Compare commits

...

228 Commits

Author SHA1 Message Date
psychedelicious
8a3848e7b6 chore(ui): update whats new copy 2025-05-22 14:25:02 +10:00
psychedelicious
3f8486b480 chore: bump version to v5.12.0 2025-05-22 14:25:02 +10:00
Hosted Weblate
b80be4f639 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-05-22 14:11:52 +10:00
Linos
adb3a849b9 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1910 of 1910 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-05-22 14:11:52 +10:00
Riccardo Giovanetti
798499fda6 translationBot(ui): update translation (Italian)
Currently translated at 98.9% (1889 of 1910 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.9% (1889 of 1910 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-05-22 14:11:52 +10:00
psychedelicious
02fc5a165c chore(ui): typegen 2025-05-22 13:50:15 +10:00
psychedelicious
b1b8edecfb fix(ui): minor ts issue 2025-05-22 13:50:15 +10:00
Mary Hipp
3cd8d48809 lint 2025-05-22 13:50:15 +10:00
Mary Hipp
f4672ad8c1 more cleanup 2025-05-22 13:50:15 +10:00
Mary Hipp
5a86490845 cleanup and refactor into hooks 2025-05-22 13:50:15 +10:00
Mary Hipp
27dc843046 Imagen4 working in UI 2025-05-22 13:50:15 +10:00
Mary Hipp
2f35d74902 backend updates 2025-05-22 13:50:15 +10:00
Kevin Turner
8bd52ed744 fix: improve gguf performance with torch.compile
pytorch 2.7 does not implement `set.__contains__`, so make this a list instead.

See https://github.com/pytorch/pytorch/issues/145761
2025-05-22 13:42:09 +10:00
psychedelicious
f3e2a3c384 gh: update CODEOWNERS
- Remove brandon
- Consolidate two entries for `invokeai/backend`
2025-05-22 13:37:24 +10:00
psychedelicious
ecc6e8a532 fix(nodes): transformers bug with SAM
Upstream bug in `transformers` breaks use of `AutoModelForMaskGeneration` class to load SAM models

Simple fix - directly load the model with `SamModel` class instead.

See upstream issue https://github.com/huggingface/transformers/issues/38228
2025-05-22 11:32:37 +10:00
Mary Hipp
9170576a38 make logic more straight forward 2025-05-21 10:52:04 -04:00
Mary Hipp
f26baa0341 use hook instead 2025-05-21 10:52:04 -04:00
psychedelicious
99dad953a4 chore: bump version to v5.12.0rc2 2025-05-20 14:50:03 +10:00
jazzhaiku
c39bcdffd3 Re-enable classification API as fallback (#8007)
## Summary

- Fallback to new classification API if legacy probe fails
- Method to read model metadata
- Created `StrippedModelOnDisk` class for testing
- Test to verify only a single config `matches` with a model

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-05-20 11:25:38 +10:00
Billy
32f2223237 Warning comment 2025-05-20 11:19:59 +10:00
Billy
6176941853 Warning comment 2025-05-20 11:19:59 +10:00
Billy
af41dc83f7 Make ruff happy 2025-05-20 11:19:59 +10:00
Billy
a17e771eba Re-enable classification API as fallback 2025-05-20 11:19:59 +10:00
psychedelicious
19ecdb196e chore: ruff 2025-05-20 10:47:02 +10:00
psychedelicious
15880e6ea7 fix(ui): invocation parsing for optional enum fields
For example:
```py
my_field: Literal["foo", "bar"] | None = InputField(default=None)
```

Previously, this would cause a field parsing error and prevent the app from loading.

Two fixes:
- This type annotation and resultant schema are now parsed correctly
- Error handling added to template building logic to prevent the hang at startup when an error does occur
2025-05-20 10:47:02 +10:00
psychedelicious
53ffa98662 chore(ui): typegen 2025-05-20 10:47:02 +10:00
psychedelicious
021a334240 fix(nodes): fix spots where default of None was provided for non-optional fields 2025-05-20 10:47:02 +10:00
psychedelicious
cfed293d48 fix(nodes): do not make invocation field defaults None when they are not provided 2025-05-20 10:47:02 +10:00
Mary Hipp
d36bc185c8 only use client side uploads if more than one image to retain metadata for single uploads 2025-05-20 08:03:00 +10:00
psychedelicious
7878203b03 chore(ui): update whats new copy 2025-05-19 23:28:40 +10:00
psychedelicious
3352220d39 chore: bump version to v5.12.0rc1 2025-05-19 23:28:40 +10:00
Riccardo Giovanetti
bcfb1e7e52 translationBot(ui): update translation (Italian)
Currently translated at 98.7% (1887 of 1910 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-05-19 23:23:07 +10:00
psychedelicious
e84b3c142c chore(ui): typegen 2025-05-19 13:50:04 +10:00
Kent Keirsey
22f637b647 ruff ruff 2025-05-19 13:50:04 +10:00
Kent Keirsey
5d192ab6e5 Fix SD precise in patcher. 2025-05-19 13:50:04 +10:00
Kent Keirsey
9273d1629e UX Copy Clean-up 2025-05-19 13:50:04 +10:00
Kent Keirsey
27a12f080b missing translation values 2025-05-19 13:50:04 +10:00
Kent Keirsey
3bfb497764 ruff fixes 2025-05-19 13:50:04 +10:00
Kent Keirsey
b849c7d382 ruff fix 2025-05-19 13:50:04 +10:00
Kent Keirsey
8d4120583d update schema pt 2 2025-05-19 13:50:04 +10:00
Kent Keirsey
402cdc7eda update schema 2025-05-19 13:50:04 +10:00
Kent Keirsey
b02ea1a898 Expanded styles & updated UI 2025-05-19 13:50:04 +10:00
Kent Keirsey
d709040f4b Matt3o base changes 2025-05-19 13:50:04 +10:00
psychedelicious
8a7a498da3 chore: update uv lock 2025-05-19 12:29:51 +10:00
psychedelicious
699736486b chore: bump torch to 2.7.0
- Update `pyproject.toml`
- Update `pins.json` so launcher installs latest CUDA 12.8 & ROCm 6.3
2025-05-19 12:29:51 +10:00
psychedelicious
37e790ae19 fix(app): address pydantic deprecation warning for accessing BaseModel.model_fields 2025-05-19 12:22:59 +10:00
David Burnett
6c0bd7d150 fix import ordering, remove code I reverted that the resync added back 2025-05-19 11:16:23 +10:00
David Burnett
99e154d773 fix picky ruff issue 2025-05-19 11:16:23 +10:00
David Burnett
e4e43ae126 fix missing bracket 2025-05-19 11:16:23 +10:00
David Burnett
a07fac6180 raise exected exception when attempting to change dtype 2025-05-19 11:16:23 +10:00
David Burnett
93d4b00082 Add to overload for GGMLTensor, so calling to on the model moves the quantized data as well 2025-05-19 11:16:23 +10:00
David Burnett
8abcc99ced add check for state_dict, required to load TI's 2025-05-19 11:16:23 +10:00
David Burnett
73ab4b8895 fix offload device 2025-05-19 11:16:23 +10:00
David Burnett
86719f2065 revert to overload due to failing tests, use Torch futures instead 2025-05-19 11:16:23 +10:00
David Burnett
5271fc1cac fix picky ruff issue 2025-05-19 11:16:23 +10:00
David Burnett
96ff7d9093 fix missing bracket 2025-05-19 11:16:23 +10:00
David Burnett
6f73d9e9c6 raise exected exception when attempting to change dtype 2025-05-19 11:16:23 +10:00
David Burnett
29b406a84b Add to overload for GGMLTensor, so calling to on the model moves the quantized data as well 2025-05-19 11:16:23 +10:00
psychedelicious
2b1e4b88d3 tests: add new service to mocks 2025-05-19 10:29:07 +10:00
psychedelicious
0f0085a776 chore(ui): typegen 2025-05-19 10:29:07 +10:00
psychedelicious
ea28ed8261 chore: ruff 2025-05-19 10:29:07 +10:00
Lucian Hardy
c0e6327d3a chore(ui): Refactor RelatedModels.tsx
Major cleanup of RelatedModels.tsx for improved readability, structure, and maintainability.
Dried out repetitive logic
Consolidated model type sorting into reusable helpers
Added disallowed model type relationships to prevent broken connections (e.g. VAE ↔ LoRA)
- Aware this introduces a new constraint—open to feedback (see PR comment)
Some naming and types may still need refinement; happy to revisit
2025-05-19 10:29:07 +10:00
Lucian Hardy
459491e402 chore(backend): Removed unused model_relationship methods
removed unused AnyModelConfig related methods,
removed unused get_related_model_key_count method.
2025-05-19 10:29:07 +10:00
Lucian Hardy
a4cddfa47d feat(ui): model relationship management
Adds full support for managing model-to-model relationships in the UI and backend.

Introduces RelatedModels subpanel for linking and unlinking models in model management.
 - Adds REST API routes for adding, removing, and retrieving model relationships.
 - New database migration: creates model_relationships table for bidirectional links.
 - New service layer (model_relationships) for relationship management.
 - Updated frontend: Related models float to top of LoRA/Main grouped model comboboxes for quick access.
     - Added 'Show Only Related' toggle badge to MainModelPicker filter bar

**Amended commit to remove changes to ParamMainModelSelect.tsx and MainModelPicker.tsx to avoid conflict with upstream deletion/ rewrite**
2025-05-19 10:29:07 +10:00
jazzhaiku
9a822bcfe8 Jazzhaiku/stats (#8006)
## Summary

- Modify stats reset to be on a per session basis, rather than a "full
reset", to allow for parallel session execution
- Add "aider" to gitignore

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-05-16 07:51:23 +10:00
psychedelicious
5f12b9185f feat(mm): add cache_snapshot to model cache clear callback 2025-05-15 16:06:47 +10:00
psychedelicious
d958d2e5a0 feat(mm): iterate on cache callbacks API 2025-05-15 14:37:22 +10:00
psychedelicious
823ca214e6 feat(mm): iterate on cache callbacks API 2025-05-15 13:28:51 +10:00
psychedelicious
a33da450fd feat(mm): support cache callbacks 2025-05-15 11:23:58 +10:00
Billy
8b5f4d190c Restore Schema 2025-05-15 10:38:01 +10:00
Billy
f1f3b7965a Schema 2025-05-15 10:26:45 +10:00
Billy
987be3507c Merge branch 'main' into jazzhaiku/stats 2025-05-15 10:22:56 +10:00
Billy
1f4090fe0e Reset invocation stats on per session basis 2025-05-15 10:19:05 +10:00
Billy
029e2d2c46 Add aider to gitignore 2025-05-15 10:18:42 +10:00
Riku
7722f479e8 translationBot(ui): update translation (German)
Currently translated at 64.9% (1236 of 1902 strings)

Co-authored-by: Riku <riku.block@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2025-05-14 10:32:24 +10:00
Linos
3ad4072183 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1904 of 1904 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1902 of 1902 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-05-14 10:32:24 +10:00
Hosted Weblate
6dfb9a1906 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-05-14 10:32:24 +10:00
RyoKoba
ad2924350d translationBot(ui): update translation (Japanese)
Currently translated at 67.1% (1279 of 1904 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 64.9% (1231 of 1895 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 60.2% (1141 of 1895 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 56.7% (1075 of 1895 strings)

Co-authored-by: RyoKoba <kobayashi_ryo@cyberagent.co.jp>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2025-05-14 10:32:24 +10:00
Linos
3bf51ee0c2 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1896 of 1896 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1895 of 1895 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1886 of 1886 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-05-14 10:32:24 +10:00
Hosted Weblate
fce5051dcc translationBot(ui): update translation files
Updated by "Remove blank strings" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-05-14 10:32:24 +10:00
Riccardo Giovanetti
446d8818b9 translationBot(ui): update translation (Italian)
Currently translated at 98.8% (1883 of 1904 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.8% (1882 of 1903 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.8% (1881 of 1902 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.8% (1878 of 1899 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.8% (1874 of 1895 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.8% (1873 of 1895 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.8% (1864 of 1886 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-05-14 10:32:24 +10:00
psychedelicious
1566e29c19 feat(nodes): tidy some type annotations in baseinvocation 2025-05-14 06:55:15 +10:00
psychedelicious
6a2e35f2c4 feat(nodes): store original field annotation & FieldInfo in invocations 2025-05-14 06:55:15 +10:00
psychedelicious
b6d58774f4 feat(nodes): improved error messages for invalid defaults 2025-05-14 06:55:15 +10:00
psychedelicious
758f94d3c6 chore(ui): typegen 2025-05-14 06:55:15 +10:00
psychedelicious
9df0871754 fix(nodes): do not provide invalid defaults for batch nodes 2025-05-14 06:55:15 +10:00
psychedelicious
3011150a3a feat(nodes): validate default values for all fields
This prevents issues where the node is defined with an invalid default value, which would guarantee an error during a ser/de roundtrip.

- Upstream issue requesting this functionality be built-in to pydantic: https://github.com/pydantic/pydantic/issues/8722
- Upstream PR that implements the functionality: https://github.com/pydantic/pydantic-core/pull/1593
2025-05-14 06:55:15 +10:00
psychedelicious
05aa1fce71 chore(ui): typegen 2025-05-14 06:55:15 +10:00
psychedelicious
df81f3274a feat(nodes): improved pydantic type annotation massaging
When we do our field type overrides to allow invocations to be instantiated without all required fields, we were not modifying the annotation of the field but did set the default value of the field to `None`.

This results in an error when doing a ser/de round trip. Here's what we end up doing:

```py
from pydantic import BaseModel, Field

class MyModel(BaseModel):
    foo: str = Field(default=None)
```

And here is a simple round-trip, which should not error but which does:

```py
MyModel(**MyModel().model_dump())
# ValidationError: 1 validation error for MyModel
# foo
#   Input should be a valid string [type=string_type, input_value=None, input_type=NoneType]
#     For further information visit https://errors.pydantic.dev/2.11/v/string_type
```

To fix this, we now check every incoming field and update its annotation to match its default value. In other words, when we override the default field value to `None`, we make its type annotation `<original type> | None`.

This prevents the error during deserialization.

This slightly alters the schema for all invocations and outputs - the values of all fields without default values are now typed as `<original type> | None`, reflecting the overrides.

This means the autogenerated types for fields have also changed for fields without defaults:

```ts
// Old
image?: components["schemas"]["ImageField"];

// New
image?: components["schemas"]["ImageField"] | null;
```

This does not break anything on the frontend.
2025-05-14 06:55:15 +10:00
psychedelicious
143487a492 chore: bump version to v5.11.0 2025-05-13 14:04:45 +10:00
psychedelicious
203fa04295 feat(nodes): support bottleneck flag for nodes 2025-05-13 11:56:40 +10:00
Mary Hipp Rogers
954fce3c67 feat(ui): custom error toast support (#8001)
* support for custom error toast components, starting with usage limit

* add support for all usage limits

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2025-05-08 15:53:10 -04:00
Mary Hipp
821889148a easier way to override Whats New 2025-05-07 15:40:21 -04:00
Mary Hipp
4c248d8c2c refetch queue list on mount 2025-05-07 15:37:55 -04:00
Mary Hipp
deb75805d4 use the max for iterations passed in 2025-05-06 18:26:40 -04:00
Mary Hipp Rogers
93110654da Change feature to disable apiModels to chatGPT4oModels only (#7996)
* display credit column in queue list if shouldShowCredits is true

* change apiModels feature to chatGPT4oModels feature

* empty

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2025-05-06 14:37:03 -04:00
psychedelicious
ff0c48d532 chore(ui): prettier 2025-05-06 09:07:52 -04:00
psychedelicious
de18073814 feat(ui): support imagen3/chatgpt-4o models in canvas 2025-05-06 09:07:52 -04:00
psychedelicious
0708af9545 feat(ui): support imagen3/chatgpt-4o models in workflow editor 2025-05-06 09:07:52 -04:00
psychedelicious
1e85184c62 feat(nodes): add imagen3/chatgpt-4o field types 2025-05-06 09:07:52 -04:00
psychedelicious
11d3b8d944 feat(ui): add usage info to model picker 2025-05-06 09:07:52 -04:00
psychedelicious
bffd4afb96 chore(ui): typegen 2025-05-06 09:07:52 -04:00
psychedelicious
518a896521 feat(mm): add usage_info to model config 2025-05-06 09:07:52 -04:00
psychedelicious
2647ff141a feat(ui): add basic metadata to imagen3/chatgpt-4o graphs 2025-05-06 09:07:52 -04:00
Mary Hipp Rogers
ba0bac2aa5 add credits to queue item status changed (#7993)
* display credit column in queue list if shouldShowCredits is true

* add credits when queue item status changes

* chore(ui): typegen

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-05-06 08:54:44 -04:00
psychedelicious
862e2a3e49 chore(ui): typegen 2025-05-05 16:09:13 -04:00
Mary Hipp
d22fd32b05 typegen 2025-05-05 16:09:13 -04:00
Mary Hipp
391e5b7f8c update schema 2025-05-05 16:09:13 -04:00
Mary Hipp
c9d2a5f59a display credit column in queue list if shouldShowCredits is true 2025-05-05 16:09:13 -04:00
Kent Keirsey
1f63b60021 Implementing support for Non-Standard LoRA Format (#7985)
* integrate loRA

* idk anymore tbh

* enable fused matrix for quantized models

* integrate loRA

* idk anymore tbh

* enable fused matrix for quantized models

* ruff fix

---------

Co-authored-by: Sam <bhaskarmdutt@gmail.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-05-05 09:40:38 -04:00
psychedelicious
a499b9f54e chore: bump version to v5.11.0rc2 2025-05-05 23:32:27 +10:00
psychedelicious
104505ea02 chore(ui): lint 2025-05-05 23:25:29 +10:00
psychedelicious
ee4002607c feat(ui): add UI to reset hf token 2025-05-05 23:25:29 +10:00
psychedelicious
fd20582cdd chore(ui): typegen 2025-05-05 23:25:29 +10:00
psychedelicious
43b0d07517 feat(api): add route to reset hf token 2025-05-05 23:25:29 +10:00
blessedcoolant
f83592a052 fix: deprecation warning in get_iso_timestemp 2025-05-05 11:45:30 +10:00
Mary Hipp
b3ee906749 add prompt validation to imagen3 graph 2025-05-01 13:02:13 -04:00
psychedelicious
5d69e9068a feat(ui): add ability to globally disable hotkeys
This will both hide the hotkey from the hotkey modal and override any other enabled status it has.
2025-05-01 10:50:34 -04:00
psychedelicious
a79136b058 fix(ui): always add selectModelsTab hotkey data to prevent unhandled exception while registering the hotkey handler 2025-05-01 10:50:34 -04:00
psychedelicious
944af4d4a9 feat(ui): show unsupported gen mode toasts as warnings intead of errors 2025-05-01 23:25:01 +10:00
psychedelicious
5e001be73a tidy(ui): remove excessive nav to mm buttons 2025-05-01 23:22:19 +10:00
psychedelicious
576a644b3a tidy(ui): modelpicker component 2025-05-01 23:22:19 +10:00
psychedelicious
703557c8a6 feat(ui): cleanup 2025-05-01 23:22:19 +10:00
psychedelicious
d59a53b3f9 feat(ui): simplify picker types 2025-05-01 23:22:19 +10:00
psychedelicious
7b8f78c2d9 fix(ui): focus bug w/ popvoer 2025-05-01 23:22:19 +10:00
psychedelicious
31ab9be79a feat(ui): iterate on picker 2025-05-01 23:22:19 +10:00
psychedelicious
5011fab85d fix(ui): restore FLUX Dev info popover to main model picker 2025-05-01 10:59:51 +10:00
psychedelicious
92bdb9fdcc chore(ui): remove unused exports 2025-05-01 10:59:51 +10:00
Mary Hipp
548e766c0b feat(ui): ability to disable generating with API models 2025-05-01 10:59:51 +10:00
Mary Hipp
ff897f74a1 send the list of reference images reversed to chatGPT so it matches displayed order 2025-04-30 15:56:38 -04:00
psychedelicious
3d29c996ed feat(ui): support img2img for chatgpt 4o w/ ref images 2025-04-30 13:39:05 +10:00
psychedelicious
42d57d1225 fix(ui): ref image layout 2025-04-30 13:39:05 +10:00
psychedelicious
193fa9395a fix(ui): match ref image model to main model when creating global ref image 2025-04-30 13:39:05 +10:00
psychedelicious
56cd839d5b feat(ui): support for ref images for chatgpt on canvas 2025-04-30 13:39:05 +10:00
ubansi
7b446ee40d docs: fix Contribute node import error
When I followed the Contribute Node documentation, I encountered an import error.
This commit fixes the error, which will help reduce debugging time for all future contributors.
2025-04-29 21:03:00 -04:00
Mary Hipp Rogers
17027c4070 Maryhipp/chatgpt UI (#7969)
* add GPTimage1 as allowed base model

* fix for non-disabled inpaint layers

* lots of boilerplate for adding gpt-image base model and disabling things along with imagen

* handle gpt-image dimensions

* build graph for gpt-image

* lint

* feat(ui): make chatgpt model naming consistent

* feat(ui): graph builder naming

* feat(ui): disable img2img for imagen3

* feat(ui): more naming

* feat(ui): support presigned url prefetch

* feat(ui): disable neg prompt for chatgpt

* docs(ui): update docstring

* feat(ui): fix graph building issues for chatgpt

* fix(ui): node ids for chatgpt/imagen

* chore(ui): typegen

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-04-29 09:38:03 -04:00
psychedelicious
13d44f47ce chore(ui): prettier 2025-04-29 09:12:49 +10:00
psychedelicious
550fbdeb1c fix(ui): more types fixes 2025-04-29 09:12:49 +10:00
psychedelicious
a01cd7c497 fix(ui): add chatgpt-4o to zod schemas that need to match autogenerated types 2025-04-29 09:12:49 +10:00
Mary Hipp
c54afd600c typegen 2025-04-29 09:12:49 +10:00
Mary Hipp
4f911a0ea8 typegen 2025-04-29 09:12:49 +10:00
Mary Hipp
fb91f48722 change base model for chatGPT 4o 2025-04-29 09:12:49 +10:00
psychedelicious
69db60a614 fix(ui): toast typo 2025-04-29 06:56:36 +10:00
Mary Hipp
c6d7f951aa typegen 2025-04-28 15:39:11 -04:00
Mary Hipp
04c005284c add gpt-image to possible base model types 2025-04-28 15:39:11 -04:00
psychedelicious
2d7f9697bf chore(ui): lint 2025-04-28 13:31:26 -04:00
psychedelicious
ae530492a2 chore(ui): typegen 2025-04-28 13:31:26 -04:00
psychedelicious
87ed1e3b6d feat(ui): do not allow imagen3 nodes in published workflows 2025-04-28 13:31:26 -04:00
psychedelicious
cc54466db9 fix(nodes): default value for UIConfigBase.tags 2025-04-28 13:31:26 -04:00
psychedelicious
cbdafe7e38 feat(nodes): allow node clobbering 2025-04-28 13:31:26 -04:00
psychedelicious
112cb76174 fix: random seed for edit mode imagen 2025-04-28 13:31:26 -04:00
psychedelicious
e56d41ab99 feat: rip out enhance prompt as toggleable option, imagen always randomizes seed 2025-04-28 13:31:26 -04:00
psychedelicious
273dfd86ab fix(ui): upscale builder 2025-04-28 13:31:26 -04:00
psychedelicious
871271fde5 feat(ui): rough out imagen3 support for canvas 2025-04-28 13:31:26 -04:00
psychedelicious
14944872c4 feat(mm): add model taxonomy for API models & Imagen3 as base model type 2025-04-28 13:31:26 -04:00
psychedelicious
07bcf3c446 feat(ui): port bbox select to native select 2025-04-28 13:31:26 -04:00
psychedelicious
8ed5585285 feat(nodes): move output metadata to BaseInvocationOutput 2025-04-28 09:19:43 -04:00
psychedelicious
5ce226a467 chore(ui): typegen 2025-04-28 09:19:43 -04:00
Mary Hipp
c64f20a72b remove output_metdata from schema 2025-04-28 09:19:43 -04:00
Mary Hipp
0c9c10a03a update schema 2025-04-28 09:19:43 -04:00
Mary Hipp
4a0df6b865 add optional output_metadata to baseinvocation 2025-04-28 09:19:43 -04:00
psychedelicious
ba165572bf chore: bump version to v5.11.0rc1 2025-04-28 10:10:50 +10:00
psychedelicious
c3d6a10603 fix(ui): handle minor breaking typing change from serialize-error 2025-04-28 09:53:08 +10:00
psychedelicious
4efc86299d fix(ui): type error in SettingsUpsellMenuItem 2025-04-28 09:53:08 +10:00
psychedelicious
e8c7cf63fd fix(ui): type error in canvas worker 2025-04-28 09:53:08 +10:00
psychedelicious
698b034190 chore(ui): bump deps 2025-04-28 09:53:08 +10:00
psychedelicious
3988128c40 feat(ui): add _all_ image outputs to gallery (including collections) 2025-04-28 09:49:04 +10:00
psychedelicious
c768f47365 fix(ui): dnd autoscroll in scrollable containers 2025-04-28 09:46:38 +10:00
psychedelicious
19a63abc54 fix(ui): hide file size on model picker when it is zero 2025-04-23 17:45:09 +10:00
psychedelicious
75ec36bf9a chore(ui): lint 2025-04-23 17:45:09 +10:00
psychedelicious
d802f8e7fb feat(ui): disable search when no options 2025-04-23 17:45:09 +10:00
psychedelicious
6873e0308d feat(ui): custom fallback for model picker when no models installed 2025-04-23 17:45:09 +10:00
psychedelicious
66eb73088e feat(ui): rename user-provided extra ctx for picker from ctx to extra to be less confusing 2025-04-23 17:45:09 +10:00
psychedelicious
ed81a13eb4 docs(ui): add some comments for picker 2025-04-23 17:45:09 +10:00
psychedelicious
fbc1aae52d feat(ui): more flexible fallbacks for model picker 2025-04-23 17:45:09 +10:00
psychedelicious
ba42c3e63f feat(ui): tooltip for compact/full model picker view 2025-04-23 17:45:09 +10:00
psychedelicious
b24e820aa0 fix(ui): flash of "select a model" when changing model 2025-04-23 17:45:09 +10:00
psychedelicious
e8f6b3b77a feat(ui): split out mainmodelpicker component 2025-04-23 17:45:09 +10:00
psychedelicious
8f13518c97 feat(ui): add clear search button to model combobox 2025-04-23 17:45:09 +10:00
psychedelicious
6afbc12074 feat(ui): when no model bases selected, show all models 2025-04-23 17:45:09 +10:00
psychedelicious
6b0a56ceb9 chore(ui): lint 2025-04-23 17:45:09 +10:00
psychedelicious
ca92497e52 feat(ui): remove description from model pciker for now 2025-04-23 17:45:09 +10:00
psychedelicious
97d45ceaf2 feat(ui): model picker filter buttons 2025-04-23 17:45:09 +10:00
psychedelicious
aeb3841a6f feat(ui): wip model picker 2025-04-23 17:45:09 +10:00
psychedelicious
c14d33d3c1 tweak(ui): remove bg on ModelImage fallback 2025-04-23 17:45:09 +10:00
psychedelicious
676e59e072 chore(ui): bump react-resizable-panels to latest
This resolves a bug where SVG elements were ignored when checking when cursor is over a resize handle
2025-04-23 17:45:09 +10:00
psychedelicious
e7dcb6a03f feat(ui): wip model picker 2025-04-23 17:45:09 +10:00
psychedelicious
fb95b7cc2b feat(ui): wip model picker 2025-04-23 17:45:09 +10:00
psychedelicious
015dc3ac0d feat(ui): wip model picker 2025-04-23 17:45:09 +10:00
psychedelicious
9d8a71b362 feat(ui): genericizing picker 2025-04-23 17:45:09 +10:00
psychedelicious
2eb212f393 feat(ui): onSelectId -> onSelectById 2025-04-23 17:45:09 +10:00
psychedelicious
34b268c15c feat(ui): use context for stable picker state 2025-04-23 17:45:09 +10:00
psychedelicious
9a203a64dc feat(ui): render picker in portal 2025-04-23 17:45:09 +10:00
psychedelicious
d80004e056 feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
de32ed23a7 feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
5aed2b315d feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
48db6cfc4f feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
aa7c5c281a feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
87aeb7f889 feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
3b3d6e413a feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
b6432f2de3 feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
9d0a28ccae feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
c3bf0a3277 feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
b516610c1e feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
677e717cd7 feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
c52584e057 feat(ui): simplify ScrollableContent 2025-04-23 17:45:09 +10:00
psychedelicious
b6767441db feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
8745dbe67d feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
a565d9473e feat(ui): add useStateImperative 2025-04-23 17:45:09 +10:00
psychedelicious
4dbf07c3e0 feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
f6eb4d9a6b feat(ui): toast on select for demo purposes 2025-04-23 17:45:09 +10:00
psychedelicious
5037967b82 feat(ui): just make the damn thing myself 2025-04-23 17:45:09 +10:00
psychedelicious
4930ba48ce feat(ui): just make the damn thing myself 2025-04-23 17:45:09 +10:00
psychedelicious
40d2092256 feat(ui): reworked model selection ui (WIP) 2025-04-23 17:45:09 +10:00
psychedelicious
d2e9237740 feat(ui): reworked model selection ui (WIP) 2025-04-23 17:45:09 +10:00
psychedelicious
b191b706c1 feat(ui): reworked model selection ui (WIP) 2025-04-23 17:45:09 +10:00
psychedelicious
4d0f760ec8 chore(ui): bump cmdk to latest 2025-04-23 17:45:09 +10:00
psychedelicious
65cda5365a feat(ui): remove go to mm button from node fields 2025-04-23 17:45:09 +10:00
psychedelicious
1f2d1d086f feat(ui): add <NavigateToModelManagerButton /> to model comboboxes everywhere 2025-04-23 17:45:09 +10:00
psychedelicious
418f3c3f19 feat(ui): abstract out workflow editor model combobox, ensure consistent ui for all model fields 2025-04-23 17:45:09 +10:00
psychedelicious
72173e284c fix(ui): useModelCombobox should use null for no value instead of undefined
This fixes an issue where the refiner combobox doesn't clear itself visually when clicking the little X icon to clear the selection.
2025-04-23 17:45:09 +10:00
psychedelicious
9cc13556aa feat(ui): accept callback to override navigate to model manager functionality
If provided, `<NavigateToModelManagerButton />` will render, even if `disabledTabs` includes "models". If provided, `<NavigateToModelManagerButton />` will run the callback instead of switching tabs within the studio.

