Compare commits

..

14 Commits

Author SHA1 Message Date
Ryan Dick
a8a2fc106d Make quantized loading fast for both T5XXL and FLUX transformer. 2024-08-09 19:54:09 +00:00
Ryan Dick
d23ad1818d Make quantized loading fast. 2024-08-09 16:39:43 +00:00
Ryan Dick
4181ab654b WIP - experimentation 2024-08-09 16:23:37 +00:00
Ryan Dick
1c97360f9f Make float16 inference work with FLUX on 24GB GPU. 2024-08-08 18:12:04 -04:00
Ryan Dick
74d6fceeb6 Add support for 8-bit quantizatino of the FLUX T5XXL text encoder. 2024-08-08 18:23:20 +00:00
Ryan Dick
766ddc18dc Make 8-bit quantization save/reload work for the FLUX transformer. Reload is still very slow with the current optimum.quanto implementation. 2024-08-08 16:40:11 +00:00
Ryan Dick
e6ff7488a1 Minor improvements to FLUX workflow. 2024-08-07 22:10:09 +00:00
Ryan Dick
89a652cfcd Got FLUX schnell working with 8-bit quantization. Still lots of rough edges to clean up. 2024-08-07 19:50:03 +00:00
Ryan Dick
b227b9059d Use the FluxPipeline.encode_prompt() api rather than trying to run the two text encoders separately. 2024-08-07 15:12:01 +00:00
Ryan Dick
3599a4a3e4 Add sentencepiece dependency for the T5 tokenizer. 2024-08-07 14:18:19 +00:00
Ryan Dick
5dd619e137 First draft of FluxTextToImageInvocation. 2024-08-06 21:51:22 +00:00
Ryan Dick
7d447cbb88 Update HF download logic to work for black-forest-labs/FLUX.1-schnell. 2024-08-06 19:34:49 +00:00
Ryan Dick
3bbba7e4b1 Update imports for compatibility with bumped diffusers version. 2024-08-06 17:56:36 +00:00
Ryan Dick
b1845019fe Bump diffusers version to include FLUX support. 2024-08-06 11:52:05 -04:00
779 changed files with 49623 additions and 43944 deletions

View File

@@ -62,7 +62,7 @@ jobs:
- name: install ruff
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: pip install ruff==0.6.0
run: pip install ruff
shell: bash
- name: ruff check

View File

@@ -1,22 +1,20 @@
# Invoke in Docker
First things first:
- Ensure that Docker can use your [NVIDIA][nvidia docker docs] or [AMD][amd docker docs] GPU.
- This document assumes a Linux system, but should work similarly under Windows with WSL2.
- Ensure that Docker can use the GPU on your system
- This documentation assumes Linux, but should work similarly under Windows with WSL2
- We don't recommend running Invoke in Docker on macOS at this time. It works, but very slowly.
## Quickstart
## Quickstart :lightning:
No `docker compose`, no persistence, single command, using the official images:
No `docker compose`, no persistence, just a simple one-liner using the official images:
**CUDA (NVIDIA GPU):**
**CUDA:**
```bash
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
```
**ROCm (AMD GPU):**
**ROCm:**
```bash
docker run --device /dev/kfd --device /dev/dri --publish 9090:9090 ghcr.io/invoke-ai/invokeai:main-rocm
@@ -24,20 +22,12 @@ docker run --device /dev/kfd --device /dev/dri --publish 9090:9090 ghcr.io/invok
Open `http://localhost:9090` in your browser once the container finishes booting, install some models, and generate away!
### Data persistence
To persist your generated images and downloaded models outside of the container, add a `--volume/-v` flag to the above command, e.g.:
```bash
docker run --volume /some/local/path:/invokeai {...etc...}
```
`/some/local/path/invokeai` will contain all your data.
It can *usually* be reused between different installs of Invoke. Tread with caution and read the release notes!
> [!TIP]
> To persist your data (including downloaded models) outside of the container, add a `--volume/-v` flag to the above command, e.g.: `docker run --volume /some/local/path:/invokeai <...the rest of the command>`
## Customize the container
The included `run.sh` script is a convenience wrapper around `docker compose`. It can be helpful for passing additional build arguments to `docker compose`. Alternatively, the familiar `docker compose` commands work just as well.
We ship the `run.sh` script, which is a convenient wrapper around `docker compose` for cases where custom image build args are needed. Alternatively, the familiar `docker compose` commands work just as well.
```bash
cd docker
@@ -48,14 +38,11 @@ cp .env.sample .env
It will take a few minutes to build the image the first time. Once the application starts up, open `http://localhost:9090` in your browser to invoke!
>[!TIP]
>When using the `run.sh` script, the container will continue running after Ctrl+C. To shut it down, use the `docker compose down` command.
## Docker setup in detail
#### Linux
1. Ensure buildkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
1. Ensure builkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://docs.docker.com/compose/install/linux/#install-using-the-repository).
- The deprecated `docker-compose` (hyphenated) CLI probably won't work. Update to a recent version.
3. Ensure docker daemon is able to access the GPU.
@@ -111,7 +98,25 @@ GPU_DRIVER=cuda
Any environment variables supported by InvokeAI can be set here. See the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
---
## Even More Customizing!
[nvidia docker docs]: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
[amd docker docs]: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html
See the `docker-compose.yml` file. The `command` instruction can be uncommented and used to run arbitrary startup commands. Some examples below.
### Reconfigure the runtime directory
Can be used to download additional models from the supported model list
In conjunction with `INVOKEAI_ROOT` can be also used to initialize a runtime directory
```yaml
command:
- invokeai-configure
- --yes
```
Or install models:
```yaml
command:
- invokeai-model-install
```

View File

@@ -17,7 +17,7 @@
set -eu
# Ensure we're in the correct folder in case user's CWD is somewhere else
scriptdir=$(dirname $(readlink -f "$0"))
scriptdir=$(dirname "$0")
cd "$scriptdir"
. .venv/bin/activate

View File

@@ -1,6 +1,5 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import asyncio
from logging import Logger
import torch
@@ -32,8 +31,6 @@ from invokeai.app.services.session_processor.session_processor_default import (
)
from invokeai.app.services.session_queue.session_queue_sqlite import SqliteSessionQueue
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
from invokeai.app.services.style_preset_images.style_preset_images_disk import StylePresetImageFileStorageDisk
from invokeai.app.services.style_preset_records.style_preset_records_sqlite import SqliteStylePresetRecordsStorage
from invokeai.app.services.urls.urls_default import LocalUrlService
from invokeai.app.services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
@@ -66,12 +63,7 @@ class ApiDependencies:
invoker: Invoker
@staticmethod
def initialize(
config: InvokeAIAppConfig,
event_handler_id: int,
loop: asyncio.AbstractEventLoop,
logger: Logger = logger,
) -> None:
def initialize(config: InvokeAIAppConfig, event_handler_id: int, logger: Logger = logger) -> None:
logger.info(f"InvokeAI version {__version__}")
logger.info(f"Root directory = {str(config.root_path)}")
@@ -82,7 +74,6 @@ class ApiDependencies:
image_files = DiskImageFileStorage(f"{output_folder}/images")
model_images_folder = config.models_path
style_presets_folder = config.style_presets_path
db = init_db(config=config, logger=logger, image_files=image_files)
@@ -93,7 +84,7 @@ class ApiDependencies:
board_images = BoardImagesService()
board_records = SqliteBoardRecordStorage(db=db)
boards = BoardService()
events = FastAPIEventService(event_handler_id, loop=loop)
events = FastAPIEventService(event_handler_id)
bulk_download = BulkDownloadService()
image_records = SqliteImageRecordStorage(db=db)
images = ImageService()
@@ -118,8 +109,6 @@ class ApiDependencies:
session_queue = SqliteSessionQueue(db=db)
urls = LocalUrlService()
workflow_records = SqliteWorkflowRecordsStorage(db=db)
style_preset_records = SqliteStylePresetRecordsStorage(db=db)
style_preset_image_files = StylePresetImageFileStorageDisk(style_presets_folder / "images")
services = InvocationServices(
board_image_records=board_image_records,
@@ -145,8 +134,6 @@ class ApiDependencies:
workflow_records=workflow_records,
tensors=tensors,
conditioning=conditioning,
style_preset_records=style_preset_records,
style_preset_image_files=style_preset_image_files,
)
ApiDependencies.invoker = Invoker(services)

View File

@@ -218,8 +218,9 @@ async def get_image_workflow(
raise HTTPException(status_code=404)
@images_router.get(
@images_router.api_route(
"/i/{image_name}/full",
methods=["GET", "HEAD"],
operation_id="get_image_full",
response_class=Response,
responses={
@@ -230,18 +231,6 @@ async def get_image_workflow(
404: {"description": "Image not found"},
},
)
@images_router.head(
"/i/{image_name}/full",
operation_id="get_image_full_head",
response_class=Response,
responses={
200: {
"description": "Return the full-resolution image",
"content": {"image/png": {}},
},
404: {"description": "Image not found"},
},
)
async def get_image_full(
image_name: str = Path(description="The name of full-resolution image file to get"),
) -> Response:
@@ -253,7 +242,6 @@ async def get_image_full(
content = f.read()
response = Response(content, media_type="image/png")
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
response.headers["Content-Disposition"] = f'inline; filename="{image_name}"'
return response
except Exception:
raise HTTPException(status_code=404)

View File

@@ -11,7 +11,6 @@ from invokeai.app.services.session_queue.session_queue_common import (
Batch,
BatchStatus,
CancelByBatchIDsResult,
CancelByOriginResult,
ClearResult,
EnqueueBatchResult,
PruneResult,
@@ -106,19 +105,6 @@ async def cancel_by_batch_ids(
return ApiDependencies.invoker.services.session_queue.cancel_by_batch_ids(queue_id=queue_id, batch_ids=batch_ids)
@session_queue_router.put(
"/{queue_id}/cancel_by_origin",
operation_id="cancel_by_origin",
responses={200: {"model": CancelByBatchIDsResult}},
)
async def cancel_by_origin(
queue_id: str = Path(description="The queue id to perform this operation on"),
origin: str = Query(description="The origin to cancel all queue items for"),
) -> CancelByOriginResult:
"""Immediately cancels all queue items with the given origin"""
return ApiDependencies.invoker.services.session_queue.cancel_by_origin(queue_id=queue_id, origin=origin)
@session_queue_router.put(
"/{queue_id}/clear",
operation_id="clear",

View File

@@ -1,274 +0,0 @@
import csv
import io
import json
import traceback
from typing import Optional
import pydantic
from fastapi import APIRouter, File, Form, HTTPException, Path, Response, UploadFile
from fastapi.responses import FileResponse
from PIL import Image
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.api.routers.model_manager import IMAGE_MAX_AGE
from invokeai.app.services.style_preset_images.style_preset_images_common import StylePresetImageFileNotFoundException
from invokeai.app.services.style_preset_records.style_preset_records_common import (
InvalidPresetImportDataError,
PresetData,
PresetType,
StylePresetChanges,
StylePresetNotFoundError,
StylePresetRecordWithImage,
StylePresetWithoutId,
UnsupportedFileTypeError,
parse_presets_from_file,
)
class StylePresetFormData(BaseModel):
name: str = Field(description="Preset name")
positive_prompt: str = Field(description="Positive prompt")
negative_prompt: str = Field(description="Negative prompt")
type: PresetType = Field(description="Preset type")
style_presets_router = APIRouter(prefix="/v1/style_presets", tags=["style_presets"])
@style_presets_router.get(
"/i/{style_preset_id}",
operation_id="get_style_preset",
responses={
200: {"model": StylePresetRecordWithImage},
},
)
async def get_style_preset(
style_preset_id: str = Path(description="The style preset to get"),
) -> StylePresetRecordWithImage:
"""Gets a style preset"""
try:
image = ApiDependencies.invoker.services.style_preset_image_files.get_url(style_preset_id)
style_preset = ApiDependencies.invoker.services.style_preset_records.get(style_preset_id)
return StylePresetRecordWithImage(image=image, **style_preset.model_dump())
except StylePresetNotFoundError:
raise HTTPException(status_code=404, detail="Style preset not found")
@style_presets_router.patch(
"/i/{style_preset_id}",
operation_id="update_style_preset",
responses={
200: {"model": StylePresetRecordWithImage},
},
)
async def update_style_preset(
image: Optional[UploadFile] = File(description="The image file to upload", default=None),
style_preset_id: str = Path(description="The id of the style preset to update"),
data: str = Form(description="The data of the style preset to update"),
) -> StylePresetRecordWithImage:
"""Updates a style preset"""
if image is not None:
if not image.content_type or not image.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
contents = await image.read()
try:
pil_image = Image.open(io.BytesIO(contents))
except Exception:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail="Failed to read image")
try:
ApiDependencies.invoker.services.style_preset_image_files.save(style_preset_id, pil_image)
except ValueError as e:
raise HTTPException(status_code=409, detail=str(e))
else:
try:
ApiDependencies.invoker.services.style_preset_image_files.delete(style_preset_id)
except StylePresetImageFileNotFoundException:
pass
try:
parsed_data = json.loads(data)
validated_data = StylePresetFormData(**parsed_data)
name = validated_data.name
type = validated_data.type
positive_prompt = validated_data.positive_prompt
negative_prompt = validated_data.negative_prompt
except pydantic.ValidationError:
raise HTTPException(status_code=400, detail="Invalid preset data")
preset_data = PresetData(positive_prompt=positive_prompt, negative_prompt=negative_prompt)
changes = StylePresetChanges(name=name, preset_data=preset_data, type=type)
style_preset_image = ApiDependencies.invoker.services.style_preset_image_files.get_url(style_preset_id)
style_preset = ApiDependencies.invoker.services.style_preset_records.update(
style_preset_id=style_preset_id, changes=changes
)
return StylePresetRecordWithImage(image=style_preset_image, **style_preset.model_dump())
@style_presets_router.delete(
"/i/{style_preset_id}",
operation_id="delete_style_preset",
)
async def delete_style_preset(
style_preset_id: str = Path(description="The style preset to delete"),
) -> None:
"""Deletes a style preset"""
try:
ApiDependencies.invoker.services.style_preset_image_files.delete(style_preset_id)
except StylePresetImageFileNotFoundException:
pass
ApiDependencies.invoker.services.style_preset_records.delete(style_preset_id)
@style_presets_router.post(
"/",
operation_id="create_style_preset",
responses={
200: {"model": StylePresetRecordWithImage},
},
)
async def create_style_preset(
image: Optional[UploadFile] = File(description="The image file to upload", default=None),
data: str = Form(description="The data of the style preset to create"),
) -> StylePresetRecordWithImage:
"""Creates a style preset"""
try:
parsed_data = json.loads(data)
validated_data = StylePresetFormData(**parsed_data)
name = validated_data.name
type = validated_data.type
positive_prompt = validated_data.positive_prompt
negative_prompt = validated_data.negative_prompt
except pydantic.ValidationError:
raise HTTPException(status_code=400, detail="Invalid preset data")
preset_data = PresetData(positive_prompt=positive_prompt, negative_prompt=negative_prompt)
style_preset = StylePresetWithoutId(name=name, preset_data=preset_data, type=type)
new_style_preset = ApiDependencies.invoker.services.style_preset_records.create(style_preset=style_preset)
if image is not None:
if not image.content_type or not image.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
contents = await image.read()
try:
pil_image = Image.open(io.BytesIO(contents))
except Exception:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail="Failed to read image")
try:
ApiDependencies.invoker.services.style_preset_image_files.save(new_style_preset.id, pil_image)
except ValueError as e:
raise HTTPException(status_code=409, detail=str(e))
preset_image = ApiDependencies.invoker.services.style_preset_image_files.get_url(new_style_preset.id)
return StylePresetRecordWithImage(image=preset_image, **new_style_preset.model_dump())
@style_presets_router.get(
"/",
operation_id="list_style_presets",
responses={
200: {"model": list[StylePresetRecordWithImage]},
},
)
async def list_style_presets() -> list[StylePresetRecordWithImage]:
"""Gets a page of style presets"""
style_presets_with_image: list[StylePresetRecordWithImage] = []
style_presets = ApiDependencies.invoker.services.style_preset_records.get_many()
for preset in style_presets:
image = ApiDependencies.invoker.services.style_preset_image_files.get_url(preset.id)
style_preset_with_image = StylePresetRecordWithImage(image=image, **preset.model_dump())
style_presets_with_image.append(style_preset_with_image)
return style_presets_with_image
@style_presets_router.get(
"/i/{style_preset_id}/image",
operation_id="get_style_preset_image",
responses={
200: {
"description": "The style preset image was fetched successfully",
},
400: {"description": "Bad request"},
404: {"description": "The style preset image could not be found"},
},
status_code=200,
)
async def get_style_preset_image(
style_preset_id: str = Path(description="The id of the style preset image to get"),
) -> FileResponse:
"""Gets an image file that previews the model"""
try:
path = ApiDependencies.invoker.services.style_preset_image_files.get_path(style_preset_id)
response = FileResponse(
path,
media_type="image/png",
filename=style_preset_id + ".png",
content_disposition_type="inline",
)
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
return response
except Exception:
raise HTTPException(status_code=404)
@style_presets_router.get(
"/export",
operation_id="export_style_presets",
responses={200: {"content": {"text/csv": {}}, "description": "A CSV file with the requested data."}},
status_code=200,
)
async def export_style_presets():
# Create an in-memory stream to store the CSV data
output = io.StringIO()
writer = csv.writer(output)
# Write the header
writer.writerow(["name", "prompt", "negative_prompt"])
style_presets = ApiDependencies.invoker.services.style_preset_records.get_many(type=PresetType.User)
for preset in style_presets:
writer.writerow([preset.name, preset.preset_data.positive_prompt, preset.preset_data.negative_prompt])
csv_data = output.getvalue()
output.close()
return Response(
content=csv_data,
media_type="text/csv",
headers={"Content-Disposition": "attachment; filename=prompt_templates.csv"},
)
@style_presets_router.post(
"/import",
operation_id="import_style_presets",
)
async def import_style_presets(file: UploadFile = File(description="The file to import")):
try:
style_presets = await parse_presets_from_file(file)
ApiDependencies.invoker.services.style_preset_records.create_many(style_presets)
except InvalidPresetImportDataError as e:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=400, detail=str(e))
except UnsupportedFileTypeError as e:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail=str(e))

View File

@@ -30,7 +30,6 @@ from invokeai.app.api.routers import (
images,
model_manager,
session_queue,
style_presets,
utilities,
workflows,
)
@@ -56,13 +55,11 @@ mimetypes.add_type("text/css", ".css")
torch_device_name = TorchDevice.get_torch_device_name()
logger.info(f"Using torch device: {torch_device_name}")
loop = asyncio.new_event_loop()
@asynccontextmanager
async def lifespan(app: FastAPI):
# Add startup event to load dependencies
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, loop=loop, logger=logger)
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger)
yield
# Shut down threads
ApiDependencies.shutdown()
@@ -109,7 +106,6 @@ app.include_router(board_images.board_images_router, prefix="/api")
app.include_router(app_info.app_router, prefix="/api")
app.include_router(session_queue.session_queue_router, prefix="/api")
app.include_router(workflows.workflows_router, prefix="/api")
app.include_router(style_presets.style_presets_router, prefix="/api")
app.openapi = get_openapi_func(app)
@@ -188,6 +184,8 @@ def invoke_api() -> None:
check_cudnn(logger)
# Start our own event loop for eventing usage
loop = asyncio.new_event_loop()
config = uvicorn.Config(
app=app,
host=app_config.host,

View File

@@ -21,8 +21,6 @@ from controlnet_aux import (
from controlnet_aux.util import HWC3, ade_palette
from PIL import Image
from pydantic import BaseModel, Field, field_validator, model_validator
from transformers import pipeline
from transformers.pipelines import DepthEstimationPipeline
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
@@ -46,12 +44,13 @@ from invokeai.app.invocations.util import validate_begin_end_step, validate_weig
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
from invokeai.backend.image_util.canny import get_canny_edges
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.backend.image_util.depth_anything import DEPTH_ANYTHING_MODELS, DepthAnythingDetector
from invokeai.backend.image_util.dw_openpose import DWPOSE_MODELS, DWOpenposeDetector
from invokeai.backend.image_util.hed import HEDProcessor
from invokeai.backend.image_util.lineart import LineartProcessor
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
from invokeai.backend.util.devices import TorchDevice
class ControlField(BaseModel):
@@ -593,14 +592,7 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
return color_map
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small", "small_v2"]
# DepthAnything V2 Small model is licensed under Apache 2.0 but not the base and large models.
DEPTH_ANYTHING_MODELS = {
"large": "LiheYoung/depth-anything-large-hf",
"base": "LiheYoung/depth-anything-base-hf",
"small": "LiheYoung/depth-anything-small-hf",
"small_v2": "depth-anything/Depth-Anything-V2-Small-hf",
}
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
@invocation(
@@ -608,33 +600,28 @@ DEPTH_ANYTHING_MODELS = {
title="Depth Anything Processor",
tags=["controlnet", "depth", "depth anything"],
category="controlnet",
version="1.1.3",
version="1.1.2",
)
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a depth map based on the Depth Anything algorithm"""
model_size: DEPTH_ANYTHING_MODEL_SIZES = InputField(
default="small_v2", description="The size of the depth model to use"
default="small", description="The size of the depth model to use"
)
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
def load_depth_anything(model_path: Path):
depth_anything_pipeline = pipeline(model=str(model_path), task="depth-estimation", local_files_only=True)
assert isinstance(depth_anything_pipeline, DepthEstimationPipeline)
return DepthAnythingPipeline(depth_anything_pipeline)
def loader(model_path: Path):
return DepthAnythingDetector.load_model(
model_path, model_size=self.model_size, device=TorchDevice.choose_torch_device()
)
with self._context.models.load_remote_model(
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=load_depth_anything
) as depth_anything_detector:
assert isinstance(depth_anything_detector, DepthAnythingPipeline)
depth_map = depth_anything_detector.generate_depth(image)
# Resizing to user target specified size
new_height = int(image.size[1] * (self.resolution / image.size[0]))
depth_map = depth_map.resize((self.resolution, new_height))
return depth_map
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=loader
) as model:
depth_anything_detector = DepthAnythingDetector(model, TorchDevice.choose_torch_device())
processed_image = depth_anything_detector(image=image, resolution=self.resolution)
return processed_image
@invocation(

