Compare commits
23 Commits
v4.2.8rc2
...
ryan/flux-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
fb5db32bb0 | ||
|
|
823c663e1b | ||
|
|
d40c9ff60a | ||
|
|
373b46867a | ||
|
|
dc66952491 | ||
|
|
1b80832b22 | ||
|
|
96b0450b20 | ||
|
|
45792cc152 | ||
|
|
f0baf880b5 | ||
|
|
a8a2fc106d | ||
|
|
d23ad1818d | ||
|
|
4181ab654b | ||
|
|
1c97360f9f | ||
|
|
74d6fceeb6 | ||
|
|
766ddc18dc | ||
|
|
e6ff7488a1 | ||
|
|
89a652cfcd | ||
|
|
b227b9059d | ||
|
|
3599a4a3e4 | ||
|
|
5dd619e137 | ||
|
|
7d447cbb88 | ||
|
|
3bbba7e4b1 | ||
|
|
b1845019fe |
2
.github/workflows/python-checks.yml
vendored
@@ -62,7 +62,7 @@ jobs:
|
||||
|
||||
- name: install ruff
|
||||
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
|
||||
run: pip install ruff==0.6.0
|
||||
run: pip install ruff
|
||||
shell: bash
|
||||
|
||||
- name: ruff check
|
||||
|
||||
@@ -17,7 +17,7 @@
|
||||
set -eu
|
||||
|
||||
# Ensure we're in the correct folder in case user's CWD is somewhere else
|
||||
scriptdir=$(dirname $(readlink -f "$0"))
|
||||
scriptdir=$(dirname "$0")
|
||||
cd "$scriptdir"
|
||||
|
||||
. .venv/bin/activate
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
import asyncio
|
||||
from logging import Logger
|
||||
|
||||
import torch
|
||||
@@ -32,8 +31,6 @@ from invokeai.app.services.session_processor.session_processor_default import (
|
||||
)
|
||||
from invokeai.app.services.session_queue.session_queue_sqlite import SqliteSessionQueue
|
||||
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
|
||||
from invokeai.app.services.style_preset_images.style_preset_images_disk import StylePresetImageFileStorageDisk
|
||||
from invokeai.app.services.style_preset_records.style_preset_records_sqlite import SqliteStylePresetRecordsStorage
|
||||
from invokeai.app.services.urls.urls_default import LocalUrlService
|
||||
from invokeai.app.services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
|
||||
@@ -66,12 +63,7 @@ class ApiDependencies:
|
||||
invoker: Invoker
|
||||
|
||||
@staticmethod
|
||||
def initialize(
|
||||
config: InvokeAIAppConfig,
|
||||
event_handler_id: int,
|
||||
loop: asyncio.AbstractEventLoop,
|
||||
logger: Logger = logger,
|
||||
) -> None:
|
||||
def initialize(config: InvokeAIAppConfig, event_handler_id: int, logger: Logger = logger) -> None:
|
||||
logger.info(f"InvokeAI version {__version__}")
|
||||
logger.info(f"Root directory = {str(config.root_path)}")
|
||||
|
||||
@@ -82,7 +74,6 @@ class ApiDependencies:
|
||||
image_files = DiskImageFileStorage(f"{output_folder}/images")
|
||||
|
||||
model_images_folder = config.models_path
|
||||
style_presets_folder = config.style_presets_path
|
||||
|
||||
db = init_db(config=config, logger=logger, image_files=image_files)
|
||||
|
||||
@@ -93,7 +84,7 @@ class ApiDependencies:
|
||||
board_images = BoardImagesService()
|
||||
board_records = SqliteBoardRecordStorage(db=db)
|
||||
boards = BoardService()
|
||||
events = FastAPIEventService(event_handler_id, loop=loop)
|
||||
events = FastAPIEventService(event_handler_id)
|
||||
bulk_download = BulkDownloadService()
|
||||
image_records = SqliteImageRecordStorage(db=db)
|
||||
images = ImageService()
|
||||
@@ -118,8 +109,6 @@ class ApiDependencies:
|
||||
session_queue = SqliteSessionQueue(db=db)
|
||||
urls = LocalUrlService()
|
||||
workflow_records = SqliteWorkflowRecordsStorage(db=db)
|
||||
style_preset_records = SqliteStylePresetRecordsStorage(db=db)
|
||||
style_preset_image_files = StylePresetImageFileStorageDisk(style_presets_folder / "images")
|
||||
|
||||
services = InvocationServices(
|
||||
board_image_records=board_image_records,
|
||||
@@ -145,8 +134,6 @@ class ApiDependencies:
|
||||
workflow_records=workflow_records,
|
||||
tensors=tensors,
|
||||
conditioning=conditioning,
|
||||
style_preset_records=style_preset_records,
|
||||
style_preset_image_files=style_preset_image_files,
|
||||
)
|
||||
|
||||
ApiDependencies.invoker = Invoker(services)
|
||||
|
||||
@@ -218,8 +218,9 @@ async def get_image_workflow(
|
||||
raise HTTPException(status_code=404)
|
||||
|
||||
|
||||
@images_router.get(
|
||||
@images_router.api_route(
|
||||
"/i/{image_name}/full",
|
||||
methods=["GET", "HEAD"],
|
||||
operation_id="get_image_full",
|
||||
response_class=Response,
|
||||
responses={
|
||||
@@ -230,18 +231,6 @@ async def get_image_workflow(
|
||||
404: {"description": "Image not found"},
|
||||
},
|
||||
)
|
||||
@images_router.head(
|
||||
"/i/{image_name}/full",
|
||||
operation_id="get_image_full_head",
|
||||
response_class=Response,
|
||||
responses={
|
||||
200: {
|
||||
"description": "Return the full-resolution image",
|
||||
"content": {"image/png": {}},
|
||||
},
|
||||
404: {"description": "Image not found"},
|
||||
},
|
||||
)
|
||||
async def get_image_full(
|
||||
image_name: str = Path(description="The name of full-resolution image file to get"),
|
||||
) -> Response:
|
||||
@@ -253,7 +242,6 @@ async def get_image_full(
|
||||
content = f.read()
|
||||
response = Response(content, media_type="image/png")
|
||||
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
|
||||
response.headers["Content-Disposition"] = f'inline; filename="{image_name}"'
|
||||
return response
|
||||
except Exception:
|
||||
raise HTTPException(status_code=404)
|
||||
|
||||
@@ -1,276 +0,0 @@
|
||||
import csv
|
||||
import io
|
||||
import json
|
||||
import traceback
|
||||
from typing import Optional
|
||||
|
||||
import pydantic
|
||||
from fastapi import APIRouter, File, Form, HTTPException, Path, Response, UploadFile
|
||||
from fastapi.responses import FileResponse
|
||||
from PIL import Image
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.api.routers.model_manager import IMAGE_MAX_AGE
|
||||
from invokeai.app.services.style_preset_images.style_preset_images_common import StylePresetImageFileNotFoundException
|
||||
from invokeai.app.services.style_preset_records.style_preset_records_common import (
|
||||
InvalidPresetImportDataError,
|
||||
PresetData,
|
||||
PresetType,
|
||||
StylePresetChanges,
|
||||
StylePresetNotFoundError,
|
||||
StylePresetRecordWithImage,
|
||||
StylePresetWithoutId,
|
||||
UnsupportedFileTypeError,
|
||||
parse_presets_from_file,
|
||||
)
|
||||
|
||||
|
||||
class StylePresetUpdateFormData(BaseModel):
|
||||
name: str = Field(description="Preset name")
|
||||
positive_prompt: str = Field(description="Positive prompt")
|
||||
negative_prompt: str = Field(description="Negative prompt")
|
||||
|
||||
|
||||
class StylePresetCreateFormData(StylePresetUpdateFormData):
|
||||
type: PresetType = Field(description="Preset type")
|
||||
|
||||
|
||||
style_presets_router = APIRouter(prefix="/v1/style_presets", tags=["style_presets"])
|
||||
|
||||
|
||||
@style_presets_router.get(
|
||||
"/i/{style_preset_id}",
|
||||
operation_id="get_style_preset",
|
||||
responses={
|
||||
200: {"model": StylePresetRecordWithImage},
|
||||
},
|
||||
)
|
||||
async def get_style_preset(
|
||||
style_preset_id: str = Path(description="The style preset to get"),
|
||||
) -> StylePresetRecordWithImage:
|
||||
"""Gets a style preset"""
|
||||
try:
|
||||
image = ApiDependencies.invoker.services.style_preset_image_files.get_url(style_preset_id)
|
||||
style_preset = ApiDependencies.invoker.services.style_preset_records.get(style_preset_id)
|
||||
return StylePresetRecordWithImage(image=image, **style_preset.model_dump())
|
||||
except StylePresetNotFoundError:
|
||||
raise HTTPException(status_code=404, detail="Style preset not found")
|
||||
|
||||
|
||||
@style_presets_router.patch(
|
||||
"/i/{style_preset_id}",
|
||||
operation_id="update_style_preset",
|
||||
responses={
|
||||
200: {"model": StylePresetRecordWithImage},
|
||||
},
|
||||
)
|
||||
async def update_style_preset(
|
||||
image: Optional[UploadFile] = File(description="The image file to upload", default=None),
|
||||
style_preset_id: str = Path(description="The id of the style preset to update"),
|
||||
data: str = Form(description="The data of the style preset to update"),
|
||||
) -> StylePresetRecordWithImage:
|
||||
"""Updates a style preset"""
|
||||
if image is not None:
|
||||
if not image.content_type or not image.content_type.startswith("image"):
|
||||
raise HTTPException(status_code=415, detail="Not an image")
|
||||
|
||||
contents = await image.read()
|
||||
try:
|
||||
pil_image = Image.open(io.BytesIO(contents))
|
||||
|
||||
except Exception:
|
||||
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=415, detail="Failed to read image")
|
||||
|
||||
try:
|
||||
ApiDependencies.invoker.services.style_preset_image_files.save(style_preset_id, pil_image)
|
||||
except ValueError as e:
|
||||
raise HTTPException(status_code=409, detail=str(e))
|
||||
else:
|
||||
try:
|
||||
ApiDependencies.invoker.services.style_preset_image_files.delete(style_preset_id)
|
||||
except StylePresetImageFileNotFoundException:
|
||||
pass
|
||||
|
||||
try:
|
||||
parsed_data = json.loads(data)
|
||||
validated_data = StylePresetUpdateFormData(**parsed_data)
|
||||
|
||||
name = validated_data.name
|
||||
positive_prompt = validated_data.positive_prompt
|
||||
negative_prompt = validated_data.negative_prompt
|
||||
|
||||
except pydantic.ValidationError:
|
||||
raise HTTPException(status_code=400, detail="Invalid preset data")
|
||||
|
||||
preset_data = PresetData(positive_prompt=positive_prompt, negative_prompt=negative_prompt)
|
||||
changes = StylePresetChanges(name=name, preset_data=preset_data)
|
||||
|
||||
style_preset_image = ApiDependencies.invoker.services.style_preset_image_files.get_url(style_preset_id)
|
||||
style_preset = ApiDependencies.invoker.services.style_preset_records.update(
|
||||
style_preset_id=style_preset_id, changes=changes
|
||||
)
|
||||
return StylePresetRecordWithImage(image=style_preset_image, **style_preset.model_dump())
|
||||
|
||||
|
||||
@style_presets_router.delete(
|
||||
"/i/{style_preset_id}",
|
||||
operation_id="delete_style_preset",
|
||||
)
|
||||
async def delete_style_preset(
|
||||
style_preset_id: str = Path(description="The style preset to delete"),
|
||||
) -> None:
|
||||
"""Deletes a style preset"""
|
||||
try:
|
||||
ApiDependencies.invoker.services.style_preset_image_files.delete(style_preset_id)
|
||||
except StylePresetImageFileNotFoundException:
|
||||
pass
|
||||
|
||||
ApiDependencies.invoker.services.style_preset_records.delete(style_preset_id)
|
||||
|
||||
|
||||
@style_presets_router.post(
|
||||
"/",
|
||||
operation_id="create_style_preset",
|
||||
responses={
|
||||
200: {"model": StylePresetRecordWithImage},
|
||||
},
|
||||
)
|
||||
async def create_style_preset(
|
||||
image: Optional[UploadFile] = File(description="The image file to upload", default=None),
|
||||
data: str = Form(description="The data of the style preset to create"),
|
||||
) -> StylePresetRecordWithImage:
|
||||
"""Creates a style preset"""
|
||||
|
||||
try:
|
||||
parsed_data = json.loads(data)
|
||||
validated_data = StylePresetCreateFormData(**parsed_data)
|
||||
|
||||
name = validated_data.name
|
||||
type = validated_data.type
|
||||
positive_prompt = validated_data.positive_prompt
|
||||
negative_prompt = validated_data.negative_prompt
|
||||
|
||||
except pydantic.ValidationError:
|
||||
raise HTTPException(status_code=400, detail="Invalid preset data")
|
||||
|
||||
preset_data = PresetData(positive_prompt=positive_prompt, negative_prompt=negative_prompt)
|
||||
style_preset = StylePresetWithoutId(name=name, preset_data=preset_data, type=type)
|
||||
new_style_preset = ApiDependencies.invoker.services.style_preset_records.create(style_preset=style_preset)
|
||||
|
||||
if image is not None:
|
||||
if not image.content_type or not image.content_type.startswith("image"):
|
||||
raise HTTPException(status_code=415, detail="Not an image")
|
||||
|
||||
contents = await image.read()
|
||||
try:
|
||||
pil_image = Image.open(io.BytesIO(contents))
|
||||
|
||||
except Exception:
|
||||
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=415, detail="Failed to read image")
|
||||
|
||||
try:
|
||||
ApiDependencies.invoker.services.style_preset_image_files.save(new_style_preset.id, pil_image)
|
||||
except ValueError as e:
|
||||
raise HTTPException(status_code=409, detail=str(e))
|
||||
|
||||
preset_image = ApiDependencies.invoker.services.style_preset_image_files.get_url(new_style_preset.id)
|
||||
return StylePresetRecordWithImage(image=preset_image, **new_style_preset.model_dump())
|
||||
|
||||
|
||||
@style_presets_router.get(
|
||||
"/",
|
||||
operation_id="list_style_presets",
|
||||
responses={
|
||||
200: {"model": list[StylePresetRecordWithImage]},
|
||||
},
|
||||
)
|
||||
async def list_style_presets() -> list[StylePresetRecordWithImage]:
|
||||
"""Gets a page of style presets"""
|
||||
style_presets_with_image: list[StylePresetRecordWithImage] = []
|
||||
style_presets = ApiDependencies.invoker.services.style_preset_records.get_many()
|
||||
for preset in style_presets:
|
||||
image = ApiDependencies.invoker.services.style_preset_image_files.get_url(preset.id)
|
||||
style_preset_with_image = StylePresetRecordWithImage(image=image, **preset.model_dump())
|
||||
style_presets_with_image.append(style_preset_with_image)
|
||||
|
||||
return style_presets_with_image
|
||||
|
||||
|
||||
@style_presets_router.get(
|
||||
"/i/{style_preset_id}/image",
|
||||
operation_id="get_style_preset_image",
|
||||
responses={
|
||||
200: {
|
||||
"description": "The style preset image was fetched successfully",
|
||||
},
|
||||
400: {"description": "Bad request"},
|
||||
404: {"description": "The style preset image could not be found"},
|
||||
},
|
||||
status_code=200,
|
||||
)
|
||||
async def get_style_preset_image(
|
||||
style_preset_id: str = Path(description="The id of the style preset image to get"),
|
||||
) -> FileResponse:
|
||||
"""Gets an image file that previews the model"""
|
||||
|
||||
try:
|
||||
path = ApiDependencies.invoker.services.style_preset_image_files.get_path(style_preset_id)
|
||||
|
||||
response = FileResponse(
|
||||
path,
|
||||
media_type="image/png",
|
||||
filename=style_preset_id + ".png",
|
||||
content_disposition_type="inline",
|
||||
)
|
||||
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
|
||||
return response
|
||||
except Exception:
|
||||
raise HTTPException(status_code=404)
|
||||
|
||||
|
||||
@style_presets_router.get(
|
||||
"/export",
|
||||
operation_id="export_style_presets",
|
||||
responses={200: {"content": {"text/csv": {}}, "description": "A CSV file with the requested data."}},
|
||||
status_code=200,
|
||||
)
|
||||
async def export_style_presets():
|
||||
# Create an in-memory stream to store the CSV data
|
||||
output = io.StringIO()
|
||||
writer = csv.writer(output)
|
||||
|
||||
# Write the header
|
||||
writer.writerow(["name", "prompt", "negative_prompt"])
|
||||
|
||||
style_presets = ApiDependencies.invoker.services.style_preset_records.get_many(type=PresetType.User)
|
||||
|
||||
for preset in style_presets:
|
||||
writer.writerow([preset.name, preset.preset_data.positive_prompt, preset.preset_data.negative_prompt])
|
||||
|
||||
csv_data = output.getvalue()
|
||||
output.close()
|
||||
|
||||
return Response(
|
||||
content=csv_data,
|
||||
media_type="text/csv",
|
||||
headers={"Content-Disposition": "attachment; filename=prompt_templates.csv"},
|
||||
)
|
||||
|
||||
|
||||
@style_presets_router.post(
|
||||
"/import",
|
||||
operation_id="import_style_presets",
|
||||
)
|
||||
async def import_style_presets(file: UploadFile = File(description="The file to import")):
|
||||
try:
|
||||
style_presets = await parse_presets_from_file(file)
|
||||
ApiDependencies.invoker.services.style_preset_records.create_many(style_presets)
|
||||
except InvalidPresetImportDataError as e:
|
||||
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=400, detail=str(e))
|
||||
except UnsupportedFileTypeError as e:
|
||||
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=415, detail=str(e))
|
||||
@@ -30,7 +30,6 @@ from invokeai.app.api.routers import (
|
||||
images,
|
||||
model_manager,
|
||||
session_queue,
|
||||
style_presets,
|
||||
utilities,
|
||||
workflows,
|
||||
)
|
||||
@@ -56,13 +55,11 @@ mimetypes.add_type("text/css", ".css")
|
||||
torch_device_name = TorchDevice.get_torch_device_name()
|
||||
logger.info(f"Using torch device: {torch_device_name}")
|
||||
|
||||
loop = asyncio.new_event_loop()
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
# Add startup event to load dependencies
|
||||
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, loop=loop, logger=logger)
|
||||
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger)
|
||||
yield
|
||||
# Shut down threads
|
||||
ApiDependencies.shutdown()
|
||||
@@ -109,7 +106,6 @@ app.include_router(board_images.board_images_router, prefix="/api")
|
||||
app.include_router(app_info.app_router, prefix="/api")
|
||||
app.include_router(session_queue.session_queue_router, prefix="/api")
|
||||
app.include_router(workflows.workflows_router, prefix="/api")
|
||||
app.include_router(style_presets.style_presets_router, prefix="/api")
|
||||
|
||||
app.openapi = get_openapi_func(app)
|
||||
|
||||
@@ -188,6 +184,8 @@ def invoke_api() -> None:
|
||||
|
||||
check_cudnn(logger)
|
||||
|
||||
# Start our own event loop for eventing usage
|
||||
loop = asyncio.new_event_loop()
|
||||
config = uvicorn.Config(
|
||||
app=app,
|
||||
host=app_config.host,
|
||||
|
||||
@@ -21,8 +21,6 @@ from controlnet_aux import (
|
||||
from controlnet_aux.util import HWC3, ade_palette
|
||||
from PIL import Image
|
||||
from pydantic import BaseModel, Field, field_validator, model_validator
|
||||
from transformers import pipeline
|
||||
from transformers.pipelines import DepthEstimationPipeline
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
@@ -46,12 +44,13 @@ from invokeai.app.invocations.util import validate_begin_end_step, validate_weig
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
|
||||
from invokeai.backend.image_util.canny import get_canny_edges
|
||||
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
|
||||
from invokeai.backend.image_util.depth_anything import DEPTH_ANYTHING_MODELS, DepthAnythingDetector
|
||||
from invokeai.backend.image_util.dw_openpose import DWPOSE_MODELS, DWOpenposeDetector
|
||||
from invokeai.backend.image_util.hed import HEDProcessor
|
||||
from invokeai.backend.image_util.lineart import LineartProcessor
|
||||
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
|
||||
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
class ControlField(BaseModel):
|
||||
@@ -593,14 +592,7 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
|
||||
return color_map
|
||||
|
||||
|
||||
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small", "small_v2"]
|
||||
# DepthAnything V2 Small model is licensed under Apache 2.0 but not the base and large models.
|
||||
DEPTH_ANYTHING_MODELS = {
|
||||
"large": "LiheYoung/depth-anything-large-hf",
|
||||
"base": "LiheYoung/depth-anything-base-hf",
|
||||
"small": "LiheYoung/depth-anything-small-hf",
|
||||
"small_v2": "depth-anything/Depth-Anything-V2-Small-hf",
|
||||
}
|
||||
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
|
||||
|
||||
|
||||
@invocation(
|
||||
@@ -608,33 +600,28 @@ DEPTH_ANYTHING_MODELS = {
|
||||
title="Depth Anything Processor",
|
||||
tags=["controlnet", "depth", "depth anything"],
|
||||
category="controlnet",
|
||||
version="1.1.3",
|
||||
version="1.1.2",
|
||||
)
|
||||
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Generates a depth map based on the Depth Anything algorithm"""
|
||||
|
||||
model_size: DEPTH_ANYTHING_MODEL_SIZES = InputField(
|
||||
default="small_v2", description="The size of the depth model to use"
|
||||
default="small", description="The size of the depth model to use"
|
||||
)
|
||||
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
||||
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
def load_depth_anything(model_path: Path):
|
||||
depth_anything_pipeline = pipeline(model=str(model_path), task="depth-estimation", local_files_only=True)
|
||||
assert isinstance(depth_anything_pipeline, DepthEstimationPipeline)
|
||||
return DepthAnythingPipeline(depth_anything_pipeline)
|
||||
def loader(model_path: Path):
|
||||
return DepthAnythingDetector.load_model(
|
||||
model_path, model_size=self.model_size, device=TorchDevice.choose_torch_device()
|
||||
)
|
||||
|
||||
with self._context.models.load_remote_model(
|
||||
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=load_depth_anything
|
||||
) as depth_anything_detector:
|
||||
assert isinstance(depth_anything_detector, DepthAnythingPipeline)
|
||||
depth_map = depth_anything_detector.generate_depth(image)
|
||||
|
||||
# Resizing to user target specified size
|
||||
new_height = int(image.size[1] * (self.resolution / image.size[0]))
|
||||
depth_map = depth_map.resize((self.resolution, new_height))
|
||||
|
||||
return depth_map
|
||||
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=loader
|
||||
) as model:
|
||||
depth_anything_detector = DepthAnythingDetector(model, TorchDevice.choose_torch_device())
|
||||
processed_image = depth_anything_detector(image=image, resolution=self.resolution)
|
||||
return processed_image
|
||||
|
||||
|
||||
@invocation(
|
||||
|
||||
135
invokeai/app/invocations/flux_text_encoder.py
Normal file
@@ -0,0 +1,135 @@
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
|
||||
from optimum.quanto import qfloat8
|
||||
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import InputField
|
||||
from invokeai.app.invocations.flux_text_to_image import FLUX_MODELS, QuantizedModelForTextEncoding, TFluxModelKeys
|
||||
from invokeai.app.invocations.primitives import ConditioningOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, FLUXConditioningInfo
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
@invocation(
|
||||
"flux_text_encoder",
|
||||
title="FLUX Text Encoding",
|
||||
tags=["image"],
|
||||
category="image",
|
||||
version="1.0.0",
|
||||
)
|
||||
class FluxTextEncoderInvocation(BaseInvocation):
|
||||
model: TFluxModelKeys = InputField(description="The FLUX model to use for text-to-image generation.")
|
||||
use_8bit: bool = InputField(
|
||||
default=False, description="Whether to quantize the transformer model to 8-bit precision."
|
||||
)
|
||||
positive_prompt: str = InputField(description="Positive prompt for text-to-image generation.")
|
||||
|
||||
# TODO(ryand): Should we create a new return type for this invocation? This ConditioningOutput is clearly not
|
||||
# compatible with other ConditioningOutputs.
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> ConditioningOutput:
|
||||
model_path = context.models.download_and_cache_model(FLUX_MODELS[self.model])
|
||||
|
||||
t5_embeddings, clip_embeddings = self._encode_prompt(context, model_path)
|
||||
conditioning_data = ConditioningFieldData(
|
||||
conditionings=[FLUXConditioningInfo(clip_embeds=clip_embeddings, t5_embeds=t5_embeddings)]
|
||||
)
|
||||
|
||||
conditioning_name = context.conditioning.save(conditioning_data)
|
||||
return ConditioningOutput.build(conditioning_name)
|
||||
|
||||
def _encode_prompt(self, context: InvocationContext, flux_model_dir: Path) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
# Determine the T5 max sequence length based on the model.
|
||||
if self.model == "flux-schnell":
|
||||
max_seq_len = 256
|
||||
# elif self.model == "flux-dev":
|
||||
# max_seq_len = 512
|
||||
else:
|
||||
raise ValueError(f"Unknown model: {self.model}")
|
||||
|
||||
# Load the CLIP tokenizer.
|
||||
clip_tokenizer_path = flux_model_dir / "tokenizer"
|
||||
clip_tokenizer = CLIPTokenizer.from_pretrained(clip_tokenizer_path, local_files_only=True)
|
||||
assert isinstance(clip_tokenizer, CLIPTokenizer)
|
||||
|
||||
# Load the T5 tokenizer.
|
||||
t5_tokenizer_path = flux_model_dir / "tokenizer_2"
|
||||
t5_tokenizer = T5TokenizerFast.from_pretrained(t5_tokenizer_path, local_files_only=True)
|
||||
assert isinstance(t5_tokenizer, T5TokenizerFast)
|
||||
|
||||
clip_text_encoder_path = flux_model_dir / "text_encoder"
|
||||
t5_text_encoder_path = flux_model_dir / "text_encoder_2"
|
||||
with (
|
||||
context.models.load_local_model(
|
||||
model_path=clip_text_encoder_path, loader=self._load_flux_text_encoder
|
||||
) as clip_text_encoder,
|
||||
context.models.load_local_model(
|
||||
model_path=t5_text_encoder_path, loader=self._load_flux_text_encoder_2
|
||||
) as t5_text_encoder,
|
||||
):
|
||||
assert isinstance(clip_text_encoder, CLIPTextModel)
|
||||
assert isinstance(t5_text_encoder, T5EncoderModel)
|
||||
pipeline = FluxPipeline(
|
||||
scheduler=None,
|
||||
vae=None,
|
||||
text_encoder=clip_text_encoder,
|
||||
tokenizer=clip_tokenizer,
|
||||
text_encoder_2=t5_text_encoder,
|
||||
tokenizer_2=t5_tokenizer,
|
||||
transformer=None,
|
||||
)
|
||||
|
||||
# prompt_embeds: T5 embeddings
|
||||
# pooled_prompt_embeds: CLIP embeddings
|
||||
prompt_embeds, pooled_prompt_embeds, text_ids = pipeline.encode_prompt(
|
||||
prompt=self.positive_prompt,
|
||||
prompt_2=self.positive_prompt,
|
||||
device=TorchDevice.choose_torch_device(),
|
||||
max_sequence_length=max_seq_len,
|
||||
)
|
||||
|
||||
assert isinstance(prompt_embeds, torch.Tensor)
|
||||
assert isinstance(pooled_prompt_embeds, torch.Tensor)
|
||||
return prompt_embeds, pooled_prompt_embeds
|
||||
|
||||
@staticmethod
|
||||
def _load_flux_text_encoder(path: Path) -> CLIPTextModel:
|
||||
model = CLIPTextModel.from_pretrained(path, local_files_only=True)
|
||||
assert isinstance(model, CLIPTextModel)
|
||||
return model
|
||||
|
||||
def _load_flux_text_encoder_2(self, path: Path) -> T5EncoderModel:
|
||||
if self.use_8bit:
|
||||
model_8bit_path = path / "quantized"
|
||||
if model_8bit_path.exists():
|
||||
# The quantized model exists, load it.
|
||||
# TODO(ryand): The requantize(...) operation in from_pretrained(...) is very slow. This seems like
|
||||
# something that we should be able to make much faster.
|
||||
q_model = QuantizedModelForTextEncoding.from_pretrained(model_8bit_path)
|
||||
|
||||
# Access the underlying wrapped model.
|
||||
# We access the wrapped model, even though it is private, because it simplifies the type checking by
|
||||
# always returning a T5EncoderModel from this function.
|
||||
model = q_model._wrapped
|
||||
else:
|
||||
# The quantized model does not exist yet, quantize and save it.
|
||||
# TODO(ryand): dtype?
|
||||
model = T5EncoderModel.from_pretrained(path, local_files_only=True)
|
||||
assert isinstance(model, T5EncoderModel)
|
||||
|
||||
q_model = QuantizedModelForTextEncoding.quantize(model, weights=qfloat8)
|
||||
|
||||
model_8bit_path.mkdir(parents=True, exist_ok=True)
|
||||
q_model.save_pretrained(model_8bit_path)
|
||||
|
||||
# (See earlier comment about accessing the wrapped model.)
|
||||
model = q_model._wrapped
|
||||
else:
|
||||
model = T5EncoderModel.from_pretrained(path, local_files_only=True)
|
||||
|
||||
assert isinstance(model, T5EncoderModel)
|
||||
return model
|
||||
255
invokeai/app/invocations/flux_text_to_image.py
Normal file
@@ -0,0 +1,255 @@
|
||||
from pathlib import Path
|
||||
from typing import Literal
|
||||
|
||||
import accelerate
|
||||
import torch
|
||||
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
||||
from einops import rearrange, repeat
|
||||
from flux.model import Flux
|
||||
from flux.modules.autoencoder import AutoEncoder
|
||||
from flux.sampling import denoise, get_noise, get_schedule, unpack
|
||||
from flux.util import configs as flux_configs
|
||||
from PIL import Image
|
||||
from safetensors.torch import load_file
|
||||
from transformers.models.auto import AutoModelForTextEncoding
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import (
|
||||
ConditioningField,
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
InputField,
|
||||
WithBoard,
|
||||
WithMetadata,
|
||||
)
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.quantization.bnb_nf4 import quantize_model_nf4
|
||||
from invokeai.backend.quantization.fast_quantized_diffusion_model import FastQuantizedDiffusersModel
|
||||
from invokeai.backend.quantization.fast_quantized_transformers_model import FastQuantizedTransformersModel
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
TFluxModelKeys = Literal["flux-schnell"]
|
||||
FLUX_MODELS: dict[TFluxModelKeys, str] = {"flux-schnell": "black-forest-labs/FLUX.1-schnell"}
|
||||
|
||||
|
||||
class QuantizedFluxTransformer2DModel(FastQuantizedDiffusersModel):
|
||||
base_class = FluxTransformer2DModel
|
||||
|
||||
|
||||
class QuantizedModelForTextEncoding(FastQuantizedTransformersModel):
|
||||
auto_class = AutoModelForTextEncoding
|
||||
|
||||
|
||||
@invocation(
|
||||
"flux_text_to_image",
|
||||
title="FLUX Text to Image",
|
||||
tags=["image"],
|
||||
category="image",
|
||||
version="1.0.0",
|
||||
)
|
||||
class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Text-to-image generation using a FLUX model."""
