Compare commits

..

14 Commits

Author SHA1 Message Date
Ryan Dick
a8a2fc106d Make quantized loading fast for both T5XXL and FLUX transformer. 2024-08-09 19:54:09 +00:00
Ryan Dick
d23ad1818d Make quantized loading fast. 2024-08-09 16:39:43 +00:00
Ryan Dick
4181ab654b WIP - experimentation 2024-08-09 16:23:37 +00:00
Ryan Dick
1c97360f9f Make float16 inference work with FLUX on 24GB GPU. 2024-08-08 18:12:04 -04:00
Ryan Dick
74d6fceeb6 Add support for 8-bit quantizatino of the FLUX T5XXL text encoder. 2024-08-08 18:23:20 +00:00
Ryan Dick
766ddc18dc Make 8-bit quantization save/reload work for the FLUX transformer. Reload is still very slow with the current optimum.quanto implementation. 2024-08-08 16:40:11 +00:00
Ryan Dick
e6ff7488a1 Minor improvements to FLUX workflow. 2024-08-07 22:10:09 +00:00
Ryan Dick
89a652cfcd Got FLUX schnell working with 8-bit quantization. Still lots of rough edges to clean up. 2024-08-07 19:50:03 +00:00
Ryan Dick
b227b9059d Use the FluxPipeline.encode_prompt() api rather than trying to run the two text encoders separately. 2024-08-07 15:12:01 +00:00
Ryan Dick
3599a4a3e4 Add sentencepiece dependency for the T5 tokenizer. 2024-08-07 14:18:19 +00:00
Ryan Dick
5dd619e137 First draft of FluxTextToImageInvocation. 2024-08-06 21:51:22 +00:00
Ryan Dick
7d447cbb88 Update HF download logic to work for black-forest-labs/FLUX.1-schnell. 2024-08-06 19:34:49 +00:00
Ryan Dick
3bbba7e4b1 Update imports for compatibility with bumped diffusers version. 2024-08-06 17:56:36 +00:00
Ryan Dick
b1845019fe Bump diffusers version to include FLUX support. 2024-08-06 11:52:05 -04:00
135 changed files with 21359 additions and 23616 deletions

View File

@@ -62,7 +62,7 @@ jobs:
- name: install ruff
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: pip install ruff==0.6.0
run: pip install ruff
shell: bash
- name: ruff check

View File

@@ -17,7 +17,7 @@
set -eu
# Ensure we're in the correct folder in case user's CWD is somewhere else
scriptdir=$(dirname $(readlink -f "$0"))
scriptdir=$(dirname "$0")
cd "$scriptdir"
. .venv/bin/activate

View File

@@ -1,6 +1,5 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import asyncio
from logging import Logger
import torch
@@ -32,8 +31,6 @@ from invokeai.app.services.session_processor.session_processor_default import (
)
from invokeai.app.services.session_queue.session_queue_sqlite import SqliteSessionQueue
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
from invokeai.app.services.style_preset_images.style_preset_images_disk import StylePresetImageFileStorageDisk
from invokeai.app.services.style_preset_records.style_preset_records_sqlite import SqliteStylePresetRecordsStorage
from invokeai.app.services.urls.urls_default import LocalUrlService
from invokeai.app.services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
@@ -66,12 +63,7 @@ class ApiDependencies:
invoker: Invoker
@staticmethod
def initialize(
config: InvokeAIAppConfig,
event_handler_id: int,
loop: asyncio.AbstractEventLoop,
logger: Logger = logger,
) -> None:
def initialize(config: InvokeAIAppConfig, event_handler_id: int, logger: Logger = logger) -> None:
logger.info(f"InvokeAI version {__version__}")
logger.info(f"Root directory = {str(config.root_path)}")
@@ -82,7 +74,6 @@ class ApiDependencies:
image_files = DiskImageFileStorage(f"{output_folder}/images")
model_images_folder = config.models_path
style_presets_folder = config.style_presets_path
db = init_db(config=config, logger=logger, image_files=image_files)
@@ -93,7 +84,7 @@ class ApiDependencies:
board_images = BoardImagesService()
board_records = SqliteBoardRecordStorage(db=db)
boards = BoardService()
events = FastAPIEventService(event_handler_id, loop=loop)
events = FastAPIEventService(event_handler_id)
bulk_download = BulkDownloadService()
image_records = SqliteImageRecordStorage(db=db)
images = ImageService()
@@ -118,8 +109,6 @@ class ApiDependencies:
session_queue = SqliteSessionQueue(db=db)
urls = LocalUrlService()
workflow_records = SqliteWorkflowRecordsStorage(db=db)
style_preset_records = SqliteStylePresetRecordsStorage(db=db)
style_preset_image_files = StylePresetImageFileStorageDisk(style_presets_folder / "images")
services = InvocationServices(
board_image_records=board_image_records,
@@ -145,8 +134,6 @@ class ApiDependencies:
workflow_records=workflow_records,
tensors=tensors,
conditioning=conditioning,
style_preset_records=style_preset_records,
style_preset_image_files=style_preset_image_files,
)
ApiDependencies.invoker = Invoker(services)

View File

@@ -218,8 +218,9 @@ async def get_image_workflow(
raise HTTPException(status_code=404)
@images_router.get(
@images_router.api_route(
"/i/{image_name}/full",
methods=["GET", "HEAD"],
operation_id="get_image_full",
response_class=Response,
responses={
@@ -230,18 +231,6 @@ async def get_image_workflow(
404: {"description": "Image not found"},
},
)
@images_router.head(
"/i/{image_name}/full",
operation_id="get_image_full_head",
response_class=Response,
responses={
200: {
"description": "Return the full-resolution image",
"content": {"image/png": {}},
},
404: {"description": "Image not found"},
},
)
async def get_image_full(
image_name: str = Path(description="The name of full-resolution image file to get"),
) -> Response:
@@ -253,7 +242,6 @@ async def get_image_full(
content = f.read()
response = Response(content, media_type="image/png")
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
response.headers["Content-Disposition"] = f'inline; filename="{image_name}"'
return response
except Exception:
raise HTTPException(status_code=404)

View File

@@ -1,276 +0,0 @@
import csv
import io
import json
import traceback
from typing import Optional
import pydantic
from fastapi import APIRouter, File, Form, HTTPException, Path, Response, UploadFile
from fastapi.responses import FileResponse
from PIL import Image
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.api.routers.model_manager import IMAGE_MAX_AGE
from invokeai.app.services.style_preset_images.style_preset_images_common import StylePresetImageFileNotFoundException
from invokeai.app.services.style_preset_records.style_preset_records_common import (
InvalidPresetImportDataError,
PresetData,
PresetType,
StylePresetChanges,
StylePresetNotFoundError,
StylePresetRecordWithImage,
StylePresetWithoutId,
UnsupportedFileTypeError,
parse_presets_from_file,
)
class StylePresetUpdateFormData(BaseModel):
name: str = Field(description="Preset name")
positive_prompt: str = Field(description="Positive prompt")
negative_prompt: str = Field(description="Negative prompt")
class StylePresetCreateFormData(StylePresetUpdateFormData):
type: PresetType = Field(description="Preset type")
style_presets_router = APIRouter(prefix="/v1/style_presets", tags=["style_presets"])
@style_presets_router.get(
"/i/{style_preset_id}",
operation_id="get_style_preset",
responses={
200: {"model": StylePresetRecordWithImage},
},
)
async def get_style_preset(
style_preset_id: str = Path(description="The style preset to get"),
) -> StylePresetRecordWithImage:
"""Gets a style preset"""
try:
image = ApiDependencies.invoker.services.style_preset_image_files.get_url(style_preset_id)
style_preset = ApiDependencies.invoker.services.style_preset_records.get(style_preset_id)
return StylePresetRecordWithImage(image=image, **style_preset.model_dump())
except StylePresetNotFoundError:
raise HTTPException(status_code=404, detail="Style preset not found")
@style_presets_router.patch(
"/i/{style_preset_id}",
operation_id="update_style_preset",
responses={
200: {"model": StylePresetRecordWithImage},
},
)
async def update_style_preset(
image: Optional[UploadFile] = File(description="The image file to upload", default=None),
style_preset_id: str = Path(description="The id of the style preset to update"),
data: str = Form(description="The data of the style preset to update"),
) -> StylePresetRecordWithImage:
"""Updates a style preset"""
if image is not None:
if not image.content_type or not image.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
contents = await image.read()
try:
pil_image = Image.open(io.BytesIO(contents))
except Exception:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail="Failed to read image")
try:
ApiDependencies.invoker.services.style_preset_image_files.save(style_preset_id, pil_image)
except ValueError as e:
raise HTTPException(status_code=409, detail=str(e))
else:
try:
ApiDependencies.invoker.services.style_preset_image_files.delete(style_preset_id)
except StylePresetImageFileNotFoundException:
pass
try:
parsed_data = json.loads(data)
validated_data = StylePresetUpdateFormData(**parsed_data)
name = validated_data.name
positive_prompt = validated_data.positive_prompt
negative_prompt = validated_data.negative_prompt
except pydantic.ValidationError:
raise HTTPException(status_code=400, detail="Invalid preset data")
preset_data = PresetData(positive_prompt=positive_prompt, negative_prompt=negative_prompt)
changes = StylePresetChanges(name=name, preset_data=preset_data)
style_preset_image = ApiDependencies.invoker.services.style_preset_image_files.get_url(style_preset_id)
style_preset = ApiDependencies.invoker.services.style_preset_records.update(
style_preset_id=style_preset_id, changes=changes
)
return StylePresetRecordWithImage(image=style_preset_image, **style_preset.model_dump())
@style_presets_router.delete(
"/i/{style_preset_id}",
operation_id="delete_style_preset",
)
async def delete_style_preset(
style_preset_id: str = Path(description="The style preset to delete"),
) -> None:
"""Deletes a style preset"""
try:
ApiDependencies.invoker.services.style_preset_image_files.delete(style_preset_id)
except StylePresetImageFileNotFoundException:
pass
ApiDependencies.invoker.services.style_preset_records.delete(style_preset_id)
@style_presets_router.post(
"/",
operation_id="create_style_preset",
responses={
200: {"model": StylePresetRecordWithImage},
},
)
async def create_style_preset(
image: Optional[UploadFile] = File(description="The image file to upload", default=None),
data: str = Form(description="The data of the style preset to create"),
) -> StylePresetRecordWithImage:
"""Creates a style preset"""
try:
parsed_data = json.loads(data)
validated_data = StylePresetCreateFormData(**parsed_data)
name = validated_data.name
type = validated_data.type
positive_prompt = validated_data.positive_prompt
negative_prompt = validated_data.negative_prompt
except pydantic.ValidationError:
raise HTTPException(status_code=400, detail="Invalid preset data")
preset_data = PresetData(positive_prompt=positive_prompt, negative_prompt=negative_prompt)
style_preset = StylePresetWithoutId(name=name, preset_data=preset_data, type=type)
new_style_preset = ApiDependencies.invoker.services.style_preset_records.create(style_preset=style_preset)
if image is not None:
if not image.content_type or not image.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
contents = await image.read()
try:
pil_image = Image.open(io.BytesIO(contents))
except Exception:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail="Failed to read image")
try:
ApiDependencies.invoker.services.style_preset_image_files.save(new_style_preset.id, pil_image)
except ValueError as e:
raise HTTPException(status_code=409, detail=str(e))
preset_image = ApiDependencies.invoker.services.style_preset_image_files.get_url(new_style_preset.id)
return StylePresetRecordWithImage(image=preset_image, **new_style_preset.model_dump())
@style_presets_router.get(
"/",
operation_id="list_style_presets",
responses={
200: {"model": list[StylePresetRecordWithImage]},
},
)
async def list_style_presets() -> list[StylePresetRecordWithImage]:
"""Gets a page of style presets"""
style_presets_with_image: list[StylePresetRecordWithImage] = []
style_presets = ApiDependencies.invoker.services.style_preset_records.get_many()
for preset in style_presets:
image = ApiDependencies.invoker.services.style_preset_image_files.get_url(preset.id)
style_preset_with_image = StylePresetRecordWithImage(image=image, **preset.model_dump())
style_presets_with_image.append(style_preset_with_image)
return style_presets_with_image
@style_presets_router.get(
"/i/{style_preset_id}/image",
operation_id="get_style_preset_image",
responses={
200: {
"description": "The style preset image was fetched successfully",
},
400: {"description": "Bad request"},
404: {"description": "The style preset image could not be found"},
},
status_code=200,
)
async def get_style_preset_image(
style_preset_id: str = Path(description="The id of the style preset image to get"),
) -> FileResponse:
"""Gets an image file that previews the model"""
try:
path = ApiDependencies.invoker.services.style_preset_image_files.get_path(style_preset_id)
response = FileResponse(
path,
media_type="image/png",
filename=style_preset_id + ".png",
content_disposition_type="inline",
)
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
return response
except Exception:
raise HTTPException(status_code=404)
@style_presets_router.get(
"/export",
operation_id="export_style_presets",
responses={200: {"content": {"text/csv": {}}, "description": "A CSV file with the requested data."}},
status_code=200,
)
async def export_style_presets():
# Create an in-memory stream to store the CSV data
output = io.StringIO()
writer = csv.writer(output)
# Write the header
writer.writerow(["name", "prompt", "negative_prompt"])
style_presets = ApiDependencies.invoker.services.style_preset_records.get_many(type=PresetType.User)
for preset in style_presets:
writer.writerow([preset.name, preset.preset_data.positive_prompt, preset.preset_data.negative_prompt])
csv_data = output.getvalue()
output.close()
return Response(
content=csv_data,
media_type="text/csv",
headers={"Content-Disposition": "attachment; filename=prompt_templates.csv"},
)
@style_presets_router.post(
"/import",
operation_id="import_style_presets",
)
async def import_style_presets(file: UploadFile = File(description="The file to import")):
try:
style_presets = await parse_presets_from_file(file)
ApiDependencies.invoker.services.style_preset_records.create_many(style_presets)
except InvalidPresetImportDataError as e:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=400, detail=str(e))
except UnsupportedFileTypeError as e:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail=str(e))

View File

@@ -30,7 +30,6 @@ from invokeai.app.api.routers import (
images,
model_manager,
session_queue,
style_presets,
utilities,
workflows,
)
@@ -56,13 +55,11 @@ mimetypes.add_type("text/css", ".css")
torch_device_name = TorchDevice.get_torch_device_name()
logger.info(f"Using torch device: {torch_device_name}")
loop = asyncio.new_event_loop()
@asynccontextmanager
async def lifespan(app: FastAPI):
# Add startup event to load dependencies
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, loop=loop, logger=logger)
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger)
yield
# Shut down threads
ApiDependencies.shutdown()
@@ -109,7 +106,6 @@ app.include_router(board_images.board_images_router, prefix="/api")
app.include_router(app_info.app_router, prefix="/api")
app.include_router(session_queue.session_queue_router, prefix="/api")
app.include_router(workflows.workflows_router, prefix="/api")
app.include_router(style_presets.style_presets_router, prefix="/api")
app.openapi = get_openapi_func(app)
@@ -188,6 +184,8 @@ def invoke_api() -> None:
check_cudnn(logger)
# Start our own event loop for eventing usage
loop = asyncio.new_event_loop()
config = uvicorn.Config(
app=app,
host=app_config.host,

View File

@@ -21,8 +21,6 @@ from controlnet_aux import (
from controlnet_aux.util import HWC3, ade_palette
from PIL import Image
from pydantic import BaseModel, Field, field_validator, model_validator
from transformers import pipeline
from transformers.pipelines import DepthEstimationPipeline
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
@@ -46,12 +44,13 @@ from invokeai.app.invocations.util import validate_begin_end_step, validate_weig
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
from invokeai.backend.image_util.canny import get_canny_edges
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.backend.image_util.depth_anything import DEPTH_ANYTHING_MODELS, DepthAnythingDetector
from invokeai.backend.image_util.dw_openpose import DWPOSE_MODELS, DWOpenposeDetector
from invokeai.backend.image_util.hed import HEDProcessor
from invokeai.backend.image_util.lineart import LineartProcessor
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
from invokeai.backend.util.devices import TorchDevice
class ControlField(BaseModel):
@@ -593,14 +592,7 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
return color_map
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small", "small_v2"]
# DepthAnything V2 Small model is licensed under Apache 2.0 but not the base and large models.
DEPTH_ANYTHING_MODELS = {
"large": "LiheYoung/depth-anything-large-hf",
"base": "LiheYoung/depth-anything-base-hf",
"small": "LiheYoung/depth-anything-small-hf",
"small_v2": "depth-anything/Depth-Anything-V2-Small-hf",
}
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
@invocation(
@@ -608,33 +600,28 @@ DEPTH_ANYTHING_MODELS = {
title="Depth Anything Processor",
tags=["controlnet", "depth", "depth anything"],
category="controlnet",
version="1.1.3",
version="1.1.2",
)
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a depth map based on the Depth Anything algorithm"""
model_size: DEPTH_ANYTHING_MODEL_SIZES = InputField(
default="small_v2", description="The size of the depth model to use"
default="small", description="The size of the depth model to use"
)
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
def load_depth_anything(model_path: Path):
depth_anything_pipeline = pipeline(model=str(model_path), task="depth-estimation", local_files_only=True)
assert isinstance(depth_anything_pipeline, DepthEstimationPipeline)
return DepthAnythingPipeline(depth_anything_pipeline)
def loader(model_path: Path):
return DepthAnythingDetector.load_model(
model_path, model_size=self.model_size, device=TorchDevice.choose_torch_device()
)
with self._context.models.load_remote_model(
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=load_depth_anything
) as depth_anything_detector:
assert isinstance(depth_anything_detector, DepthAnythingPipeline)
depth_map = depth_anything_detector.generate_depth(image)
# Resizing to user target specified size
new_height = int(image.size[1] * (self.resolution / image.size[0]))
depth_map = depth_map.resize((self.resolution, new_height))
return depth_map
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=loader
) as model:
depth_anything_detector = DepthAnythingDetector(model, TorchDevice.choose_torch_device())
processed_image = depth_anything_detector(image=image, resolution=self.resolution)
return processed_image
@invocation(