The button's tooltip is now just "Manage Models" and its icon is the same as the model manager tab's icon ([CUBE!](https://www.youtube.com/watch?v=4aGDCE6Nrz0)).
2025-04-23 17:45:09 +10:00
psychedelicious
298444f2bc chore: bump version to v5.10.1 2025-04-19 00:05:02 +10:00
psychedelicious
deb1984289 fix(mm): disable new model probe API
There is a subtle change in behaviour with the new model probe API.

Previously, checks for model types was done in a specific order. For example, we did all main model checks before LoRA checks.

With the new API, the order of checks has changed. Check ordering is as follows:
- New API checks are run first, then legacy API checks.
- New API checks categorized by their speed. When we run new API checks, we sort them from fastest to slowest, and run them in that order. This is a performance optimization.

Currently, LoRA and LLaVA models are the only model types with the new API. Checks for them are thus run first.

LoRA checks involve checking the state dict for presence of keys with specific prefixes. We expect these keys to only exist in LoRAs.

It turns out that main models may have some of these keys.

For example, this model has keys that match the LoRA prefix `lora_te_`: https://civitai.com/models/134442/helloyoung25d

Under the old probe, we'd do the main model checks first and correctly identify this as a main model. But with the new setup, we do the LoRA check first, and those pass. So we import this model as a LoRA.

Thankfully, the old probe still exists. For now, the new probe is fully disabled. It was only called in one spot.

I've also added the example affected model as a test case for the model probe. Right now, this causes the test to fail, and I've marked the test as xfail. CI will pass.

Once we enable the new API again, the xfail will pass, and CI will fail, and we'll be reminded to update the test.
2025-04-18 22:44:10 +10:00
psychedelicious
814406d98a feat(mm): siglip model loading supports partial loading
In the previous commit, the LLaVA model was updated to support partial loading.

In this commit, the SigLIP model is updated in the same way.

This model is used for FLUX Redux. It's <4GB and only ever run in isolation, so it won't benefit from partial loading for the vast majority of users. Regardless, I think it is best if we make _all_ models work with partial loading.

PS: I also fixed the initial load dtype issue, described in the prev commit. It's probably a non-issue for this model, but we may as well fix it.
2025-04-18 10:12:03 +10:00
psychedelicious
c054501103 feat(mm): llava model loading supports partial loading; fix OOM crash on initial load
The model manager has two types of model cache entries:
- `CachedModelOnlyFullLoad`: The model may only ever be loaded and unloaded as a single object.
- `CachedModelWithPartialLoad`: The model may be partially loaded and unloaded.

Partial loaded is enabled by overwriting certain torch layer classes, adding the ability to autocast the layer to a device on-the-fly. See `CustomLinear` for an example.

So, to take advantage of partial loading and be cached as a `CachedModelWithPartialLoad`, the model must inherit from `torch.nn.Module`.

The LLaVA classes provided by `transformers` do inherit from `torch.nn.Module`, but we wrap those classes in a separate class called `LlavaOnevisionModel`. The wrapper encapsulate both the LLaVA model and its "processor" - a lightweight class that prepares model inputs like text and images.

While it is more elegant to encapsulate both model and processor classes in a single entity, this prevents the model cache from enabling partial loading for the chunky vLLM model.

Fixing this involved a few changes.
- Update the `LlavaOnevisionModelLoader` class to operate on the vLLM model directly, instead the `LlavaOnevisionModel` wrapper class.
- Instantiate the processor directly in the node. The processor is lightweight and does its business on the CPU. We don't need to worry about caching in the model manager.
- Remove caching support code from the `LlavaOnevisionModel` wrapper class. It's not needed, because we do not cache this class. The class now only handles running the models provided to it.
- Rename `LlavaOnevisionModel` to `LlavaOnevisionPipeline` to better represent its purpose.

These changes have a bonus effect of fixing an OOM crash when initially loading the models. This was most apparent when loading LLaVA 7B, which is pretty chunky.

The initial load is onto CPU RAM. In the old version of the loaders, we ignored the loader's target dtype for the initial load. Instead, we loaded the model at `transformers`'s "default" dtype of fp32.

LLaVA 7B is fp16 and weighs ~17GB. Loading as fp32 means we need double that amount (~34GB) of CPU RAM. Many users only have 32GB RAM, so this causes a _CPU_ OOM - which is a hard crash of the whole process.

With the updated loaders, the initial load logic now uses the target dtype for the initial load. LLaVA now needs the expected ~17GB RAM for its initial load.

PS: If we didn't make the accompanying partial loading changes, we still could have solved this OOM. We'd just need to pass the initial load dtype to the wrapper class and have it load on that dtype. But we may as well fix both issues.

PPS: There are other models whose model classes are wrappers around a torch module class, and thus cannot be partially loaded. However, these models are typically fairly small and/or are run only on their own, so they don't benefit as much from partial loading. It's the really big models (like LLaVA 7B) that benefit most from the partial loading.
2025-04-18 10:12:03 +10:00
psychedelicious
c1d819c7e5 feat(nodes): add get_absolute_path method to context.models API
Given a model config or path (presumably to a model), returns the absolute path to the model.

Check the next few commits for use-case.
2025-04-18 10:12:03 +10:00
psychedelicious
2a8e91f94d feat(ui): wrap JSON in dataviewer 2025-04-17 22:55:04 +10:00
232 changed files with 8260 additions and 3966 deletions

5
.github/CODEOWNERS vendored
View File

@@ -6,7 +6,7 @@
/mkdocs.yml @lstein @blessedcoolant @hipsterusername @psychedelicious
# nodes
/invokeai/app/ @blessedcoolant @psychedelicious @brandonrising @hipsterusername @jazzhaiku
/invokeai/app/ @blessedcoolant @psychedelicious @hipsterusername @jazzhaiku
# installation and configuration
/pyproject.toml @lstein @blessedcoolant @hipsterusername
@@ -19,10 +19,9 @@
# web ui
/invokeai/frontend @blessedcoolant @psychedelicious @lstein @maryhipp @hipsterusername
/invokeai/backend @blessedcoolant @psychedelicious @lstein @maryhipp @hipsterusername
# generation, model management, postprocessing
/invokeai/backend @lstein @blessedcoolant @brandonrising @hipsterusername @jazzhaiku
/invokeai/backend @lstein @blessedcoolant @hipsterusername @jazzhaiku @psychedelicious @maryhipp
# front ends
/invokeai/frontend/CLI @lstein @hipsterusername

1
.gitignore vendored
View File

@@ -188,3 +188,4 @@ installer/install.sh
installer/update.bat
installer/update.sh
installer/InvokeAI-Installer/
.aider*

View File

@@ -39,7 +39,7 @@ nodes imported in the `__init__.py` file are loaded. See the README in the nodes
folder for more examples:
```py
from .cool_node import CoolInvocation
from .cool_node import ResizeInvocation
```
## Creating A New Invocation
@@ -69,7 +69,10 @@ The first set of things we need to do when creating a new Invocation are -
So let us do that.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.invocation_api import (
BaseInvocation,
invocation,
)
@invocation('resize')
class ResizeInvocation(BaseInvocation):
@@ -103,8 +106,12 @@ create your own custom field types later in this guide. For now, let's go ahead
and use it.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation
from invokeai.app.invocations.primitives import ImageField
from invokeai.invocation_api import (
BaseInvocation,
ImageField,
InputField,
invocation,
)
@invocation('resize')
class ResizeInvocation(BaseInvocation):
@@ -128,8 +135,12 @@ image: ImageField = InputField(description="The input image")
Great. Now let us create our other inputs for `width` and `height`
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation
from invokeai.app.invocations.primitives import ImageField
from invokeai.invocation_api import (
BaseInvocation,
ImageField,
InputField,
invocation,
)
@invocation('resize')
class ResizeInvocation(BaseInvocation):
@@ -163,8 +174,13 @@ that are provided by it by InvokeAI.
Let us create this function first.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation, InvocationContext
from invokeai.app.invocations.primitives import ImageField
from invokeai.invocation_api import (
BaseInvocation,
ImageField,
InputField,
InvocationContext,
invocation,
)
@invocation('resize')
class ResizeInvocation(BaseInvocation):
@@ -191,8 +207,14 @@ all the necessary info related to image outputs. So let us use that.
We will cover how to create your own output types later in this guide.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation, InvocationContext
from invokeai.app.invocations.primitives import ImageField
from invokeai.invocation_api import (
BaseInvocation,
ImageField,
InputField,
InvocationContext,
invocation,
)
from invokeai.app.invocations.image import ImageOutput
@invocation('resize')
@@ -217,9 +239,15 @@ Perfect. Now that we have our Invocation setup, let us do what we want to do.
So let's do that.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation, InvocationContext
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.image import ImageOutput, ResourceOrigin, ImageCategory
from invokeai.invocation_api import (
BaseInvocation,
ImageField,
InputField,
InvocationContext,
invocation,
)
from invokeai.app.invocations.image import ImageOutput
@invocation("resize")
class ResizeInvocation(BaseInvocation):

View File

@@ -23,6 +23,10 @@ from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_images.model_images_default import ModelImageFileStorageDisk
from invokeai.app.services.model_manager.model_manager_default import ModelManagerService
from invokeai.app.services.model_records.model_records_sql import ModelRecordServiceSQL
from invokeai.app.services.model_relationship_records.model_relationship_records_sqlite import (
SqliteModelRelationshipRecordStorage,
)
from invokeai.app.services.model_relationships.model_relationships_default import ModelRelationshipsService
from invokeai.app.services.names.names_default import SimpleNameService
from invokeai.app.services.object_serializer.object_serializer_disk import ObjectSerializerDisk
from invokeai.app.services.object_serializer.object_serializer_forward_cache import ObjectSerializerForwardCache
@@ -136,6 +140,8 @@ class ApiDependencies:
download_queue=download_queue_service,
events=events,
)
model_relationships = ModelRelationshipsService()
model_relationship_records = SqliteModelRelationshipRecordStorage(db=db)
names = SimpleNameService()
performance_statistics = InvocationStatsService()
session_processor = DefaultSessionProcessor(session_runner=DefaultSessionRunner())
@@ -161,6 +167,8 @@ class ApiDependencies:
logger=logger,
model_images=model_images_service,
model_manager=model_manager,
model_relationships=model_relationships,
model_relationship_records=model_relationship_records,
download_queue=download_queue_service,
names=names,
performance_statistics=performance_statistics,

View File

@@ -893,6 +893,12 @@ class HFTokenHelper:
huggingface_hub.login(token=token, add_to_git_credential=False)
return cls.get_status()
@classmethod
def reset_token(cls) -> HFTokenStatus:
with SuppressOutput(), contextlib.suppress(Exception):
huggingface_hub.logout()
return cls.get_status()
@model_manager_router.get("/hf_login", operation_id="get_hf_login_status", response_model=HFTokenStatus)
async def get_hf_login_status() -> HFTokenStatus:
@@ -915,3 +921,8 @@ async def do_hf_login(
ApiDependencies.invoker.services.logger.warning("Unable to verify HF token")
return token_status
@model_manager_router.delete("/hf_login", operation_id="reset_hf_token", response_model=HFTokenStatus)
async def reset_hf_token() -> HFTokenStatus:
return HFTokenHelper.reset_token()

View File

@@ -0,0 +1,215 @@
"""FastAPI route for model relationship records."""
from typing import List
from fastapi import APIRouter, Body, HTTPException, Path, status
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
model_relationships_router = APIRouter(prefix="/v1/model_relationships", tags=["model_relationships"])
# === Schemas ===
class ModelRelationshipCreateRequest(BaseModel):
model_key_1: str = Field(
...,
description="The key of the first model in the relationship",
examples=[
"aa3b247f-90c9-4416-bfcd-aeaa57a5339e",
"ac32b914-10ab-496e-a24a-3068724b9c35",
"d944abfd-c7c3-42e2-a4ff-da640b29b8b4",
"b1c2d3e4-f5a6-7890-abcd-ef1234567890",
"12345678-90ab-cdef-1234-567890abcdef",
"fedcba98-7654-3210-fedc-ba9876543210",
],
)
model_key_2: str = Field(
...,
description="The key of the second model in the relationship",
examples=[
"3bb7c0eb-b6c8-469c-ad8c-4d69c06075e4",
"f0c3da4e-d9ff-42b5-a45c-23be75c887c9",
"38170dd8-f1e5-431e-866c-2c81f1277fcc",
"c57fea2d-7646-424c-b9ad-c0ba60fc68be",
"10f7807b-ab54-46a9-ab03-600e88c630a1",
"f6c1d267-cf87-4ee0-bee0-37e791eacab7",
],
)
class ModelRelationshipBatchRequest(BaseModel):
model_keys: List[str] = Field(
...,
description="List of model keys to fetch related models for",
examples=[
[
"aa3b247f-90c9-4416-bfcd-aeaa57a5339e",
"ac32b914-10ab-496e-a24a-3068724b9c35",
],
[
"b1c2d3e4-f5a6-7890-abcd-ef1234567890",
"12345678-90ab-cdef-1234-567890abcdef",
"fedcba98-7654-3210-fedc-ba9876543210",
],
[
"3bb7c0eb-b6c8-469c-ad8c-4d69c06075e4",
],
],
)
# === Routes ===
@model_relationships_router.get(
"/i/{model_key}",
operation_id="get_related_models",
response_model=list[str],
responses={
200: {
"description": "A list of related model keys was retrieved successfully",
"content": {
"application/json": {
"example": [
"15e9eb28-8cfe-47c9-b610-37907a79fc3c",
"71272e82-0e5f-46d5-bca9-9a61f4bd8a82",
"a5d7cd49-1b98-4534-a475-aeee4ccf5fa2",
]
}
},
},
404: {"description": "The specified model could not be found"},
422: {"description": "Validation error"},
},
)
async def get_related_models(
model_key: str = Path(..., description="The key of the model to get relationships for"),
) -> list[str]:
"""
Get a list of model keys related to a given model.
"""
try:
return ApiDependencies.invoker.services.model_relationships.get_related_model_keys(model_key)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@model_relationships_router.post(
"/",
status_code=status.HTTP_204_NO_CONTENT,
responses={
204: {"description": "The relationship was successfully created"},
400: {"description": "Invalid model keys or self-referential relationship"},
409: {"description": "The relationship already exists"},
422: {"description": "Validation error"},
500: {"description": "Internal server error"},
},
summary="Add Model Relationship",
description="Creates a **bidirectional** relationship between two models, allowing each to reference the other as related.",
)
async def add_model_relationship(
req: ModelRelationshipCreateRequest = Body(..., description="The model keys to relate"),
) -> None:
"""
Add a relationship between two models.
Relationships are bidirectional and will be accessible from both models.
- Raises 400 if keys are invalid or identical.
- Raises 409 if the relationship already exists.
"""
try:
if req.model_key_1 == req.model_key_2:
raise HTTPException(status_code=400, detail="Cannot relate a model to itself.")
ApiDependencies.invoker.services.model_relationships.add_model_relationship(
req.model_key_1,
req.model_key_2,
)
except ValueError as e:
raise HTTPException(status_code=409, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@model_relationships_router.delete(
"/",
status_code=status.HTTP_204_NO_CONTENT,
responses={
204: {"description": "The relationship was successfully removed"},
400: {"description": "Invalid model keys or self-referential relationship"},
404: {"description": "The relationship does not exist"},
422: {"description": "Validation error"},
500: {"description": "Internal server error"},
},
summary="Remove Model Relationship",
description="Removes a **bidirectional** relationship between two models. The relationship must already exist.",
)
async def remove_model_relationship(
req: ModelRelationshipCreateRequest = Body(..., description="The model keys to disconnect"),
) -> None:
"""
Removes a bidirectional relationship between two model keys.
- Raises 400 if attempting to unlink a model from itself.
- Raises 404 if the relationship was not found.
"""
try:
if req.model_key_1 == req.model_key_2:
raise HTTPException(status_code=400, detail="Cannot unlink a model from itself.")
ApiDependencies.invoker.services.model_relationships.remove_model_relationship(
req.model_key_1,
req.model_key_2,
)
except ValueError as e:
raise HTTPException(status_code=404, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@model_relationships_router.post(
"/batch",
operation_id="get_related_models_batch",
response_model=List[str],
responses={
200: {
"description": "Related model keys retrieved successfully",
"content": {
"application/json": {
"example": [
"ca562b14-995e-4a42-90c1-9528f1a5921d",
"cc0c2b8a-c62e-41d6-878e-cc74dde5ca8f",
"18ca7649-6a9e-47d5-bc17-41ab1e8cec81",
"7c12d1b2-0ef9-4bec-ba55-797b2d8f2ee1",
"c382eaa3-0e28-4ab0-9446-408667699aeb",
"71272e82-0e5f-46d5-bca9-9a61f4bd8a82",
"a5d7cd49-1b98-4534-a475-aeee4ccf5fa2",
]
}
},
},
422: {"description": "Validation error"},
500: {"description": "Internal server error"},
},
summary="Get Related Model Keys (Batch)",
description="Retrieves all **unique related model keys** for a list of given models. This is useful for contextual suggestions or filtering.",
)
async def get_related_models_batch(
req: ModelRelationshipBatchRequest = Body(..., description="Model keys to check for related connections"),
) -> list[str]:
"""
Accepts multiple model keys and returns a flat list of all unique related keys.
Useful when working with multiple selections in the UI or cross-model comparisons.
"""
try:
all_related: set[str] = set()
for key in req.model_keys:
related = ApiDependencies.invoker.services.model_relationships.get_related_model_keys(key)
all_related.update(related)
return list(all_related)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))

View File

@@ -22,6 +22,7 @@ from invokeai.app.api.routers import (
download_queue,
images,
model_manager,
model_relationships,
session_queue,
style_presets,
utilities,
@@ -125,6 +126,7 @@ app.include_router(download_queue.download_queue_router, prefix="/api")
app.include_router(images.images_router, prefix="/api")
app.include_router(boards.boards_router, prefix="/api")
app.include_router(board_images.board_images_router, prefix="/api")
app.include_router(model_relationships.model_relationships_router, prefix="/api")
app.include_router(app_info.app_router, prefix="/api")
app.include_router(session_queue.session_queue_router, prefix="/api")
app.include_router(workflows.workflows_router, prefix="/api")