|
||||
|
||||
model: TFluxModelKeys = InputField(description="The FLUX model to use for text-to-image generation.")
|
||||
quantization_type: Literal["raw", "NF4", "llm_int8"] = InputField(
|
||||
default="raw", description="The type of quantization to use for the transformer model."
|
||||
)
|
||||
use_8bit: bool = InputField(
|
||||
default=False, description="Whether to quantize the transformer model to 8-bit precision."
|
||||
)
|
||||
positive_text_conditioning: ConditioningField = InputField(
|
||||
description=FieldDescriptions.positive_cond, input=Input.Connection
|
||||
)
|
||||
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
|
||||
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
|
||||
num_steps: int = InputField(default=4, description="Number of diffusion steps.")
|
||||
guidance: float = InputField(
|
||||
default=4.0,
|
||||
description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images.",
|
||||
)
|
||||
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
# model_path = context.models.download_and_cache_model(FLUX_MODELS[self.model])
|
||||
flux_transformer_path = context.models.download_and_cache_model(
|
||||
"https://huggingface.co/black-forest-labs/FLUX.1-schnell/resolve/main/flux1-schnell.safetensors"
|
||||
)
|
||||
flux_ae_path = context.models.download_and_cache_model(
|
||||
"https://huggingface.co/black-forest-labs/FLUX.1-schnell/resolve/main/ae.safetensors"
|
||||
)
|
||||
|
||||
# Load the conditioning data.
|
||||
cond_data = context.conditioning.load(self.positive_text_conditioning.conditioning_name)
|
||||
assert len(cond_data.conditionings) == 1
|
||||
flux_conditioning = cond_data.conditionings[0]
|
||||
assert isinstance(flux_conditioning, FLUXConditioningInfo)
|
||||
|
||||
latents = self._run_diffusion(
|
||||
context, flux_transformer_path, flux_conditioning.clip_embeds, flux_conditioning.t5_embeds
|
||||
)
|
||||
image = self._run_vae_decoding(context, flux_ae_path, latents)
|
||||
image_dto = context.images.save(image=image)
|
||||
return ImageOutput.build(image_dto)
|
||||
|
||||
def _run_diffusion(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
flux_transformer_path: Path,
|
||||
clip_embeddings: torch.Tensor,
|
||||
t5_embeddings: torch.Tensor,
|
||||
):
|
||||
inference_dtype = TorchDevice.choose_torch_dtype()
|
||||
|
||||
# Prepare input noise.
|
||||
# TODO(ryand): Does the seed behave the same on different devices? Should we re-implement this to always use a
|
||||
# CPU RNG?
|
||||
x = get_noise(
|
||||
num_samples=1,
|
||||
height=self.height,
|
||||
width=self.width,
|
||||
device=TorchDevice.choose_torch_device(),
|
||||
dtype=inference_dtype,
|
||||
seed=self.seed,
|
||||
)
|
||||
|
||||
img, img_ids = self._prepare_latent_img_patches(x)
|
||||
|
||||
# HACK(ryand): Find a better way to determine if this is a schnell model or not.
|
||||
is_schnell = "schnell" in str(flux_transformer_path)
|
||||
timesteps = get_schedule(
|
||||
num_steps=self.num_steps,
|
||||
image_seq_len=img.shape[1],
|
||||
shift=not is_schnell,
|
||||
)
|
||||
|
||||
bs, t5_seq_len, _ = t5_embeddings.shape
|
||||
txt_ids = torch.zeros(bs, t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device())
|
||||
|
||||
# HACK(ryand): Manually empty the cache. Currently we don't check the size of the model before loading it from
|
||||
# disk. Since the transformer model is large (24GB), there's a good chance that it will OOM on 32GB RAM systems
|
||||
# if the cache is not empty.
|
||||
context.models._services.model_manager.load.ram_cache.make_room(24 * 2**30)
|
||||
|
||||
with context.models.load_local_model(
|
||||
model_path=flux_transformer_path, loader=self._load_flux_transformer
|
||||
) as transformer:
|
||||
assert isinstance(transformer, Flux)
|
||||
|
||||
x = denoise(
|
||||
model=transformer,
|
||||
img=img,
|
||||
img_ids=img_ids,
|
||||
txt=t5_embeddings,
|
||||
txt_ids=txt_ids,
|
||||
vec=clip_embeddings,
|
||||
timesteps=timesteps,
|
||||
guidance=self.guidance,
|
||||
)
|
||||
|
||||
x = unpack(x.float(), self.height, self.width)
|
||||
|
||||
return x
|
||||
|
||||
def _prepare_latent_img_patches(self, latent_img: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Convert an input image in latent space to patches for diffusion.
|
||||
|
||||
This implementation was extracted from:
|
||||
https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/sampling.py#L32
|
||||
|
||||
Returns:
|
||||
tuple[Tensor, Tensor]: (img, img_ids), as defined in the original flux repo.
|
||||
"""
|
||||
bs, c, h, w = latent_img.shape
|
||||
|
||||
# Pixel unshuffle with a scale of 2, and flatten the height/width dimensions to get an array of patches.
|
||||
img = rearrange(latent_img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
||||
if img.shape[0] == 1 and bs > 1:
|
||||
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
||||
|
||||
# Generate patch position ids.
|
||||
img_ids = torch.zeros(h // 2, w // 2, 3)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
img_ids = img_ids.to(latent_img.device)
|
||||
|
||||
return img, img_ids
|
||||
|
||||
def _run_vae_decoding(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
flux_ae_path: Path,
|
||||
latents: torch.Tensor,
|
||||
) -> Image.Image:
|
||||
with context.models.load_local_model(model_path=flux_ae_path, loader=self._load_flux_vae) as vae:
|
||||
assert isinstance(vae, AutoEncoder)
|
||||
# TODO(ryand): Test that this works with both float16 and bfloat16.
|
||||
with torch.autocast(device_type=latents.device.type, dtype=TorchDevice.choose_torch_dtype()):
|
||||
img = vae.decode(latents)
|
||||
|
||||
img.clamp(-1, 1)
|
||||
img = rearrange(img[0], "c h w -> h w c")
|
||||
img_pil = Image.fromarray((127.5 * (img + 1.0)).byte().cpu().numpy())
|
||||
|
||||
return img_pil
|
||||
|
||||
def _load_flux_transformer(self, path: Path) -> FluxTransformer2DModel:
|
||||
inference_dtype = TorchDevice.choose_torch_dtype()
|
||||
if self.quantization_type == "raw":
|
||||
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
|
||||
params = flux_configs["flux-schnell"].params
|
||||
|
||||
# Initialize the model on the "meta" device.
|
||||
with accelerate.init_empty_weights():
|
||||
model = Flux(params).to(inference_dtype)
|
||||
|
||||
state_dict = load_file(path)
|
||||
# TODO(ryand): Cast the state_dict to the appropriate dtype?
|
||||
model.load_state_dict(state_dict, strict=True, assign=True)
|
||||
elif self.quantization_type == "NF4":
|
||||
model_path = path.parent / "bnb_nf4.safetensors"
|
||||
|
||||
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
|
||||
params = flux_configs["flux-schnell"].params
|
||||
# Initialize the model on the "meta" device.
|
||||
with accelerate.init_empty_weights():
|
||||
model = Flux(params)
|
||||
model = quantize_model_nf4(model, modules_to_not_convert=set(), compute_dtype=torch.bfloat16)
|
||||
|
||||
# TODO(ryand): Right now, some of the weights are loaded in bfloat16. Think about how best to handle
|
||||
# this on GPUs without bfloat16 support.
|
||||
state_dict = load_file(model_path)
|
||||
model.load_state_dict(state_dict, strict=True, assign=True)
|
||||
|
||||
elif self.quantization_type == "llm_int8":
|
||||
raise NotImplementedError("LLM int8 quantization is not yet supported.")
|
||||
# model_config = FluxTransformer2DModel.load_config(path, local_files_only=True)
|
||||
# with accelerate.init_empty_weights():
|
||||
# empty_model = FluxTransformer2DModel.from_config(model_config)
|
||||
# assert isinstance(empty_model, FluxTransformer2DModel)
|
||||
# model_int8_path = path / "bnb_llm_int8"
|
||||
# assert model_int8_path.exists()
|
||||
# with accelerate.init_empty_weights():
|
||||
# model = quantize_model_llm_int8(empty_model, modules_to_not_convert=set())
|
||||
|
||||
# sd = load_file(model_int8_path / "model.safetensors")
|
||||
# model.load_state_dict(sd, strict=True, assign=True)
|
||||
else:
|
||||
raise ValueError(f"Unsupported quantization type: {self.quantization_type}")
|
||||
|
||||
assert isinstance(model, Flux)
|
||||
return model
|
||||
|
||||
@staticmethod
|
||||
def _load_flux_vae(path: Path) -> AutoEncoder:
|
||||
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
|
||||
ae_params = flux_configs["flux-schnell"].ae_params
|
||||
with accelerate.init_empty_weights():
|
||||
ae = AutoEncoder(ae_params)
|
||||
|
||||
state_dict = load_file(path)
|
||||
ae.load_state_dict(state_dict, strict=True, assign=True)
|
||||
return ae
|
||||
@@ -91,7 +91,6 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
db_dir: Path to InvokeAI databases directory.
|
||||
outputs_dir: Path to directory for outputs.
|
||||
custom_nodes_dir: Path to directory for custom nodes.
|
||||
style_presets_dir: Path to directory for style presets.
|
||||
log_handlers: Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".
|
||||
log_format: Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style.<br>Valid values: `plain`, `color`, `syslog`, `legacy`
|
||||
log_level: Emit logging messages at this level or higher.<br>Valid values: `debug`, `info`, `warning`, `error`, `critical`
|
||||
@@ -154,7 +153,6 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
db_dir: Path = Field(default=Path("databases"), description="Path to InvokeAI databases directory.")
|
||||
outputs_dir: Path = Field(default=Path("outputs"), description="Path to directory for outputs.")
|
||||
custom_nodes_dir: Path = Field(default=Path("nodes"), description="Path to directory for custom nodes.")
|
||||
style_presets_dir: Path = Field(default=Path("style_presets"), description="Path to directory for style presets.")
|
||||
|
||||
# LOGGING
|
||||
log_handlers: list[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".')
|
||||
@@ -302,11 +300,6 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
"""Path to the models directory, resolved to an absolute path.."""
|
||||
return self._resolve(self.models_dir)
|
||||
|
||||
@property
|
||||
def style_presets_path(self) -> Path:
|
||||
"""Path to the style presets directory, resolved to an absolute path.."""
|
||||
return self._resolve(self.style_presets_dir)
|
||||
|
||||
@property
|
||||
def convert_cache_path(self) -> Path:
|
||||
"""Path to the converted cache models directory, resolved to an absolute path.."""
|
||||
|
||||
@@ -1,44 +1,46 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
import asyncio
|
||||
import threading
|
||||
from queue import Empty, Queue
|
||||
|
||||
from fastapi_events.dispatcher import dispatch
|
||||
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.events.events_common import EventBase
|
||||
from invokeai.app.services.events.events_common import (
|
||||
EventBase,
|
||||
)
|
||||
|
||||
|
||||
class FastAPIEventService(EventServiceBase):
|
||||
def __init__(self, event_handler_id: int, loop: asyncio.AbstractEventLoop) -> None:
|
||||
def __init__(self, event_handler_id: int) -> None:
|
||||
self.event_handler_id = event_handler_id
|
||||
self._queue = asyncio.Queue[EventBase | None]()
|
||||
self._queue = Queue[EventBase | None]()
|
||||
self._stop_event = threading.Event()
|
||||
self._loop = loop
|
||||
|
||||
# We need to store a reference to the task so it doesn't get GC'd
|
||||
# See: https://docs.python.org/3/library/asyncio-task.html#creating-tasks
|
||||
self._background_tasks: set[asyncio.Task[None]] = set()
|
||||
task = self._loop.create_task(self._dispatch_from_queue(stop_event=self._stop_event))
|
||||
self._background_tasks.add(task)
|
||||
task.add_done_callback(self._background_tasks.remove)
|
||||
asyncio.create_task(self._dispatch_from_queue(stop_event=self._stop_event))
|
||||
|
||||
super().__init__()
|
||||
|
||||
def stop(self, *args, **kwargs):
|
||||
self._stop_event.set()
|
||||
self._loop.call_soon_threadsafe(self._queue.put_nowait, None)
|
||||
self._queue.put(None)
|
||||
|
||||
def dispatch(self, event: EventBase) -> None:
|
||||
self._loop.call_soon_threadsafe(self._queue.put_nowait, event)
|
||||
self._queue.put(event)
|
||||
|
||||
async def _dispatch_from_queue(self, stop_event: threading.Event):
|
||||
"""Get events on from the queue and dispatch them, from the correct thread"""
|
||||
while not stop_event.is_set():
|
||||
try:
|
||||
event = await self._queue.get()
|
||||
event = self._queue.get(block=False)
|
||||
if not event: # Probably stopping
|
||||
continue
|
||||
# Leave the payloads as live pydantic models
|
||||
dispatch(event, middleware_id=self.event_handler_id, payload_schema_dump=False)
|
||||
|
||||
except Empty:
|
||||
await asyncio.sleep(0.1)
|
||||
pass
|
||||
|
||||
except asyncio.CancelledError as e:
|
||||
raise e # Raise a proper error
|
||||
|
||||
@@ -4,8 +4,6 @@ from __future__ import annotations
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from invokeai.app.services.object_serializer.object_serializer_base import ObjectSerializerBase
|
||||
from invokeai.app.services.style_preset_images.style_preset_images_base import StylePresetImageFileStorageBase
|
||||
from invokeai.app.services.style_preset_records.style_preset_records_base import StylePresetRecordsStorageBase
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from logging import Logger
|
||||
@@ -63,8 +61,6 @@ class InvocationServices:
|
||||
workflow_records: "WorkflowRecordsStorageBase",
|
||||
tensors: "ObjectSerializerBase[torch.Tensor]",
|
||||
conditioning: "ObjectSerializerBase[ConditioningFieldData]",
|
||||
style_preset_records: "StylePresetRecordsStorageBase",
|
||||
style_preset_image_files: "StylePresetImageFileStorageBase",
|
||||
):
|
||||
self.board_images = board_images
|
||||
self.board_image_records = board_image_records
|
||||
@@ -89,5 +85,3 @@ class InvocationServices:
|
||||
self.workflow_records = workflow_records
|
||||
self.tensors = tensors
|
||||
self.conditioning = conditioning
|
||||
self.style_preset_records = style_preset_records
|
||||
self.style_preset_image_files = style_preset_image_files
|
||||
|
||||
@@ -16,7 +16,6 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_10 import
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_11 import build_migration_11
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_12 import build_migration_12
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_13 import build_migration_13
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_14 import build_migration_14
|
||||
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
|
||||
|
||||
|
||||
@@ -50,7 +49,6 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
|
||||
migrator.register_migration(build_migration_11(app_config=config, logger=logger))
|
||||
migrator.register_migration(build_migration_12(app_config=config))
|
||||
migrator.register_migration(build_migration_13())
|
||||
migrator.register_migration(build_migration_14())
|
||||
migrator.run_migrations()
|
||||
|
||||
return db
|
||||
|
||||
@@ -1,61 +0,0 @@
|
||||
import sqlite3
|
||||
|
||||
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
|
||||
|
||||
|
||||
class Migration14Callback:
|
||||
def __call__(self, cursor: sqlite3.Cursor) -> None:
|
||||
self._create_style_presets(cursor)
|
||||
|
||||
def _create_style_presets(self, cursor: sqlite3.Cursor) -> None:
|
||||
"""Create the table used to store style presets."""
|
||||
tables = [
|
||||
"""--sql
|
||||
CREATE TABLE IF NOT EXISTS style_presets (
|
||||
id TEXT NOT NULL PRIMARY KEY,
|
||||
name TEXT NOT NULL,
|
||||
preset_data TEXT NOT NULL,
|
||||
type TEXT NOT NULL DEFAULT "user",
|
||||
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
|
||||
-- Updated via trigger
|
||||
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW'))
|
||||
);
|
||||
"""
|
||||
]
|
||||
|
||||
# Add trigger for `updated_at`.
|
||||
triggers = [
|
||||
"""--sql
|
||||
CREATE TRIGGER IF NOT EXISTS style_presets
|
||||
AFTER UPDATE
|
||||
ON style_presets FOR EACH ROW
|
||||
BEGIN
|
||||
UPDATE style_presets SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
|
||||
WHERE id = old.id;
|
||||
END;
|
||||
"""
|
||||
]
|
||||
|
||||
# Add indexes for searchable fields
|
||||
indices = [
|
||||
"CREATE INDEX IF NOT EXISTS idx_style_presets_name ON style_presets(name);",
|
||||
]
|
||||
|
||||
for stmt in tables + indices + triggers:
|
||||
cursor.execute(stmt)
|
||||
|
||||
|
||||
def build_migration_14() -> Migration:
|
||||
"""
|
||||
Build the migration from database version 13 to 14..
|
||||
|
||||
This migration does the following:
|
||||
- Create the table used to store style presets.
|
||||
"""
|
||||
migration_14 = Migration(
|
||||
from_version=13,
|
||||
to_version=14,
|
||||
callback=Migration14Callback(),
|
||||
)
|
||||
|
||||
return migration_14
|
||||
|
Before Width: | Height: | Size: 98 KiB |
|
Before Width: | Height: | Size: 138 KiB |
|
Before Width: | Height: | Size: 122 KiB |
|
Before Width: | Height: | Size: 123 KiB |
|
Before Width: | Height: | Size: 160 KiB |
|
Before Width: | Height: | Size: 146 KiB |
|
Before Width: | Height: | Size: 119 KiB |
|
Before Width: | Height: | Size: 117 KiB |
|
Before Width: | Height: | Size: 110 KiB |
|
Before Width: | Height: | Size: 46 KiB |
|
Before Width: | Height: | Size: 79 KiB |
|
Before Width: | Height: | Size: 156 KiB |
|
Before Width: | Height: | Size: 141 KiB |
|
Before Width: | Height: | Size: 96 KiB |
|
Before Width: | Height: | Size: 91 KiB |
|
Before Width: | Height: | Size: 88 KiB |
|
Before Width: | Height: | Size: 107 KiB |
|
Before Width: | Height: | Size: 132 KiB |
@@ -1,33 +0,0 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
|
||||
from PIL.Image import Image as PILImageType
|
||||
|
||||
|
||||
class StylePresetImageFileStorageBase(ABC):
|
||||
"""Low-level service responsible for storing and retrieving image files."""
|
||||
|
||||
@abstractmethod
|
||||
def get(self, style_preset_id: str) -> PILImageType:
|
||||
"""Retrieves a style preset image as PIL Image."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_path(self, style_preset_id: str) -> Path:
|
||||
"""Gets the internal path to a style preset image."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_url(self, style_preset_id: str) -> str | None:
|
||||
"""Gets the URL to fetch a style preset image."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def save(self, style_preset_id: str, image: PILImageType) -> None:
|
||||
"""Saves a style preset image."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def delete(self, style_preset_id: str) -> None:
|
||||
"""Deletes a style preset image."""
|
||||
pass
|
||||
@@ -1,19 +0,0 @@
|
||||
class StylePresetImageFileNotFoundException(Exception):
|
||||
"""Raised when an image file is not found in storage."""
|
||||
|
||||
def __init__(self, message: str = "Style preset image file not found"):
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
class StylePresetImageFileSaveException(Exception):
|
||||
"""Raised when an image cannot be saved."""
|
||||
|
||||
def __init__(self, message: str = "Style preset image file not saved"):
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
class StylePresetImageFileDeleteException(Exception):
|
||||
"""Raised when an image cannot be deleted."""
|
||||
|
||||
def __init__(self, message: str = "Style preset image file not deleted"):
|
||||
super().__init__(message)
|
||||
@@ -1,88 +0,0 @@
|
||||
from pathlib import Path
|
||||
|
||||
from PIL import Image
|
||||
from PIL.Image import Image as PILImageType
|
||||
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.style_preset_images.style_preset_images_base import StylePresetImageFileStorageBase
|
||||
from invokeai.app.services.style_preset_images.style_preset_images_common import (
|
||||
StylePresetImageFileDeleteException,
|
||||
StylePresetImageFileNotFoundException,
|
||||
StylePresetImageFileSaveException,
|
||||
)
|
||||
from invokeai.app.services.style_preset_records.style_preset_records_common import PresetType
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.app.util.thumbnails import make_thumbnail
|
||||
|
||||
|
||||
class StylePresetImageFileStorageDisk(StylePresetImageFileStorageBase):
|
||||
"""Stores images on disk"""
|
||||
|
||||
def __init__(self, style_preset_images_folder: Path):
|
||||
self._style_preset_images_folder = style_preset_images_folder
|
||||
self._validate_storage_folders()
|
||||
|
||||
def start(self, invoker: Invoker) -> None:
|
||||
self._invoker = invoker
|
||||
|
||||
def get(self, style_preset_id: str) -> PILImageType:
|
||||
try:
|
||||
path = self.get_path(style_preset_id)
|
||||
|
||||
return Image.open(path)
|
||||
except FileNotFoundError as e:
|
||||
raise StylePresetImageFileNotFoundException from e
|
||||
|
||||
def save(self, style_preset_id: str, image: PILImageType) -> None:
|
||||
try:
|
||||
self._validate_storage_folders()
|
||||
image_path = self._style_preset_images_folder / (style_preset_id + ".webp")
|
||||
thumbnail = make_thumbnail(image, 256)
|
||||
thumbnail.save(image_path, format="webp")
|
||||
|
||||
except Exception as e:
|
||||
raise StylePresetImageFileSaveException from e
|
||||
|
||||
def get_path(self, style_preset_id: str) -> Path:
|
||||
style_preset = self._invoker.services.style_preset_records.get(style_preset_id)
|
||||
if style_preset.type is PresetType.Default:
|
||||
default_images_dir = Path(__file__).parent / Path("default_style_preset_images")
|
||||
path = default_images_dir / (style_preset.name + ".png")
|
||||
else:
|
||||
path = self._style_preset_images_folder / (style_preset_id + ".webp")
|
||||
|
||||
return path
|
||||
|
||||
def get_url(self, style_preset_id: str) -> str | None:
|
||||
path = self.get_path(style_preset_id)
|
||||
if not self._validate_path(path):
|
||||
return
|
||||
|
||||
url = self._invoker.services.urls.get_style_preset_image_url(style_preset_id)
|
||||
|
||||
# The image URL never changes, so we must add random query string to it to prevent caching
|
||||
url += f"?{uuid_string()}"
|
||||
|
||||
return url
|
||||
|
||||
def delete(self, style_preset_id: str) -> None:
|
||||
try:
|
||||
path = self.get_path(style_preset_id)
|
||||
|
||||
if not self._validate_path(path):
|
||||
raise StylePresetImageFileNotFoundException
|
||||
|
||||
path.unlink()
|
||||
|
||||
except StylePresetImageFileNotFoundException as e:
|
||||
raise StylePresetImageFileNotFoundException from e
|
||||
except Exception as e:
|
||||
raise StylePresetImageFileDeleteException from e
|
||||
|
||||
def _validate_path(self, path: Path) -> bool:
|
||||
"""Validates the path given for an image."""
|
||||
return path.exists()
|
||||
|
||||
def _validate_storage_folders(self) -> None:
|
||||
"""Checks if the required folders exist and create them if they don't"""
|
||||
self._style_preset_images_folder.mkdir(parents=True, exist_ok=True)
|
||||
@@ -1,146 +0,0 @@
|
||||
[
|
||||
{
|
||||
"name": "Photography (General)",
|
||||
"type": "default",
|
||||
"preset_data": {
|
||||
"positive_prompt": "{prompt}. photography. f/2.8 macro photo, bokeh, photorealism",
|
||||
"negative_prompt": "painting, digital art. sketch, blurry"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Photography (Studio Lighting)",
|
||||
"type": "default",
|
||||
"preset_data": {
|
||||
"positive_prompt": "{prompt}, photography. f/8 photo. centered subject, studio lighting.",
|
||||
"negative_prompt": "painting, digital art. sketch, blurry"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Photography (Landscape)",
|
||||
"type": "default",
|
||||
"preset_data": {
|
||||
"positive_prompt": "{prompt}, landscape photograph, f/12, lifelike, highly detailed.",
|
||||
"negative_prompt": "painting, digital art. sketch, blurry"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Photography (Portrait)",
|
||||
"type": "default",
|
||||
"preset_data": {
|
||||
"positive_prompt": "{prompt}. photography. portraiture. catch light in eyes. one flash. rembrandt lighting. Soft box. dark shadows. High contrast. 80mm lens. F2.8.",
|
||||
"negative_prompt": "painting, digital art. sketch, blurry"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Photography (Black and White)",
|
||||
"type": "default",
|
||||
"preset_data": {
|
||||
"positive_prompt": "{prompt} photography. natural light. 80mm lens. F1.4. strong contrast, hard light. dark contrast. blurred background. black and white",
|
||||
"negative_prompt": "painting, digital art. sketch, colour+"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Architectural Visualization",
|
||||
"type": "default",
|
||||
"preset_data": {
|
||||
"positive_prompt": "{prompt}. architectural photography, f/12, luxury, aesthetically pleasing form and function.",
|
||||
"negative_prompt": "painting, digital art. sketch, blurry"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Concept Art (Fantasy)",
|
||||
"type": "default",
|
||||
"preset_data": {
|
||||
"positive_prompt": "concept artwork of a {prompt}. (digital painterly art style)++, mythological, (textured 2d dry media brushpack)++, glazed brushstrokes, otherworldly. painting+, illustration+",
|
||||
"negative_prompt": "photo. distorted, blurry, out of focus. sketch. (cgi, 3d.)++"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Concept Art (Sci-Fi)",
|
||||
"type": "default",
|
||||
"preset_data": {
|
||||
"positive_prompt": "(concept art)++, {prompt}, (sleek futurism)++, (textured 2d dry media)++, metallic highlights, digital painting style",
|
||||
"negative_prompt": "photo. distorted, blurry, out of focus. sketch. (cgi, 3d.)++"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Concept Art (Character)",
|
||||
"type": "default",
|
||||
"preset_data": {
|
||||
"positive_prompt": "(character concept art)++, stylized painterly digital painting of {prompt}, (painterly, impasto. Dry brush.)++",
|
||||
"negative_prompt": "photo. distorted, blurry, out of focus. sketch. (cgi, 3d.)++"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Concept Art (Painterly)",
|
||||
"type": "default",
|
||||
"preset_data": {
|
||||
"positive_prompt": "{prompt} oil painting. high contrast. impasto. sfumato. chiaroscuro. Palette knife.",
|
||||
"negative_prompt": "photo. smooth. border. frame"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Environment Art",
|
||||
"type": "default",
|
||||
"preset_data": {
|
||||
"positive_prompt": "{prompt} environment artwork, hyper-realistic digital painting style with cinematic composition, atmospheric, depth and detail, voluminous. textured dry brush 2d media",
|
||||
"negative_prompt": "photo, distorted, blurry, out of focus. sketch."
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Interior Design (Visualization)",
|
||||
"type": "default",
|
||||
"preset_data": {
|
||||
"positive_prompt": "{prompt} interior design photo, gentle shadows, light mid-tones, dimension, mix of smooth and textured surfaces, focus on negative space and clean lines, focus",
|
||||
"negative_prompt": "photo, distorted. sketch."
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Product Rendering",
|
||||
"type": "default",
|
||||
"preset_data": {
|
||||
"positive_prompt": "{prompt} high quality product photography, 3d rendering with key lighting, shallow depth of field, simple plain background, studio lighting.",
|
||||
"negative_prompt": "blurry, sketch, messy, dirty. unfinished."
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Sketch",
|
||||
"type": "default",
|
||||
"preset_data": {
|
||||
"positive_prompt": "{prompt} black and white pencil drawing, off-center composition, cross-hatching for shadows, bold strokes, textured paper. sketch+++",
|
||||
"negative_prompt": "blurry, photo, painting, color. messy, dirty. unfinished. frame, borders."
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Line Art",
|
||||
"type": "default",
|
||||
"preset_data": {
|
||||
"positive_prompt": "{prompt} Line art. bold outline. simplistic. white background. 2d",
|
||||
"negative_prompt": "photo. digital art. greyscale. solid black. painting"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Anime",
|
||||
"type": "default",
|
||||
"preset_data": {
|
||||
"positive_prompt": "{prompt} anime++, bold outline, cel-shaded coloring, shounen, seinen",
|
||||
"negative_prompt": "(photo)+++. greyscale. solid black. painting"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Illustration",
|
||||
"type": "default",
|
||||
"preset_data": {
|
||||
"positive_prompt": "{prompt} illustration, bold linework, illustrative details, vector art style, flat coloring",
|
||||
"negative_prompt": "(photo)+++. greyscale. painting, black and white."