View File

@@ -0,0 +1,278 @@
from pathlib import Path
from typing import Literal
import torch
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
from optimum.quanto import qfloat8
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from transformers.models.auto import AutoModelForTextEncoding
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import InputField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.quantization.fast_quantized_diffusion_model import FastQuantizedDiffusersModel
from invokeai.backend.quantization.fast_quantized_transformers_model import FastQuantizedTransformersModel
from invokeai.backend.util.devices import TorchDevice
TFluxModelKeys = Literal["flux-schnell"]
FLUX_MODELS: dict[TFluxModelKeys, str] = {"flux-schnell": "black-forest-labs/FLUX.1-schnell"}
class QuantizedFluxTransformer2DModel(FastQuantizedDiffusersModel):
base_class = FluxTransformer2DModel
class QuantizedModelForTextEncoding(FastQuantizedTransformersModel):
auto_class = AutoModelForTextEncoding
@invocation(
"flux_text_to_image",
title="FLUX Text to Image",
tags=["image"],
category="image",
version="1.0.0",
)
class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Text-to-image generation using a FLUX model."""
model: TFluxModelKeys = InputField(description="The FLUX model to use for text-to-image generation.")
use_8bit: bool = InputField(
default=False, description="Whether to quantize the transformer model to 8-bit precision."
)
positive_prompt: str = InputField(description="Positive prompt for text-to-image generation.")
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
num_steps: int = InputField(default=4, description="Number of diffusion steps.")
guidance: float = InputField(
default=4.0,
description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images.",
)
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
model_path = context.models.download_and_cache_model(FLUX_MODELS[self.model])
t5_embeddings, clip_embeddings = self._encode_prompt(context, model_path)
latents = self._run_diffusion(context, model_path, clip_embeddings, t5_embeddings)
image = self._run_vae_decoding(context, model_path, latents)
image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto)
def _encode_prompt(self, context: InvocationContext, flux_model_dir: Path) -> tuple[torch.Tensor, torch.Tensor]:
# Determine the T5 max sequence length based on the model.
if self.model == "flux-schnell":
max_seq_len = 256
# elif self.model == "flux-dev":
# max_seq_len = 512
else:
raise ValueError(f"Unknown model: {self.model}")
# Load the CLIP tokenizer.
clip_tokenizer_path = flux_model_dir / "tokenizer"
clip_tokenizer = CLIPTokenizer.from_pretrained(clip_tokenizer_path, local_files_only=True)
assert isinstance(clip_tokenizer, CLIPTokenizer)
# Load the T5 tokenizer.
t5_tokenizer_path = flux_model_dir / "tokenizer_2"
t5_tokenizer = T5TokenizerFast.from_pretrained(t5_tokenizer_path, local_files_only=True)
assert isinstance(t5_tokenizer, T5TokenizerFast)
clip_text_encoder_path = flux_model_dir / "text_encoder"
t5_text_encoder_path = flux_model_dir / "text_encoder_2"
with (
context.models.load_local_model(
model_path=clip_text_encoder_path, loader=self._load_flux_text_encoder
) as clip_text_encoder,
context.models.load_local_model(
model_path=t5_text_encoder_path, loader=self._load_flux_text_encoder_2
) as t5_text_encoder,
):
assert isinstance(clip_text_encoder, CLIPTextModel)
assert isinstance(t5_text_encoder, T5EncoderModel)
pipeline = FluxPipeline(
scheduler=None,
vae=None,
text_encoder=clip_text_encoder,
tokenizer=clip_tokenizer,
text_encoder_2=t5_text_encoder,
tokenizer_2=t5_tokenizer,
transformer=None,
)
# prompt_embeds: T5 embeddings
# pooled_prompt_embeds: CLIP embeddings
prompt_embeds, pooled_prompt_embeds, text_ids = pipeline.encode_prompt(
prompt=self.positive_prompt,
prompt_2=self.positive_prompt,
device=TorchDevice.choose_torch_device(),
max_sequence_length=max_seq_len,
)
assert isinstance(prompt_embeds, torch.Tensor)
assert isinstance(pooled_prompt_embeds, torch.Tensor)
return prompt_embeds, pooled_prompt_embeds
def _run_diffusion(
self,
context: InvocationContext,
flux_model_dir: Path,
clip_embeddings: torch.Tensor,
t5_embeddings: torch.Tensor,
):
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(flux_model_dir / "scheduler", local_files_only=True)
# HACK(ryand): Manually empty the cache. Currently we don't check the size of the model before loading it from
# disk. Since the transformer model is large (24GB), there's a good chance that it will OOM on 32GB RAM systems
# if the cache is not empty.
context.models._services.model_manager.load.ram_cache.make_room(24 * 2**30)
transformer_path = flux_model_dir / "transformer"
with context.models.load_local_model(
model_path=transformer_path, loader=self._load_flux_transformer
) as transformer:
assert isinstance(transformer, FluxTransformer2DModel)
flux_pipeline_with_transformer = FluxPipeline(
scheduler=scheduler,
vae=None,
text_encoder=None,
tokenizer=None,
text_encoder_2=None,
tokenizer_2=None,
transformer=transformer,
)
t5_embeddings = t5_embeddings.to(dtype=transformer.dtype)
clip_embeddings = clip_embeddings.to(dtype=transformer.dtype)
latents = flux_pipeline_with_transformer(
height=self.height,
width=self.width,
num_inference_steps=self.num_steps,
guidance_scale=self.guidance,
generator=torch.Generator().manual_seed(self.seed),
prompt_embeds=t5_embeddings,
pooled_prompt_embeds=clip_embeddings,
output_type="latent",
return_dict=False,
)[0]
assert isinstance(latents, torch.Tensor)
return latents
def _run_vae_decoding(
self,
context: InvocationContext,
flux_model_dir: Path,
latents: torch.Tensor,
) -> Image.Image:
vae_path = flux_model_dir / "vae"
with context.models.load_local_model(model_path=vae_path, loader=self._load_flux_vae) as vae:
assert isinstance(vae, AutoencoderKL)
flux_pipeline_with_vae = FluxPipeline(
scheduler=None,
vae=vae,
text_encoder=None,
tokenizer=None,
text_encoder_2=None,
tokenizer_2=None,
transformer=None,
)
latents = flux_pipeline_with_vae._unpack_latents(
latents, self.height, self.width, flux_pipeline_with_vae.vae_scale_factor
)
latents = (
latents / flux_pipeline_with_vae.vae.config.scaling_factor
) + flux_pipeline_with_vae.vae.config.shift_factor
latents = latents.to(dtype=vae.dtype)
image = flux_pipeline_with_vae.vae.decode(latents, return_dict=False)[0]
image = flux_pipeline_with_vae.image_processor.postprocess(image, output_type="pil")[0]
assert isinstance(image, Image.Image)
return image
@staticmethod
def _load_flux_text_encoder(path: Path) -> CLIPTextModel:
model = CLIPTextModel.from_pretrained(path, local_files_only=True)
assert isinstance(model, CLIPTextModel)
return model
def _load_flux_text_encoder_2(self, path: Path) -> T5EncoderModel:
if self.use_8bit:
model_8bit_path = path / "quantized"
if model_8bit_path.exists():
# The quantized model exists, load it.
# TODO(ryand): The requantize(...) operation in from_pretrained(...) is very slow. This seems like
# something that we should be able to make much faster.
q_model = QuantizedModelForTextEncoding.from_pretrained(model_8bit_path)
# Access the underlying wrapped model.
# We access the wrapped model, even though it is private, because it simplifies the type checking by
# always returning a T5EncoderModel from this function.
model = q_model._wrapped
else:
# The quantized model does not exist yet, quantize and save it.
# TODO(ryand): dtype?
model = T5EncoderModel.from_pretrained(path, local_files_only=True)
assert isinstance(model, T5EncoderModel)
q_model = QuantizedModelForTextEncoding.quantize(model, weights=qfloat8)
model_8bit_path.mkdir(parents=True, exist_ok=True)
q_model.save_pretrained(model_8bit_path)
# (See earlier comment about accessing the wrapped model.)
model = q_model._wrapped
else:
model = T5EncoderModel.from_pretrained(path, local_files_only=True)
assert isinstance(model, T5EncoderModel)
return model
def _load_flux_transformer(self, path: Path) -> FluxTransformer2DModel:
if self.use_8bit:
model_8bit_path = path / "quantized"
if model_8bit_path.exists():
# The quantized model exists, load it.
# TODO(ryand): The requantize(...) operation in from_pretrained(...) is very slow. This seems like
# something that we should be able to make much faster.
q_model = QuantizedFluxTransformer2DModel.from_pretrained(model_8bit_path)
# Access the underlying wrapped model.
# We access the wrapped model, even though it is private, because it simplifies the type checking by
# always returning a FluxTransformer2DModel from this function.
model = q_model._wrapped
else:
# The quantized model does not exist yet, quantize and save it.
# TODO(ryand): Loading in float16 and then quantizing seems to result in NaNs. In order to run this on
# GPUs that don't support bfloat16, we would need to host the quantized model instead of generating it
# here.
model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True, torch_dtype=torch.bfloat16)
assert isinstance(model, FluxTransformer2DModel)
q_model = QuantizedFluxTransformer2DModel.quantize(model, weights=qfloat8)
model_8bit_path.mkdir(parents=True, exist_ok=True)
q_model.save_pretrained(model_8bit_path)
# (See earlier comment about accessing the wrapped model.)
model = q_model._wrapped
else:
model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True, torch_dtype=torch.bfloat16)
assert isinstance(model, FluxTransformer2DModel)
return model
@staticmethod
def _load_flux_vae(path: Path) -> AutoencoderKL:
model = AutoencoderKL.from_pretrained(path, local_files_only=True)
assert isinstance(model, AutoencoderKL)
return model

View File

@@ -91,7 +91,6 @@ class InvokeAIAppConfig(BaseSettings):
db_dir: Path to InvokeAI databases directory.
outputs_dir: Path to directory for outputs.
custom_nodes_dir: Path to directory for custom nodes.
style_presets_dir: Path to directory for style presets.
log_handlers: Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".
log_format: Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style.<br>Valid values: `plain`, `color`, `syslog`, `legacy`
log_level: Emit logging messages at this level or higher.<br>Valid values: `debug`, `info`, `warning`, `error`, `critical`
@@ -154,7 +153,6 @@ class InvokeAIAppConfig(BaseSettings):
db_dir: Path = Field(default=Path("databases"), description="Path to InvokeAI databases directory.")
outputs_dir: Path = Field(default=Path("outputs"), description="Path to directory for outputs.")
custom_nodes_dir: Path = Field(default=Path("nodes"), description="Path to directory for custom nodes.")
style_presets_dir: Path = Field(default=Path("style_presets"), description="Path to directory for style presets.")
# LOGGING
log_handlers: list[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".')
@@ -302,11 +300,6 @@ class InvokeAIAppConfig(BaseSettings):
"""Path to the models directory, resolved to an absolute path.."""
return self._resolve(self.models_dir)
@property
def style_presets_path(self) -> Path:
"""Path to the style presets directory, resolved to an absolute path.."""
return self._resolve(self.style_presets_dir)
@property
def convert_cache_path(self) -> Path:
"""Path to the converted cache models directory, resolved to an absolute path.."""

View File

@@ -1,44 +1,46 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import asyncio
import threading
from queue import Empty, Queue
from fastapi_events.dispatcher import dispatch
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.events.events_common import EventBase
from invokeai.app.services.events.events_common import (
EventBase,
)
class FastAPIEventService(EventServiceBase):
def __init__(self, event_handler_id: int, loop: asyncio.AbstractEventLoop) -> None:
def __init__(self, event_handler_id: int) -> None:
self.event_handler_id = event_handler_id
self._queue = asyncio.Queue[EventBase | None]()
self._queue = Queue[EventBase | None]()
self._stop_event = threading.Event()
self._loop = loop
# We need to store a reference to the task so it doesn't get GC'd
# See: https://docs.python.org/3/library/asyncio-task.html#creating-tasks
self._background_tasks: set[asyncio.Task[None]] = set()
task = self._loop.create_task(self._dispatch_from_queue(stop_event=self._stop_event))
self._background_tasks.add(task)
task.add_done_callback(self._background_tasks.remove)
asyncio.create_task(self._dispatch_from_queue(stop_event=self._stop_event))
super().__init__()
def stop(self, *args, **kwargs):
self._stop_event.set()
self._loop.call_soon_threadsafe(self._queue.put_nowait, None)
self._queue.put(None)
def dispatch(self, event: EventBase) -> None:
self._loop.call_soon_threadsafe(self._queue.put_nowait, event)
self._queue.put(event)
async def _dispatch_from_queue(self, stop_event: threading.Event):
"""Get events on from the queue and dispatch them, from the correct thread"""
while not stop_event.is_set():
try:
event = await self._queue.get()
event = self._queue.get(block=False)
if not event: # Probably stopping
continue
# Leave the payloads as live pydantic models
dispatch(event, middleware_id=self.event_handler_id, payload_schema_dump=False)
except Empty:
await asyncio.sleep(0.1)
pass
except asyncio.CancelledError as e:
raise e # Raise a proper error

View File

@@ -4,8 +4,6 @@ from __future__ import annotations
from typing import TYPE_CHECKING
from invokeai.app.services.object_serializer.object_serializer_base import ObjectSerializerBase
from invokeai.app.services.style_preset_images.style_preset_images_base import StylePresetImageFileStorageBase
from invokeai.app.services.style_preset_records.style_preset_records_base import StylePresetRecordsStorageBase
if TYPE_CHECKING:
from logging import Logger
@@ -63,8 +61,6 @@ class InvocationServices:
workflow_records: "WorkflowRecordsStorageBase",
tensors: "ObjectSerializerBase[torch.Tensor]",
conditioning: "ObjectSerializerBase[ConditioningFieldData]",
style_preset_records: "StylePresetRecordsStorageBase",
style_preset_image_files: "StylePresetImageFileStorageBase",
):
self.board_images = board_images
self.board_image_records = board_image_records
@@ -89,5 +85,3 @@ class InvocationServices:
self.workflow_records = workflow_records
self.tensors = tensors
self.conditioning = conditioning
self.style_preset_records = style_preset_records
self.style_preset_image_files = style_preset_image_files

View File

@@ -16,7 +16,6 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_10 import
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_11 import build_migration_11
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_12 import build_migration_12
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_13 import build_migration_13
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_14 import build_migration_14
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
@@ -50,7 +49,6 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
migrator.register_migration(build_migration_11(app_config=config, logger=logger))
migrator.register_migration(build_migration_12(app_config=config))
migrator.register_migration(build_migration_13())
migrator.register_migration(build_migration_14())
migrator.run_migrations()
return db

View File

@@ -1,61 +0,0 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration14Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._create_style_presets(cursor)
def _create_style_presets(self, cursor: sqlite3.Cursor) -> None:
"""Create the table used to store style presets."""
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS style_presets (
id TEXT NOT NULL PRIMARY KEY,
name TEXT NOT NULL,
preset_data TEXT NOT NULL,
type TEXT NOT NULL DEFAULT "user",
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW'))
);
"""
]
# Add trigger for `updated_at`.
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS style_presets
AFTER UPDATE
ON style_presets FOR EACH ROW
BEGIN
UPDATE style_presets SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE id = old.id;
END;
"""
]
# Add indexes for searchable fields
indices = [
"CREATE INDEX IF NOT EXISTS idx_style_presets_name ON style_presets(name);",
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def build_migration_14() -> Migration:
"""
Build the migration from database version 13 to 14..
This migration does the following:
- Create the table used to store style presets.
"""
migration_14 = Migration(
from_version=13,
to_version=14,
callback=Migration14Callback(),
)
return migration_14

Binary file not shown.

Before

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 122 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 123 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 160 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 146 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 119 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 117 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 156 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 141 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 96 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 88 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 132 KiB

View File

@@ -1,33 +0,0 @@
from abc import ABC, abstractmethod
from pathlib import Path
from PIL.Image import Image as PILImageType
class StylePresetImageFileStorageBase(ABC):
"""Low-level service responsible for storing and retrieving image files."""
@abstractmethod
def get(self, style_preset_id: str) -> PILImageType:
"""Retrieves a style preset image as PIL Image."""
pass
@abstractmethod
def get_path(self, style_preset_id: str) -> Path:
"""Gets the internal path to a style preset image."""
pass
@abstractmethod
def get_url(self, style_preset_id: str) -> str | None:
"""Gets the URL to fetch a style preset image."""
pass
@abstractmethod
def save(self, style_preset_id: str, image: PILImageType) -> None:
"""Saves a style preset image."""
pass
@abstractmethod
def delete(self, style_preset_id: str) -> None:
"""Deletes a style preset image."""
pass

View File

@@ -1,19 +0,0 @@
class StylePresetImageFileNotFoundException(Exception):
"""Raised when an image file is not found in storage."""
def __init__(self, message: str = "Style preset image file not found"):
super().__init__(message)
class StylePresetImageFileSaveException(Exception):
"""Raised when an image cannot be saved."""
def __init__(self, message: str = "Style preset image file not saved"):
super().__init__(message)
class StylePresetImageFileDeleteException(Exception):
"""Raised when an image cannot be deleted."""
def __init__(self, message: str = "Style preset image file not deleted"):
super().__init__(message)