View File

@@ -5,6 +5,8 @@ from __future__ import annotations
import inspect
import re
import sys
import types
import typing
import warnings
from abc import ABC, abstractmethod
from enum import Enum
@@ -20,12 +22,14 @@ from typing import (
Literal,
Optional,
Type,
TypedDict,
TypeVar,
Union,
cast,
)
import semver
from pydantic import BaseModel, ConfigDict, Field, TypeAdapter, create_model
from pydantic import BaseModel, ConfigDict, Field, JsonValue, TypeAdapter, create_model
from pydantic.fields import FieldInfo
from pydantic_core import PydanticUndefined
@@ -72,13 +76,24 @@ class Classification(str, Enum, metaclass=MetaEnum):
Special = "special"
class Bottleneck(str, Enum, metaclass=MetaEnum):
"""
The bottleneck of an invocation.
- `Network`: The invocation's execution is network-bound.
- `GPU`: The invocation's execution is GPU-bound.
"""
Network = "network"
GPU = "gpu"
class UIConfigBase(BaseModel):
"""
Provides additional node configuration to the UI.
This is used internally by the @invocation decorator logic. Do not use this directly.
"""
tags: Optional[list[str]] = Field(default_factory=None, description="The node's tags")
tags: Optional[list[str]] = Field(default=None, description="The node's tags")
title: Optional[str] = Field(default=None, description="The node's display name")
category: Optional[str] = Field(default=None, description="The node's category")
version: str = Field(
@@ -93,6 +108,11 @@ class UIConfigBase(BaseModel):
)
class OriginalModelField(TypedDict):
annotation: Any
field_info: FieldInfo
class BaseInvocationOutput(BaseModel):
"""
Base class for all invocation outputs.
@@ -100,6 +120,12 @@ class BaseInvocationOutput(BaseModel):
All invocation outputs must use the `@invocation_output` decorator to provide their unique type.
"""
output_meta: Optional[dict[str, JsonValue]] = Field(
default=None,
description="Optional dictionary of metadata for the invocation output, unrelated to the invocation's actual output value. This is not exposed as an output field.",
json_schema_extra={"field_kind": FieldKind.NodeAttribute},
)
@staticmethod
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseInvocationOutput]) -> None:
"""Adds various UI-facing attributes to the invocation output's OpenAPI schema."""
@@ -115,6 +141,9 @@ class BaseInvocationOutput(BaseModel):
"""Gets the invocation output's type, as provided by the `@invocation_output` decorator."""
return cls.model_fields["type"].default
_original_model_fields: ClassVar[dict[str, OriginalModelField]] = {}
"""The original model fields, before any modifications were made by the @invocation_output decorator."""
model_config = ConfigDict(
protected_namespaces=(),
validate_assignment=True,
@@ -148,7 +177,7 @@ class BaseInvocation(ABC, BaseModel):
return cls.model_fields["type"].default
@classmethod
def get_output_annotation(cls) -> BaseInvocationOutput:
def get_output_annotation(cls) -> Type[BaseInvocationOutput]:
"""Gets the invocation's output annotation (i.e. the return annotation of its `invoke()` method)."""
return signature(cls.invoke).return_annotation
@@ -180,7 +209,7 @@ class BaseInvocation(ABC, BaseModel):
Internal invoke method, calls `invoke()` after some prep.
Handles optional fields that are required to call `invoke()` and invocation cache.
"""
for field_name, field in self.model_fields.items():
for field_name, field in type(self).model_fields.items():
if not field.json_schema_extra or callable(field.json_schema_extra):
# something has gone terribly awry, we should always have this and it should be a dict
continue
@@ -195,9 +224,9 @@ class BaseInvocation(ABC, BaseModel):
setattr(self, field_name, orig_default)
if orig_required and orig_default is PydanticUndefined and getattr(self, field_name) is None:
if input_ == Input.Connection:
raise RequiredConnectionException(self.model_fields["type"].default, field_name)
raise RequiredConnectionException(type(self).model_fields["type"].default, field_name)
elif input_ == Input.Any:
raise MissingInputException(self.model_fields["type"].default, field_name)
raise MissingInputException(type(self).model_fields["type"].default, field_name)
# skip node cache codepath if it's disabled
if services.configuration.node_cache_size == 0:
@@ -235,6 +264,8 @@ class BaseInvocation(ABC, BaseModel):
json_schema_extra={"field_kind": FieldKind.NodeAttribute},
)
bottleneck: ClassVar[Bottleneck]
UIConfig: ClassVar[UIConfigBase]
model_config = ConfigDict(
@@ -245,6 +276,9 @@ class BaseInvocation(ABC, BaseModel):
coerce_numbers_to_str=True,
)
_original_model_fields: ClassVar[dict[str, OriginalModelField]] = {}
"""The original model fields, before any modifications were made by the @invocation decorator."""
TBaseInvocation = TypeVar("TBaseInvocation", bound=BaseInvocation)
@@ -256,6 +290,26 @@ class InvocationRegistry:
@classmethod
def register_invocation(cls, invocation: type[BaseInvocation]) -> None:
"""Registers an invocation."""
invocation_type = invocation.get_type()
node_pack = invocation.UIConfig.node_pack
# Log a warning when an existing invocation is being clobbered by the one we are registering
clobbered_invocation = InvocationRegistry.get_invocation_for_type(invocation_type)
if clobbered_invocation is not None:
# This should always be true - we just checked if the invocation type was in the set
clobbered_node_pack = clobbered_invocation.UIConfig.node_pack
if clobbered_node_pack == "invokeai":
# The invocation being clobbered is a core invocation
logger.warning(f'Overriding core node "{invocation_type}" with node from "{node_pack}"')
else:
# The invocation being clobbered is a custom invocation
logger.warning(
f'Overriding node "{invocation_type}" from "{node_pack}" with node from "{clobbered_node_pack}"'
)
cls._invocation_classes.remove(clobbered_invocation)
cls._invocation_classes.add(invocation)
cls.invalidate_invocation_typeadapter()
@@ -314,6 +368,15 @@ class InvocationRegistry:
@classmethod
def register_output(cls, output: "type[TBaseInvocationOutput]") -> None:
"""Registers an invocation output."""
output_type = output.get_type()
# Log a warning when an existing invocation is being clobbered by the one we are registering
clobbered_output = InvocationRegistry.get_output_for_type(output_type)
if clobbered_output is not None:
# TODO(psyche): We do not record the node pack of the output, so we cannot log it here
logger.warning(f'Overriding invocation output "{output_type}"')
cls._output_classes.remove(clobbered_output)
cls._output_classes.add(output)
cls.invalidate_output_typeadapter()
@@ -322,6 +385,11 @@ class InvocationRegistry:
"""Gets all invocation outputs."""
return cls._output_classes
@classmethod
def get_outputs_map(cls) -> dict[str, type[BaseInvocationOutput]]:
"""Gets a map of all output types to their output classes."""
return {i.get_type(): i for i in cls.get_output_classes()}
@classmethod
@lru_cache(maxsize=1)
def get_output_typeadapter(cls) -> TypeAdapter[Any]:
@@ -347,6 +415,11 @@ class InvocationRegistry:
"""Gets all invocation output types."""
return (i.get_type() for i in cls.get_output_classes())
@classmethod
def get_output_for_type(cls, output_type: str) -> type[BaseInvocationOutput] | None:
"""Gets the output class for a given output type."""
return cls.get_outputs_map().get(output_type)
RESERVED_NODE_ATTRIBUTE_FIELD_NAMES = {
"id",
@@ -354,11 +427,12 @@ RESERVED_NODE_ATTRIBUTE_FIELD_NAMES = {
"use_cache",
"type",
"workflow",
"bottleneck",
}
RESERVED_INPUT_FIELD_NAMES = {"metadata", "board"}
RESERVED_OUTPUT_FIELD_NAMES = {"type"}
RESERVED_OUTPUT_FIELD_NAMES = {"type", "output_meta"}
class _Model(BaseModel):
@@ -430,6 +504,48 @@ def validate_fields(model_fields: dict[str, FieldInfo], model_type: str) -> None
return None
class NoDefaultSentinel:
pass
def validate_field_default(
cls_name: str, field_name: str, invocation_type: str, annotation: Any, field_info: FieldInfo
) -> None:
"""Validates the default value of a field against its pydantic field definition."""
assert isinstance(field_info.json_schema_extra, dict), "json_schema_extra is not a dict"
# By the time we are doing this, we've already done some pydantic magic by overriding the original default value.
# We store the original default value in the json_schema_extra dict, so we can validate it here.
orig_default = field_info.json_schema_extra.get("orig_default", NoDefaultSentinel)
if orig_default is NoDefaultSentinel:
return
# To validate the default value, we can create a temporary pydantic model with the field we are validating as its
# only field. Then validate the default value against this temporary model.
TempDefaultValidator = cast(BaseModel, create_model(cls_name, **{field_name: (annotation, field_info)}))
try:
TempDefaultValidator.model_validate({field_name: orig_default})
except Exception as e:
raise InvalidFieldError(
f'Default value for field "{field_name}" on invocation "{invocation_type}" is invalid, {e}'
) from e
def is_optional(annotation: Any) -> bool:
"""
Checks if the given annotation is optional (i.e. Optional[X], Union[X, None] or X | None).
"""
origin = typing.get_origin(annotation)
# PEP 604 unions (int|None) have origin types.UnionType
is_union = origin is typing.Union or origin is types.UnionType
if not is_union:
return False
return any(arg is type(None) for arg in typing.get_args(annotation))
def invocation(
invocation_type: str,
title: Optional[str] = None,
@@ -438,6 +554,7 @@ def invocation(
version: Optional[str] = None,
use_cache: Optional[bool] = True,
classification: Classification = Classification.Stable,
bottleneck: Bottleneck = Bottleneck.GPU,
) -> Callable[[Type[TBaseInvocation]], Type[TBaseInvocation]]:
"""
Registers an invocation.
@@ -449,6 +566,7 @@ def invocation(
:param Optional[str] version: Adds a version to the invocation. Must be a valid semver string. Defaults to None.
:param Optional[bool] use_cache: Whether or not to use the invocation cache. Defaults to True. The user may override this in the workflow editor.
:param Classification classification: The classification of the invocation. Defaults to FeatureClassification.Stable. Use Beta or Prototype if the invocation is unstable.
:param Bottleneck bottleneck: The bottleneck of the invocation. Defaults to Bottleneck.GPU. Use Network if the invocation is network-bound.
"""
def wrapper(cls: Type[TBaseInvocation]) -> Type[TBaseInvocation]:
@@ -460,27 +578,26 @@ def invocation(
# The node pack is the module name - will be "invokeai" for built-in nodes
node_pack = cls.__module__.split(".")[0]
# Handle the case where an existing node is being clobbered by the one we are registering
if invocation_type in InvocationRegistry.get_invocation_types():
clobbered_invocation = InvocationRegistry.get_invocation_for_type(invocation_type)
# This should always be true - we just checked if the invocation type was in the set
assert clobbered_invocation is not None
clobbered_node_pack = clobbered_invocation.UIConfig.node_pack
if clobbered_node_pack == "invokeai":
# The node being clobbered is a core node
raise ValueError(
f'Cannot load node "{invocation_type}" from node pack "{node_pack}" - a core node with the same type already exists'
)
else:
# The node being clobbered is a custom node
raise ValueError(
f'Cannot load node "{invocation_type}" from node pack "{node_pack}" - a node with the same type already exists in node pack "{clobbered_node_pack}"'
)
validate_fields(cls.model_fields, invocation_type)
fields: dict[str, tuple[Any, FieldInfo]] = {}
for field_name, field_info in cls.model_fields.items():
annotation = field_info.annotation
assert annotation is not None, f"{field_name} on invocation {invocation_type} has no type annotation."
assert isinstance(field_info.json_schema_extra, dict), (
f"{field_name} on invocation {invocation_type} has a non-dict json_schema_extra, did you forget to use InputField?"
)
cls._original_model_fields[field_name] = OriginalModelField(annotation=annotation, field_info=field_info)
validate_field_default(cls.__name__, field_name, invocation_type, annotation, field_info)
if field_info.default is None and not is_optional(annotation):
annotation = annotation | None
fields[field_name] = (annotation, field_info)
# Add OpenAPI schema extras
uiconfig: dict[str, Any] = {}
uiconfig["title"] = title
@@ -504,6 +621,8 @@ def invocation(
if use_cache is not None:
cls.model_fields["use_cache"].default = use_cache
cls.bottleneck = bottleneck
# Add the invocation type to the model.
# You'd be tempted to just add the type field and rebuild the model, like this:
@@ -513,11 +632,17 @@ def invocation(
# Unfortunately, because the `GraphInvocation` uses a forward ref in its `graph` field's annotation, this does
# not work. Instead, we have to create a new class with the type field and patch the original class with it.
invocation_type_annotation = Literal[invocation_type] # type: ignore
invocation_type_field = Field(
title="type", default=invocation_type, json_schema_extra={"field_kind": FieldKind.NodeAttribute}
invocation_type_annotation = Literal[invocation_type]
# Field() returns an instance of FieldInfo, but thanks to a pydantic implementation detail, it is _typed_ as Any.
# This cast makes the type annotation match the class's true type.
invocation_type_field_info = cast(
FieldInfo,
Field(title="type", default=invocation_type, json_schema_extra={"field_kind": FieldKind.NodeAttribute}),
)
fields["type"] = (invocation_type_annotation, invocation_type_field_info)
# Validate the `invoke()` method is implemented
if "invoke" in cls.__abstractmethods__:
raise ValueError(f'Invocation "{invocation_type}" must implement the "invoke" method')
@@ -539,17 +664,12 @@ def invocation(
)
docstring = cls.__doc__
cls = create_model(
cls.__qualname__,
__base__=cls,
__module__=cls.__module__,
type=(invocation_type_annotation, invocation_type_field),
)
cls.__doc__ = docstring
new_class = create_model(cls.__qualname__, __base__=cls, __module__=cls.__module__, **fields) # type: ignore
new_class.__doc__ = docstring
InvocationRegistry.register_invocation(cls)
InvocationRegistry.register_invocation(new_class)
return cls
return new_class
return wrapper
@@ -572,29 +692,41 @@ def invocation_output(
if re.compile(r"^\S+$").match(output_type) is None:
raise ValueError(f'"output_type" must consist of non-whitespace characters, got "{output_type}"')
if output_type in InvocationRegistry.get_output_types():
raise ValueError(f'Invocation type "{output_type}" already exists')
validate_fields(cls.model_fields, output_type)
# Add the output type to the model.
fields: dict[str, tuple[Any, FieldInfo]] = {}
output_type_annotation = Literal[output_type] # type: ignore
output_type_field = Field(
title="type", default=output_type, json_schema_extra={"field_kind": FieldKind.NodeAttribute}
for field_name, field_info in cls.model_fields.items():
annotation = field_info.annotation
assert annotation is not None, f"{field_name} on invocation output {output_type} has no type annotation."
assert isinstance(field_info.json_schema_extra, dict), (
f"{field_name} on invocation output {output_type} has a non-dict json_schema_extra, did you forget to use InputField?"
)
cls._original_model_fields[field_name] = OriginalModelField(annotation=annotation, field_info=field_info)
if field_info.default is not PydanticUndefined and is_optional(annotation):
annotation = annotation | None
fields[field_name] = (annotation, field_info)
# Add the output type to the model.
output_type_annotation = Literal[output_type]
# Field() returns an instance of FieldInfo, but thanks to a pydantic implementation detail, it is _typed_ as Any.
# This cast makes the type annotation match the class's true type.
output_type_field_info = cast(
FieldInfo,
Field(title="type", default=output_type, json_schema_extra={"field_kind": FieldKind.NodeAttribute}),
)
fields["type"] = (output_type_annotation, output_type_field_info)
docstring = cls.__doc__
cls = create_model(
cls.__qualname__,
__base__=cls,
__module__=cls.__module__,
type=(output_type_annotation, output_type_field),
)
cls.__doc__ = docstring
new_class = create_model(cls.__qualname__, __base__=cls, __module__=cls.__module__, **fields)
new_class.__doc__ = docstring
InvocationRegistry.register_output(cls)
InvocationRegistry.register_output(new_class)
return cls
return new_class
return wrapper

View File

@@ -64,7 +64,6 @@ class ImageBatchInvocation(BaseBatchInvocation):
"""Create a batched generation, where the workflow is executed once for each image in the batch."""
images: list[ImageField] = InputField(
default=[],
min_length=1,
description="The images to batch over",
)
@@ -120,7 +119,6 @@ class StringBatchInvocation(BaseBatchInvocation):
"""Create a batched generation, where the workflow is executed once for each string in the batch."""
strings: list[str] = InputField(
default=[],
min_length=1,
description="The strings to batch over",
)
@@ -176,7 +174,6 @@ class IntegerBatchInvocation(BaseBatchInvocation):
"""Create a batched generation, where the workflow is executed once for each integer in the batch."""
integers: list[int] = InputField(
default=[],
min_length=1,
description="The integers to batch over",
)
@@ -230,7 +227,6 @@ class FloatBatchInvocation(BaseBatchInvocation):
"""Create a batched generation, where the workflow is executed once for each float in the batch."""
floats: list[float] = InputField(
default=[],
min_length=1,
description="The floats to batch over",
)

View File

@@ -274,12 +274,12 @@ class InvokeAdjustImageHuePlusInvocation(BaseInvocation, WithMetadata, WithBoard
title="Enhance Image",
tags=["enhance", "image"],
category="image",
version="1.2.0",
version="1.2.1",
)
class InvokeImageEnhanceInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Applies processing from PIL's ImageEnhance module. Originally created by @dwringer"""
image: ImageField = InputField(default=None, description="The image for which to apply processing")
image: ImageField = InputField(description="The image for which to apply processing")
invert: bool = InputField(default=False, description="Whether to invert the image colors")
color: float = InputField(ge=0, default=1.0, description="Color enhancement factor")
contrast: float = InputField(ge=0, default=1.0, description="Contrast enhancement factor")

View File

@@ -42,12 +42,12 @@ class GradientMaskOutput(BaseInvocationOutput):
title="Create Gradient Mask",
tags=["mask", "denoise"],
category="latents",
version="1.2.0",
version="1.2.1",
)
class CreateGradientMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
mask: ImageField = InputField(default=None, description="Image which will be masked", ui_order=1)
mask: ImageField = InputField(description="Image which will be masked", ui_order=1)
edge_radius: int = InputField(
default=16, ge=0, description="How far to blur/expand the edges of the mask", ui_order=2
)

View File

@@ -608,6 +608,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
end_step_percent=single_ip_adapter.end_step_percent,
ip_adapter_conditioning=IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds),
mask=mask,
method=single_ip_adapter.method,
)
)

View File

@@ -61,6 +61,9 @@ class UIType(str, Enum, metaclass=MetaEnum):
SigLipModel = "SigLipModelField"
FluxReduxModel = "FluxReduxModelField"
LlavaOnevisionModel = "LLaVAModelField"
Imagen3Model = "Imagen3ModelField"
Imagen4Model = "Imagen4ModelField"
ChatGPT4oModel = "ChatGPT4oModelField"
# endregion
# region Misc Field Types
@@ -398,8 +401,8 @@ class InputFieldJSONSchemaExtra(BaseModel):
"""
input: Input
orig_required: bool
field_kind: FieldKind
orig_required: bool = True
default: Optional[Any] = None
orig_default: Optional[Any] = None
ui_hidden: bool = False
@@ -496,7 +499,7 @@ def InputField(
input: Input = Input.Any,
ui_type: Optional[UIType] = None,
ui_component: Optional[UIComponent] = None,
ui_hidden: bool = False,
ui_hidden: Optional[bool] = None,
ui_order: Optional[int] = None,
ui_choice_labels: Optional[dict[str, str]] = None,
) -> Any:
@@ -532,15 +535,20 @@ def InputField(
json_schema_extra_ = InputFieldJSONSchemaExtra(
input=input,
ui_type=ui_type,
ui_component=ui_component,
ui_hidden=ui_hidden,
ui_order=ui_order,
ui_choice_labels=ui_choice_labels,
field_kind=FieldKind.Input,
orig_required=True,
)
if ui_type is not None:
json_schema_extra_.ui_type = ui_type
if ui_component is not None:
json_schema_extra_.ui_component = ui_component
if ui_hidden is not None:
json_schema_extra_.ui_hidden = ui_hidden
if ui_order is not None:
json_schema_extra_.ui_order = ui_order
if ui_choice_labels is not None:
json_schema_extra_.ui_choice_labels = ui_choice_labels
"""
There is a conflict between the typing of invocation definitions and the typing of an invocation's
`invoke()` function.
@@ -612,7 +620,7 @@ def InputField(
return Field(
**provided_args,
json_schema_extra=json_schema_extra_.model_dump(exclude_none=True),
json_schema_extra=json_schema_extra_.model_dump(exclude_unset=True),
)

View File

@@ -3,6 +3,7 @@ from typing import Literal, Optional
import torch
from PIL import Image
from transformers import SiglipImageProcessor, SiglipVisionModel
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
@@ -115,8 +116,14 @@ class FluxReduxInvocation(BaseInvocation):
@torch.no_grad()
def _siglip_encode(self, context: InvocationContext, image: Image.Image) -> torch.Tensor:
siglip_model_config = self._get_siglip_model(context)
with context.models.load(siglip_model_config.key).model_on_device() as (_, siglip_pipeline):
assert isinstance(siglip_pipeline, SigLipPipeline)
with context.models.load(siglip_model_config.key).model_on_device() as (_, model):
assert isinstance(model, SiglipVisionModel)
model_abs_path = context.models.get_absolute_path(siglip_model_config)
processor = SiglipImageProcessor.from_pretrained(model_abs_path, local_files_only=True)
assert isinstance(processor, SiglipImageProcessor)
siglip_pipeline = SigLipPipeline(processor, model)
return siglip_pipeline.encode_image(
x=image, device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype()
)

View File

@@ -21,14 +21,14 @@ class IdealSizeOutput(BaseInvocationOutput):
"ideal_size",
title="Ideal Size - SD1.5, SDXL",
tags=["latents", "math", "ideal_size"],
version="1.0.5",
version="1.0.6",
)
class IdealSizeInvocation(BaseInvocation):
"""Calculates the ideal size for generation to avoid duplication"""
width: int = InputField(default=1024, description="Final image width")
height: int = InputField(default=576, description="Final image height")
unet: UNetField = InputField(default=None, description=FieldDescriptions.unet)
unet: UNetField = InputField(description=FieldDescriptions.unet)
multiplier: float = InputField(
default=1.0,
description="Amount to multiply the model's dimensions by when calculating the ideal size (may result in "

View File

@@ -975,13 +975,13 @@ class SaveImageInvocation(BaseInvocation, WithMetadata, WithBoard):
title="Canvas Paste Back",
tags=["image", "combine"],
category="image",
version="1.0.0",
version="1.0.1",
)
class CanvasPasteBackInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Combines two images by using the mask provided. Intended for use on the Unified Canvas."""
source_image: ImageField = InputField(description="The source image")
target_image: ImageField = InputField(default=None, description="The target image")
target_image: ImageField = InputField(description="The target image")
mask: ImageField = InputField(
description="The mask to use when pasting",
)

View File

@@ -31,6 +31,7 @@ class IPAdapterField(BaseModel):
image_encoder_model: ModelIdentifierField = Field(description="The name of the CLIP image encoder model.")
weight: Union[float, List[float]] = Field(default=1, description="The weight given to the IP-Adapter.")
target_blocks: List[str] = Field(default=[], description="The IP Adapter blocks to apply")
method: str = Field(default="full", description="Weight apply method")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
)
@@ -94,7 +95,7 @@ class IPAdapterInvocation(BaseInvocation):
weight: Union[float, List[float]] = InputField(
default=1, description="The weight given to the IP-Adapter", title="Weight"
)
method: Literal["full", "style", "composition"] = InputField(
method: Literal["full", "style", "composition", "style_strong", "style_precise"] = InputField(
default="full", description="The method to apply the IP-Adapter"
)
begin_step_percent: float = InputField(
@@ -147,6 +148,38 @@ class IPAdapterInvocation(BaseInvocation):
target_blocks = ["down_blocks.2.attentions.1"]
else:
raise ValueError(f"Unsupported IP-Adapter base type: '{ip_adapter_info.base}'.")
elif self.method == "style_precise":
if ip_adapter_info.base == "sd-1":
target_blocks = ["up_blocks.1", "down_blocks.2", "mid_block"]
elif ip_adapter_info.base == "sdxl":
target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"]
else:
raise ValueError(f"Unsupported IP-Adapter base type: '{ip_adapter_info.base}'.")
elif self.method == "style_strong":
if ip_adapter_info.base == "sd-1":
target_blocks = ["up_blocks.0", "up_blocks.1", "up_blocks.2", "down_blocks.0", "down_blocks.1"]
elif ip_adapter_info.base == "sdxl":
target_blocks = [
"up_blocks.0.attentions.1",
"up_blocks.1.attentions.1",
"up_blocks.2.attentions.1",
"up_blocks.0.attentions.2",
"up_blocks.1.attentions.2",
"up_blocks.2.attentions.2",
"up_blocks.0.attentions.0",
"up_blocks.1.attentions.0",
"up_blocks.2.attentions.0",
"down_blocks.0.attentions.0",
"down_blocks.0.attentions.1",
"down_blocks.0.attentions.2",
"down_blocks.1.attentions.0",
"down_blocks.1.attentions.1",
"down_blocks.1.attentions.2",
"down_blocks.2.attentions.0",
"down_blocks.2.attentions.2",
]
else:
raise ValueError(f"Unsupported IP-Adapter base type: '{ip_adapter_info.base}'.")
elif self.method == "full":
target_blocks = ["block"]
else:
@@ -162,6 +195,7 @@ class IPAdapterInvocation(BaseInvocation):
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
mask=self.mask,
method=self.method,
),
)

View File

@@ -3,13 +3,14 @@ from typing import Any
import torch
from PIL.Image import Image
from pydantic import field_validator
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration, LlavaOnevisionProcessor
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, UIComponent, UIType
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import StringOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.llava_onevision_model import LlavaOnevisionModel
from invokeai.backend.llava_onevision_pipeline import LlavaOnevisionPipeline
from invokeai.backend.util.devices import TorchDevice
@@ -54,10 +55,17 @@ class LlavaOnevisionVllmInvocation(BaseInvocation):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> StringOutput:
images = self._get_images(context)
model_config = context.models.get_config(self.vllm_model)
with context.models.load(self.vllm_model) as vllm_model:
assert isinstance(vllm_model, LlavaOnevisionModel)
output = vllm_model.run(
with context.models.load(self.vllm_model).model_on_device() as (_, model):
assert isinstance(model, LlavaOnevisionForConditionalGeneration)
model_abs_path = context.models.get_absolute_path(model_config)
processor = AutoProcessor.from_pretrained(model_abs_path, local_files_only=True)
assert isinstance(processor, LlavaOnevisionProcessor)
model = LlavaOnevisionPipeline(model, processor)
output = model.run(
prompt=self.prompt,
images=images,
device=TorchDevice.choose_torch_device(),

View File

@@ -6,7 +6,7 @@ import numpy as np
import torch
from PIL import Image
from pydantic import BaseModel, Field
from transformers import AutoModelForMaskGeneration, AutoProcessor
from transformers import AutoProcessor
from transformers.models.sam import SamModel
from transformers.models.sam.processing_sam import SamProcessor
@@ -104,14 +104,13 @@ class SegmentAnythingInvocation(BaseInvocation):
@staticmethod
def _load_sam_model(model_path: Path):
sam_model = AutoModelForMaskGeneration.from_pretrained(
sam_model = SamModel.from_pretrained(
model_path,
local_files_only=True,
# TODO(ryand): Setting the torch_dtype here doesn't work. Investigate whether fp16 is supported by the
# model, and figure out how to make it work in the pipeline.
# torch_dtype=TorchDevice.choose_torch_dtype(),
)
assert isinstance(sam_model, SamModel)
sam_processor = AutoProcessor.from_pretrained(model_path, local_files_only=True)
assert isinstance(sam_processor, SamProcessor)

View File

@@ -241,6 +241,7 @@ class QueueItemStatusChangedEvent(QueueItemEventBase):
batch_status: BatchStatus = Field(description="The status of the batch")
queue_status: SessionQueueStatus = Field(description="The status of the queue")
session_id: str = Field(description="The ID of the session (aka graph execution state)")
credits: Optional[float] = Field(default=None, description="The total credits used for this queue item")
@classmethod
def build(
@@ -263,6 +264,7 @@ class QueueItemStatusChangedEvent(QueueItemEventBase):
completed_at=str(queue_item.completed_at) if queue_item.completed_at else None,
batch_status=batch_status,
queue_status=queue_status,
credits=queue_item.credits,
)

View File

@@ -27,6 +27,10 @@ if TYPE_CHECKING:
from invokeai.app.services.invocation_stats.invocation_stats_base import InvocationStatsServiceBase
from invokeai.app.services.model_images.model_images_base import ModelImageFileStorageBase
from invokeai.app.services.model_manager.model_manager_base import ModelManagerServiceBase
from invokeai.app.services.model_relationship_records.model_relationship_records_base import (
ModelRelationshipRecordStorageBase,
)
from invokeai.app.services.model_relationships.model_relationships_base import ModelRelationshipsServiceABC
from invokeai.app.services.names.names_base import NameServiceBase
from invokeai.app.services.session_processor.session_processor_base import SessionProcessorBase
from invokeai.app.services.session_queue.session_queue_base import SessionQueueBase
@@ -54,6 +58,8 @@ class InvocationServices:
logger: "Logger",
model_images: "ModelImageFileStorageBase",
model_manager: "ModelManagerServiceBase",
model_relationships: "ModelRelationshipsServiceABC",
model_relationship_records: "ModelRelationshipRecordStorageBase",
download_queue: "DownloadQueueServiceBase",
performance_statistics: "InvocationStatsServiceBase",
session_queue: "SessionQueueBase",
@@ -81,6 +87,8 @@ class InvocationServices:
self.logger = logger
self.model_images = model_images
self.model_manager = model_manager
self.model_relationships = model_relationships
self.model_relationship_records = model_relationship_records
self.download_queue = download_queue
self.performance_statistics = performance_statistics
self.session_queue = session_queue

View File

@@ -60,7 +60,7 @@ class InvocationStatsServiceBase(ABC):
pass
@abstractmethod
def reset_stats(self):
def reset_stats(self, graph_execution_state_id: str) -> None:
"""Reset all stored statistics."""
pass

View File

@@ -73,9 +73,9 @@ class InvocationStatsService(InvocationStatsServiceBase):
)
self._stats[graph_execution_state_id].add_node_execution_stats(node_stats)
def reset_stats(self):
self._stats = {}
self._cache_stats = {}
def reset_stats(self, graph_execution_state_id: str) -> None:
self._stats.pop(graph_execution_state_id, None)
self._cache_stats.pop(graph_execution_state_id, None)
def get_stats(self, graph_execution_state_id: str) -> InvocationStatsSummary:
graph_stats_summary = self._get_graph_summary(graph_execution_state_id)

View File

@@ -647,10 +647,18 @@ class ModelInstallService(ModelInstallServiceBase):
hash_algo = self._app_config.hashing_algorithm
fields = config.model_dump()
# WARNING!
# The legacy probe relies on the implicit order of tests to determine model classification.
# This can lead to regressions between the legacy and new probes.
# Do NOT change the order of `probe` and `classify` without implementing one of the following fixes:
# Short-term fix: `classify` tests `matches` in the same order as the legacy probe.
# Long-term fix: Improve `matches` to be more specific so that only one config matches
# any given model - eliminating ambiguity and removing reliance on order.
# After implementing either of these fixes, remove @pytest.mark.xfail from `test_regression_against_model_probe`
try:
return ModelConfigBase.classify(model_path=model_path, hash_algo=hash_algo, **fields)
except InvalidModelConfigException:
return ModelProbe.probe(model_path=model_path, fields=fields, hash_algo=hash_algo) # type: ignore
except InvalidModelConfigException:
return ModelConfigBase.classify(model_path, hash_algo, **fields)
def _register(
self, model_path: Path, config: Optional[ModelRecordChanges] = None, info: Optional[AnyModelConfig] = None

View File

@@ -0,0 +1,25 @@
from abc import ABC, abstractmethod
class ModelRelationshipRecordStorageBase(ABC):
"""Abstract base class for model-to-model relationship record storage."""
@abstractmethod
def add_model_relationship(self, model_key_1: str, model_key_2: str) -> None:
"""Creates a relationship between two models by keys."""
pass
@abstractmethod
def remove_model_relationship(self, model_key_1: str, model_key_2: str) -> None:
"""Removes a relationship between two models by keys."""
pass
@abstractmethod
def get_related_model_keys(self, model_key: str) -> list[str]:
"""Gets all models keys related to a given model key."""
pass
@abstractmethod
def get_related_model_keys_batch(self, model_keys: list[str]) -> list[str]:
"""Get related model keys for multiple models given a list of keys."""
pass

View File

@@ -0,0 +1,66 @@
import sqlite3
from invokeai.app.services.model_relationship_records.model_relationship_records_base import (
ModelRelationshipRecordStorageBase,
)
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
class SqliteModelRelationshipRecordStorage(ModelRelationshipRecordStorageBase):
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._conn = db.conn
def add_model_relationship(self, model_key_1: str, model_key_2: str) -> None:
if model_key_1 == model_key_2:
raise ValueError("Cannot relate a model to itself.")
a, b = sorted([model_key_1, model_key_2])
try:
cursor = self._conn.cursor()
cursor.execute(
"INSERT OR IGNORE INTO model_relationships (model_key_1, model_key_2) VALUES (?, ?)",
(a, b),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise e
def remove_model_relationship(self, model_key_1: str, model_key_2: str) -> None:
a, b = sorted([model_key_1, model_key_2])
try:
cursor = self._conn.cursor()
cursor.execute(
"DELETE FROM model_relationships WHERE model_key_1 = ? AND model_key_2 = ?",
(a, b),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise e
def get_related_model_keys(self, model_key: str) -> list[str]:
cursor = self._conn.cursor()
cursor.execute(
"""
SELECT model_key_2 FROM model_relationships WHERE model_key_1 = ?
UNION
SELECT model_key_1 FROM model_relationships WHERE model_key_2 = ?
""",
(model_key, model_key),
)
return [row[0] for row in cursor.fetchall()]
def get_related_model_keys_batch(self, model_keys: list[str]) -> list[str]:
cursor = self._conn.cursor()
key_list = ",".join("?" for _ in model_keys)
cursor.execute(
f"""
SELECT model_key_2 FROM model_relationships WHERE model_key_1 IN ({key_list})
UNION
SELECT model_key_1 FROM model_relationships WHERE model_key_2 IN ({key_list})
""",
model_keys + model_keys,
)
return [row[0] for row in cursor.fetchall()]

