.clip is not None and any(lora.key == lora_key for lora in self.clip.loras):
raise Exception(f'Lora "{lora_key}" already applied to clip')
if self.clip is not None and any(lora.lora.key == lora_key for lora in self.clip.loras):
raise Exception(f'LoRA "{lora_key}" already applied to clip')
output = LoraLoaderOutput()
output = LoRALoaderOutput()
if self.unet is not None:
output.unet = copy.deepcopy(self.unet)
output.unet = self.unet.model_copy(deep=True)
output.unet.loras.append(
LoraInfo(
key=lora_key,
submodel_type=None,
LoRAField(
lora=self.lora,
weight=self.weight,
)
)
if self.clip is not None:
output.clip = copy.deepcopy(self.clip)
output.clip = self.clip.model_copy(deep=True)
output.clip.loras.append(
LoraInfo(
key=lora_key,
submodel_type=None,
LoRAField(
lora=self.lora,
weight=self.weight,
)
)
@@ -207,12 +191,12 @@ class LoraLoaderInvocation(BaseInvocation):
@invocation_output("sdxl_lora_loader_output")
class SDXLLoraLoaderOutput(BaseInvocationOutput):
class SDXLLoRALoaderOutput(BaseInvocationOutput):
"""SDXL LoRA Loader Output"""
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 1")
clip2: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 2")
clip: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 1")
clip2: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 2")
@invocation(
@@ -222,10 +206,12 @@ class SDXLLoraLoaderOutput(BaseInvocationOutput):
category="model",
version="1.0.1",
)
class SDXLLoraLoaderInvocation(BaseInvocation):
class SDXLLoRALoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA", ui_type=UIType.LoRAModel
)
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
default=None,
@@ -233,65 +219,59 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
input=Input.Connection,
title="UNet",
)
clip: Optional[ClipField] = InputField(
clip: Optional[CLIPField] = InputField(
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP 1",
)
clip2: Optional[ClipField] = InputField(
clip2: Optional[CLIPField] = InputField(
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP 2",
)
def invoke(self, context: InvocationContext) -> SDXLLoraLoaderOutput:
if self.lora is None:
raise Exception("No LoRA provided")
def invoke(self, context: InvocationContext) -> SDXLLoRALoaderOutput:
lora_key = self.lora.key
if not context.models.exists(lora_key):
raise Exception(f"Unknown lora: {lora_key}!")
if self.unet is not None and any(lora.key == lora_key for lora in self.unet.loras):
raise Exception(f'Lora "{lora_key}" already applied to unet')
if self.unet is not None and any(lora.lora.key == lora_key for lora in self.unet.loras):
raise Exception(f'LoRA "{lora_key}" already applied to unet')
if self.clip is not None and any(lora.key == lora_key for lora in self.clip.loras):
raise Exception(f'Lora "{lora_key}" already applied to clip')
if self.clip is not None and any(lora.lora.key == lora_key for lora in self.clip.loras):
raise Exception(f'LoRA "{lora_key}" already applied to clip')
if self.clip2 is not None and any(lora.key == lora_key for lora in self.clip2.loras):
raise Exception(f'Lora "{lora_key}" already applied to clip2')
if self.clip2 is not None and any(lora.lora.key == lora_key for lora in self.clip2.loras):
raise Exception(f'LoRA "{lora_key}" already applied to clip2')
output = SDXLLoraLoaderOutput()
output = SDXLLoRALoaderOutput()
if self.unet is not None:
output.unet = copy.deepcopy(self.unet)
output.unet = self.unet.model_copy(deep=True)
output.unet.loras.append(
LoraInfo(
key=lora_key,
submodel_type=None,
LoRAField(
lora=self.lora,
weight=self.weight,
)
)
if self.clip is not None:
output.clip = copy.deepcopy(self.clip)
output.clip = self.clip.model_copy(deep=True)
output.clip.loras.append(
LoraInfo(
key=lora_key,
submodel_type=None,
LoRAField(
lora=self.lora,
weight=self.weight,
)
)
if self.clip2 is not None:
output.clip2 = copy.deepcopy(self.clip2)
output.clip2 = self.clip2.model_copy(deep=True)
output.clip2.loras.append(
LoraInfo(
key=lora_key,
submodel_type=None,
LoRAField(
lora=self.lora,
weight=self.weight,
)
)
@@ -299,20 +279,12 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
return output
class VAEModelField(BaseModel):
"""Vae model field"""
key: str = Field(description="Model's key")
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.1")
class VaeLoaderInvocation(BaseInvocation):
class VAELoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""
vae_model: VAEModelField = InputField(
description=FieldDescriptions.vae_model,
input=Input.Direct,
title="VAE",
vae_model: ModelIdentifierField = InputField(
description=FieldDescriptions.vae_model, input=Input.Direct, title="VAE", ui_type=UIType.VAEModel
)
def invoke(self, context: InvocationContext) -> VAEOutput:
@@ -321,7 +293,7 @@ class VaeLoaderInvocation(BaseInvocation):
if not context.models.exists(key):
raise Exception(f"Unkown vae: {key}!")
return VAEOutput(vae=VaeField(vae=ModelInfo(key=key)))
return VAEOutput(vae=VAEField(vae=self.vae_model))
@invocation_output("seamless_output")
@@ -329,7 +301,7 @@ class SeamlessModeOutput(BaseInvocationOutput):
"""Modified Seamless Model output"""
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
vae: Optional[VaeField] = OutputField(default=None, description=FieldDescriptions.vae, title="VAE")
vae: Optional[VAEField] = OutputField(default=None, description=FieldDescriptions.vae, title="VAE")
@invocation(
@@ -348,7 +320,7 @@ class SeamlessModeInvocation(BaseInvocation):
input=Input.Connection,
title="UNet",
)
vae: Optional[VaeField] = InputField(
vae: Optional[VAEField] = InputField(
default=None,
description=FieldDescriptions.vae_model,
input=Input.Connection,

View File

@@ -8,7 +8,7 @@ from .baseinvocation import (
invocation,
invocation_output,
)
from .model import ClipField, MainModelField, ModelInfo, UNetField, VaeField
from .model import CLIPField, ModelIdentifierField, UNetField, VAEField
@invocation_output("sdxl_model_loader_output")
@@ -16,9 +16,9 @@ class SDXLModelLoaderOutput(BaseInvocationOutput):
"""SDXL base model loader output"""
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP 1")
clip2: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
clip: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP 1")
clip2: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation_output("sdxl_refiner_model_loader_output")
@@ -26,15 +26,15 @@ class SDXLRefinerModelLoaderOutput(BaseInvocationOutput):
"""SDXL refiner model loader output"""
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
clip2: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
clip2: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation("sdxl_model_loader", title="SDXL Main Model", tags=["model", "sdxl"], category="model", version="1.0.1")
class SDXLModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl base model, outputting its submodels."""
model: MainModelField = InputField(
model: ModelIdentifierField = InputField(
description=FieldDescriptions.sdxl_main_model, input=Input.Direct, ui_type=UIType.SDXLMainModel
)
# TODO: precision?
@@ -46,48 +46,19 @@ class SDXLModelLoaderInvocation(BaseInvocation):
if not context.models.exists(model_key):
raise Exception(f"Unknown model: {model_key}")
unet = self.model.model_copy(update={"submodel_type": SubModelType.UNet})
scheduler = self.model.model_copy(update={"submodel_type": SubModelType.Scheduler})
tokenizer = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
text_encoder = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer2 = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
text_encoder2 = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
vae = self.model.model_copy(update={"submodel_type": SubModelType.VAE})
return SDXLModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
key=model_key,
submodel_type=SubModelType.UNet,
),
scheduler=ModelInfo(
key=model_key,
submodel_type=SubModelType.Scheduler,
),
loras=[],
),
clip=ClipField(
tokenizer=ModelInfo(
key=model_key,
submodel_type=SubModelType.Tokenizer,
),
text_encoder=ModelInfo(
key=model_key,
submodel_type=SubModelType.TextEncoder,
),
loras=[],
skipped_layers=0,
),
clip2=ClipField(
tokenizer=ModelInfo(
key=model_key,
submodel_type=SubModelType.Tokenizer2,
),
text_encoder=ModelInfo(
key=model_key,
submodel_type=SubModelType.TextEncoder2,
),
loras=[],
skipped_layers=0,
),
vae=VaeField(
vae=ModelInfo(
key=model_key,
submodel_type=SubModelType.VAE,
),
),
unet=UNetField(unet=unet, scheduler=scheduler, loras=[]),
clip=CLIPField(tokenizer=tokenizer, text_encoder=text_encoder, loras=[], skipped_layers=0),
clip2=CLIPField(tokenizer=tokenizer2, text_encoder=text_encoder2, loras=[], skipped_layers=0),
vae=VAEField(vae=vae),
)
@@ -101,10 +72,8 @@ class SDXLModelLoaderInvocation(BaseInvocation):
class SDXLRefinerModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl refiner model, outputting its submodels."""
model: MainModelField = InputField(
description=FieldDescriptions.sdxl_refiner_model,
input=Input.Direct,
ui_type=UIType.SDXLRefinerModel,
model: ModelIdentifierField = InputField(
description=FieldDescriptions.sdxl_refiner_model, input=Input.Direct, ui_type=UIType.SDXLRefinerModel
)
# TODO: precision?
@@ -115,34 +84,14 @@ class SDXLRefinerModelLoaderInvocation(BaseInvocation):
if not context.models.exists(model_key):
raise Exception(f"Unknown model: {model_key}")
unet = self.model.model_copy(update={"submodel_type": SubModelType.UNet})
scheduler = self.model.model_copy(update={"submodel_type": SubModelType.Scheduler})
tokenizer2 = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
text_encoder2 = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
vae = self.model.model_copy(update={"submodel_type": SubModelType.VAE})
return SDXLRefinerModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
key=model_key,
submodel_type=SubModelType.UNet,
),
scheduler=ModelInfo(
key=model_key,
submodel_type=SubModelType.Scheduler,
),
loras=[],
),
clip2=ClipField(
tokenizer=ModelInfo(
key=model_key,
submodel_type=SubModelType.Tokenizer2,
),
text_encoder=ModelInfo(
key=model_key,
submodel_type=SubModelType.TextEncoder2,
),
loras=[],
skipped_layers=0,
),
vae=VaeField(
vae=ModelInfo(
key=model_key,
submodel_type=SubModelType.VAE,
),
),
unet=UNetField(unet=unet, scheduler=scheduler, loras=[]),
clip2=CLIPField(tokenizer=tokenizer2, text_encoder=text_encoder2, loras=[], skipped_layers=0),
vae=VAEField(vae=vae),
)

View File

@@ -9,18 +9,15 @@ from invokeai.app.invocations.baseinvocation import (
invocation_output,
)
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
class T2IAdapterModelField(BaseModel):
key: str = Field(description="Model record key for the T2I-Adapter model")
class T2IAdapterField(BaseModel):
image: ImageField = Field(description="The T2I-Adapter image prompt.")
t2i_adapter_model: T2IAdapterModelField = Field(description="The T2I-Adapter model to use.")
t2i_adapter_model: ModelIdentifierField = Field(description="The T2I-Adapter model to use.")
weight: Union[float, list[float]] = Field(default=1, description="The weight given to the T2I-Adapter")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the T2I-Adapter is first applied (% of total steps)"
@@ -55,11 +52,12 @@ class T2IAdapterInvocation(BaseInvocation):
# Inputs
image: ImageField = InputField(description="The IP-Adapter image prompt.")
t2i_adapter_model: T2IAdapterModelField = InputField(
t2i_adapter_model: ModelIdentifierField = InputField(
description="The T2I-Adapter model.",
title="T2I-Adapter Model",
input=Input.Direct,
ui_order=-1,
ui_type=UIType.T2IAdapterModel,
)
weight: Union[float, list[float]] = InputField(
default=1, ge=0, description="The weight given to the T2I-Adapter", title="Weight"

View File

@@ -17,7 +17,8 @@ from argparse import ArgumentParser
from pathlib import Path
from typing import Any, ClassVar, Dict, List, Literal, Optional, Union, get_args, get_origin, get_type_hints
from omegaconf import DictConfig, ListConfig, OmegaConf
from omegaconf import DictConfig, DictKeyType, ListConfig, OmegaConf
from pydantic import BaseModel
from pydantic_settings import BaseSettings, SettingsConfigDict
from invokeai.app.services.config.config_common import PagingArgumentParser, int_or_float_or_str
@@ -62,6 +63,22 @@ class InvokeAISettings(BaseSettings):
assert isinstance(category, str)
if category not in field_dict[type]:
field_dict[type][category] = {}
if isinstance(value, BaseModel):
dump = value.model_dump(exclude_defaults=True, exclude_unset=True, exclude_none=True)
field_dict[type][category][name] = dump
continue
if isinstance(value, list):
if not value or len(value) == 0:
continue
primitive = isinstance(value[0], get_args(DictKeyType))
if not primitive:
val_list: List[Dict[str, Any]] = []
for list_val in value:
if isinstance(list_val, BaseModel):
dump = list_val.model_dump(exclude_defaults=True, exclude_unset=True, exclude_none=True)
val_list.append(dump)
field_dict[type][category][name] = val_list
continue
# keep paths as strings to make it easier to read
field_dict[type][category][name] = str(value) if isinstance(value, Path) else value
conf = OmegaConf.create(field_dict)

View File

@@ -170,11 +170,12 @@ two configs are kept in separate sections of the config file:
from __future__ import annotations
import os
import re
from pathlib import Path
from typing import Any, ClassVar, Dict, List, Literal, Optional
from omegaconf import DictConfig, OmegaConf
from pydantic import Field
from pydantic import BaseModel, Field, field_validator
from pydantic.config import JsonDict
from pydantic_settings import SettingsConfigDict
@@ -196,17 +197,87 @@ class Categories(object):
Paths: JsonDict = {"category": "Paths"}
Logging: JsonDict = {"category": "Logging"}
Development: JsonDict = {"category": "Development"}
Other: JsonDict = {"category": "Other"}
CLIArgs: JsonDict = {"category": "CLIArgs"}
ModelInstall: JsonDict = {"category": "Model Install"}
ModelCache: JsonDict = {"category": "Model Cache"}
Device: JsonDict = {"category": "Device"}
Generation: JsonDict = {"category": "Generation"}
Queue: JsonDict = {"category": "Queue"}
Nodes: JsonDict = {"category": "Nodes"}
MemoryPerformance: JsonDict = {"category": "Memory/Performance"}
Deprecated: JsonDict = {"category": "Deprecated"}
class URLRegexToken(BaseModel):
url_regex: str = Field(description="Regular expression to match against the URL")
token: str = Field(description="Token to use when the URL matches the regex")
@field_validator("url_regex")
@classmethod
def validate_url_regex(cls, v: str) -> str:
"""Validate that the value is a valid regex."""
try:
re.compile(v)
except re.error as e:
raise ValueError(f"Invalid regex: {e}")
return v
class InvokeAIAppConfig(InvokeAISettings):
"""Configuration object for InvokeAI App."""
"""Invoke App Configuration
Attributes:
host: **Web Server**: IP address to bind to. Use `0.0.0.0` to serve to your local network.
port: **Web Server**: Port to bind to.
allow_origins: **Web Server**: Allowed CORS origins.
allow_credentials: **Web Server**: Allow CORS credentials.
allow_methods: **Web Server**: Methods allowed for CORS.
allow_headers: **Web Server**: Headers allowed for CORS.
ssl_certfile: **Web Server**: SSL certificate file for HTTPS.
ssl_keyfile: **Web Server**: SSL key file for HTTPS.
esrgan: **Features**: Enables or disables the upscaling code.
internet_available: **Features**: If true, attempt to download models on the fly; otherwise only use local models.
log_tokenization: **Features**: Enable logging of parsed prompt tokens.
patchmatch: **Features**: Enable patchmatch inpaint code.
ignore_missing_core_models: **Features**: Ignore missing core models on startup. If `True`, the app will attempt to download missing models on startup.
root: **Paths**: The InvokeAI runtime root directory.
autoimport_dir: **Paths**: Path to a directory of models files to be imported on startup.
models_dir: **Paths**: Path to the models directory.
convert_cache_dir: **Paths**: Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.
legacy_conf_dir: **Paths**: Path to directory of legacy checkpoint config files.
db_dir: **Paths**: Path to InvokeAI databases directory.
outdir: **Paths**: Path to directory for outputs.
custom_nodes_dir: **Paths**: Path to directory for custom nodes.
from_file: **Paths**: Take command input from the indicated file (command-line client only).
log_handlers: **Logging**: Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".
log_format: **Logging**: Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style.
log_level: **Logging**: Emit logging messages at this level or higher.
log_sql: **Logging**: Log SQL queries. `log_level` must be `debug` for this to do anything. Extremely verbose.
use_memory_db: **Development**: Use in-memory database. Useful for development.
dev_reload: **Development**: Automatically reload when Python sources are changed. Does not reload node definitions.
profile_graphs: **Development**: Enable graph profiling using `cProfile`.
profile_prefix: **Development**: An optional prefix for profile output files.
profiles_dir: **Development**: Path to profiles output directory.
version: **CLIArgs**: CLI arg - show InvokeAI version and exit.
skip_model_hash: **Model Install**: Skip model hashing, instead assigning a UUID to models. Useful when using a memory db to reduce model installation time, or if you don't care about storing stable hashes for models.
remote_api_tokens: **Model Install**: List of regular expression and token pairs used when downloading models from URLs. The download URL is tested against the regex, and if it matches, the token is provided in as a Bearer token.
ram: **Model Cache**: Maximum memory amount used by memory model cache for rapid switching (GB).
vram: **Model Cache**: Amount of VRAM reserved for model storage (GB)
convert_cache: **Model Cache**: Maximum size of on-disk converted models cache (GB)
lazy_offload: **Model Cache**: Keep models in VRAM until their space is needed.
log_memory_usage: **Model Cache**: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.
device: **Device**: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.
precision: **Device**: Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.
sequential_guidance: **Generation**: Whether to calculate guidance in serial instead of in parallel, lowering memory requirements.
attention_type: **Generation**: Attention type.
attention_slice_size: **Generation**: Slice size, valid when attention_type=="sliced".
force_tiled_decode: **Generation**: Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).
png_compress_level: **Generation**: The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.
max_queue_size: **Queue**: Maximum number of items in the session queue.
allow_nodes: **Nodes**: List of nodes to allow. Omit to allow all.
deny_nodes: **Nodes**: List of nodes to deny. Omit to deny none.
node_cache_size: **Nodes**: How many cached nodes to keep in memory.
"""
singleton_config: ClassVar[Optional[InvokeAIAppConfig]] = None
singleton_init: ClassVar[Optional[Dict[str, Any]]] = None
@@ -215,91 +286,98 @@ class InvokeAIAppConfig(InvokeAISettings):
type: Literal["InvokeAI"] = "InvokeAI"
# WEB
host : str = Field(default="127.0.0.1", description="IP address to bind to", json_schema_extra=Categories.WebServer)
port : int = Field(default=9090, description="Port to bind to", json_schema_extra=Categories.WebServer)
allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", json_schema_extra=Categories.WebServer)
allow_credentials : bool = Field(default=True, description="Allow CORS credentials", json_schema_extra=Categories.WebServer)
allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", json_schema_extra=Categories.WebServer)
allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", json_schema_extra=Categories.WebServer)
host : str = Field(default="127.0.0.1", description="IP address to bind to. Use `0.0.0.0` to serve to your local network.", json_schema_extra=Categories.WebServer)
port : int = Field(default=9090, description="Port to bind to.", json_schema_extra=Categories.WebServer)
allow_origins : List[str] = Field(default=[], description="Allowed CORS origins.", json_schema_extra=Categories.WebServer)
allow_credentials : bool = Field(default=True, description="Allow CORS credentials.", json_schema_extra=Categories.WebServer)
allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS.", json_schema_extra=Categories.WebServer)
allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS.", json_schema_extra=Categories.WebServer)
# SSL options correspond to https://www.uvicorn.org/settings/#https
ssl_certfile : Optional[Path] = Field(default=None, description="SSL certificate file (for HTTPS)", json_schema_extra=Categories.WebServer)
ssl_keyfile : Optional[Path] = Field(default=None, description="SSL key file", json_schema_extra=Categories.WebServer)
ssl_certfile : Optional[Path] = Field(default=None, description="SSL certificate file for HTTPS.", json_schema_extra=Categories.WebServer)
ssl_keyfile : Optional[Path] = Field(default=None, description="SSL key file for HTTPS.", json_schema_extra=Categories.WebServer)
# FEATURES
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", json_schema_extra=Categories.Features)
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", json_schema_extra=Categories.Features)
esrgan : bool = Field(default=True, description="Enables or disables the upscaling code.", json_schema_extra=Categories.Features)
# TODO(psyche): This is not used anywhere.
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models.", json_schema_extra=Categories.Features)
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", json_schema_extra=Categories.Features)
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", json_schema_extra=Categories.Features)
ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert', json_schema_extra=Categories.Features)
patchmatch : bool = Field(default=True, description="Enable patchmatch inpaint code.", json_schema_extra=Categories.Features)
ignore_missing_core_models : bool = Field(default=False, description='Ignore missing core models on startup. If `True`, the app will attempt to download missing models on startup.', json_schema_extra=Categories.Features)
# PATHS
root : Optional[Path] = Field(default=None, description='InvokeAI runtime root directory', json_schema_extra=Categories.Paths)
root : Optional[Path] = Field(default=None, description='The InvokeAI runtime root directory.', json_schema_extra=Categories.Paths)
autoimport_dir : Path = Field(default=Path('autoimport'), description='Path to a directory of models files to be imported on startup.', json_schema_extra=Categories.Paths)
models_dir : Path = Field(default=Path('models'), description='Path to the models directory', json_schema_extra=Categories.Paths)
convert_cache_dir : Path = Field(default=Path('models/.cache'), description='Path to the converted models cache directory', json_schema_extra=Categories.Paths)
legacy_conf_dir : Path = Field(default=Path('configs/stable-diffusion'), description='Path to directory of legacy checkpoint config files', json_schema_extra=Categories.Paths)
db_dir : Path = Field(default=Path('databases'), description='Path to InvokeAI databases directory', json_schema_extra=Categories.Paths)
outdir : Path = Field(default=Path('outputs'), description='Default folder for output images', json_schema_extra=Categories.Paths)
use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', json_schema_extra=Categories.Paths)
custom_nodes_dir : Path = Field(default=Path('nodes'), description='Path to directory for custom nodes', json_schema_extra=Categories.Paths)
from_file : Optional[Path] = Field(default=None, description='Take command input from the indicated file (command-line client only)', json_schema_extra=Categories.Paths)
models_dir : Path = Field(default=Path('models'), description='Path to the models directory.', json_schema_extra=Categories.Paths)
convert_cache_dir : Path = Field(default=Path('models/.cache'), description='Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.', json_schema_extra=Categories.Paths)
legacy_conf_dir : Path = Field(default=Path('configs/stable-diffusion'), description='Path to directory of legacy checkpoint config files.', json_schema_extra=Categories.Paths)
db_dir : Path = Field(default=Path('databases'), description='Path to InvokeAI databases directory.', json_schema_extra=Categories.Paths)
outdir : Path = Field(default=Path('outputs'), description='Path to directory for outputs.', json_schema_extra=Categories.Paths)
custom_nodes_dir : Path = Field(default=Path('nodes'), description='Path to directory for custom nodes.', json_schema_extra=Categories.Paths)
# TODO(psyche): This is not used anywhere.
from_file : Optional[Path] = Field(default=None, description='Take command input from the indicated file (command-line client only).', json_schema_extra=Categories.Paths)
# LOGGING
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', json_schema_extra=Categories.Logging)
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".', json_schema_extra=Categories.Logging)
# note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues
log_format : Literal['plain', 'color', 'syslog', 'legacy'] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', json_schema_extra=Categories.Logging)
log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher", json_schema_extra=Categories.Logging)
log_sql : bool = Field(default=False, description="Log SQL queries", json_schema_extra=Categories.Logging)
log_format : Literal['plain', 'color', 'syslog', 'legacy'] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style.', json_schema_extra=Categories.Logging)
log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher.", json_schema_extra=Categories.Logging)
log_sql : bool = Field(default=False, description="Log SQL queries. `log_level` must be `debug` for this to do anything. Extremely verbose.", json_schema_extra=Categories.Logging)
# Development
dev_reload : bool = Field(default=False, description="Automatically reload when Python sources are changed.", json_schema_extra=Categories.Development)
profile_graphs : bool = Field(default=False, description="Enable graph profiling", json_schema_extra=Categories.Development)
use_memory_db : bool = Field(default=False, description='Use in-memory database. Useful for development.', json_schema_extra=Categories.Development)
dev_reload : bool = Field(default=False, description="Automatically reload when Python sources are changed. Does not reload node definitions.", json_schema_extra=Categories.Development)
profile_graphs : bool = Field(default=False, description="Enable graph profiling using `cProfile`.", json_schema_extra=Categories.Development)
profile_prefix : Optional[str] = Field(default=None, description="An optional prefix for profile output files.", json_schema_extra=Categories.Development)
profiles_dir : Path = Field(default=Path('profiles'), description="Directory for graph profiles", json_schema_extra=Categories.Development)
skip_model_hash : bool = Field(default=False, description="Skip model hashing, instead assigning a UUID to models. Useful when using a memory db to reduce startup time.", json_schema_extra=Categories.Development)
profiles_dir : Path = Field(default=Path('profiles'), description="Path to profiles output directory.", json_schema_extra=Categories.Development)
version : bool = Field(default=False, description="Show InvokeAI version and exit", json_schema_extra=Categories.Other)
version : bool = Field(default=False, description="CLI arg - show InvokeAI version and exit.", json_schema_extra=Categories.CLIArgs)
# CACHE
ram : float = Field(default=DEFAULT_RAM_CACHE, gt=0, description="Maximum memory amount used by model cache for rapid switching (floating point number, GB)", json_schema_extra=Categories.ModelCache, )
vram : float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (floating point number, GB)", json_schema_extra=Categories.ModelCache, )
ram : float = Field(default=DEFAULT_RAM_CACHE, gt=0, description="Maximum memory amount used by memory model cache for rapid switching (GB).", json_schema_extra=Categories.ModelCache, )
vram : float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (GB)", json_schema_extra=Categories.ModelCache, )
convert_cache : float = Field(default=DEFAULT_CONVERT_CACHE, ge=0, description="Maximum size of on-disk converted models cache (GB)", json_schema_extra=Categories.ModelCache)
lazy_offload : bool = Field(default=True, description="Keep models in VRAM until their space is needed", json_schema_extra=Categories.ModelCache, )
lazy_offload : bool = Field(default=True, description="Keep models in VRAM until their space is needed.", json_schema_extra=Categories.ModelCache, )
log_memory_usage : bool = Field(default=False, description="If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.", json_schema_extra=Categories.ModelCache)
# DEVICE
device : Literal["auto", "cpu", "cuda", "cuda:1", "mps"] = Field(default="auto", description="Generation device", json_schema_extra=Categories.Device)
precision : Literal["auto", "float16", "bfloat16", "float32", "autocast"] = Field(default="auto", description="Floating point precision", json_schema_extra=Categories.Device)
device : Literal["auto", "cpu", "cuda", "cuda:1", "mps"] = Field(default="auto", description="Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.", json_schema_extra=Categories.Device)
precision : Literal["auto", "float16", "bfloat16", "float32", "autocast"] = Field(default="auto", description="Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.", json_schema_extra=Categories.Device)
# GENERATION
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", json_schema_extra=Categories.Generation)
attention_type : Literal["auto", "normal", "xformers", "sliced", "torch-sdp"] = Field(default="auto", description="Attention type", json_schema_extra=Categories.Generation)
attention_slice_size: Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8] = Field(default="auto", description='Slice size, valid when attention_type=="sliced"', json_schema_extra=Categories.Generation)
force_tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", json_schema_extra=Categories.Generation)
png_compress_level : int = Field(default=1, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = fastest, largest filesize, 9 = slowest, smallest filesize", json_schema_extra=Categories.Generation)
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements.", json_schema_extra=Categories.Generation)
attention_type : Literal["auto", "normal", "xformers", "sliced", "torch-sdp"] = Field(default="auto", description="Attention type.", json_schema_extra=Categories.Generation)
attention_slice_size: Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8] = Field(default="auto", description='Slice size, valid when attention_type=="sliced".', json_schema_extra=Categories.Generation)
force_tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).", json_schema_extra=Categories.Generation)
png_compress_level : int = Field(default=1, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.", json_schema_extra=Categories.Generation)
# QUEUE
max_queue_size : int = Field(default=10000, gt=0, description="Maximum number of items in the session queue", json_schema_extra=Categories.Queue)
max_queue_size : int = Field(default=10000, gt=0, description="Maximum number of items in the session queue.", json_schema_extra=Categories.Queue)
# NODES
allow_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to allow. Omit to allow all.", json_schema_extra=Categories.Nodes)
deny_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to deny. Omit to deny none.", json_schema_extra=Categories.Nodes)
node_cache_size : int = Field(default=512, description="How many cached nodes to keep in memory", json_schema_extra=Categories.Nodes)
node_cache_size : int = Field(default=512, description="How many cached nodes to keep in memory.", json_schema_extra=Categories.Nodes)
# MODEL IMPORT
civitai_api_key : Optional[str] = Field(default=os.environ.get("CIVITAI_API_KEY"), description="API key for CivitAI", json_schema_extra=Categories.Other)
# MODEL INSTALL
skip_model_hash : bool = Field(default=False, description="Skip model hashing, instead assigning a UUID to models. Useful when using a memory db to reduce model installation time, or if you don't care about storing stable hashes for models.", json_schema_extra=Categories.ModelInstall)
remote_api_tokens : Optional[list[URLRegexToken]] = Field(
default=None,
description="List of regular expression and token pairs used when downloading models from URLs. The download URL is tested against the regex, and if it matches, the token is provided in as a Bearer token.",
json_schema_extra=Categories.ModelInstall
)
# TODO(psyche): Can we just remove these then?
# DEPRECATED FIELDS - STILL HERE IN ORDER TO OBTAN VALUES FROM PRE-3.1 CONFIG FILES
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", json_schema_extra=Categories.MemoryPerformance)
max_cache_size : Optional[float] = Field(default=None, gt=0, description="Maximum memory amount used by model cache for rapid switching", json_schema_extra=Categories.MemoryPerformance)
max_vram_cache_size : Optional[float] = Field(default=None, ge=0, description="Amount of VRAM reserved for model storage", json_schema_extra=Categories.MemoryPerformance)
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", json_schema_extra=Categories.MemoryPerformance)
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", json_schema_extra=Categories.MemoryPerformance)
lora_dir : Optional[Path] = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', json_schema_extra=Categories.Paths)
embedding_dir : Optional[Path] = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', json_schema_extra=Categories.Paths)
controlnet_dir : Optional[Path] = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', json_schema_extra=Categories.Paths)
conf_path : Path = Field(default=Path('configs/models.yaml'), description='Path to models definition file', json_schema_extra=Categories.Paths)
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", json_schema_extra=Categories.Deprecated)
max_cache_size : Optional[float] = Field(default=None, gt=0, description="Maximum memory amount used by model cache for rapid switching", json_schema_extra=Categories.Deprecated)
max_vram_cache_size : Optional[float] = Field(default=None, ge=0, description="Amount of VRAM reserved for model storage", json_schema_extra=Categories.Deprecated)
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", json_schema_extra=Categories.Deprecated)
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", json_schema_extra=Categories.Deprecated)
lora_dir : Optional[Path] = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', json_schema_extra=Categories.Deprecated)
embedding_dir : Optional[Path] = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', json_schema_extra=Categories.Deprecated)
controlnet_dir : Optional[Path] = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', json_schema_extra=Categories.Deprecated)
conf_path : Path = Field(default=Path('configs/models.yaml'), description='Path to models definition file', json_schema_extra=Categories.Deprecated)
# this is not referred to in the source code and can be removed entirely
#free_gpu_mem : Optional[bool] = Field(default=None, description="If true, purge model from GPU after each generation.", json_schema_extra=Categories.MemoryPerformance)
@@ -477,6 +555,53 @@ class InvokeAIAppConfig(InvokeAISettings):
"""Choose the runtime root directory when not specified on command line or init file."""
return _find_root()
@staticmethod
def generate_docstrings() -> str:
"""Helper function for mkdocs. Generates a docstring for the InvokeAIAppConfig class.
You shouldn't run this manually. Instead, run `scripts/update-config-docstring.py` to update the docstring.
A makefile target is also available: `make update-config-docstring`.
See that script for more information about why this is necessary.
"""
docstring = ' """Invoke App Configuration\n\n'
docstring += " Attributes:"
field_descriptions: dict[str, list[str]] = {}
for k, v in InvokeAIAppConfig.model_fields.items():
if not isinstance(v.json_schema_extra, dict):
# Should never happen
continue
category = v.json_schema_extra.get("category", None)
if not isinstance(category, str) or category == "Deprecated":
continue
if not field_descriptions.get(category):
field_descriptions[category] = []
field_descriptions[category].append(f" {k}: **{category}**: {v.description}")
for c in [
"Web Server",
"Features",
"Paths",
"Logging",
"Development",
"CLIArgs",
"Model Install",
"Model Cache",
"Device",
"Generation",
"Queue",
"Nodes",
]:
docstring += "\n"
docstring += "\n".join(field_descriptions[c])
docstring += '\n """'
return docstring
def get_invokeai_config(**kwargs: Any) -> InvokeAIAppConfig:
"""Legacy function which returns InvokeAIAppConfig.get_config()."""