View File

@@ -1,88 +0,0 @@
from pathlib import Path
from PIL import Image
from PIL.Image import Image as PILImageType
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.style_preset_images.style_preset_images_base import StylePresetImageFileStorageBase
from invokeai.app.services.style_preset_images.style_preset_images_common import (
StylePresetImageFileDeleteException,
StylePresetImageFileNotFoundException,
StylePresetImageFileSaveException,
)
from invokeai.app.services.style_preset_records.style_preset_records_common import PresetType
from invokeai.app.util.misc import uuid_string
from invokeai.app.util.thumbnails import make_thumbnail
class StylePresetImageFileStorageDisk(StylePresetImageFileStorageBase):
"""Stores images on disk"""
def __init__(self, style_preset_images_folder: Path):
self._style_preset_images_folder = style_preset_images_folder
self._validate_storage_folders()
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
def get(self, style_preset_id: str) -> PILImageType:
try:
path = self.get_path(style_preset_id)
return Image.open(path)
except FileNotFoundError as e:
raise StylePresetImageFileNotFoundException from e
def save(self, style_preset_id: str, image: PILImageType) -> None:
try:
self._validate_storage_folders()
image_path = self._style_preset_images_folder / (style_preset_id + ".webp")
thumbnail = make_thumbnail(image, 256)
thumbnail.save(image_path, format="webp")
except Exception as e:
raise StylePresetImageFileSaveException from e
def get_path(self, style_preset_id: str) -> Path:
style_preset = self._invoker.services.style_preset_records.get(style_preset_id)
if style_preset.type is PresetType.Default:
default_images_dir = Path(__file__).parent / Path("default_style_preset_images")
path = default_images_dir / (style_preset.name + ".png")
else:
path = self._style_preset_images_folder / (style_preset_id + ".webp")
return path
def get_url(self, style_preset_id: str) -> str | None:
path = self.get_path(style_preset_id)
if not self._validate_path(path):
return
url = self._invoker.services.urls.get_style_preset_image_url(style_preset_id)
# The image URL never changes, so we must add random query string to it to prevent caching
url += f"?{uuid_string()}"
return url
def delete(self, style_preset_id: str) -> None:
try:
path = self.get_path(style_preset_id)
if not self._validate_path(path):
raise StylePresetImageFileNotFoundException
path.unlink()
except StylePresetImageFileNotFoundException as e:
raise StylePresetImageFileNotFoundException from e
except Exception as e:
raise StylePresetImageFileDeleteException from e
def _validate_path(self, path: Path) -> bool:
"""Validates the path given for an image."""
return path.exists()
def _validate_storage_folders(self) -> None:
"""Checks if the required folders exist and create them if they don't"""
self._style_preset_images_folder.mkdir(parents=True, exist_ok=True)

View File

@@ -1,146 +0,0 @@
[
{
"name": "Photography (General)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}. photography. f/2.8 macro photo, bokeh, photorealism",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Studio Lighting)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}, photography. f/8 photo. centered subject, studio lighting.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Landscape)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}, landscape photograph, f/12, lifelike, highly detailed.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Portrait)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}. photography. portraiture. catch light in eyes. one flash. rembrandt lighting. Soft box. dark shadows. High contrast. 80mm lens. F2.8.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Black and White)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} photography. natural light. 80mm lens. F1.4. strong contrast, hard light. dark contrast. blurred background. black and white",
"negative_prompt": "painting, digital art. sketch, colour+"
}
},
{
"name": "Architectural Visualization",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}. architectural photography, f/12, luxury, aesthetically pleasing form and function.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Concept Art (Fantasy)",
"type": "default",
"preset_data": {
"positive_prompt": "concept artwork of a {prompt}. (digital painterly art style)++, mythological, (textured 2d dry media brushpack)++, glazed brushstrokes, otherworldly. painting+, illustration+",
"negative_prompt": "photo. distorted, blurry, out of focus. sketch. (cgi, 3d.)++"
}
},
{
"name": "Concept Art (Sci-Fi)",
"type": "default",
"preset_data": {
"positive_prompt": "(concept art)++, {prompt}, (sleek futurism)++, (textured 2d dry media)++, metallic highlights, digital painting style",
"negative_prompt": "photo. distorted, blurry, out of focus. sketch. (cgi, 3d.)++"
}
},
{
"name": "Concept Art (Character)",
"type": "default",
"preset_data": {
"positive_prompt": "(character concept art)++, stylized painterly digital painting of {prompt}, (painterly, impasto. Dry brush.)++",
"negative_prompt": "photo. distorted, blurry, out of focus. sketch. (cgi, 3d.)++"
}
},
{
"name": "Concept Art (Painterly)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} oil painting. high contrast. impasto. sfumato. chiaroscuro. Palette knife.",
"negative_prompt": "photo. smooth. border. frame"
}
},
{
"name": "Environment Art",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} environment artwork, hyper-realistic digital painting style with cinematic composition, atmospheric, depth and detail, voluminous. textured dry brush 2d media",
"negative_prompt": "photo, distorted, blurry, out of focus. sketch."
}
},
{
"name": "Interior Design (Visualization)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} interior design photo, gentle shadows, light mid-tones, dimension, mix of smooth and textured surfaces, focus on negative space and clean lines, focus",
"negative_prompt": "photo, distorted. sketch."
}
},
{
"name": "Product Rendering",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} high quality product photography, 3d rendering with key lighting, shallow depth of field, simple plain background, studio lighting.",
"negative_prompt": "blurry, sketch, messy, dirty. unfinished."
}
},
{
"name": "Sketch",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} black and white pencil drawing, off-center composition, cross-hatching for shadows, bold strokes, textured paper. sketch+++",
"negative_prompt": "blurry, photo, painting, color. messy, dirty. unfinished. frame, borders."
}
},
{
"name": "Line Art",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} Line art. bold outline. simplistic. white background. 2d",
"negative_prompt": "photo. digital art. greyscale. solid black. painting"
}
},
{
"name": "Anime",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} anime++, bold outline, cel-shaded coloring, shounen, seinen",
"negative_prompt": "(photo)+++. greyscale. solid black. painting"
}
},
{
"name": "Illustration",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} illustration, bold linework, illustrative details, vector art style, flat coloring",
"negative_prompt": "(photo)+++. greyscale. painting, black and white."
}
},
{
"name": "Vehicles",
"type": "default",
"preset_data": {
"positive_prompt": "A weird futuristic normal auto, {prompt} elegant design, nice color, nice wheels",
"negative_prompt": "sketch. digital art. greyscale. painting"
}
}
]

View File

@@ -1,42 +0,0 @@
from abc import ABC, abstractmethod
from invokeai.app.services.style_preset_records.style_preset_records_common import (
PresetType,
StylePresetChanges,
StylePresetRecordDTO,
StylePresetWithoutId,
)
class StylePresetRecordsStorageBase(ABC):
"""Base class for style preset storage services."""
@abstractmethod
def get(self, style_preset_id: str) -> StylePresetRecordDTO:
"""Get style preset by id."""
pass
@abstractmethod
def create(self, style_preset: StylePresetWithoutId) -> StylePresetRecordDTO:
"""Creates a style preset."""
pass
@abstractmethod
def create_many(self, style_presets: list[StylePresetWithoutId]) -> None:
"""Creates many style presets."""
pass
@abstractmethod
def update(self, style_preset_id: str, changes: StylePresetChanges) -> StylePresetRecordDTO:
"""Updates a style preset."""
pass
@abstractmethod
def delete(self, style_preset_id: str) -> None:
"""Deletes a style preset."""
pass
@abstractmethod
def get_many(self, type: PresetType | None = None) -> list[StylePresetRecordDTO]:
"""Gets many workflows."""
pass

View File

@@ -1,138 +0,0 @@
import codecs
import csv
import json
from enum import Enum
from typing import Any, Optional
import pydantic
from fastapi import UploadFile
from pydantic import AliasChoices, BaseModel, ConfigDict, Field, TypeAdapter
from invokeai.app.util.metaenum import MetaEnum
class StylePresetNotFoundError(Exception):
"""Raised when a style preset is not found"""
class PresetData(BaseModel, extra="forbid"):
positive_prompt: str = Field(description="Positive prompt")
negative_prompt: str = Field(description="Negative prompt")
PresetDataValidator = TypeAdapter(PresetData)
class PresetType(str, Enum, metaclass=MetaEnum):
User = "user"
Default = "default"
Project = "project"
class StylePresetChanges(BaseModel, extra="forbid"):
name: Optional[str] = Field(default=None, description="The style preset's new name.")
preset_data: Optional[PresetData] = Field(default=None, description="The updated data for style preset.")
class StylePresetWithoutId(BaseModel):
name: str = Field(description="The name of the style preset.")
preset_data: PresetData = Field(description="The preset data")
type: PresetType = Field(description="The type of style preset")
class StylePresetRecordDTO(StylePresetWithoutId):
id: str = Field(description="The style preset ID.")
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "StylePresetRecordDTO":
data["preset_data"] = PresetDataValidator.validate_json(data.get("preset_data", ""))
return StylePresetRecordDTOValidator.validate_python(data)
StylePresetRecordDTOValidator = TypeAdapter(StylePresetRecordDTO)
class StylePresetRecordWithImage(StylePresetRecordDTO):
image: Optional[str] = Field(description="The path for image")
class StylePresetImportRow(BaseModel):
name: str = Field(min_length=1, description="The name of the preset.")
positive_prompt: str = Field(
default="",
description="The positive prompt for the preset.",
validation_alias=AliasChoices("positive_prompt", "prompt"),
)
negative_prompt: str = Field(default="", description="The negative prompt for the preset.")
model_config = ConfigDict(str_strip_whitespace=True, extra="forbid")
StylePresetImportList = list[StylePresetImportRow]
StylePresetImportListTypeAdapter = TypeAdapter(StylePresetImportList)
class UnsupportedFileTypeError(ValueError):
"""Raised when an unsupported file type is encountered"""
pass
class InvalidPresetImportDataError(ValueError):
"""Raised when invalid preset import data is encountered"""
pass
async def parse_presets_from_file(file: UploadFile) -> list[StylePresetWithoutId]:
"""Parses style presets from a file. The file must be a CSV or JSON file.
If CSV, the file must have the following columns:
- name
- prompt (or positive_prompt)
- negative_prompt
If JSON, the file must be a list of objects with the following keys:
- name
- prompt (or positive_prompt)
- negative_prompt
Args:
file (UploadFile): The file to parse.
Returns:
list[StylePresetWithoutId]: The parsed style presets.
Raises:
UnsupportedFileTypeError: If the file type is not supported.
InvalidPresetImportDataError: If the data in the file is invalid.
"""
if file.content_type not in ["text/csv", "application/json"]:
raise UnsupportedFileTypeError()
if file.content_type == "text/csv":
csv_reader = csv.DictReader(codecs.iterdecode(file.file, "utf-8"))
data = list(csv_reader)
else: # file.content_type == "application/json":
json_data = await file.read()
data = json.loads(json_data)
try:
imported_presets = StylePresetImportListTypeAdapter.validate_python(data)
style_presets: list[StylePresetWithoutId] = []
for imported in imported_presets:
preset_data = PresetData(positive_prompt=imported.positive_prompt, negative_prompt=imported.negative_prompt)
style_preset = StylePresetWithoutId(name=imported.name, preset_data=preset_data, type=PresetType.User)
style_presets.append(style_preset)
except pydantic.ValidationError as e:
if file.content_type == "text/csv":
msg = "Invalid CSV format: must include columns 'name', 'prompt', and 'negative_prompt' and name cannot be blank"
else: # file.content_type == "application/json":
msg = "Invalid JSON format: must be a list of objects with keys 'name', 'prompt', and 'negative_prompt' and name cannot be blank"
raise InvalidPresetImportDataError(msg) from e
finally:
file.file.close()
return style_presets

View File

@@ -1,215 +0,0 @@
import json
from pathlib import Path
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.services.style_preset_records.style_preset_records_base import StylePresetRecordsStorageBase
from invokeai.app.services.style_preset_records.style_preset_records_common import (
PresetType,
StylePresetChanges,
StylePresetNotFoundError,
StylePresetRecordDTO,
StylePresetWithoutId,
)
from invokeai.app.util.misc import uuid_string
class SqliteStylePresetRecordsStorage(StylePresetRecordsStorageBase):
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._lock = db.lock
self._conn = db.conn
self._cursor = self._conn.cursor()
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
self._sync_default_style_presets()
def get(self, style_preset_id: str) -> StylePresetRecordDTO:
"""Gets a style preset by ID."""
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT *
FROM style_presets
WHERE id = ?;
""",
(style_preset_id,),
)
row = self._cursor.fetchone()
if row is None:
raise StylePresetNotFoundError(f"Style preset with id {style_preset_id} not found")
return StylePresetRecordDTO.from_dict(dict(row))
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
def create(self, style_preset: StylePresetWithoutId) -> StylePresetRecordDTO:
style_preset_id = uuid_string()
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO style_presets (
id,
name,
preset_data,
type
)
VALUES (?, ?, ?, ?);
""",
(
style_preset_id,
style_preset.name,
style_preset.preset_data.model_dump_json(),
style_preset.type,
),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return self.get(style_preset_id)
def create_many(self, style_presets: list[StylePresetWithoutId]) -> None:
style_preset_ids = []
try:
self._lock.acquire()
for style_preset in style_presets:
style_preset_id = uuid_string()
style_preset_ids.append(style_preset_id)
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO style_presets (
id,
name,
preset_data,
type
)
VALUES (?, ?, ?, ?);
""",
(
style_preset_id,
style_preset.name,
style_preset.preset_data.model_dump_json(),
style_preset.type,
),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return None
def update(self, style_preset_id: str, changes: StylePresetChanges) -> StylePresetRecordDTO:
try:
self._lock.acquire()
# Change the name of a style preset
if changes.name is not None:
self._cursor.execute(
"""--sql
UPDATE style_presets
SET name = ?
WHERE id = ?;
""",
(changes.name, style_preset_id),
)
# Change the preset data for a style preset
if changes.preset_data is not None:
self._cursor.execute(
"""--sql
UPDATE style_presets
SET preset_data = ?
WHERE id = ?;
""",
(changes.preset_data.model_dump_json(), style_preset_id),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return self.get(style_preset_id)
def delete(self, style_preset_id: str) -> None:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE from style_presets
WHERE id = ?;
""",
(style_preset_id,),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return None
def get_many(self, type: PresetType | None = None) -> list[StylePresetRecordDTO]:
try:
self._lock.acquire()
main_query = """
SELECT
*
FROM style_presets
"""
if type is not None:
main_query += "WHERE type = ? "
main_query += "ORDER BY LOWER(name) ASC"
if type is not None:
self._cursor.execute(main_query, (type,))
else:
self._cursor.execute(main_query)
rows = self._cursor.fetchall()
style_presets = [StylePresetRecordDTO.from_dict(dict(row)) for row in rows]
return style_presets
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
def _sync_default_style_presets(self) -> None:
"""Syncs default style presets to the database. Internal use only."""
# First delete all existing default style presets
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE FROM style_presets
WHERE type = "default";
"""
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
# Next, parse and create the default style presets
with self._lock, open(Path(__file__).parent / Path("default_style_presets.json"), "r") as file:
presets = json.load(file)
for preset in presets:
style_preset = StylePresetWithoutId.model_validate(preset)
self.create(style_preset)

View File

@@ -13,8 +13,3 @@ class UrlServiceBase(ABC):
def get_model_image_url(self, model_key: str) -> str:
"""Gets the URL for a model image"""
pass
@abstractmethod
def get_style_preset_image_url(self, style_preset_id: str) -> str:
"""Gets the URL for a style preset image"""
pass

View File

@@ -19,6 +19,3 @@ class LocalUrlService(UrlServiceBase):
def get_model_image_url(self, model_key: str) -> str:
return f"{self._base_url_v2}/models/i/{model_key}/image"
def get_style_preset_image_url(self, style_preset_id: str) -> str:
return f"{self._base_url}/style_presets/i/{style_preset_id}/image"

View File

@@ -81,7 +81,7 @@ def get_openapi_func(
# Add the output map to the schema
openapi_schema["components"]["schemas"]["InvocationOutputMap"] = {
"type": "object",
"properties": dict(sorted(invocation_output_map_properties.items())),
"properties": invocation_output_map_properties,
"required": invocation_output_map_required,
}

View File

@@ -0,0 +1,90 @@
from pathlib import Path
from typing import Literal
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from einops import repeat
from PIL import Image
from torchvision.transforms import Compose
from invokeai.app.services.config.config_default import get_config
from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2
from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize
from invokeai.backend.util.logging import InvokeAILogger
config = get_config()
logger = InvokeAILogger.get_logger(config=config)
DEPTH_ANYTHING_MODELS = {
"large": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth?download=true",
"base": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitb14.pth?download=true",
"small": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vits14.pth?download=true",
}
transform = Compose(
[
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
]
)
class DepthAnythingDetector:
def __init__(self, model: DPT_DINOv2, device: torch.device) -> None:
self.model = model
self.device = device
@staticmethod
def load_model(
model_path: Path, device: torch.device, model_size: Literal["large", "base", "small"] = "small"
) -> DPT_DINOv2:
match model_size:
case "small":
model = DPT_DINOv2(encoder="vits", features=64, out_channels=[48, 96, 192, 384])
case "base":
model = DPT_DINOv2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768])
case "large":
model = DPT_DINOv2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024])
model.load_state_dict(torch.load(model_path.as_posix(), map_location="cpu"))
model.eval()
model.to(device)
return model
def __call__(self, image: Image.Image, resolution: int = 512) -> Image.Image:
if not self.model:
logger.warn("DepthAnything model was not loaded. Returning original image")
return image
np_image = np.array(image, dtype=np.uint8)
np_image = np_image[:, :, ::-1] / 255.0
image_height, image_width = np_image.shape[:2]
np_image = transform({"image": np_image})["image"]
tensor_image = torch.from_numpy(np_image).unsqueeze(0).to(self.device)
with torch.no_grad():
depth = self.model(tensor_image)
depth = F.interpolate(depth[None], (image_height, image_width), mode="bilinear", align_corners=False)[0, 0]
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth_map = repeat(depth, "h w -> h w 3").cpu().numpy().astype(np.uint8)
depth_map = Image.fromarray(depth_map)
new_height = int(image_height * (resolution / image_width))
depth_map = depth_map.resize((resolution, new_height))
return depth_map

View File

@@ -1,31 +0,0 @@
from typing import Optional
import torch
from PIL import Image
from transformers.pipelines import DepthEstimationPipeline
from invokeai.backend.raw_model import RawModel
class DepthAnythingPipeline(RawModel):
"""Custom wrapper for the Depth Estimation pipeline from transformers adding compatibility
for Invoke's Model Management System"""
def __init__(self, pipeline: DepthEstimationPipeline) -> None:
self._pipeline = pipeline
def generate_depth(self, image: Image.Image) -> Image.Image:
depth_map = self._pipeline(image)["depth"]
assert isinstance(depth_map, Image.Image)
return depth_map
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
if device is not None and device.type not in {"cpu", "cuda"}:
device = None
self._pipeline.model.to(device=device, dtype=dtype)
self._pipeline.device = self._pipeline.model.device
def calc_size(self) -> int:
from invokeai.backend.model_manager.load.model_util import calc_module_size
return calc_module_size(self._pipeline.model)