View File

@@ -0,0 +1,25 @@
from abc import ABC, abstractmethod
class ModelRelationshipsServiceABC(ABC):
"""High-level service for managing model-to-model relationships."""
@abstractmethod
def add_model_relationship(self, model_key_1: str, model_key_2: str) -> None:
"""Creates a relationship between two models keys."""
pass
@abstractmethod
def remove_model_relationship(self, model_key_1: str, model_key_2: str) -> None:
"""Removes a relationship between two models keys."""
pass
@abstractmethod
def get_related_model_keys(self, model_key: str) -> list[str]:
"""Gets all models keys related to a given model key."""
pass
@abstractmethod
def get_related_model_keys_batch(self, model_keys: list[str]) -> list[str]:
"""Get related model keys for multiple models."""
pass

View File

@@ -0,0 +1,9 @@
from datetime import datetime
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
class ModelRelationship(BaseModelExcludeNull):
model_key_1: str
model_key_2: str
created_at: datetime

View File

@@ -0,0 +1,31 @@
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_relationships.model_relationships_base import ModelRelationshipsServiceABC
from invokeai.backend.model_manager.config import AnyModelConfig
class ModelRelationshipsService(ModelRelationshipsServiceABC):
__invoker: Invoker
def start(self, invoker: Invoker) -> None:
self.__invoker = invoker
def add_model_relationship(self, model_key_1: str, model_key_2: str) -> None:
self.__invoker.services.model_relationship_records.add_model_relationship(model_key_1, model_key_2)
def remove_model_relationship(self, model_key_1: str, model_key_2: str) -> None:
self.__invoker.services.model_relationship_records.remove_model_relationship(model_key_1, model_key_2)
def get_related_model_keys(self, model_key: str) -> list[str]:
return self.__invoker.services.model_relationship_records.get_related_model_keys(model_key)
def add_relationship_from_models(self, model_1: AnyModelConfig, model_2: AnyModelConfig) -> None:
self.add_model_relationship(model_1.key, model_2.key)
def remove_relationship_from_models(self, model_1: AnyModelConfig, model_2: AnyModelConfig) -> None:
self.remove_model_relationship(model_1.key, model_2.key)
def get_related_keys_from_model(self, model: AnyModelConfig) -> list[str]:
return self.get_related_model_keys(model.key)
def get_related_model_keys_batch(self, model_keys: list[str]) -> list[str]:
return self.__invoker.services.model_relationship_records.get_related_model_keys_batch(model_keys)

View File

@@ -210,7 +210,7 @@ class DefaultSessionRunner(SessionRunnerBase):
# we don't care about that - suppress the error.
with suppress(GESStatsNotFoundError):
self._services.performance_statistics.log_stats(queue_item.session.id)
self._services.performance_statistics.reset_stats()
self._services.performance_statistics.reset_stats(queue_item.session.id)
for callback in self._on_after_run_session_callbacks:
callback(queue_item=queue_item)

View File

@@ -148,7 +148,7 @@ class Batch(BaseModel):
node = cast(BaseInvocation, graph.get_node(batch_data.node_path))
except NodeNotFoundError:
raise NodeNotFoundError(f"Node {batch_data.node_path} not found in graph")
if batch_data.field_name not in node.model_fields:
if batch_data.field_name not in type(node).model_fields:
raise NodeNotFoundError(f"Field {batch_data.field_name} not found in node {batch_data.node_path}")
return values
@@ -257,6 +257,7 @@ class SessionQueueItemWithoutGraph(BaseModel):
api_output_fields: Optional[list[FieldIdentifier]] = Field(
default=None, description="The nodes that were used as output from the API"
)
credits: Optional[float] = Field(default=None, description="The total credits used for this queue item")
@classmethod
def queue_item_dto_from_dict(cls, queue_item_dict: dict) -> "SessionQueueItemDTO":

View File

@@ -424,7 +424,7 @@ class Graph(BaseModel):
)
# input fields are on the node
if edge.destination.field not in destination_node.model_fields:
if edge.destination.field not in type(destination_node).model_fields:
raise NodeFieldNotFoundError(
f"Edge destination field {edge.destination.field} does not exist in node {edge.destination.node_id}"
)

View File

@@ -21,6 +21,7 @@ from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
from invokeai.app.util.step_callback import diffusion_step_callback
from invokeai.backend.model_manager.config import (
AnyModelConfig,
ModelConfigBase,
)
from invokeai.backend.model_manager.load.load_base import LoadedModel, LoadedModelWithoutConfig
from invokeai.backend.model_manager.taxonomy import AnyModel, BaseModelType, ModelFormat, ModelType, SubModelType
@@ -543,6 +544,30 @@ class ModelsInterface(InvocationContextInterface):
self._util.signal_progress(f"Loading model {source}")
return self._services.model_manager.load.load_model_from_path(model_path=model_path, loader=loader)
def get_absolute_path(self, config_or_path: AnyModelConfig | Path | str) -> Path:
"""Gets the absolute path for a given model config or path.
For example, if the model's path is `flux/main/FLUX Dev.safetensors`, and the models path is
`/home/username/InvokeAI/models`, this method will return
`/home/username/InvokeAI/models/flux/main/FLUX Dev.safetensors`.
Args:
config_or_path: The model config or path.
Returns:
The absolute path to the model.
"""
model_path = Path(config_or_path.path) if isinstance(config_or_path, ModelConfigBase) else Path(config_or_path)
if model_path.is_absolute():
return model_path.resolve()
base_models_path = self._services.configuration.models_path
joined_path = base_models_path / model_path
resolved_path = joined_path.resolve()
return resolved_path
class ConfigInterface(InvocationContextInterface):
def get(self) -> InvokeAIAppConfig:

View File

@@ -22,6 +22,7 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_16 import
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_17 import build_migration_17
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_18 import build_migration_18
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_19 import build_migration_19
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_20 import build_migration_20
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
@@ -61,6 +62,7 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
migrator.register_migration(build_migration_17())
migrator.register_migration(build_migration_18())
migrator.register_migration(build_migration_19(app_config=config))
migrator.register_migration(build_migration_20())
migrator.run_migrations()
return db

View File

@@ -0,0 +1,37 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration20Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
cursor.execute(
"""
-- many-to-many relationship table for models
CREATE TABLE IF NOT EXISTS model_relationships (
-- model_key_1 and model_key_2 are the same as the key(primary key) in the models table
model_key_1 TEXT NOT NULL,
model_key_2 TEXT NOT NULL,
created_at TEXT DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
PRIMARY KEY (model_key_1, model_key_2),
-- model_key_1 < model_key_2, to ensure uniqueness and prevent duplicates
FOREIGN KEY (model_key_1) REFERENCES models(id) ON DELETE CASCADE,
FOREIGN KEY (model_key_2) REFERENCES models(id) ON DELETE CASCADE
);
"""
)
cursor.execute(
"""
-- Creates an index to keep performance equal when searching for model_key_1 or model_key_2
CREATE INDEX IF NOT EXISTS keyx_model_relationships_model_key_2
ON model_relationships(model_key_2)
"""
)
def build_migration_20() -> Migration:
return Migration(
from_version=19,
to_version=20,
callback=Migration20Callback(),
)

View File

@@ -61,6 +61,10 @@ def get_openapi_func(
# We need to manually add all outputs to the schema - pydantic doesn't add them because they aren't used directly.
for output in InvocationRegistry.get_output_classes():
json_schema = output.model_json_schema(mode="serialization", ref_template="#/components/schemas/{model}")
# Remove output_metadata that is only used on back-end from the schema
if "output_meta" in json_schema["properties"]:
json_schema["properties"].pop("output_meta")
move_defs_to_top_level(openapi_schema, json_schema)
openapi_schema["components"]["schemas"][output.__name__] = json_schema

View File

@@ -10,7 +10,7 @@ def get_timestamp() -> int:
def get_iso_timestamp() -> str:
return datetime.datetime.utcnow().isoformat()
return datetime.datetime.now(datetime.timezone.utc).isoformat()
def get_datetime_from_iso_timestamp(iso_timestamp: str) -> datetime.datetime:

View File

@@ -1,26 +1,15 @@
from pathlib import Path
from typing import Optional
import torch
from PIL.Image import Image
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration, LlavaOnevisionProcessor
from invokeai.backend.raw_model import RawModel
from transformers import LlavaOnevisionForConditionalGeneration, LlavaOnevisionProcessor
class LlavaOnevisionModel(RawModel):
class LlavaOnevisionPipeline:
"""A wrapper for a LLaVA Onevision model + processor."""
def __init__(self, vllm_model: LlavaOnevisionForConditionalGeneration, processor: LlavaOnevisionProcessor):
self._vllm_model = vllm_model
self._processor = processor
@classmethod
def load_from_path(cls, path: str | Path):
vllm_model = LlavaOnevisionForConditionalGeneration.from_pretrained(path, local_files_only=True)
assert isinstance(vllm_model, LlavaOnevisionForConditionalGeneration)
processor = AutoProcessor.from_pretrained(path, local_files_only=True)
assert isinstance(processor, LlavaOnevisionProcessor)
return cls(vllm_model, processor)
def run(self, prompt: str, images: list[Image], device: torch.device, dtype: torch.dtype) -> str:
# TODO(ryand): Tune the max number of images that are useful for the model.
if len(images) > 3:
@@ -44,13 +33,3 @@ class LlavaOnevisionModel(RawModel):
# The output_str will include the prompt, so we extract the response.
response = output_str.split("assistant\n", 1)[1].strip()
return response
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
self._vllm_model.to(device=device, dtype=dtype)
def calc_size(self) -> int:
"""Get size of the model in memory in bytes."""
# HACK(ryand): Fix this issue with circular imports.
from invokeai.backend.model_manager.load.model_util import calc_module_size
return calc_module_size(self._vllm_model)

View File

@@ -144,34 +144,37 @@ class ModelConfigBase(ABC, BaseModel):
submodels: Optional[Dict[SubModelType, SubmodelDefinition]] = Field(
description="Loadable submodels in this model", default=None
)
usage_info: Optional[str] = Field(default=None, description="Usage information for this model")
_USING_LEGACY_PROBE: ClassVar[set] = set()
_USING_CLASSIFY_API: ClassVar[set] = set()
USING_LEGACY_PROBE: ClassVar[set] = set()
USING_CLASSIFY_API: ClassVar[set] = set()
_MATCH_SPEED: ClassVar[MatchSpeed] = MatchSpeed.MED
def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
if issubclass(cls, LegacyProbeMixin):
ModelConfigBase._USING_LEGACY_PROBE.add(cls)
ModelConfigBase.USING_LEGACY_PROBE.add(cls)
else:
ModelConfigBase._USING_CLASSIFY_API.add(cls)
ModelConfigBase.USING_CLASSIFY_API.add(cls)
@staticmethod
def all_config_classes():
subclasses = ModelConfigBase._USING_LEGACY_PROBE | ModelConfigBase._USING_CLASSIFY_API
subclasses = ModelConfigBase.USING_LEGACY_PROBE | ModelConfigBase.USING_CLASSIFY_API
concrete = {cls for cls in subclasses if not isabstract(cls)}
return concrete
@staticmethod
def classify(model_path: Path, hash_algo: HASHING_ALGORITHMS = "blake3_single", **overrides):
def classify(mod: str | Path | ModelOnDisk, hash_algo: HASHING_ALGORITHMS = "blake3_single", **overrides):
"""
Returns the best matching ModelConfig instance from a model's file/folder path.
Raises InvalidModelConfigException if no valid configuration is found.
Created to deprecate ModelProbe.probe
"""
candidates = ModelConfigBase._USING_CLASSIFY_API
if isinstance(mod, Path | str):
mod = ModelOnDisk(mod, hash_algo)
candidates = ModelConfigBase.USING_CLASSIFY_API
sorted_by_match_speed = sorted(candidates, key=lambda cls: (cls._MATCH_SPEED, cls.__name__))
mod = ModelOnDisk(model_path, hash_algo)
for config_cls in sorted_by_match_speed:
try:
@@ -600,6 +603,21 @@ class LlavaOnevisionConfig(DiffusersConfigBase, ModelConfigBase):
}
class ApiModelConfig(MainConfigBase, ModelConfigBase):
"""Model config for API-based models."""
format: Literal[ModelFormat.Api] = ModelFormat.Api
@classmethod
def matches(cls, mod: ModelOnDisk) -> bool:
# API models are not stored on disk, so we can't match them.
return False
@classmethod
def parse(cls, mod: ModelOnDisk) -> dict[str, Any]:
raise NotImplementedError("API models are not parsed from disk.")
def get_model_discriminator_value(v: Any) -> str:
"""
Computes the discriminator value for a model config.
@@ -667,6 +685,7 @@ AnyModelConfig = Annotated[
Annotated[SigLIPConfig, SigLIPConfig.get_tag()],
Annotated[FluxReduxConfig, FluxReduxConfig.get_tag()],
Annotated[LlavaOnevisionConfig, LlavaOnevisionConfig.get_tag()],
Annotated[ApiModelConfig, ApiModelConfig.get_tag()],
],
Discriminator(get_model_discriminator_value),
]

View File

@@ -2,6 +2,8 @@ from typing import Any
import torch
from invokeai.backend.quantization.gguf.ggml_tensor import GGMLTensor
class CachedModelOnlyFullLoad:
"""A wrapper around a PyTorch model to handle full loads and unloads between the CPU and the compute device.
@@ -76,7 +78,15 @@ class CachedModelOnlyFullLoad:
for k, v in self._cpu_state_dict.items():
new_state_dict[k] = v.to(self._compute_device, copy=True)
self._model.load_state_dict(new_state_dict, assign=True)
self._model.to(self._compute_device)
check_for_gguf = hasattr(self._model, "state_dict") and self._model.state_dict().get("img_in.weight")
if isinstance(check_for_gguf, GGMLTensor):
old_value = torch.__future__.get_overwrite_module_params_on_conversion()
torch.__future__.set_overwrite_module_params_on_conversion(True)
self._model.to(self._compute_device)
torch.__future__.set_overwrite_module_params_on_conversion(old_value)
else:
self._model.to(self._compute_device)
self._is_in_vram = True
return self._total_bytes
@@ -92,7 +102,15 @@ class CachedModelOnlyFullLoad:
if self._cpu_state_dict is not None:
self._model.load_state_dict(self._cpu_state_dict, assign=True)
self._model.to(self._offload_device)
check_for_gguf = hasattr(self._model, "state_dict") and self._model.state_dict().get("img_in.weight")
if isinstance(check_for_gguf, GGMLTensor):
old_value = torch.__future__.get_overwrite_module_params_on_conversion()
torch.__future__.set_overwrite_module_params_on_conversion(True)
self._model.to(self._offload_device)
torch.__future__.set_overwrite_module_params_on_conversion(old_value)
else:
self._model.to(self._offload_device)
self._is_in_vram = False
return self._total_bytes

View File

@@ -2,9 +2,10 @@ import gc
import logging
import threading
import time
from dataclasses import dataclass
from functools import wraps
from logging import Logger
from typing import Any, Callable, Dict, List, Optional
from typing import Any, Callable, Dict, List, Optional, Protocol
import psutil
import torch
@@ -54,6 +55,39 @@ def synchronized(method: Callable[..., Any]) -> Callable[..., Any]:
return wrapper
@dataclass
class CacheEntrySnapshot:
cache_key: str
total_bytes: int
current_vram_bytes: int
class CacheMissCallback(Protocol):
def __call__(
self,
model_key: str,
cache_snapshot: dict[str, CacheEntrySnapshot],
) -> None: ...
class CacheHitCallback(Protocol):
def __call__(
self,
model_key: str,
cache_snapshot: dict[str, CacheEntrySnapshot],
) -> None: ...
class CacheModelsClearedCallback(Protocol):
def __call__(
self,
models_cleared: int,
bytes_requested: int,
bytes_freed: int,
cache_snapshot: dict[str, CacheEntrySnapshot],
) -> None: ...
class ModelCache:
"""A cache for managing models in memory.
@@ -144,6 +178,34 @@ class ModelCache:
# - Requests to empty the cache from a separate thread
self._lock = threading.RLock()
self._on_cache_hit_callbacks: set[CacheHitCallback] = set()
self._on_cache_miss_callbacks: set[CacheMissCallback] = set()
self._on_cache_models_cleared_callbacks: set[CacheModelsClearedCallback] = set()
def on_cache_hit(self, cb: CacheHitCallback) -> Callable[[], None]:
self._on_cache_hit_callbacks.add(cb)
def unsubscribe() -> None:
self._on_cache_hit_callbacks.discard(cb)
return unsubscribe
def on_cache_miss(self, cb: CacheHitCallback) -> Callable[[], None]:
self._on_cache_miss_callbacks.add(cb)
def unsubscribe() -> None:
self._on_cache_miss_callbacks.discard(cb)
return unsubscribe
def on_cache_models_cleared(self, cb: CacheModelsClearedCallback) -> Callable[[], None]:
self._on_cache_models_cleared_callbacks.add(cb)
def unsubscribe() -> None:
self._on_cache_models_cleared_callbacks.discard(cb)
return unsubscribe
@property
@synchronized
def stats(self) -> Optional[CacheStats]:
@@ -195,6 +257,20 @@ class ModelCache:
f"Added model {key} (Type: {model.__class__.__name__}, Wrap mode: {wrapped_model.__class__.__name__}, Model size: {size / MB:.2f}MB)"
)
@synchronized
def _get_cache_snapshot(self) -> dict[str, CacheEntrySnapshot]:
overview: dict[str, CacheEntrySnapshot] = {}
for cache_key, cache_entry in self._cached_models.items():
total_bytes = cache_entry.cached_model.total_bytes()
current_vram_bytes = cache_entry.cached_model.cur_vram_bytes()
overview[cache_key] = CacheEntrySnapshot(
cache_key=cache_key,
total_bytes=total_bytes,
current_vram_bytes=current_vram_bytes,
)
return overview
@synchronized
def get(self, key: str, stats_name: Optional[str] = None) -> CacheRecord:
"""Retrieve a model from the cache.
@@ -208,6 +284,8 @@ class ModelCache:
if self.stats:
self.stats.hits += 1
else:
for cb in self._on_cache_miss_callbacks:
cb(model_key=key, cache_snapshot=self._get_cache_snapshot())
if self.stats:
self.stats.misses += 1
self._logger.debug(f"Cache miss: {key}")
@@ -229,6 +307,8 @@ class ModelCache:
self._cache_stack.append(key)
self._logger.debug(f"Cache hit: {key} (Type: {cache_entry.cached_model.model.__class__.__name__})")
for cb in self._on_cache_hit_callbacks:
cb(model_key=key, cache_snapshot=self._get_cache_snapshot())
return cache_entry
@synchronized
@@ -649,6 +729,13 @@ class ModelCache:
# immediately when their reference count hits 0.
if self.stats:
self.stats.cleared = models_cleared
for cb in self._on_cache_models_cleared_callbacks:
cb(
models_cleared=models_cleared,
bytes_requested=bytes_needed,
bytes_freed=ram_bytes_freed,
cache_snapshot=self._get_cache_snapshot(),
)
gc.collect()
TorchDevice.empty_cache()

View File

@@ -13,6 +13,12 @@ from invokeai.backend.patches.layers.lora_layer import LoRALayer
def linear_lora_forward(input: torch.Tensor, lora_layer: LoRALayer, lora_weight: float) -> torch.Tensor:
"""An optimized implementation of the residual calculation for a sidecar linear LoRALayer."""
# up matrix and down matrix have different ranks so we can't simply multiply them
if lora_layer.up.shape[1] != lora_layer.down.shape[0]:
x = torch.nn.functional.linear(input, lora_layer.get_weight(lora_weight), bias=lora_layer.bias)
x *= lora_weight * lora_layer.scale()
return x
x = torch.nn.functional.linear(input, lora_layer.down)
if lora_layer.mid is not None:
x = torch.nn.functional.linear(x, lora_layer.mid)

View File

@@ -1,7 +1,8 @@
from pathlib import Path
from typing import Optional
from invokeai.backend.llava_onevision_model import LlavaOnevisionModel
from transformers import LlavaOnevisionForConditionalGeneration
from invokeai.backend.model_manager.config import (
AnyModelConfig,
)
@@ -23,6 +24,8 @@ class LlavaOnevisionModelLoader(ModelLoader):
raise ValueError("Unexpected submodel requested for LLaVA OneVision model.")
model_path = Path(config.path)
model = LlavaOnevisionModel.load_from_path(model_path)
model.to(dtype=self._torch_dtype)
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
model_path, local_files_only=True, torch_dtype=self._torch_dtype
)
assert isinstance(model, LlavaOnevisionForConditionalGeneration)
return model

View File

@@ -1,13 +1,14 @@
from pathlib import Path
from typing import Optional
from transformers import SiglipVisionModel
from invokeai.backend.model_manager.config import (
AnyModelConfig,
)
from invokeai.backend.model_manager.load.load_default import ModelLoader
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
from invokeai.backend.model_manager.taxonomy import AnyModel, BaseModelType, ModelFormat, ModelType, SubModelType
from invokeai.backend.sig_lip.sig_lip_pipeline import SigLipPipeline
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.SigLIP, format=ModelFormat.Diffusers)
@@ -23,6 +24,5 @@ class SigLIPModelLoader(ModelLoader):
raise ValueError("Unexpected submodel requested for LLaVA OneVision model.")
model_path = Path(config.path)
model = SigLipPipeline.load_from_path(model_path)
model.to(dtype=self._torch_dtype)
model = SiglipVisionModel.from_pretrained(model_path, local_files_only=True, torch_dtype=self._torch_dtype)
return model

View File

@@ -16,11 +16,9 @@ from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import D
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.llava_onevision_model import LlavaOnevisionModel
from invokeai.backend.model_manager.taxonomy import AnyModel
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.sig_lip.sig_lip_pipeline import SigLipPipeline
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
from invokeai.backend.textual_inversion import TextualInversionModelRaw
from invokeai.backend.util.calc_tensor_size import calc_tensor_size
@@ -51,8 +49,6 @@ def calc_model_size_by_data(logger: logging.Logger, model: AnyModel) -> int:
GroundingDinoPipeline,
SegmentAnythingPipeline,
DepthAnythingPipeline,
SigLipPipeline,
LlavaOnevisionModel,
),
):
return model.calc_size()

View File

@@ -4,6 +4,7 @@ from typing import Any, Optional, TypeAlias
import safetensors.torch
import torch
from picklescan.scanner import scan_file_path
from safetensors import safe_open
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS, ModelHash
from invokeai.backend.model_manager.taxonomy import ModelRepoVariant
@@ -35,12 +36,21 @@ class ModelOnDisk:
return self.path.stat().st_size
return sum(file.stat().st_size for file in self.path.rglob("*"))
def component_paths(self) -> set[Path]:
def weight_files(self) -> set[Path]:
if self.path.is_file():
return {self.path}
extensions = {".safetensors", ".pt", ".pth", ".ckpt", ".bin", ".gguf"}
return {f for f in self.path.rglob("*") if f.suffix in extensions}
def metadata(self, path: Optional[Path] = None) -> dict[str, str]:
try:
with safe_open(self.path, framework="pt", device="cpu") as f:
metadata = f.metadata()
assert isinstance(metadata, dict)
return metadata
except Exception:
return {}
def repo_variant(self) -> Optional[ModelRepoVariant]:
if self.path.is_file():
return None
@@ -64,18 +74,7 @@ class ModelOnDisk:
if path in sd_cache:
return sd_cache[path]
if not path:
components = list(self.component_paths())
match components:
case []:
raise ValueError("No weight files found for this model")
case [p]:
path = p
case ps if len(ps) >= 2:
raise ValueError(
f"Multiple weight files found for this model: {ps}. "
f"Please specify the intended file using the 'path' argument"
)
path = self.resolve_weight_file(path)
with SilenceWarnings():
if path.suffix.endswith((".ckpt", ".pt", ".pth", ".bin")):
@@ -94,3 +93,18 @@ class ModelOnDisk:
state_dict = checkpoint.get("state_dict", checkpoint)
sd_cache[path] = state_dict
return state_dict
def resolve_weight_file(self, path: Optional[Path] = None) -> Path:
if not path:
weight_files = list(self.weight_files())
match weight_files:
case []:
raise ValueError("No weight files found for this model")
case [p]:
return p
case ps if len(ps) >= 2:
raise ValueError(
f"Multiple weight files found for this model: {ps}. "
f"Please specify the intended file using the 'path' argument"
)
return path

View File

@@ -26,7 +26,9 @@ class BaseModelType(str, Enum):
StableDiffusionXLRefiner = "sdxl-refiner"
Flux = "flux"
CogView4 = "cogview4"
# Kandinsky2_1 = "kandinsky-2.1"
Imagen3 = "imagen3"
Imagen4 = "imagen4"
ChatGPT4o = "chatgpt-4o"
class ModelType(str, Enum):
@@ -98,6 +100,7 @@ class ModelFormat(str, Enum):
BnbQuantizedLlmInt8b = "bnb_quantized_int8b"
BnbQuantizednf4b = "bnb_quantized_nf4b"
GGUFQuantized = "gguf_quantized"
Api = "api"
class SchedulerPredictionType(str, Enum):

View File

@@ -19,6 +19,7 @@ class LoRALayer(LoRALayerBase):
self.up = up
self.mid = mid
self.down = down
self.are_ranks_equal = up.shape[1] == down.shape[0]
@classmethod
def from_state_dict_values(
@@ -58,12 +59,42 @@ class LoRALayer(LoRALayerBase):
def _rank(self) -> int:
return self.down.shape[0]
def fuse_weights(self, up: torch.Tensor, down: torch.Tensor) -> torch.Tensor:
"""
Fuse the weights of the up and down matrices of a LoRA layer with different ranks.
Since the Huggingface implementation of KQV projections are fused, when we convert to Kohya format
the LoRA weights have different ranks. This function handles the fusion of these differently sized
matrices.
"""
fused_lora = torch.zeros((up.shape[0], down.shape[1]), device=down.device, dtype=down.dtype)
rank_diff = down.shape[0] / up.shape[1]
if rank_diff > 1:
rank_diff = down.shape[0] / up.shape[1]
w_down = down.chunk(int(rank_diff), dim=0)
for w_down_chunk in w_down:
fused_lora = fused_lora + (torch.mm(up, w_down_chunk))
else:
rank_diff = up.shape[1] / down.shape[0]
w_up = up.chunk(int(rank_diff), dim=0)
for w_up_chunk in w_up:
fused_lora = fused_lora + (torch.mm(w_up_chunk, down))
return fused_lora
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
if self.mid is not None:
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
else:
# up matrix and down matrix have different ranks so we can't simply multiply them
if not self.are_ranks_equal:
weight = self.fuse_weights(self.up, self.down)
return weight
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
return weight

View File

@@ -20,6 +20,14 @@ from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
FLUX_KOHYA_TRANSFORMER_KEY_REGEX = (
r"lora_unet_(\w+_blocks)_(\d+)_(img_attn|img_mlp|img_mod|txt_attn|txt_mlp|txt_mod|linear1|linear2|modulation)_?(.*)"
)
# A regex pattern that matches all of the last layer keys in the Kohya FLUX LoRA format.
# Example keys:
# lora_unet_final_layer_linear.alpha
# lora_unet_final_layer_linear.lora_down.weight
# lora_unet_final_layer_linear.lora_up.weight
FLUX_KOHYA_LAST_LAYER_KEY_REGEX = r"lora_unet_final_layer_(linear|linear1|linear2)_?(.*)"
# A regex pattern that matches all of the CLIP keys in the Kohya FLUX LoRA format.
# Example keys:
# lora_te1_text_model_encoder_layers_0_mlp_fc1.alpha
@@ -44,6 +52,7 @@ def is_state_dict_likely_in_flux_kohya_format(state_dict: Dict[str, Any]) -> boo
"""
return all(
re.match(FLUX_KOHYA_TRANSFORMER_KEY_REGEX, k)
or re.match(FLUX_KOHYA_LAST_LAYER_KEY_REGEX, k)
or re.match(FLUX_KOHYA_CLIP_KEY_REGEX, k)
or re.match(FLUX_KOHYA_T5_KEY_REGEX, k)
for k in state_dict.keys()
@@ -65,6 +74,9 @@ def lora_model_from_flux_kohya_state_dict(state_dict: Dict[str, torch.Tensor]) -
t5_grouped_sd: dict[str, dict[str, torch.Tensor]] = {}
for layer_name, layer_state_dict in grouped_state_dict.items():
if layer_name.startswith("lora_unet"):
# Skip the final layer. This is incompatible with current model definition.
if layer_name.startswith("lora_unet_final_layer"):
continue
transformer_grouped_sd[layer_name] = layer_state_dict
elif layer_name.startswith("lora_te1"):
clip_grouped_sd[layer_name] = layer_state_dict

