Compare commits

...

271 Commits

Author SHA1 Message Date
Ryan Dick
ffa89126d1 WIP experimentation with replacing einops with native torch ops for faster execution. More investigation needed. 2024-10-22 14:38:39 +00:00
psychedelicious
d1bb4c2c70 fix(nodes): FluxDenoiseInvocation.controlnet_vae missing default=None 2024-10-22 10:54:15 +11:00
Mary Hipp
bbd89d54b4 add it to list 2024-10-19 14:08:49 +11:00
Mary Hipp
ee61006a49 add starter model 2024-10-19 14:08:49 +11:00
psychedelicious
0b43f5fd64 docs(ui): improve docstrings for LoggingOverrides 2024-10-19 08:04:20 +11:00
psychedelicious
6c61266990 refactor(ui): logging config handling
Introduce two-stage logging configuration and overrides for enabled status, log level and log namespaces.

The first stage in `<InvokeAIUI />`, before we set up redux (and therefore before we have access to the user's configured logging setup). In this stage, we use the overrides or default values.

The second stage is in `<App />`, after we set up redux, via `useSyncLoggingConfig`. In this stage, we use the overrides or the user's configured logging setup. This hook also handles pushing changes made by the user into localstorage.

Other changes:
- Extract logging config to util function
- Remove the `useEffect` from `SettingsModal` that was changing the logging settings
- Remove extraneous log effects from `useLogger`
- Export new `LoggingOverrides` type
2024-10-19 08:04:20 +11:00
Maximilian Maag
2d5afe8094 fix(installer): Print maximize suggestion when Python is found, not when it's missing 2024-10-18 16:35:51 -04:00
Maximilian Maag
2430137d19 fix(installer): Avoid misleading error message when searching for python binary
which prints a message to stderr when it doesn't find anything. In this case,
not finding anything is expected so the error is misleading.
2024-10-18 16:35:51 -04:00
psychedelicious
5440c03767 fix(app): directory traversal when deleting images 2024-10-18 14:27:41 +11:00
psychedelicious
358dbdbf84 chore: bump version to v5.2.0 2024-10-17 22:24:51 +11:00
psychedelicious
5ec2d71be0 feat(ui): make debug logger middleware configurable
While troubleshooting an issue with this middleware, I found the inclusion of the nextState and diff to be very noisy. It's now a function that accepts some options to configure the output, and returns the middleware.
2024-10-17 08:04:51 +11:00
Mary Hipp
8f28903c81 remove extra slash in workflow share link 2024-10-17 08:02:27 +11:00
Mary Hipp
a071f2788a fix(ui): upload tooltip should only show plural if multiple upload is an option 2024-10-16 12:00:11 -04:00
Mary Hipp
d9a257ef8a fix(ui): add error handling to upload button 2024-10-16 09:32:35 -04:00
psychedelicious
23fada3eea feat(ui): simpler dnd indicator for right panel tabs
We can use the drop overlay component directly for this, without needing to add it as a `noop` dnd target.

Other changes:
- The `label` prop is now used to conditionally render the label - every drop target provides its own label, so this doesn't break anything.
- Add `withBackdrop` prop to control whether we apply the dimmed drop target effect.
2024-10-16 18:35:55 +11:00
psychedelicious
2917e59c38 Revert "feat(ui): add layers tab as droppable destination to improve UX for dragging from gallery to layers tabs"
This reverts commit 535c1287bbc8d2c2099f5ff659f62e3076a0dbee.
2024-10-16 18:35:55 +11:00
Mary Hipp
c691855a67 feat(ui): add layers tab as droppable destination to improve UX for dragging from gallery to layers tabs 2024-10-16 18:35:55 +11:00
Mary Hipp
a00347379b feat(ui): move layers/gallery tab state into redux so it persists across sessions/refreshes, make gallery the default 2024-10-16 18:35:55 +11:00
psychedelicious
ad1a8fbb8d fix(ui): ts 2024-10-16 18:33:40 +11:00
psychedelicious
f03b77e882 fix(ui): race condition with toast closing
Instead of providing a duration to the upload action, we close the toast imperatively in the `imageUploaded` listener using a timeout. 3s after the last upload toast, we close it.

This handles the case when we are uploading multiple images and don't want the toast to close til it's all finished.
2024-10-16 18:33:40 +11:00
psychedelicious
2b000cb006 fix(ui): erroneous board selection when uploading multiple images 2024-10-16 18:33:40 +11:00
psychedelicious
af636f08b8 feat(ui): add maxImageUploadCount config setting 2024-10-16 18:33:40 +11:00
psychedelicious
f8150f46a5 feat(ui): only switch boards on first upload of an image 2024-10-16 18:33:40 +11:00
psychedelicious
b613be0f5d feat(ui): updated useFullscreenDropzone
- Hack around toast durations so it closes after last image uploads
- Improved error logging
- Enforce singleton nature of hook
2024-10-16 18:33:40 +11:00
psychedelicious
a833d74913 tidy(ui): clean up imageUploaded listener 2024-10-16 18:33:40 +11:00
psychedelicious
02df055e8a feat(ui): simpler imageUploaded toast handling 2024-10-16 18:33:40 +11:00
psychedelicious
add31ce596 feat(ui): simpler useImageUploadButton
We can always iterate over `files`, no need for any conditional logic here.
2024-10-16 18:33:40 +11:00
Mary Hipp
7d7ad3052e feat(ui): enable multifile upload for fullscreen dropzone 2024-10-16 18:33:40 +11:00
Mary Hipp
3b16dbffb2 feat(ui): allow multiple images to be uploaded via gallery button, remove double add-to-board logic for uploaded images 2024-10-16 18:33:40 +11:00
Mary Hipp
d8b0648766 feat(ui): add upload button for gallery 2024-10-16 18:33:40 +11:00
psychedelicious
ae64ee224f chore: bump version to v5.2.0rc2 2024-10-16 10:59:28 +11:00
psychedelicious
1251dfd7f6 feat(ui): better warnings when transforming 2024-10-15 19:47:50 -04:00
psychedelicious
804ee3a7fb docs(ui): update docstrings for startTransform 2024-10-15 19:47:50 -04:00
psychedelicious
fc5f9047c2 fix(ui): fit to bbox just flashes transform handles
Need to `await` the startTransform call so it can acquire the lock on concurrent transformation operations.
2024-10-15 19:47:50 -04:00
psychedelicious
0b208220e5 chore(ui): lint 2024-10-16 09:30:16 +11:00
Thomas Bolteau
916b9f7741 translationBot(ui): update translation (French)
Currently translated at 100.0% (1493 of 1493 strings)

translationBot(ui): update translation (English)

Currently translated at 99.9% (1492 of 1493 strings)

translationBot(ui): update translation (French)

Currently translated at 61.7% (922 of 1493 strings)

Co-authored-by: Thomas Bolteau <thomas.bolteau50@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/en/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/fr/
Translation: InvokeAI/Web UI
2024-10-16 09:30:16 +11:00
gallegonovato
0947a006cc translationBot(ui): update translation (Spanish)
Currently translated at 17.9% (268 of 1493 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2024-10-16 09:30:16 +11:00
Riccardo Giovanetti
2c2df6423e translationBot(ui): update translation (Italian)
Currently translated at 98.7% (1476 of 1494 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.8% (1476 of 1493 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.8% (1474 of 1491 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-10-16 09:30:16 +11:00
Mary Hipp
c3df9d38c0 prettier 2024-10-15 15:58:11 -04:00
Mary Hipp
3790c254f5 only show starter bundles if feature is enabled and no models installed, update getting started text for local vs non-local 2024-10-15 15:58:11 -04:00
psychedelicious
abf46eaacd feat(api): compare name/base/type when checking if starter model is installed 2024-10-15 15:58:11 -04:00
psychedelicious
166548246d feat(ui): disable starter bundle button when all installed 2024-10-15 15:58:11 -04:00
psychedelicious
985dcd9862 chore(ui): lint 2024-10-15 15:58:11 -04:00
psychedelicious
b1df592506 tidy(ui): starter models logic
- More comprehensive duplicate model logic
- De-dupe starter models, which may share dependencies
- Fix issue w/ duplicate keys in list component
- Add translations
- Add toast when installing starter model, matching bundle toast
2024-10-15 15:58:11 -04:00
psychedelicious
a09a0eff69 chore(ui): lint 2024-10-15 15:58:11 -04:00
psychedelicious
e73bd09d93 feat(ui): use for..of instead of for loop w/ extra type guards 2024-10-15 15:58:11 -04:00
psychedelicious
6f5477a3f0 feat(ui): compare against source when building models to install 2024-10-15 15:58:11 -04:00
psychedelicious
f78a542401 tidy(ui): use StarterModel type directly 2024-10-15 15:58:11 -04:00
Mary Hipp
8613efb03a update button UI 2024-10-15 15:58:11 -04:00
Mary Hipp
d8347d856d more copy and linting 2024-10-15 15:58:11 -04:00
Mary Hipp
336e6e0c19 only show Add Model button if not adding models 2024-10-15 15:58:11 -04:00
Mary Hipp
5bd87ca89b feat(ui,api): add starter bundles to MM 2024-10-15 15:58:11 -04:00
skunkworxdark
fe87c198eb Update workflow_records_sqlite.py
A where clause was omitted from the count_query during the revert of the optional Category in the commit acfeb4a276
2024-10-15 18:18:36 +11:00
Riku
69a4a88925 fix(ui): display guidance value for flux images in metadata viewer 2024-10-15 18:06:45 +11:00
Riku
6e7491b086 fix(ui): recall guidance value for flux images 2024-10-15 18:06:45 +11:00
Brandon Rising
3da8076a2b fix: Pin onnx versions to builds that don't require rare dlls 2024-10-12 10:36:51 -04:00
Mary Hipp
80360a8abb fix(api): update enum usage to work for python 3.11 2024-10-12 10:21:26 -04:00
Mary Hipp
acfeb4a276 undo changes that made category optional 2024-10-11 17:37:57 -04:00
Mary Hipp
b33dbfc95f prefix share link with window location 2024-10-11 17:25:58 -04:00
Mary Hipp
f9bc29203b ruff 2024-10-11 17:23:34 -04:00
Mary Hipp
cbe7717409 make sure combobox is not searchable 2024-10-11 17:23:34 -04:00
Mary Hipp
d6add93901 lint 2024-10-11 17:23:34 -04:00
Mary Hipp
ea45dce9dc (ui) add board sorting UI to board settings popover 2024-10-11 17:23:34 -04:00
Mary Hipp
8d44363d49 (ui): update boards list queries to only use sort params for list, and make sure archived boards are included in most places we are searching 2024-10-11 17:23:34 -04:00
Mary Hipp
9933cdb6b7 (api) fix missing sort params being drilled down, add case insensitivity to name sorting 2024-10-11 17:23:34 -04:00
Mary Hipp
e3e9d1f27c (ui) break out boards settings from gallery/image settings 2024-10-11 17:23:34 -04:00
psychedelicious
bb59ad438a docs(ui): add comments to ImageContextMenu 2024-10-11 09:36:23 -04:00
psychedelicious
e38f5b1576 fix(ui): safari doesn't have find on iterators 2024-10-11 09:36:23 -04:00
psychedelicious
1bb49b698f perf(ui): efficient gallery image hover state 2024-10-11 09:36:23 -04:00
psychedelicious
fa1fbd89fe tidy(ui): remove extraneous prop extraction 2024-10-11 09:36:23 -04:00
psychedelicious
190ef6732c perf(ui): properly memoize gallery image icon components 2024-10-11 09:36:23 -04:00
psychedelicious
947cd4694b perf(ui): use single event for all image context menus
Image elements register their target ref in a map, which is used to look up the image that was clicked on. Substantial perf improvement.
2024-10-11 09:36:23 -04:00
psychedelicious
ee32d0666d perf(ui): memoize gallery page buttons 2024-10-11 09:36:23 -04:00
psychedelicious
bc8ad9ccbf perf(ui): remove another extraneous useCallback 2024-10-11 09:36:23 -04:00
psychedelicious
e96b290fa9 perf(ui): remove extraneous useCallbacks 2024-10-11 09:36:23 -04:00
psychedelicious
b9f83eae6a perf(ui): do not call upload hook unless upload is needed 2024-10-11 09:36:23 -04:00
psychedelicious
9868e23235 feat(ui): use singleton context menu
This improves render perf for the image component by 10-20%.
2024-10-11 09:36:23 -04:00
psychedelicious
0060cae17c build(ui): set package mode target to ES2015 2024-10-11 07:54:44 -04:00
psychedelicious
56f0845552 tidy(ui): consistent naming for selector builder util 2024-10-11 07:51:55 -04:00
psychedelicious
da3f85dd8b fix(ui): edge case where entity isn't visible until interacting with canvas
To trigger the edge case:
- Have an empty layer and non-empty layer
- Select the non-empty layer
- Refresh the page
- Select to the empty layer without doing any other action
- You may be unable to draw on the layer
- Zoom in/out slightly
- You can now draw on it

The problem was not syncing visibility when a layer is selected, leaving the layer hidden. This indirectly disabled interactions.

The fix is to listen for changes to the layer's selected status and sync visibility when that changes.
2024-10-11 07:51:55 -04:00
psychedelicious
7185363f17 fix(ui): edge case where controladapters added counts could be off
We were:
- Incrementing `addedControlNets` or `addedT2IAdapters`
- Attempting to add it, but maybe failing and skipping

Need to swap the order of operations to prevent misreporting of added cnet/t2i.

I don't think this would ever actually cause problems.
2024-10-11 10:37:30 +11:00
Ryan Dick
ac08c31fbc Remove unnecessary hasattr checks for scaled_dot_product_attention. We pin the torch version, so there should be no concern that this function does not exist. 2024-10-10 19:23:45 -04:00
Ryan Dick
ea54a2655a Add a workaround for broken sliced attention on MPS with torch 2.4.1. 2024-10-10 19:23:45 -04:00
psychedelicious
cc83dede9f chore: bump version to v5.2.0rc1 2024-10-11 10:11:47 +11:00
Riccardo Giovanetti
8464fd2ced translationBot(ui): update translation (Italian)
Currently translated at 98.5% (1462 of 1483 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-10-11 09:41:45 +11:00
Васянатор
c3316368d9 translationBot(ui): update translation (Russian)
Currently translated at 100.0% (1479 of 1479 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-10-11 09:41:45 +11:00
Riku
8b2d5ab28a translationBot(ui): update translation (German)
Currently translated at 70.3% (1048 of 1490 strings)

translationBot(ui): update translation (German)

Currently translated at 69.4% (1027 of 1479 strings)

Co-authored-by: Riku <riku.block@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-10-11 09:41:45 +11:00
psychedelicious
3f6acdc2d3 fix(ui): use non-icon version of delete menu item on canvas context menu 2024-10-10 18:23:32 -04:00
psychedelicious
4aa20a95b2 feat(ui): consolidate img2img canvas flow
Make the `New Canvas From Image` button do what the `New Img2Img From Image` does.
2024-10-11 09:03:44 +11:00
Ryan Dick
2d82e69a33 Add support for FLUX ControlNet models (XLabs and InstantX) (#7070)
## Summary

Add support for FLUX ControlNet models (XLabs and InstantX).

## QA Instructions

- [x] SD1 and SDXL ControlNets, since the ModelLoaderRegistry calls were
changed.
- [x] Single Xlabs controlnet
- [x] Single InstantX union controlnet
- [x] Single InstantX controlnet
- [x] Single Shakker Labs Union controlnet
- [x] Multiple controlnets
- [x] Weight, start, end params all work as expected
- [x] Can be used with image-to-image and inpainting.
- [x] Clear error message if no VAE is passed when using InstantX
controlnet.
- [x] Install InstantX ControlNet in diffusers format from HF repo
(`InstantX/FLUX.1-dev-Controlnet-Union`)
- [x] Test all FLUX ControlNet starter models
## Merge Plan

No special instructions.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-10-10 12:37:09 -04:00
Ryan Dick
683f9a70e7 Restore instantx_control_mode field on FLUX ControlNet invocation. 2024-10-10 15:25:30 +00:00
Ryan Dick
bb6d073828 Use the Shakker-Labs ControlNet union model as the only FLUX ControlNet starter model. 2024-10-10 13:59:59 +00:00
Kent Keirsey
7f7d8e5177 Merge branch 'ryan/flux-controlnet-xlabs-instantx' of https://github.com/invoke-ai/InvokeAI into ryan/flux-controlnet-xlabs-instantx 2024-10-10 08:06:25 -04:00
Ryan Dick
f37c5011f4 Reduce peak memory utilization when preparing FLUX controlnet inputs. 2024-10-10 07:59:29 -04:00
Ryan Dick
bb947c6162 Make FLUX controlnet node API more like SD API and get it working with linear UI. 2024-10-10 07:59:29 -04:00
Ryan Dick
a654dad20f Remove instantx_control_mode from FLUX ControlNet node. 2024-10-10 07:59:29 -04:00
Mary Hipp
2bd44662f3 possibly a working FLUX controlnet graph 2024-10-10 07:59:29 -04:00
Ryan Dick
e7f9086006 Fix bug with InstantX input image range. 2024-10-10 07:59:29 -04:00
Mary Hipp
5141be8009 hide Control Mode for FLUX control net layer 2024-10-10 07:59:29 -04:00
Mary Hipp
eacdfc660b ui: enable controlnet controls when FLUX is main model, update schema 2024-10-10 07:59:29 -04:00
maryhipp
5fd3c39431 update prepreprocessor logic to be more resilient 2024-10-10 07:59:29 -04:00
maryhipp
7daf3b7d4a update starter models to include FLUX controlnets 2024-10-10 07:59:29 -04:00
Ryan Dick
908f65698d Fix support for InstantX non-union models (with no single blocks). 2024-10-10 07:59:29 -04:00
Ryan Dick
63c4ac58e9 Support installing InstantX ControlNet models from diffusers directory format. 2024-10-10 07:59:29 -04:00
Ryan Dick
8c125681ea Skip tests that are failing on MacOS CI runners (for now). 2024-10-10 07:59:29 -04:00
Ryan Dick
118f0ba3bf Revert "Try to fix test failures affecting MacOS CI runners."
This reverts commit 216b36c75d.
2024-10-10 07:59:29 -04:00
Ryan Dick
b3b7d084d0 Try to fix test failures affecting MacOS CI runners. 2024-10-10 07:59:29 -04:00
Ryan Dick
812940eb95 (minor) Add comment about future memory optimization. 2024-10-10 07:59:29 -04:00
Ryan Dick
0559480dd6 Shift the controlnet-type-specific logic into the specific ControlNet extensions and make the FLUX model controlnet-type-agnostic. 2024-10-10 07:59:29 -04:00
Ryan Dick
d99e7dd4e4 Add instantx_control_mode param to FLUX ControlNet invocation. 2024-10-10 07:59:29 -04:00
Ryan Dick
e854181417 Create a dedicated FLUX ControlNet invocation. 2024-10-10 07:59:29 -04:00
Ryan Dick
de414c09fd Bugfixes to get InstantX ControlNet working. 2024-10-10 07:59:29 -04:00
Ryan Dick
ce4624f72b Update ControlNetCheckpointProbe.get_base_type() to work with InstantX. 2024-10-10 07:59:29 -04:00
Ryan Dick
47c7df3476 Fix circular imports related to XLabsControlNetFluxOutput and InstantXControlNetFluxOutput. 2024-10-10 07:59:29 -04:00
Ryan Dick
4289b5e6c3 Add instantx controlnet logic to FLUX model forward(). 2024-10-10 07:59:29 -04:00
Ryan Dick
c8d1d14662 Work on integrating InstantX into denoise process. 2024-10-10 07:59:29 -04:00
Ryan Dick
44c588d778 Rename DiffusersControlNetFlux -> InstantXControlNetFlux. 2024-10-10 07:59:29 -04:00
Ryan Dick
d75ac56d00 Create flux/extensions directory. 2024-10-10 07:59:29 -04:00
Ryan Dick
714dd5f0be Update FluxControlnetModel to work with both XLabs and InstantX. 2024-10-10 07:59:29 -04:00
Ryan Dick
2f4d3cb5e6 Add unit test to test the full flow of loading an InstantX ControlNet from a state dict. 2024-10-10 07:59:29 -04:00
Ryan Dick
b76555bda9 Add unit test for infer_instantx_num_control_modes_from_state_dict(). 2024-10-10 07:59:29 -04:00
Ryan Dick
1cdd501a0a Add unit test for infer_flux_params_from_state_dict(...). 2024-10-10 07:59:29 -04:00
Ryan Dick
1125218bc5 Update FLUX ControlNet unit test state dicts to include shapes. 2024-10-10 07:59:29 -04:00
Ryan Dick
683504bfb5 Add scripts/extract_sd_keys_and_shapes.py 2024-10-10 07:59:29 -04:00
Ryan Dick
03cf953398 First pass of utility function to infer the FluxParams from a state dict. 2024-10-10 07:59:29 -04:00
Ryan Dick
24c115663d Add unit test for convert_diffusers_instantx_state_dict_to_bfl_format(...) and fix a few bugs. 2024-10-10 07:59:29 -04:00
Ryan Dick
a9e7ecad49 Finish first draft of convert_diffusers_instantx_state_dict_to_bfl_format(...). 2024-10-10 07:59:29 -04:00
Ryan Dick
76f4766324 WIP - implement convert_diffusers_instantx_state_dict_to_bfl_format(...). 2024-10-10 07:59:29 -04:00
Ryan Dick
3dfc242f77 (minor) rename other_forward() -> forward() 2024-10-10 07:59:29 -04:00
Ryan Dick
1e43389cb4 Add utils for detecting XLabs ControlNet vs. InstantX ControlNet from
state dict.
2024-10-10 07:59:29 -04:00
Ryan Dick
cb33de34f7 Migrate DiffusersControlNetFlux from diffusers-style to BFL-style. 2024-10-10 07:59:29 -04:00
Ryan Dick
7562ea48dc Improve typing of zero_module(). 2024-10-10 07:59:29 -04:00
Ryan Dick
83f4700f5a Use top-level torch import for all torch stuff. 2024-10-10 07:59:29 -04:00
Ryan Dick
704e7479b2 Remove DiffusersControlNetFlux.from_transformer(...). 2024-10-10 07:59:29 -04:00
Ryan Dick
5f44559f30 Fixup typing around DiffusersControlNetFluxOutput. 2024-10-10 07:59:29 -04:00
Ryan Dick
7a22819100 Remove gradient checkpointing from DiffusersControlNetFlux. 2024-10-10 07:59:29 -04:00
Ryan Dick
70495665c5 Remove FluxMultiControlNetModel 2024-10-10 07:59:29 -04:00
Ryan Dick
ca30acc5b4 Remove LoRA stuff from DiffusersCotnrolNetFlux. 2024-10-10 07:59:29 -04:00
Ryan Dick
8121843d86 Remove logic for modifying attn processors from DiffusersControlNetFlux. 2024-10-10 07:59:29 -04:00
Ryan Dick
bc0ded0a23 Rename FluxControlNetModel -> DiffusersControlNetFlux 2024-10-10 07:59:29 -04:00
Ryan Dick
30f6034f88 Start updating imports for FluxControlNetModel 2024-10-10 07:59:29 -04:00
Ryan Dick
7d56a8ce54 Copy model from 99f608218c/src/diffusers/models/controlnet_flux.py 2024-10-10 07:59:29 -04:00
Ryan Dick
e7dc439006 Rename ControlNetFlux -> XLabsControlNetFlux 2024-10-10 07:59:29 -04:00
Ryan Dick
bce5a93eb1 Add InstantX FLUX ControlNet state dict for unit testing. 2024-10-10 07:59:29 -04:00
Ryan Dick
93e98a1f63 Add support for FLUX controlnet weight, begin_step_percent and end_step_percent. 2024-10-10 07:59:29 -04:00
Ryan Dick
0f93deab3b First pass at integrating FLUX ControlNets into the FLUX Denoise invocation. 2024-10-10 07:59:29 -04:00
Ryan Dick
3f3aba8b10 Add FLUX XLabs ControlNet model probing. 2024-10-10 07:59:29 -04:00
Ryan Dick
0b84f567f1 Fix type errors and imporve docs for ControlNetFlux. 2024-10-10 07:59:29 -04:00
Ryan Dick
69c0d7dcc9 Remove gradient checkpointing from ControlNetFlux. 2024-10-10 07:59:29 -04:00
Ryan Dick
5307248fcf Remove ControlNetFlux logic related to attn processor overrides. 2024-10-10 07:59:29 -04:00
Ryan Dick
2efaea8f79 Remove duplicate FluxParams class. 2024-10-10 07:59:29 -04:00
Ryan Dick
c1dfd9b7d9 Fix FLUX module imports for ControlNetFlux. 2024-10-10 07:59:29 -04:00
Ryan Dick
c594ef89d2 Copy ControlNetFlux model from 47495425db/src/flux/controlnet.py. 2024-10-10 07:59:29 -04:00
Ryan Dick
563db67b80 Add XLabs FLUX controlnet state dict key file to be used for development/testing. 2024-10-10 07:59:29 -04:00
psychedelicious
236c065edd fix(ui): respect grid size when fitting layer to box 2024-10-10 07:43:46 -04:00
psychedelicious
1f5d744d01 fix(ui): disable canvas-related image context menu items when canvas is busy 2024-10-10 07:43:46 -04:00
psychedelicious
b36c6af0ae feat(ui): add new img2img canvas from image functionality
This replicates the img2img flow:
- Reset the canvas
- Resize the bbox to the image's aspect ratio at the optimal size for the selected model
- Add the image as a raster layer
- Resizes the layer to fit the bbox using the 'fill' strategy

After this completes, the user can immediately click Invoke and it will do img2img.
2024-10-10 07:43:46 -04:00
psychedelicious
4e431a9d5f feat(ui): add a mutex to CanvasEntityTransformer to prevent concurrent operations 2024-10-10 07:43:46 -04:00
psychedelicious
48a8232285 feat(ui): add entity adapter init callbacks
If an entity needs to do something after init, it can use this system. For example, if a layer should be transformed immediately after initializing, it can use an init callback.
2024-10-10 07:43:46 -04:00
psychedelicious
94007fef5b tidy(ui): remove unused reducer 2024-10-10 07:43:46 -04:00
psychedelicious
9e6fb3bd3f feat(ui): add hooks for new layer/canvas from image & use them 2024-10-10 07:43:46 -04:00
psychedelicious
8522129639 tidy(ui): "syncCache" -> "syncKonvaCache"
Reduce confusion w/ the many other caches
2024-10-10 17:45:05 +11:00
psychedelicious
15033b1a9d fix(ui): prevent edge case where layers get cached while hidden 2024-10-10 17:45:05 +11:00
psychedelicious
743d78f82b feat(ui): more debug info for canvas adapters 2024-10-10 17:45:05 +11:00
psychedelicious
06a434b0a2 tidy(ui): clean up awkward selector in CanvasEntityAdapterBase 2024-10-10 17:45:05 +11:00
psychedelicious
7f2fdae870 perf(ui): optimized object rendering
- Throttle opacity and compositing fill rendering to 100ms
- Reduce compositing rect rendering to minimum
2024-10-10 17:45:05 +11:00
psychedelicious
00be03b5b9 perf(ui): hide offscreen & uninteractable layers 2024-10-10 17:45:05 +11:00
psychedelicious
0f98806a25 fix(ui): deprecated konva attr 2024-10-10 17:45:05 +11:00
psychedelicious
0f1541d091 perf(ui): disable perfect draw for all shapes
This feature involves a certain amount of extra work to ensure stroke and fill with partial opacity render correctly together. However, none of our shapes actually use that combination of attributes, so we can disable this for a minor perf boost.
2024-10-10 17:45:05 +11:00
psychedelicious
c49bbb22e5 feat(ui): track whether entities intersect the bbox 2024-10-10 17:45:05 +11:00
psychedelicious
7bd4b586a6 feat(ui): track whether entities are on-screen or off-screen 2024-10-10 17:45:05 +11:00
psychedelicious
754f049f54 feat(ui): getScaledStageRect returns snapped values 2024-10-10 17:45:05 +11:00
psychedelicious
883beb90eb refactor(ui): do not rely on konva internal canvas cache for layer previews
Instead of pulling the preview canvas from the konva internals, use the canvas created for bbox calculations as the preview canvas.

This doesn't change perf characteristics, because we were already creating this canvas. It just means we don't need to dip into the konva internals.

It fixes an issue where the layer preview didn't update or show when a layer is disabled or otherwise hidden.
2024-10-10 17:45:05 +11:00
psychedelicious
ad76399702 feat(ui): add getRectIntersection util 2024-10-10 17:45:05 +11:00
psychedelicious
69773a791d feat(ui): use useAssertSingleton for all singleton modals
footgun insurance
2024-10-10 15:49:09 +11:00
psychedelicious
99e88e601d fix(ui): edge case where you get stuck w/ the workflow list menu open, or it opens unexpectedly
- When resetting workflows, retain the current mode state
- Remove the useEffect that reacted to the `isCleanEditor` flag to prevent getting menu getting locked open
2024-10-10 15:49:09 +11:00
psychedelicious
4050f7deae feat(ui): make workflow support link work like a link 2024-10-10 15:49:09 +11:00
psychedelicious
0399b04f29 fix(ui): workflows marked touched on first load 2024-10-10 15:49:09 +11:00
psychedelicious
3b349b2686 chore(ui): lint 2024-10-10 15:49:09 +11:00
psychedelicious
aa34dbe1e1 feat(ui): "CopyWorkflowLinkModal" -> "ShareWorkflowModal" 2024-10-10 15:49:09 +11:00
psychedelicious
ac2476c63c fix(ui): use modal overlay for workflow share modal 2024-10-10 15:49:09 +11:00
psychedelicious
f16489f1ce feat(ui): split out delete style preset dialog logic into singleton 2024-10-10 15:49:09 +11:00
psychedelicious
3b38b69192 feat(ui): split out copy workflow link dialog logic into singleton 2024-10-10 15:49:09 +11:00
psychedelicious
2c601438eb feat(ui): split out delete workflow dialog logic into singleton 2024-10-10 15:49:09 +11:00
psychedelicious
5d6a2a3709 fix(ui): use Text component in style preset delete dialog 2024-10-10 15:49:09 +11:00
psychedelicious
1d7a264050 feat(ui): workflow share icon only for non-user workflows 2024-10-10 15:49:09 +11:00
psychedelicious
c494e0642a feat(ui): split out new workflow dialog logic, use it in list menu, restore new workflow dialog 2024-10-10 15:49:09 +11:00
psychedelicious
849b9e8d86 fix(ui): duplicate copy workflow link modals
The component state is a global singleton, but each workflow had an instance of the modal. So when you open one, they _all_ opened.
2024-10-10 15:49:09 +11:00
psychedelicious
4a66b7ac83 chore(ui): bump @invoke-ai/ui-library
Brings in a fix where ConfirmationAlertDialog rest props weren't used correctly.
2024-10-10 15:49:09 +11:00
psychedelicious
751eb59afa fix(ui): issues with workflow list state
- Tooltips on buttons for a list item getting stuck
- List item action buttons should not propagate clicks
2024-10-10 15:49:09 +11:00
psychedelicious
f537cf1916 fix(ui): downloading workflow loads it 2024-10-10 15:49:09 +11:00
psychedelicious
0cc6f67bb1 feat(ui): use buildUseDisclosure for workflow list menu 2024-10-10 15:49:09 +11:00
psychedelicious
b2bf03fd37 feat(ui): use own useDisclosure for workflow delete confirm dialog 2024-10-10 15:49:09 +11:00
psychedelicious
14bc06ab66 feat(ui): add our own useDisclosure hook 2024-10-10 15:49:09 +11:00
psychedelicious
9c82cc7fcb feat(ui): use buildUseDisclosure for workflow copy link modal 2024-10-10 15:49:09 +11:00
psychedelicious
c60cab97a7 feat(ui): add buildUseDisclosure 2024-10-10 15:49:09 +11:00
psychedelicious
eda979341a feat(installer): use torch extra index on all cuda install pathways 2024-10-09 22:46:18 -04:00
Eugene Brodsky
b6c7949bb7 feat(backend): prefer xformers based on cuda compute capability 2024-10-09 22:46:18 -04:00
Eugene Brodsky
d691f672a2 feat(docker): upgrade to CUDA 12.4 in container 2024-10-09 22:46:18 -04:00
Eugene Brodsky
8deeac1372 feat(installer): add options to include or exclude xFormers based on the GPU model 2024-10-09 22:46:18 -04:00
Ryan Dick
4aace24f1f Reduce peak memory utilization when preparing FLUX controlnet inputs. 2024-10-10 00:18:46 +00:00
Ryan Dick
b1567fe0e4 Make FLUX controlnet node API more like SD API and get it working with linear UI. 2024-10-09 23:38:31 +00:00
Ryan Dick
3953e60a4f Remove instantx_control_mode from FLUX ControlNet node. 2024-10-09 22:00:54 +00:00
Mary Hipp
3c46522595 feat(ui): add option to copy share link for workflows if projectURL is defined (commercial) 2024-10-10 08:42:37 +11:00
Mary Hipp
63a2e17f6b possibly a working FLUX controlnet graph 2024-10-09 15:42:02 -04:00
Ryan Dick
8b1ef4b902 Fix bug with InstantX input image range. 2024-10-09 19:38:30 +00:00
Mary Hipp
5f2279c984 hide Control Mode for FLUX control net layer 2024-10-09 15:31:44 -04:00
Mary Hipp
e82d67849c ui: enable controlnet controls when FLUX is main model, update schema 2024-10-09 15:05:29 -04:00
maryhipp
3977ffaa3e update prepreprocessor logic to be more resilient 2024-10-09 14:57:14 -04:00
maryhipp
9a8a858fe4 update starter models to include FLUX controlnets 2024-10-09 14:57:14 -04:00
Ryan Dick
859944f848 Fix support for InstantX non-union models (with no single blocks). 2024-10-09 18:51:53 +00:00
Ryan Dick
8d1a45863c Support installing InstantX ControlNet models from diffusers directory format. 2024-10-09 17:04:10 +00:00
Ryan Dick
6798bbab26 Skip tests that are failing on MacOS CI runners (for now). 2024-10-09 16:34:42 +00:00
Ryan Dick
2c92e8a495 Revert "Try to fix test failures affecting MacOS CI runners."
This reverts commit 216b36c75d.
2024-10-09 16:30:40 +00:00
Ryan Dick
216b36c75d Try to fix test failures affecting MacOS CI runners. 2024-10-09 16:21:52 +00:00
Ryan Dick
8bf8742984 (minor) Add comment about future memory optimization. 2024-10-09 16:16:04 +00:00
Ryan Dick
c78eeb1645 Shift the controlnet-type-specific logic into the specific ControlNet extensions and make the FLUX model controlnet-type-agnostic. 2024-10-09 16:12:09 +00:00
Ryan Dick
cd88723a80 Add instantx_control_mode param to FLUX ControlNet invocation. 2024-10-09 14:17:42 +00:00
Ryan Dick
dea6cbd599 Create a dedicated FLUX ControlNet invocation. 2024-10-09 14:17:42 +00:00
Ryan Dick
0dd9f1f772 Bugfixes to get InstantX ControlNet working. 2024-10-09 14:17:42 +00:00
Ryan Dick
5d11c30ce6 Update ControlNetCheckpointProbe.get_base_type() to work with InstantX. 2024-10-09 14:17:42 +00:00
Ryan Dick
a783539cd2 Fix circular imports related to XLabsControlNetFluxOutput and InstantXControlNetFluxOutput. 2024-10-09 14:17:42 +00:00
Ryan Dick
2f8f30b497 Add instantx controlnet logic to FLUX model forward(). 2024-10-09 14:17:42 +00:00
Ryan Dick
f878e5e74e Work on integrating InstantX into denoise process. 2024-10-09 14:17:42 +00:00
Ryan Dick
bfc460a5c6 Rename DiffusersControlNetFlux -> InstantXControlNetFlux. 2024-10-09 14:17:42 +00:00
Ryan Dick
a24581ede2 Create flux/extensions directory. 2024-10-09 14:17:42 +00:00
Ryan Dick
56731766ca Update FluxControlnetModel to work with both XLabs and InstantX. 2024-10-09 14:17:42 +00:00
Ryan Dick
80bc4ebee3 Add unit test to test the full flow of loading an InstantX ControlNet from a state dict. 2024-10-09 14:17:42 +00:00
Ryan Dick
745b6dbd5d Add unit test for infer_instantx_num_control_modes_from_state_dict(). 2024-10-09 14:17:42 +00:00
Ryan Dick
c7628945c4 Add unit test for infer_flux_params_from_state_dict(...). 2024-10-09 14:17:42 +00:00
Ryan Dick
728927ecff Update FLUX ControlNet unit test state dicts to include shapes. 2024-10-09 14:17:42 +00:00
Ryan Dick
1a7eece695 Add scripts/extract_sd_keys_and_shapes.py 2024-10-09 14:17:42 +00:00
Ryan Dick
2cd14dd066 First pass of utility function to infer the FluxParams from a state dict. 2024-10-09 14:17:42 +00:00
Ryan Dick
5872f05342 Add unit test for convert_diffusers_instantx_state_dict_to_bfl_format(...) and fix a few bugs. 2024-10-09 14:17:42 +00:00
Ryan Dick
4ad135c6ae Finish first draft of convert_diffusers_instantx_state_dict_to_bfl_format(...). 2024-10-09 14:17:42 +00:00
Ryan Dick
c72c2770fe WIP - implement convert_diffusers_instantx_state_dict_to_bfl_format(...). 2024-10-09 14:17:42 +00:00
Ryan Dick
e733a1f30e (minor) rename other_forward() -> forward() 2024-10-09 14:17:42 +00:00
Ryan Dick
4be3a33744 Add utils for detecting XLabs ControlNet vs. InstantX ControlNet from
state dict.
2024-10-09 14:17:42 +00:00
Ryan Dick
1751c380db Migrate DiffusersControlNetFlux from diffusers-style to BFL-style. 2024-10-09 14:17:42 +00:00
Ryan Dick
16cda33025 Improve typing of zero_module(). 2024-10-09 14:17:42 +00:00
Ryan Dick
8308e7d186 Use top-level torch import for all torch stuff. 2024-10-09 14:17:42 +00:00
Ryan Dick
c0aab56d08 Remove DiffusersControlNetFlux.from_transformer(...). 2024-10-09 14:17:42 +00:00
Ryan Dick
1795f4f8a2 Fixup typing around DiffusersControlNetFluxOutput. 2024-10-09 14:17:42 +00:00
Ryan Dick
5bfd2ec6b7 Remove gradient checkpointing from DiffusersControlNetFlux. 2024-10-09 14:17:42 +00:00
Ryan Dick
a35b229a9d Remove FluxMultiControlNetModel 2024-10-09 14:17:42 +00:00
Ryan Dick
e93da5d4b2 Remove LoRA stuff from DiffusersCotnrolNetFlux. 2024-10-09 14:17:42 +00:00
Ryan Dick
a17ea9bfad Remove logic for modifying attn processors from DiffusersControlNetFlux. 2024-10-09 14:17:42 +00:00
Ryan Dick
3578010ba4 Rename FluxControlNetModel -> DiffusersControlNetFlux 2024-10-09 14:17:42 +00:00
Ryan Dick
459cf52043 Start updating imports for FluxControlNetModel 2024-10-09 14:17:42 +00:00
Ryan Dick
9bcb93f575 Copy model from 99f608218c/src/diffusers/models/controlnet_flux.py 2024-10-09 14:17:42 +00:00
Ryan Dick
d1a0e99701 Rename ControlNetFlux -> XLabsControlNetFlux 2024-10-09 14:17:42 +00:00
Ryan Dick
92b1515d9d Add InstantX FLUX ControlNet state dict for unit testing. 2024-10-09 14:17:42 +00:00
Ryan Dick
36515e1e2a Add support for FLUX controlnet weight, begin_step_percent and end_step_percent. 2024-10-09 14:17:42 +00:00
Ryan Dick
c81bb761ed First pass at integrating FLUX ControlNets into the FLUX Denoise invocation. 2024-10-09 14:17:42 +00:00
Ryan Dick
1d4a58e52b Add FLUX XLabs ControlNet model probing. 2024-10-09 14:17:42 +00:00
Ryan Dick
62d12e6468 Fix type errors and imporve docs for ControlNetFlux. 2024-10-09 14:17:41 +00:00
Ryan Dick
9541156ce5 Remove gradient checkpointing from ControlNetFlux. 2024-10-09 14:17:41 +00:00
Ryan Dick
eb5b6625ea Remove ControlNetFlux logic related to attn processor overrides. 2024-10-09 14:17:41 +00:00
Ryan Dick
9758e5a622 Remove duplicate FluxParams class. 2024-10-09 14:17:41 +00:00
Ryan Dick
58eba8bdbd Fix FLUX module imports for ControlNetFlux. 2024-10-09 14:17:41 +00:00
Ryan Dick
2821ba8967 Copy ControlNetFlux model from 47495425db/src/flux/controlnet.py. 2024-10-09 14:17:41 +00:00
Ryan Dick
2cc72b19bc Add XLabs FLUX controlnet state dict key file to be used for development/testing. 2024-10-09 14:17:41 +00:00
psychedelicious
8544ba3798 feat(ui): add fit to bbox context menu item
This immediately fits the selected layer to the bbox, maintaining its aspect ratio.
2024-10-09 23:13:08 +11:00
psychedelicious
65fe79fa0e feat(ui): add silent option to transformer.startTransform
A "silent" transformation executes without any user feedback.
2024-10-09 23:13:08 +11:00
psychedelicious
c99852657e feat(ui): disable transfomer controls while applying transform 2024-10-09 23:13:08 +11:00
psychedelicious
ed54b89e9e fix(ui): edge case where transforms don't do anything due to caching
This could be triggered by transforming a layer, undoing, then transforming again. The simple fix is to ignore the rasterization cache for all transforms.
2024-10-09 23:13:08 +11:00
psychedelicious
d56c80af8e feat(ui): add ability to ignore rasterization cache 2024-10-09 23:13:08 +11:00
psychedelicious
0a65a01db8 feat(ui): use icons for layer menu common actions 2024-10-09 23:13:08 +11:00
psychedelicious
5f416ee4fa feat(ui): add IconMenuItem component 2024-10-09 23:13:08 +11:00
psychedelicious
115c82231b fix(ui): type signature for abstract sync method 2024-10-09 23:13:08 +11:00
psychedelicious
ccc1d4417e feat(ui): add "contain" and "cover" fit modes to transform 2024-10-09 23:13:08 +11:00
192 changed files with 7444 additions and 2183 deletions