View File

@@ -0,0 +1,145 @@
import torch.nn as nn
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
scratch = nn.Module()
out_shape1 = out_shape
out_shape2 = out_shape
out_shape3 = out_shape
if len(in_shape) >= 4:
out_shape4 = out_shape
if expand:
out_shape1 = out_shape
out_shape2 = out_shape * 2
out_shape3 = out_shape * 4
if len(in_shape) >= 4:
out_shape4 = out_shape * 8
scratch.layer1_rn = nn.Conv2d(
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer2_rn = nn.Conv2d(
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer3_rn = nn.Conv2d(
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
if len(in_shape) >= 4:
scratch.layer4_rn = nn.Conv2d(
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
return scratch
class ResidualConvUnit(nn.Module):
"""Residual convolution module."""
def __init__(self, features, activation, bn):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.bn = bn
self.groups = 1
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
if self.bn:
self.bn1 = nn.BatchNorm2d(features)
self.bn2 = nn.BatchNorm2d(features)
self.activation = activation
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.activation(x)
out = self.conv1(out)
if self.bn:
out = self.bn1(out)
out = self.activation(out)
out = self.conv2(out)
if self.bn:
out = self.bn2(out)
if self.groups > 1:
out = self.conv_merge(out)
return self.skip_add.add(out, x)
class FeatureFusionBlock(nn.Module):
"""Feature fusion block."""
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock, self).__init__()
self.deconv = deconv
self.align_corners = align_corners
self.groups = 1
self.expand = expand
out_features = features
if self.expand:
out_features = features // 2
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
self.skip_add = nn.quantized.FloatFunctional()
self.size = size
def forward(self, *xs, size=None):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
res = self.resConfUnit1(xs[1])
output = self.skip_add.add(output, res)
output = self.resConfUnit2(output)
if (size is None) and (self.size is None):
modifier = {"scale_factor": 2}
elif size is None:
modifier = {"size": self.size}
else:
modifier = {"size": size}
output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
output = self.out_conv(output)
return output

View File

@@ -0,0 +1,183 @@
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
from invokeai.backend.image_util.depth_anything.model.blocks import FeatureFusionBlock, _make_scratch
torchhub_path = Path(__file__).parent.parent / "torchhub"
def _make_fusion_block(features, use_bn, size=None):
return FeatureFusionBlock(
features,
nn.ReLU(False),
deconv=False,
bn=use_bn,
expand=False,
align_corners=True,
size=size,
)
class DPTHead(nn.Module):
def __init__(self, nclass, in_channels, features, out_channels, use_bn=False, use_clstoken=False):
super(DPTHead, self).__init__()
self.nclass = nclass
self.use_clstoken = use_clstoken
self.projects = nn.ModuleList(
[
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channel,
kernel_size=1,
stride=1,
padding=0,
)
for out_channel in out_channels
]
)
self.resize_layers = nn.ModuleList(
[
nn.ConvTranspose2d(
in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0
),
nn.ConvTranspose2d(
in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0
),
nn.Identity(),
nn.Conv2d(
in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1
),
]
)
if use_clstoken:
self.readout_projects = nn.ModuleList()
for _ in range(len(self.projects)):
self.readout_projects.append(nn.Sequential(nn.Linear(2 * in_channels, in_channels), nn.GELU()))
self.scratch = _make_scratch(
out_channels,
features,
groups=1,
expand=False,
)
self.scratch.stem_transpose = None
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
head_features_1 = features
head_features_2 = 32
if nclass > 1:
self.scratch.output_conv = nn.Sequential(
nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(head_features_1, nclass, kernel_size=1, stride=1, padding=0),
)
else:
self.scratch.output_conv1 = nn.Conv2d(
head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1
)
self.scratch.output_conv2 = nn.Sequential(
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True),
nn.Identity(),
)
def forward(self, out_features, patch_h, patch_w):
out = []
for i, x in enumerate(out_features):
if self.use_clstoken:
x, cls_token = x[0], x[1]
readout = cls_token.unsqueeze(1).expand_as(x)
x = self.readout_projects[i](torch.cat((x, readout), -1))
else:
x = x[0]
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
x = self.projects[i](x)
x = self.resize_layers[i](x)
out.append(x)
layer_1, layer_2, layer_3, layer_4 = out
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv1(path_1)
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
out = self.scratch.output_conv2(out)
return out
class DPT_DINOv2(nn.Module):
def __init__(
self,
features,
out_channels,
encoder="vitl",
use_bn=False,
use_clstoken=False,
):
super(DPT_DINOv2, self).__init__()
assert encoder in ["vits", "vitb", "vitl"]
# # in case the Internet connection is not stable, please load the DINOv2 locally
# if use_local:
# self.pretrained = torch.hub.load(
# torchhub_path / "facebookresearch_dinov2_main",
# "dinov2_{:}14".format(encoder),
# source="local",
# pretrained=False,
# )
# else:
# self.pretrained = torch.hub.load(
# "facebookresearch/dinov2",
# "dinov2_{:}14".format(encoder),
# )
self.pretrained = torch.hub.load(
"facebookresearch/dinov2",
"dinov2_{:}14".format(encoder),
)
dim = self.pretrained.blocks[0].attn.qkv.in_features
self.depth_head = DPTHead(1, dim, features, out_channels=out_channels, use_bn=use_bn, use_clstoken=use_clstoken)
def forward(self, x):
h, w = x.shape[-2:]
features = self.pretrained.get_intermediate_layers(x, 4, return_class_token=True)
patch_h, patch_w = h // 14, w // 14
depth = self.depth_head(features, patch_h, patch_w)
depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True)
depth = F.relu(depth)
return depth.squeeze(1)

View File

@@ -0,0 +1,227 @@
import math
import cv2
import numpy as np
import torch
import torch.nn.functional as F
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
Args:
sample (dict): sample
size (tuple): image size
Returns:
tuple: new size
"""
shape = list(sample["disparity"].shape)
if shape[0] >= size[0] and shape[1] >= size[1]:
return sample
scale = [0, 0]
scale[0] = size[0] / shape[0]
scale[1] = size[1] / shape[1]
scale = max(scale)
shape[0] = math.ceil(scale * shape[0])
shape[1] = math.ceil(scale * shape[1])
# resize
sample["image"] = cv2.resize(sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method)
sample["disparity"] = cv2.resize(sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
tuple(shape[::-1]),
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return tuple(shape)
class Resize(object):
"""Resize sample to given size (width, height)."""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_AREA,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller
than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == "lower_bound":
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "upper_bound":
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "minimal":
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
if self.__resize_method == "lower_bound":
new_height = self.constrain_to_multiple_of(scale_height * height, min_val=self.__height)
new_width = self.constrain_to_multiple_of(scale_width * width, min_val=self.__width)
elif self.__resize_method == "upper_bound":
new_height = self.constrain_to_multiple_of(scale_height * height, max_val=self.__height)
new_width = self.constrain_to_multiple_of(scale_width * width, max_val=self.__width)
elif self.__resize_method == "minimal":
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
return (new_width, new_height)
def __call__(self, sample):
width, height = self.get_size(sample["image"].shape[1], sample["image"].shape[0])
# resize sample
sample["image"] = cv2.resize(
sample["image"],
(width, height),
interpolation=self.__image_interpolation_method,
)
if self.__resize_target:
if "disparity" in sample:
sample["disparity"] = cv2.resize(
sample["disparity"],
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if "depth" in sample:
sample["depth"] = cv2.resize(sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST)
if "semseg_mask" in sample:
# sample["semseg_mask"] = cv2.resize(
# sample["semseg_mask"], (width, height), interpolation=cv2.INTER_NEAREST
# )
sample["semseg_mask"] = F.interpolate(
torch.from_numpy(sample["semseg_mask"]).float()[None, None, ...], (height, width), mode="nearest"
).numpy()[0, 0]
if "mask" in sample:
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
(width, height),
interpolation=cv2.INTER_NEAREST,
)
# sample["mask"] = sample["mask"].astype(bool)
# print(sample['image'].shape, sample['depth'].shape)
return sample
class NormalizeImage(object):
"""Normlize image by given mean and std."""
def __init__(self, mean, std):
self.__mean = mean
self.__std = std
def __call__(self, sample):
sample["image"] = (sample["image"] - self.__mean) / self.__std
return sample
class PrepareForNet(object):
"""Prepare sample for usage as network input."""
def __init__(self):
pass
def __call__(self, sample):
image = np.transpose(sample["image"], (2, 0, 1))
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
if "mask" in sample:
sample["mask"] = sample["mask"].astype(np.float32)
sample["mask"] = np.ascontiguousarray(sample["mask"])
if "depth" in sample:
depth = sample["depth"].astype(np.float32)
sample["depth"] = np.ascontiguousarray(depth)
if "semseg_mask" in sample:
sample["semseg_mask"] = sample["semseg_mask"].astype(np.float32)
sample["semseg_mask"] = np.ascontiguousarray(sample["semseg_mask"])
return sample

View File

@@ -0,0 +1,129 @@
import json
import os
import time
from pathlib import Path
from typing import Union
import torch
from diffusers.models.model_loading_utils import load_state_dict
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from diffusers.utils import (
CONFIG_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFETENSORS_WEIGHTS_NAME,
_get_checkpoint_shard_files,
is_accelerate_available,
)
from optimum.quanto import qfloat8
from optimum.quanto.models import QuantizedDiffusersModel
from optimum.quanto.models.shared_dict import ShardedStateDict
from invokeai.backend.requantize import requantize
class QuantizedFluxTransformer2DModel(QuantizedDiffusersModel):
base_class = FluxTransformer2DModel
@classmethod
def from_pretrained(cls, model_name_or_path: Union[str, os.PathLike]):
if cls.base_class is None:
raise ValueError("The `base_class` attribute needs to be configured.")
if not is_accelerate_available():
raise ValueError("Reloading a quantized diffusers model requires the accelerate library.")
from accelerate import init_empty_weights
if os.path.isdir(model_name_or_path):
# Look for a quantization map
qmap_path = os.path.join(model_name_or_path, cls._qmap_name())
if not os.path.exists(qmap_path):
raise ValueError(f"No quantization map found in {model_name_or_path}: is this a quantized model ?")
# Look for original model config file.
model_config_path = os.path.join(model_name_or_path, CONFIG_NAME)
if not os.path.exists(model_config_path):
raise ValueError(f"{CONFIG_NAME} not found in {model_name_or_path}.")
with open(qmap_path, "r", encoding="utf-8") as f:
qmap = json.load(f)
with open(model_config_path, "r", encoding="utf-8") as f:
original_model_cls_name = json.load(f)["_class_name"]
configured_cls_name = cls.base_class.__name__
if configured_cls_name != original_model_cls_name:
raise ValueError(
f"Configured base class ({configured_cls_name}) differs from what was derived from the provided configuration ({original_model_cls_name})."
)
# Create an empty model
config = cls.base_class.load_config(model_name_or_path)
with init_empty_weights():
model = cls.base_class.from_config(config)
# Look for the index of a sharded checkpoint
checkpoint_file = os.path.join(model_name_or_path, SAFE_WEIGHTS_INDEX_NAME)
if os.path.exists(checkpoint_file):
# Convert the checkpoint path to a list of shards
_, sharded_metadata = _get_checkpoint_shard_files(model_name_or_path, checkpoint_file)
# Create a mapping for the sharded safetensor files
state_dict = ShardedStateDict(model_name_or_path, sharded_metadata["weight_map"])
else:
# Look for a single checkpoint file
checkpoint_file = os.path.join(model_name_or_path, SAFETENSORS_WEIGHTS_NAME)
if not os.path.exists(checkpoint_file):
raise ValueError(f"No safetensor weights found in {model_name_or_path}.")
# Get state_dict from model checkpoint
state_dict = load_state_dict(checkpoint_file)
# Requantize and load quantized weights from state_dict
requantize(model, state_dict=state_dict, quantization_map=qmap)
model.eval()
return cls(model)
else:
raise NotImplementedError("Reloading quantized models directly from the hub is not supported yet.")
def load_flux_transformer(path: Path) -> FluxTransformer2DModel:
# model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True, torch_dtype=torch.bfloat16)
model_8bit_path = path / "quantized"
if model_8bit_path.exists():
# The quantized model exists, load it.
# TODO(ryand): The requantize(...) operation in from_pretrained(...) is very slow. This seems like
# something that we should be able to make much faster.
q_model = QuantizedFluxTransformer2DModel.from_pretrained(model_8bit_path)
# Access the underlying wrapped model.
# We access the wrapped model, even though it is private, because it simplifies the type checking by
# always returning a FluxTransformer2DModel from this function.
model = q_model._wrapped
else:
# The quantized model does not exist yet, quantize and save it.
# TODO(ryand): Loading in float16 and then quantizing seems to result in NaNs. In order to run this on
# GPUs that don't support bfloat16, we would need to host the quantized model instead of generating it
# here.
model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True, torch_dtype=torch.bfloat16)
assert isinstance(model, FluxTransformer2DModel)
q_model = QuantizedFluxTransformer2DModel.quantize(model, weights=qfloat8)
model_8bit_path.mkdir(parents=True, exist_ok=True)
q_model.save_pretrained(model_8bit_path)
# (See earlier comment about accessing the wrapped model.)
model = q_model._wrapped
assert isinstance(model, FluxTransformer2DModel)
return model
def main():
start = time.time()
model = load_flux_transformer(
Path("/data/invokeai/models/.download_cache/black-forest-labs_flux.1-schnell/FLUX.1-schnell/transformer/")
)
print(f"Time to load: {time.time() - start}s")
print("hi")
if __name__ == "__main__":
main()

View File

@@ -220,17 +220,11 @@ class LoKRLayer(LoRALayerBase):
if self.w1 is None:
self.w1_a = values["lokr_w1_a"]
self.w1_b = values["lokr_w1_b"]
else:
self.w1_b = None
self.w1_a = None
self.w2 = values.get("lokr_w2", None)
if self.w2 is None:
self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"]
else:
self.w2_a = None
self.w2_b = None
self.t2 = values.get("lokr_t2", None)
@@ -378,39 +372,7 @@ class IA3Layer(LoRALayerBase):
self.on_input = self.on_input.to(device=device, dtype=dtype)
class NormLayer(LoRALayerBase):
# bias handled in LoRALayerBase(calc_size, to)
# weight: torch.Tensor
# bias: Optional[torch.Tensor]
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.weight = values["w_norm"]
self.bias = values.get("b_norm", None)
self.rank = None # unscaled
self.check_keys(values, {"w_norm", "b_norm"})
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
return self.weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer]
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
class LoRAModelRaw(RawModel): # (torch.nn.Module):
@@ -551,10 +513,6 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
elif "on_input" in values:
layer = IA3Layer(layer_key, values)
# norms
elif "w_norm" in values:
layer = NormLayer(layer_key, values)
else:
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key} - {list(values.keys())}")
raise Exception("Unknown lora format!")

View File

@@ -11,7 +11,6 @@ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from transformers import CLIPTokenizer
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
@@ -46,7 +45,6 @@ def calc_model_size_by_data(logger: logging.Logger, model: AnyModel) -> int:
SpandrelImageToImageModel,
GroundingDinoPipeline,
SegmentAnythingPipeline,
DepthAnythingPipeline,
),
):
return model.calc_size()

View File

@@ -54,6 +54,7 @@ def filter_files(
"lora_weights.safetensors",
"weights.pb",
"onnx_data",
"spiece.model", # Added for `black-forest-labs/FLUX.1-schnell`.
)
):
paths.append(file)
@@ -62,7 +63,7 @@ def filter_files(
# downloading random checkpoints that might also be in the repo. However there is no guarantee
# that a checkpoint doesn't contain "model" in its name, and no guarantee that future diffusers models
# will adhere to this naming convention, so this is an area to be careful of.
elif re.search(r"model(\.[^.]+)?\.(safetensors|bin|onnx|xml|pth|pt|ckpt|msgpack)$", file.name):
elif re.search(r"model.*\.(safetensors|bin|onnx|xml|pth|pt|ckpt|msgpack)$", file.name):
paths.append(file)
# limit search to subfolder if requested
@@ -97,7 +98,9 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
if variant == ModelRepoVariant.Flax:
result.add(path)
elif path.suffix in [".json", ".txt"]:
# Note: '.model' was added to support:
# https://huggingface.co/black-forest-labs/FLUX.1-schnell/blob/768d12a373ed5cc9ef9a9dea7504dc09fcc14842/tokenizer_2/spiece.model
elif path.suffix in [".json", ".txt", ".model"]:
result.add(path)
elif variant in [
@@ -140,6 +143,23 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
continue
for candidate_list in subfolder_weights.values():
# Check if at least one of the files has the explicit fp16 variant.
at_least_one_fp16 = False
for candidate in candidate_list:
if len(candidate.path.suffixes) == 2 and candidate.path.suffixes[0] == ".fp16":
at_least_one_fp16 = True
break
if not at_least_one_fp16:
# If none of the candidates in this candidate_list have the explicit fp16 variant label, then this
# candidate_list probably doesn't adhere to the variant naming convention that we expected. In this case,
# we'll simply keep all the candidates. An example of a model that hits this case is
# `black-forest-labs/FLUX.1-schnell` (as of commit 012d2fd).
for candidate in candidate_list:
result.add(candidate.path)
# The candidate_list seems to have the expected variant naming convention. We'll select the highest scoring
# candidate.
highest_score_candidate = max(candidate_list, key=lambda candidate: candidate.score)
if highest_score_candidate:
result.add(highest_score_candidate.path)

View File

@@ -0,0 +1,77 @@
import json
import os
from typing import Union
from diffusers.models.model_loading_utils import load_state_dict
from diffusers.utils import (
CONFIG_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFETENSORS_WEIGHTS_NAME,
_get_checkpoint_shard_files,
is_accelerate_available,
)
from optimum.quanto.models import QuantizedDiffusersModel
from optimum.quanto.models.shared_dict import ShardedStateDict
from invokeai.backend.requantize import requantize
class FastQuantizedDiffusersModel(QuantizedDiffusersModel):
@classmethod
def from_pretrained(cls, model_name_or_path: Union[str, os.PathLike]):
"""We override the `from_pretrained()` method in order to use our custom `requantize()` implementation."""
if cls.base_class is None:
raise ValueError("The `base_class` attribute needs to be configured.")
if not is_accelerate_available():
raise ValueError("Reloading a quantized diffusers model requires the accelerate library.")
from accelerate import init_empty_weights
if os.path.isdir(model_name_or_path):
# Look for a quantization map
qmap_path = os.path.join(model_name_or_path, cls._qmap_name())
if not os.path.exists(qmap_path):
raise ValueError(f"No quantization map found in {model_name_or_path}: is this a quantized model ?")
# Look for original model config file.
model_config_path = os.path.join(model_name_or_path, CONFIG_NAME)
if not os.path.exists(model_config_path):
raise ValueError(f"{CONFIG_NAME} not found in {model_name_or_path}.")
with open(qmap_path, "r", encoding="utf-8") as f:
qmap = json.load(f)
with open(model_config_path, "r", encoding="utf-8") as f:
original_model_cls_name = json.load(f)["_class_name"]
configured_cls_name = cls.base_class.__name__
if configured_cls_name != original_model_cls_name:
raise ValueError(
f"Configured base class ({configured_cls_name}) differs from what was derived from the provided configuration ({original_model_cls_name})."
)
# Create an empty model
config = cls.base_class.load_config(model_name_or_path)
with init_empty_weights():
model = cls.base_class.from_config(config)
# Look for the index of a sharded checkpoint
checkpoint_file = os.path.join(model_name_or_path, SAFE_WEIGHTS_INDEX_NAME)
if os.path.exists(checkpoint_file):
# Convert the checkpoint path to a list of shards
_, sharded_metadata = _get_checkpoint_shard_files(model_name_or_path, checkpoint_file)
# Create a mapping for the sharded safetensor files
state_dict = ShardedStateDict(model_name_or_path, sharded_metadata["weight_map"])
else:
# Look for a single checkpoint file
checkpoint_file = os.path.join(model_name_or_path, SAFETENSORS_WEIGHTS_NAME)
if not os.path.exists(checkpoint_file):
raise ValueError(f"No safetensor weights found in {model_name_or_path}.")
# Get state_dict from model checkpoint
state_dict = load_state_dict(checkpoint_file)
# Requantize and load quantized weights from state_dict
requantize(model, state_dict=state_dict, quantization_map=qmap)
model.eval()
return cls(model)
else:
raise NotImplementedError("Reloading quantized models directly from the hub is not supported yet.")