View File

@@ -41,8 +41,9 @@ class InvocationCacheBase(ABC):
"""Clears the cache"""
pass
@staticmethod
@abstractmethod
def create_key(self, invocation: BaseInvocation) -> int:
def create_key(invocation: BaseInvocation) -> int:
"""Gets the key for the invocation's cache item"""
pass

View File

@@ -61,9 +61,7 @@ class MemoryInvocationCache(InvocationCacheBase):
self._delete_oldest_access(number_to_delete)
self._cache[key] = CachedItem(
invocation_output,
invocation_output.model_dump_json(
warnings=False, exclude_defaults=True, exclude_unset=True, include={"type"}
),
invocation_output.model_dump_json(warnings=False, exclude_defaults=True, exclude_unset=True),
)
def _delete_oldest_access(self, number_to_delete: int) -> None:
@@ -81,7 +79,7 @@ class MemoryInvocationCache(InvocationCacheBase):
with self._lock:
return self._delete(key)
def clear(self, *args, **kwargs) -> None:
def clear(self) -> None:
with self._lock:
if self._max_cache_size == 0:
return

View File

@@ -25,6 +25,7 @@ if TYPE_CHECKING:
from .images.images_base import ImageServiceABC
from .invocation_cache.invocation_cache_base import InvocationCacheBase
from .invocation_stats.invocation_stats_base import InvocationStatsServiceBase
from .model_images.model_images_base import ModelImageFileStorageBase
from .model_manager.model_manager_base import ModelManagerServiceBase
from .names.names_base import NameServiceBase
from .session_processor.session_processor_base import SessionProcessorBase
@@ -49,6 +50,7 @@ class InvocationServices:
image_files: "ImageFileStorageBase",
image_records: "ImageRecordStorageBase",
logger: "Logger",
model_images: "ModelImageFileStorageBase",
model_manager: "ModelManagerServiceBase",
download_queue: "DownloadQueueServiceBase",
performance_statistics: "InvocationStatsServiceBase",
@@ -72,6 +74,7 @@ class InvocationServices:
self.image_files = image_files
self.image_records = image_records
self.logger = logger
self.model_images = model_images
self.model_manager = model_manager
self.download_queue = download_queue
self.performance_statistics = performance_statistics

View File

@@ -0,0 +1,33 @@
from abc import ABC, abstractmethod
from pathlib import Path
from PIL.Image import Image as PILImageType
class ModelImageFileStorageBase(ABC):
"""Low-level service responsible for storing and retrieving image files."""
@abstractmethod
def get(self, model_key: str) -> PILImageType:
"""Retrieves a model image as PIL Image."""
pass
@abstractmethod
def get_path(self, model_key: str) -> Path:
"""Gets the internal path to a model image."""
pass
@abstractmethod
def get_url(self, model_key: str) -> str | None:
"""Gets the URL to fetch a model image."""
pass
@abstractmethod
def save(self, image: PILImageType, model_key: str) -> None:
"""Saves a model image."""
pass
@abstractmethod
def delete(self, model_key: str) -> None:
"""Deletes a model image."""
pass

View File

@@ -0,0 +1,20 @@
# TODO: Should these excpetions subclass existing python exceptions?
class ModelImageFileNotFoundException(Exception):
"""Raised when an image file is not found in storage."""
def __init__(self, message="Model image file not found"):
super().__init__(message)
class ModelImageFileSaveException(Exception):
"""Raised when an image cannot be saved."""
def __init__(self, message="Model image file not saved"):
super().__init__(message)
class ModelImageFileDeleteException(Exception):
"""Raised when an image cannot be deleted."""
def __init__(self, message="Model image file not deleted"):
super().__init__(message)

View File

@@ -0,0 +1,85 @@
from pathlib import Path
from PIL import Image
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.invoker import Invoker
from invokeai.app.util.misc import uuid_string
from invokeai.app.util.thumbnails import make_thumbnail
from .model_images_base import ModelImageFileStorageBase
from .model_images_common import (
ModelImageFileDeleteException,
ModelImageFileNotFoundException,
ModelImageFileSaveException,
)
class ModelImageFileStorageDisk(ModelImageFileStorageBase):
"""Stores images on disk"""
def __init__(self, model_images_folder: Path):
self._model_images_folder = model_images_folder
self._validate_storage_folders()
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
def get(self, model_key: str) -> PILImageType:
try:
path = self.get_path(model_key)
if not self._validate_path(path):
raise ModelImageFileNotFoundException
return Image.open(path)
except FileNotFoundError as e:
raise ModelImageFileNotFoundException from e
def save(self, image: PILImageType, model_key: str) -> None:
try:
self._validate_storage_folders()
image_path = self._model_images_folder / (model_key + ".webp")
thumbnail = make_thumbnail(image, 256)
thumbnail.save(image_path, format="webp")
except Exception as e:
raise ModelImageFileSaveException from e
def get_path(self, model_key: str) -> Path:
path = self._model_images_folder / (model_key + ".webp")
return path
def get_url(self, model_key: str) -> str | None:
path = self.get_path(model_key)
if not self._validate_path(path):
return
url = self._invoker.services.urls.get_model_image_url(model_key)
# The image URL never changes, so we must add random query string to it to prevent caching
url += f"?{uuid_string()}"
return url
def delete(self, model_key: str) -> None:
try:
path = self.get_path(model_key)
if not self._validate_path(path):
raise ModelImageFileNotFoundException
send2trash(path)
except Exception as e:
raise ModelImageFileDeleteException from e
def _validate_path(self, path: Path) -> bool:
"""Validates the path given for an image."""
return path.exists()
def _validate_storage_folders(self) -> None:
"""Checks if the required folders exist and create them if they don't"""
self._model_images_folder.mkdir(parents=True, exist_ok=True)

View File

@@ -1,7 +1,6 @@
"""Initialization file for model install service package."""
from .model_install_base import (
CivitaiModelSource,
HFModelSource,
InstallStatus,
LocalModelSource,
@@ -23,5 +22,4 @@ __all__ = [
"LocalModelSource",
"HFModelSource",
"URLModelSource",
"CivitaiModelSource",
]

View File

@@ -91,21 +91,6 @@ class LocalModelSource(StringLikeSource):
return Path(self.path).as_posix()
class CivitaiModelSource(StringLikeSource):
"""A Civitai version id, with optional variant and access token."""
version_id: int
variant: Optional[ModelRepoVariant] = None
access_token: Optional[str] = None
type: Literal["civitai"] = "civitai"
def __str__(self) -> str:
"""Return string version of repoid when string rep needed."""
base: str = str(self.version_id)
base += f" ({self.variant})" if self.variant else ""
return base
class HFModelSource(StringLikeSource):
"""
A HuggingFace repo_id with optional variant, sub-folder and access token.
@@ -146,14 +131,11 @@ class URLModelSource(StringLikeSource):
return str(self.url)
ModelSource = Annotated[
Union[LocalModelSource, HFModelSource, CivitaiModelSource, URLModelSource], Field(discriminator="type")
]
ModelSource = Annotated[Union[LocalModelSource, HFModelSource, URLModelSource], Field(discriminator="type")]
MODEL_SOURCE_TO_TYPE_MAP = {
URLModelSource: ModelSourceType.Url,
HFModelSource: ModelSourceType.HFRepoID,
CivitaiModelSource: ModelSourceType.CivitAI,
LocalModelSource: ModelSourceType.Path,
}

View File

@@ -12,6 +12,7 @@ from tempfile import mkdtemp
from typing import Any, Dict, List, Optional, Set, Union
from huggingface_hub import HfFolder
from omegaconf import DictConfig, OmegaConf
from pydantic.networks import AnyHttpUrl
from requests import Session
@@ -33,12 +34,11 @@ from invokeai.backend.model_manager.config import (
)
from invokeai.backend.model_manager.metadata import (
AnyModelRepoMetadata,
CivitaiMetadataFetch,
HuggingFaceMetadataFetch,
ModelMetadataWithFiles,
RemoteModelFile,
)
from invokeai.backend.model_manager.metadata.metadata_base import CivitaiMetadata, HuggingFaceMetadata
from invokeai.backend.model_manager.metadata.metadata_base import HuggingFaceMetadata
from invokeai.backend.model_manager.probe import ModelProbe
from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.util import Chdir, InvokeAILogger
@@ -46,7 +46,6 @@ from invokeai.backend.util.devices import choose_precision, choose_torch_device
from .model_install_base import (
MODEL_SOURCE_TO_TYPE_MAP,
CivitaiModelSource,
HFModelSource,
InstallStatus,
LocalModelSource,
@@ -117,6 +116,7 @@ class ModelInstallService(ModelInstallServiceBase):
raise Exception("Attempt to start the installer service twice")
self._start_installer_thread()
self._remove_dangling_install_dirs()
self._migrate_yaml()
self.sync_to_config()
def stop(self, invoker: Optional[Invoker] = None) -> None:
@@ -199,9 +199,16 @@ class ModelInstallService(ModelInstallServiceBase):
access_token=access_token,
)
elif re.match(r"^https?://[^/]+", source):
# Pull the token from config if it exists and matches the URL
_token = access_token
if _token is None:
for pair in self.app_config.remote_api_tokens or []:
if re.search(pair.url_regex, source):
_token = pair.token
break
source_obj = URLModelSource(
url=AnyHttpUrl(source),
access_token=access_token,
access_token=_token,
)
else:
raise ValueError(f"Unsupported model source: '{source}'")
@@ -216,8 +223,6 @@ class ModelInstallService(ModelInstallServiceBase):
if isinstance(source, LocalModelSource):
install_job = self._import_local_model(source, config)
self._install_queue.put(install_job) # synchronously install
elif isinstance(source, CivitaiModelSource):
install_job = self._import_from_civitai(source, config)
elif isinstance(source, HFModelSource):
install_job = self._import_from_hf(source, config)
elif isinstance(source, URLModelSource):
@@ -284,10 +289,52 @@ class ModelInstallService(ModelInstallServiceBase):
self._logger.info(f"{len(installed)} new models registered")
self._logger.info("Model installer (re)initialized")
def _migrate_yaml(self) -> None:
db_models = self.record_store.all_models()
try:
yaml = self._get_yaml()
except OSError:
return
yaml_metadata = yaml.pop("__metadata__")
yaml_version = yaml_metadata.get("version")
if yaml_version != "3.0.0":
raise ValueError(
f"Attempted migration of unsupported `models.yaml` v{yaml_version}. Only v3.0.0 is supported. Exiting."
)
self._logger.info(
f"Starting one-time migration of {len(yaml.items())} models from `models.yaml` to database. This may take a few minutes."
)
if len(db_models) == 0 and len(yaml.items()) != 0:
for model_key, stanza in yaml.items():
_, _, model_name = str(model_key).split("/")
model_path = Path(stanza["path"])
if not model_path.is_absolute():
model_path = self._app_config.models_path / model_path
model_path = model_path.resolve()
config: dict[str, Any] = {}
config["name"] = model_name
config["description"] = stanza.get("description")
config["config_path"] = stanza.get("config")
try:
id = self.register_path(model_path=model_path, config=config)
self._logger.info(f"Migrated {model_name} with id {id}")
except Exception as e:
self._logger.warning(f"Model at {model_path} could not be migrated: {e}")
# Rename `models.yaml` to `models.yaml.bak` to prevent re-migration
yaml_path = self._app_config.model_conf_path
yaml_path.rename(yaml_path.with_suffix(".yaml.bak"))
def scan_directory(self, scan_dir: Path, install: bool = False) -> List[str]: # noqa D102
self._cached_model_paths = {Path(x.path).absolute() for x in self.record_store.all_models()}
callback = self._scan_install if install else self._scan_register
search = ModelSearch(on_model_found=callback, config=self._app_config)
search = ModelSearch(on_model_found=callback)
self._models_installed.clear()
search.search(scan_dir)
return list(self._models_installed)
@@ -299,7 +346,7 @@ class ModelInstallService(ModelInstallServiceBase):
"""Unregister the model. Delete its files only if they are within our models directory."""
model = self.record_store.get_model(key)
models_dir = self.app_config.models_path
model_path = models_dir / model.path
model_path = Path(model.path)
if model_path.is_relative_to(models_dir):
self.unconditionally_delete(key)
else:
@@ -307,11 +354,11 @@ class ModelInstallService(ModelInstallServiceBase):
def unconditionally_delete(self, key: str) -> None: # noqa D102
model = self.record_store.get_model(key)
path = self.app_config.models_path / model.path
if path.is_dir():
rmtree(path)
model_path = Path(model.path)
if model_path.is_dir():
rmtree(model_path)
else:
path.unlink()
model_path.unlink()
self.unregister(key)
def download_and_cache(
@@ -381,10 +428,8 @@ class ModelInstallService(ModelInstallServiceBase):
job.config_in["source"] = str(job.source)
job.config_in["source_type"] = MODEL_SOURCE_TO_TYPE_MAP[job.source.__class__]
# enter the metadata, if there is any
if isinstance(job.source_metadata, (CivitaiMetadata, HuggingFaceMetadata)):
if isinstance(job.source_metadata, (HuggingFaceMetadata)):
job.config_in["source_api_response"] = job.source_metadata.api_response
if isinstance(job.source_metadata, CivitaiMetadata) and job.source_metadata.trigger_phrases:
job.config_in["trigger_phrases"] = job.source_metadata.trigger_phrases
if job.inplace:
key = self.register_path(job.local_path, job.config_in)
@@ -450,7 +495,7 @@ class ModelInstallService(ModelInstallServiceBase):
self._logger.info(f"Scanning {self._app_config.models_path} for new and orphaned models")
for cur_base_model in BaseModelType:
for cur_model_type in ModelType:
models_dir = Path(cur_base_model.value, cur_model_type.value)
models_dir = self._app_config.models_path / Path(cur_base_model.value, cur_model_type.value)
installed.update(self.scan_directory(models_dir))
self._logger.info(f"{len(installed)} new models registered; {len(defunct_models)} unregistered")
@@ -469,13 +514,20 @@ class ModelInstallService(ModelInstallServiceBase):
old_path = Path(model.path)
models_dir = self.app_config.models_path
if not old_path.is_relative_to(models_dir):
try:
old_path.relative_to(models_dir)
return model
except ValueError:
pass
new_path = models_dir / model.base.value / model.type.value / old_path.name
if old_path == new_path:
return model
new_path = models_dir / model.base.value / model.type.value / model.name
self._logger.info(f"Moving {model.name} to {new_path}.")
new_path = self._move_model(old_path, new_path)
model.path = new_path.relative_to(models_dir).as_posix()
model.path = new_path.as_posix()
self.record_store.update_model(key, ModelRecordChanges(path=model.path))
return model
@@ -538,17 +590,14 @@ class ModelInstallService(ModelInstallServiceBase):
info = info or ModelProbe.probe(model_path, config)
model_path = model_path.absolute()
if model_path.is_relative_to(self.app_config.models_path):
model_path = model_path.relative_to(self.app_config.models_path)
model_path = model_path.resolve()
info.path = model_path.as_posix()
# add 'main' specific fields
if isinstance(info, CheckpointConfigBase):
# make config relative to our root
legacy_conf = (self.app_config.root_dir / self.app_config.legacy_conf_dir / info.config_path).resolve()
info.config_path = legacy_conf.relative_to(self.app_config.root_dir).as_posix()
info.config_path = legacy_conf.as_posix()
self.record_store.add_model(info)
return info.key
@@ -558,6 +607,16 @@ class ModelInstallService(ModelInstallServiceBase):
self._next_job_id += 1
return id
# --------------------------------------------------------------------------------------------
# Internal functions that manage the old yaml config
# --------------------------------------------------------------------------------------------
def _get_yaml(self) -> DictConfig:
"""Fetch the models.yaml DictConfig for this installation."""
yaml_path = self._app_config.model_conf_path
omegaconf = OmegaConf.load(yaml_path)
assert isinstance(omegaconf, DictConfig)
return omegaconf
@staticmethod
def _guess_variant() -> Optional[ModelRepoVariant]:
"""Guess the best HuggingFace variant type to download."""
@@ -573,16 +632,6 @@ class ModelInstallService(ModelInstallServiceBase):
inplace=source.inplace or False,
)
def _import_from_civitai(self, source: CivitaiModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
if not source.access_token:
self._logger.info("No Civitai access token provided; some models may not be downloadable.")
metadata = CivitaiMetadataFetch(self._session, self.app_config.get_config().civitai_api_key).from_id(
str(source.version_id)
)
assert isinstance(metadata, ModelMetadataWithFiles)
remote_files = metadata.download_urls(session=self._session)
return self._import_remote_model(source=source, config=config, metadata=metadata, remote_files=remote_files)
def _import_from_hf(self, source: HFModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
# Add user's cached access token to HuggingFace requests
source.access_token = source.access_token or HfFolder.get_token()
@@ -605,7 +654,7 @@ class ModelInstallService(ModelInstallServiceBase):
)
def _import_from_url(self, source: URLModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
# URLs from Civitai or HuggingFace will be handled specially
# URLs from HuggingFace will be handled specially
metadata = None
fetcher = None
try:
@@ -613,8 +662,6 @@ class ModelInstallService(ModelInstallServiceBase):
except ValueError:
pass
kwargs: dict[str, Any] = {"session": self._session}
if fetcher is CivitaiMetadataFetch:
kwargs["api_key"] = self._app_config.get_config().civitai_api_key
if fetcher is not None:
metadata = fetcher(**kwargs).from_url(source.url)
self._logger.debug(f"metadata={metadata}")
@@ -631,7 +678,7 @@ class ModelInstallService(ModelInstallServiceBase):
def _import_remote_model(
self,
source: HFModelSource | CivitaiModelSource | URLModelSource,
source: HFModelSource | URLModelSource,
remote_files: List[RemoteModelFile],
metadata: Optional[AnyModelRepoMetadata],
config: Optional[Dict[str, Any]],
@@ -849,8 +896,6 @@ class ModelInstallService(ModelInstallServiceBase):
@staticmethod
def get_fetcher_from_url(url: str):
if re.match(r"^https?://civitai.com/", url.lower()):
return CivitaiMetadataFetch
elif re.match(r"^https?://huggingface.co/[^/]+/[^/]+$", url.lower()):
if re.match(r"^https?://huggingface.co/[^/]+/[^/]+$", url.lower()):
return HuggingFaceMetadataFetch
raise ValueError(f"Unsupported model source: '{url}'")