View File

@@ -40,7 +40,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
elif [ "$GPU_DRIVER" = "rocm" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.6"; \
else \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu121"; \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu124"; \
fi &&\
# xformers + triton fails to install on arm64

View File

@@ -12,7 +12,7 @@ MINIMUM_PYTHON_VERSION=3.10.0
MAXIMUM_PYTHON_VERSION=3.11.100
PYTHON=""
for candidate in python3.11 python3.10 python3 python ; do
if ppath=`which $candidate`; then
if ppath=`which $candidate 2>/dev/null`; then
# when using `pyenv`, the executable for an inactive Python version will exist but will not be operational
# we check that this found executable can actually run
if [ $($candidate --version &>/dev/null; echo ${PIPESTATUS}) -gt 0 ]; then continue; fi
@@ -30,10 +30,11 @@ done
if [ -z "$PYTHON" ]; then
echo "A suitable Python interpreter could not be found"
echo "Please install Python $MINIMUM_PYTHON_VERSION or higher (maximum $MAXIMUM_PYTHON_VERSION) before running this script. See instructions at $INSTRUCTIONS for help."
echo "For the best user experience we suggest enlarging or maximizing this window now."
read -p "Press any key to exit"
exit -1
fi
echo "For the best user experience we suggest enlarging or maximizing this window now."
exec $PYTHON ./lib/main.py ${@}
read -p "Press any key to exit"

View File

@@ -282,12 +282,6 @@ class InvokeAiInstance:
shutil.copy(src, dest)
os.chmod(dest, 0o0755)
def update(self):
pass
def remove(self):
pass
### Utility functions ###
@@ -402,7 +396,7 @@ def get_torch_source() -> Tuple[str | None, str | None]:
:rtype: list
"""
from messages import select_gpu
from messages import GpuType, select_gpu
# device can be one of: "cuda", "rocm", "cpu", "cuda_and_dml, autodetect"
device = select_gpu()
@@ -412,15 +406,21 @@ def get_torch_source() -> Tuple[str | None, str | None]:
url = None
optional_modules: str | None = None
if OS == "Linux":
if device.value == "rocm":
if device == GpuType.ROCM:
url = "https://download.pytorch.org/whl/rocm5.6"
elif device.value == "cpu":
elif device == GpuType.CPU:
url = "https://download.pytorch.org/whl/cpu"
elif device.value == "cuda":
# CUDA uses the default PyPi index
elif device == GpuType.CUDA:
url = "https://download.pytorch.org/whl/cu124"
optional_modules = "[onnx-cuda]"
elif device == GpuType.CUDA_WITH_XFORMERS:
url = "https://download.pytorch.org/whl/cu124"
optional_modules = "[xformers,onnx-cuda]"
elif OS == "Windows":
if device.value == "cuda":
if device == GpuType.CUDA:
url = "https://download.pytorch.org/whl/cu124"
optional_modules = "[onnx-cuda]"
elif device == GpuType.CUDA_WITH_XFORMERS:
url = "https://download.pytorch.org/whl/cu124"
optional_modules = "[xformers,onnx-cuda]"
elif device.value == "cpu":

View File

@@ -206,6 +206,7 @@ def dest_path(dest: Optional[str | Path] = None) -> Path | None:
class GpuType(Enum):
CUDA_WITH_XFORMERS = "xformers"
CUDA = "cuda"
ROCM = "rocm"
CPU = "cpu"
@@ -221,11 +222,15 @@ def select_gpu() -> GpuType:
return GpuType.CPU
nvidia = (
"an [gold1 b]NVIDIA[/] GPU (using CUDA™)",
"an [gold1 b]NVIDIA[/] RTX 3060 or newer GPU using CUDA",
GpuType.CUDA,
)
vintage_nvidia = (
"an [gold1 b]NVIDIA[/] RTX 20xx or older GPU using CUDA+xFormers",
GpuType.CUDA_WITH_XFORMERS,
)
amd = (
"an [gold1 b]AMD[/] GPU (using ROCm™)",
"an [gold1 b]AMD[/] GPU using ROCm",
GpuType.ROCM,
)
cpu = (
@@ -235,14 +240,13 @@ def select_gpu() -> GpuType:
options = []
if OS == "Windows":
options = [nvidia, cpu]
options = [nvidia, vintage_nvidia, cpu]
if OS == "Linux":
options = [nvidia, amd, cpu]
options = [nvidia, vintage_nvidia, amd, cpu]
elif OS == "Darwin":
options = [cpu]
if len(options) == 1:
print(f'Your platform [gold1]{OS}-{ARCH}[/] only supports the "{options[0][1]}" driver. Proceeding with that.')
return options[0][1]
options = {str(i): opt for i, opt in enumerate(options, 1)}

View File

@@ -5,9 +5,10 @@ from fastapi.routing import APIRouter
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.board_records.board_records_common import BoardChanges, BoardRecordOrderBy
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
boards_router = APIRouter(prefix="/v1/boards", tags=["boards"])
@@ -115,6 +116,8 @@ async def delete_board(
response_model=Union[OffsetPaginatedResults[BoardDTO], list[BoardDTO]],
)
async def list_boards(
order_by: BoardRecordOrderBy = Query(default=BoardRecordOrderBy.CreatedAt, description="The attribute to order by"),
direction: SQLiteDirection = Query(default=SQLiteDirection.Descending, description="The direction to order by"),
all: Optional[bool] = Query(default=None, description="Whether to list all boards"),
offset: Optional[int] = Query(default=None, description="The page offset"),
limit: Optional[int] = Query(default=None, description="The number of boards per page"),
@@ -122,9 +125,9 @@ async def list_boards(
) -> Union[OffsetPaginatedResults[BoardDTO], list[BoardDTO]]:
"""Gets a list of boards"""
if all:
return ApiDependencies.invoker.services.boards.get_all(include_archived)
return ApiDependencies.invoker.services.boards.get_all(order_by, direction, include_archived)
elif offset is not None and limit is not None:
return ApiDependencies.invoker.services.boards.get_many(offset, limit, include_archived)
return ApiDependencies.invoker.services.boards.get_many(order_by, direction, offset, limit, include_archived)
else:
raise HTTPException(
status_code=400,

View File

@@ -38,7 +38,12 @@ from invokeai.backend.model_manager.load.model_cache.model_cache_base import Cac
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
from invokeai.backend.model_manager.metadata.metadata_base import ModelMetadataWithFiles, UnknownMetadataException
from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.model_manager.starter_models import STARTER_MODELS, StarterModel, StarterModelWithoutDependencies
from invokeai.backend.model_manager.starter_models import (
STARTER_BUNDLES,
STARTER_MODELS,
StarterModel,
StarterModelWithoutDependencies,
)
model_manager_router = APIRouter(prefix="/v2/models", tags=["model_manager"])
@@ -792,22 +797,48 @@ async def convert_model(
return new_config
@model_manager_router.get("/starter_models", operation_id="get_starter_models", response_model=list[StarterModel])
async def get_starter_models() -> list[StarterModel]:
class StarterModelResponse(BaseModel):
starter_models: list[StarterModel]
starter_bundles: dict[str, list[StarterModel]]
def get_is_installed(
starter_model: StarterModel | StarterModelWithoutDependencies, installed_models: list[AnyModelConfig]
) -> bool:
for model in installed_models:
if model.source == starter_model.source:
return True
if model.name == starter_model.name and model.base == starter_model.base and model.type == starter_model.type:
return True
return False
@model_manager_router.get("/starter_models", operation_id="get_starter_models", response_model=StarterModelResponse)
async def get_starter_models() -> StarterModelResponse:
installed_models = ApiDependencies.invoker.services.model_manager.store.search_by_attr()
installed_model_sources = {m.source for m in installed_models}
starter_models = deepcopy(STARTER_MODELS)
starter_bundles = deepcopy(STARTER_BUNDLES)
for model in starter_models:
if model.source in installed_model_sources:
model.is_installed = True
model.is_installed = get_is_installed(model, installed_models)
# Remove already-installed dependencies
missing_deps: list[StarterModelWithoutDependencies] = []
for dep in model.dependencies or []:
if dep.source not in installed_model_sources:
if not get_is_installed(dep, installed_models):
missing_deps.append(dep)
model.dependencies = missing_deps
return starter_models
for bundle in starter_bundles.values():
for model in bundle:
model.is_installed = get_is_installed(model, installed_models)
# Remove already-installed dependencies
missing_deps: list[StarterModelWithoutDependencies] = []
for dep in model.dependencies or []:
if not get_is_installed(dep, installed_models):
missing_deps.append(dep)
model.dependencies = missing_deps
return StarterModelResponse(starter_models=starter_models, starter_bundles=starter_bundles)
@model_manager_router.get(

View File

@@ -88,7 +88,7 @@ async def list_workflows(
default=WorkflowRecordOrderBy.Name, description="The attribute to order by"
),
direction: SQLiteDirection = Query(default=SQLiteDirection.Ascending, description="The direction to order by"),
category: Optional[WorkflowCategory] = Query(default=None, description="The category of workflow to get"),
category: WorkflowCategory = Query(default=WorkflowCategory.User, description="The category of workflow to get"),
query: Optional[str] = Query(default=None, description="The text to query by (matches name and description)"),
) -> PaginatedResults[WorkflowRecordListItemDTO]:
"""Gets a page of workflows"""

View File

@@ -192,6 +192,7 @@ class FieldDescriptions:
freeu_s2 = 'Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process.'
freeu_b1 = "Scaling factor for stage 1 to amplify the contributions of backbone features."
freeu_b2 = "Scaling factor for stage 2 to amplify the contributions of backbone features."
instantx_control_mode = "The control mode for InstantX ControlNet union models. Ignored for other ControlNet models. The standard mapping is: canny (0), tile (1), depth (2), blur (3), pose (4), gray (5), low quality (6). Negative values will be treated as 'None'."
class ImageField(BaseModel):

View File

@@ -0,0 +1,99 @@
from pydantic import BaseModel, Field, field_validator, model_validator
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, OutputField, UIType
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_RESIZE_VALUES
class FluxControlNetField(BaseModel):
image: ImageField = Field(description="The control image")
control_model: ModelIdentifierField = Field(description="The ControlNet model to use")
control_weight: float | list[float] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = Field(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
)
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
instantx_control_mode: int | None = Field(default=-1, description=FieldDescriptions.instantx_control_mode)
@field_validator("control_weight")
@classmethod
def validate_control_weight(cls, v: float | list[float]) -> float | list[float]:
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
@invocation_output("flux_controlnet_output")
class FluxControlNetOutput(BaseInvocationOutput):
"""FLUX ControlNet info"""
control: FluxControlNetField = OutputField(description=FieldDescriptions.control)
@invocation(
"flux_controlnet",
title="FLUX ControlNet",
tags=["controlnet", "flux"],
category="controlnet",
version="1.0.0",
classification=Classification.Prototype,
)
class FluxControlNetInvocation(BaseInvocation):
"""Collect FLUX ControlNet info to pass to other nodes."""
image: ImageField = InputField(description="The control image")
control_model: ModelIdentifierField = InputField(
description=FieldDescriptions.controlnet_model, ui_type=UIType.ControlNetModel
)
control_weight: float | list[float] = InputField(
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"
)
begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
)
resize_mode: CONTROLNET_RESIZE_VALUES = InputField(default="just_resize", description="The resize mode used")
# Note: We default to -1 instead of None, because in the workflow editor UI None is not currently supported.
instantx_control_mode: int | None = InputField(default=-1, description=FieldDescriptions.instantx_control_mode)
@field_validator("control_weight")
@classmethod
def validate_control_weight(cls, v: float | list[float]) -> float | list[float]:
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
def invoke(self, context: InvocationContext) -> FluxControlNetOutput:
return FluxControlNetOutput(
control=FluxControlNetField(
image=self.image,
control_model=self.control_model,
control_weight=self.control_weight,
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
resize_mode=self.resize_mode,
instantx_control_mode=self.instantx_control_mode,
),
)

View File

@@ -16,11 +16,16 @@ from invokeai.app.invocations.fields import (
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import TransformerField
from invokeai.app.invocations.flux_controlnet import FluxControlNetField
from invokeai.app.invocations.model import TransformerField, VAEField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.controlnet.instantx_controlnet_flux import InstantXControlNetFlux
from invokeai.backend.flux.controlnet.xlabs_controlnet_flux import XLabsControlNetFlux
from invokeai.backend.flux.denoise import denoise
from invokeai.backend.flux.inpaint_extension import InpaintExtension
from invokeai.backend.flux.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
from invokeai.backend.flux.model import Flux
from invokeai.backend.flux.sampling_utils import (
clip_timestep_schedule_fractional,
@@ -44,7 +49,7 @@ from invokeai.backend.util.devices import TorchDevice
title="FLUX Denoise",
tags=["image", "flux"],
category="image",
version="3.0.0",
version="3.1.0",
classification=Classification.Prototype,
)
class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
@@ -87,6 +92,14 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images. FLUX dev only, ignored for schnell.",
)
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
control: FluxControlNetField | list[FluxControlNetField] | None = InputField(
default=None, input=Input.Connection, description="ControlNet models."
)
controlnet_vae: VAEField | None = InputField(
default=None,
description=FieldDescriptions.vae,
input=Input.Connection,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
@@ -167,8 +180,8 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
inpaint_mask = self._prep_inpaint_mask(context, x)
b, _c, h, w = x.shape
img_ids = generate_img_ids(h=h, w=w, batch_size=b, device=x.device, dtype=x.dtype)
b, _c, latent_h, latent_w = x.shape
img_ids = generate_img_ids(h=latent_h, w=latent_w, batch_size=b, device=x.device, dtype=x.dtype)
bs, t5_seq_len, _ = t5_embeddings.shape
txt_ids = torch.zeros(bs, t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device())
@@ -192,12 +205,21 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
noise=noise,
)
with (
transformer_info.model_on_device() as (cached_weights, transformer),
ExitStack() as exit_stack,
):
assert isinstance(transformer, Flux)
with ExitStack() as exit_stack:
# Prepare ControlNet extensions.
# Note: We do this before loading the transformer model to minimize peak memory (see implementation).
controlnet_extensions = self._prep_controlnet_extensions(
context=context,
exit_stack=exit_stack,
latent_height=latent_h,
latent_width=latent_w,
dtype=inference_dtype,
device=x.device,
)
# Load the transformer model.
(cached_weights, transformer) = exit_stack.enter_context(transformer_info.model_on_device())
assert isinstance(transformer, Flux)
config = transformer_info.config
assert config is not None
@@ -242,6 +264,7 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
step_callback=self._build_step_callback(context),
guidance=self.guidance,
inpaint_extension=inpaint_extension,
controlnet_extensions=controlnet_extensions,
)
x = unpack(x.float(), self.height, self.width)
@@ -288,6 +311,104 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
# `latents`.
return mask.expand_as(latents)
def _prep_controlnet_extensions(
self,
context: InvocationContext,
exit_stack: ExitStack,
latent_height: int,
latent_width: int,
dtype: torch.dtype,
device: torch.device,
) -> list[XLabsControlNetExtension | InstantXControlNetExtension]:
# Normalize the controlnet input to list[ControlField].
controlnets: list[FluxControlNetField]
if self.control is None:
controlnets = []
elif isinstance(self.control, FluxControlNetField):
controlnets = [self.control]
elif isinstance(self.control, list):
controlnets = self.control
else:
raise ValueError(f"Unsupported controlnet type: {type(self.control)}")
# TODO(ryand): Add a field to the model config so that we can distinguish between XLabs and InstantX ControlNets
# before loading the models. Then make sure that all VAE encoding is done before loading the ControlNets to
# minimize peak memory.
# First, load the ControlNet models so that we can determine the ControlNet types.
controlnet_models = [context.models.load(controlnet.control_model) for controlnet in controlnets]
# Calculate the controlnet conditioning tensors.
# We do this before loading the ControlNet models because it may require running the VAE, and we are trying to
# keep peak memory down.
controlnet_conds: list[torch.Tensor] = []
for controlnet, controlnet_model in zip(controlnets, controlnet_models, strict=True):
image = context.images.get_pil(controlnet.image.image_name)
if isinstance(controlnet_model.model, InstantXControlNetFlux):
if self.controlnet_vae is None:
raise ValueError("A ControlNet VAE is required when using an InstantX FLUX ControlNet.")
vae_info = context.models.load(self.controlnet_vae.vae)
controlnet_conds.append(
InstantXControlNetExtension.prepare_controlnet_cond(
controlnet_image=image,
vae_info=vae_info,
latent_height=latent_height,
latent_width=latent_width,
dtype=dtype,
device=device,
resize_mode=controlnet.resize_mode,
)
)
elif isinstance(controlnet_model.model, XLabsControlNetFlux):
controlnet_conds.append(
XLabsControlNetExtension.prepare_controlnet_cond(
controlnet_image=image,
latent_height=latent_height,
latent_width=latent_width,
dtype=dtype,
device=device,
resize_mode=controlnet.resize_mode,
)
)
# Finally, load the ControlNet models and initialize the ControlNet extensions.
controlnet_extensions: list[XLabsControlNetExtension | InstantXControlNetExtension] = []
for controlnet, controlnet_cond, controlnet_model in zip(
controlnets, controlnet_conds, controlnet_models, strict=True
):
model = exit_stack.enter_context(controlnet_model)
if isinstance(model, XLabsControlNetFlux):
controlnet_extensions.append(
XLabsControlNetExtension(
model=model,
controlnet_cond=controlnet_cond,
weight=controlnet.control_weight,
begin_step_percent=controlnet.begin_step_percent,
end_step_percent=controlnet.end_step_percent,
)
)
elif isinstance(model, InstantXControlNetFlux):
instantx_control_mode: torch.Tensor | None = None
if controlnet.instantx_control_mode is not None and controlnet.instantx_control_mode >= 0:
instantx_control_mode = torch.tensor(controlnet.instantx_control_mode, dtype=torch.long)
instantx_control_mode = instantx_control_mode.reshape([-1, 1])
controlnet_extensions.append(
InstantXControlNetExtension(
model=model,
controlnet_cond=controlnet_cond,
instantx_control_mode=instantx_control_mode,
weight=controlnet.control_weight,
begin_step_percent=controlnet.begin_step_percent,
end_step_percent=controlnet.end_step_percent,
)
)
else:
raise ValueError(f"Unsupported ControlNet model type: {type(model)}")
return controlnet_extensions
def _lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.transformer.loras:
lora_info = context.models.load(lora.lora)

View File

@@ -1,7 +1,8 @@
from abc import ABC, abstractmethod
from invokeai.app.services.board_records.board_records_common import BoardChanges, BoardRecord
from invokeai.app.services.board_records.board_records_common import BoardChanges, BoardRecord, BoardRecordOrderBy
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
class BoardRecordStorageBase(ABC):
@@ -39,12 +40,19 @@ class BoardRecordStorageBase(ABC):
@abstractmethod
def get_many(
self, offset: int = 0, limit: int = 10, include_archived: bool = False
self,
order_by: BoardRecordOrderBy,
direction: SQLiteDirection,
offset: int = 0,
limit: int = 10,
include_archived: bool = False,
) -> OffsetPaginatedResults[BoardRecord]:
"""Gets many board records."""
pass
@abstractmethod
def get_all(self, include_archived: bool = False) -> list[BoardRecord]:
def get_all(
self, order_by: BoardRecordOrderBy, direction: SQLiteDirection, include_archived: bool = False
) -> list[BoardRecord]:
"""Gets all board records."""
pass

View File

@@ -1,8 +1,10 @@
from datetime import datetime
from enum import Enum
from typing import Optional, Union
from pydantic import BaseModel, Field
from invokeai.app.util.metaenum import MetaEnum
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
@@ -60,6 +62,13 @@ class BoardChanges(BaseModel, extra="forbid"):
archived: Optional[bool] = Field(default=None, description="Whether or not the board is archived")
class BoardRecordOrderBy(str, Enum, metaclass=MetaEnum):
"""The order by options for board records"""
CreatedAt = "created_at"
Name = "board_name"
class BoardRecordNotFoundException(Exception):
"""Raised when an board record is not found."""

View File

@@ -8,10 +8,12 @@ from invokeai.app.services.board_records.board_records_common import (
BoardRecord,
BoardRecordDeleteException,
BoardRecordNotFoundException,
BoardRecordOrderBy,
BoardRecordSaveException,
deserialize_board_record,
)
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.util.misc import uuid_string
@@ -144,7 +146,12 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
return self.get(board_id)
def get_many(
self, offset: int = 0, limit: int = 10, include_archived: bool = False
self,
order_by: BoardRecordOrderBy,
direction: SQLiteDirection,
offset: int = 0,
limit: int = 10,
include_archived: bool = False,
) -> OffsetPaginatedResults[BoardRecord]:
try:
self._lock.acquire()
@@ -154,17 +161,16 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
SELECT *
FROM boards
{archived_filter}
ORDER BY created_at DESC
ORDER BY {order_by} {direction}
LIMIT ? OFFSET ?;
"""
# Determine archived filter condition
if include_archived:
archived_filter = ""
else:
archived_filter = "WHERE archived = 0"
archived_filter = "" if include_archived else "WHERE archived = 0"
final_query = base_query.format(archived_filter=archived_filter)
final_query = base_query.format(
archived_filter=archived_filter, order_by=order_by.value, direction=direction.value
)
# Execute query to fetch boards
self._cursor.execute(final_query, (limit, offset))
@@ -198,23 +204,32 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
finally:
self._lock.release()
def get_all(self, include_archived: bool = False) -> list[BoardRecord]:
def get_all(
self, order_by: BoardRecordOrderBy, direction: SQLiteDirection, include_archived: bool = False
) -> list[BoardRecord]:
try:
self._lock.acquire()
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY created_at DESC
"""
if include_archived:
archived_filter = ""
if order_by == BoardRecordOrderBy.Name:
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY LOWER(board_name) {direction}
"""
else:
archived_filter = "WHERE archived = 0"
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY {order_by} {direction}
"""
final_query = base_query.format(archived_filter=archived_filter)
archived_filter = "" if include_archived else "WHERE archived = 0"
final_query = base_query.format(
archived_filter=archived_filter, order_by=order_by.value, direction=direction.value
)
self._cursor.execute(final_query)

View File

@@ -1,8 +1,9 @@
from abc import ABC, abstractmethod
from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.board_records.board_records_common import BoardChanges, BoardRecordOrderBy
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
class BoardServiceABC(ABC):
@@ -43,12 +44,19 @@ class BoardServiceABC(ABC):
@abstractmethod
def get_many(
self, offset: int = 0, limit: int = 10, include_archived: bool = False
self,
order_by: BoardRecordOrderBy,
direction: SQLiteDirection,
offset: int = 0,
limit: int = 10,
include_archived: bool = False,
) -> OffsetPaginatedResults[BoardDTO]:
"""Gets many boards."""
pass
@abstractmethod
def get_all(self, include_archived: bool = False) -> list[BoardDTO]:
def get_all(
self, order_by: BoardRecordOrderBy, direction: SQLiteDirection, include_archived: bool = False
) -> list[BoardDTO]:
"""Gets all boards."""
pass

View File

@@ -1,8 +1,9 @@
from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.board_records.board_records_common import BoardChanges, BoardRecordOrderBy
from invokeai.app.services.boards.boards_base import BoardServiceABC
from invokeai.app.services.boards.boards_common import BoardDTO, board_record_to_dto
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
class BoardService(BoardServiceABC):
@@ -47,9 +48,16 @@ class BoardService(BoardServiceABC):
self.__invoker.services.board_records.delete(board_id)
def get_many(
self, offset: int = 0, limit: int = 10, include_archived: bool = False
self,
order_by: BoardRecordOrderBy,
direction: SQLiteDirection,
offset: int = 0,
limit: int = 10,
include_archived: bool = False,
) -> OffsetPaginatedResults[BoardDTO]:
board_records = self.__invoker.services.board_records.get_many(offset, limit, include_archived)
board_records = self.__invoker.services.board_records.get_many(
order_by, direction, offset, limit, include_archived
)
board_dtos = []
for r in board_records.items:
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(r.board_id)
@@ -63,8 +71,10 @@ class BoardService(BoardServiceABC):
return OffsetPaginatedResults[BoardDTO](items=board_dtos, offset=offset, limit=limit, total=len(board_dtos))
def get_all(self, include_archived: bool = False) -> list[BoardDTO]:
board_records = self.__invoker.services.board_records.get_all(include_archived)
def get_all(
self, order_by: BoardRecordOrderBy, direction: SQLiteDirection, include_archived: bool = False
) -> list[BoardDTO]:
board_records = self.__invoker.services.board_records.get_all(order_by, direction, include_archived)
board_dtos = []
for r in board_records:
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(r.board_id)

View File

@@ -110,15 +110,26 @@ class DiskImageFileStorage(ImageFileStorageBase):
except Exception as e:
raise ImageFileDeleteException from e
# TODO: make this a bit more flexible for e.g. cloud storage
def get_path(self, image_name: str, thumbnail: bool = False) -> Path:
path = self.__output_folder / image_name
base_folder = self.__thumbnails_folder if thumbnail else self.__output_folder
filename = get_thumbnail_name(image_name) if thumbnail else image_name
if thumbnail:
thumbnail_name = get_thumbnail_name(image_name)
path = self.__thumbnails_folder / thumbnail_name
# Strip any path information from the filename
basename = Path(filename).name
return path
if basename != filename:
raise ValueError("Invalid image name, potential directory traversal detected")
image_path = base_folder / basename
# Ensure the image path is within the base folder to prevent directory traversal
resolved_base = base_folder.resolve()
resolved_image_path = image_path.resolve()
if not resolved_image_path.is_relative_to(resolved_base):
raise ValueError("Image path outside outputs folder, potential directory traversal detected")
return resolved_image_path
def validate_path(self, path: Union[str, Path]) -> bool:
"""Validates the path given for an image or thumbnail."""

View File

@@ -41,9 +41,9 @@ class WorkflowRecordsStorageBase(ABC):
self,
order_by: WorkflowRecordOrderBy,
direction: SQLiteDirection,
category: WorkflowCategory,
page: int,
per_page: Optional[int],
category: Optional[WorkflowCategory],
query: Optional[str],
) -> PaginatedResults[WorkflowRecordListItemDTO]:
"""Gets many workflows."""