View File

@@ -0,0 +1,61 @@
import json
import os
from typing import Union
from optimum.quanto.models import QuantizedTransformersModel
from optimum.quanto.models.shared_dict import ShardedStateDict
from transformers import AutoConfig
from transformers.modeling_utils import get_checkpoint_shard_files, load_state_dict
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, is_accelerate_available
from invokeai.backend.requantize import requantize
class FastQuantizedTransformersModel(QuantizedTransformersModel):
@classmethod
def from_pretrained(cls, model_name_or_path: Union[str, os.PathLike]):
"""We override the `from_pretrained()` method in order to use our custom `requantize()` implementation."""
if cls.auto_class is None:
raise ValueError(
"Quantized models cannot be reloaded using {cls}: use a specialized quantized class such as QuantizedModelForCausalLM instead."
)
if not is_accelerate_available():
raise ValueError("Reloading a quantized transformers model requires the accelerate library.")
from accelerate import init_empty_weights
if os.path.isdir(model_name_or_path):
# Look for a quantization map
qmap_path = os.path.join(model_name_or_path, cls._qmap_name())
if not os.path.exists(qmap_path):
raise ValueError(f"No quantization map found in {model_name_or_path}: is this a quantized model ?")
with open(qmap_path, "r", encoding="utf-8") as f:
qmap = json.load(f)
# Create an empty model
config = AutoConfig.from_pretrained(model_name_or_path)
with init_empty_weights():
model = cls.auto_class.from_config(config)
# Look for the index of a sharded checkpoint
checkpoint_file = os.path.join(model_name_or_path, SAFE_WEIGHTS_INDEX_NAME)
if os.path.exists(checkpoint_file):
# Convert the checkpoint path to a list of shards
checkpoint_file, sharded_metadata = get_checkpoint_shard_files(model_name_or_path, checkpoint_file)
# Create a mapping for the sharded safetensor files
state_dict = ShardedStateDict(model_name_or_path, sharded_metadata["weight_map"])
else:
# Look for a single checkpoint file
checkpoint_file = os.path.join(model_name_or_path, SAFE_WEIGHTS_NAME)
if not os.path.exists(checkpoint_file):
raise ValueError(f"No safetensor weights found in {model_name_or_path}.")
# Get state_dict from model checkpoint
state_dict = load_state_dict(checkpoint_file)
# Requantize and load quantized weights from state_dict
requantize(model, state_dict=state_dict, quantization_map=qmap)
if getattr(model.config, "tie_word_embeddings", True):
# Tie output weight embeddings to input weight embeddings
# Note that if they were quantized they would NOT be tied
model.tie_weights()
# Set model in evaluation mode as it is done in transformers
model.eval()
return cls(model)
else:
raise NotImplementedError("Reloading quantized models directly from the hub is not supported yet.")

View File

@@ -0,0 +1,53 @@
from typing import Any, Dict
import torch
from optimum.quanto.quantize import _quantize_submodule
# def custom_freeze(model: torch.nn.Module):
# for name, m in model.named_modules():
# if isinstance(m, QModuleMixin):
# m.weight =
# m.freeze()
def requantize(
model: torch.nn.Module,
state_dict: Dict[str, Any],
quantization_map: Dict[str, Dict[str, str]],
device: torch.device = None,
):
if device is None:
device = next(model.parameters()).device
if device.type == "meta":
device = torch.device("cpu")
# Quantize the model with parameters from the quantization map
for name, m in model.named_modules():
qconfig = quantization_map.get(name, None)
if qconfig is not None:
weights = qconfig["weights"]
if weights == "none":
weights = None
activations = qconfig["activations"]
if activations == "none":
activations = None
_quantize_submodule(model, name, m, weights=weights, activations=activations)
# Move model parameters and buffers to CPU before materializing quantized weights
for name, m in model.named_modules():
def move_tensor(t, device):
if t.device.type == "meta":
return torch.empty_like(t, device=device)
return t.to(device)
for name, param in m.named_parameters(recurse=False):
setattr(m, name, torch.nn.Parameter(move_tensor(param, "cpu")))
for name, param in m.named_buffers(recurse=False):
setattr(m, name, move_tensor(param, "cpu"))
# Freeze model and move to target device
# freeze(model)
# model.to(device)
# Load the quantized model weights
model.load_state_dict(state_dict, strict=False)

View File

@@ -3,7 +3,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
import diffusers
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalControlNetMixin
from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
from diffusers.models.controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
from diffusers.models.embeddings import (
@@ -32,7 +32,7 @@ from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.get_logger(__name__)
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
"""
A ControlNet model.

View File

@@ -53,63 +53,64 @@
},
"dependencies": {
"@chakra-ui/react-use-size": "^2.1.0",
"@dagrejs/dagre": "^1.1.3",
"@dagrejs/graphlib": "^2.2.3",
"@dagrejs/dagre": "^1.1.2",
"@dagrejs/graphlib": "^2.2.2",
"@dnd-kit/core": "^6.1.0",
"@dnd-kit/sortable": "^8.0.0",
"@dnd-kit/utilities": "^3.2.2",
"@fontsource-variable/inter": "^5.0.20",
"@invoke-ai/ui-library": "^0.0.29",
"@nanostores/react": "^0.7.3",
"@fontsource-variable/inter": "^5.0.18",
"@invoke-ai/ui-library": "^0.0.25",
"@nanostores/react": "^0.7.2",
"@reduxjs/toolkit": "2.2.3",
"@roarr/browser-log-writer": "^1.3.0",
"chakra-react-select": "^4.9.1",
"compare-versions": "^6.1.1",
"chakra-react-select": "^4.7.6",
"compare-versions": "^6.1.0",
"dateformat": "^5.0.3",
"fracturedjsonjs": "^4.0.2",
"framer-motion": "^11.3.24",
"i18next": "^23.12.2",
"i18next-http-backend": "^2.5.2",
"fracturedjsonjs": "^4.0.1",
"framer-motion": "^11.1.8",
"i18next": "^23.11.3",
"i18next-http-backend": "^2.5.1",
"idb-keyval": "^6.2.1",
"jsondiffpatch": "^0.6.0",
"konva": "^9.3.14",
"konva": "^9.3.6",
"lodash-es": "^4.17.21",
"nanostores": "^0.11.2",
"nanostores": "^0.10.3",
"new-github-issue-url": "^1.0.0",
"overlayscrollbars": "^2.10.0",
"overlayscrollbars": "^2.7.3",
"overlayscrollbars-react": "^0.5.6",
"query-string": "^9.1.0",
"query-string": "^9.0.0",
"react": "^18.3.1",
"react-colorful": "^5.6.1",
"react-dom": "^18.3.1",
"react-dropzone": "^14.2.3",
"react-error-boundary": "^4.0.13",
"react-hook-form": "^7.52.2",
"react-hook-form": "^7.51.4",
"react-hotkeys-hook": "4.5.0",
"react-i18next": "^14.1.3",
"react-icons": "^5.2.1",
"react-i18next": "^14.1.1",
"react-icons": "^5.2.0",
"react-konva": "^18.2.10",
"react-redux": "9.1.2",
"react-resizable-panels": "^2.0.23",
"react-resizable-panels": "^2.0.19",
"react-select": "5.8.0",
"react-use": "^17.5.1",
"react-virtuoso": "^4.9.0",
"reactflow": "^11.11.4",
"react-use": "^17.5.0",
"react-virtuoso": "^4.7.10",
"reactflow": "^11.11.3",
"redux-dynamic-middlewares": "^2.2.0",
"redux-remember": "^5.1.0",
"redux-undo": "^1.1.0",
"rfdc": "^1.4.1",
"rfdc": "^1.3.1",
"roarr": "^7.21.1",
"serialize-error": "^11.0.3",
"socket.io-client": "^4.7.5",
"use-debounce": "^10.0.2",
"use-debounce": "^10.0.0",
"use-device-pixel-ratio": "^1.1.2",
"use-image": "^1.1.1",
"uuid": "^10.0.0",
"zod": "^3.23.8",
"zod-validation-error": "^3.3.1"
"uuid": "^9.0.1",
"zod": "^3.23.6",
"zod-validation-error": "^3.2.0"
},
"peerDependencies": {
"@chakra-ui/react": "^2.8.2",
"react": "^18.2.0",
"react-dom": "^18.2.0",
"ts-toolbelt": "^9.6.0"
@@ -117,38 +118,38 @@
"devDependencies": {
"@invoke-ai/eslint-config-react": "^0.0.14",
"@invoke-ai/prettier-config-react": "^0.0.7",
"@storybook/addon-essentials": "^8.2.8",
"@storybook/addon-interactions": "^8.2.8",
"@storybook/addon-links": "^8.2.8",
"@storybook/addon-storysource": "^8.2.8",
"@storybook/manager-api": "^8.2.8",
"@storybook/react": "^8.2.8",
"@storybook/react-vite": "^8.2.8",
"@storybook/theming": "^8.2.8",
"@storybook/addon-essentials": "^8.0.10",
"@storybook/addon-interactions": "^8.0.10",
"@storybook/addon-links": "^8.0.10",
"@storybook/addon-storysource": "^8.0.10",
"@storybook/manager-api": "^8.0.10",
"@storybook/react": "^8.0.10",
"@storybook/react-vite": "^8.0.10",
"@storybook/theming": "^8.0.10",
"@types/dateformat": "^5.0.2",
"@types/lodash-es": "^4.17.12",
"@types/node": "^20.14.15",
"@types/react": "^18.3.3",
"@types/node": "^20.12.10",
"@types/react": "^18.3.1",
"@types/react-dom": "^18.3.0",
"@types/uuid": "^10.0.0",
"@vitejs/plugin-react-swc": "^3.7.0",
"@types/uuid": "^9.0.8",
"@vitejs/plugin-react-swc": "^3.6.0",
"@vitest/coverage-v8": "^1.5.0",
"@vitest/ui": "^1.5.0",
"concurrently": "^8.2.2",
"dpdm": "^3.14.0",
"eslint": "^8.57.0",
"eslint-plugin-i18next": "^6.0.9",
"eslint-plugin-i18next": "^6.0.3",
"eslint-plugin-path": "^1.3.0",
"knip": "^5.27.2",
"knip": "^5.12.3",
"openapi-types": "^12.1.3",
"openapi-typescript": "^7.3.0",
"prettier": "^3.3.3",
"openapi-typescript": "^6.7.5",
"prettier": "^3.2.5",
"rollup-plugin-visualizer": "^5.12.0",
"storybook": "^8.2.8",
"storybook": "^8.0.10",
"ts-toolbelt": "^9.6.0",
"tsafe": "^1.7.2",
"typescript": "^5.5.4",
"vite": "^5.4.0",
"tsafe": "^1.6.6",
"typescript": "^5.4.5",
"vite": "^5.2.11",
"vite-plugin-css-injected-by-js": "^3.5.1",
"vite-plugin-dts": "^3.9.1",
"vite-plugin-eslint": "^1.8.1",

File diff suppressed because it is too large Load Diff

View File

@@ -200,7 +200,6 @@
"delete": "Delete",
"depthAnything": "Depth Anything",
"depthAnythingDescription": "Depth map generation using the Depth Anything technique",
"depthAnythingSmallV2": "Small V2",
"depthMidas": "Depth (Midas)",
"depthMidasDescription": "Depth map generation using Midas",
"depthZoe": "Depth (Zoe)",
@@ -1141,8 +1140,6 @@
"imageSavingFailed": "Image Saving Failed",
"imageUploaded": "Image Uploaded",
"imageUploadFailed": "Image Upload Failed",
"importFailed": "Import Failed",
"importSuccessful": "Import Successful",
"invalidUpload": "Invalid Upload",
"loadedWithWarnings": "Workflow Loaded with Warnings",
"maskSavedAssets": "Mask Saved to Assets",
@@ -1691,52 +1688,6 @@
"missingUpscaleModel": "Missing upscale model",
"missingTileControlNetModel": "No valid tile ControlNet models installed"
},
"stylePresets": {
"active": "Active",
"choosePromptTemplate": "Choose Prompt Template",
"clearTemplateSelection": "Clear Template Selection",
"copyTemplate": "Copy Template",
"createPromptTemplate": "Create Prompt Template",
"defaultTemplates": "Default Templates",
"deleteImage": "Delete Image",
"deleteTemplate": "Delete Template",
"deleteTemplate2": "Are you sure you want to delete this template? This cannot be undone.",
"exportPromptTemplates": "Export My Prompt Templates (CSV)",
"editTemplate": "Edit Template",
"exportDownloaded": "Export Downloaded",
"exportFailed": "Unable to generate and download CSV",
"flatten": "Flatten selected template into current prompt",
"importTemplates": "Import Prompt Templates (CSV/JSON)",
"acceptedColumnsKeys": "Accepted columns/keys:",
"nameColumn": "'name'",
"positivePromptColumn": "'prompt' or 'positive_prompt'",
"negativePromptColumn": "'negative_prompt'",
"insertPlaceholder": "Insert placeholder",
"myTemplates": "My Templates",
"name": "Name",
"negativePrompt": "Negative Prompt",
"noTemplates": "No templates",
"noMatchingTemplates": "No matching templates",
"promptTemplatesDesc1": "Prompt templates add text to the prompts you write in the prompt box.",
"promptTemplatesDesc2": "Use the placeholder string <Pre>{{placeholder}}</Pre> to specify where your prompt should be included in the template.",
"promptTemplatesDesc3": "If you omit the placeholder, the template will be appended to the end of your prompt.",
"positivePrompt": "Positive Prompt",
"preview": "Preview",
"private": "Private",
"searchByName": "Search by name",
"shared": "Shared",
"sharedTemplates": "Shared Templates",
"templateActions": "Template Actions",
"templateDeleted": "Prompt template deleted",
"toggleViewMode": "Toggle View Mode",
"type": "Type",
"unableToDeleteTemplate": "Unable to delete prompt template",
"updatePromptTemplate": "Update Prompt Template",
"uploadImage": "Upload Image",
"useForTemplate": "Use For Prompt Template",
"viewList": "View Template List",
"viewModeTooltip": "This is how your prompt will look with your currently selected template. To edit your prompt, click anywhere in the text box."
},
"upsell": {
"inviteTeammates": "Invite Teammates",
"professional": "Professional",