View File

@@ -1,15 +1,11 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Team
from abc import ABC, abstractmethod
from typing import Optional
import torch
from typing_extensions import Self
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.invocation_context import InvocationContextData
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
from invokeai.backend.model_manager.load.load_base import LoadedModel
from ..config import InvokeAIAppConfig
from ..download import DownloadQueueServiceBase
@@ -70,32 +66,3 @@ class ModelManagerServiceBase(ABC):
@abstractmethod
def stop(self, invoker: Invoker) -> None:
pass
@abstractmethod
def load_model_by_config(
self,
model_config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
context_data: Optional[InvocationContextData] = None,
) -> LoadedModel:
pass
@abstractmethod
def load_model_by_key(
self,
key: str,
submodel_type: Optional[SubModelType] = None,
context_data: Optional[InvocationContextData] = None,
) -> LoadedModel:
pass
@abstractmethod
def load_model_by_attr(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: Optional[SubModelType] = None,
context_data: Optional[InvocationContextData] = None,
) -> LoadedModel:
pass

View File

@@ -1,14 +1,10 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Team
"""Implementation of ModelManagerServiceBase."""
from typing import Optional
import torch
from typing_extensions import Self
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.invocation_context import InvocationContextData
from invokeai.backend.model_manager import AnyModelConfig, BaseModelType, LoadedModel, ModelType, SubModelType
from invokeai.backend.model_manager.load import ModelCache, ModelConvertCache, ModelLoaderRegistry
from invokeai.backend.util.devices import choose_torch_device
from invokeai.backend.util.logging import InvokeAILogger
@@ -18,7 +14,7 @@ from ..download import DownloadQueueServiceBase
from ..events.events_base import EventServiceBase
from ..model_install import ModelInstallService, ModelInstallServiceBase
from ..model_load import ModelLoadService, ModelLoadServiceBase
from ..model_records import ModelRecordServiceBase, UnknownModelException
from ..model_records import ModelRecordServiceBase
from .model_manager_base import ModelManagerServiceBase
@@ -64,56 +60,6 @@ class ModelManagerService(ModelManagerServiceBase):
if hasattr(service, "stop"):
service.stop(invoker)
def load_model_by_config(
self,
model_config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
context_data: Optional[InvocationContextData] = None,
) -> LoadedModel:
return self.load.load_model(model_config, submodel_type, context_data)
def load_model_by_key(
self,
key: str,
submodel_type: Optional[SubModelType] = None,
context_data: Optional[InvocationContextData] = None,
) -> LoadedModel:
config = self.store.get_model(key)
return self.load.load_model(config, submodel_type, context_data)
def load_model_by_attr(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: Optional[SubModelType] = None,
context_data: Optional[InvocationContextData] = None,
) -> LoadedModel:
"""
Given a model's attributes, search the database for it, and if found, load and return the LoadedModel object.
This is provided for API compatability with the get_model() method
in the original model manager. However, note that LoadedModel is
not the same as the original ModelInfo that ws returned.
:param model_name: Name of to be fetched.
:param base_model: Base model
:param model_type: Type of the model
:param submodel: For main (pipeline models), the submodel to fetch
:param context: The invocation context.
Exceptions: UnknownModelException -- model with this key not known
NotImplementedException -- a model loader was not provided at initialization time
ValueError -- more than one model matches this combination
"""
configs = self.store.search_by_attr(model_name, base_model, model_type)
if len(configs) == 0:
raise UnknownModelException(f"{base_model}/{model_type}/{model_name}: Unknown model")
elif len(configs) > 1:
raise ValueError(f"{base_model}/{model_type}/{model_name}: More than one model matches.")
else:
return self.load.load_model(configs[0], submodel, context_data)
@classmethod
def build_model_manager(
cls,

View File

@@ -18,7 +18,12 @@ from invokeai.backend.model_manager import (
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.config import ModelDefaultSettings, ModelVariantType, SchedulerPredictionType
from invokeai.backend.model_manager.config import (
ControlAdapterDefaultSettings,
MainModelDefaultSettings,
ModelVariantType,
SchedulerPredictionType,
)
class DuplicateModelException(Exception):
@@ -68,7 +73,7 @@ class ModelRecordChanges(BaseModelExcludeNull):
description: Optional[str] = Field(description="Model description", default=None)
base: Optional[BaseModelType] = Field(description="The base model.", default=None)
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
default_settings: Optional[ModelDefaultSettings] = Field(
default_settings: Optional[MainModelDefaultSettings | ControlAdapterDefaultSettings] = Field(
description="Default settings for this model", default=None
)
@@ -79,6 +84,7 @@ class ModelRecordChanges(BaseModelExcludeNull):
description="The prediction type of the model.", default=None
)
upcast_attention: Optional[bool] = Field(description="Whether to upcast attention.", default=None)
config_path: Optional[str] = Field(description="Path to config file for model", default=None)
class ModelRecordServiceBase(ABC):
@@ -129,6 +135,17 @@ class ModelRecordServiceBase(ABC):
"""
pass
@abstractmethod
def get_model_by_hash(self, hash: str) -> AnyModelConfig:
"""
Retrieve the configuration for the indicated model.
:param hash: Hash of model config to be fetched.
Exceptions: UnknownModelException
"""
pass
@abstractmethod
def list_models(
self, page: int = 0, per_page: int = 10, order_by: ModelRecordOrderBy = ModelRecordOrderBy.Default

View File

@@ -203,6 +203,21 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
model = ModelConfigFactory.make_config(json.loads(rows[0]), timestamp=rows[1])
return model
def get_model_by_hash(self, hash: str) -> AnyModelConfig:
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE hash=?;
""",
(hash,),
)
rows = self._cursor.fetchone()
if not rows:
raise UnknownModelException("model not found")
model = ModelConfigFactory.make_config(json.loads(rows[0]), timestamp=rows[1])
return model
def exists(self, key: str) -> bool:
"""
Return True if a model with the indicated key exists in the databse.
@@ -227,6 +242,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
base_model: Optional[BaseModelType] = None,
model_type: Optional[ModelType] = None,
model_format: Optional[ModelFormat] = None,
order_by: ModelRecordOrderBy = ModelRecordOrderBy.Default,
) -> List[AnyModelConfig]:
"""
Return models matching name, base and/or type.
@@ -235,10 +251,21 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
:param base_model: Filter by base model (optional)
:param model_type: Filter by type of model (optional)
:param model_format: Filter by model format (e.g. "diffusers") (optional)
:param order_by: Result order
If none of the optional filters are passed, will return all
models in the database.
"""
assert isinstance(order_by, ModelRecordOrderBy)
ordering = {
ModelRecordOrderBy.Default: "type, base, name, format",
ModelRecordOrderBy.Type: "type",
ModelRecordOrderBy.Base: "base",
ModelRecordOrderBy.Name: "name",
ModelRecordOrderBy.Format: "format",
}
where_clause: list[str] = []
bindings: list[str] = []
if model_name:
@@ -257,8 +284,10 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
with self._db.lock:
self._cursor.execute(
f"""--sql
SELECT config, strftime('%s',updated_at) FROM models
{where};
SELECT config, strftime('%s',updated_at)
FROM models
{where}
ORDER BY {ordering[order_by]} -- using ? to bind doesn't work here for some reason;
""",
tuple(bindings),
)
@@ -304,7 +333,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
"""Return a paginated summary listing of each model in the database."""
assert isinstance(order_by, ModelRecordOrderBy)
ordering = {
ModelRecordOrderBy.Default: "type, base, format, name",
ModelRecordOrderBy.Default: "type, base, name, format",
ModelRecordOrderBy.Type: "type",
ModelRecordOrderBy.Base: "base",
ModelRecordOrderBy.Name: "name",

View File

@@ -1,35 +1,6 @@
from abc import ABC, abstractmethod
from threading import Event
from invokeai.app.services.invocation_services import InvocationServices
from invokeai.app.services.session_processor.session_processor_common import SessionProcessorStatus
from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem
class SessionRunnerBase(ABC):
"""
Base class for session runner.
"""
@abstractmethod
def start(self, services: InvocationServices, cancel_event: Event) -> None:
"""Starts the session runner"""
pass
@abstractmethod
def run(self, queue_item: SessionQueueItem) -> None:
"""Runs the session"""
pass
@abstractmethod
def complete(self, queue_item: SessionQueueItem) -> None:
"""Completes the session"""
pass
@abstractmethod
def run_node(self, node_id: str, queue_item: SessionQueueItem) -> None:
"""Runs an already prepared node on the session"""
pass
class SessionProcessorBase(ABC):

View File

@@ -2,14 +2,13 @@ import traceback
from contextlib import suppress
from threading import BoundedSemaphore, Thread
from threading import Event as ThreadEvent
from typing import Callable, Optional, Union
from typing import Optional
from fastapi_events.handlers.local import local_handler
from fastapi_events.typing import Event as FastAPIEvent
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invocation_services import InvocationServices
from invokeai.app.services.invocation_stats.invocation_stats_common import GESStatsNotFoundError
from invokeai.app.services.session_processor.session_processor_common import CanceledException
from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem
@@ -17,164 +16,15 @@ from invokeai.app.services.shared.invocation_context import InvocationContextDat
from invokeai.app.util.profiler import Profiler
from ..invoker import Invoker
from .session_processor_base import SessionProcessorBase, SessionRunnerBase
from .session_processor_base import SessionProcessorBase
from .session_processor_common import SessionProcessorStatus
class DefaultSessionRunner(SessionRunnerBase):
"""Processes a single session's invocations"""
def __init__(
self,
on_before_run_node: Union[Callable[[BaseInvocation, SessionQueueItem], bool], None] = None,
on_after_run_node: Union[Callable[[BaseInvocation, SessionQueueItem], bool], None] = None,
):
self.on_before_run_node = on_before_run_node
self.on_after_run_node = on_after_run_node
def start(self, services: InvocationServices, cancel_event: ThreadEvent):
"""Start the session runner"""
self.services = services
self.cancel_event = cancel_event
def run(self, queue_item: SessionQueueItem):
"""Run the graph"""
if not queue_item.session:
raise ValueError("Queue item has no session")
# Loop over invocations until the session is complete or canceled
while not (queue_item.session.is_complete() or self.cancel_event.is_set()):
# Prepare the next node
invocation = queue_item.session.next()
if invocation is None:
# If there are no more invocations, complete the graph
break
# Build invocation context (the node-facing API
self.run_node(invocation.id, queue_item)
self.complete(queue_item)
def complete(self, queue_item: SessionQueueItem):
"""Complete the graph"""
self.services.events.emit_graph_execution_complete(
queue_batch_id=queue_item.batch_id,
queue_item_id=queue_item.item_id,
queue_id=queue_item.queue_id,
graph_execution_state_id=queue_item.session.id,
)
def _on_before_run_node(self, invocation: BaseInvocation, queue_item: SessionQueueItem):
"""Run before a node is executed"""
# Send starting event
self.services.events.emit_invocation_started(
queue_batch_id=queue_item.batch_id,
queue_item_id=queue_item.item_id,
queue_id=queue_item.queue_id,
graph_execution_state_id=queue_item.session_id,
node=invocation.model_dump(),
source_node_id=queue_item.session.prepared_source_mapping[invocation.id],
)
if self.on_before_run_node is not None:
self.on_before_run_node(invocation, queue_item)
def _on_after_run_node(self, invocation: BaseInvocation, queue_item: SessionQueueItem):
"""Run after a node is executed"""
if self.on_after_run_node is not None:
self.on_after_run_node(invocation, queue_item)
def run_node(self, node_id: str, queue_item: SessionQueueItem):
"""Run a single node in the graph"""
# If this error raises a NodeNotFoundError that's handled by the processor
invocation = queue_item.session.execution_graph.get_node(node_id)
try:
self._on_before_run_node(invocation, queue_item)
data = InvocationContextData(
invocation=invocation,
source_invocation_id=queue_item.session.prepared_source_mapping[invocation.id],
queue_item=queue_item,
)
# Innermost processor try block; any unhandled exception is an invocation error & will fail the graph
with self.services.performance_statistics.collect_stats(invocation, queue_item.session_id):
context = build_invocation_context(
data=data,
services=self.services,
cancel_event=self.cancel_event,
)
# Invoke the node
outputs = invocation.invoke_internal(context=context, services=self.services)
# Save outputs and history
queue_item.session.complete(invocation.id, outputs)
self._on_after_run_node(invocation, queue_item)
# Send complete event on successful runs
self.services.events.emit_invocation_complete(
queue_batch_id=queue_item.batch_id,
queue_item_id=queue_item.item_id,
queue_id=queue_item.queue_id,
graph_execution_state_id=queue_item.session.id,
node=invocation.model_dump(),
source_node_id=data.source_invocation_id,
result=outputs.model_dump(),
)
except KeyboardInterrupt:
# TODO(MM2): Create an event for this
pass
except CanceledException:
# When the user cancels the graph, we first set the cancel event. The event is checked
# between invocations, in this loop. Some invocations are long-running, and we need to
# be able to cancel them mid-execution.
#
# For example, denoising is a long-running invocation with many steps. A step callback
# is executed after each step. This step callback checks if the canceled event is set,
# then raises a CanceledException to stop execution immediately.
#
# When we get a CanceledException, we don't need to do anything - just pass and let the
# loop go to its next iteration, and the cancel event will be handled correctly.
pass
except Exception as e:
error = traceback.format_exc()
# Save error
queue_item.session.set_node_error(invocation.id, error)
self.services.logger.error(
f"Error while invoking session {queue_item.session_id}, invocation {invocation.id} ({invocation.get_type()}):\n{e}"
)
self.services.logger.error(error)
# Send error event
self.services.events.emit_invocation_error(
queue_batch_id=queue_item.session_id,
queue_item_id=queue_item.item_id,
queue_id=queue_item.queue_id,
graph_execution_state_id=queue_item.session.id,
node=invocation.model_dump(),
source_node_id=queue_item.session.prepared_source_mapping[invocation.id],
error_type=e.__class__.__name__,
error=error,
)
class DefaultSessionProcessor(SessionProcessorBase):
"""Processes sessions from the session queue"""
def __init__(self, session_runner: Union[SessionRunnerBase, None] = None) -> None:
super().__init__()
self.session_runner = session_runner if session_runner else DefaultSessionRunner()
def start(
self,
invoker: Invoker,
thread_limit: int = 1,
polling_interval: int = 1,
on_before_run_session: Union[Callable[[SessionQueueItem], bool], None] = None,
on_after_run_session: Union[Callable[[SessionQueueItem], bool], None] = None,
) -> None:
def start(self, invoker: Invoker, thread_limit: int = 1, polling_interval: int = 1) -> None:
self._invoker: Invoker = invoker
self._queue_item: Optional[SessionQueueItem] = None
self._invocation: Optional[BaseInvocation] = None
self.on_before_run_session = on_before_run_session
self.on_after_run_session = on_after_run_session
self._resume_event = ThreadEvent()
self._stop_event = ThreadEvent()
@@ -209,7 +59,6 @@ class DefaultSessionProcessor(SessionProcessorBase):
"cancel_event": self._cancel_event,
},
)
self.session_runner.start(services=invoker.services, cancel_event=self._cancel_event)
self._thread.start()
def stop(self, *args, **kwargs) -> None:
@@ -268,34 +117,131 @@ class DefaultSessionProcessor(SessionProcessorBase):
self._invoker.services.logger.debug(f"Executing queue item {self._queue_item.item_id}")
cancel_event.clear()
# If we have a on_before_run_session callback, call it
if self.on_before_run_session is not None:
self.on_before_run_session(self._queue_item)
# If profiling is enabled, start the profiler
if self._profiler is not None:
self._profiler.start(profile_id=self._queue_item.session_id)
# Run the graph
self.session_runner.run(queue_item=self._queue_item)
# Prepare invocations and take the first
self._invocation = self._queue_item.session.next()
# If we are profiling, stop the profiler and dump the profile & stats
if self._profiler:
profile_path = self._profiler.stop()
stats_path = profile_path.with_suffix(".json")
self._invoker.services.performance_statistics.dump_stats(
graph_execution_state_id=self._queue_item.session.id, output_path=stats_path
# Loop over invocations until the session is complete or canceled
while self._invocation is not None and not cancel_event.is_set():
# get the source node id to provide to clients (the prepared node id is not as useful)
source_invocation_id = self._queue_item.session.prepared_source_mapping[self._invocation.id]
# Send starting event
self._invoker.services.events.emit_invocation_started(
queue_batch_id=self._queue_item.batch_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session_id,
node=self._invocation.model_dump(),
source_node_id=source_invocation_id,
)
# We'll get a GESStatsNotFoundError if we try to log stats for an untracked graph, but in the processor
# we don't care about that - suppress the error.
with suppress(GESStatsNotFoundError):
self._invoker.services.performance_statistics.log_stats(self._queue_item.session.id)
self._invoker.services.performance_statistics.reset_stats()
# Innermost processor try block; any unhandled exception is an invocation error & will fail the graph
try:
with self._invoker.services.performance_statistics.collect_stats(
self._invocation, self._queue_item.session.id
):
# Build invocation context (the node-facing API)
data = InvocationContextData(
invocation=self._invocation,
source_invocation_id=source_invocation_id,
queue_item=self._queue_item,
)
context = build_invocation_context(
data=data,
services=self._invoker.services,
cancel_event=self._cancel_event,
)
# If we have a on_after_run_session callback, call it
if self.on_after_run_session is not None:
self.on_after_run_session(self._queue_item)
# Invoke the node
outputs = self._invocation.invoke_internal(
context=context, services=self._invoker.services
)
# Save outputs and history
self._queue_item.session.complete(self._invocation.id, outputs)
# Send complete event
self._invoker.services.events.emit_invocation_complete(
queue_batch_id=self._queue_item.batch_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session.id,
node=self._invocation.model_dump(),
source_node_id=source_invocation_id,
result=outputs.model_dump(),
)
except KeyboardInterrupt:
# TODO(MM2): Create an event for this
pass
except CanceledException:
# When the user cancels the graph, we first set the cancel event. The event is checked
# between invocations, in this loop. Some invocations are long-running, and we need to
# be able to cancel them mid-execution.
#
# For example, denoising is a long-running invocation with many steps. A step callback
# is executed after each step. This step callback checks if the canceled event is set,
# then raises a CanceledException to stop execution immediately.
#
# When we get a CanceledException, we don't need to do anything - just pass and let the
# loop go to its next iteration, and the cancel event will be handled correctly.
pass
except Exception as e:
error = traceback.format_exc()
# Save error
self._queue_item.session.set_node_error(self._invocation.id, error)
self._invoker.services.logger.error(
f"Error while invoking session {self._queue_item.session_id}, invocation {self._invocation.id} ({self._invocation.get_type()}):\n{e}"
)
self._invoker.services.logger.error(error)
# Send error event
self._invoker.services.events.emit_invocation_error(
queue_batch_id=self._queue_item.session_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session.id,
node=self._invocation.model_dump(),
source_node_id=source_invocation_id,
error_type=e.__class__.__name__,
error=error,
)
pass
# The session is complete if the all invocations are complete or there was an error
if self._queue_item.session.is_complete() or cancel_event.is_set():
# Send complete event
self._invoker.services.events.emit_graph_execution_complete(
queue_batch_id=self._queue_item.batch_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session.id,
)
# If we are profiling, stop the profiler and dump the profile & stats
if self._profiler:
profile_path = self._profiler.stop()
stats_path = profile_path.with_suffix(".json")
self._invoker.services.performance_statistics.dump_stats(
graph_execution_state_id=self._queue_item.session.id, output_path=stats_path
)
# We'll get a GESStatsNotFoundError if we try to log stats for an untracked graph, but in the processor
# we don't care about that - suppress the error.
with suppress(GESStatsNotFoundError):
self._invoker.services.performance_statistics.log_stats(self._queue_item.session.id)
self._invoker.services.performance_statistics.reset_stats()
# Set the invocation to None to prepare for the next session
self._invocation = None
else:
# Prepare the next invocation
self._invocation = self._queue_item.session.next()
# The session is complete, immediately poll for next session
self._queue_item = None
@@ -329,4 +275,3 @@ class DefaultSessionProcessor(SessionProcessorBase):
poll_now_event.clear()
self._queue_item = None
self._thread_semaphore.release()
self._invoker.services.logger.debug("Session processor stopped")

View File

@@ -1,7 +1,7 @@
import threading
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Optional
from typing import TYPE_CHECKING, Optional, Union
from PIL.Image import Image
from torch import Tensor
@@ -13,15 +13,16 @@ from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.invocation_services import InvocationServices
from invokeai.app.services.model_records.model_records_base import UnknownModelException
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelFormat, ModelType, SubModelType
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.model_manager.metadata.metadata_base import AnyModelRepoMetadata
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
if TYPE_CHECKING:
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem
"""
@@ -299,22 +300,27 @@ class ConditioningInterface(InvocationContextInterface):
class ModelsInterface(InvocationContextInterface):
def exists(self, key: str) -> bool:
def exists(self, identifier: Union[str, "ModelIdentifierField"]) -> bool:
"""Checks if a model exists.
Args:
key: The key of the model.
identifier: The key or ModelField representing the model.
Returns:
True if the model exists, False if not.
"""
return self._services.model_manager.store.exists(key)
if isinstance(identifier, str):
return self._services.model_manager.store.exists(identifier)
def load(self, key: str, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
return self._services.model_manager.store.exists(identifier.key)
def load(
self, identifier: Union[str, "ModelIdentifierField"], submodel_type: Optional[SubModelType] = None
) -> LoadedModel:
"""Loads a model.
Args:
key: The key of the model.
identifier: The key or ModelField representing the model.
submodel_type: The submodel of the model to get.
Returns:
@@ -324,9 +330,13 @@ class ModelsInterface(InvocationContextInterface):
# The model manager emits events as it loads the model. It needs the context data to build
# the event payloads.
return self._services.model_manager.load_model_by_key(
key=key, submodel_type=submodel_type, context_data=self._data
)
if isinstance(identifier, str):
model = self._services.model_manager.store.get_model(identifier)
return self._services.model_manager.load.load_model(model, submodel_type, self._data)
else:
_submodel_type = submodel_type or identifier.submodel_type
model = self._services.model_manager.store.get_model(identifier.key)
return self._services.model_manager.load.load_model(model, _submodel_type, self._data)
def load_by_attrs(
self, name: str, base: BaseModelType, type: ModelType, submodel_type: Optional[SubModelType] = None
@@ -343,35 +353,29 @@ class ModelsInterface(InvocationContextInterface):
Returns:
An object representing the loaded model.
"""
return self._services.model_manager.load_model_by_attr(
model_name=name,
base_model=base,
model_type=type,
submodel=submodel_type,
context_data=self._data,
)
def get_config(self, key: str) -> AnyModelConfig:
configs = self._services.model_manager.store.search_by_attr(model_name=name, base_model=base, model_type=type)
if len(configs) == 0:
raise UnknownModelException(f"No model found with name {name}, base {base}, and type {type}")
if len(configs) > 1:
raise ValueError(f"More than one model found with name {name}, base {base}, and type {type}")
return self._services.model_manager.load.load_model(configs[0], submodel_type, self._data)
def get_config(self, identifier: Union[str, "ModelIdentifierField"]) -> AnyModelConfig:
"""Gets a model's config.
Args:
key: The key of the model.
identifier: The key or ModelField representing the model.
Returns:
The model's config.
"""
return self._services.model_manager.store.get_model(key=key)
if isinstance(identifier, str):
return self._services.model_manager.store.get_model(identifier)
def get_metadata(self, key: str) -> Optional[AnyModelRepoMetadata]:
"""Gets a model's metadata, if it has any.
Args:
key: The key of the model.
Returns:
The model's metadata, if it has any.
"""
return self._services.model_manager.store.get_metadata(key=key)
return self._services.model_manager.store.get_model(identifier.key)
def search_by_path(self, path: Path) -> list[AnyModelConfig]:
"""Searches for models by path.