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Vehicles",
|
||||
"type": "default",
|
||||
"preset_data": {
|
||||
"positive_prompt": "A weird futuristic normal auto, {prompt} elegant design, nice color, nice wheels",
|
||||
"negative_prompt": "sketch. digital art. greyscale. painting"
|
||||
}
|
||||
}
|
||||
]
|
||||
@@ -1,42 +0,0 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from invokeai.app.services.style_preset_records.style_preset_records_common import (
|
||||
PresetType,
|
||||
StylePresetChanges,
|
||||
StylePresetRecordDTO,
|
||||
StylePresetWithoutId,
|
||||
)
|
||||
|
||||
|
||||
class StylePresetRecordsStorageBase(ABC):
|
||||
"""Base class for style preset storage services."""
|
||||
|
||||
@abstractmethod
|
||||
def get(self, style_preset_id: str) -> StylePresetRecordDTO:
|
||||
"""Get style preset by id."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def create(self, style_preset: StylePresetWithoutId) -> StylePresetRecordDTO:
|
||||
"""Creates a style preset."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def create_many(self, style_presets: list[StylePresetWithoutId]) -> None:
|
||||
"""Creates many style presets."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def update(self, style_preset_id: str, changes: StylePresetChanges) -> StylePresetRecordDTO:
|
||||
"""Updates a style preset."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def delete(self, style_preset_id: str) -> None:
|
||||
"""Deletes a style preset."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_many(self, type: PresetType | None = None) -> list[StylePresetRecordDTO]:
|
||||
"""Gets many workflows."""
|
||||
pass
|
||||
@@ -1,138 +0,0 @@
|
||||
import codecs
|
||||
import csv
|
||||
import json
|
||||
from enum import Enum
|
||||
from typing import Any, Optional
|
||||
|
||||
import pydantic
|
||||
from fastapi import UploadFile
|
||||
from pydantic import AliasChoices, BaseModel, ConfigDict, Field, TypeAdapter
|
||||
|
||||
from invokeai.app.util.metaenum import MetaEnum
|
||||
|
||||
|
||||
class StylePresetNotFoundError(Exception):
|
||||
"""Raised when a style preset is not found"""
|
||||
|
||||
|
||||
class PresetData(BaseModel, extra="forbid"):
|
||||
positive_prompt: str = Field(description="Positive prompt")
|
||||
negative_prompt: str = Field(description="Negative prompt")
|
||||
|
||||
|
||||
PresetDataValidator = TypeAdapter(PresetData)
|
||||
|
||||
|
||||
class PresetType(str, Enum, metaclass=MetaEnum):
|
||||
User = "user"
|
||||
Default = "default"
|
||||
Project = "project"
|
||||
|
||||
|
||||
class StylePresetChanges(BaseModel, extra="forbid"):
|
||||
name: Optional[str] = Field(default=None, description="The style preset's new name.")
|
||||
preset_data: Optional[PresetData] = Field(default=None, description="The updated data for style preset.")
|
||||
|
||||
|
||||
class StylePresetWithoutId(BaseModel):
|
||||
name: str = Field(description="The name of the style preset.")
|
||||
preset_data: PresetData = Field(description="The preset data")
|
||||
type: PresetType = Field(description="The type of style preset")
|
||||
|
||||
|
||||
class StylePresetRecordDTO(StylePresetWithoutId):
|
||||
id: str = Field(description="The style preset ID.")
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, data: dict[str, Any]) -> "StylePresetRecordDTO":
|
||||
data["preset_data"] = PresetDataValidator.validate_json(data.get("preset_data", ""))
|
||||
return StylePresetRecordDTOValidator.validate_python(data)
|
||||
|
||||
|
||||
StylePresetRecordDTOValidator = TypeAdapter(StylePresetRecordDTO)
|
||||
|
||||
|
||||
class StylePresetRecordWithImage(StylePresetRecordDTO):
|
||||
image: Optional[str] = Field(description="The path for image")
|
||||
|
||||
|
||||
class StylePresetImportRow(BaseModel):
|
||||
name: str = Field(min_length=1, description="The name of the preset.")
|
||||
positive_prompt: str = Field(
|
||||
default="",
|
||||
description="The positive prompt for the preset.",
|
||||
validation_alias=AliasChoices("positive_prompt", "prompt"),
|
||||
)
|
||||
negative_prompt: str = Field(default="", description="The negative prompt for the preset.")
|
||||
|
||||
model_config = ConfigDict(str_strip_whitespace=True, extra="forbid")
|
||||
|
||||
|
||||
StylePresetImportList = list[StylePresetImportRow]
|
||||
StylePresetImportListTypeAdapter = TypeAdapter(StylePresetImportList)
|
||||
|
||||
|
||||
class UnsupportedFileTypeError(ValueError):
|
||||
"""Raised when an unsupported file type is encountered"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class InvalidPresetImportDataError(ValueError):
|
||||
"""Raised when invalid preset import data is encountered"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
async def parse_presets_from_file(file: UploadFile) -> list[StylePresetWithoutId]:
|
||||
"""Parses style presets from a file. The file must be a CSV or JSON file.
|
||||
|
||||
If CSV, the file must have the following columns:
|
||||
- name
|
||||
- prompt (or positive_prompt)
|
||||
- negative_prompt
|
||||
|
||||
If JSON, the file must be a list of objects with the following keys:
|
||||
- name
|
||||
- prompt (or positive_prompt)
|
||||
- negative_prompt
|
||||
|
||||
Args:
|
||||
file (UploadFile): The file to parse.
|
||||
|
||||
Returns:
|
||||
list[StylePresetWithoutId]: The parsed style presets.
|
||||
|
||||
Raises:
|
||||
UnsupportedFileTypeError: If the file type is not supported.
|
||||
InvalidPresetImportDataError: If the data in the file is invalid.
|
||||
"""
|
||||
if file.content_type not in ["text/csv", "application/json"]:
|
||||
raise UnsupportedFileTypeError()
|
||||
|
||||
if file.content_type == "text/csv":
|
||||
csv_reader = csv.DictReader(codecs.iterdecode(file.file, "utf-8"))
|
||||
data = list(csv_reader)
|
||||
else: # file.content_type == "application/json":
|
||||
json_data = await file.read()
|
||||
data = json.loads(json_data)
|
||||
|
||||
try:
|
||||
imported_presets = StylePresetImportListTypeAdapter.validate_python(data)
|
||||
|
||||
style_presets: list[StylePresetWithoutId] = []
|
||||
|
||||
for imported in imported_presets:
|
||||
preset_data = PresetData(positive_prompt=imported.positive_prompt, negative_prompt=imported.negative_prompt)
|
||||
style_preset = StylePresetWithoutId(name=imported.name, preset_data=preset_data, type=PresetType.User)
|
||||
style_presets.append(style_preset)
|
||||
except pydantic.ValidationError as e:
|
||||
if file.content_type == "text/csv":
|
||||
msg = "Invalid CSV format: must include columns 'name', 'prompt', and 'negative_prompt' and name cannot be blank"
|
||||
else: # file.content_type == "application/json":
|
||||
msg = "Invalid JSON format: must be a list of objects with keys 'name', 'prompt', and 'negative_prompt' and name cannot be blank"
|
||||
raise InvalidPresetImportDataError(msg) from e
|
||||
finally:
|
||||
file.file.close()
|
||||
|
||||
return style_presets
|
||||
@@ -1,215 +0,0 @@
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
from invokeai.app.services.style_preset_records.style_preset_records_base import StylePresetRecordsStorageBase
|
||||
from invokeai.app.services.style_preset_records.style_preset_records_common import (
|
||||
PresetType,
|
||||
StylePresetChanges,
|
||||
StylePresetNotFoundError,
|
||||
StylePresetRecordDTO,
|
||||
StylePresetWithoutId,
|
||||
)
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
|
||||
|
||||
class SqliteStylePresetRecordsStorage(StylePresetRecordsStorageBase):
|
||||
def __init__(self, db: SqliteDatabase) -> None:
|
||||
super().__init__()
|
||||
self._lock = db.lock
|
||||
self._conn = db.conn
|
||||
self._cursor = self._conn.cursor()
|
||||
|
||||
def start(self, invoker: Invoker) -> None:
|
||||
self._invoker = invoker
|
||||
self._sync_default_style_presets()
|
||||
|
||||
def get(self, style_preset_id: str) -> StylePresetRecordDTO:
|
||||
"""Gets a style preset by ID."""
|
||||
try:
|
||||
self._lock.acquire()
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
SELECT *
|
||||
FROM style_presets
|
||||
WHERE id = ?;
|
||||
""",
|
||||
(style_preset_id,),
|
||||
)
|
||||
row = self._cursor.fetchone()
|
||||
if row is None:
|
||||
raise StylePresetNotFoundError(f"Style preset with id {style_preset_id} not found")
|
||||
return StylePresetRecordDTO.from_dict(dict(row))
|
||||
except Exception:
|
||||
self._conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self._lock.release()
|
||||
|
||||
def create(self, style_preset: StylePresetWithoutId) -> StylePresetRecordDTO:
|
||||
style_preset_id = uuid_string()
|
||||
try:
|
||||
self._lock.acquire()
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
INSERT OR IGNORE INTO style_presets (
|
||||
id,
|
||||
name,
|
||||
preset_data,
|
||||
type
|
||||
)
|
||||
VALUES (?, ?, ?, ?);
|
||||
""",
|
||||
(
|
||||
style_preset_id,
|
||||
style_preset.name,
|
||||
style_preset.preset_data.model_dump_json(),
|
||||
style_preset.type,
|
||||
),
|
||||
)
|
||||
self._conn.commit()
|
||||
except Exception:
|
||||
self._conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self._lock.release()
|
||||
return self.get(style_preset_id)
|
||||
|
||||
def create_many(self, style_presets: list[StylePresetWithoutId]) -> None:
|
||||
style_preset_ids = []
|
||||
try:
|
||||
self._lock.acquire()
|
||||
for style_preset in style_presets:
|
||||
style_preset_id = uuid_string()
|
||||
style_preset_ids.append(style_preset_id)
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
INSERT OR IGNORE INTO style_presets (
|
||||
id,
|
||||
name,
|
||||
preset_data,
|
||||
type
|
||||
)
|
||||
VALUES (?, ?, ?, ?);
|
||||
""",
|
||||
(
|
||||
style_preset_id,
|
||||
style_preset.name,
|
||||
style_preset.preset_data.model_dump_json(),
|
||||
style_preset.type,
|
||||
),
|
||||
)
|
||||
self._conn.commit()
|
||||
except Exception:
|
||||
self._conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self._lock.release()
|
||||
|
||||
return None
|
||||
|
||||
def update(self, style_preset_id: str, changes: StylePresetChanges) -> StylePresetRecordDTO:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
# Change the name of a style preset
|
||||
if changes.name is not None:
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
UPDATE style_presets
|
||||
SET name = ?
|
||||
WHERE id = ?;
|
||||
""",
|
||||
(changes.name, style_preset_id),
|
||||
)
|
||||
|
||||
# Change the preset data for a style preset
|
||||
if changes.preset_data is not None:
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
UPDATE style_presets
|
||||
SET preset_data = ?
|
||||
WHERE id = ?;
|
||||
""",
|
||||
(changes.preset_data.model_dump_json(), style_preset_id),
|
||||
)
|
||||
|
||||
self._conn.commit()
|
||||
except Exception:
|
||||
self._conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self._lock.release()
|
||||
return self.get(style_preset_id)
|
||||
|
||||
def delete(self, style_preset_id: str) -> None:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
DELETE from style_presets
|
||||
WHERE id = ?;
|
||||
""",
|
||||
(style_preset_id,),
|
||||
)
|
||||
self._conn.commit()
|
||||
except Exception:
|
||||
self._conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self._lock.release()
|
||||
return None
|
||||
|
||||
def get_many(self, type: PresetType | None = None) -> list[StylePresetRecordDTO]:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
main_query = """
|
||||
SELECT
|
||||
*
|
||||
FROM style_presets
|
||||
"""
|
||||
|
||||
if type is not None:
|
||||
main_query += "WHERE type = ? "
|
||||
|
||||
main_query += "ORDER BY LOWER(name) ASC"
|
||||
|
||||
if type is not None:
|
||||
self._cursor.execute(main_query, (type,))
|
||||
else:
|
||||
self._cursor.execute(main_query)
|
||||
|
||||
rows = self._cursor.fetchall()
|
||||
style_presets = [StylePresetRecordDTO.from_dict(dict(row)) for row in rows]
|
||||
|
||||
return style_presets
|
||||
except Exception:
|
||||
self._conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self._lock.release()
|
||||
|
||||
def _sync_default_style_presets(self) -> None:
|
||||
"""Syncs default style presets to the database. Internal use only."""
|
||||
|
||||
# First delete all existing default style presets
|
||||
try:
|
||||
self._lock.acquire()
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
DELETE FROM style_presets
|
||||
WHERE type = "default";
|
||||
"""
|
||||
)
|
||||
self._conn.commit()
|
||||
except Exception:
|
||||
self._conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self._lock.release()
|
||||
# Next, parse and create the default style presets
|
||||
with self._lock, open(Path(__file__).parent / Path("default_style_presets.json"), "r") as file:
|
||||
presets = json.load(file)
|
||||
for preset in presets:
|
||||
style_preset = StylePresetWithoutId.model_validate(preset)
|
||||
self.create(style_preset)
|
||||
@@ -13,8 +13,3 @@ class UrlServiceBase(ABC):
|
||||
def get_model_image_url(self, model_key: str) -> str:
|
||||
"""Gets the URL for a model image"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_style_preset_image_url(self, style_preset_id: str) -> str:
|
||||
"""Gets the URL for a style preset image"""
|
||||
pass
|
||||
|
||||
@@ -19,6 +19,3 @@ class LocalUrlService(UrlServiceBase):
|
||||
|
||||
def get_model_image_url(self, model_key: str) -> str:
|
||||
return f"{self._base_url_v2}/models/i/{model_key}/image"
|
||||
|
||||
def get_style_preset_image_url(self, style_preset_id: str) -> str:
|
||||
return f"{self._base_url}/style_presets/i/{style_preset_id}/image"
|
||||
|
||||
@@ -81,7 +81,7 @@ def get_openapi_func(
|
||||
# Add the output map to the schema
|
||||
openapi_schema["components"]["schemas"]["InvocationOutputMap"] = {
|
||||
"type": "object",
|
||||
"properties": dict(sorted(invocation_output_map_properties.items())),
|
||||
"properties": invocation_output_map_properties,
|
||||
"required": invocation_output_map_required,
|
||||
}
|
||||
|
||||
|
||||
517
invokeai/backend/bnb.py
Normal file
@@ -0,0 +1,517 @@
|
||||
from typing import Any, Optional, Set, Type
|
||||
|
||||
import bitsandbytes as bnb
|
||||
import torch
|
||||
|
||||
# The utils in this file take ideas from
|
||||
# https://github.com/Lightning-AI/pytorch-lightning/blob/1551a16b94f5234a4a78801098f64d0732ef5cb5/src/lightning/fabric/plugins/precision/bitsandbytes.py
|
||||
|
||||
|
||||
# Patterns:
|
||||
# - Quantize:
|
||||
# - Initialize model on meta device
|
||||
# - Replace layers
|
||||
# - Load state_dict to cpu
|
||||
# - Load state_dict into model
|
||||
# - Quantize on GPU
|
||||
# - Extract state_dict
|
||||
# - Save
|
||||
|
||||
# - Load:
|
||||
# - Initialize model on meta device
|
||||
# - Replace layers
|
||||
# - Load state_dict to cpu
|
||||
# - Load state_dict into model on cpu
|
||||
# - Move to GPU
|
||||
|
||||
|
||||
# class InvokeInt8Params(bnb.nn.Int8Params):
|
||||
# """Overrides `bnb.nn.Int8Params` to add the following functionality:
|
||||
# - Make it possible to load a quantized state dict without putting the weight on a "cuda" device.
|
||||
# """
|
||||
|
||||
# def quantize(self, device: Optional[torch.device] = None):
|
||||
# device = device or torch.device("cuda")
|
||||
# if device.type != "cuda":
|
||||
# raise RuntimeError(f"Int8Params quantization is only supported on CUDA devices ({device=}).")
|
||||
|
||||
# # https://github.com/TimDettmers/bitsandbytes/blob/0.41.0/bitsandbytes/nn/modules.py#L291-L302
|
||||
# B = self.data.contiguous().half().cuda(device)
|
||||
# if self.has_fp16_weights:
|
||||
# self.data = B
|
||||
# else:
|
||||
# # we store the 8-bit rows-major weight
|
||||
# # we convert this weight to the turning/ampere weight during the first inference pass
|
||||
# CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B)
|
||||
# del CBt
|
||||
# del SCBt
|
||||
# self.data = CB
|
||||
# self.CB = CB
|
||||
# self.SCB = SCB
|
||||
|
||||
|
||||
class Invoke2Linear8bitLt(torch.nn.Linear):
|
||||
"""This class is the base module for the [LLM.int8()](https://arxiv.org/abs/2208.07339) algorithm."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_features: int,
|
||||
output_features: int,
|
||||
bias=True,
|
||||
has_fp16_weights=True,
|
||||
memory_efficient_backward=False,
|
||||
threshold=0.0,
|
||||
index=None,
|
||||
device=None,
|
||||
):
|
||||
"""
|
||||
Initialize Linear8bitLt class.
|
||||
|
||||
Args:
|
||||
input_features (`int`):
|
||||
Number of input features of the linear layer.
|
||||
output_features (`int`):
|
||||
Number of output features of the linear layer.
|
||||
bias (`bool`, defaults to `True`):
|
||||
Whether the linear class uses the bias term as well.
|
||||
"""
|
||||
super().__init__(input_features, output_features, bias, device)
|
||||
assert not memory_efficient_backward, "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
|
||||
self.state = bnb.MatmulLtState()
|
||||
self.index = index
|
||||
|
||||
self.state.threshold = threshold
|
||||
self.state.has_fp16_weights = has_fp16_weights
|
||||
self.state.memory_efficient_backward = memory_efficient_backward
|
||||
if threshold > 0.0 and not has_fp16_weights:
|
||||
self.state.use_pool = True
|
||||
|
||||
self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights)
|
||||
self._register_load_state_dict_pre_hook(maybe_rearrange_weight)
|
||||
|
||||
def _save_to_state_dict(self, destination, prefix, keep_vars):
|
||||
super()._save_to_state_dict(destination, prefix, keep_vars)
|
||||
|
||||
# we only need to save SCB as extra data, because CB for quantized weights is already stored in weight.data
|
||||
scb_name = "SCB"
|
||||
|
||||
# case 1: .cuda was called, SCB is in self.weight
|
||||
param_from_weight = getattr(self.weight, scb_name)
|
||||
# case 2: self.init_8bit_state was called, SCB is in self.state
|
||||
param_from_state = getattr(self.state, scb_name)
|
||||
# case 3: SCB is in self.state, weight layout reordered after first forward()
|
||||
layout_reordered = self.state.CxB is not None
|
||||
|
||||
key_name = prefix + f"{scb_name}"
|
||||
format_name = prefix + "weight_format"
|
||||
|
||||
if not self.state.has_fp16_weights:
|
||||
if param_from_weight is not None:
|
||||
destination[key_name] = param_from_weight if keep_vars else param_from_weight.detach()
|
||||
destination[format_name] = torch.tensor(0, dtype=torch.uint8)
|
||||
elif param_from_state is not None and not layout_reordered:
|
||||
destination[key_name] = param_from_state if keep_vars else param_from_state.detach()
|
||||
destination[format_name] = torch.tensor(0, dtype=torch.uint8)
|
||||
elif param_from_state is not None:
|
||||
destination[key_name] = param_from_state if keep_vars else param_from_state.detach()
|
||||
weights_format = self.state.formatB
|
||||
# At this point `weights_format` is an str
|
||||
if weights_format not in LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING:
|
||||
raise ValueError(f"Unrecognized weights format {weights_format}")
|
||||
|
||||
weights_format = LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING[weights_format]
|
||||
|
||||
destination[format_name] = torch.tensor(weights_format, dtype=torch.uint8)
|
||||
|
||||
def _load_from_state_dict(
|
||||
self,
|
||||
state_dict,
|
||||
prefix,
|
||||
local_metadata,
|
||||
strict,
|
||||
missing_keys,
|
||||
unexpected_keys,
|
||||
error_msgs,
|
||||
):
|
||||
super()._load_from_state_dict(
|
||||
state_dict,
|
||||
prefix,
|
||||
local_metadata,
|
||||
strict,
|
||||
missing_keys,
|
||||
unexpected_keys,
|
||||
error_msgs,
|
||||
)
|
||||
unexpected_copy = list(unexpected_keys)
|
||||
|
||||
for key in unexpected_copy:
|
||||
input_name = key[len(prefix) :]
|
||||
if input_name == "SCB":
|
||||
if self.weight.SCB is None:
|
||||
# buffers not yet initialized, can't access them directly without quantizing first
|
||||
raise RuntimeError(
|
||||
"Loading a quantized checkpoint into non-quantized Linear8bitLt is "
|
||||
"not supported. Please call module.cuda() before module.load_state_dict()",
|
||||
)
|
||||
|
||||
input_param = state_dict[key]
|
||||
self.weight.SCB.copy_(input_param)
|
||||
|
||||
if self.state.SCB is not None:
|
||||
self.state.SCB = self.weight.SCB
|
||||
|
||||
unexpected_keys.remove(key)
|
||||
|
||||
def init_8bit_state(self):
|
||||
self.state.CB = self.weight.CB
|
||||
self.state.SCB = self.weight.SCB
|
||||
self.weight.CB = None
|
||||
self.weight.SCB = None
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
self.state.is_training = self.training
|
||||
if self.weight.CB is not None:
|
||||
self.init_8bit_state()
|
||||
|
||||
# weights are cast automatically as Int8Params, but the bias has to be cast manually
|
||||
if self.bias is not None and self.bias.dtype != x.dtype:
|
||||
self.bias.data = self.bias.data.to(x.dtype)
|
||||
|
||||
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
|
||||
|
||||
if not self.state.has_fp16_weights:
|
||||
if self.state.CB is not None and self.state.CxB is not None:
|
||||
# we converted 8-bit row major to turing/ampere format in the first inference pass
|
||||
# we no longer need the row-major weight
|
||||
del self.state.CB
|
||||
self.weight.data = self.state.CxB
|
||||
return out
|
||||
|
||||
|
||||
class InvokeLinear8bitLt(bnb.nn.Linear8bitLt):
|
||||
"""Wraps `bnb.nn.Linear8bitLt` and adds the following functionality:
|
||||
- enables instantiation directly on the device
|
||||
- re-quantizaton when loading the state dict
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, *args: Any, device: Optional[torch.device] = None, threshold: float = 6.0, **kwargs: Any
|
||||
) -> None:
|
||||
super().__init__(*args, device=device, threshold=threshold, **kwargs)
|
||||
# If the device is CUDA or we are under a CUDA context manager, quantize the weight here, so we don't end up
|
||||
# filling the device memory with float32 weights which could lead to OOM
|
||||
# if torch.tensor(0, device=device).device.type == "cuda":
|
||||
# self.quantize_()
|
||||
# self._register_load_state_dict_pre_hook(partial(_quantize_on_load_hook, self.quantize_))
|
||||
# self.register_load_state_dict_post_hook(_ignore_missing_weights_hook)
|
||||
|
||||
def _load_from_state_dict(
|
||||
self,
|
||||
state_dict,
|
||||
prefix,
|
||||
local_metadata,
|
||||
strict,
|
||||
missing_keys,
|
||||
unexpected_keys,
|
||||
error_msgs,
|
||||
):
|
||||
super()._load_from_state_dict(
|
||||
state_dict,
|
||||
prefix,
|
||||
local_metadata,
|
||||
strict,
|
||||
missing_keys,
|
||||
unexpected_keys,
|
||||
error_msgs,
|
||||
)
|
||||
unexpected_copy = list(unexpected_keys)
|
||||
|
||||
for key in unexpected_copy:
|
||||
input_name = key[len(prefix) :]
|
||||
if input_name == "SCB":
|
||||
if self.weight.SCB is None:
|
||||
# buffers not yet initialized, can't access them directly without quantizing first
|
||||
raise RuntimeError(
|
||||
"Loading a quantized checkpoint into non-quantized Linear8bitLt is "
|
||||
"not supported. Please call module.cuda() before module.load_state_dict()",
|
||||
)
|
||||
|
||||
input_param = state_dict[key]
|
||||
self.weight.SCB.copy_(input_param)
|
||||
|
||||
if self.state.SCB is not None:
|
||||
self.state.SCB = self.weight.SCB
|
||||
|
||||
unexpected_keys.remove(key)
|
||||
|
||||
def quantize_(self, weight: Optional[torch.Tensor] = None, device: Optional[torch.device] = None) -> None:
|
||||
"""Inplace quantize."""
|
||||
if weight is None:
|
||||
weight = self.weight.data
|
||||
if weight.data.dtype == torch.int8:
|
||||
# already quantized
|
||||
return
|
||||
assert isinstance(self.weight, bnb.nn.Int8Params)
|
||||
self.weight = self.quantize(self.weight, weight, device)
|
||||
|
||||
@staticmethod
|
||||
def quantize(
|
||||
int8params: bnb.nn.Int8Params, weight: torch.Tensor, device: Optional[torch.device]
|
||||
) -> bnb.nn.Int8Params:
|
||||
device = device or torch.device("cuda")
|
||||
if device.type != "cuda":
|
||||
raise RuntimeError(f"Unexpected device type: {device.type}")
|
||||
# https://github.com/TimDettmers/bitsandbytes/blob/0.41.0/bitsandbytes/nn/modules.py#L291-L302
|
||||
B = weight.contiguous().to(device=device, dtype=torch.float16)
|
||||
if int8params.has_fp16_weights:
|
||||
int8params.data = B
|
||||
else:
|
||||
CB, CBt, SCB, SCBt, _ = bnb.functional.double_quant(B)
|
||||
del CBt
|
||||
del SCBt
|
||||
int8params.data = CB
|
||||
int8params.CB = CB
|
||||
int8params.SCB = SCB
|
||||
return int8params
|
||||
|
||||
|
||||
# class _Linear4bit(bnb.nn.Linear4bit):
|
||||
# """Wraps `bnb.nn.Linear4bit` to enable: instantiation directly on the device, re-quantizaton when loading the
|
||||
# state dict, meta-device initialization, and materialization."""
|
||||
|
||||
# def __init__(self, *args: Any, device: Optional[torch.device] = None, **kwargs: Any) -> None:
|
||||
# super().__init__(*args, device=device, **kwargs)
|
||||
# self.weight = cast(bnb.nn.Params4bit, self.weight) # type: ignore[has-type]
|
||||
# self.bias = cast(Optional[torch.nn.Parameter], self.bias) # type: ignore[has-type]
|
||||
# # if the device is CUDA or we are under a CUDA context manager, quantize the weight here, so we don't end up
|
||||
# # filling the device memory with float32 weights which could lead to OOM
|
||||
# if torch.tensor(0, device=device).device.type == "cuda":
|
||||
# self.quantize_()
|
||||
# self._register_load_state_dict_pre_hook(partial(_quantize_on_load_hook, self.quantize_))
|
||||
# self.register_load_state_dict_post_hook(_ignore_missing_weights_hook)
|
||||
|
||||
# def quantize_(self, weight: Optional[torch.Tensor] = None, device: Optional[torch.device] = None) -> None:
|
||||
# """Inplace quantize."""
|
||||
# if weight is None:
|
||||
# weight = self.weight.data
|
||||
# if weight.data.dtype == torch.uint8:
|
||||
# # already quantized
|
||||
# return
|
||||
# assert isinstance(self.weight, bnb.nn.Params4bit)
|
||||
# self.weight = self.quantize(self.weight, weight, device)
|
||||
|
||||
# @staticmethod
|
||||
# def quantize(
|
||||
# params4bit: bnb.nn.Params4bit, weight: torch.Tensor, device: Optional[torch.device]
|
||||
# ) -> bnb.nn.Params4bit:
|
||||
# device = device or torch.device("cuda")
|
||||
# if device.type != "cuda":
|
||||
# raise RuntimeError(f"Unexpected device type: {device.type}")
|
||||
# # https://github.com/TimDettmers/bitsandbytes/blob/0.41.0/bitsandbytes/nn/modules.py#L156-L159
|
||||
# w = weight.contiguous().to(device=device, dtype=torch.half)
|
||||
# w_4bit, quant_state = bnb.functional.quantize_4bit(
|
||||
# w,
|
||||
# blocksize=params4bit.blocksize,
|
||||
# compress_statistics=params4bit.compress_statistics,
|
||||
# quant_type=params4bit.quant_type,
|
||||
# )
|
||||
# return _replace_param(params4bit, w_4bit, quant_state)
|
||||
|
||||
# def to_empty(self, *, device: _DEVICE, recurse: bool = True) -> Self:
|
||||
# if self.weight.dtype == torch.uint8: # was quantized
|
||||
# # cannot init the quantized params directly
|
||||
# weight = torch.empty(self.weight.quant_state.shape, device=device, dtype=torch.half)
|
||||
# else:
|
||||
# weight = torch.empty_like(self.weight.data, device=device)
|
||||
# device = torch.device(device)
|
||||
# if device.type == "cuda": # re-quantize
|
||||
# self.quantize_(weight, device)
|
||||
# else:
|
||||
# self.weight = _replace_param(self.weight, weight)
|
||||
# if self.bias is not None:
|
||||
# self.bias = _replace_param(self.bias, torch.empty_like(self.bias, device=device))
|
||||
# return self
|
||||
|
||||
|
||||
def convert_model_to_bnb_llm_int8(model: torch.nn.Module, ignore_modules: set[str]):
|
||||
linear_cls = InvokeLinear8bitLt
|
||||
_convert_linear_layers(model, linear_cls, ignore_modules)