View File

@@ -5,7 +5,8 @@ from typing import Callable, Optional, Union
import gguf
import torch
TORCH_COMPATIBLE_QTYPES = {None, gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16}
# should not be a Set until this is resolved: https://github.com/pytorch/pytorch/issues/145761
TORCH_COMPATIBLE_QTYPES = [None, gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16]
# K Quants #
QK_K = 256

View File

@@ -1,14 +1,9 @@
from pathlib import Path
from typing import Optional
import torch
from PIL import Image
from transformers import SiglipImageProcessor, SiglipVisionModel
from invokeai.backend.raw_model import RawModel
class SigLipPipeline(RawModel):
class SigLipPipeline:
"""A wrapper for a SigLIP model + processor."""
def __init__(
@@ -19,25 +14,7 @@ class SigLipPipeline(RawModel):
self._siglip_processor = siglip_processor
self._siglip_model = siglip_model
@classmethod
def load_from_path(cls, path: str | Path):
siglip_model = SiglipVisionModel.from_pretrained(path, local_files_only=True)
assert isinstance(siglip_model, SiglipVisionModel)
siglip_processor = SiglipImageProcessor.from_pretrained(path, local_files_only=True)
assert isinstance(siglip_processor, SiglipImageProcessor)
return cls(siglip_processor, siglip_model)
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
self._siglip_model.to(device=device, dtype=dtype)
def encode_image(self, x: Image.Image, device: torch.device, dtype: torch.dtype) -> torch.Tensor:
imgs = self._siglip_processor.preprocess(images=[x], do_resize=True, return_tensors="pt", do_convert_rgb=True)
encoded_x = self._siglip_model(**imgs.to(device=device, dtype=dtype)).last_hidden_state
return encoded_x
def calc_size(self) -> int:
"""Get size of the model in memory in bytes."""
# HACK(ryand): Fix this issue with circular imports.
from invokeai.backend.model_manager.load.model_util import calc_module_size
return calc_module_size(self._siglip_model)

View File

@@ -371,7 +371,10 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
if use_ip_adapter or use_regional_prompting:
ip_adapters: Optional[List[UNetIPAdapterData]] = (
[{"ip_adapter": ipa.ip_adapter_model, "target_blocks": ipa.target_blocks} for ipa in ip_adapter_data]
[
{"ip_adapter": ipa.ip_adapter_model, "target_blocks": ipa.target_blocks, "method": ipa.method}
for ipa in ip_adapter_data
]
if use_ip_adapter
else None
)

View File

@@ -1,7 +1,7 @@
from __future__ import annotations
import math
from dataclasses import dataclass
from dataclasses import dataclass, field
from enum import Enum
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
@@ -104,15 +104,29 @@ class IPAdapterConditioningInfo:
@dataclass
class IPAdapterData:
"""Data class for IP-Adapter configuration.
Attributes:
ip_adapter_model: The IP-Adapter model to use.
ip_adapter_conditioning: The IP-Adapter conditioning data.
mask: The mask to apply to the IP-Adapter conditioning.
target_blocks: List of target attention block names to apply IP-Adapter to.
negative_blocks: List of target attention block names that should use negative attention.
weight: The weight to apply to the IP-Adapter conditioning.
begin_step_percent: The percentage of steps at which to start applying the IP-Adapter.
end_step_percent: The percentage of steps at which to stop applying the IP-Adapter.
method: The method to use for applying the IP-Adapter ('full', 'style', 'composition').
"""
ip_adapter_model: IPAdapter
ip_adapter_conditioning: IPAdapterConditioningInfo
mask: torch.Tensor
target_blocks: List[str]
# Either a single weight applied to all steps, or a list of weights for each step.
negative_blocks: List[str] = field(default_factory=list)
weight: Union[float, List[float]] = 1.0
begin_step_percent: float = 0.0
end_step_percent: float = 1.0
method: str = "full"
def scale_for_step(self, step_index: int, total_steps: int) -> float:
first_adapter_step = math.floor(self.begin_step_percent * total_steps)

View File

@@ -14,6 +14,7 @@ from invokeai.backend.stable_diffusion.diffusion.regional_prompt_data import Reg
class IPAdapterAttentionWeights:
ip_adapter_weights: IPAttentionProcessorWeights
skip: bool
negative: bool
class CustomAttnProcessor2_0(AttnProcessor2_0):
@@ -162,6 +163,10 @@ class CustomAttnProcessor2_0(AttnProcessor2_0):
# Expected ip_hidden_state shape: (batch_size, num_ip_images, ip_seq_len, ip_image_embedding)
if not self._ip_adapter_attention_weights[ipa_index].skip:
# apply the IP-Adapter weights to the negative embeds
if self._ip_adapter_attention_weights[ipa_index].negative:
ip_hidden_states = torch.cat([ip_hidden_states[1], ip_hidden_states[0] * 0], dim=0)
ip_key = ipa_weights.to_k_ip(ip_hidden_states)
ip_value = ipa_weights.to_v_ip(ip_hidden_states)

View File

@@ -12,7 +12,8 @@ from invokeai.backend.stable_diffusion.diffusion.custom_atttention import (
class UNetIPAdapterData(TypedDict):
ip_adapter: IPAdapter
target_blocks: List[str]
target_blocks: List[str] # Blocks where IP-Adapter should be applied
method: str # Style or other method type
class UNetAttentionPatcher:
@@ -39,12 +40,18 @@ class UNetAttentionPatcher:
for ip_adapter in self._ip_adapters:
ip_adapter_weights = ip_adapter["ip_adapter"].attn_weights.get_attention_processor_weights(idx)
skip = True
negative = False
for block in ip_adapter["target_blocks"]:
if block in name:
skip = False
negative = ip_adapter["method"] == "style_precise" and (
block == "down_blocks.2.attentions.1"
or block == "down_blocks.2"
or block == "mid_block"
)
break
ip_adapter_attention_weights: IPAdapterAttentionWeights = IPAdapterAttentionWeights(
ip_adapter_weights=ip_adapter_weights, skip=skip
ip_adapter_weights=ip_adapter_weights, skip=skip, negative=negative
)
ip_adapter_attention_weights_collection.append(ip_adapter_attention_weights)

View File

@@ -52,68 +52,68 @@
}
},
"dependencies": {
"@atlaskit/pragmatic-drag-and-drop": "^1.4.0",
"@atlaskit/pragmatic-drag-and-drop-auto-scroll": "^1.4.0",
"@atlaskit/pragmatic-drag-and-drop": "^1.5.3",
"@atlaskit/pragmatic-drag-and-drop-auto-scroll": "^2.1.0",
"@atlaskit/pragmatic-drag-and-drop-hitbox": "^1.0.3",
"@dagrejs/dagre": "^1.1.4",
"@dagrejs/graphlib": "^2.2.4",
"@fontsource-variable/inter": "^5.1.0",
"@fontsource-variable/inter": "^5.2.5",
"@invoke-ai/ui-library": "^0.0.46",
"@nanostores/react": "^0.7.3",
"@reduxjs/toolkit": "2.6.1",
"@nanostores/react": "^1.0.0",
"@reduxjs/toolkit": "2.7.0",
"@roarr/browser-log-writer": "^1.3.0",
"@xyflow/react": "^12.5.3",
"@xyflow/react": "^12.6.0",
"async-mutex": "^0.5.0",
"chakra-react-select": "^4.9.2",
"cmdk": "^1.0.0",
"cmdk": "^1.1.1",
"compare-versions": "^6.1.1",
"filesize": "^10.1.6",
"fracturedjsonjs": "^4.0.2",
"framer-motion": "^11.10.0",
"i18next": "^23.15.1",
"i18next-http-backend": "^2.6.1",
"i18next": "^25.0.1",
"i18next-http-backend": "^3.0.2",
"idb-keyval": "^6.2.1",
"jsondiffpatch": "^0.6.0",
"konva": "^9.3.15",
"jsondiffpatch": "^0.7.3",
"konva": "^9.3.20",
"linkify-react": "^4.2.0",
"linkifyjs": "^4.2.0",
"lodash-es": "^4.17.21",
"lru-cache": "^11.0.1",
"lru-cache": "^11.1.0",
"mtwist": "^1.0.2",
"nanoid": "^5.0.7",
"nanostores": "^0.11.3",
"new-github-issue-url": "^1.0.0",
"overlayscrollbars": "^2.10.0",
"nanoid": "^5.1.5",
"nanostores": "^1.0.1",
"new-github-issue-url": "^1.1.0",
"overlayscrollbars": "^2.11.1",
"overlayscrollbars-react": "^0.5.6",
"perfect-freehand": "^1.2.2",
"query-string": "^9.1.0",
"query-string": "^9.1.1",
"raf-throttle": "^2.0.6",
"react": "^18.3.1",
"react-colorful": "^5.6.1",
"react-dom": "^18.3.1",
"react-dropzone": "^14.2.9",
"react-error-boundary": "^4.0.13",
"react-hook-form": "^7.53.0",
"react-dropzone": "^14.3.8",
"react-error-boundary": "^5.0.0",
"react-hook-form": "^7.56.1",
"react-hotkeys-hook": "4.5.0",
"react-i18next": "^15.0.2",
"react-icons": "^5.3.0",
"react-redux": "9.1.2",
"react-resizable-panels": "^2.1.4",
"react-textarea-autosize": "^8.5.7",
"react-use": "^17.5.1",
"react-virtuoso": "^4.12.5",
"react-i18next": "^15.5.1",
"react-icons": "^5.5.0",
"react-redux": "9.2.0",
"react-resizable-panels": "^2.1.8",
"react-textarea-autosize": "^8.5.9",
"react-use": "^17.6.0",
"react-virtuoso": "^4.12.6",
"redux-dynamic-middlewares": "^2.2.0",
"redux-remember": "^5.1.0",
"redux-remember": "^5.2.0",
"redux-undo": "^1.1.0",
"rfdc": "^1.4.1",
"roarr": "^7.21.1",
"serialize-error": "^11.0.3",
"socket.io-client": "^4.8.0",
"stable-hash": "^0.0.4",
"use-debounce": "^10.0.3",
"serialize-error": "^12.0.0",
"socket.io-client": "^4.8.1",
"stable-hash": "^0.0.5",
"use-debounce": "^10.0.4",
"use-device-pixel-ratio": "^1.1.2",
"uuid": "^10.0.0",
"zod": "^3.23.8",
"uuid": "^11.1.0",
"zod": "^3.24.3",
"zod-validation-error": "^3.4.0"
},
"peerDependencies": {
@@ -123,43 +123,43 @@
"devDependencies": {
"@invoke-ai/eslint-config-react": "^0.0.14",
"@invoke-ai/prettier-config-react": "^0.0.7",
"@storybook/addon-essentials": "^8.3.4",
"@storybook/addon-interactions": "^8.3.4",
"@storybook/addon-links": "^8.3.4",
"@storybook/addon-storysource": "^8.3.4",
"@storybook/manager-api": "^8.3.4",
"@storybook/react": "^8.3.4",
"@storybook/react-vite": "^8.5.5",
"@storybook/theming": "^8.3.4",
"@storybook/addon-essentials": "^8.6.12",
"@storybook/addon-interactions": "^8.6.12",
"@storybook/addon-links": "^8.6.12",
"@storybook/addon-storysource": "^8.6.12",
"@storybook/manager-api": "^8.6.12",
"@storybook/react": "^8.6.12",
"@storybook/react-vite": "^8.6.12",
"@storybook/theming": "^8.6.12",
"@types/lodash-es": "^4.17.12",
"@types/node": "^20.16.10",
"@types/node": "^22.15.1",
"@types/react": "^18.3.11",
"@types/react-dom": "^18.3.0",
"@types/uuid": "^10.0.0",
"@vitejs/plugin-react-swc": "^3.8.0",
"@vitest/coverage-v8": "^3.0.6",
"@vitest/ui": "^3.0.6",
"concurrently": "^8.2.2",
"@vitejs/plugin-react-swc": "^3.9.0",
"@vitest/coverage-v8": "^3.1.2",
"@vitest/ui": "^3.1.2",
"concurrently": "^9.1.2",
"csstype": "^3.1.3",
"dpdm": "^3.14.0",
"eslint": "^8.57.1",
"eslint-plugin-i18next": "^6.1.0",
"eslint-plugin-i18next": "^6.1.1",
"eslint-plugin-path": "^1.3.0",
"knip": "^5.31.0",
"knip": "^5.50.5",
"openapi-types": "^12.1.3",
"openapi-typescript": "^7.4.1",
"prettier": "^3.3.3",
"rollup-plugin-visualizer": "^5.12.0",
"storybook": "^8.3.4",
"openapi-typescript": "^7.6.1",
"prettier": "^3.5.3",
"rollup-plugin-visualizer": "^5.14.0",
"storybook": "^8.6.12",
"tsafe": "^1.8.5",
"type-fest": "^4.26.1",
"typescript": "^5.6.2",
"vite": "^6.1.0",
"type-fest": "^4.40.0",
"typescript": "^5.8.3",
"vite": "^6.3.3",
"vite-plugin-css-injected-by-js": "^3.5.2",
"vite-plugin-dts": "^4.5.0",
"vite-plugin-dts": "^4.5.3",
"vite-plugin-eslint": "^1.8.1",
"vite-tsconfig-paths": "^5.1.4",
"vitest": "^3.0.6"
"vitest": "^3.1.2"
},
"engines": {
"pnpm": "8"

File diff suppressed because it is too large Load Diff

View File

@@ -119,7 +119,17 @@
"error_withCount_other": "{{count}} Fehler",
"value": "Wert",
"label": "Label",
"systemInformation": "Systeminformationen"
"systemInformation": "Systeminformationen",
"search": "Suche",
"clear": "Zurücksetzen",
"fullView": "Vollansicht",
"compactView": "Kompaktansicht",
"options_withCount_one": "{{count}} Option",
"options_withCount_other": "{{count}} Optionen",
"noOptions": "Keine Optionen",
"noMatches": "Keine Treffer",
"model_withCount_one": "{{count}} Modell",
"model_withCount_other": "{{count}} Modelle"
},
"gallery": {
"galleryImageSize": "Bildgröße",

View File

@@ -118,6 +118,8 @@
"error": "Error",
"error_withCount_one": "{{count}} error",
"error_withCount_other": "{{count}} errors",
"model_withCount_one": "{{count}} model",
"model_withCount_other": "{{count}} models",
"file": "File",
"folder": "Folder",
"format": "format",
@@ -138,6 +140,8 @@
"localSystem": "Local System",
"learnMore": "Learn More",
"modelManager": "Model Manager",
"noMatches": "No matches",
"noOptions": "No options",
"nodes": "Workflows",
"notInstalled": "Not $t(common.installed)",
"openInNewTab": "Open in New Tab",
@@ -171,6 +175,8 @@
"blue": "Blue",
"alpha": "Alpha",
"selected": "Selected",
"search": "Search",
"clear": "Clear",
"tab": "Tab",
"view": "View",
"edit": "Edit",
@@ -197,7 +203,11 @@
"column": "Column",
"value": "Value",
"label": "Label",
"systemInformation": "System Information"
"systemInformation": "System Information",
"compactView": "Compact View",
"fullView": "Full View",
"options_withCount_one": "{{count}} option",
"options_withCount_other": "{{count}} options"
},
"hrf": {
"hrf": "High Resolution Fix",
@@ -258,6 +268,7 @@
"status": "Status",
"total": "Total",
"time": "Time",
"credits": "Credits",
"pending": "Pending",
"in_progress": "In Progress",
"completed": "Completed",
@@ -768,6 +779,7 @@
"description": "Description",
"edit": "Edit",
"fileSize": "File Size",
"filterModels": "Filter models",
"fluxRedux": "FLUX Redux",
"height": "Height",
"huggingFace": "HuggingFace",
@@ -787,6 +799,7 @@
"hfTokenUnableToVerify": "Unable to Verify HF Token",
"hfTokenUnableToVerifyErrorMessage": "Unable to verify HuggingFace token. This is likely due to a network error. Please try again later.",
"hfTokenSaved": "HF Token Saved",
"hfTokenReset": "HF Token Reset",
"urlUnauthorizedErrorMessage": "You may need to configure an API token to access this model.",
"urlUnauthorizedErrorMessage2": "Learn how here.",
"imageEncoderModelId": "Image Encoder Model ID",
@@ -821,16 +834,20 @@
"modelUpdated": "Model Updated",
"modelUpdateFailed": "Model Update Failed",
"name": "Name",
"noModelsInstalled": "No Models Installed",
"modelPickerFallbackNoModelsInstalled": "No models installed.",
"modelPickerFallbackNoModelsInstalled2": "Visit the <LinkComponent>Model Manager</LinkComponent> to install models.",
"noModelsInstalledDesc1": "Install models with the",
"noModelSelected": "No Model Selected",
"noMatchingModels": "No matching Models",
"noMatchingModels": "No matching models",
"noModelsInstalled": "No models installed",
"none": "none",
"path": "Path",
"pathToConfig": "Path To Config",
"predictionType": "Prediction Type",
"prune": "Prune",
"pruneTooltip": "Prune finished imports from queue",
"relatedModels": "Related Models",
"showOnlyRelatedModels": "Related",
"repo_id": "Repo ID",
"repoVariant": "Repo Variant",
"scanFolder": "Scan Folder",
@@ -871,7 +888,8 @@
"installingXModels_one": "Installing {{count}} model",
"installingXModels_other": "Installing {{count}} models",
"skippingXDuplicates_one": ", skipping {{count}} duplicate",
"skippingXDuplicates_other": ", skipping {{count}} duplicates"
"skippingXDuplicates_other": ", skipping {{count}} duplicates",
"manageModels": "Manage Models"
},
"models": {
"addLora": "Add LoRA",
@@ -1093,6 +1111,7 @@
"info": "Info",
"invoke": {
"addingImagesTo": "Adding images to",
"modelDisabledForTrial": "Generating with {{modelName}} is not available on trial accounts. Visit your account settings to upgrade.",
"invoke": "Invoke",
"missingFieldTemplate": "Missing field template",
"missingInputForField": "missing input",
@@ -1173,7 +1192,8 @@
"width": "Width",
"gaussianBlur": "Gaussian Blur",
"boxBlur": "Box Blur",
"staged": "Staged"
"staged": "Staged",
"modelDisabledForTrial": "Generating with {{modelName}} is not available on trial accounts. Visit your <LinkComponent>account settings</LinkComponent> to upgrade."
},
"dynamicPrompts": {
"showDynamicPrompts": "Show Dynamic Prompts",
@@ -1312,6 +1332,8 @@
"unableToCopyDesc": "Your browser does not support clipboard access. Firefox users may be able to fix this by following ",
"unableToCopyDesc_theseSteps": "these steps",
"fluxFillIncompatibleWithT2IAndI2I": "FLUX Fill is not compatible with Text to Image or Image to Image. Use other FLUX models for these tasks.",
"imagenIncompatibleGenerationMode": "Google {{model}} supports Text to Image only. Use other models for Image to Image, Inpainting and Outpainting tasks.",
"chatGPT4oIncompatibleGenerationMode": "ChatGPT 4o supports Text to Image and Image to Image only. Use other models Inpainting and Outpainting tasks.",
"problemUnpublishingWorkflow": "Problem Unpublishing Workflow",
"problemUnpublishingWorkflowDescription": "There was a problem unpublishing the workflow. Please try again.",
"workflowUnpublished": "Workflow Unpublished"
@@ -2020,10 +2042,14 @@
"ipAdapterMethod": "Mode",
"full": "Style and Composition",
"fullDesc": "Applies visual style (colors, textures) & composition (layout, structure).",
"style": "Style Only",
"styleDesc": "Applies visual style (colors, textures) without considering its layout.",
"style": "Style (Simple)",
"styleDesc": "Applies visual style (colors, textures) without considering its layout. Previously called Style Only.",
"composition": "Composition Only",
"compositionDesc": "Replicates layout & structure while ignoring the reference's style."
"compositionDesc": "Replicates layout & structure while ignoring the reference's style.",
"styleStrong": "Style (Strong)",
"styleStrongDesc": "Applies a strong visual style, with a slightly reduced composition influence.",
"stylePrecise": "Style (Precise)",
"stylePreciseDesc": "Applies a precise visual style, eliminating subject influence."
},
"fluxReduxImageInfluence": {
"imageInfluence": "Image Influence",
@@ -2393,8 +2419,9 @@
"whatsNew": {
"whatsNewInInvoke": "What's New in Invoke",
"items": [
"CogView4: Support for CogView4 models in Canvas and Workflows.",
"Updated Dependencies: Invoke now runs on the latest version of its dependencies, including Python 3.12 and Pytorch 2.6.0."
"Nvidia 50xx GPUs: Invoke uses PyTorch 2.7.0, which is required for these GPUs.",
"Model Relationships: Link LoRAs to main models, and the LoRAs will show up first in the list.",
"IP Adapter: New Style (Strong) and Style (Precise) methods for SDXL and SD1.5 models."
],
"readReleaseNotes": "Read Release Notes",
"watchRecentReleaseVideos": "Watch Recent Release Videos",

View File

@@ -116,7 +116,19 @@
"error_withCount_other": "{{count}} errori",
"value": "Valore",
"label": "Etichetta",
"systemInformation": "Informazioni di sistema"
"systemInformation": "Informazioni di sistema",
"noMatches": "Nessuna corrispondenza",
"noOptions": "Nessuna opzione",
"model_withCount_one": "{{count}} modello",
"model_withCount_many": "{{count}} modelli",
"model_withCount_other": "{{count}} modelli",
"options_withCount_one": "{{count}} opzione",
"options_withCount_many": "{{count}} opzioni",
"options_withCount_other": "{{count}} opzioni",
"search": "Cerca",
"clear": "Cancella",
"compactView": "Vista compatta",
"fullView": "Vista completa"
},
"gallery": {
"galleryImageSize": "Dimensione dell'immagine",
@@ -637,7 +649,14 @@
"urlForbidden": "Non hai accesso a questo modello",
"urlForbiddenErrorMessage": "Potrebbe essere necessario richiedere l'autorizzazione al sito che distribuisce il modello.",
"urlUnauthorizedErrorMessage": "Potrebbe essere necessario configurare un gettone API per accedere a questo modello.",
"fileSize": "Dimensione del file"
"fileSize": "Dimensione del file",
"filterModels": "Filtra i modelli",
"modelPickerFallbackNoModelsInstalled": "Nessun modello installato.",
"modelPickerFallbackNoModelsInstalled2": "Visita <LinkComponent>Gestione modelli</LinkComponent> per installare i modelli.",
"manageModels": "Gestione modelli",
"hfTokenReset": "Ripristino del gettone HF",
"relatedModels": "Modelli correlati",
"showOnlyRelatedModels": "Correlati"
},
"parameters": {
"images": "Immagini",
@@ -719,7 +738,11 @@
"collectionNumberLTExclusiveMin": "{{value}} <= {{exclusiveMinimum}} (excl min)",
"collectionEmpty": "raccolta vuota",
"batchNodeCollectionSizeMismatchNoGroupId": "Dimensione della raccolta di gruppo nel Lotto non corrisponde",
"modelIncompatibleBboxWidth": "La larghezza del riquadro di delimitazione è {{width}} ma {{model}} richiede multipli di {{multiple}}"
"modelIncompatibleBboxWidth": "La larghezza del riquadro di delimitazione è {{width}} ma {{model}} richiede multipli di {{multiple}}",
"modelIncompatibleBboxHeight": "L'altezza del riquadro è {{height}} ma {{model}} richiede multipli di {{multiple}}",
"modelIncompatibleScaledBboxWidth": "La larghezza scalata del riquadro è {{width}} ma {{model}} richiede multipli di {{multiple}}",
"modelIncompatibleScaledBboxHeight": "L'altezza scalata del riquadro è {{height}} ma {{model}} richiede multipli di {{multiple}}",
"modelDisabledForTrial": "La generazione con {{modelName}} non è disponibile per gli account di prova. Accedi alle impostazioni del tuo account per effettuare l'upgrade."
},
"useCpuNoise": "Usa la CPU per generare rumore",
"iterations": "Iterazioni",
@@ -746,7 +769,8 @@
"sendToCanvas": "Invia alla Tela",
"coherenceMinDenoise": "Min rid. rumore",
"recallMetadata": "Richiama i metadati",
"disabledNoRasterContent": "Disabilitato (nessun contenuto Raster)"
"disabledNoRasterContent": "Disabilitato (nessun contenuto Raster)",
"modelDisabledForTrial": "La generazione con {{modelName}} non è disponibile per gli account di prova. Visita le <LinkComponent>impostazioni account</LinkComponent> per effettuare l'upgrade."
},
"settings": {
"models": "Modelli",
@@ -855,7 +879,11 @@
"unableToCopy": "Impossibile copiare",
"unableToCopyDesc": "Il tuo browser non supporta l'accesso agli appunti. Gli utenti di Firefox potrebbero risolvere il problema seguendo ",
"unableToCopyDesc_theseSteps": "questi passaggi",
"fluxFillIncompatibleWithT2IAndI2I": "FLUX Fill non è compatibile con Testo a Immagine o Immagine a Immagine. Per queste attività, utilizzare altri modelli FLUX."
"fluxFillIncompatibleWithT2IAndI2I": "FLUX Fill non è compatibile con Testo a Immagine o Immagine a Immagine. Per queste attività, utilizzare altri modelli FLUX.",
"problemUnpublishingWorkflow": "Problema durante l'annullamento della pubblicazione del flusso di lavoro",
"problemUnpublishingWorkflowDescription": "Si è verificato un problema durante l'annullamento della pubblicazione del flusso di lavoro. Riprova.",
"workflowUnpublished": "Flusso di lavoro non pubblicato",
"chatGPT4oIncompatibleGenerationMode": "ChatGPT 4o supporta solo la conversione da testo a immagine e da immagine a immagine. Utilizza altri modelli per le attività di Inpainting e Outpainting."
},
"accessibility": {
"invokeProgressBar": "Barra di avanzamento generazione",
@@ -1049,7 +1077,8 @@
"unknownField_withName": "Campo \"{{name}}\" sconosciuto",
"missingField_withName": "Campo \"{{name}}\" mancante",
"unknownFieldEditWorkflowToFix_withName": "Il flusso di lavoro contiene un campo \"{{name}}\" sconosciuto .\nModifica il flusso di lavoro per risolvere il problema.",
"unexpectedField_withName": "Campo \"{{name}}\" inaspettato"
"unexpectedField_withName": "Campo \"{{name}}\" inaspettato",
"missingSourceOrTargetHandle": "Identificatore del nodo sorgente o di destinazione mancante"
},
"boards": {
"autoAddBoard": "Aggiungi automaticamente bacheca",
@@ -1178,7 +1207,8 @@
"cancelAllExceptCurrentTooltip": "Annulla tutto tranne l'elemento corrente",
"retrySucceeded": "Elemento rieseguito",
"retryItem": "Riesegui elemento",
"retryFailed": "Problema riesecuzione elemento"
"retryFailed": "Problema riesecuzione elemento",
"credits": "Crediti"
},
"models": {
"noMatchingModels": "Nessun modello corrispondente",
@@ -1821,7 +1851,10 @@
"publishingValidationRunInProgress": "È in corso la convalida della pubblicazione.",
"publishedWorkflowsLocked": "I flussi di lavoro pubblicati sono bloccati e non possono essere modificati o eseguiti. Annulla la pubblicazione del flusso di lavoro o salva una copia per modificare o eseguire questo flusso di lavoro.",
"warningWorkflowHasNoPublishableInputFields": "Nessun campo di ingresso pubblicabile selezionato: il flusso di lavoro pubblicato verrà eseguito solo con i valori predefiniti",
"publishInProgress": "Pubblicazione in corso"
"publishInProgress": "Pubblicazione in corso",
"selectingOutputNode": "Selezione del nodo di uscita",
"selectingOutputNodeDesc": "Fare clic su un nodo per selezionarlo come nodo di uscita del flusso di lavoro.",
"errorWorkflowHasUnpublishableNodes": "Il flusso di lavoro ha nodi di estrazione lotto, generatore o metadati"
},
"loadMore": "Carica altro",
"searchPlaceholder": "Cerca per nome, descrizione o etichetta",
@@ -1971,12 +2004,16 @@
"stagingOnCanvas": "Genera immagini nella",
"ipAdapterMethod": {
"full": "Stile e Composizione",
"style": "Solo Stile",
"style": "Stile (semplice)",
"composition": "Solo Composizione",
"ipAdapterMethod": "Modalità",
"fullDesc": "Applica lo stile visivo (colori, texture) e la composizione (disposizione, struttura).",
"styleDesc": "Applica lo stile visivo (colori, texture) senza considerare la disposizione.",
"compositionDesc": "Replica disposizione e struttura ignorando lo stile di riferimento."
"styleDesc": "Applica lo stile visivo (colori, texture) senza considerare la disposizione. Precedentemente chiamato \"Solo stile\".",
"compositionDesc": "Replica disposizione e struttura ignorando lo stile di riferimento.",
"styleStrong": "Stile (forte)",
"styleStrongDesc": "Applica uno stile visivo forte, con un'influenza sulla composizione leggermente ridotta.",
"stylePrecise": "Stile (preciso)",
"stylePreciseDesc": "Applica uno stile visivo preciso, eliminando l'influenza del soggetto."
},
"showingType": "Mostra {{type}}",
"dynamicGrid": "Griglia dinamica",
@@ -2299,6 +2336,14 @@
"errors": {
"unableToFindImage": "Impossibile trovare l'immagine",
"unableToLoadImage": "Impossibile caricare l'immagine"
},
"fluxReduxImageInfluence": {
"high": "Alta",
"low": "Basso",
"imageInfluence": "Influenza dell'immagine",
"lowest": "Il più basso",
"medium": "Medio",
"highest": "La più alta"
}
},
"ui": {
@@ -2399,8 +2444,8 @@
"watchRecentReleaseVideos": "Guarda i video su questa versione",
"watchUiUpdatesOverview": "Guarda le novità dell'interfaccia",
"items": [
"Flussi di lavoro: supporto per menu a discesa di stringhe personalizzate nel Generatore di Flussi di lavoro.",
"FLUX: supporto per FLUX Fill in Flussi di lavoro e Tela."
"GPU Nvidia 50xx: Invoke utilizza PyTorch 2.7.0, necessario per queste GPU.",
"Relazioni tra modelli: collega i LoRA ai modelli principali e i LoRA verranno visualizzati per primi nell'elenco."
]
},
"system": {