View File

@@ -4,8 +4,6 @@ from logging import Logger
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
from .util.migrate_yaml_config_1 import MigrateModelYamlToDb1
class Migration3Callback:
def __init__(self, app_config: InvokeAIAppConfig, logger: Logger) -> None:
@@ -15,7 +13,6 @@ class Migration3Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._drop_model_manager_metadata(cursor)
self._recreate_model_config(cursor)
self._migrate_model_config_records(cursor)
def _drop_model_manager_metadata(self, cursor: sqlite3.Cursor) -> None:
"""Drops the `model_manager_metadata` table."""
@@ -55,12 +52,6 @@ class Migration3Callback:
"""
)
def _migrate_model_config_records(self, cursor: sqlite3.Cursor) -> None:
"""After updating the model config table, we repopulate it."""
self._logger.info("Migrating model config records from models.yaml to database")
model_record_migrator = MigrateModelYamlToDb1(self._app_config, self._logger, cursor)
model_record_migrator.migrate()
def build_migration_3(app_config: InvokeAIAppConfig, logger: Logger) -> Migration:
"""

View File

@@ -1,163 +0,0 @@
# Copyright (c) 2023 Lincoln D. Stein
"""Migrate from the InvokeAI v2 models.yaml format to the v3 sqlite format."""
import json
import sqlite3
from logging import Logger
from pathlib import Path
from typing import Optional
from omegaconf import DictConfig, OmegaConf
from pydantic import TypeAdapter
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.model_records import (
DuplicateModelException,
UnknownModelException,
)
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ModelConfigFactory,
ModelType,
)
from invokeai.backend.model_manager.hash import ModelHash
ModelsValidator = TypeAdapter(AnyModelConfig)
class MigrateModelYamlToDb1:
"""
Migrate the InvokeAI models.yaml format (VERSION 3.0.0) to SQL3 database format (VERSION 3.5.0).
The class has one externally useful method, migrate(), which scans the
currently models.yaml file and imports all its entries into invokeai.db.
Use this way:
from invokeai.backend.model_manager/migrate_to_db import MigrateModelYamlToDb
MigrateModelYamlToDb().migrate()
"""
config: InvokeAIAppConfig
logger: Logger
cursor: sqlite3.Cursor
def __init__(self, config: InvokeAIAppConfig, logger: Logger, cursor: sqlite3.Cursor = None) -> None:
self.config = config
self.logger = logger
self.cursor = cursor
def get_yaml(self) -> DictConfig:
"""Fetch the models.yaml DictConfig for this installation."""
yaml_path = self.config.model_conf_path
omegaconf = OmegaConf.load(yaml_path)
assert isinstance(omegaconf, DictConfig)
return omegaconf
def migrate(self) -> None:
"""Do the migration from models.yaml to invokeai.db."""
try:
yaml = self.get_yaml()
except OSError:
return
for model_key, stanza in yaml.items():
if model_key == "__metadata__":
assert (
stanza["version"] == "3.0.0"
), f"This script works on version 3.0.0 yaml files, but your configuration points to a {stanza['version']} version"
continue
base_type, model_type, model_name = str(model_key).split("/")
try:
hash = ModelHash().hash(self.config.models_path / stanza.path)
except OSError:
self.logger.warning(f"The model at {stanza.path} is not a valid file or directory. Skipping migration.")
continue
stanza["base"] = BaseModelType(base_type)
stanza["type"] = ModelType(model_type)
stanza["name"] = model_name
stanza["original_hash"] = hash
stanza["current_hash"] = hash
new_key = hash # deterministic key assignment
# special case for ip adapters, which need the new `image_encoder_model_id` field
if stanza["type"] == ModelType.IPAdapter:
try:
stanza["image_encoder_model_id"] = self._get_image_encoder_model_id(
self.config.models_path / stanza.path
)
except OSError:
self.logger.warning(f"Could not determine image encoder for {stanza.path}. Skipping.")
continue
new_config: AnyModelConfig = ModelsValidator.validate_python(stanza) # type: ignore # see https://github.com/pydantic/pydantic/discussions/7094
try:
if original_record := self._search_by_path(stanza.path):
key = original_record.key
self.logger.info(f"Updating model {model_name} with information from models.yaml using key {key}")
self._update_model(key, new_config)
else:
self.logger.info(f"Adding model {model_name} with key {new_key}")
self._add_model(new_key, new_config)
except DuplicateModelException:
self.logger.warning(f"Model {model_name} is already in the database")
except UnknownModelException:
self.logger.warning(f"Model at {stanza.path} could not be found in database")
def _search_by_path(self, path: Path) -> Optional[AnyModelConfig]:
self.cursor.execute(
"""--sql
SELECT config FROM model_config
WHERE path=?;
""",
(str(path),),
)
results = [ModelConfigFactory.make_config(json.loads(x[0])) for x in self.cursor.fetchall()]
return results[0] if results else None
def _update_model(self, key: str, config: AnyModelConfig) -> None:
record = ModelConfigFactory.make_config(config, key=key) # ensure it is a valid config obect
json_serialized = record.model_dump_json() # and turn it into a json string.
self.cursor.execute(
"""--sql
UPDATE model_config
SET
config=?
WHERE id=?;
""",
(json_serialized, key),
)
if self.cursor.rowcount == 0:
raise UnknownModelException("model not found")
def _add_model(self, key: str, config: AnyModelConfig) -> None:
record = ModelConfigFactory.make_config(config, key=key) # ensure it is a valid config obect.
json_serialized = record.model_dump_json() # and turn it into a json string.
try:
self.cursor.execute(
"""--sql
INSERT INTO model_config (
id,
original_hash,
config
)
VALUES (?,?,?);
""",
(
key,
record.hash,
json_serialized,
),
)
except sqlite3.IntegrityError as exc:
raise DuplicateModelException(f"{record.name}: model is already in database") from exc
def _get_image_encoder_model_id(self, model_path: Path) -> str:
with open(model_path / "image_encoder.txt") as f:
encoder = f.read()
return encoder.strip()

View File

@@ -17,8 +17,7 @@ class MigrateCallback(Protocol):
See :class:`Migration` for an example.
"""
def __call__(self, cursor: sqlite3.Cursor) -> None:
...
def __call__(self, cursor: sqlite3.Cursor) -> None: ...
class MigrationError(RuntimeError):

View File

@@ -8,3 +8,8 @@ class UrlServiceBase(ABC):
def get_image_url(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets the URL for an image or thumbnail."""
pass
@abstractmethod
def get_model_image_url(self, model_key: str) -> str:
"""Gets the URL for a model image"""
pass

View File

@@ -4,8 +4,9 @@ from .urls_base import UrlServiceBase
class LocalUrlService(UrlServiceBase):
def __init__(self, base_url: str = "api/v1"):
def __init__(self, base_url: str = "api/v1", base_url_v2: str = "api/v2"):
self._base_url = base_url
self._base_url_v2 = base_url_v2
def get_image_url(self, image_name: str, thumbnail: bool = False) -> str:
image_basename = os.path.basename(image_name)
@@ -15,3 +16,6 @@ class LocalUrlService(UrlServiceBase):
return f"{self._base_url}/images/i/{image_basename}/thumbnail"
return f"{self._base_url}/images/i/{image_basename}/full"
def get_model_image_url(self, model_key: str) -> str:
return f"{self._base_url_v2}/models/i/{model_key}/image"

View File

@@ -22,7 +22,7 @@ def generate_ti_list(
for trigger in extract_ti_triggers_from_prompt(prompt):
name_or_key = trigger[1:-1]
try:
loaded_model = context.models.load(key=name_or_key)
loaded_model = context.models.load(name_or_key)
model = loaded_model.model
assert isinstance(model, TextualInversionModelRaw)
assert loaded_model.config.base == base

View File

@@ -19,7 +19,6 @@ from invokeai.app.services.model_install import (
ModelInstallService,
ModelInstallServiceBase,
)
from invokeai.app.services.model_metadata import ModelMetadataStoreSQL
from invokeai.app.services.model_records import ModelRecordServiceBase, ModelRecordServiceSQL
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
from invokeai.backend.model_manager import (
@@ -39,7 +38,7 @@ def initialize_record_store(app_config: InvokeAIAppConfig) -> ModelRecordService
logger = InvokeAILogger.get_logger(config=app_config)
image_files = DiskImageFileStorage(f"{app_config.output_path}/images")
db = init_db(config=app_config, logger=logger, image_files=image_files)
obj: ModelRecordServiceBase = ModelRecordServiceSQL(db, ModelMetadataStoreSQL(db))
obj: ModelRecordServiceBase = ModelRecordServiceSQL(db)
return obj

View File

@@ -17,7 +17,7 @@ import warnings
from argparse import Namespace
from enum import Enum
from pathlib import Path
from shutil import get_terminal_size
from shutil import copy, get_terminal_size, move
from typing import Any, Optional, Set, Tuple, Type, get_args, get_type_hints
from urllib import request
@@ -929,6 +929,10 @@ def main() -> None:
errors = set()
FORCE_FULL_PRECISION = opt.full_precision # FIXME global
new_init_file = config.root_path / "invokeai.yaml"
backup_init_file = new_init_file.with_suffix(".bak")
if new_init_file.exists():
copy(new_init_file, backup_init_file)
try:
# if we do a root migration/upgrade, then we are keeping previous
@@ -943,7 +947,6 @@ def main() -> None:
install_helper = InstallHelper(config, logger)
models_to_download = default_user_selections(opt, install_helper)
new_init_file = config.root_path / "invokeai.yaml"
if opt.yes_to_all:
write_default_options(opt, new_init_file)
@@ -975,8 +978,17 @@ def main() -> None:
input("Press any key to continue...")
except WindowTooSmallException as e:
logger.error(str(e))
if backup_init_file.exists():
move(backup_init_file, new_init_file)
except KeyboardInterrupt:
print("\nGoodbye! Come back soon.")
if backup_init_file.exists():
move(backup_init_file, new_init_file)
except Exception:
print("An error occurred during installation.")
if backup_init_file.exists():
move(backup_init_file, new_init_file)
print(traceback.format_exc(), file=sys.stderr)
# -------------------------------------

View File

@@ -22,7 +22,7 @@ Validation errors will raise an InvalidModelConfigException error.
import time
from enum import Enum
from typing import Literal, Optional, Type, Union
from typing import Literal, Optional, Type, TypeAlias, Union
import torch
from diffusers.models.modeling_utils import ModelMixin
@@ -129,10 +129,9 @@ class ModelSourceType(str, Enum):
Path = "path"
Url = "url"
HFRepoID = "hf_repo_id"
CivitAI = "civitai"
class ModelDefaultSettings(BaseModel):
class MainModelDefaultSettings(BaseModel):
vae: str | None
vae_precision: str | None
scheduler: SCHEDULER_NAME_VALUES | None
@@ -141,6 +140,11 @@ class ModelDefaultSettings(BaseModel):
cfg_rescale_multiplier: float | None
class ControlAdapterDefaultSettings(BaseModel):
# This could be narrowed to controlnet processor nodes, but they change. Leaving this a string is safer.
preprocessor: str | None
class ModelConfigBase(BaseModel):
"""Base class for model configuration information."""
@@ -157,10 +161,7 @@ class ModelConfigBase(BaseModel):
source_api_response: Optional[str] = Field(
description="The original API response from the source, as stringified JSON.", default=None
)
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
default_settings: Optional[ModelDefaultSettings] = Field(
description="Default settings for this model", default=None
)
cover_image: Optional[str] = Field(description="Url for image to preview model", default=None)
@staticmethod
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
@@ -186,10 +187,14 @@ class DiffusersConfigBase(ModelConfigBase):
repo_variant: Optional[ModelRepoVariant] = ModelRepoVariant.Default
class LoRALyCORISConfig(ModelConfigBase):
class LoRAConfigBase(ModelConfigBase):
type: Literal[ModelType.LoRA] = ModelType.LoRA
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
class LoRALyCORISConfig(LoRAConfigBase):
"""Model config for LoRA/Lycoris models."""
type: Literal[ModelType.LoRA] = ModelType.LoRA
format: Literal[ModelFormat.LyCORIS] = ModelFormat.LyCORIS
@staticmethod
@@ -197,10 +202,9 @@ class LoRALyCORISConfig(ModelConfigBase):
return Tag(f"{ModelType.LoRA.value}.{ModelFormat.LyCORIS.value}")
class LoRADiffusersConfig(ModelConfigBase):
class LoRADiffusersConfig(LoRAConfigBase):
"""Model config for LoRA/Diffusers models."""
type: Literal[ModelType.LoRA] = ModelType.LoRA
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
@@ -230,7 +234,13 @@ class VAEDiffusersConfig(ModelConfigBase):
return Tag(f"{ModelType.VAE.value}.{ModelFormat.Diffusers.value}")
class ControlNetDiffusersConfig(DiffusersConfigBase):
class ControlAdapterConfigBase(BaseModel):
default_settings: Optional[ControlAdapterDefaultSettings] = Field(
description="Default settings for this model", default=None
)
class ControlNetDiffusersConfig(DiffusersConfigBase, ControlAdapterConfigBase):
"""Model config for ControlNet models (diffusers version)."""
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
@@ -241,7 +251,7 @@ class ControlNetDiffusersConfig(DiffusersConfigBase):
return Tag(f"{ModelType.ControlNet.value}.{ModelFormat.Diffusers.value}")
class ControlNetCheckpointConfig(CheckpointConfigBase):
class ControlNetCheckpointConfig(CheckpointConfigBase, ControlAdapterConfigBase):
"""Model config for ControlNet models (diffusers version)."""
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
@@ -274,10 +284,17 @@ class TextualInversionFolderConfig(ModelConfigBase):
return Tag(f"{ModelType.TextualInversion.value}.{ModelFormat.EmbeddingFolder.value}")
class MainCheckpointConfig(CheckpointConfigBase):
class MainConfigBase(ModelConfigBase):
type: Literal[ModelType.Main] = ModelType.Main
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
default_settings: Optional[MainModelDefaultSettings] = Field(
description="Default settings for this model", default=None
)
class MainCheckpointConfig(CheckpointConfigBase, MainConfigBase):
"""Model config for main checkpoint models."""
type: Literal[ModelType.Main] = ModelType.Main
variant: ModelVariantType = ModelVariantType.Normal
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
upcast_attention: bool = False
@@ -287,11 +304,9 @@ class MainCheckpointConfig(CheckpointConfigBase):
return Tag(f"{ModelType.Main.value}.{ModelFormat.Checkpoint.value}")
class MainDiffusersConfig(DiffusersConfigBase):
class MainDiffusersConfig(DiffusersConfigBase, MainConfigBase):
"""Model config for main diffusers models."""
type: Literal[ModelType.Main] = ModelType.Main
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.Main.value}.{ModelFormat.Diffusers.value}")
@@ -310,7 +325,7 @@ class IPAdapterConfig(ModelConfigBase):
class CLIPVisionDiffusersConfig(ModelConfigBase):
"""Model config for ClipVision."""
"""Model config for CLIPVision."""
type: Literal[ModelType.CLIPVision] = ModelType.CLIPVision
format: Literal[ModelFormat.Diffusers]
@@ -320,7 +335,7 @@ class CLIPVisionDiffusersConfig(ModelConfigBase):
return Tag(f"{ModelType.CLIPVision.value}.{ModelFormat.Diffusers.value}")
class T2IAdapterConfig(ModelConfigBase):
class T2IAdapterConfig(ModelConfigBase, ControlAdapterConfigBase):
"""Model config for T2I."""
type: Literal[ModelType.T2IAdapter] = ModelType.T2IAdapter
@@ -372,6 +387,7 @@ AnyModelConfig = Annotated[
]
AnyModelConfigValidator = TypeAdapter(AnyModelConfig)
AnyDefaultSettings: TypeAlias = Union[MainModelDefaultSettings, ControlAdapterDefaultSettings]
class ModelConfigFactory(object):

View File

@@ -19,7 +19,6 @@ context. Use like this:
"""
import gc
import logging
import math
import sys
import time
@@ -92,8 +91,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
self._execution_device: torch.device = execution_device
self._storage_device: torch.device = storage_device
self._logger = logger or InvokeAILogger.get_logger(self.__class__.__name__)
self._log_memory_usage = log_memory_usage or self._logger.level == logging.DEBUG
# used for stats collection
self._log_memory_usage = log_memory_usage
self._stats: Optional[CacheStats] = None
self._cached_models: Dict[str, CacheRecord[AnyModel]] = {}

View File

@@ -60,7 +60,7 @@ class ModelLoaderRegistryBase(ABC):
TModelLoader = TypeVar("TModelLoader", bound=ModelLoaderBase)
class ModelLoaderRegistry:
class ModelLoaderRegistry(ModelLoaderRegistryBase):
"""
This class allows model loaders to register their type, base and format.
"""

View File

@@ -24,7 +24,7 @@ from .. import ModelLoader, ModelLoaderRegistry
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.LoRA, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.LoRA, format=ModelFormat.LyCORIS)
class LoraLoader(ModelLoader):
class LoRALoader(ModelLoader):
"""Class to load LoRA models."""
# We cheat a little bit to get access to the model base

View File

@@ -23,7 +23,7 @@ from .generic_diffusers import GenericDiffusersLoader
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.VAE, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion1, type=ModelType.VAE, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion2, type=ModelType.VAE, format=ModelFormat.Checkpoint)
class VaeLoader(GenericDiffusersLoader):
class VAELoader(GenericDiffusersLoader):
"""Class to load VAE models."""
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, dest_path: Path) -> bool:

View File

@@ -8,23 +8,19 @@ from invokeai.backend.model_manager.metadata import(
CommercialUsage,
LicenseRestrictions,
HuggingFaceMetadata,
CivitaiMetadata,
)
from invokeai.backend.model_manager.metadata.fetch import CivitaiMetadataFetch
from invokeai.backend.model_manager.metadata.fetch import HuggingFaceMetadataFetch
data = CivitaiMetadataFetch().from_url("https://civitai.com/models/206883/split")
assert isinstance(data, CivitaiMetadata)
if data.allow_commercial_use:
print("Commercial use of this model is allowed")
data = HuggingFaceMetadataFetch().from_id("<REPO_ID>")
assert isinstance(data, HuggingFaceMetadata)
"""
from .fetch import CivitaiMetadataFetch, HuggingFaceMetadataFetch, ModelMetadataFetchBase
from .fetch import HuggingFaceMetadataFetch, ModelMetadataFetchBase
from .metadata_base import (
AnyModelRepoMetadata,
AnyModelRepoMetadataValidator,
BaseMetadata,
CivitaiMetadata,
HuggingFaceMetadata,
ModelMetadataWithFiles,
RemoteModelFile,
@@ -34,8 +30,6 @@ from .metadata_base import (
__all__ = [
"AnyModelRepoMetadata",
"AnyModelRepoMetadataValidator",
"CivitaiMetadata",
"CivitaiMetadataFetch",
"HuggingFaceMetadata",
"HuggingFaceMetadataFetch",
"ModelMetadataFetchBase",

View File

@@ -3,19 +3,14 @@ Initialization file for invokeai.backend.model_manager.metadata.fetch
Usage:
from invokeai.backend.model_manager.metadata.fetch import (
CivitaiMetadataFetch,
HuggingFaceMetadataFetch,
)
from invokeai.backend.model_manager.metadata import CivitaiMetadata
data = CivitaiMetadataFetch().from_url("https://civitai.com/models/206883/split")
assert isinstance(data, CivitaiMetadata)
if data.allow_commercial_use:
print("Commercial use of this model is allowed")
data = HuggingFaceMetadataFetch().from_id("<repo_id>")
assert isinstance(data, HuggingFaceMetadata)
"""
from .civitai import CivitaiMetadataFetch
from .fetch_base import ModelMetadataFetchBase
from .huggingface import HuggingFaceMetadataFetch
__all__ = ["ModelMetadataFetchBase", "CivitaiMetadataFetch", "HuggingFaceMetadataFetch"]
__all__ = ["ModelMetadataFetchBase", "HuggingFaceMetadataFetch"]