View File

@@ -90,7 +90,7 @@
"disabled": "Disabilitato",
"comparingDesc": "Confronta due immagini",
"comparing": "Confronta",
"dontShowMeThese": "Non mostrare più"
"dontShowMeThese": "Non mostrarmi questi"
},
"gallery": {
"galleryImageSize": "Dimensione dell'immagine",
@@ -701,9 +701,7 @@
"baseModelChanged": "Modello base modificato",
"sessionRef": "Sessione: {{sessionId}}",
"somethingWentWrong": "Qualcosa è andato storto",
"outOfMemoryErrorDesc": "Le impostazioni della generazione attuale superano la capacità del sistema. Modifica le impostazioni e riprova.",
"importFailed": "Importazione non riuscita",
"importSuccessful": "Importazione riuscita"
"outOfMemoryErrorDesc": "Le impostazioni della generazione attuale superano la capacità del sistema. Modifica le impostazioni e riprova."
},
"tooltip": {
"feature": {
@@ -1528,7 +1526,7 @@
},
"upscaleModel": {
"paragraphs": [
"Il modello di ampliamento (Upscale), scala l'immagine alle dimensioni di uscita prima di aggiungere i dettagli. È possibile utilizzare qualsiasi modello di ampliamento supportato, ma alcuni sono specializzati per diversi tipi di immagini, come foto o disegni al tratto."
"Il modello di ampliamento ridimensiona l'immagine alle dimensioni di uscita prima che vengano aggiunti i dettagli. È possibile utilizzare qualsiasi modello di ampliamento supportato, ma alcuni sono specializzati per diversi tipi di immagini, come foto o disegni al tratto."
],
"heading": "Modello di ampliamento"
},
@@ -1737,52 +1735,12 @@
"missingUpscaleModel": "Modello per lampliamento mancante",
"missingTileControlNetModel": "Nessun modello ControlNet Tile valido installato",
"postProcessingModel": "Modello di post-elaborazione",
"postProcessingMissingModelWarning": "Visita <LinkComponent>Gestione modelli</LinkComponent> per installare un modello di post-elaborazione (da immagine a immagine).",
"exceedsMaxSize": "Le impostazioni di ampliamento superano il limite massimo delle dimensioni",
"exceedsMaxSizeDetails": "Il limite massimo di ampliamento è {{maxUpscaleDimension}}x{{maxUpscaleDimension}} pixel. Prova un'immagine più piccola o diminuisci la scala selezionata."
"postProcessingMissingModelWarning": "Visita <LinkComponent>Gestione modelli</LinkComponent> per installare un modello di post-elaborazione (da immagine a immagine)."
},
"upsell": {
"inviteTeammates": "Invita collaboratori",
"shareAccess": "Condividi l'accesso",
"professional": "Professionale",
"professionalUpsell": "Disponibile nell'edizione Professional di Invoke. Fai clic qui o visita invoke.com/pricing per ulteriori dettagli."
},
"stylePresets": {
"active": "Attivo",
"choosePromptTemplate": "Scegli un modello di prompt",
"clearTemplateSelection": "Cancella selezione modello",
"copyTemplate": "Copia modello",
"createPromptTemplate": "Crea modello di prompt",
"defaultTemplates": "Modelli predefiniti",
"deleteImage": "Elimina immagine",
"deleteTemplate": "Elimina modello",
"editTemplate": "Modifica modello",
"flatten": "Unisci il modello selezionato al prompt corrente",
"insertPlaceholder": "Inserisci segnaposto",
"myTemplates": "I miei modelli",
"name": "Nome",
"negativePrompt": "Prompt Negativo",
"noMatchingTemplates": "Nessun modello corrispondente",
"promptTemplatesDesc1": "I modelli di prompt aggiungono testo ai prompt che scrivi nelle caselle dei prompt.",
"promptTemplatesDesc3": "Se si omette il segnaposto, il modello verrà aggiunto alla fine del prompt.",
"positivePrompt": "Prompt Positivo",
"preview": "Anteprima",
"private": "Privato",
"searchByName": "Cerca per nome",
"shared": "Condiviso",
"sharedTemplates": "Modelli condivisi",
"templateDeleted": "Modello di prompt eliminato",
"toggleViewMode": "Attiva/disattiva visualizzazione",
"uploadImage": "Carica immagine",
"useForTemplate": "Usa per modello di prompt",
"viewList": "Visualizza l'elenco dei modelli",
"viewModeTooltip": "Ecco come apparirà il tuo prompt con il modello attualmente selezionato. Per modificare il tuo prompt, clicca in un punto qualsiasi della casella di testo.",
"deleteTemplate2": "Vuoi davvero eliminare questo modello? Questa operazione non può essere annullata.",
"unableToDeleteTemplate": "Impossibile eliminare il modello di prompt",
"updatePromptTemplate": "Aggiorna il modello di prompt",
"type": "Tipo",
"promptTemplatesDesc2": "Utilizza la stringa segnaposto <Pre>{{placeholder}}</Pre> per specificare dove inserire il tuo prompt nel modello.",
"importTemplates": "Importa modelli di prompt",
"importTemplatesDesc": "Il formato deve essere un CSV con colonne 'name' e 'prompt' o 'positive_prompt' e 'negative_prompt' incluse, oppure un file JSON con chiavi 'name' e 'prompt' o 'positive_prompt' e 'negative_prompt"
}
}

View File

@@ -493,8 +493,7 @@
"defaultSettingsSaved": "默认设置已保存",
"huggingFacePlaceholder": "所有者或模型名称",
"huggingFaceRepoID": "HuggingFace仓库ID",
"loraTriggerPhrases": "LoRA 触发词",
"ipAdapters": "IP适配器"
"loraTriggerPhrases": "LoRA 触发词"
},
"parameters": {
"images": "图像",
@@ -1703,9 +1702,7 @@
"upscaleModelDesc": "图像放大(图像到图像转换)模型",
"postProcessingMissingModelWarning": "请访问 <LinkComponent>模型管理器</LinkComponent>来安装一个后处理(图像到图像转换)模型.",
"missingModelsWarning": "请访问<LinkComponent>模型管理器</LinkComponent> 安装所需的模型:",
"mainModelDesc": "主模型SD1.5或SDXL架构",
"exceedsMaxSize": "放大设置超出了最大尺寸限制",
"exceedsMaxSizeDetails": "最大放大限制是 {{maxUpscaleDimension}}x{{maxUpscaleDimension}} 像素.请尝试一个较小的图像或减少您的缩放选择."
"mainModelDesc": "主模型SD1.5或SDXL架构"
},
"upsell": {
"inviteTeammates": "邀请团队成员",

View File

@@ -1,40 +1,26 @@
/* eslint-disable no-console */
import fs from 'node:fs';
import openapiTS, { astToString } from 'openapi-typescript';
import ts from 'typescript';
import openapiTS from 'openapi-typescript';
const OPENAPI_URL = 'http://127.0.0.1:9090/openapi.json';
const OUTPUT_FILE = 'src/services/api/schema.ts';
async function generateTypes(schema) {
process.stdout.write(`Generating types ${OUTPUT_FILE}...`);
// Use https://ts-ast-viewer.com to figure out how to create these AST nodes - define a type and use the bottom-left pane's output
// `Blob` type
const BLOB = ts.factory.createTypeReferenceNode(ts.factory.createIdentifier('Blob'));
// `null` type
const NULL = ts.factory.createLiteralTypeNode(ts.factory.createNull());
// `Record<string, unknown>` type
const RECORD_STRING_UNKNOWN = ts.factory.createTypeReferenceNode(ts.factory.createIdentifier('Record'), [
ts.factory.createKeywordTypeNode(ts.SyntaxKind.StringKeyword),
ts.factory.createKeywordTypeNode(ts.SyntaxKind.UnknownKeyword),
]);
const types = await openapiTS(schema, {
exportType: true,
transform: (schemaObject) => {
if ('format' in schemaObject && schemaObject.format === 'binary') {
return schemaObject.nullable ? ts.factory.createUnionTypeNode([BLOB, NULL]) : BLOB;
return schemaObject.nullable ? 'Blob | null' : 'Blob';
}
if (schemaObject.title === 'MetadataField') {
// This is `Record<string, never>` by default, but it actually accepts any a dict of any valid JSON value.
return RECORD_STRING_UNKNOWN;
return 'Record<string, unknown>';
}
},
defaultNonNullable: false,
});
fs.writeFileSync(OUTPUT_FILE, astToString(types));
fs.writeFileSync(OUTPUT_FILE, types);
process.stdout.write(`\nOK!\r\n`);
}

View File

@@ -13,13 +13,11 @@ import ChangeBoardModal from 'features/changeBoardModal/components/ChangeBoardMo
import DeleteImageModal from 'features/deleteImageModal/components/DeleteImageModal';
import { DynamicPromptsModal } from 'features/dynamicPrompts/components/DynamicPromptsPreviewModal';
import { useStarterModelsToast } from 'features/modelManagerV2/hooks/useStarterModelsToast';
import { StylePresetModal } from 'features/stylePresets/components/StylePresetForm/StylePresetModal';
import { configChanged } from 'features/system/store/configSlice';
import { languageSelector } from 'features/system/store/systemSelectors';
import InvokeTabs from 'features/ui/components/InvokeTabs';
import type { InvokeTabName } from 'features/ui/store/tabMap';
import { setActiveTab } from 'features/ui/store/uiSlice';
import { useGetAndLoadLibraryWorkflow } from 'features/workflowLibrary/hooks/useGetAndLoadLibraryWorkflow';
import { AnimatePresence } from 'framer-motion';
import i18n from 'i18n';
import { size } from 'lodash-es';
@@ -38,11 +36,10 @@ interface Props {
imageName: string;
action: 'sendToImg2Img' | 'sendToCanvas' | 'useAllParameters';
};
selectedWorkflowId?: string;
destination?: InvokeTabName | undefined;
}
const App = ({ config = DEFAULT_CONFIG, selectedImage, selectedWorkflowId, destination }: Props) => {
const App = ({ config = DEFAULT_CONFIG, selectedImage, destination }: Props) => {
const language = useAppSelector(languageSelector);
const logger = useLogger('system');
const dispatch = useAppDispatch();
@@ -73,14 +70,6 @@ const App = ({ config = DEFAULT_CONFIG, selectedImage, selectedWorkflowId, desti
}
}, [dispatch, config, logger]);
const { getAndLoadWorkflow } = useGetAndLoadLibraryWorkflow();
useEffect(() => {
if (selectedWorkflowId) {
getAndLoadWorkflow(selectedWorkflowId);
}
}, [selectedWorkflowId, getAndLoadWorkflow]);
useEffect(() => {
if (destination) {
dispatch(setActiveTab(destination));
@@ -115,7 +104,6 @@ const App = ({ config = DEFAULT_CONFIG, selectedImage, selectedWorkflowId, desti
<DeleteImageModal />
<ChangeBoardModal />
<DynamicPromptsModal />
<StylePresetModal />
<PreselectedImage selectedImage={selectedImage} />
</ErrorBoundary>
);

View File

@@ -44,7 +44,6 @@ interface Props extends PropsWithChildren {
imageName: string;
action: 'sendToImg2Img' | 'sendToCanvas' | 'useAllParameters';
};
selectedWorkflowId?: string;
destination?: InvokeTabName;
customStarUi?: CustomStarUi;
socketOptions?: Partial<ManagerOptions & SocketOptions>;
@@ -65,7 +64,6 @@ const InvokeAIUI = ({
projectUrl,
queueId,
selectedImage,
selectedWorkflowId,
destination,
customStarUi,
socketOptions,
@@ -223,12 +221,7 @@ const InvokeAIUI = ({
<React.Suspense fallback={<Loading />}>
<ThemeLocaleProvider>
<AppDndContext>
<App
config={config}
selectedImage={selectedImage}
selectedWorkflowId={selectedWorkflowId}
destination={destination}
/>
<App config={config} selectedImage={selectedImage} destination={destination} />
</AppDndContext>
</ThemeLocaleProvider>
</React.Suspense>

View File

@@ -11,8 +11,6 @@ import {
promptsChanged,
} from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { getShouldProcessPrompt } from 'features/dynamicPrompts/util/getShouldProcessPrompt';
import { getPresetModifiedPrompts } from 'features/nodes/util/graph/graphBuilderUtils';
import { activeStylePresetIdChanged } from 'features/stylePresets/store/stylePresetSlice';
import { utilitiesApi } from 'services/api/endpoints/utilities';
import { socketConnected } from 'services/events/actions';
@@ -21,8 +19,7 @@ const matcher = isAnyOf(
combinatorialToggled,
maxPromptsChanged,
maxPromptsReset,
socketConnected,
activeStylePresetIdChanged
socketConnected
);
export const addDynamicPromptsListener = (startAppListening: AppStartListening) => {
@@ -31,7 +28,7 @@ export const addDynamicPromptsListener = (startAppListening: AppStartListening)
effect: async (action, { dispatch, getState, cancelActiveListeners, delay }) => {
cancelActiveListeners();
const state = getState();
const { positivePrompt } = getPresetModifiedPrompts(state);
const { positivePrompt } = state.controlLayers.present;
const { maxPrompts } = state.dynamicPrompts;
if (state.config.disabledFeatures.includes('dynamicPrompting')) {

View File

@@ -28,7 +28,6 @@ import { generationPersistConfig, generationSlice } from 'features/parameters/st
import { upscalePersistConfig, upscaleSlice } from 'features/parameters/store/upscaleSlice';
import { queueSlice } from 'features/queue/store/queueSlice';
import { sdxlPersistConfig, sdxlSlice } from 'features/sdxl/store/sdxlSlice';
import { stylePresetPersistConfig, stylePresetSlice } from 'features/stylePresets/store/stylePresetSlice';
import { configSlice } from 'features/system/store/configSlice';
import { systemPersistConfig, systemSlice } from 'features/system/store/systemSlice';
import { uiPersistConfig, uiSlice } from 'features/ui/store/uiSlice';
@@ -70,7 +69,6 @@ const allReducers = {
[workflowSettingsSlice.name]: workflowSettingsSlice.reducer,
[api.reducerPath]: api.reducer,
[upscaleSlice.name]: upscaleSlice.reducer,
[stylePresetSlice.name]: stylePresetSlice.reducer,
};
const rootReducer = combineReducers(allReducers);
@@ -116,7 +114,6 @@ const persistConfigs: { [key in keyof typeof allReducers]?: PersistConfig } = {
[controlLayersPersistConfig.name]: controlLayersPersistConfig,
[workflowSettingsPersistConfig.name]: workflowSettingsPersistConfig,
[upscalePersistConfig.name]: upscalePersistConfig,
[stylePresetPersistConfig.name]: stylePresetPersistConfig,
};
const unserialize: UnserializeFunction = (data, key) => {
@@ -167,8 +164,8 @@ export const createStore = (uniqueStoreKey?: string, persist = true) =>
reducer: rememberedRootReducer,
middleware: (getDefaultMiddleware) =>
getDefaultMiddleware({
serializableCheck: import.meta.env.MODE === 'development',
immutableCheck: import.meta.env.MODE === 'development',
serializableCheck: false,
immutableCheck: false,
})
.concat(api.middleware)
.concat(dynamicMiddlewares)

View File

@@ -71,7 +71,6 @@ export type AppConfig = {
*/
maxUpscaleDimension?: number;
allowPrivateBoards: boolean;
allowPrivateStylePresets: boolean;
disabledTabs: InvokeTabName[];
disabledFeatures: AppFeature[];
disabledSDFeatures: SDFeature[];

View File

@@ -47,7 +47,6 @@ export const IAINoContentFallback = memo((props: IAINoImageFallbackProps) => {
userSelect: 'none',
opacity: 0.7,
color: 'base.500',
fontSize: 'md',
...sx,
}),
[sx]
@@ -56,7 +55,11 @@ export const IAINoContentFallback = memo((props: IAINoImageFallbackProps) => {
return (
<Flex sx={styles} {...rest}>
{icon && <Icon as={icon} boxSize={boxSize} opacity={0.7} />}
{props.label && <Text textAlign="center">{props.label}</Text>}
{props.label && (
<Text textAlign="center" fontSize="md">
{props.label}
</Text>
)}
</Flex>
);
});

View File

@@ -1,4 +1,4 @@
import { convertImageUrlToBlob } from 'common/util/convertImageUrlToBlob';
import { useImageUrlToBlob } from 'common/hooks/useImageUrlToBlob';
import { copyBlobToClipboard } from 'features/system/util/copyBlobToClipboard';
import { toast } from 'features/toast/toast';
import { useCallback, useMemo } from 'react';
@@ -6,6 +6,7 @@ import { useTranslation } from 'react-i18next';
export const useCopyImageToClipboard = () => {
const { t } = useTranslation();
const imageUrlToBlob = useImageUrlToBlob();
const isClipboardAPIAvailable = useMemo(() => {
return Boolean(navigator.clipboard) && Boolean(window.ClipboardItem);
@@ -22,7 +23,7 @@ export const useCopyImageToClipboard = () => {
});
}
try {
const blob = await convertImageUrlToBlob(image_url);
const blob = await imageUrlToBlob(image_url);
if (!blob) {
throw new Error('Unable to create Blob');
@@ -44,7 +45,7 @@ export const useCopyImageToClipboard = () => {
});
}
},
[isClipboardAPIAvailable, t]
[imageUrlToBlob, isClipboardAPIAvailable, t]
);
return { isClipboardAPIAvailable, copyImageToClipboard };

View File

@@ -0,0 +1,40 @@
import { $authToken } from 'app/store/nanostores/authToken';
import { useCallback } from 'react';
/**
* Converts an image URL to a Blob by creating an <img /> element, drawing it to canvas
* and then converting the canvas to a Blob.
*
* @returns A function that takes a URL and returns a Promise that resolves with a Blob
*/
export const useImageUrlToBlob = () => {
const imageUrlToBlob = useCallback(
async (url: string) =>
new Promise<Blob | null>((resolve) => {
const img = new Image();
img.onload = () => {
const canvas = document.createElement('canvas');
canvas.width = img.width;
canvas.height = img.height;
const context = canvas.getContext('2d');
if (!context) {
return;
}
context.drawImage(img, 0, 0);
resolve(
new Promise<Blob | null>((resolve) => {
canvas.toBlob(function (blob) {
resolve(blob);
}, 'image/png');
})
);
};
img.crossOrigin = $authToken.get() ? 'use-credentials' : 'anonymous';
img.src = url;
}),
[]
);
return imageUrlToBlob;
};

View File

@@ -1,33 +0,0 @@
import { $authToken } from 'app/store/nanostores/authToken';
/**
* Converts an image URL to a Blob by creating an <img /> element, drawing it to canvas
* and then converting the canvas to a Blob.
*
* @returns A function that takes a URL and returns a Promise that resolves with a Blob
*/
export const convertImageUrlToBlob = async (url: string) =>
new Promise<Blob | null>((resolve) => {
const img = new Image();
img.onload = () => {
const canvas = document.createElement('canvas');
canvas.width = img.width;
canvas.height = img.height;
const context = canvas.getContext('2d');
if (!context) {
return;
}
context.drawImage(img, 0, 0);
resolve(
new Promise<Blob | null>((resolve) => {
canvas.toBlob(function (blob) {
resolve(blob);
}, 'image/png');
})
);
};
img.crossOrigin = $authToken.get() ? 'use-credentials' : 'anonymous';
img.src = url;
});

View File

@@ -42,7 +42,6 @@ const DepthAnythingProcessor = (props: Props) => {
const options: { label: string; value: DepthAnythingModelSize }[] = useMemo(
() => [
{ label: t('controlnet.depthAnythingSmallV2'), value: 'small_v2' },
{ label: t('controlnet.small'), value: 'small' },
{ label: t('controlnet.base'), value: 'base' },
{ label: t('controlnet.large'), value: 'large' },

View File

@@ -94,7 +94,7 @@ export const CONTROLNET_PROCESSORS: ControlNetProcessorsDict = {
buildDefaults: (baseModel?: BaseModelType) => ({
id: 'depth_anything_image_processor',
type: 'depth_anything_image_processor',
model_size: 'small_v2',
model_size: 'small',
resolution: baseModel === 'sdxl' ? 1024 : 512,
}),
},

View File

@@ -84,7 +84,7 @@ export type RequiredDepthAnythingImageProcessorInvocation = O.Required<
'type' | 'model_size' | 'resolution' | 'offload'
>;
const zDepthAnythingModelSize = z.enum(['large', 'base', 'small', 'small_v2']);
const zDepthAnythingModelSize = z.enum(['large', 'base', 'small']);
export type DepthAnythingModelSize = z.infer<typeof zDepthAnythingModelSize>;
export const isDepthAnythingModelSize = (v: unknown): v is DepthAnythingModelSize =>
zDepthAnythingModelSize.safeParse(v).success;