|
||||
|
||||
# TODO(ryand): Is this necessary?
|
||||
# set the compute dtype if necessary
|
||||
# for m in model.modules():
|
||||
# if isinstance(m, bnb.nn.Linear4bit):
|
||||
# m.compute_dtype = self.dtype
|
||||
# m.compute_type_is_set = False
|
||||
|
||||
|
||||
# class BitsandbytesPrecision(Precision):
|
||||
# """Plugin for quantizing weights with `bitsandbytes <https://github.com/TimDettmers/bitsandbytes>`__.
|
||||
|
||||
# .. warning:: This is an :ref:`experimental <versioning:Experimental API>` feature.
|
||||
|
||||
# .. note::
|
||||
# The optimizer is not automatically replaced with ``bitsandbytes.optim.Adam8bit`` or equivalent 8-bit optimizers.
|
||||
|
||||
# Args:
|
||||
# mode: The quantization mode to use.
|
||||
# dtype: The compute dtype to use.
|
||||
# ignore_modules: The submodules whose Linear layers should not be replaced, for example. ``{"lm_head"}``.
|
||||
# This might be desirable for numerical stability. The string will be checked in as a prefix, so a value like
|
||||
# "transformer.blocks" will ignore all linear layers in all of the transformer blocks.
|
||||
# """
|
||||
|
||||
# def __init__(
|
||||
# self,
|
||||
# mode: Literal["nf4", "nf4-dq", "fp4", "fp4-dq", "int8", "int8-training"],
|
||||
# dtype: Optional[torch.dtype] = None,
|
||||
# ignore_modules: Optional[Set[str]] = None,
|
||||
# ) -> None:
|
||||
# if dtype is None:
|
||||
# # try to be smart about the default selection
|
||||
# if mode.startswith("int8"):
|
||||
# dtype = torch.float16
|
||||
# else:
|
||||
# dtype = (
|
||||
# torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float16
|
||||
# )
|
||||
# if mode.startswith("int8") and dtype is not torch.float16:
|
||||
# # this limitation is mentioned in https://huggingface.co/blog/hf-bitsandbytes-integration#usage
|
||||
# raise ValueError(f"{mode!r} only works with `dtype=torch.float16`, but you chose `{dtype}`")
|
||||
|
||||
# globals_ = globals()
|
||||
# mode_to_cls = {
|
||||
# "nf4": globals_["_NF4Linear"],
|
||||
# "nf4-dq": globals_["_NF4DQLinear"],
|
||||
# "fp4": globals_["_FP4Linear"],
|
||||
# "fp4-dq": globals_["_FP4DQLinear"],
|
||||
# "int8-training": globals_["_Linear8bitLt"],
|
||||
# "int8": globals_["_Int8LinearInference"],
|
||||
# }
|
||||
# self._linear_cls = mode_to_cls[mode]
|
||||
# self.dtype = dtype
|
||||
# self.ignore_modules = ignore_modules or set()
|
||||
|
||||
# @override
|
||||
# def convert_module(self, module: torch.nn.Module) -> torch.nn.Module:
|
||||
# # avoid naive users thinking they quantized their model
|
||||
# if not any(isinstance(m, torch.nn.Linear) for m in module.modules()):
|
||||
# raise TypeError(
|
||||
# "You are using the bitsandbytes precision plugin, but your model has no Linear layers. This plugin"
|
||||
# " won't work for your model."
|
||||
# )
|
||||
|
||||
# # convert modules if they haven't been converted already
|
||||
# if not any(isinstance(m, (bnb.nn.Linear8bitLt, bnb.nn.Linear4bit)) for m in module.modules()):
|
||||
# # this will not quantize the model but only replace the layer classes
|
||||
# _convert_layers(module, self._linear_cls, self.ignore_modules)
|
||||
|
||||
# # set the compute dtype if necessary
|
||||
# for m in module.modules():
|
||||
# if isinstance(m, bnb.nn.Linear4bit):
|
||||
# m.compute_dtype = self.dtype
|
||||
# m.compute_type_is_set = False
|
||||
# return module
|
||||
|
||||
|
||||
# def _quantize_on_load_hook(quantize_fn: Callable[[torch.Tensor], None], state_dict: OrderedDict, *_: Any) -> None:
|
||||
# # There is only one key that ends with `*.weight`, the other one is the bias
|
||||
# weight_key = next((name for name in state_dict if name.endswith("weight")), None)
|
||||
# if weight_key is None:
|
||||
# return
|
||||
# # Load the weight from the state dict and re-quantize it
|
||||
# weight = state_dict.pop(weight_key)
|
||||
# quantize_fn(weight)
|
||||
|
||||
|
||||
# def _ignore_missing_weights_hook(module: torch.nn.Module, incompatible_keys: _IncompatibleKeys) -> None:
|
||||
# # since we manually loaded the weight in the `_quantize_on_load_hook` hook, we need to avoid this missing key false
|
||||
# # positive
|
||||
# for key in reversed(incompatible_keys.missing_keys):
|
||||
# if key.endswith("weight"):
|
||||
# incompatible_keys.missing_keys.remove(key)
|
||||
|
||||
|
||||
def _convert_linear_layers(
|
||||
module: torch.nn.Module, linear_cls: Type, ignore_modules: Set[str], prefix: str = ""
|
||||
) -> None:
|
||||
for name, child in module.named_children():
|
||||
fullname = f"{prefix}.{name}" if prefix else name
|
||||
if isinstance(child, torch.nn.Linear) and not any(fullname.startswith(s) for s in ignore_modules):
|
||||
has_bias = child.bias is not None
|
||||
# since we are going to copy over the child's data, the device doesn't matter. I chose CPU
|
||||
# to avoid spiking CUDA memory even though initialization is slower
|
||||
# 4bit layers support quantizing from meta-device params so this is only relevant for 8-bit
|
||||
_Linear4bit = globals()["_Linear4bit"]
|
||||
device = torch.device("meta" if issubclass(linear_cls, _Linear4bit) else "cpu")
|
||||
replacement = linear_cls(
|
||||
child.in_features,
|
||||
child.out_features,
|
||||
bias=has_bias,
|
||||
device=device,
|
||||
)
|
||||
if has_bias:
|
||||
replacement.bias = _replace_param(replacement.bias, child.bias.data.clone())
|
||||
state = {"quant_state": replacement.weight.quant_state if issubclass(linear_cls, _Linear4bit) else None}
|
||||
replacement.weight = _replace_param(replacement.weight, child.weight.data.clone(), **state)
|
||||
module.__setattr__(name, replacement)
|
||||
else:
|
||||
_convert_linear_layers(child, linear_cls, ignore_modules, prefix=fullname)
|
||||
|
||||
|
||||
# def _replace_linear_layers(
|
||||
# model: torch.nn.Module,
|
||||
# linear_layer_type: Literal["Linear8bitLt", "Linear4bit"],
|
||||
# modules_to_not_convert: set[str],
|
||||
# current_key_name: str | None = None,
|
||||
# ):
|
||||
# has_been_replaced = False
|
||||
# for name, module in model.named_children():
|
||||
# if current_key_name is None:
|
||||
# current_key_name = []
|
||||
# current_key_name.append(name)
|
||||
# if isinstance(module, torch.nn.Linear) and name not in modules_to_not_convert:
|
||||
# # Check if the current key is not in the `modules_to_not_convert`
|
||||
# current_key_name_str = ".".join(current_key_name)
|
||||
# proceed = True
|
||||
# for key in modules_to_not_convert:
|
||||
# if (
|
||||
# (key in current_key_name_str) and (key + "." in current_key_name_str)
|
||||
# ) or key == current_key_name_str:
|
||||
# proceed = False
|
||||
# break
|
||||
# if proceed:
|
||||
# # Load bnb module with empty weight and replace ``nn.Linear` module
|
||||
# if bnb_quantization_config.load_in_8bit:
|
||||
# bnb_module = bnb.nn.Linear8bitLt(
|
||||
# module.in_features,
|
||||
# module.out_features,
|
||||
# module.bias is not None,
|
||||
# has_fp16_weights=False,
|
||||
# threshold=bnb_quantization_config.llm_int8_threshold,
|
||||
# )
|
||||
# elif bnb_quantization_config.load_in_4bit:
|
||||
# bnb_module = bnb.nn.Linear4bit(
|
||||
# module.in_features,
|
||||
# module.out_features,
|
||||
# module.bias is not None,
|
||||
# bnb_quantization_config.bnb_4bit_compute_dtype,
|
||||
# compress_statistics=bnb_quantization_config.bnb_4bit_use_double_quant,
|
||||
# quant_type=bnb_quantization_config.bnb_4bit_quant_type,
|
||||
# )
|
||||
# else:
|
||||
# raise ValueError("load_in_8bit and load_in_4bit can't be both False")
|
||||
# bnb_module.weight.data = module.weight.data
|
||||
# if module.bias is not None:
|
||||
# bnb_module.bias.data = module.bias.data
|
||||
# bnb_module.requires_grad_(False)
|
||||
# setattr(model, name, bnb_module)
|
||||
# has_been_replaced = True
|
||||
# if len(list(module.children())) > 0:
|
||||
# _, _has_been_replaced = _replace_with_bnb_layers(
|
||||
# module, bnb_quantization_config, modules_to_not_convert, current_key_name
|
||||
# )
|
||||
# has_been_replaced = has_been_replaced | _has_been_replaced
|
||||
# # Remove the last key for recursion
|
||||
# current_key_name.pop(-1)
|
||||
# return model, has_been_replaced
|
||||
90
invokeai/backend/image_util/depth_anything/__init__.py
Normal file
@@ -0,0 +1,90 @@
|
||||
from pathlib import Path
|
||||
from typing import Literal
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from einops import repeat
|
||||
from PIL import Image
|
||||
from torchvision.transforms import Compose
|
||||
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2
|
||||
from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
config = get_config()
|
||||
logger = InvokeAILogger.get_logger(config=config)
|
||||
|
||||
DEPTH_ANYTHING_MODELS = {
|
||||
"large": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth?download=true",
|
||||
"base": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitb14.pth?download=true",
|
||||
"small": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vits14.pth?download=true",
|
||||
}
|
||||
|
||||
|
||||
transform = Compose(
|
||||
[
|
||||
Resize(
|
||||
width=518,
|
||||
height=518,
|
||||
resize_target=False,
|
||||
keep_aspect_ratio=True,
|
||||
ensure_multiple_of=14,
|
||||
resize_method="lower_bound",
|
||||
image_interpolation_method=cv2.INTER_CUBIC,
|
||||
),
|
||||
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
||||
PrepareForNet(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class DepthAnythingDetector:
|
||||
def __init__(self, model: DPT_DINOv2, device: torch.device) -> None:
|
||||
self.model = model
|
||||
self.device = device
|
||||
|
||||
@staticmethod
|
||||
def load_model(
|
||||
model_path: Path, device: torch.device, model_size: Literal["large", "base", "small"] = "small"
|
||||
) -> DPT_DINOv2:
|
||||
match model_size:
|
||||
case "small":
|
||||
model = DPT_DINOv2(encoder="vits", features=64, out_channels=[48, 96, 192, 384])
|
||||
case "base":
|
||||
model = DPT_DINOv2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768])
|
||||
case "large":
|
||||
model = DPT_DINOv2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024])
|
||||
|
||||
model.load_state_dict(torch.load(model_path.as_posix(), map_location="cpu"))
|
||||
model.eval()
|
||||
|
||||
model.to(device)
|
||||
return model
|
||||
|
||||
def __call__(self, image: Image.Image, resolution: int = 512) -> Image.Image:
|
||||
if not self.model:
|
||||
logger.warn("DepthAnything model was not loaded. Returning original image")
|
||||
return image
|
||||
|
||||
np_image = np.array(image, dtype=np.uint8)
|
||||
np_image = np_image[:, :, ::-1] / 255.0
|
||||
|
||||
image_height, image_width = np_image.shape[:2]
|
||||
np_image = transform({"image": np_image})["image"]
|
||||
tensor_image = torch.from_numpy(np_image).unsqueeze(0).to(self.device)
|
||||
|
||||
with torch.no_grad():
|
||||
depth = self.model(tensor_image)
|
||||
depth = F.interpolate(depth[None], (image_height, image_width), mode="bilinear", align_corners=False)[0, 0]
|
||||
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
||||
|
||||
depth_map = repeat(depth, "h w -> h w 3").cpu().numpy().astype(np.uint8)
|
||||
depth_map = Image.fromarray(depth_map)
|
||||
|
||||
new_height = int(image_height * (resolution / image_width))
|
||||
depth_map = depth_map.resize((resolution, new_height))
|
||||
|
||||
return depth_map
|
||||
@@ -1,31 +0,0 @@
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers.pipelines import DepthEstimationPipeline
|
||||
|
||||
from invokeai.backend.raw_model import RawModel
|
||||
|
||||
|
||||
class DepthAnythingPipeline(RawModel):
|
||||
"""Custom wrapper for the Depth Estimation pipeline from transformers adding compatibility
|
||||
for Invoke's Model Management System"""
|
||||
|
||||
def __init__(self, pipeline: DepthEstimationPipeline) -> None:
|
||||
self._pipeline = pipeline
|
||||
|
||||
def generate_depth(self, image: Image.Image) -> Image.Image:
|
||||
depth_map = self._pipeline(image)["depth"]
|
||||
assert isinstance(depth_map, Image.Image)
|
||||
return depth_map
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
|
||||
if device is not None and device.type not in {"cpu", "cuda"}:
|
||||
device = None
|
||||
self._pipeline.model.to(device=device, dtype=dtype)
|
||||
self._pipeline.device = self._pipeline.model.device
|
||||
|
||||
def calc_size(self) -> int:
|
||||
from invokeai.backend.model_manager.load.model_util import calc_module_size
|
||||
|
||||
return calc_module_size(self._pipeline.model)
|
||||
145
invokeai/backend/image_util/depth_anything/model/blocks.py
Normal file
@@ -0,0 +1,145 @@
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
||||
scratch = nn.Module()
|
||||
|
||||
out_shape1 = out_shape
|
||||
out_shape2 = out_shape
|
||||
out_shape3 = out_shape
|
||||
if len(in_shape) >= 4:
|
||||
out_shape4 = out_shape
|
||||
|
||||
if expand:
|
||||
out_shape1 = out_shape
|
||||
out_shape2 = out_shape * 2
|
||||
out_shape3 = out_shape * 4
|
||||
if len(in_shape) >= 4:
|
||||
out_shape4 = out_shape * 8
|
||||
|
||||
scratch.layer1_rn = nn.Conv2d(
|
||||
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
||||
)
|
||||
scratch.layer2_rn = nn.Conv2d(
|
||||
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
||||
)
|
||||
scratch.layer3_rn = nn.Conv2d(
|
||||
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
||||
)
|
||||
if len(in_shape) >= 4:
|
||||
scratch.layer4_rn = nn.Conv2d(
|
||||
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
||||
)
|
||||
|
||||
return scratch
|
||||
|
||||
|
||||
class ResidualConvUnit(nn.Module):
|
||||
"""Residual convolution module."""
|
||||
|
||||
def __init__(self, features, activation, bn):
|
||||
"""Init.
|
||||
|
||||
Args:
|
||||
features (int): number of features
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.bn = bn
|
||||
|
||||
self.groups = 1
|
||||
|
||||
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
|
||||
|
||||
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
|
||||
|
||||
if self.bn:
|
||||
self.bn1 = nn.BatchNorm2d(features)
|
||||
self.bn2 = nn.BatchNorm2d(features)
|
||||
|
||||
self.activation = activation
|
||||
|
||||
self.skip_add = nn.quantized.FloatFunctional()
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass.
|
||||
|
||||
Args:
|
||||
x (tensor): input
|
||||
|
||||
Returns:
|
||||
tensor: output
|
||||
"""
|
||||
|
||||
out = self.activation(x)
|
||||
out = self.conv1(out)
|
||||
if self.bn:
|
||||
out = self.bn1(out)
|
||||
|
||||
out = self.activation(out)
|
||||
out = self.conv2(out)
|
||||
if self.bn:
|
||||
out = self.bn2(out)
|
||||
|
||||
if self.groups > 1:
|
||||
out = self.conv_merge(out)
|
||||
|
||||
return self.skip_add.add(out, x)
|
||||
|
||||
|
||||
class FeatureFusionBlock(nn.Module):
|
||||
"""Feature fusion block."""
|
||||
|
||||
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None):
|
||||
"""Init.
|
||||
|
||||
Args:
|
||||
features (int): number of features
|
||||
"""
|
||||
super(FeatureFusionBlock, self).__init__()
|
||||
|
||||
self.deconv = deconv
|
||||
self.align_corners = align_corners
|
||||
|
||||
self.groups = 1
|
||||
|
||||
self.expand = expand
|
||||
out_features = features
|
||||
if self.expand:
|
||||
out_features = features // 2
|
||||
|
||||
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
||||
|
||||
self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
|
||||
self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
|
||||
|
||||
self.skip_add = nn.quantized.FloatFunctional()
|
||||
|
||||
self.size = size
|
||||
|
||||
def forward(self, *xs, size=None):
|
||||
"""Forward pass.
|
||||
|
||||
Returns:
|
||||
tensor: output
|
||||
"""
|
||||
output = xs[0]
|
||||
|
||||
if len(xs) == 2:
|
||||
res = self.resConfUnit1(xs[1])
|
||||
output = self.skip_add.add(output, res)
|
||||
|
||||
output = self.resConfUnit2(output)
|
||||
|
||||
if (size is None) and (self.size is None):
|
||||
modifier = {"scale_factor": 2}
|
||||
elif size is None:
|
||||
modifier = {"size": self.size}
|
||||
else:
|
||||
modifier = {"size": size}
|
||||
|
||||
output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
|
||||
|
||||
output = self.out_conv(output)
|
||||
|
||||
return output
|
||||
183
invokeai/backend/image_util/depth_anything/model/dpt.py
Normal file
@@ -0,0 +1,183 @@
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from invokeai.backend.image_util.depth_anything.model.blocks import FeatureFusionBlock, _make_scratch
|
||||
|
||||
torchhub_path = Path(__file__).parent.parent / "torchhub"
|
||||
|
||||
|
||||
def _make_fusion_block(features, use_bn, size=None):
|
||||
return FeatureFusionBlock(
|
||||
features,
|
||||
nn.ReLU(False),
|
||||
deconv=False,
|
||||
bn=use_bn,
|
||||
expand=False,
|
||||
align_corners=True,
|
||||
size=size,
|
||||
)
|
||||
|
||||
|
||||
class DPTHead(nn.Module):
|
||||
def __init__(self, nclass, in_channels, features, out_channels, use_bn=False, use_clstoken=False):
|
||||
super(DPTHead, self).__init__()
|
||||
|
||||
self.nclass = nclass
|
||||
self.use_clstoken = use_clstoken
|
||||
|
||||
self.projects = nn.ModuleList(
|
||||
[
|
||||
nn.Conv2d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channel,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
)
|
||||
for out_channel in out_channels
|
||||
]
|
||||
)
|
||||
|
||||
self.resize_layers = nn.ModuleList(
|
||||
[
|
||||
nn.ConvTranspose2d(
|
||||
in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0
|
||||
),
|
||||
nn.ConvTranspose2d(
|
||||
in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0
|
||||
),
|
||||
nn.Identity(),
|
||||
nn.Conv2d(
|
||||
in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
if use_clstoken:
|
||||
self.readout_projects = nn.ModuleList()
|
||||
for _ in range(len(self.projects)):
|
||||
self.readout_projects.append(nn.Sequential(nn.Linear(2 * in_channels, in_channels), nn.GELU()))
|
||||
|
||||
self.scratch = _make_scratch(
|
||||
out_channels,
|
||||
features,
|
||||
groups=1,
|
||||
expand=False,
|
||||
)
|
||||
|
||||
self.scratch.stem_transpose = None
|
||||
|
||||
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
||||
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
||||
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
||||
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
||||
|
||||
head_features_1 = features
|
||||
head_features_2 = 32
|
||||
|
||||
if nclass > 1:
|
||||
self.scratch.output_conv = nn.Sequential(
|
||||
nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1),
|
||||
nn.ReLU(True),
|
||||
nn.Conv2d(head_features_1, nclass, kernel_size=1, stride=1, padding=0),
|
||||
)
|
||||
else:
|
||||
self.scratch.output_conv1 = nn.Conv2d(
|
||||
head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
self.scratch.output_conv2 = nn.Sequential(
|
||||
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
|
||||
nn.ReLU(True),
|
||||
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
|
||||
nn.ReLU(True),
|
||||
nn.Identity(),
|
||||
)
|
||||
|
||||
def forward(self, out_features, patch_h, patch_w):
|
||||
out = []
|
||||
for i, x in enumerate(out_features):
|
||||
if self.use_clstoken:
|
||||
x, cls_token = x[0], x[1]
|
||||
readout = cls_token.unsqueeze(1).expand_as(x)
|
||||
x = self.readout_projects[i](torch.cat((x, readout), -1))
|
||||
else:
|
||||
x = x[0]
|
||||
|
||||
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
|
||||
|
||||
x = self.projects[i](x)
|
||||
x = self.resize_layers[i](x)
|
||||
|
||||
out.append(x)
|
||||
|
||||
layer_1, layer_2, layer_3, layer_4 = out
|
||||
|
||||
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
||||
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
||||
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
||||
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
||||
|
||||
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
|
||||
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
|
||||
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
|
||||
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
||||
|
||||
out = self.scratch.output_conv1(path_1)
|
||||
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
|
||||
out = self.scratch.output_conv2(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class DPT_DINOv2(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
features,
|
||||
out_channels,
|
||||
encoder="vitl",
|
||||
use_bn=False,
|
||||
use_clstoken=False,
|
||||
):
|
||||
super(DPT_DINOv2, self).__init__()
|
||||
|
||||
assert encoder in ["vits", "vitb", "vitl"]
|
||||
|
||||
# # in case the Internet connection is not stable, please load the DINOv2 locally
|
||||
# if use_local:
|
||||
# self.pretrained = torch.hub.load(
|
||||
# torchhub_path / "facebookresearch_dinov2_main",
|
||||
# "dinov2_{:}14".format(encoder),
|
||||
# source="local",
|
||||
# pretrained=False,
|
||||
# )
|
||||
# else:
|
||||
# self.pretrained = torch.hub.load(
|
||||
# "facebookresearch/dinov2",
|
||||
# "dinov2_{:}14".format(encoder),
|
||||
# )
|
||||
|
||||
self.pretrained = torch.hub.load(
|
||||
"facebookresearch/dinov2",
|
||||
"dinov2_{:}14".format(encoder),
|
||||
)
|
||||
|
||||
dim = self.pretrained.blocks[0].attn.qkv.in_features
|
||||
|
||||
self.depth_head = DPTHead(1, dim, features, out_channels=out_channels, use_bn=use_bn, use_clstoken=use_clstoken)
|
||||
|
||||
def forward(self, x):
|
||||
h, w = x.shape[-2:]
|
||||
|
||||
features = self.pretrained.get_intermediate_layers(x, 4, return_class_token=True)
|
||||
|
||||
patch_h, patch_w = h // 14, w // 14
|
||||
|
||||
depth = self.depth_head(features, patch_h, patch_w)
|
||||
depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True)
|
||||
depth = F.relu(depth)
|
||||
|
||||
return depth.squeeze(1)
|
||||
227
invokeai/backend/image_util/depth_anything/utilities/util.py
Normal file
@@ -0,0 +1,227 @@
|
||||
import math
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
||||
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
||||
|
||||
Args:
|
||||
sample (dict): sample
|
||||
size (tuple): image size
|
||||
|
||||
Returns:
|
||||
tuple: new size
|
||||
"""
|
||||
shape = list(sample["disparity"].shape)
|
||||
|
||||
if shape[0] >= size[0] and shape[1] >= size[1]:
|
||||
return sample
|
||||
|
||||
scale = [0, 0]
|
||||
scale[0] = size[0] / shape[0]
|
||||
scale[1] = size[1] / shape[1]
|
||||
|
||||
scale = max(scale)
|
||||
|
||||
shape[0] = math.ceil(scale * shape[0])
|
||||
shape[1] = math.ceil(scale * shape[1])
|
||||
|
||||
# resize
|
||||
sample["image"] = cv2.resize(sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method)
|
||||
|
||||
sample["disparity"] = cv2.resize(sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST)
|
||||
sample["mask"] = cv2.resize(
|
||||
sample["mask"].astype(np.float32),
|
||||
tuple(shape[::-1]),
|
||||
interpolation=cv2.INTER_NEAREST,
|
||||
)
|
||||
sample["mask"] = sample["mask"].astype(bool)
|
||||
|
||||
return tuple(shape)
|
||||
|
||||
|
||||
class Resize(object):
|
||||
"""Resize sample to given size (width, height)."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
width,
|
||||
height,
|
||||
resize_target=True,
|
||||
keep_aspect_ratio=False,
|
||||
ensure_multiple_of=1,
|
||||
resize_method="lower_bound",
|
||||
image_interpolation_method=cv2.INTER_AREA,
|
||||
):
|
||||
"""Init.
|
||||
|
||||
Args:
|
||||
width (int): desired output width
|
||||
height (int): desired output height
|
||||
resize_target (bool, optional):
|
||||
True: Resize the full sample (image, mask, target).
|
||||
False: Resize image only.
|
||||
Defaults to True.
|
||||
keep_aspect_ratio (bool, optional):
|
||||
True: Keep the aspect ratio of the input sample.
|
||||
Output sample might not have the given width and height, and
|
||||
resize behaviour depends on the parameter 'resize_method'.
|
||||
Defaults to False.
|
||||
ensure_multiple_of (int, optional):
|
||||
Output width and height is constrained to be multiple of this parameter.
|
||||
Defaults to 1.
|
||||
resize_method (str, optional):
|
||||
"lower_bound": Output will be at least as large as the given size.
|
||||
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller
|
||||
than given size.)
|
||||
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
||||
Defaults to "lower_bound".
|
||||
"""
|
||||
self.__width = width
|
||||
self.__height = height
|
||||
|
||||
self.__resize_target = resize_target
|
||||
self.__keep_aspect_ratio = keep_aspect_ratio
|
||||
self.__multiple_of = ensure_multiple_of
|
||||
self.__resize_method = resize_method
|
||||
self.__image_interpolation_method = image_interpolation_method
|
||||
|
||||
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
||||
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
||||
|
||||
if max_val is not None and y > max_val:
|
||||
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
||||
|
||||
if y < min_val:
|
||||
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
||||
|
||||
return y
|
||||
|
||||
def get_size(self, width, height):
|
||||
# determine new height and width
|
||||
scale_height = self.__height / height
|
||||
scale_width = self.__width / width
|
||||
|
||||
if self.__keep_aspect_ratio:
|
||||
if self.__resize_method == "lower_bound":
|
||||
# scale such that output size is lower bound
|
||||
if scale_width > scale_height:
|
||||
# fit width
|
||||
scale_height = scale_width
|
||||
else:
|
||||
# fit height
|
||||
scale_width = scale_height
|
||||
elif self.__resize_method == "upper_bound":
|
||||
# scale such that output size is upper bound
|
||||
if scale_width < scale_height:
|
||||
# fit width
|
||||
scale_height = scale_width
|
||||
else:
|
||||
# fit height
|
||||
scale_width = scale_height
|
||||
elif self.__resize_method == "minimal":
|
||||
# scale as least as possbile
|
||||
if abs(1 - scale_width) < abs(1 - scale_height):
|
||||
# fit width
|
||||
scale_height = scale_width
|
||||
else:
|
||||
# fit height
|
||||
scale_width = scale_height
|
||||
else:
|
||||
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
||||
|
||||
if self.__resize_method == "lower_bound":
|
||||
new_height = self.constrain_to_multiple_of(scale_height * height, min_val=self.__height)
|
||||
new_width = self.constrain_to_multiple_of(scale_width * width, min_val=self.__width)
|
||||
elif self.__resize_method == "upper_bound":
|
||||
new_height = self.constrain_to_multiple_of(scale_height * height, max_val=self.__height)
|
||||
new_width = self.constrain_to_multiple_of(scale_width * width, max_val=self.__width)
|
||||
elif self.__resize_method == "minimal":
|
||||
new_height = self.constrain_to_multiple_of(scale_height * height)
|
||||
new_width = self.constrain_to_multiple_of(scale_width * width)
|
||||
else:
|
||||
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
||||
|
||||
return (new_width, new_height)
|
||||
|
||||
def __call__(self, sample):
|
||||
width, height = self.get_size(sample["image"].shape[1], sample["image"].shape[0])
|
||||
|
||||
# resize sample
|
||||
sample["image"] = cv2.resize(
|
||||
sample["image"],
|
||||
(width, height),
|
||||
interpolation=self.__image_interpolation_method,
|
||||
)
|
||||
|
||||
if self.__resize_target:
|
||||
if "disparity" in sample:
|
||||
sample["disparity"] = cv2.resize(
|
||||
sample["disparity"],
|
||||
(width, height),
|
||||
interpolation=cv2.INTER_NEAREST,
|
||||
)
|
||||
|
||||
if "depth" in sample:
|
||||
sample["depth"] = cv2.resize(sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST)
|
||||
|
||||
if "semseg_mask" in sample:
|
||||
# sample["semseg_mask"] = cv2.resize(
|
||||
# sample["semseg_mask"], (width, height), interpolation=cv2.INTER_NEAREST
|
||||
# )
|
||||
sample["semseg_mask"] = F.interpolate(
|
||||
torch.from_numpy(sample["semseg_mask"]).float()[None, None, ...], (height, width), mode="nearest"
|
||||
).numpy()[0, 0]
|
||||
|
||||
if "mask" in sample:
|
||||
sample["mask"] = cv2.resize(
|
||||
sample["mask"].astype(np.float32),
|
||||
(width, height),
|
||||
interpolation=cv2.INTER_NEAREST,
|
||||
)
|
||||
# sample["mask"] = sample["mask"].astype(bool)
|
||||
|
||||
# print(sample['image'].shape, sample['depth'].shape)
|
||||
return sample
|
||||
|
||||
|
||||
class NormalizeImage(object):
|
||||
"""Normlize image by given mean and std."""
|
||||
|
||||
def __init__(self, mean, std):
|
||||
self.__mean = mean
|
||||
self.__std = std
|
||||
|
||||
def __call__(self, sample):
|
||||
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
||||
|
||||
return sample
|
||||
|
||||
|
||||
class PrepareForNet(object):
|
||||
"""Prepare sample for usage as network input."""