View File

@@ -1,188 +0,0 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
This module fetches model metadata objects from the Civitai model repository.
In addition to the `from_url()` and `from_id()` methods inherited from the
`ModelMetadataFetchBase` base class.
Civitai has two separate ID spaces: a model ID and a version ID. The
version ID corresponds to a specific model, and is the ID accepted by
`from_id()`. The model ID corresponds to a family of related models,
such as different training checkpoints or 16 vs 32-bit versions. The
`from_civitai_modelid()` method will accept a model ID and return the
metadata from the default version within this model set. The default
version is the same as what the user sees when they click on a model's
thumbnail.
Usage:
from invokeai.backend.model_manager.metadata.fetch import CivitaiMetadataFetch
fetcher = CivitaiMetadataFetch()
metadata = fetcher.from_url("https://civitai.com/models/206883/split")
print(metadata.trained_words)
"""
import json
import re
from pathlib import Path
from typing import Any, Optional
import requests
from pydantic import TypeAdapter, ValidationError
from pydantic.networks import AnyHttpUrl
from requests.sessions import Session
from invokeai.backend.model_manager.config import ModelRepoVariant
from ..metadata_base import (
AnyModelRepoMetadata,
CivitaiMetadata,
RemoteModelFile,
UnknownMetadataException,
)
from .fetch_base import ModelMetadataFetchBase
CIVITAI_MODEL_PAGE_RE = r"https?://civitai.com/models/(\d+)"
CIVITAI_VERSION_PAGE_RE = r"https?://civitai.com/models/(\d+)\?modelVersionId=(\d+)"
CIVITAI_DOWNLOAD_RE = r"https?://civitai.com/api/download/models/(\d+)"
CIVITAI_VERSION_ENDPOINT = "https://civitai.com/api/v1/model-versions/"
CIVITAI_MODEL_ENDPOINT = "https://civitai.com/api/v1/models/"
StringSetAdapter = TypeAdapter(set[str])
class CivitaiMetadataFetch(ModelMetadataFetchBase):
"""Fetch model metadata from Civitai."""
def __init__(self, session: Optional[Session] = None, api_key: Optional[str] = None):
"""
Initialize the fetcher with an optional requests.sessions.Session object.
By providing a configurable Session object, we can support unit tests on
this module without an internet connection.
"""
self._requests = session or requests.Session()
self._api_key = api_key
def from_url(self, url: AnyHttpUrl) -> AnyModelRepoMetadata:
"""
Given a URL to a CivitAI model or version page, return a ModelMetadata object.
In the event that the URL points to a model page without the particular version
indicated, the default model version is returned. Otherwise, the requested version
is returned.
"""
if match := re.match(CIVITAI_VERSION_PAGE_RE, str(url), re.IGNORECASE):
model_id = match.group(1)
version_id = match.group(2)
return self.from_civitai_versionid(int(version_id), int(model_id))
elif match := re.match(CIVITAI_MODEL_PAGE_RE, str(url), re.IGNORECASE):
model_id = match.group(1)
return self.from_civitai_modelid(int(model_id))
elif match := re.match(CIVITAI_DOWNLOAD_RE, str(url), re.IGNORECASE):
version_id = match.group(1)
return self.from_civitai_versionid(int(version_id))
raise UnknownMetadataException("The url '{url}' does not match any known Civitai URL patterns")
def from_id(self, id: str, variant: Optional[ModelRepoVariant] = None) -> AnyModelRepoMetadata:
"""
Given a Civitai model version ID, return a ModelRepoMetadata object.
:param id: An ID.
:param variant: A model variant from the ModelRepoVariant enum (currently ignored)
May raise an `UnknownMetadataException`.
"""
return self.from_civitai_versionid(int(id))
def from_civitai_modelid(self, model_id: int) -> CivitaiMetadata:
"""
Return metadata from the default version of the indicated model.
May raise an `UnknownMetadataException`.
"""
model_url = CIVITAI_MODEL_ENDPOINT + str(model_id)
model_json = self._requests.get(self._get_url_with_api_key(model_url)).json()
return self._from_api_response(model_json)
def _from_api_response(self, api_response: dict[str, Any], version_id: Optional[int] = None) -> CivitaiMetadata:
try:
version_id = version_id or api_response["modelVersions"][0]["id"]
except TypeError as excp:
raise UnknownMetadataException from excp
# loop till we find the section containing the version requested
version_sections = [x for x in api_response["modelVersions"] if x["id"] == version_id]
if not version_sections:
raise UnknownMetadataException(f"Version {version_id} not found in model metadata")
version_json = version_sections[0]
# Civitai has one "primary" file plus others such as VAEs. We only fetch the primary.
primary = [x for x in version_json["files"] if x.get("primary")]
assert len(primary) == 1
primary_file = primary[0]
url = primary_file["downloadUrl"]
if "?" not in url: # work around apparent bug in civitai api
metadata_string = ""
for key, value in primary_file["metadata"].items():
if not value:
continue
metadata_string += f"&{key}={value}"
url = url + f"?type={primary_file['type']}{metadata_string}"
model_files = [
RemoteModelFile(
url=self._get_url_with_api_key(url),
path=Path(primary_file["name"]),
size=int(primary_file["sizeKB"] * 1024),
sha256=primary_file["hashes"]["SHA256"],
)
]
try:
trigger_phrases = StringSetAdapter.validate_python(version_json.get("trainedWords"))
except ValidationError:
trigger_phrases: set[str] = set()
return CivitaiMetadata(
name=version_json["name"],
files=model_files,
trigger_phrases=trigger_phrases,
api_response=json.dumps(version_json),
)
def from_civitai_versionid(self, version_id: int, model_id: Optional[int] = None) -> CivitaiMetadata:
"""
Return a CivitaiMetadata object given a model version id.
May raise an `UnknownMetadataException`.
"""
if model_id is None:
version_url = CIVITAI_VERSION_ENDPOINT + str(version_id)
version = self._requests.get(self._get_url_with_api_key(version_url)).json()
if error := version.get("error"):
raise UnknownMetadataException(error)
model_id = version["modelId"]
model_url = CIVITAI_MODEL_ENDPOINT + str(model_id)
model_json = self._requests.get(self._get_url_with_api_key(model_url)).json()
return self._from_api_response(model_json, version_id)
@classmethod
def from_json(cls, json: str) -> CivitaiMetadata:
"""Given the JSON representation of the metadata, return the corresponding Pydantic object."""
metadata = CivitaiMetadata.model_validate_json(json)
return metadata
def _get_url_with_api_key(self, url: str) -> str:
if not self._api_key:
return url
if "?" in url:
return f"{url}&token={self._api_key}"
return f"{url}?token={self._api_key}"

View File

@@ -5,11 +5,10 @@ This module is the base class for subclasses that fetch metadata from model repo
Usage:
from invokeai.backend.model_manager.metadata.fetch import CivitAIMetadataFetch
from invokeai.backend.model_manager.metadata.fetch import HuggingFaceMetadataFetch
fetcher = CivitaiMetadataFetch()
metadata = fetcher.from_url("https://civitai.com/models/206883/split")
print(metadata.trained_words)
data = HuggingFaceMetadataFetch().from_id("<REPO_ID>")
assert isinstance(data, HuggingFaceMetadata)
"""
from abc import ABC, abstractmethod

View File

@@ -78,14 +78,6 @@ class ModelMetadataWithFiles(ModelMetadataBase):
return self.files
class CivitaiMetadata(ModelMetadataWithFiles):
"""Extended metadata fields provided by Civitai."""
type: Literal["civitai"] = "civitai"
trigger_phrases: set[str] = Field(description="Trigger phrases extracted from the API response")
api_response: Optional[str] = Field(description="Response from the Civitai API as stringified JSON", default=None)
class HuggingFaceMetadata(ModelMetadataWithFiles):
"""Extended metadata fields provided by HuggingFace."""
@@ -130,5 +122,5 @@ class HuggingFaceMetadata(ModelMetadataWithFiles):
return [x for x in self.files if x.path in paths]
AnyModelRepoMetadata = Annotated[Union[BaseMetadata, HuggingFaceMetadata, CivitaiMetadata], Field(discriminator="type")]
AnyModelRepoMetadata = Annotated[Union[BaseMetadata, HuggingFaceMetadata], Field(discriminator="type")]
AnyModelRepoMetadataValidator = TypeAdapter(AnyModelRepoMetadata)

View File

@@ -14,6 +14,7 @@ from invokeai.backend.util.util import SilenceWarnings
from .config import (
AnyModelConfig,
BaseModelType,
ControlAdapterDefaultSettings,
InvalidModelConfigException,
ModelConfigFactory,
ModelFormat,
@@ -128,6 +129,8 @@ class ModelProbe(object):
if fields is None:
fields = {}
model_path = model_path.resolve()
format_type = ModelFormat.Diffusers if model_path.is_dir() else ModelFormat.Checkpoint
model_info = None
model_type = None
@@ -159,6 +162,12 @@ class ModelProbe(object):
fields["format"] = fields.get("format") or probe.get_format()
fields["hash"] = fields.get("hash") or ModelHash().hash(model_path)
fields["default_settings"] = (
fields.get("default_settings") or probe.get_default_settings(fields["name"])
if isinstance(probe, ControlAdapterProbe)
else None
)
if format_type == ModelFormat.Diffusers and isinstance(probe, FolderProbeBase):
fields["repo_variant"] = fields.get("repo_variant") or probe.get_repo_variant()
@@ -329,6 +338,38 @@ class ModelProbe(object):
raise Exception("The model {model_name} is potentially infected by malware. Aborting import.")
class ControlAdapterProbe(ProbeBase):
"""Adds `get_default_settings` for ControlNet and T2IAdapter probes"""
# TODO(psyche): It would be nice to get these from the invocations, but that creates circular dependencies.
# "canny": CannyImageProcessorInvocation.get_type()
MODEL_NAME_TO_PREPROCESSOR = {
"canny": "canny_image_processor",
"mlsd": "mlsd_image_processor",
"depth": "depth_anything_image_processor",
"bae": "normalbae_image_processor",
"normal": "normalbae_image_processor",
"sketch": "pidi_image_processor",
"scribble": "lineart_image_processor",
"lineart": "lineart_image_processor",
"lineart_anime": "lineart_anime_image_processor",
"softedge": "hed_image_processor",
"shuffle": "content_shuffle_image_processor",
"pose": "dw_openpose_image_processor",
"mediapipe": "mediapipe_face_processor",
"pidi": "pidi_image_processor",
"zoe": "zoe_depth_image_processor",
"color": "color_map_image_processor",
}
@classmethod
def get_default_settings(cls, model_name: str) -> Optional[ControlAdapterDefaultSettings]:
for k, v in cls.MODEL_NAME_TO_PREPROCESSOR.items():
if k in model_name:
return ControlAdapterDefaultSettings(preprocessor=v)
return None
# ##################################################3
# Checkpoint probing
# ##################################################3
@@ -452,7 +493,7 @@ class TextualInversionCheckpointProbe(CheckpointProbeBase):
raise InvalidModelConfigException(f"{self.model_path}: Could not determine base type")
class ControlNetCheckpointProbe(CheckpointProbeBase):
class ControlNetCheckpointProbe(CheckpointProbeBase, ControlAdapterProbe):
"""Class for probing controlnets."""
def get_base_type(self) -> BaseModelType:
@@ -480,7 +521,7 @@ class CLIPVisionCheckpointProbe(CheckpointProbeBase):
raise NotImplementedError()
class T2IAdapterCheckpointProbe(CheckpointProbeBase):
class T2IAdapterCheckpointProbe(CheckpointProbeBase, ControlAdapterProbe):
def get_base_type(self) -> BaseModelType:
raise NotImplementedError()
@@ -618,7 +659,7 @@ class ONNXFolderProbe(PipelineFolderProbe):
return ModelVariantType.Normal
class ControlNetFolderProbe(FolderProbeBase):
class ControlNetFolderProbe(FolderProbeBase, ControlAdapterProbe):
def get_base_type(self) -> BaseModelType:
config_file = self.model_path / "config.json"
if not config_file.exists():
@@ -692,7 +733,7 @@ class CLIPVisionFolderProbe(FolderProbeBase):
return BaseModelType.Any
class T2IAdapterFolderProbe(FolderProbeBase):
class T2IAdapterFolderProbe(FolderProbeBase, ControlAdapterProbe):
def get_base_type(self) -> BaseModelType:
config_file = self.model_path / "config.json"
if not config_file.exists():

View File

@@ -4,121 +4,75 @@ Abstract base class and implementation for recursive directory search for models
Example usage:
```
from invokeai.backend.model_manager import ModelSearch, ModelProbe
from invokeai.backend.model_manager import ModelSearch, ModelProbe
def find_main_models(model: Path) -> bool:
info = ModelProbe.probe(model)
if info.model_type == 'main' and info.base_type == 'sd-1':
return True
else:
return False
def find_main_models(model: Path) -> bool:
info = ModelProbe.probe(model)
if info.model_type == 'main' and info.base_type == 'sd-1':
return True
else:
return False
search = ModelSearch(on_model_found=report_it)
found = search.search('/tmp/models')
print(found) # list of matching model paths
print(search.stats) # search stats
search = ModelSearch(on_model_found=report_it)
found = search.search('/tmp/models')
print(found) # list of matching model paths
print(search.stats) # search stats
```
"""
import os
from abc import ABC, abstractmethod
from logging import Logger
from dataclasses import dataclass
from pathlib import Path
from typing import Callable, Optional, Set, Union
from typing import Callable, Optional
from pydantic import BaseModel, Field
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.util.logging import InvokeAILogger
default_logger: Logger = InvokeAILogger.get_logger()
@dataclass
class SearchStats:
"""Statistics about the search.
class SearchStats(BaseModel):
items_scanned: int = 0
models_found: int = 0
models_filtered: int = 0
class ModelSearchBase(ABC, BaseModel):
Attributes:
items_scanned: number of items scanned
models_found: number of models found
models_filtered: number of models that passed the filter
"""
Abstract directory traversal model search class
items_scanned = 0
models_found = 0
models_filtered = 0
class ModelSearch:
"""Searches a directory tree for models, using a callback to filter the results.
Usage:
search = ModelSearchBase(
on_search_started = search_started_callback,
on_search_completed = search_completed_callback,
on_model_found = model_found_callback,
)
models_found = search.search('/path/to/directory')
search = ModelSearch()
search.model_found = lambda path : 'anime' in path.as_posix()
found = search.list_models(['/tmp/models1','/tmp/models2'])
# returns all models that have 'anime' in the path
"""
# fmt: off
on_search_started : Optional[Callable[[Path], None]] = Field(default=None, description="Called just before the search starts.") # noqa E221
on_model_found : Optional[Callable[[Path], bool]] = Field(default=None, description="Called when a model is found.") # noqa E221
on_search_completed : Optional[Callable[[Set[Path]], None]] = Field(default=None, description="Called when search is complete.") # noqa E221
stats : SearchStats = Field(default_factory=SearchStats, description="Summary statistics after search") # noqa E221
logger : Logger = Field(default=default_logger, description="Logger instance.") # noqa E221
# fmt: on
def __init__(
self,
on_search_started: Optional[Callable[[Path], None]] = None,
on_model_found: Optional[Callable[[Path], bool]] = None,
on_search_completed: Optional[Callable[[set[Path]], None]] = None,
) -> None:
"""Create a new ModelSearch object.
class Config:
arbitrary_types_allowed = True
@abstractmethod
def search_started(self) -> None:
Args:
on_search_started: callback to be invoked when the search starts
on_model_found: callback to be invoked when a model is found. The callback should return True if the model
should be included in the results.
on_search_completed: callback to be invoked when the search is completed
"""
Called before the scan starts.
Passes the root search directory to the Callable `on_search_started`.
"""
pass
@abstractmethod
def model_found(self, model: Path) -> None:
"""
Called when a model is found during search.
:param model: Model to process - could be a directory or checkpoint.
Passes the model's Path to the Callable `on_model_found`.
This Callable receives the path to the model and returns a boolean
to indicate whether the model should be returned in the search
results.
"""
pass
@abstractmethod
def search_completed(self) -> None:
"""
Called before the scan starts.
Passes the Set of found model Paths to the Callable `on_search_completed`.
"""
pass
@abstractmethod
def search(self, directory: Union[Path, str]) -> Set[Path]:
"""
Recursively search for models in `directory` and return a set of model paths.
If provided, the `on_search_started`, `on_model_found` and `on_search_completed`
Callables will be invoked during the search.
"""
pass
class ModelSearch(ModelSearchBase):
"""
Implementation of ModelSearch with callbacks.
Usage:
search = ModelSearch()
search.model_found = lambda path : 'anime' in path.as_posix()
found = search.list_models(['/tmp/models1','/tmp/models2'])
# returns all models that have 'anime' in the path
"""
models_found: Set[Path] = Field(default_factory=set)
config: InvokeAIAppConfig = InvokeAIAppConfig.get_config()
self.stats = SearchStats()
self.logger = InvokeAILogger.get_logger()
self.on_search_started = on_search_started
self.on_model_found = on_model_found
self.on_search_completed = on_search_completed
self.models_found: set[Path] = set()
def search_started(self) -> None:
self.models_found = set()
@@ -135,17 +89,17 @@ class ModelSearch(ModelSearchBase):
if self.on_search_completed is not None:
self.on_search_completed(self.models_found)
def search(self, directory: Union[Path, str]) -> Set[Path]:
def search(self, directory: Path) -> set[Path]:
self._directory = Path(directory)
if not self._directory.is_absolute():
self._directory = self.config.models_path / self._directory
self._directory = self._directory.resolve()
self.stats = SearchStats() # zero out
self.search_started() # This will initialize _models_found to empty
self._walk_directory(self._directory)
self.search_completed()
return self.models_found
def _walk_directory(self, path: Union[Path, str], max_depth: int = 20) -> None:
def _walk_directory(self, path: Path, max_depth: int = 20) -> None:
"""Recursively walk the directory tree, looking for models."""
absolute_path = Path(path)
if (
len(absolute_path.parts) - len(self._directory.parts) > max_depth

View File

@@ -455,15 +455,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
ip_adapter_unet_patcher=ip_adapter_unet_patcher,
)
latents = step_output.prev_sample
latents = self.invokeai_diffuser.do_latent_postprocessing(
postprocessing_settings=conditioning_data.postprocessing_settings,
latents=latents,
sigma=batched_t,
step_index=i,
total_step_count=len(timesteps),
)
predicted_original = getattr(step_output, "pred_original_sample", None)
if callback is not None:

View File

@@ -44,14 +44,6 @@ class SDXLConditioningInfo(BasicConditioningInfo):
return super().to(device=device, dtype=dtype)
@dataclass(frozen=True)
class PostprocessingSettings:
threshold: float
warmup: float
h_symmetry_time_pct: Optional[float]
v_symmetry_time_pct: Optional[float]
@dataclass
class IPAdapterConditioningInfo:
cond_image_prompt_embeds: torch.Tensor
@@ -80,10 +72,6 @@ class ConditioningData:
"""
guidance_rescale_multiplier: float = 0
scheduler_args: dict[str, Any] = field(default_factory=dict)
"""
Additional arguments to pass to invokeai_diffuser.do_latent_postprocessing().
"""
postprocessing_settings: Optional[PostprocessingSettings] = None
ip_adapter_conditioning: Optional[list[IPAdapterConditioningInfo]] = None

View File

@@ -12,7 +12,6 @@ from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
ConditioningData,
ExtraConditioningInfo,
PostprocessingSettings,
SDXLConditioningInfo,
)
@@ -244,19 +243,6 @@ class InvokeAIDiffuserComponent:
return unconditioned_next_x, conditioned_next_x
def do_latent_postprocessing(
self,
postprocessing_settings: PostprocessingSettings,
latents: torch.Tensor,
sigma,
step_index,
total_step_count,
) -> torch.Tensor:
if postprocessing_settings is not None:
percent_through = step_index / total_step_count
latents = self.apply_symmetry(postprocessing_settings, latents, percent_through)
return latents
def _concat_conditionings_for_batch(self, unconditioning, conditioning):
def _pad_conditioning(cond, target_len, encoder_attention_mask):
conditioning_attention_mask = torch.ones(
@@ -506,64 +492,3 @@ class InvokeAIDiffuserComponent:
scaled_delta = (conditioned_next_x - unconditioned_next_x) * guidance_scale
combined_next_x = unconditioned_next_x + scaled_delta
return combined_next_x
def apply_symmetry(
self,
postprocessing_settings: PostprocessingSettings,
latents: torch.Tensor,
percent_through: float,
) -> torch.Tensor:
# Reset our last percent through if this is our first step.
if percent_through == 0.0:
self.last_percent_through = 0.0
if postprocessing_settings is None:
return latents
# Check for out of bounds
h_symmetry_time_pct = postprocessing_settings.h_symmetry_time_pct
if h_symmetry_time_pct is not None and (h_symmetry_time_pct <= 0.0 or h_symmetry_time_pct > 1.0):
h_symmetry_time_pct = None
v_symmetry_time_pct = postprocessing_settings.v_symmetry_time_pct
if v_symmetry_time_pct is not None and (v_symmetry_time_pct <= 0.0 or v_symmetry_time_pct > 1.0):
v_symmetry_time_pct = None
dev = latents.device.type
latents.to(device="cpu")
if (
h_symmetry_time_pct is not None
and self.last_percent_through < h_symmetry_time_pct
and percent_through >= h_symmetry_time_pct
):
# Horizontal symmetry occurs on the 3rd dimension of the latent
width = latents.shape[3]
x_flipped = torch.flip(latents, dims=[3])
latents = torch.cat(
[
latents[:, :, :, 0 : int(width / 2)],
x_flipped[:, :, :, int(width / 2) : int(width)],
],
dim=3,
)
if (
v_symmetry_time_pct is not None
and self.last_percent_through < v_symmetry_time_pct
and percent_through >= v_symmetry_time_pct
):
# Vertical symmetry occurs on the 2nd dimension of the latent
height = latents.shape[2]
y_flipped = torch.flip(latents, dims=[2])
latents = torch.cat(
[
latents[:, :, 0 : int(height / 2)],
y_flipped[:, :, int(height / 2) : int(height)],
],
dim=2,
)
self.last_percent_through = percent_through
return latents.to(device=dev)

View File

@@ -858,9 +858,9 @@ def do_textual_inversion_training(
# Let's make sure we don't update any embedding weights besides the newly added token
index_no_updates = torch.arange(len(tokenizer)) != placeholder_token_id
with torch.no_grad():
accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[
index_no_updates
] = orig_embeds_params[index_no_updates]
accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[index_no_updates] = (
orig_embeds_params[index_no_updates]
)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:

View File

@@ -42,9 +42,10 @@ def install_and_load_model(
# If the requested model is already installed, return its LoadedModel
with contextlib.suppress(UnknownModelException):
# TODO: Replace with wrapper call
loaded_model: LoadedModel = model_manager.load_model_by_attr(
configs = model_manager.store.search_by_attr(
model_name=model_name, base_model=base_model, model_type=model_type
)
loaded_model: LoadedModel = model_manager.load.load_model(configs[0])
return loaded_model
# Install the requested model.
@@ -53,7 +54,7 @@ def install_and_load_model(
assert job.complete
try:
loaded_model = model_manager.load_model_by_config(job.config_out)
loaded_model = model_manager.load.load_model(job.config_out)
return loaded_model
except UnknownModelException as e:
raise Exception(

View File

@@ -20,7 +20,6 @@ from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download import DownloadQueueService
from invokeai.app.services.image_files.image_files_disk import DiskImageFileStorage
from invokeai.app.services.model_install import ModelInstallService
from invokeai.app.services.model_metadata import ModelMetadataStoreSQL
from invokeai.app.services.model_records import ModelRecordServiceBase, ModelRecordServiceSQL
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
from invokeai.backend.model_manager import (
@@ -413,7 +412,7 @@ def get_config_store() -> ModelRecordServiceSQL:
assert output_path is not None
image_files = DiskImageFileStorage(output_path / "images")
db = init_db(config=config, logger=InvokeAILogger.get_logger(), image_files=image_files)
return ModelRecordServiceSQL(db, ModelMetadataStoreSQL(db))
return ModelRecordServiceSQL(db)
def get_model_merger(record_store: ModelRecordServiceBase) -> ModelMerger:

View File

@@ -10,7 +10,7 @@ export const ReduxInit = memo((props: PropsWithChildren) => {
const dispatch = useAppDispatch();
useGlobalModifiersInit();
useEffect(() => {
dispatch(modelChanged({ key: 'test_model', base: 'sd-1' }));
dispatch(modelChanged({ key: 'test_model', hash: 'some_hash', name: 'some name', base: 'sd-1', type: 'main' }));
}, []);
return props.children;