View File

@@ -0,0 +1,278 @@
from pathlib import Path
from typing import Literal
import torch
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
from optimum.quanto import qfloat8
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from transformers.models.auto import AutoModelForTextEncoding
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import InputField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.quantization.fast_quantized_diffusion_model import FastQuantizedDiffusersModel
from invokeai.backend.quantization.fast_quantized_transformers_model import FastQuantizedTransformersModel
from invokeai.backend.util.devices import TorchDevice
TFluxModelKeys = Literal["flux-schnell"]
FLUX_MODELS: dict[TFluxModelKeys, str] = {"flux-schnell": "black-forest-labs/FLUX.1-schnell"}
class QuantizedFluxTransformer2DModel(FastQuantizedDiffusersModel):
base_class = FluxTransformer2DModel
class QuantizedModelForTextEncoding(FastQuantizedTransformersModel):
auto_class = AutoModelForTextEncoding
@invocation(
"flux_text_to_image",
title="FLUX Text to Image",
tags=["image"],
category="image",
version="1.0.0",
)
class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Text-to-image generation using a FLUX model."""
model: TFluxModelKeys = InputField(description="The FLUX model to use for text-to-image generation.")
use_8bit: bool = InputField(
default=False, description="Whether to quantize the transformer model to 8-bit precision."
)
positive_prompt: str = InputField(description="Positive prompt for text-to-image generation.")
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
num_steps: int = InputField(default=4, description="Number of diffusion steps.")
guidance: float = InputField(
default=4.0,
description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images.",
)
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
model_path = context.models.download_and_cache_model(FLUX_MODELS[self.model])
t5_embeddings, clip_embeddings = self._encode_prompt(context, model_path)
latents = self._run_diffusion(context, model_path, clip_embeddings, t5_embeddings)
image = self._run_vae_decoding(context, model_path, latents)
image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto)
def _encode_prompt(self, context: InvocationContext, flux_model_dir: Path) -> tuple[torch.Tensor, torch.Tensor]:
# Determine the T5 max sequence length based on the model.
if self.model == "flux-schnell":
max_seq_len = 256
# elif self.model == "flux-dev":
# max_seq_len = 512
else:
raise ValueError(f"Unknown model: {self.model}")
# Load the CLIP tokenizer.
clip_tokenizer_path = flux_model_dir / "tokenizer"
clip_tokenizer = CLIPTokenizer.from_pretrained(clip_tokenizer_path, local_files_only=True)
assert isinstance(clip_tokenizer, CLIPTokenizer)
# Load the T5 tokenizer.
t5_tokenizer_path = flux_model_dir / "tokenizer_2"
t5_tokenizer = T5TokenizerFast.from_pretrained(t5_tokenizer_path, local_files_only=True)
assert isinstance(t5_tokenizer, T5TokenizerFast)
clip_text_encoder_path = flux_model_dir / "text_encoder"
t5_text_encoder_path = flux_model_dir / "text_encoder_2"
with (
context.models.load_local_model(
model_path=clip_text_encoder_path, loader=self._load_flux_text_encoder
) as clip_text_encoder,
context.models.load_local_model(
model_path=t5_text_encoder_path, loader=self._load_flux_text_encoder_2
) as t5_text_encoder,
):
assert isinstance(clip_text_encoder, CLIPTextModel)
assert isinstance(t5_text_encoder, T5EncoderModel)
pipeline = FluxPipeline(
scheduler=None,
vae=None,
text_encoder=clip_text_encoder,
tokenizer=clip_tokenizer,
text_encoder_2=t5_text_encoder,
tokenizer_2=t5_tokenizer,
transformer=None,
)
# prompt_embeds: T5 embeddings
# pooled_prompt_embeds: CLIP embeddings
prompt_embeds, pooled_prompt_embeds, text_ids = pipeline.encode_prompt(
prompt=self.positive_prompt,
prompt_2=self.positive_prompt,
device=TorchDevice.choose_torch_device(),
max_sequence_length=max_seq_len,
)
assert isinstance(prompt_embeds, torch.Tensor)
assert isinstance(pooled_prompt_embeds, torch.Tensor)
return prompt_embeds, pooled_prompt_embeds
def _run_diffusion(
self,
context: InvocationContext,
flux_model_dir: Path,
clip_embeddings: torch.Tensor,
t5_embeddings: torch.Tensor,
):
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(flux_model_dir / "scheduler", local_files_only=True)
# HACK(ryand): Manually empty the cache. Currently we don't check the size of the model before loading it from
# disk. Since the transformer model is large (24GB), there's a good chance that it will OOM on 32GB RAM systems
# if the cache is not empty.
context.models._services.model_manager.load.ram_cache.make_room(24 * 2**30)
transformer_path = flux_model_dir / "transformer"
with context.models.load_local_model(
model_path=transformer_path, loader=self._load_flux_transformer
) as transformer:
assert isinstance(transformer, FluxTransformer2DModel)
flux_pipeline_with_transformer = FluxPipeline(
scheduler=scheduler,
vae=None,
text_encoder=None,
tokenizer=None,
text_encoder_2=None,
tokenizer_2=None,
transformer=transformer,
)
t5_embeddings = t5_embeddings.to(dtype=transformer.dtype)
clip_embeddings = clip_embeddings.to(dtype=transformer.dtype)
latents = flux_pipeline_with_transformer(
height=self.height,
width=self.width,
num_inference_steps=self.num_steps,
guidance_scale=self.guidance,
generator=torch.Generator().manual_seed(self.seed),
prompt_embeds=t5_embeddings,
pooled_prompt_embeds=clip_embeddings,
output_type="latent",
return_dict=False,
)[0]
assert isinstance(latents, torch.Tensor)
return latents
def _run_vae_decoding(
self,
context: InvocationContext,
flux_model_dir: Path,
latents: torch.Tensor,
) -> Image.Image:
vae_path = flux_model_dir / "vae"
with context.models.load_local_model(model_path=vae_path, loader=self._load_flux_vae) as vae:
assert isinstance(vae, AutoencoderKL)
flux_pipeline_with_vae = FluxPipeline(
scheduler=None,
vae=vae,
text_encoder=None,
tokenizer=None,
text_encoder_2=None,
tokenizer_2=None,
transformer=None,
)
latents = flux_pipeline_with_vae._unpack_latents(
latents, self.height, self.width, flux_pipeline_with_vae.vae_scale_factor
)
latents = (
latents / flux_pipeline_with_vae.vae.config.scaling_factor
) + flux_pipeline_with_vae.vae.config.shift_factor
latents = latents.to(dtype=vae.dtype)
image = flux_pipeline_with_vae.vae.decode(latents, return_dict=False)[0]
image = flux_pipeline_with_vae.image_processor.postprocess(image, output_type="pil")[0]
assert isinstance(image, Image.Image)
return image
@staticmethod
def _load_flux_text_encoder(path: Path) -> CLIPTextModel:
model = CLIPTextModel.from_pretrained(path, local_files_only=True)
assert isinstance(model, CLIPTextModel)
return model
def _load_flux_text_encoder_2(self, path: Path) -> T5EncoderModel:
if self.use_8bit:
model_8bit_path = path / "quantized"
if model_8bit_path.exists():
# The quantized model exists, load it.
# TODO(ryand): The requantize(...) operation in from_pretrained(...) is very slow. This seems like
# something that we should be able to make much faster.
q_model = QuantizedModelForTextEncoding.from_pretrained(model_8bit_path)
# Access the underlying wrapped model.
# We access the wrapped model, even though it is private, because it simplifies the type checking by
# always returning a T5EncoderModel from this function.
model = q_model._wrapped
else:
# The quantized model does not exist yet, quantize and save it.
# TODO(ryand): dtype?
model = T5EncoderModel.from_pretrained(path, local_files_only=True)
assert isinstance(model, T5EncoderModel)
q_model = QuantizedModelForTextEncoding.quantize(model, weights=qfloat8)
model_8bit_path.mkdir(parents=True, exist_ok=True)
q_model.save_pretrained(model_8bit_path)
# (See earlier comment about accessing the wrapped model.)
model = q_model._wrapped
else:
model = T5EncoderModel.from_pretrained(path, local_files_only=True)
assert isinstance(model, T5EncoderModel)
return model
def _load_flux_transformer(self, path: Path) -> FluxTransformer2DModel:
if self.use_8bit:
model_8bit_path = path / "quantized"
if model_8bit_path.exists():
# The quantized model exists, load it.
# TODO(ryand): The requantize(...) operation in from_pretrained(...) is very slow. This seems like
# something that we should be able to make much faster.
q_model = QuantizedFluxTransformer2DModel.from_pretrained(model_8bit_path)
# Access the underlying wrapped model.
# We access the wrapped model, even though it is private, because it simplifies the type checking by
# always returning a FluxTransformer2DModel from this function.
model = q_model._wrapped
else:
# The quantized model does not exist yet, quantize and save it.
# TODO(ryand): Loading in float16 and then quantizing seems to result in NaNs. In order to run this on
# GPUs that don't support bfloat16, we would need to host the quantized model instead of generating it
# here.
model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True, torch_dtype=torch.bfloat16)
assert isinstance(model, FluxTransformer2DModel)
q_model = QuantizedFluxTransformer2DModel.quantize(model, weights=qfloat8)
model_8bit_path.mkdir(parents=True, exist_ok=True)
q_model.save_pretrained(model_8bit_path)
# (See earlier comment about accessing the wrapped model.)
model = q_model._wrapped
else:
model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True, torch_dtype=torch.bfloat16)
assert isinstance(model, FluxTransformer2DModel)
return model
@staticmethod
def _load_flux_vae(path: Path) -> AutoencoderKL:
model = AutoencoderKL.from_pretrained(path, local_files_only=True)
assert isinstance(model, AutoencoderKL)
return model

View File

@@ -6,19 +6,13 @@ import cv2
import numpy
from PIL import Image, ImageChops, ImageFilter, ImageOps
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.constants import IMAGE_MODES
from invokeai.app.invocations.fields import (
ColorField,
FieldDescriptions,
ImageField,
InputField,
OutputField,
WithBoard,
WithMetadata,
)
@@ -1013,62 +1007,3 @@ class MaskFromIDInvocation(BaseInvocation, WithMetadata, WithBoard):
image_dto = context.images.save(image=mask, image_category=ImageCategory.MASK)
return ImageOutput.build(image_dto)
@invocation_output("canvas_v2_mask_and_crop_output")
class CanvasV2MaskAndCropOutput(ImageOutput):
offset_x: int = OutputField(description="The x offset of the image, after cropping")
offset_y: int = OutputField(description="The y offset of the image, after cropping")
@invocation(
"canvas_v2_mask_and_crop",
title="Canvas V2 Mask and Crop",
tags=["image", "mask", "id"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class CanvasV2MaskAndCropInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Handles Canvas V2 image output masking and cropping"""
source_image: ImageField | None = InputField(
default=None,
description="The source image onto which the masked generated image is pasted. If omitted, the masked generated image is returned with transparency.",
)
generated_image: ImageField = InputField(description="The image to apply the mask to")
mask: ImageField = InputField(description="The mask to apply")
mask_blur: int = InputField(default=0, ge=0, description="The amount to blur the mask by")
def _prepare_mask(self, mask: Image.Image) -> Image.Image:
mask_array = numpy.array(mask)
kernel = numpy.ones((self.mask_blur, self.mask_blur), numpy.uint8)
dilated_mask_array = cv2.erode(mask_array, kernel, iterations=3)
dilated_mask = Image.fromarray(dilated_mask_array)
if self.mask_blur > 0:
mask = dilated_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
return ImageOps.invert(mask.convert("L"))
def invoke(self, context: InvocationContext) -> CanvasV2MaskAndCropOutput:
mask = self._prepare_mask(context.images.get_pil(self.mask.image_name))
if self.source_image:
generated_image = context.images.get_pil(self.generated_image.image_name)
source_image = context.images.get_pil(self.source_image.image_name)
source_image.paste(generated_image, (0, 0), mask)
image_dto = context.images.save(image=source_image)
else:
generated_image = context.images.get_pil(self.generated_image.image_name)
generated_image.putalpha(mask)
image_dto = context.images.save(image=generated_image)
# bbox = image.getbbox()
# image = image.crop(bbox)
return CanvasV2MaskAndCropOutput(
image=ImageField(image_name=image_dto.image_name),
offset_x=0,
offset_y=0,
width=image_dto.width,
height=image_dto.height,
)

View File

@@ -91,7 +91,6 @@ class InvokeAIAppConfig(BaseSettings):
db_dir: Path to InvokeAI databases directory.
outputs_dir: Path to directory for outputs.
custom_nodes_dir: Path to directory for custom nodes.
style_presets_dir: Path to directory for style presets.
log_handlers: Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".
log_format: Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style.<br>Valid values: `plain`, `color`, `syslog`, `legacy`
log_level: Emit logging messages at this level or higher.<br>Valid values: `debug`, `info`, `warning`, `error`, `critical`
@@ -154,7 +153,6 @@ class InvokeAIAppConfig(BaseSettings):
db_dir: Path = Field(default=Path("databases"), description="Path to InvokeAI databases directory.")
outputs_dir: Path = Field(default=Path("outputs"), description="Path to directory for outputs.")
custom_nodes_dir: Path = Field(default=Path("nodes"), description="Path to directory for custom nodes.")
style_presets_dir: Path = Field(default=Path("style_presets"), description="Path to directory for style presets.")
# LOGGING
log_handlers: list[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".')
@@ -302,11 +300,6 @@ class InvokeAIAppConfig(BaseSettings):
"""Path to the models directory, resolved to an absolute path.."""
return self._resolve(self.models_dir)
@property
def style_presets_path(self) -> Path:
"""Path to the style presets directory, resolved to an absolute path.."""
return self._resolve(self.style_presets_dir)
@property
def convert_cache_path(self) -> Path:
"""Path to the converted cache models directory, resolved to an absolute path.."""

View File

@@ -88,7 +88,6 @@ class QueueItemEventBase(QueueEventBase):
item_id: int = Field(description="The ID of the queue item")
batch_id: str = Field(description="The ID of the queue batch")
origin: str | None = Field(default=None, description="The origin of the batch")
class InvocationEventBase(QueueItemEventBase):
@@ -96,6 +95,8 @@ class InvocationEventBase(QueueItemEventBase):
session_id: str = Field(description="The ID of the session (aka graph execution state)")
queue_id: str = Field(description="The ID of the queue")
item_id: int = Field(description="The ID of the queue item")
batch_id: str = Field(description="The ID of the queue batch")
session_id: str = Field(description="The ID of the session (aka graph execution state)")
invocation: AnyInvocation = Field(description="The ID of the invocation")
invocation_source_id: str = Field(description="The ID of the prepared invocation's source node")
@@ -113,7 +114,6 @@ class InvocationStartedEvent(InvocationEventBase):
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
origin=queue_item.origin,
session_id=queue_item.session_id,
invocation=invocation,
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
@@ -147,7 +147,6 @@ class InvocationDenoiseProgressEvent(InvocationEventBase):
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
origin=queue_item.origin,
session_id=queue_item.session_id,
invocation=invocation,
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
@@ -185,7 +184,6 @@ class InvocationCompleteEvent(InvocationEventBase):
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
origin=queue_item.origin,
session_id=queue_item.session_id,
invocation=invocation,
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
@@ -218,7 +216,6 @@ class InvocationErrorEvent(InvocationEventBase):
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
origin=queue_item.origin,
session_id=queue_item.session_id,
invocation=invocation,
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
@@ -256,7 +253,6 @@ class QueueItemStatusChangedEvent(QueueItemEventBase):
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
origin=queue_item.origin,
session_id=queue_item.session_id,
status=queue_item.status,
error_type=queue_item.error_type,
@@ -283,14 +279,12 @@ class BatchEnqueuedEvent(QueueEventBase):
description="The number of invocations initially requested to be enqueued (may be less than enqueued if queue was full)"
)
priority: int = Field(description="The priority of the batch")
origin: str | None = Field(default=None, description="The origin of the batch")
@classmethod
def build(cls, enqueue_result: EnqueueBatchResult) -> "BatchEnqueuedEvent":
return cls(
queue_id=enqueue_result.queue_id,
batch_id=enqueue_result.batch.batch_id,
origin=enqueue_result.batch.origin,
enqueued=enqueue_result.enqueued,
requested=enqueue_result.requested,
priority=enqueue_result.priority,

View File

@@ -1,44 +1,46 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import asyncio
import threading
from queue import Empty, Queue
from fastapi_events.dispatcher import dispatch
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.events.events_common import EventBase
from invokeai.app.services.events.events_common import (
EventBase,
)
class FastAPIEventService(EventServiceBase):
def __init__(self, event_handler_id: int, loop: asyncio.AbstractEventLoop) -> None:
def __init__(self, event_handler_id: int) -> None:
self.event_handler_id = event_handler_id
self._queue = asyncio.Queue[EventBase | None]()
self._queue = Queue[EventBase | None]()
self._stop_event = threading.Event()
self._loop = loop
# We need to store a reference to the task so it doesn't get GC'd
# See: https://docs.python.org/3/library/asyncio-task.html#creating-tasks
self._background_tasks: set[asyncio.Task[None]] = set()
task = self._loop.create_task(self._dispatch_from_queue(stop_event=self._stop_event))
self._background_tasks.add(task)
task.add_done_callback(self._background_tasks.remove)
asyncio.create_task(self._dispatch_from_queue(stop_event=self._stop_event))
super().__init__()
def stop(self, *args, **kwargs):
self._stop_event.set()
self._loop.call_soon_threadsafe(self._queue.put_nowait, None)
self._queue.put(None)
def dispatch(self, event: EventBase) -> None:
self._loop.call_soon_threadsafe(self._queue.put_nowait, event)
self._queue.put(event)
async def _dispatch_from_queue(self, stop_event: threading.Event):
"""Get events on from the queue and dispatch them, from the correct thread"""
while not stop_event.is_set():
try:
event = await self._queue.get()
event = self._queue.get(block=False)
if not event: # Probably stopping
continue
# Leave the payloads as live pydantic models
dispatch(event, middleware_id=self.event_handler_id, payload_schema_dump=False)
except Empty:
await asyncio.sleep(0.1)
pass
except asyncio.CancelledError as e:
raise e # Raise a proper error

View File

@@ -4,8 +4,6 @@ from __future__ import annotations
from typing import TYPE_CHECKING
from invokeai.app.services.object_serializer.object_serializer_base import ObjectSerializerBase
from invokeai.app.services.style_preset_images.style_preset_images_base import StylePresetImageFileStorageBase
from invokeai.app.services.style_preset_records.style_preset_records_base import StylePresetRecordsStorageBase
if TYPE_CHECKING:
from logging import Logger
@@ -63,8 +61,6 @@ class InvocationServices:
workflow_records: "WorkflowRecordsStorageBase",
tensors: "ObjectSerializerBase[torch.Tensor]",
conditioning: "ObjectSerializerBase[ConditioningFieldData]",
style_preset_records: "StylePresetRecordsStorageBase",
style_preset_image_files: "StylePresetImageFileStorageBase",
):
self.board_images = board_images
self.board_image_records = board_image_records
@@ -89,5 +85,3 @@ class InvocationServices:
self.workflow_records = workflow_records
self.tensors = tensors
self.conditioning = conditioning
self.style_preset_records = style_preset_records
self.style_preset_image_files = style_preset_image_files

View File

@@ -6,7 +6,6 @@ from invokeai.app.services.session_queue.session_queue_common import (
Batch,
BatchStatus,
CancelByBatchIDsResult,
CancelByOriginResult,
CancelByQueueIDResult,
ClearResult,
EnqueueBatchResult,
@@ -96,11 +95,6 @@ class SessionQueueBase(ABC):
"""Cancels all queue items with matching batch IDs"""
pass
@abstractmethod
def cancel_by_origin(self, queue_id: str, origin: str) -> CancelByOriginResult:
"""Cancels all queue items with the given batch origin"""
pass
@abstractmethod
def cancel_by_queue_id(self, queue_id: str) -> CancelByQueueIDResult:
"""Cancels all queue items with matching queue ID"""

View File

@@ -77,7 +77,6 @@ BatchDataCollection: TypeAlias = list[list[BatchDatum]]
class Batch(BaseModel):
batch_id: str = Field(default_factory=uuid_string, description="The ID of the batch")
origin: str | None = Field(default=None, description="The origin of this batch.")
data: Optional[BatchDataCollection] = Field(default=None, description="The batch data collection.")
graph: Graph = Field(description="The graph to initialize the session with")
workflow: Optional[WorkflowWithoutID] = Field(
@@ -196,7 +195,6 @@ class SessionQueueItemWithoutGraph(BaseModel):
status: QUEUE_ITEM_STATUS = Field(default="pending", description="The status of this queue item")
priority: int = Field(default=0, description="The priority of this queue item")
batch_id: str = Field(description="The ID of the batch associated with this queue item")
origin: str | None = Field(default=None, description="The origin of this queue item. ")
session_id: str = Field(
description="The ID of the session associated with this queue item. The session doesn't exist in graph_executions until the queue item is executed."
)
@@ -296,7 +294,6 @@ class SessionQueueStatus(BaseModel):
class BatchStatus(BaseModel):
queue_id: str = Field(..., description="The ID of the queue")
batch_id: str = Field(..., description="The ID of the batch")
origin: str | None = Field(..., description="The origin of the batch")
pending: int = Field(..., description="Number of queue items with status 'pending'")
in_progress: int = Field(..., description="Number of queue items with status 'in_progress'")
completed: int = Field(..., description="Number of queue items with status 'complete'")
@@ -331,12 +328,6 @@ class CancelByBatchIDsResult(BaseModel):
canceled: int = Field(..., description="Number of queue items canceled")
class CancelByOriginResult(BaseModel):
"""Result of canceling by list of batch ids"""
canceled: int = Field(..., description="Number of queue items canceled")
class CancelByQueueIDResult(CancelByBatchIDsResult):
"""Result of canceling by queue id"""
@@ -442,7 +433,6 @@ class SessionQueueValueToInsert(NamedTuple):
field_values: Optional[str] # field_values json
priority: int # priority
workflow: Optional[str] # workflow json
origin: str | None
ValuesToInsert: TypeAlias = list[SessionQueueValueToInsert]
@@ -463,7 +453,6 @@ def prepare_values_to_insert(queue_id: str, batch: Batch, priority: int, max_new
json.dumps(field_values, default=to_jsonable_python) if field_values else None, # field_values (json)
priority, # priority
json.dumps(workflow, default=to_jsonable_python) if workflow else None, # workflow (json)
batch.origin, # origin
)
)
return values_to_insert