View File

@@ -118,7 +118,15 @@
"value": "値",
"label": "ラベル",
"saveChanges": "変更を保存",
"error_withCount_other": "{{count}} 個のエラー"
"error_withCount_other": "{{count}} 個のエラー",
"noMatches": "合致しません",
"model_withCount_other": "{{count}}個のモデル",
"noOptions": "オプションがありません",
"search": "検索",
"clear": "クリア",
"compactView": "コンパクトビュー",
"fullView": "フルビュー",
"options_withCount_other": "{{count}}個のオプション"
},
"gallery": {
"galleryImageSize": "画像のサイズ",
@@ -583,7 +591,7 @@
"deleteModelImage": "モデル画像を削除",
"hfTokenInvalid": "ハギングフェイストークンが無効または見つかりません",
"hfForbiddenErrorMessage": "リポジトリにアクセスすることを勧めます.所有者はダウンロードにあたり利用規約への同意を要求する場合があります.",
"noModelsInstalled": "インストールされているモデルなし",
"noModelsInstalled": "インストールされているモデルがありません",
"pathToConfig": "設定へのパス",
"noModelsInstalledDesc1": "モデルを一緒にインストール",
"pruneTooltip": "完了したインポートをキューから削除",
@@ -639,7 +647,12 @@
"urlUnauthorizedErrorMessage": "このモデルにアクセスするためにAPIトークンを構成する必要があるかもしれません.",
"urlUnauthorizedErrorMessage2": "ここでどうやるか学びます.",
"inplaceInstall": "定位置にインストール",
"fileSize": "ファイルサイズ"
"fileSize": "ファイルサイズ",
"modelPickerFallbackNoModelsInstalled2": "<LinkComponent>モデルマネージャー</LinkComponent> にアクセスしてモデルをインストールしてください.",
"filterModels": "フィルターモデル",
"modelPickerFallbackNoModelsInstalled": "モデルがインストールされていません.",
"manageModels": "モデル管理",
"hfTokenReset": "ハギングフェイストークンリセット"
},
"parameters": {
"images": "画像",
@@ -684,7 +697,28 @@
"collectionNumberGTMax": "{{value}} > {{maximum}} (最大増加)",
"missingNodeTemplate": "ノードテンプレートの欠落",
"batchNodeNotConnected": "バッチノードが: {{label}}につながっていない",
"collectionNumberLTMin": "{{value}} < {{minimum}} (最小増加)"
"collectionNumberLTMin": "{{value}} < {{minimum}} (最小増加)",
"fluxModelIncompatibleScaledBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), スケーリングされたbboxの高さは{{height}}です",
"fluxModelMultipleControlLoRAs": "コントロールLoRAは1度に1つしか使用できません",
"noPrompts": "プロンプトが生成されません",
"noNodesInGraph": "グラフにノードがありません",
"noCLIPEmbedModelSelected": "FLUX生成にCLIPエンベッドモデルが選択されていません",
"canvasIsFiltering": "キャンバスがビジー状態(フィルタリング)",
"canvasIsCompositing": "キャンバスがビジー状態(合成)",
"systemDisconnected": "システムが切断されました",
"fluxModelIncompatibleScaledBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), 拡大縮小されたbboxの幅は{{width}}です",
"canvasIsTransforming": "キャンバスがビジー状態(変換)",
"canvasIsRasterizing": "キャンバスがビジー状態(ラスタライズ)",
"modelIncompatibleBboxHeight": "Bboxの高さは{{height}}ですが,{{model}}は{{multiple}}の倍数が必要です",
"modelIncompatibleScaledBboxHeight": "bboxの高さは{{height}}ですが,{{model}}は{{multiple}}の倍数を必要です",
"modelIncompatibleBboxWidth": "Bboxの幅は{{width}}ですが, {{model}}は{{multiple}}の倍数が必要です",
"modelIncompatibleScaledBboxWidth": "bboxの幅は{{width}}ですが,{{model}}は{{multiple}}の倍数が必要です",
"canvasIsSelectingObject": "キャンバスがビジー状態(オブジェクトの選択)",
"fluxModelIncompatibleBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), bboxの幅は{{width}}です",
"fluxModelIncompatibleBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), bboxの高さは{{height}}です",
"noFLUXVAEModelSelected": "FLUX生成にVAEモデルが選択されていません",
"noT5EncoderModelSelected": "FLUX生成にT5エンコーダモデルが選択されていません",
"modelDisabledForTrial": "{{modelName}} を使用した生成はトライアルアカウントではご利用いただけません.アカウント設定にアクセスしてアップグレードしてください。"
},
"aspect": "縦横比",
"lockAspectRatio": "縦横比を固定",
@@ -716,7 +750,24 @@
"cfgRescaleMultiplier": "CFGリスケール倍率",
"clipSkip": "クリップスキップ",
"guidance": "ガイダンス",
"infillMethod": "充填法"
"infillMethod": "充填法",
"patchmatchDownScaleSize": "ダウンスケール",
"boxBlur": "ボックスぼかし",
"remixImage": "リミックス画像",
"processImage": "プロセス画像",
"useCpuNoise": "CPUイズの使用",
"staged": "ステージ",
"perlinNoise": "パーリン・ノイズ(グラデーションノイズ)",
"imageActions": "画像処理",
"gaussianBlur": "ガウスぼかし",
"noiseThreshold": "ノイズの閾値",
"maskBlur": "マスクぼかし",
"seamlessYAxis": "シームレスなY軸",
"optimizedImageToImage": "イメージ to イメージの最適化",
"symmetry": "左右対称",
"seamlessXAxis": "シームレスなX軸",
"sendToCanvas": "キャンバスに送る",
"modelDisabledForTrial": "{{modelName}} を使用した生成はトライアルアカウントではご利用いただけません.アップグレードするには,<LinkComponent>アカウント設定</LinkComponent> にアクセスしてください."
},
"settings": {
"models": "モデル",
@@ -728,16 +779,100 @@
"resetComplete": "WebUIはリセットされました。",
"ui": "ユーザーインターフェイス",
"beta": "ベータ",
"developer": "開発者"
"developer": "開発者",
"antialiasProgressImages": "アンチエイリアスの経過画像",
"enableInformationalPopovers": "情報ポップオーバーを有効にする",
"enableModelDescriptions": "ドロップダウンでモデルの説明を有効にする",
"confirmOnNewSession": "新しいセッションで確認する",
"informationalPopoversDisabled": "情報ポップオーバーが無効になっています",
"informationalPopoversDisabledDesc": "情報ポップオーバーが無効になっています.設定で有効にしてください.",
"enableNSFWChecker": "NSFWチェッカーを有効にする",
"enableInvisibleWatermark": "目に見えない透かしを有効にする",
"enableHighlightFocusedRegions": "重点領域を強調表示",
"clearIntermediatesDesc1": "中間物をクリアすると、キャンバスとコントロールネットの状態がリセットされます.",
"showProgressInViewer": "ビューアで進行状況画像を表示する",
"modelDescriptionsDisabled": "ドロップダウンのモデル説明が無効になっています",
"modelDescriptionsDisabledDesc": "ドロップダウンのモデル説明が無効になっています.設定で有効にしてください.",
"clearIntermediatesDisabled": "中間物をクリアするにはキューが空でなければなりません",
"clearIntermediatesDesc2": "中間画像は生成時に生成される副産物であり、ギャラリーに表示される結果画像とは異なります.中間画像を削除するとディスク容量が解放されます.",
"intermediatesClearedFailed": "中間物をクリアする問題",
"reloadingIn": "リロード中",
"clearIntermediatesDesc3": "ギャラリー画像は削除されません.",
"clearIntermediates": "中間物をクリア",
"clearIntermediatesWithCount_other": "{{count}} 個の中間物をクリア",
"intermediatesCleared_other": "{{count}}個の中間物がクリアされました",
"general": "一般",
"generation": "生成",
"showDetailedInvocationProgress": "進捗状況の詳細を表示"
},
"toast": {
"uploadFailed": "アップロード失敗",
"imageCopied": "画像をコピー",
"imageUploadFailed": "画像のアップロードに失敗しました",
"uploadFailedInvalidUploadDesc": "画像はPNGかJPGである必要があります",
"uploadFailedInvalidUploadDesc": "画像はPNGかJPGかWEBPである必要があります .",
"sentToUpscale": "アップスケーラーに転送しました",
"imageUploaded": "画像をアップロードしました",
"serverError": "サーバーエラー"
"serverError": "サーバーエラー",
"prunedQueue": "キューを破棄",
"workflowDeleted": "ワークフローが削除されました",
"unableToLoadStylePreset": "スタイルプリセットをロードできません",
"loadedWithWarnings": "ワークフローが警告付きでロードされました",
"parameters": "パラメーター",
"parameterSet": "パラメーターが呼び出されました",
"pasteSuccess": "{{destination}} に貼り付けました",
"imagesWillBeAddedTo": "アップロードされた画像はボード {{boardName}} のアセットに追加されます.",
"layerCopiedToClipboard": "レイヤーがクリップボードにコピーされました",
"pasteFailed": "貼り付け失敗",
"imageSavingFailed": "画像保存に失敗しました",
"importSuccessful": "インポートが成功しました",
"problemDownloadingImage": "画像をダウンロードできません",
"modelAddedSimple": "モデルがキューに追加されました",
"uploadFailedInvalidUploadDesc_withCount_other": "PNG、JPEG、または WEBP 画像は最大 1 つにする必要があります.",
"outOfMemoryErrorDesc": "現在の生成設定はシステム容量を超えています.設定を調整してもう一度お試しください.",
"parametersSet": "パラメーターが呼び出されました",
"modelImportCanceled": "モデルのインポートがキャンセルされました",
"problemRetrievingWorkflow": "ワークフローを取得した問題",
"problemUnpublishingWorkflow": "取り消されたワークフローの問題",
"parametersNotSet": "パラメーターが呼び出されていません",
"problemCopyingImage": "画像をコピーできません",
"baseModelChanged": "ベースモデルが変更されました",
"baseModelChangedCleared_other": "{{count}} 個の互換性のないサブモデルをクリア,または無効にしました",
"canceled": "処理がキャンセルされました",
"connected": "サーバーに接続されました",
"linkCopied": "リンクがコピーされました",
"unableToLoadImage": "画像をロードできません",
"unableToLoadImageMetadata": "画像のメタデータをロードできません",
"imageSaved": "画像が保存されました",
"importFailed": "インポートに失敗しました",
"invalidUpload": "無効なアップロードです",
"outOfMemoryError": "メモリ不足エラー",
"parameterSetDesc": "{{parameter}}を呼び出し",
"errorCopied": "エラーがコピーされました",
"sentToCanvas": "キャンバスに送信",
"setControlImage": "コントロール画像としてセット",
"workflowLoaded": "ワークフローがロードされました",
"unableToCopy": "コピーできません",
"unableToCopyDesc": "あなたのブラウザはクリップボードアクセスをサポートしていません.Firefoxユーザーの場合は、以下の手順で修正できる可能性があります. ",
"fluxFillIncompatibleWithT2IAndI2I": "FLUX Fillは、テキストから画像へ、または画像から画像へ変換機能と互換性がありません.これらのタスクには、他のFLUXモデルをご利用ください.",
"problemUnpublishingWorkflowDescription": "取り下げられたワークフローの問題がありました.もう一度試してください.",
"workflowUnpublished": "ワークフローが取り消されました",
"sessionRef": "セッション: {{sessionId}}",
"somethingWentWrong": "問題が発生しました",
"unableToCopyDesc_theseSteps": "これらのステップ数",
"stylePresetLoaded": "スタイルプリセットがロードされました",
"parameterNotSetDescWithMessage": "{{parameter}}: {{message}}を呼び出せません",
"problemCopyingLayer": "レイヤーをコピーできません",
"problemSavingLayer": "レイヤー保存ができません",
"setNodeField": "ノードフィールドとしてセット",
"layerSavedToAssets": "レイヤーがアセットに保存されました",
"outOfMemoryErrorDescLocal": "OOM を削減するには、<LinkComponent>低 VRAM ガイド</LinkComponent> に従ってください.",
"parameterNotSet": "パラメーターが呼び出されていません",
"addedToBoard": "{{name}} 個の資産をボードに追加しました",
"addedToUncategorized": "$t(boards.uncategorized)個のアセットがボードに追加されました",
"problemDeletingWorkflow": "ワークフローが削除された問題",
"imageNotLoadedDesc": "画像を見つけられません",
"parameterNotSetDesc": "{{parameter}}を呼び出せません",
"chatGPT4oIncompatibleGenerationMode": "ChatGPT 4oは,テキストから画像への生成と画像から画像への生成のみをサポートしています.インペインティングおよび,アウトペインティングタスクには他のモデルを使用してください."
},
"accessibility": {
"invokeProgressBar": "進捗バー",
@@ -862,7 +997,8 @@
"batchSize": "バッチサイズ",
"retryFailed": "項目のリトライに問題があります",
"cancelAllExceptCurrentQueueItemAlertDialog": "現在の項目を除くすべてのキュー項目をキャンセルすると、保留中の項目は停止しますが、進行中の項目は完了します。",
"retrySucceeded": "項目がリトライされました"
"retrySucceeded": "項目がリトライされました",
"credits": "クレジット"
},
"models": {
"noMatchingModels": "一致するモデルがありません",
@@ -1114,22 +1250,42 @@
]
},
"regionalGuidanceAndReferenceImage": {
"heading": "領域ガイダンスと領域参照画像"
"heading": "領域ガイダンスと領域参照画像",
"paragraphs": [
"領域ガイダンスの場合は,ブラシを使用して,グローバルプロンプトの要素が表示される場所をガイドします.",
"領域参照画像の場合は,ブラシを使用して特定の領域に参照画像を適用します."
]
},
"regionalReferenceImage": {
"heading": "領域参照画像"
"heading": "領域参照画像",
"paragraphs": [
"特定の領域に参照画像を適用するためのブラシ."
]
},
"paramScheduler": {
"heading": "スケジューラー"
"heading": "スケジューラー",
"paragraphs": [
"スケジューラーは生成中のプロセスで使用されます.",
"各スケジューラは、画像にノイズを反復的に追加する方法や、モデルの出力に基づいてサンプルを更新する方法を定義します."
]
},
"regionalGuidance": {
"heading": "領域ガイダンス"
"heading": "領域ガイダンス",
"paragraphs": [
"グローバルプロンプトの要素が表示される場所をガイドするブラシ."
]
},
"rasterLayer": {
"heading": "ラスターレイヤー"
"heading": "ラスターレイヤー",
"paragraphs": [
"画像生成中に使用される,キャンバスのピクセルベースのコンテンツ."
]
},
"globalReferenceImage": {
"heading": "全域参照画像"
"heading": "全域参照画像",
"paragraphs": [
"参照画像を適用して,生成全体に影響を及ぼします."
]
},
"paramUpscaleMethod": {
"heading": "アップスケール手法"
@@ -1153,7 +1309,10 @@
"heading": "スケジューラー"
},
"compositingCoherenceMode": {
"heading": "モード"
"heading": "モード",
"paragraphs": [
"新しく生成されたマスク領域と,一貫性のある画像を作成するために使用される方法."
]
},
"paramModel": {
"heading": "モデル"
@@ -1165,7 +1324,10 @@
"heading": "ステップ"
},
"ipAdapterMethod": {
"heading": "モード"
"heading": "モード",
"paragraphs": [
"モードは参照画像が生成プロセスをどのようにガイドするかを定義します."
]
},
"paramSeed": {
"heading": "シード"
@@ -1174,7 +1336,10 @@
"heading": "生成回数"
},
"controlNet": {
"heading": "ControlNet"
"heading": "ControlNet",
"paragraphs": [
"コントロールネットは生成プロセスへのガイダンスを提供し,選択したモデルに応じて制御された構成,構造,またはスタイルを持つ画像の作成に役立ちます."
]
},
"paramWidth": {
"heading": "幅"
@@ -1189,7 +1354,109 @@
"heading": "Downscale"
},
"controlNetWeight": {
"heading": "重み"
"heading": "重み",
"paragraphs": [
"レイヤーが生成プロセスにどの程度影響を与えるかを調整します",
"• 高いウエイト (.75-2): 最終結果にさらに大きな影響を及ぼします.",
"• 低いウエイト (0-.75): 最終結果への影響が小さくなります."
]
},
"paramNegativeConditioning": {
"paragraphs": [
"生成プロセスでは、ネガティブプロンプトに含まれる概念を回避します.これを使用して、出力から特定の性質やオブジェクトを除外します.",
"強制された構文と埋め込みをサポート."
],
"heading": "ネガティブプロンプト"
},
"clipSkip": {
"paragraphs": [
"スキップする CLIP モデルのレイヤー数.",
"特定のモデルは、CLIP Skip と併用するとより適しています."
],
"heading": "クリップスキップ"
},
"compositingMaskBlur": {
"heading": "マスクぼかし",
"paragraphs": [
"マスクのぼかし半径."
]
},
"paramPositiveConditioning": {
"paragraphs": [
"生成プロセスをガイドします.任意の単語やフレーズを使用できます.",
"強制とダイナミックプロンプトの構文と埋め込み."
],
"heading": "ポジティブプロンプト"
},
"compositingMaskAdjustments": {
"heading": "マスク調整",
"paragraphs": [
"マスクを調整する."
]
},
"compositingCoherenceMinDenoise": {
"paragraphs": [
"コヒーレンスモードの最小ノイズ除去強度",
"インペインティングまたはアウトペインティング時のコヒーレンス領域の最小ノイズ除去強度"
],
"heading": "最小ノイズ除去"
},
"compositingCoherencePass": {
"paragraphs": [
"2 回目のノイズ除去は,インペイント/アウトペイントされた画像の合成に役立ちます."
],
"heading": "コヒーレンスパス"
},
"controlNetBeginEnd": {
"paragraphs": [
"この設定は,ノイズ除去 (生成) プロセスのどの部分にこのレイヤーからのガイダンスが組み込まれるかを決定します.",
"• 開始ステップ (%): 生成プロセス中にこのレイヤーからのガイダンスの適用を開始するタイミングを指定します.",
"• 終了ステップ (%): このレイヤーのガイダンスの適用を停止し,モデルやその他の設定からの一般的なガイダンスを元に戻すタイミングを指定します."
],
"heading": "開始/終了ステップの割合"
},
"compositingCoherenceEdgeSize": {
"heading": "エッジサイズ",
"paragraphs": [
"コヒーレンスパスのエッジサイズ."
]
},
"compositingBlurMethod": {
"paragraphs": [
"マスクされた領域に適用されるぼかし方法."
],
"heading": "ぼかし方法"
},
"inpainting": {
"heading": "インペインティング",
"paragraphs": [
"ノイズ除去の強度に応じて,変更する領域を制御します."
]
},
"dynamicPrompts": {
"heading": "ダイナミックプロンプト",
"paragraphs": [
"ダイナミック プロンプトは,単一のプロンプトを複数のプロンプトに解析します.",
"基本的な構文は「{赤|緑|青}のボール」です.これにより,「赤いボール」「緑のボール」「青いボール」という3つのプロンプトが生成されます."
]
},
"controlNetResizeMode": {
"heading": "リサイズモード",
"paragraphs": [
"コントロールアダプタの入力画像サイズを出力生成サイズに適合させるメソッド."
]
},
"controlNetProcessor": {
"heading": "プロセッサー",
"paragraphs": [
"入力画像を処理する生成プロセスをガイドするメソッド.プロセッサによって,生成される画像に異なる効果やスタイルが与えられます。"
]
},
"controlNetControlMode": {
"heading": "コントロールモード",
"paragraphs": [
"プロンプトまたは コントロールネットのいずれかを重視します."
]
}
},
"accordions": {
@@ -1340,7 +1607,18 @@
"scheduler": "スケジューラー",
"loading": "ロード中...",
"steps": "ステップ",
"refiner": "Refiner"
"refiner": "Refiner",
"negStylePrompt": "ネガティブスタイルプロンプト",
"noModelsAvailable": "利用できるモデルがありません",
"posStylePrompt": "ポジティブスタイルプロンプト",
"cfgScale": "CFGスケール",
"concatPromptStyle": "リンキングプロンプトとスタイル",
"freePromptStyle": "手動スタイルプロンプト",
"posAestheticScore": "ポジティブ美的スコア",
"refinerSteps": "リファイナーステップ",
"refinerStart": "リファイナースタート",
"refinermodel": "リファイナーモデル",
"negAestheticScore": "ネガティブ美的スコア"
},
"modelCache": {
"clear": "モデルキャッシュを消去",
@@ -1370,5 +1648,20 @@
"fatal": "Fatal",
"warn": "Warn"
}
},
"dynamicPrompts": {
"promptsPreview": "プロンプトプレビュー",
"seedBehaviour": {
"label": "シードの挙動",
"perPromptLabel": "画像ごとのシード",
"perIterationLabel": "いてレーションごとのシード",
"perPromptDesc": "それぞれの画像に足して別のシードを使う",
"perIterationDesc": "それぞれのいてレーションに別のシードを使う"
},
"showDynamicPrompts": "ダイナミックプロンプトを表示する",
"promptsToGenerate": "生成するプロンプト",
"dynamicPrompts": "ダイナミックプロンプト",
"loading": "ダイナミックプロンプトを生成...",
"maxPrompts": "最大プロンプト"
}
}

View File

@@ -240,7 +240,15 @@
"error_withCount_other": "{{count}} lỗi",
"value": "Giá Trị",
"label": "Nhãn Tên",
"systemInformation": "Thông Tin Hệ Thống"
"systemInformation": "Thông Tin Hệ Thống",
"model_withCount_other": "{{count}} model",
"noOptions": "Không Có Lựa Chọn",
"noMatches": "Không Có Mục Phù Hợp",
"search": "Tìm Kiếm",
"clear": "Dọn Dẹp",
"compactView": "Chế Độ Xem Gọn",
"fullView": "Chế Độ Xem Đầy Đủ",
"options_withCount_other": "{{count}} thiết lập"
},
"prompt": {
"addPromptTrigger": "Thêm Prompt Trigger",
@@ -321,7 +329,8 @@
"confirm": "Đồng Ý",
"retrySucceeded": "Mục Đã Thử Lại",
"retryFailed": "Có Vấn Đề Khi Thử Lại Mục",
"retryItem": "Thử Lại Mục"
"retryItem": "Thử Lại Mục",
"credits": "Nguồn"
},
"hotkeys": {
"canvas": {
@@ -775,7 +784,14 @@
"fluxRedux": "FLUX Redux",
"sigLip": "SigLIP",
"llavaOnevision": "LLaVA OneVision",
"fileSize": "Kích Thước Tệp"
"fileSize": "Kích Thước Tệp",
"filterModels": "Lọc Model",
"modelPickerFallbackNoModelsInstalled2": "Nhấp vào <LinkComponent>Trình Quản Lý Model</LinkComponent> để tải.",
"modelPickerFallbackNoModelsInstalled": "Không Có Sẵn Model.",
"manageModels": "Quản Lý Model",
"hfTokenReset": "Làm Mới HF Token",
"relatedModels": "Model Liên Quan",
"showOnlyRelatedModels": "Liên Quan"
},
"metadata": {
"guidance": "Hướng Dẫn",
@@ -1518,7 +1534,8 @@
"modelIncompatibleBboxWidth": "Chiều rộng hộp giới hạn là {{width}} nhưng {{model}} yêu cầu bội số của {{multiple}}",
"modelIncompatibleBboxHeight": "Chiều dài hộp giới hạn là {{height}} nhưng {{model}} yêu cầu bội số của {{multiple}}",
"modelIncompatibleScaledBboxHeight": "Chiều dài hộp giới hạn theo tỉ lệ là {{height}} nhưng {{model}} yêu cầu bội số của {{multiple}}",
"modelIncompatibleScaledBboxWidth": "Chiều rộng hộp giới hạn theo tỉ lệ là {{width}} nhưng {{model}} yêu cầu bội số của {{multiple}}"
"modelIncompatibleScaledBboxWidth": "Chiều rộng hộp giới hạn theo tỉ lệ là {{width}} nhưng {{model}} yêu cầu bội số của {{multiple}}",
"modelDisabledForTrial": "Tạo sinh với {{modelName}} là không thể với tài khoản trial. Vào phần thiết lập tài khoản để nâng cấp."
},
"cfgScale": "Thang CFG",
"useSeed": "Dùng Hạt Giống",
@@ -1581,7 +1598,8 @@
"usePrompt": "Dùng Lệnh",
"upscaling": "Upscale",
"tileSize": "Kích Thước Khối",
"disabledNoRasterContent": "Đã Tắt (Không Có Nội Dung Dạng Raster)"
"disabledNoRasterContent": "Đã Tắt (Không Có Nội Dung Dạng Raster)",
"modelDisabledForTrial": "Tạo sinh với {{modelName}} là không thể với tài khoản trial. Vào phần <LinkComponent>thiết lập tài khoản</LinkComponent> để nâng cấp."
},
"dynamicPrompts": {
"seedBehaviour": {
@@ -1699,12 +1717,16 @@
"fitBboxToLayers": "Xếp Vừa Hộp Giới Hạn Vào Layer",
"ipAdapterMethod": {
"full": "Phong Cách Và Thành Phần",
"style": "Chỉ Lấy Phong Cách",
"style": "Phong Cách (Đơn Giản)",
"composition": "Chỉ Lấy Thành Phần",
"ipAdapterMethod": "Cách Thức",
"compositionDesc": "Áp dụng cách trình bày và bỏ qua phong cách mẫu.",
"fullDesc": "Áp dụng phong cách trực quan (màu, cấu tạo) & thành phần (cách trình bày).",
"styleDesc": "Áp dụng phong cách trực quan (màu, cấu tạo) và bỏ qua cách trình bày."
"styleDesc": "Áp dụng phong cách trực quan (màu, cấu tạo) và bỏ qua cách trình bày. Tên trước đây là Chỉ Lấy Phong Cách.",
"styleStrong": "Phong Cách (Mạnh Mẽ)",
"styleStrongDesc": "Áp dụng cách trình bày mạnh mẽ, với một chút giảm nhẹ ảnh hưởng lên thành phần.",
"stylePrecise": "Phong Cách (Chính Xác)",
"stylePreciseDesc": "Áp dụng cách trình bày chính xác, loại bỏ các chủ thể ảnh hưởng."
},
"deletePrompt": "Xoá Lệnh",
"rasterLayer": "Layer Dạng Raster",
@@ -2226,7 +2248,8 @@
"fluxFillIncompatibleWithT2IAndI2I": "FLUX Fill không tương tích với Từ Ngữ Sang Hình Ảnh và Hình Ảnh Sang Hình Ảnh. Dùng model FLUX khác cho các tính năng này.",
"problemUnpublishingWorkflowDescription": "Có vấn đề khi ngừng đăng tải workflow. Vui lòng thử lại sau.",
"workflowUnpublished": "Workflow Đã Được Ngừng Đăng Tải",
"problemUnpublishingWorkflow": "Có Vấn Đề Khi Ngừng Đăng Tải Workflow"
"problemUnpublishingWorkflow": "Có Vấn Đề Khi Ngừng Đăng Tải Workflow",
"chatGPT4oIncompatibleGenerationMode": "ChatGPT 4o chỉ hỗ trợ Từ Ngữ Sang Hình Ảnh và Hình Ảnh Sang Hình Ảnh. Hãy dùng model khác cho các tác vụ Inpaint và Outpaint."
},
"ui": {
"tabs": {
@@ -2408,8 +2431,8 @@
"watchRecentReleaseVideos": "Xem Video Phát Hành Mới Nhất",
"watchUiUpdatesOverview": "Xem Tổng Quan Về Những Cập Nhật Cho Giao Diện Người Dùng",
"items": [
"Workflow: Hỗ trợ xâu ký tự thả xuống tùy chỉnh trong Trình Tạo Vùng Nhập.",
"FLUX: Hỗ trợ FLUX Fill trong Workflow và Canvas."
"Nvidia 50xx GPUs: Invoke sử dụng PyTorch 2.7.0, thứ tối quan trọng cho những GPU trên.",
"Mối Quan Hệ Model: Kết nối LoRA với model chính, và LoRA đó sẽ được hiển thị đầu danh sách."
]
},
"upsell": {