View File

@@ -24,7 +24,6 @@ export const DepthAnythingProcessor = memo(({ onChange, config }: Props) => {
const options: { label: string; value: DepthAnythingModelSize }[] = useMemo(
() => [
{ label: t('controlnet.depthAnythingSmallV2'), value: 'small_v2' },
{ label: t('controlnet.small'), value: 'small' },
{ label: t('controlnet.base'), value: 'base' },
{ label: t('controlnet.large'), value: 'large' },

View File

@@ -36,7 +36,7 @@ const zContentShuffleProcessorConfig = z.object({
});
export type ContentShuffleProcessorConfig = z.infer<typeof zContentShuffleProcessorConfig>;
const zDepthAnythingModelSize = z.enum(['large', 'base', 'small', 'small_v2']);
const zDepthAnythingModelSize = z.enum(['large', 'base', 'small']);
export type DepthAnythingModelSize = z.infer<typeof zDepthAnythingModelSize>;
export const isDepthAnythingModelSize = (v: unknown): v is DepthAnythingModelSize =>
zDepthAnythingModelSize.safeParse(v).success;
@@ -298,7 +298,7 @@ export const CA_PROCESSOR_DATA: CAProcessorsData = {
buildDefaults: () => ({
id: 'depth_anything_image_processor',
type: 'depth_anything_image_processor',
model_size: 'small_v2',
model_size: 'small',
}),
buildNode: (image, config) => ({
...config,

View File

@@ -30,7 +30,6 @@ import {
PiFlowArrowBold,
PiFoldersBold,
PiImagesBold,
PiPaintBrushBold,
PiPlantBold,
PiQuotesBold,
PiShareFatBold,
@@ -56,17 +55,8 @@ const SingleSelectionMenuItems = (props: SingleSelectionMenuItemsProps) => {
const { downloadImage } = useDownloadImage();
const templates = useStore($templates);
const {
recallAll,
remix,
recallSeed,
recallPrompts,
hasMetadata,
hasSeed,
hasPrompts,
isLoadingMetadata,
createAsPreset,
} = useImageActions(imageDTO?.image_name);
const { recallAll, remix, recallSeed, recallPrompts, hasMetadata, hasSeed, hasPrompts, isLoadingMetadata } =
useImageActions(imageDTO?.image_name);
const { getAndLoadEmbeddedWorkflow, getAndLoadEmbeddedWorkflowResult } = useGetAndLoadEmbeddedWorkflow({});
@@ -192,13 +182,6 @@ const SingleSelectionMenuItems = (props: SingleSelectionMenuItemsProps) => {
>
{t('parameters.useAll')}
</MenuItem>
<MenuItem
icon={isLoadingMetadata ? <SpinnerIcon /> : <PiPaintBrushBold />}
onClickCapture={createAsPreset}
isDisabled={isLoadingMetadata || !hasPrompts}
>
{t('stylePresets.useForTemplate')}
</MenuItem>
<MenuDivider />
<MenuItem icon={<PiShareFatBold />} onClickCapture={handleSendToImageToImage} id="send-to-img2img">
{t('parameters.sendToImg2Img')}

View File

@@ -1,10 +1,7 @@
import { skipToken } from '@reduxjs/toolkit/query';
import { useAppSelector } from 'app/store/storeHooks';
import { handlers, parseAndRecallAllMetadata, parseAndRecallPrompts } from 'features/metadata/util/handlers';
import { $stylePresetModalState } from 'features/stylePresets/store/stylePresetModal';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import { useCallback, useEffect, useState } from 'react';
import { useGetImageDTOQuery } from 'services/api/endpoints/images';
import { useDebouncedMetadata } from 'services/api/hooks/useDebouncedMetadata';
export const useImageActions = (image_name?: string) => {
@@ -13,7 +10,6 @@ export const useImageActions = (image_name?: string) => {
const [hasMetadata, setHasMetadata] = useState(false);
const [hasSeed, setHasSeed] = useState(false);
const [hasPrompts, setHasPrompts] = useState(false);
const { data: imageDTO } = useGetImageDTOQuery(image_name ?? skipToken);
useEffect(() => {
const parseMetadata = async () => {
@@ -65,34 +61,5 @@ export const useImageActions = (image_name?: string) => {
parseAndRecallPrompts(metadata);
}, [metadata]);
const createAsPreset = useCallback(async () => {
if (image_name && metadata && imageDTO) {
const positivePrompt = await handlers.positivePrompt.parse(metadata);
const negativePrompt = await handlers.negativePrompt.parse(metadata);
$stylePresetModalState.set({
prefilledFormData: {
name: '',
positivePrompt,
negativePrompt,
imageUrl: imageDTO.image_url,
type: 'user',
},
updatingStylePresetId: null,
isModalOpen: true,
});
}
}, [image_name, metadata, imageDTO]);
return {
recallAll,
remix,
recallSeed,
recallPrompts,
hasMetadata,
hasSeed,
hasPrompts,
isLoadingMetadata,
createAsPreset,
};
return { recallAll, remix, recallSeed, recallPrompts, hasMetadata, hasSeed, hasPrompts, isLoadingMetadata };
};

View File

@@ -22,10 +22,11 @@ import {
} from './constants';
import { addLoRAs } from './generation/addLoRAs';
import { addSDXLLoRas } from './generation/addSDXLLoRAs';
import { getBoardField, getPresetModifiedPrompts } from './graphBuilderUtils';
import { getBoardField, getSDXLStylePrompts } from './graphBuilderUtils';
export const buildMultidiffusionUpscaleGraph = async (state: RootState): Promise<GraphType> => {
const { model, cfgScale: cfg_scale, scheduler, steps, vaePrecision, seed, vae } = state.generation;
const { positivePrompt, negativePrompt } = state.controlLayers.present;
const { upscaleModel, upscaleInitialImage, structure, creativity, tileControlnetModel, scale } = state.upscale;
assert(model, 'No model found in state');
@@ -98,8 +99,7 @@ export const buildMultidiffusionUpscaleGraph = async (state: RootState): Promise
let modelNode;
if (model.base === 'sdxl') {
const { positivePrompt, negativePrompt, positiveStylePrompt, negativeStylePrompt } =
getPresetModifiedPrompts(state);
const { positiveStylePrompt, negativeStylePrompt } = getSDXLStylePrompts(state);
posCondNode = g.addNode({
type: 'sdxl_compel_prompt',
@@ -132,8 +132,6 @@ export const buildMultidiffusionUpscaleGraph = async (state: RootState): Promise
negative_style_prompt: negativeStylePrompt,
});
} else {
const { positivePrompt, negativePrompt } = getPresetModifiedPrompts(state);
posCondNode = g.addNode({
type: 'compel',
id: POSITIVE_CONDITIONING,

View File

@@ -16,7 +16,7 @@ import {
SDXL_REFINER_POSITIVE_CONDITIONING,
SDXL_REFINER_SEAMLESS,
} from 'features/nodes/util/graph/constants';
import { getPresetModifiedPrompts } from 'features/nodes/util/graph/graphBuilderUtils';
import { getSDXLStylePrompts } from 'features/nodes/util/graph/graphBuilderUtils';
import type { NonNullableGraph } from 'services/api/types';
import { isRefinerMainModelModelConfig } from 'services/api/types';
@@ -59,7 +59,7 @@ export const addSDXLRefinerToGraph = async (
const modelLoaderId = modelLoaderNodeId ? modelLoaderNodeId : SDXL_MODEL_LOADER;
// Construct Style Prompt
const { positiveStylePrompt, negativeStylePrompt } = getPresetModifiedPrompts(state);
const { positiveStylePrompt, negativeStylePrompt } = getSDXLStylePrompts(state);
// Unplug SDXL Latents Generation To Latents To Image
graph.edges = graph.edges.filter((e) => !(e.source.node_id === baseNodeId && ['latents'].includes(e.source.field)));

View File

@@ -16,11 +16,7 @@ import {
POSITIVE_CONDITIONING,
SEAMLESS,
} from 'features/nodes/util/graph/constants';
import {
getBoardField,
getIsIntermediate,
getPresetModifiedPrompts,
} from 'features/nodes/util/graph/graphBuilderUtils';
import { getBoardField, getIsIntermediate } from 'features/nodes/util/graph/graphBuilderUtils';
import type { ImageDTO, Invocation, NonNullableGraph } from 'services/api/types';
import { isNonRefinerMainModelConfig } from 'services/api/types';
@@ -55,6 +51,7 @@ export const buildCanvasImageToImageGraph = async (
seamlessXAxis,
seamlessYAxis,
} = state.generation;
const { positivePrompt, negativePrompt } = state.controlLayers.present;
// The bounding box determines width and height, not the width and height params
const { width, height } = state.canvas.boundingBoxDimensions;
@@ -74,8 +71,6 @@ export const buildCanvasImageToImageGraph = async (
const use_cpu = shouldUseCpuNoise;
const { positivePrompt, negativePrompt } = getPresetModifiedPrompts(state);
/**
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
* full graph here as a template. Then use the parameters from app state and set friendlier node

View File

@@ -19,11 +19,7 @@ import {
POSITIVE_CONDITIONING,
SEAMLESS,
} from 'features/nodes/util/graph/constants';
import {
getBoardField,
getIsIntermediate,
getPresetModifiedPrompts,
} from 'features/nodes/util/graph/graphBuilderUtils';
import { getBoardField, getIsIntermediate } from 'features/nodes/util/graph/graphBuilderUtils';
import type { ImageDTO, Invocation, NonNullableGraph } from 'services/api/types';
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
@@ -62,6 +58,7 @@ export const buildCanvasInpaintGraph = async (
canvasCoherenceEdgeSize,
maskBlur,
} = state.generation;
const { positivePrompt, negativePrompt } = state.controlLayers.present;
if (!model) {
log.error('No model found in state');
@@ -82,8 +79,6 @@ export const buildCanvasInpaintGraph = async (
const use_cpu = shouldUseCpuNoise;
const { positivePrompt, negativePrompt } = getPresetModifiedPrompts(state);
const graph: NonNullableGraph = {
id: CANVAS_INPAINT_GRAPH,
nodes: {

View File

@@ -23,11 +23,7 @@ import {
POSITIVE_CONDITIONING,
SEAMLESS,
} from 'features/nodes/util/graph/constants';
import {
getBoardField,
getIsIntermediate,
getPresetModifiedPrompts,
} from 'features/nodes/util/graph/graphBuilderUtils';
import { getBoardField, getIsIntermediate } from 'features/nodes/util/graph/graphBuilderUtils';
import type { ImageDTO, Invocation, NonNullableGraph } from 'services/api/types';
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
@@ -74,6 +70,7 @@ export const buildCanvasOutpaintGraph = async (
canvasCoherenceEdgeSize,
maskBlur,
} = state.generation;
const { positivePrompt, negativePrompt } = state.controlLayers.present;
if (!model) {
log.error('No model found in state');
@@ -94,8 +91,6 @@ export const buildCanvasOutpaintGraph = async (
const use_cpu = shouldUseCpuNoise;
const { positivePrompt, negativePrompt } = getPresetModifiedPrompts(state);
const graph: NonNullableGraph = {
id: CANVAS_OUTPAINT_GRAPH,
nodes: {

View File

@@ -16,11 +16,7 @@ import {
SDXL_REFINER_SEAMLESS,
SEAMLESS,
} from 'features/nodes/util/graph/constants';
import {
getBoardField,
getIsIntermediate,
getPresetModifiedPrompts,
} from 'features/nodes/util/graph/graphBuilderUtils';
import { getBoardField, getIsIntermediate, getSDXLStylePrompts } from 'features/nodes/util/graph/graphBuilderUtils';
import type { ImageDTO, Invocation, NonNullableGraph } from 'services/api/types';
import { isNonRefinerMainModelConfig } from 'services/api/types';
@@ -55,6 +51,7 @@ export const buildCanvasSDXLImageToImageGraph = async (
seamlessYAxis,
img2imgStrength: strength,
} = state.generation;
const { positivePrompt, negativePrompt } = state.controlLayers.present;
const { refinerModel, refinerStart } = state.sdxl;
@@ -78,7 +75,7 @@ export const buildCanvasSDXLImageToImageGraph = async (
const use_cpu = shouldUseCpuNoise;
// Construct Style Prompt
const { positivePrompt, negativePrompt, positiveStylePrompt, negativeStylePrompt } = getPresetModifiedPrompts(state);
const { positiveStylePrompt, negativeStylePrompt } = getSDXLStylePrompts(state);
/**
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the

View File

@@ -19,11 +19,7 @@ import {
SDXL_REFINER_SEAMLESS,
SEAMLESS,
} from 'features/nodes/util/graph/constants';
import {
getBoardField,
getIsIntermediate,
getPresetModifiedPrompts,
} from 'features/nodes/util/graph/graphBuilderUtils';
import { getBoardField, getIsIntermediate, getSDXLStylePrompts } from 'features/nodes/util/graph/graphBuilderUtils';
import type { ImageDTO, Invocation, NonNullableGraph } from 'services/api/types';
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
@@ -62,6 +58,7 @@ export const buildCanvasSDXLInpaintGraph = async (
canvasCoherenceEdgeSize,
maskBlur,
} = state.generation;
const { positivePrompt, negativePrompt } = state.controlLayers.present;
const { refinerModel, refinerStart } = state.sdxl;
@@ -86,7 +83,7 @@ export const buildCanvasSDXLInpaintGraph = async (
const use_cpu = shouldUseCpuNoise;
// Construct Style Prompt
const { positivePrompt, negativePrompt, positiveStylePrompt, negativeStylePrompt } = getPresetModifiedPrompts(state);
const { positiveStylePrompt, negativeStylePrompt } = getSDXLStylePrompts(state);
const graph: NonNullableGraph = {
id: SDXL_CANVAS_INPAINT_GRAPH,

View File

@@ -23,11 +23,7 @@ import {
SDXL_REFINER_SEAMLESS,
SEAMLESS,
} from 'features/nodes/util/graph/constants';
import {
getBoardField,
getIsIntermediate,
getPresetModifiedPrompts,
} from 'features/nodes/util/graph/graphBuilderUtils';
import { getBoardField, getIsIntermediate, getSDXLStylePrompts } from 'features/nodes/util/graph/graphBuilderUtils';
import type { ImageDTO, Invocation, NonNullableGraph } from 'services/api/types';
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
@@ -74,6 +70,7 @@ export const buildCanvasSDXLOutpaintGraph = async (
canvasCoherenceEdgeSize,
maskBlur,
} = state.generation;
const { positivePrompt, negativePrompt } = state.controlLayers.present;
const { refinerModel, refinerStart } = state.sdxl;
@@ -97,7 +94,7 @@ export const buildCanvasSDXLOutpaintGraph = async (
const use_cpu = shouldUseCpuNoise;
// Construct Style Prompt
const { positivePrompt, negativePrompt, positiveStylePrompt, negativeStylePrompt } = getPresetModifiedPrompts(state);
const { positiveStylePrompt, negativeStylePrompt } = getSDXLStylePrompts(state);
const graph: NonNullableGraph = {
id: SDXL_CANVAS_OUTPAINT_GRAPH,

View File

@@ -14,11 +14,7 @@ import {
SDXL_REFINER_SEAMLESS,
SEAMLESS,
} from 'features/nodes/util/graph/constants';
import {
getBoardField,
getIsIntermediate,
getPresetModifiedPrompts,
} from 'features/nodes/util/graph/graphBuilderUtils';
import { getBoardField, getIsIntermediate, getSDXLStylePrompts } from 'features/nodes/util/graph/graphBuilderUtils';
import { isNonRefinerMainModelConfig, type NonNullableGraph } from 'services/api/types';
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
@@ -48,6 +44,7 @@ export const buildCanvasSDXLTextToImageGraph = async (state: RootState): Promise
seamlessXAxis,
seamlessYAxis,
} = state.generation;
const { positivePrompt, negativePrompt } = state.controlLayers.present;
// The bounding box determines width and height, not the width and height params
const { width, height } = state.canvas.boundingBoxDimensions;
@@ -70,7 +67,7 @@ export const buildCanvasSDXLTextToImageGraph = async (state: RootState): Promise
let modelLoaderNodeId = SDXL_MODEL_LOADER;
// Construct Style Prompt
const { positivePrompt, negativePrompt, positiveStylePrompt, negativeStylePrompt } = getPresetModifiedPrompts(state);
const { positiveStylePrompt, negativeStylePrompt } = getSDXLStylePrompts(state);
/**
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the

View File

@@ -14,11 +14,7 @@ import {
POSITIVE_CONDITIONING,
SEAMLESS,
} from 'features/nodes/util/graph/constants';
import {
getBoardField,
getIsIntermediate,
getPresetModifiedPrompts,
} from 'features/nodes/util/graph/graphBuilderUtils';
import { getBoardField, getIsIntermediate } from 'features/nodes/util/graph/graphBuilderUtils';
import { isNonRefinerMainModelConfig, type NonNullableGraph } from 'services/api/types';
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
@@ -48,6 +44,7 @@ export const buildCanvasTextToImageGraph = async (state: RootState): Promise<Non
seamlessXAxis,
seamlessYAxis,
} = state.generation;
const { positivePrompt, negativePrompt } = state.controlLayers.present;
// The bounding box determines width and height, not the width and height params
const { width, height } = state.canvas.boundingBoxDimensions;
@@ -67,8 +64,6 @@ export const buildCanvasTextToImageGraph = async (state: RootState): Promise<Non
let modelLoaderNodeId = MAIN_MODEL_LOADER;
const { positivePrompt, negativePrompt } = getPresetModifiedPrompts(state);
/**
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
* full graph here as a template. Then use the parameters from app state and set friendlier node