View File

@@ -10,7 +10,6 @@ from invokeai.app.services.session_queue.session_queue_common import (
Batch,
BatchStatus,
CancelByBatchIDsResult,
CancelByOriginResult,
CancelByQueueIDResult,
ClearResult,
EnqueueBatchResult,
@@ -128,8 +127,8 @@ class SqliteSessionQueue(SessionQueueBase):
self.__cursor.executemany(
"""--sql
INSERT INTO session_queue (queue_id, session, session_id, batch_id, field_values, priority, workflow, origin)
VALUES (?, ?, ?, ?, ?, ?, ?, ?)
INSERT INTO session_queue (queue_id, session, session_id, batch_id, field_values, priority, workflow)
VALUES (?, ?, ?, ?, ?, ?, ?)
""",
values_to_insert,
)
@@ -418,7 +417,11 @@ class SqliteSessionQueue(SessionQueueBase):
)
self.__conn.commit()
if current_queue_item is not None and current_queue_item.batch_id in batch_ids:
self._set_queue_item_status(current_queue_item.item_id, "canceled")
batch_status = self.get_batch_status(queue_id=queue_id, batch_id=current_queue_item.batch_id)
queue_status = self.get_queue_status(queue_id=queue_id)
self.__invoker.services.events.emit_queue_item_status_changed(
current_queue_item, batch_status, queue_status
)
except Exception:
self.__conn.rollback()
raise
@@ -426,46 +429,6 @@ class SqliteSessionQueue(SessionQueueBase):
self.__lock.release()
return CancelByBatchIDsResult(canceled=count)
def cancel_by_origin(self, queue_id: str, origin: str) -> CancelByOriginResult:
try:
current_queue_item = self.get_current(queue_id)
self.__lock.acquire()
where = """--sql
WHERE
queue_id == ?
AND origin == ?
AND status != 'canceled'
AND status != 'completed'
AND status != 'failed'
"""
params = (queue_id, origin)
self.__cursor.execute(
f"""--sql
SELECT COUNT(*)
FROM session_queue
{where};
""",
params,
)
count = self.__cursor.fetchone()[0]
self.__cursor.execute(
f"""--sql
UPDATE session_queue
SET status = 'canceled'
{where};
""",
params,
)
self.__conn.commit()
if current_queue_item is not None and current_queue_item.origin == origin:
self._set_queue_item_status(current_queue_item.item_id, "canceled")
except Exception:
self.__conn.rollback()
raise
finally:
self.__lock.release()
return CancelByOriginResult(canceled=count)
def cancel_by_queue_id(self, queue_id: str) -> CancelByQueueIDResult:
try:
current_queue_item = self.get_current(queue_id)
@@ -578,8 +541,7 @@ class SqliteSessionQueue(SessionQueueBase):
started_at,
session_id,
batch_id,
queue_id,
origin
queue_id
FROM session_queue
WHERE queue_id = ?
"""
@@ -659,7 +621,7 @@ class SqliteSessionQueue(SessionQueueBase):
self.__lock.acquire()
self.__cursor.execute(
"""--sql
SELECT status, count(*), origin
SELECT status, count(*)
FROM session_queue
WHERE
queue_id = ?
@@ -671,7 +633,6 @@ class SqliteSessionQueue(SessionQueueBase):
result = cast(list[sqlite3.Row], self.__cursor.fetchall())
total = sum(row[1] for row in result)
counts: dict[str, int] = {row[0]: row[1] for row in result}
origin = result[0]["origin"] if result else None
except Exception:
self.__conn.rollback()
raise
@@ -680,7 +641,6 @@ class SqliteSessionQueue(SessionQueueBase):
return BatchStatus(
batch_id=batch_id,
origin=origin,
queue_id=queue_id,
pending=counts.get("pending", 0),
in_progress=counts.get("in_progress", 0),

View File

@@ -16,8 +16,6 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_10 import
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_11 import build_migration_11
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_12 import build_migration_12
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_13 import build_migration_13
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_14 import build_migration_14
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_15 import build_migration_15
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
@@ -51,8 +49,6 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
migrator.register_migration(build_migration_11(app_config=config, logger=logger))
migrator.register_migration(build_migration_12(app_config=config))
migrator.register_migration(build_migration_13())
migrator.register_migration(build_migration_14())
migrator.register_migration(build_migration_15())
migrator.run_migrations()
return db

View File

@@ -1,61 +0,0 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration14Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._create_style_presets(cursor)
def _create_style_presets(self, cursor: sqlite3.Cursor) -> None:
"""Create the table used to store style presets."""
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS style_presets (
id TEXT NOT NULL PRIMARY KEY,
name TEXT NOT NULL,
preset_data TEXT NOT NULL,
type TEXT NOT NULL DEFAULT "user",
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW'))
);
"""
]
# Add trigger for `updated_at`.
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS style_presets
AFTER UPDATE
ON style_presets FOR EACH ROW
BEGIN
UPDATE style_presets SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE id = old.id;
END;
"""
]
# Add indexes for searchable fields
indices = [
"CREATE INDEX IF NOT EXISTS idx_style_presets_name ON style_presets(name);",
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def build_migration_14() -> Migration:
"""
Build the migration from database version 13 to 14..
This migration does the following:
- Create the table used to store style presets.
"""
migration_14 = Migration(
from_version=13,
to_version=14,
callback=Migration14Callback(),
)
return migration_14

View File

@@ -1,31 +0,0 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration15Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._add_origin_col(cursor)
def _add_origin_col(self, cursor: sqlite3.Cursor) -> None:
"""
- Adds `origin` column to the session queue table.
"""
cursor.execute("ALTER TABLE session_queue ADD COLUMN origin TEXT;")
def build_migration_15() -> Migration:
"""
Build the migration from database version 14 to 15.
This migration does the following:
- Adds `origin` column to the session queue table.
"""
migration_15 = Migration(
from_version=14,
to_version=15,
callback=Migration15Callback(),
)
return migration_15

Binary file not shown.

Before

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 122 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 123 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 160 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 146 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 119 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 117 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 156 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 141 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 96 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 88 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 132 KiB

View File

@@ -1,33 +0,0 @@
from abc import ABC, abstractmethod
from pathlib import Path
from PIL.Image import Image as PILImageType
class StylePresetImageFileStorageBase(ABC):
"""Low-level service responsible for storing and retrieving image files."""
@abstractmethod
def get(self, style_preset_id: str) -> PILImageType:
"""Retrieves a style preset image as PIL Image."""
pass
@abstractmethod
def get_path(self, style_preset_id: str) -> Path:
"""Gets the internal path to a style preset image."""
pass
@abstractmethod
def get_url(self, style_preset_id: str) -> str | None:
"""Gets the URL to fetch a style preset image."""
pass
@abstractmethod
def save(self, style_preset_id: str, image: PILImageType) -> None:
"""Saves a style preset image."""
pass
@abstractmethod
def delete(self, style_preset_id: str) -> None:
"""Deletes a style preset image."""
pass

View File

@@ -1,19 +0,0 @@
class StylePresetImageFileNotFoundException(Exception):
"""Raised when an image file is not found in storage."""
def __init__(self, message: str = "Style preset image file not found"):
super().__init__(message)
class StylePresetImageFileSaveException(Exception):
"""Raised when an image cannot be saved."""
def __init__(self, message: str = "Style preset image file not saved"):
super().__init__(message)
class StylePresetImageFileDeleteException(Exception):
"""Raised when an image cannot be deleted."""
def __init__(self, message: str = "Style preset image file not deleted"):
super().__init__(message)

View File

@@ -1,88 +0,0 @@
from pathlib import Path
from PIL import Image
from PIL.Image import Image as PILImageType
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.style_preset_images.style_preset_images_base import StylePresetImageFileStorageBase
from invokeai.app.services.style_preset_images.style_preset_images_common import (
StylePresetImageFileDeleteException,
StylePresetImageFileNotFoundException,
StylePresetImageFileSaveException,
)
from invokeai.app.services.style_preset_records.style_preset_records_common import PresetType
from invokeai.app.util.misc import uuid_string
from invokeai.app.util.thumbnails import make_thumbnail
class StylePresetImageFileStorageDisk(StylePresetImageFileStorageBase):
"""Stores images on disk"""
def __init__(self, style_preset_images_folder: Path):
self._style_preset_images_folder = style_preset_images_folder
self._validate_storage_folders()
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
def get(self, style_preset_id: str) -> PILImageType:
try:
path = self.get_path(style_preset_id)
return Image.open(path)
except FileNotFoundError as e:
raise StylePresetImageFileNotFoundException from e
def save(self, style_preset_id: str, image: PILImageType) -> None:
try:
self._validate_storage_folders()
image_path = self._style_preset_images_folder / (style_preset_id + ".webp")
thumbnail = make_thumbnail(image, 256)
thumbnail.save(image_path, format="webp")
except Exception as e:
raise StylePresetImageFileSaveException from e
def get_path(self, style_preset_id: str) -> Path:
style_preset = self._invoker.services.style_preset_records.get(style_preset_id)
if style_preset.type is PresetType.Default:
default_images_dir = Path(__file__).parent / Path("default_style_preset_images")
path = default_images_dir / (style_preset.name + ".png")
else:
path = self._style_preset_images_folder / (style_preset_id + ".webp")
return path
def get_url(self, style_preset_id: str) -> str | None:
path = self.get_path(style_preset_id)
if not self._validate_path(path):
return
url = self._invoker.services.urls.get_style_preset_image_url(style_preset_id)
# The image URL never changes, so we must add random query string to it to prevent caching
url += f"?{uuid_string()}"
return url
def delete(self, style_preset_id: str) -> None:
try:
path = self.get_path(style_preset_id)
if not self._validate_path(path):
raise StylePresetImageFileNotFoundException
path.unlink()
except StylePresetImageFileNotFoundException as e:
raise StylePresetImageFileNotFoundException from e
except Exception as e:
raise StylePresetImageFileDeleteException from e
def _validate_path(self, path: Path) -> bool:
"""Validates the path given for an image."""
return path.exists()
def _validate_storage_folders(self) -> None:
"""Checks if the required folders exist and create them if they don't"""
self._style_preset_images_folder.mkdir(parents=True, exist_ok=True)

View File

@@ -1,146 +0,0 @@
[
{
"name": "Photography (General)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}. photography. f/2.8 macro photo, bokeh, photorealism",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Studio Lighting)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}, photography. f/8 photo. centered subject, studio lighting.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Landscape)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}, landscape photograph, f/12, lifelike, highly detailed.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Portrait)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}. photography. portraiture. catch light in eyes. one flash. rembrandt lighting. Soft box. dark shadows. High contrast. 80mm lens. F2.8.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Black and White)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} photography. natural light. 80mm lens. F1.4. strong contrast, hard light. dark contrast. blurred background. black and white",
"negative_prompt": "painting, digital art. sketch, colour+"
}
},
{
"name": "Architectural Visualization",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}. architectural photography, f/12, luxury, aesthetically pleasing form and function.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Concept Art (Fantasy)",
"type": "default",
"preset_data": {
"positive_prompt": "concept artwork of a {prompt}. (digital painterly art style)++, mythological, (textured 2d dry media brushpack)++, glazed brushstrokes, otherworldly. painting+, illustration+",
"negative_prompt": "photo. distorted, blurry, out of focus. sketch. (cgi, 3d.)++"
}
},
{
"name": "Concept Art (Sci-Fi)",
"type": "default",
"preset_data": {
"positive_prompt": "(concept art)++, {prompt}, (sleek futurism)++, (textured 2d dry media)++, metallic highlights, digital painting style",
"negative_prompt": "photo. distorted, blurry, out of focus. sketch. (cgi, 3d.)++"
}
},
{
"name": "Concept Art (Character)",
"type": "default",
"preset_data": {
"positive_prompt": "(character concept art)++, stylized painterly digital painting of {prompt}, (painterly, impasto. Dry brush.)++",
"negative_prompt": "photo. distorted, blurry, out of focus. sketch. (cgi, 3d.)++"
}
},
{
"name": "Concept Art (Painterly)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} oil painting. high contrast. impasto. sfumato. chiaroscuro. Palette knife.",
"negative_prompt": "photo. smooth. border. frame"
}
},
{
"name": "Environment Art",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} environment artwork, hyper-realistic digital painting style with cinematic composition, atmospheric, depth and detail, voluminous. textured dry brush 2d media",
"negative_prompt": "photo, distorted, blurry, out of focus. sketch."
}
},
{
"name": "Interior Design (Visualization)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} interior design photo, gentle shadows, light mid-tones, dimension, mix of smooth and textured surfaces, focus on negative space and clean lines, focus",
"negative_prompt": "photo, distorted. sketch."
}
},
{
"name": "Product Rendering",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} high quality product photography, 3d rendering with key lighting, shallow depth of field, simple plain background, studio lighting.",
"negative_prompt": "blurry, sketch, messy, dirty. unfinished."
}
},
{
"name": "Sketch",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} black and white pencil drawing, off-center composition, cross-hatching for shadows, bold strokes, textured paper. sketch+++",
"negative_prompt": "blurry, photo, painting, color. messy, dirty. unfinished. frame, borders."
}
},
{
"name": "Line Art",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} Line art. bold outline. simplistic. white background. 2d",
"negative_prompt": "photo. digital art. greyscale. solid black. painting"
}
},
{
"name": "Anime",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} anime++, bold outline, cel-shaded coloring, shounen, seinen",
"negative_prompt": "(photo)+++. greyscale. solid black. painting"
}
},
{
"name": "Illustration",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} illustration, bold linework, illustrative details, vector art style, flat coloring",
"negative_prompt": "(photo)+++. greyscale. painting, black and white."
}
},
{
"name": "Vehicles",
"type": "default",
"preset_data": {
"positive_prompt": "A weird futuristic normal auto, {prompt} elegant design, nice color, nice wheels",
"negative_prompt": "sketch. digital art. greyscale. painting"
}
}
]

View File

@@ -1,42 +0,0 @@
from abc import ABC, abstractmethod
from invokeai.app.services.style_preset_records.style_preset_records_common import (
PresetType,
StylePresetChanges,
StylePresetRecordDTO,
StylePresetWithoutId,
)
class StylePresetRecordsStorageBase(ABC):
"""Base class for style preset storage services."""
@abstractmethod
def get(self, style_preset_id: str) -> StylePresetRecordDTO:
"""Get style preset by id."""
pass
@abstractmethod
def create(self, style_preset: StylePresetWithoutId) -> StylePresetRecordDTO:
"""Creates a style preset."""
pass
@abstractmethod
def create_many(self, style_presets: list[StylePresetWithoutId]) -> None:
"""Creates many style presets."""
pass
@abstractmethod
def update(self, style_preset_id: str, changes: StylePresetChanges) -> StylePresetRecordDTO:
"""Updates a style preset."""
pass
@abstractmethod
def delete(self, style_preset_id: str) -> None:
"""Deletes a style preset."""
pass
@abstractmethod
def get_many(self, type: PresetType | None = None) -> list[StylePresetRecordDTO]:
"""Gets many workflows."""
pass

View File

@@ -1,139 +0,0 @@
import codecs
import csv
import json
from enum import Enum
from typing import Any, Optional
import pydantic
from fastapi import UploadFile
from pydantic import AliasChoices, BaseModel, ConfigDict, Field, TypeAdapter
from invokeai.app.util.metaenum import MetaEnum
class StylePresetNotFoundError(Exception):
"""Raised when a style preset is not found"""
class PresetData(BaseModel, extra="forbid"):
positive_prompt: str = Field(description="Positive prompt")
negative_prompt: str = Field(description="Negative prompt")
PresetDataValidator = TypeAdapter(PresetData)
class PresetType(str, Enum, metaclass=MetaEnum):
User = "user"
Default = "default"
Project = "project"
class StylePresetChanges(BaseModel, extra="forbid"):
name: Optional[str] = Field(default=None, description="The style preset's new name.")
preset_data: Optional[PresetData] = Field(default=None, description="The updated data for style preset.")
type: Optional[PresetType] = Field(description="The updated type of the style preset")
class StylePresetWithoutId(BaseModel):
name: str = Field(description="The name of the style preset.")
preset_data: PresetData = Field(description="The preset data")
type: PresetType = Field(description="The type of style preset")
class StylePresetRecordDTO(StylePresetWithoutId):
id: str = Field(description="The style preset ID.")
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "StylePresetRecordDTO":
data["preset_data"] = PresetDataValidator.validate_json(data.get("preset_data", ""))
return StylePresetRecordDTOValidator.validate_python(data)
StylePresetRecordDTOValidator = TypeAdapter(StylePresetRecordDTO)
class StylePresetRecordWithImage(StylePresetRecordDTO):
image: Optional[str] = Field(description="The path for image")
class StylePresetImportRow(BaseModel):
name: str = Field(min_length=1, description="The name of the preset.")
positive_prompt: str = Field(
default="",
description="The positive prompt for the preset.",
validation_alias=AliasChoices("positive_prompt", "prompt"),
)
negative_prompt: str = Field(default="", description="The negative prompt for the preset.")
model_config = ConfigDict(str_strip_whitespace=True, extra="forbid")
StylePresetImportList = list[StylePresetImportRow]
StylePresetImportListTypeAdapter = TypeAdapter(StylePresetImportList)
class UnsupportedFileTypeError(ValueError):
"""Raised when an unsupported file type is encountered"""
pass
class InvalidPresetImportDataError(ValueError):
"""Raised when invalid preset import data is encountered"""
pass
async def parse_presets_from_file(file: UploadFile) -> list[StylePresetWithoutId]:
"""Parses style presets from a file. The file must be a CSV or JSON file.
If CSV, the file must have the following columns:
- name
- prompt (or positive_prompt)
- negative_prompt
If JSON, the file must be a list of objects with the following keys:
- name
- prompt (or positive_prompt)
- negative_prompt
Args:
file (UploadFile): The file to parse.
Returns:
list[StylePresetWithoutId]: The parsed style presets.
Raises:
UnsupportedFileTypeError: If the file type is not supported.
InvalidPresetImportDataError: If the data in the file is invalid.
"""
if file.content_type not in ["text/csv", "application/json"]:
raise UnsupportedFileTypeError()
if file.content_type == "text/csv":
csv_reader = csv.DictReader(codecs.iterdecode(file.file, "utf-8"))
data = list(csv_reader)
else: # file.content_type == "application/json":
json_data = await file.read()
data = json.loads(json_data)
try:
imported_presets = StylePresetImportListTypeAdapter.validate_python(data)
style_presets: list[StylePresetWithoutId] = []
for imported in imported_presets:
preset_data = PresetData(positive_prompt=imported.positive_prompt, negative_prompt=imported.negative_prompt)
style_preset = StylePresetWithoutId(name=imported.name, preset_data=preset_data, type=PresetType.User)
style_presets.append(style_preset)
except pydantic.ValidationError as e:
if file.content_type == "text/csv":
msg = "Invalid CSV format: must include columns 'name', 'prompt', and 'negative_prompt' and name cannot be blank"
else: # file.content_type == "application/json":
msg = "Invalid JSON format: must be a list of objects with keys 'name', 'prompt', and 'negative_prompt' and name cannot be blank"
raise InvalidPresetImportDataError(msg) from e
finally:
file.file.close()
return style_presets

View File

@@ -1,215 +0,0 @@
import json
from pathlib import Path
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.services.style_preset_records.style_preset_records_base import StylePresetRecordsStorageBase
from invokeai.app.services.style_preset_records.style_preset_records_common import (
PresetType,
StylePresetChanges,
StylePresetNotFoundError,
StylePresetRecordDTO,
StylePresetWithoutId,
)
from invokeai.app.util.misc import uuid_string
class SqliteStylePresetRecordsStorage(StylePresetRecordsStorageBase):
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._lock = db.lock
self._conn = db.conn
self._cursor = self._conn.cursor()
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
self._sync_default_style_presets()
def get(self, style_preset_id: str) -> StylePresetRecordDTO:
"""Gets a style preset by ID."""
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT *
FROM style_presets
WHERE id = ?;
""",
(style_preset_id,),
)
row = self._cursor.fetchone()
if row is None:
raise StylePresetNotFoundError(f"Style preset with id {style_preset_id} not found")
return StylePresetRecordDTO.from_dict(dict(row))
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
def create(self, style_preset: StylePresetWithoutId) -> StylePresetRecordDTO:
style_preset_id = uuid_string()
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO style_presets (
id,
name,
preset_data,
type
)
VALUES (?, ?, ?, ?);
""",
(
style_preset_id,
style_preset.name,
style_preset.preset_data.model_dump_json(),
style_preset.type,
),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return self.get(style_preset_id)
def create_many(self, style_presets: list[StylePresetWithoutId]) -> None:
style_preset_ids = []
try:
self._lock.acquire()
for style_preset in style_presets:
style_preset_id = uuid_string()
style_preset_ids.append(style_preset_id)
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO style_presets (
id,
name,
preset_data,
type
)
VALUES (?, ?, ?, ?);
""",
(
style_preset_id,
style_preset.name,
style_preset.preset_data.model_dump_json(),
style_preset.type,
),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return None
def update(self, style_preset_id: str, changes: StylePresetChanges) -> StylePresetRecordDTO:
try:
self._lock.acquire()
# Change the name of a style preset
if changes.name is not None:
self._cursor.execute(
"""--sql
UPDATE style_presets
SET name = ?
WHERE id = ?;
""",
(changes.name, style_preset_id),
)
# Change the preset data for a style preset
if changes.preset_data is not None:
self._cursor.execute(
"""--sql
UPDATE style_presets
SET preset_data = ?
WHERE id = ?;
""",
(changes.preset_data.model_dump_json(), style_preset_id),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return self.get(style_preset_id)
def delete(self, style_preset_id: str) -> None:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE from style_presets
WHERE id = ?;
""",
(style_preset_id,),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return None
def get_many(self, type: PresetType | None = None) -> list[StylePresetRecordDTO]:
try:
self._lock.acquire()
main_query = """
SELECT
*
FROM style_presets
"""
if type is not None:
main_query += "WHERE type = ? "
main_query += "ORDER BY LOWER(name) ASC"
if type is not None:
self._cursor.execute(main_query, (type,))
else:
self._cursor.execute(main_query)
rows = self._cursor.fetchall()
style_presets = [StylePresetRecordDTO.from_dict(dict(row)) for row in rows]
return style_presets
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
def _sync_default_style_presets(self) -> None:
"""Syncs default style presets to the database. Internal use only."""
# First delete all existing default style presets
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE FROM style_presets
WHERE type = "default";
"""
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
# Next, parse and create the default style presets
with self._lock, open(Path(__file__).parent / Path("default_style_presets.json"), "r") as file:
presets = json.load(file)
for preset in presets:
style_preset = StylePresetWithoutId.model_validate(preset)
self.create(style_preset)