View File

@@ -127,9 +127,9 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
self,
order_by: WorkflowRecordOrderBy,
direction: SQLiteDirection,
category: WorkflowCategory,
page: int = 0,
per_page: Optional[int] = None,
category: Optional[WorkflowCategory] = None,
query: Optional[str] = None,
) -> PaginatedResults[WorkflowRecordListItemDTO]:
try:
@@ -137,7 +137,8 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
# sanitize!
assert order_by in WorkflowRecordOrderBy
assert direction in SQLiteDirection
count_query = "SELECT COUNT(*) FROM workflow_library"
assert category in WorkflowCategory
count_query = "SELECT COUNT(*) FROM workflow_library WHERE category = ?"
main_query = """
SELECT
workflow_id,
@@ -148,26 +149,16 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
updated_at,
opened_at
FROM workflow_library
WHERE category = ?
"""
main_params: list[int | str] = []
count_params: list[int | str] = []
if category:
assert category in WorkflowCategory
main_query += " WHERE category = ?"
count_query += " WHERE category = ?"
main_params.append(category.value)
count_params.append(category.value)
main_params: list[int | str] = [category.value]
count_params: list[int | str] = [category.value]
stripped_query = query.strip() if query else None
if stripped_query:
wildcard_query = "%" + stripped_query + "%"
if "WHERE" in main_query:
main_query += " AND (name LIKE ? OR description LIKE ?)"
count_query += " AND (name LIKE ? OR description LIKE ?)"
else:
main_query += " WHERE name LIKE ? OR description LIKE ?"
count_query += " WHERE name LIKE ? OR description LIKE ?"
main_query += " AND name LIKE ? OR description LIKE ? "
count_query += " AND name LIKE ? OR description LIKE ?;"
main_params.extend([wildcard_query, wildcard_query])
count_params.extend([wildcard_query, wildcard_query])

View File

@@ -0,0 +1,58 @@
from dataclasses import dataclass
import torch
@dataclass
class ControlNetFluxOutput:
single_block_residuals: list[torch.Tensor] | None
double_block_residuals: list[torch.Tensor] | None
def apply_weight(self, weight: float):
if self.single_block_residuals is not None:
for i in range(len(self.single_block_residuals)):
self.single_block_residuals[i] = self.single_block_residuals[i] * weight
if self.double_block_residuals is not None:
for i in range(len(self.double_block_residuals)):
self.double_block_residuals[i] = self.double_block_residuals[i] * weight
def add_tensor_lists_elementwise(
list1: list[torch.Tensor] | None, list2: list[torch.Tensor] | None
) -> list[torch.Tensor] | None:
"""Add two tensor lists elementwise that could be None."""
if list1 is None and list2 is None:
return None
if list1 is None:
return list2
if list2 is None:
return list1
new_list: list[torch.Tensor] = []
for list1_tensor, list2_tensor in zip(list1, list2, strict=True):
new_list.append(list1_tensor + list2_tensor)
return new_list
def add_controlnet_flux_outputs(
controlnet_output_1: ControlNetFluxOutput, controlnet_output_2: ControlNetFluxOutput
) -> ControlNetFluxOutput:
return ControlNetFluxOutput(
single_block_residuals=add_tensor_lists_elementwise(
controlnet_output_1.single_block_residuals, controlnet_output_2.single_block_residuals
),
double_block_residuals=add_tensor_lists_elementwise(
controlnet_output_1.double_block_residuals, controlnet_output_2.double_block_residuals
),
)
def sum_controlnet_flux_outputs(
controlnet_outputs: list[ControlNetFluxOutput],
) -> ControlNetFluxOutput:
controlnet_output_sum = ControlNetFluxOutput(single_block_residuals=None, double_block_residuals=None)
for controlnet_output in controlnet_outputs:
controlnet_output_sum = add_controlnet_flux_outputs(controlnet_output_sum, controlnet_output)
return controlnet_output_sum

View File

@@ -0,0 +1,180 @@
# This file was initially copied from:
# https://github.com/huggingface/diffusers/blob/99f608218caa069a2f16dcf9efab46959b15aec0/src/diffusers/models/controlnet_flux.py
from dataclasses import dataclass
import torch
import torch.nn as nn
from invokeai.backend.flux.controlnet.zero_module import zero_module
from invokeai.backend.flux.model import FluxParams
from invokeai.backend.flux.modules.layers import (
DoubleStreamBlock,
EmbedND,
MLPEmbedder,
SingleStreamBlock,
timestep_embedding,
)
@dataclass
class InstantXControlNetFluxOutput:
controlnet_block_samples: list[torch.Tensor] | None
controlnet_single_block_samples: list[torch.Tensor] | None
# NOTE(ryand): Mapping between diffusers FLUX transformer params and BFL FLUX transformer params:
# - Diffusers: BFL
# - in_channels: in_channels
# - num_layers: depth
# - num_single_layers: depth_single_blocks
# - attention_head_dim: hidden_size // num_heads
# - num_attention_heads: num_heads
# - joint_attention_dim: context_in_dim
# - pooled_projection_dim: vec_in_dim
# - guidance_embeds: guidance_embed
# - axes_dims_rope: axes_dim
class InstantXControlNetFlux(torch.nn.Module):
def __init__(self, params: FluxParams, num_control_modes: int | None = None):
"""
Args:
params (FluxParams): The parameters for the FLUX model.
num_control_modes (int | None, optional): The number of controlnet modes. If non-None, then the model is a
'union controlnet' model and expects a mode conditioning input at runtime.
"""
super().__init__()
# The following modules mirror the base FLUX transformer model.
# -------------------------------------------------------------
self.params = params
self.in_channels = params.in_channels
self.out_channels = self.in_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}")
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
)
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
for _ in range(params.depth_single_blocks)
]
)
# The following modules are specific to the ControlNet model.
# -----------------------------------------------------------
self.controlnet_blocks = nn.ModuleList([])
for _ in range(len(self.double_blocks)):
self.controlnet_blocks.append(zero_module(nn.Linear(self.hidden_size, self.hidden_size)))
self.controlnet_single_blocks = nn.ModuleList([])
for _ in range(len(self.single_blocks)):
self.controlnet_single_blocks.append(zero_module(nn.Linear(self.hidden_size, self.hidden_size)))
self.is_union = False
if num_control_modes is not None:
self.is_union = True
self.controlnet_mode_embedder = nn.Embedding(num_control_modes, self.hidden_size)
self.controlnet_x_embedder = zero_module(torch.nn.Linear(self.in_channels, self.hidden_size))
def forward(
self,
controlnet_cond: torch.Tensor,
controlnet_mode: torch.Tensor | None,
img: torch.Tensor,
img_ids: torch.Tensor,
txt: torch.Tensor,
txt_ids: torch.Tensor,
timesteps: torch.Tensor,
y: torch.Tensor,
guidance: torch.Tensor | None = None,
) -> InstantXControlNetFluxOutput:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
img = self.img_in(img)
# Add controlnet_cond embedding.
img = img + self.controlnet_x_embedder(controlnet_cond)
vec = self.time_in(timestep_embedding(timesteps, 256))
if self.params.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
# If this is a union ControlNet, then concat the control mode embedding to the T5 text embedding.
if self.is_union:
if controlnet_mode is None:
# We allow users to enter 'None' as the controlnet_mode if they don't want to worry about this input.
# We've chosen to use a zero-embedding in this case.
zero_index = torch.zeros([1, 1], dtype=torch.long, device=txt.device)
controlnet_mode_emb = torch.zeros_like(self.controlnet_mode_embedder(zero_index))
else:
controlnet_mode_emb = self.controlnet_mode_embedder(controlnet_mode)
txt = torch.cat([controlnet_mode_emb, txt], dim=1)
txt_ids = torch.cat([txt_ids[:, :1, :], txt_ids], dim=1)
else:
assert controlnet_mode is None
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
double_block_samples: list[torch.Tensor] = []
for block in self.double_blocks:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
double_block_samples.append(img)
img = torch.cat((txt, img), 1)
single_block_samples: list[torch.Tensor] = []
for block in self.single_blocks:
img = block(img, vec=vec, pe=pe)
single_block_samples.append(img[:, txt.shape[1] :])
# ControlNet Block
controlnet_double_block_samples: list[torch.Tensor] = []
for double_block_sample, controlnet_block in zip(double_block_samples, self.controlnet_blocks, strict=True):
double_block_sample = controlnet_block(double_block_sample)
controlnet_double_block_samples.append(double_block_sample)
controlnet_single_block_samples: list[torch.Tensor] = []
for single_block_sample, controlnet_block in zip(
single_block_samples, self.controlnet_single_blocks, strict=True
):
single_block_sample = controlnet_block(single_block_sample)
controlnet_single_block_samples.append(single_block_sample)
return InstantXControlNetFluxOutput(
controlnet_block_samples=controlnet_double_block_samples or None,
controlnet_single_block_samples=controlnet_single_block_samples or None,
)

View File

@@ -0,0 +1,295 @@
from typing import Any, Dict
import torch
from invokeai.backend.flux.model import FluxParams
def is_state_dict_xlabs_controlnet(sd: Dict[str, Any]) -> bool:
"""Is the state dict for an XLabs ControlNet model?
This is intended to be a reasonably high-precision detector, but it is not guaranteed to have perfect precision.
"""
# If all of the expected keys are present, then this is very likely an XLabs ControlNet model.
expected_keys = {
"controlnet_blocks.0.bias",
"controlnet_blocks.0.weight",
"input_hint_block.0.bias",
"input_hint_block.0.weight",
"pos_embed_input.bias",
"pos_embed_input.weight",
}
if expected_keys.issubset(sd.keys()):
return True
return False
def is_state_dict_instantx_controlnet(sd: Dict[str, Any]) -> bool:
"""Is the state dict for an InstantX ControlNet model?
This is intended to be a reasonably high-precision detector, but it is not guaranteed to have perfect precision.
"""
# If all of the expected keys are present, then this is very likely an InstantX ControlNet model.
expected_keys = {
"controlnet_blocks.0.bias",
"controlnet_blocks.0.weight",
"controlnet_x_embedder.bias",
"controlnet_x_embedder.weight",
}
if expected_keys.issubset(sd.keys()):
return True
return False
def _fuse_weights(*t: torch.Tensor) -> torch.Tensor:
"""Fuse weights along dimension 0.
Used to fuse q, k, v attention weights into a single qkv tensor when converting from diffusers to BFL format.
"""
# TODO(ryand): Double check dim=0 is correct.
return torch.cat(t, dim=0)
def _convert_flux_double_block_sd_from_diffusers_to_bfl_format(
sd: Dict[str, torch.Tensor], double_block_index: int
) -> Dict[str, torch.Tensor]:
"""Convert the state dict for a double block from diffusers format to BFL format."""
to_prefix = f"double_blocks.{double_block_index}"
from_prefix = f"transformer_blocks.{double_block_index}"
new_sd: dict[str, torch.Tensor] = {}
# Check one key to determine if this block exists.
if f"{from_prefix}.attn.add_q_proj.bias" not in sd:
return new_sd
# txt_attn.qkv
new_sd[f"{to_prefix}.txt_attn.qkv.bias"] = _fuse_weights(
sd.pop(f"{from_prefix}.attn.add_q_proj.bias"),
sd.pop(f"{from_prefix}.attn.add_k_proj.bias"),
sd.pop(f"{from_prefix}.attn.add_v_proj.bias"),
)
new_sd[f"{to_prefix}.txt_attn.qkv.weight"] = _fuse_weights(
sd.pop(f"{from_prefix}.attn.add_q_proj.weight"),
sd.pop(f"{from_prefix}.attn.add_k_proj.weight"),
sd.pop(f"{from_prefix}.attn.add_v_proj.weight"),
)
# img_attn.qkv
new_sd[f"{to_prefix}.img_attn.qkv.bias"] = _fuse_weights(
sd.pop(f"{from_prefix}.attn.to_q.bias"),
sd.pop(f"{from_prefix}.attn.to_k.bias"),
sd.pop(f"{from_prefix}.attn.to_v.bias"),
)
new_sd[f"{to_prefix}.img_attn.qkv.weight"] = _fuse_weights(
sd.pop(f"{from_prefix}.attn.to_q.weight"),
sd.pop(f"{from_prefix}.attn.to_k.weight"),
sd.pop(f"{from_prefix}.attn.to_v.weight"),
)
# Handle basic 1-to-1 key conversions.
key_map = {
# img_attn
"attn.norm_k.weight": "img_attn.norm.key_norm.scale",
"attn.norm_q.weight": "img_attn.norm.query_norm.scale",
"attn.to_out.0.weight": "img_attn.proj.weight",
"attn.to_out.0.bias": "img_attn.proj.bias",
# img_mlp
"ff.net.0.proj.weight": "img_mlp.0.weight",
"ff.net.0.proj.bias": "img_mlp.0.bias",
"ff.net.2.weight": "img_mlp.2.weight",
"ff.net.2.bias": "img_mlp.2.bias",
# img_mod
"norm1.linear.weight": "img_mod.lin.weight",
"norm1.linear.bias": "img_mod.lin.bias",
# txt_attn
"attn.norm_added_q.weight": "txt_attn.norm.query_norm.scale",
"attn.norm_added_k.weight": "txt_attn.norm.key_norm.scale",
"attn.to_add_out.weight": "txt_attn.proj.weight",
"attn.to_add_out.bias": "txt_attn.proj.bias",
# txt_mlp
"ff_context.net.0.proj.weight": "txt_mlp.0.weight",
"ff_context.net.0.proj.bias": "txt_mlp.0.bias",
"ff_context.net.2.weight": "txt_mlp.2.weight",
"ff_context.net.2.bias": "txt_mlp.2.bias",
# txt_mod
"norm1_context.linear.weight": "txt_mod.lin.weight",
"norm1_context.linear.bias": "txt_mod.lin.bias",
}
for from_key, to_key in key_map.items():
new_sd[f"{to_prefix}.{to_key}"] = sd.pop(f"{from_prefix}.{from_key}")
return new_sd
def _convert_flux_single_block_sd_from_diffusers_to_bfl_format(
sd: Dict[str, torch.Tensor], single_block_index: int
) -> Dict[str, torch.Tensor]:
"""Convert the state dict for a single block from diffusers format to BFL format."""
to_prefix = f"single_blocks.{single_block_index}"
from_prefix = f"single_transformer_blocks.{single_block_index}"
new_sd: dict[str, torch.Tensor] = {}
# Check one key to determine if this block exists.
if f"{from_prefix}.attn.to_q.bias" not in sd:
return new_sd
# linear1 (qkv)
new_sd[f"{to_prefix}.linear1.bias"] = _fuse_weights(
sd.pop(f"{from_prefix}.attn.to_q.bias"),
sd.pop(f"{from_prefix}.attn.to_k.bias"),
sd.pop(f"{from_prefix}.attn.to_v.bias"),
sd.pop(f"{from_prefix}.proj_mlp.bias"),
)
new_sd[f"{to_prefix}.linear1.weight"] = _fuse_weights(
sd.pop(f"{from_prefix}.attn.to_q.weight"),
sd.pop(f"{from_prefix}.attn.to_k.weight"),
sd.pop(f"{from_prefix}.attn.to_v.weight"),
sd.pop(f"{from_prefix}.proj_mlp.weight"),
)
# Handle basic 1-to-1 key conversions.
key_map = {
# linear2
"proj_out.weight": "linear2.weight",
"proj_out.bias": "linear2.bias",
# modulation
"norm.linear.weight": "modulation.lin.weight",
"norm.linear.bias": "modulation.lin.bias",
# norm
"attn.norm_k.weight": "norm.key_norm.scale",
"attn.norm_q.weight": "norm.query_norm.scale",
}
for from_key, to_key in key_map.items():
new_sd[f"{to_prefix}.{to_key}"] = sd.pop(f"{from_prefix}.{from_key}")
return new_sd
def convert_diffusers_instantx_state_dict_to_bfl_format(sd: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""Convert an InstantX ControlNet state dict to the format that can be loaded by our internal
InstantXControlNetFlux model.
The original InstantX ControlNet model was developed to be used in diffusers. We have ported the original
implementation to InstantXControlNetFlux to make it compatible with BFL-style models. This function converts the
original state dict to the format expected by InstantXControlNetFlux.
"""
# Shallow copy sd so that we can pop keys from it without modifying the original.
sd = sd.copy()
new_sd: dict[str, torch.Tensor] = {}
# Handle basic 1-to-1 key conversions.
basic_key_map = {
# Base model keys.
# ----------------
# txt_in keys.
"context_embedder.bias": "txt_in.bias",
"context_embedder.weight": "txt_in.weight",
# guidance_in MLPEmbedder keys.
"time_text_embed.guidance_embedder.linear_1.bias": "guidance_in.in_layer.bias",
"time_text_embed.guidance_embedder.linear_1.weight": "guidance_in.in_layer.weight",
"time_text_embed.guidance_embedder.linear_2.bias": "guidance_in.out_layer.bias",
"time_text_embed.guidance_embedder.linear_2.weight": "guidance_in.out_layer.weight",
# vector_in MLPEmbedder keys.
"time_text_embed.text_embedder.linear_1.bias": "vector_in.in_layer.bias",
"time_text_embed.text_embedder.linear_1.weight": "vector_in.in_layer.weight",
"time_text_embed.text_embedder.linear_2.bias": "vector_in.out_layer.bias",
"time_text_embed.text_embedder.linear_2.weight": "vector_in.out_layer.weight",
# time_in MLPEmbedder keys.
"time_text_embed.timestep_embedder.linear_1.bias": "time_in.in_layer.bias",
"time_text_embed.timestep_embedder.linear_1.weight": "time_in.in_layer.weight",
"time_text_embed.timestep_embedder.linear_2.bias": "time_in.out_layer.bias",
"time_text_embed.timestep_embedder.linear_2.weight": "time_in.out_layer.weight",
# img_in keys.
"x_embedder.bias": "img_in.bias",
"x_embedder.weight": "img_in.weight",
}
for old_key, new_key in basic_key_map.items():
v = sd.pop(old_key, None)
if v is not None:
new_sd[new_key] = v
# Handle the double_blocks.
block_index = 0
while True:
converted_double_block_sd = _convert_flux_double_block_sd_from_diffusers_to_bfl_format(sd, block_index)
if len(converted_double_block_sd) == 0:
break
new_sd.update(converted_double_block_sd)
block_index += 1
# Handle the single_blocks.
block_index = 0
while True:
converted_singe_block_sd = _convert_flux_single_block_sd_from_diffusers_to_bfl_format(sd, block_index)
if len(converted_singe_block_sd) == 0:
break
new_sd.update(converted_singe_block_sd)
block_index += 1
# Transfer controlnet keys as-is.
for k in list(sd.keys()):
if k.startswith("controlnet_"):
new_sd[k] = sd.pop(k)
# Assert that all keys have been handled.
assert len(sd) == 0
return new_sd
def infer_flux_params_from_state_dict(sd: Dict[str, torch.Tensor]) -> FluxParams:
"""Infer the FluxParams from the shape of a FLUX state dict. When a model is distributed in diffusers format, this
information is all contained in the config.json file that accompanies the model. However, being apple to infer the
params from the state dict enables us to load models (e.g. an InstantX ControlNet) from a single weight file.
"""
hidden_size = sd["img_in.weight"].shape[0]
mlp_hidden_dim = sd["double_blocks.0.img_mlp.0.weight"].shape[0]
# mlp_ratio is a float, but we treat it as an int here to avoid having to think about possible float precision
# issues. In practice, mlp_ratio is usually 4.
mlp_ratio = mlp_hidden_dim // hidden_size
head_dim = sd["double_blocks.0.img_attn.norm.query_norm.scale"].shape[0]
num_heads = hidden_size // head_dim
# Count the number of double blocks.
double_block_index = 0
while f"double_blocks.{double_block_index}.img_attn.qkv.weight" in sd:
double_block_index += 1
# Count the number of single blocks.
single_block_index = 0
while f"single_blocks.{single_block_index}.linear1.weight" in sd:
single_block_index += 1
return FluxParams(
in_channels=sd["img_in.weight"].shape[1],
vec_in_dim=sd["vector_in.in_layer.weight"].shape[1],
context_in_dim=sd["txt_in.weight"].shape[1],
hidden_size=hidden_size,
mlp_ratio=mlp_ratio,
num_heads=num_heads,
depth=double_block_index,
depth_single_blocks=single_block_index,
# axes_dim cannot be inferred from the state dict. The hard-coded value is correct for dev/schnell models.
axes_dim=[16, 56, 56],
# theta cannot be inferred from the state dict. The hard-coded value is correct for dev/schnell models.
theta=10_000,
qkv_bias="double_blocks.0.img_attn.qkv.bias" in sd,
guidance_embed="guidance_in.in_layer.weight" in sd,
)
def infer_instantx_num_control_modes_from_state_dict(sd: Dict[str, torch.Tensor]) -> int | None:
"""Infer the number of ControlNet Union modes from the shape of a InstantX ControlNet state dict.
Returns None if the model is not a ControlNet Union model. Otherwise returns the number of modes.
"""
mode_embedder_key = "controlnet_mode_embedder.weight"
if mode_embedder_key not in sd:
return None
return sd[mode_embedder_key].shape[0]

View File

@@ -0,0 +1,130 @@
# This file was initially based on:
# https://github.com/XLabs-AI/x-flux/blob/47495425dbed499be1e8e5a6e52628b07349cba2/src/flux/controlnet.py
from dataclasses import dataclass
import torch
from einops import rearrange
from invokeai.backend.flux.controlnet.zero_module import zero_module
from invokeai.backend.flux.model import FluxParams
from invokeai.backend.flux.modules.layers import DoubleStreamBlock, EmbedND, MLPEmbedder, timestep_embedding
@dataclass
class XLabsControlNetFluxOutput:
controlnet_double_block_residuals: list[torch.Tensor] | None
class XLabsControlNetFlux(torch.nn.Module):
"""A ControlNet model for FLUX.
The architecture is very similar to the base FLUX model, with the following differences:
- A `controlnet_depth` parameter is passed to control the number of double_blocks that the ControlNet is applied to.
In order to keep the ControlNet small, this is typically much less than the depth of the base FLUX model.
- There is a set of `controlnet_blocks` that are applied to the output of each double_block.
"""
def __init__(self, params: FluxParams, controlnet_depth: int = 2):
super().__init__()
self.params = params
self.in_channels = params.in_channels
self.out_channels = self.in_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}")
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = torch.nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else torch.nn.Identity()
)
self.txt_in = torch.nn.Linear(params.context_in_dim, self.hidden_size)
self.double_blocks = torch.nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
)
for _ in range(controlnet_depth)
]
)
# Add ControlNet blocks.
self.controlnet_blocks = torch.nn.ModuleList([])
for _ in range(controlnet_depth):
controlnet_block = torch.nn.Linear(self.hidden_size, self.hidden_size)
controlnet_block = zero_module(controlnet_block)
self.controlnet_blocks.append(controlnet_block)
self.pos_embed_input = torch.nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.input_hint_block = torch.nn.Sequential(
torch.nn.Conv2d(3, 16, 3, padding=1),
torch.nn.SiLU(),
torch.nn.Conv2d(16, 16, 3, padding=1),
torch.nn.SiLU(),
torch.nn.Conv2d(16, 16, 3, padding=1, stride=2),
torch.nn.SiLU(),
torch.nn.Conv2d(16, 16, 3, padding=1),
torch.nn.SiLU(),
torch.nn.Conv2d(16, 16, 3, padding=1, stride=2),
torch.nn.SiLU(),
torch.nn.Conv2d(16, 16, 3, padding=1),
torch.nn.SiLU(),
torch.nn.Conv2d(16, 16, 3, padding=1, stride=2),
torch.nn.SiLU(),
zero_module(torch.nn.Conv2d(16, 16, 3, padding=1)),
)
def forward(
self,
img: torch.Tensor,
img_ids: torch.Tensor,
controlnet_cond: torch.Tensor,
txt: torch.Tensor,
txt_ids: torch.Tensor,
timesteps: torch.Tensor,
y: torch.Tensor,
guidance: torch.Tensor | None = None,
) -> XLabsControlNetFluxOutput:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
controlnet_cond = self.input_hint_block(controlnet_cond)
controlnet_cond = rearrange(controlnet_cond, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
controlnet_cond = self.pos_embed_input(controlnet_cond)
img = img + controlnet_cond
vec = self.time_in(timestep_embedding(timesteps, 256))
if self.params.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
block_res_samples: list[torch.Tensor] = []
for block in self.double_blocks:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
block_res_samples.append(img)
controlnet_block_res_samples: list[torch.Tensor] = []
for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks, strict=True):
block_res_sample = controlnet_block(block_res_sample)
controlnet_block_res_samples.append(block_res_sample)
return XLabsControlNetFluxOutput(controlnet_double_block_residuals=controlnet_block_res_samples)

View File

@@ -0,0 +1,12 @@
from typing import TypeVar
import torch
T = TypeVar("T", bound=torch.nn.Module)
def zero_module(module: T) -> T:
"""Initialize the parameters of a module to zero."""
for p in module.parameters():
torch.nn.init.zeros_(p)
return module

View File

@@ -3,7 +3,10 @@ from typing import Callable
import torch
from tqdm import tqdm
from invokeai.backend.flux.inpaint_extension import InpaintExtension
from invokeai.backend.flux.controlnet.controlnet_flux_output import ControlNetFluxOutput, sum_controlnet_flux_outputs
from invokeai.backend.flux.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
from invokeai.backend.flux.model import Flux
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
@@ -21,6 +24,7 @@ def denoise(
step_callback: Callable[[PipelineIntermediateState], None],
guidance: float,
inpaint_extension: InpaintExtension | None,
controlnet_extensions: list[XLabsControlNetExtension | InstantXControlNetExtension],
):
# step 0 is the initial state
total_steps = len(timesteps) - 1
@@ -38,6 +42,30 @@ def denoise(
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
for t_curr, t_prev in tqdm(list(zip(timesteps[:-1], timesteps[1:], strict=True))):
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
# Run ControlNet models.
controlnet_residuals: list[ControlNetFluxOutput] = []
for controlnet_extension in controlnet_extensions:
controlnet_residuals.append(
controlnet_extension.run_controlnet(
timestep_index=step - 1,
total_num_timesteps=total_steps,
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
)
)
# Merge the ControlNet residuals from multiple ControlNets.
# TODO(ryand): We may want to alculate the sum just-in-time to keep peak memory low. Keep in mind, that the
# controlnet_residuals datastructure is efficient in that it likely contains multiple references to the same
# tensors. Calculating the sum materializes each tensor into its own instance.
merged_controlnet_residuals = sum_controlnet_flux_outputs(controlnet_residuals)
pred = model(
img=img,
img_ids=img_ids,
@@ -46,6 +74,8 @@ def denoise(
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
controlnet_double_block_residuals=merged_controlnet_residuals.double_block_residuals,
controlnet_single_block_residuals=merged_controlnet_residuals.single_block_residuals,
)
preview_img = img - t_curr * pred

View File

@@ -0,0 +1,45 @@
import math
from abc import ABC, abstractmethod
from typing import List, Union
import torch
from invokeai.backend.flux.controlnet.controlnet_flux_output import ControlNetFluxOutput
class BaseControlNetExtension(ABC):
def __init__(
self,
weight: Union[float, List[float]],
begin_step_percent: float,
end_step_percent: float,
):
self._weight = weight
self._begin_step_percent = begin_step_percent
self._end_step_percent = end_step_percent
def _get_weight(self, timestep_index: int, total_num_timesteps: int) -> float:
first_step = math.floor(self._begin_step_percent * total_num_timesteps)
last_step = math.ceil(self._end_step_percent * total_num_timesteps)
if timestep_index < first_step or timestep_index > last_step:
return 0.0
if isinstance(self._weight, list):
return self._weight[timestep_index]
return self._weight
@abstractmethod
def run_controlnet(
self,
timestep_index: int,
total_num_timesteps: int,
img: torch.Tensor,
img_ids: torch.Tensor,
txt: torch.Tensor,
txt_ids: torch.Tensor,
y: torch.Tensor,
timesteps: torch.Tensor,
guidance: torch.Tensor | None,
) -> ControlNetFluxOutput: ...

View File

@@ -0,0 +1,194 @@
import math
from typing import List, Union
import torch
from PIL.Image import Image
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.flux_vae_encode import FluxVaeEncodeInvocation
from invokeai.app.util.controlnet_utils import CONTROLNET_RESIZE_VALUES, prepare_control_image
from invokeai.backend.flux.controlnet.controlnet_flux_output import ControlNetFluxOutput
from invokeai.backend.flux.controlnet.instantx_controlnet_flux import (
InstantXControlNetFlux,
InstantXControlNetFluxOutput,
)
from invokeai.backend.flux.extensions.base_controlnet_extension import BaseControlNetExtension
from invokeai.backend.flux.sampling_utils import pack
from invokeai.backend.model_manager.load.load_base import LoadedModel
class InstantXControlNetExtension(BaseControlNetExtension):
def __init__(
self,
model: InstantXControlNetFlux,
controlnet_cond: torch.Tensor,
instantx_control_mode: torch.Tensor | None,
weight: Union[float, List[float]],
begin_step_percent: float,
end_step_percent: float,
):
super().__init__(
weight=weight,
begin_step_percent=begin_step_percent,
end_step_percent=end_step_percent,
)
self._model = model
# The VAE-encoded and 'packed' control image to pass to the ControlNet model.
self._controlnet_cond = controlnet_cond
# TODO(ryand): Should we define an enum for the instantx_control_mode? Is it likely to change for future models?
# The control mode for InstantX ControlNet union models.
# See the values defined here: https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union#control-mode
# Expected shape: (batch_size, 1), Expected dtype: torch.long
# If None, a zero-embedding will be used.
self._instantx_control_mode = instantx_control_mode
# TODO(ryand): Pass in these params if a new base transformer / InstantX ControlNet pair get released.
self._flux_transformer_num_double_blocks = 19
self._flux_transformer_num_single_blocks = 38
@classmethod
def prepare_controlnet_cond(
cls,
controlnet_image: Image,
vae_info: LoadedModel,
latent_height: int,
latent_width: int,
dtype: torch.dtype,
device: torch.device,
resize_mode: CONTROLNET_RESIZE_VALUES,
):
image_height = latent_height * LATENT_SCALE_FACTOR
image_width = latent_width * LATENT_SCALE_FACTOR
resized_controlnet_image = prepare_control_image(
image=controlnet_image,
do_classifier_free_guidance=False,
width=image_width,
height=image_height,
device=device,
dtype=dtype,
control_mode="balanced",
resize_mode=resize_mode,
)
# Shift the image from [0, 1] to [-1, 1].
resized_controlnet_image = resized_controlnet_image * 2 - 1
# Run VAE encoder.
controlnet_cond = FluxVaeEncodeInvocation.vae_encode(vae_info=vae_info, image_tensor=resized_controlnet_image)
controlnet_cond = pack(controlnet_cond)
return controlnet_cond
@classmethod
def from_controlnet_image(
cls,
model: InstantXControlNetFlux,
controlnet_image: Image,
instantx_control_mode: torch.Tensor | None,
vae_info: LoadedModel,
latent_height: int,
latent_width: int,
dtype: torch.dtype,
device: torch.device,
resize_mode: CONTROLNET_RESIZE_VALUES,
weight: Union[float, List[float]],
begin_step_percent: float,
end_step_percent: float,
):
image_height = latent_height * LATENT_SCALE_FACTOR
image_width = latent_width * LATENT_SCALE_FACTOR
resized_controlnet_image = prepare_control_image(
image=controlnet_image,
do_classifier_free_guidance=False,
width=image_width,
height=image_height,
device=device,
dtype=dtype,
control_mode="balanced",
resize_mode=resize_mode,
)
# Shift the image from [0, 1] to [-1, 1].
resized_controlnet_image = resized_controlnet_image * 2 - 1
# Run VAE encoder.
controlnet_cond = FluxVaeEncodeInvocation.vae_encode(vae_info=vae_info, image_tensor=resized_controlnet_image)
controlnet_cond = pack(controlnet_cond)
return cls(
model=model,
controlnet_cond=controlnet_cond,
instantx_control_mode=instantx_control_mode,
weight=weight,
begin_step_percent=begin_step_percent,
end_step_percent=end_step_percent,
)
def _instantx_output_to_controlnet_output(
self, instantx_output: InstantXControlNetFluxOutput
) -> ControlNetFluxOutput:
# The `interval_control` logic here is based on
# https://github.com/huggingface/diffusers/blob/31058cdaef63ca660a1a045281d156239fba8192/src/diffusers/models/transformers/transformer_flux.py#L507-L511
# Handle double block residuals.
double_block_residuals: list[torch.Tensor] = []
double_block_samples = instantx_output.controlnet_block_samples
if double_block_samples:
interval_control = self._flux_transformer_num_double_blocks / len(double_block_samples)
interval_control = int(math.ceil(interval_control))
for i in range(self._flux_transformer_num_double_blocks):
double_block_residuals.append(double_block_samples[i // interval_control])
# Handle single block residuals.
single_block_residuals: list[torch.Tensor] = []
single_block_samples = instantx_output.controlnet_single_block_samples
if single_block_samples:
interval_control = self._flux_transformer_num_single_blocks / len(single_block_samples)
interval_control = int(math.ceil(interval_control))
for i in range(self._flux_transformer_num_single_blocks):
single_block_residuals.append(single_block_samples[i // interval_control])
return ControlNetFluxOutput(
double_block_residuals=double_block_residuals or None,
single_block_residuals=single_block_residuals or None,
)
def run_controlnet(
self,
timestep_index: int,
total_num_timesteps: int,
img: torch.Tensor,
img_ids: torch.Tensor,
txt: torch.Tensor,
txt_ids: torch.Tensor,
y: torch.Tensor,
timesteps: torch.Tensor,
guidance: torch.Tensor | None,
) -> ControlNetFluxOutput:
weight = self._get_weight(timestep_index=timestep_index, total_num_timesteps=total_num_timesteps)
if weight < 1e-6:
return ControlNetFluxOutput(single_block_residuals=None, double_block_residuals=None)
# Make sure inputs have correct device and dtype.
self._controlnet_cond = self._controlnet_cond.to(device=img.device, dtype=img.dtype)
self._instantx_control_mode = (
self._instantx_control_mode.to(device=img.device) if self._instantx_control_mode is not None else None
)
instantx_output: InstantXControlNetFluxOutput = self._model(
controlnet_cond=self._controlnet_cond,
controlnet_mode=self._instantx_control_mode,
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
timesteps=timesteps,
y=y,
guidance=guidance,
)
controlnet_output = self._instantx_output_to_controlnet_output(instantx_output)
controlnet_output.apply_weight(weight)
return controlnet_output

View File

@@ -0,0 +1,150 @@
from typing import List, Union
import torch
from PIL.Image import Image
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.util.controlnet_utils import CONTROLNET_RESIZE_VALUES, prepare_control_image
from invokeai.backend.flux.controlnet.controlnet_flux_output import ControlNetFluxOutput
from invokeai.backend.flux.controlnet.xlabs_controlnet_flux import XLabsControlNetFlux, XLabsControlNetFluxOutput
from invokeai.backend.flux.extensions.base_controlnet_extension import BaseControlNetExtension
class XLabsControlNetExtension(BaseControlNetExtension):
def __init__(
self,
model: XLabsControlNetFlux,
controlnet_cond: torch.Tensor,
weight: Union[float, List[float]],
begin_step_percent: float,
end_step_percent: float,
):
super().__init__(
weight=weight,
begin_step_percent=begin_step_percent,
end_step_percent=end_step_percent,
)
self._model = model
# _controlnet_cond is the control image passed to the ControlNet model.
# Pixel values are in the range [-1, 1]. Shape: (batch_size, 3, height, width).
self._controlnet_cond = controlnet_cond
# TODO(ryand): Pass in these params if a new base transformer / XLabs ControlNet pair get released.
self._flux_transformer_num_double_blocks = 19
self._flux_transformer_num_single_blocks = 38
@classmethod
def prepare_controlnet_cond(
cls,
controlnet_image: Image,
latent_height: int,
latent_width: int,
dtype: torch.dtype,
device: torch.device,
resize_mode: CONTROLNET_RESIZE_VALUES,
):
image_height = latent_height * LATENT_SCALE_FACTOR
image_width = latent_width * LATENT_SCALE_FACTOR
controlnet_cond = prepare_control_image(
image=controlnet_image,
do_classifier_free_guidance=False,
width=image_width,
height=image_height,
device=device,
dtype=dtype,
control_mode="balanced",
resize_mode=resize_mode,
)
# Map pixel values from [0, 1] to [-1, 1].
controlnet_cond = controlnet_cond * 2 - 1
return controlnet_cond
@classmethod
def from_controlnet_image(
cls,
model: XLabsControlNetFlux,
controlnet_image: Image,
latent_height: int,
latent_width: int,
dtype: torch.dtype,
device: torch.device,
resize_mode: CONTROLNET_RESIZE_VALUES,
weight: Union[float, List[float]],
begin_step_percent: float,
end_step_percent: float,
):
image_height = latent_height * LATENT_SCALE_FACTOR
image_width = latent_width * LATENT_SCALE_FACTOR
controlnet_cond = prepare_control_image(
image=controlnet_image,
do_classifier_free_guidance=False,
width=image_width,
height=image_height,
device=device,
dtype=dtype,
control_mode="balanced",
resize_mode=resize_mode,
)
# Map pixel values from [0, 1] to [-1, 1].
controlnet_cond = controlnet_cond * 2 - 1
return cls(
model=model,
controlnet_cond=controlnet_cond,
weight=weight,
begin_step_percent=begin_step_percent,
end_step_percent=end_step_percent,
)
def _xlabs_output_to_controlnet_output(self, xlabs_output: XLabsControlNetFluxOutput) -> ControlNetFluxOutput:
# The modulo index logic used here is based on:
# https://github.com/XLabs-AI/x-flux/blob/47495425dbed499be1e8e5a6e52628b07349cba2/src/flux/model.py#L198-L200
# Handle double block residuals.
double_block_residuals: list[torch.Tensor] = []
xlabs_double_block_residuals = xlabs_output.controlnet_double_block_residuals
if xlabs_double_block_residuals is not None:
for i in range(self._flux_transformer_num_double_blocks):
double_block_residuals.append(xlabs_double_block_residuals[i % len(xlabs_double_block_residuals)])
return ControlNetFluxOutput(
double_block_residuals=double_block_residuals,
single_block_residuals=None,
)
def run_controlnet(
self,
timestep_index: int,
total_num_timesteps: int,
img: torch.Tensor,
img_ids: torch.Tensor,
txt: torch.Tensor,
txt_ids: torch.Tensor,
y: torch.Tensor,
timesteps: torch.Tensor,
guidance: torch.Tensor | None,
) -> ControlNetFluxOutput:
weight = self._get_weight(timestep_index=timestep_index, total_num_timesteps=total_num_timesteps)
if weight < 1e-6:
return ControlNetFluxOutput(single_block_residuals=None, double_block_residuals=None)
xlabs_output: XLabsControlNetFluxOutput = self._model(
img=img,
img_ids=img_ids,
controlnet_cond=self._controlnet_cond,
txt=txt,
txt_ids=txt_ids,
timesteps=timesteps,
y=y,
guidance=guidance,
)
controlnet_output = self._xlabs_output_to_controlnet_output(xlabs_output)
controlnet_output.apply_weight(weight)
return controlnet_output

View File

@@ -9,8 +9,12 @@ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
q, k = apply_rope(q, k, pe)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = rearrange(x, "B H L D -> B L (H D)")
# Replaced original einops.rearrange(...) call with torch.reshape(...) for slightly faster performance.
# Original call: x = rearrange(x, "B H L D -> B L (H D)")
# x = x.permute(0, 2, 1, 3) # BHLD -> BLHD
# x = x.reshape(x.shape[0], x.shape[1], -1) # BLHD -> BL(HD)
x = rearrange(x, "B H L D -> B L (H D)")
return x
@@ -23,6 +27,9 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
omega = 1.0 / (theta**scale)
out = torch.einsum("...n,d->...nd", pos, omega)
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
# Replaced original einops.rearrange(...) call with torch.view(...) for slightly faster performance.
# Original call: out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
# out = out.view(*out.shape[:-1], 2, 2)
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.float()

View File

@@ -87,7 +87,9 @@ class Flux(nn.Module):
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
guidance: Tensor | None = None,
guidance: Tensor | None,
controlnet_double_block_residuals: list[Tensor] | None,
controlnet_single_block_residuals: list[Tensor] | None,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
@@ -105,12 +107,27 @@ class Flux(nn.Module):
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
for block in self.double_blocks:
# Validate double_block_residuals shape.
if controlnet_double_block_residuals is not None:
assert len(controlnet_double_block_residuals) == len(self.double_blocks)
for block_index, block in enumerate(self.double_blocks):
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
if controlnet_double_block_residuals is not None:
img += controlnet_double_block_residuals[block_index]
img = torch.cat((txt, img), 1)
for block in self.single_blocks:
# Validate single_block_residuals shape.
if controlnet_single_block_residuals is not None:
assert len(controlnet_single_block_residuals) == len(self.single_blocks)
for block_index, block in enumerate(self.single_blocks):
img = block(img, vec=vec, pe=pe)
if controlnet_single_block_residuals is not None:
img[:, txt.shape[1] :, ...] += controlnet_single_block_residuals[block_index]
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)

View File

@@ -4,7 +4,6 @@ import math
from dataclasses import dataclass
import torch
from einops import rearrange
from torch import Tensor, nn
from invokeai.backend.flux.math import attention, rope
@@ -94,13 +93,14 @@ class SelfAttention(nn.Module):
self.norm = QKNorm(head_dim)
self.proj = nn.Linear(dim, dim)
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
qkv = self.qkv(x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
x = attention(q, k, v, pe=pe)
x = self.proj(x)
return x
# Unused code for reference:
# def forward(self, x: Tensor, pe: Tensor) -> Tensor:
# qkv = self.qkv(x)
# q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
# q, k = self.norm(q, k, v)
# x = attention(q, k, v, pe=pe)
# x = self.proj(x)
# return x
@dataclass
@@ -163,14 +163,22 @@ class DoubleStreamBlock(nn.Module):
img_modulated = self.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
# img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(
2, 0, 3, 1, 4
)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
# txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(
2, 0, 3, 1, 4
)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
@@ -229,7 +237,8 @@ class SingleStreamBlock(nn.Module):
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
# q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k = self.norm(q, k, v)
# compute attention

View File

@@ -8,17 +8,36 @@ from diffusers import ControlNetModel
from invokeai.backend.model_manager import (
AnyModel,
AnyModelConfig,
)
from invokeai.backend.model_manager.config import (
BaseModelType,
ControlNetCheckpointConfig,
ModelFormat,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.config import ControlNetCheckpointConfig, SubModelType
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.ControlNet, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.ControlNet, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(
base=BaseModelType.StableDiffusion1, type=ModelType.ControlNet, format=ModelFormat.Diffusers
)
@ModelLoaderRegistry.register(
base=BaseModelType.StableDiffusion1, type=ModelType.ControlNet, format=ModelFormat.Checkpoint
)
@ModelLoaderRegistry.register(
base=BaseModelType.StableDiffusion2, type=ModelType.ControlNet, format=ModelFormat.Diffusers
)
@ModelLoaderRegistry.register(
base=BaseModelType.StableDiffusion2, type=ModelType.ControlNet, format=ModelFormat.Checkpoint
)
@ModelLoaderRegistry.register(
base=BaseModelType.StableDiffusionXL, type=ModelType.ControlNet, format=ModelFormat.Diffusers
)
@ModelLoaderRegistry.register(
base=BaseModelType.StableDiffusionXL, type=ModelType.ControlNet, format=ModelFormat.Checkpoint
)
class ControlNetLoader(GenericDiffusersLoader):
"""Class to load ControlNet models."""