View File

@@ -746,6 +746,7 @@
"delete": "Delete",
"deleteConfig": "Delete Config",
"deleteModel": "Delete Model",
"deleteModelImage": "Delete Model Image",
"deleteMsg1": "Are you sure you want to delete this model from InvokeAI?",
"deleteMsg2": "This WILL delete the model from disk if it is in the InvokeAI root folder. If you are using a custom location, then the model WILL NOT be deleted from disk.",
"description": "Description",
@@ -765,11 +766,14 @@
"importModels": "Import Models",
"importQueue": "Import Queue",
"inpainting": "v1 Inpainting",
"inplaceInstall": "In-place install",
"inplaceInstallDesc": "Install models without copying the files. When using the model, it will be loaded from its this location. If disabled, the model file(s) will be copied into the Invoke-managed models directory during installation.",
"interpolationType": "Interpolation Type",
"inverseSigmoid": "Inverse Sigmoid",
"invokeAIFolder": "Invoke AI Folder",
"invokeRoot": "InvokeAI folder",
"load": "Load",
"localOnly": "local only",
"loraModels": "LoRAs",
"manual": "Manual",
"merge": "Merge",
@@ -786,6 +790,10 @@
"modelDeleteFailed": "Failed to delete model",
"modelEntryDeleted": "Model Entry Deleted",
"modelExists": "Model Exists",
"modelImageDeleted": "Model Image Deleted",
"modelImageDeleteFailed": "Model Image Delete Failed",
"modelImageUpdated": "Model Image Updated",
"modelImageUpdateFailed": "Model Image Update Failed",
"modelLocation": "Model Location",
"modelLocationValidationMsg": "Provide the path to a local folder where your Diffusers Model is stored",
"modelManager": "Model Manager",
@@ -818,6 +826,7 @@
"oliveModels": "Olives",
"onnxModels": "Onnx",
"path": "Path",
"pathToConfig": "Path To Config",
"pathToCustomConfig": "Path To Custom Config",
"pickModelType": "Pick Model Type",
"predictionType": "Prediction Type",
@@ -850,8 +859,11 @@
"syncModels": "Sync Models",
"syncModelsDesc": "If your models are out of sync with the backend, you can refresh them up using this option. This is generally handy in cases where you add models to the InvokeAI root folder or autoimport directory after the application has booted.",
"triggerPhrases": "Trigger Phrases",
"loraTriggerPhrases": "LoRA Trigger Phrases",
"mainModelTriggerPhrases": "Main Model Trigger Phrases",
"typePhraseHere": "Type phrase here",
"upcastAttention": "Upcast Attention",
"uploadImage": "Upload Image",
"updateModel": "Update Model",
"useCustomConfig": "Use Custom Config",
"useDefaultSettings": "Use Default Settings",
@@ -944,6 +956,7 @@
"doesNotExist": "does not exist",
"downloadWorkflow": "Download Workflow JSON",
"edge": "Edge",
"edit": "Edit",
"editMode": "Edit in Workflow Editor",
"enum": "Enum",
"enumDescription": "Enums are values that may be one of a number of options.",
@@ -1019,6 +1032,7 @@
"nodeTemplate": "Node Template",
"nodeType": "Node Type",
"noFieldsLinearview": "No fields added to Linear View",
"noFieldsViewMode": "This workflow has no selected fields to display. View the full workflow to configure values.",
"noFieldType": "No field type",
"noImageFoundState": "No initial image found in state",
"noMatchingNodes": "No matching nodes",
@@ -1806,6 +1820,7 @@
"cursorPosition": "Cursor Position",
"darkenOutsideSelection": "Darken Outside Selection",
"discardAll": "Discard All",
"discardCurrent": "Discard Current",
"downloadAsImage": "Download As Image",
"emptyFolder": "Empty Folder",
"emptyTempImageFolder": "Empty Temp Image Folder",
@@ -1815,6 +1830,7 @@
"eraseBoundingBox": "Erase Bounding Box",
"eraser": "Eraser",
"fillBoundingBox": "Fill Bounding Box",
"invertBrushSizeScrollDirection": "Invert Scroll for Brush Size",
"layer": "Layer",
"limitStrokesToBox": "Limit Strokes to Box",
"mask": "Mask",

View File

@@ -115,7 +115,8 @@
"safetensors": "Safetensors",
"ai": "ia",
"file": "File",
"toResolve": "Da risolvere"
"toResolve": "Da risolvere",
"add": "Aggiungi"
},
"gallery": {
"generations": "Generazioni",
@@ -153,7 +154,12 @@
"starImage": "Immagine preferita",
"dropToUpload": "$t(gallery.drop) per aggiornare",
"problemDeletingImagesDesc": "Impossibile eliminare una o più immagini",
"problemDeletingImages": "Problema durante l'eliminazione delle immagini"
"problemDeletingImages": "Problema durante l'eliminazione delle immagini",
"bulkDownloadRequested": "Preparazione del download",
"bulkDownloadRequestedDesc": "La tua richiesta di download è in preparazione. L'operazione potrebbe richiedere alcuni istanti.",
"bulkDownloadRequestFailed": "Problema durante la preparazione del download",
"bulkDownloadStarting": "Avvio scaricamento",
"bulkDownloadFailed": "Scaricamento fallito"
},
"hotkeys": {
"keyboardShortcuts": "Tasti di scelta rapida",
@@ -505,12 +511,12 @@
"modelSyncFailed": "Sincronizzazione modello non riuscita",
"settings": "Impostazioni",
"syncModels": "Sincronizza Modelli",
"syncModelsDesc": "Se i tuoi modelli non sono sincronizzati con il back-end, puoi aggiornarli utilizzando questa opzione. Questo è generalmente utile nei casi in cui aggiorni manualmente il tuo file models.yaml o aggiungi modelli alla cartella principale di InvokeAI dopo l'avvio dell'applicazione.",
"syncModelsDesc": "Se i tuoi modelli non sono sincronizzati con il back-end, puoi aggiornarli utilizzando questa opzione. Questo è generalmente utile nei casi in cui aggiungi modelli alla cartella principale di InvokeAI dopo l'avvio dell'applicazione.",
"loraModels": "LoRA",
"oliveModels": "Olive",
"onnxModels": "ONNX",
"noModels": "Nessun modello trovato",
"predictionType": "Tipo di previsione (per modelli Stable Diffusion 2.x ed alcuni modelli Stable Diffusion 1.x)",
"predictionType": "Tipo di previsione",
"quickAdd": "Aggiunta rapida",
"simpleModelDesc": "Fornire un percorso a un modello diffusori locale, un modello checkpoint/safetensor locale, un ID repository HuggingFace o un URL del modello checkpoint/diffusori.",
"advanced": "Avanzate",
@@ -521,7 +527,34 @@
"vaePrecision": "Precisione VAE",
"noModelSelected": "Nessun modello selezionato",
"conversionNotSupported": "Conversione non supportata",
"configFile": "File di configurazione"
"configFile": "File di configurazione",
"modelName": "Nome del modello",
"modelSettings": "Impostazioni del modello",
"advancedImportInfo": "La scheda opzioni avanzate consente la configurazione manuale delle impostazioni del modello principale. Utilizza questa scheda solo se sei sicuro di conoscere il tipo di modello e la configurazione corretti per il modello selezionato.",
"addAll": "Aggiungi tutto",
"addModels": "Aggiungi modelli",
"cancel": "Annulla",
"edit": "Modifica",
"imageEncoderModelId": "ID modello codificatore di immagini",
"importQueue": "Coda di importazione",
"modelMetadata": "Metadati del modello",
"path": "Percorso",
"prune": "Elimina",
"pruneTooltip": "Elimina dalla coda le importazioni completate",
"removeFromQueue": "Rimuovi dalla coda",
"repoVariant": "Variante del repository",
"scan": "Scansiona",
"scanFolder": "Scansione cartella",
"scanResults": "Risultati della scansione",
"source": "Sorgente",
"upcastAttention": "Eleva l'attenzione",
"ztsnrTraining": "Addestramento ZTSNR",
"typePhraseHere": "Digita la frase qui",
"defaultSettingsSaved": "Impostazioni predefinite salvate",
"defaultSettings": "Impostazioni predefinite",
"metadata": "Metadati",
"useDefaultSettings": "Usa le impostazioni predefinite",
"triggerPhrases": "Frasi trigger"
},
"parameters": {
"images": "Immagini",
@@ -603,8 +636,8 @@
"clipSkip": "CLIP Skip",
"aspectRatio": "Proporzioni",
"maskAdjustmentsHeader": "Regolazioni della maschera",
"maskBlur": "Sfocatura",
"maskBlurMethod": "Metodo di sfocatura",
"maskBlur": "Sfocatura maschera",
"maskBlurMethod": "Metodo sfocatura maschera",
"seamLowThreshold": "Basso",
"seamHighThreshold": "Alto",
"coherencePassHeader": "Passaggio di coerenza",
@@ -661,7 +694,8 @@
"setToOptimalSizeTooLarge": "$t(parameters.setToOptimalSize) (potrebbe essere troppo grande)",
"boxBlur": "Box",
"gaussianBlur": "Gaussian",
"remixImage": "Remixa l'immagine"
"remixImage": "Remixa l'immagine",
"coherenceEdgeSize": "Dimensione bordo"
},
"settings": {
"models": "Modelli",
@@ -744,8 +778,8 @@
"canceled": "Elaborazione annullata",
"problemCopyingImageLink": "Impossibile copiare il collegamento dell'immagine",
"uploadFailedInvalidUploadDesc": "Deve essere una singola immagine PNG o JPEG",
"parameterSet": "Parametro impostato",
"parameterNotSet": "Parametro non impostato",
"parameterSet": "{{parameter}} impostato",
"parameterNotSet": "{{parameter}} non impostato",
"nodesLoadedFailed": "Impossibile caricare i nodi",
"nodesSaved": "Nodi salvati",
"nodesLoaded": "Nodi caricati",
@@ -798,7 +832,10 @@
"problemRetrievingWorkflow": "Problema nel recupero del flusso di lavoro",
"resetInitialImage": "Reimposta l'immagine iniziale",
"uploadInitialImage": "Carica l'immagine iniziale",
"problemDownloadingImage": "Impossibile scaricare l'immagine"
"problemDownloadingImage": "Impossibile scaricare l'immagine",
"prunedQueue": "Coda ripulita",
"modelImportCanceled": "Importazione del modello annullata",
"modelImportRemoved": "Importazione del modello rimossa"
},
"tooltip": {
"feature": {
@@ -876,7 +913,10 @@
"antialiasing": "Anti aliasing",
"showResultsOn": "Mostra i risultati (attivato)",
"showResultsOff": "Mostra i risultati (disattivato)",
"saveMask": "Salva $t(unifiedCanvas.mask)"
"saveMask": "Salva $t(unifiedCanvas.mask)",
"coherenceModeGaussianBlur": "Sfocatura Gaussiana",
"coherenceModeBoxBlur": "Sfocatura Box",
"coherenceModeStaged": "Maschera espansa"
},
"accessibility": {
"modelSelect": "Seleziona modello",
@@ -1345,7 +1385,8 @@
"allLoRAsAdded": "Tutti i LoRA aggiunti",
"defaultVAE": "VAE predefinito",
"incompatibleBaseModel": "Modello base incompatibile",
"loraAlreadyAdded": "LoRA già aggiunto"
"loraAlreadyAdded": "LoRA già aggiunto",
"concepts": "Concetti"
},
"invocationCache": {
"disable": "Disabilita",
@@ -1698,6 +1739,25 @@
"paragraphs": [
"Valuta le generazioni in modo che siano più simili alle immagini con un punteggio estetico elevato, in base ai dati di addestramento."
]
},
"compositingCoherenceMinDenoise": {
"heading": "Livello minimo di riduzione del rumore",
"paragraphs": [
"Intensità minima di riduzione rumore per la modalità di Coerenza",
"L'intensità minima di riduzione del rumore per la regione di coerenza durante l'inpainting o l'outpainting"
]
},
"compositingMaskBlur": {
"paragraphs": [
"Il raggio di sfocatura della maschera."
],
"heading": "Sfocatura maschera"
},
"compositingCoherenceEdgeSize": {
"heading": "Dimensione del bordo",
"paragraphs": [
"La dimensione del bordo del passaggio di coerenza."
]
}
},
"sdxl": {
@@ -1746,7 +1806,12 @@
"scheduler": "Campionatore",
"recallParameters": "Richiama i parametri",
"noRecallParameters": "Nessun parametro da richiamare trovato",
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)"
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)",
"allPrompts": "Tutti i prompt",
"imageDimensions": "Dimensioni dell'immagine",
"parameterSet": "Parametro {{parameter}} impostato",
"parsingFailed": "Analisi non riuscita",
"recallParameter": "Richiama {{label}}"
},
"hrf": {
"enableHrf": "Abilita Correzione Alta Risoluzione",
@@ -1818,5 +1883,11 @@
"image": {
"title": "Immagine"
}
},
"prompt": {
"compatibleEmbeddings": "Incorporamenti compatibili",
"addPromptTrigger": "Aggiungi parola chiave nel prompt",
"noPromptTriggers": "Nessuna parola chiave disponibile",
"noMatchingTriggers": "Nessuna parola chiave corrispondente"
}
}

View File

@@ -52,7 +52,7 @@
"accept": "Принять",
"postprocessing": "Постобработка",
"txt2img": "Текст в изображение (txt2img)",
"linear": "Линейная обработка",
"linear": "Линейный вид",
"dontAskMeAgain": "Больше не спрашивать",
"areYouSure": "Вы уверены?",
"random": "Случайное",
@@ -117,7 +117,8 @@
"toResolve": "Чтоб решить",
"copy": "Копировать",
"localSystem": "Локальная система",
"aboutDesc": "Используя Invoke для работы? Проверьте это:"
"aboutDesc": "Используя Invoke для работы? Проверьте это:",
"add": "Добавить"
},
"gallery": {
"generations": "Генерации",
@@ -155,7 +156,12 @@
"noImageSelected": "Изображение не выбрано",
"setCurrentImage": "Установить как текущее изображение",
"starImage": "Добавить в избранное",
"dropToUpload": "$t(gallery.drop) чтоб загрузить"
"dropToUpload": "$t(gallery.drop) чтоб загрузить",
"bulkDownloadFailed": "Загрузка не удалась",
"bulkDownloadStarting": "Начало загрузки",
"bulkDownloadRequested": "Подготовка к скачиванию",
"bulkDownloadRequestedDesc": "Ваш запрос на скачивание готовится. Это может занять несколько минут.",
"bulkDownloadRequestFailed": "Возникла проблема при подготовке скачивания"
},
"hotkeys": {
"keyboardShortcuts": "Горячие клавиши",
@@ -504,7 +510,7 @@
"settings": "Настройки",
"selectModel": "Выберите модель",
"syncModels": "Синхронизация моделей",
"syncModelsDesc": "Если ваши модели не синхронизированы с серверной частью, вы можете обновить их, используя эту опцию. Обычно это удобно в тех случаях, когда вы вручную обновляете свой файл \"models.yaml\" или добавляете модели в корневую папку InvokeAI после загрузки приложения.",
"syncModelsDesc": "Если ваши модели не синхронизированы с серверной частью, вы можете обновить их с помощью этой опции. Обычно это удобно в тех случаях, когда вы добавляете модели в корневую папку InvokeAI или каталог автоимпорта после загрузки приложения.",
"modelUpdateFailed": "Не удалось обновить модель",
"modelConversionFailed": "Не удалось сконвертировать модель",
"modelsMergeFailed": "Не удалось выполнить слияние моделей",
@@ -513,7 +519,7 @@
"oliveModels": "Модели Olives",
"conversionNotSupported": "Преобразование не поддерживается",
"noModels": "Нет моделей",
"predictionType": "Тип прогноза (для моделей Stable Diffusion 2.x и периодических моделей Stable Diffusion 1.x)",
"predictionType": "Тип прогноза",
"quickAdd": "Быстрое добавление",
"simpleModelDesc": "Укажите путь к локальной модели Diffusers , локальной модели checkpoint / safetensors, идентификатор репозитория HuggingFace или URL-адрес модели контрольной checkpoint / diffusers.",
"advanced": "Продвинутый",
@@ -524,7 +530,33 @@
"customConfigFileLocation": "Расположение пользовательского файла конфигурации",
"vaePrecision": "Точность VAE",
"noModelSelected": "Модель не выбрана",
"configFile": "Файл конфигурации"
"configFile": "Файл конфигурации",
"addAll": "Добавить всё",
"addModels": "Добавить модели",
"cancel": "Отмена",
"defaultSettings": "Стандартные настройки",
"importQueue": "Импортировать очередь",
"metadata": "Метаданные",
"imageEncoderModelId": "ID модели-энкодера изображений",
"typePhraseHere": "Введите фразы здесь",
"advancedImportInfo": "Вкладка «Дополнительно» позволяет вручную настроить основные параметры модели. Используйте эту вкладку только в том случае, если вы уверены, что знаете правильный тип модели и конфигурацию выбранной модели.",
"defaultSettingsSaved": "Стандартные настройки сохранены",
"edit": "Редактировать",
"path": "Путь",
"prune": "Удалить",
"pruneTooltip": "Удалить готовые импорты из очереди",
"removeFromQueue": "Удалить из очереди",
"repoVariant": "Вариант репозитория",
"scan": "Сканировать",
"scanFolder": "Сканировать папку",
"scanResults": "Результаты сканирования",
"source": "Источник",
"triggerPhrases": "Триггерные фразы",
"useDefaultSettings": "Использовать стандартные настройки",
"modelMetadata": "Метаданные модели",
"modelName": "Название модели",
"modelSettings": "Настройки модели",
"upcastAttention": "Внимание"
},
"parameters": {
"images": "Изображения",
@@ -591,7 +623,7 @@
"hSymmetryStep": "Шаг гор. симметрии",
"hidePreview": "Скрыть предпросмотр",
"imageToImage": "Изображение в изображение",
"denoisingStrength": "Сила шумоподавления",
"denoisingStrength": "Сила зашумления",
"copyImage": "Скопировать изображение",
"showPreview": "Показать предпросмотр",
"noiseSettings": "Шум",
@@ -606,8 +638,8 @@
"clipSkip": "CLIP Пропуск",
"aspectRatio": "Соотношение",
"maskAdjustmentsHeader": "Настройка маски",
"maskBlur": "Размытие",
"maskBlurMethod": "Метод размытия",
"maskBlur": "Размытие маски",
"maskBlurMethod": "Метод размытия маски",
"seamLowThreshold": "Низкий",
"seamHighThreshold": "Высокий",
"coherencePassHeader": "Порог Coherence",
@@ -666,7 +698,9 @@
"lockAspectRatio": "Заблокировать соотношение",
"boxBlur": "Размытие прямоугольника",
"gaussianBlur": "Размытие по Гауссу",
"remixImage": "Ремикс изображения"
"remixImage": "Ремикс изображения",
"coherenceMinDenoise": "Мин. шумоподавление",
"coherenceEdgeSize": "Размер края"
},
"settings": {
"models": "Модели",
@@ -749,8 +783,8 @@
"canceled": "Обработка отменена",
"problemCopyingImageLink": "Не удалось скопировать ссылку на изображение",
"uploadFailedInvalidUploadDesc": "Должно быть одно изображение в формате PNG или JPEG",
"parameterNotSet": "Параметр не задан",
"parameterSet": "Параметр задан",
"parameterNotSet": "Параметр {{parameter}} не задан",
"parameterSet": "Параметр {{parameter}} задан",
"nodesLoaded": "Узлы загружены",
"problemCopyingImage": "Не удается скопировать изображение",
"nodesLoadedFailed": "Не удалось загрузить Узлы",
@@ -803,7 +837,10 @@
"problemImportingMask": "Проблема с импортом маски",
"problemDownloadingImage": "Не удается скачать изображение",
"uploadInitialImage": "Загрузить начальное изображение",
"resetInitialImage": "Сбросить начальное изображение"
"resetInitialImage": "Сбросить начальное изображение",
"prunedQueue": "Урезанная очередь",
"modelImportCanceled": "Импорт модели отменен",
"modelImportRemoved": "Импорт модели удален"
},
"tooltip": {
"feature": {
@@ -1145,7 +1182,11 @@
"reorderLinearView": "Изменить порядок линейного просмотра",
"viewMode": "Использовать в линейном представлении",
"editMode": "Открыть в редакторе узлов",
"resetToDefaultValue": "Сбросить к стандартному значкнию"
"resetToDefaultValue": "Сбросить к стандартному значкнию",
"latentsField": "Латенты",
"latentsCollectionDescription": "Латенты могут передаваться между узлами.",
"latentsPolymorphicDescription": "Латенты могут передаваться между узлами.",
"latentsFieldDescription": "Латенты могут передаваться между узлами."
},
"controlnet": {
"amult": "a_mult",
@@ -1294,7 +1335,8 @@
},
"paramScheduler": {
"paragraphs": [
"Планировщик определяет, как итеративно добавлять шум к изображению или как обновлять образец на основе выходных данных модели."
"Планировщик, используемый в процессе генерации.",
"Каждый планировщик определяет, как итеративно добавлять шум к изображению или как обновлять образец на основе выходных данных модели."
],
"heading": "Планировщик"
},
@@ -1347,7 +1389,7 @@
"compositingCoherenceMode": {
"heading": "Режим",
"paragraphs": [
"Режим прохождения когерентности."
"Метод, используемый для создания связного изображения с вновь созданной замаскированной областью."
]
},
"paramSeed": {
@@ -1365,7 +1407,7 @@
},
"controlNetBeginEnd": {
"paragraphs": [
"На каких этапах процесса шумоподавления будет применена ControlNet.",
"Часть процесса шумоподавления, к которой будет применен адаптер контроля.",
"ControlNet, применяемые в начале процесса, направляют композицию, а ControlNet, применяемые в конце, направляют детали."
],
"heading": "Процент начала/конца шага"
@@ -1381,8 +1423,8 @@
},
"clipSkip": {
"paragraphs": [
"Выберите, сколько слоев модели CLIP нужно пропустить.",
"Некоторые модели работают лучше с определенными настройками пропуска CLIP."
"Сколько слоев модели CLIP пропустить.",
"Некоторые модели лучше подходят для использования с CLIP Skip."
],
"heading": "CLIP пропуск"
},
@@ -1479,6 +1521,25 @@
"paragraphs": [
"Более высокий вес LoRA приведет к большему влиянию на конечное изображение."
]
},
"compositingMaskBlur": {
"heading": "Размытие маски",
"paragraphs": [
"Радиус размытия маски."
]
},
"compositingCoherenceMinDenoise": {
"heading": "Минимальное шумоподавление",
"paragraphs": [
"Минимальный уровень шумоподавления для режима Coherence",
"Минимальный уровень шумоподавления для области когерентности при перерисовывании или дорисовке"
]
},
"compositingCoherenceEdgeSize": {
"heading": "Размер края",
"paragraphs": [
"Размер края прохода когерентности."
]
}
},
"metadata": {
@@ -1509,7 +1570,12 @@
"steps": "Шаги",
"scheduler": "Планировщик",
"noRecallParameters": "Параметры для вызова не найдены",
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)"
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)",
"parameterSet": "Параметр {{parameter}} установлен",
"parsingFailed": "Не удалось выполнить синтаксический анализ",
"recallParameter": "Отозвать {{label}}",
"allPrompts": "Все запросы",
"imageDimensions": "Размеры изображения"
},
"queue": {
"status": "Статус",
@@ -1588,10 +1654,11 @@
"denoisingStrength": "Шумоподавление",
"refinermodel": "Модель перерисовщик",
"posAestheticScore": "Положительная эстетическая оценка",
"concatPromptStyle": "Объединение запроса и стиля",
"concatPromptStyle": "Связывание запроса и стиля",
"loading": "Загрузка...",
"steps": "Шаги",
"posStylePrompt": "Запрос стиля"
"posStylePrompt": "Запрос стиля",
"freePromptStyle": "Ручной запрос стиля"
},
"invocationCache": {
"useCache": "Использовать кэш",
@@ -1678,7 +1745,8 @@
"allLoRAsAdded": "Все LoRA добавлены",
"defaultVAE": "Стандартное VAE",
"incompatibleBaseModel": "Несовместимая базовая модель",
"loraAlreadyAdded": "LoRA уже добавлена"
"loraAlreadyAdded": "LoRA уже добавлена",
"concepts": "Концепты"
},
"app": {
"storeNotInitialized": "Магазин не инициализирован"
@@ -1696,7 +1764,7 @@
},
"generation": {
"title": "Генерация",
"conceptsTab": "Концепты",
"conceptsTab": "LoRA",
"modelTab": "Модель"
},
"advanced": {