View File

@@ -13,8 +13,3 @@ class UrlServiceBase(ABC):
def get_model_image_url(self, model_key: str) -> str:
"""Gets the URL for a model image"""
pass
@abstractmethod
def get_style_preset_image_url(self, style_preset_id: str) -> str:
"""Gets the URL for a style preset image"""
pass

View File

@@ -19,6 +19,3 @@ class LocalUrlService(UrlServiceBase):
def get_model_image_url(self, model_key: str) -> str:
return f"{self._base_url_v2}/models/i/{model_key}/image"
def get_style_preset_image_url(self, style_preset_id: str) -> str:
return f"{self._base_url}/style_presets/i/{style_preset_id}/image"

View File

@@ -81,7 +81,7 @@ def get_openapi_func(
# Add the output map to the schema
openapi_schema["components"]["schemas"]["InvocationOutputMap"] = {
"type": "object",
"properties": dict(sorted(invocation_output_map_properties.items())),
"properties": invocation_output_map_properties,
"required": invocation_output_map_required,
}

View File

@@ -0,0 +1,90 @@
from pathlib import Path
from typing import Literal
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from einops import repeat
from PIL import Image
from torchvision.transforms import Compose
from invokeai.app.services.config.config_default import get_config
from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2
from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize
from invokeai.backend.util.logging import InvokeAILogger
config = get_config()
logger = InvokeAILogger.get_logger(config=config)
DEPTH_ANYTHING_MODELS = {
"large": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth?download=true",
"base": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitb14.pth?download=true",
"small": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vits14.pth?download=true",
}
transform = Compose(
[
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
]
)
class DepthAnythingDetector:
def __init__(self, model: DPT_DINOv2, device: torch.device) -> None:
self.model = model
self.device = device
@staticmethod
def load_model(
model_path: Path, device: torch.device, model_size: Literal["large", "base", "small"] = "small"
) -> DPT_DINOv2:
match model_size:
case "small":
model = DPT_DINOv2(encoder="vits", features=64, out_channels=[48, 96, 192, 384])
case "base":
model = DPT_DINOv2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768])
case "large":
model = DPT_DINOv2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024])
model.load_state_dict(torch.load(model_path.as_posix(), map_location="cpu"))
model.eval()
model.to(device)
return model
def __call__(self, image: Image.Image, resolution: int = 512) -> Image.Image:
if not self.model:
logger.warn("DepthAnything model was not loaded. Returning original image")
return image
np_image = np.array(image, dtype=np.uint8)
np_image = np_image[:, :, ::-1] / 255.0
image_height, image_width = np_image.shape[:2]
np_image = transform({"image": np_image})["image"]
tensor_image = torch.from_numpy(np_image).unsqueeze(0).to(self.device)
with torch.no_grad():
depth = self.model(tensor_image)
depth = F.interpolate(depth[None], (image_height, image_width), mode="bilinear", align_corners=False)[0, 0]
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth_map = repeat(depth, "h w -> h w 3").cpu().numpy().astype(np.uint8)
depth_map = Image.fromarray(depth_map)
new_height = int(image_height * (resolution / image_width))
depth_map = depth_map.resize((resolution, new_height))
return depth_map

View File

@@ -1,31 +0,0 @@
from typing import Optional
import torch
from PIL import Image
from transformers.pipelines import DepthEstimationPipeline
from invokeai.backend.raw_model import RawModel
class DepthAnythingPipeline(RawModel):
"""Custom wrapper for the Depth Estimation pipeline from transformers adding compatibility
for Invoke's Model Management System"""
def __init__(self, pipeline: DepthEstimationPipeline) -> None:
self._pipeline = pipeline
def generate_depth(self, image: Image.Image) -> Image.Image:
depth_map = self._pipeline(image)["depth"]
assert isinstance(depth_map, Image.Image)
return depth_map
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
if device is not None and device.type not in {"cpu", "cuda"}:
device = None
self._pipeline.model.to(device=device, dtype=dtype)
self._pipeline.device = self._pipeline.model.device
def calc_size(self) -> int:
from invokeai.backend.model_manager.load.model_util import calc_module_size
return calc_module_size(self._pipeline.model)

View File

@@ -0,0 +1,145 @@
import torch.nn as nn
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
scratch = nn.Module()
out_shape1 = out_shape
out_shape2 = out_shape
out_shape3 = out_shape
if len(in_shape) >= 4:
out_shape4 = out_shape
if expand:
out_shape1 = out_shape
out_shape2 = out_shape * 2
out_shape3 = out_shape * 4
if len(in_shape) >= 4:
out_shape4 = out_shape * 8
scratch.layer1_rn = nn.Conv2d(
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer2_rn = nn.Conv2d(
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer3_rn = nn.Conv2d(
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
if len(in_shape) >= 4:
scratch.layer4_rn = nn.Conv2d(
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
return scratch
class ResidualConvUnit(nn.Module):
"""Residual convolution module."""
def __init__(self, features, activation, bn):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.bn = bn
self.groups = 1
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
if self.bn:
self.bn1 = nn.BatchNorm2d(features)
self.bn2 = nn.BatchNorm2d(features)
self.activation = activation
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.activation(x)
out = self.conv1(out)
if self.bn:
out = self.bn1(out)
out = self.activation(out)
out = self.conv2(out)
if self.bn:
out = self.bn2(out)
if self.groups > 1:
out = self.conv_merge(out)
return self.skip_add.add(out, x)
class FeatureFusionBlock(nn.Module):
"""Feature fusion block."""
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock, self).__init__()
self.deconv = deconv
self.align_corners = align_corners
self.groups = 1
self.expand = expand
out_features = features
if self.expand:
out_features = features // 2
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
self.skip_add = nn.quantized.FloatFunctional()
self.size = size
def forward(self, *xs, size=None):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
res = self.resConfUnit1(xs[1])
output = self.skip_add.add(output, res)
output = self.resConfUnit2(output)
if (size is None) and (self.size is None):
modifier = {"scale_factor": 2}
elif size is None:
modifier = {"size": self.size}
else:
modifier = {"size": size}
output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
output = self.out_conv(output)
return output

View File

@@ -0,0 +1,183 @@
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
from invokeai.backend.image_util.depth_anything.model.blocks import FeatureFusionBlock, _make_scratch
torchhub_path = Path(__file__).parent.parent / "torchhub"
def _make_fusion_block(features, use_bn, size=None):
return FeatureFusionBlock(
features,
nn.ReLU(False),
deconv=False,
bn=use_bn,
expand=False,
align_corners=True,
size=size,
)
class DPTHead(nn.Module):
def __init__(self, nclass, in_channels, features, out_channels, use_bn=False, use_clstoken=False):
super(DPTHead, self).__init__()
self.nclass = nclass
self.use_clstoken = use_clstoken
self.projects = nn.ModuleList(
[
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channel,
kernel_size=1,
stride=1,
padding=0,
)
for out_channel in out_channels
]
)
self.resize_layers = nn.ModuleList(
[
nn.ConvTranspose2d(
in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0
),
nn.ConvTranspose2d(
in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0
),
nn.Identity(),
nn.Conv2d(
in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1
),
]
)
if use_clstoken:
self.readout_projects = nn.ModuleList()
for _ in range(len(self.projects)):
self.readout_projects.append(nn.Sequential(nn.Linear(2 * in_channels, in_channels), nn.GELU()))
self.scratch = _make_scratch(
out_channels,
features,
groups=1,
expand=False,
)
self.scratch.stem_transpose = None
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
head_features_1 = features
head_features_2 = 32
if nclass > 1:
self.scratch.output_conv = nn.Sequential(
nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(head_features_1, nclass, kernel_size=1, stride=1, padding=0),
)
else:
self.scratch.output_conv1 = nn.Conv2d(
head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1
)
self.scratch.output_conv2 = nn.Sequential(
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True),
nn.Identity(),
)
def forward(self, out_features, patch_h, patch_w):
out = []
for i, x in enumerate(out_features):
if self.use_clstoken:
x, cls_token = x[0], x[1]
readout = cls_token.unsqueeze(1).expand_as(x)
x = self.readout_projects[i](torch.cat((x, readout), -1))
else:
x = x[0]
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
x = self.projects[i](x)
x = self.resize_layers[i](x)
out.append(x)
layer_1, layer_2, layer_3, layer_4 = out
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv1(path_1)
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
out = self.scratch.output_conv2(out)
return out
class DPT_DINOv2(nn.Module):
def __init__(
self,
features,
out_channels,
encoder="vitl",
use_bn=False,
use_clstoken=False,
):
super(DPT_DINOv2, self).__init__()
assert encoder in ["vits", "vitb", "vitl"]
# # in case the Internet connection is not stable, please load the DINOv2 locally
# if use_local:
# self.pretrained = torch.hub.load(
# torchhub_path / "facebookresearch_dinov2_main",
# "dinov2_{:}14".format(encoder),
# source="local",
# pretrained=False,
# )
# else:
# self.pretrained = torch.hub.load(
# "facebookresearch/dinov2",
# "dinov2_{:}14".format(encoder),
# )
self.pretrained = torch.hub.load(
"facebookresearch/dinov2",
"dinov2_{:}14".format(encoder),
)
dim = self.pretrained.blocks[0].attn.qkv.in_features
self.depth_head = DPTHead(1, dim, features, out_channels=out_channels, use_bn=use_bn, use_clstoken=use_clstoken)
def forward(self, x):
h, w = x.shape[-2:]
features = self.pretrained.get_intermediate_layers(x, 4, return_class_token=True)
patch_h, patch_w = h // 14, w // 14
depth = self.depth_head(features, patch_h, patch_w)
depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True)
depth = F.relu(depth)
return depth.squeeze(1)

View File

@@ -0,0 +1,227 @@
import math
import cv2
import numpy as np
import torch
import torch.nn.functional as F
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
Args:
sample (dict): sample
size (tuple): image size
Returns:
tuple: new size
"""
shape = list(sample["disparity"].shape)
if shape[0] >= size[0] and shape[1] >= size[1]:
return sample
scale = [0, 0]
scale[0] = size[0] / shape[0]
scale[1] = size[1] / shape[1]
scale = max(scale)
shape[0] = math.ceil(scale * shape[0])
shape[1] = math.ceil(scale * shape[1])
# resize
sample["image"] = cv2.resize(sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method)
sample["disparity"] = cv2.resize(sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
tuple(shape[::-1]),
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return tuple(shape)
class Resize(object):
"""Resize sample to given size (width, height)."""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_AREA,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller
than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == "lower_bound":
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "upper_bound":
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "minimal":
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
if self.__resize_method == "lower_bound":
new_height = self.constrain_to_multiple_of(scale_height * height, min_val=self.__height)
new_width = self.constrain_to_multiple_of(scale_width * width, min_val=self.__width)
elif self.__resize_method == "upper_bound":
new_height = self.constrain_to_multiple_of(scale_height * height, max_val=self.__height)
new_width = self.constrain_to_multiple_of(scale_width * width, max_val=self.__width)
elif self.__resize_method == "minimal":
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
return (new_width, new_height)
def __call__(self, sample):
width, height = self.get_size(sample["image"].shape[1], sample["image"].shape[0])
# resize sample
sample["image"] = cv2.resize(
sample["image"],
(width, height),
interpolation=self.__image_interpolation_method,
)
if self.__resize_target:
if "disparity" in sample:
sample["disparity"] = cv2.resize(
sample["disparity"],
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if "depth" in sample:
sample["depth"] = cv2.resize(sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST)
if "semseg_mask" in sample:
# sample["semseg_mask"] = cv2.resize(
# sample["semseg_mask"], (width, height), interpolation=cv2.INTER_NEAREST
# )
sample["semseg_mask"] = F.interpolate(
torch.from_numpy(sample["semseg_mask"]).float()[None, None, ...], (height, width), mode="nearest"
).numpy()[0, 0]
if "mask" in sample:
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
(width, height),
interpolation=cv2.INTER_NEAREST,
)
# sample["mask"] = sample["mask"].astype(bool)
# print(sample['image'].shape, sample['depth'].shape)
return sample
class NormalizeImage(object):
"""Normlize image by given mean and std."""
def __init__(self, mean, std):
self.__mean = mean
self.__std = std
def __call__(self, sample):
sample["image"] = (sample["image"] - self.__mean) / self.__std
return sample
class PrepareForNet(object):
"""Prepare sample for usage as network input."""
def __init__(self):
pass
def __call__(self, sample):
image = np.transpose(sample["image"], (2, 0, 1))
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
if "mask" in sample:
sample["mask"] = sample["mask"].astype(np.float32)
sample["mask"] = np.ascontiguousarray(sample["mask"])
if "depth" in sample:
depth = sample["depth"].astype(np.float32)
sample["depth"] = np.ascontiguousarray(depth)
if "semseg_mask" in sample:
sample["semseg_mask"] = sample["semseg_mask"].astype(np.float32)
sample["semseg_mask"] = np.ascontiguousarray(sample["semseg_mask"])
return sample

View File

@@ -0,0 +1,129 @@
import json
import os
import time
from pathlib import Path
from typing import Union
import torch
from diffusers.models.model_loading_utils import load_state_dict
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from diffusers.utils import (
CONFIG_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFETENSORS_WEIGHTS_NAME,
_get_checkpoint_shard_files,
is_accelerate_available,
)
from optimum.quanto import qfloat8
from optimum.quanto.models import QuantizedDiffusersModel
from optimum.quanto.models.shared_dict import ShardedStateDict
from invokeai.backend.requantize import requantize
class QuantizedFluxTransformer2DModel(QuantizedDiffusersModel):
base_class = FluxTransformer2DModel
@classmethod
def from_pretrained(cls, model_name_or_path: Union[str, os.PathLike]):
if cls.base_class is None:
raise ValueError("The `base_class` attribute needs to be configured.")
if not is_accelerate_available():
raise ValueError("Reloading a quantized diffusers model requires the accelerate library.")
from accelerate import init_empty_weights
if os.path.isdir(model_name_or_path):
# Look for a quantization map
qmap_path = os.path.join(model_name_or_path, cls._qmap_name())
if not os.path.exists(qmap_path):
raise ValueError(f"No quantization map found in {model_name_or_path}: is this a quantized model ?")
# Look for original model config file.
model_config_path = os.path.join(model_name_or_path, CONFIG_NAME)
if not os.path.exists(model_config_path):
raise ValueError(f"{CONFIG_NAME} not found in {model_name_or_path}.")
with open(qmap_path, "r", encoding="utf-8") as f:
qmap = json.load(f)
with open(model_config_path, "r", encoding="utf-8") as f:
original_model_cls_name = json.load(f)["_class_name"]
configured_cls_name = cls.base_class.__name__
if configured_cls_name != original_model_cls_name:
raise ValueError(
f"Configured base class ({configured_cls_name}) differs from what was derived from the provided configuration ({original_model_cls_name})."
)
# Create an empty model
config = cls.base_class.load_config(model_name_or_path)
with init_empty_weights():
model = cls.base_class.from_config(config)
# Look for the index of a sharded checkpoint
checkpoint_file = os.path.join(model_name_or_path, SAFE_WEIGHTS_INDEX_NAME)
if os.path.exists(checkpoint_file):
# Convert the checkpoint path to a list of shards
_, sharded_metadata = _get_checkpoint_shard_files(model_name_or_path, checkpoint_file)
# Create a mapping for the sharded safetensor files
state_dict = ShardedStateDict(model_name_or_path, sharded_metadata["weight_map"])
else:
# Look for a single checkpoint file
checkpoint_file = os.path.join(model_name_or_path, SAFETENSORS_WEIGHTS_NAME)
if not os.path.exists(checkpoint_file):
raise ValueError(f"No safetensor weights found in {model_name_or_path}.")
# Get state_dict from model checkpoint
state_dict = load_state_dict(checkpoint_file)
# Requantize and load quantized weights from state_dict
requantize(model, state_dict=state_dict, quantization_map=qmap)
model.eval()
return cls(model)
else:
raise NotImplementedError("Reloading quantized models directly from the hub is not supported yet.")
def load_flux_transformer(path: Path) -> FluxTransformer2DModel:
# model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True, torch_dtype=torch.bfloat16)
model_8bit_path = path / "quantized"
if model_8bit_path.exists():
# The quantized model exists, load it.
# TODO(ryand): The requantize(...) operation in from_pretrained(...) is very slow. This seems like
# something that we should be able to make much faster.
q_model = QuantizedFluxTransformer2DModel.from_pretrained(model_8bit_path)
# Access the underlying wrapped model.
# We access the wrapped model, even though it is private, because it simplifies the type checking by
# always returning a FluxTransformer2DModel from this function.
model = q_model._wrapped
else:
# The quantized model does not exist yet, quantize and save it.
# TODO(ryand): Loading in float16 and then quantizing seems to result in NaNs. In order to run this on
# GPUs that don't support bfloat16, we would need to host the quantized model instead of generating it
# here.
model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True, torch_dtype=torch.bfloat16)
assert isinstance(model, FluxTransformer2DModel)
q_model = QuantizedFluxTransformer2DModel.quantize(model, weights=qfloat8)
model_8bit_path.mkdir(parents=True, exist_ok=True)
q_model.save_pretrained(model_8bit_path)
# (See earlier comment about accessing the wrapped model.)
model = q_model._wrapped
assert isinstance(model, FluxTransformer2DModel)
return model
def main():
start = time.time()
model = load_flux_transformer(
Path("/data/invokeai/models/.download_cache/black-forest-labs_flux.1-schnell/FLUX.1-schnell/transformer/")
)
print(f"Time to load: {time.time() - start}s")
print("hi")
if __name__ == "__main__":
main()

View File

@@ -220,17 +220,11 @@ class LoKRLayer(LoRALayerBase):
if self.w1 is None:
self.w1_a = values["lokr_w1_a"]
self.w1_b = values["lokr_w1_b"]
else:
self.w1_b = None
self.w1_a = None
self.w2 = values.get("lokr_w2", None)
if self.w2 is None:
self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"]
else:
self.w2_a = None
self.w2_b = None
self.t2 = values.get("lokr_t2", None)
@@ -378,39 +372,7 @@ class IA3Layer(LoRALayerBase):
self.on_input = self.on_input.to(device=device, dtype=dtype)
class NormLayer(LoRALayerBase):
# bias handled in LoRALayerBase(calc_size, to)
# weight: torch.Tensor
# bias: Optional[torch.Tensor]
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.weight = values["w_norm"]
self.bias = values.get("b_norm", None)
self.rank = None # unscaled
self.check_keys(values, {"w_norm", "b_norm"})
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
return self.weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer]
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
class LoRAModelRaw(RawModel): # (torch.nn.Module):
@@ -551,10 +513,6 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
elif "on_input" in values:
layer = IA3Layer(layer_key, values)
# norms
elif "w_norm" in values:
layer = NormLayer(layer_key, values)
else:
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key} - {list(values.keys())}")
raise Exception("Unknown lora format!")

View File

@@ -11,7 +11,6 @@ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from transformers import CLIPTokenizer
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
@@ -46,7 +45,6 @@ def calc_model_size_by_data(logger: logging.Logger, model: AnyModel) -> int:
SpandrelImageToImageModel,
GroundingDinoPipeline,
SegmentAnythingPipeline,
DepthAnythingPipeline,
),
):
return model.calc_size()

View File

@@ -54,6 +54,7 @@ def filter_files(
"lora_weights.safetensors",
"weights.pb",
"onnx_data",
"spiece.model", # Added for `black-forest-labs/FLUX.1-schnell`.
)
):
paths.append(file)
@@ -62,7 +63,7 @@ def filter_files(
# downloading random checkpoints that might also be in the repo. However there is no guarantee
# that a checkpoint doesn't contain "model" in its name, and no guarantee that future diffusers models
# will adhere to this naming convention, so this is an area to be careful of.
elif re.search(r"model(\.[^.]+)?\.(safetensors|bin|onnx|xml|pth|pt|ckpt|msgpack)$", file.name):
elif re.search(r"model.*\.(safetensors|bin|onnx|xml|pth|pt|ckpt|msgpack)$", file.name):
paths.append(file)
# limit search to subfolder if requested
@@ -97,7 +98,9 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
if variant == ModelRepoVariant.Flax:
result.add(path)
elif path.suffix in [".json", ".txt"]:
# Note: '.model' was added to support:
# https://huggingface.co/black-forest-labs/FLUX.1-schnell/blob/768d12a373ed5cc9ef9a9dea7504dc09fcc14842/tokenizer_2/spiece.model
elif path.suffix in [".json", ".txt", ".model"]:
result.add(path)
elif variant in [
@@ -140,6 +143,23 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
continue
for candidate_list in subfolder_weights.values():
# Check if at least one of the files has the explicit fp16 variant.
at_least_one_fp16 = False
for candidate in candidate_list:
if len(candidate.path.suffixes) == 2 and candidate.path.suffixes[0] == ".fp16":
at_least_one_fp16 = True
break
if not at_least_one_fp16:
# If none of the candidates in this candidate_list have the explicit fp16 variant label, then this
# candidate_list probably doesn't adhere to the variant naming convention that we expected. In this case,
# we'll simply keep all the candidates. An example of a model that hits this case is
# `black-forest-labs/FLUX.1-schnell` (as of commit 012d2fd).
for candidate in candidate_list:
result.add(candidate.path)
# The candidate_list seems to have the expected variant naming convention. We'll select the highest scoring
# candidate.
highest_score_candidate = max(candidate_list, key=lambda candidate: candidate.score)
if highest_score_candidate:
result.add(highest_score_candidate.path)

View File

@@ -0,0 +1,77 @@
import json
import os
from typing import Union
from diffusers.models.model_loading_utils import load_state_dict
from diffusers.utils import (
CONFIG_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFETENSORS_WEIGHTS_NAME,
_get_checkpoint_shard_files,
is_accelerate_available,
)
from optimum.quanto.models import QuantizedDiffusersModel
from optimum.quanto.models.shared_dict import ShardedStateDict
from invokeai.backend.requantize import requantize
class FastQuantizedDiffusersModel(QuantizedDiffusersModel):
@classmethod
def from_pretrained(cls, model_name_or_path: Union[str, os.PathLike]):
"""We override the `from_pretrained()` method in order to use our custom `requantize()` implementation."""
if cls.base_class is None:
raise ValueError("The `base_class` attribute needs to be configured.")
if not is_accelerate_available():
raise ValueError("Reloading a quantized diffusers model requires the accelerate library.")
from accelerate import init_empty_weights
if os.path.isdir(model_name_or_path):
# Look for a quantization map
qmap_path = os.path.join(model_name_or_path, cls._qmap_name())
if not os.path.exists(qmap_path):
raise ValueError(f"No quantization map found in {model_name_or_path}: is this a quantized model ?")
# Look for original model config file.
model_config_path = os.path.join(model_name_or_path, CONFIG_NAME)
if not os.path.exists(model_config_path):
raise ValueError(f"{CONFIG_NAME} not found in {model_name_or_path}.")
with open(qmap_path, "r", encoding="utf-8") as f:
qmap = json.load(f)
with open(model_config_path, "r", encoding="utf-8") as f:
original_model_cls_name = json.load(f)["_class_name"]
configured_cls_name = cls.base_class.__name__
if configured_cls_name != original_model_cls_name:
raise ValueError(
f"Configured base class ({configured_cls_name}) differs from what was derived from the provided configuration ({original_model_cls_name})."
)
# Create an empty model
config = cls.base_class.load_config(model_name_or_path)
with init_empty_weights():
model = cls.base_class.from_config(config)
# Look for the index of a sharded checkpoint
checkpoint_file = os.path.join(model_name_or_path, SAFE_WEIGHTS_INDEX_NAME)
if os.path.exists(checkpoint_file):
# Convert the checkpoint path to a list of shards
_, sharded_metadata = _get_checkpoint_shard_files(model_name_or_path, checkpoint_file)
# Create a mapping for the sharded safetensor files
state_dict = ShardedStateDict(model_name_or_path, sharded_metadata["weight_map"])
else:
# Look for a single checkpoint file
checkpoint_file = os.path.join(model_name_or_path, SAFETENSORS_WEIGHTS_NAME)
if not os.path.exists(checkpoint_file):
raise ValueError(f"No safetensor weights found in {model_name_or_path}.")
# Get state_dict from model checkpoint
state_dict = load_state_dict(checkpoint_file)
# Requantize and load quantized weights from state_dict
requantize(model, state_dict=state_dict, quantization_map=qmap)
model.eval()
return cls(model)
else:
raise NotImplementedError("Reloading quantized models directly from the hub is not supported yet.")