View File

@@ -10,6 +10,15 @@ from safetensors.torch import load_file
from transformers import AutoConfig, AutoModelForTextEncoding, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
from invokeai.app.services.config.config_default import get_config
from invokeai.backend.flux.controlnet.instantx_controlnet_flux import InstantXControlNetFlux
from invokeai.backend.flux.controlnet.state_dict_utils import (
convert_diffusers_instantx_state_dict_to_bfl_format,
infer_flux_params_from_state_dict,
infer_instantx_num_control_modes_from_state_dict,
is_state_dict_instantx_controlnet,
is_state_dict_xlabs_controlnet,
)
from invokeai.backend.flux.controlnet.xlabs_controlnet_flux import XLabsControlNetFlux
from invokeai.backend.flux.model import Flux
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
from invokeai.backend.flux.util import ae_params, params
@@ -24,6 +33,8 @@ from invokeai.backend.model_manager import (
from invokeai.backend.model_manager.config import (
CheckpointConfigBase,
CLIPEmbedDiffusersConfig,
ControlNetCheckpointConfig,
ControlNetDiffusersConfig,
MainBnbQuantized4bCheckpointConfig,
MainCheckpointConfig,
MainGGUFCheckpointConfig,
@@ -293,3 +304,51 @@ class FluxBnbQuantizednf4bCheckpointModel(ModelLoader):
sd = convert_bundle_to_flux_transformer_checkpoint(sd)
model.load_state_dict(sd, assign=True)
return model
@ModelLoaderRegistry.register(base=BaseModelType.Flux, type=ModelType.ControlNet, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.Flux, type=ModelType.ControlNet, format=ModelFormat.Diffusers)
class FluxControlnetModel(ModelLoader):
"""Class to load FLUX ControlNet models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if isinstance(config, ControlNetCheckpointConfig):
model_path = Path(config.path)
elif isinstance(config, ControlNetDiffusersConfig):
# If this is a diffusers directory, we simply ignore the config file and load from the weight file.
model_path = Path(config.path) / "diffusion_pytorch_model.safetensors"
else:
raise ValueError(f"Unexpected ControlNet model config type: {type(config)}")
sd = load_file(model_path)
# Detect the FLUX ControlNet model type from the state dict.
if is_state_dict_xlabs_controlnet(sd):
return self._load_xlabs_controlnet(sd)
elif is_state_dict_instantx_controlnet(sd):
return self._load_instantx_controlnet(sd)
else:
raise ValueError("Do not recognize the state dict as an XLabs or InstantX ControlNet model.")
def _load_xlabs_controlnet(self, sd: dict[str, torch.Tensor]) -> AnyModel:
with accelerate.init_empty_weights():
# HACK(ryand): Is it safe to assume dev here?
model = XLabsControlNetFlux(params["flux-dev"])
model.load_state_dict(sd, assign=True)
return model
def _load_instantx_controlnet(self, sd: dict[str, torch.Tensor]) -> AnyModel:
sd = convert_diffusers_instantx_state_dict_to_bfl_format(sd)
flux_params = infer_flux_params_from_state_dict(sd)
num_control_modes = infer_instantx_num_control_modes_from_state_dict(sd)
with accelerate.init_empty_weights():
model = InstantXControlNetFlux(flux_params, num_control_modes)
model.load_state_dict(sd, assign=True)
return model

View File

@@ -10,6 +10,10 @@ from picklescan.scanner import scan_file_path
import invokeai.backend.util.logging as logger
from invokeai.app.util.misc import uuid_string
from invokeai.backend.flux.controlnet.state_dict_utils import (
is_state_dict_instantx_controlnet,
is_state_dict_xlabs_controlnet,
)
from invokeai.backend.lora.conversions.flux_diffusers_lora_conversion_utils import (
is_state_dict_likely_in_flux_diffusers_format,
)
@@ -116,6 +120,7 @@ class ModelProbe(object):
"CLIPModel": ModelType.CLIPEmbed,
"CLIPTextModel": ModelType.CLIPEmbed,
"T5EncoderModel": ModelType.T5Encoder,
"FluxControlNetModel": ModelType.ControlNet,
}
@classmethod
@@ -255,7 +260,19 @@ class ModelProbe(object):
# LoRA models, but as of the time of writing, we support Diffusers FLUX PEFT LoRA models.
elif key.endswith(("to_k_lora.up.weight", "to_q_lora.down.weight", "lora_A.weight", "lora_B.weight")):
return ModelType.LoRA
elif key.startswith(("controlnet", "control_model", "input_blocks")):
elif key.startswith(
(
"controlnet",
"control_model",
"input_blocks",
# XLabs FLUX ControlNet models have keys starting with "controlnet_blocks."
# For example: https://huggingface.co/XLabs-AI/flux-controlnet-collections/blob/86ab1e915a389d5857135c00e0d350e9e38a9048/flux-canny-controlnet_v2.safetensors
# TODO(ryand): This is very fragile. XLabs FLUX ControlNet models also contain keys starting with
# "double_blocks.", which we check for above. But, I'm afraid to modify this logic because it is so
# delicate.
"controlnet_blocks",
)
):
return ModelType.ControlNet
elif key.startswith(("image_proj.", "ip_adapter.")):
return ModelType.IPAdapter
@@ -438,6 +455,7 @@ MODEL_NAME_TO_PREPROCESSOR = {
"lineart": "lineart_image_processor",
"lineart_anime": "lineart_anime_image_processor",
"softedge": "hed_image_processor",
"hed": "hed_image_processor",
"shuffle": "content_shuffle_image_processor",
"pose": "dw_openpose_image_processor",
"mediapipe": "mediapipe_face_processor",
@@ -449,7 +467,8 @@ MODEL_NAME_TO_PREPROCESSOR = {
def get_default_settings_controlnet_t2i_adapter(model_name: str) -> Optional[ControlAdapterDefaultSettings]:
for k, v in MODEL_NAME_TO_PREPROCESSOR.items():
if k in model_name:
model_name_lower = model_name.lower()
if k in model_name_lower:
return ControlAdapterDefaultSettings(preprocessor=v)
return None
@@ -623,6 +642,11 @@ class ControlNetCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint
if is_state_dict_xlabs_controlnet(checkpoint) or is_state_dict_instantx_controlnet(checkpoint):
# TODO(ryand): Should I distinguish between XLabs, InstantX and other ControlNet models by implementing
# get_format()?
return BaseModelType.Flux
for key_name in (
"control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight",
"controlnet_mid_block.bias",
@@ -844,22 +868,19 @@ class ControlNetFolderProbe(FolderProbeBase):
raise InvalidModelConfigException(f"Cannot determine base type for {self.model_path}")
with open(config_file, "r") as file:
config = json.load(file)
if config.get("_class_name", None) == "FluxControlNetModel":
return BaseModelType.Flux
# no obvious way to distinguish between sd2-base and sd2-768
dimension = config["cross_attention_dim"]
base_model = (
BaseModelType.StableDiffusion1
if dimension == 768
else (
BaseModelType.StableDiffusion2
if dimension == 1024
else BaseModelType.StableDiffusionXL
if dimension == 2048
else None
)
)
if not base_model:
raise InvalidModelConfigException(f"Unable to determine model base for {self.model_path}")
return base_model
if dimension == 768:
return BaseModelType.StableDiffusion1
if dimension == 1024:
return BaseModelType.StableDiffusion2
if dimension == 2048:
return BaseModelType.StableDiffusionXL
raise InvalidModelConfigException(f"Unable to determine model base for {self.model_path}")
class LoRAFolderProbe(FolderProbeBase):

File diff suppressed because it is too large Load Diff

View File

@@ -171,8 +171,19 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
"""
if xformers is available, use it, otherwise use sliced attention.
"""
# On 30xx and 40xx series GPUs, `torch-sdp` is faster than `xformers`. This corresponds to a CUDA major
# version of 8 or higher. So, for major version 7 or below, we prefer `xformers`.
# See:
# - https://developer.nvidia.com/cuda-gpus
# - https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
try:
prefer_xformers = torch.cuda.is_available() and torch.cuda.get_device_properties("cuda").major <= 7 # type: ignore # Type of "get_device_properties" is partially unknown
except Exception:
prefer_xformers = False
config = get_config()
if config.attention_type == "xformers":
if config.attention_type == "xformers" and is_xformers_available() and prefer_xformers:
self.enable_xformers_memory_efficient_attention()
return
elif config.attention_type == "sliced":
@@ -187,20 +198,24 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
self.disable_attention_slicing()
return
elif config.attention_type == "torch-sdp":
if hasattr(torch.nn.functional, "scaled_dot_product_attention"):
# diffusers enables sdp automatically
return
else:
raise Exception("torch-sdp attention slicing not available")
# torch-sdp is the default in diffusers.
return
# the remainder if this code is called when attention_type=='auto'
# See https://github.com/invoke-ai/InvokeAI/issues/7049 for context.
# Bumping torch from 2.2.2 to 2.4.1 caused the sliced attention implementation to produce incorrect results.
# For now, if a user is on an MPS device and has not explicitly set the attention_type, then we select the
# non-sliced torch-sdp implementation. This keeps things working on MPS at the cost of increased peak memory
# utilization.
if torch.backends.mps.is_available():
return
# The remainder if this code is called when attention_type=='auto'.
if self.unet.device.type == "cuda":
if is_xformers_available():
if is_xformers_available() and prefer_xformers:
self.enable_xformers_memory_efficient_attention()
return
elif hasattr(torch.nn.functional, "scaled_dot_product_attention"):
# diffusers enables sdp automatically
return
# torch-sdp is the default in diffusers.
return
if self.unet.device.type == "cpu" or self.unet.device.type == "mps":
mem_free = psutil.virtual_memory().free

View File

@@ -58,7 +58,7 @@
"@dnd-kit/sortable": "^8.0.0",
"@dnd-kit/utilities": "^3.2.2",
"@fontsource-variable/inter": "^5.1.0",
"@invoke-ai/ui-library": "^0.0.41",
"@invoke-ai/ui-library": "^0.0.42",
"@nanostores/react": "^0.7.3",
"@reduxjs/toolkit": "2.2.3",
"@roarr/browser-log-writer": "^1.3.0",

View File

@@ -24,8 +24,8 @@ dependencies:
specifier: ^5.1.0
version: 5.1.0
'@invoke-ai/ui-library':
specifier: ^0.0.41
version: 0.0.41(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1)
specifier: ^0.0.42
version: 0.0.42(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1)
'@nanostores/react':
specifier: ^0.7.3
version: 0.7.3(nanostores@0.11.3)(react@18.3.1)
@@ -551,12 +551,12 @@ packages:
react: 18.3.1
dev: false
/@chakra-ui/hooks@2.4.1(react@18.3.1):
resolution: {integrity: sha512-f81S0TiSh14LjiXBAvdezmIQLKGR7pckQ8kLMIxjngNW4VV92dhznOP+VcQmDOyXslfWsaWNFswlASE6clVw1g==}
/@chakra-ui/hooks@2.4.2(react@18.3.1):
resolution: {integrity: sha512-LRKiVE1oA7afT5tbbSKAy7Uas2xFHE6IkrQdbhWCHmkHBUtPvjQQDgwtnd4IRZPmoEfNGwoJ/MQpwOM/NRTTwA==}
peerDependencies:
react: '>=18'
dependencies:
'@chakra-ui/utils': 2.2.1(react@18.3.1)
'@chakra-ui/utils': 2.2.2(react@18.3.1)
'@zag-js/element-size': 0.31.1
copy-to-clipboard: 3.3.3
framesync: 6.1.2
@@ -574,13 +574,13 @@ packages:
react: 18.3.1
dev: false
/@chakra-ui/icons@2.2.4(@chakra-ui/react@2.10.1)(react@18.3.1):
/@chakra-ui/icons@2.2.4(@chakra-ui/react@2.10.2)(react@18.3.1):
resolution: {integrity: sha512-l5QdBgwrAg3Sc2BRqtNkJpfuLw/pWRDwwT58J6c4PqQT6wzXxyNa8Q0PForu1ltB5qEiFb1kxr/F/HO1EwNa6g==}
peerDependencies:
'@chakra-ui/react': '>=2.0.0'
react: '>=18'
dependencies:
'@chakra-ui/react': 2.10.1(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/react': 2.10.2(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1)
react: 18.3.1
dev: false
@@ -803,8 +803,8 @@ packages:
react: 18.3.1
dev: false
/@chakra-ui/react@2.10.1(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-YUOPyuq6Z0P1TSURNQRccwV/YbiWlkHlRLEMqNMwFQeQe7lyXfkPHn8GZyxvaiu+S02iopG9xg+wl68K4G3FSQ==}
/@chakra-ui/react@2.10.2(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-TfIHTqTlxTHYJZBtpiR5EZasPUrLYKJxdbHkdOJb5G1OQ+2c5kKl5XA7c2pMtsEptzb7KxAAIB62t3hxdfWp1w==}
peerDependencies:
'@emotion/react': '>=11'
'@emotion/styled': '>=11'
@@ -812,10 +812,10 @@ packages:
react: '>=18'
react-dom: '>=18'
dependencies:
'@chakra-ui/hooks': 2.4.1(react@18.3.1)
'@chakra-ui/styled-system': 2.11.1(react@18.3.1)
'@chakra-ui/theme': 3.4.5(@chakra-ui/styled-system@2.11.1)(react@18.3.1)
'@chakra-ui/utils': 2.2.1(react@18.3.1)
'@chakra-ui/hooks': 2.4.2(react@18.3.1)
'@chakra-ui/styled-system': 2.11.2(react@18.3.1)
'@chakra-ui/theme': 3.4.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1)
'@chakra-ui/utils': 2.2.2(react@18.3.1)
'@emotion/react': 11.13.3(@types/react@18.3.11)(react@18.3.1)
'@emotion/styled': 11.13.0(@emotion/react@11.13.3)(@types/react@18.3.11)(react@18.3.1)
'@popperjs/core': 2.11.8
@@ -826,7 +826,6 @@ packages:
react-dom: 18.3.1(react@18.3.1)
react-fast-compare: 3.2.2
react-focus-lock: 2.13.2(@types/react@18.3.11)(react@18.3.1)
react-lorem-component: 0.13.0(react@18.3.1)
react-remove-scroll: 2.6.0(@types/react@18.3.11)(react@18.3.1)
transitivePeerDependencies:
- '@types/react'
@@ -847,10 +846,10 @@ packages:
react: 18.3.1
dev: false
/@chakra-ui/styled-system@2.11.1(react@18.3.1):
resolution: {integrity: sha512-1O4vQSSJqDYl+xkQLgNLVsBhEUkFd5BKQAIBEZC5ppppvCXAt+BPqrOLFAkNyo7piKYp5mf6fdYBAW/ESurqeg==}
/@chakra-ui/styled-system@2.11.2(react@18.3.1):
resolution: {integrity: sha512-y++z2Uop+hjfZX9mbH88F1ikazPv32asD2er56zMJBemUAzweXnHTpiCQbluEDSUDhqmghVZAdb+5L4XLbsRxA==}
dependencies:
'@chakra-ui/utils': 2.2.1(react@18.3.1)
'@chakra-ui/utils': 2.2.2(react@18.3.1)
csstype: 3.1.3
transitivePeerDependencies:
- react
@@ -894,14 +893,14 @@ packages:
color2k: 2.0.3
dev: false
/@chakra-ui/theme-tools@2.2.5(@chakra-ui/styled-system@2.11.1)(react@18.3.1):
resolution: {integrity: sha512-tUIv04Pzm2W8v5Iugei15qREIFX2mslI3fEouIVih8vHzwY821neCfspxOsAhvYSLNX+1kzk6ArBo9WzUpqn+Q==}
/@chakra-ui/theme-tools@2.2.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1):
resolution: {integrity: sha512-3UhKPyzKbV3l/bg1iQN9PBvffYp+EBOoYMUaeTUdieQRPFzo2jbYR0lNCxqv8h5aGM/k54nCHU2M/GStyi9F2A==}
peerDependencies:
'@chakra-ui/styled-system': '>=2.0.0'
dependencies:
'@chakra-ui/anatomy': 2.3.4
'@chakra-ui/styled-system': 2.11.1(react@18.3.1)
'@chakra-ui/utils': 2.2.1(react@18.3.1)
'@chakra-ui/styled-system': 2.11.2(react@18.3.1)
'@chakra-ui/utils': 2.2.2(react@18.3.1)
color2k: 2.0.3
transitivePeerDependencies:
- react
@@ -927,15 +926,15 @@ packages:
'@chakra-ui/theme-tools': 2.1.2(@chakra-ui/styled-system@2.9.2)
dev: false
/@chakra-ui/theme@3.4.5(@chakra-ui/styled-system@2.11.1)(react@18.3.1):
resolution: {integrity: sha512-h/00W3xFCrUnsosVdh/SNMKfaez9jo1MMz2ruZAcpg/b1Jk0WnYa/ONhUwN89DR3UrPHSR+/vigZBxaA1+3QUQ==}
/@chakra-ui/theme@3.4.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1):
resolution: {integrity: sha512-ZwFBLfiMC3URwaO31ONXoKH9k0TX0OW3UjdPF3EQkQpYyrk/fm36GkkzajjtdpWEd7rzDLRsQjPmvwNaSoNDtg==}
peerDependencies:
'@chakra-ui/styled-system': '>=2.8.0'
dependencies:
'@chakra-ui/anatomy': 2.3.4
'@chakra-ui/styled-system': 2.11.1(react@18.3.1)
'@chakra-ui/theme-tools': 2.2.5(@chakra-ui/styled-system@2.11.1)(react@18.3.1)
'@chakra-ui/utils': 2.2.1(react@18.3.1)
'@chakra-ui/styled-system': 2.11.2(react@18.3.1)
'@chakra-ui/theme-tools': 2.2.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1)
'@chakra-ui/utils': 2.2.2(react@18.3.1)
transitivePeerDependencies:
- react
dev: false
@@ -960,8 +959,8 @@ packages:
lodash.mergewith: 4.6.2
dev: false
/@chakra-ui/utils@2.2.1(react@18.3.1):
resolution: {integrity: sha512-e9D6CDtQZWBx+rq7yW13mAeI3Vod4cWfUIip+XFNjPWQSJGOJb1MiXocoiJqaZ1S+jsN+mod4uCZmGcukv0iSg==}
/@chakra-ui/utils@2.2.2(react@18.3.1):
resolution: {integrity: sha512-jUPLT0JzRMWxpdzH6c+t0YMJYrvc5CLericgITV3zDSXblkfx3DsYXqU11DJTSGZI9dUKzM1Wd0Wswn4eJwvFQ==}
peerDependencies:
react: '>=16.8.0'
dependencies:
@@ -1697,18 +1696,18 @@ packages:
prettier: 3.3.3
dev: true
/@invoke-ai/ui-library@0.0.41(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-bV83fXxqSuEMghQ68nF6uFkPE/DXtbnY2ZiXcoXXhOvv9X32/uKWSrcaeka9lZxrr10GFvV5a5LRORDornDaGg==}
/@invoke-ai/ui-library@0.0.42(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-OuDXRipBO5mu+Nv4qN8cd8MiwiGBdq6h4PirVgPI9/ltbdcIzePgUJ0dJns26lflHSTRWW38I16wl4YTw3mNWA==}
peerDependencies:
'@fontsource-variable/inter': ^5.0.16
react: ^18.2.0
react-dom: ^18.2.0
dependencies:
'@chakra-ui/anatomy': 2.2.2
'@chakra-ui/icons': 2.2.4(@chakra-ui/react@2.10.1)(react@18.3.1)
'@chakra-ui/icons': 2.2.4(@chakra-ui/react@2.10.2)(react@18.3.1)
'@chakra-ui/layout': 2.3.1(@chakra-ui/system@2.6.2)(react@18.3.1)
'@chakra-ui/portal': 2.1.0(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/react': 2.10.1(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/react': 2.10.2(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/styled-system': 2.9.2
'@chakra-ui/theme-tools': 2.1.2(@chakra-ui/styled-system@2.9.2)
'@emotion/react': 11.13.3(@types/react@18.3.11)(react@18.3.1)
@@ -4691,14 +4690,6 @@ packages:
yaml: 1.10.2
dev: false
/create-react-class@15.7.0:
resolution: {integrity: sha512-QZv4sFWG9S5RUvkTYWbflxeZX+JG7Cz0Tn33rQBJ+WFQTqTfUTjMjiv9tnfXazjsO5r0KhPs+AqCjyrQX6h2ng==}
dependencies:
loose-envify: 1.4.0
object-assign: 4.1.1
dev: false
bundledDependencies: false
/cross-fetch@4.0.0:
resolution: {integrity: sha512-e4a5N8lVvuLgAWgnCrLr2PP0YyDOTHa9H/Rj54dirp61qXnNq46m82bRhNqIA5VccJtWBvPTFRV3TtvHUKPB1g==}
dependencies:
@@ -6817,13 +6808,6 @@ packages:
dependencies:
js-tokens: 4.0.0
/lorem-ipsum@1.0.6:
resolution: {integrity: sha512-Rx4XH8X4KSDCKAVvWGYlhAfNqdUP5ZdT4rRyf0jjrvWgtViZimDIlopWNfn/y3lGM5K4uuiAoY28TaD+7YKFrQ==}
hasBin: true
dependencies:
minimist: 1.2.8
dev: false
/loupe@2.3.7:
resolution: {integrity: sha512-zSMINGVYkdpYSOBmLi0D1Uo7JU9nVdQKrHxC8eYlV+9YKK9WePqAlL7lSlorG/U2Fw1w0hTBmaa/jrQ3UbPHtA==}
dependencies:
@@ -7017,6 +7001,7 @@ packages:
/minimist@1.2.8:
resolution: {integrity: sha512-2yyAR8qBkN3YuheJanUpWC5U3bb5osDywNB8RzDVlDwDHbocAJveqqj1u8+SVD7jkWT4yvsHCpWqqWqAxb0zCA==}
dev: true
/minipass@7.1.2:
resolution: {integrity: sha512-qOOzS1cBTWYF4BH8fVePDBOO9iptMnGUEZwNc/cMWnTV2nVLZ7VoNWEPHkYczZA0pdoA7dl6e7FL659nX9S2aw==}
@@ -7775,18 +7760,6 @@ packages:
resolution: {integrity: sha512-/LLMVyas0ljjAtoYiPqYiL8VWXzUUdThrmU5+n20DZv+a+ClRoevUzw5JxU+Ieh5/c87ytoTBV9G1FiKfNJdmg==}
dev: true
/react-lorem-component@0.13.0(react@18.3.1):
resolution: {integrity: sha512-4mWjxmcG/DJJwdxdKwXWyP2N9zohbJg/yYaC+7JffQNrKj3LYDpA/A4u/Dju1v1ZF6Jew2gbFKGb5Z6CL+UNTw==}
peerDependencies:
react: 16.x
dependencies:
create-react-class: 15.7.0
lorem-ipsum: 1.0.6
object-assign: 4.1.1
react: 18.3.1
seedable-random: 0.0.1
dev: false
/react-redux@9.1.2(@types/react@18.3.11)(react@18.3.1)(redux@5.0.1):
resolution: {integrity: sha512-0OA4dhM1W48l3uzmv6B7TXPCGmokUU4p1M44DGN2/D9a1FjVPukVjER1PcPX97jIg6aUeLq1XJo1IpfbgULn0w==}
peerDependencies:
@@ -8301,10 +8274,6 @@ packages:
engines: {node: '>=0.10.0'}
dev: false
/seedable-random@0.0.1:
resolution: {integrity: sha512-uZWbEfz3BQdBl4QlUPELPqhInGEO1Q6zjzqrTDkd3j7mHaWWJo7h4ydr2g24a2WtTLk3imTLc8mPbBdQqdsbGw==}
dev: false
/semver-compare@1.0.0:
resolution: {integrity: sha512-YM3/ITh2MJ5MtzaM429anh+x2jiLVjqILF4m4oyQB18W7Ggea7BfqdH/wGMK7dDiMghv/6WG7znWMwUDzJiXow==}
dev: false

View File

@@ -936,7 +936,8 @@
},
"paramScheduler": {
"paragraphs": [
"\"Planer\" definiert, wie iterativ Rauschen zu einem Bild hinzugefügt wird, oder wie ein Sample bei der Ausgabe eines Modells aktualisiert wird."
"Verwendeter Planer währende des Generierungsprozesses.",
"Jeder Planer definiert, wie einem Bild iterativ Rauschen hinzugefügt wird, oder wie ein Sample basierend auf der Ausgabe eines Modells aktualisiert wird."
],
"heading": "Planer"
},
@@ -962,6 +963,61 @@
},
"ipAdapterMethod": {
"heading": "Methode"
},
"refinerScheduler": {
"heading": "Planer",
"paragraphs": [
"Planer, der während der Veredelungsphase des Generierungsprozesses verwendet wird.",
"Ähnlich wie der Generierungsplaner."
]
},
"compositingCoherenceMode": {
"paragraphs": [
"Verwendete Methode zur Erstellung eines kohärenten Bildes mit dem neu generierten maskierten Bereich."
],
"heading": "Modus"
},
"compositingCoherencePass": {
"heading": "Kohärenzdurchlauf"
},
"controlNet": {
"heading": "ControlNet"
},
"compositingMaskAdjustments": {
"paragraphs": [
"Die Maske anpassen."
],
"heading": "Maskenanpassungen"
},
"compositingMaskBlur": {
"paragraphs": [
"Der Unschärferadius der Maske."
],
"heading": "Maskenunschärfe"
},
"compositingBlurMethod": {
"paragraphs": [
"Die auf den maskierten Bereich angewendete Unschärfemethode."
],
"heading": "Unschärfemethode"
},
"controlNetResizeMode": {
"heading": "Größenänderungsmodus"
},
"paramWidth": {
"heading": "Breite",
"paragraphs": [
"Breite des generierten Bildes. Muss ein Vielfaches von 8 sein."
]
},
"controlNetControlMode": {
"heading": "Kontrollmodus"
},
"controlNetProcessor": {
"heading": "Prozessor"
},
"patchmatchDownScaleSize": {
"heading": "Herunterskalieren"
}
},
"invocationCache": {
@@ -1080,7 +1136,8 @@
"workflowContact": "Kontaktdaten",
"workflowNotes": "Notizen",
"workflowTags": "Tags",
"workflowVersion": "Version"
"workflowVersion": "Version",
"saveToGallery": "In Galerie speichern"
},
"hrf": {
"enableHrf": "Korrektur für hohe Auflösungen",
@@ -1250,7 +1307,16 @@
"searchByName": "Nach Name suchen",
"promptTemplateCleared": "Promptvorlage gelöscht",
"preview": "Vorschau",
"positivePrompt": "Positiv-Prompt"
"positivePrompt": "Positiv-Prompt",
"active": "Aktiv",
"deleteTemplate2": "Sind Sie sicher, dass Sie diese Vorlage löschen möchten? Dies kann nicht rückgängig gemacht werden.",
"deleteTemplate": "Vorlage löschen",
"copyTemplate": "Vorlage kopieren",
"editTemplate": "Vorlage bearbeiten",
"deleteImage": "Bild löschen",
"defaultTemplates": "Standardvorlagen",
"nameColumn": "'name'",
"exportDownloaded": "Export heruntergeladen"
},
"newUserExperience": {
"gettingStartedSeries": "Wünschen Sie weitere Anleitungen? In unserer <LinkComponent>Einführungsserie</LinkComponent> finden Sie Tipps, wie Sie das Potenzial von Invoke Studio voll ausschöpfen können.",
@@ -1263,13 +1329,22 @@
"bbox": "Bbox"
},
"transform": {
"fitToBbox": "An Bbox anpassen"
"fitToBbox": "An Bbox anpassen",
"reset": "Zurücksetzen",
"apply": "Anwenden",
"cancel": "Abbrechen"
},
"pullBboxIntoLayerError": "Problem, Bbox in die Ebene zu ziehen",
"pullBboxIntoLayer": "Bbox in Ebene ziehen",
"HUD": {
"bbox": "Bbox",
"scaledBbox": "Skalierte Bbox"
"scaledBbox": "Skalierte Bbox",
"entityStatus": {
"isHidden": "{{title}} ist ausgeblendet",
"isDisabled": "{{title}} ist deaktiviert",
"isLocked": "{{title}} ist gesperrt",
"isEmpty": "{{title}} ist leer"
}
},
"fitBboxToLayers": "Bbox an Ebenen anpassen",
"pullBboxIntoReferenceImage": "Bbox ins Referenzbild ziehen",
@@ -1279,7 +1354,12 @@
"clipToBbox": "Pinselstriche auf Bbox beschränken",
"canvasContextMenu": {
"saveBboxToGallery": "Bbox in Galerie speichern",
"bboxGroup": "Aus Bbox erstellen"
"bboxGroup": "Aus Bbox erstellen",
"canvasGroup": "Leinwand",
"newGlobalReferenceImage": "Neues globales Referenzbild",
"newRegionalReferenceImage": "Neues regionales Referenzbild",
"newControlLayer": "Neue Kontroll-Ebene",
"newRasterLayer": "Neue Raster-Ebene"
},
"rectangle": "Rechteck",
"saveCanvasToGallery": "Leinwand in Galerie speichern",
@@ -1310,7 +1390,7 @@
"regional": "Regional",
"newGlobalReferenceImageOk": "Globales Referenzbild erstellt",
"savedToGalleryError": "Fehler beim Speichern in der Galerie",
"savedToGalleryOk": "In Galerie speichern",
"savedToGalleryOk": "In Galerie gespeichert",
"newGlobalReferenceImageError": "Problem beim Erstellen eines globalen Referenzbilds",
"newRegionalReferenceImageOk": "Regionales Referenzbild erstellt",
"duplicate": "Duplizieren",
@@ -1343,12 +1423,39 @@
"showProgressOnCanvas": "Fortschritt auf Leinwand anzeigen",
"controlMode": {
"balanced": "Ausgewogen"
}
},
"globalReferenceImages_withCount_hidden": "Globale Referenzbilder ({{count}} ausgeblendet)",
"sendToGallery": "An Galerie senden",
"stagingArea": {
"accept": "Annehmen",
"next": "Nächste",
"discardAll": "Alle verwerfen",
"discard": "Verwerfen",
"previous": "Vorherige"
},
"regionalGuidance_withCount_visible": "Regionale Führung ({{count}})",
"regionalGuidance_withCount_hidden": "Regionale Führung ({{count}} ausgeblendet)",
"settings": {
"snapToGrid": {
"on": "Ein",
"off": "Aus",
"label": "Am Raster ausrichten"
}
},
"layer_one": "Ebene",
"layer_other": "Ebenen",
"layer_withCount_one": "Ebene ({{count}})",
"layer_withCount_other": "Ebenen ({{count}})"
},
"upsell": {
"shareAccess": "Zugang teilen",
"professional": "Professionell",
"inviteTeammates": "Teamkollegen einladen",
"professionalUpsell": "Verfügbar in der Professional Edition von Invoke. Klicken Sie hier oder besuchen Sie invoke.com/pricing für weitere Details."
},
"upscaling": {
"creativity": "Kreativität",
"structure": "Struktur",
"scale": "Maßstab"
}
}