View File

@@ -22,7 +22,7 @@ import { addSeamless } from 'features/nodes/util/graph/generation/addSeamless';
import { addWatermarker } from 'features/nodes/util/graph/generation/addWatermarker';
import type { GraphType } from 'features/nodes/util/graph/generation/Graph';
import { Graph } from 'features/nodes/util/graph/generation/Graph';
import { getBoardField, getPresetModifiedPrompts } from 'features/nodes/util/graph/graphBuilderUtils';
import { getBoardField } from 'features/nodes/util/graph/graphBuilderUtils';
import type { Invocation } from 'services/api/types';
import { isNonRefinerMainModelConfig } from 'services/api/types';
import { assert } from 'tsafe';
@@ -40,12 +40,11 @@ export const buildGenerationTabGraph = async (state: RootState): Promise<GraphTy
seed,
vae,
} = state.generation;
const { positivePrompt, negativePrompt } = state.controlLayers.present;
const { width, height } = state.controlLayers.present.size;
assert(model, 'No model found in state');
const { positivePrompt, negativePrompt } = getPresetModifiedPrompts(state);
const g = new Graph(CONTROL_LAYERS_GRAPH);
const modelLoader = g.addNode({
type: 'main_model_loader',

View File

@@ -19,7 +19,7 @@ import { addSDXLRefiner } from 'features/nodes/util/graph/generation/addSDXLRefi
import { addSeamless } from 'features/nodes/util/graph/generation/addSeamless';
import { addWatermarker } from 'features/nodes/util/graph/generation/addWatermarker';
import { Graph } from 'features/nodes/util/graph/generation/Graph';
import { getBoardField, getPresetModifiedPrompts } from 'features/nodes/util/graph/graphBuilderUtils';
import { getBoardField, getSDXLStylePrompts } from 'features/nodes/util/graph/graphBuilderUtils';
import type { Invocation, NonNullableGraph } from 'services/api/types';
import { isNonRefinerMainModelConfig } from 'services/api/types';
import { assert } from 'tsafe';
@@ -36,13 +36,14 @@ export const buildGenerationTabSDXLGraph = async (state: RootState): Promise<Non
vaePrecision,
vae,
} = state.generation;
const { positivePrompt, negativePrompt } = state.controlLayers.present;
const { width, height } = state.controlLayers.present.size;
const { refinerModel, refinerStart } = state.sdxl;
assert(model, 'No model found in state');
const { positivePrompt, negativePrompt, positiveStylePrompt, negativeStylePrompt } = getPresetModifiedPrompts(state);
const { positiveStylePrompt, negativeStylePrompt } = getSDXLStylePrompts(state);
const g = new Graph(SDXL_CONTROL_LAYERS_GRAPH);
const modelLoader = g.addNode({

View File

@@ -1,8 +1,6 @@
import type { RootState } from 'app/store/store';
import type { BoardField } from 'features/nodes/types/common';
import { buildPresetModifiedPrompt } from 'features/stylePresets/hooks/usePresetModifiedPrompts';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import { stylePresetsApi } from 'services/api/endpoints/stylePresets';
/**
* Gets the board field, based on the autoAddBoardId setting.
@@ -16,43 +14,13 @@ export const getBoardField = (state: RootState): BoardField | undefined => {
};
/**
* Gets the prompts, modified for the active style preset.
* Gets the SDXL style prompts, based on the concat setting.
*/
export const getPresetModifiedPrompts = (
state: RootState
): { positivePrompt: string; negativePrompt: string; positiveStylePrompt?: string; negativeStylePrompt?: string } => {
export const getSDXLStylePrompts = (state: RootState): { positiveStylePrompt: string; negativeStylePrompt: string } => {
const { positivePrompt, negativePrompt, positivePrompt2, negativePrompt2, shouldConcatPrompts } =
state.controlLayers.present;
const { activeStylePresetId } = state.stylePreset;
if (activeStylePresetId) {
const { data } = stylePresetsApi.endpoints.listStylePresets.select()(state);
const activeStylePreset = data?.find((item) => item.id === activeStylePresetId);
if (activeStylePreset) {
const presetModifiedPositivePrompt = buildPresetModifiedPrompt(
activeStylePreset.preset_data.positive_prompt,
positivePrompt
);
const presetModifiedNegativePrompt = buildPresetModifiedPrompt(
activeStylePreset.preset_data.negative_prompt,
negativePrompt
);
return {
positivePrompt: presetModifiedPositivePrompt,
negativePrompt: presetModifiedNegativePrompt,
positiveStylePrompt: shouldConcatPrompts ? presetModifiedPositivePrompt : positivePrompt2,
negativeStylePrompt: shouldConcatPrompts ? presetModifiedNegativePrompt : negativePrompt2,
};
}
}
return {
positivePrompt,
negativePrompt,
positiveStylePrompt: shouldConcatPrompts ? positivePrompt : positivePrompt2,
negativeStylePrompt: shouldConcatPrompts ? negativePrompt : negativePrompt2,
};

View File

@@ -1,32 +1,16 @@
import { Box, Textarea } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { negativePromptChanged } from 'features/controlLayers/store/controlLayersSlice';
import { PromptLabel } from 'features/parameters/components/Prompts/PromptLabel';
import { PromptOverlayButtonWrapper } from 'features/parameters/components/Prompts/PromptOverlayButtonWrapper';
import { ViewModePrompt } from 'features/parameters/components/Prompts/ViewModePrompt';
import { AddPromptTriggerButton } from 'features/prompt/AddPromptTriggerButton';
import { PromptPopover } from 'features/prompt/PromptPopover';
import { usePrompt } from 'features/prompt/usePrompt';
import { memo, useCallback, useRef } from 'react';
import { useTranslation } from 'react-i18next';
import { useListStylePresetsQuery } from 'services/api/endpoints/stylePresets';
export const ParamNegativePrompt = memo(() => {
const dispatch = useAppDispatch();
const prompt = useAppSelector((s) => s.controlLayers.present.negativePrompt);
const viewMode = useAppSelector((s) => s.stylePreset.viewMode);
const activeStylePresetId = useAppSelector((s) => s.stylePreset.activeStylePresetId);
const { activeStylePreset } = useListStylePresetsQuery(undefined, {
selectFromResult: ({ data }) => {
let activeStylePreset = null;
if (data) {
activeStylePreset = data.find((sp) => sp.id === activeStylePresetId);
}
return { activeStylePreset };
},
});
const textareaRef = useRef<HTMLTextAreaElement>(null);
const { t } = useTranslation();
const _onChange = useCallback(
@@ -43,34 +27,22 @@ export const ParamNegativePrompt = memo(() => {
return (
<PromptPopover isOpen={isOpen} onClose={onClose} onSelect={onSelect} width={textareaRef.current?.clientWidth}>
<Box pos="relative" w="full">
<Box pos="relative">
<Textarea
id="negativePrompt"
name="negativePrompt"
ref={textareaRef}
value={prompt}
placeholder={t('parameters.globalNegativePromptPlaceholder')}
onChange={onChange}
onKeyDown={onKeyDown}
fontSize="sm"
variant="darkFilled"
minH={28}
borderTopWidth={24} // This prevents the prompt from being hidden behind the header
paddingInlineEnd={10}
paddingInlineStart={3}
paddingTop={0}
paddingBottom={3}
paddingRight={30}
/>
<PromptOverlayButtonWrapper>
<AddPromptTriggerButton isOpen={isOpen} onOpen={onOpen} />
</PromptOverlayButtonWrapper>
<PromptLabel label={t('parameters.negativePromptPlaceholder')} />
{viewMode && (
<ViewModePrompt
prompt={prompt}
presetPrompt={activeStylePreset?.preset_data.negative_prompt || ''}
label={`${t('parameters.negativePromptPlaceholder')} (${t('stylePresets.preview')})`}
/>
)}
</Box>
</PromptPopover>
);

View File

@@ -2,9 +2,7 @@ import { Box, Textarea } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { positivePromptChanged } from 'features/controlLayers/store/controlLayersSlice';
import { ShowDynamicPromptsPreviewButton } from 'features/dynamicPrompts/components/ShowDynamicPromptsPreviewButton';
import { PromptLabel } from 'features/parameters/components/Prompts/PromptLabel';
import { PromptOverlayButtonWrapper } from 'features/parameters/components/Prompts/PromptOverlayButtonWrapper';
import { ViewModePrompt } from 'features/parameters/components/Prompts/ViewModePrompt';
import { AddPromptTriggerButton } from 'features/prompt/AddPromptTriggerButton';
import { PromptPopover } from 'features/prompt/PromptPopover';
import { usePrompt } from 'features/prompt/usePrompt';
@@ -13,24 +11,11 @@ import { memo, useCallback, useRef } from 'react';
import type { HotkeyCallback } from 'react-hotkeys-hook';
import { useHotkeys } from 'react-hotkeys-hook';
import { useTranslation } from 'react-i18next';
import { useListStylePresetsQuery } from 'services/api/endpoints/stylePresets';
export const ParamPositivePrompt = memo(() => {
const dispatch = useAppDispatch();
const prompt = useAppSelector((s) => s.controlLayers.present.positivePrompt);
const baseModel = useAppSelector((s) => s.generation.model)?.base;
const viewMode = useAppSelector((s) => s.stylePreset.viewMode);
const activeStylePresetId = useAppSelector((s) => s.stylePreset.activeStylePresetId);
const { activeStylePreset } = useListStylePresetsQuery(undefined, {
selectFromResult: ({ data }) => {
let activeStylePreset = null;
if (data) {
activeStylePreset = data.find((sp) => sp.id === activeStylePresetId);
}
return { activeStylePreset };
},
});
const textareaRef = useRef<HTMLTextAreaElement>(null);
const { t } = useTranslation();
@@ -64,29 +49,18 @@ export const ParamPositivePrompt = memo(() => {
name="prompt"
ref={textareaRef}
value={prompt}
placeholder={t('parameters.globalPositivePromptPlaceholder')}
onChange={onChange}
minH={40}
minH={28}
onKeyDown={onKeyDown}
variant="darkFilled"
borderTopWidth={24} // This prevents the prompt from being hidden behind the header
paddingInlineEnd={10}
paddingInlineStart={3}
paddingTop={0}
paddingBottom={3}
paddingRight={30}
/>
<PromptOverlayButtonWrapper>
<AddPromptTriggerButton isOpen={isOpen} onOpen={onOpen} />
{baseModel === 'sdxl' && <SDXLConcatButton />}
<ShowDynamicPromptsPreviewButton />
</PromptOverlayButtonWrapper>
<PromptLabel label={t('parameters.positivePromptPlaceholder')} />
{viewMode && (
<ViewModePrompt
prompt={prompt}
presetPrompt={activeStylePreset?.preset_data.positive_prompt || ''}
label={`${t('parameters.positivePromptPlaceholder')} (${t('stylePresets.preview')})`}
/>
)}
</Box>
</PromptPopover>
);

View File

@@ -1,9 +0,0 @@
import { Text } from '@invoke-ai/ui-library';
export const PromptLabel = ({ label }: { label: string }) => {
return (
<Text variant="subtext" fontWeight="semibold" pos="absolute" top={1} left={2}>
{label}
</Text>
);
};

View File

@@ -1,29 +1,13 @@
import { Flex } from '@invoke-ai/ui-library';
import { createSelector } from '@reduxjs/toolkit';
import { useAppSelector } from 'app/store/storeHooks';
import { selectControlLayersSlice } from 'features/controlLayers/store/controlLayersSlice';
import { ParamNegativePrompt } from 'features/parameters/components/Core/ParamNegativePrompt';
import { ParamPositivePrompt } from 'features/parameters/components/Core/ParamPositivePrompt';
import { selectGenerationSlice } from 'features/parameters/store/generationSlice';
import { ParamSDXLNegativeStylePrompt } from 'features/sdxl/components/SDXLPrompts/ParamSDXLNegativeStylePrompt';
import { ParamSDXLPositiveStylePrompt } from 'features/sdxl/components/SDXLPrompts/ParamSDXLPositiveStylePrompt';
import { memo } from 'react';
const concatPromptsSelector = createSelector(
[selectGenerationSlice, selectControlLayersSlice],
(generation, controlLayers) => {
return generation.model?.base !== 'sdxl' || controlLayers.present.shouldConcatPrompts;
}
);
export const Prompts = memo(() => {
const shouldConcatPrompts = useAppSelector(concatPromptsSelector);
return (
<Flex flexDir="column" gap={2}>
<ParamPositivePrompt />
{!shouldConcatPrompts && <ParamSDXLPositiveStylePrompt />}
<ParamNegativePrompt />
{!shouldConcatPrompts && <ParamSDXLNegativeStylePrompt />}
</Flex>
);
});

View File

@@ -1,81 +0,0 @@
import { Box, Flex, Icon, Text, Tooltip } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { viewModeChanged } from 'features/stylePresets/store/stylePresetSlice';
import { getViewModeChunks } from 'features/stylePresets/util/getViewModeChunks';
import { useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiEyeBold } from 'react-icons/pi';
import { PromptLabel } from './PromptLabel';
export const ViewModePrompt = ({
presetPrompt,
prompt,
label,
}: {
presetPrompt: string;
prompt: string;
label: string;
}) => {
const dispatch = useAppDispatch();
const { t } = useTranslation();
const presetChunks = useMemo(() => {
return getViewModeChunks(prompt, presetPrompt);
}, [presetPrompt, prompt]);
const handleExitViewMode = useCallback(() => {
dispatch(viewModeChanged(false));
}, [dispatch]);
return (
<Box position="absolute" top={0} bottom={0} left={0} right={0} layerStyle="second" borderRadius="base">
<Flex
flexDir="column"
onClick={handleExitViewMode}
justifyContent="space-between"
h="full"
borderWidth={1}
borderTopWidth={24} // This prevents the prompt from being hidden behind the header
borderColor="transparent"
paddingInlineEnd={10}
paddingInlineStart={3}
paddingTop={0}
paddingBottom={3}
>
<PromptLabel label={label} />
<Flex overflow="scroll">
<Text w="full" lineHeight="short">
{presetChunks.map((chunk, index) => (
<Text
as="span"
color={index === 1 ? 'white' : 'base.200'}
fontWeight={index === 1 ? 'semibold' : 'normal'}
key={index}
>
{chunk}
</Text>
))}
</Text>
</Flex>
<Tooltip label={t('stylePresets.viewModeTooltip')}>
<Flex
position="absolute"
insetInlineEnd={0}
insetBlockStart={0}
alignItems="center"
justifyContent="center"
p={2}
bg="base.900"
opacity={0.8}
backgroundClip="border-box"
borderBottomStartRadius="base"
>
<Icon as={PiEyeBold} color="base.500" boxSize={4} />
</Flex>
</Tooltip>
</Flex>
</Box>
);
};

View File

@@ -1,7 +1,6 @@
import { Box, Textarea } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { negativePrompt2Changed } from 'features/controlLayers/store/controlLayersSlice';
import { PromptLabel } from 'features/parameters/components/Prompts/PromptLabel';
import { PromptOverlayButtonWrapper } from 'features/parameters/components/Prompts/PromptOverlayButtonWrapper';
import { AddPromptTriggerButton } from 'features/prompt/AddPromptTriggerButton';
import { PromptPopover } from 'features/prompt/PromptPopover';
@@ -37,21 +36,16 @@ export const ParamSDXLNegativeStylePrompt = memo(() => {
name="prompt"
ref={textareaRef}
value={prompt}
placeholder={t('sdxl.negStylePrompt')}
onChange={onChange}
onKeyDown={onKeyDown}
fontSize="sm"
variant="darkFilled"
minH={24}
borderTopWidth={24} // This prevents the prompt from being hidden behind the header
paddingInlineEnd={10}
paddingInlineStart={3}
paddingTop={0}
paddingBottom={3}
paddingRight={30}
/>
<PromptOverlayButtonWrapper>
<AddPromptTriggerButton isOpen={isOpen} onOpen={onOpen} />
</PromptOverlayButtonWrapper>
<PromptLabel label={t('sdxl.negStylePrompt')} />
</Box>
</PromptPopover>
);

View File

@@ -1,7 +1,6 @@
import { Box, Textarea } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { positivePrompt2Changed } from 'features/controlLayers/store/controlLayersSlice';
import { PromptLabel } from 'features/parameters/components/Prompts/PromptLabel';
import { PromptOverlayButtonWrapper } from 'features/parameters/components/Prompts/PromptOverlayButtonWrapper';
import { AddPromptTriggerButton } from 'features/prompt/AddPromptTriggerButton';
import { PromptPopover } from 'features/prompt/PromptPopover';
@@ -34,21 +33,16 @@ export const ParamSDXLPositiveStylePrompt = memo(() => {
name="prompt"
ref={textareaRef}
value={prompt}
placeholder={t('sdxl.posStylePrompt')}
onChange={onChange}
onKeyDown={onKeyDown}
fontSize="sm"
variant="darkFilled"
minH={24}
borderTopWidth={24} // This prevents the prompt from being hidden behind the header
paddingInlineEnd={10}
paddingInlineStart={3}
paddingTop={0}
paddingBottom={3}
paddingRight={30}
/>
<PromptOverlayButtonWrapper>
<AddPromptTriggerButton isOpen={isOpen} onOpen={onOpen} />
</PromptOverlayButtonWrapper>
<PromptLabel label={t('sdxl.posStylePrompt')} />
</Box>
</PromptPopover>
);

View File

@@ -0,0 +1,20 @@
import type { Meta, StoryObj } from '@storybook/react';
import { SDXLPrompts } from './SDXLPrompts';
const meta: Meta<typeof SDXLPrompts> = {
title: 'Feature/Prompt/SDXLPrompts',
tags: ['autodocs'],
component: SDXLPrompts,
};
export default meta;
type Story = StoryObj<typeof SDXLPrompts>;
const Component = () => {
return <SDXLPrompts />;
};
export const Default: Story = {
render: Component,
};

View File

@@ -0,0 +1,22 @@
import { Flex } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { ParamNegativePrompt } from 'features/parameters/components/Core/ParamNegativePrompt';
import { ParamPositivePrompt } from 'features/parameters/components/Core/ParamPositivePrompt';
import { memo } from 'react';
import { ParamSDXLNegativeStylePrompt } from './ParamSDXLNegativeStylePrompt';
import { ParamSDXLPositiveStylePrompt } from './ParamSDXLPositiveStylePrompt';
export const SDXLPrompts = memo(() => {
const shouldConcatPrompts = useAppSelector((s) => s.controlLayers.present.shouldConcatPrompts);
return (
<Flex flexDir="column" gap={2} pos="relative">
<ParamPositivePrompt />
{!shouldConcatPrompts && <ParamSDXLPositiveStylePrompt />}
<ParamNegativePrompt />
{!shouldConcatPrompts && <ParamSDXLNegativeStylePrompt />}
</Flex>
);
});
SDXLPrompts.displayName = 'SDXLPrompts';

Some files were not shown because too many files have changed in this diff Show More