View File

@@ -0,0 +1,61 @@
import json
import os
from typing import Union
from optimum.quanto.models import QuantizedTransformersModel
from optimum.quanto.models.shared_dict import ShardedStateDict
from transformers import AutoConfig
from transformers.modeling_utils import get_checkpoint_shard_files, load_state_dict
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, is_accelerate_available
from invokeai.backend.requantize import requantize
class FastQuantizedTransformersModel(QuantizedTransformersModel):
@classmethod
def from_pretrained(cls, model_name_or_path: Union[str, os.PathLike]):
"""We override the `from_pretrained()` method in order to use our custom `requantize()` implementation."""
if cls.auto_class is None:
raise ValueError(
"Quantized models cannot be reloaded using {cls}: use a specialized quantized class such as QuantizedModelForCausalLM instead."
)
if not is_accelerate_available():
raise ValueError("Reloading a quantized transformers model requires the accelerate library.")
from accelerate import init_empty_weights
if os.path.isdir(model_name_or_path):
# Look for a quantization map
qmap_path = os.path.join(model_name_or_path, cls._qmap_name())
if not os.path.exists(qmap_path):
raise ValueError(f"No quantization map found in {model_name_or_path}: is this a quantized model ?")
with open(qmap_path, "r", encoding="utf-8") as f:
qmap = json.load(f)
# Create an empty model
config = AutoConfig.from_pretrained(model_name_or_path)
with init_empty_weights():
model = cls.auto_class.from_config(config)
# Look for the index of a sharded checkpoint
checkpoint_file = os.path.join(model_name_or_path, SAFE_WEIGHTS_INDEX_NAME)
if os.path.exists(checkpoint_file):
# Convert the checkpoint path to a list of shards
checkpoint_file, sharded_metadata = get_checkpoint_shard_files(model_name_or_path, checkpoint_file)
# Create a mapping for the sharded safetensor files
state_dict = ShardedStateDict(model_name_or_path, sharded_metadata["weight_map"])
else:
# Look for a single checkpoint file
checkpoint_file = os.path.join(model_name_or_path, SAFE_WEIGHTS_NAME)
if not os.path.exists(checkpoint_file):
raise ValueError(f"No safetensor weights found in {model_name_or_path}.")
# Get state_dict from model checkpoint
state_dict = load_state_dict(checkpoint_file)
# Requantize and load quantized weights from state_dict
requantize(model, state_dict=state_dict, quantization_map=qmap)
if getattr(model.config, "tie_word_embeddings", True):
# Tie output weight embeddings to input weight embeddings
# Note that if they were quantized they would NOT be tied
model.tie_weights()
# Set model in evaluation mode as it is done in transformers
model.eval()
return cls(model)
else:
raise NotImplementedError("Reloading quantized models directly from the hub is not supported yet.")

View File

@@ -0,0 +1,53 @@
from typing import Any, Dict
import torch
from optimum.quanto.quantize import _quantize_submodule
# def custom_freeze(model: torch.nn.Module):
# for name, m in model.named_modules():
# if isinstance(m, QModuleMixin):
# m.weight =
# m.freeze()
def requantize(
model: torch.nn.Module,
state_dict: Dict[str, Any],
quantization_map: Dict[str, Dict[str, str]],
device: torch.device = None,
):
if device is None:
device = next(model.parameters()).device
if device.type == "meta":
device = torch.device("cpu")
# Quantize the model with parameters from the quantization map
for name, m in model.named_modules():
qconfig = quantization_map.get(name, None)
if qconfig is not None:
weights = qconfig["weights"]
if weights == "none":
weights = None
activations = qconfig["activations"]
if activations == "none":
activations = None
_quantize_submodule(model, name, m, weights=weights, activations=activations)
# Move model parameters and buffers to CPU before materializing quantized weights
for name, m in model.named_modules():
def move_tensor(t, device):
if t.device.type == "meta":
return torch.empty_like(t, device=device)
return t.to(device)
for name, param in m.named_parameters(recurse=False):
setattr(m, name, torch.nn.Parameter(move_tensor(param, "cpu")))
for name, param in m.named_buffers(recurse=False):
setattr(m, name, move_tensor(param, "cpu"))
# Freeze model and move to target device
# freeze(model)
# model.to(device)
# Load the quantized model weights
model.load_state_dict(state_dict, strict=False)

View File

@@ -3,7 +3,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
import diffusers
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalControlNetMixin
from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
from diffusers.models.controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
from diffusers.models.embeddings import (
@@ -32,7 +32,7 @@ from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.get_logger(__name__)
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
"""
A ControlNet model.

View File

@@ -12,10 +12,6 @@ module.exports = {
'i18next/no-literal-string': 'error',
// https://eslint.org/docs/latest/rules/no-console
'no-console': 'error',
// https://eslint.org/docs/latest/rules/no-promise-executor-return
'no-promise-executor-return': 'error',
// https://eslint.org/docs/latest/rules/require-await
'require-await': 'error',
},
overrides: [
/**

View File

@@ -1,5 +1,5 @@
import { PropsWithChildren, memo, useEffect } from 'react';
import { modelChanged } from '../src/features/controlLayers/store/paramsSlice';
import { modelChanged } from '../src/features/parameters/store/generationSlice';
import { useAppDispatch } from '../src/app/store/storeHooks';
import { useGlobalModifiersInit } from '@invoke-ai/ui-library';
/**
@@ -10,9 +10,7 @@ export const ReduxInit = memo((props: PropsWithChildren) => {
const dispatch = useAppDispatch();
useGlobalModifiersInit();
useEffect(() => {
dispatch(
modelChanged({ model: { key: 'test_model', hash: 'some_hash', name: 'some name', base: 'sd-1', type: 'main' } })
);
dispatch(modelChanged({ key: 'test_model', hash: 'some_hash', name: 'some name', base: 'sd-1', type: 'main' }));
}, []);
return props.children;

View File

@@ -9,8 +9,6 @@ const config: KnipConfig = {
'src/services/api/schema.ts',
'src/features/nodes/types/v1/**',
'src/features/nodes/types/v2/**',
// TODO(psyche): maybe we can clean up these utils after canvas v2 release
'src/features/controlLayers/konva/util.ts',
],
ignoreBinaries: ['only-allow'],
paths: {

View File

@@ -24,7 +24,7 @@
"build": "pnpm run lint && vite build",
"typegen": "node scripts/typegen.js",
"preview": "vite preview",
"lint:knip": "knip --tags=-knipignore",
"lint:knip": "knip",
"lint:dpdm": "dpdm --no-warning --no-tree --transform --exit-code circular:1 src/main.tsx",
"lint:eslint": "eslint --max-warnings=0 .",
"lint:prettier": "prettier --check .",
@@ -52,65 +52,65 @@
}
},
"dependencies": {
"@dagrejs/dagre": "^1.1.3",
"@dagrejs/graphlib": "^2.2.3",
"@chakra-ui/react-use-size": "^2.1.0",
"@dagrejs/dagre": "^1.1.2",
"@dagrejs/graphlib": "^2.2.2",
"@dnd-kit/core": "^6.1.0",
"@dnd-kit/sortable": "^8.0.0",
"@dnd-kit/utilities": "^3.2.2",
"@fontsource-variable/inter": "^5.0.20",
"@invoke-ai/ui-library": "^0.0.32",
"@nanostores/react": "^0.7.3",
"@fontsource-variable/inter": "^5.0.18",
"@invoke-ai/ui-library": "^0.0.25",
"@nanostores/react": "^0.7.2",
"@reduxjs/toolkit": "2.2.3",
"@roarr/browser-log-writer": "^1.3.0",
"async-mutex": "^0.5.0",
"chakra-react-select": "^4.9.1",
"compare-versions": "^6.1.1",
"chakra-react-select": "^4.7.6",
"compare-versions": "^6.1.0",
"dateformat": "^5.0.3",
"fracturedjsonjs": "^4.0.2",
"framer-motion": "^11.3.24",
"i18next": "^23.12.2",
"i18next-http-backend": "^2.5.2",
"fracturedjsonjs": "^4.0.1",
"framer-motion": "^11.1.8",
"i18next": "^23.11.3",
"i18next-http-backend": "^2.5.1",
"idb-keyval": "^6.2.1",
"jsondiffpatch": "^0.6.0",
"konva": "^9.3.14",
"konva": "^9.3.6",
"lodash-es": "^4.17.21",
"lru-cache": "^11.0.0",
"nanoid": "^5.0.7",
"nanostores": "^0.11.2",
"nanostores": "^0.10.3",
"new-github-issue-url": "^1.0.0",
"overlayscrollbars": "^2.10.0",
"overlayscrollbars": "^2.7.3",
"overlayscrollbars-react": "^0.5.6",
"query-string": "^9.1.0",
"query-string": "^9.0.0",
"react": "^18.3.1",
"react-colorful": "^5.6.1",
"react-dom": "^18.3.1",
"react-dropzone": "^14.2.3",
"react-error-boundary": "^4.0.13",
"react-hook-form": "^7.52.2",
"react-hook-form": "^7.51.4",
"react-hotkeys-hook": "4.5.0",
"react-i18next": "^14.1.3",
"react-icons": "^5.2.1",
"react-i18next": "^14.1.1",
"react-icons": "^5.2.0",
"react-konva": "^18.2.10",
"react-redux": "9.1.2",
"react-resizable-panels": "^2.0.23",
"react-resizable-panels": "^2.0.19",
"react-select": "5.8.0",
"react-use": "^17.5.1",
"react-virtuoso": "^4.9.0",
"reactflow": "^11.11.4",
"react-use": "^17.5.0",
"react-virtuoso": "^4.7.10",
"reactflow": "^11.11.3",
"redux-dynamic-middlewares": "^2.2.0",
"redux-remember": "^5.1.0",
"redux-undo": "^1.1.0",
"rfdc": "^1.4.1",
"rfdc": "^1.3.1",
"roarr": "^7.21.1",
"serialize-error": "^11.0.3",
"socket.io-client": "^4.7.5",
"stable-hash": "^0.0.4",
"use-debounce": "^10.0.2",
"use-debounce": "^10.0.0",
"use-device-pixel-ratio": "^1.1.2",
"uuid": "^10.0.0",
"zod": "^3.23.8",
"zod-validation-error": "^3.3.1"
"use-image": "^1.1.1",
"uuid": "^9.0.1",
"zod": "^3.23.6",
"zod-validation-error": "^3.2.0"
},
"peerDependencies": {
"@chakra-ui/react": "^2.8.2",
"react": "^18.2.0",
"react-dom": "^18.2.0",
"ts-toolbelt": "^9.6.0"
@@ -118,38 +118,38 @@
"devDependencies": {
"@invoke-ai/eslint-config-react": "^0.0.14",
"@invoke-ai/prettier-config-react": "^0.0.7",
"@storybook/addon-essentials": "^8.2.8",
"@storybook/addon-interactions": "^8.2.8",
"@storybook/addon-links": "^8.2.8",
"@storybook/addon-storysource": "^8.2.8",
"@storybook/manager-api": "^8.2.8",
"@storybook/react": "^8.2.8",
"@storybook/react-vite": "^8.2.8",
"@storybook/theming": "^8.2.8",
"@storybook/addon-essentials": "^8.0.10",
"@storybook/addon-interactions": "^8.0.10",
"@storybook/addon-links": "^8.0.10",
"@storybook/addon-storysource": "^8.0.10",
"@storybook/manager-api": "^8.0.10",
"@storybook/react": "^8.0.10",
"@storybook/react-vite": "^8.0.10",
"@storybook/theming": "^8.0.10",
"@types/dateformat": "^5.0.2",
"@types/lodash-es": "^4.17.12",
"@types/node": "^20.14.15",
"@types/react": "^18.3.3",
"@types/node": "^20.12.10",
"@types/react": "^18.3.1",
"@types/react-dom": "^18.3.0",
"@types/uuid": "^10.0.0",
"@vitejs/plugin-react-swc": "^3.7.0",
"@types/uuid": "^9.0.8",
"@vitejs/plugin-react-swc": "^3.6.0",
"@vitest/coverage-v8": "^1.5.0",
"@vitest/ui": "^1.5.0",
"concurrently": "^8.2.2",
"dpdm": "^3.14.0",
"eslint": "^8.57.0",
"eslint-plugin-i18next": "^6.0.9",
"eslint-plugin-i18next": "^6.0.3",
"eslint-plugin-path": "^1.3.0",
"knip": "^5.27.2",
"knip": "^5.12.3",
"openapi-types": "^12.1.3",
"openapi-typescript": "^7.3.0",
"prettier": "^3.3.3",
"openapi-typescript": "^6.7.5",
"prettier": "^3.2.5",
"rollup-plugin-visualizer": "^5.12.0",
"storybook": "^8.2.8",
"storybook": "^8.0.10",
"ts-toolbelt": "^9.6.0",
"tsafe": "^1.7.2",
"typescript": "^5.5.4",
"vite": "^5.4.0",
"tsafe": "^1.6.6",
"typescript": "^5.4.5",
"vite": "^5.2.11",
"vite-plugin-css-injected-by-js": "^3.5.1",
"vite-plugin-dts": "^3.9.1",
"vite-plugin-eslint": "^1.8.1",

File diff suppressed because it is too large Load Diff

View File

@@ -80,7 +80,6 @@
"aboutDesc": "Using Invoke for work? Check out:",
"aboutHeading": "Own Your Creative Power",
"accept": "Accept",
"apply": "Apply",
"add": "Add",
"advanced": "Advanced",
"ai": "ai",
@@ -116,7 +115,6 @@
"githubLabel": "Github",
"goTo": "Go to",
"hotkeysLabel": "Hotkeys",
"loadingImage": "Loading Image",
"imageFailedToLoad": "Unable to Load Image",
"img2img": "Image To Image",
"inpaint": "inpaint",
@@ -202,7 +200,6 @@
"delete": "Delete",
"depthAnything": "Depth Anything",
"depthAnythingDescription": "Depth map generation using the Depth Anything technique",
"depthAnythingSmallV2": "Small V2",
"depthMidas": "Depth (Midas)",
"depthMidasDescription": "Depth map generation using Midas",
"depthZoe": "Depth (Zoe)",
@@ -327,10 +324,6 @@
"canceled": "Canceled",
"completedIn": "Completed in",
"batch": "Batch",
"origin": "Origin",
"originCanvas": "Canvas",
"originWorkflows": "Workflows",
"originOther": "Other",
"batchFieldValues": "Batch Field Values",
"item": "Item",
"session": "Session",
@@ -1101,6 +1094,7 @@
"confirmOnDelete": "Confirm On Delete",
"developer": "Developer",
"displayInProgress": "Display Progress Images",
"enableImageDebugging": "Enable Image Debugging",
"enableInformationalPopovers": "Enable Informational Popovers",
"informationalPopoversDisabled": "Informational Popovers Disabled",
"informationalPopoversDisabledDesc": "Informational popovers have been disabled. Enable them in Settings.",
@@ -1146,8 +1140,6 @@
"imageSavingFailed": "Image Saving Failed",
"imageUploaded": "Image Uploaded",
"imageUploadFailed": "Image Upload Failed",
"importFailed": "Import Failed",
"importSuccessful": "Import Successful",
"invalidUpload": "Invalid Upload",
"loadedWithWarnings": "Workflow Loaded with Warnings",
"maskSavedAssets": "Mask Saved to Assets",
@@ -1567,7 +1559,7 @@
"copyToClipboard": "Copy to Clipboard",
"cursorPosition": "Cursor Position",
"darkenOutsideSelection": "Darken Outside Selection",
"discardAll": "Discard All & Cancel Pending Generations",
"discardAll": "Discard All",
"discardCurrent": "Discard Current",
"downloadAsImage": "Download As Image",
"enableMask": "Enable Mask",
@@ -1645,32 +1637,16 @@
"storeNotInitialized": "Store is not initialized"
},
"controlLayers": {
"generateMode": "Generate",
"generateModeDesc": "Create individual images. Generated images are added directly to the gallery.",
"composeMode": "Compose",
"composeModeDesc": "Compose your work iterative. Generated images are added back to the canvas.",
"autoSave": "Auto-save to Gallery",
"resetCanvas": "Reset Canvas",
"resetAll": "Reset All",
"deleteAll": "Delete All",
"clearCaches": "Clear Caches",
"recalculateRects": "Recalculate Rects",
"clipToBbox": "Clip Strokes to Bbox",
"addLayer": "Add Layer",
"duplicate": "Duplicate",
"moveToFront": "Move to Front",
"moveToBack": "Move to Back",
"moveForward": "Move Forward",
"moveBackward": "Move Backward",
"brushSize": "Brush Size",
"width": "Width",
"zoom": "Zoom",
"resetView": "Reset View",
"controlLayers": "Control Layers",
"globalMaskOpacity": "Global Mask Opacity",
"autoNegative": "Auto Negative",
"enableAutoNegative": "Enable Auto Negative",
"disableAutoNegative": "Disable Auto Negative",
"deletePrompt": "Delete Prompt",
"resetRegion": "Reset Region",
"debugLayers": "Debug Layers",
@@ -1679,86 +1655,23 @@
"addPositivePrompt": "Add $t(common.positivePrompt)",
"addNegativePrompt": "Add $t(common.negativePrompt)",
"addIPAdapter": "Add $t(common.ipAdapter)",
"regionalGuidance": "Regional Guidance",
"regionalGuidanceLayer": "$t(controlLayers.regionalGuidance) $t(unifiedCanvas.layer)",
"raster": "Raster",
"rasterLayer_one": "Raster Layer",
"controlLayer_one": "Control Layer",
"inpaintMask_one": "Inpaint Mask",
"regionalGuidance_one": "Regional Guidance",
"ipAdapter_one": "IP Adapter",
"rasterLayer_other": "Raster Layers",
"controlLayer_other": "Control Layers",
"inpaintMask_other": "Inpaint Masks",
"regionalGuidance_other": "Regional Guidance",
"ipAdapter_other": "IP Adapters",
"opacity": "Opacity",
"regionalGuidance_withCount_hidden": "Regional Guidance ({{count}} hidden)",
"controlAdapters_withCount_hidden": "Control Adapters ({{count}} hidden)",
"controlLayers_withCount_hidden": "Control Layers ({{count}} hidden)",
"rasterLayers_withCount_hidden": "Raster Layers ({{count}} hidden)",
"ipAdapters_withCount_hidden": "IP Adapters ({{count}} hidden)",
"inpaintMasks_withCount_hidden": "Inpaint Masks ({{count}} hidden)",
"regionalGuidance_withCount_visible": "Regional Guidance ({{count}})",
"controlAdapters_withCount_visible": "Control Adapters ({{count}})",
"controlLayers_withCount_visible": "Control Layers ({{count}})",
"rasterLayers_withCount_visible": "Raster Layers ({{count}})",
"ipAdapters_withCount_visible": "IP Adapters ({{count}})",
"inpaintMasks_withCount_visible": "Inpaint Masks ({{count}})",
"globalControlAdapter": "Global $t(controlnet.controlAdapter_one)",
"globalControlAdapterLayer": "Global $t(controlnet.controlAdapter_one) $t(unifiedCanvas.layer)",
"globalIPAdapter": "Global $t(common.ipAdapter)",
"globalIPAdapterLayer": "Global $t(common.ipAdapter) $t(unifiedCanvas.layer)",
"globalInitialImage": "Global Initial Image",
"globalInitialImageLayer": "$t(controlLayers.globalInitialImage) $t(unifiedCanvas.layer)",
"layer": "Layer",
"opacityFilter": "Opacity Filter",
"clearProcessor": "Clear Processor",
"resetProcessor": "Reset Processor to Defaults",
"noLayersAdded": "No Layers Added",
"layers_one": "Layer",
"layers_other": "Layers",
"objects_zero": "empty",
"objects_one": "{{count}} object",
"objects_other": "{{count}} objects",
"convertToControlLayer": "Convert to Control Layer",
"convertToRasterLayer": "Convert to Raster Layer",
"transparency": "Transparency",
"enableTransparencyEffect": "Enable Transparency Effect",
"disableTransparencyEffect": "Disable Transparency Effect",
"hidingType": "Hiding {{type}}",
"showingType": "Showing {{type}}",
"dynamicGrid": "Dynamic Grid",
"logDebugInfo": "Log Debug Info",
"fill": {
"fillStyle": "Fill Style",
"solid": "Solid",
"grid": "Grid",
"crosshatch": "Crosshatch",
"vertical": "Vertical",
"horizontal": "Horizontal",
"diagonal": "Diagonal"
},
"tool": {
"brush": "Brush",
"eraser": "Eraser",
"rectangle": "Rectangle",
"bbox": "Bbox",
"move": "Move",
"view": "View",
"transform": "Transform",
"colorPicker": "Color Picker"
},
"filter": {
"filter": "Filter",
"filters": "Filters",
"filterType": "Filter Type",
"preview": "Preview",
"apply": "Apply",
"cancel": "Cancel"
}
"layers_other": "Layers"
},
"upscaling": {
"upscale": "Upscale",
"creativity": "Creativity",
"exceedsMaxSize": "Upscale settings exceed max size limit",
"exceedsMaxSizeDetails": "Max upscale limit is {{maxUpscaleDimension}}x{{maxUpscaleDimension}} pixels. Please try a smaller image or decrease your scale selection.",
@@ -1775,53 +1688,6 @@
"missingUpscaleModel": "Missing upscale model",
"missingTileControlNetModel": "No valid tile ControlNet models installed"
},
"stylePresets": {
"active": "Active",
"choosePromptTemplate": "Choose Prompt Template",
"clearTemplateSelection": "Clear Template Selection",
"copyTemplate": "Copy Template",
"createPromptTemplate": "Create Prompt Template",
"defaultTemplates": "Default Templates",
"deleteImage": "Delete Image",
"deleteTemplate": "Delete Template",
"deleteTemplate2": "Are you sure you want to delete this template? This cannot be undone.",
"exportPromptTemplates": "Export My Prompt Templates (CSV)",
"editTemplate": "Edit Template",
"exportDownloaded": "Export Downloaded",
"exportFailed": "Unable to generate and download CSV",
"flatten": "Flatten selected template into current prompt",
"importTemplates": "Import Prompt Templates (CSV/JSON)",
"acceptedColumnsKeys": "Accepted columns/keys:",
"nameColumn": "'name'",
"positivePromptColumn": "'prompt' or 'positive_prompt'",
"negativePromptColumn": "'negative_prompt'",
"insertPlaceholder": "Insert placeholder",
"myTemplates": "My Templates",
"name": "Name",
"negativePrompt": "Negative Prompt",
"noTemplates": "No templates",
"noMatchingTemplates": "No matching templates",
"promptTemplatesDesc1": "Prompt templates add text to the prompts you write in the prompt box.",
"promptTemplatesDesc2": "Use the placeholder string <Pre>{{placeholder}}</Pre> to specify where your prompt should be included in the template.",
"promptTemplatesDesc3": "If you omit the placeholder, the template will be appended to the end of your prompt.",
"positivePrompt": "Positive Prompt",
"preview": "Preview",
"private": "Private",
"promptTemplateCleared": "Prompt Template Cleared",
"searchByName": "Search by name",
"shared": "Shared",
"sharedTemplates": "Shared Templates",
"templateActions": "Template Actions",
"templateDeleted": "Prompt template deleted",
"toggleViewMode": "Toggle View Mode",
"type": "Type",
"unableToDeleteTemplate": "Unable to delete prompt template",
"updatePromptTemplate": "Update Prompt Template",
"uploadImage": "Upload Image",
"useForTemplate": "Use For Prompt Template",
"viewList": "View Template List",
"viewModeTooltip": "This is how your prompt will look with your currently selected template. To edit your prompt, click anywhere in the text box."
},
"upsell": {
"inviteTeammates": "Invite Teammates",
"professional": "Professional",
@@ -1843,30 +1709,5 @@
"upscaling": "Upscaling",
"upscalingTab": "$t(ui.tabs.upscaling) $t(common.tab)"
}
},
"system": {
"enableLogging": "Enable Logging",
"logLevel": {
"logLevel": "Log Level",
"trace": "Trace",
"debug": "Debug",
"info": "Info",
"warn": "Warn",
"error": "Error",
"fatal": "Fatal"
},
"logNamespaces": {
"logNamespaces": "Log Namespaces",
"gallery": "Gallery",
"models": "Models",
"config": "Config",
"canvas": "Canvas",
"generation": "Generation",
"workflows": "Workflows",
"system": "System",
"events": "Events",
"queue": "Queue",
"metadata": "Metadata"
}
}
}