View File

@@ -12,7 +12,8 @@
"resetUI": "$t(accessibility.reset) UI",
"toggleRightPanel": "Toggle Right Panel (G)",
"toggleLeftPanel": "Toggle Left Panel (T)",
"uploadImage": "Upload Image"
"uploadImage": "Upload Image",
"uploadImages": "Upload Image(s)"
},
"boards": {
"addBoard": "Add Board",
@@ -90,6 +91,7 @@
"batch": "Batch Manager",
"beta": "Beta",
"cancel": "Cancel",
"close": "Close",
"copy": "Copy",
"copyError": "$t(gallery.copy) Error",
"on": "On",
@@ -284,6 +286,7 @@
"assetsTab": "Files youve uploaded for use in your projects.",
"autoAssignBoardOnClick": "Auto-Assign Board on Click",
"autoSwitchNewImages": "Auto-Switch to New Images",
"boardsSettings": "Boards Settings",
"copy": "Copy",
"currentlyInUse": "This image is currently in use in the following features:",
"drop": "Drop",
@@ -303,6 +306,7 @@
"go": "Go",
"image": "image",
"imagesTab": "Images youve created and saved within Invoke.",
"imagesSettings": "Gallery Images Settings",
"jump": "Jump",
"loading": "Loading",
"newestFirst": "Newest First",
@@ -661,6 +665,7 @@
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)",
"createdBy": "Created By",
"generationMode": "Generation Mode",
"guidance": "Guidance",
"height": "Height",
"imageDetails": "Image Details",
"imageDimensions": "Image Dimensions",
@@ -724,6 +729,7 @@
"huggingFaceHelper": "If multiple models are found in this repo, you will be prompted to select one to install.",
"hfToken": "HuggingFace Token",
"imageEncoderModelId": "Image Encoder Model ID",
"includesNModels": "Includes {{n}} models and their dependencies",
"installQueue": "Install Queue",
"inplaceInstall": "In-place install",
"inplaceInstallDesc": "Install models without copying the files. When using the model, it will be loaded from its this location. If disabled, the model file(s) will be copied into the Invoke-managed models directory during installation.",
@@ -777,6 +783,8 @@
"simpleModelPlaceholder": "URL or path to a local file or diffusers folder",
"source": "Source",
"spandrelImageToImage": "Image to Image (Spandrel)",
"starterBundles": "Starter Bundles",
"starterBundleHelpText": "Easily install all models needed to get started with a base model, including a main model, controlnets, IP adapters, and more. Selecting a bundle will skip any models that you already have installed.",
"starterModels": "Starter Models",
"starterModelsInModelManager": "Starter Models can be found in Model Manager",
"syncModels": "Sync Models",
@@ -794,7 +802,13 @@
"vae": "VAE",
"vaePrecision": "VAE Precision",
"variant": "Variant",
"width": "Width"
"width": "Width",
"installingBundle": "Installing Bundle",
"installingModel": "Installing Model",
"installingXModels_one": "Installing {{count}} model",
"installingXModels_other": "Installing {{count}} models",
"skippingXDuplicates_one": ", skipping {{count}} duplicate",
"skippingXDuplicates_other": ", skipping {{count}} duplicates"
},
"models": {
"addLora": "Add LoRA",
@@ -874,7 +888,7 @@
"nodeType": "Node Type",
"noFieldsLinearview": "No fields added to Linear View",
"noFieldsViewMode": "This workflow has no selected fields to display. View the full workflow to configure values.",
"workflowHelpText": "Need Help? Check out our guide to <LinkComponent>Getting Started with Workflows</LinkComponent>",
"workflowHelpText": "Need Help? Check out our guide to <LinkComponent>Getting Started with Workflows</LinkComponent>.",
"noNodeSelected": "No node selected",
"nodeOpacity": "Node Opacity",
"nodeVersion": "Node Version",
@@ -1118,13 +1132,15 @@
"reloadingIn": "Reloading in"
},
"toast": {
"addedToBoard": "Added to board",
"addedToBoard": "Added to board {{name}}'s assets",
"addedToUncategorized": "Added to board $t(boards.uncategorized)'s assets",
"baseModelChanged": "Base Model Changed",
"baseModelChangedCleared_one": "Cleared or disabled {{count}} incompatible submodel",
"baseModelChangedCleared_other": "Cleared or disabled {{count}} incompatible submodels",
"canceled": "Processing Canceled",
"connected": "Connected to Server",
"imageCopied": "Image Copied",
"linkCopied": "Link Copied",
"unableToLoadImage": "Unable to Load Image",
"unableToLoadImageMetadata": "Unable to Load Image Metadata",
"unableToLoadStylePreset": "Unable to Load Style Preset",
@@ -1166,7 +1182,10 @@
"setNodeField": "Set as node field",
"somethingWentWrong": "Something Went Wrong",
"uploadFailed": "Upload failed",
"uploadFailedInvalidUploadDesc": "Must be single PNG or JPEG image",
"imagesWillBeAddedTo": "Uploaded images will be added to board {{boardName}}'s assets.",
"uploadFailedInvalidUploadDesc_withCount_one": "Must be maximum of 1 PNG or JPEG image.",
"uploadFailedInvalidUploadDesc_withCount_other": "Must be maximum of {{count}} PNG or JPEG images.",
"uploadFailedInvalidUploadDesc": "Must be PNG or JPEG images.",
"workflowLoaded": "Workflow Loaded",
"problemRetrievingWorkflow": "Problem Retrieving Workflow",
"workflowDeleted": "Workflow Deleted",
@@ -1559,7 +1578,12 @@
"loadFromGraph": "Load Workflow from Graph",
"convertGraph": "Convert Graph",
"loadWorkflow": "$t(common.load) Workflow",
"autoLayout": "Auto Layout"
"autoLayout": "Auto Layout",
"edit": "Edit",
"download": "Download",
"copyShareLink": "Copy Share Link",
"copyShareLinkForWorkflow": "Copy Share Link for Workflow",
"delete": "Delete"
},
"controlLayers": {
"regional": "Regional",
@@ -1634,6 +1658,7 @@
"sendToCanvas": "Send To Canvas",
"newLayerFromImage": "New Layer from Image",
"newCanvasFromImage": "New Canvas from Image",
"newImg2ImgCanvasFromImage": "New Img2Img from Image",
"copyToClipboard": "Copy to Clipboard",
"sendToCanvasDesc": "Pressing Invoke stages your work in progress on the canvas.",
"viewProgressInViewer": "View progress and outputs in the <Btn>Image Viewer</Btn>.",
@@ -1741,7 +1766,7 @@
"label": "Canny Edge Detection",
"description": "Generates an edge map from the selected layer using the Canny edge detection algorithm.",
"low_threshold": "Low Threshold",
"high_threshold": "Hight Threshold"
"high_threshold": "High Threshold"
},
"color_map": {
"label": "Color Map",
@@ -1809,6 +1834,10 @@
"transform": {
"transform": "Transform",
"fitToBbox": "Fit to Bbox",
"fitMode": "Fit Mode",
"fitModeContain": "Contain",
"fitModeCover": "Cover",
"fitModeFill": "Fill",
"reset": "Reset",
"apply": "Apply",
"cancel": "Cancel"
@@ -1975,8 +2004,12 @@
}
},
"newUserExperience": {
"toGetStartedLocal": "To get started, make sure to download or import models needed to run Invoke. Then, enter a prompt in the box and click <StrongComponent>Invoke</StrongComponent> to generate your first image. Select a prompt template to improve results. You can choose to save your images directly to the <StrongComponent>Gallery</StrongComponent> or edit them to the <StrongComponent>Canvas</StrongComponent>.",
"toGetStarted": "To get started, enter a prompt in the box and click <StrongComponent>Invoke</StrongComponent> to generate your first image. Select a prompt template to improve results. You can choose to save your images directly to the <StrongComponent>Gallery</StrongComponent> or edit them to the <StrongComponent>Canvas</StrongComponent>.",
"gettingStartedSeries": "Want more guidance? Check out our <LinkComponent>Getting Started Series</LinkComponent> for tips on unlocking the full potential of the Invoke Studio."
"gettingStartedSeries": "Want more guidance? Check out our <LinkComponent>Getting Started Series</LinkComponent> for tips on unlocking the full potential of the Invoke Studio.",
"downloadStarterModels": "Download Starter Models",
"importModels": "Import Models",
"noModelsInstalled": "It looks like you don't have any models installed"
},
"whatsNew": {
"whatsNewInInvoke": "What's New in Invoke",

View File

@@ -224,7 +224,9 @@
"createIssue": "Crear un problema",
"resetUI": "Interfaz de usuario $t(accessibility.reset)",
"mode": "Modo",
"submitSupportTicket": "Enviar Ticket de Soporte"
"submitSupportTicket": "Enviar Ticket de Soporte",
"toggleRightPanel": "Activar o desactivar el panel derecho (G)",
"toggleLeftPanel": "Activar o desactivar el panel izquierdo (T)"
},
"nodes": {
"zoomInNodes": "Acercar",
@@ -273,7 +275,12 @@
"addSharedBoard": "Agregar Panel Compartido",
"boards": "Paneles",
"archiveBoard": "Archivar Panel",
"archived": "Archivado"
"archived": "Archivado",
"selectedForAutoAdd": "Seleccionado para agregar automáticamente",
"unarchiveBoard": "Desarchivar el tablero",
"noBoards": "No hay tableros {{boardType}}",
"shared": "Carpetas compartidas",
"deletedPrivateBoardsCannotbeRestored": "Los tableros eliminados no se pueden restaurar. Al elegir \"Eliminar solo tablero\", las imágenes se colocan en un estado privado y sin categoría para el creador de la imagen."
},
"accordions": {
"compositing": {
@@ -316,5 +323,13 @@
"inviteTeammates": "Invitar compañeros de equipo",
"shareAccess": "Compartir acceso",
"professionalUpsell": "Disponible en la edición profesional de Invoke. Haz clic aquí o visita invoke.com/pricing para obtener más detalles."
},
"controlLayers": {
"layer_one": "Capa",
"layer_many": "Capas",
"layer_other": "Capas",
"layer_withCount_one": "({{count}}) capa",
"layer_withCount_many": "({{count}}) capas",
"layer_withCount_other": "({{count}}) capas"
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -91,7 +91,8 @@
"reset": "Reimposta",
"none": "Niente",
"new": "Nuovo",
"view": "Vista"
"view": "Vista",
"close": "Chiudi"
},
"gallery": {
"galleryImageSize": "Dimensione dell'immagine",
@@ -157,7 +158,9 @@
"openViewer": "Apri visualizzatore",
"closeViewer": "Chiudi visualizzatore",
"imagesTab": "Immagini create e salvate in Invoke.",
"assetsTab": "File che hai caricato per usarli nei tuoi progetti."
"assetsTab": "File che hai caricato per usarli nei tuoi progetti.",
"boardsSettings": "Impostazioni Bacheche",
"imagesSettings": "Impostazioni Immagini Galleria"
},
"hotkeys": {
"searchHotkeys": "Cerca tasti di scelta rapida",
@@ -766,7 +769,8 @@
"imageSaved": "Immagine salvata",
"imageSavingFailed": "Salvataggio dell'immagine non riuscito",
"layerCopiedToClipboard": "Livello copiato negli appunti",
"imageNotLoadedDesc": "Impossibile trovare l'immagine"
"imageNotLoadedDesc": "Impossibile trovare l'immagine",
"linkCopied": "Collegamento copiato"
},
"accessibility": {
"invokeProgressBar": "Barra di avanzamento generazione",
@@ -922,7 +926,7 @@
"saveToGallery": "Salva nella Galleria",
"noMatchingWorkflows": "Nessun flusso di lavoro corrispondente",
"noWorkflows": "Nessun flusso di lavoro",
"workflowHelpText": "Hai bisogno di aiuto? Consulta la nostra guida <LinkComponent>Introduzione ai flussi di lavoro</LinkComponent>"
"workflowHelpText": "Hai bisogno di aiuto? Consulta la nostra guida <LinkComponent>Introduzione ai flussi di lavoro</LinkComponent>."
},
"boards": {
"autoAddBoard": "Aggiungi automaticamente bacheca",
@@ -1519,7 +1523,8 @@
"parameterSet": "Parametro {{parameter}} impostato",
"parsingFailed": "Analisi non riuscita",
"recallParameter": "Richiama {{label}}",
"canvasV2Metadata": "Tela"
"canvasV2Metadata": "Tela",
"guidance": "Guida"
},
"hrf": {
"enableHrf": "Abilita Correzione Alta Risoluzione",
@@ -1570,7 +1575,12 @@
"defaultWorkflows": "Flussi di lavoro predefiniti",
"uploadAndSaveWorkflow": "Carica nella libreria",
"chooseWorkflowFromLibrary": "Scegli il flusso di lavoro dalla libreria",
"deleteWorkflow2": "Vuoi davvero eliminare questo flusso di lavoro? Questa operazione non può essere annullata."
"deleteWorkflow2": "Vuoi davvero eliminare questo flusso di lavoro? Questa operazione non può essere annullata.",
"edit": "Modifica",
"download": "Scarica",
"copyShareLink": "Copia Condividi Link",
"copyShareLinkForWorkflow": "Copia Condividi Link del Flusso di lavoro",
"delete": "Elimina"
},
"accordions": {
"compositing": {
@@ -1730,7 +1740,8 @@
"mlsd_detection": {
"score_threshold": "Soglia di punteggio",
"distance_threshold": "Soglia di distanza",
"description": "Genera una mappa dei segmenti di linea dal livello selezionato utilizzando il modello di rilevamento dei segmenti di linea MLSD."
"description": "Genera una mappa dei segmenti di linea dal livello selezionato utilizzando il modello di rilevamento dei segmenti di linea MLSD.",
"label": "Rilevamento segmenti di linea"
},
"content_shuffle": {
"label": "Mescola contenuto",
@@ -1869,7 +1880,11 @@
"fitToBbox": "Adatta al Riquadro",
"transform": "Trasforma",
"apply": "Applica",
"cancel": "Annulla"
"cancel": "Annulla",
"fitMode": "Adattamento",
"fitModeContain": "Contieni",
"fitModeFill": "Riempi",
"fitModeCover": "Copri"
},
"stagingArea": {
"next": "Successiva",
@@ -1904,7 +1919,8 @@
"newRasterLayer": "Nuovo Livello Raster",
"saveCanvasToGallery": "Salva la Tela nella Galleria",
"saveToGalleryGroup": "Salva nella Galleria"
}
},
"newImg2ImgCanvasFromImage": "Nuova Immagine da immagine"
},
"ui": {
"tabs": {

View File

@@ -158,7 +158,9 @@
"move": "Двигать",
"gallery": "Галерея",
"openViewer": "Открыть просмотрщик",
"closeViewer": "Закрыть просмотрщик"
"closeViewer": "Закрыть просмотрщик",
"imagesTab": "Изображения, созданные и сохраненные в Invoke.",
"assetsTab": "Файлы, которые вы загрузили для использования в своих проектах."
},
"hotkeys": {
"searchHotkeys": "Поиск горячих клавиш",
@@ -928,7 +930,10 @@
"imageAccessError": "Невозможно найти изображение {{image_name}}, сбрасываем на значение по умолчанию",
"boardAccessError": "Невозможно найти доску {{board_id}}, сбрасываем на значение по умолчанию",
"modelAccessError": "Невозможно найти модель {{key}}, сброс на модель по умолчанию",
"saveToGallery": "Сохранить в галерею"
"saveToGallery": "Сохранить в галерею",
"noWorkflows": "Нет рабочих процессов",
"noMatchingWorkflows": "Нет совпадающих рабочих процессов",
"workflowHelpText": "Нужна помощь? Ознакомьтесь с нашим руководством <LinkComponent>Getting Started with Workflows</LinkComponent>"
},
"boards": {
"autoAddBoard": "Авто добавление Доски",
@@ -1553,7 +1558,10 @@
"autoLayout": "Автоматическое расположение",
"userWorkflows": "Пользовательские рабочие процессы",
"projectWorkflows": "Рабочие процессы проекта",
"defaultWorkflows": "Стандартные рабочие процессы"
"defaultWorkflows": "Стандартные рабочие процессы",
"deleteWorkflow2": "Вы уверены, что хотите удалить этот рабочий процесс? Это нельзя отменить.",
"chooseWorkflowFromLibrary": "Выбрать рабочий процесс из библиотеки",
"uploadAndSaveWorkflow": "Загрузить в библиотеку"
},
"hrf": {
"enableHrf": "Включить исправление высокого разрешения",
@@ -1872,8 +1880,8 @@
"duplicate": "Дублировать",
"inpaintMasks_withCount_visible": "Маски перерисовки ({{count}})",
"layer_one": "Слой",
"layer_few": "",
"layer_many": "",
"layer_few": "Слоя",
"layer_many": "Слоев",
"prompt": "Запрос",
"negativePrompt": "Исключающий запрос",
"beginEndStepPercentShort": "Начало/конец %",
@@ -2035,7 +2043,7 @@
"whatsNewInInvoke": "Что нового в Invoke"
},
"newUserExperience": {
"toGetStarted": "Чтобы начать работу, введите в поле запрос и нажмите <StrongComponent>Invoke</StrongComponent>, чтобы сгенерировать первое изображение. Вы можете сохранить изображения непосредственно в <StrongComponent>Галерею</StrongComponent> или отредактировать их на <StrongComponent>Холсте</StrongComponent>.",
"toGetStarted": "Чтобы начать работу, введите в поле запрос и нажмите <StrongComponent>Invoke</StrongComponent>, чтобы сгенерировать первое изображение. Выберите шаблон запроса, чтобы улучшить результаты. Вы можете сохранить изображения непосредственно в <StrongComponent>Галерею</StrongComponent> или отредактировать их на <StrongComponent>Холсте</StrongComponent>.",
"gettingStartedSeries": "Хотите получить больше рекомендаций? Ознакомьтесь с нашей серией <LinkComponent>Getting Started Series</LinkComponent> для получения советов по раскрытию всего потенциала Invoke Studio."
}
}

View File

@@ -4,6 +4,7 @@ import type { StudioInitAction } from 'app/hooks/useStudioInitAction';
import { useStudioInitAction } from 'app/hooks/useStudioInitAction';
import { useSyncQueueStatus } from 'app/hooks/useSyncQueueStatus';
import { useLogger } from 'app/logging/useLogger';
import { useSyncLoggingConfig } from 'app/logging/useSyncLoggingConfig';
import { appStarted } from 'app/store/middleware/listenerMiddleware/listeners/appStarted';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import type { PartialAppConfig } from 'app/types/invokeai';
@@ -20,14 +21,18 @@ import {
import DeleteImageModal from 'features/deleteImageModal/components/DeleteImageModal';
import { DynamicPromptsModal } from 'features/dynamicPrompts/components/DynamicPromptsPreviewModal';
import DeleteBoardModal from 'features/gallery/components/Boards/DeleteBoardModal';
import { ImageContextMenu } from 'features/gallery/components/ImageContextMenu/ImageContextMenu';
import { useStarterModelsToast } from 'features/modelManagerV2/hooks/useStarterModelsToast';
import { ShareWorkflowModal } from 'features/nodes/components/sidePanel/WorkflowListMenu/ShareWorkflowModal';
import { ClearQueueConfirmationsAlertDialog } from 'features/queue/components/ClearQueueConfirmationAlertDialog';
import { DeleteStylePresetDialog } from 'features/stylePresets/components/DeleteStylePresetDialog';
import { StylePresetModal } from 'features/stylePresets/components/StylePresetForm/StylePresetModal';
import RefreshAfterResetModal from 'features/system/components/SettingsModal/RefreshAfterResetModal';
import { configChanged } from 'features/system/store/configSlice';
import { selectLanguage } from 'features/system/store/systemSelectors';
import { AppContent } from 'features/ui/components/AppContent';
import { AnimatePresence } from 'framer-motion';
import { DeleteWorkflowDialog } from 'features/workflowLibrary/components/DeleteLibraryWorkflowConfirmationAlertDialog';
import { NewWorkflowConfirmationAlertDialog } from 'features/workflowLibrary/components/NewWorkflowConfirmationAlertDialog';
import i18n from 'i18n';
import { size } from 'lodash-es';
import { memo, useCallback, useEffect } from 'react';
@@ -55,6 +60,7 @@ const App = ({ config = DEFAULT_CONFIG, studioInitAction }: Props) => {
useGlobalModifiersInit();
useGlobalHotkeys();
useGetOpenAPISchemaQuery();
useSyncLoggingConfig();
const { dropzone, isHandlingUpload, setIsHandlingUpload } = useFullscreenDropzone();
@@ -96,22 +102,25 @@ const App = ({ config = DEFAULT_CONFIG, studioInitAction }: Props) => {
>
<input {...dropzone.getInputProps()} />
<AppContent />
<AnimatePresence>
{dropzone.isDragActive && isHandlingUpload && (
<ImageUploadOverlay dropzone={dropzone} setIsHandlingUpload={setIsHandlingUpload} />
)}
</AnimatePresence>
{dropzone.isDragActive && isHandlingUpload && (
<ImageUploadOverlay dropzone={dropzone} setIsHandlingUpload={setIsHandlingUpload} />
)}
</Box>
<DeleteImageModal />
<ChangeBoardModal />
<DynamicPromptsModal />
<StylePresetModal />
<ClearQueueConfirmationsAlertDialog />
<NewWorkflowConfirmationAlertDialog />
<DeleteStylePresetDialog />
<DeleteWorkflowDialog />
<ShareWorkflowModal />
<RefreshAfterResetModal />
<DeleteBoardModal />
<GlobalImageHotkeys />
<NewGallerySessionDialog />
<NewCanvasSessionDialog />
<ImageContextMenu />
</ErrorBoundary>
);
};

View File

@@ -1,6 +1,7 @@
import { skipToken } from '@reduxjs/toolkit/query';
import { useAppSelector } from 'app/store/storeHooks';
import { useIsRegionFocused } from 'common/hooks/focus';
import { useAssertSingleton } from 'common/hooks/useAssertSingleton';
import { selectIsStaging } from 'features/controlLayers/store/canvasStagingAreaSlice';
import { useImageActions } from 'features/gallery/hooks/useImageActions';
import { selectLastSelectedImage } from 'features/gallery/store/gallerySelectors';
@@ -11,6 +12,7 @@ import { useGetImageDTOQuery } from 'services/api/endpoints/images';
import type { ImageDTO } from 'services/api/types';
export const GlobalImageHotkeys = memo(() => {
useAssertSingleton('GlobalImageHotkeys');
const lastSelectedImage = useAppSelector(selectLastSelectedImage);
const { currentData: imageDTO } = useGetImageDTOQuery(lastSelectedImage?.image_name ?? skipToken);

View File

@@ -2,6 +2,8 @@ import 'i18n';
import type { Middleware } from '@reduxjs/toolkit';
import type { StudioInitAction } from 'app/hooks/useStudioInitAction';
import type { LoggingOverrides } from 'app/logging/logger';
import { $loggingOverrides, configureLogging } from 'app/logging/logger';
import { $authToken } from 'app/store/nanostores/authToken';
import { $baseUrl } from 'app/store/nanostores/baseUrl';
import { $customNavComponent } from 'app/store/nanostores/customNavComponent';
@@ -20,7 +22,7 @@ import Loading from 'common/components/Loading/Loading';
import AppDndContext from 'features/dnd/components/AppDndContext';
import type { WorkflowCategory } from 'features/nodes/types/workflow';
import type { PropsWithChildren, ReactNode } from 'react';
import React, { lazy, memo, useEffect, useMemo } from 'react';
import React, { lazy, memo, useEffect, useLayoutEffect, useMemo } from 'react';
import { Provider } from 'react-redux';
import { addMiddleware, resetMiddlewares } from 'redux-dynamic-middlewares';
import { $socketOptions } from 'services/events/stores';
@@ -46,6 +48,7 @@ interface Props extends PropsWithChildren {
isDebugging?: boolean;
logo?: ReactNode;
workflowCategories?: WorkflowCategory[];
loggingOverrides?: LoggingOverrides;
}
const InvokeAIUI = ({
@@ -65,7 +68,26 @@ const InvokeAIUI = ({
isDebugging = false,
logo,
workflowCategories,
loggingOverrides,
}: Props) => {
useLayoutEffect(() => {
/*
* We need to configure logging before anything else happens - useLayoutEffect ensures we set this at the first
* possible opportunity.
*
* Once redux initializes, we will check the user's settings and update the logging config accordingly. See
* `useSyncLoggingConfig`.
*/
$loggingOverrides.set(loggingOverrides);
// Until we get the user's settings, we will use the overrides OR default values.
configureLogging(
loggingOverrides?.logIsEnabled ?? true,
loggingOverrides?.logLevel ?? 'debug',
loggingOverrides?.logNamespaces ?? '*'
);
}, [loggingOverrides]);
useEffect(() => {
// configure API client token
if (token) {

View File

@@ -12,7 +12,7 @@ import { parseAndRecallAllMetadata } from 'features/metadata/util/handlers';
import { $isWorkflowListMenuIsOpen } from 'features/nodes/store/workflowListMenu';
import { $isStylePresetsMenuOpen, activeStylePresetIdChanged } from 'features/stylePresets/store/stylePresetSlice';
import { toast } from 'features/toast/toast';
import { setActiveTab } from 'features/ui/store/uiSlice';
import { activeTabCanvasRightPanelChanged, setActiveTab } from 'features/ui/store/uiSlice';
import { useGetAndLoadLibraryWorkflow } from 'features/workflowLibrary/hooks/useGetAndLoadLibraryWorkflow';
import { useCallback, useEffect, useRef } from 'react';
import { useTranslation } from 'react-i18next';
@@ -140,6 +140,7 @@ export const useStudioInitAction = (action?: StudioInitAction) => {
case 'generation':
// Go to the canvas tab, open the image viewer, and enable send-to-gallery mode
store.dispatch(setActiveTab('canvas'));
store.dispatch(activeTabCanvasRightPanelChanged('gallery'));
store.dispatch(settingsSendToCanvasChanged(false));
$imageViewer.set(true);
break;

View File

@@ -9,11 +9,10 @@ const serializeMessage: MessageSerializer = (message) => {
};
ROARR.serializeMessage = serializeMessage;
ROARR.write = createLogWriter();
export const BASE_CONTEXT = {};
const BASE_CONTEXT = {};
export const $logger = atom<Logger>(Roarr.child(BASE_CONTEXT));
const $logger = atom<Logger>(Roarr.child(BASE_CONTEXT));
export const zLogNamespace = z.enum([
'canvas',
@@ -35,8 +34,22 @@ export const zLogLevel = z.enum(['trace', 'debug', 'info', 'warn', 'error', 'fat
export type LogLevel = z.infer<typeof zLogLevel>;
export const isLogLevel = (v: unknown): v is LogLevel => zLogLevel.safeParse(v).success;
/**
* Override logging settings.
* @property logIsEnabled Override the enabled log state. Omit to use the user's settings.
* @property logNamespaces Override the enabled log namespaces. Use `"*"` for all namespaces. Omit to use the user's settings.
* @property logLevel Override the log level. Omit to use the user's settings.
*/
export type LoggingOverrides = {
logIsEnabled?: boolean;
logNamespaces?: LogNamespace[] | '*';
logLevel?: LogLevel;
};
export const $loggingOverrides = atom<LoggingOverrides | undefined>();
// Translate human-readable log levels to numbers, used for log filtering
export const LOG_LEVEL_MAP: Record<LogLevel, number> = {
const LOG_LEVEL_MAP: Record<LogLevel, number> = {
trace: 10,
debug: 20,
info: 30,
@@ -44,3 +57,40 @@ export const LOG_LEVEL_MAP: Record<LogLevel, number> = {
error: 50,
fatal: 60,
};
/**
* Configure logging, pushing settings to local storage.
*
* @param logIsEnabled Whether logging is enabled
* @param logLevel The log level
* @param logNamespaces A list of log namespaces to enable, or '*' to enable all
*/
export const configureLogging = (
logIsEnabled: boolean = true,
logLevel: LogLevel = 'warn',
logNamespaces: LogNamespace[] | '*'
): void => {
if (!logIsEnabled) {
// Disable console log output
localStorage.setItem('ROARR_LOG', 'false');
} else {
// Enable console log output
localStorage.setItem('ROARR_LOG', 'true');
// Use a filter to show only logs of the given level
let filter = `context.logLevel:>=${LOG_LEVEL_MAP[logLevel]}`;
const namespaces = logNamespaces === '*' ? zLogNamespace.options : logNamespaces;
if (namespaces.length > 0) {
filter += ` AND (${namespaces.map((ns) => `context.namespace:${ns}`).join(' OR ')})`;
} else {
// This effectively hides all logs because we use namespaces for all logs
filter += ' AND context.namespace:undefined';
}
localStorage.setItem('ROARR_FILTER', filter);
}
ROARR.write = createLogWriter();
};

View File

@@ -1,53 +1,9 @@
import { createLogWriter } from '@roarr/browser-log-writer';
import { useAppSelector } from 'app/store/storeHooks';
import {
selectSystemLogIsEnabled,
selectSystemLogLevel,
selectSystemLogNamespaces,
} from 'features/system/store/systemSlice';
import { useEffect, useMemo } from 'react';
import { ROARR, Roarr } from 'roarr';
import { useMemo } from 'react';
import type { LogNamespace } from './logger';
import { $logger, BASE_CONTEXT, LOG_LEVEL_MAP, logger } from './logger';
import { logger } from './logger';
export const useLogger = (namespace: LogNamespace) => {
const logLevel = useAppSelector(selectSystemLogLevel);
const logNamespaces = useAppSelector(selectSystemLogNamespaces);
const logIsEnabled = useAppSelector(selectSystemLogIsEnabled);
// The provided Roarr browser log writer uses localStorage to config logging to console
useEffect(() => {
if (logIsEnabled) {
// Enable console log output
localStorage.setItem('ROARR_LOG', 'true');
// Use a filter to show only logs of the given level
let filter = `context.logLevel:>=${LOG_LEVEL_MAP[logLevel]}`;
if (logNamespaces.length > 0) {
filter += ` AND (${logNamespaces.map((ns) => `context.namespace:${ns}`).join(' OR ')})`;
} else {
filter += ' AND context.namespace:undefined';
}
localStorage.setItem('ROARR_FILTER', filter);
} else {
// Disable console log output
localStorage.setItem('ROARR_LOG', 'false');
}
ROARR.write = createLogWriter();
}, [logLevel, logIsEnabled, logNamespaces]);
// Update the module-scoped logger context as needed
useEffect(() => {
// TODO: type this properly
//eslint-disable-next-line @typescript-eslint/no-explicit-any
const newContext: Record<string, any> = {
...BASE_CONTEXT,
};
$logger.set(Roarr.child(newContext));
}, []);
const log = useMemo(() => logger(namespace), [namespace]);
return log;

View File

@@ -0,0 +1,43 @@
import { useStore } from '@nanostores/react';
import { $loggingOverrides, configureLogging } from 'app/logging/logger';
import { useAppSelector } from 'app/store/storeHooks';
import { useAssertSingleton } from 'common/hooks/useAssertSingleton';
import {
selectSystemLogIsEnabled,
selectSystemLogLevel,
selectSystemLogNamespaces,
} from 'features/system/store/systemSlice';
import { useLayoutEffect } from 'react';
/**
* This hook synchronizes the logging configuration stored in Redux with the logging system, which uses localstorage.
*
* The sync is one-way: from Redux to localstorage. This means that changes made in the UI will be reflected in the
* logging system, but changes made directly to localstorage will not be reflected in the UI.
*
* See {@link configureLogging}
*/
export const useSyncLoggingConfig = () => {
useAssertSingleton('useSyncLoggingConfig');
const loggingOverrides = useStore($loggingOverrides);
const logLevel = useAppSelector(selectSystemLogLevel);
const logNamespaces = useAppSelector(selectSystemLogNamespaces);
const logIsEnabled = useAppSelector(selectSystemLogIsEnabled);
useLayoutEffect(() => {
configureLogging(
loggingOverrides?.logIsEnabled ?? logIsEnabled,
loggingOverrides?.logLevel ?? logLevel,
loggingOverrides?.logNamespaces ?? logNamespaces
);
}, [
logIsEnabled,
logLevel,
logNamespaces,
loggingOverrides?.logIsEnabled,
loggingOverrides?.logLevel,
loggingOverrides?.logNamespaces,
]);
};

View File

@@ -1,3 +1,4 @@
export const STORAGE_PREFIX = '@@invokeai-';
export const EMPTY_ARRAY = [];
/** @knipignore */
export const EMPTY_OBJECT = {};

View File

@@ -7,12 +7,20 @@ import { diff } from 'jsondiffpatch';
/**
* Super simple logger middleware. Useful for debugging when the redux devtools are awkward.
*/
export const debugLoggerMiddleware: Middleware = (api: MiddlewareAPI) => (next) => (action) => {
const originalState = api.getState();
console.log('REDUX: dispatching', action);
const result = next(action);
const nextState = api.getState();
console.log('REDUX: next state', nextState);
console.log('REDUX: diff', diff(originalState, nextState));
return result;
};
export const getDebugLoggerMiddleware =
(options?: { withDiff?: boolean; withNextState?: boolean }): Middleware =>
(api: MiddlewareAPI) =>
(next) =>
(action) => {
const originalState = api.getState();
console.log('REDUX: dispatching', action);
const result = next(action);
const nextState = api.getState();
if (options?.withNextState) {
console.log('REDUX: next state', nextState);
}
if (options?.withDiff) {
console.log('REDUX: diff', diff(originalState, nextState));
}
return result;
};

View File

@@ -29,13 +29,13 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
const { autoAddBoardId, selectedBoardId } = state.gallery;
// If the deleted board was currently selected, we should reset the selected board to uncategorized
if (deletedBoardId === selectedBoardId) {
if (selectedBoardId !== 'none' && deletedBoardId === selectedBoardId) {
dispatch(boardIdSelected({ boardId: 'none' }));
dispatch(galleryViewChanged('images'));
}
// If the deleted board was selected for auto-add, we should reset the auto-add board to uncategorized
if (deletedBoardId === autoAddBoardId) {
if (autoAddBoardId !== 'none' && deletedBoardId === autoAddBoardId) {
dispatch(autoAddBoardIdChanged('none'));
}
},
@@ -46,11 +46,11 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
matcher: boardsApi.endpoints.updateBoard.matchFulfilled,
effect: (action, { dispatch, getState }) => {
const state = getState();
const { shouldShowArchivedBoards } = state.gallery;
const { shouldShowArchivedBoards, selectedBoardId, autoAddBoardId } = state.gallery;
const wasArchived = action.meta.arg.originalArgs.changes.archived === true;
if (wasArchived && !shouldShowArchivedBoards) {
if (selectedBoardId !== 'none' && autoAddBoardId !== 'none' && wasArchived && !shouldShowArchivedBoards) {
dispatch(autoAddBoardIdChanged('none'));
dispatch(boardIdSelected({ boardId: 'none' }));
dispatch(galleryViewChanged('images'));
@@ -80,7 +80,7 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
// Handle the case where selected board is archived
const selectedBoard = queryResult.data.find((b) => b.board_id === selectedBoardId);
if (!selectedBoard || selectedBoard.archived) {
if (selectedBoardId !== 'none' && (!selectedBoard || selectedBoard.archived)) {
// If we can't find the selected board or it's archived, we should reset the selected board to uncategorized
dispatch(boardIdSelected({ boardId: 'none' }));
dispatch(galleryViewChanged('images'));
@@ -88,7 +88,7 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
// Handle the case where auto-add board is archived
const autoAddBoard = queryResult.data.find((b) => b.board_id === autoAddBoardId);
if (!autoAddBoard || autoAddBoard.archived) {
if (autoAddBoardId !== 'none' && (!autoAddBoard || autoAddBoard.archived)) {
// If we can't find the auto-add board or it's archived, we should reset the selected board to uncategorized
dispatch(autoAddBoardIdChanged('none'));
}
@@ -106,13 +106,13 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
const { selectedBoardId, autoAddBoardId } = state.gallery;
// Handle the case where selected board isn't in the list of boards
if (!boards.find((b) => b.board_id === selectedBoardId)) {
if (selectedBoardId !== 'none' && !boards.find((b) => b.board_id === selectedBoardId)) {
dispatch(boardIdSelected({ boardId: 'none' }));
dispatch(galleryViewChanged('images'));
}
// Handle the case where auto-add board isn't in the list of boards
if (!boards.find((b) => b.board_id === autoAddBoardId)) {
if (autoAddBoardId !== 'none' && !boards.find((b) => b.board_id === autoAddBoardId)) {
dispatch(autoAddBoardIdChanged('none'));
}
},