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def __call__(self, sample):
|
||||
image = np.transpose(sample["image"], (2, 0, 1))
|
||||
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
||||
|
||||
if "mask" in sample:
|
||||
sample["mask"] = sample["mask"].astype(np.float32)
|
||||
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
||||
|
||||
if "depth" in sample:
|
||||
depth = sample["depth"].astype(np.float32)
|
||||
sample["depth"] = np.ascontiguousarray(depth)
|
||||
|
||||
if "semseg_mask" in sample:
|
||||
sample["semseg_mask"] = sample["semseg_mask"].astype(np.float32)
|
||||
sample["semseg_mask"] = np.ascontiguousarray(sample["semseg_mask"])
|
||||
|
||||
return sample
|
||||
129
invokeai/backend/load_flux_model.py
Normal file
@@ -0,0 +1,129 @@
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
from diffusers.models.model_loading_utils import load_state_dict
|
||||
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
||||
from diffusers.utils import (
|
||||
CONFIG_NAME,
|
||||
SAFE_WEIGHTS_INDEX_NAME,
|
||||
SAFETENSORS_WEIGHTS_NAME,
|
||||
_get_checkpoint_shard_files,
|
||||
is_accelerate_available,
|
||||
)
|
||||
from optimum.quanto import qfloat8
|
||||
from optimum.quanto.models import QuantizedDiffusersModel
|
||||
from optimum.quanto.models.shared_dict import ShardedStateDict
|
||||
|
||||
from invokeai.backend.requantize import requantize
|
||||
|
||||
|
||||
class QuantizedFluxTransformer2DModel(QuantizedDiffusersModel):
|
||||
base_class = FluxTransformer2DModel
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, model_name_or_path: Union[str, os.PathLike]):
|
||||
if cls.base_class is None:
|
||||
raise ValueError("The `base_class` attribute needs to be configured.")
|
||||
|
||||
if not is_accelerate_available():
|
||||
raise ValueError("Reloading a quantized diffusers model requires the accelerate library.")
|
||||
from accelerate import init_empty_weights
|
||||
|
||||
if os.path.isdir(model_name_or_path):
|
||||
# Look for a quantization map
|
||||
qmap_path = os.path.join(model_name_or_path, cls._qmap_name())
|
||||
if not os.path.exists(qmap_path):
|
||||
raise ValueError(f"No quantization map found in {model_name_or_path}: is this a quantized model ?")
|
||||
|
||||
# Look for original model config file.
|
||||
model_config_path = os.path.join(model_name_or_path, CONFIG_NAME)
|
||||
if not os.path.exists(model_config_path):
|
||||
raise ValueError(f"{CONFIG_NAME} not found in {model_name_or_path}.")
|
||||
|
||||
with open(qmap_path, "r", encoding="utf-8") as f:
|
||||
qmap = json.load(f)
|
||||
|
||||
with open(model_config_path, "r", encoding="utf-8") as f:
|
||||
original_model_cls_name = json.load(f)["_class_name"]
|
||||
configured_cls_name = cls.base_class.__name__
|
||||
if configured_cls_name != original_model_cls_name:
|
||||
raise ValueError(
|
||||
f"Configured base class ({configured_cls_name}) differs from what was derived from the provided configuration ({original_model_cls_name})."
|
||||
)
|
||||
|
||||
# Create an empty model
|
||||
config = cls.base_class.load_config(model_name_or_path)
|
||||
with init_empty_weights():
|
||||
model = cls.base_class.from_config(config)
|
||||
|
||||
# Look for the index of a sharded checkpoint
|
||||
checkpoint_file = os.path.join(model_name_or_path, SAFE_WEIGHTS_INDEX_NAME)
|
||||
if os.path.exists(checkpoint_file):
|
||||
# Convert the checkpoint path to a list of shards
|
||||
_, sharded_metadata = _get_checkpoint_shard_files(model_name_or_path, checkpoint_file)
|
||||
# Create a mapping for the sharded safetensor files
|
||||
state_dict = ShardedStateDict(model_name_or_path, sharded_metadata["weight_map"])
|
||||
else:
|
||||
# Look for a single checkpoint file
|
||||
checkpoint_file = os.path.join(model_name_or_path, SAFETENSORS_WEIGHTS_NAME)
|
||||
if not os.path.exists(checkpoint_file):
|
||||
raise ValueError(f"No safetensor weights found in {model_name_or_path}.")
|
||||
# Get state_dict from model checkpoint
|
||||
state_dict = load_state_dict(checkpoint_file)
|
||||
|
||||
# Requantize and load quantized weights from state_dict
|
||||
requantize(model, state_dict=state_dict, quantization_map=qmap)
|
||||
model.eval()
|
||||
return cls(model)
|
||||
else:
|
||||
raise NotImplementedError("Reloading quantized models directly from the hub is not supported yet.")
|
||||
|
||||
|
||||
def load_flux_transformer(path: Path) -> FluxTransformer2DModel:
|
||||
# model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True, torch_dtype=torch.bfloat16)
|
||||
model_8bit_path = path / "quantized"
|
||||
if model_8bit_path.exists():
|
||||
# The quantized model exists, load it.
|
||||
# TODO(ryand): The requantize(...) operation in from_pretrained(...) is very slow. This seems like
|
||||
# something that we should be able to make much faster.
|
||||
q_model = QuantizedFluxTransformer2DModel.from_pretrained(model_8bit_path)
|
||||
|
||||
# Access the underlying wrapped model.
|
||||
# We access the wrapped model, even though it is private, because it simplifies the type checking by
|
||||
# always returning a FluxTransformer2DModel from this function.
|
||||
model = q_model._wrapped
|
||||
else:
|
||||
# The quantized model does not exist yet, quantize and save it.
|
||||
# TODO(ryand): Loading in float16 and then quantizing seems to result in NaNs. In order to run this on
|
||||
# GPUs that don't support bfloat16, we would need to host the quantized model instead of generating it
|
||||
# here.
|
||||
model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True, torch_dtype=torch.bfloat16)
|
||||
assert isinstance(model, FluxTransformer2DModel)
|
||||
|
||||
q_model = QuantizedFluxTransformer2DModel.quantize(model, weights=qfloat8)
|
||||
|
||||
model_8bit_path.mkdir(parents=True, exist_ok=True)
|
||||
q_model.save_pretrained(model_8bit_path)
|
||||
|
||||
# (See earlier comment about accessing the wrapped model.)
|
||||
model = q_model._wrapped
|
||||
|
||||
assert isinstance(model, FluxTransformer2DModel)
|
||||
return model
|
||||
|
||||
|
||||
def main():
|
||||
start = time.time()
|
||||
model = load_flux_transformer(
|
||||
Path("/data/invokeai/models/.download_cache/black-forest-labs_flux.1-schnell/FLUX.1-schnell/transformer/")
|
||||
)
|
||||
print(f"Time to load: {time.time() - start}s")
|
||||
print("hi")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
124
invokeai/backend/load_flux_model_bnb_llm_int8_old.py
Normal file
@@ -0,0 +1,124 @@
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import accelerate
|
||||
import torch
|
||||
from accelerate.utils import BnbQuantizationConfig, load_and_quantize_model
|
||||
from accelerate.utils.bnb import get_keys_to_not_convert
|
||||
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from invokeai.backend.bnb import quantize_model_llm_int8
|
||||
|
||||
# Docs:
|
||||
# https://huggingface.co/docs/accelerate/usage_guides/quantization
|
||||
# https://huggingface.co/docs/bitsandbytes/v0.43.3/en/integrations#accelerate
|
||||
|
||||
|
||||
def get_parameter_device(parameter: torch.nn.Module):
|
||||
return next(parameter.parameters()).device
|
||||
|
||||
|
||||
# def quantize_model_llm_int8(model: torch.nn.Module, modules_to_not_convert: set[str], llm_int8_threshold: int = 6):
|
||||
# """Apply bitsandbytes LLM.8bit() quantization to the model."""
|
||||
# model_device = get_parameter_device(model)
|
||||
# if model_device.type != "meta":
|
||||
# # Note: This is not strictly required, but I can't think of a good reason to quantize a model that's not on the
|
||||
# # meta device, so we enforce it for now.
|
||||
# raise RuntimeError("The model should be on the meta device to apply LLM.8bit() quantization.")
|
||||
|
||||
# bnb_quantization_config = BnbQuantizationConfig(
|
||||
# load_in_8bit=True,
|
||||
# llm_int8_threshold=llm_int8_threshold,
|
||||
# )
|
||||
|
||||
# with accelerate.init_empty_weights():
|
||||
# model = replace_with_bnb_layers(model, bnb_quantization_config, modules_to_not_convert=modules_to_not_convert)
|
||||
|
||||
# return model
|
||||
|
||||
|
||||
def load_flux_transformer(path: Path) -> FluxTransformer2DModel:
|
||||
model_config = FluxTransformer2DModel.load_config(path, local_files_only=True)
|
||||
with accelerate.init_empty_weights():
|
||||
empty_model = FluxTransformer2DModel.from_config(model_config)
|
||||
assert isinstance(empty_model, FluxTransformer2DModel)
|
||||
|
||||
bnb_quantization_config = BnbQuantizationConfig(
|
||||
load_in_8bit=True,
|
||||
llm_int8_threshold=6,
|
||||
)
|
||||
|
||||
model_8bit_path = path / "bnb_llm_int8"
|
||||
if model_8bit_path.exists():
|
||||
# The quantized model already exists, load it and return it.
|
||||
# Note that the model loading code is the same when loading from quantized vs original weights. The only
|
||||
# difference is the weights_location.
|
||||
# model = load_and_quantize_model(
|
||||
# empty_model,
|
||||
# weights_location=model_8bit_path,
|
||||
# bnb_quantization_config=bnb_quantization_config,
|
||||
# # device_map="auto",
|
||||
# device_map={"": "cpu"},
|
||||
# )
|
||||
|
||||
# TODO: Handle the keys that were not quantized (get_keys_to_not_convert).
|
||||
model = quantize_model_llm_int8(empty_model, modules_to_not_convert=set())
|
||||
|
||||
# model = quantize_model_llm_int8(empty_model, set())
|
||||
|
||||
# Load sharded state dict.
|
||||
files = list(path.glob("*.safetensors"))
|
||||
state_dict = dict()
|
||||
for file in files:
|
||||
sd = load_file(file)
|
||||
state_dict.update(sd)
|
||||
|
||||
else:
|
||||
# The quantized model does not exist yet, quantize and save it.
|
||||
model = load_and_quantize_model(
|
||||
empty_model,
|
||||
weights_location=path,
|
||||
bnb_quantization_config=bnb_quantization_config,
|
||||
device_map="auto",
|
||||
)
|
||||
|
||||
keys_to_not_convert = get_keys_to_not_convert(empty_model) # TODO
|
||||
|
||||
model_8bit_path.mkdir(parents=True, exist_ok=True)
|
||||
accl = accelerate.Accelerator()
|
||||
accl.save_model(model, model_8bit_path)
|
||||
|
||||
# ---------------------
|
||||
|
||||
# model = quantize_model_llm_int8(empty_model, set())
|
||||
|
||||
# # Load sharded state dict.
|
||||
# files = list(path.glob("*.safetensors"))
|
||||
# state_dict = dict()
|
||||
# for file in files:
|
||||
# sd = load_file(file)
|
||||
# state_dict.update(sd)
|
||||
|
||||
# # Load the state dict into the model. The bitsandbytes layers know how to load from both quantized and
|
||||
# # non-quantized state dicts.
|
||||
# result = model.load_state_dict(state_dict, strict=True)
|
||||
# model = model.to("cuda")
|
||||
|
||||
# ---------------------
|
||||
|
||||
assert isinstance(model, FluxTransformer2DModel)
|
||||
return model
|
||||
|
||||
|
||||
def main():
|
||||
start = time.time()
|
||||
model = load_flux_transformer(
|
||||
Path("/data/invokeai/models/.download_cache/black-forest-labs_flux.1-schnell/FLUX.1-schnell/transformer/")
|
||||
)
|
||||
print(f"Time to load: {time.time() - start}s")
|
||||
print("hi")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -220,17 +220,11 @@ class LoKRLayer(LoRALayerBase):
|
||||
if self.w1 is None:
|
||||
self.w1_a = values["lokr_w1_a"]
|
||||
self.w1_b = values["lokr_w1_b"]
|
||||
else:
|
||||
self.w1_b = None
|
||||
self.w1_a = None
|
||||
|
||||
self.w2 = values.get("lokr_w2", None)
|
||||
if self.w2 is None:
|
||||
self.w2_a = values["lokr_w2_a"]
|
||||
self.w2_b = values["lokr_w2_b"]
|
||||
else:
|
||||
self.w2_a = None
|
||||
self.w2_b = None
|
||||
|
||||
self.t2 = values.get("lokr_t2", None)
|
||||
|
||||
@@ -378,39 +372,7 @@ class IA3Layer(LoRALayerBase):
|
||||
self.on_input = self.on_input.to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
class NormLayer(LoRALayerBase):
|
||||
# bias handled in LoRALayerBase(calc_size, to)
|
||||
# weight: torch.Tensor
|
||||
# bias: Optional[torch.Tensor]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.weight = values["w_norm"]
|
||||
self.bias = values.get("b_norm", None)
|
||||
|
||||
self.rank = None # unscaled
|
||||
self.check_keys(values, {"w_norm", "b_norm"})
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
return self.weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
model_size += self.weight.nelement() * self.weight.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer]
|
||||
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
|
||||
|
||||
|
||||
class LoRAModelRaw(RawModel): # (torch.nn.Module):
|
||||
@@ -551,10 +513,6 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
|
||||
elif "on_input" in values:
|
||||
layer = IA3Layer(layer_key, values)
|
||||
|
||||
# norms
|
||||
elif "w_norm" in values:
|
||||
layer = NormLayer(layer_key, values)
|
||||
|
||||
else:
|
||||
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key} - {list(values.keys())}")
|
||||
raise Exception("Unknown lora format!")
|
||||
|
||||
@@ -11,7 +11,6 @@ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
||||
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
||||
from transformers import CLIPTokenizer
|
||||
|
||||
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
|
||||
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
|
||||
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
|
||||
@@ -46,7 +45,6 @@ def calc_model_size_by_data(logger: logging.Logger, model: AnyModel) -> int:
|
||||
SpandrelImageToImageModel,
|
||||
GroundingDinoPipeline,
|
||||
SegmentAnythingPipeline,
|
||||
DepthAnythingPipeline,
|
||||
),
|
||||
):
|
||||
return model.calc_size()
|
||||
|
||||
@@ -54,6 +54,7 @@ def filter_files(
|
||||
"lora_weights.safetensors",
|
||||
"weights.pb",
|
||||
"onnx_data",
|
||||
"spiece.model", # Added for `black-forest-labs/FLUX.1-schnell`.
|
||||
)
|
||||
):
|
||||
paths.append(file)
|
||||
@@ -62,7 +63,7 @@ def filter_files(
|
||||
# downloading random checkpoints that might also be in the repo. However there is no guarantee
|
||||
# that a checkpoint doesn't contain "model" in its name, and no guarantee that future diffusers models
|
||||
# will adhere to this naming convention, so this is an area to be careful of.
|
||||
elif re.search(r"model(\.[^.]+)?\.(safetensors|bin|onnx|xml|pth|pt|ckpt|msgpack)$", file.name):
|
||||
elif re.search(r"model.*\.(safetensors|bin|onnx|xml|pth|pt|ckpt|msgpack)$", file.name):
|
||||
paths.append(file)
|
||||
|
||||
# limit search to subfolder if requested
|
||||
@@ -97,7 +98,9 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
|
||||
if variant == ModelRepoVariant.Flax:
|
||||
result.add(path)
|
||||
|
||||
elif path.suffix in [".json", ".txt"]:
|
||||
# Note: '.model' was added to support:
|
||||
# https://huggingface.co/black-forest-labs/FLUX.1-schnell/blob/768d12a373ed5cc9ef9a9dea7504dc09fcc14842/tokenizer_2/spiece.model
|
||||
elif path.suffix in [".json", ".txt", ".model"]:
|
||||
result.add(path)
|
||||
|
||||
elif variant in [
|
||||
@@ -140,6 +143,23 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
|
||||
continue
|
||||
|
||||
for candidate_list in subfolder_weights.values():
|
||||
# Check if at least one of the files has the explicit fp16 variant.
|
||||
at_least_one_fp16 = False
|
||||
for candidate in candidate_list:
|
||||
if len(candidate.path.suffixes) == 2 and candidate.path.suffixes[0] == ".fp16":
|
||||
at_least_one_fp16 = True
|
||||
break
|
||||
|
||||
if not at_least_one_fp16:
|
||||
# If none of the candidates in this candidate_list have the explicit fp16 variant label, then this
|
||||
# candidate_list probably doesn't adhere to the variant naming convention that we expected. In this case,
|
||||
# we'll simply keep all the candidates. An example of a model that hits this case is
|
||||
# `black-forest-labs/FLUX.1-schnell` (as of commit 012d2fd).
|
||||
for candidate in candidate_list:
|
||||
result.add(candidate.path)
|
||||
|
||||
# The candidate_list seems to have the expected variant naming convention. We'll select the highest scoring
|
||||
# candidate.
|
||||
highest_score_candidate = max(candidate_list, key=lambda candidate: candidate.score)
|
||||
if highest_score_candidate:
|
||||
result.add(highest_score_candidate.path)
|
||||
|
||||
125
invokeai/backend/quantization/bnb_llm_int8.py
Normal file
@@ -0,0 +1,125 @@
|
||||
import bitsandbytes as bnb
|
||||
import torch
|
||||
|
||||
# This file contains utils for working with models that use bitsandbytes LLM.int8() quantization.
|
||||
# The utils in this file are partially inspired by:
|
||||
# https://github.com/Lightning-AI/pytorch-lightning/blob/1551a16b94f5234a4a78801098f64d0732ef5cb5/src/lightning/fabric/plugins/precision/bitsandbytes.py
|
||||
|
||||
|
||||
# NOTE(ryand): All of the custom state_dict manipulation logic in this file is pretty hacky. This could be made much
|
||||
# cleaner by re-implementing bnb.nn.Linear8bitLt with proper use of buffers and less magic. But, for now, we try to
|
||||
# stick close to the bitsandbytes classes to make interoperability easier with other models that might use bitsandbytes.
|
||||
|
||||
|
||||
class InvokeInt8Params(bnb.nn.Int8Params):
|
||||
"""We override cuda() to avoid re-quantizing the weights in the following cases:
|
||||
- We loaded quantized weights from a state_dict on the cpu, and then moved the model to the gpu.
|
||||
- We are moving the model back-and-forth between the cpu and gpu.
|
||||
"""
|
||||
|
||||
def cuda(self, device):
|
||||
if self.has_fp16_weights:
|
||||
return super().cuda(device)
|
||||
elif self.CB is not None and self.SCB is not None:
|
||||
self.data = self.data.cuda()
|
||||
self.CB = self.CB.cuda()
|
||||
self.SCB = self.SCB.cuda()
|
||||
else:
|
||||
# we store the 8-bit rows-major weight
|
||||
# we convert this weight to the turning/ampere weight during the first inference pass
|
||||
B = self.data.contiguous().half().cuda(device)
|
||||
CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B)
|
||||
del CBt
|
||||
del SCBt
|
||||
self.data = CB
|
||||
self.CB = CB
|
||||
self.SCB = SCB
|
||||
|
||||
return self
|
||||
|
||||
|
||||
class InvokeLinear8bitLt(bnb.nn.Linear8bitLt):
|
||||
def _load_from_state_dict(
|
||||
self,
|
||||
state_dict: dict[str, torch.Tensor],
|
||||
prefix: str,
|
||||
local_metadata,
|
||||
strict,
|
||||
missing_keys,
|
||||
unexpected_keys,
|
||||
error_msgs,
|
||||
):
|
||||
weight = state_dict.pop(prefix + "weight")
|
||||
bias = state_dict.pop(prefix + "bias", None)
|
||||
|
||||
# See `bnb.nn.Linear8bitLt._save_to_state_dict()` for the serialization logic of SCB and weight_format.
|
||||
scb = state_dict.pop(prefix + "SCB", None)
|
||||
# weight_format is unused, but we pop it so we can validate that there are no unexpected keys.
|
||||
_weight_format = state_dict.pop(prefix + "weight_format", None)
|
||||
|
||||
# TODO(ryand): Technically, we should be using `strict`, `missing_keys`, `unexpected_keys`, and `error_msgs`
|
||||
# rather than raising an exception to correctly implement this API.
|
||||
assert len(state_dict) == 0
|
||||
|
||||
if scb is not None:
|
||||
# We are loading a pre-quantized state dict.
|
||||
self.weight = InvokeInt8Params(
|
||||
data=weight,
|
||||
requires_grad=self.weight.requires_grad,
|
||||
has_fp16_weights=False,
|
||||
# Note: After quantization, CB is the same as weight.
|
||||
CB=weight,
|
||||
SCB=scb,
|
||||
)
|
||||
self.bias = bias if bias is None else torch.nn.Parameter(bias)
|
||||
else:
|
||||
# We are loading a non-quantized state dict.
|
||||
|
||||
# We could simply call the `super()._load_from_state_dict()` method here, but then we wouldn't be able to
|
||||
# load from a state_dict into a model on the "meta" device. Attempting to load into a model on the "meta"
|
||||
# device requires setting `assign=True`, doing this with the default `super()._load_from_state_dict()`
|
||||
# implementation causes `Params4Bit` to be replaced by a `torch.nn.Parameter`. By initializing a new
|
||||
# `Params4bit` object, we work around this issue. It's a bit hacky, but it gets the job done.
|
||||
self.weight = InvokeInt8Params(
|
||||
data=weight,
|
||||
requires_grad=self.weight.requires_grad,
|
||||
has_fp16_weights=False,
|
||||
CB=None,
|
||||
SCB=None,
|
||||
)
|
||||
self.bias = bias if bias is None else torch.nn.Parameter(bias)
|
||||
|
||||
|
||||
def _convert_linear_layers_to_llm_8bit(
|
||||
module: torch.nn.Module, ignore_modules: set[str], outlier_threshold: float, prefix: str = ""
|
||||
) -> None:
|
||||
"""Convert all linear layers in the module to bnb.nn.Linear8bitLt layers."""
|
||||
for name, child in module.named_children():
|
||||
fullname = f"{prefix}.{name}" if prefix else name
|
||||
if isinstance(child, torch.nn.Linear) and not any(fullname.startswith(s) for s in ignore_modules):
|
||||
has_bias = child.bias is not None
|
||||
replacement = InvokeLinear8bitLt(
|
||||
child.in_features,
|
||||
child.out_features,
|
||||
bias=has_bias,
|
||||
has_fp16_weights=False,
|
||||
threshold=outlier_threshold,
|
||||
)
|
||||
replacement.weight.data = child.weight.data
|
||||
if has_bias:
|
||||
replacement.bias.data = child.bias.data
|
||||
replacement.requires_grad_(False)
|
||||
module.__setattr__(name, replacement)
|
||||
else:
|
||||
_convert_linear_layers_to_llm_8bit(
|
||||
child, ignore_modules, outlier_threshold=outlier_threshold, prefix=fullname
|
||||
)
|
||||
|
||||
|
||||
def quantize_model_llm_int8(model: torch.nn.Module, modules_to_not_convert: set[str], outlier_threshold: float = 6.0):
|
||||
"""Apply bitsandbytes LLM.8bit() quantization to the model."""
|
||||
_convert_linear_layers_to_llm_8bit(
|
||||
module=model, ignore_modules=modules_to_not_convert, outlier_threshold=outlier_threshold
|
||||
)
|
||||
|
||||
return model
|
||||
156
invokeai/backend/quantization/bnb_nf4.py
Normal file
@@ -0,0 +1,156 @@
|
||||
import bitsandbytes as bnb
|
||||
import torch
|
||||
|
||||
# This file contains utils for working with models that use bitsandbytes NF4 quantization.
|
||||
# The utils in this file are partially inspired by:
|
||||
# https://github.com/Lightning-AI/pytorch-lightning/blob/1551a16b94f5234a4a78801098f64d0732ef5cb5/src/lightning/fabric/plugins/precision/bitsandbytes.py
|
||||
|
||||
# NOTE(ryand): All of the custom state_dict manipulation logic in this file is pretty hacky. This could be made much
|
||||
# cleaner by re-implementing bnb.nn.LinearNF4 with proper use of buffers and less magic. But, for now, we try to stick
|
||||
# close to the bitsandbytes classes to make interoperability easier with other models that might use bitsandbytes.
|
||||
|
||||
|
||||
class InvokeLinearNF4(bnb.nn.LinearNF4):
|
||||
"""A class that extends `bnb.nn.LinearNF4` to add the following functionality:
|
||||
- Ability to load Linear NF4 layers from a pre-quantized state_dict.
|
||||
- Ability to load Linear NF4 layers from a state_dict when the model is on the "meta" device.
|
||||
"""
|
||||
|
||||
def _load_from_state_dict(
|
||||
self,
|
||||
state_dict: dict[str, torch.Tensor],
|
||||
prefix: str,
|
||||
local_metadata,
|
||||
strict,
|
||||
missing_keys,
|
||||
unexpected_keys,
|
||||
error_msgs,
|
||||
):
|
||||
"""This method is based on the logic in the bitsandbytes serialization unit tests for `Linear4bit`:
|
||||
https://github.com/bitsandbytes-foundation/bitsandbytes/blob/6d714a5cce3db5bd7f577bc447becc7a92d5ccc7/tests/test_linear4bit.py#L52-L71
|
||||
"""
|
||||
weight = state_dict.pop(prefix + "weight")
|
||||
bias = state_dict.pop(prefix + "bias", None)
|
||||
# We expect the remaining keys to be quant_state keys.
|
||||
quant_state_sd = state_dict
|
||||
|
||||
# During serialization, the quant_state is stored as subkeys of "weight." (See
|
||||
# `bnb.nn.LinearNF4._save_to_state_dict()`). We validate that they at least have the correct prefix.
|
||||
# TODO(ryand): Technically, we should be using `strict`, `missing_keys`, `unexpected_keys`, and `error_msgs`
|
||||
# rather than raising an exception to correctly implement this API.
|
||||
assert all(k.startswith(prefix + "weight.") for k in quant_state_sd.keys())
|
||||
|
||||
if len(quant_state_sd) > 0:
|
||||
# We are loading a pre-quantized state dict.
|
||||
self.weight = bnb.nn.Params4bit.from_prequantized(
|
||||
data=weight, quantized_stats=quant_state_sd, device=weight.device
|
||||
)
|
||||
self.bias = bias if bias is None else torch.nn.Parameter(bias, requires_grad=False)
|
||||
else:
|
||||
# We are loading a non-quantized state dict.
|
||||
|
||||
# We could simply call the `super()._load_from_state_dict()` method here, but then we wouldn't be able to
|
||||
# load from a state_dict into a model on the "meta" device. Attempting to load into a model on the "meta"
|
||||
# device requires setting `assign=True`, doing this with the default `super()._load_from_state_dict()`
|
||||
# implementation causes `Params4Bit` to be replaced by a `torch.nn.Parameter`. By initializing a new
|
||||
# `Params4bit` object, we work around this issue. It's a bit hacky, but it gets the job done.
|
||||
self.weight = bnb.nn.Params4bit(
|
||||
data=weight,
|
||||
requires_grad=self.weight.requires_grad,
|
||||
compress_statistics=self.weight.compress_statistics,
|
||||
quant_type=self.weight.quant_type,
|
||||
quant_storage=self.weight.quant_storage,
|
||||
module=self,
|
||||
)
|
||||
self.bias = bias if bias is None else torch.nn.Parameter(bias)
|
||||
|
||||
|
||||
def _replace_param(
|
||||
param: torch.nn.Parameter | bnb.nn.Params4bit,
|
||||
data: torch.Tensor,
|
||||
) -> torch.nn.Parameter:
|
||||
"""A helper function to replace the data of a model parameter with new data in a way that allows replacing params on
|
||||
the "meta" device.
|
||||
|
||||
Supports both `torch.nn.Parameter` and `bnb.nn.Params4bit` parameters.
|
||||
"""
|
||||
if param.device.type == "meta":
|
||||
# Doing `param.data = data` raises a RuntimeError if param.data was on the "meta" device, so we need to
|
||||
# re-create the param instead of overwriting the data.
|
||||
if isinstance(param, bnb.nn.Params4bit):
|
||||
return bnb.nn.Params4bit(
|
||||
data,
|
||||
requires_grad=data.requires_grad,
|
||||
quant_state=param.quant_state,
|
||||
compress_statistics=param.compress_statistics,
|
||||
quant_type=param.quant_type,
|
||||
)
|
||||
return torch.nn.Parameter(data, requires_grad=data.requires_grad)
|
||||
|
||||
param.data = data
|
||||
return param
|
||||
|
||||
|
||||
def _convert_linear_layers_to_nf4(
|
||||
module: torch.nn.Module,
|
||||
ignore_modules: set[str],
|
||||
compute_dtype: torch.dtype,
|
||||
compress_statistics: bool = False,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
"""Convert all linear layers in the model to NF4 quantized linear layers.
|
||||
|
||||
Args:
|
||||
module: All linear layers in this module will be converted.
|
||||
ignore_modules: A set of module prefixes to ignore when converting linear layers.