View File

@@ -90,7 +90,7 @@
"disabled": "Disabilitato",
"comparingDesc": "Confronta due immagini",
"comparing": "Confronta",
"dontShowMeThese": "Non mostrare più"
"dontShowMeThese": "Non mostrarmi questi"
},
"gallery": {
"galleryImageSize": "Dimensione dell'immagine",
@@ -701,9 +701,7 @@
"baseModelChanged": "Modello base modificato",
"sessionRef": "Sessione: {{sessionId}}",
"somethingWentWrong": "Qualcosa è andato storto",
"outOfMemoryErrorDesc": "Le impostazioni della generazione attuale superano la capacità del sistema. Modifica le impostazioni e riprova.",
"importFailed": "Importazione non riuscita",
"importSuccessful": "Importazione riuscita"
"outOfMemoryErrorDesc": "Le impostazioni della generazione attuale superano la capacità del sistema. Modifica le impostazioni e riprova."
},
"tooltip": {
"feature": {
@@ -929,7 +927,7 @@
"missingInvocationTemplate": "Modello di invocazione mancante",
"missingFieldTemplate": "Modello di campo mancante",
"singleFieldType": "{{name}} (Singola)",
"imageAccessError": "Impossibile trovare l'immagine {{image_name}}, ripristino ai valori predefiniti",
"imageAccessError": "Impossibile trovare l'immagine {{image_name}}, ripristino delle impostazioni predefinite",
"boardAccessError": "Impossibile trovare la bacheca {{board_id}}, ripristino ai valori predefiniti",
"modelAccessError": "Impossibile trovare il modello {{key}}, ripristino ai valori predefiniti"
},
@@ -1528,7 +1526,7 @@
},
"upscaleModel": {
"paragraphs": [
"Il modello di ampliamento (Upscale), scala l'immagine alle dimensioni di uscita prima di aggiungere i dettagli. È possibile utilizzare qualsiasi modello di ampliamento supportato, ma alcuni sono specializzati per diversi tipi di immagini, come foto o disegni al tratto."
"Il modello di ampliamento ridimensiona l'immagine alle dimensioni di uscita prima che vengano aggiunti i dettagli. È possibile utilizzare qualsiasi modello di ampliamento supportato, ma alcuni sono specializzati per diversi tipi di immagini, come foto o disegni al tratto."
],
"heading": "Modello di ampliamento"
},
@@ -1737,58 +1735,12 @@
"missingUpscaleModel": "Modello per lampliamento mancante",
"missingTileControlNetModel": "Nessun modello ControlNet Tile valido installato",
"postProcessingModel": "Modello di post-elaborazione",
"postProcessingMissingModelWarning": "Visita <LinkComponent>Gestione modelli</LinkComponent> per installare un modello di post-elaborazione (da immagine a immagine).",
"exceedsMaxSize": "Le impostazioni di ampliamento superano il limite massimo delle dimensioni",
"exceedsMaxSizeDetails": "Il limite massimo di ampliamento è {{maxUpscaleDimension}}x{{maxUpscaleDimension}} pixel. Prova un'immagine più piccola o diminuisci la scala selezionata."
"postProcessingMissingModelWarning": "Visita <LinkComponent>Gestione modelli</LinkComponent> per installare un modello di post-elaborazione (da immagine a immagine)."
},
"upsell": {
"inviteTeammates": "Invita collaboratori",
"shareAccess": "Condividi l'accesso",
"professional": "Professionale",
"professionalUpsell": "Disponibile nell'edizione Professional di Invoke. Fai clic qui o visita invoke.com/pricing per ulteriori dettagli."
},
"stylePresets": {
"active": "Attivo",
"choosePromptTemplate": "Scegli un modello di prompt",
"clearTemplateSelection": "Cancella selezione modello",
"copyTemplate": "Copia modello",
"createPromptTemplate": "Crea modello di prompt",
"defaultTemplates": "Modelli predefiniti",
"deleteImage": "Elimina immagine",
"deleteTemplate": "Elimina modello",
"editTemplate": "Modifica modello",
"flatten": "Unisci il modello selezionato al prompt corrente",
"insertPlaceholder": "Inserisci segnaposto",
"myTemplates": "I miei modelli",
"name": "Nome",
"negativePrompt": "Prompt Negativo",
"noMatchingTemplates": "Nessun modello corrispondente",
"promptTemplatesDesc1": "I modelli di prompt aggiungono testo ai prompt che scrivi nelle caselle dei prompt.",
"promptTemplatesDesc3": "Se si omette il segnaposto, il modello verrà aggiunto alla fine del prompt.",
"positivePrompt": "Prompt Positivo",
"preview": "Anteprima",
"private": "Privato",
"searchByName": "Cerca per nome",
"shared": "Condiviso",
"sharedTemplates": "Modelli condivisi",
"templateDeleted": "Modello di prompt eliminato",
"toggleViewMode": "Attiva/disattiva visualizzazione",
"uploadImage": "Carica immagine",
"useForTemplate": "Usa per modello di prompt",
"viewList": "Visualizza l'elenco dei modelli",
"viewModeTooltip": "Ecco come apparirà il tuo prompt con il modello attualmente selezionato. Per modificare il tuo prompt, clicca in un punto qualsiasi della casella di testo.",
"deleteTemplate2": "Vuoi davvero eliminare questo modello? Questa operazione non può essere annullata.",
"unableToDeleteTemplate": "Impossibile eliminare il modello di prompt",
"updatePromptTemplate": "Aggiorna il modello di prompt",
"type": "Tipo",
"promptTemplatesDesc2": "Utilizza la stringa segnaposto <Pre>{{placeholder}}</Pre> per specificare dove inserire il tuo prompt nel modello.",
"importTemplates": "Importa modelli di prompt (CSV/JSON)",
"exportDownloaded": "Esportazione completata",
"exportFailed": "Impossibile generare e scaricare il file CSV",
"exportPromptTemplates": "Esporta i miei modelli di prompt (CSV)",
"positivePromptColumn": "'prompt' o 'positive_prompt'",
"noTemplates": "Nessun modello",
"acceptedColumnsKeys": "Colonne/chiavi accettate:",
"templateActions": "Azioni modello"
}
}

View File

@@ -91,8 +91,7 @@
"enabled": "Включено",
"disabled": "Отключено",
"comparingDesc": "Сравнение двух изображений",
"comparing": "Сравнение",
"dontShowMeThese": "Не показывай мне это"
"comparing": "Сравнение"
},
"gallery": {
"galleryImageSize": "Размер изображений",
@@ -154,11 +153,7 @@
"showArchivedBoards": "Показать архивированные доски",
"searchImages": "Поиск по метаданным",
"displayBoardSearch": "Отобразить поиск досок",
"displaySearch": "Отобразить поиск",
"exitBoardSearch": "Выйти из поиска досок",
"go": "Перейти",
"exitSearch": "Выйти из поиска",
"jump": "Пыгнуть"
"displaySearch": "Отобразить поиск"
},
"hotkeys": {
"keyboardShortcuts": "Горячие клавиши",
@@ -381,10 +376,6 @@
"toggleViewer": {
"title": "Переключить просмотр изображений",
"desc": "Переключение между средством просмотра изображений и рабочей областью для текущей вкладки."
},
"postProcess": {
"desc": "Обработайте текущее изображение с помощью выбранной модели постобработки",
"title": "Обработать изображение"
}
},
"modelManager": {
@@ -598,10 +589,7 @@
"infillColorValue": "Цвет заливки",
"globalSettings": "Глобальные настройки",
"globalNegativePromptPlaceholder": "Глобальный негативный запрос",
"globalPositivePromptPlaceholder": "Глобальный запрос",
"postProcessing": "Постобработка (Shift + U)",
"processImage": "Обработка изображения",
"sendToUpscale": "Отправить на увеличение"
"globalPositivePromptPlaceholder": "Глобальный запрос"
},
"settings": {
"models": "Модели",
@@ -635,9 +623,7 @@
"intermediatesCleared_many": "Очищено {{count}} промежуточных",
"clearIntermediatesDesc1": "Очистка промежуточных элементов приведет к сбросу состояния Canvas и ControlNet.",
"intermediatesClearedFailed": "Проблема очистки промежуточных",
"reloadingIn": "Перезагрузка через",
"informationalPopoversDisabled": "Информационные всплывающие окна отключены",
"informationalPopoversDisabledDesc": "Информационные всплывающие окна были отключены. Включите их в Настройках."
"reloadingIn": "Перезагрузка через"
},
"toast": {
"uploadFailed": "Загрузка не удалась",
@@ -708,9 +694,7 @@
"sessionRef": "Сессия: {{sessionId}}",
"outOfMemoryError": "Ошибка нехватки памяти",
"outOfMemoryErrorDesc": "Ваши текущие настройки генерации превышают возможности системы. Пожалуйста, измените настройки и повторите попытку.",
"somethingWentWrong": "Что-то пошло не так",
"importFailed": "Импорт неудачен",
"importSuccessful": "Импорт успешен"
"somethingWentWrong": "Что-то пошло не так"
},
"tooltip": {
"feature": {
@@ -1033,8 +1017,7 @@
"composition": "Только композиция",
"hed": "HED",
"beginEndStepPercentShort": "Начало/конец %",
"setControlImageDimensionsForce": "Скопируйте размер в Ш/В (игнорируйте модель)",
"depthAnythingSmallV2": "Small V2"
"setControlImageDimensionsForce": "Скопируйте размер в Ш/В (игнорируйте модель)"
},
"boards": {
"autoAddBoard": "Авто добавление Доски",
@@ -1059,7 +1042,7 @@
"downloadBoard": "Скачать доску",
"deleteBoard": "Удалить доску",
"deleteBoardAndImages": "Удалить доску и изображения",
"deletedBoardsCannotbeRestored": "Удаленные доски не могут быть восстановлены. Выбор «Удалить только доску» переведет изображения в состояние без категории.",
"deletedBoardsCannotbeRestored": "Удаленные доски не подлежат восстановлению",
"assetsWithCount_one": "{{count}} ассет",
"assetsWithCount_few": "{{count}} ассета",
"assetsWithCount_many": "{{count}} ассетов",
@@ -1074,11 +1057,7 @@
"boards": "Доски",
"addPrivateBoard": "Добавить личную доску",
"private": "Личные доски",
"shared": "Общие доски",
"hideBoards": "Скрыть доски",
"viewBoards": "Просмотреть доски",
"noBoards": "Нет досок {{boardType}}",
"deletedPrivateBoardsCannotbeRestored": "Удаленные доски не могут быть восстановлены. Выбор «Удалить только доску» переведет изображения в приватное состояние без категории для создателя изображения."
"shared": "Общие доски"
},
"dynamicPrompts": {
"seedBehaviour": {
@@ -1438,30 +1417,6 @@
"paragraphs": [
"Метод, с помощью которого применяется текущий IP-адаптер."
]
},
"structure": {
"paragraphs": [
"Структура контролирует, насколько точно выходное изображение будет соответствовать макету оригинала. Низкая структура допускает значительные изменения, в то время как высокая структура строго сохраняет исходную композицию и макет."
],
"heading": "Структура"
},
"scale": {
"paragraphs": [
"Масштаб управляет размером выходного изображения и основывается на кратном разрешении входного изображения. Например, при увеличении в 2 раза изображения 1024x1024 на выходе получится 2048 x 2048."
],
"heading": "Масштаб"
},
"creativity": {
"paragraphs": [
"Креативность контролирует степень свободы, предоставляемой модели при добавлении деталей. При низкой креативности модель остается близкой к оригинальному изображению, в то время как высокая креативность позволяет вносить больше изменений. При использовании подсказки высокая креативность увеличивает влияние подсказки."
],
"heading": "Креативность"
},
"upscaleModel": {
"heading": "Модель увеличения",
"paragraphs": [
"Модель увеличения масштаба масштабирует изображение до выходного размера перед добавлением деталей. Можно использовать любую поддерживаемую модель масштабирования, но некоторые из них специализированы для различных видов изображений, например фотографий или линейных рисунков."
]
}
},
"metadata": {
@@ -1738,78 +1693,7 @@
"canvasTab": "$t(ui.tabs.canvas) $t(common.tab)",
"queueTab": "$t(ui.tabs.queue) $t(common.tab)",
"modelsTab": "$t(ui.tabs.models) $t(common.tab)",
"queue": "Очередь",
"upscaling": "Увеличение",
"upscalingTab": "$t(ui.tabs.upscaling) $t(common.tab)"
"queue": "Очередь"
}
},
"upscaling": {
"exceedsMaxSize": "Параметры масштабирования превышают максимальный размер",
"exceedsMaxSizeDetails": "Максимальный предел масштабирования составляет {{maxUpscaleDimension}}x{{maxUpscaleDimension}} пикселей. Пожалуйста, попробуйте использовать меньшее изображение или уменьшите масштаб.",
"structure": "Структура",
"missingTileControlNetModel": "Не установлены подходящие модели ControlNet",
"missingUpscaleInitialImage": "Отсутствует увеличиваемое изображение",
"missingUpscaleModel": "Отсутствует увеличивающая модель",
"creativity": "Креативность",
"upscaleModel": "Модель увеличения",
"scale": "Масштаб",
"mainModelDesc": "Основная модель (архитектура SD1.5 или SDXL)",
"upscaleModelDesc": "Модель увеличения (img2img)",
"postProcessingModel": "Модель постобработки",
"tileControlNetModelDesc": "Модель ControlNet для выбранной архитектуры основной модели",
"missingModelsWarning": "Зайдите в <LinkComponent>Менеджер моделей</LinkComponent> чтоб установить необходимые модели:",
"postProcessingMissingModelWarning": "Посетите <LinkComponent>Менеджер моделей</LinkComponent>, чтобы установить модель постобработки (img2img)."
},
"stylePresets": {
"noMatchingTemplates": "Нет подходящих шаблонов",
"promptTemplatesDesc1": "Шаблоны подсказок добавляют текст к подсказкам, которые вы пишете в окне подсказок.",
"sharedTemplates": "Общие шаблоны",
"templateDeleted": "Шаблон запроса удален",
"toggleViewMode": "Переключить режим просмотра",
"type": "Тип",
"unableToDeleteTemplate": "Не получилось удалить шаблон запроса",
"viewModeTooltip": "Вот как будет выглядеть ваш запрос с выбранным шаблоном. Чтобы его отредактировать, щелкните в любом месте текстового поля.",
"viewList": "Просмотреть список шаблонов",
"active": "Активно",
"choosePromptTemplate": "Выберите шаблон запроса",
"defaultTemplates": "Стандартные шаблоны",
"deleteImage": "Удалить изображение",
"deleteTemplate": "Удалить шаблон",
"deleteTemplate2": "Вы уверены, что хотите удалить этот шаблон? Это нельзя отменить.",
"editTemplate": "Редактировать шаблон",
"exportPromptTemplates": "Экспорт моих шаблонов запроса (CSV)",
"exportDownloaded": "Экспорт скачан",
"exportFailed": "Невозможно сгенерировать и загрузить CSV",
"flatten": "Объединить выбранный шаблон с текущим запросом",
"acceptedColumnsKeys": "Принимаемые столбцы/ключи:",
"positivePromptColumn": "'prompt' или 'positive_prompt'",
"insertPlaceholder": "Вставить заполнитель",
"name": "Имя",
"negativePrompt": "Негативный запрос",
"promptTemplatesDesc3": "Если вы не используете заполнитель, шаблон будет добавлен в конец запроса.",
"positivePrompt": "Позитивный запрос",
"preview": "Предпросмотр",
"private": "Приватный",
"templateActions": "Действия с шаблоном",
"updatePromptTemplate": "Обновить шаблон запроса",
"uploadImage": "Загрузить изображение",
"useForTemplate": "Использовать для шаблона запроса",
"clearTemplateSelection": "Очистить выбор шаблона",
"copyTemplate": "Копировать шаблон",
"createPromptTemplate": "Создать шаблон запроса",
"importTemplates": "Импортировать шаблоны запроса (CSV/JSON)",
"nameColumn": "'name'",
"negativePromptColumn": "'negative_prompt'",
"myTemplates": "Мои шаблоны",
"noTemplates": "Нет шаблонов",
"promptTemplatesDesc2": "Используйте строку-заполнитель <Pre>{{placeholder}}</Pre>, чтобы указать место, куда должен быть включен ваш запрос в шаблоне.",
"searchByName": "Поиск по имени",
"shared": "Общий"
},
"upsell": {
"inviteTeammates": "Пригласите членов команды",
"professional": "Профессионал",
"professionalUpsell": "Доступно в профессиональной версии Invoke. Нажмите здесь или посетите invoke.com/pricing для получения более подробной информации.",
"shareAccess": "Поделиться доступом"
}
}

View File

@@ -493,8 +493,7 @@
"defaultSettingsSaved": "默认设置已保存",
"huggingFacePlaceholder": "所有者或模型名称",
"huggingFaceRepoID": "HuggingFace仓库ID",
"loraTriggerPhrases": "LoRA 触发词",
"ipAdapters": "IP适配器"
"loraTriggerPhrases": "LoRA 触发词"
},
"parameters": {
"images": "图像",
@@ -1703,9 +1702,7 @@
"upscaleModelDesc": "图像放大(图像到图像转换)模型",
"postProcessingMissingModelWarning": "请访问 <LinkComponent>模型管理器</LinkComponent>来安装一个后处理(图像到图像转换)模型.",
"missingModelsWarning": "请访问<LinkComponent>模型管理器</LinkComponent> 安装所需的模型:",
"mainModelDesc": "主模型SD1.5或SDXL架构",
"exceedsMaxSize": "放大设置超出了最大尺寸限制",
"exceedsMaxSizeDetails": "最大放大限制是 {{maxUpscaleDimension}}x{{maxUpscaleDimension}} 像素.请尝试一个较小的图像或减少您的缩放选择."
"mainModelDesc": "主模型SD1.5或SDXL架构"
},
"upsell": {
"inviteTeammates": "邀请团队成员",