View File

@@ -5,18 +5,55 @@ import openapiTS from 'openapi-typescript';
const OPENAPI_URL = 'http://127.0.0.1:9090/openapi.json';
const OUTPUT_FILE = 'src/services/api/schema.ts';
async function main() {
process.stdout.write(`Generating types "${OPENAPI_URL}" --> "${OUTPUT_FILE}"...`);
const types = await openapiTS(OPENAPI_URL, {
async function generateTypes(schema) {
process.stdout.write(`Generating types ${OUTPUT_FILE}...`);
const types = await openapiTS(schema, {
exportType: true,
transform: (schemaObject) => {
if ('format' in schemaObject && schemaObject.format === 'binary') {
return schemaObject.nullable ? 'Blob | null' : 'Blob';
}
if (schemaObject.title === 'MetadataField') {
// This is `Record<string, never>` by default, but it actually accepts any a dict of any valid JSON value.
return 'Record<string, unknown>';
}
},
});
fs.writeFileSync(OUTPUT_FILE, types);
process.stdout.write(`\nOK!\r\n`);
}
async function main() {
const encoding = 'utf-8';
if (process.stdin.isTTY) {
// Handle generating types with an arg (e.g. URL or path to file)
if (process.argv.length > 3) {
console.error('Usage: typegen.js <openapi.json>');
process.exit(1);
}
if (process.argv[2]) {
const schema = new Buffer.from(process.argv[2], encoding);
generateTypes(schema);
} else {
generateTypes(OPENAPI_URL);
}
} else {
// Handle generating types from stdin
let schema = '';
process.stdin.setEncoding(encoding);
process.stdin.on('readable', function () {
const chunk = process.stdin.read();
if (chunk !== null) {
schema += chunk;
}
});
process.stdin.on('end', function () {
generateTypes(JSON.parse(schema));
});
}
}
main();

View File

@@ -38,7 +38,7 @@ export const addCanvasImageToControlNetListener = (startAppListening: AppStartLi
type: 'image/png',
}),
image_category: 'control',
is_intermediate: false,
is_intermediate: true,
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
crop_visible: false,
postUploadAction: {

View File

@@ -48,7 +48,7 @@ export const addCanvasMaskToControlNetListener = (startAppListening: AppStartLis
type: 'image/png',
}),
image_category: 'mask',
is_intermediate: false,
is_intermediate: true,
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
crop_visible: false,
postUploadAction: {

View File

@@ -101,7 +101,7 @@ export const addEnqueueRequestedCanvasListener = (startAppListening: AppStartLis
).unwrap();
}
const graph = buildCanvasGraph(state, generationMode, canvasInitImage, canvasMaskImage);
const graph = await buildCanvasGraph(state, generationMode, canvasInitImage, canvasMaskImage);
log.debug({ graph: parseify(graph) }, `Canvas graph built`);

View File

@@ -20,15 +20,15 @@ export const addEnqueueRequestedLinear = (startAppListening: AppStartListening)
if (model && model.base === 'sdxl') {
if (action.payload.tabName === 'txt2img') {
graph = buildLinearSDXLTextToImageGraph(state);
graph = await buildLinearSDXLTextToImageGraph(state);
} else {
graph = buildLinearSDXLImageToImageGraph(state);
graph = await buildLinearSDXLImageToImageGraph(state);
}
} else {
if (action.payload.tabName === 'txt2img') {
graph = buildLinearTextToImageGraph(state);
graph = await buildLinearTextToImageGraph(state);
} else {
graph = buildLinearImageToImageGraph(state);
graph = await buildLinearImageToImageGraph(state);
}
}

View File

@@ -21,6 +21,7 @@ import { makeToast } from 'features/system/util/makeToast';
import { t } from 'i18next';
import { map } from 'lodash-es';
import { modelsApi } from 'services/api/endpoints/models';
import { isNonRefinerMainModelConfig } from 'services/api/types';
export const addSetDefaultSettingsListener = (startAppListening: AppStartListening) => {
startAppListening({
@@ -36,61 +37,64 @@ export const addSetDefaultSettingsListener = (startAppListening: AppStartListeni
const modelConfig = await dispatch(modelsApi.endpoints.getModelConfig.initiate(currentModel.key)).unwrap();
if (!modelConfig || !modelConfig.default_settings) {
if (!modelConfig) {
return;
}
const { vae, vae_precision, cfg_scale, cfg_rescale_multiplier, steps, scheduler } = modelConfig.default_settings;
if (isNonRefinerMainModelConfig(modelConfig) && modelConfig.default_settings) {
const { vae, vae_precision, cfg_scale, cfg_rescale_multiplier, steps, scheduler } =
modelConfig.default_settings;
if (vae) {
// we store this as "default" within default settings
// to distinguish it from no default set
if (vae === 'default') {
dispatch(vaeSelected(null));
} else {
const { data } = modelsApi.endpoints.getVaeModels.select()(state);
const vaeArray = map(data?.entities);
const validVae = vaeArray.find((model) => model.key === vae);
if (vae) {
// we store this as "default" within default settings
// to distinguish it from no default set
if (vae === 'default') {
dispatch(vaeSelected(null));
} else {
const { data } = modelsApi.endpoints.getVaeModels.select()(state);
const vaeArray = map(data?.entities);
const validVae = vaeArray.find((model) => model.key === vae);
const result = zParameterVAEModel.safeParse(validVae);
if (!result.success) {
return;
const result = zParameterVAEModel.safeParse(validVae);
if (!result.success) {
return;
}
dispatch(vaeSelected(result.data));
}
dispatch(vaeSelected(result.data));
}
}
if (vae_precision) {
if (isParameterPrecision(vae_precision)) {
dispatch(vaePrecisionChanged(vae_precision));
if (vae_precision) {
if (isParameterPrecision(vae_precision)) {
dispatch(vaePrecisionChanged(vae_precision));
}
}
}
if (cfg_scale) {
if (isParameterCFGScale(cfg_scale)) {
dispatch(setCfgScale(cfg_scale));
if (cfg_scale) {
if (isParameterCFGScale(cfg_scale)) {
dispatch(setCfgScale(cfg_scale));
}
}
}
if (cfg_rescale_multiplier) {
if (isParameterCFGRescaleMultiplier(cfg_rescale_multiplier)) {
dispatch(setCfgRescaleMultiplier(cfg_rescale_multiplier));
if (cfg_rescale_multiplier) {
if (isParameterCFGRescaleMultiplier(cfg_rescale_multiplier)) {
dispatch(setCfgRescaleMultiplier(cfg_rescale_multiplier));
}
}
}
if (steps) {
if (isParameterSteps(steps)) {
dispatch(setSteps(steps));
if (steps) {
if (isParameterSteps(steps)) {
dispatch(setSteps(steps));
}
}
}
if (scheduler) {
if (isParameterScheduler(scheduler)) {
dispatch(setScheduler(scheduler));
if (scheduler) {
if (isParameterScheduler(scheduler)) {
dispatch(setScheduler(scheduler));
}
}
}
dispatch(addToast(makeToast({ title: t('toast.parameterSet', { parameter: 'Default settings' }) })));
dispatch(addToast(makeToast({ title: t('toast.parameterSet', { parameter: 'Default settings' }) })));
}
},
});
};

View File

@@ -20,7 +20,7 @@ const sx: ChakraProps['sx'] = {
'.react-colorful__hue-pointer': colorPickerPointerStyles,
'.react-colorful__saturation-pointer': colorPickerPointerStyles,
'.react-colorful__alpha-pointer': colorPickerPointerStyles,
gap: 2,
gap: 5,
flexDir: 'column',
};
@@ -39,8 +39,8 @@ const IAIColorPicker = (props: IAIColorPickerProps) => {
<Flex sx={sx}>
<RgbaColorPicker color={color} onChange={onChange} style={colorPickerStyles} {...rest} />
{withNumberInput && (
<Flex>
<FormControl>
<Flex gap={5}>
<FormControl gap={0}>
<FormLabel>{t('common.red')}</FormLabel>
<CompositeNumberInput
value={color.r}
@@ -52,7 +52,7 @@ const IAIColorPicker = (props: IAIColorPickerProps) => {
defaultValue={90}
/>
</FormControl>
<FormControl>
<FormControl gap={0}>
<FormLabel>{t('common.green')}</FormLabel>
<CompositeNumberInput
value={color.g}
@@ -64,7 +64,7 @@ const IAIColorPicker = (props: IAIColorPickerProps) => {
defaultValue={90}
/>
</FormControl>
<FormControl>
<FormControl gap={0}>
<FormLabel>{t('common.blue')}</FormLabel>
<CompositeNumberInput
value={color.b}
@@ -76,7 +76,7 @@ const IAIColorPicker = (props: IAIColorPickerProps) => {
defaultValue={255}
/>
</FormControl>
<FormControl>
<FormControl gap={0}>
<FormLabel>{t('common.alpha')}</FormLabel>
<CompositeNumberInput
value={color.a}

View File

@@ -2,7 +2,7 @@ import type { ComboboxOnChange, ComboboxOption } from '@invoke-ai/ui-library';
import type { EntityState } from '@reduxjs/toolkit';
import { useAppSelector } from 'app/store/storeHooks';
import type { GroupBase } from 'chakra-react-select';
import type { ModelIdentifierWithBase } from 'features/nodes/types/common';
import type { ModelIdentifierField } from 'features/nodes/types/common';
import { groupBy, map, reduce } from 'lodash-es';
import { useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
@@ -10,7 +10,7 @@ import type { AnyModelConfig } from 'services/api/types';
type UseGroupedModelComboboxArg<T extends AnyModelConfig> = {
modelEntities: EntityState<T, string> | undefined;
selectedModel?: ModelIdentifierWithBase | null;
selectedModel?: ModelIdentifierField | null;
onChange: (value: T | null) => void;
getIsDisabled?: (model: T) => boolean;
isLoading?: boolean;

View File

@@ -1,6 +1,6 @@
import type { ComboboxOnChange, ComboboxOption } from '@invoke-ai/ui-library';
import type { EntityState } from '@reduxjs/toolkit';
import type { ModelIdentifierWithBase } from 'features/nodes/types/common';
import type { ModelIdentifierField } from 'features/nodes/types/common';
import { map } from 'lodash-es';
import { useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
@@ -8,7 +8,7 @@ import type { AnyModelConfig } from 'services/api/types';
type UseModelComboboxArg<T extends AnyModelConfig> = {
modelEntities: EntityState<T, string> | undefined;
selectedModel?: ModelIdentifierWithBase | null;
selectedModel?: ModelIdentifierField | null;
onChange: (value: T | null) => void;
getIsDisabled?: (model: T) => boolean;
optionsFilter?: (model: T) => boolean;

View File

@@ -1,7 +1,7 @@
import type { Item } from '@invoke-ai/ui-library';
import type { EntityState } from '@reduxjs/toolkit';
import { EMPTY_ARRAY } from 'app/store/constants';
import type { ModelIdentifierWithBase } from 'features/nodes/types/common';
import type { ModelIdentifierField } from 'features/nodes/types/common';
import { MODEL_TYPE_SHORT_MAP } from 'features/parameters/types/constants';
import { filter } from 'lodash-es';
import { useCallback, useMemo } from 'react';
@@ -11,7 +11,7 @@ import type { AnyModelConfig } from 'services/api/types';
type UseModelCustomSelectArg<T extends AnyModelConfig> = {
data: EntityState<T, string> | undefined;
isLoading: boolean;
selectedModel?: ModelIdentifierWithBase | null;
selectedModel?: ModelIdentifierField | null;
onChange: (value: T | null) => void;
modelFilter?: (model: T) => boolean;
isModelDisabled?: (model: T) => boolean;

View File

@@ -29,7 +29,7 @@ import { Layer, Stage } from 'react-konva';
import IAICanvasBoundingBoxOverlay from './IAICanvasBoundingBoxOverlay';
import IAICanvasGrid from './IAICanvasGrid';
import IAICanvasIntermediateImage from './IAICanvasIntermediateImage';
import IAICanvasMaskCompositer from './IAICanvasMaskCompositer';
import IAICanvasMaskCompositor from './IAICanvasMaskCompositor';
import IAICanvasMaskLines from './IAICanvasMaskLines';
import IAICanvasObjectRenderer from './IAICanvasObjectRenderer';
import IAICanvasStagingArea from './IAICanvasStagingArea';
@@ -176,7 +176,7 @@ const IAICanvas = () => {
</Layer>
<Layer id="mask" visible={isMaskEnabled && !isStaging} listening={false}>
<IAICanvasMaskLines visible={true} listening={false} />
<IAICanvasMaskCompositer listening={false} />
<IAICanvasMaskCompositor listening={false} />
</Layer>
<Layer listening={false}>
<IAICanvasBoundingBoxOverlay />

View File

@@ -16,9 +16,9 @@ const canvasMaskCompositerSelector = createMemoizedSelector(selectCanvasSlice, (
};
});
type IAICanvasMaskCompositerProps = RectConfig;
type IAICanvasMaskCompositorProps = RectConfig;
const IAICanvasMaskCompositer = (props: IAICanvasMaskCompositerProps) => {
const IAICanvasMaskCompositor = (props: IAICanvasMaskCompositorProps) => {
const { ...rest } = props;
const { stageCoordinates, stageDimensions } = useAppSelector(canvasMaskCompositerSelector);
@@ -89,4 +89,4 @@ const IAICanvasMaskCompositer = (props: IAICanvasMaskCompositerProps) => {
);
};
export default memo(IAICanvasMaskCompositer);
export default memo(IAICanvasMaskCompositor);

View File

@@ -5,6 +5,7 @@ import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { stagingAreaImageSaved } from 'features/canvas/store/actions';
import {
commitStagingAreaImage,
discardStagedImage,
discardStagedImages,
nextStagingAreaImage,
prevStagingAreaImage,
@@ -22,6 +23,7 @@ import {
PiEyeBold,
PiEyeSlashBold,
PiFloppyDiskBold,
PiTrashSimpleBold,
PiXBold,
} from 'react-icons/pi';
import { useGetImageDTOQuery } from 'services/api/endpoints/images';
@@ -44,6 +46,40 @@ const selector = createMemoizedSelector(selectCanvasSlice, (canvas) => {
};
});
const ClearStagingIntermediatesIconButton = () => {
const dispatch = useAppDispatch();
const { t } = useTranslation();
const handleDiscardStagingArea = useCallback(() => {
dispatch(discardStagedImages());
}, [dispatch]);
const handleDiscardStagingImage = useCallback(() => {
dispatch(discardStagedImage());
}, [dispatch]);
return (
<>
<IconButton
tooltip={`${t('unifiedCanvas.discardCurrent')}`}
aria-label={t('unifiedCanvas.discardCurrent')}
icon={<PiXBold />}
onClick={handleDiscardStagingImage}
colorScheme="invokeBlue"
fontSize={16}
/>
<IconButton
tooltip={`${t('unifiedCanvas.discardAll')} (Esc)`}
aria-label={t('unifiedCanvas.discardAll')}
icon={<PiTrashSimpleBold />}
onClick={handleDiscardStagingArea}
colorScheme="error"
fontSize={16}
/>
</>
);
};
const IAICanvasStagingAreaToolbar = () => {
const dispatch = useAppDispatch();
const { currentStagingAreaImage, shouldShowStagingImage, currentIndex, total } = useAppSelector(selector);
@@ -185,14 +221,7 @@ const IAICanvasStagingAreaToolbar = () => {
onClick={handleSaveToGallery}
colorScheme="invokeBlue"
/>
<IconButton
tooltip={`${t('unifiedCanvas.discardAll')} (Esc)`}
aria-label={t('unifiedCanvas.discardAll')}
icon={<PiXBold />}
onClick={handleDiscardStagingArea}
colorScheme="error"
fontSize={20}
/>
<ClearStagingIntermediatesIconButton />
</ButtonGroup>
</Flex>
);

View File

@@ -18,6 +18,7 @@ import {
setShouldAutoSave,
setShouldCropToBoundingBoxOnSave,
setShouldDarkenOutsideBoundingBox,
setShouldInvertBrushSizeScrollDirection,
setShouldRestrictStrokesToBox,
setShouldShowCanvasDebugInfo,
setShouldShowGrid,
@@ -40,6 +41,7 @@ const IAICanvasSettingsButtonPopover = () => {
const shouldAutoSave = useAppSelector((s) => s.canvas.shouldAutoSave);
const shouldCropToBoundingBoxOnSave = useAppSelector((s) => s.canvas.shouldCropToBoundingBoxOnSave);
const shouldDarkenOutsideBoundingBox = useAppSelector((s) => s.canvas.shouldDarkenOutsideBoundingBox);
const shouldInvertBrushSizeScrollDirection = useAppSelector((s) => s.canvas.shouldInvertBrushSizeScrollDirection);
const shouldShowCanvasDebugInfo = useAppSelector((s) => s.canvas.shouldShowCanvasDebugInfo);
const shouldShowGrid = useAppSelector((s) => s.canvas.shouldShowGrid);
const shouldShowIntermediates = useAppSelector((s) => s.canvas.shouldShowIntermediates);
@@ -76,6 +78,10 @@ const IAICanvasSettingsButtonPopover = () => {
(e: ChangeEvent<HTMLInputElement>) => dispatch(setShouldDarkenOutsideBoundingBox(e.target.checked)),
[dispatch]
);
const handleChangeShouldInvertBrushSizeScrollDirection = useCallback(
(e: ChangeEvent<HTMLInputElement>) => dispatch(setShouldInvertBrushSizeScrollDirection(e.target.checked)),
[dispatch]
);
const handleChangeShouldAutoSave = useCallback(
(e: ChangeEvent<HTMLInputElement>) => dispatch(setShouldAutoSave(e.target.checked)),
[dispatch]
@@ -144,6 +150,13 @@ const IAICanvasSettingsButtonPopover = () => {
<FormLabel>{t('unifiedCanvas.limitStrokesToBox')}</FormLabel>
<Checkbox isChecked={shouldRestrictStrokesToBox} onChange={handleChangeShouldRestrictStrokesToBox} />
</FormControl>
<FormControl>
<FormLabel>{t('unifiedCanvas.invertBrushSizeScrollDirection')}</FormLabel>
<Checkbox
isChecked={shouldInvertBrushSizeScrollDirection}
onChange={handleChangeShouldInvertBrushSizeScrollDirection}
/>
</FormControl>
<FormControl>
<FormLabel>{t('unifiedCanvas.showCanvasDebugInfo')}</FormLabel>
<Checkbox isChecked={shouldShowCanvasDebugInfo} onChange={handleChangeShouldShowCanvasDebugInfo} />

View File

@@ -15,6 +15,7 @@ const useCanvasWheel = (stageRef: MutableRefObject<Konva.Stage | null>) => {
const stageScale = useAppSelector((s) => s.canvas.stageScale);
const isMoveStageKeyHeld = useStore($isMoveStageKeyHeld);
const brushSize = useAppSelector((s) => s.canvas.brushSize);
const shouldInvertBrushSizeScrollDirection = useAppSelector((s) => s.canvas.shouldInvertBrushSizeScrollDirection);
return useCallback(
(e: KonvaEventObject<WheelEvent>) => {
@@ -28,10 +29,16 @@ const useCanvasWheel = (stageRef: MutableRefObject<Konva.Stage | null>) => {
// checking for ctrl key is pressed or not,
// so that brush size can be controlled using ctrl + scroll up/down
// Invert the delta if the property is set to true
let delta = e.evt.deltaY;
if (shouldInvertBrushSizeScrollDirection) {
delta = -delta;
}
if ($ctrl.get() || $meta.get()) {
// This equation was derived by fitting a curve to the desired brush sizes and deltas
// see https://github.com/invoke-ai/InvokeAI/pull/5542#issuecomment-1915847565
const targetDelta = Math.sign(e.evt.deltaY) * 0.7363 * Math.pow(1.0394, brushSize);
const targetDelta = Math.sign(delta) * 0.7363 * Math.pow(1.0394, brushSize);
// This needs to be clamped to prevent the delta from getting too large
const finalDelta = clamp(targetDelta, -20, 20);
// The new brush size is also clamped to prevent it from getting too large or small
@@ -67,7 +74,7 @@ const useCanvasWheel = (stageRef: MutableRefObject<Konva.Stage | null>) => {
dispatch(setStageCoordinates(newCoordinates));
}
},
[stageRef, isMoveStageKeyHeld, stageScale, dispatch, brushSize]
[stageRef, isMoveStageKeyHeld, brushSize, dispatch, stageScale, shouldInvertBrushSizeScrollDirection]
);
};

View File

@@ -65,6 +65,7 @@ const initialCanvasState: CanvasState = {
shouldAutoSave: false,
shouldCropToBoundingBoxOnSave: false,
shouldDarkenOutsideBoundingBox: false,
shouldInvertBrushSizeScrollDirection: false,
shouldLockBoundingBox: false,
shouldPreserveMaskedArea: false,
shouldRestrictStrokesToBox: true,
@@ -220,6 +221,9 @@ export const canvasSlice = createSlice({
setShouldDarkenOutsideBoundingBox: (state, action: PayloadAction<boolean>) => {
state.shouldDarkenOutsideBoundingBox = action.payload;
},
setShouldInvertBrushSizeScrollDirection: (state, action: PayloadAction<boolean>) => {
state.shouldInvertBrushSizeScrollDirection = action.payload;
},
clearCanvasHistory: (state) => {
state.pastLayerStates = [];
state.futureLayerStates = [];
@@ -288,6 +292,31 @@ export const canvasSlice = createSlice({
state.shouldShowStagingImage = true;
state.batchIds = [];
},
discardStagedImage: (state) => {
const { images, selectedImageIndex } = state.layerState.stagingArea;
state.pastLayerStates.push(cloneDeep(state.layerState));
if (state.pastLayerStates.length > MAX_HISTORY) {
state.pastLayerStates.shift();
}
if (!images.length) {
return;
}
images.splice(selectedImageIndex, 1);
if (selectedImageIndex >= images.length) {
state.layerState.stagingArea.selectedImageIndex = images.length - 1;
}
if (!images.length) {
state.shouldShowStagingImage = false;
state.shouldShowStagingOutline = false;
}
state.futureLayerStates = [];
},
addFillRect: (state) => {
const { boundingBoxCoordinates, boundingBoxDimensions, brushColor } = state;
@@ -655,6 +684,7 @@ export const {
commitColorPickerColor,
commitStagingAreaImage,
discardStagedImages,
discardStagedImage,
nextStagingAreaImage,
prevStagingAreaImage,
redo,
@@ -674,6 +704,7 @@ export const {
setShouldAutoSave,
setShouldCropToBoundingBoxOnSave,
setShouldDarkenOutsideBoundingBox,
setShouldInvertBrushSizeScrollDirection,
setShouldPreserveMaskedArea,
setShouldShowBoundingBox,
setShouldShowCanvasDebugInfo,

View File

@@ -120,6 +120,7 @@ export interface CanvasState {
shouldAutoSave: boolean;
shouldCropToBoundingBoxOnSave: boolean;
shouldDarkenOutsideBoundingBox: boolean;
shouldInvertBrushSizeScrollDirection: boolean;
shouldLockBoundingBox: boolean;
shouldPreserveMaskedArea: boolean;
shouldRestrictStrokesToBox: boolean;

View File

@@ -1,6 +1,7 @@
import { FormControl, FormLabel, Switch } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useControlAdapterIsEnabled } from 'features/controlAdapters/hooks/useControlAdapterIsEnabled';
import { useControlAdapterModel } from 'features/controlAdapters/hooks/useControlAdapterModel';
import { useControlAdapterShouldAutoConfig } from 'features/controlAdapters/hooks/useControlAdapterShouldAutoConfig';
import { controlAdapterAutoConfigToggled } from 'features/controlAdapters/store/controlAdaptersSlice';
import { isNil } from 'lodash-es';
@@ -14,12 +15,13 @@ type Props = {
const ControlAdapterShouldAutoConfig = ({ id }: Props) => {
const isEnabled = useControlAdapterIsEnabled(id);
const shouldAutoConfig = useControlAdapterShouldAutoConfig(id);
const { modelConfig } = useControlAdapterModel(id);
const dispatch = useAppDispatch();
const { t } = useTranslation();
const handleShouldAutoConfigChanged = useCallback(() => {
dispatch(controlAdapterAutoConfigToggled({ id }));
}, [id, dispatch]);
dispatch(controlAdapterAutoConfigToggled({ id, modelConfig }));
}, [id, dispatch, modelConfig]);
if (isNil(shouldAutoConfig)) {
return null;