|
||||
compute_dtype: The dtype to use for computation in the quantized linear layers.
|
||||
compress_statistics: Whether to enable nested quantization (aka double quantization) where the quantization
|
||||
constants from the first quantization are quantized again.
|
||||
prefix: The prefix of the current module in the model. Used to call this function recursively.
|
||||
"""
|
||||
for name, child in module.named_children():
|
||||
fullname = f"{prefix}.{name}" if prefix else name
|
||||
if isinstance(child, torch.nn.Linear) and not any(fullname.startswith(s) for s in ignore_modules):
|
||||
has_bias = child.bias is not None
|
||||
replacement = InvokeLinearNF4(
|
||||
child.in_features,
|
||||
child.out_features,
|
||||
bias=has_bias,
|
||||
compute_dtype=torch.float16,
|
||||
compress_statistics=compress_statistics,
|
||||
)
|
||||
if has_bias:
|
||||
replacement.bias = _replace_param(replacement.bias, child.bias.data)
|
||||
replacement.weight = _replace_param(replacement.weight, child.weight.data)
|
||||
replacement.requires_grad_(False)
|
||||
module.__setattr__(name, replacement)
|
||||
else:
|
||||
_convert_linear_layers_to_nf4(child, ignore_modules, compute_dtype=compute_dtype, prefix=fullname)
|
||||
|
||||
|
||||
def quantize_model_nf4(model: torch.nn.Module, modules_to_not_convert: set[str], compute_dtype: torch.dtype):
|
||||
"""Apply bitsandbytes nf4 quantization to the model.
|
||||
|
||||
You likely want to call this function inside a `accelerate.init_empty_weights()` context.
|
||||
|
||||
Example usage:
|
||||
```
|
||||
# Initialize the model from a config on the meta device.
|
||||
with accelerate.init_empty_weights():
|
||||
model = ModelClass.from_config(...)
|
||||
|
||||
# Add NF4 quantization linear layers to the model - still on the meta device.
|
||||
with accelerate.init_empty_weights():
|
||||
model = quantize_model_nf4(model, modules_to_not_convert=set(), compute_dtype=torch.float16)
|
||||
|
||||
# Load a state_dict into the model. (Could be either a prequantized or non-quantized state_dict.)
|
||||
model.load_state_dict(state_dict, strict=True, assign=True)
|
||||
|
||||
# Move the model to the "cuda" device. If the model was non-quantized, this is where the weight quantization takes
|
||||
# place.
|
||||
model.to("cuda")
|
||||
```
|
||||
"""
|
||||
_convert_linear_layers_to_nf4(module=model, ignore_modules=modules_to_not_convert, compute_dtype=compute_dtype)
|
||||
|
||||
return model
|
||||
@@ -0,0 +1,77 @@
|
||||
import json
|
||||
import os
|
||||
from typing import Union
|
||||
|
||||
from diffusers.models.model_loading_utils import load_state_dict
|
||||
from diffusers.utils import (
|
||||
CONFIG_NAME,
|
||||
SAFE_WEIGHTS_INDEX_NAME,
|
||||
SAFETENSORS_WEIGHTS_NAME,
|
||||
_get_checkpoint_shard_files,
|
||||
is_accelerate_available,
|
||||
)
|
||||
from optimum.quanto.models import QuantizedDiffusersModel
|
||||
from optimum.quanto.models.shared_dict import ShardedStateDict
|
||||
|
||||
from invokeai.backend.requantize import requantize
|
||||
|
||||
|
||||
class FastQuantizedDiffusersModel(QuantizedDiffusersModel):
|
||||
@classmethod
|
||||
def from_pretrained(cls, model_name_or_path: Union[str, os.PathLike]):
|
||||
"""We override the `from_pretrained()` method in order to use our custom `requantize()` implementation."""
|
||||
if cls.base_class is None:
|
||||
raise ValueError("The `base_class` attribute needs to be configured.")
|
||||
|
||||
if not is_accelerate_available():
|
||||
raise ValueError("Reloading a quantized diffusers model requires the accelerate library.")
|
||||
from accelerate import init_empty_weights
|
||||
|
||||
if os.path.isdir(model_name_or_path):
|
||||
# Look for a quantization map
|
||||
qmap_path = os.path.join(model_name_or_path, cls._qmap_name())
|
||||
if not os.path.exists(qmap_path):
|
||||
raise ValueError(f"No quantization map found in {model_name_or_path}: is this a quantized model ?")
|
||||
|
||||
# Look for original model config file.
|
||||
model_config_path = os.path.join(model_name_or_path, CONFIG_NAME)
|
||||
if not os.path.exists(model_config_path):
|
||||
raise ValueError(f"{CONFIG_NAME} not found in {model_name_or_path}.")
|
||||
|
||||
with open(qmap_path, "r", encoding="utf-8") as f:
|
||||
qmap = json.load(f)
|
||||
|
||||
with open(model_config_path, "r", encoding="utf-8") as f:
|
||||
original_model_cls_name = json.load(f)["_class_name"]
|
||||
configured_cls_name = cls.base_class.__name__
|
||||
if configured_cls_name != original_model_cls_name:
|
||||
raise ValueError(
|
||||
f"Configured base class ({configured_cls_name}) differs from what was derived from the provided configuration ({original_model_cls_name})."
|
||||
)
|
||||
|
||||
# Create an empty model
|
||||
config = cls.base_class.load_config(model_name_or_path)
|
||||
with init_empty_weights():
|
||||
model = cls.base_class.from_config(config)
|
||||
|
||||
# Look for the index of a sharded checkpoint
|
||||
checkpoint_file = os.path.join(model_name_or_path, SAFE_WEIGHTS_INDEX_NAME)
|
||||
if os.path.exists(checkpoint_file):
|
||||
# Convert the checkpoint path to a list of shards
|
||||
_, sharded_metadata = _get_checkpoint_shard_files(model_name_or_path, checkpoint_file)
|
||||
# Create a mapping for the sharded safetensor files
|
||||
state_dict = ShardedStateDict(model_name_or_path, sharded_metadata["weight_map"])
|
||||
else:
|
||||
# Look for a single checkpoint file
|
||||
checkpoint_file = os.path.join(model_name_or_path, SAFETENSORS_WEIGHTS_NAME)
|
||||
if not os.path.exists(checkpoint_file):
|
||||
raise ValueError(f"No safetensor weights found in {model_name_or_path}.")
|
||||
# Get state_dict from model checkpoint
|
||||
state_dict = load_state_dict(checkpoint_file)
|
||||
|
||||
# Requantize and load quantized weights from state_dict
|
||||
requantize(model, state_dict=state_dict, quantization_map=qmap)
|
||||
model.eval()
|
||||
return cls(model)
|
||||
else:
|
||||
raise NotImplementedError("Reloading quantized models directly from the hub is not supported yet.")
|
||||
@@ -0,0 +1,61 @@
|
||||
import json
|
||||
import os
|
||||
from typing import Union
|
||||
|
||||
from optimum.quanto.models import QuantizedTransformersModel
|
||||
from optimum.quanto.models.shared_dict import ShardedStateDict
|
||||
from transformers import AutoConfig
|
||||
from transformers.modeling_utils import get_checkpoint_shard_files, load_state_dict
|
||||
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, is_accelerate_available
|
||||
|
||||
from invokeai.backend.requantize import requantize
|
||||
|
||||
|
||||
class FastQuantizedTransformersModel(QuantizedTransformersModel):
|
||||
@classmethod
|
||||
def from_pretrained(cls, model_name_or_path: Union[str, os.PathLike]):
|
||||
"""We override the `from_pretrained()` method in order to use our custom `requantize()` implementation."""
|
||||
if cls.auto_class is None:
|
||||
raise ValueError(
|
||||
"Quantized models cannot be reloaded using {cls}: use a specialized quantized class such as QuantizedModelForCausalLM instead."
|
||||
)
|
||||
if not is_accelerate_available():
|
||||
raise ValueError("Reloading a quantized transformers model requires the accelerate library.")
|
||||
from accelerate import init_empty_weights
|
||||
|
||||
if os.path.isdir(model_name_or_path):
|
||||
# Look for a quantization map
|
||||
qmap_path = os.path.join(model_name_or_path, cls._qmap_name())
|
||||
if not os.path.exists(qmap_path):
|
||||
raise ValueError(f"No quantization map found in {model_name_or_path}: is this a quantized model ?")
|
||||
with open(qmap_path, "r", encoding="utf-8") as f:
|
||||
qmap = json.load(f)
|
||||
# Create an empty model
|
||||
config = AutoConfig.from_pretrained(model_name_or_path)
|
||||
with init_empty_weights():
|
||||
model = cls.auto_class.from_config(config)
|
||||
# Look for the index of a sharded checkpoint
|
||||
checkpoint_file = os.path.join(model_name_or_path, SAFE_WEIGHTS_INDEX_NAME)
|
||||
if os.path.exists(checkpoint_file):
|
||||
# Convert the checkpoint path to a list of shards
|
||||
checkpoint_file, sharded_metadata = get_checkpoint_shard_files(model_name_or_path, checkpoint_file)
|
||||
# Create a mapping for the sharded safetensor files
|
||||
state_dict = ShardedStateDict(model_name_or_path, sharded_metadata["weight_map"])
|
||||
else:
|
||||
# Look for a single checkpoint file
|
||||
checkpoint_file = os.path.join(model_name_or_path, SAFE_WEIGHTS_NAME)
|
||||
if not os.path.exists(checkpoint_file):
|
||||
raise ValueError(f"No safetensor weights found in {model_name_or_path}.")
|
||||
# Get state_dict from model checkpoint
|
||||
state_dict = load_state_dict(checkpoint_file)
|
||||
# Requantize and load quantized weights from state_dict
|
||||
requantize(model, state_dict=state_dict, quantization_map=qmap)
|
||||
if getattr(model.config, "tie_word_embeddings", True):
|
||||
# Tie output weight embeddings to input weight embeddings
|
||||
# Note that if they were quantized they would NOT be tied
|
||||
model.tie_weights()
|
||||
# Set model in evaluation mode as it is done in transformers
|
||||
model.eval()
|
||||
return cls(model)
|
||||
else:
|
||||
raise NotImplementedError("Reloading quantized models directly from the hub is not supported yet.")
|
||||
@@ -0,0 +1,89 @@
|
||||
import time
|
||||
from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
|
||||
import accelerate
|
||||
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
||||
from safetensors.torch import load_file, save_file
|
||||
|
||||
from invokeai.backend.quantization.bnb_llm_int8 import quantize_model_llm_int8
|
||||
|
||||
|
||||
@contextmanager
|
||||
def log_time(name: str):
|
||||
"""Helper context manager to log the time taken by a block of code."""
|
||||
start = time.time()
|
||||
try:
|
||||
yield None
|
||||
finally:
|
||||
end = time.time()
|
||||
print(f"'{name}' took {end - start:.4f} secs")
|
||||
|
||||
|
||||
def main():
|
||||
# Load the FLUX transformer model onto the meta device.
|
||||
model_path = Path(
|
||||
"/data/invokeai/models/.download_cache/black-forest-labs_flux.1-schnell/FLUX.1-schnell/transformer/"
|
||||
)
|
||||
|
||||
with log_time("Initialize FLUX transformer on meta device"):
|
||||
model_config = FluxTransformer2DModel.load_config(model_path, local_files_only=True)
|
||||
with accelerate.init_empty_weights():
|
||||
empty_model = FluxTransformer2DModel.from_config(model_config)
|
||||
assert isinstance(empty_model, FluxTransformer2DModel)
|
||||
|
||||
# TODO(ryand): We may want to add some modules to not quantize here (e.g. the proj_out layer). See the accelerate
|
||||
# `get_keys_to_not_convert(...)` function for a heuristic to determine which modules to not quantize.
|
||||
modules_to_not_convert: set[str] = set()
|
||||
|
||||
model_int8_path = model_path / "bnb_llm_int8"
|
||||
if model_int8_path.exists():
|
||||
# The quantized model already exists, load it and return it.
|
||||
print(f"A pre-quantized model already exists at '{model_int8_path}'. Attempting to load it...")
|
||||
|
||||
# Replace the linear layers with LLM.int8() quantized linear layers (still on the meta device).
|
||||
with log_time("Replace linear layers with LLM.int8() layers"), accelerate.init_empty_weights():
|
||||
model = quantize_model_llm_int8(empty_model, modules_to_not_convert=modules_to_not_convert)
|
||||
|
||||
with log_time("Load state dict into model"):
|
||||
sd = load_file(model_int8_path / "model.safetensors")
|
||||
model.load_state_dict(sd, strict=True, assign=True)
|
||||
|
||||
with log_time("Move model to cuda"):
|
||||
model = model.to("cuda")
|
||||
|
||||
print(f"Successfully loaded pre-quantized model from '{model_int8_path}'.")
|
||||
|
||||
else:
|
||||
# The quantized model does not exist, quantize the model and save it.
|
||||
print(f"No pre-quantized model found at '{model_int8_path}'. Quantizing the model...")
|
||||
|
||||
with log_time("Replace linear layers with LLM.int8() layers"), accelerate.init_empty_weights():
|
||||
model = quantize_model_llm_int8(empty_model, modules_to_not_convert=modules_to_not_convert)
|
||||
|
||||
with log_time("Load state dict into model"):
|
||||
# Load sharded state dict.
|
||||
files = list(model_path.glob("*.safetensors"))
|
||||
state_dict = dict()
|
||||
for file in files:
|
||||
sd = load_file(file)
|
||||
state_dict.update(sd)
|
||||
|
||||
model.load_state_dict(state_dict, strict=True, assign=True)
|
||||
|
||||
with log_time("Move model to cuda and quantize"):
|
||||
model = model.to("cuda")
|
||||
|
||||
with log_time("Save quantized model"):
|
||||
model_int8_path.mkdir(parents=True, exist_ok=True)
|
||||
output_path = model_int8_path / "model.safetensors"
|
||||
save_file(model.state_dict(), output_path)
|
||||
|
||||
print(f"Successfully quantized and saved model to '{output_path}'.")
|
||||
|
||||
assert isinstance(model, FluxTransformer2DModel)
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
91
invokeai/backend/quantization/load_flux_model_bnb_nf4.py
Normal file
@@ -0,0 +1,91 @@
|
||||
import time
|
||||
from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
|
||||
import accelerate
|
||||
import torch
|
||||
from flux.model import Flux
|
||||
from flux.util import configs as flux_configs
|
||||
from safetensors.torch import load_file, save_file
|
||||
|
||||
from invokeai.backend.quantization.bnb_nf4 import quantize_model_nf4
|
||||
|
||||
|
||||
@contextmanager
|
||||
def log_time(name: str):
|
||||
"""Helper context manager to log the time taken by a block of code."""
|
||||
start = time.time()
|
||||
try:
|
||||
yield None
|
||||
finally:
|
||||
end = time.time()
|
||||
print(f"'{name}' took {end - start:.4f} secs")
|
||||
|
||||
|
||||
def main():
|
||||
model_path = Path(
|
||||
"/data/invokeai/models/.download_cache/https__huggingface.co_black-forest-labs_flux.1-schnell_resolve_main_flux1-schnell.safetensors/flux1-schnell.safetensors"
|
||||
)
|
||||
|
||||
# inference_dtype = torch.bfloat16
|
||||
with log_time("Intialize FLUX transformer on meta device"):
|
||||
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
|
||||
params = flux_configs["flux-schnell"].params
|
||||
|
||||
# Initialize the model on the "meta" device.
|
||||
with accelerate.init_empty_weights():
|
||||
model = Flux(params)
|
||||
|
||||
# TODO(ryand): We may want to add some modules to not quantize here (e.g. the proj_out layer). See the accelerate
|
||||
# `get_keys_to_not_convert(...)` function for a heuristic to determine which modules to not quantize.
|
||||
modules_to_not_convert: set[str] = set()
|
||||
|
||||
model_nf4_path = model_path.parent / "bnb_nf4.safetensors"
|
||||
if model_nf4_path.exists():
|
||||
# The quantized model already exists, load it and return it.
|
||||
print(f"A pre-quantized model already exists at '{model_nf4_path}'. Attempting to load it...")
|
||||
|
||||
# Replace the linear layers with NF4 quantized linear layers (still on the meta device).
|
||||
with log_time("Replace linear layers with NF4 layers"), accelerate.init_empty_weights():
|
||||
model = quantize_model_nf4(
|
||||
model, modules_to_not_convert=modules_to_not_convert, compute_dtype=torch.bfloat16
|
||||
)
|
||||
|
||||
with log_time("Load state dict into model"):
|
||||
state_dict = load_file(model_nf4_path)
|
||||
model.load_state_dict(state_dict, strict=True, assign=True)
|
||||
|
||||
with log_time("Move model to cuda"):
|
||||
model = model.to("cuda")
|
||||
|
||||
print(f"Successfully loaded pre-quantized model from '{model_nf4_path}'.")
|
||||
|
||||
else:
|
||||
# The quantized model does not exist, quantize the model and save it.
|
||||
print(f"No pre-quantized model found at '{model_nf4_path}'. Quantizing the model...")
|
||||
|
||||
with log_time("Replace linear layers with NF4 layers"), accelerate.init_empty_weights():
|
||||
model = quantize_model_nf4(
|
||||
model, modules_to_not_convert=modules_to_not_convert, compute_dtype=torch.bfloat16
|
||||
)
|
||||
|
||||
with log_time("Load state dict into model"):
|
||||
state_dict = load_file(model_path)
|
||||
# TODO(ryand): Cast the state_dict to the appropriate dtype?
|
||||
model.load_state_dict(state_dict, strict=True, assign=True)
|
||||
|
||||
with log_time("Move model to cuda and quantize"):
|
||||
model = model.to("cuda")
|
||||
|
||||
with log_time("Save quantized model"):
|
||||
model_nf4_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
save_file(model.state_dict(), model_nf4_path)
|
||||
|
||||
print(f"Successfully quantized and saved model to '{model_nf4_path}'.")
|
||||
|
||||
assert isinstance(model, Flux)
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
53
invokeai/backend/requantize.py
Normal file
@@ -0,0 +1,53 @@
|
||||
from typing import Any, Dict
|
||||
|
||||
import torch
|
||||
from optimum.quanto.quantize import _quantize_submodule
|
||||
|
||||
# def custom_freeze(model: torch.nn.Module):
|
||||
# for name, m in model.named_modules():
|
||||
# if isinstance(m, QModuleMixin):
|
||||
# m.weight =
|
||||
# m.freeze()
|
||||
|
||||
|
||||
def requantize(
|
||||
model: torch.nn.Module,
|
||||
state_dict: Dict[str, Any],
|
||||
quantization_map: Dict[str, Dict[str, str]],
|
||||
device: torch.device = None,
|
||||
):
|
||||
if device is None:
|
||||
device = next(model.parameters()).device
|
||||
if device.type == "meta":
|
||||
device = torch.device("cpu")
|
||||
|
||||
# Quantize the model with parameters from the quantization map
|
||||
for name, m in model.named_modules():
|
||||
qconfig = quantization_map.get(name, None)
|
||||
if qconfig is not None:
|
||||
weights = qconfig["weights"]
|
||||
if weights == "none":
|
||||
weights = None
|
||||
activations = qconfig["activations"]
|
||||
if activations == "none":
|
||||
activations = None
|
||||
_quantize_submodule(model, name, m, weights=weights, activations=activations)
|
||||
|
||||
# Move model parameters and buffers to CPU before materializing quantized weights
|
||||
for name, m in model.named_modules():
|
||||
|
||||
def move_tensor(t, device):
|
||||
if t.device.type == "meta":
|
||||
return torch.empty_like(t, device=device)
|
||||
return t.to(device)
|
||||
|
||||
for name, param in m.named_parameters(recurse=False):
|
||||
setattr(m, name, torch.nn.Parameter(move_tensor(param, "cpu")))
|
||||
for name, param in m.named_buffers(recurse=False):
|
||||
setattr(m, name, move_tensor(param, "cpu"))
|
||||
# Freeze model and move to target device
|
||||
# freeze(model)
|
||||
# model.to(device)
|
||||
|
||||
# Load the quantized model weights
|
||||
model.load_state_dict(state_dict, strict=False)
|
||||
@@ -25,11 +25,6 @@ class BasicConditioningInfo:
|
||||
return self
|
||||
|
||||
|
||||
@dataclass
|
||||
class ConditioningFieldData:
|
||||
conditionings: List[BasicConditioningInfo]
|
||||
|
||||
|
||||
@dataclass
|
||||
class SDXLConditioningInfo(BasicConditioningInfo):
|
||||
"""SDXL text conditioning information produced by Compel."""
|
||||
@@ -43,6 +38,17 @@ class SDXLConditioningInfo(BasicConditioningInfo):
|
||||
return super().to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
@dataclass
|
||||
class FLUXConditioningInfo:
|
||||
clip_embeds: torch.Tensor
|
||||
t5_embeds: torch.Tensor
|
||||
|
||||
|
||||
@dataclass
|
||||
class ConditioningFieldData:
|
||||
conditionings: List[BasicConditioningInfo] | List[SDXLConditioningInfo] | List[FLUXConditioningInfo]
|
||||
|
||||
|
||||
@dataclass
|
||||
class IPAdapterConditioningInfo:
|
||||
cond_image_prompt_embeds: torch.Tensor
|
||||
|
||||
@@ -3,7 +3,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
import diffusers
|
||||
import torch
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.loaders import FromOriginalControlNetMixin
|
||||
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
||||
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
||||
from diffusers.models.controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
|
||||
from diffusers.models.embeddings import (
|
||||
@@ -32,7 +32,7 @@ from invokeai.backend.util.logging import InvokeAILogger
|
||||
logger = InvokeAILogger.get_logger(__name__)
|
||||
|
||||
|
||||
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
||||
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
||||
"""
|
||||
A ControlNet model.
|
||||
|
||||
|
||||
@@ -53,63 +53,64 @@
|
||||
},
|
||||
"dependencies": {
|
||||
"@chakra-ui/react-use-size": "^2.1.0",
|
||||
"@dagrejs/dagre": "^1.1.3",
|
||||
"@dagrejs/graphlib": "^2.2.3",
|
||||
"@dagrejs/dagre": "^1.1.2",
|
||||
"@dagrejs/graphlib": "^2.2.2",
|
||||
"@dnd-kit/core": "^6.1.0",
|
||||
"@dnd-kit/sortable": "^8.0.0",
|
||||
"@dnd-kit/utilities": "^3.2.2",
|
||||
"@fontsource-variable/inter": "^5.0.20",
|
||||
"@invoke-ai/ui-library": "^0.0.29",
|
||||
"@nanostores/react": "^0.7.3",
|
||||
"@fontsource-variable/inter": "^5.0.18",
|
||||
"@invoke-ai/ui-library": "^0.0.25",
|
||||
"@nanostores/react": "^0.7.2",
|
||||
"@reduxjs/toolkit": "2.2.3",
|
||||
"@roarr/browser-log-writer": "^1.3.0",
|
||||
"chakra-react-select": "^4.9.1",
|
||||
"compare-versions": "^6.1.1",
|
||||
"chakra-react-select": "^4.7.6",
|
||||
"compare-versions": "^6.1.0",
|
||||
"dateformat": "^5.0.3",
|
||||
"fracturedjsonjs": "^4.0.2",
|
||||
"framer-motion": "^11.3.24",
|
||||
"i18next": "^23.12.2",
|
||||
"i18next-http-backend": "^2.5.2",
|
||||
"fracturedjsonjs": "^4.0.1",
|
||||
"framer-motion": "^11.1.8",
|
||||
"i18next": "^23.11.3",
|
||||
"i18next-http-backend": "^2.5.1",
|
||||
"idb-keyval": "^6.2.1",
|
||||
"jsondiffpatch": "^0.6.0",
|
||||
"konva": "^9.3.14",
|
||||
"konva": "^9.3.6",
|
||||
"lodash-es": "^4.17.21",
|
||||
"nanostores": "^0.11.2",
|
||||
"nanostores": "^0.10.3",
|
||||
"new-github-issue-url": "^1.0.0",
|
||||
"overlayscrollbars": "^2.10.0",
|
||||
"overlayscrollbars": "^2.7.3",
|
||||
"overlayscrollbars-react": "^0.5.6",
|
||||
"query-string": "^9.1.0",
|
||||
"query-string": "^9.0.0",
|
||||
"react": "^18.3.1",
|
||||
"react-colorful": "^5.6.1",
|
||||
"react-dom": "^18.3.1",
|
||||
"react-dropzone": "^14.2.3",
|
||||
"react-error-boundary": "^4.0.13",
|
||||
"react-hook-form": "^7.52.2",
|
||||
"react-hook-form": "^7.51.4",
|
||||
"react-hotkeys-hook": "4.5.0",
|
||||
"react-i18next": "^14.1.3",
|
||||
"react-icons": "^5.2.1",
|
||||
"react-i18next": "^14.1.1",
|
||||
"react-icons": "^5.2.0",
|
||||
"react-konva": "^18.2.10",
|
||||
"react-redux": "9.1.2",
|
||||
"react-resizable-panels": "^2.0.23",
|
||||
"react-resizable-panels": "^2.0.19",
|
||||
"react-select": "5.8.0",
|
||||
"react-use": "^17.5.1",
|
||||
"react-virtuoso": "^4.9.0",
|
||||
"reactflow": "^11.11.4",
|
||||
"react-use": "^17.5.0",
|
||||
"react-virtuoso": "^4.7.10",
|
||||
"reactflow": "^11.11.3",
|
||||
"redux-dynamic-middlewares": "^2.2.0",
|
||||
"redux-remember": "^5.1.0",
|
||||
"redux-undo": "^1.1.0",
|
||||
"rfdc": "^1.4.1",
|
||||
"rfdc": "^1.3.1",
|
||||
"roarr": "^7.21.1",
|
||||
"serialize-error": "^11.0.3",
|
||||
"socket.io-client": "^4.7.5",
|
||||
"use-debounce": "^10.0.2",
|
||||
"use-debounce": "^10.0.0",
|
||||
"use-device-pixel-ratio": "^1.1.2",
|
||||
"use-image": "^1.1.1",
|
||||
"uuid": "^10.0.0",
|
||||
"zod": "^3.23.8",
|
||||
"zod-validation-error": "^3.3.1"
|
||||
"uuid": "^9.0.1",
|
||||
"zod": "^3.23.6",
|
||||
"zod-validation-error": "^3.2.0"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@chakra-ui/react": "^2.8.2",
|
||||
"react": "^18.2.0",
|
||||
"react-dom": "^18.2.0",
|
||||
"ts-toolbelt": "^9.6.0"
|
||||
@@ -117,38 +118,38 @@
|
||||
"devDependencies": {
|
||||
"@invoke-ai/eslint-config-react": "^0.0.14",
|
||||
"@invoke-ai/prettier-config-react": "^0.0.7",
|
||||
"@storybook/addon-essentials": "^8.2.8",
|
||||
"@storybook/addon-interactions": "^8.2.8",
|
||||
"@storybook/addon-links": "^8.2.8",
|
||||
"@storybook/addon-storysource": "^8.2.8",
|
||||
"@storybook/manager-api": "^8.2.8",
|
||||
"@storybook/react": "^8.2.8",
|
||||
"@storybook/react-vite": "^8.2.8",
|
||||
"@storybook/theming": "^8.2.8",
|
||||
"@storybook/addon-essentials": "^8.0.10",
|
||||
"@storybook/addon-interactions": "^8.0.10",
|
||||
"@storybook/addon-links": "^8.0.10",
|
||||
"@storybook/addon-storysource": "^8.0.10",
|
||||
"@storybook/manager-api": "^8.0.10",
|
||||
"@storybook/react": "^8.0.10",
|
||||
"@storybook/react-vite": "^8.0.10",
|
||||
"@storybook/theming": "^8.0.10",
|
||||
"@types/dateformat": "^5.0.2",
|
||||
"@types/lodash-es": "^4.17.12",
|
||||
"@types/node": "^20.14.15",
|
||||
"@types/react": "^18.3.3",
|
||||
"@types/node": "^20.12.10",
|
||||
"@types/react": "^18.3.1",
|
||||
"@types/react-dom": "^18.3.0",
|
||||
"@types/uuid": "^10.0.0",
|
||||
"@vitejs/plugin-react-swc": "^3.7.0",
|
||||
"@types/uuid": "^9.0.8",
|
||||
"@vitejs/plugin-react-swc": "^3.6.0",
|
||||
"@vitest/coverage-v8": "^1.5.0",
|
||||
"@vitest/ui": "^1.5.0",
|
||||
"concurrently": "^8.2.2",
|
||||
"dpdm": "^3.14.0",
|
||||
"eslint": "^8.57.0",
|
||||
"eslint-plugin-i18next": "^6.0.9",
|
||||
"eslint-plugin-i18next": "^6.0.3",
|
||||
"eslint-plugin-path": "^1.3.0",
|
||||
"knip": "^5.27.2",
|
||||
"knip": "^5.12.3",
|
||||
"openapi-types": "^12.1.3",
|
||||
"openapi-typescript": "^7.3.0",
|
||||
"prettier": "^3.3.3",
|
||||
"openapi-typescript": "^6.7.5",
|
||||
"prettier": "^3.2.5",
|
||||
"rollup-plugin-visualizer": "^5.12.0",
|
||||
"storybook": "^8.2.8",
|
||||
"storybook": "^8.0.10",
|
||||
"ts-toolbelt": "^9.6.0",
|
||||
"tsafe": "^1.7.2",
|
||||
"typescript": "^5.5.4",
|
||||
"vite": "^5.4.0",
|
||||
"tsafe": "^1.6.6",
|
||||
"typescript": "^5.4.5",
|
||||
"vite": "^5.2.11",
|
||||
"vite-plugin-css-injected-by-js": "^3.5.1",
|
||||
"vite-plugin-dts": "^3.9.1",
|
||||
"vite-plugin-eslint": "^1.8.1",
|
||||
|
||||
5816
invokeai/frontend/web/pnpm-lock.yaml
generated
@@ -200,7 +200,6 @@
|
||||
"delete": "Delete",
|
||||
"depthAnything": "Depth Anything",
|
||||
"depthAnythingDescription": "Depth map generation using the Depth Anything technique",
|
||||
"depthAnythingSmallV2": "Small V2",
|
||||
"depthMidas": "Depth (Midas)",
|
||||
"depthMidasDescription": "Depth map generation using Midas",
|
||||
"depthZoe": "Depth (Zoe)",
|
||||
@@ -1141,8 +1140,6 @@
|
||||
"imageSavingFailed": "Image Saving Failed",
|
||||
"imageUploaded": "Image Uploaded",
|
||||
"imageUploadFailed": "Image Upload Failed",
|
||||
"importFailed": "Import Failed",
|
||||
"importSuccessful": "Import Successful",
|
||||
"invalidUpload": "Invalid Upload",
|
||||
"loadedWithWarnings": "Workflow Loaded with Warnings",
|
||||
"maskSavedAssets": "Mask Saved to Assets",
|
||||
@@ -1691,52 +1688,6 @@
|
||||
"missingUpscaleModel": "Missing upscale model",
|
||||
"missingTileControlNetModel": "No valid tile ControlNet models installed"
|
||||
},
|
||||
"stylePresets": {
|
||||
"active": "Active",
|
||||
"choosePromptTemplate": "Choose Prompt Template",
|
||||
"clearTemplateSelection": "Clear Template Selection",
|
||||
"copyTemplate": "Copy Template",
|
||||
"createPromptTemplate": "Create Prompt Template",
|
||||
"defaultTemplates": "Default Templates",
|
||||
"deleteImage": "Delete Image",
|
||||
"deleteTemplate": "Delete Template",
|
||||
"deleteTemplate2": "Are you sure you want to delete this template? This cannot be undone.",
|
||||
"exportPromptTemplates": "Export My Prompt Templates (CSV)",
|
||||
"editTemplate": "Edit Template",
|
||||
"exportDownloaded": "Export Downloaded",
|
||||
"exportFailed": "Unable to generate and download CSV",
|
||||
"flatten": "Flatten selected template into current prompt",
|
||||
"importTemplates": "Import Prompt Templates (CSV/JSON)",
|
||||
"acceptedColumnsKeys": "Accepted columns/keys:",
|
||||
"nameColumn": "'name'",
|
||||
"positivePromptColumn": "'prompt' or 'positive_prompt'",
|
||||
"negativePromptColumn": "'negative_prompt'",
|
||||
"insertPlaceholder": "Insert placeholder",
|
||||
"myTemplates": "My Templates",
|
||||
"name": "Name",
|
||||
"negativePrompt": "Negative Prompt",
|
||||
"noTemplates": "No templates",
|
||||
"noMatchingTemplates": "No matching templates",
|
||||
"promptTemplatesDesc1": "Prompt templates add text to the prompts you write in the prompt box.",
|
||||
"promptTemplatesDesc2": "Use the placeholder string <Pre>{{placeholder}}</Pre> to specify where your prompt should be included in the template.",
|
||||
"promptTemplatesDesc3": "If you omit the placeholder, the template will be appended to the end of your prompt.",
|
||||
"positivePrompt": "Positive Prompt",
|
||||
"preview": "Preview",
|
||||
"private": "Private",
|
||||
"searchByName": "Search by name",
|
||||
"shared": "Shared",
|
||||
"sharedTemplates": "Shared Templates",
|
||||
"templateActions": "Template Actions",
|
||||
"templateDeleted": "Prompt template deleted",
|
||||
"toggleViewMode": "Toggle View Mode",
|
||||
"type": "Type",
|
||||
"unableToDeleteTemplate": "Unable to delete prompt template",
|
||||
"updatePromptTemplate": "Update Prompt Template",
|
||||
"uploadImage": "Upload Image",
|
||||
"useForTemplate": "Use For Prompt Template",
|
||||
"viewList": "View Template List",
|
||||
"viewModeTooltip": "This is how your prompt will look with your currently selected template. To edit your prompt, click anywhere in the text box."