View File

@@ -1,5 +1,6 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import type { RootState } from 'app/store/store';
import {
entityRasterized,
entitySelected,
@@ -20,24 +21,39 @@ import { imagesApi } from 'services/api/endpoints/images';
const log = logger('gallery');
/**
* Gets the description for the toast that is shown when an image is uploaded.
* @param boardId The board id of the uploaded image
* @param state The current state of the app
* @returns
*/
const getUploadedToastDescription = (boardId: string, state: RootState) => {
if (boardId === 'none') {
return t('toast.addedToUncategorized');
}
// Attempt to get the board's name for the toast
const queryArgs = selectListBoardsQueryArgs(state);
const { data } = boardsApi.endpoints.listAllBoards.select(queryArgs)(state);
// Fall back to just the board id if we can't find the board for some reason
const board = data?.find((b) => b.board_id === boardId);
return t('toast.addedToBoard', { name: board?.board_name ?? boardId });
};
let lastUploadedToastTimeout: number | null = null;
export const addImageUploadedFulfilledListener = (startAppListening: AppStartListening) => {
startAppListening({
matcher: imagesApi.endpoints.uploadImage.matchFulfilled,
effect: (action, { dispatch, getState }) => {
const imageDTO = action.payload;
const state = getState();
const { autoAddBoardId } = state.gallery;
log.debug({ imageDTO }, 'Image uploaded');
const { postUploadAction } = action.meta.arg.originalArgs;
if (
// No further actions needed for intermediate images,
action.payload.is_intermediate &&
// unless they have an explicit post-upload action
!postUploadAction
) {
if (!postUploadAction) {
return;
}
@@ -48,42 +64,40 @@ export const addImageUploadedFulfilledListener = (startAppListening: AppStartLis
} as const;
// default action - just upload and alert user
if (postUploadAction?.type === 'TOAST') {
if (!autoAddBoardId || autoAddBoardId === 'none') {
const title = postUploadAction.title || DEFAULT_UPLOADED_TOAST.title;
toast({ ...DEFAULT_UPLOADED_TOAST, title });
dispatch(boardIdSelected({ boardId: 'none' }));
dispatch(galleryViewChanged('assets'));
} else {
// Add this image to the board
dispatch(
imagesApi.endpoints.addImageToBoard.initiate({
board_id: autoAddBoardId,
imageDTO,
})
);
// Attempt to get the board's name for the toast
const queryArgs = selectListBoardsQueryArgs(state);
const { data } = boardsApi.endpoints.listAllBoards.select(queryArgs)(state);
// Fall back to just the board id if we can't find the board for some reason
const board = data?.find((b) => b.board_id === autoAddBoardId);
const description = board
? `${t('toast.addedToBoard')} ${board.board_name}`
: `${t('toast.addedToBoard')} ${autoAddBoardId}`;
toast({
...DEFAULT_UPLOADED_TOAST,
description,
});
dispatch(boardIdSelected({ boardId: autoAddBoardId }));
if (postUploadAction.type === 'TOAST') {
const boardId = imageDTO.board_id ?? 'none';
if (lastUploadedToastTimeout !== null) {
window.clearTimeout(lastUploadedToastTimeout);
}
const toastApi = toast({
...DEFAULT_UPLOADED_TOAST,
title: postUploadAction.title || DEFAULT_UPLOADED_TOAST.title,
description: getUploadedToastDescription(boardId, state),
duration: null, // we will close the toast manually
});
lastUploadedToastTimeout = window.setTimeout(() => {
toastApi.close();
}, 3000);
/**
* We only want to change the board and view if this is the first upload of a batch, else we end up hijacking
* the user's gallery board and view selection:
* - User uploads multiple images
* - A couple uploads finish, but others are pending still
* - User changes the board selection
* - Pending uploads finish and change the board back to the original board
* - User is confused as to why the board changed
*
* Default to true to not require _all_ image upload handlers to set this value
*/
const isFirstUploadOfBatch = action.meta.arg.originalArgs.isFirstUploadOfBatch ?? true;
if (isFirstUploadOfBatch) {
dispatch(boardIdSelected({ boardId }));
dispatch(galleryViewChanged('assets'));
}
return;
}
if (postUploadAction?.type === 'SET_UPSCALE_INITIAL_IMAGE') {
if (postUploadAction.type === 'SET_UPSCALE_INITIAL_IMAGE') {
dispatch(upscaleInitialImageChanged(imageDTO));
toast({
...DEFAULT_UPLOADED_TOAST,
@@ -92,21 +106,14 @@ export const addImageUploadedFulfilledListener = (startAppListening: AppStartLis
return;
}
// if (postUploadAction?.type === 'SET_CA_IMAGE') {
// const { id } = postUploadAction;
// dispatch(caImageChanged({ id, imageDTO }));
// toast({ ...DEFAULT_UPLOADED_TOAST, description: t('toast.setControlImage') });
// return;
// }
if (postUploadAction?.type === 'SET_IPA_IMAGE') {
if (postUploadAction.type === 'SET_IPA_IMAGE') {
const { id } = postUploadAction;
dispatch(referenceImageIPAdapterImageChanged({ entityIdentifier: { id, type: 'reference_image' }, imageDTO }));
toast({ ...DEFAULT_UPLOADED_TOAST, description: t('toast.setControlImage') });
return;
}
if (postUploadAction?.type === 'SET_RG_IP_ADAPTER_IMAGE') {
if (postUploadAction.type === 'SET_RG_IP_ADAPTER_IMAGE') {
const { id, referenceImageId } = postUploadAction;
dispatch(
rgIPAdapterImageChanged({ entityIdentifier: { id, type: 'regional_guidance' }, referenceImageId, imageDTO })
@@ -115,14 +122,14 @@ export const addImageUploadedFulfilledListener = (startAppListening: AppStartLis
return;
}
if (postUploadAction?.type === 'SET_NODES_IMAGE') {
if (postUploadAction.type === 'SET_NODES_IMAGE') {
const { nodeId, fieldName } = postUploadAction;
dispatch(fieldImageValueChanged({ nodeId, fieldName, value: imageDTO }));
toast({ ...DEFAULT_UPLOADED_TOAST, description: `${t('toast.setNodeField')} ${fieldName}` });
return;
}
if (postUploadAction?.type === 'REPLACE_LAYER_WITH_IMAGE') {
if (postUploadAction.type === 'REPLACE_LAYER_WITH_IMAGE') {
const { entityIdentifier } = postUploadAction;
const state = getState();

View File

@@ -79,6 +79,7 @@ export type AppConfig = {
metadataFetchDebounce?: number;
workflowFetchDebounce?: number;
isLocal?: boolean;
maxImageUploadCount?: number;
sd: {
defaultModel?: string;
disabledControlNetModels: string[];

View File

@@ -4,9 +4,9 @@ import { IAILoadingImageFallback, IAINoContentFallback } from 'common/components
import ImageMetadataOverlay from 'common/components/ImageMetadataOverlay';
import { useImageUploadButton } from 'common/hooks/useImageUploadButton';
import type { TypesafeDraggableData, TypesafeDroppableData } from 'features/dnd/types';
import ImageContextMenu from 'features/gallery/components/ImageContextMenu/ImageContextMenu';
import { useImageContextMenu } from 'features/gallery/components/ImageContextMenu/ImageContextMenu';
import type { MouseEvent, ReactElement, ReactNode, SyntheticEvent } from 'react';
import { memo, useCallback, useMemo } from 'react';
import { memo, useCallback, useMemo, useRef } from 'react';
import { PiImageBold, PiUploadSimpleBold } from 'react-icons/pi';
import type { ImageDTO, PostUploadAction } from 'services/api/types';
@@ -17,7 +17,14 @@ const defaultUploadElement = <Icon as={PiUploadSimpleBold} boxSize={16} />;
const defaultNoContentFallback = <IAINoContentFallback icon={PiImageBold} />;
const baseStyles: SystemStyleObject = {
touchAction: 'none',
userSelect: 'none',
webkitUserSelect: 'none',
};
const sx: SystemStyleObject = {
...baseStyles,
'.gallery-image-container::before': {
content: '""',
display: 'inline-block',
@@ -102,59 +109,10 @@ const IAIDndImage = (props: IAIDndImageProps) => {
useThumbailFallback,
withHoverOverlay = false,
children,
onMouseOver,
onMouseOut,
dataTestId,
...rest
} = props;
const handleMouseOver = useCallback(
(e: MouseEvent<HTMLDivElement>) => {
if (onMouseOver) {
onMouseOver(e);
}
},
[onMouseOver]
);
const handleMouseOut = useCallback(
(e: MouseEvent<HTMLDivElement>) => {
if (onMouseOut) {
onMouseOut(e);
}
},
[onMouseOut]
);
const { getUploadButtonProps, getUploadInputProps } = useImageUploadButton({
postUploadAction,
isDisabled: isUploadDisabled,
});
const uploadButtonStyles = useMemo<SystemStyleObject>(() => {
const styles: SystemStyleObject = {
minH: minSize,
w: 'full',
h: 'full',
alignItems: 'center',
justifyContent: 'center',
borderRadius: 'base',
transitionProperty: 'common',
transitionDuration: '0.1s',
color: 'base.500',
};
if (!isUploadDisabled) {
Object.assign(styles, {
cursor: 'pointer',
bg: 'base.700',
_hover: {
bg: 'base.650',
color: 'base.300',
},
});
}
return styles;
}, [isUploadDisabled, minSize]);
const openInNewTab = useCallback(
(e: MouseEvent) => {
if (!imageDTO) {
@@ -168,76 +126,126 @@ const IAIDndImage = (props: IAIDndImageProps) => {
[imageDTO]
);
const ref = useRef<HTMLDivElement>(null);
useImageContextMenu(imageDTO, ref);
return (
<ImageContextMenu imageDTO={imageDTO}>
{(ref) => (
<Flex
ref={ref}
width="full"
height="full"
alignItems="center"
justifyContent="center"
position="relative"
minW={minSize ? minSize : undefined}
minH={minSize ? minSize : undefined}
userSelect="none"
cursor={isDragDisabled || !imageDTO ? 'default' : 'pointer'}
sx={withHoverOverlay ? sx : baseStyles}
data-selected={isSelectedForCompare ? 'selectedForCompare' : isSelected ? 'selected' : undefined}
{...rest}
>
{imageDTO && (
<Flex
ref={ref}
onMouseOver={handleMouseOver}
onMouseOut={handleMouseOut}
width="full"
height="full"
className="gallery-image-container"
w="full"
h="full"
position={fitContainer ? 'absolute' : 'relative'}
alignItems="center"
justifyContent="center"
position="relative"
minW={minSize ? minSize : undefined}
minH={minSize ? minSize : undefined}
userSelect="none"
cursor={isDragDisabled || !imageDTO ? 'default' : 'pointer'}
sx={withHoverOverlay ? sx : undefined}
data-selected={isSelectedForCompare ? 'selectedForCompare' : isSelected ? 'selected' : undefined}
{...rest}
>
{imageDTO && (
<Flex
className="gallery-image-container"
w="full"
h="full"
position={fitContainer ? 'absolute' : 'relative'}
alignItems="center"
justifyContent="center"
>
<Image
src={thumbnail ? imageDTO.thumbnail_url : imageDTO.image_url}
fallbackStrategy="beforeLoadOrError"
fallbackSrc={useThumbailFallback ? imageDTO.thumbnail_url : undefined}
fallback={useThumbailFallback ? undefined : <IAILoadingImageFallback image={imageDTO} />}
onError={onError}
draggable={false}
w={imageDTO.width}
objectFit="contain"
maxW="full"
maxH="full"
borderRadius="base"
sx={imageSx}
data-testid={dataTestId}
/>
{withMetadataOverlay && <ImageMetadataOverlay imageDTO={imageDTO} />}
</Flex>
)}
{!imageDTO && !isUploadDisabled && (
<>
<Flex sx={uploadButtonStyles} {...getUploadButtonProps()}>
<input {...getUploadInputProps()} />
{uploadElement}
</Flex>
</>
)}
{!imageDTO && isUploadDisabled && noContentFallback}
{imageDTO && !isDragDisabled && (
<IAIDraggable
data={draggableData}
disabled={isDragDisabled || !imageDTO}
onClick={onClick}
onAuxClick={openInNewTab}
/>
)}
{children}
{!isDropDisabled && <IAIDroppable data={droppableData} disabled={isDropDisabled} dropLabel={dropLabel} />}
<Image
src={thumbnail ? imageDTO.thumbnail_url : imageDTO.image_url}
fallbackStrategy="beforeLoadOrError"
fallbackSrc={useThumbailFallback ? imageDTO.thumbnail_url : undefined}
fallback={useThumbailFallback ? undefined : <IAILoadingImageFallback image={imageDTO} />}
onError={onError}
draggable={false}
w={imageDTO.width}
objectFit="contain"
maxW="full"
maxH="full"
borderRadius="base"
sx={imageSx}
data-testid={dataTestId}
/>
{withMetadataOverlay && <ImageMetadataOverlay imageDTO={imageDTO} />}
</Flex>
)}
</ImageContextMenu>
{!imageDTO && !isUploadDisabled && (
<UploadButton
isUploadDisabled={isUploadDisabled}
postUploadAction={postUploadAction}
uploadElement={uploadElement}
minSize={minSize}
/>
)}
{!imageDTO && isUploadDisabled && noContentFallback}
{imageDTO && !isDragDisabled && (
<IAIDraggable
data={draggableData}
disabled={isDragDisabled || !imageDTO}
onClick={onClick}
onAuxClick={openInNewTab}
/>
)}
{children}
{!isDropDisabled && <IAIDroppable data={droppableData} disabled={isDropDisabled} dropLabel={dropLabel} />}
</Flex>
);
};
export default memo(IAIDndImage);
const UploadButton = memo(
({
isUploadDisabled,
postUploadAction,
uploadElement,
minSize,
}: {
isUploadDisabled: boolean;
postUploadAction?: PostUploadAction;
uploadElement: ReactNode;
minSize: number;
}) => {
const { getUploadButtonProps, getUploadInputProps } = useImageUploadButton({
postUploadAction,
isDisabled: isUploadDisabled,
});
const uploadButtonStyles = useMemo<SystemStyleObject>(() => {
const styles: SystemStyleObject = {
minH: minSize,
w: 'full',
h: 'full',
alignItems: 'center',
justifyContent: 'center',
borderRadius: 'base',
transitionProperty: 'common',
transitionDuration: '0.1s',
color: 'base.500',
};
if (!isUploadDisabled) {
Object.assign(styles, {
cursor: 'pointer',
bg: 'base.700',
_hover: {
bg: 'base.650',
color: 'base.300',
},
});
}
return styles;
}, [isUploadDisabled, minSize]);
return (
<Flex sx={uploadButtonStyles} {...getUploadButtonProps()}>
<input {...getUploadInputProps()} />
{uploadElement}
</Flex>
);
}
);
UploadButton.displayName = 'UploadButton';

View File

@@ -1,15 +1,14 @@
import { Flex, Text } from '@invoke-ai/ui-library';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
type Props = {
isOver: boolean;
label?: string;
withBackdrop?: boolean;
};
const IAIDropOverlay = (props: Props) => {
const { t } = useTranslation();
const { isOver, label = t('gallery.drop') } = props;
const { isOver, label, withBackdrop = true } = props;
return (
<Flex position="absolute" top={0} right={0} bottom={0} left={0}>
<Flex
@@ -20,7 +19,7 @@ const IAIDropOverlay = (props: Props) => {
left={0}
w="full"
h="full"
bg="base.900"
bg={withBackdrop ? 'base.900' : 'transparent'}
opacity={0.7}
borderRadius="base"
alignItems="center"
@@ -45,16 +44,18 @@ const IAIDropOverlay = (props: Props) => {
alignItems="center"
justifyContent="center"
>
<Text
fontSize="lg"
fontWeight="semibold"
color={isOver ? 'invokeYellow.300' : 'base.500'}
transitionProperty="common"
transitionDuration="0.1s"
textAlign="center"
>
{label}
</Text>
{label && (
<Text
fontSize="lg"
fontWeight="semibold"
color={isOver ? 'invokeYellow.300' : 'base.500'}
transitionProperty="common"
transitionDuration="0.1s"
textAlign="center"
>
{label}
</Text>
)}
</Flex>
</Flex>
);

View File

@@ -0,0 +1,30 @@
import type { MenuItemProps } from '@invoke-ai/ui-library';
import { Flex, MenuItem, Tooltip } from '@invoke-ai/ui-library';
import type { ReactNode } from 'react';
type Props = MenuItemProps & {
tooltip?: ReactNode;
icon: ReactNode;
};
export const IconMenuItem = ({ tooltip, icon, ...props }: Props) => {
return (
<Tooltip label={tooltip} placement="top" gutter={12}>
<MenuItem
display="flex"
alignItems="center"
justifyContent="center"
w="min-content"
aspectRatio="1"
borderRadius="base"
{...props}
>
{icon}
</MenuItem>
</Tooltip>
);
};
export const IconMenuItemGroup = ({ children }: { children: ReactNode }) => {
return <Flex gap={2}>{children}</Flex>;
};

View File

@@ -1,22 +1,12 @@
import { Box, Flex, Heading } from '@invoke-ai/ui-library';
import type { AnimationProps } from 'framer-motion';
import { motion } from 'framer-motion';
import { useAppSelector } from 'app/store/storeHooks';
import { selectSelectedBoardId } from 'features/gallery/store/gallerySelectors';
import { selectMaxImageUploadCount } from 'features/system/store/configSlice';
import { memo } from 'react';
import type { DropzoneState } from 'react-dropzone';
import { useHotkeys } from 'react-hotkeys-hook';
import { useTranslation } from 'react-i18next';
const initial: AnimationProps['initial'] = {
opacity: 0,
};
const animate: AnimationProps['animate'] = {
opacity: 1,
transition: { duration: 0.1 },
};
const exit: AnimationProps['exit'] = {
opacity: 0,
transition: { duration: 0.1 },
};
import { useBoardName } from 'services/api/hooks/useBoardName';
type ImageUploadOverlayProps = {
dropzone: DropzoneState;
@@ -24,7 +14,6 @@ type ImageUploadOverlayProps = {
};
const ImageUploadOverlay = (props: ImageUploadOverlayProps) => {
const { t } = useTranslation();
const { dropzone, setIsHandlingUpload } = props;
useHotkeys(
@@ -36,67 +25,65 @@ const ImageUploadOverlay = (props: ImageUploadOverlayProps) => {
);
return (
<Box
key="image-upload-overlay"
initial={initial}
animate={animate}
exit={exit}
as={motion.div}
position="absolute"
top={0}
insetInlineStart={0}
width="100dvw"
height="100dvh"
zIndex={999}
backdropFilter="blur(20px)"
>
<Box position="absolute" top={0} right={0} bottom={0} left={0} zIndex={999} backdropFilter="blur(20px)">
<Flex position="absolute" top={0} right={0} bottom={0} left={0} bg="base.900" opacity={0.7} />
<Flex
position="absolute"
top={0}
insetInlineStart={0}
w="full"
h="full"
bg="base.900"
opacity={0.7}
alignItems="center"
justifyContent="center"
flexDir="column"
gap={4}
top={2}
right={2}
bottom={2}
left={2}
opacity={1}
borderWidth={2}
borderColor={dropzone.isDragAccept ? 'invokeYellow.300' : 'error.500'}
borderRadius="base"
borderStyle="dashed"
transitionProperty="common"
transitionDuration="0.1s"
/>
<Flex
position="absolute"
top={0}
insetInlineStart={0}
width="full"
height="full"
alignItems="center"
justifyContent="center"
p={4}
color={dropzone.isDragReject ? 'error.300' : undefined}
>
<Flex
width="full"
height="full"
alignItems="center"
justifyContent="center"
flexDir="column"
gap={4}
borderWidth={3}
borderRadius="xl"
borderStyle="dashed"
color="base.100"
borderColor="base.200"
>
{dropzone.isDragAccept ? (
<Heading size="lg">{t('gallery.dropToUpload')}</Heading>
) : (
<>
<Heading size="lg">{t('toast.invalidUpload')}</Heading>
<Heading size="md">{t('toast.uploadFailedInvalidUploadDesc')}</Heading>
</>
)}
</Flex>
{dropzone.isDragAccept && <DragAcceptMessage />}
{!dropzone.isDragAccept && <DragRejectMessage />}
</Flex>
</Box>
);
};
export default memo(ImageUploadOverlay);
const DragAcceptMessage = () => {
const { t } = useTranslation();
const selectedBoardId = useAppSelector(selectSelectedBoardId);
const boardName = useBoardName(selectedBoardId);
return (
<>
<Heading size="lg">{t('gallery.dropToUpload')}</Heading>
<Heading size="md">{t('toast.imagesWillBeAddedTo', { boardName })}</Heading>
</>
);
};
const DragRejectMessage = () => {
const { t } = useTranslation();
const maxImageUploadCount = useAppSelector(selectMaxImageUploadCount);
if (maxImageUploadCount === undefined) {
return (
<>
<Heading size="lg">{t('toast.invalidUpload')}</Heading>
<Heading size="md">{t('toast.uploadFailedInvalidUploadDesc')}</Heading>
</>
);
}
return (
<>
<Heading size="lg">{t('toast.invalidUpload')}</Heading>
<Heading size="md">{t('toast.uploadFailedInvalidUploadDesc_withCount', { count: maxImageUploadCount })}</Heading>
</>
);
};

View File

@@ -51,7 +51,7 @@ export const buildUseBoolean = (initialValue: boolean): [() => UseBoolean, Writa
* Hook to manage a boolean state. Use this for a local boolean state.
* @param initialValue Initial value of the boolean
*/
export const useBoolean = (initialValue: boolean) => {
export const useBoolean = (initialValue: boolean): UseBoolean => {
const [isTrue, set] = useState(initialValue);
const setTrue = useCallback(() => {
@@ -72,3 +72,82 @@ export const useBoolean = (initialValue: boolean) => {
toggle,
};
};
type UseDisclosure = {
isOpen: boolean;
open: () => void;
close: () => void;
set: (isOpen: boolean) => void;
toggle: () => void;
};
/**
* This is the same as `buildUseBoolean`, but the method names are more descriptive,
* serving the semantics of a disclosure state.
*
* Creates a hook to manage a boolean state. The boolean is stored in a nanostores atom.
* Returns a tuple containing the hook and the atom. Use this for global boolean state.
*
* @param defaultIsOpen Initial state of the disclosure
*/
export const buildUseDisclosure = (defaultIsOpen: boolean): [() => UseDisclosure, WritableAtom<boolean>] => {
const $isOpen = atom(defaultIsOpen);
const open = () => {
$isOpen.set(true);
};
const close = () => {
$isOpen.set(false);
};
const set = (isOpen: boolean) => {
$isOpen.set(isOpen);
};
const toggle = () => {
$isOpen.set(!$isOpen.get());
};
const useDisclosure = () => {
const isOpen = useStore($isOpen);
return {
isOpen,
open,
close,
set,
toggle,
};
};
return [useDisclosure, $isOpen] as const;
};
/**
* This is the same as `useBoolean`, but the method names are more descriptive,
* serving the semantics of a disclosure state.
*
* Hook to manage a boolean state. Use this for a local boolean state.
* @param defaultIsOpen Initial state of the disclosure
*
* @knipignore
*/
export const useDisclosure = (defaultIsOpen: boolean): UseDisclosure => {
const [isOpen, set] = useState(defaultIsOpen);
const open = useCallback(() => {
set(true);
}, [set]);
const close = useCallback(() => {
set(false);
}, [set]);
const toggle = useCallback(() => {
set((val) => !val);
}, [set]);
return {
isOpen,
open,
close,
set,
toggle,
};
};

View File

@@ -1,6 +1,8 @@
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { logger } from 'app/logging/logger';
import { useAppSelector } from 'app/store/storeHooks';
import { useAssertSingleton } from 'common/hooks/useAssertSingleton';
import { selectAutoAddBoardId } from 'features/gallery/store/gallerySelectors';
import { selectMaxImageUploadCount } from 'features/system/store/configSlice';
import { toast } from 'features/toast/toast';
import { selectActiveTab } from 'features/ui/store/uiSelectors';
import { useCallback, useEffect, useState } from 'react';
@@ -10,89 +12,89 @@ import { useTranslation } from 'react-i18next';
import { useUploadImageMutation } from 'services/api/endpoints/images';
import type { PostUploadAction } from 'services/api/types';
const log = logger('gallery');
const accept: Accept = {
'image/png': ['.png'],
'image/jpeg': ['.jpg', '.jpeg', '.png'],
};
const selectPostUploadAction = createMemoizedSelector(selectActiveTab, (activeTabName) => {
let postUploadAction: PostUploadAction = { type: 'TOAST' };
if (activeTabName === 'upscaling') {
postUploadAction = { type: 'SET_UPSCALE_INITIAL_IMAGE' };
}
return postUploadAction;
});
export const useFullscreenDropzone = () => {
useAssertSingleton('useFullscreenDropzone');
const { t } = useTranslation();
const autoAddBoardId = useAppSelector(selectAutoAddBoardId);
const [isHandlingUpload, setIsHandlingUpload] = useState<boolean>(false);
const postUploadAction = useAppSelector(selectPostUploadAction);
const [uploadImage] = useUploadImageMutation();
const activeTabName = useAppSelector(selectActiveTab);
const maxImageUploadCount = useAppSelector(selectMaxImageUploadCount);
const fileRejectionCallback = useCallback(
(rejection: FileRejection) => {
setIsHandlingUpload(true);
toast({
id: 'UPLOAD_FAILED',
title: t('toast.uploadFailed'),
description: rejection.errors.map((error) => error.message).join('\n'),
status: 'error',
});
},
[t]
);
const fileAcceptedCallback = useCallback(
(file: File) => {
uploadImage({
file,
image_category: 'user',
is_intermediate: false,
postUploadAction,
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
});
},
[autoAddBoardId, postUploadAction, uploadImage]
);
const getPostUploadAction = useCallback((): PostUploadAction => {
if (activeTabName === 'upscaling') {
return { type: 'SET_UPSCALE_INITIAL_IMAGE' };
} else {
return { type: 'TOAST' };
}
}, [activeTabName]);
const onDrop = useCallback(
(acceptedFiles: Array<File>, fileRejections: Array<FileRejection>) => {
if (fileRejections.length > 1) {
if (fileRejections.length > 0) {
const errors = fileRejections.map((rejection) => ({
errors: rejection.errors.map(({ message }) => message),
file: rejection.file.path,
}));
log.error({ errors }, 'Invalid upload');
const description =
maxImageUploadCount === undefined
? t('toast.uploadFailedInvalidUploadDesc')
: t('toast.uploadFailedInvalidUploadDesc_withCount', { count: maxImageUploadCount });
toast({
id: 'UPLOAD_FAILED',
title: t('toast.uploadFailed'),
description: t('toast.uploadFailedInvalidUploadDesc'),
description,
status: 'error',
});
setIsHandlingUpload(false);
return;
}
fileRejections.forEach((rejection: FileRejection) => {
fileRejectionCallback(rejection);
});
for (const [i, file] of acceptedFiles.entries()) {
uploadImage({
file,
image_category: 'user',
is_intermediate: false,
postUploadAction: getPostUploadAction(),
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
// The `imageUploaded` listener does some extra logic, like switching to the asset view on upload on the
// first upload of a "batch".
isFirstUploadOfBatch: i === 0,
});
}
acceptedFiles.forEach((file: File) => {
fileAcceptedCallback(file);
});
setIsHandlingUpload(false);
},
[t, fileAcceptedCallback, fileRejectionCallback]
[t, maxImageUploadCount, uploadImage, getPostUploadAction, autoAddBoardId]
);
const onDragOver = useCallback(() => {
setIsHandlingUpload(true);
}, []);
const onDragLeave = useCallback(() => {
setIsHandlingUpload(false);
}, []);
const dropzone = useDropzone({
accept,
noClick: true,
onDrop,
onDragOver,
multiple: false,
onDragLeave,
noKeyboard: true,
multiple: maxImageUploadCount === undefined || maxImageUploadCount > 1,
maxFiles: maxImageUploadCount,
});
useEffect(() => {

View File

@@ -1,15 +1,23 @@
import { logger } from 'app/logging/logger';
import { useAppSelector } from 'app/store/storeHooks';
import { selectAutoAddBoardId } from 'features/gallery/store/gallerySelectors';
import { selectMaxImageUploadCount } from 'features/system/store/configSlice';
import { toast } from 'features/toast/toast';
import { useCallback } from 'react';
import type { FileRejection } from 'react-dropzone';
import { useDropzone } from 'react-dropzone';
import { useTranslation } from 'react-i18next';
import { useUploadImageMutation } from 'services/api/endpoints/images';
import type { PostUploadAction } from 'services/api/types';
type UseImageUploadButtonArgs = {
postUploadAction?: PostUploadAction;
isDisabled?: boolean;
allowMultiple?: boolean;
};
const log = logger('gallery');
/**
* Provides image uploader functionality to any component.
*
@@ -29,28 +37,58 @@ type UseImageUploadButtonArgs = {
* <Button {...getUploadButtonProps()} /> // will open the file dialog on click
* <input {...getUploadInputProps()} /> // hidden, handles native upload functionality
*/
export const useImageUploadButton = ({ postUploadAction, isDisabled }: UseImageUploadButtonArgs) => {
export const useImageUploadButton = ({
postUploadAction,
isDisabled,
allowMultiple = false,
}: UseImageUploadButtonArgs) => {
const autoAddBoardId = useAppSelector(selectAutoAddBoardId);
const [uploadImage] = useUploadImageMutation();
const maxImageUploadCount = useAppSelector(selectMaxImageUploadCount);
const { t } = useTranslation();
const onDropAccepted = useCallback(
(files: File[]) => {
const file = files[0];
if (!file) {
return;
for (const [i, file] of files.entries()) {
uploadImage({
file,
image_category: 'user',
is_intermediate: false,
postUploadAction: postUploadAction ?? { type: 'TOAST' },
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
isFirstUploadOfBatch: i === 0,
});
}
uploadImage({
file,
image_category: 'user',
is_intermediate: false,
postUploadAction: postUploadAction ?? { type: 'TOAST' },
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
});
},
[autoAddBoardId, postUploadAction, uploadImage]
);
const onDropRejected = useCallback(
(fileRejections: FileRejection[]) => {
if (fileRejections.length > 0) {
const errors = fileRejections.map((rejection) => ({
errors: rejection.errors.map(({ message }) => message),
file: rejection.file.path,
}));
log.error({ errors }, 'Invalid upload');
const description =
maxImageUploadCount === undefined
? t('toast.uploadFailedInvalidUploadDesc')
: t('toast.uploadFailedInvalidUploadDesc_withCount', { count: maxImageUploadCount });
toast({
id: 'UPLOAD_FAILED',
title: t('toast.uploadFailed'),
description,
status: 'error',
});
return;
}
},
[maxImageUploadCount, t]
);
const {
getRootProps: getUploadButtonProps,
getInputProps: getUploadInputProps,
@@ -58,9 +96,11 @@ export const useImageUploadButton = ({ postUploadAction, isDisabled }: UseImageU
} = useDropzone({
accept: { 'image/png': ['.png'], 'image/jpeg': ['.jpg', '.jpeg', '.png'] },
onDropAccepted,
onDropRejected,
disabled: isDisabled,
noDrag: true,
multiple: false,
multiple: allowMultiple && (maxImageUploadCount === undefined || maxImageUploadCount > 1),
maxFiles: maxImageUploadCount,
});
return { getUploadButtonProps, getUploadInputProps, openUploader };

View File

@@ -3,12 +3,12 @@ import { Combobox, ConfirmationAlertDialog, Flex, FormControl, Text } from '@inv
import { createSelector } from '@reduxjs/toolkit';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useAssertSingleton } from 'common/hooks/useAssertSingleton';
import {
changeBoardReset,
isModalOpenChanged,
selectChangeBoardModalSlice,
} from 'features/changeBoardModal/store/slice';
import { selectListBoardsQueryArgs } from 'features/gallery/store/gallerySelectors';
import { memo, useCallback, useMemo, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { useListAllBoardsQuery } from 'services/api/endpoints/boards';
@@ -25,10 +25,10 @@ const selectIsModalOpen = createSelector(
);
const ChangeBoardModal = () => {
useAssertSingleton('ChangeBoardModal');
const dispatch = useAppDispatch();
const [selectedBoard, setSelectedBoard] = useState<string | null>();
const queryArgs = useAppSelector(selectListBoardsQueryArgs);
const { data: boards, isFetching } = useListAllBoardsQuery(queryArgs);
const { data: boards, isFetching } = useListAllBoardsQuery({ include_archived: true });
const isModalOpen = useAppSelector(selectIsModalOpen);
const imagesToChange = useAppSelector(selectImagesToChange);
const [addImagesToBoard] = useAddImagesToBoardMutation();

View File

@@ -80,7 +80,6 @@ export const CanvasAddEntityButtons = memo(() => {
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addControlLayer}
isDisabled={isFLUX}
>
{t('controlLayers.controlLayer')}
</Button>

View File

@@ -2,14 +2,10 @@ import { Alert, AlertDescription, AlertIcon, AlertTitle, Button, Flex } from '@i
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useBoolean } from 'common/hooks/useBoolean';
import { selectIsStaging } from 'features/controlLayers/store/canvasStagingAreaSlice';
import {
selectCanvasRightPanelGalleryTab,
selectCanvasRightPanelLayersTab,
} from 'features/controlLayers/store/ephemeral';
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
import { useCurrentDestination } from 'features/queue/hooks/useCurrentDestination';
import { selectActiveTab } from 'features/ui/store/uiSelectors';
import { setActiveTab } from 'features/ui/store/uiSlice';
import { activeTabCanvasRightPanelChanged, setActiveTab } from 'features/ui/store/uiSlice';
import { AnimatePresence, motion } from 'framer-motion';
import type { PropsWithChildren, ReactNode } from 'react';
import { useCallback, useMemo } from 'react';
@@ -17,10 +13,11 @@ import { Trans, useTranslation } from 'react-i18next';
const ActivateImageViewerButton = (props: PropsWithChildren) => {
const imageViewer = useImageViewer();
const dispatch = useAppDispatch();
const onClick = useCallback(() => {
imageViewer.open();
selectCanvasRightPanelGalleryTab();
}, [imageViewer]);
dispatch(activeTabCanvasRightPanelChanged('gallery'));
}, [imageViewer, dispatch]);
return (
<Button onClick={onClick} size="sm" variant="link" color="base.50">
{props.children}
@@ -60,7 +57,7 @@ const ActivateCanvasButton = (props: PropsWithChildren) => {
const imageViewer = useImageViewer();
const onClick = useCallback(() => {
dispatch(setActiveTab('canvas'));
selectCanvasRightPanelLayersTab();
dispatch(activeTabCanvasRightPanelChanged('layers'));
imageViewer.close();
}, [dispatch, imageViewer]);
return (

View File

@@ -56,7 +56,7 @@ export const EntityListGlobalActionBarAddLayerMenu = memo(() => {
</MenuItem>
</MenuGroup>
<MenuGroup title={t('controlLayers.layer_other')}>
<MenuItem icon={<PiPlusBold />} onClick={addControlLayer} isDisabled={isFLUX}>
<MenuItem icon={<PiPlusBold />} onClick={addControlLayer}>
{t('controlLayers.controlLayer')}
</MenuItem>
<MenuItem icon={<PiPlusBold />} onClick={addRasterLayer}>

View File

@@ -1,31 +1,50 @@
import { useDndContext } from '@dnd-kit/core';
import { Box, Button, Spacer, Tab, TabList, TabPanel, TabPanels, Tabs } from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { useAppSelector } from 'app/store/storeHooks';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAIDropOverlay from 'common/components/IAIDropOverlay';
import { CanvasLayersPanelContent } from 'features/controlLayers/components/CanvasLayersPanelContent';
import { CanvasManagerProviderGate } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import {
$canvasRightPanelTabIndex,
selectCanvasRightPanelGalleryTab,
selectCanvasRightPanelLayersTab,
} from 'features/controlLayers/store/ephemeral';
import { selectEntityCountActive } from 'features/controlLayers/store/selectors';
import GalleryPanelContent from 'features/gallery/components/GalleryPanelContent';
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
import { useRegisteredHotkeys } from 'features/system/components/HotkeysModal/useHotkeyData';
import { memo, useCallback, useMemo, useRef } from 'react';
import { selectActiveTabCanvasRightPanel } from 'features/ui/store/uiSelectors';
import { activeTabCanvasRightPanelChanged } from 'features/ui/store/uiSlice';
import { memo, useCallback, useMemo, useRef, useState } from 'react';
import { useTranslation } from 'react-i18next';
export const CanvasRightPanel = memo(() => {
const { t } = useTranslation();
const tabIndex = useStore($canvasRightPanelTabIndex);
const activeTab = useAppSelector(selectActiveTabCanvasRightPanel);
const imageViewer = useImageViewer();
const dispatch = useAppDispatch();
const tabIndex = useMemo(() => {
if (activeTab === 'gallery') {
return 1;
} else {
return 0;
}
}, [activeTab]);
const onClickViewerToggleButton = useCallback(() => {
if ($canvasRightPanelTabIndex.get() !== 1) {
$canvasRightPanelTabIndex.set(1);
if (activeTab !== 'gallery') {
dispatch(activeTabCanvasRightPanelChanged('gallery'));
}
imageViewer.toggle();
}, [imageViewer]);
}, [imageViewer, activeTab, dispatch]);
const onChangeTab = useCallback(
(index: number) => {
if (index === 0) {
dispatch(activeTabCanvasRightPanelChanged('layers'));
} else {
dispatch(activeTabCanvasRightPanelChanged('gallery'));
}
},
[dispatch]
);
useRegisteredHotkeys({
id: 'toggleViewer',
category: 'viewer',
@@ -34,7 +53,7 @@ export const CanvasRightPanel = memo(() => {
});
return (
<Tabs index={tabIndex} onChange={$canvasRightPanelTabIndex.set} w="full" h="full" display="flex" flexDir="column">
<Tabs index={tabIndex} onChange={onChangeTab} w="full" h="full" display="flex" flexDir="column">
<TabList alignItems="center">
<PanelTabs />
<Spacer />
@@ -60,27 +79,33 @@ CanvasRightPanel.displayName = 'CanvasRightPanel';
const PanelTabs = memo(() => {
const { t } = useTranslation();
const activeTab = useAppSelector(selectActiveTabCanvasRightPanel);
const activeEntityCount = useAppSelector(selectEntityCountActive);
const tabTimeout = useRef<number | null>(null);
const dndCtx = useDndContext();
const dispatch = useAppDispatch();
const [mouseOverTab, setMouseOverTab] = useState<'layers' | 'gallery' | null>(null);
const onOnMouseOverLayersTab = useCallback(() => {
setMouseOverTab('layers');
tabTimeout.current = window.setTimeout(() => {
if (dndCtx.active) {
selectCanvasRightPanelLayersTab();
dispatch(activeTabCanvasRightPanelChanged('layers'));
}
}, 300);
}, [dndCtx.active]);
}, [dndCtx.active, dispatch]);
const onOnMouseOverGalleryTab = useCallback(() => {
setMouseOverTab('gallery');
tabTimeout.current = window.setTimeout(() => {
if (dndCtx.active) {
selectCanvasRightPanelGalleryTab();
dispatch(activeTabCanvasRightPanelChanged('gallery'));
}
}, 300);
}, [dndCtx.active]);
}, [dndCtx.active, dispatch]);
const onMouseOut = useCallback(() => {
setMouseOverTab(null);
if (tabTimeout.current) {
clearTimeout(tabTimeout.current);
}
@@ -99,9 +124,17 @@ const PanelTabs = memo(() => {
<Box as="span" w="full">
{layersTabLabel}
</Box>
{dndCtx.active && activeTab !== 'layers' && (
<IAIDropOverlay isOver={mouseOverTab === 'layers'} withBackdrop={false} />
)}
</Tab>
<Tab position="relative" onMouseOver={onOnMouseOverGalleryTab} onMouseOut={onMouseOut}>
{t('gallery.gallery')}
<Tab position="relative" onMouseOver={onOnMouseOverGalleryTab} onMouseOut={onMouseOut} w={32}>
<Box as="span" w="full">
{t('gallery.gallery')}
</Box>
{dndCtx.active && activeTab !== 'gallery' && (
<IAIDropOverlay isOver={mouseOverTab === 'gallery'} withBackdrop={false} />
)}
</Tab>
</>
);