View File

@@ -5,6 +5,7 @@ import type { StudioInitAction } from 'app/hooks/useStudioInitAction';
import { $didStudioInit } from 'app/hooks/useStudioInitAction';
import type { LoggingOverrides } from 'app/logging/logger';
import { $loggingOverrides, configureLogging } from 'app/logging/logger';
import { $accountSettingsLink } from 'app/store/nanostores/accountSettingsLink';
import { $authToken } from 'app/store/nanostores/authToken';
import { $baseUrl } from 'app/store/nanostores/baseUrl';
import { $customNavComponent } from 'app/store/nanostores/customNavComponent';
@@ -12,10 +13,13 @@ import type { CustomStarUi } from 'app/store/nanostores/customStarUI';
import { $customStarUI } from 'app/store/nanostores/customStarUI';
import { $isDebugging } from 'app/store/nanostores/isDebugging';
import { $logo } from 'app/store/nanostores/logo';
import { $onClickGoToModelManager } from 'app/store/nanostores/onClickGoToModelManager';
import { $openAPISchemaUrl } from 'app/store/nanostores/openAPISchemaUrl';
import { $projectId, $projectName, $projectUrl } from 'app/store/nanostores/projectId';
import { $queueId, DEFAULT_QUEUE_ID } from 'app/store/nanostores/queueId';
import { $store } from 'app/store/nanostores/store';
import { $toastMap } from 'app/store/nanostores/toastMap';
import { $whatsNew } from 'app/store/nanostores/whatsNew';
import { createStore } from 'app/store/store';
import type { PartialAppConfig } from 'app/types/invokeai';
import Loading from 'common/components/Loading/Loading';
@@ -29,6 +33,7 @@ import {
DEFAULT_WORKFLOW_LIBRARY_TAG_CATEGORIES,
} from 'features/nodes/store/workflowLibrarySlice';
import type { WorkflowCategory } from 'features/nodes/types/workflow';
import type { ToastConfig } from 'features/toast/toast';
import type { PropsWithChildren, ReactNode } from 'react';
import React, { lazy, memo, useEffect, useLayoutEffect, useMemo } from 'react';
import { Provider } from 'react-redux';
@@ -45,6 +50,7 @@ interface Props extends PropsWithChildren {
token?: string;
config?: PartialAppConfig;
customNavComponent?: ReactNode;
accountSettingsLink?: string;
middleware?: Middleware[];
projectId?: string;
projectName?: string;
@@ -55,10 +61,16 @@ interface Props extends PropsWithChildren {
socketOptions?: Partial<ManagerOptions & SocketOptions>;
isDebugging?: boolean;
logo?: ReactNode;
toastMap?: Record<string, ToastConfig>;
whatsNew?: ReactNode[];
workflowCategories?: WorkflowCategory[];
workflowTagCategories?: WorkflowTagCategory[];
workflowSortOptions?: WorkflowSortOption[];
loggingOverrides?: LoggingOverrides;
/**
* If provided, overrides in-app navigation to the model manager
*/
onClickGoToModelManager?: () => void;
}
const InvokeAIUI = ({
@@ -67,6 +79,7 @@ const InvokeAIUI = ({
token,
config,
customNavComponent,
accountSettingsLink,
middleware,
projectId,
projectName,
@@ -77,10 +90,13 @@ const InvokeAIUI = ({
socketOptions,
isDebugging = false,
logo,
toastMap,
workflowCategories,
workflowTagCategories,
workflowSortOptions,
loggingOverrides,
onClickGoToModelManager,
whatsNew,
}: Props) => {
useLayoutEffect(() => {
/*
@@ -169,6 +185,16 @@ const InvokeAIUI = ({
};
}, [customNavComponent]);
useEffect(() => {
if (accountSettingsLink) {
$accountSettingsLink.set(accountSettingsLink);
}
return () => {
$accountSettingsLink.set(undefined);
};
}, [accountSettingsLink]);
useEffect(() => {
if (openAPISchemaUrl) {
$openAPISchemaUrl.set(openAPISchemaUrl);
@@ -205,6 +231,36 @@ const InvokeAIUI = ({
};
}, [logo]);
useEffect(() => {
if (toastMap) {
$toastMap.set(toastMap);
}
return () => {
$toastMap.set(undefined);
};
}, [toastMap]);
useEffect(() => {
if (whatsNew) {
$whatsNew.set(whatsNew);
}
return () => {
$whatsNew.set(undefined);
};
}, [whatsNew]);
useEffect(() => {
if (onClickGoToModelManager) {
$onClickGoToModelManager.set(onClickGoToModelManager);
}
return () => {
$onClickGoToModelManager.set(undefined);
};
}, [onClickGoToModelManager]);
useEffect(() => {
if (workflowCategories) {
$workflowLibraryCategoriesOptions.set(workflowCategories);

View File

@@ -1,3 +1,4 @@
import type { AlertStatus } from '@invoke-ai/ui-library';
import { createAction } from '@reduxjs/toolkit';
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
@@ -6,11 +7,15 @@ import { withResult, withResultAsync } from 'common/util/result';
import { parseify } from 'common/util/serialize';
import { $canvasManager } from 'features/controlLayers/store/ephemeral';
import { prepareLinearUIBatch } from 'features/nodes/util/graph/buildLinearBatchConfig';
import { buildChatGPT4oGraph } from 'features/nodes/util/graph/generation/buildChatGPT4oGraph';
import { buildCogView4Graph } from 'features/nodes/util/graph/generation/buildCogView4Graph';
import { buildFLUXGraph } from 'features/nodes/util/graph/generation/buildFLUXGraph';
import { buildImagen3Graph } from 'features/nodes/util/graph/generation/buildImagen3Graph';
import { buildImagen4Graph } from 'features/nodes/util/graph/generation/buildImagen4Graph';
import { buildSD1Graph } from 'features/nodes/util/graph/generation/buildSD1Graph';
import { buildSD3Graph } from 'features/nodes/util/graph/generation/buildSD3Graph';
import { buildSDXLGraph } from 'features/nodes/util/graph/generation/buildSDXLGraph';
import { UnsupportedGenerationModeError } from 'features/nodes/util/graph/types';
import { toast } from 'features/toast/toast';
import { serializeError } from 'serialize-error';
import { enqueueMutationFixedCacheKeyOptions, queueApi } from 'services/api/endpoints/queue';
@@ -48,32 +53,52 @@ export const addEnqueueRequestedLinear = (startAppListening: AppStartListening)
return await buildFLUXGraph(state, manager);
case 'cogview4':
return await buildCogView4Graph(state, manager);
case 'imagen3':
return await buildImagen3Graph(state, manager);
case 'imagen4':
return await buildImagen4Graph(state, manager);
case 'chatgpt-4o':
return await buildChatGPT4oGraph(state, manager);
default:
assert(false, `No graph builders for base ${base}`);
}
});
if (buildGraphResult.isErr()) {
let title = 'Failed to build graph';
let status: AlertStatus = 'error';
let description: string | null = null;
if (buildGraphResult.error instanceof AssertionError) {
description = extractMessageFromAssertionError(buildGraphResult.error);
} else if (buildGraphResult.error instanceof UnsupportedGenerationModeError) {
title = 'Unsupported generation mode';
description = buildGraphResult.error.message;
status = 'warning';
}
const error = serializeError(buildGraphResult.error);
log.error({ error }, 'Failed to build graph');
toast({
status: 'error',
title: 'Failed to build graph',
status,
title,
description,
});
return;
}
const { g, noise, posCond } = buildGraphResult.value;
const { g, seedFieldIdentifier, positivePromptFieldIdentifier } = buildGraphResult.value;
const destination = state.canvasSettings.sendToCanvas ? 'canvas' : 'gallery';
const prepareBatchResult = withResult(() =>
prepareLinearUIBatch(state, g, prepend, noise, posCond, 'canvas', destination)
prepareLinearUIBatch({
state,
g,
prepend,
seedFieldIdentifier,
positivePromptFieldIdentifier,
origin: 'canvas',
destination,
})
);
if (prepareBatchResult.isErr()) {
@@ -89,7 +114,7 @@ export const addEnqueueRequestedLinear = (startAppListening: AppStartListening)
await req.unwrap();
log.debug(parseify({ batchConfig: prepareBatchResult.value }), 'Enqueued batch');
} catch (error) {
log.error({ error: serializeError(error) }, 'Failed to enqueue batch');
log.error({ error: serializeError(error as Error) }, 'Failed to enqueue batch');
} finally {
req.reset();
}

View File

@@ -18,16 +18,24 @@ export const addEnqueueRequestedUpscale = (startAppListening: AppStartListening)
const state = getState();
const { prepend } = action.payload;
const { g, noise, posCond } = await buildMultidiffusionUpscaleGraph(state);
const { g, seedFieldIdentifier, positivePromptFieldIdentifier } = await buildMultidiffusionUpscaleGraph(state);
const batchConfig = prepareLinearUIBatch(state, g, prepend, noise, posCond, 'upscaling', 'gallery');
const batchConfig = prepareLinearUIBatch({
state,
g,
prepend,
seedFieldIdentifier,
positivePromptFieldIdentifier,
origin: 'upscaling',
destination: 'gallery',
});
const req = dispatch(queueApi.endpoints.enqueueBatch.initiate(batchConfig, enqueueMutationFixedCacheKeyOptions));
try {
await req.unwrap();
log.debug(parseify({ batchConfig }), 'Enqueued batch');
} catch (error) {
log.error({ error: serializeError(error) }, 'Failed to enqueue batch');
log.error({ error: serializeError(error as Error) }, 'Failed to enqueue batch');
} finally {
req.reset();
}

View File

@@ -0,0 +1,3 @@
import { atom } from 'nanostores';
export const $accountSettingsLink = atom<string | undefined>(undefined);

View File

@@ -0,0 +1,3 @@
import { atom } from 'nanostores';
export const $onClickGoToModelManager = atom<(() => void) | undefined>(undefined);

View File

@@ -0,0 +1,4 @@
import type { ToastConfig } from 'features/toast/toast';
import { atom } from 'nanostores';
export const $toastMap = atom<Record<string, ToastConfig> | undefined>(undefined);

View File

@@ -0,0 +1,4 @@
import { atom } from 'nanostores';
import type { ReactNode } from 'react';
export const $whatsNew = atom<ReactNode[] | undefined>(undefined);

View File

@@ -145,7 +145,10 @@ const unserialize: UnserializeFunction = (data, key) => {
);
return transformed;
} catch (err) {
log.warn({ error: serializeError(err) }, `Error rehydrating slice "${key}", falling back to default initial state`);
log.warn(
{ error: serializeError(err as Error) },
`Error rehydrating slice "${key}", falling back to default initial state`
);
return persistConfig.initialState;
}
};

View File

@@ -28,7 +28,8 @@ export type AppFeature =
| 'starterModels'
| 'hfToken'
| 'retryQueueItem'
| 'cancelAndClearAll';
| 'cancelAndClearAll'
| 'chatGPT4oHigh';
/**
* A disable-able Stable Diffusion feature
*/
@@ -83,6 +84,7 @@ export type AppConfig = {
metadataFetchDebounce?: number;
workflowFetchDebounce?: number;
isLocal?: boolean;
shouldShowCredits: boolean;
sd: {
defaultModel?: string;
disabledControlNetModels: string[];

File diff suppressed because it is too large Load Diff

View File

@@ -83,7 +83,7 @@ export const useImageUploadButton = ({ onUpload, isDisabled, allowMultiple }: Us
}
} else {
let imageDTOs: ImageDTO[] = [];
if (isClientSideUploadEnabled) {
if (isClientSideUploadEnabled && files.length > 1) {
imageDTOs = await Promise.all(files.map((file, i) => clientSideUpload(file, i)));
} else {
imageDTOs = await uploadImages(

View File

@@ -38,7 +38,7 @@ export const useModelCombobox = <T extends AnyModelConfig>(arg: UseModelCombobox
}, [optionsFilter, getIsDisabled, modelConfigs, shouldShowModelDescriptions]);
const value = useMemo(
() => options.find((m) => (selectedModel ? m.value === selectedModel.key : false)),
() => options.find((m) => (selectedModel ? m.value === selectedModel.key : false)) ?? null,
[options, selectedModel]
);

View File

@@ -0,0 +1,92 @@
import type { ComboboxOnChange, ComboboxOption } from '@invoke-ai/ui-library';
import type { GroupBase } from 'chakra-react-select';
import type { ModelIdentifierField } from 'features/nodes/types/common';
import { useTranslation } from 'react-i18next';
import type { AnyModelConfig } from 'services/api/types';
import { useGroupedModelCombobox } from './useGroupedModelCombobox';
import { useRelatedModelKeys } from './useRelatedModelKeys';
import { useSelectedModelKeys } from './useSelectedModelKeys';
type UseRelatedGroupedModelComboboxArg<T extends AnyModelConfig> = {
modelConfigs: T[];
selectedModel?: ModelIdentifierField | null;
onChange: (value: T | null) => void;
getIsDisabled?: (model: T) => boolean;
isLoading?: boolean;
groupByType?: boolean;
};
// Custom hook to overlay the grouped model combobox with related models on top!
// Cleaner than hooking into useGroupedModelCombobox with a flag to enable/disable the related models
// Also allows for related models to be shown conditionally with some pretty simple logic if it ends up as a config flag.
type UseRelatedGroupedModelComboboxReturn = {
value: ComboboxOption | undefined | null;
options: GroupBase<ComboboxOption>[];
onChange: ComboboxOnChange;
placeholder: string;
noOptionsMessage: () => string;
};
export function useRelatedGroupedModelCombobox<T extends AnyModelConfig>({
modelConfigs,
selectedModel,
onChange,
isLoading = false,
getIsDisabled,
groupByType,
}: UseRelatedGroupedModelComboboxArg<T>): UseRelatedGroupedModelComboboxReturn {
const { t } = useTranslation();
const selectedKeys = useSelectedModelKeys();
const relatedKeys = useRelatedModelKeys(selectedKeys);
// Base grouped options
const base = useGroupedModelCombobox({
modelConfigs,
selectedModel,
onChange,
getIsDisabled,
isLoading,
groupByType,
});
// If no related models selected, just return base
if (relatedKeys.size === 0) {
return base;
}
const relatedOptions: ComboboxOption[] = [];
const updatedGroups: GroupBase<ComboboxOption>[] = [];
for (const group of base.options) {
const remainingOptions: ComboboxOption[] = [];
for (const option of group.options) {
if (relatedKeys.has(option.value)) {
relatedOptions.push({ ...option, label: `* ${option.label}` });
} else {
remainingOptions.push(option);
}
}
if (remainingOptions.length > 0) {
updatedGroups.push({
label: group.label,
options: remainingOptions,
});
}
}
const finalOptions: GroupBase<ComboboxOption>[] =
relatedOptions.length > 0
? [{ label: t('modelManager.relatedModels'), options: relatedOptions }, ...updatedGroups]
: updatedGroups;
return {
...base,
options: finalOptions,
};
}

View File

@@ -0,0 +1,14 @@
import { useMemo } from 'react';
import { useGetRelatedModelIdsBatchQuery } from 'services/api/endpoints/modelRelationships';
/**
* Fetches related model keys for a given set of selected model keys.
* Returns a Set<string> for fast lookup.
*/
export const useRelatedModelKeys = (selectedKeys: Set<string>) => {
const { data: related = [] } = useGetRelatedModelIdsBatchQuery([...selectedKeys], {
skip: selectedKeys.size === 0,
});
return useMemo(() => new Set(related), [related]);
};

View File

@@ -0,0 +1,34 @@
import { useAppSelector } from 'app/store/storeHooks';
/**
* Gathers all currently selected model keys from parameters and loras.
* This includes the main model, VAE, refiner model, controlnet, and loras.
*/
export const useSelectedModelKeys = () => {
return useAppSelector((state) => {
const keys = new Set<string>();
const main = state.params.model;
const vae = state.params.vae;
const refiner = state.params.refinerModel;
const controlnet = state.params.controlLora;
const loras = state.loras.loras.map((l) => l.model);
if (main) {
keys.add(main.key);
}
if (vae) {
keys.add(vae.key);
}
if (refiner) {
keys.add(refiner.key);
}
if (controlnet) {
keys.add(controlnet.key);
}
for (const lora of loras) {
keys.add(lora.key);
}
return keys;
});
};

View File

@@ -1,6 +1,10 @@
/* eslint-disable @typescript-eslint/no-explicit-any */
import { memo } from 'react';
/**
* A typed version of React.memo, useful for components that take generics.
*/
export const typedMemo: <T>(c: T) => T = memo;
export const typedMemo: <T extends keyof JSX.IntrinsicElements | React.JSXElementConstructor<any>>(
component: T,
propsAreEqual?: (prevProps: React.ComponentProps<T>, nextProps: React.ComponentProps<T>) => boolean
) => T & { displayName?: string } = memo;

View File

@@ -24,6 +24,7 @@ export const CanvasAddEntityButtons = memo(() => {
const isReferenceImageEnabled = useIsEntityTypeEnabled('reference_image');
const isRegionalGuidanceEnabled = useIsEntityTypeEnabled('regional_guidance');
const isControlLayerEnabled = useIsEntityTypeEnabled('control_layer');
const isInpaintLayerEnabled = useIsEntityTypeEnabled('inpaint_mask');
return (
<Flex w="full" h="full" justifyContent="center" gap={4}>
@@ -52,6 +53,7 @@ export const CanvasAddEntityButtons = memo(() => {
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addInpaintMask}
isDisabled={!isInpaintLayerEnabled}
>
{t('controlLayers.inpaintMask')}
</Button>

View File

@@ -25,6 +25,7 @@ export const EntityListGlobalActionBarAddLayerMenu = memo(() => {
const isReferenceImageEnabled = useIsEntityTypeEnabled('reference_image');
const isRegionalGuidanceEnabled = useIsEntityTypeEnabled('regional_guidance');
const isControlLayerEnabled = useIsEntityTypeEnabled('control_layer');
const isInpaintLayerEnabled = useIsEntityTypeEnabled('inpaint_mask');
return (
<Menu>
@@ -46,7 +47,7 @@ export const EntityListGlobalActionBarAddLayerMenu = memo(() => {
</MenuItem>
</MenuGroup>
<MenuGroup title={t('controlLayers.regional')}>
<MenuItem icon={<PiPlusBold />} onClick={addInpaintMask}>
<MenuItem icon={<PiPlusBold />} onClick={addInpaintMask} isDisabled={!isInpaintLayerEnabled}>
{t('controlLayers.inpaintMask')}
</MenuItem>
<MenuItem icon={<PiPlusBold />} onClick={addRegionalGuidance} isDisabled={!isRegionalGuidanceEnabled}>

View File

@@ -0,0 +1,63 @@
import { Combobox, FormControl, Tooltip } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
import { selectBase } from 'features/controlLayers/store/paramsSlice';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { useGlobalReferenceImageModels } from 'services/api/hooks/modelsByType';
import type { AnyModelConfig, ApiModelConfig, FLUXReduxModelConfig, IPAdapterModelConfig } from 'services/api/types';
type Props = {
modelKey: string | null;
onChangeModel: (modelConfig: IPAdapterModelConfig | FLUXReduxModelConfig | ApiModelConfig) => void;
};
export const GlobalReferenceImageModel = memo(({ modelKey, onChangeModel }: Props) => {
const { t } = useTranslation();
const currentBaseModel = useAppSelector(selectBase);
const [modelConfigs, { isLoading }] = useGlobalReferenceImageModels();
const selectedModel = useMemo(() => modelConfigs.find((m) => m.key === modelKey), [modelConfigs, modelKey]);
const _onChangeModel = useCallback(
(modelConfig: IPAdapterModelConfig | FLUXReduxModelConfig | ApiModelConfig | null) => {
if (!modelConfig) {
return;
}
onChangeModel(modelConfig);
},
[onChangeModel]
);
const getIsDisabled = useCallback(
(model: AnyModelConfig): boolean => {
const hasMainModel = Boolean(currentBaseModel);
const hasSameBase = currentBaseModel === model.base;
return !hasMainModel || !hasSameBase;
},
[currentBaseModel]
);
const { options, value, onChange, noOptionsMessage } = useGroupedModelCombobox({
modelConfigs,
onChange: _onChangeModel,
selectedModel,
getIsDisabled,
isLoading,
});
return (
<Tooltip label={selectedModel?.description}>
<FormControl isInvalid={!value || currentBaseModel !== selectedModel?.base} w="full">
<Combobox
options={options}
placeholder={t('common.placeholderSelectAModel')}
value={value}
onChange={onChange}
noOptionsMessage={noOptionsMessage}
/>
</FormControl>
</Tooltip>
);
});
GlobalReferenceImageModel.displayName = 'GlobalReferenceImageModel';

View File

@@ -61,7 +61,7 @@ export const IPAdapterImagePreview = memo(
)}
{imageDTO && (
<>
<DndImage imageDTO={imageDTO} borderWidth={1} borderStyle="solid" />
<DndImage imageDTO={imageDTO} borderWidth={1} borderStyle="solid" w="full" />
<Flex position="absolute" flexDir="column" top={2} insetInlineEnd={2} gap={1}>
<DndImageIcon
onClick={handleResetControlImage}

View File

@@ -30,6 +30,16 @@ export const IPAdapterMethod = memo(({ method, onChange }: Props) => {
value: 'style',
description: shouldShowModelDescriptions ? t('controlLayers.ipAdapterMethod.styleDesc') : undefined,
},
{
label: t('controlLayers.ipAdapterMethod.styleStrong'),
value: 'style_strong',
description: shouldShowModelDescriptions ? t('controlLayers.ipAdapterMethod.styleStrongDesc') : undefined,
},
{
label: t('controlLayers.ipAdapterMethod.stylePrecise'),
value: 'style_precise',
description: shouldShowModelDescriptions ? t('controlLayers.ipAdapterMethod.stylePreciseDesc') : undefined,
},
{
label: t('controlLayers.ipAdapterMethod.composition'),
value: 'composition',

View File

@@ -6,6 +6,7 @@ import { CanvasEntitySettingsWrapper } from 'features/controlLayers/components/c
import { Weight } from 'features/controlLayers/components/common/Weight';
import { CLIPVisionModel } from 'features/controlLayers/components/IPAdapter/CLIPVisionModel';
import { FLUXReduxImageInfluence } from 'features/controlLayers/components/IPAdapter/FLUXReduxImageInfluence';
import { GlobalReferenceImageModel } from 'features/controlLayers/components/IPAdapter/GlobalReferenceImageModel';
import { IPAdapterMethod } from 'features/controlLayers/components/IPAdapter/IPAdapterMethod';
import { IPAdapterSettingsEmptyState } from 'features/controlLayers/components/IPAdapter/IPAdapterSettingsEmptyState';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
@@ -33,10 +34,9 @@ import { setGlobalReferenceImageDndTarget } from 'features/dnd/dnd';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiBoundingBoxBold } from 'react-icons/pi';
import type { FLUXReduxModelConfig, ImageDTO, IPAdapterModelConfig } from 'services/api/types';
import type { ApiModelConfig, FLUXReduxModelConfig, ImageDTO, IPAdapterModelConfig } from 'services/api/types';
import { IPAdapterImagePreview } from './IPAdapterImagePreview';
import { IPAdapterModel } from './IPAdapterModel';
const buildSelectIPAdapter = (entityIdentifier: CanvasEntityIdentifier<'reference_image'>) =>
createSelector(
@@ -80,7 +80,7 @@ const IPAdapterSettingsContent = memo(() => {
);
const onChangeModel = useCallback(
(modelConfig: IPAdapterModelConfig | FLUXReduxModelConfig) => {
(modelConfig: IPAdapterModelConfig | FLUXReduxModelConfig | ApiModelConfig) => {
dispatch(referenceImageIPAdapterModelChanged({ entityIdentifier, modelConfig }));
},
[dispatch, entityIdentifier]
@@ -113,11 +113,7 @@ const IPAdapterSettingsContent = memo(() => {
<CanvasEntitySettingsWrapper>
<Flex flexDir="column" gap={2} position="relative" w="full">
<Flex gap={2} alignItems="center" w="full">
<IPAdapterModel
isRegionalGuidance={false}
modelKey={ipAdapter.model?.key ?? null}
onChangeModel={onChangeModel}
/>
<GlobalReferenceImageModel modelKey={ipAdapter.model?.key ?? null} onChangeModel={onChangeModel} />
{ipAdapter.type === 'ip_adapter' && (
<CLIPVisionModel model={ipAdapter.clipVisionModel} onChange={onChangeCLIPVisionModel} />
)}