|
||||
},
|
||||
"upsell": {
|
||||
"inviteTeammates": "Invite Teammates",
|
||||
"professional": "Professional",
|
||||
|
||||
@@ -90,7 +90,7 @@
|
||||
"disabled": "Disabilitato",
|
||||
"comparingDesc": "Confronta due immagini",
|
||||
"comparing": "Confronta",
|
||||
"dontShowMeThese": "Non mostrare più"
|
||||
"dontShowMeThese": "Non mostrarmi questi"
|
||||
},
|
||||
"gallery": {
|
||||
"galleryImageSize": "Dimensione dell'immagine",
|
||||
@@ -701,9 +701,7 @@
|
||||
"baseModelChanged": "Modello base modificato",
|
||||
"sessionRef": "Sessione: {{sessionId}}",
|
||||
"somethingWentWrong": "Qualcosa è andato storto",
|
||||
"outOfMemoryErrorDesc": "Le impostazioni della generazione attuale superano la capacità del sistema. Modifica le impostazioni e riprova.",
|
||||
"importFailed": "Importazione non riuscita",
|
||||
"importSuccessful": "Importazione riuscita"
|
||||
"outOfMemoryErrorDesc": "Le impostazioni della generazione attuale superano la capacità del sistema. Modifica le impostazioni e riprova."
|
||||
},
|
||||
"tooltip": {
|
||||
"feature": {
|
||||
@@ -1528,7 +1526,7 @@
|
||||
},
|
||||
"upscaleModel": {
|
||||
"paragraphs": [
|
||||
"Il modello di ampliamento (Upscale), scala l'immagine alle dimensioni di uscita prima di aggiungere i dettagli. È possibile utilizzare qualsiasi modello di ampliamento supportato, ma alcuni sono specializzati per diversi tipi di immagini, come foto o disegni al tratto."
|
||||
"Il modello di ampliamento ridimensiona l'immagine alle dimensioni di uscita prima che vengano aggiunti i dettagli. È possibile utilizzare qualsiasi modello di ampliamento supportato, ma alcuni sono specializzati per diversi tipi di immagini, come foto o disegni al tratto."
|
||||
],
|
||||
"heading": "Modello di ampliamento"
|
||||
},
|
||||
@@ -1737,52 +1735,12 @@
|
||||
"missingUpscaleModel": "Modello per l’ampliamento mancante",
|
||||
"missingTileControlNetModel": "Nessun modello ControlNet Tile valido installato",
|
||||
"postProcessingModel": "Modello di post-elaborazione",
|
||||
"postProcessingMissingModelWarning": "Visita <LinkComponent>Gestione modelli</LinkComponent> per installare un modello di post-elaborazione (da immagine a immagine).",
|
||||
"exceedsMaxSize": "Le impostazioni di ampliamento superano il limite massimo delle dimensioni",
|
||||
"exceedsMaxSizeDetails": "Il limite massimo di ampliamento è {{maxUpscaleDimension}}x{{maxUpscaleDimension}} pixel. Prova un'immagine più piccola o diminuisci la scala selezionata."
|
||||
"postProcessingMissingModelWarning": "Visita <LinkComponent>Gestione modelli</LinkComponent> per installare un modello di post-elaborazione (da immagine a immagine)."
|
||||
},
|
||||
"upsell": {
|
||||
"inviteTeammates": "Invita collaboratori",
|
||||
"shareAccess": "Condividi l'accesso",
|
||||
"professional": "Professionale",
|
||||
"professionalUpsell": "Disponibile nell'edizione Professional di Invoke. Fai clic qui o visita invoke.com/pricing per ulteriori dettagli."
|
||||
},
|
||||
"stylePresets": {
|
||||
"active": "Attivo",
|
||||
"choosePromptTemplate": "Scegli un modello di prompt",
|
||||
"clearTemplateSelection": "Cancella selezione modello",
|
||||
"copyTemplate": "Copia modello",
|
||||
"createPromptTemplate": "Crea modello di prompt",
|
||||
"defaultTemplates": "Modelli predefiniti",
|
||||
"deleteImage": "Elimina immagine",
|
||||
"deleteTemplate": "Elimina modello",
|
||||
"editTemplate": "Modifica modello",
|
||||
"flatten": "Unisci il modello selezionato al prompt corrente",
|
||||
"insertPlaceholder": "Inserisci segnaposto",
|
||||
"myTemplates": "I miei modelli",
|
||||
"name": "Nome",
|
||||
"negativePrompt": "Prompt Negativo",
|
||||
"noMatchingTemplates": "Nessun modello corrispondente",
|
||||
"promptTemplatesDesc1": "I modelli di prompt aggiungono testo ai prompt che scrivi nelle caselle dei prompt.",
|
||||
"promptTemplatesDesc3": "Se si omette il segnaposto, il modello verrà aggiunto alla fine del prompt.",
|
||||
"positivePrompt": "Prompt Positivo",
|
||||
"preview": "Anteprima",
|
||||
"private": "Privato",
|
||||
"searchByName": "Cerca per nome",
|
||||
"shared": "Condiviso",
|
||||
"sharedTemplates": "Modelli condivisi",
|
||||
"templateDeleted": "Modello di prompt eliminato",
|
||||
"toggleViewMode": "Attiva/disattiva visualizzazione",
|
||||
"uploadImage": "Carica immagine",
|
||||
"useForTemplate": "Usa per modello di prompt",
|
||||
"viewList": "Visualizza l'elenco dei modelli",
|
||||
"viewModeTooltip": "Ecco come apparirà il tuo prompt con il modello attualmente selezionato. Per modificare il tuo prompt, clicca in un punto qualsiasi della casella di testo.",
|
||||
"deleteTemplate2": "Vuoi davvero eliminare questo modello? Questa operazione non può essere annullata.",
|
||||
"unableToDeleteTemplate": "Impossibile eliminare il modello di prompt",
|
||||
"updatePromptTemplate": "Aggiorna il modello di prompt",
|
||||
"type": "Tipo",
|
||||
"promptTemplatesDesc2": "Utilizza la stringa segnaposto <Pre>{{placeholder}}</Pre> per specificare dove inserire il tuo prompt nel modello.",
|
||||
"importTemplates": "Importa modelli di prompt",
|
||||
"importTemplatesDesc": "Il formato deve essere un CSV con colonne 'name' e 'prompt' o 'positive_prompt' e 'negative_prompt' incluse, oppure un file JSON con chiavi 'name' e 'prompt' o 'positive_prompt' e 'negative_prompt"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -493,8 +493,7 @@
|
||||
"defaultSettingsSaved": "默认设置已保存",
|
||||
"huggingFacePlaceholder": "所有者或模型名称",
|
||||
"huggingFaceRepoID": "HuggingFace仓库ID",
|
||||
"loraTriggerPhrases": "LoRA 触发词",
|
||||
"ipAdapters": "IP适配器"
|
||||
"loraTriggerPhrases": "LoRA 触发词"
|
||||
},
|
||||
"parameters": {
|
||||
"images": "图像",
|
||||
@@ -1703,9 +1702,7 @@
|
||||
"upscaleModelDesc": "图像放大(图像到图像转换)模型",
|
||||
"postProcessingMissingModelWarning": "请访问 <LinkComponent>模型管理器</LinkComponent>来安装一个后处理(图像到图像转换)模型.",
|
||||
"missingModelsWarning": "请访问<LinkComponent>模型管理器</LinkComponent> 安装所需的模型:",
|
||||
"mainModelDesc": "主模型(SD1.5或SDXL架构)",
|
||||
"exceedsMaxSize": "放大设置超出了最大尺寸限制",
|
||||
"exceedsMaxSizeDetails": "最大放大限制是 {{maxUpscaleDimension}}x{{maxUpscaleDimension}} 像素.请尝试一个较小的图像或减少您的缩放选择."
|
||||
"mainModelDesc": "主模型(SD1.5或SDXL架构)"
|
||||
},
|
||||
"upsell": {
|
||||
"inviteTeammates": "邀请团队成员",
|
||||
|
||||
@@ -1,40 +1,26 @@
|
||||
/* eslint-disable no-console */
|
||||
import fs from 'node:fs';
|
||||
|
||||
import openapiTS, { astToString } from 'openapi-typescript';
|
||||
import ts from 'typescript';
|
||||
import openapiTS from 'openapi-typescript';
|
||||
|
||||
const OPENAPI_URL = 'http://127.0.0.1:9090/openapi.json';
|
||||
const OUTPUT_FILE = 'src/services/api/schema.ts';
|
||||
|
||||
async function generateTypes(schema) {
|
||||
process.stdout.write(`Generating types ${OUTPUT_FILE}...`);
|
||||
|
||||
// Use https://ts-ast-viewer.com to figure out how to create these AST nodes - define a type and use the bottom-left pane's output
|
||||
// `Blob` type
|
||||
const BLOB = ts.factory.createTypeReferenceNode(ts.factory.createIdentifier('Blob'));
|
||||
// `null` type
|
||||
const NULL = ts.factory.createLiteralTypeNode(ts.factory.createNull());
|
||||
// `Record<string, unknown>` type
|
||||
const RECORD_STRING_UNKNOWN = ts.factory.createTypeReferenceNode(ts.factory.createIdentifier('Record'), [
|
||||
ts.factory.createKeywordTypeNode(ts.SyntaxKind.StringKeyword),
|
||||
ts.factory.createKeywordTypeNode(ts.SyntaxKind.UnknownKeyword),
|
||||
]);
|
||||
|
||||
const types = await openapiTS(schema, {
|
||||
exportType: true,
|
||||
transform: (schemaObject) => {
|
||||
if ('format' in schemaObject && schemaObject.format === 'binary') {
|
||||
return schemaObject.nullable ? ts.factory.createUnionTypeNode([BLOB, NULL]) : BLOB;
|
||||
return schemaObject.nullable ? 'Blob | null' : 'Blob';
|
||||
}
|
||||
if (schemaObject.title === 'MetadataField') {
|
||||
// This is `Record<string, never>` by default, but it actually accepts any a dict of any valid JSON value.
|
||||
return RECORD_STRING_UNKNOWN;
|
||||
return 'Record<string, unknown>';
|
||||
}
|
||||
},
|
||||
defaultNonNullable: false,
|
||||
});
|
||||
fs.writeFileSync(OUTPUT_FILE, astToString(types));
|
||||
fs.writeFileSync(OUTPUT_FILE, types);
|
||||
process.stdout.write(`\nOK!\r\n`);
|
||||
}
|
||||
|
||||
|
||||
@@ -13,13 +13,11 @@ import ChangeBoardModal from 'features/changeBoardModal/components/ChangeBoardMo
|
||||
import DeleteImageModal from 'features/deleteImageModal/components/DeleteImageModal';
|
||||
import { DynamicPromptsModal } from 'features/dynamicPrompts/components/DynamicPromptsPreviewModal';
|
||||
import { useStarterModelsToast } from 'features/modelManagerV2/hooks/useStarterModelsToast';
|
||||
import { StylePresetModal } from 'features/stylePresets/components/StylePresetForm/StylePresetModal';
|
||||
import { configChanged } from 'features/system/store/configSlice';
|
||||
import { languageSelector } from 'features/system/store/systemSelectors';
|
||||
import InvokeTabs from 'features/ui/components/InvokeTabs';
|
||||
import type { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
import { setActiveTab } from 'features/ui/store/uiSlice';
|
||||
import { useGetAndLoadLibraryWorkflow } from 'features/workflowLibrary/hooks/useGetAndLoadLibraryWorkflow';
|
||||
import { AnimatePresence } from 'framer-motion';
|
||||
import i18n from 'i18n';
|
||||
import { size } from 'lodash-es';
|
||||
@@ -38,11 +36,10 @@ interface Props {
|
||||
imageName: string;
|
||||
action: 'sendToImg2Img' | 'sendToCanvas' | 'useAllParameters';
|
||||
};
|
||||
selectedWorkflowId?: string;
|
||||
destination?: InvokeTabName | undefined;
|
||||
}
|
||||
|
||||
const App = ({ config = DEFAULT_CONFIG, selectedImage, selectedWorkflowId, destination }: Props) => {
|
||||
const App = ({ config = DEFAULT_CONFIG, selectedImage, destination }: Props) => {
|
||||
const language = useAppSelector(languageSelector);
|
||||
const logger = useLogger('system');
|
||||
const dispatch = useAppDispatch();
|
||||
@@ -73,14 +70,6 @@ const App = ({ config = DEFAULT_CONFIG, selectedImage, selectedWorkflowId, desti
|
||||
}
|
||||
}, [dispatch, config, logger]);
|
||||
|
||||
const { getAndLoadWorkflow } = useGetAndLoadLibraryWorkflow();
|
||||
|
||||
useEffect(() => {
|
||||
if (selectedWorkflowId) {
|
||||
getAndLoadWorkflow(selectedWorkflowId);
|
||||
}
|
||||
}, [selectedWorkflowId, getAndLoadWorkflow]);
|
||||
|
||||
useEffect(() => {
|
||||
if (destination) {
|
||||
dispatch(setActiveTab(destination));
|
||||
@@ -115,7 +104,6 @@ const App = ({ config = DEFAULT_CONFIG, selectedImage, selectedWorkflowId, desti
|
||||
<DeleteImageModal />
|
||||
<ChangeBoardModal />
|
||||
<DynamicPromptsModal />
|
||||
<StylePresetModal />
|
||||
<PreselectedImage selectedImage={selectedImage} />
|
||||
</ErrorBoundary>
|
||||
);
|
||||
|
||||
@@ -44,7 +44,6 @@ interface Props extends PropsWithChildren {
|
||||
imageName: string;
|
||||
action: 'sendToImg2Img' | 'sendToCanvas' | 'useAllParameters';
|
||||
};
|
||||
selectedWorkflowId?: string;
|
||||
destination?: InvokeTabName;
|
||||
customStarUi?: CustomStarUi;
|
||||
socketOptions?: Partial<ManagerOptions & SocketOptions>;
|
||||
@@ -65,7 +64,6 @@ const InvokeAIUI = ({
|
||||
projectUrl,
|
||||
queueId,
|
||||
selectedImage,
|
||||
selectedWorkflowId,
|
||||
destination,
|
||||
customStarUi,
|
||||
socketOptions,
|
||||
@@ -223,12 +221,7 @@ const InvokeAIUI = ({
|
||||
<React.Suspense fallback={<Loading />}>
|
||||
<ThemeLocaleProvider>
|
||||
<AppDndContext>
|
||||
<App
|
||||
config={config}
|
||||
selectedImage={selectedImage}
|
||||
selectedWorkflowId={selectedWorkflowId}
|
||||
destination={destination}
|
||||
/>
|
||||
<App config={config} selectedImage={selectedImage} destination={destination} />
|
||||
</AppDndContext>
|
||||
</ThemeLocaleProvider>
|
||||
</React.Suspense>
|
||||
|
||||
@@ -11,8 +11,6 @@ import {
|
||||
promptsChanged,
|
||||
} from 'features/dynamicPrompts/store/dynamicPromptsSlice';
|
||||
import { getShouldProcessPrompt } from 'features/dynamicPrompts/util/getShouldProcessPrompt';
|
||||
import { getPresetModifiedPrompts } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { activeStylePresetIdChanged } from 'features/stylePresets/store/stylePresetSlice';
|
||||
import { utilitiesApi } from 'services/api/endpoints/utilities';
|
||||
import { socketConnected } from 'services/events/actions';
|
||||
|
||||
@@ -21,8 +19,7 @@ const matcher = isAnyOf(
|
||||
combinatorialToggled,
|
||||
maxPromptsChanged,
|
||||
maxPromptsReset,
|
||||
socketConnected,
|
||||
activeStylePresetIdChanged
|
||||
socketConnected
|
||||
);
|
||||
|
||||
export const addDynamicPromptsListener = (startAppListening: AppStartListening) => {
|
||||
@@ -31,7 +28,7 @@ export const addDynamicPromptsListener = (startAppListening: AppStartListening)
|
||||
effect: async (action, { dispatch, getState, cancelActiveListeners, delay }) => {
|
||||
cancelActiveListeners();
|
||||
const state = getState();
|
||||
const { positivePrompt } = getPresetModifiedPrompts(state);
|
||||
const { positivePrompt } = state.controlLayers.present;
|
||||
const { maxPrompts } = state.dynamicPrompts;
|
||||
|
||||
if (state.config.disabledFeatures.includes('dynamicPrompting')) {
|
||||
|
||||
@@ -28,7 +28,6 @@ import { generationPersistConfig, generationSlice } from 'features/parameters/st
|
||||
import { upscalePersistConfig, upscaleSlice } from 'features/parameters/store/upscaleSlice';
|
||||
import { queueSlice } from 'features/queue/store/queueSlice';
|
||||
import { sdxlPersistConfig, sdxlSlice } from 'features/sdxl/store/sdxlSlice';
|
||||
import { stylePresetPersistConfig, stylePresetSlice } from 'features/stylePresets/store/stylePresetSlice';
|
||||
import { configSlice } from 'features/system/store/configSlice';
|
||||
import { systemPersistConfig, systemSlice } from 'features/system/store/systemSlice';
|
||||
import { uiPersistConfig, uiSlice } from 'features/ui/store/uiSlice';
|
||||
@@ -70,7 +69,6 @@ const allReducers = {
|
||||
[workflowSettingsSlice.name]: workflowSettingsSlice.reducer,
|
||||
[api.reducerPath]: api.reducer,
|
||||
[upscaleSlice.name]: upscaleSlice.reducer,
|
||||
[stylePresetSlice.name]: stylePresetSlice.reducer,
|
||||
};
|
||||
|
||||
const rootReducer = combineReducers(allReducers);
|
||||
@@ -116,7 +114,6 @@ const persistConfigs: { [key in keyof typeof allReducers]?: PersistConfig } = {
|
||||
[controlLayersPersistConfig.name]: controlLayersPersistConfig,
|
||||
[workflowSettingsPersistConfig.name]: workflowSettingsPersistConfig,
|
||||
[upscalePersistConfig.name]: upscalePersistConfig,
|
||||
[stylePresetPersistConfig.name]: stylePresetPersistConfig,
|
||||
};
|
||||
|
||||
const unserialize: UnserializeFunction = (data, key) => {
|
||||
@@ -167,8 +164,8 @@ export const createStore = (uniqueStoreKey?: string, persist = true) =>
|
||||
reducer: rememberedRootReducer,
|
||||
middleware: (getDefaultMiddleware) =>
|
||||
getDefaultMiddleware({
|
||||
serializableCheck: import.meta.env.MODE === 'development',
|
||||
immutableCheck: import.meta.env.MODE === 'development',
|
||||
serializableCheck: false,
|
||||
immutableCheck: false,
|
||||
})
|
||||
.concat(api.middleware)
|
||||
.concat(dynamicMiddlewares)
|
||||
|
||||
@@ -71,7 +71,6 @@ export type AppConfig = {
|
||||
*/
|
||||
maxUpscaleDimension?: number;
|
||||
allowPrivateBoards: boolean;
|
||||
allowPrivateStylePresets: boolean;
|
||||
disabledTabs: InvokeTabName[];
|
||||
disabledFeatures: AppFeature[];
|
||||
disabledSDFeatures: SDFeature[];
|
||||
|
||||
@@ -47,7 +47,6 @@ export const IAINoContentFallback = memo((props: IAINoImageFallbackProps) => {
|
||||
userSelect: 'none',
|
||||
opacity: 0.7,
|
||||
color: 'base.500',
|
||||
fontSize: 'md',
|
||||
...sx,
|
||||
}),
|
||||
[sx]
|
||||
@@ -56,7 +55,11 @@ export const IAINoContentFallback = memo((props: IAINoImageFallbackProps) => {
|
||||
return (
|
||||
<Flex sx={styles} {...rest}>
|
||||
{icon && <Icon as={icon} boxSize={boxSize} opacity={0.7} />}
|
||||
{props.label && <Text textAlign="center">{props.label}</Text>}
|
||||
{props.label && (
|
||||
<Text textAlign="center" fontSize="md">
|
||||
{props.label}
|
||||
</Text>
|
||||
)}
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
import { convertImageUrlToBlob } from 'common/util/convertImageUrlToBlob';
|
||||
import { useImageUrlToBlob } from 'common/hooks/useImageUrlToBlob';
|
||||
import { copyBlobToClipboard } from 'features/system/util/copyBlobToClipboard';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { useCallback, useMemo } from 'react';
|
||||
@@ -6,6 +6,7 @@ import { useTranslation } from 'react-i18next';
|
||||
|
||||
export const useCopyImageToClipboard = () => {
|
||||
const { t } = useTranslation();
|
||||
const imageUrlToBlob = useImageUrlToBlob();
|
||||
|
||||
const isClipboardAPIAvailable = useMemo(() => {
|
||||
return Boolean(navigator.clipboard) && Boolean(window.ClipboardItem);
|
||||
@@ -22,7 +23,7 @@ export const useCopyImageToClipboard = () => {
|
||||
});
|
||||
}
|
||||
try {
|
||||
const blob = await convertImageUrlToBlob(image_url);
|
||||
const blob = await imageUrlToBlob(image_url);
|
||||
|
||||
if (!blob) {
|
||||
throw new Error('Unable to create Blob');
|
||||
@@ -44,7 +45,7 @@ export const useCopyImageToClipboard = () => {
|
||||
});
|
||||
}
|
||||
},
|
||||
[isClipboardAPIAvailable, t]
|
||||
[imageUrlToBlob, isClipboardAPIAvailable, t]
|
||||
);
|
||||
|
||||
return { isClipboardAPIAvailable, copyImageToClipboard };
|
||||
|
||||
40
invokeai/frontend/web/src/common/hooks/useImageUrlToBlob.ts
Normal file
@@ -0,0 +1,40 @@
|
||||
import { $authToken } from 'app/store/nanostores/authToken';
|
||||
import { useCallback } from 'react';
|
||||
|
||||
/**
|
||||
* Converts an image URL to a Blob by creating an <img /> element, drawing it to canvas
|
||||
* and then converting the canvas to a Blob.
|
||||
*
|
||||
* @returns A function that takes a URL and returns a Promise that resolves with a Blob
|
||||
*/
|
||||
export const useImageUrlToBlob = () => {
|
||||
const imageUrlToBlob = useCallback(
|
||||
async (url: string) =>
|
||||
new Promise<Blob | null>((resolve) => {
|
||||
const img = new Image();
|
||||
img.onload = () => {
|
||||
const canvas = document.createElement('canvas');
|
||||
canvas.width = img.width;
|
||||
canvas.height = img.height;
|
||||
|
||||
const context = canvas.getContext('2d');
|
||||
if (!context) {
|
||||
return;
|
||||
}
|
||||
context.drawImage(img, 0, 0);
|
||||
resolve(
|
||||
new Promise<Blob | null>((resolve) => {
|
||||
canvas.toBlob(function (blob) {
|
||||
resolve(blob);
|
||||
}, 'image/png');
|
||||
})
|
||||
);
|
||||
};
|
||||
img.crossOrigin = $authToken.get() ? 'use-credentials' : 'anonymous';
|
||||
img.src = url;
|
||||
}),
|
||||
[]
|
||||
);
|
||||
|
||||
return imageUrlToBlob;
|
||||
};
|
||||
@@ -1,33 +0,0 @@
|
||||
import { $authToken } from 'app/store/nanostores/authToken';
|
||||
|
||||
/**
|
||||
* Converts an image URL to a Blob by creating an <img /> element, drawing it to canvas
|
||||
* and then converting the canvas to a Blob.