View File

@@ -1,44 +1,30 @@
/* eslint-disable no-console */
import fs from 'node:fs';
import openapiTS, { astToString } from 'openapi-typescript';
import ts from 'typescript';
import openapiTS from 'openapi-typescript';
const OPENAPI_URL = 'http://127.0.0.1:9090/openapi.json';
const OUTPUT_FILE = 'src/services/api/schema.ts';
async function generateTypes(schema) {
process.stdout.write(`Generating types ${OUTPUT_FILE}...`);
// Use https://ts-ast-viewer.com to figure out how to create these AST nodes - define a type and use the bottom-left pane's output
// `Blob` type
const BLOB = ts.factory.createTypeReferenceNode(ts.factory.createIdentifier('Blob'));
// `null` type
const NULL = ts.factory.createLiteralTypeNode(ts.factory.createNull());
// `Record<string, unknown>` type
const RECORD_STRING_UNKNOWN = ts.factory.createTypeReferenceNode(ts.factory.createIdentifier('Record'), [
ts.factory.createKeywordTypeNode(ts.SyntaxKind.StringKeyword),
ts.factory.createKeywordTypeNode(ts.SyntaxKind.UnknownKeyword),
]);
const types = await openapiTS(schema, {
exportType: true,
transform: (schemaObject) => {
if ('format' in schemaObject && schemaObject.format === 'binary') {
return schemaObject.nullable ? ts.factory.createUnionTypeNode([BLOB, NULL]) : BLOB;
return schemaObject.nullable ? 'Blob | null' : 'Blob';
}
if (schemaObject.title === 'MetadataField') {
// This is `Record<string, never>` by default, but it actually accepts any a dict of any valid JSON value.
return RECORD_STRING_UNKNOWN;
return 'Record<string, unknown>';
}
},
defaultNonNullable: false,
});
fs.writeFileSync(OUTPUT_FILE, astToString(types));
fs.writeFileSync(OUTPUT_FILE, types);
process.stdout.write(`\nOK!\r\n`);
}
function main() {
async function main() {
const encoding = 'utf-8';
if (process.stdin.isTTY) {

View File

@@ -6,7 +6,6 @@ import { appStarted } from 'app/store/middleware/listenerMiddleware/listeners/ap
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import type { PartialAppConfig } from 'app/types/invokeai';
import ImageUploadOverlay from 'common/components/ImageUploadOverlay';
import { useScopeFocusWatcher } from 'common/hooks/interactionScopes';
import { useClearStorage } from 'common/hooks/useClearStorage';
import { useFullscreenDropzone } from 'common/hooks/useFullscreenDropzone';
import { useGlobalHotkeys } from 'common/hooks/useGlobalHotkeys';
@@ -14,14 +13,11 @@ import ChangeBoardModal from 'features/changeBoardModal/components/ChangeBoardMo
import DeleteImageModal from 'features/deleteImageModal/components/DeleteImageModal';
import { DynamicPromptsModal } from 'features/dynamicPrompts/components/DynamicPromptsPreviewModal';
import { useStarterModelsToast } from 'features/modelManagerV2/hooks/useStarterModelsToast';
import { ClearQueueConfirmationsAlertDialog } from 'features/queue/components/ClearQueueConfirmationAlertDialog';
import { StylePresetModal } from 'features/stylePresets/components/StylePresetForm/StylePresetModal';
import { configChanged } from 'features/system/store/configSlice';
import { languageSelector } from 'features/system/store/systemSelectors';
import { AppContent } from 'features/ui/components/AppContent';
import InvokeTabs from 'features/ui/components/InvokeTabs';
import type { InvokeTabName } from 'features/ui/store/tabMap';
import { setActiveTab } from 'features/ui/store/uiSlice';
import type { TabName } from 'features/ui/store/uiTypes';
import { useGetAndLoadLibraryWorkflow } from 'features/workflowLibrary/hooks/useGetAndLoadLibraryWorkflow';
import { AnimatePresence } from 'framer-motion';
import i18n from 'i18n';
import { size } from 'lodash-es';
@@ -40,11 +36,10 @@ interface Props {
imageName: string;
action: 'sendToImg2Img' | 'sendToCanvas' | 'useAllParameters';
};
selectedWorkflowId?: string;
destination?: TabName | undefined;
destination?: InvokeTabName | undefined;
}
const App = ({ config = DEFAULT_CONFIG, selectedImage, selectedWorkflowId, destination }: Props) => {
const App = ({ config = DEFAULT_CONFIG, selectedImage, destination }: Props) => {
const language = useAppSelector(languageSelector);
const logger = useLogger('system');
const dispatch = useAppDispatch();
@@ -75,14 +70,6 @@ const App = ({ config = DEFAULT_CONFIG, selectedImage, selectedWorkflowId, desti
}
}, [dispatch, config, logger]);
const { getAndLoadWorkflow } = useGetAndLoadLibraryWorkflow();
useEffect(() => {
if (selectedWorkflowId) {
getAndLoadWorkflow(selectedWorkflowId);
}
}, [selectedWorkflowId, getAndLoadWorkflow]);
useEffect(() => {
if (destination) {
dispatch(setActiveTab(destination));
@@ -95,7 +82,6 @@ const App = ({ config = DEFAULT_CONFIG, selectedImage, selectedWorkflowId, desti
useStarterModelsToast();
useSyncQueueStatus();
useScopeFocusWatcher();
return (
<ErrorBoundary onReset={handleReset} FallbackComponent={AppErrorBoundaryFallback}>
@@ -108,7 +94,7 @@ const App = ({ config = DEFAULT_CONFIG, selectedImage, selectedWorkflowId, desti
{...dropzone.getRootProps()}
>
<input {...dropzone.getInputProps()} />
<AppContent />
<InvokeTabs />
<AnimatePresence>
{dropzone.isDragActive && isHandlingUpload && (
<ImageUploadOverlay dropzone={dropzone} setIsHandlingUpload={setIsHandlingUpload} />
@@ -118,8 +104,6 @@ const App = ({ config = DEFAULT_CONFIG, selectedImage, selectedWorkflowId, desti
<DeleteImageModal />
<ChangeBoardModal />
<DynamicPromptsModal />
<StylePresetModal />
<ClearQueueConfirmationsAlertDialog />
<PreselectedImage selectedImage={selectedImage} />
</ErrorBoundary>
);

View File

@@ -19,7 +19,7 @@ import type { PartialAppConfig } from 'app/types/invokeai';
import Loading from 'common/components/Loading/Loading';
import AppDndContext from 'features/dnd/components/AppDndContext';
import type { WorkflowCategory } from 'features/nodes/types/workflow';
import type { TabName } from 'features/ui/store/uiTypes';
import type { InvokeTabName } from 'features/ui/store/tabMap';
import type { PropsWithChildren, ReactNode } from 'react';
import React, { lazy, memo, useEffect, useMemo } from 'react';
import { Provider } from 'react-redux';
@@ -44,8 +44,7 @@ interface Props extends PropsWithChildren {
imageName: string;
action: 'sendToImg2Img' | 'sendToCanvas' | 'useAllParameters';
};
selectedWorkflowId?: string;
destination?: TabName;
destination?: InvokeTabName;
customStarUi?: CustomStarUi;
socketOptions?: Partial<ManagerOptions & SocketOptions>;
isDebugging?: boolean;
@@ -65,7 +64,6 @@ const InvokeAIUI = ({
projectUrl,
queueId,
selectedImage,
selectedWorkflowId,
destination,
customStarUi,
socketOptions,
@@ -223,12 +221,7 @@ const InvokeAIUI = ({
<React.Suspense fallback={<Loading />}>
<ThemeLocaleProvider>
<AppDndContext>
<App
config={config}
selectedImage={selectedImage}
selectedWorkflowId={selectedWorkflowId}
destination={destination}
/>
<App config={config} selectedImage={selectedImage} destination={destination} />
</AppDndContext>
</ThemeLocaleProvider>
</React.Suspense>

View File

@@ -2,7 +2,7 @@ import { useStore } from '@nanostores/react';
import { $authToken } from 'app/store/nanostores/authToken';
import { $baseUrl } from 'app/store/nanostores/baseUrl';
import { $isDebugging } from 'app/store/nanostores/isDebugging';
import { useAppStore } from 'app/store/nanostores/store';
import { useAppDispatch } from 'app/store/storeHooks';
import type { MapStore } from 'nanostores';
import { atom, map } from 'nanostores';
import { useEffect, useMemo } from 'react';
@@ -18,19 +18,14 @@ declare global {
}
}
export type AppSocket = Socket<ServerToClientEvents, ClientToServerEvents>;
export const $socket = atom<AppSocket | null>(null);
export const $socketOptions = map<Partial<ManagerOptions & SocketOptions>>({});
const $isSocketInitialized = atom<boolean>(false);
export const $isConnected = atom<boolean>(false);
/**
* Initializes the socket.io connection and sets up event listeners.
*/
export const useSocketIO = () => {
const { dispatch, getState } = useAppStore();
const dispatch = useAppDispatch();
const baseUrl = useStore($baseUrl);
const authToken = useStore($authToken);
const addlSocketOptions = useStore($socketOptions);
@@ -66,9 +61,8 @@ export const useSocketIO = () => {
return;
}
const socket: AppSocket = io(socketUrl, socketOptions);
$socket.set(socket);
setEventListeners({ socket, dispatch, getState, setIsConnected: $isConnected.set });
const socket: Socket<ServerToClientEvents, ClientToServerEvents> = io(socketUrl, socketOptions);
setEventListeners({ dispatch, socket });
socket.connect();
if ($isDebugging.get() || import.meta.env.MODE === 'development') {
@@ -90,5 +84,5 @@ export const useSocketIO = () => {
socket.disconnect();
$isSocketInitialized.set(false);
};
}, [dispatch, getState, socketOptions, socketUrl]);
}, [dispatch, socketOptions, socketUrl]);
};

View File

@@ -15,21 +15,21 @@ export const BASE_CONTEXT = {};
export const $logger = atom<Logger>(Roarr.child(BASE_CONTEXT));
export const zLogNamespace = z.enum([
'canvas',
'config',
'events',
'gallery',
'generation',
'metadata',
'models',
'system',
'queue',
'workflows',
]);
export type LogNamespace = z.infer<typeof zLogNamespace>;
export type LoggerNamespace =
| 'images'
| 'models'
| 'config'
| 'canvas'
| 'generation'
| 'nodes'
| 'system'
| 'socketio'
| 'session'
| 'queue'
| 'dnd'
| 'controlLayers';
export const logger = (namespace: LogNamespace) => $logger.get().child({ namespace });
export const logger = (namespace: LoggerNamespace) => $logger.get().child({ namespace });
export const zLogLevel = z.enum(['trace', 'debug', 'info', 'warn', 'error', 'fatal']);
export type LogLevel = z.infer<typeof zLogLevel>;

View File

@@ -3,34 +3,27 @@ import { useAppSelector } from 'app/store/storeHooks';
import { useEffect, useMemo } from 'react';
import { ROARR, Roarr } from 'roarr';
import type { LogNamespace } from './logger';
import type { LoggerNamespace } from './logger';
import { $logger, BASE_CONTEXT, LOG_LEVEL_MAP, logger } from './logger';
export const useLogger = (namespace: LogNamespace) => {
const logLevel = useAppSelector((s) => s.system.logLevel);
const logNamespaces = useAppSelector((s) => s.system.logNamespaces);
const logIsEnabled = useAppSelector((s) => s.system.logIsEnabled);
export const useLogger = (namespace: LoggerNamespace) => {
const consoleLogLevel = useAppSelector((s) => s.system.consoleLogLevel);
const shouldLogToConsole = useAppSelector((s) => s.system.shouldLogToConsole);
// The provided Roarr browser log writer uses localStorage to config logging to console
useEffect(() => {
if (logIsEnabled) {
if (shouldLogToConsole) {
// Enable console log output
localStorage.setItem('ROARR_LOG', 'true');
// Use a filter to show only logs of the given level
let filter = `context.logLevel:>=${LOG_LEVEL_MAP[logLevel]}`;
if (logNamespaces.length > 0) {
filter += ` AND (${logNamespaces.map((ns) => `context.namespace:${ns}`).join(' OR ')})`;
} else {
filter += ' AND context.namespace:undefined';
}
localStorage.setItem('ROARR_FILTER', filter);
localStorage.setItem('ROARR_FILTER', `context.logLevel:>=${LOG_LEVEL_MAP[consoleLogLevel]}`);
} else {
// Disable console log output
localStorage.setItem('ROARR_LOG', 'false');
}
ROARR.write = createLogWriter();
}, [logLevel, logIsEnabled, logNamespaces]);
}, [consoleLogLevel, shouldLogToConsole]);
// Update the module-scoped logger context as needed
useEffect(() => {

View File

@@ -1,7 +1,7 @@
import { createAction } from '@reduxjs/toolkit';
import type { TabName } from 'features/ui/store/uiTypes';
import type { InvokeTabName } from 'features/ui/store/tabMap';
export const enqueueRequested = createAction<{
tabName: TabName;
tabName: InvokeTabName;
prepend: boolean;
}>('app/enqueueRequested');

View File

@@ -1,6 +1,5 @@
import { createDraftSafeSelectorCreator, createSelectorCreator, lruMemoize } from '@reduxjs/toolkit';
import type { GetSelectorsOptions } from '@reduxjs/toolkit/dist/entities/state_selectors';
import type { RootState } from 'app/store/store';
import { isEqual } from 'lodash-es';
/**
@@ -20,5 +19,3 @@ export const getSelectorsOptions: GetSelectorsOptions = {
argsMemoize: lruMemoize,
}),
};
export const createMemoizedAppSelector = createMemoizedSelector.withTypes<RootState>();

View File

@@ -1,4 +1,5 @@
import { logger } from 'app/logging/logger';
import { parseify } from 'common/util/serialize';
import { PersistError, RehydrateError } from 'redux-remember';
import { serializeError } from 'serialize-error';
@@ -40,6 +41,6 @@ export const errorHandler = (err: PersistError | RehydrateError) => {
} else if (err instanceof RehydrateError) {
log.error({ error: serializeError(err) }, 'Problem rehydrating state');
} else {
log.error({ error: serializeError(err) }, 'Problem in persistence layer');
log.error({ error: parseify(err) }, 'Problem in persistence layer');
}
};

View File

@@ -1,7 +1,9 @@
import type { UnknownAction } from '@reduxjs/toolkit';
import { deepClone } from 'common/util/deepClone';
import { isAnyGraphBuilt } from 'features/nodes/store/actions';
import { appInfoApi } from 'services/api/endpoints/appInfo';
import type { Graph } from 'services/api/types';
import { socketGeneratorProgress } from 'services/events/actions';
export const actionSanitizer = <A extends UnknownAction>(action: A): A => {
if (isAnyGraphBuilt(action)) {
@@ -22,5 +24,13 @@ export const actionSanitizer = <A extends UnknownAction>(action: A): A => {
};
}
if (socketGeneratorProgress.match(action)) {
const sanitized = deepClone(action);
if (sanitized.payload.data.progress_image) {
sanitized.payload.data.progress_image.dataURL = '<Progress image omitted>';
}
return sanitized;
}
return action;
};

View File

@@ -1,7 +1,7 @@
import type { TypedStartListening } from '@reduxjs/toolkit';
import { createListenerMiddleware } from '@reduxjs/toolkit';
import { addAdHocPostProcessingRequestedListener } from 'app/store/middleware/listenerMiddleware/listeners/addAdHocPostProcessingRequestedListener';
import { addStagingListeners } from 'app/store/middleware/listenerMiddleware/listeners/addCommitStagingAreaImageListener';
import { addCommitStagingAreaImageListener } from 'app/store/middleware/listenerMiddleware/listeners/addCommitStagingAreaImageListener';
import { addAnyEnqueuedListener } from 'app/store/middleware/listenerMiddleware/listeners/anyEnqueued';
import { addAppConfigReceivedListener } from 'app/store/middleware/listenerMiddleware/listeners/appConfigReceived';
import { addAppStartedListener } from 'app/store/middleware/listenerMiddleware/listeners/appStarted';
@@ -9,6 +9,17 @@ import { addBatchEnqueuedListener } from 'app/store/middleware/listenerMiddlewar
import { addDeleteBoardAndImagesFulfilledListener } from 'app/store/middleware/listenerMiddleware/listeners/boardAndImagesDeleted';
import { addBoardIdSelectedListener } from 'app/store/middleware/listenerMiddleware/listeners/boardIdSelected';
import { addBulkDownloadListeners } from 'app/store/middleware/listenerMiddleware/listeners/bulkDownload';
import { addCanvasCopiedToClipboardListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasCopiedToClipboard';
import { addCanvasDownloadedAsImageListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasDownloadedAsImage';
import { addCanvasImageToControlNetListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasImageToControlNet';
import { addCanvasMaskSavedToGalleryListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasMaskSavedToGallery';
import { addCanvasMaskToControlNetListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasMaskToControlNet';
import { addCanvasMergedListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasMerged';
import { addCanvasSavedToGalleryListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasSavedToGallery';
import { addControlAdapterPreprocessor } from 'app/store/middleware/listenerMiddleware/listeners/controlAdapterPreprocessor';
import { addControlNetAutoProcessListener } from 'app/store/middleware/listenerMiddleware/listeners/controlNetAutoProcess';
import { addControlNetImageProcessedListener } from 'app/store/middleware/listenerMiddleware/listeners/controlNetImageProcessed';
import { addEnqueueRequestedCanvasListener } from 'app/store/middleware/listenerMiddleware/listeners/enqueueRequestedCanvas';
import { addEnqueueRequestedLinear } from 'app/store/middleware/listenerMiddleware/listeners/enqueueRequestedLinear';
import { addEnqueueRequestedNodes } from 'app/store/middleware/listenerMiddleware/listeners/enqueueRequestedNodes';
import { addGalleryImageClickedListener } from 'app/store/middleware/listenerMiddleware/listeners/galleryImageClicked';
@@ -26,7 +37,16 @@ import { addModelSelectedListener } from 'app/store/middleware/listenerMiddlewar
import { addModelsLoadedListener } from 'app/store/middleware/listenerMiddleware/listeners/modelsLoaded';
import { addDynamicPromptsListener } from 'app/store/middleware/listenerMiddleware/listeners/promptChanged';
import { addSetDefaultSettingsListener } from 'app/store/middleware/listenerMiddleware/listeners/setDefaultSettings';
import { addSocketConnectedEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketConnected';
import { addSocketConnectedEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketConnected';
import { addSocketDisconnectedEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketDisconnected';
import { addGeneratorProgressEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketGeneratorProgress';
import { addInvocationCompleteEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketInvocationComplete';
import { addInvocationErrorEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketInvocationError';
import { addInvocationStartedEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketInvocationStarted';
import { addModelInstallEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketModelInstall';
import { addModelLoadEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketModelLoad';
import { addSocketQueueItemStatusChangedEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketQueueItemStatusChanged';
import { addStagingAreaImageSavedListener } from 'app/store/middleware/listenerMiddleware/listeners/stagingAreaImageSaved';
import { addUpdateAllNodesRequestedListener } from 'app/store/middleware/listenerMiddleware/listeners/updateAllNodesRequested';
import { addWorkflowLoadRequestedListener } from 'app/store/middleware/listenerMiddleware/listeners/workflowLoadRequested';
import type { AppDispatch, RootState } from 'app/store/store';
@@ -63,6 +83,7 @@ addGalleryImageClickedListener(startAppListening);
addGalleryOffsetChangedListener(startAppListening);
// User Invoked
addEnqueueRequestedCanvasListener(startAppListening);
addEnqueueRequestedNodes(startAppListening);
addEnqueueRequestedLinear(startAppListening);
addEnqueueRequestedUpscale(startAppListening);
@@ -70,23 +91,32 @@ addAnyEnqueuedListener(startAppListening);
addBatchEnqueuedListener(startAppListening);
// Canvas actions
// addCanvasSavedToGalleryListener(startAppListening);
// addCanvasMaskSavedToGalleryListener(startAppListening);
// addCanvasImageToControlNetListener(startAppListening);
// addCanvasMaskToControlNetListener(startAppListening);
// addCanvasDownloadedAsImageListener(startAppListening);
// addCanvasCopiedToClipboardListener(startAppListening);
// addCanvasMergedListener(startAppListening);
// addStagingAreaImageSavedListener(startAppListening);
// addCommitStagingAreaImageListener(startAppListening);
addStagingListeners(startAppListening);
addCanvasSavedToGalleryListener(startAppListening);
addCanvasMaskSavedToGalleryListener(startAppListening);
addCanvasImageToControlNetListener(startAppListening);
addCanvasMaskToControlNetListener(startAppListening);
addCanvasDownloadedAsImageListener(startAppListening);
addCanvasCopiedToClipboardListener(startAppListening);
addCanvasMergedListener(startAppListening);
addStagingAreaImageSavedListener(startAppListening);
addCommitStagingAreaImageListener(startAppListening);
// Socket.IO
addGeneratorProgressEventListener(startAppListening);
addInvocationCompleteEventListener(startAppListening);
addInvocationErrorEventListener(startAppListening);
addInvocationStartedEventListener(startAppListening);
addSocketConnectedEventListener(startAppListening);
// Gallery bulk download
addSocketDisconnectedEventListener(startAppListening);
addModelLoadEventListener(startAppListening);
addModelInstallEventListener(startAppListening);
addSocketQueueItemStatusChangedEventListener(startAppListening);
addBulkDownloadListeners(startAppListening);
// ControlNet
addControlNetImageProcessedListener(startAppListening);
addControlNetAutoProcessListener(startAppListening);
// Boards
addImageAddedToBoardFulfilledListener(startAppListening);
addImageRemovedFromBoardFulfilledListener(startAppListening);
@@ -118,4 +148,4 @@ addAdHocPostProcessingRequestedListener(startAppListening);
addDynamicPromptsListener(startAppListening);
addSetDefaultSettingsListener(startAppListening);
// addControlAdapterPreprocessor(startAppListening);
addControlAdapterPreprocessor(startAppListening);

View File

@@ -1,21 +1,21 @@
import { createAction } from '@reduxjs/toolkit';
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import type { SerializableObject } from 'common/types';
import { parseify } from 'common/util/serialize';
import { buildAdHocPostProcessingGraph } from 'features/nodes/util/graph/buildAdHocPostProcessingGraph';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { queueApi } from 'services/api/endpoints/queue';
import type { BatchConfig, ImageDTO } from 'services/api/types';
const log = logger('queue');
export const adHocPostProcessingRequested = createAction<{ imageDTO: ImageDTO }>(`upscaling/postProcessingRequested`);
export const addAdHocPostProcessingRequestedListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: adHocPostProcessingRequested,
effect: async (action, { dispatch, getState }) => {
const log = logger('session');
const { imageDTO } = action.payload;
const state = getState();
@@ -39,9 +39,9 @@ export const addAdHocPostProcessingRequestedListener = (startAppListening: AppSt
const enqueueResult = await req.unwrap();
req.reset();
log.debug({ enqueueResult } as SerializableObject, t('queue.graphQueued'));
log.debug({ enqueueResult: parseify(enqueueResult) }, t('queue.graphQueued'));
} catch (error) {
log.error({ enqueueBatchArg } as SerializableObject, t('queue.graphFailedToQueue'));
log.error({ enqueueBatchArg: parseify(enqueueBatchArg) }, t('queue.graphFailedToQueue'));
if (error instanceof Object && 'status' in error && error.status === 403) {
return;