View File

@@ -16,6 +16,7 @@ import {
controlLayerModelChanged,
controlLayerWeightChanged,
} from 'features/controlLayers/store/canvasSlice';
import { selectIsFLUX } from 'features/controlLayers/store/paramsSlice';
import { selectCanvasSlice, selectEntityOrThrow } from 'features/controlLayers/store/selectors';
import type { CanvasEntityIdentifier, ControlModeV2 } from 'features/controlLayers/store/types';
import { memo, useCallback, useMemo } from 'react';
@@ -42,6 +43,7 @@ export const ControlLayerControlAdapter = memo(() => {
const entityIdentifier = useEntityIdentifierContext('control_layer');
const controlAdapter = useControlLayerControlAdapter(entityIdentifier);
const filter = useEntityFilter(entityIdentifier);
const isFLUX = useAppSelector(selectIsFLUX);
const onChangeBeginEndStepPct = useCallback(
(beginEndStepPct: [number, number]) => {
@@ -117,7 +119,7 @@ export const ControlLayerControlAdapter = memo(() => {
</Flex>
<Weight weight={controlAdapter.weight} onChange={onChangeWeight} />
<BeginEndStepPct beginEndStepPct={controlAdapter.beginEndStepPct} onChange={onChangeBeginEndStepPct} />
{controlAdapter.type === 'controlnet' && (
{controlAdapter.type === 'controlnet' && !isFLUX && (
<ControlLayerControlAdapterControlMode
controlMode={controlAdapter.controlMode}
onChange={onChangeControlMode}

View File

@@ -1,4 +1,5 @@
import { MenuDivider } from '@invoke-ai/ui-library';
import { IconMenuItemGroup } from 'common/components/IconMenuItem';
import { CanvasEntityMenuItemsArrange } from 'features/controlLayers/components/common/CanvasEntityMenuItemsArrange';
import { CanvasEntityMenuItemsCopyToClipboard } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCopyToClipboard';
import { CanvasEntityMenuItemsCropToBbox } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCropToBbox';
@@ -14,18 +15,20 @@ import { memo } from 'react';
export const ControlLayerMenuItems = memo(() => {
return (
<>
<IconMenuItemGroup>
<CanvasEntityMenuItemsArrange />
<CanvasEntityMenuItemsDuplicate />
<CanvasEntityMenuItemsDelete asIcon />
</IconMenuItemGroup>
<MenuDivider />
<CanvasEntityMenuItemsTransform />
<CanvasEntityMenuItemsFilter />
<ControlLayerMenuItemsConvertControlToRaster />
<ControlLayerMenuItemsTransparencyEffect />
<MenuDivider />
<CanvasEntityMenuItemsArrange />
<MenuDivider />
<CanvasEntityMenuItemsCropToBbox />
<CanvasEntityMenuItemsDuplicate />
<CanvasEntityMenuItemsCopyToClipboard />
<CanvasEntityMenuItemsSave />
<CanvasEntityMenuItemsDelete />
</>
);
});

View File

@@ -1,4 +1,4 @@
import { MenuDivider } from '@invoke-ai/ui-library';
import { IconMenuItemGroup } from 'common/components/IconMenuItem';
import { CanvasEntityMenuItemsArrange } from 'features/controlLayers/components/common/CanvasEntityMenuItemsArrange';
import { CanvasEntityMenuItemsDelete } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDelete';
import { CanvasEntityMenuItemsDuplicate } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDuplicate';
@@ -6,12 +6,11 @@ import { memo } from 'react';
export const IPAdapterMenuItems = memo(() => {
return (
<>
<IconMenuItemGroup>
<CanvasEntityMenuItemsArrange />
<MenuDivider />
<CanvasEntityMenuItemsDuplicate />
<CanvasEntityMenuItemsDelete />
</>
<CanvasEntityMenuItemsDelete asIcon />
</IconMenuItemGroup>
);
});

View File

@@ -1,4 +1,5 @@
import { MenuDivider } from '@invoke-ai/ui-library';
import { IconMenuItemGroup } from 'common/components/IconMenuItem';
import { CanvasEntityMenuItemsArrange } from 'features/controlLayers/components/common/CanvasEntityMenuItemsArrange';
import { CanvasEntityMenuItemsCropToBbox } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCropToBbox';
import { CanvasEntityMenuItemsDelete } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDelete';
@@ -9,13 +10,15 @@ import { memo } from 'react';
export const InpaintMaskMenuItems = memo(() => {
return (
<>
<IconMenuItemGroup>
<CanvasEntityMenuItemsArrange />
<CanvasEntityMenuItemsDuplicate />
<CanvasEntityMenuItemsDelete asIcon />
</IconMenuItemGroup>
<MenuDivider />
<CanvasEntityMenuItemsTransform />
<MenuDivider />
<CanvasEntityMenuItemsArrange />
<MenuDivider />
<CanvasEntityMenuItemsCropToBbox />
<CanvasEntityMenuItemsDuplicate />
<CanvasEntityMenuItemsDelete />
</>
);
});

View File

@@ -1,16 +1,14 @@
import { Checkbox, ConfirmationAlertDialog, Flex, FormControl, FormLabel, Text } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useAssertSingleton } from 'common/hooks/useAssertSingleton';
import { buildUseBoolean } from 'common/hooks/useBoolean';
import { newCanvasSessionRequested, newGallerySessionRequested } from 'features/controlLayers/store/actions';
import {
selectCanvasRightPanelGalleryTab,
selectCanvasRightPanelLayersTab,
} from 'features/controlLayers/store/ephemeral';
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
import {
selectSystemShouldConfirmOnNewSession,
shouldConfirmOnNewSessionToggled,
} from 'features/system/store/systemSlice';
import { activeTabCanvasRightPanelChanged } from 'features/ui/store/uiSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
@@ -26,7 +24,7 @@ export const useNewGallerySession = () => {
const newGallerySessionImmediate = useCallback(() => {
dispatch(newGallerySessionRequested());
imageViewer.open();
selectCanvasRightPanelGalleryTab();
dispatch(activeTabCanvasRightPanelChanged('gallery'));
}, [dispatch, imageViewer]);
const newGallerySessionWithDialog = useCallback(() => {
@@ -49,7 +47,7 @@ export const useNewCanvasSession = () => {
const newCanvasSessionImmediate = useCallback(() => {
dispatch(newCanvasSessionRequested());
imageViewer.close();
selectCanvasRightPanelLayersTab();
dispatch(activeTabCanvasRightPanelChanged('layers'));
}, [dispatch, imageViewer]);
const newCanvasSessionWithDialog = useCallback(() => {
@@ -65,6 +63,7 @@ export const useNewCanvasSession = () => {
};
export const NewGallerySessionDialog = memo(() => {
useAssertSingleton('NewGallerySessionDialog');
const { t } = useTranslation();
const dispatch = useAppDispatch();
@@ -100,6 +99,7 @@ export const NewGallerySessionDialog = memo(() => {
NewGallerySessionDialog.displayName = 'NewGallerySessionDialog';
export const NewCanvasSessionDialog = memo(() => {
useAssertSingleton('NewCanvasSessionDialog');
const { t } = useTranslation();
const dispatch = useAppDispatch();

View File

@@ -1,4 +1,5 @@
import { MenuDivider } from '@invoke-ai/ui-library';
import { IconMenuItemGroup } from 'common/components/IconMenuItem';
import { CanvasEntityMenuItemsArrange } from 'features/controlLayers/components/common/CanvasEntityMenuItemsArrange';
import { CanvasEntityMenuItemsCopyToClipboard } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCopyToClipboard';
import { CanvasEntityMenuItemsCropToBbox } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCropToBbox';
@@ -13,17 +14,19 @@ import { memo } from 'react';
export const RasterLayerMenuItems = memo(() => {
return (
<>
<IconMenuItemGroup>
<CanvasEntityMenuItemsArrange />
<CanvasEntityMenuItemsDuplicate />
<CanvasEntityMenuItemsDelete asIcon />
</IconMenuItemGroup>
<MenuDivider />
<CanvasEntityMenuItemsTransform />
<CanvasEntityMenuItemsFilter />
<RasterLayerMenuItemsConvertRasterToControl />
<MenuDivider />
<CanvasEntityMenuItemsArrange />
<MenuDivider />
<CanvasEntityMenuItemsCropToBbox />
<CanvasEntityMenuItemsDuplicate />
<CanvasEntityMenuItemsCopyToClipboard />
<CanvasEntityMenuItemsSave />
<CanvasEntityMenuItemsDelete />
</>
);
});

View File

@@ -1,4 +1,4 @@
import { MenuDivider } from '@invoke-ai/ui-library';
import { Flex, MenuDivider } from '@invoke-ai/ui-library';
import { CanvasEntityMenuItemsArrange } from 'features/controlLayers/components/common/CanvasEntityMenuItemsArrange';
import { CanvasEntityMenuItemsCropToBbox } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCropToBbox';
import { CanvasEntityMenuItemsDelete } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDelete';
@@ -11,16 +11,18 @@ import { memo } from 'react';
export const RegionalGuidanceMenuItems = memo(() => {
return (
<>
<Flex gap={2}>
<CanvasEntityMenuItemsArrange />
<CanvasEntityMenuItemsDuplicate />
<CanvasEntityMenuItemsDelete asIcon />
</Flex>
<MenuDivider />
<RegionalGuidanceMenuItemsAddPromptsAndIPAdapter />
<MenuDivider />
<CanvasEntityMenuItemsTransform />
<RegionalGuidanceMenuItemsAutoNegative />
<MenuDivider />
<CanvasEntityMenuItemsArrange />
<MenuDivider />
<CanvasEntityMenuItemsCropToBbox />
<CanvasEntityMenuItemsDuplicate />
<CanvasEntityMenuItemsDelete />
</>
);
});

View File

@@ -2,6 +2,7 @@ import { Button, ButtonGroup, Flex, FormControl, FormLabel, Heading, Spacer, Swi
import { useStore } from '@nanostores/react';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useFocusRegion, useIsRegionFocused } from 'common/hooks/focus';
import { TransformFitToBboxButtons } from 'features/controlLayers/components/Transform/TransformFitToBboxButtons';
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import type { CanvasEntityAdapter } from 'features/controlLayers/konva/CanvasEntity/types';
import {
@@ -11,7 +12,7 @@ import {
import { useRegisteredHotkeys } from 'features/system/components/HotkeysModal/useHotkeyData';
import { memo, useCallback, useRef } from 'react';
import { useTranslation } from 'react-i18next';
import { PiArrowsCounterClockwiseBold, PiArrowsOutBold, PiCheckBold, PiXBold } from 'react-icons/pi';
import { PiArrowsCounterClockwiseBold, PiCheckBold, PiXBold } from 'react-icons/pi';
const TransformContent = memo(({ adapter }: { adapter: CanvasEntityAdapter }) => {
const { t } = useTranslation();
@@ -24,6 +25,7 @@ const TransformContent = memo(({ adapter }: { adapter: CanvasEntityAdapter }) =>
const onChangeIsolatedPreview = useCallback(() => {
dispatch(settingsIsolatedTransformingPreviewToggled());
}, [dispatch]);
const silentTransform = useStore(adapter.transformer.$silentTransform);
useRegisteredHotkeys({
id: 'applyTransform',
@@ -41,6 +43,10 @@ const TransformContent = memo(({ adapter }: { adapter: CanvasEntityAdapter }) =>
dependencies: [adapter.transformer, isProcessing, isCanvasFocused],
});
if (silentTransform) {
return null;
}
return (
<Flex
ref={ref}
@@ -49,7 +55,7 @@ const TransformContent = memo(({ adapter }: { adapter: CanvasEntityAdapter }) =>
p={4}
flexDir="column"
gap={4}
w={420}
minW={420}
h="auto"
shadow="dark-lg"
transitionProperty="height"
@@ -65,16 +71,10 @@ const TransformContent = memo(({ adapter }: { adapter: CanvasEntityAdapter }) =>
<Switch size="sm" isChecked={isolatedTransformingPreview} onChange={onChangeIsolatedPreview} />
</FormControl>
</Flex>
<TransformFitToBboxButtons adapter={adapter} />
<ButtonGroup isAttached={false} size="sm" w="full">
<Button
leftIcon={<PiArrowsOutBold />}
onClick={adapter.transformer.fitProxyRectToBbox}
isLoading={isProcessing}
loadingText={t('controlLayers.transform.fitToBbox')}
variant="ghost"
>
{t('controlLayers.transform.fitToBbox')}
</Button>
<Spacer />
<Button
leftIcon={<PiArrowsCounterClockwiseBold />}

View File

@@ -0,0 +1,76 @@
import type { ComboboxOnChange } from '@invoke-ai/ui-library';
import { Button, Combobox, Flex, FormControl, FormLabel } from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import type { CanvasEntityAdapter } from 'features/controlLayers/konva/CanvasEntity/types';
import { memo, useCallback, useMemo, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { PiArrowsOutBold } from 'react-icons/pi';
import type { Equals } from 'tsafe';
import { assert } from 'tsafe';
import { z } from 'zod';
const zMode = z.enum(['fill', 'contain', 'cover']);
type Mode = z.infer<typeof zMode>;
export const TransformFitToBboxButtons = memo(({ adapter }: { adapter: CanvasEntityAdapter }) => {
const { t } = useTranslation();
const [mode, setMode] = useState<Mode>('contain');
const isProcessing = useStore(adapter.transformer.$isProcessing);
const onClick = useCallback(() => {
if (mode === 'contain') {
adapter.transformer.fitToBboxContain();
return;
}
if (mode === 'cover') {
adapter.transformer.fitToBboxCover();
return;
}
if (mode === 'fill') {
adapter.transformer.fitToBboxFill();
return;
}
assert<Equals<typeof mode, never>>(false);
}, [adapter.transformer, mode]);
const options = useMemo(() => {
return [
{ value: 'contain', label: t('controlLayers.transform.fitModeContain') },
{ value: 'cover', label: t('controlLayers.transform.fitModeCover') },
{ value: 'fill', label: t('controlLayers.transform.fitModeFill') },
];
}, [t]);
const value = useMemo(() => options.find((o) => o.value === mode) ?? null, [options, mode]);
const onChange = useCallback<ComboboxOnChange>((v) => {
if (!v) {
return;
}
setMode(zMode.parse(v.value));
}, []);
return (
<Flex gap={4} w="full">
<FormControl maxW={64}>
<FormLabel m={0}>{t('controlLayers.transform.fitMode')}</FormLabel>
<Combobox options={options} value={value} onChange={onChange} isSearchable={false} isClearable={false} />
</FormControl>
<Button
leftIcon={<PiArrowsOutBold />}
size="sm"
onClick={onClick}
isLoading={isProcessing}
loadingText={t('controlLayers.transform.fitToBbox')}
variant="ghost"
>
{t('controlLayers.transform.fitToBbox')}
</Button>
</Flex>
);
});
TransformFitToBboxButtons.displayName = 'TransformFitToBboxButtons';

View File

@@ -1,6 +1,6 @@
import { MenuItem } from '@invoke-ai/ui-library';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { IconMenuItem } from 'common/components/IconMenuItem';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import {
@@ -88,36 +88,36 @@ export const CanvasEntityMenuItemsArrange = memo(() => {
return (
<>
<MenuItem
<IconMenuItem
aria-label={t('controlLayers.moveToFront')}
tooltip={t('controlLayers.moveToFront')}
onClick={moveToFront}
isDisabled={!validActions.canMoveToFront || !isInteractable}
icon={<PiArrowLineUpBold />}
>
{t('controlLayers.moveToFront')}
</MenuItem>
<MenuItem
/>
<IconMenuItem
aria-label={t('controlLayers.moveForward')}
tooltip={t('controlLayers.moveForward')}
onClick={moveForwardOne}
isDisabled={!validActions.canMoveForwardOne || !isInteractable}
icon={<PiArrowUpBold />}
>
{t('controlLayers.moveForward')}
</MenuItem>
<MenuItem
/>
<IconMenuItem
aria-label={t('controlLayers.moveBackward')}
tooltip={t('controlLayers.moveBackward')}
onClick={moveBackwardOne}
isDisabled={!validActions.canMoveBackwardOne || !isInteractable}
icon={<PiArrowDownBold />}
>
{t('controlLayers.moveBackward')}
</MenuItem>
<MenuItem
/>
<IconMenuItem
aria-label={t('controlLayers.moveToBack')}
tooltip={t('controlLayers.moveToBack')}
onClick={moveToBack}
isDisabled={!validActions.canMoveToBack || !isInteractable}
icon={<PiArrowLineDownBold />}
>
{t('controlLayers.moveToBack')}
</MenuItem>
/>
</>
);
});
CanvasEntityMenuItemsArrange.displayName = 'CanvasEntityArrangeMenuItems';
CanvasEntityMenuItemsArrange.displayName = 'CanvasEntityMenuItemsArrange';

View File

@@ -1,5 +1,6 @@
import { MenuItem } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { IconMenuItem } from 'common/components/IconMenuItem';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { entityDeleted } from 'features/controlLayers/store/canvasSlice';
@@ -7,7 +8,11 @@ import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiTrashSimpleBold } from 'react-icons/pi';
export const CanvasEntityMenuItemsDelete = memo(() => {
type Props = {
asIcon?: boolean;
};
export const CanvasEntityMenuItemsDelete = memo(({ asIcon = false }: Props) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext();
@@ -17,6 +22,19 @@ export const CanvasEntityMenuItemsDelete = memo(() => {
dispatch(entityDeleted({ entityIdentifier }));
}, [dispatch, entityIdentifier]);
if (asIcon) {
return (
<IconMenuItem
aria-label={t('common.delete')}
tooltip={t('common.delete')}
onClick={deleteEntity}
icon={<PiTrashSimpleBold />}
isDestructive
isDisabled={!isInteractable}
/>
);
}
return (
<MenuItem onClick={deleteEntity} icon={<PiTrashSimpleBold />} isDestructive isDisabled={!isInteractable}>
{t('common.delete')}

View File

@@ -1,5 +1,5 @@
import { MenuItem } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { IconMenuItem } from 'common/components/IconMenuItem';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { entityDuplicated } from 'features/controlLayers/store/canvasSlice';
@@ -18,9 +18,13 @@ export const CanvasEntityMenuItemsDuplicate = memo(() => {
}, [dispatch, entityIdentifier]);
return (
<MenuItem onClick={onClick} icon={<PiCopyFill />} isDisabled={!isInteractable}>
{t('controlLayers.duplicate')}
</MenuItem>
<IconMenuItem
aria-label={t('controlLayers.duplicate')}
tooltip={t('controlLayers.duplicate')}
onClick={onClick}
icon={<PiCopyFill />}
isDisabled={!isInteractable}
/>
);
});

View File

@@ -3,7 +3,7 @@ import { useEntityIdentifierContext } from 'features/controlLayers/contexts/Enti
import { useEntityTransform } from 'features/controlLayers/hooks/useEntityTransform';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiFrameCornersBold } from 'react-icons/pi';
import { PiBoundingBoxBold, PiFrameCornersBold } from 'react-icons/pi';
export const CanvasEntityMenuItemsTransform = memo(() => {
const { t } = useTranslation();
@@ -11,9 +11,14 @@ export const CanvasEntityMenuItemsTransform = memo(() => {
const transform = useEntityTransform(entityIdentifier);
return (
<MenuItem onClick={transform.start} icon={<PiFrameCornersBold />} isDisabled={transform.isDisabled}>
{t('controlLayers.transform.transform')}
</MenuItem>
<>
<MenuItem onClick={transform.start} icon={<PiFrameCornersBold />} isDisabled={transform.isDisabled}>
{t('controlLayers.transform.transform')}
</MenuItem>
<MenuItem onClick={transform.fitToBbox} icon={<PiBoundingBoxBold />} isDisabled={transform.isDisabled}>
{t('controlLayers.transform.fitToBbox')}
</MenuItem>
</>
);
});

View File

@@ -6,13 +6,12 @@ import { useEntityAdapter } from 'features/controlLayers/contexts/EntityAdapterC
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { TRANSPARENCY_CHECKERBOARD_PATTERN_DARK_DATAURL } from 'features/controlLayers/konva/patterns/transparency-checkerboard-pattern';
import { selectCanvasSlice, selectEntity } from 'features/controlLayers/store/selectors';
import { debounce } from 'lodash-es';
import { memo, useEffect, useMemo, useRef } from 'react';
import { useSelector } from 'react-redux';
const ChakraCanvas = chakra.canvas;
const PADDING = 2;
const CONTAINER_WIDTH = 36; // this is size 12 in our theme - need it in px for the canvas
const CONTAINER_WIDTH_PX = `${CONTAINER_WIDTH}px`;
@@ -35,48 +34,57 @@ export const CanvasEntityPreviewImage = memo(() => {
);
const maskColor = useSelector(selectMaskColor);
const canvasRef = useRef<HTMLCanvasElement>(null);
const cache = useStore(adapter.renderer.$canvasCache);
useEffect(() => {
if (!canvasRef.current) {
return;
}
const ctx = canvasRef.current.getContext('2d');
if (!ctx) {
return;
}
const pixelRect = useStore(adapter.transformer.$pixelRect);
const nodeRect = useStore(adapter.transformer.$nodeRect);
const canvasCache = useStore(adapter.$canvasCache);
if (!cache) {
// Draw an empty canvas
ctx.clearRect(0, 0, canvasRef.current.width, canvasRef.current.height);
return;
}
const updatePreview = useMemo(
() =>
debounce(() => {
if (!canvasRef.current) {
return;
}
const ctx = canvasRef.current.getContext('2d');
if (!ctx) {
return;
}
const { rect, canvas } = cache;
const pixelRect = adapter.transformer.$pixelRect.get();
const nodeRect = adapter.transformer.$nodeRect.get();
const canvasCache = adapter.$canvasCache.get();
ctx.clearRect(0, 0, canvasRef.current.width, canvasRef.current.height);
if (!canvasCache || canvasCache.width === 0 || canvasCache.height === 0) {
// Draw an empty canvas
ctx.clearRect(0, 0, canvasRef.current.width, canvasRef.current.height);
return;
}
canvasRef.current.width = rect.width;
canvasRef.current.height = rect.height;
ctx.clearRect(0, 0, canvasRef.current.width, canvasRef.current.height);
const scale = CONTAINER_WIDTH / rect.width;
canvasRef.current.width = pixelRect.width;
canvasRef.current.height = pixelRect.height;
const sx = rect.x;
const sy = rect.y;
const sWidth = rect.width;
const sHeight = rect.height;
const dx = PADDING / scale;
const dy = PADDING / scale;
const dWidth = rect.width - (PADDING * 2) / scale;
const dHeight = rect.height - (PADDING * 2) / scale;
const sx = pixelRect.x - nodeRect.x;
const sy = pixelRect.y - nodeRect.y;
const sWidth = pixelRect.width;
const sHeight = pixelRect.height;
const dx = 0;
const dy = 0;
const dWidth = pixelRect.width;
const dHeight = pixelRect.height;
ctx.drawImage(canvas, sx, sy, sWidth, sHeight, dx, dy, dWidth, dHeight);
ctx.drawImage(canvasCache, sx, sy, sWidth, sHeight, dx, dy, dWidth, dHeight);
if (maskColor) {
ctx.fillStyle = maskColor;
ctx.globalCompositeOperation = 'source-in';
ctx.fillRect(0, 0, rect.width, rect.height);
}
}, [cache, maskColor]);
if (maskColor) {
ctx.fillStyle = maskColor;
ctx.globalCompositeOperation = 'source-in';
ctx.fillRect(0, 0, pixelRect.width, pixelRect.height);
}
}, 300),
[adapter.$canvasCache, adapter.transformer.$nodeRect, adapter.transformer.$pixelRect, maskColor]
);
useEffect(updatePreview, [updatePreview, canvasCache, nodeRect, pixelRect]);
return (
<Flex

View File

@@ -2,8 +2,11 @@ import { createSelector } from '@reduxjs/toolkit';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { deepClone } from 'common/util/deepClone';
import { CanvasEntityAdapterBase } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterBase';
import { getPrefixedId } from 'features/controlLayers/konva/util';
import { canvasReset } from 'features/controlLayers/store/actions';
import {
bboxChangedFromCanvas,
controlLayerAdded,
inpaintMaskAdded,
rasterLayerAdded,
@@ -14,19 +17,32 @@ import {
rgPositivePromptChanged,
} from 'features/controlLayers/store/canvasSlice';
import { selectBase } from 'features/controlLayers/store/paramsSlice';
import { selectCanvasSlice, selectEntityOrThrow } from 'features/controlLayers/store/selectors';
import {
selectBboxModelBase,
selectBboxRect,
selectCanvasSlice,
selectEntityOrThrow,
} from 'features/controlLayers/store/selectors';
import type {
CanvasEntityIdentifier,
CanvasRasterLayerState,
CanvasRegionalGuidanceState,
ControlNetConfig,
IPAdapterConfig,
T2IAdapterConfig,
} from 'features/controlLayers/store/types';
import { initialControlNet, initialIPAdapter, initialT2IAdapter } from 'features/controlLayers/store/util';
import {
imageDTOToImageObject,
initialControlNet,
initialIPAdapter,
initialT2IAdapter,
} from 'features/controlLayers/store/util';
import { calculateNewSize } from 'features/controlLayers/util/getScaledBoundingBoxDimensions';
import { zModelIdentifierField } from 'features/nodes/types/common';
import { getOptimalDimension } from 'features/parameters/util/optimalDimension';
import { useCallback } from 'react';
import { modelConfigsAdapterSelectors, selectModelConfigsQuery } from 'services/api/endpoints/models';
import type { ControlNetModelConfig, IPAdapterModelConfig, T2IAdapterModelConfig } from 'services/api/types';
import type { ControlNetModelConfig, ImageDTO, IPAdapterModelConfig, T2IAdapterModelConfig } from 'services/api/types';
import { isControlNetOrT2IAdapterModelConfig, isIPAdapterModelConfig } from 'services/api/types';
export const selectDefaultControlAdapter = createSelector(
@@ -90,6 +106,74 @@ export const useAddRasterLayer = () => {
return func;
};
export const useNewRasterLayerFromImage = () => {
const dispatch = useAppDispatch();
const bboxRect = useAppSelector(selectBboxRect);
const func = useCallback(
(imageDTO: ImageDTO) => {
const imageObject = imageDTOToImageObject(imageDTO);
const overrides: Partial<CanvasRasterLayerState> = {
position: { x: bboxRect.x, y: bboxRect.y },
objects: [imageObject],
};
dispatch(rasterLayerAdded({ overrides, isSelected: true }));
},
[bboxRect.x, bboxRect.y, dispatch]
);
return func;
};
/**
* Returns a function that adds a new canvas with the given image as the initial image, replicating the img2img flow:
* - Reset the canvas
* - Resize the bbox to the image's aspect ratio at the optimal size for the selected model
* - Add the image as a raster layer
* - Resizes the layer to fit the bbox using the 'fill' strategy
*
* This allows the user to immediately generate a new image from the given image without any additional steps.
*/
export const useNewCanvasFromImage = () => {
const dispatch = useAppDispatch();
const bboxRect = useAppSelector(selectBboxRect);
const base = useAppSelector(selectBboxModelBase);
const func = useCallback(
(imageDTO: ImageDTO) => {
// Calculate the new bbox dimensions to fit the image's aspect ratio at the optimal size
const ratio = imageDTO.width / imageDTO.height;
const optimalDimension = getOptimalDimension(base);
const { width, height } = calculateNewSize(ratio, optimalDimension ** 2, base);
// The overrides need to include the layer's ID so we can transform the layer it is initialized
const overrides = {
id: getPrefixedId('raster_layer'),
position: { x: bboxRect.x, y: bboxRect.y },
objects: [imageDTOToImageObject(imageDTO)],
} satisfies Partial<CanvasRasterLayerState>;
CanvasEntityAdapterBase.registerInitCallback(async (adapter) => {
// Skip the callback if the adapter is not the one we are creating
if (adapter.id !== overrides.id) {
return false;
}
// Fit the layer to the bbox w/ fill strategy
await adapter.transformer.startTransform({ silent: true });
adapter.transformer.fitToBboxFill();
await adapter.transformer.applyTransform();
return true;
});
dispatch(canvasReset());
// The `bboxChangedFromCanvas` reducer does no validation! Careful!
dispatch(bboxChangedFromCanvas({ x: 0, y: 0, width, height }));
dispatch(rasterLayerAdded({ overrides, isSelected: true }));
},
[base, bboxRect.x, bboxRect.y, dispatch]
);
return func;
};
export const useAddInpaintMask = () => {
const dispatch = useAppDispatch();
const func = useCallback(() => {

View File

@@ -1,13 +1,11 @@
import { useStore } from '@nanostores/react';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useAssertSingleton } from 'common/hooks/useAssertSingleton';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { entityDeleted } from 'features/controlLayers/store/canvasSlice';
import { $canvasRightPanelTab } from 'features/controlLayers/store/ephemeral';
import { selectSelectedEntityIdentifier } from 'features/controlLayers/store/selectors';
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
import { useRegisteredHotkeys } from 'features/system/components/HotkeysModal/useHotkeyData';
import { selectActiveTab } from 'features/ui/store/uiSelectors';
import { selectActiveTab, selectActiveTabCanvasRightPanel } from 'features/ui/store/uiSelectors';
import { useCallback, useMemo } from 'react';
export function useCanvasDeleteLayerHotkey() {
@@ -15,7 +13,7 @@ export function useCanvasDeleteLayerHotkey() {
const dispatch = useAppDispatch();
const selectedEntityIdentifier = useAppSelector(selectSelectedEntityIdentifier);
const isBusy = useCanvasIsBusy();
const canvasRightPanelTab = useStore($canvasRightPanelTab);
const canvasRightPanelTab = useAppSelector(selectActiveTabCanvasRightPanel);
const appTab = useAppSelector(selectActiveTab);
const imageViewer = useImageViewer();

View File

@@ -36,7 +36,7 @@ export const useEntityTransform = (entityIdentifier: CanvasEntityIdentifier | nu
return false;
}, [entityIdentifier, adapter, isBusy, isInteractable, isEmpty]);
const start = useCallback(() => {
const start = useCallback(async () => {
if (isDisabled) {
return;
}
@@ -50,8 +50,27 @@ export const useEntityTransform = (entityIdentifier: CanvasEntityIdentifier | nu
if (!adapter) {
return;
}
adapter.transformer.startTransform();
await adapter.transformer.startTransform();
}, [isDisabled, entityIdentifier, canvasManager]);
return { isDisabled, start } as const;
const fitToBbox = useCallback(async () => {
if (isDisabled) {
return;
}
if (!entityIdentifier) {
return;
}
if (!isTransformableEntityIdentifier(entityIdentifier)) {
return;
}
const adapter = canvasManager.getAdapter(entityIdentifier);
if (!adapter) {
return;
}
await adapter.transformer.startTransform({ silent: true });
adapter.transformer.fitToBboxContain();
await adapter.transformer.applyTransform();
}, [canvasManager, entityIdentifier, isDisabled]);
return { isDisabled, start, fitToBbox } as const;
};

View File

@@ -69,7 +69,7 @@ export class CanvasBackgroundModule extends CanvasModuleBase {
layer: new Konva.Layer({ name: `${this.type}:layer`, listening: false, imageSmoothingEnabled: false }),
linesGroup: new Konva.Group({ name: `${this.type}:linesGroup` }),
lines: [],
patternRect: new Konva.Rect({ name: `${this.type}:patternRect` }),
patternRect: new Konva.Rect({ name: `${this.type}:patternRect`, perfectDrawEnabled: false }),
};
this.konva.layer.add(this.konva.patternRect);
@@ -174,6 +174,7 @@ export class CanvasBackgroundModule extends CanvasModuleBase {
stroke: _x % 64 ? this.config.GRID_LINE_COLOR_FINE : this.config.GRID_LINE_COLOR_COARSE,
strokeWidth,
listening: false,
perfectDrawEnabled: false,
});
this.konva.lines.push(line);
this.konva.linesGroup.add(line);
@@ -187,6 +188,7 @@ export class CanvasBackgroundModule extends CanvasModuleBase {
stroke: _y % 64 ? this.config.GRID_LINE_COLOR_FINE : this.config.GRID_LINE_COLOR_COARSE,
strokeWidth,
listening: false,
perfectDrawEnabled: false,
});
this.konva.lines.push(line);
this.konva.linesGroup.add(line);

View File

@@ -83,6 +83,7 @@ export class CanvasBboxModule extends CanvasModuleBase {
stroke: 'rgb(42,42,42)',
strokeWidth: 1,
strokeScaleEnabled: false,
perfectDrawEnabled: false,
}),
overlayGroup: new Konva.Group({
name: `${this.type}:overlayGroup`,
@@ -123,6 +124,7 @@ export class CanvasBboxModule extends CanvasModuleBase {
strokeEnabled: false,
draggable: false,
fill: 'hsl(220 12% 10% / 0.8)',
perfectDrawEnabled: false,
}),
transformer: new Konva.Transformer({
name: `${this.type}:transformer`,