View File

@@ -4,29 +4,26 @@ import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
import { selectBase } from 'features/controlLayers/store/paramsSlice';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { useIPAdapterOrFLUXReduxModels } from 'services/api/hooks/modelsByType';
import { useRegionalReferenceImageModels } from 'services/api/hooks/modelsByType';
import type { AnyModelConfig, FLUXReduxModelConfig, IPAdapterModelConfig } from 'services/api/types';
type Props = {
isRegionalGuidance: boolean;
modelKey: string | null;
onChangeModel: (modelConfig: IPAdapterModelConfig | FLUXReduxModelConfig) => void;
};
export const IPAdapterModel = memo(({ isRegionalGuidance, modelKey, onChangeModel }: Props) => {
const filter = (config: IPAdapterModelConfig | FLUXReduxModelConfig) => {
// FLUX supports regional guidance for FLUX Redux models only - not IP Adapter models.
if (config.base === 'flux' && config.type === 'ip_adapter') {
return false;
}
return true;
};
export const RegionalReferenceImageModel = memo(({ modelKey, onChangeModel }: Props) => {
const { t } = useTranslation();
const currentBaseModel = useAppSelector(selectBase);
const filter = useCallback(
(config: IPAdapterModelConfig | FLUXReduxModelConfig) => {
// FLUX supports regional guidance for FLUX Redux models only - not IP Adapter models.
if (isRegionalGuidance && config.base === 'flux' && config.type === 'ip_adapter') {
return false;
}
return true;
},
[isRegionalGuidance]
);
const [modelConfigs, { isLoading }] = useIPAdapterOrFLUXReduxModels(filter);
const [modelConfigs, { isLoading }] = useRegionalReferenceImageModels(filter);
const selectedModel = useMemo(() => modelConfigs.find((m) => m.key === modelKey), [modelConfigs, modelKey]);
const _onChangeModel = useCallback(
@@ -71,4 +68,4 @@ export const IPAdapterModel = memo(({ isRegionalGuidance, modelKey, onChangeMode
);
});
IPAdapterModel.displayName = 'IPAdapterModel';
RegionalReferenceImageModel.displayName = 'RegionalReferenceImageModel';

View File

@@ -7,7 +7,7 @@ import { CLIPVisionModel } from 'features/controlLayers/components/IPAdapter/CLI
import { FLUXReduxImageInfluence } from 'features/controlLayers/components/IPAdapter/FLUXReduxImageInfluence';
import { IPAdapterImagePreview } from 'features/controlLayers/components/IPAdapter/IPAdapterImagePreview';
import { IPAdapterMethod } from 'features/controlLayers/components/IPAdapter/IPAdapterMethod';
import { IPAdapterModel } from 'features/controlLayers/components/IPAdapter/IPAdapterModel';
import { RegionalReferenceImageModel } from 'features/controlLayers/components/IPAdapter/RegionalReferenceImageModel';
import { RegionalGuidanceIPAdapterSettingsEmptyState } from 'features/controlLayers/components/RegionalGuidance/RegionalGuidanceIPAdapterSettingsEmptyState';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { usePullBboxIntoRegionalGuidanceReferenceImage } from 'features/controlLayers/hooks/saveCanvasHooks';
@@ -140,11 +140,7 @@ const RegionalGuidanceIPAdapterSettingsContent = memo(({ referenceImageId }: Pro
</Flex>
<Flex flexDir="column" gap={2} position="relative" w="full">
<Flex gap={2} alignItems="center" w="full">
<IPAdapterModel
isRegionalGuidance={true}
modelKey={ipAdapter.model?.key ?? null}
onChangeModel={onChangeModel}
/>
<RegionalReferenceImageModel modelKey={ipAdapter.model?.key ?? null} onChangeModel={onChangeModel} />
{ipAdapter.type === 'ip_adapter' && (
<CLIPVisionModel model={ipAdapter.clipVisionModel} onChange={onChangeCLIPVisionModel} />
)}

View File

@@ -17,16 +17,26 @@ import { selectBase } from 'features/controlLayers/store/paramsSlice';
import { selectCanvasSlice, selectEntity } from 'features/controlLayers/store/selectors';
import type {
CanvasEntityIdentifier,
CanvasReferenceImageState,
CanvasRegionalGuidanceState,
ControlLoRAConfig,
ControlNetConfig,
IPAdapterConfig,
T2IAdapterConfig,
} from 'features/controlLayers/store/types';
import { initialControlNet, initialIPAdapter, initialT2IAdapter } from 'features/controlLayers/store/util';
import {
initialChatGPT4oReferenceImage,
initialControlNet,
initialIPAdapter,
initialT2IAdapter,
} from 'features/controlLayers/store/util';
import { zModelIdentifierField } from 'features/nodes/types/common';
import { useCallback } from 'react';
import { modelConfigsAdapterSelectors, selectModelConfigsQuery } from 'services/api/endpoints/models';
import {
modelConfigsAdapterSelectors,
selectMainModelConfig,
selectModelConfigsQuery,
} from 'services/api/endpoints/models';
import type {
ControlLoRAModelConfig,
ControlNetModelConfig,
@@ -64,6 +74,35 @@ export const selectDefaultControlAdapter = createSelector(
}
);
export const selectDefaultRefImageConfig = createSelector(
selectMainModelConfig,
selectModelConfigsQuery,
selectBase,
(selectedMainModel, query, base): CanvasReferenceImageState['ipAdapter'] => {
if (selectedMainModel?.base === 'chatgpt-4o') {
const referenceImage = deepClone(initialChatGPT4oReferenceImage);
referenceImage.model = zModelIdentifierField.parse(selectedMainModel);
return referenceImage;
}
const { data } = query;
let model: IPAdapterModelConfig | null = null;
if (data) {
const modelConfigs = modelConfigsAdapterSelectors.selectAll(data).filter(isIPAdapterModelConfig);
const compatibleModels = modelConfigs.filter((m) => (base ? m.base === base : true));
model = compatibleModels[0] ?? modelConfigs[0] ?? null;
}
const ipAdapter = deepClone(initialIPAdapter);
if (model) {
ipAdapter.model = zModelIdentifierField.parse(model);
if (model.base === 'flux') {
ipAdapter.clipVisionModel = 'ViT-L';
}
}
return ipAdapter;
}
);
/**
* Selects the default IP adapter configuration based on the model configurations and the base.
*
@@ -146,11 +185,11 @@ export const useAddRegionalReferenceImage = () => {
export const useAddGlobalReferenceImage = () => {
const dispatch = useAppDispatch();
const defaultIPAdapter = useAppSelector(selectDefaultIPAdapter);
const defaultRefImage = useAppSelector(selectDefaultRefImageConfig);
const func = useCallback(() => {
const overrides = { ipAdapter: deepClone(defaultIPAdapter) };
const overrides = { ipAdapter: deepClone(defaultRefImage) };
dispatch(referenceImageAdded({ isSelected: true, overrides }));
}, [defaultIPAdapter, dispatch]);
}, [defaultRefImage, dispatch]);
return func;
};

View File

@@ -41,7 +41,7 @@ export const useCopyLayerToClipboard = () => {
});
});
} catch (error) {
log.error({ error: serializeError(error) }, 'Problem copying layer to clipboard');
log.error({ error: serializeError(error as Error) }, 'Problem copying layer to clipboard');
toast({
status: 'error',
title: t('toast.problemCopyingLayer'),
@@ -82,7 +82,7 @@ export const useCopyCanvasToClipboard = (region: 'canvas' | 'bbox') => {
toast({ title: t('controlLayers.regionCopiedToClipboard', { region: startCase(region) }) });
});
} catch (error) {
log.error({ error: serializeError(error) }, 'Failed to save canvas to gallery');
log.error({ error: serializeError(error as Error) }, 'Failed to save canvas to gallery');
toast({ title: t('controlLayers.copyRegionError', { region: startCase(region) }), status: 'error' });
}
}, [canvasManager.compositor, canvasManager.stateApi, clipboard, region, t]);

View File

@@ -3,7 +3,7 @@ import { useAppDispatch, useAppSelector, useAppStore } from 'app/store/storeHook
import { deepClone } from 'common/util/deepClone';
import { withResultAsync } from 'common/util/result';
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import { selectDefaultIPAdapter } from 'features/controlLayers/hooks/addLayerHooks';
import { selectDefaultIPAdapter, selectDefaultRefImageConfig } from 'features/controlLayers/hooks/addLayerHooks';
import { getPrefixedId } from 'features/controlLayers/konva/util';
import {
controlLayerAdded,
@@ -198,7 +198,7 @@ export const useNewRegionalReferenceImageFromBbox = () => {
export const useNewGlobalReferenceImageFromBbox = () => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const defaultIPAdapter = useAppSelector(selectDefaultIPAdapter);
const defaultIPAdapter = useAppSelector(selectDefaultRefImageConfig);
const arg = useMemo<UseSaveCanvasArg>(() => {
const onSave = (imageDTO: ImageDTO) => {

View File

@@ -1,5 +1,11 @@
import { useAppSelector } from 'app/store/storeHooks';
import { selectIsCogView4, selectIsSD3 } from 'features/controlLayers/store/paramsSlice';
import {
selectIsChatGTP4o,
selectIsCogView4,
selectIsImagen3,
selectIsImagen4,
selectIsSD3,
} from 'features/controlLayers/store/paramsSlice';
import type { CanvasEntityType } from 'features/controlLayers/store/types';
import { useMemo } from 'react';
import type { Equals } from 'tsafe';
@@ -8,23 +14,26 @@ import { assert } from 'tsafe';
export const useIsEntityTypeEnabled = (entityType: CanvasEntityType) => {
const isSD3 = useAppSelector(selectIsSD3);
const isCogView4 = useAppSelector(selectIsCogView4);
const isImagen3 = useAppSelector(selectIsImagen3);
const isImagen4 = useAppSelector(selectIsImagen4);
const isChatGPT4o = useAppSelector(selectIsChatGTP4o);
const isEntityTypeEnabled = useMemo<boolean>(() => {
switch (entityType) {
case 'reference_image':
return !isSD3 && !isCogView4;
return !isSD3 && !isCogView4 && !isImagen3 && !isImagen4;
case 'regional_guidance':
return !isSD3 && !isCogView4;
return !isSD3 && !isCogView4 && !isImagen3 && !isImagen4 && !isChatGPT4o;
case 'control_layer':
return !isSD3 && !isCogView4;
return !isSD3 && !isCogView4 && !isImagen3 && !isImagen4 && !isChatGPT4o;
case 'inpaint_mask':
return true;
return !isImagen3 && !isImagen4 && !isChatGPT4o;
case 'raster_layer':
return true;
return !isImagen3 && !isImagen4 && !isChatGPT4o;
default:
assert<Equals<typeof entityType, never>>(false);
}
}, [entityType, isSD3, isCogView4]);
}, [entityType, isSD3, isCogView4, isImagen3, isImagen4, isChatGPT4o]);
return isEntityTypeEnabled;
};

View File

@@ -41,7 +41,7 @@ export const useSaveLayerToAssets = () => {
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
});
} catch (error) {
log.error({ error: serializeError(error) }, 'Problem copying layer to clipboard');
log.error({ error: serializeError(error as Error) }, 'Problem copying layer to clipboard');
toast({
status: 'error',
title: t('toast.problemSavingLayer'),

View File

@@ -519,7 +519,7 @@ export class CanvasEntityObjectRenderer extends CanvasModuleBase {
this.manager.cache.imageNameCache.set(hash, imageDTO.image_name);
return imageDTO;
} catch (error) {
this.log.error({ rasterizeArgs, error: serializeError(error) }, 'Failed to rasterize entity');
this.log.error({ rasterizeArgs, error: serializeError(error as Error) }, 'Failed to rasterize entity');
throw error;
} finally {
this.manager.stateApi.$rasterizingAdapter.set(null);

View File

@@ -346,7 +346,7 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
// If the user is not holding shift, the transform is retaining aspect ratio. It's not possible to snap to the grid
// in this case, because that would change the aspect ratio. So, we only snap to the grid when shift is held.
const gridSize = this.manager.stateApi.$shiftKey.get() ? this.manager.stateApi.getGridSize() : 1;
const gridSize = this.manager.stateApi.$shiftKey.get() ? this.manager.stateApi.getPositionGridSize() : 1;
// We need to snap the anchor to the selected grid size, but the positions provided to this callback are absolute,
// scaled coordinates. They need to be converted to stage coordinates, snapped, then converted back to absolute
@@ -464,7 +464,7 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
return;
}
const { rect } = this.manager.stateApi.getBbox();
const gridSize = this.manager.stateApi.getGridSize();
const gridSize = this.manager.stateApi.getPositionGridSize();
const width = this.konva.proxyRect.width();
const height = this.konva.proxyRect.height();
const scaleX = rect.width / width;
@@ -498,7 +498,7 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
return;
}
const { rect } = this.manager.stateApi.getBbox();
const gridSize = this.manager.stateApi.getGridSize();
const gridSize = this.manager.stateApi.getPositionGridSize();
const width = this.konva.proxyRect.width();
const height = this.konva.proxyRect.height();
const scaleX = rect.width / width;
@@ -523,7 +523,7 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
onDragMove = () => {
// Snap the interaction rect to the grid
const gridSize = this.manager.stateApi.getGridSize();
const gridSize = this.manager.stateApi.getPositionGridSize();
this.konva.proxyRect.x(roundToMultiple(this.konva.proxyRect.x(), gridSize));
this.konva.proxyRect.y(roundToMultiple(this.konva.proxyRect.y(), gridSize));

View File

@@ -112,7 +112,7 @@ export class CanvasObjectImage extends CanvasModuleBase {
return;
}
const imageElementResult = await withResultAsync(() => loadImage(imageDTO.image_url));
const imageElementResult = await withResultAsync(() => loadImage(imageDTO.image_url, true));
if (imageElementResult.isErr()) {
// Image loading failed (e.g. the URL to the "physical" image is invalid)
this.onFailedToLoadImage(t('controlLayers.unableToLoadImage', 'Unable to load image'));

View File

@@ -493,7 +493,7 @@ export class CanvasStateApiModule extends CanvasModuleBase {
* Gets the _positional_ grid size for the current canvas. Note that this is not the same as bbox grid size, which is
* based on the currently-selected model.
*/
getGridSize = (): number => {
getPositionGridSize = (): number => {
const snapToGrid = this.getSettings().snapToGrid;
if (!snapToGrid) {
return 1;

View File

@@ -4,8 +4,11 @@ import { CanvasModuleBase } from 'features/controlLayers/konva/CanvasModuleBase'
import type { CanvasToolModule } from 'features/controlLayers/konva/CanvasTool/CanvasToolModule';
import { fitRectToGrid, getKonvaNodeDebugAttrs, getPrefixedId } from 'features/controlLayers/konva/util';
import { selectBboxOverlay } from 'features/controlLayers/store/canvasSettingsSlice';
import { selectModel } from 'features/controlLayers/store/paramsSlice';
import { selectBbox } from 'features/controlLayers/store/selectors';
import type { Coordinate, Rect } from 'features/controlLayers/store/types';
import type { Coordinate, Rect, Tool } from 'features/controlLayers/store/types';
import type { ModelIdentifierField } from 'features/nodes/types/common';
import { API_BASE_MODELS } from 'features/parameters/types/constants';
import Konva from 'konva';
import { noop } from 'lodash-es';
import { atom } from 'nanostores';
@@ -178,6 +181,9 @@ export class CanvasBboxToolModule extends CanvasModuleBase {
// Listen for the bbox overlay setting to update the overlay's visibility
this.subscriptions.add(this.manager.stateApi.createStoreSubscription(selectBboxOverlay, this.render));
// Listen for the model changing - some model types constraint the bbox to a certain size or aspect ratio.
this.subscriptions.add(this.manager.stateApi.createStoreSubscription(selectModel, this.render));
// Update on busy state changes
this.subscriptions.add(this.manager.$isBusy.listen(this.render));
}
@@ -218,12 +224,25 @@ export class CanvasBboxToolModule extends CanvasModuleBase {
this.syncOverlay();
const model = this.manager.stateApi.runSelector(selectModel);
this.konva.transformer.setAttrs({
listening: tool === 'bbox',
enabledAnchors: tool === 'bbox' ? ALL_ANCHORS : NO_ANCHORS,
enabledAnchors: this.getEnabledAnchors(tool, model),
});
};
getEnabledAnchors = (tool: Tool, model?: ModelIdentifierField | null): string[] => {
if (tool !== 'bbox') {
return NO_ANCHORS;
}
if (model?.base && API_BASE_MODELS.includes(model.base)) {
// The bbox is not resizable in these modes
return NO_ANCHORS;
}
return ALL_ANCHORS;
};
syncOverlay = () => {
const bboxOverlay = this.manager.stateApi.getSettings().bboxOverlay;
@@ -251,7 +270,7 @@ export class CanvasBboxToolModule extends CanvasModuleBase {
onDragMove = () => {
// The grid size here is the _position_ grid size, not the _dimension_ grid size - it is not constratined by the
// currently-selected model.
const gridSize = this.manager.stateApi.getGridSize();
const gridSize = this.manager.stateApi.getPositionGridSize();
const bbox = this.manager.stateApi.getBbox();
const bboxRect: Rect = {
...bbox.rect,

View File

@@ -476,15 +476,24 @@ export function getImageDataTransparency(imageData: ImageData): Transparency {
/**
* Loads an image from a URL and returns a promise that resolves with the loaded image element.
* @param src The image source URL
* @param fetchUrlFirst Whether to fetch the image's URL first, assuming the provided `src` will redirect to a different URL. This addresses an issue where CORS headers are dropped during a redirect.
* @returns A promise that resolves with the loaded image element
*/
export function loadImage(src: string): Promise<HTMLImageElement> {
export async function loadImage(src: string, fetchUrlFirst?: boolean): Promise<HTMLImageElement> {
const authToken = $authToken.get();
let url = src;
if (authToken && fetchUrlFirst) {
const response = await fetch(`${src}?url_only=true`, { credentials: 'include' });
const data = await response.json();
url = data.url;
}
return new Promise((resolve, reject) => {
const imageElement = new Image();
imageElement.onload = () => resolve(imageElement);
imageElement.onerror = (error) => reject(error);
imageElement.crossOrigin = $authToken.get() ? 'use-credentials' : 'anonymous';
imageElement.src = src;
imageElement.src = url;
});
}

View File

@@ -10,12 +10,12 @@ export type Extents = {
/**
* Get the bounding box of an image.
* @param buffer The ArrayBuffer of the image to get the bounding box of.
* @param buffer The ArrayBufferLike of the image to get the bounding box of.
* @param width The width of the image.
* @param height The height of the image.
* @returns The minimum and maximum x and y values of the image's bounding box, or null if the image has no pixels.
*/
const getImageDataBboxArrayBuffer = (buffer: ArrayBuffer, width: number, height: number): Extents | null => {
const getImageDataBboxArrayBufferLike = (buffer: ArrayBufferLike, width: number, height: number): Extents | null => {
let minX = width;
let minY = height;
let maxX = -1;
@@ -50,7 +50,7 @@ const getImageDataBboxArrayBuffer = (buffer: ArrayBuffer, width: number, height:
export type GetBboxTask = {
type: 'get_bbox';
data: { id: string; buffer: ArrayBuffer; width: number; height: number };
data: { id: string; buffer: ArrayBufferLike; width: number; height: number };
};
type TaskWithTimestamps<T extends Record<string, unknown>> = T & { started: number | null; finished: number | null };
@@ -95,7 +95,7 @@ function processNextTask() {
// Process the task
if (task.type === 'get_bbox') {
const { buffer, width, height, id } = task.data;
const extents = getImageDataBboxArrayBuffer(buffer, width, height);
const extents = getImageDataBboxArrayBufferLike(buffer, width, height);
const result: ExtentsResult = {
type: 'extents',
data: { id, extents },

View File

@@ -32,11 +32,13 @@ import {
import { simplifyFlatNumbersArray } from 'features/controlLayers/util/simplify';
import { isMainModelBase, zModelIdentifierField } from 'features/nodes/types/common';
import { ASPECT_RATIO_MAP } from 'features/parameters/components/Bbox/constants';
import { API_BASE_MODELS } from 'features/parameters/types/constants';
import { getGridSize, getIsSizeOptimal, getOptimalDimension } from 'features/parameters/util/optimalDimension';
import type { IRect } from 'konva/lib/types';
import { merge } from 'lodash-es';
import { isEqual, merge } from 'lodash-es';
import type { UndoableOptions } from 'redux-undo';
import type {
ApiModelConfig,
ControlLoRAModelConfig,
ControlNetModelConfig,
FLUXReduxModelConfig,
@@ -67,7 +69,7 @@ import type {
IPMethodV2,
T2IAdapterConfig,
} from './types';
import { getEntityIdentifier, isRenderableEntity } from './types';
import { getEntityIdentifier, isChatGPT4oAspectRatioID, isImagenAspectRatioID, isRenderableEntity } from './types';
import {
converters,
getControlLayerState,
@@ -76,6 +78,7 @@ import {
getReferenceImageState,
getRegionalGuidanceState,
imageDTOToImageWithDims,
initialChatGPT4oReferenceImage,
initialControlLoRA,
initialControlNet,
initialFLUXRedux,
@@ -644,7 +647,10 @@ export const canvasSlice = createSlice({
referenceImageIPAdapterModelChanged: (
state,
action: PayloadAction<
EntityIdentifierPayload<{ modelConfig: IPAdapterModelConfig | FLUXReduxModelConfig | null }, 'reference_image'>
EntityIdentifierPayload<
{ modelConfig: IPAdapterModelConfig | FLUXReduxModelConfig | ApiModelConfig | null },
'reference_image'
>
>
) => {
const { entityIdentifier, modelConfig } = action.payload;
@@ -652,14 +658,36 @@ export const canvasSlice = createSlice({
if (!entity) {
return;
}
const oldModel = entity.ipAdapter.model;
// First set the new model
entity.ipAdapter.model = modelConfig ? zModelIdentifierField.parse(modelConfig) : null;
if (!entity.ipAdapter.model) {
return;
}
if (entity.ipAdapter.type === 'ip_adapter' && entity.ipAdapter.model.type === 'flux_redux') {
// Switching from ip_adapter to flux_redux
if (isEqual(oldModel, entity.ipAdapter.model)) {
// Nothing changed, so we don't need to do anything
return;
}
// The type of ref image depends on the model. When the user switches the model, we rebuild the ref image.
// When we switch the model, we keep the image the same, but change the other parameters.
if (entity.ipAdapter.model.base === 'chatgpt-4o') {
// Switching to chatgpt-4o ref image
entity.ipAdapter = {
...initialChatGPT4oReferenceImage,
image: entity.ipAdapter.image,
model: entity.ipAdapter.model,
};
return;
}
if (entity.ipAdapter.model.type === 'flux_redux') {
// Switching to flux_redux
entity.ipAdapter = {
...initialFLUXRedux,
image: entity.ipAdapter.image,
@@ -668,17 +696,13 @@ export const canvasSlice = createSlice({
return;
}
if (entity.ipAdapter.type === 'flux_redux' && entity.ipAdapter.model.type === 'ip_adapter') {
// Switching from flux_redux to ip_adapter
if (entity.ipAdapter.model.type === 'ip_adapter') {
// Switching to ip_adapter
entity.ipAdapter = {
...initialIPAdapter,
image: entity.ipAdapter.image,
model: entity.ipAdapter.model,
};
return;
}
if (entity.ipAdapter.type === 'ip_adapter') {
// Ensure that the IP Adapter model is compatible with the CLIP Vision model
if (entity.ipAdapter.model?.base === 'flux') {
entity.ipAdapter.clipVisionModel = 'ViT-L';
@@ -686,6 +710,7 @@ export const canvasSlice = createSlice({
// Fall back to ViT-H (ViT-G would also work)
entity.ipAdapter.clipVisionModel = 'ViT-H';
}
return;
}
},
referenceImageIPAdapterCLIPVisionModelChanged: (
@@ -1139,7 +1164,21 @@ export const canvasSlice = createSlice({
syncScaledSize(state);
},
bboxChangedFromCanvas: (state, action: PayloadAction<IRect>) => {
state.bbox.rect = action.payload;
const newBboxRect = action.payload;
const oldBboxRect = state.bbox.rect;
state.bbox.rect = newBboxRect;
if (newBboxRect.width === oldBboxRect.width && newBboxRect.height === oldBboxRect.height) {
return;
}
const oldAspectRatio = state.bbox.aspectRatio.value;
const newAspectRatio = newBboxRect.width / newBboxRect.height;
if (oldAspectRatio === newAspectRatio) {
return;
}
// TODO(psyche): Figure out a way to handle this without resetting the aspect ratio on every change.
// This action is dispatched when the user resizes or moves the bbox from the canvas. For now, when the user
@@ -1198,6 +1237,43 @@ export const canvasSlice = createSlice({
state.bbox.aspectRatio.id = id;
if (id === 'Free') {
state.bbox.aspectRatio.isLocked = false;
} else if (
(state.bbox.modelBase === 'imagen3' || state.bbox.modelBase === 'imagen4') &&
isImagenAspectRatioID(id)
) {
// Imagen3 has specific output sizes that are not exactly the same as the aspect ratio. Need special handling.
if (id === '16:9') {
state.bbox.rect.width = 1408;
state.bbox.rect.height = 768;
} else if (id === '4:3') {
state.bbox.rect.width = 1280;
state.bbox.rect.height = 896;
} else if (id === '1:1') {
state.bbox.rect.width = 1024;
state.bbox.rect.height = 1024;
} else if (id === '3:4') {
state.bbox.rect.width = 896;
state.bbox.rect.height = 1280;
} else if (id === '9:16') {
state.bbox.rect.width = 768;
state.bbox.rect.height = 1408;
}
state.bbox.aspectRatio.value = state.bbox.rect.width / state.bbox.rect.height;
state.bbox.aspectRatio.isLocked = true;
} else if (state.bbox.modelBase === 'chatgpt-4o' && isChatGPT4oAspectRatioID(id)) {
// gpt-image has specific output sizes that are not exactly the same as the aspect ratio. Need special handling.
if (id === '3:2') {
state.bbox.rect.width = 1536;
state.bbox.rect.height = 1024;
} else if (id === '1:1') {
state.bbox.rect.width = 1024;
state.bbox.rect.height = 1024;
} else if (id === '2:3') {
state.bbox.rect.width = 1024;
state.bbox.rect.height = 1536;
}
state.bbox.aspectRatio.value = state.bbox.rect.width / state.bbox.rect.height;
state.bbox.aspectRatio.isLocked = true;
} else {
state.bbox.aspectRatio.isLocked = true;
state.bbox.aspectRatio.value = ASPECT_RATIO_MAP[id].ratio;
@@ -1670,6 +1746,13 @@ export const canvasSlice = createSlice({
const base = model?.base;
if (isMainModelBase(base) && state.bbox.modelBase !== base) {
state.bbox.modelBase = base;
if (API_BASE_MODELS.includes(base)) {
state.bbox.aspectRatio.isLocked = true;
state.bbox.aspectRatio.value = 1;
state.bbox.aspectRatio.id = '1:1';
state.bbox.rect.width = 1024;
state.bbox.rect.height = 1024;
}
syncScaledSize(state);
}
});
@@ -1802,6 +1885,10 @@ export const canvasPersistConfig: PersistConfig<CanvasState> = {
};
const syncScaledSize = (state: CanvasState) => {
if (API_BASE_MODELS.includes(state.bbox.modelBase)) {
// Imagen3 has fixed sizes. Scaled bbox is not supported.
return;
}
if (state.bbox.scaleMethod === 'auto') {
// Sync both aspect ratio and size
const { width, height } = state.bbox.rect;

View File

@@ -380,6 +380,9 @@ export const selectIsSDXL = createParamsSelector((params) => params.model?.base
export const selectIsFLUX = createParamsSelector((params) => params.model?.base === 'flux');
export const selectIsSD3 = createParamsSelector((params) => params.model?.base === 'sd-3');
export const selectIsCogView4 = createParamsSelector((params) => params.model?.base === 'cogview4');
export const selectIsImagen3 = createParamsSelector((params) => params.model?.base === 'imagen3');
export const selectIsImagen4 = createParamsSelector((params) => params.model?.base === 'imagen4');
export const selectIsChatGTP4o = createParamsSelector((params) => params.model?.base === 'chatgpt-4o');
export const selectModel = createParamsSelector((params) => params.model);
export const selectModelKey = createParamsSelector((params) => params.model?.key);

Some files were not shown because too many files have changed in this diff Show More