View File

@@ -23,7 +23,7 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
*/
startAppListening({
matcher: matchAnyBoardDeleted,
effect: (action, { dispatch, getState }) => {
effect: async (action, { dispatch, getState }) => {
const state = getState();
const deletedBoardId = action.meta.arg.originalArgs;
const { autoAddBoardId, selectedBoardId } = state.gallery;
@@ -44,7 +44,7 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
// If we archived a board, it may end up hidden. If it's selected or the auto-add board, we should reset those.
startAppListening({
matcher: boardsApi.endpoints.updateBoard.matchFulfilled,
effect: (action, { dispatch, getState }) => {
effect: async (action, { dispatch, getState }) => {
const state = getState();
const { shouldShowArchivedBoards } = state.gallery;
@@ -61,7 +61,7 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
// When we hide archived boards, if the selected or the auto-add board is archived, we should reset those.
startAppListening({
actionCreator: shouldShowArchivedBoardsChanged,
effect: (action, { dispatch, getState }) => {
effect: async (action, { dispatch, getState }) => {
const shouldShowArchivedBoards = action.payload;
// We only need to take action if we have just hidden archived boards.
@@ -100,7 +100,7 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
*/
startAppListening({
matcher: boardsApi.endpoints.listAllBoards.matchFulfilled,
effect: (action, { dispatch, getState }) => {
effect: async (action, { dispatch, getState }) => {
const boards = action.payload;
const state = getState();
const { selectedBoardId, autoAddBoardId } = state.gallery;

View File

@@ -1,36 +1,33 @@
import { isAnyOf } from '@reduxjs/toolkit';
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import {
sessionStagingAreaImageAccepted,
sessionStagingAreaReset,
} from 'features/controlLayers/store/canvasSessionSlice';
import { rasterLayerAdded } from 'features/controlLayers/store/canvasV2Slice';
import type { CanvasRasterLayerState } from 'features/controlLayers/store/types';
import { imageDTOToImageObject } from 'features/controlLayers/store/types';
canvasBatchIdsReset,
commitStagingAreaImage,
discardStagedImages,
resetCanvas,
setInitialCanvasImage,
} from 'features/canvas/store/canvasSlice';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { queueApi } from 'services/api/endpoints/queue';
import { $lastCanvasProgressEvent } from 'services/events/setEventListeners';
import { assert } from 'tsafe';
const log = logger('canvas');
const matcher = isAnyOf(commitStagingAreaImage, discardStagedImages, resetCanvas, setInitialCanvasImage);
export const addStagingListeners = (startAppListening: AppStartListening) => {
export const addCommitStagingAreaImageListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: sessionStagingAreaReset,
effect: async (_, { dispatch }) => {
matcher,
effect: async (_, { dispatch, getState }) => {
const log = logger('canvas');
const state = getState();
const { batchIds } = state.canvas;
try {
const req = dispatch(
queueApi.endpoints.cancelByBatchOrigin.initiate(
{ origin: 'canvas' },
{ fixedCacheKey: 'cancelByBatchOrigin' }
)
queueApi.endpoints.cancelByBatchIds.initiate({ batch_ids: batchIds }, { fixedCacheKey: 'cancelByBatchIds' })
);
const { canceled } = await req.unwrap();
req.reset();
$lastCanvasProgressEvent.set(null);
if (canceled > 0) {
log.debug(`Canceled ${canceled} canvas batches`);
toast({
@@ -39,6 +36,7 @@ export const addStagingListeners = (startAppListening: AppStartListening) => {
status: 'success',
});
}
dispatch(canvasBatchIdsReset());
} catch {
log.error('Failed to cancel canvas batches');
toast({
@@ -49,26 +47,4 @@ export const addStagingListeners = (startAppListening: AppStartListening) => {
}
},
});
startAppListening({
actionCreator: sessionStagingAreaImageAccepted,
effect: (action, api) => {
const { index } = action.payload;
const state = api.getState();
const stagingAreaImage = state.canvasSession.stagedImages[index];
assert(stagingAreaImage, 'No staged image found to accept');
const { x, y } = state.canvasV2.present.bbox.rect;
const { imageDTO, offsetX, offsetY } = stagingAreaImage;
const imageObject = imageDTOToImageObject(imageDTO);
const overrides: Partial<CanvasRasterLayerState> = {
position: { x: x + offsetX, y: y + offsetY },
objects: [imageObject],
};
api.dispatch(rasterLayerAdded({ overrides, isSelected: true }));
api.dispatch(sessionStagingAreaReset());
},
});
};

View File

@@ -4,7 +4,7 @@ import { queueApi, selectQueueStatus } from 'services/api/endpoints/queue';
export const addAnyEnqueuedListener = (startAppListening: AppStartListening) => {
startAppListening({
matcher: queueApi.endpoints.enqueueBatch.matchFulfilled,
effect: (_, { dispatch, getState }) => {
effect: async (_, { dispatch, getState }) => {
const { data } = selectQueueStatus(getState());
if (!data || data.processor.is_started) {

View File

@@ -1,14 +1,14 @@
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { setInfillMethod } from 'features/controlLayers/store/paramsSlice';
import { setInfillMethod } from 'features/parameters/store/generationSlice';
import { shouldUseNSFWCheckerChanged, shouldUseWatermarkerChanged } from 'features/system/store/systemSlice';
import { appInfoApi } from 'services/api/endpoints/appInfo';
export const addAppConfigReceivedListener = (startAppListening: AppStartListening) => {
startAppListening({
matcher: appInfoApi.endpoints.getAppConfig.matchFulfilled,
effect: (action, { getState, dispatch }) => {
effect: async (action, { getState, dispatch }) => {
const { infill_methods = [], nsfw_methods = [], watermarking_methods = [] } = action.payload;
const infillMethod = getState().params.infillMethod;
const infillMethod = getState().generation.infillMethod;
if (!infill_methods.includes(infillMethod)) {
// if there is no infill method, set it to the first one

View File

@@ -6,7 +6,7 @@ export const appStarted = createAction('app/appStarted');
export const addAppStartedListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: appStarted,
effect: (action, { unsubscribe, cancelActiveListeners }) => {
effect: async (action, { unsubscribe, cancelActiveListeners }) => {
// this should only run once
cancelActiveListeners();
unsubscribe();

View File

@@ -1,30 +1,27 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import type { SerializableObject } from 'common/types';
import { parseify } from 'common/util/serialize';
import { zPydanticValidationError } from 'features/system/store/zodSchemas';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { truncate, upperFirst } from 'lodash-es';
import { serializeError } from 'serialize-error';
import { queueApi } from 'services/api/endpoints/queue';
const log = logger('queue');
export const addBatchEnqueuedListener = (startAppListening: AppStartListening) => {
// success
startAppListening({
matcher: queueApi.endpoints.enqueueBatch.matchFulfilled,
effect: (action) => {
const enqueueResult = action.payload;
effect: async (action) => {
const response = action.payload;
const arg = action.meta.arg.originalArgs;
log.debug({ enqueueResult } as SerializableObject, 'Batch enqueued');
logger('queue').debug({ enqueueResult: parseify(response) }, 'Batch enqueued');
toast({
id: 'QUEUE_BATCH_SUCCEEDED',
title: t('queue.batchQueued'),
status: 'success',
description: t('queue.batchQueuedDesc', {
count: enqueueResult.enqueued,
count: response.enqueued,
direction: arg.prepend ? t('queue.front') : t('queue.back'),
}),
});
@@ -34,9 +31,9 @@ export const addBatchEnqueuedListener = (startAppListening: AppStartListening) =
// error
startAppListening({
matcher: queueApi.endpoints.enqueueBatch.matchRejected,
effect: (action) => {
effect: async (action) => {
const response = action.payload;
const batchConfig = action.meta.arg.originalArgs;
const arg = action.meta.arg.originalArgs;
if (!response) {
toast({
@@ -45,7 +42,7 @@ export const addBatchEnqueuedListener = (startAppListening: AppStartListening) =
status: 'error',
description: t('common.unknownError'),
});
log.error({ batchConfig } as SerializableObject, t('queue.batchFailedToQueue'));
logger('queue').error({ batchConfig: parseify(arg), error: parseify(response) }, t('queue.batchFailedToQueue'));
return;
}
@@ -71,7 +68,7 @@ export const addBatchEnqueuedListener = (startAppListening: AppStartListening) =
description: t('common.unknownError'),
});
}
log.error({ batchConfig, error: serializeError(response) } as SerializableObject, t('queue.batchFailedToQueue'));
logger('queue').error({ batchConfig: parseify(arg), error: parseify(response) }, t('queue.batchFailedToQueue'));
},
});
};

View File

@@ -1,4 +1,7 @@
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { resetCanvas } from 'features/canvas/store/canvasSlice';
import { controlAdaptersReset } from 'features/controlAdapters/store/controlAdaptersSlice';
import { allLayersDeleted } from 'features/controlLayers/store/controlLayersSlice';
import { getImageUsage } from 'features/deleteImageModal/store/selectors';
import { nodeEditorReset } from 'features/nodes/store/nodesSlice';
import { imagesApi } from 'services/api/endpoints/images';
@@ -6,22 +9,39 @@ import { imagesApi } from 'services/api/endpoints/images';
export const addDeleteBoardAndImagesFulfilledListener = (startAppListening: AppStartListening) => {
startAppListening({
matcher: imagesApi.endpoints.deleteBoardAndImages.matchFulfilled,
effect: (action, { dispatch, getState }) => {
effect: async (action, { dispatch, getState }) => {
const { deleted_images } = action.payload;
// Remove all deleted images from the UI
let wasCanvasReset = false;
let wasNodeEditorReset = false;
let wereControlAdaptersReset = false;
let wereControlLayersReset = false;
const { nodes, canvasV2 } = getState();
const { canvas, nodes, controlAdapters, controlLayers } = getState();
deleted_images.forEach((image_name) => {
const imageUsage = getImageUsage(nodes.present, canvasV2.present, image_name);
const imageUsage = getImageUsage(canvas, nodes.present, controlAdapters, controlLayers.present, image_name);
if (imageUsage.isCanvasImage && !wasCanvasReset) {
dispatch(resetCanvas());
wasCanvasReset = true;
}
if (imageUsage.isNodesImage && !wasNodeEditorReset) {
dispatch(nodeEditorReset());
wasNodeEditorReset = true;
}
if (imageUsage.isControlImage && !wereControlAdaptersReset) {
dispatch(controlAdaptersReset());
wereControlAdaptersReset = true;
}
if (imageUsage.isControlLayerImage && !wereControlLayersReset) {
dispatch(allLayersDeleted());
wereControlLayersReset = true;
}
});
},
});

View File

@@ -1,15 +1,21 @@
import { ExternalLink } from '@invoke-ai/ui-library';
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { imagesApi } from 'services/api/endpoints/images';
import {
socketBulkDownloadComplete,
socketBulkDownloadError,
socketBulkDownloadStarted,
} from 'services/events/actions';
const log = logger('gallery');
const log = logger('images');
export const addBulkDownloadListeners = (startAppListening: AppStartListening) => {
startAppListening({
matcher: imagesApi.endpoints.bulkDownloadImages.matchFulfilled,
effect: (action) => {
effect: async (action) => {
log.debug(action.payload, 'Bulk download requested');
// If we have an item name, we are processing the bulk download locally and should use it as the toast id to
@@ -27,7 +33,7 @@ export const addBulkDownloadListeners = (startAppListening: AppStartListening) =
startAppListening({
matcher: imagesApi.endpoints.bulkDownloadImages.matchRejected,
effect: () => {
effect: async () => {
log.debug('Bulk download request failed');
// There isn't any toast to update if we get this event.
@@ -38,4 +44,55 @@ export const addBulkDownloadListeners = (startAppListening: AppStartListening) =
});
},
});
startAppListening({
actionCreator: socketBulkDownloadStarted,
effect: async (action) => {
// This should always happen immediately after the bulk download request, so we don't need to show a toast here.
log.debug(action.payload.data, 'Bulk download preparation started');
},
});
startAppListening({
actionCreator: socketBulkDownloadComplete,
effect: async (action) => {
log.debug(action.payload.data, 'Bulk download preparation completed');
const { bulk_download_item_name } = action.payload.data;
// TODO(psyche): This URL may break in in some environments (e.g. Nvidia workbench) but we need to test it first
const url = `/api/v1/images/download/${bulk_download_item_name}`;
toast({
id: bulk_download_item_name,
title: t('gallery.bulkDownloadReady', 'Download ready'),
status: 'success',
description: (
<ExternalLink
label={t('gallery.clickToDownload', 'Click here to download')}
href={url}
download={bulk_download_item_name}
/>
),
duration: null,
});
},
});
startAppListening({
actionCreator: socketBulkDownloadError,
effect: async (action) => {
log.debug(action.payload.data, 'Bulk download preparation failed');
const { bulk_download_item_name } = action.payload.data;
toast({
id: bulk_download_item_name,
title: t('gallery.bulkDownloadFailed'),
status: 'error',
description: action.payload.data.error,
duration: null,
});
},
});
};

View File

@@ -0,0 +1,38 @@
import { $logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { canvasCopiedToClipboard } from 'features/canvas/store/actions';
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
import { copyBlobToClipboard } from 'features/system/util/copyBlobToClipboard';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
export const addCanvasCopiedToClipboardListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: canvasCopiedToClipboard,
effect: async (action, { getState }) => {
const moduleLog = $logger.get().child({ namespace: 'canvasCopiedToClipboardListener' });
const state = getState();
try {
const blob = getBaseLayerBlob(state);
copyBlobToClipboard(blob);
} catch (err) {
moduleLog.error(String(err));
toast({
id: 'CANVAS_COPY_FAILED',
title: t('toast.problemCopyingCanvas'),
description: t('toast.problemCopyingCanvasDesc'),
status: 'error',
});
return;
}
toast({
id: 'CANVAS_COPY_SUCCEEDED',
title: t('toast.canvasCopiedClipboard'),
status: 'success',
});
},
});
};

View File

@@ -0,0 +1,34 @@
import { $logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { canvasDownloadedAsImage } from 'features/canvas/store/actions';
import { downloadBlob } from 'features/canvas/util/downloadBlob';
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
export const addCanvasDownloadedAsImageListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: canvasDownloadedAsImage,
effect: async (action, { getState }) => {
const moduleLog = $logger.get().child({ namespace: 'canvasSavedToGalleryListener' });
const state = getState();
let blob;
try {
blob = await getBaseLayerBlob(state);
} catch (err) {
moduleLog.error(String(err));
toast({
id: 'CANVAS_DOWNLOAD_FAILED',
title: t('toast.problemDownloadingCanvas'),
description: t('toast.problemDownloadingCanvasDesc'),
status: 'error',
});
return;
}
downloadBlob(blob, 'canvas.png');
toast({ id: 'CANVAS_DOWNLOAD_SUCCEEDED', title: t('toast.canvasDownloaded'), status: 'success' });
},
});
};

View File

@@ -0,0 +1,60 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { canvasImageToControlAdapter } from 'features/canvas/store/actions';
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
import { controlAdapterImageChanged } from 'features/controlAdapters/store/controlAdaptersSlice';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { imagesApi } from 'services/api/endpoints/images';
export const addCanvasImageToControlNetListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: canvasImageToControlAdapter,
effect: async (action, { dispatch, getState }) => {
const log = logger('canvas');
const state = getState();
const { id } = action.payload;
let blob: Blob;
try {
blob = await getBaseLayerBlob(state, true);
} catch (err) {
log.error(String(err));
toast({
id: 'PROBLEM_SAVING_CANVAS',
title: t('toast.problemSavingCanvas'),
description: t('toast.problemSavingCanvasDesc'),
status: 'error',
});
return;
}
const { autoAddBoardId } = state.gallery;
const imageDTO = await dispatch(
imagesApi.endpoints.uploadImage.initiate({
file: new File([blob], 'savedCanvas.png', {
type: 'image/png',
}),
image_category: 'control',
is_intermediate: true,
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
crop_visible: false,
postUploadAction: {
type: 'TOAST',
title: t('toast.canvasSentControlnetAssets'),
},
})
).unwrap();
const { image_name } = imageDTO;
dispatch(
controlAdapterImageChanged({
id,
controlImage: image_name,
})
);
},
});
};

View File

@@ -0,0 +1,60 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { canvasMaskSavedToGallery } from 'features/canvas/store/actions';
import { getCanvasData } from 'features/canvas/util/getCanvasData';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { imagesApi } from 'services/api/endpoints/images';
export const addCanvasMaskSavedToGalleryListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: canvasMaskSavedToGallery,
effect: async (action, { dispatch, getState }) => {
const log = logger('canvas');
const state = getState();
const canvasBlobsAndImageData = await getCanvasData(
state.canvas.layerState,
state.canvas.boundingBoxCoordinates,
state.canvas.boundingBoxDimensions,
state.canvas.isMaskEnabled,
state.canvas.shouldPreserveMaskedArea
);
if (!canvasBlobsAndImageData) {
return;
}
const { maskBlob } = canvasBlobsAndImageData;
if (!maskBlob) {
log.error('Problem getting mask layer blob');
toast({
id: 'PROBLEM_SAVING_MASK',
title: t('toast.problemSavingMask'),
description: t('toast.problemSavingMaskDesc'),
status: 'error',
});
return;
}
const { autoAddBoardId } = state.gallery;
dispatch(
imagesApi.endpoints.uploadImage.initiate({
file: new File([maskBlob], 'canvasMaskImage.png', {
type: 'image/png',
}),
image_category: 'mask',
is_intermediate: false,
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
crop_visible: true,
postUploadAction: {
type: 'TOAST',
title: t('toast.maskSavedAssets'),
},
})
);
},
});
};

View File

@@ -0,0 +1,70 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { canvasMaskToControlAdapter } from 'features/canvas/store/actions';
import { getCanvasData } from 'features/canvas/util/getCanvasData';
import { controlAdapterImageChanged } from 'features/controlAdapters/store/controlAdaptersSlice';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { imagesApi } from 'services/api/endpoints/images';
export const addCanvasMaskToControlNetListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: canvasMaskToControlAdapter,
effect: async (action, { dispatch, getState }) => {
const log = logger('canvas');
const state = getState();
const { id } = action.payload;
const canvasBlobsAndImageData = await getCanvasData(
state.canvas.layerState,
state.canvas.boundingBoxCoordinates,
state.canvas.boundingBoxDimensions,
state.canvas.isMaskEnabled,
state.canvas.shouldPreserveMaskedArea
);
if (!canvasBlobsAndImageData) {
return;
}
const { maskBlob } = canvasBlobsAndImageData;
if (!maskBlob) {
log.error('Problem getting mask layer blob');
toast({
id: 'PROBLEM_IMPORTING_MASK',
title: t('toast.problemImportingMask'),
description: t('toast.problemImportingMaskDesc'),
status: 'error',
});
return;
}
const { autoAddBoardId } = state.gallery;
const imageDTO = await dispatch(
imagesApi.endpoints.uploadImage.initiate({
file: new File([maskBlob], 'canvasMaskImage.png', {
type: 'image/png',
}),
image_category: 'mask',
is_intermediate: true,
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
crop_visible: false,
postUploadAction: {
type: 'TOAST',
title: t('toast.maskSentControlnetAssets'),
},
})
).unwrap();
const { image_name } = imageDTO;
dispatch(
controlAdapterImageChanged({
id,
controlImage: image_name,
})
);
},
});
};

View File

@@ -0,0 +1,73 @@
import { $logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { canvasMerged } from 'features/canvas/store/actions';
import { $canvasBaseLayer } from 'features/canvas/store/canvasNanostore';
import { setMergedCanvas } from 'features/canvas/store/canvasSlice';
import { getFullBaseLayerBlob } from 'features/canvas/util/getFullBaseLayerBlob';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { imagesApi } from 'services/api/endpoints/images';
export const addCanvasMergedListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: canvasMerged,
effect: async (action, { dispatch }) => {
const moduleLog = $logger.get().child({ namespace: 'canvasCopiedToClipboardListener' });
const blob = await getFullBaseLayerBlob();
if (!blob) {
moduleLog.error('Problem getting base layer blob');
toast({
id: 'PROBLEM_MERGING_CANVAS',
title: t('toast.problemMergingCanvas'),
description: t('toast.problemMergingCanvasDesc'),
status: 'error',
});
return;
}
const canvasBaseLayer = $canvasBaseLayer.get();
if (!canvasBaseLayer) {
moduleLog.error('Problem getting canvas base layer');
toast({
id: 'PROBLEM_MERGING_CANVAS',
title: t('toast.problemMergingCanvas'),
description: t('toast.problemMergingCanvasDesc'),
status: 'error',
});
return;
}
const baseLayerRect = canvasBaseLayer.getClientRect({
relativeTo: canvasBaseLayer.getParent() ?? undefined,
});
const imageDTO = await dispatch(
imagesApi.endpoints.uploadImage.initiate({
file: new File([blob], 'mergedCanvas.png', {
type: 'image/png',
}),
image_category: 'general',
is_intermediate: true,
postUploadAction: {
type: 'TOAST',
title: t('toast.canvasMerged'),
},
})
).unwrap();
// TODO: I can't figure out how to do the type narrowing in the `take()` so just brute forcing it here
const { image_name } = imageDTO;
dispatch(
setMergedCanvas({
kind: 'image',
layer: 'base',
imageName: image_name,
...baseLayerRect,
})
);
},
});
};

View File

@@ -0,0 +1,53 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { parseify } from 'common/util/serialize';
import { canvasSavedToGallery } from 'features/canvas/store/actions';
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { imagesApi } from 'services/api/endpoints/images';
export const addCanvasSavedToGalleryListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: canvasSavedToGallery,
effect: async (action, { dispatch, getState }) => {
const log = logger('canvas');
const state = getState();
let blob;
try {
blob = await getBaseLayerBlob(state);
} catch (err) {
log.error(String(err));
toast({
id: 'CANVAS_SAVE_FAILED',
title: t('toast.problemSavingCanvas'),
description: t('toast.problemSavingCanvasDesc'),
status: 'error',
});
return;
}
const { autoAddBoardId } = state.gallery;
dispatch(
imagesApi.endpoints.uploadImage.initiate({
file: new File([blob], 'savedCanvas.png', {
type: 'image/png',
}),
image_category: 'general',
is_intermediate: false,
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
crop_visible: true,
postUploadAction: {
type: 'TOAST',
title: t('toast.canvasSavedGallery'),
},
metadata: {
_canvas_objects: parseify(state.canvas.layerState.objects),
},
})
);
},
});
};

Some files were not shown because too many files have changed in this diff Show More