|
||||
*
|
||||
* @returns A function that takes a URL and returns a Promise that resolves with a Blob
|
||||
*/
|
||||
|
||||
export const convertImageUrlToBlob = async (url: string) =>
|
||||
new Promise<Blob | null>((resolve) => {
|
||||
const img = new Image();
|
||||
img.onload = () => {
|
||||
const canvas = document.createElement('canvas');
|
||||
canvas.width = img.width;
|
||||
canvas.height = img.height;
|
||||
|
||||
const context = canvas.getContext('2d');
|
||||
if (!context) {
|
||||
return;
|
||||
}
|
||||
context.drawImage(img, 0, 0);
|
||||
resolve(
|
||||
new Promise<Blob | null>((resolve) => {
|
||||
canvas.toBlob(function (blob) {
|
||||
resolve(blob);
|
||||
}, 'image/png');
|
||||
})
|
||||
);
|
||||
};
|
||||
img.crossOrigin = $authToken.get() ? 'use-credentials' : 'anonymous';
|
||||
img.src = url;
|
||||
});
|
||||
@@ -42,7 +42,6 @@ const DepthAnythingProcessor = (props: Props) => {
|
||||
|
||||
const options: { label: string; value: DepthAnythingModelSize }[] = useMemo(
|
||||
() => [
|
||||
{ label: t('controlnet.depthAnythingSmallV2'), value: 'small_v2' },
|
||||
{ label: t('controlnet.small'), value: 'small' },
|
||||
{ label: t('controlnet.base'), value: 'base' },
|
||||
{ label: t('controlnet.large'), value: 'large' },
|
||||
|
||||
@@ -94,7 +94,7 @@ export const CONTROLNET_PROCESSORS: ControlNetProcessorsDict = {
|
||||
buildDefaults: (baseModel?: BaseModelType) => ({
|
||||
id: 'depth_anything_image_processor',
|
||||
type: 'depth_anything_image_processor',
|
||||
model_size: 'small_v2',
|
||||
model_size: 'small',
|
||||
resolution: baseModel === 'sdxl' ? 1024 : 512,
|
||||
}),
|
||||
},
|
||||
|
||||
@@ -84,7 +84,7 @@ export type RequiredDepthAnythingImageProcessorInvocation = O.Required<
|
||||
'type' | 'model_size' | 'resolution' | 'offload'
|
||||
>;
|
||||
|
||||
const zDepthAnythingModelSize = z.enum(['large', 'base', 'small', 'small_v2']);
|
||||
const zDepthAnythingModelSize = z.enum(['large', 'base', 'small']);
|
||||
export type DepthAnythingModelSize = z.infer<typeof zDepthAnythingModelSize>;
|
||||
export const isDepthAnythingModelSize = (v: unknown): v is DepthAnythingModelSize =>
|
||||
zDepthAnythingModelSize.safeParse(v).success;
|
||||
|
||||
@@ -24,7 +24,6 @@ export const DepthAnythingProcessor = memo(({ onChange, config }: Props) => {
|
||||
|
||||
const options: { label: string; value: DepthAnythingModelSize }[] = useMemo(
|
||||
() => [
|
||||
{ label: t('controlnet.depthAnythingSmallV2'), value: 'small_v2' },
|
||||
{ label: t('controlnet.small'), value: 'small' },
|
||||
{ label: t('controlnet.base'), value: 'base' },
|
||||
{ label: t('controlnet.large'), value: 'large' },
|
||||
|
||||
@@ -36,7 +36,7 @@ const zContentShuffleProcessorConfig = z.object({
|
||||
});
|
||||
export type ContentShuffleProcessorConfig = z.infer<typeof zContentShuffleProcessorConfig>;
|
||||
|
||||
const zDepthAnythingModelSize = z.enum(['large', 'base', 'small', 'small_v2']);
|
||||
const zDepthAnythingModelSize = z.enum(['large', 'base', 'small']);
|
||||
export type DepthAnythingModelSize = z.infer<typeof zDepthAnythingModelSize>;
|
||||
export const isDepthAnythingModelSize = (v: unknown): v is DepthAnythingModelSize =>
|
||||
zDepthAnythingModelSize.safeParse(v).success;
|
||||
@@ -298,7 +298,7 @@ export const CA_PROCESSOR_DATA: CAProcessorsData = {
|
||||
buildDefaults: () => ({
|
||||
id: 'depth_anything_image_processor',
|
||||
type: 'depth_anything_image_processor',
|
||||
model_size: 'small_v2',
|
||||
model_size: 'small',
|
||||
}),
|
||||
buildNode: (image, config) => ({
|
||||
...config,
|
||||
|
||||
@@ -30,7 +30,6 @@ import {
|
||||
PiFlowArrowBold,
|
||||
PiFoldersBold,
|
||||
PiImagesBold,
|
||||
PiPaintBrushBold,
|
||||
PiPlantBold,
|
||||
PiQuotesBold,
|
||||
PiShareFatBold,
|
||||
@@ -56,17 +55,8 @@ const SingleSelectionMenuItems = (props: SingleSelectionMenuItemsProps) => {
|
||||
const { downloadImage } = useDownloadImage();
|
||||
const templates = useStore($templates);
|
||||
|
||||
const {
|
||||
recallAll,
|
||||
remix,
|
||||
recallSeed,
|
||||
recallPrompts,
|
||||
hasMetadata,
|
||||
hasSeed,
|
||||
hasPrompts,
|
||||
isLoadingMetadata,
|
||||
createAsPreset,
|
||||
} = useImageActions(imageDTO?.image_name);
|
||||
const { recallAll, remix, recallSeed, recallPrompts, hasMetadata, hasSeed, hasPrompts, isLoadingMetadata } =
|
||||
useImageActions(imageDTO?.image_name);
|
||||
|
||||
const { getAndLoadEmbeddedWorkflow, getAndLoadEmbeddedWorkflowResult } = useGetAndLoadEmbeddedWorkflow({});
|
||||
|
||||
@@ -192,13 +182,6 @@ const SingleSelectionMenuItems = (props: SingleSelectionMenuItemsProps) => {
|
||||
>
|
||||
{t('parameters.useAll')}
|
||||
</MenuItem>
|
||||
<MenuItem
|
||||
icon={isLoadingMetadata ? <SpinnerIcon /> : <PiPaintBrushBold />}
|
||||
onClickCapture={createAsPreset}
|
||||
isDisabled={isLoadingMetadata || !hasPrompts}
|
||||
>
|
||||
{t('stylePresets.useForTemplate')}
|
||||
</MenuItem>
|
||||
<MenuDivider />
|
||||
<MenuItem icon={<PiShareFatBold />} onClickCapture={handleSendToImageToImage} id="send-to-img2img">
|
||||
{t('parameters.sendToImg2Img')}
|
||||
|
||||
@@ -1,10 +1,7 @@
|
||||
import { skipToken } from '@reduxjs/toolkit/query';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { handlers, parseAndRecallAllMetadata, parseAndRecallPrompts } from 'features/metadata/util/handlers';
|
||||
import { $stylePresetModalState } from 'features/stylePresets/store/stylePresetModal';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { useCallback, useEffect, useState } from 'react';
|
||||
import { useGetImageDTOQuery } from 'services/api/endpoints/images';
|
||||
import { useDebouncedMetadata } from 'services/api/hooks/useDebouncedMetadata';
|
||||
|
||||
export const useImageActions = (image_name?: string) => {
|
||||
@@ -13,7 +10,6 @@ export const useImageActions = (image_name?: string) => {
|
||||
const [hasMetadata, setHasMetadata] = useState(false);
|
||||
const [hasSeed, setHasSeed] = useState(false);
|
||||
const [hasPrompts, setHasPrompts] = useState(false);
|
||||
const { data: imageDTO } = useGetImageDTOQuery(image_name ?? skipToken);
|
||||
|
||||
useEffect(() => {
|
||||
const parseMetadata = async () => {
|
||||
@@ -65,34 +61,5 @@ export const useImageActions = (image_name?: string) => {
|
||||
parseAndRecallPrompts(metadata);
|
||||
}, [metadata]);
|
||||
|
||||
const createAsPreset = useCallback(async () => {
|
||||
if (image_name && metadata && imageDTO) {
|
||||
const positivePrompt = await handlers.positivePrompt.parse(metadata);
|
||||
const negativePrompt = await handlers.negativePrompt.parse(metadata);
|
||||
|
||||
$stylePresetModalState.set({
|
||||
prefilledFormData: {
|
||||
name: '',
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
imageUrl: imageDTO.image_url,
|
||||
type: 'user',
|
||||
},
|
||||
updatingStylePresetId: null,
|
||||
isModalOpen: true,
|
||||
});
|
||||
}
|
||||
}, [image_name, metadata, imageDTO]);
|
||||
|
||||
return {
|
||||
recallAll,
|
||||
remix,
|
||||
recallSeed,
|
||||
recallPrompts,
|
||||
hasMetadata,
|
||||
hasSeed,
|
||||
hasPrompts,
|
||||
isLoadingMetadata,
|
||||
createAsPreset,
|
||||
};
|
||||
return { recallAll, remix, recallSeed, recallPrompts, hasMetadata, hasSeed, hasPrompts, isLoadingMetadata };
|
||||
};
|
||||
|
||||
@@ -22,10 +22,11 @@ import {
|
||||
} from './constants';
|
||||
import { addLoRAs } from './generation/addLoRAs';
|
||||
import { addSDXLLoRas } from './generation/addSDXLLoRAs';
|
||||
import { getBoardField, getPresetModifiedPrompts } from './graphBuilderUtils';
|
||||
import { getBoardField, getSDXLStylePrompts } from './graphBuilderUtils';
|
||||
|
||||
export const buildMultidiffusionUpscaleGraph = async (state: RootState): Promise<GraphType> => {
|
||||
const { model, cfgScale: cfg_scale, scheduler, steps, vaePrecision, seed, vae } = state.generation;
|
||||
const { positivePrompt, negativePrompt } = state.controlLayers.present;
|
||||
const { upscaleModel, upscaleInitialImage, structure, creativity, tileControlnetModel, scale } = state.upscale;
|
||||
|
||||
assert(model, 'No model found in state');
|
||||
@@ -98,8 +99,7 @@ export const buildMultidiffusionUpscaleGraph = async (state: RootState): Promise
|
||||
let modelNode;
|
||||
|
||||
if (model.base === 'sdxl') {
|
||||
const { positivePrompt, negativePrompt, positiveStylePrompt, negativeStylePrompt } =
|
||||
getPresetModifiedPrompts(state);
|
||||
const { positiveStylePrompt, negativeStylePrompt } = getSDXLStylePrompts(state);
|
||||
|
||||
posCondNode = g.addNode({
|
||||
type: 'sdxl_compel_prompt',
|
||||
@@ -132,8 +132,6 @@ export const buildMultidiffusionUpscaleGraph = async (state: RootState): Promise
|
||||
negative_style_prompt: negativeStylePrompt,
|
||||
});
|
||||
} else {
|
||||
const { positivePrompt, negativePrompt } = getPresetModifiedPrompts(state);
|
||||
|
||||
posCondNode = g.addNode({
|
||||
type: 'compel',
|
||||
id: POSITIVE_CONDITIONING,
|
||||
|
||||
@@ -16,7 +16,7 @@ import {
|
||||
SDXL_REFINER_POSITIVE_CONDITIONING,
|
||||
SDXL_REFINER_SEAMLESS,
|
||||
} from 'features/nodes/util/graph/constants';
|
||||
import { getPresetModifiedPrompts } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { getSDXLStylePrompts } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import type { NonNullableGraph } from 'services/api/types';
|
||||
import { isRefinerMainModelModelConfig } from 'services/api/types';
|
||||
|
||||
@@ -59,7 +59,7 @@ export const addSDXLRefinerToGraph = async (
|
||||
const modelLoaderId = modelLoaderNodeId ? modelLoaderNodeId : SDXL_MODEL_LOADER;
|
||||
|
||||
// Construct Style Prompt
|
||||
const { positiveStylePrompt, negativeStylePrompt } = getPresetModifiedPrompts(state);
|
||||
const { positiveStylePrompt, negativeStylePrompt } = getSDXLStylePrompts(state);
|
||||
|
||||
// Unplug SDXL Latents Generation To Latents To Image
|
||||
graph.edges = graph.edges.filter((e) => !(e.source.node_id === baseNodeId && ['latents'].includes(e.source.field)));
|
||||
|
||||
@@ -16,11 +16,7 @@ import {
|
||||
POSITIVE_CONDITIONING,
|
||||
SEAMLESS,
|
||||
} from 'features/nodes/util/graph/constants';
|
||||
import {
|
||||
getBoardField,
|
||||
getIsIntermediate,
|
||||
getPresetModifiedPrompts,
|
||||
} from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { getBoardField, getIsIntermediate } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import type { ImageDTO, Invocation, NonNullableGraph } from 'services/api/types';
|
||||
import { isNonRefinerMainModelConfig } from 'services/api/types';
|
||||
|
||||
@@ -55,6 +51,7 @@ export const buildCanvasImageToImageGraph = async (
|
||||
seamlessXAxis,
|
||||
seamlessYAxis,
|
||||
} = state.generation;
|
||||
const { positivePrompt, negativePrompt } = state.controlLayers.present;
|
||||
|
||||
// The bounding box determines width and height, not the width and height params
|
||||
const { width, height } = state.canvas.boundingBoxDimensions;
|
||||
@@ -74,8 +71,6 @@ export const buildCanvasImageToImageGraph = async (
|
||||
|
||||
const use_cpu = shouldUseCpuNoise;
|
||||
|
||||
const { positivePrompt, negativePrompt } = getPresetModifiedPrompts(state);
|
||||
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
||||
|
||||
@@ -19,11 +19,7 @@ import {
|
||||
POSITIVE_CONDITIONING,
|
||||
SEAMLESS,
|
||||
} from 'features/nodes/util/graph/constants';
|
||||
import {
|
||||
getBoardField,
|
||||
getIsIntermediate,
|
||||
getPresetModifiedPrompts,
|
||||
} from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { getBoardField, getIsIntermediate } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import type { ImageDTO, Invocation, NonNullableGraph } from 'services/api/types';
|
||||
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
@@ -62,6 +58,7 @@ export const buildCanvasInpaintGraph = async (
|
||||
canvasCoherenceEdgeSize,
|
||||
maskBlur,
|
||||
} = state.generation;
|
||||
const { positivePrompt, negativePrompt } = state.controlLayers.present;
|
||||
|
||||
if (!model) {
|
||||
log.error('No model found in state');
|
||||
@@ -82,8 +79,6 @@ export const buildCanvasInpaintGraph = async (
|
||||
|
||||
const use_cpu = shouldUseCpuNoise;
|
||||
|
||||
const { positivePrompt, negativePrompt } = getPresetModifiedPrompts(state);
|
||||
|
||||
const graph: NonNullableGraph = {
|
||||
id: CANVAS_INPAINT_GRAPH,
|
||||
nodes: {
|
||||
|
||||
@@ -23,11 +23,7 @@ import {
|
||||
POSITIVE_CONDITIONING,
|
||||
SEAMLESS,
|
||||
} from 'features/nodes/util/graph/constants';
|
||||
import {
|
||||
getBoardField,
|
||||
getIsIntermediate,
|
||||
getPresetModifiedPrompts,
|
||||
} from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { getBoardField, getIsIntermediate } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import type { ImageDTO, Invocation, NonNullableGraph } from 'services/api/types';
|
||||
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
@@ -74,6 +70,7 @@ export const buildCanvasOutpaintGraph = async (
|
||||
canvasCoherenceEdgeSize,
|
||||
maskBlur,
|
||||
} = state.generation;
|
||||
const { positivePrompt, negativePrompt } = state.controlLayers.present;
|
||||
|
||||
if (!model) {
|
||||
log.error('No model found in state');
|
||||
@@ -94,8 +91,6 @@ export const buildCanvasOutpaintGraph = async (
|
||||
|
||||
const use_cpu = shouldUseCpuNoise;
|
||||
|
||||
const { positivePrompt, negativePrompt } = getPresetModifiedPrompts(state);
|
||||
|
||||
const graph: NonNullableGraph = {
|
||||
id: CANVAS_OUTPAINT_GRAPH,
|
||||
nodes: {
|
||||
|
||||
@@ -16,11 +16,7 @@ import {
|
||||
SDXL_REFINER_SEAMLESS,
|
||||
SEAMLESS,
|
||||
} from 'features/nodes/util/graph/constants';
|
||||
import {
|
||||
getBoardField,
|
||||
getIsIntermediate,
|
||||
getPresetModifiedPrompts,
|
||||
} from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { getBoardField, getIsIntermediate, getSDXLStylePrompts } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import type { ImageDTO, Invocation, NonNullableGraph } from 'services/api/types';
|
||||
import { isNonRefinerMainModelConfig } from 'services/api/types';
|
||||
|
||||
@@ -55,6 +51,7 @@ export const buildCanvasSDXLImageToImageGraph = async (
|
||||
seamlessYAxis,
|
||||
img2imgStrength: strength,
|
||||
} = state.generation;
|
||||
const { positivePrompt, negativePrompt } = state.controlLayers.present;
|
||||
|
||||
const { refinerModel, refinerStart } = state.sdxl;
|
||||
|
||||
@@ -78,7 +75,7 @@ export const buildCanvasSDXLImageToImageGraph = async (
|
||||
const use_cpu = shouldUseCpuNoise;
|
||||
|
||||
// Construct Style Prompt
|
||||
const { positivePrompt, negativePrompt, positiveStylePrompt, negativeStylePrompt } = getPresetModifiedPrompts(state);
|
||||
const { positiveStylePrompt, negativeStylePrompt } = getSDXLStylePrompts(state);
|
||||
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
|
||||
@@ -19,11 +19,7 @@ import {
|
||||
SDXL_REFINER_SEAMLESS,
|
||||
SEAMLESS,
|
||||
} from 'features/nodes/util/graph/constants';
|
||||
import {
|
||||
getBoardField,
|
||||
getIsIntermediate,
|
||||
getPresetModifiedPrompts,
|
||||
} from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { getBoardField, getIsIntermediate, getSDXLStylePrompts } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import type { ImageDTO, Invocation, NonNullableGraph } from 'services/api/types';
|
||||
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
@@ -62,6 +58,7 @@ export const buildCanvasSDXLInpaintGraph = async (
|
||||
canvasCoherenceEdgeSize,
|
||||
maskBlur,
|
||||
} = state.generation;
|
||||
const { positivePrompt, negativePrompt } = state.controlLayers.present;
|
||||
|
||||
const { refinerModel, refinerStart } = state.sdxl;
|
||||
|
||||
@@ -86,7 +83,7 @@ export const buildCanvasSDXLInpaintGraph = async (
|
||||
const use_cpu = shouldUseCpuNoise;
|
||||
|
||||
// Construct Style Prompt
|
||||
const { positivePrompt, negativePrompt, positiveStylePrompt, negativeStylePrompt } = getPresetModifiedPrompts(state);
|
||||
const { positiveStylePrompt, negativeStylePrompt } = getSDXLStylePrompts(state);
|
||||
|
||||
const graph: NonNullableGraph = {
|
||||
id: SDXL_CANVAS_INPAINT_GRAPH,
|
||||
|
||||
@@ -23,11 +23,7 @@ import {
|
||||
SDXL_REFINER_SEAMLESS,
|
||||
SEAMLESS,
|
||||
} from 'features/nodes/util/graph/constants';
|
||||
import {
|
||||
getBoardField,
|
||||
getIsIntermediate,
|
||||
getPresetModifiedPrompts,
|
||||
} from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { getBoardField, getIsIntermediate, getSDXLStylePrompts } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import type { ImageDTO, Invocation, NonNullableGraph } from 'services/api/types';
|
||||
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
@@ -74,6 +70,7 @@ export const buildCanvasSDXLOutpaintGraph = async (
|
||||
canvasCoherenceEdgeSize,
|
||||
maskBlur,
|
||||
} = state.generation;
|
||||
const { positivePrompt, negativePrompt } = state.controlLayers.present;
|
||||
|
||||
const { refinerModel, refinerStart } = state.sdxl;
|
||||
|
||||
@@ -97,7 +94,7 @@ export const buildCanvasSDXLOutpaintGraph = async (
|
||||
const use_cpu = shouldUseCpuNoise;
|
||||
|
||||
// Construct Style Prompt
|
||||
const { positivePrompt, negativePrompt, positiveStylePrompt, negativeStylePrompt } = getPresetModifiedPrompts(state);
|
||||
const { positiveStylePrompt, negativeStylePrompt } = getSDXLStylePrompts(state);
|
||||
|
||||
const graph: NonNullableGraph = {
|
||||
id: SDXL_CANVAS_OUTPAINT_GRAPH,
|
||||
|
||||
@@ -14,11 +14,7 @@ import {
|
||||
SDXL_REFINER_SEAMLESS,
|
||||
SEAMLESS,
|
||||
} from 'features/nodes/util/graph/constants';
|
||||
import {
|
||||
getBoardField,
|
||||
getIsIntermediate,
|
||||
getPresetModifiedPrompts,
|
||||
} from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { getBoardField, getIsIntermediate, getSDXLStylePrompts } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { isNonRefinerMainModelConfig, type NonNullableGraph } from 'services/api/types';
|
||||
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
@@ -48,6 +44,7 @@ export const buildCanvasSDXLTextToImageGraph = async (state: RootState): Promise
|
||||
seamlessXAxis,
|
||||
seamlessYAxis,
|
||||
} = state.generation;
|
||||
const { positivePrompt, negativePrompt } = state.controlLayers.present;
|
||||
|
||||
// The bounding box determines width and height, not the width and height params
|
||||
const { width, height } = state.canvas.boundingBoxDimensions;
|
||||
@@ -70,7 +67,7 @@ export const buildCanvasSDXLTextToImageGraph = async (state: RootState): Promise
|
||||
let modelLoaderNodeId = SDXL_MODEL_LOADER;
|
||||
|
||||
// Construct Style Prompt
|
||||
const { positivePrompt, negativePrompt, positiveStylePrompt, negativeStylePrompt } = getPresetModifiedPrompts(state);
|
||||
const { positiveStylePrompt, negativeStylePrompt } = getSDXLStylePrompts(state);
|
||||
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
|
||||
@@ -14,11 +14,7 @@ import {
|
||||
POSITIVE_CONDITIONING,
|
||||
SEAMLESS,
|
||||
} from 'features/nodes/util/graph/constants';
|
||||
import {
|
||||
getBoardField,
|
||||
getIsIntermediate,
|
||||
getPresetModifiedPrompts,
|
||||
} from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { getBoardField, getIsIntermediate } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { isNonRefinerMainModelConfig, type NonNullableGraph } from 'services/api/types';
|
||||
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
@@ -48,6 +44,7 @@ export const buildCanvasTextToImageGraph = async (state: RootState): Promise<Non
|
||||
seamlessXAxis,
|
||||
seamlessYAxis,
|
||||
} = state.generation;
|
||||
const { positivePrompt, negativePrompt } = state.controlLayers.present;
|
||||
|
||||
// The bounding box determines width and height, not the width and height params
|
||||
const { width, height } = state.canvas.boundingBoxDimensions;
|
||||
@@ -67,8 +64,6 @@ export const buildCanvasTextToImageGraph = async (state: RootState): Promise<Non
|
||||
|
||||
let modelLoaderNodeId = MAIN_MODEL_LOADER;
|
||||
|
||||
const { positivePrompt, negativePrompt } = getPresetModifiedPrompts(state);
|
||||
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
||||
|
||||
@@ -22,7 +22,7 @@ import { addSeamless } from 'features/nodes/util/graph/generation/addSeamless';
|
||||
import { addWatermarker } from 'features/nodes/util/graph/generation/addWatermarker';
|
||||
import type { GraphType } from 'features/nodes/util/graph/generation/Graph';
|
||||
import { Graph } from 'features/nodes/util/graph/generation/Graph';
|
||||
import { getBoardField, getPresetModifiedPrompts } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { getBoardField } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import type { Invocation } from 'services/api/types';
|
||||
import { isNonRefinerMainModelConfig } from 'services/api/types';
|
||||
import { assert } from 'tsafe';
|
||||
@@ -40,12 +40,11 @@ export const buildGenerationTabGraph = async (state: RootState): Promise<GraphTy
|
||||
seed,
|
||||
vae,
|
||||
} = state.generation;
|
||||
const { positivePrompt, negativePrompt } = state.controlLayers.present;
|
||||
const { width, height } = state.controlLayers.present.size;
|
||||
|
||||
assert(model, 'No model found in state');
|
||||
|
||||
const { positivePrompt, negativePrompt } = getPresetModifiedPrompts(state);
|
||||
|
||||
const g = new Graph(CONTROL_LAYERS_GRAPH);
|
||||
const modelLoader = g.addNode({
|
||||
type: 'main_model_loader',
|
||||
|
||||
@@ -19,7 +19,7 @@ import { addSDXLRefiner } from 'features/nodes/util/graph/generation/addSDXLRefi
|
||||
import { addSeamless } from 'features/nodes/util/graph/generation/addSeamless';
|
||||
import { addWatermarker } from 'features/nodes/util/graph/generation/addWatermarker';
|
||||
import { Graph } from 'features/nodes/util/graph/generation/Graph';
|
||||
import { getBoardField, getPresetModifiedPrompts } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { getBoardField, getSDXLStylePrompts } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import type { Invocation, NonNullableGraph } from 'services/api/types';
|
||||
import { isNonRefinerMainModelConfig } from 'services/api/types';
|
||||
import { assert } from 'tsafe';
|
||||
@@ -36,13 +36,14 @@ export const buildGenerationTabSDXLGraph = async (state: RootState): Promise<Non
|
||||
vaePrecision,
|
||||
vae,
|
||||
} = state.generation;
|
||||
const { positivePrompt, negativePrompt } = state.controlLayers.present;
|
||||
const { width, height } = state.controlLayers.present.size;
|
||||
|
||||
const { refinerModel, refinerStart } = state.sdxl;
|
||||
|
||||
assert(model, 'No model found in state');
|
||||
|
||||
const { positivePrompt, negativePrompt, positiveStylePrompt, negativeStylePrompt } = getPresetModifiedPrompts(state);
|
||||
const { positiveStylePrompt, negativeStylePrompt } = getSDXLStylePrompts(state);
|
||||
|
||||
const g = new Graph(SDXL_CONTROL_LAYERS_GRAPH);
|
||||
const modelLoader = g.addNode({
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
import type { RootState } from 'app/store/store';
|
||||
import type { BoardField } from 'features/nodes/types/common';
|
||||
import { buildPresetModifiedPrompt } from 'features/stylePresets/hooks/usePresetModifiedPrompts';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { stylePresetsApi } from 'services/api/endpoints/stylePresets';
|
||||
|
||||
/**
|
||||
* Gets the board field, based on the autoAddBoardId setting.
|
||||
@@ -16,43 +14,13 @@ export const getBoardField = (state: RootState): BoardField | undefined => {
|
||||
};
|
||||
|
||||
/**
|
||||
* Gets the prompts, modified for the active style preset.
|
||||
* Gets the SDXL style prompts, based on the concat setting.
|
||||
*/
|
||||
export const getPresetModifiedPrompts = (
|
||||
state: RootState
|
||||
): { positivePrompt: string; negativePrompt: string; positiveStylePrompt?: string; negativeStylePrompt?: string } => {
|
||||
export const getSDXLStylePrompts = (state: RootState): { positiveStylePrompt: string; negativeStylePrompt: string } => {
|
||||
const { positivePrompt, negativePrompt, positivePrompt2, negativePrompt2, shouldConcatPrompts } =
|
||||
state.controlLayers.present;
|
||||
const { activeStylePresetId } = state.stylePreset;
|
||||
|
||||
if (activeStylePresetId) {
|
||||
const { data } = stylePresetsApi.endpoints.listStylePresets.select()(state);
|
||||
|
||||
const activeStylePreset = data?.find((item) => item.id === activeStylePresetId);
|
||||
|
||||
if (activeStylePreset) {
|
||||
const presetModifiedPositivePrompt = buildPresetModifiedPrompt(
|
||||
activeStylePreset.preset_data.positive_prompt,
|
||||
positivePrompt
|
||||
);
|
||||
|
||||
const presetModifiedNegativePrompt = buildPresetModifiedPrompt(
|
||||
activeStylePreset.preset_data.negative_prompt,
|
||||
negativePrompt
|
||||
);
|
||||
|
||||
return {
|
||||
positivePrompt: presetModifiedPositivePrompt,
|
||||
negativePrompt: presetModifiedNegativePrompt,
|
||||
positiveStylePrompt: shouldConcatPrompts ? presetModifiedPositivePrompt : positivePrompt2,
|
||||
negativeStylePrompt: shouldConcatPrompts ? presetModifiedNegativePrompt : negativePrompt2,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
positiveStylePrompt: shouldConcatPrompts ? positivePrompt : positivePrompt2,
|
||||
negativeStylePrompt: shouldConcatPrompts ? negativePrompt : negativePrompt2,
|
||||
};
|
||||
|
||||
@@ -1,32 +1,16 @@
|
||||
import { Box, Textarea } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { negativePromptChanged } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { PromptLabel } from 'features/parameters/components/Prompts/PromptLabel';
|
||||
import { PromptOverlayButtonWrapper } from 'features/parameters/components/Prompts/PromptOverlayButtonWrapper';
|
||||
import { ViewModePrompt } from 'features/parameters/components/Prompts/ViewModePrompt';
|
||||
import { AddPromptTriggerButton } from 'features/prompt/AddPromptTriggerButton';
|
||||
import { PromptPopover } from 'features/prompt/PromptPopover';
|
||||
import { usePrompt } from 'features/prompt/usePrompt';
|
||||
import { memo, useCallback, useRef } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useListStylePresetsQuery } from 'services/api/endpoints/stylePresets';
|
||||
|
||||
export const ParamNegativePrompt = memo(() => {
|
||||
const dispatch = useAppDispatch();
|
||||
const prompt = useAppSelector((s) => s.controlLayers.present.negativePrompt);
|
||||
const viewMode = useAppSelector((s) => s.stylePreset.viewMode);
|
||||
const activeStylePresetId = useAppSelector((s) => s.stylePreset.activeStylePresetId);
|
||||
|
||||
const { activeStylePreset } = useListStylePresetsQuery(undefined, {
|
||||
selectFromResult: ({ data }) => {
|
||||
let activeStylePreset = null;
|
||||
if (data) {
|
||||
activeStylePreset = data.find((sp) => sp.id === activeStylePresetId);
|
||||
}
|
||||
return { activeStylePreset };
|
||||
},
|
||||
});
|
||||
|
||||
const textareaRef = useRef<HTMLTextAreaElement>(null);
|
||||
const { t } = useTranslation();
|
||||
const _onChange = useCallback(
|
||||
@@ -43,34 +27,22 @@ export const ParamNegativePrompt = memo(() => {
|
||||
|
||||
return (
|
||||
<PromptPopover isOpen={isOpen} onClose={onClose} onSelect={onSelect} width={textareaRef.current?.clientWidth}>
|
||||
<Box pos="relative" w="full">
|
||||
<Box pos="relative">
|
||||
<Textarea
|
||||
id="negativePrompt"
|
||||
name="negativePrompt"
|
||||
ref={textareaRef}
|
||||
value={prompt}
|
||||
placeholder={t('parameters.globalNegativePromptPlaceholder')}
|
||||
onChange={onChange}
|
||||
onKeyDown={onKeyDown}
|
||||
fontSize="sm"
|
||||
variant="darkFilled"
|
||||
minH={28}
|
||||
borderTopWidth={24} // This prevents the prompt from being hidden behind the header
|
||||
paddingInlineEnd={10}
|
||||
paddingInlineStart={3}
|
||||
paddingTop={0}
|
||||
paddingBottom={3}
|
||||
paddingRight={30}
|
||||
/>
|
||||
<PromptOverlayButtonWrapper>
|
||||
<AddPromptTriggerButton isOpen={isOpen} onOpen={onOpen} />
|
||||
</PromptOverlayButtonWrapper>
|
||||
<PromptLabel label={t('parameters.negativePromptPlaceholder')} />
|
||||
{viewMode && (
|
||||
<ViewModePrompt
|
||||
prompt={prompt}
|
||||
presetPrompt={activeStylePreset?.preset_data.negative_prompt || ''}
|
||||
label={`${t('parameters.negativePromptPlaceholder')} (${t('stylePresets.preview')})`}
|
||||
/>
|
||||
)}
|
||||
</Box>
|
||||
</PromptPopover>
|
||||
);
|
||||
|
||||