View File

@@ -7,21 +7,35 @@ import type { CanvasEntityBufferObjectRenderer } from 'features/controlLayers/ko
import type { CanvasEntityFilterer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityFilterer';
import type { CanvasEntityObjectRenderer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityObjectRenderer';
import type { CanvasEntityTransformer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityTransformer';
import type { CanvasEntityAdapter } from 'features/controlLayers/konva/CanvasEntity/types';
import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
import { CanvasModuleBase } from 'features/controlLayers/konva/CanvasModuleBase';
import { getKonvaNodeDebugAttrs, getRectIntersection } from 'features/controlLayers/konva/util';
import {
selectIsolatedFilteringPreview,
selectIsolatedTransformingPreview,
} from 'features/controlLayers/store/canvasSettingsSlice';
import { buildEntityIsHiddenSelector, selectCanvasSlice, selectEntity } from 'features/controlLayers/store/selectors';
import {
buildSelectIsHidden,
buildSelectIsSelected,
selectBboxRect,
selectCanvasSlice,
selectEntity,
} from 'features/controlLayers/store/selectors';
import type { CanvasEntityIdentifier, CanvasRenderableEntityState, Rect } from 'features/controlLayers/store/types';
import Konva from 'konva';
import { atom, computed } from 'nanostores';
import rafThrottle from 'raf-throttle';
import type { Logger } from 'roarr';
import type { ImageDTO } from 'services/api/types';
import stableHash from 'stable-hash';
import { assert } from 'tsafe';
// Ideally, we'd type `adapter` as `CanvasEntityAdapterBase`, but the generics make this tricky. `CanvasEntityAdapter`
// is a union of all entity adapters and is functionally identical to `CanvasEntityAdapterBase`. We'll need to do a
// type assertion below in the `onInit` method, which calls these callbacks.
type InitCallback = (adapter: CanvasEntityAdapter) => Promise<boolean>;
export abstract class CanvasEntityAdapterBase<
T extends CanvasRenderableEntityState,
U extends string,
@@ -68,7 +82,7 @@ export abstract class CanvasEntityAdapterBase<
*
* If `prevState` is undefined, this is the first time the entity is being synced.
*/
abstract sync: (state: T | undefined, prevState: T | undefined) => void;
abstract sync: (state: T | undefined, prevState: T | undefined) => Promise<void>;
/**
* Gets the canvas element for the entity. If `rect` is provided, the canvas will be clipped to that rectangle.
@@ -80,7 +94,79 @@ export abstract class CanvasEntityAdapterBase<
*/
abstract getHashableState: () => SerializableObject;
private _selectIsHidden: Selector<RootState, boolean> | null = null;
/**
* Callbacks that are executed when the module is initialized.
*/
private static initCallbacks = new Set<InitCallback>();
/**
* Register a callback to be run when an entity adapter is initialized.
*
* The callback is called for every adapter that is initialized with the adapter as its only argument. Use an early
* return to skip entities that are not of interest, returning `false` to keep the callback registered. Return `true`
* to unregister the callback after it is called.
*
* @param callback The callback to register.
*
* @example
* ```ts
* // A callback that is executed once for a specific entity:
* const myId = 'my_id';
* canvasManager.entityRenderer.registerOnInitCallback(async (adapter) => {
* if (adapter.id !== myId) {
* // These are not the droids you are looking for, move along
* return false;
* }
*
* doSomething();
*
* // Remove the callback
* return true;
* });
* ```
*
* @example
* ```ts
* // A callback that is executed once for the next entity that is initialized:
* canvasManager.entityRenderer.registerOnInitCallback(async (adapter) => {
* doSomething();
*
* // Remove the callback
* return true;
* });
* ```
*
* @example
* ```ts
* // A callback that is executed for every entity and is never removed:
* canvasManager.entityRenderer.registerOnInitCallback(async (adapter) => {
* // Do something with the adapter
* return false;
* });
*/
static registerInitCallback = (callback: InitCallback) => {
const wrapped = async (adapter: CanvasEntityAdapter) => {
const result = await callback(adapter);
if (result) {
this.initCallbacks.delete(wrapped);
}
return result;
};
this.initCallbacks.add(wrapped);
};
/**
* Runs all init callbacks with the given entity adapter.
* @param adapter The adapter of the entity that was initialized.
*/
private static runInitCallbacks = (adapter: CanvasEntityAdapter) => {
for (const callback of this.initCallbacks) {
callback(adapter);
}
};
selectIsHidden: Selector<RootState, boolean>;
selectIsSelected: Selector<RootState, boolean>;
/**
* The Konva nodes that make up the entity adapter:
@@ -124,6 +210,18 @@ export abstract class CanvasEntityAdapterBase<
$isInteractable = computed([this.$isLocked, this.$isDisabled, this.$isHidden], (isLocked, isDisabled, isHidden) => {
return !isLocked && !isDisabled && !isHidden;
});
/**
* A cache of the entity's canvas element. This is generated from a clone of the entity's Konva layer.
*/
$canvasCache = atom<HTMLCanvasElement | null>(null);
/**
* Whether this entity is onscreen. This is computed based on the entity's bounding box and the stage's viewport rect.
*/
$isOnScreen = atom(true);
/**
* Whether this entity's rect intersects the bbox rect.
*/
$intersectsBbox = atom(false);
constructor(entityIdentifier: CanvasEntityIdentifier<T['type']>, manager: CanvasManager, adapterType: U) {
super();
@@ -152,6 +250,9 @@ export abstract class CanvasEntityAdapterBase<
assert(state !== undefined, 'Missing entity state on creation');
this.state = state;
this.selectIsHidden = buildSelectIsHidden(this.entityIdentifier);
this.selectIsSelected = buildSelectIsSelected(this.entityIdentifier);
/**
* There are a number of reason we may need to show or hide a layer:
* - The entity is enabled/disabled
@@ -159,6 +260,7 @@ export abstract class CanvasEntityAdapterBase<
* - Staging status changes and `isolatedStagingPreview` is enabled
* - Global filtering status changes and `isolatedFilteringPreview` is enabled
* - Global transforming status changes and `isolatedTransformingPreview` is enabled
* - The entity is selected or deselected (only selected and onscreen entities are rendered)
*/
this.subscriptions.add(this.manager.stateApi.createStoreSubscription(this.selectIsHidden, this.syncVisibility));
this.subscriptions.add(
@@ -169,12 +271,28 @@ export abstract class CanvasEntityAdapterBase<
this.manager.stateApi.createStoreSubscription(selectIsolatedTransformingPreview, this.syncVisibility)
);
this.subscriptions.add(this.manager.stateApi.$transformingAdapter.listen(this.syncVisibility));
this.subscriptions.add(this.manager.stateApi.createStoreSubscription(this.selectIsSelected, this.syncVisibility));
/**
* The tool preview may need to be updated when the entity is locked or disabled. For example, when we disable the
* entity, we should hide the tool preview & change the cursor.
*/
this.subscriptions.add(this.$isInteractable.subscribe(this.manager.tool.render));
/**
* When the stage is transformed in any way (panning, zooming, resizing) or the entity is moved, we need to update
* the entity's onscreen status. We also need to subscribe to changes to the entity's pixel rect, but this is
* handled in the initialize method.
*/
this.subscriptions.add(this.manager.stage.$stageAttrs.listen(this.syncIsOnscreen));
this.subscriptions.add(this.manager.stateApi.createStoreSubscription(this.selectPosition, this.syncIsOnscreen));
/**
* When the bbox rect changes or the entity is moved, we need to update the intersectsBbox status. We also need to
* subscribe to changes to the entity's pixel rect, but this is handled in the initialize method.
*/
this.subscriptions.add(this.manager.stateApi.createStoreSubscription(selectBboxRect, this.syncIntersectsBbox));
this.subscriptions.add(this.manager.stateApi.createStoreSubscription(this.selectPosition, this.syncIntersectsBbox));
}
/**
@@ -185,21 +303,79 @@ export abstract class CanvasEntityAdapterBase<
(canvas) => selectEntity(canvas, this.entityIdentifier) as T | undefined
);
// This must be a getter because the selector depends on the entityIdentifier, which is set in the constructor.
get selectIsHidden() {
if (!this._selectIsHidden) {
this._selectIsHidden = buildEntityIsHiddenSelector(this.entityIdentifier);
/**
* A redux selector that selects the entity's position from the canvas slice.
*/
selectPosition = createSelector(this.selectState, (entity) => entity?.position);
syncIsOnscreen = () => {
const stageRect = this.manager.stage.getScaledStageRect();
const isOnScreen = this.checkIntersection(stageRect);
const prevIsOnScreen = this.$isOnScreen.get();
this.$isOnScreen.set(isOnScreen);
if (prevIsOnScreen !== isOnScreen) {
this.log.trace(`Moved ${isOnScreen ? 'on-screen' : 'off-screen'}`);
}
return this._selectIsHidden;
}
this.syncVisibility();
};
syncIntersectsBbox = () => {
const bboxRect = this.manager.stateApi.getBbox().rect;
const intersectsBbox = this.checkIntersection(bboxRect);
const prevIntersectsBbox = this.$intersectsBbox.get();
this.$intersectsBbox.set(intersectsBbox);
if (prevIntersectsBbox !== intersectsBbox) {
this.log.trace(`Moved ${intersectsBbox ? 'into bbox' : 'out of bbox'}`);
}
};
checkIntersection = (rect: Rect): boolean => {
const entityRect = this.transformer.$pixelRect.get();
const position = this.manager.stateApi.runSelector(this.selectPosition);
if (!position) {
return false;
}
const entityRectRelativeToStage = {
x: entityRect.x + position.x,
y: entityRect.y + position.y,
width: entityRect.width,
height: entityRect.height,
};
const intersection = getRectIntersection(rect, entityRectRelativeToStage);
const doesIntersect = intersection.width > 0 && intersection.height > 0;
return doesIntersect;
};
initialize = async () => {
this.log.debug('Initializing module');
/**
* When the pixel rect changes, we need to sync the onscreen state of the parent entity.
*
* TODO(psyche): It'd be nice to set this listener in the constructor, but the transformer is only created in the
* concrete classes, so we have to do this here. IIRC the reason for this awkwardness was to satisfy a circular
* dependency between the transformer and concrete adapter classes
*/
this.subscriptions.add(this.transformer.$pixelRect.listen(this.syncIsOnscreen));
/**
* When the pixel rect changes, we need to sync the bbox intersection state of the parent entity.
*
* TODO(psyche): It'd be nice to set this listener in the constructor, but the transformer is only created in the
* concrete classes, so we have to do this here. IIRC the reason for this awkwardness was to satisfy a circular
* dependency between the transformer and concrete adapter classes
*/
this.subscriptions.add(this.transformer.$pixelRect.listen(this.syncIntersectsBbox));
await this.sync(this.manager.stateApi.runSelector(this.selectState), undefined);
this.transformer.initialize();
await this.renderer.initialize();
this.syncZIndices();
this.syncVisibility();
// Call the init callbacks.
// TODO(psyche): Get rid of the cast - see note in type def for `InitCallback`.
CanvasEntityAdapterBase.runInitCallbacks(this as CanvasEntityAdapter);
};
syncZIndices = () => {
@@ -221,7 +397,7 @@ export abstract class CanvasEntityAdapterBase<
syncIsEnabled = () => {
this.log.trace('Updating visibility');
this.konva.layer.visible(this.state.isEnabled);
this.renderer.syncCache(this.state.isEnabled);
this.renderer.syncKonvaCache(this.state.isEnabled);
this.transformer.syncInteractionState();
this.$isDisabled.set(!this.state.isEnabled);
};
@@ -252,26 +428,57 @@ export abstract class CanvasEntityAdapterBase<
this.renderer.updateOpacity();
};
syncVisibility = () => {
let isHidden = this.manager.stateApi.runSelector(this.selectIsHidden);
syncVisibility = rafThrottle(() => {
// Handle the base hidden state
if (this.manager.stateApi.runSelector(this.selectIsHidden)) {
this.setVisibility(false);
return;
}
// Handle isolated preview modes - if another entity is filtering or transforming, we may need to hide this entity.
if (this.manager.stateApi.runSelector(selectIsolatedFilteringPreview)) {
const filteringEntityIdentifier = this.manager.stateApi.$filteringAdapter.get()?.entityIdentifier;
if (filteringEntityIdentifier && filteringEntityIdentifier.id !== this.id) {
isHidden = true;
this.setVisibility(false);
return;
}
}
if (this.manager.stateApi.runSelector(selectIsolatedTransformingPreview)) {
const transformingEntityIdentifier = this.manager.stateApi.$transformingAdapter.get()?.entityIdentifier;
if (transformingEntityIdentifier && transformingEntityIdentifier.id !== this.id) {
isHidden = true;
const transformingEntity = this.manager.stateApi.$transformingAdapter.get();
if (
transformingEntity &&
transformingEntity.entityIdentifier.id !== this.id &&
// Silent transforms should be transparent to the user, so we don't need to hide the entity.
!transformingEntity.transformer.$silentTransform.get()
) {
this.setVisibility(false);
return;
}
}
this.$isHidden.set(isHidden);
this.konva.layer.visible(!isHidden);
// If the entity is not selected and offscreen, we can hide it
if (!this.$isOnScreen.get() && !this.manager.stateApi.getIsSelected(this.entityIdentifier.id)) {
this.setVisibility(false);
return;
}
this.setVisibility(true);
});
setVisibility = (isVisible: boolean) => {
const isHidden = this.$isHidden.get();
const isLayerVisible = this.konva.layer.visible();
if (isHidden === !isVisible && isLayerVisible === isVisible) {
// No change
return;
}
this.log.trace(isVisible ? 'Showing' : 'Hiding');
this.$isHidden.set(!isVisible);
this.konva.layer.visible(isVisible);
this.renderer.syncKonvaCache();
};
/**
@@ -328,6 +535,15 @@ export abstract class CanvasEntityAdapterBase<
renderer: this.renderer.repr(),
bufferRenderer: this.bufferRenderer.repr(),
filterer: this.filterer?.repr(),
hasCache: this.$canvasCache.get() !== null,
isLocked: this.$isLocked.get(),
isDisabled: this.$isDisabled.get(),
isHidden: this.$isHidden.get(),
isEmpty: this.$isEmpty.get(),
isInteractable: this.$isInteractable.get(),
isOnScreen: this.$isOnScreen.get(),
intersectsBbox: this.$intersectsBbox.get(),
konva: getKonvaNodeDebugAttrs(this.konva.layer),
};
};
}

View File

@@ -69,7 +69,7 @@ export class CanvasEntityAdapterControlLayer extends CanvasEntityAdapterBase<
this.log.trace({ rect }, 'Getting canvas');
// The opacity may have been changed in response to user selecting a different entity category, so we must restore
// the original opacity before rendering the canvas
const attrs: GroupConfig = { opacity: this.state.opacity };
const attrs: GroupConfig = { opacity: this.state.opacity, filters: [] };
const canvas = this.renderer.getCanvas({ rect, attrs });
return canvas;
};

View File

@@ -39,6 +39,9 @@ export class CanvasEntityAdapterInpaintMask extends CanvasEntityAdapterBase<
return;
}
// If prevState is undefined, this is the first render. Some logic is only needed on the first render, or required
// on first render.
if (!prevState || this.state.isEnabled !== prevState.isEnabled) {
this.syncIsEnabled();
}
@@ -55,21 +58,16 @@ export class CanvasEntityAdapterInpaintMask extends CanvasEntityAdapterBase<
this.syncOpacity();
}
if (!prevState || this.state.fill !== prevState.fill) {
this.syncCompositingRectFill();
// On first render, we must force the update
this.renderer.updateCompositingRectFill(!prevState);
}
if (!prevState) {
this.syncCompositingRectSize();
// On first render, we must force the updates
this.renderer.updateCompositingRectSize(true);
this.renderer.updateCompositingRectPosition(true);
}
};
syncCompositingRectSize = () => {
this.renderer.updateCompositingRectSize();
};
syncCompositingRectFill = () => {
this.renderer.updateCompositingRectFill();
};
getHashableState = (): SerializableObject => {
const keysToOmit: (keyof CanvasInpaintMaskState)[] = ['fill', 'name', 'opacity'];
return omit(this.state, keysToOmit);
@@ -78,7 +76,7 @@ export class CanvasEntityAdapterInpaintMask extends CanvasEntityAdapterBase<
getCanvas = (rect?: Rect): HTMLCanvasElement => {
// The opacity may have been changed in response to user selecting a different entity category, and the mask regions
// should be fully opaque - set opacity to 1 before rendering the canvas
const attrs: GroupConfig = { opacity: 1 };
const attrs: GroupConfig = { opacity: 1, filters: [] };
const canvas = this.renderer.getCanvas({ rect, attrs });
return canvas;
};

View File

@@ -62,7 +62,7 @@ export class CanvasEntityAdapterRasterLayer extends CanvasEntityAdapterBase<
this.log.trace({ rect }, 'Getting canvas');
// The opacity may have been changed in response to user selecting a different entity category, so we must restore
// the original opacity before rendering the canvas
const attrs: GroupConfig = { opacity: this.state.opacity };
const attrs: GroupConfig = { opacity: this.state.opacity, filters: [] };
const canvas = this.renderer.getCanvas({ rect, attrs });
return canvas;
};

View File

@@ -39,6 +39,9 @@ export class CanvasEntityAdapterRegionalGuidance extends CanvasEntityAdapterBase
return;
}
// If prevState is undefined, this is the first render. Some logic is only needed on the first render, or required
// on first render.
if (!prevState || this.state.isEnabled !== prevState.isEnabled) {
this.syncIsEnabled();
}
@@ -55,21 +58,16 @@ export class CanvasEntityAdapterRegionalGuidance extends CanvasEntityAdapterBase
this.syncOpacity();
}
if (!prevState || this.state.fill !== prevState.fill) {
this.syncCompositingRectFill();
// On first render, we must force the update
this.renderer.updateCompositingRectFill(!prevState);
}
if (!prevState) {
this.syncCompositingRectSize();
// On first render, we must force the updates
this.renderer.updateCompositingRectSize(true);
this.renderer.updateCompositingRectPosition(true);
}
};
syncCompositingRectSize = () => {
this.renderer.updateCompositingRectSize();
};
syncCompositingRectFill = () => {
this.renderer.updateCompositingRectFill();
};
getHashableState = (): SerializableObject => {
const keysToOmit: (keyof CanvasRegionalGuidanceState)[] = ['fill', 'name', 'opacity'];
return omit(this.state, keysToOmit);
@@ -78,7 +76,7 @@ export class CanvasEntityAdapterRegionalGuidance extends CanvasEntityAdapterBase
getCanvas = (rect?: Rect): HTMLCanvasElement => {
// The opacity may have been changed in response to user selecting a different entity category, and the mask regions
// should be fully opaque - set opacity to 1 before rendering the canvas
const attrs: GroupConfig = { opacity: 1 };
const attrs: GroupConfig = { opacity: 1, filters: [] };
const canvas = this.renderer.getCanvas({ rect, attrs });
return canvas;
};

View File

@@ -216,7 +216,7 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
this.abortController = null;
this.parent.bufferRenderer.clearBuffer();
this.parent.transformer.updatePosition();
this.parent.renderer.syncCache(true);
this.parent.renderer.syncKonvaCache(true);
this.imageState = null;
this.$hasProcessed.set(false);
};

View File

@@ -1,6 +1,5 @@
import { $authToken } from 'app/store/nanostores/authToken';
import { rgbColorToString } from 'common/util/colorCodeTransformers';
import { withResult } from 'common/util/result';
import { SyncableMap } from 'common/util/SyncableMap/SyncableMap';
import type { CanvasEntityAdapter } from 'features/controlLayers/konva/CanvasEntity/types';
import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
@@ -26,10 +25,8 @@ import type { Rect } from 'features/controlLayers/store/types';
import { imageDTOToImageObject } from 'features/controlLayers/store/util';
import Konva from 'konva';
import type { GroupConfig } from 'konva/lib/Group';
import { debounce } from 'lodash-es';
import { atom } from 'nanostores';
import { throttle } from 'lodash-es';
import type { Logger } from 'roarr';
import { serializeError } from 'serialize-error';
import { getImageDTOSafe, uploadImage } from 'services/api/endpoints/images';
import type { ImageDTO } from 'services/api/types';
import { assert } from 'tsafe';
@@ -96,17 +93,6 @@ export class CanvasEntityObjectRenderer extends CanvasModuleBase {
} | null;
};
/**
* The entity's object group as a canvas element along with the pixel rect of the entity at the time the canvas was
* drawn.
*
* Technically, this is an internal Konva object, created when a Konva node's `.cache()` method is called. We cache
* the object group after every update, so we get this as a "free" side effect.
*
* This is used to render the entity's preview in the control layer.
*/
$canvasCache = atom<{ canvas: HTMLCanvasElement; rect: Rect } | null>(null);
constructor(parent: CanvasEntityAdapter) {
super();
this.id = getPrefixedId(this.type);
@@ -146,13 +132,22 @@ export class CanvasEntityObjectRenderer extends CanvasModuleBase {
// The compositing rect must cover the whole stage at all times. When the stage is scaled, moved or resized, we
// need to update the compositing rect to match the stage.
this.subscriptions.add(
this.manager.stage.$stageAttrs.listen(() => {
this.manager.stage.$stageAttrs.listen((stageAttrs, oldStageAttrs) => {
if (!this.konva.compositing) {
return;
}
if (
this.konva.compositing &&
(this.parent.type === 'inpaint_mask_adapter' || this.parent.type === 'regional_guidance_adapter')
stageAttrs.width !== oldStageAttrs.width ||
stageAttrs.height !== oldStageAttrs.height ||
stageAttrs.scale !== oldStageAttrs.scale
) {
this.updateCompositingRectSize();
}
if (stageAttrs.x !== oldStageAttrs.x || stageAttrs.y !== oldStageAttrs.y) {
this.updateCompositingRectPosition();
}
})
);
}
@@ -184,7 +179,7 @@ export class CanvasEntityObjectRenderer extends CanvasModuleBase {
didRender = (await this.renderObject(obj)) || didRender;
}
this.syncCache(didRender);
this.syncKonvaCache(didRender);
return didRender;
};
@@ -194,16 +189,21 @@ export class CanvasEntityObjectRenderer extends CanvasModuleBase {
renderer.konva.group.moveTo(this.konva.objectGroup);
};
syncCache = (force: boolean = false) => {
syncKonvaCache = (force: boolean = false) => {
if (this.renderers.size === 0) {
this.log.trace('Clearing object group cache');
this.konva.objectGroup.clearCache();
this.$canvasCache.set(null);
} else if (force || !this.konva.objectGroup.isCached()) {
return;
}
// We should never cache the entity if it is not visible - it will cache as a transparent image.
const isVisible = this.parent.konva.layer.visible();
const isCached = this.konva.objectGroup.isCached();
if (isVisible && (force || !isCached)) {
this.log.trace('Caching object group');
this.konva.objectGroup.clearCache();
this.konva.objectGroup.cache({ pixelRatio: 1, imageSmoothingEnabled: false });
this.parent.renderer.updatePreviewCanvas();
}
};
@@ -214,7 +214,11 @@ export class CanvasEntityObjectRenderer extends CanvasModuleBase {
}
};
updateCompositingRectFill = () => {
updateCompositingRectFill = throttle((force?: boolean) => {
if (!force && !this.hasObjects()) {
return;
}
this.log.trace('Updating compositing rect fill');
assert(this.konva.compositing, 'Missing compositing rect');
@@ -233,9 +237,13 @@ export class CanvasEntityObjectRenderer extends CanvasModuleBase {
});
setFillPatternImage(this.konva.compositing.rect, fill.style, fill.color);
}
};
}, 100);
updateCompositingRectSize = (force?: boolean) => {
if (!force && !this.hasObjects()) {
return;
}
updateCompositingRectSize = () => {
this.log.trace('Updating compositing rect size');
assert(this.konva.compositing, 'Missing compositing rect');
@@ -249,7 +257,21 @@ export class CanvasEntityObjectRenderer extends CanvasModuleBase {
});
};
updateOpacity = () => {
updateCompositingRectPosition = (force?: boolean) => {
if (!force && !this.hasObjects()) {
return;
}
this.log.trace('Updating compositing rect position');
assert(this.konva.compositing, 'Missing compositing rect');
this.konva.compositing.rect.setAttrs({
...this.manager.stage.getScaledStageRect(),
});
};
updateOpacity = throttle(() => {
this.log.trace('Updating opacity');
const opacity = this.parent.state.opacity;
@@ -260,7 +282,7 @@ export class CanvasEntityObjectRenderer extends CanvasModuleBase {
this.konva.objectGroup.opacity(opacity);
}
this.parent.bufferRenderer.konva.group.opacity(opacity);
};
}, 100);
/**
* Renders the given object. If the object renderer does not exist, it will be created and its Konva group added to the
@@ -404,19 +426,25 @@ export class CanvasEntityObjectRenderer extends CanvasModuleBase {
replaceObjects?: boolean;
attrs?: GroupConfig;
bg?: string;
ignoreCache?: boolean;
}): Promise<ImageDTO> => {
const rasterizingAdapter = this.manager.stateApi.$rasterizingAdapter.get();
if (rasterizingAdapter) {
assert(false, `Already rasterizing an entity: ${rasterizingAdapter.id}`);
}
const { rect, replaceObjects, attrs, bg } = { replaceObjects: false, attrs: {}, ...options };
const { rect, replaceObjects, attrs, bg, ignoreCache } = {
replaceObjects: false,
ignoreCache: false,
attrs: {},
...options,
};
let imageDTO: ImageDTO | null = null;
const rasterizeArgs = { rect, attrs, bg };
const hash = this.parent.hash(rasterizeArgs);
const cachedImageName = this.manager.cache.imageNameCache.get(hash);
if (cachedImageName) {
if (cachedImageName && !ignoreCache) {
imageDTO = await getImageDTOSafe(cachedImageName);
if (imageDTO) {
this.log.trace({ rect, cachedImageName, imageDTO }, 'Using cached rasterized image');
@@ -453,52 +481,15 @@ export class CanvasEntityObjectRenderer extends CanvasModuleBase {
return imageDTO;
};
updatePreviewCanvas = debounce(() => {
if (this.parent.transformer.$isPendingRectCalculation.get()) {
return;
}
const pixelRect = this.parent.transformer.$pixelRect.get();
if (pixelRect.width === 0 || pixelRect.height === 0) {
return;
}
/**
* TODO(psyche): This is an internal Konva method, so it may break in the future. Can we make this API public?
*
* This method's API is unknown. It has been experimentally determined that it may throw, so we need to handle
* errors.
*/
const getCacheCanvasResult = withResult(
() => this.konva.objectGroup._getCachedSceneCanvas()._canvas as HTMLCanvasElement | undefined | null
);
if (getCacheCanvasResult.isErr()) {
// We are using an internal Konva method, so we need to catch any errors that may occur.
this.log.warn({ error: serializeError(getCacheCanvasResult.error) }, 'Failed to update preview canvas');
return;
}
const canvas = getCacheCanvasResult.value;
if (canvas) {
const nodeRect = this.parent.transformer.$nodeRect.get();
const rect = {
x: pixelRect.x - nodeRect.x,
y: pixelRect.y - nodeRect.y,
width: pixelRect.width,
height: pixelRect.height,
};
this.$canvasCache.set({ rect, canvas });
}
}, 300);
cloneObjectGroup = (arg: { attrs?: GroupConfig } = {}): Konva.Group => {
const { attrs } = arg;
const clone = this.konva.objectGroup.clone();
if (attrs) {
clone.setAttrs(attrs);
}
clone.cache({ pixelRatio: 1, imageSmoothingEnabled: false });
if (clone.hasChildren()) {
clone.cache({ pixelRatio: 1, imageSmoothingEnabled: false });
}
return clone;
};
@@ -545,7 +536,6 @@ export class CanvasEntityObjectRenderer extends CanvasModuleBase {
konva: {
objectGroup: getKonvaNodeDebugAttrs(this.konva.objectGroup),
},
hasCache: this.$canvasCache.get() !== null,
};
};
}

View File

@@ -1,3 +1,4 @@
import { Mutex } from 'async-mutex';
import { withResultAsync } from 'common/util/result';
import { roundToMultiple } from 'common/util/roundDownToMultiple';
import type { CanvasEntityAdapter } from 'features/controlLayers/konva/CanvasEntity/types';
@@ -13,7 +14,7 @@ import { selectSelectedEntityIdentifier } from 'features/controlLayers/store/sel
import type { Coordinate, Rect, RectWithRotation } from 'features/controlLayers/store/types';
import Konva from 'konva';
import type { GroupConfig } from 'konva/lib/Group';
import { debounce, get } from 'lodash-es';
import { clamp, debounce, get } from 'lodash-es';
import { atom } from 'nanostores';
import type { Logger } from 'roarr';
import { serializeError } from 'serialize-error';
@@ -96,14 +97,21 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
config: CanvasEntityTransformerConfig = DEFAULT_CONFIG;
/**
* The rect of the parent, _including_ transparent regions.
* The rect of the parent, _including_ transparent regions, **relative to the parent's position**. To get the rect
* relative to the _stage_, add the parent's position.
*
* It is calculated via Konva's getClientRect method, which is fast but includes transparent regions.
*
* This rect is relative _to the parent's position_, not the stage.
*/
$nodeRect = atom<Rect>(getEmptyRect());
/**
* The rect of the parent, _excluding_ transparent regions.
* The rect of the parent, _excluding_ transparent regions, **relative to the parent's position**. To get the rect
* relative to the _stage_, add the parent's position.
*
* If the parent's nodes have no possibility of transparent regions, this will be calculated the same way as nodeRect.
*
* If the parent's nodes may have transparent regions, this will be calculated manually by rasterizing the parent and
* checking the pixel data.
*/
@@ -147,6 +155,25 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
*/
$isProcessing = atom(false);
/**
* Whether the transformer is currently in silent mode. In silent mode, the transform operation should not show any
* visual feedback.
*
* This is set every time a transform is started.
*
* This is used for transform operations like directly fitting the entity to the bbox, which should not show the
* transform controls, Transform react component or have any other visual feedback. The transform should just happen
* silently.
*/
$silentTransform = atom(false);
/**
* A mutex to prevent concurrent operations.
*
* The mutex is locked during transformation and during rect calculations which are handled in a web worker.
*/
transformMutex = new Mutex();
konva: {
transformer: Konva.Transformer;
proxyRect: Konva.Rect;
@@ -170,7 +197,7 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
name: `${this.type}:outline_rect`,
stroke: this.config.OUTLINE_COLOR,
perfectDrawEnabled: false,
strokeHitEnabled: false,
hitStrokeWidth: 0,
}),
transformer: new Konva.Transformer({
name: `${this.type}:transformer`,
@@ -376,9 +403,15 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
};
/**
* Fits the proxy rect to the bounding box of the parent entity, then syncs the object group with the proxy rect.
* Fits the entity to the bbox using the "fill" strategy.
*/
fitProxyRectToBbox = () => {
fitToBboxFill = () => {
if (!this.$isTransformEnabled.get()) {
this.log.warn(
'Cannot fit to bbox contain when transform is disabled. Did you forget to call `await adapter.transformer.startTransform()`?'
);
return;
}
const { rect } = this.manager.stateApi.getBbox();
const scaleX = rect.width / this.konva.proxyRect.width();
const scaleY = rect.height / this.konva.proxyRect.height();
@@ -392,6 +425,74 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
this.syncObjectGroupWithProxyRect();
};
/**
* Fits the entity to the bbox using the "contain" strategy.
*/
fitToBboxContain = () => {
if (!this.$isTransformEnabled.get()) {
this.log.warn(
'Cannot fit to bbox contain when transform is disabled. Did you forget to call `await adapter.transformer.startTransform()`?'
);
return;
}
const { rect } = this.manager.stateApi.getBbox();
const gridSize = this.manager.stateApi.getGridSize();
const width = this.konva.proxyRect.width();
const height = this.konva.proxyRect.height();
const scaleX = rect.width / width;
const scaleY = rect.height / height;
// "contain" means that the entity should be scaled to fit within the bbox, but it should not exceed the bbox.
const scale = Math.min(scaleX, scaleY);
// Center the shape within the bounding box
const offsetX = (rect.width - width * scale) / 2;
const offsetY = (rect.height - height * scale) / 2;
this.konva.proxyRect.setAttrs({
x: clamp(roundToMultiple(rect.x + offsetX, gridSize), rect.x, rect.x + rect.width),
y: clamp(roundToMultiple(rect.y + offsetY, gridSize), rect.y, rect.y + rect.height),
scaleX: scale,
scaleY: scale,
rotation: 0,
});
this.syncObjectGroupWithProxyRect();
};
/**
* Fits the entity to the bbox using the "cover" strategy.
*/
fitToBboxCover = () => {
if (!this.$isTransformEnabled.get()) {
this.log.warn(
'Cannot fit to bbox contain when transform is disabled. Did you forget to call `await adapter.transformer.startTransform()`?'
);
return;
}
const { rect } = this.manager.stateApi.getBbox();
const gridSize = this.manager.stateApi.getGridSize();
const width = this.konva.proxyRect.width();
const height = this.konva.proxyRect.height();
const scaleX = rect.width / width;
const scaleY = rect.height / height;
// "cover" is the same as "contain", but we choose the larger scale to cover the shape
const scale = Math.max(scaleX, scaleY);
// Center the shape within the bounding box
const offsetX = (rect.width - width * scale) / 2;
const offsetY = (rect.height - height * scale) / 2;
this.konva.proxyRect.setAttrs({
x: roundToMultiple(rect.x + offsetX, gridSize),
y: roundToMultiple(rect.y + offsetY, gridSize),
scaleX: scale,
scaleY: scale,
rotation: 0,
});
this.syncObjectGroupWithProxyRect();
};
onDragMove = () => {
// Snap the interaction rect to the grid
const gridSize = this.manager.stateApi.getGridSize();
@@ -558,13 +659,31 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
/**
* Starts the transformation of the entity.
*
* This method will asynchronously acquire a mutex to prevent concurrent operations. If you need to perform an
* operation after the transformation is started, you should await this method.
*
* @param arg Options for starting the transformation
* @param arg.silent Whether the transformation should be silent. If silent, the transform controls will not be shown,
* so you _must_ call `applyTransform` or `stopTransform` to complete the transformation.
*
* @example
* ```ts
* await adapter.transformer.startTransform({ silent: true });
* adapter.transformer.fitToBboxContain();
* await adapter.transformer.applyTransform();
* ```
*/
startTransform = () => {
startTransform = async (arg?: { silent: boolean }) => {
const transformingAdapter = this.manager.stateApi.$transformingAdapter.get();
if (transformingAdapter) {
assert(false, `Already transforming an entity: ${transformingAdapter.id}`);
}
// This will be released when the transformation is stopped
await this.transformMutex.acquire();
this.log.debug('Starting transform');
const { silent } = { silent: false, ...arg };
this.$silentTransform.set(silent);
this.$isTransforming.set(true);
this.manager.stateApi.$transformingAdapter.set(this.parent);
this.syncInteractionState();
@@ -574,11 +693,23 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
* Applies the transformation of the entity.
*/
applyTransform = async () => {
if (!this.$isTransforming.get()) {
this.log.warn(
'Cannot apply transform when not transforming. Did you forget to call `await adapter.transformer.startTransform()`?'
);
return;
}
this.log.debug('Applying transform');
this.$isProcessing.set(true);
this._setInteractionMode('off');
const rect = this.getRelativeRect();
const rasterizeResult = await withResultAsync(() =>
this.parent.renderer.rasterize({ rect, replaceObjects: true, attrs: { opacity: 1, filters: [] } })
this.parent.renderer.rasterize({
rect,
replaceObjects: true,
ignoreCache: true,
attrs: { opacity: 1, filters: [] },
})
);
if (rasterizeResult.isErr()) {
this.log.error({ error: serializeError(rasterizeResult.error) }, 'Failed to rasterize entity');
@@ -608,6 +739,7 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
this.syncInteractionState();
this.manager.stateApi.$transformingAdapter.set(null);
this.$isProcessing.set(false);
this.transformMutex.release();
};
/**
@@ -706,21 +838,21 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
this.parent.renderer.konva.objectGroup.setAttrs(groupAttrs);
this.parent.bufferRenderer.konva.group.setAttrs(groupAttrs);
}
this.parent.renderer.updatePreviewCanvas();
};
calculateRect = debounce(() => {
this.log.debug('Calculating bbox');
this.$isPendingRectCalculation.set(true);
const canvas = this.parent.getCanvas();
if (!this.parent.renderer.hasObjects()) {
this.log.trace('No objects, resetting bbox');
this.$nodeRect.set(getEmptyRect());
this.$pixelRect.set(getEmptyRect());
this.parent.$canvasCache.set(canvas);
this.$isPendingRectCalculation.set(false);
this.updateBbox();
this.transformMutex.release();
return;
}
@@ -730,13 +862,14 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
this.$nodeRect.set({ ...rect });
this.$pixelRect.set({ ...rect });
this.log.trace({ nodeRect: this.$nodeRect.get(), pixelRect: this.$pixelRect.get() }, 'Got bbox from client rect');
this.parent.$canvasCache.set(canvas);
this.$isPendingRectCalculation.set(false);
this.updateBbox();
this.transformMutex.release();
return;
}
// We have eraser strokes - we must calculate the bbox using pixel data
const canvas = this.parent.renderer.getCanvas({ attrs: { opacity: 1, filters: [] } });
const imageData = canvasToImageData(canvas);
this.manager.worker.requestBbox(
{ buffer: imageData.data.buffer, width: imageData.width, height: imageData.height },
@@ -758,13 +891,17 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
{ nodeRect: this.$nodeRect.get(), pixelRect: this.$pixelRect.get(), extents },
`Got bbox from worker`
);
this.parent.$canvasCache.set(canvas);
this.$isPendingRectCalculation.set(false);
this.updateBbox();
this.transformMutex.release();
}
);
}, this.config.RECT_CALC_DEBOUNCE_MS);
requestRectCalculation = () => {
requestRectCalculation = async () => {
// This will be released when the rect calculation is complete
await this.transformMutex.acquire();
this.$isPendingRectCalculation.set(true);
this.syncInteractionState();
this.calculateRect();

View File

@@ -47,6 +47,7 @@ export class CanvasObjectBrushLine extends CanvasModuleBase {
lineCap: 'round',
lineJoin: 'round',
globalCompositeOperation: 'source-over',
perfectDrawEnabled: false,
}),
};
this.konva.group.add(this.konva.line);

View File

@@ -48,6 +48,7 @@ export class CanvasObjectBrushLineWithPressure extends CanvasModuleBase {
listening: false,
shadowForStrokeEnabled: false,
globalCompositeOperation: 'source-over',
perfectDrawEnabled: false,
}),
};
this.konva.group.add(this.konva.line);

View File

@@ -46,6 +46,7 @@ export class CanvasObjectEraserLine extends CanvasModuleBase {
lineCap: 'round',
lineJoin: 'round',
globalCompositeOperation: 'destination-out',
perfectDrawEnabled: false,
}),
};
this.konva.group.add(this.konva.line);

Some files were not shown because too many files have changed in this diff Show More