View File

@@ -6,7 +6,6 @@ import { useControlAdapterModel } from 'features/controlAdapters/hooks/useContro
import { useControlAdapterModelQuery } from 'features/controlAdapters/hooks/useControlAdapterModelQuery';
import { useControlAdapterType } from 'features/controlAdapters/hooks/useControlAdapterType';
import { controlAdapterModelChanged } from 'features/controlAdapters/store/controlAdaptersSlice';
import { getModelKeyAndBase } from 'features/metadata/util/modelFetchingHelpers';
import { memo, useCallback, useMemo } from 'react';
import type { ControlNetModelConfig, IPAdapterModelConfig, T2IAdapterModelConfig } from 'services/api/types';
@@ -17,21 +16,21 @@ type ParamControlAdapterModelProps = {
const ParamControlAdapterModel = ({ id }: ParamControlAdapterModelProps) => {
const isEnabled = useControlAdapterIsEnabled(id);
const controlAdapterType = useControlAdapterType(id);
const model = useControlAdapterModel(id);
const { modelConfig } = useControlAdapterModel(id);
const dispatch = useAppDispatch();
const currentBaseModel = useAppSelector((s) => s.generation.model?.base);
const { data, isLoading } = useControlAdapterModelQuery(controlAdapterType);
const _onChange = useCallback(
(model: ControlNetModelConfig | IPAdapterModelConfig | T2IAdapterModelConfig | null) => {
if (!model) {
(modelConfig: ControlNetModelConfig | IPAdapterModelConfig | T2IAdapterModelConfig | null) => {
if (!modelConfig) {
return;
}
dispatch(
controlAdapterModelChanged({
id,
model: getModelKeyAndBase(model),
modelConfig,
})
);
},
@@ -39,8 +38,8 @@ const ParamControlAdapterModel = ({ id }: ParamControlAdapterModelProps) => {
);
const selectedModel = useMemo(
() => (model && controlAdapterType ? { ...model, model_type: controlAdapterType } : null),
[controlAdapterType, model]
() => (modelConfig && controlAdapterType ? { ...modelConfig, model_type: controlAdapterType } : null),
[controlAdapterType, modelConfig]
);
const { items, selectedItem, onChange, placeholder } = useModelCustomSelect({

View File

@@ -1,7 +1,9 @@
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { CONTROLNET_PROCESSORS } from 'features/controlAdapters/store/constants';
import { controlAdapterAdded } from 'features/controlAdapters/store/controlAdaptersSlice';
import type { ControlAdapterType } from 'features/controlAdapters/store/types';
import { type ControlAdapterType, isControlAdapterProcessorType } from 'features/controlAdapters/store/types';
import { useCallback, useMemo } from 'react';
import type { ControlNetModelConfig, IPAdapterModelConfig, T2IAdapterModelConfig } from 'services/api/types';
import { useControlAdapterModels } from './useControlAdapterModels';
@@ -11,7 +13,7 @@ export const useAddControlAdapter = (type: ControlAdapterType) => {
const models = useControlAdapterModels(type);
const firstModel = useMemo(() => {
const firstModel: ControlNetModelConfig | T2IAdapterModelConfig | IPAdapterModelConfig | undefined = useMemo(() => {
// prefer to use a model that matches the base model
const firstCompatibleModel = models.filter((m) => (baseModel ? m.base === baseModel : true))[0];
@@ -28,6 +30,26 @@ export const useAddControlAdapter = (type: ControlAdapterType) => {
if (isDisabled) {
return;
}
if (
(type === 'controlnet' || type === 't2i_adapter') &&
(firstModel?.type === 'controlnet' || firstModel?.type === 't2i_adapter')
) {
const defaultPreprocessor = firstModel.default_settings?.preprocessor;
const processorType = isControlAdapterProcessorType(defaultPreprocessor) ? defaultPreprocessor : 'none';
const processorNode = CONTROLNET_PROCESSORS[processorType].default;
dispatch(
controlAdapterAdded({
type,
overrides: {
model: firstModel,
processorType,
processorNode,
},
})
);
return;
}
dispatch(
controlAdapterAdded({
type,

View File

@@ -1,3 +1,4 @@
import { skipToken } from '@reduxjs/toolkit/query';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppSelector } from 'app/store/storeHooks';
import {
@@ -5,18 +6,22 @@ import {
selectControlAdaptersSlice,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { useMemo } from 'react';
import { useGetModelConfigWithTypeGuard } from 'services/api/hooks/useGetModelConfigWithTypeGuard';
import { isControlAdapterModelConfig } from 'services/api/types';
export const useControlAdapterModel = (id: string) => {
const selector = useMemo(
() =>
createMemoizedSelector(
selectControlAdaptersSlice,
(controlAdapters) => selectControlAdapterById(controlAdapters, id)?.model
(controlAdapters) => selectControlAdapterById(controlAdapters, id)?.model?.key
),
[id]
);
const model = useAppSelector(selector);
const key = useAppSelector(selector);
return model;
const result = useGetModelConfigWithTypeGuard(key ?? skipToken, isControlAdapterModelConfig);
return result;
};

View File

@@ -253,23 +253,3 @@ export const CONTROLNET_PROCESSORS: ControlNetProcessorsDict = {
},
},
};
export const CONTROLNET_MODEL_DEFAULT_PROCESSORS: {
[key: string]: ControlAdapterProcessorType;
} = {
canny: 'canny_image_processor',
mlsd: 'mlsd_image_processor',
depth: 'depth_anything_image_processor',
bae: 'normalbae_image_processor',
sketch: 'pidi_image_processor',
scribble: 'lineart_image_processor',
lineart: 'lineart_image_processor',
lineart_anime: 'lineart_anime_image_processor',
softedge: 'hed_image_processor',
shuffle: 'content_shuffle_image_processor',
openpose: 'dw_openpose_image_processor',
mediapipe: 'mediapipe_face_processor',
pidi: 'pidi_image_processor',
zoe: 'zoe_depth_image_processor',
color: 'color_map_image_processor',
};

View File

@@ -3,20 +3,15 @@ import { createEntityAdapter, createSlice, isAnyOf } from '@reduxjs/toolkit';
import { getSelectorsOptions } from 'app/store/createMemoizedSelector';
import type { PersistConfig, RootState } from 'app/store/store';
import { buildControlAdapter } from 'features/controlAdapters/util/buildControlAdapter';
import type {
ParameterControlNetModel,
ParameterIPAdapterModel,
ParameterT2IAdapterModel,
} from 'features/parameters/types/parameterSchemas';
import { buildControlAdapterProcessor } from 'features/controlAdapters/util/buildControlAdapterProcessor';
import { zModelIdentifierField } from 'features/nodes/types/common';
import { cloneDeep, merge, uniq } from 'lodash-es';
import type { ControlNetModelConfig, IPAdapterModelConfig, T2IAdapterModelConfig } from 'services/api/types';
import { socketInvocationError } from 'services/events/actions';
import { v4 as uuidv4 } from 'uuid';
import { controlAdapterImageProcessed } from './actions';
import {
CONTROLNET_MODEL_DEFAULT_PROCESSORS as CONTROLADAPTER_MODEL_DEFAULT_PROCESSORS,
CONTROLNET_PROCESSORS,
} from './constants';
import { CONTROLNET_PROCESSORS } from './constants';
import type {
ControlAdapterConfig,
ControlAdapterProcessorType,
@@ -194,15 +189,17 @@ export const controlAdaptersSlice = createSlice({
state,
action: PayloadAction<{
id: string;
model: ParameterControlNetModel | ParameterT2IAdapterModel | ParameterIPAdapterModel;
modelConfig: ControlNetModelConfig | T2IAdapterModelConfig | IPAdapterModelConfig;
}>
) => {
const { id, model } = action.payload;
const { id, modelConfig } = action.payload;
const cn = selectControlAdapterById(state, id);
if (!cn) {
return;
}
const model = zModelIdentifierField.parse(modelConfig);
if (!isControlNetOrT2IAdapter(cn)) {
caAdapter.updateOne(state, { id, changes: { model } });
return;
@@ -215,24 +212,14 @@ export const controlAdaptersSlice = createSlice({
update.changes.processedControlImage = null;
let processorType: ControlAdapterProcessorType | undefined = undefined;
for (const modelSubstring in CONTROLADAPTER_MODEL_DEFAULT_PROCESSORS) {
// TODO(MM2): matching modelSubstring to the model key is no longer a valid way to figure out the default processorType
if (model.key.includes(modelSubstring)) {
processorType = CONTROLADAPTER_MODEL_DEFAULT_PROCESSORS[modelSubstring];
break;
}
if (modelConfig.type === 'ip_adapter') {
// should never happen...
return;
}
if (processorType) {
update.changes.processorType = processorType;
update.changes.processorNode = CONTROLNET_PROCESSORS[processorType]
.default as RequiredControlAdapterProcessorNode;
} else {
update.changes.processorType = 'none';
update.changes.processorNode = CONTROLNET_PROCESSORS.none.default as RequiredControlAdapterProcessorNode;
}
const processor = buildControlAdapterProcessor(modelConfig);
update.changes.processorType = processor.processorType;
update.changes.processorNode = processor.processorNode;
caAdapter.updateOne(state, update);
},
@@ -324,39 +311,23 @@ export const controlAdaptersSlice = createSlice({
state,
action: PayloadAction<{
id: string;
modelConfig?: ControlNetModelConfig | T2IAdapterModelConfig | IPAdapterModelConfig;
}>
) => {
const { id } = action.payload;
const { id, modelConfig } = action.payload;
const cn = selectControlAdapterById(state, id);
if (!cn || !isControlNetOrT2IAdapter(cn)) {
if (!cn || !isControlNetOrT2IAdapter(cn) || modelConfig?.type === 'ip_adapter') {
return;
}
const update: Update<ControlNetConfig | T2IAdapterConfig, string> = {
id,
changes: { shouldAutoConfig: !cn.shouldAutoConfig },
};
if (update.changes.shouldAutoConfig) {
// manage the processor for the user
let processorType: ControlAdapterProcessorType | undefined = undefined;
for (const modelSubstring in CONTROLADAPTER_MODEL_DEFAULT_PROCESSORS) {
// TODO(MM2): matching modelSubstring to the model key is no longer a valid way to figure out the default processorType
if (cn.model?.key.includes(modelSubstring)) {
processorType = CONTROLADAPTER_MODEL_DEFAULT_PROCESSORS[modelSubstring];
break;
}
}
if (processorType) {
update.changes.processorType = processorType;
update.changes.processorNode = CONTROLNET_PROCESSORS[processorType]
.default as RequiredControlAdapterProcessorNode;
} else {
update.changes.processorType = 'none';
update.changes.processorNode = CONTROLNET_PROCESSORS.none.default as RequiredControlAdapterProcessorNode;
}
if (update.changes.shouldAutoConfig && modelConfig) {
const processor = buildControlAdapterProcessor(modelConfig);
update.changes.processorType = processor.processorType;
update.changes.processorNode = processor.processorNode;
}
caAdapter.updateOne(state, update);

View File

@@ -0,0 +1,10 @@
import type { ControlAdapterProcessorType, zControlAdapterProcessorType } from 'features/controlAdapters/store/types';
import type { Equals } from 'tsafe';
import { assert } from 'tsafe';
import { describe, test } from 'vitest';
import type { z } from 'zod';
describe('Control Adapter Types', () => {
test('ControlAdapterProcessorType', () =>
assert<Equals<ControlAdapterProcessorType, z.infer<typeof zControlAdapterProcessorType>>>());
});

View File

@@ -47,6 +47,25 @@ export type ControlAdapterProcessorNode =
* Any ControlNet processor type
*/
export type ControlAdapterProcessorType = NonNullable<ControlAdapterProcessorNode['type'] | 'none'>;
export const zControlAdapterProcessorType = z.enum([
'canny_image_processor',
'color_map_image_processor',
'content_shuffle_image_processor',
'depth_anything_image_processor',
'hed_image_processor',
'lineart_anime_image_processor',
'lineart_image_processor',
'mediapipe_face_processor',
'midas_depth_image_processor',
'mlsd_image_processor',
'normalbae_image_processor',
'dw_openpose_image_processor',
'pidi_image_processor',
'zoe_depth_image_processor',
'none',
]);
export const isControlAdapterProcessorType = (v: unknown): v is ControlAdapterProcessorType =>
zControlAdapterProcessorType.safeParse(v).success;
/**
* The Canny processor node, with parameters flagged as required

View File

@@ -0,0 +1,11 @@
import { CONTROLNET_PROCESSORS } from 'features/controlAdapters/store/constants';
import { isControlAdapterProcessorType } from 'features/controlAdapters/store/types';
import type { ControlNetModelConfig, T2IAdapterModelConfig } from 'services/api/types';
export const buildControlAdapterProcessor = (modelConfig: ControlNetModelConfig | T2IAdapterModelConfig) => {
const defaultPreprocessor = modelConfig.default_settings?.preprocessor;
const processorType = isControlAdapterProcessorType(defaultPreprocessor) ? defaultPreprocessor : 'none';
const processorNode = CONTROLNET_PROCESSORS[processorType].default;
return { processorType, processorNode };
};

View File

@@ -6,7 +6,7 @@ const AutoAddIcon = () => {
const { t } = useTranslation();
return (
<Flex position="absolute" insetInlineEnd={0} top={0} p={1}>
<Badge variant="solid" bg="invokeBlue.500">
<Badge variant="solid" bg="invokeBlue.400">
{t('common.auto')}
</Badge>
</Flex>

View File

@@ -173,8 +173,8 @@ const GalleryBoard = ({ board, isSelected, setBoardToDelete }: GalleryBoardProps
w="full"
maxW="full"
borderBottomRadius="base"
bg={isSelected ? 'invokeBlue.500' : 'base.600'}
color={isSelected ? 'base.50' : 'base.100'}
bg={isSelected ? 'invokeBlue.400' : 'base.600'}
color={isSelected ? 'base.800' : 'base.100'}
lineHeight="short"
fontSize="xs"
>
@@ -193,6 +193,7 @@ const GalleryBoard = ({ board, isSelected, setBoardToDelete }: GalleryBoardProps
overflow="hidden"
textOverflow="ellipsis"
noOfLines={1}
color="inherit"
/>
<EditableInput sx={editableInputStyles} />
</Editable>

View File

@@ -109,8 +109,8 @@ const NoBoardBoard = memo(({ isSelected }: Props) => {
w="full"
maxW="full"
borderBottomRadius="base"
bg={isSelected ? 'invokeBlue.500' : 'base.600'}
color={isSelected ? 'base.50' : 'base.100'}
bg={isSelected ? 'invokeBlue.400' : 'base.600'}
color={isSelected ? 'base.800' : 'base.100'}
lineHeight="short"
fontSize="xs"
fontWeight={isSelected ? 'bold' : 'normal'}

View File

@@ -1,7 +1,7 @@
import type { PayloadAction } from '@reduxjs/toolkit';
import { createSlice } from '@reduxjs/toolkit';
import type { PersistConfig, RootState } from 'app/store/store';
import { getModelKeyAndBase } from 'features/metadata/util/modelFetchingHelpers';
import { zModelIdentifierField } from 'features/nodes/types/common';
import type { ParameterLoRAModel } from 'features/parameters/types/parameterSchemas';
import type { LoRAModelConfig } from 'services/api/types';
@@ -31,7 +31,7 @@ export const loraSlice = createSlice({
initialState: initialLoraState,
reducers: {
loraAdded: (state, action: PayloadAction<LoRAModelConfig>) => {
const model = getModelKeyAndBase(action.payload);
const model = zModelIdentifierField.parse(action.payload);
state.loras[model.key] = { ...defaultLoRAConfig, model };
},
loraRecalled: (state, action: PayloadAction<LoRA>) => {

View File

@@ -15,7 +15,7 @@ export const MetadataItemView = memo(
return (
<Flex gap={2}>
{onRecall && <RecallButton label={label} onClick={onRecall} isDisabled={isDisabled} />}
<Flex direction={direction}>
<Flex direction={direction} fontSize="sm">
<Text fontWeight="semibold" whiteSpace="pre-wrap" pr={2}>
{label}:
</Text>

View File

@@ -13,13 +13,13 @@ import type {
} from 'features/metadata/types';
import { fetchModelConfig } from 'features/metadata/util/modelFetchingHelpers';
import { validators } from 'features/metadata/util/validators';
import type { ModelIdentifierWithBase } from 'features/nodes/types/common';
import type { ModelIdentifierField } from 'features/nodes/types/common';
import { t } from 'i18next';
import { parsers } from './parsers';
import { recallers } from './recallers';
const renderModelConfigValue: MetadataRenderValueFunc<ModelIdentifierWithBase> = async (value) => {
const renderModelConfigValue: MetadataRenderValueFunc<ModelIdentifierField> = async (value) => {
try {
const modelConfig = await fetchModelConfig(value.key);
return `${modelConfig.name} (${modelConfig.base.toUpperCase()})`;

View File

@@ -1,5 +1,4 @@
import { getStore } from 'app/store/nanostores/store';
import type { ModelIdentifierWithBase } from 'features/nodes/types/common';
import { isModelIdentifier, isModelIdentifierV2 } from 'features/nodes/types/common';
import { modelsApi } from 'services/api/endpoints/models';
import type { AnyModelConfig, BaseModelType, ModelType } from 'services/api/types';
@@ -105,8 +104,3 @@ export const getModelKey = async (modelIdentifier: unknown, type: ModelType, mes
}
throw new InvalidModelConfigError(message || `Invalid model identifier: ${modelIdentifier}`);
};
export const getModelKeyAndBase = (modelConfig: AnyModelConfig): ModelIdentifierWithBase => ({
key: modelConfig.key,
base: modelConfig.base,
});

View File

@@ -1,9 +1,9 @@
import { CONTROLNET_PROCESSORS } from 'features/controlAdapters/store/constants';
import {
initialControlNet,
initialIPAdapter,
initialT2IAdapter,
} from 'features/controlAdapters/util/buildControlAdapter';
import { buildControlAdapterProcessor } from 'features/controlAdapters/util/buildControlAdapterProcessor';
import type { LoRA } from 'features/lora/store/loraSlice';
import { defaultLoRAConfig } from 'features/lora/store/loraSlice';
import type {
@@ -13,12 +13,7 @@ import type {
T2IAdapterConfigMetadata,
} from 'features/metadata/types';
import { fetchModelConfigWithTypeGuard, getModelKey } from 'features/metadata/util/modelFetchingHelpers';
import {
zControlField,
zIPAdapterField,
zModelIdentifierWithBase,
zT2IAdapterField,
} from 'features/nodes/types/common';
import { zControlField, zIPAdapterField, zModelIdentifierField, zT2IAdapterField } from 'features/nodes/types/common';
import type {
ParameterCFGRescaleMultiplier,
ParameterCFGScale,
@@ -181,7 +176,7 @@ const parseMainModel: MetadataParseFunc<ParameterModel> = async (metadata) => {
const model = await getProperty(metadata, 'model', undefined);
const key = await getModelKey(model, 'main');
const mainModelConfig = await fetchModelConfigWithTypeGuard(key, isNonRefinerMainModelConfig);
const modelIdentifier = zModelIdentifierWithBase.parse(mainModelConfig);
const modelIdentifier = zModelIdentifierField.parse(mainModelConfig);
return modelIdentifier;
};
@@ -189,7 +184,7 @@ const parseRefinerModel: MetadataParseFunc<ParameterSDXLRefinerModel> = async (m
const refiner_model = await getProperty(metadata, 'refiner_model', undefined);
const key = await getModelKey(refiner_model, 'main');
const refinerModelConfig = await fetchModelConfigWithTypeGuard(key, isRefinerMainModelModelConfig);
const modelIdentifier = zModelIdentifierWithBase.parse(refinerModelConfig);
const modelIdentifier = zModelIdentifierField.parse(refinerModelConfig);
return modelIdentifier;
};
@@ -197,7 +192,7 @@ const parseVAEModel: MetadataParseFunc<ParameterVAEModel> = async (metadata) =>
const vae = await getProperty(metadata, 'vae', undefined);
const key = await getModelKey(vae, 'vae');
const vaeModelConfig = await fetchModelConfigWithTypeGuard(key, isVAEModelConfig);
const modelIdentifier = zModelIdentifierWithBase.parse(vaeModelConfig);
const modelIdentifier = zModelIdentifierField.parse(vaeModelConfig);
return modelIdentifier;
};
@@ -211,7 +206,7 @@ const parseLoRA: MetadataParseFunc<LoRA> = async (metadataItem) => {
const loraModelConfig = await fetchModelConfigWithTypeGuard(key, isLoRAModelConfig);
return {
model: zModelIdentifierWithBase.parse(loraModelConfig),
model: zModelIdentifierField.parse(loraModelConfig),
weight: isParameterLoRAWeight(weight) ? weight : defaultLoRAConfig.weight,
isEnabled: true,
};
@@ -253,13 +248,12 @@ const parseControlNet: MetadataParseFunc<ControlNetConfigMetadata> = async (meta
.catch(null)
.parse(getProperty(metadataItem, 'resize_mode'));
const processorType = 'none';
const processorNode = CONTROLNET_PROCESSORS.none.default;
const { processorType, processorNode } = buildControlAdapterProcessor(controlNetModel);
const controlNet: ControlNetConfigMetadata = {
type: 'controlnet',
isEnabled: true,
model: zModelIdentifierWithBase.parse(controlNetModel),
model: zModelIdentifierField.parse(controlNetModel),
weight: typeof control_weight === 'number' ? control_weight : initialControlNet.weight,
beginStepPct: begin_step_percent ?? initialControlNet.beginStepPct,
endStepPct: end_step_percent ?? initialControlNet.endStepPct,
@@ -305,13 +299,12 @@ const parseT2IAdapter: MetadataParseFunc<T2IAdapterConfigMetadata> = async (meta
.catch(null)
.parse(getProperty(metadataItem, 'resize_mode'));
const processorType = 'none';
const processorNode = CONTROLNET_PROCESSORS.none.default;
const { processorType, processorNode } = buildControlAdapterProcessor(t2iAdapterModel);
const t2iAdapter: T2IAdapterConfigMetadata = {
type: 't2i_adapter',
isEnabled: true,
model: zModelIdentifierWithBase.parse(t2iAdapterModel),
model: zModelIdentifierField.parse(t2iAdapterModel),
weight: typeof weight === 'number' ? weight : initialT2IAdapter.weight,
beginStepPct: begin_step_percent ?? initialT2IAdapter.beginStepPct,
endStepPct: end_step_percent ?? initialT2IAdapter.endStepPct,
@@ -356,7 +349,7 @@ const parseIPAdapter: MetadataParseFunc<IPAdapterConfigMetadata> = async (metada
id: uuidv4(),
type: 'ip_adapter',
isEnabled: true,
model: zModelIdentifierWithBase.parse(ipAdapterModel),
model: zModelIdentifierField.parse(ipAdapterModel),
controlImage: image?.image_name ?? null,
weight: weight ?? initialIPAdapter.weight,
beginStepPct: begin_step_percent ?? initialIPAdapter.beginStepPct,

View File

@@ -0,0 +1,33 @@
import type { ButtonProps } from '@invoke-ai/ui-library';
import { Button } from '@invoke-ai/ui-library';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiArrowsClockwiseBold } from 'react-icons/pi';
import { useSyncModels } from './useSyncModels';
export const SyncModelsButton = memo((props: Omit<ButtonProps, 'aria-label'>) => {
const { t } = useTranslation();
const { syncModels, isLoading } = useSyncModels();
const isSyncModelEnabled = useFeatureStatus('syncModels').isFeatureEnabled;
if (!isSyncModelEnabled) {
return null;
}
return (
<Button
leftIcon={<PiArrowsClockwiseBold />}
isLoading={isLoading}
onClick={syncModels}
size="sm"
variant="ghost"
{...props}
>
{t('modelManager.syncModels')}
</Button>
);
});
SyncModelsButton.displayName = 'SyncModelsButton';

Some files were not shown because too many files have changed in this diff Show More